Science.gov

Sample records for air conditioner cycling

  1. Air Conditioner/Dehumidifier

    NASA Technical Reports Server (NTRS)

    1986-01-01

    An ordinary air conditioner in a very humid environment must overcool the room air, then reheat it. Mr. Dinh, a former STAC associate, devised a heat pipe based humidifier under a NASA Contract. The system used heat pipes to precool the air; the air conditioner's cooling coil removes heat and humidity, then the heat pipes restore the overcooled air to a comfortable temperature. The heat pipes use no energy, and typical savings are from 15-20%. The Dinh Company also manufactures a "Z" coil, a retrofit cooling coil which may be installed on an existing heater/air conditioner. It will also provide free hot water. The company has also developed a photovoltaic air conditioner and solar powered water pump.

  2. Ventilating Air-Conditioner

    NASA Technical Reports Server (NTRS)

    Dinh, Khanh

    1994-01-01

    Air-conditioner provides ventilation designed to be used alone or incorporated into cooling or heating system operates efficiently only by recirculating stale air within building. Energy needed to operate overall ventilating cooling or heating system slightly greater than operating nonventilating cooling or heating system. Helps to preserve energy efficiency while satisfying need for increased forced ventilation to prevent accumulation of undesired gases like radon and formaldehyde. Provides fresh treated air to variety of confined spaces: hospital surgeries, laboratories, clean rooms, and printing shops and other places where solvents used. In mobile homes and portable classrooms, eliminates irritant chemicals exuded by carpets, panels, and other materials, ensuring healthy indoor environment for occupants.

  3. Stirling Air Conditioner for Compact Cooling

    SciTech Connect

    2010-09-01

    BEETIT Project: Infinia is developing a compact air conditioner that uses an unconventional high efficient Stirling cycle system (vs. conventional vapor compression systems) to produce cool air that is energy efficient and does not rely on polluting refrigerants. The Stirling cycle system is a type of air conditioning system that uses a motor with a piston to remove heat to the outside atmosphere using a gas refrigerant. To date, Stirling systems have been expensive and have not had the right kind of heat exchanger to help cool air efficiently. Infinia is using chip cooling technology from the computer industry to make improvements to the heat exchanger and improve system performance. Infinia’s air conditioner uses helium gas as refrigerant, an environmentally benign gas that does not react with other chemicals and does not burn. Infinia’s improvements to the Stirling cycle system will enable the cost-effective mass production of high-efficiency air conditioners that use no polluting refrigerants.

  4. Energy savings potential in air conditioners and chiller systems

    SciTech Connect

    Kaya, Durmus; Alidrisi, Hisham

    2014-01-22

    In the current paper we quantified and evaluated the energy saving potential in air conditioners and chiller systems. Here, we also showed how to reduce the cost of air conditioners and chiller systems in existing facilities on the basis of payback periods. Among the measures investigated were: (1) installing higher efficiency air conditioners, (2) installing higher efficiency chillers, (3) duty cycling air conditioning units, and (4) utilizing existing economizers on air conditioning units. For each method, examples were provided from Arizona, USA. In these examples, the amount of saved energy, the financial evaluation of this energy, and the investment cost and pay back periods were calculated.

  5. Energy savings potential in air conditioners and chiller systems

    DOE PAGES

    Kaya, Durmus; Alidrisi, Hisham

    2014-01-22

    In the current paper we quantified and evaluated the energy saving potential in air conditioners and chiller systems. Here, we also showed how to reduce the cost of air conditioners and chiller systems in existing facilities on the basis of payback periods. Among the measures investigated were: (1) installing higher efficiency air conditioners, (2) installing higher efficiency chillers, (3) duty cycling air conditioning units, and (4) utilizing existing economizers on air conditioning units. For each method, examples were provided from Arizona, USA. In these examples, the amount of saved energy, the financial evaluation of this energy, and the investment costmore » and pay back periods were calculated.« less

  6. Development of a solar-powered residential air conditioner

    NASA Technical Reports Server (NTRS)

    1975-01-01

    An extensive review of the literature was conducted which was concerned with the characterization of systems and equipment that could be applicable to the development of solar-powered air conditioners based on the Rankine cycle approach, and the establishment of baseline data defining the performance, physical characteristics, and cost of systems using the LiBr/H2O absorption cycle.

  7. High Efficiency Room Air Conditioner

    SciTech Connect

    Bansal, Pradeep

    2015-01-01

    This project was undertaken as a CRADA project between UT-Battelle and Geberal Electric Company and was funded by Department of Energy to design and develop of a high efficiency room air conditioner. A number of novel elements were investigated to improve the energy efficiency of a state-of-the-art WAC with base capacity of 10,000 BTU/h. One of the major modifications was made by downgrading its capacity from 10,000 BTU/hr to 8,000 BTU/hr by replacing the original compressor with a lower capacity (8,000 BTU/hr) but high efficiency compressor having an EER of 9.7 as compared with 9.3 of the original compressor. However, all heat exchangers from the original unit were retained to provide higher EER. The other subsequent major modifications included- (i) the AC fan motor was replaced by a brushless high efficiency ECM motor along with its fan housing, (ii) the capillary tube was replaced with a needle valve to better control the refrigerant flow and refrigerant set points, and (iii) the unit was tested with a drop-in environmentally friendly binary mixture of R32 (90% molar concentration)/R125 (10% molar concentration). The WAC was tested in the environmental chambers at ORNL as per the design rating conditions of AHAM/ASHRAE (Outdoor- 95F and 40%RH, Indoor- 80F, 51.5%RH). All these modifications resulted in enhancing the EER of the WAC by up to 25%.

  8. On noise indices for domestic air conditioners

    NASA Astrophysics Data System (ADS)

    Tang, S. K.; Wong, M. Y.

    2004-07-01

    A survey was carried out in the present study to determine the noise indices which are capable of describing the nuisance caused by exposure to air-conditioner noise inside residential apartments. This survey consisted of a questionnaire, which asked the respondents to rate their feelings of annoyance and loudness on the air-conditioner noise and to give their preference of a change in the noise levels. Physical noise measurements were also carried out. A total of 57 noise spectra and 399 respondents were involved in the survey. Results show that the Zwicker's loudness level and the percentile level of 90% exceedence are the two major indices for air-conditioner noise assessment. Tonality appears not to be a good indicator for such a purpose.

  9. Development of a solar-powered residential air conditioner

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The initial objective of the program was the optimization (in terms of cost and performance) of a Rankine cycle mechanical refrigeration system which utilizes thermal energy from a flat solar collector for air conditioning residential buildings. However, feasibility investigations of the adsorption process revealed that a dessicant-type air conditioner offers many significant advantages. As a result, limited efforts were expended toward the optimization of such a system.

  10. ENERGY STAR Certified Room Air Conditioners

    EPA Pesticide Factsheets

    Certified models meet all ENERGY STAR requirements as listed in the Version 4.0 ENERGY STAR Program Requirements for Room Air Conditioners that are effective as of October 26, 2015. A detailed listing of key efficiency criteria are available at http://www.energystar.gov/index.cfm?c=roomac.pr_crit_room_ac

  11. High-Efficiency Rooftop Air Conditioners: Innovative Procurement to Achieve Advances in Technology

    SciTech Connect

    Hollomon, Brad

    2003-08-01

    The U.S. Department of Energy, Defense Logistics Agency, and Pacific Northwest National Laboratory recently conducted a technology procurement to increase the availability of energy-efficient, packaged unitary ''rooftop'' air conditioners. The procurement encouraged air conditioner manufacturers to produce equipment that exceeded US energy efficiency standards by at least 25% at a lower life-cycle cost. An outgrowth of the project, a web-based cost estimator tool is now available to help consumers determine the cost-effectiveness of purchasing energy-efficient air conditioners based on climate conditions and other factors at their own locations.

  12. 16 CFR Appendix E to Part 305 - Room Air Conditioners

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Room Air Conditioners E Appendix E to Part 305 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS RULE... Appendix E to Part 305—Room Air Conditioners Range Information Manufacturer's rated cooling capacity in...

  13. Development of a solar-powered residential air conditioner: System optimization preliminary specification

    NASA Technical Reports Server (NTRS)

    Rousseau, J.; Hwang, K. C.

    1975-01-01

    Investigations aimed at the optimization of a baseline Rankine cycle solar powered air conditioner and the development of a preliminary system specification were conducted. Efforts encompassed the following: (1) investigations of the use of recuperators/regenerators to enhance the performance of the baseline system, (2) development of an off-design computer program for system performance prediction, (3) optimization of the turbocompressor design to cover a broad range of conditions and permit operation at low heat source water temperatures, (4) generation of parametric data describing system performance (COP and capacity), (5) development and evaluation of candidate system augmentation concepts and selection of the optimum approach, (6) generation of auxiliary power requirement data, (7) development of a complete solar collector-thermal storage-air conditioner computer program, (8) evaluation of the baseline Rankine air conditioner over a five day period simulating the NASA solar house operation, and (9) evaluation of the air conditioner as a heat pump.

  14. Thermal Comfort Study of a Compact Thermoelectric Air Conditioner

    NASA Astrophysics Data System (ADS)

    Maneewan, S.; Tipsaenprom, W.; Lertsatitthanakorn, C.

    2010-09-01

    This paper evaluates the cooling performance and thermal comfort of a compact thermoelectric (TE) air conditioner. The compact TE air conditioner is composed of three TE modules. The cold and hot sides of the TE modules were fixed to rectangular fin heat sinks and fans. Thermal acceptability assessment was performed to find out whether the cooled air met the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) Standard-55’s 80% acceptability criteria. A suitable condition occurred at 1 A current flow with a corresponding cooling capacity of 29.2 W, giving an average cooled air temperature of 28°C and 0.9 m/s cooled air velocity. The coefficient of performance was calculated and found to be ˜0.34. Economic analysis indicates that the payback period is 0.75 years when one compact TE air conditioner unit is used instead of a 1-ton conventional air conditioner.

  15. Properties and Cycle Performance of Refrigerant Blends Operating Near and Above the Refrigerant Critical Point, Task 2: Air Conditioner System Study

    SciTech Connect

    Piotr A. Domanski; W. Vance Payne

    2002-10-31

    The main goal of this project was to investigate and compare the performance of an R410A air conditioner to that of an R22 air conditioner, with specific interest in performance at high ambient temperatures at which the condenser of the R410A system may be operating above the refrigerant's critical point. Part 1 of this project consisted of conducting comprehensive measurements of thermophysical for refrigerant R125 and refrigerant blends R410A and R507A and developing new equation of state formulations and mixture models for predicting thermophysical properties of HFC refrigerant blends. Part 2 of this project conducted performance measurements of split-system, 3-ton R22 and R410A residential air conditioners in the 80 to 135 F (27.8 to 57.2 C) outdoor temperature range and development of a system performance model. The performance data was used in preparing a beta version of EVAP-COND, a windows-based simulation package for predicting performance of finned-tube evaporators and condensers. The modeling portion of this project also included the formulation of a model for an air-conditioner equipped with a thermal expansion valve (TXV). Capacity and energy efficiency ratio (EER) were measured and compared. The R22 system's performance was measured over the outdoor ambient temperature range of 80 to 135 F (27.8 to 57.2 C). The same test range was planned for the R410A system. However, the compressor's safety system cut off the compressor at the 135.0 F (57.2 C) test temperature. The highest measurement on this system was at 130.0 F (54.4 C). Subsequently, a custom-manufactured R410A compressor with a disabled safety system and a more powerful motor was installed and performance was measured at outdoor temperatures up to 155.0 F (68.3 C). Both systems had similar capacity and EER performance at 82.0 F (27.8 C). The capacity and EER degradation of both systems were nearly linearly dependent with rising ambient outdoor ambient test temperatures. The performance

  16. High efficiency novel window air conditioner

    SciTech Connect

    Bansal, Pradeep

    2015-01-01

    This paper presents the technical development of a high efficiency window air conditioner. In order to achieve higher energy efficiency ratio (EER), the original capacity of the R410A unit was downgraded by replacing the original compressor with a lower capacity but higher EER compressor, while all heat exchangers and the chassis from the original unit were retained. The other subsequent major modifications included – the AC fan motor being replaced with a brushless high efficiency electronically commuted motor (ECM) motor, the capillary tube being replaced with a needle valve to better control the refrigerant flow and refrigerant set points, and R410A being replaced with drop-in environmentally friendly binary mixture of R32 (85% molar concentration)/R125 (15% molar concentration). All these modifications resulted in significant EER enhancement of the modified unit.

  17. High efficiency novel window air conditioner

    DOE PAGES

    Bansal, Pradeep

    2015-01-01

    This paper presents the technical development of a high efficiency window air conditioner. In order to achieve higher energy efficiency ratio (EER), the original capacity of the R410A unit was downgraded by replacing the original compressor with a lower capacity but higher EER compressor, while all heat exchangers and the chassis from the original unit were retained. The other subsequent major modifications included – the AC fan motor being replaced with a brushless high efficiency electronically commuted motor (ECM) motor, the capillary tube being replaced with a needle valve to better control the refrigerant flow and refrigerant set points, andmore » R410A being replaced with drop-in environmentally friendly binary mixture of R32 (85% molar concentration)/R125 (15% molar concentration). All these modifications resulted in significant EER enhancement of the modified unit.« less

  18. Air-conditioner filters enriching dust mites allergen.

    PubMed

    Zhan, Xiaodong; Li, Chaopin; Xu, Haifeng; Xu, Pengfei; Zhu, Haibin; Diao, Jidong; Li, Na; Zhao, Beibei

    2015-01-01

    We detected the concentration of dust mites allergen (Der f1 & Der p1) in the air of different places before and after the starting of air-conditioners in Wuhu City, Anhui, China, and to discuss the relation between the dust mites allergen in air-conditioner filters and the asthma attack. The dust samples were collected from the air-conditioner filters in dining rooms, shopping malls, hotels and households respectively. Concentrations of dust mites major group allergen 1 (Der f 1, Der p1) were detected with enzyme linked immunosorbent assay (ELISA), and the dust mite immune activities were determined by dot-ELISA. The concentration of Der f1 in dining rooms, shopping malls, hotels and households was 1.52 μg/g, 1.24 μg/g, 1.31 μg/g and 1.46 μg/g respectively, and the concentration of Der p1 in above-mentioned places was 1.23 μg/g, 1.12 μg/g, 1.16 μg/g and 1.18 μg/g respectively. The concentration of Der f1 & Der p1 in air was higher after the air-conditioners starting one hours later, and the difference was significant (P<0.05, respectively). Additionally, dot-ELISA findings revealed that the allergen extracted from the dust was capable of reacting with IgE from the sera of asthma mice allergic to dust mites. The study concludes that air-conditioner filters can enrich dust mites major group allergen, and the allergens can induce asthma. The air-conditioner filters shall be cleaned or replaced regularly to prevent or reduce accumulation of the dust mites and its allergens.

  19. Laboratory Performance Testing of Residential Window Air Conditioners

    SciTech Connect

    Winkler, J.; Booten, C.; Christensen, D.; Tomerlin, J.

    2013-03-01

    Window air conditioners are the dominant cooling product for residences, in terms of annual unit sales. They are inexpensive, portable and can be installed by the owner. For this reason, they are an attractive solution for supplemental cooling, for retrofitting air conditioning into a home which lacks ductwork, and for renters. Window air conditioners for sale in the United States are required to meet very modest minimum efficiency standards. Four window air conditioners' performance were tested in the Advanced HVAC Systems Laboratory on NREL's campus in Golden, CO. In order to separate and study the refrigerant system's performance, the unit's internal leakage pathways, the unit's fanforced ventilation, and the leakage around the unit resulting from installation in a window, a series of tests were devised that focused on each aspect of the unit's performance. These tests were designed to develop a detailed performance map to determine whole-house performance in different climates. Even though the test regimen deviated thoroughly from the industry-standard ratings test, the results permit simple calculation of an estimated rating for both capacity and efficiency that would result from a standard ratings test. Using this calculation method, it was found that the three new air conditioners' measured performance was consistent with their ratings. This method also permits calculation of equivalent SEER for the test articles. Performance datasets were developed across a broad range of indoor and outdoor operating conditions, and used them to generate performance maps.

  20. Rooftop Unitary Air Conditioner with Integral Dedicated Outdoor Air System

    SciTech Connect

    Tiax Llc

    2006-02-28

    Energy use of rooftop and other unitary air-conditioners in commercial applications accounts for about 1 quad (10{sup 15} Btu) of primary energy use annually in the U.S. [Reference 7]. The realization that this cooling equipment accounts for the majority of commercial building cooled floorspace and the majority also of commercial building energy use has spurred development of improved-efficiency equipment as well as development of stricter standards addressing efficiency levels. Another key market driver affecting design of rooftop air-conditioning equipment has been concern regarding comfort and the control of humidity. Trends for increases in outdoor air ventilation rates in certain applications, and the increasing concern about indoor air quality problems associated with humidity levels and moisture in buildings points to a need for improved dehumidification capability in air-conditioning equipment of all types. In many cases addressing this issue exacerbates energy efficiency, and vice versa. The integrated dedicated outdoor air system configuration developed in this project addresses both energy and comfort/humidity issues.

  1. Product lifetime, energy efficiency and climate change: A case study of air conditioners in Japan.

    PubMed

    Nishijima, Daisuke

    2016-10-01

    This study proposed a modelling technique for estimating life-cycle CO2 emissions of durable goods by considering changes in product lifetime and energy efficiency. The stock and flow of durable goods was modelled by Weibull lifetime distributions and the trend in annual energy efficiency (i.e., annual electricity consumption) of an "average" durable good was formulated as a reverse logistic curve including a technologically critical value (i.e., limit energy efficiency) with respect to time. I found that when the average product lifetime is reduced, there is a trade-off between the reduction in emissions during product use (use phase), due to the additional purchases of new, more energy-efficient air conditioners, and the increase in emissions arising from the additional production of new air conditioners stimulated by the reduction of the average product lifetime. A scenario analysis focused on residential air conditioners in Japan during 1972-2013 showed that for a reduction of average lifetime of 1 year, if the air conditioner energy efficiency limit can be improved by 1.4% from the estimated current efficiency level, then CO2 emissions can be reduced by approximately the same amount as for an extension of average product lifetime of 1 year.

  2. Centrifugal compressors for automotive air conditioners -- Component design

    SciTech Connect

    Yun, H.; Smith, J.L. Jr.

    1996-12-31

    The application of a novel, electric motor-driven, variable-speed centrifugal compressor for automotive air conditioners has been investigated. For the feasibility analysis, a configuration design has been performed. It includes refrigerant selection, thermodynamic cycle analysis, compressor aerodynamic design, and mechanical layout of the integrated motor-compressor structure. Both the motor constraints (provided by the Laboratory for Electromagnetic and Electronic Systems at M.I.T.) and the compressor constraints were considered for the configuration design. The result is an inter-cooled two-stage compression system using R123 as the refrigerant. The inter-cooling is achieved by feeding back a small fraction of the condenser liquid into the return channel between the first and the second stage through the electric motor. At the design condition, the pressure ratio is 3.2 for the first stage and 1.9 for the second stage. The design rotational speed is 75,000 rpm, and the maximum cooling capacity is 5,275 Watts. High efficiency is expected by varying the compressor speed to match the required cooling load at each instant.

  3. Analysis of Environmentally Friendly Refrigerant Options for Window Air Conditioners

    SciTech Connect

    Bansal, Pradeep; Shen, Bo

    2015-03-12

    This paper presents a technical assessment of environmentally friendly refrigerants as alternatives to R410A for window air conditioners. The alternative refrigerants that are studied for its replacement include R32, a mixture of R32/R125 with 90%/10% molar concentration, R600a, R290, R1234yf, R1234ze and R134a. Baseline experiments were performed on a window unit charged with R410A. The heat pump design model (HPDM) was modified and calibrated with the baseline data and was used to evaluate the comparative performance of the WAC with alternative refrigerants. The paper discusses the advantages and disadvantages of each refrigerants and their suitability for window air conditioners. Among all the refrigerants studied, R32 offers the best efficiency and the lowest Global Warming Potential (GWP), and hence its use will result in the overall environmental friendliness.

  4. Analysis of Environmentally Friendly Refrigerant Options for Window Air Conditioners

    DOE PAGES

    Bansal, Pradeep; Shen, Bo

    2015-03-12

    This paper presents a technical assessment of environmentally friendly refrigerants as alternatives to R410A for window air conditioners. The alternative refrigerants that are studied for its replacement include R32, a mixture of R32/R125 with 90%/10% molar concentration, R600a, R290, R1234yf, R1234ze and R134a. Baseline experiments were performed on a window unit charged with R410A. The heat pump design model (HPDM) was modified and calibrated with the baseline data and was used to evaluate the comparative performance of the WAC with alternative refrigerants. The paper discusses the advantages and disadvantages of each refrigerants and their suitability for window air conditioners. Amongmore » all the refrigerants studied, R32 offers the best efficiency and the lowest Global Warming Potential (GWP), and hence its use will result in the overall environmental friendliness.« less

  5. Development and Analysis of Desiccant Enhanced Evaporative Air Conditioner Prototype

    SciTech Connect

    Kozubal, E.; Woods, J.; Judkoff, R.

    2012-04-01

    This report documents the design of a desiccant enhanced evaporative air conditioner (DEVAP AC) prototype and the testing to prove its performance. Previous numerical modeling and building energy simulations indicate a DEVAP AC can save significant energy compared to a conventional vapor compression AC (Kozubal et al. 2011). The purposes of this research were to build DEVAP prototypes, test them to validate the numerical model, and identify potential commercialization barriers.

  6. 10 CFR 431.92 - Definitions concerning commercial air conditioners and heat pumps.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., and functional (or hydraulic) characteristics that affect energy consumption, energy efficiency, water..., steam, or electricity. Packaged terminal heat pump means a packaged terminal air conditioner...

  7. A hybrid air conditioner driven by a hybrid solar collector

    NASA Astrophysics Data System (ADS)

    Al-Alili, Ali

    The objective of this thesis is to search for an efficient way of utilizing solar energy in air conditioning applications. The current solar Air Conditioners (A/C)s suffer from low Coefficient of Performance (COP) and performance degradation in hot and humid climates. By investigating the possible ways of utilizing solar energy in air conditioning applications, the bottlenecks in these approaches were identified. That resulted in proposing a novel system whose subsystem synergy led to a COP higher than unity. The proposed system was found to maintain indoor comfort at a higher COP compared to the most common solar A/Cs, especially under very hot and humid climate conditions. The novelty of the proposed A/C is to use a concentrating photovoltaic/thermal collector, which outputs thermal and electrical energy simultaneously, to drive a hybrid A/C. The performance of the hybrid A/C, which consists of a desiccant wheel, an enthalpy wheel, and a vapor compression cycle (VCC), was investigated experimentally. This work also explored the use of a new type of desiccant material, which can be regenerated with a low temperature heat source. The experimental results showed that the hybrid A/C is more effective than the standalone VCC in maintaining the indoor conditions within the comfort zone. Using the experimental data, the COP of the hybrid A/C driven by a hybrid solar collector was found to be at least double that of the current solar A/Cs. The innovative integration of its subsystems allows each subsystem to do what it can do best. That leads to lower energy consumption which helps reduce the peak electrical loads on electric utilities and reduces the consumer operating cost since less energy is purchased during the on peak periods and less solar collector area is needed. In order for the proposed A/C to become a real alternative to conventional systems, its performance and total cost were optimized using the experimentally validated model. The results showed that for an

  8. Zero Carryover Liquid-Desiccant Air Conditioner for Solar Applications: Preprint

    SciTech Connect

    Lowenstein, A.; Slayzak, S.; Kozubal, E.

    2006-07-01

    A novel liquid-desiccant air conditioner that dries and cools building supply air will transform the use of direct-contact liquid-desiccant systems in HVAC applications, improving comfort, air quality, and providing energy-efficient humidity control.

  9. Building pressurization control with rooftop air conditioners

    SciTech Connect

    Winter, S.

    1982-10-01

    The modulated exhaust fan appears to be the most cost effective positive means to maintain close building pressure control with rooftop air conditioning, but because building construction and applications vary, every building's pressure control needs must be analyzed. Requirements will vary from no relief to barometric dampers to return fans to modulated exhaust fans. As heating and cooling costs continue to rise and tighter building codes prevail, proper selection of building pressure control is one area that must be monitored more carefully by the HVAC system designer.

  10. Techno-Economic Analysis of Indian Draft Standard Levels for RoomAir Conditioners

    SciTech Connect

    McNeil, Michael A.; Iyer, Maithili

    2007-03-01

    of these analyses in May 2006, at a meeting of BEEs Technical Committee for Air Conditioners. This meeting was attended by a wide array of stakeholder, including industry representatives, engineers and consumer advocates. Comments made by stakeholders at this meeting are incorporated into the final analysis presented in this report. The current analysis begins with the Rating Plan drafted by BEE in 2006, along with an evaluation of the market baseline according to test data submitted by manufacturers. MEPS, label rating levels, and baseline efficiencies are presented in Section 2. First, we compare Indian MEPS with current standards in other countries, and assess their relative stringency. Baseline efficiencies are then used to estimate the fraction of models likely to remain on the market at each phase of the program, and the impact on market-weighted efficiency levels. Section 3 deals with cost-effectiveness of higher efficiency design options. The cost-benefit analysis is grounded in technical parameters provided by industry representatives in India. This data allows for an assessment of financial costs and benefits to consumers as a result of the standards and labeling program. A Life-Cycle Cost (LCC) calculation is used to evaluate the impacts of the program at the unit level, thus providing some insight into the appropriateness of the levels chosen, and additional opportunities for further ratcheting. In addition to LCC, we also calculate payback periods, cost of conserved energy (CCE), and return on investment (ROI). Finally, Section 4 covers national impacts. This is an extension of unit level estimates in the two previous sections. Extrapolation to the national level depends on a forecast of air conditioner purchases (shipments), which we describe here. Following the cost-benefit analysis, we construct several efficiency scenarios including the BEE plan, but also considering further potential for efficiency improvement. These are combined with shipments

  11. 16 CFR 305.12 - Labeling for central air conditioners, heat pumps, and furnaces.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... pumps, and furnaces. 305.12 Section 305.12 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS... air conditioners, heat pumps, and furnaces. (a) Layout. All energy labels for central air conditioners, heat pumps, and furnaces (including boilers) shall use one size, similar colors, and typefaces...

  12. 48 CFR 52.223-12 - Refrigeration Equipment and Air Conditioners.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 2 2014-10-01 2014-10-01 false Refrigeration Equipment... Provisions and Clauses 52.223-12 Refrigeration Equipment and Air Conditioners. As prescribed in 23.804(b), insert the following clause: Refrigeration Equipment and Air Conditioners (MAY 1995) The Contractor...

  13. 48 CFR 52.223-12 - Refrigeration Equipment and Air Conditioners.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 2 2011-10-01 2011-10-01 false Refrigeration Equipment... Provisions and Clauses 52.223-12 Refrigeration Equipment and Air Conditioners. As prescribed in 23.804(b), insert the following clause: Refrigeration Equipment and Air Conditioners (MAY 1995) The Contractor...

  14. 48 CFR 52.223-12 - Refrigeration Equipment and Air Conditioners.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 2 2010-10-01 2010-10-01 false Refrigeration Equipment... Provisions and Clauses 52.223-12 Refrigeration Equipment and Air Conditioners. As prescribed in 23.804(b), insert the following clause: Refrigeration Equipment and Air Conditioners (MAY 1995) The Contractor...

  15. 48 CFR 52.223-12 - Refrigeration Equipment and Air Conditioners.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 2 2012-10-01 2012-10-01 false Refrigeration Equipment... Provisions and Clauses 52.223-12 Refrigeration Equipment and Air Conditioners. As prescribed in 23.804(b), insert the following clause: Refrigeration Equipment and Air Conditioners (MAY 1995) The Contractor...

  16. 48 CFR 52.223-12 - Refrigeration Equipment and Air Conditioners.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 2 2013-10-01 2013-10-01 false Refrigeration Equipment... Provisions and Clauses 52.223-12 Refrigeration Equipment and Air Conditioners. As prescribed in 23.804(b), insert the following clause: Refrigeration Equipment and Air Conditioners (MAY 1995) The Contractor...

  17. 10 CFR 429.16 - Central air conditioners and heat pumps.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... CONSUMER PRODUCTS AND COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.16 Central air conditioners... mean divided by 1.05, where: ER02MY11.030 and (B) Any represented value of the energy efficiency or other measure of energy consumption of the central air conditioner or heat pump for which...

  18. 10 CFR 429.16 - Central air conditioners and heat pumps.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... CONSUMER PRODUCTS AND COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.16 Central air conditioners... mean divided by 1.05, where: ER02MY11.030 and (B) Any represented value of the energy efficiency or other measure of energy consumption of the central air conditioner or heat pump for which...

  19. 10 CFR 429.16 - Central air conditioners and heat pumps.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... CONSUMER PRODUCTS AND COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.16 Central air conditioners... mean divided by 1.05, where: ER02MY11.030 and (B) Any represented value of the energy efficiency or other measure of energy consumption of the central air conditioner or heat pump for which...

  20. 16 CFR Appendix H to Part 305 - Cooling Performance and Cost for Central Air Conditioners

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... for Central Air Conditioners Manufacturer's rated cooling capacities (Btu's/hr.) Range of SEER's Low High Single Package Units Central Air Conditioners (Cooling Only): All capacities 10.6 16.5 Heat Pumps... 16 Commercial Practices 1 2014-01-01 2014-01-01 false Cooling Performance and Cost for Central...

  1. 16 CFR Appendix H to Part 305 - Cooling Performance and Cost for Central Air Conditioners

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Conditioners (Cooling Only): All capacities 10.6 16.5 Heat Pumps (Cooling Function): All capacities 10.6 16.0 Split System Units Central Air Conditioners (Cooling Only): All capacities 10.9 23.0 Heat Pumps...

  2. 16 CFR Appendix H to Part 305 - Cooling Performance and Cost for Central Air Conditioners

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Conditioners (Cooling Only): All capacities 10.6 16.5 Heat Pumps (Cooling Function): All capacities 10.6 16.0 Split System Units Central Air Conditioners (Cooling Only): All capacities 10.9 23.0 Heat Pumps...

  3. 16 CFR Appendix H to Part 305 - Cooling Performance and Cost for Central Air Conditioners

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Conditioners (Cooling Only): All capacities 10.6 16.5 Heat Pumps (Cooling Function): All capacities 10.6 16.0 Split System Units Central Air Conditioners (Cooling Only): All capacities 10.9 23.0 Heat Pumps...

  4. 16 CFR Appendix H to Part 305 - Cooling Performance and Cost for Central Air Conditioners

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Conditioners (Cooling Only): All capacities 10.6 16.5 Heat Pumps (Cooling Function): All capacities 10.6 16.0 Split System Units Central Air Conditioners (Cooling Only): All capacities 10.9 23.0 Heat Pumps...

  5. Energy Impacts of Oversized Residential Air Conditioners -- Simulation Study of Retrofit Sequence Impacts

    SciTech Connect

    Booten, C.; Christensen, C.; Winkler, J.

    2014-11-01

    This research addresses the question of what are the energy consequences for oversizing of an air conditioner in a home. Conventional wisdom holds that oversizing the AC results in significant energy penalties. However, the reason for this was shown to be due to crankcase heaters and not due to cycling performance of the AC, and is only valid for a particular set of assumptions. Adding or removing individual characteristics, such as ducts or crankcase heaters, can have measurable impacts on energy use. However, with all other home characteristics held constant, oversizing the AC generally has a small effect on cooling energy use, even if the cycling performance of the unit is poor. The relevant aspects of air conditioner modeling are discussed to illustrate the effects of the cycling loss coefficient, Cd, capacity, climate, ducts and parasitic losses such as crankcase heaters. A case study of a typical 1960's vintage home demonstrates results in the context of whole building simulations using EnergyPlus.

  6. Development of a solar powered residential air conditioner (General optimization)

    NASA Technical Reports Server (NTRS)

    Lowen, D. J.

    1976-01-01

    A commercially available 3-ton residential Lithium Bromide (LiBr) absorption air conditioner was modified for use with lower temperature solar heated water. The modification included removal of components such as the generator, concentration control chamber, liquid trap, and separator; and the addition of a Chrysler designed generator, an off-the-shelf LiBr-solution pump. The design goal of the modified unit was to operate with water as the heat-transfer fluid at a target temperature of 85 C (185 F), 29.4 C (85 F) cooling water inlet, producing 10.5 kW (3 tons) of cooling. Tests were performed on the system before and after modification to provide comparative data. At elevated temperatures (96 C, 205 F), the test results show that Lithium Bromide was carried into the condenser due to the extremely violent boiling and degraded the evaporator performance.

  7. Motor current signature analysis: A potential diagnostic for air conditioners

    SciTech Connect

    Miller, W.A.; Haynes, H.D.; Griffin, F.P.; Levins, W.P.; Karnitz, M.A.

    1988-03-01

    Recent advancements in modern electronics have made it possible to collect the various ''transient noise'' signals which are present on electric power lines of motor-driven equipment while using a simple non-intrusive clamp-on inductive pickup. Electronic filters are used to analyze the noise signal with an on-the-spot, real-time analysis. An exploratory study, conducted at ORNL, examined the potential for using the motor current signature on heat pumps and air conditioners as a diagnostic tool. Preliminary results show that there is some correlation between the motor current signature and the performance of a heat pump. However, the tests and associated analysis were limited, and additional research is needed to determine the full potential of motor current signature analysis (MCSA).

  8. Effect of air-conditioner on fungal contamination

    NASA Astrophysics Data System (ADS)

    Hamada, Nobuo; Fujita, Tadao

    Air-conditioners (AC) produce much dew and wet conditions inside their apparatus, when in operation. We studied the fungal contamination in AC and found that the average fungal contamination of AC filters was about 5-fold greater than that of a carpet, and Cladosporium and Penicillium were predominant in AC filters. The fungal contamination inside AC, which were used everyday, increased more markedly than those not used daily, e.g. a few days per week or rarely. Moreover, the airborne fungal contamination in rooms during air-conditioning was about 2-fold greater than one in rooms without AC, and was highest when air-conditioning started and decreased gradually with time. We recognized that the airborne fungal contamination was controlled by the environmental condition of the rooms, in which AC were used. It is suggested that AC might promote mold allergies in users via airborne fungal spores derived from the AC. On the other hand, AC was estimated to remove moisture in the room atmosphere and carpets, and reduce the relative humidity in rooms. It was found that the average fungal contamination in the house dust of carpets with AC was suppressed by two-third of that in rooms without AC. The use of AC for suppressing fungal hazards was discussed.

  9. Understanding Energy Impacts of Oversized Air Conditioners; NREL Highlights, Research & Development, NREL (National Renewable Energy Laboratory)

    SciTech Connect

    2015-06-01

    This NREL highlight describes a simulation-based study that analyzes the energy impacts of oversized residential air conditioners. Researchers found that, if parasitic power losses are minimal, there is very little increase in energy use for oversizing an air conditioner. The research demonstrates that new residential air conditioners can be sized primarily based on comfort considerations, because capacity typically has minimal impact on energy efficiency. The results of this research can be useful for contractors and homeowners when choosing a new air conditioner or heat pump during retrofits of existing homes. If the selected unit has a crankcase heater, performing proper load calculations to be sure the new unit is not oversized will help avoid excessive energy use.

  10. Transition to Low-GWP Alternatives in Passenger Vehicle Air Conditioners

    EPA Pesticide Factsheets

    This fact sheet provides current information on low global warming potential (GWP) alternatives in newly manufactured passenger vehicle air conditioners (ACs), in lieu of high-GWP hydrofluorocarbons (HFCs).

  11. Building America Top Innovations 2013 Profile – High-Efficiency Window Air Conditioners

    SciTech Connect

    none,

    2013-09-01

    This Top Innovation profile explains how comprehensive performance testing by the National Renewable Energy Laboratory led to simple, affordable methods that homeowners could employ for increasing the energy efficiency of window air conditioners.

  12. Improved Modeling of Residential Air Conditioners and Heat Pumps for Energy Calculations

    SciTech Connect

    Cutler, D.; Winkler, J.; Kruis, N.; Christensen, C.; Brendemuehl, M.

    2013-01-01

    This report presents improved air conditioner and heat pump modeling methods in the context of whole-building simulation tools, with the goal of enabling more accurate evaluation of cost effective equipment upgrade opportunities and efficiency improvements in residential buildings.

  13. Procuring High-Efficiency Air Conditioners: Harnessing Competition to Achieve Advances in Technology

    SciTech Connect

    Hollomon, J Bradford; Gordon, Kelly L.

    2002-03-01

    The Departments of Energy and Defense have joined forces to devise an innovative approach to acquiring more efficient unitary air conditioners that minimize life-cycle cost through improved technology. The resulting procurement solicitation challenges manufacturers to offer products with reduced life-cycle cost, taking into account both the initial prices of their units and the costs of their ongoing electric consumption. Competing products are evaluated according to a formula that reflects both full- and part-load efficiencies under a simulated set of time-varying climate conditions. The authors will report on the progress of the procurement, including the choice of target product based on market prospects and technology readiness, development of the technical specifications and electric consumption simulator, approaches to administrative and procedural challenges, responses from manufacturers, and plans for product promotion in the future.

  14. [Fungus microbiota in air conditioners in intensive care units in Teresina, Piauí].

    PubMed

    Mobin, Mitra; do Amparo Salmito, Maria

    2006-01-01

    With the aim of identifying the fungus microbiota in air conditioners in intensive care units (ICUs) within public and private hospitals in Teresina, Piauí, solid material was collected from ten different ICUs. Thirty-three species of Moniliaceae and Dematiaceae were isolated, which was the first report of these in Piauí. High frequencies of Aspergillus niger Van Tieghem (60%), Aspergillus fumigatus Fres (50%), Trichoderma koningii Oudem (50%) and Aspergillus flavus Link: Fr. (40%) were recorded. The air conditioner cleanliness validity had expired in all the ICUs, and the quantity of colony-forming units exceeded the levels permitted by Law 176/00 from the Ministry of Health. It is important to provide individual protection equipment for professionals, adopt hospital infection control measures, raise the awareness of the presence of fungus infection, improve air circulation around the environment, periodically clean the air conditioners, and make health professionals alert to the importance of these fungi in the hospital environment.

  15. Progress towards Managing Residential Electricity Demand: Impacts of Standards and Labeling for Refrigerators and Air Conditioners in India

    SciTech Connect

    McNeil, Michael A.; Iyer, Maithili

    2009-05-30

    The development of Energy Efficiency Standards and Labeling (EES&L) began in earnest in India in 2001 with the Energy Conservation Act and the establishment of the Indian Bureau of Energy Efficiency (BEE). The first main residential appliance to be targeted was refrigerators, soon to be followed by room air conditioners. Both of these appliances are of critical importance to India's residential electricity demand. About 15percent of Indian households own a refrigerator, and sales total about 4 million per year, but are growing. At the same time, the Indian refrigerator market has seen a strong trend towards larger and more consumptive frost-free units. Room air conditioners in India have traditionally been sold to commercial sector customers, but an increasing number are going to the residential sector. Room air conditioner sales growth in India peaked in the last few years at 20percent per year. In this paper, we perform an engineering-based analysis using data specific to Indian appliances. We evaluate costs and benefits to residential and commercial sector consumers from increased equipment costs and utility bill savings. The analysis finds that, while the BEE scheme presents net benefits to consumers, there remain opportunities for efficiency improvement that would optimize consumer benefits, according to Life Cycle Cost analysis. Due to the large and growing market for refrigerators and air conditioners in India, we forecast large impacts from the standards and labeling program as scheduled. By 2030, this program, if fully implemented would reduce Indian residential electricity consumption by 55 TWh. Overall savings through 2030 totals 385 TWh. Finally, while efficiency levels have been set for several years for refrigerators, labels and MEPS for these products remain voluntary. We therefore consider the negative impact of this delay of implementation to energy and financial savings achievable by 2030.

  16. Room Air Conditioners; Appliance Repair--Advanced: 9027.04.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    This Quinmester course includes installations, electrical and mechanical servicing, reverse cycle air conditioning, malfunctions, troubleshooting and repair, discharge, pump down, and recharging the system. The course may be taught as a two or three Quinmester credit course. In each instance the course consists of six instructional blocks:…

  17. 16 CFR Appendix I to Part 305 - Heating Performance and Cost for Central Air Conditioners

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 1 2013-01-01 2013-01-01 false Heating Performance and Cost for Central Air... RULEâ) Pt. 305, App. I Appendix I to Part 305—Heating Performance and Cost for Central Air Conditioners Manufacturer's rated heating capacity (Btu's/hr.) Range of HSPF's Low High Single Package Units Heat...

  18. 16 CFR Appendix I to Part 305 - Heating Performance and Cost for Central Air Conditioners

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 1 2014-01-01 2014-01-01 false Heating Performance and Cost for Central Air... CONSERVATION ACT (âENERGY LABELING RULEâ) Pt. 305, App. I Appendix I to Part 305—Heating Performance and Cost for Central Air Conditioners Manufacturer's rated heating capacity (Btu's/hr.) Range of HSPF's...

  19. 16 CFR Appendix I to Part 305 - Heating Performance and Cost for Central Air Conditioners

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 1 2011-01-01 2011-01-01 false Heating Performance and Cost for Central Air... RULEâ) Pt. 305, App. I Appendix I to Part 305—Heating Performance and Cost for Central Air Conditioners Manufacturer's rated heating capacity (Btu's/hr.) Range of HSPF's Low High Single Package Units Heat...

  20. 16 CFR Appendix I to Part 305 - Heating Performance and Cost for Central Air Conditioners

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 1 2012-01-01 2012-01-01 false Heating Performance and Cost for Central Air... RULEâ) Pt. 305, App. I Appendix I to Part 305—Heating Performance and Cost for Central Air Conditioners Manufacturer's rated heating capacity (Btu's/hr.) Range of HSPF's Low High Single Package Units Heat...

  1. 16 CFR Appendix I to Part 305 - Heating Performance and Cost for Central Air Conditioners

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Heating Performance and Cost for Central Air... RULEâ) Pt. 305, App. I Appendix I to Part 305—Heating Performance and Cost for Central Air Conditioners Manufacturer's rated heating capacity (Btu's/hr.) Range of HSPF's Low High Single Package Units Heat...

  2. 10 CFR 431.96 - Uniform test method for the measurement of energy efficiency of commercial air conditioners and...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... efficiency of commercial air conditioners and heat pumps. 431.96 Section 431.96 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Commercial... energy efficiency of commercial air conditioners and heat pumps. (a) Scope. This section contains...

  3. Swozzle based burner tube premixer including inlet air conditioner for low emissions combustion

    DOEpatents

    Tuthill, Richard Sterling; Bechtel, II, William Theodore; Benoit, Jeffrey Arthur; Black, Stephen Hugh; Bland, Robert James; DeLeonardo, Guy Wayne; Meyer, Stefan Martin; Taura, Joseph Charles; Battaglioli, John Luigi

    2002-01-01

    A burner for use in a combustion system of a heavy-duty industrial gas turbine includes a fuel/air premixer having an air inlet, a fuel inlet, and an annular mixing passage. The fuel/air premixer mixes fuel and air into a uniform mixture for injection into a combustor reaction zone. The burner also includes an inlet flow conditioner disposed at the air inlet of the fuel/air premixer for controlling a radial and circumferential distribution of incoming air. The pattern of perforations in the inlet flow conditioner is designed such that a uniform air flow distribution is produced at the swirler inlet annulus in both the radial and circumference directions. The premixer includes a swozzle assembly having a series of preferably air foil shaped turning vanes that impart swirl to the airflow entering via the inlet flow conditioner. Each air foil contains internal fuel flow passages that introduce natural gas fuel into the air stream via fuel metering holes that pass through the walls of the air foil shaped turning vanes. By injecting fuel in this manner, an aerodynamically clean flow field is maintained throughout the premixer. By injecting fuel via two separate passages, the fuel/air mixture strength distribution can be controlled in the radial direction to obtain optimum radial concentration profiles for control of emissions, lean blow outs, and combustion driven dynamic pressure activity as machine and combustor load are varied.

  4. Life Cycle Assessment of Residential Heating and Cooling Systems in Minnesota A comprehensive analysis on life cycle greenhouse gas (GHG) emissions and cost-effectiveness of ground source heat pump (GSHP) systems compared to the conventional gas furnace and air conditioner system

    NASA Astrophysics Data System (ADS)

    Li, Mo

    Ground Source Heat Pump (GSHP) technologies for residential heating and cooling are often suggested as an effective means to curb energy consumption, reduce greenhouse gas (GHG) emissions and lower homeowners' heating and cooling costs. As such, numerous federal, state and utility-based incentives, most often in the forms of financial incentives, installation rebates, and loan programs, have been made available for these technologies. While GSHP technology for space heating and cooling is well understood, with widespread implementation across the U.S., research specific to the environmental and economic performance of these systems in cold climates, such as Minnesota, is limited. In this study, a comparative environmental life cycle assessment (LCA) is conducted of typical residential HVAC (Heating, Ventilation, and Air Conditioning) systems in Minnesota to investigate greenhouse gas (GHG) emissions for delivering 20 years of residential heating and cooling—maintaining indoor temperatures of 68°F (20°C) and 75°F (24°C) in Minnesota-specific heating and cooling seasons, respectively. Eight residential GSHP design scenarios (i.e. horizontal loop field, vertical loop field, high coefficient of performance, low coefficient of performance, hybrid natural gas heat back-up) and one conventional natural gas furnace and air conditioner system are assessed for GHG and life cycle economic costs. Life cycle GHG emissions were found to range between 1.09 × 105 kg CO2 eq. and 1.86 × 10 5 kg CO2 eq. Six of the eight GSHP technology scenarios had fewer carbon impacts than the conventional system. Only in cases of horizontal low-efficiency GSHP and hybrid, do results suggest increased GHGs. Life cycle costs and present value analyses suggest GSHP technologies can be cost competitive over their 20-year life, but that policy incentives may be required to reduce the high up-front capital costs of GSHPs and relatively long payback periods of more than 20 years. In addition

  5. Development of a solar-powered residential air conditioner: Screening analysis

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Screening analysis aimed at the definition of an optimum configuration of a Rankine cycle solar-powered air conditioner designed for residential application were conducted. Initial studies revealed that system performance and cost were extremely sensitive to condensing temperature and to the type of condenser used in the system. Consequently, the screening analyses were concerned with the generation of parametric design data for different condenser approaches; i. e., (1) an ambient air condenser, (2) a humidified ambient air condenser (3) an evaporative condenser, and (4) a water condenser (with a cooling tower). All systems feature a high performance turbocompressor and a single refrigerant (R-11) for the power and refrigeration loops. Data were obtained by computerized methods developed to permit system characterization over a broad range of operating and design conditions. The criteria used for comparison of the candidate system approaches were (1) overall system COP (refrigeration effect/solar heat input), (2) auxiliary electric power for fans and pumps, and (3) system installed cost or cost to the user.

  6. 16 CFR 305.12 - Labeling for central air conditioners, heat pumps, and furnaces.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... pumps, and furnaces. 305.12 Section 305.12 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS... pumps, and furnaces. (a) Layout. All energy labels for central air conditioners, heat pumps, and furnaces (including boilers) shall use one size, similar colors, and typefaces with consistent...

  7. 16 CFR 305.12 - Labeling for central air conditioners, heat pumps, and furnaces.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... pumps, and furnaces. 305.12 Section 305.12 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS... pumps, and furnaces. (a) Layout. All energy labels for central air conditioners, heat pumps, and furnaces (including boilers) shall use one size, similar colors, and typefaces with consistent...

  8. 16 CFR 305.12 - Labeling for central air conditioners, heat pumps, and furnaces.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... pumps, and furnaces. 305.12 Section 305.12 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS... pumps, and furnaces. (a) Layout. All energy labels for central air conditioners, heat pumps, and furnaces (including boilers) shall use one size, similar colors, and typefaces with consistent...

  9. 16 CFR 305.12 - Labeling for central air conditioners, heat pumps, and furnaces.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... pumps, and furnaces. 305.12 Section 305.12 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS... pumps, and furnaces. (a) Layout. All energy labels for central air conditioners, heat pumps, and furnaces (including boilers) shall use one size, similar colors, and typefaces with consistent...

  10. 75 FR 72739 - Compliance Testing Procedures: Correction Factor for Room Air Conditioners

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-26

    ... of Energy November 15, 2010 Petition for Rulemaking Petition of the Association of the Home Appliance... terms of energy efficiency and environmental protection. New appliances often represent the most... air conditioner has technically incorrect ratings, does not qualify for Energy Star, or fails to...

  11. Improved Modeling of Residential Air Conditioners and Heat Pumps for Energy Calculations

    SciTech Connect

    Cutler, D.; Winkler, J.; Kruis, N.; Christensen, C.; Brandemuehl, M.

    2013-01-01

    This report presents improved air conditioner and heat pump modeling methods in the context of whole-building simulation tools, with the goal of enabling more accurate evaluation of cost-effective equipment upgrade opportunities and efficiency improvements in residential buildings.

  12. Development of solar driven absorption air conditioners and heat pumps

    NASA Astrophysics Data System (ADS)

    Dao, K.; Wahlig, M.; Wali, E.; Rasson, J.; Molishever, E.

    1980-03-01

    The development of absorption refrigeration systems for solar active heating and cooling applications is discussed. The approaches investigated are those using air-cooled condenser-absorber and those leading to coefficient of performances (COP) that increase continuously with heat source temperature. This is primarily an experimental project, with the emphasis on designing, fabricating and testing absorption chillers in operating regimes that are particularly suited for solar energy applications. Its demonstrated that the conventional single-effect ammonia-water absorption cycle can be used (with minor modifications) for solar cooling.

  13. Experimental Validation of the Optimum Design of an Automotive Air-to-Air Thermoelectric Air Conditioner (TEAC)

    NASA Astrophysics Data System (ADS)

    Attar, Alaa; Lee, HoSung; Weera, Sean

    2015-06-01

    The optimization of thermoelectric air conditioners (TEAC) has been a challenging topic due to the multitude of variables that must be considered. The present work discusses an experimental validation of the optimum design for an automotive air-to-air TEAC. The TEAC optimum design was obtained by using a new optimal design method with dimensional analysis that has been recently developed. The design constraints were obtained through a previous analytical study on the same topic. To simplify the problem, a unit cell representing the entire TEAC system was analytically simulated and experimentally tested. Moreover, commercial TEC modules and heat sinks were selected and tested based on the analytical optimum design results.

  14. ENERGY STAR Certified Non-AHRI Central Air Conditioner Equipment and Air Source Heat Pump

    EPA Pesticide Factsheets

    Certified models meet all ENERGY STAR requirements as listed in the Version 5.0 ENERGY STAR Program Requirements for Air Source Heat Pump and Central Air Conditioner Equipment that are effective as of September 15, 2015. A detailed listing of key efficiency criteria are available at http://www.energystar.gov/index.cfm?c=airsrc_heat.pr_crit_as_heat_pumps Listed products have been submitted to EPA by ENERGY STAR partners that do not participate in the AHRI certification program. EPA will continue to update this list with products that are certified by EPA-recognized certification bodies other than AHRI. The majority of ENERGY STAR products, certified by AHRI, can be found on the CEE/AHRI Verified Directory at http://www.ceedirectory.org/

  15. Low GWP Refrigerants Modelling Study for a Room Air Conditioner Having Microchannel Heat Exchangers

    SciTech Connect

    Shen, Bo; Bhandari, Mahabir S

    2016-01-01

    Microchannel heat exchangers (MHX) have found great successes in residential and commercial air conditioning applications, being compact heat exchangers, to reduce refrigerant charge and material cost. This investigation aims to extend the application of MHXs in split, room air conditioners (RAC), per fundamental heat exchanger and system modelling. For this paper, microchannel condenser and evaporator models were developed, using a segment-to-segment modelling approach. The microchannel heat exchanger models were integrated to a system design model. The system model is able to predict the performance indices, such as cooling capacity, efficiency, sensible heat ratio, etc. Using the calibrated system and heat exchanger models, we evaluated numerous low GWP (global warming potential) refrigerants. The predicted system performance indices, e.g. cooling efficiency, compressor discharge temperature, and required compressor displacement volume etc., are compared. Suitable replacements for R22 and R-410A for the room air conditioner application are recommended.

  16. Performance characteristics of a turbo expander substituted for expansion valve on air-conditioner

    SciTech Connect

    Cho, Soo-Yong; Cho, Chong-Hyun; Kim, Chaesil

    2008-09-15

    An experimental study is conducted on a small turbo expander which could be applied to the expansion process in place of expansion valves in refrigerator or air-conditioner to improve the cycle efficiency by recovering energy from the throttling process. The operating gas is HFC134a and the maximum cooling capacity of experiment apparatus is 32.7 kW. Four different turbo expanders are tested to find the performance characteristics of the turbo expander when they operate at a low partial admission rate. The partial admission rate is 1.70% or 2.37, and expanders are operated in the supersonic flow. In the experiment, pressure and temperature are measured at 10 different locations in the experimental apparatus. In addition to these measurements, output power at the turbo expander is measured through a generator installed on a rotor shaft with the rotational speed. Performance data of the turbo expander are obtained at many part load operations by adjusting the output power of the generator. A maximum of 15.8% total-to-static efficiency is obtained when the pressure ratio and the partial admission ratio are 2.37 and 1.70%, respectively. Experimental results show that the optimal velocity ratio decreases when the pressure ratio is decreased, and peak efficiencies, which are obtained at locally maximized efficiency depending on the operating condition, vary linearly against the subcooling temperature or the pressure ratio. (author)

  17. Air conditioner operation behaviour based on students' skin temperature in a classroom.

    PubMed

    Song, Gook-Sup; Lim, Jae-Han; Ahn, Tae-Kyung

    2012-01-01

    A total of 25 college students participated in a study to determine when they would use an air conditioner during a lecture in a university classroom. The ambient temperature and relative humidity were measured 75 cm above the floor every minute. Skin temperatures were measured every minute at seven points, according to the recommendation of Hardy and Dubois. The average clothing insulation value (CLO) of subjects was 0.53 ± 0.07 CLO. The mean air velocity in the classroom was 0.13 ± 0.028 m/s. When the subjects turned the air conditioner both on and off, the average ambient temperatures, relative humidity and mean skin temperatures were 27.4 and 23.7 °C (p = 0.000), 40.9 and 40.0% (p = 0.528) and 32.7 and 32.2 °C (p = 0.024), respectively. When the status of the air conditioner was changed, the differences of skin temperatures in core body parts (head, abdomen and thigh) were not statistically significant. However, in the extremities (mid-lower arm, hand, shin and instep), the differences were statistically significant. Subjects preferred a fluctuating environment to a constant temperature condition. We found that a changing environment does not affect classroom study.

  18. Automatic Unit Number Binding with Refrigeration Circuit Identification for Air-Conditioner Control Network

    NASA Astrophysics Data System (ADS)

    Ninagawa, Chuzo; Mizoguchi, Masanobu; Tsuji, Kohkichi

    This paper proposes an automatic unit number binding method so that a number of logical subsystems are defined in the whole control network for distributed air-conditioners. Each air-conditioner unit starts the proposed algorithm at random timing to allocate its own unit number without any server. Then each outside unit one by one broadcasts the check signal and flows refrigerant gas to the refrigerant circuit between units to make each inside unit discover its piping connection. As a result, a number of logical subsystems are defined in the whole control network. A Petri net model was constructed for verification of our proposed system. For the case of two outside units and three inside units, the reachability to the required states and the deadlock free property were verified. The generalized module-by-module Petri net construction procedure shows applicability to general cases of arbitrary number of units.

  19. The Performance of a Desiccant-Based air Conditioner on a Florida School

    SciTech Connect

    Miller, J.

    2001-08-22

    Indoor air quality has become a major public health issue in recent years. ASHRAE standard 62-1989-which is an attempt to improve indoor air quality by increasing building ventilation rates-greatly increases the latent loads on many buildings. In more humid climates, the Sensible Heat Ratio (SHR) of a building's air conditioner (which is the fraction of total delivered cooling that is sensible) is too high to meet the existing latent loads. The implementation of ASHRAE 62-1989 will only exacerbate this problem.

  20. 16 CFR Appendix E to Part 305 - Room Air Conditioners

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... CONCERNING DISCLOSURES REGARDING ENERGY CONSUMPTION AND WATER USE OF CERTAIN HOME APPLIANCES AND OTHER...'s/yr Range of Estimated Annual Operating Costs (Dollars/Year) LOW HIGH Without Reverse Cycle and... $112 14,000 to 19,999 Btu $105 $176 20,000 and more Btu $166 $338 Without Reverse Cycle and...

  1. 16 CFR Appendix E to Part 305 - Room Air Conditioners

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... CONCERNING DISCLOSURES REGARDING ENERGY CONSUMPTION AND WATER USE OF CERTAIN HOME APPLIANCES AND OTHER...'s/yr Range of Estimated Annual Operating Costs (Dollars/Year) LOW HIGH Without Reverse Cycle and... $112 14,000 to 19,999 Btu $105 $176 20,000 and more Btu $166 $338 Without Reverse Cycle and...

  2. 16 CFR Appendix E to Part 305 - Room Air Conditioners

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... CONCERNING DISCLOSURES REGARDING ENERGY CONSUMPTION AND WATER USE OF CERTAIN HOME APPLIANCES AND OTHER...'s/yr Range of Estimated Annual Operating Costs (Dollars/Year) LOW HIGH Without Reverse Cycle and... $112 14,000 to 19,999 Btu $105 $176 20,000 and more Btu $166 $338 Without Reverse Cycle and...

  3. Deaths Due to Accidental Air Conditioner Compressor Explosion: A Case Series.

    PubMed

    Behera, Chittaranjan; Bodwal, Jatin; Sikary, Asit K; Chauhan, Mohit Singh; Bijarnia, Manjul

    2017-01-01

    In an air-conditioning system, the compressor is a large electric pump that pressurizes the refrigerant gas as part of the process of turning it back into a liquid. The explosion of an air conditioner (AC) compressor is an uncommon event, and immediate death resulted from the blast effect is not reported in forensic literature. We report three such cases in which young AC mechanics were killed on the spot due to compressor blast, while repairing the domestic split AC unit. The autopsy findings, the circumstances leading to the explosion of the compressor, are discussed in this study.

  4. Automotive absorption air conditioner utilizing solar and motor waste heat

    NASA Technical Reports Server (NTRS)

    Popinski, Z. (Inventor)

    1981-01-01

    In combination with the ground vehicles powered by a waste heat generating electric motor, a cooling system including a generator for driving off refrigerant vapor from a strong refrigerant absorbant solution is described. A solar collector, an air-cooled condenser connected with the generator for converting the refrigerant vapor to its liquid state, an air cooled evaporator connected with the condenser for returning the liquid refrigerant to its vapor state, and an absorber is connected to the generator and to the evaporator for dissolving the refrigerant vapor in the weak refrigerant absorbant solution, for providing a strong refrigerant solution. A pump is used to establish a pressurized flow of strong refrigerant absorbant solution from the absorber through the electric motor, and to the collector.

  5. Measure Guideline: Air Conditioner Diagnostics, Maintenance, and Replacement

    SciTech Connect

    Springer, D.; Dakin, B.

    2013-03-01

    This guideline responds to the need for an efficient means of identifying, diagnosing, and repairing faults in air conditioning systems in existing homes that are undergoing energy upgrades. Inadequate airflow due to constricted ducts or undersized filters, improper refrigerant charge, and other system defects can be corrected at a fraction of the cost of equipment replacement and can yield significant savings. The guideline presents a two-step approach to diagnostics and repair.

  6. Measure Guideline. Air Conditioner Diagnostics, Maintenance, and Replacement

    SciTech Connect

    Springer, David; Dakin, Bill

    2013-03-01

    This guideline responds to the need for an efficient means of identifying, diagnosing, and repairing faults in air conditioning systems in existing homes that are undergoing energy upgrades. Inadequate airflow due to constricted ducts or undersized filters, improper refrigerant charge, and other system defects can be corrected at a fraction of the cost of equipment replacement and can yield significant savings. The guideline presents a two-step approach to diagnostics and repair.

  7. Using Field-Metered Data to Quantify Annual Energy Use of Portable Air Conditioners

    SciTech Connect

    Burke, Thomas; Willem, Henry; Ni, Chun Chun; Stratton, Hannah; Chen, Yuting; Ganeshalingam, Mohan; Iyer, Maithili; Price, Sarah; Dunham, Camilla

    2014-12-01

    As many regions of the United States experience rising temperatures, consumers have come to rely increasingly on cooling appliances (including portable air conditioners) to provide a comfortable indoor temperature. Home occupants sometimes use a portable air conditioner (PAC) to maintain a desired indoor temperature in a single room or enclosed space. Although PACs in residential use are few compared to centrally installed and room air conditioning (AC) units, the past few years have witnessed an increase of PACs use throughout the United States. There is, however, little information and few research projects focused on the energy consumption and performance of PACs, particularly studies that collect information from field applications of PACs. The operation and energy consumption of PACs may differ among geographic locations and households, because of variations in cooling load, frequency, duration of use, and other user-selected settings. In addition, the performance of building envelope (thermal mass and air leakage) as well as inter-zonal mixing within the building would substantially influence the ability to control and maintain desirable indoor thermal conditions. Lawrence Berkeley National Laboratory (LBNL) conducted an initial field-metering study aimed at increasing the knowledge and data related to PAC operation and energy consumption in the United States.

  8. 16 CFR Appendix E to Part 305 - Room Air Conditioners

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AND WATER USE LABELING FOR CONSUMER PRODUCTS UNDER THE ENERGY POLICY AND CONSERVATION ACT (âENERGY... Without Reverse Cycle and with Louvered Sides: Less than 6,000 Btu $42 $48 6,000 to 7,999 Btu 50 72 8,000 to 13,999 Btu 66 115 14,000 to 19,999 Btu 117 195 20,000 and more Btu 169 382 Without Reverse...

  9. Air Sample Conditioner Helps the Waste Treatment Plant Meet Emissions Standards

    SciTech Connect

    Glissmeyer, John A.; Flaherty, Julia E.; Pekour, Mikhail S.

    2014-12-02

    The air in three of the Hanford Site Waste Treatment and Immobilization Plant (WTP) melter off-gas discharge stacks will be hot and humid after passing through the train of emission abatement equipment. The off-gas temperature and humidity levels will be incompatible with the airborne emissions monitoring equipment required for this type of stack. To facilitate sampling from these facilities, an air sample conditioner system will be installed to introduce cool, dry air into the sample stream to reduce the temperature and dew point. This will avoid thermal damage to the instrumentation and problematic condensation. The complete sample transport system must also deliver at least 50% of the particles in the sample airstream to the sample collection and on-line analysis equipment. The primary components of the sample conditioning system were tested in a laboratory setting. The sample conditioner itself is based on a commercially-available porous tube filter design. It consists of a porous sintered metal tube inside a coaxial metal jacket. The hot gas sample stream passes axially through the porous tube, and the dry, cool air is injected into the jacket and through the porous wall of the inner tube, creating an effective sample diluter. The dilution and sample air mix along the entire length of the porous tube, thereby simultaneously reducing the dew point and temperature of the mixed sample stream. Furthermore, because the dilution air enters through the porous tube wall, the sample stream does not come in contact with the porous wall and particle deposition is reduced in this part of the sampling system. Tests were performed with an environmental chamber to supply air with the temperature and humidity needed to simulate the off-gas conditions. Air from the chamber was passed through the conditioning system to test its ability to reduce the temperature and dew point of the sample stream. To measure particle deposition, oil droplets in the range of 9 to 11 micrometer

  10. Experimental study on heat transfer performance of aluminium foam parallel-flow condenser in air conditioner

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Wan, Z. M.; Chang, H. W.; Wang, Y. D.

    2017-01-01

    Open cell aluminium foam was used in parallel-flow condenser in air conditioner, and two condensers with different pore density were fabricated. The experimental study was conducted on the heat transfer performance and temperature distribution. The experimental results show that both of the heat transfer load and air pressure drop increase with the increase of pore density, air velocity is 2.5m/s, the heat transfer capacities of the condenser with 10PPI and 8PPI are 4.786kw and 3.344kW respectively. Along the flow direction of refrigerant, the outlet temperatures of refrigerant drop with the rise of air velocity when the inlet temperature is constant. The outlet temperature of the refrigerant decreases with the increase of pore density.

  11. Modeling of a second-generation solar-driven Rankine air conditioner

    NASA Astrophysics Data System (ADS)

    Denius, M. W.; Batton, W. D.

    1984-07-01

    Ten configurations of a second-generation, solar-powered, Rankine-driven air conditioner were simulated and the data presented for use in companion studies. The results of the analysis show that the boiling-in-collector (BIC) configuration generates more power per collector area than the other configurations. The models used to simulate the configuration are presented. The generated data are also presented. Experimental work was done to both improve a novel refrigerant and oil lubrication system for the centrifugal compressor and investigate the aerodynamic unloading characteristics of the centrifugal compressor. The information generated was used to define possible turbo-gearbox configurations for use in the second generation computer simulation.

  12. Optimum dry-cooling sub-systems for a solar air conditioner

    NASA Technical Reports Server (NTRS)

    Chen, J. L. S.; Namkoong, D.

    1978-01-01

    Dry-cooling sub-systems for residential solar powered Rankine compression air conditioners were economically optimized and compared with the cost of a wet cooling tower. Results in terms of yearly incremental busbar cost due to the use of dry-cooling were presented for Philadelphia and Miami. With input data corresponding to local weather, energy rate and capital costs, condenser surface designs and performance, the computerized optimization program yields design specifications of the sub-system which has the lowest annual incremental cost.

  13. 10 CFR Appendix F to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Room Air Conditioners

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... of Room Air Conditioners F Appendix F to Subpart B of Part 430 Energy DEPARTMENT OF ENERGY ENERGY... Appendix F to Subpart B of Part 430—Uniform Test Method for Measuring the Energy Consumption of Room Air... appendix F) until the compliance date of any amended energy conservation standards for room...

  14. 10 CFR Appendix F to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Room Air Conditioners

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... of Room Air Conditioners F Appendix F to Subpart B of Part 430 Energy DEPARTMENT OF ENERGY ENERGY... Appendix F to Subpart B of Part 430—Uniform Test Method for Measuring the Energy Consumption of Room Air... appendix F) until the compliance date of any amended energy conservation standards for room...

  15. 10 CFR Appendix F to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Room Air Conditioners

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... of Room Air Conditioners F Appendix F to Subpart B of Part 430 Energy DEPARTMENT OF ENERGY ENERGY... Appendix F to Subpart B of Part 430—Uniform Test Method for Measuring the Energy Consumption of Room Air... appendix F) until the compliance date of any amended energy conservation standards for room...

  16. Desiccant-assisted air conditioner improves IAQ and comfort

    SciTech Connect

    Meckler, M. )

    1994-10-01

    This article describes a system which offers the advantage of downsizing the evaporator coil and condensing unit capacities for comparable design loads, which in turn provides numerous benefits. Airborne microorganisms, which are responsible for many acute diseases, infections, and allergies, are well protected indoors by the moisture surrounding them. While the human body is generally the host for various bacteria and viruses, fungi can grow in moist places. It has been concluded that an optimum relative humidity (RH) range of 40 to 60 percent is necessary to minimize or eliminate the bacterial, viral, and fungal growth. In addition, humidity also has an effect on air cleanliness--it reduces the presence of dust particles--and on the deterioration of the building structure and its contents. Therefore, controlling humidity is a very important factor to human comfort in minimizing adverse health effects and maximizing the structural longevity of the building.

  17. Human location and recognition for intelligent air conditioners

    NASA Astrophysics Data System (ADS)

    Sun, Bing; Li, Ke; Weng, Fei; Liu, Yuncai

    2010-08-01

    Through analyzing the low resolution video captured by a single camera fixed on the air condition, this paper proposes an approach that can automatically estimate the person's location and recognize the person's identification in real time. Human location can be obtained by smart geometry calculation with the knowledge of the camera intrinsic parameters and living experience. Human recognition has been found to be very difficult in reality, especially when the person is walking at a distance in the complexity indoor conditions. For optimal performance, we use the shape feature gait energy image (GEI) as the basis, since it isn't sensitive the noise. Then we extract more efficient features using the histograms of oriented gradients (HOG) and do the dimensionality reduction by the coupled subspaces analysis and discriminant analysis with tensor representation (CSA+DATER), Finally the classical Bayesian Theory is used for fusion of the result of HOG and the result of CSA+DATER. The proposed approach is tested on our lab database to evaluate the performance of the human location and recognition. To verify the robust of our human recognition approach especially, CMU MoBo gait database is used. Experimental results show that the proposed approach has a high accuracy rate in both human identification recognition and location estimation.

  18. Liquid Desiccant in Air Conditioners: Nano-Engineered Porous Hollow Fiber Membrane-Based Air Conditioning System

    SciTech Connect

    2010-09-02

    BEETIT Project: UTRC is developing an air conditioning system that is optimized for use in warm and humid climates. UTRC’s air conditioning system integrates a liquid drying agent or desiccant and a traditional vapor compression system found in 90% of air conditioners. The drying agent reduces the humidity in the air before it is cooled, using less energy. The technology uses a membrane as a barrier between the air and the liquid salt stream allowing only water vapor to pass through and not the salt molecules. This solves an inherent problem with traditional liquid desiccant systems—carryover of the liquid drying agent into the conditioned air stream—which eliminates corrosion and health issues

  19. Isolation and characterization of Acanthamoeba spp. from air-conditioners in Kuala Lumpur, Malaysia.

    PubMed

    Chan, Li-Li; Mak, Joon-Wah; Low, Yoon-Tong; Koh, Thuan-Tzen; Ithoi, Init; Mohamed, Shar Mariam

    2011-01-01

    During a study on the quality of the indoor environment, Acanthamoeba spp. were detected in 20 out of 87 dust samples collected from air-conditioners installed in a four-story campus building located in Kuala Lumpur, Malaysia. Twenty-one cloned Acanthamoeba isolates designated as IMU1 to IMU21 were established from the positive primary cultures. Five species were identified from the 16 isolates according to the morphological criteria of Pussard and Pons; i.e. A. castellanii, A. culbertsoni, A. griffini, A. hatchetti and A. polyphaga. Species identities for the remaining five isolates (IMU4, IMU5, IMU15, IMU20 and IMU21), however, could not be determined morphologically. At genotypic characterization, these isolates were placed into T3 (IMU14); T5 (IMU16 and IMU17) and T4 (all the remaining isolates). To predict the potential pathogenicity of these Acanthamoeba isolates, thermo- and osmotolerance tests were employed; many isolates were predicted as potential human pathogens based on the outcome of these tests. This is the first time potentially pathogenic Acanthamoeba have been isolated from air-conditioners in Malaysia.

  20. Experimental Determination of Demand Response Control Models and Cost of Control for Ensembles of Window-Mount Air Conditioners

    SciTech Connect

    Geller, Drew Adam; Backhaus, Scott N.

    2016-09-29

    Control of consumer electrical devices for providing electrical grid services is expanding in both the scope and the diversity of loads that are engaged in control, but there are few experimentally-based models of these devices suitable for control designs and for assessing the cost of control. A laboratory-scale test system is developed to experimentally evaluate the use of a simple window-mount air conditioner for electrical grid regulation services. The experimental test bed is a single, isolated air conditioner embedded in a test system that both emulates the thermodynamics of an air conditioned room and also isolates the air conditioner from the real-world external environmental and human variables that perturb the careful measurements required to capture a model that fully characterizes both the control response functions and the cost of control. The control response functions and cost of control are measured using harmonic perturbation of the temperature set point and a test protocol that further isolates the air conditioner from low frequency environmental variability.

  1. Development of a solar-powered residential air conditioner: Economic analysis

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The results of investigations aimed at the development of cost models to be used in the economic assessment of Rankine-powered air conditioning systems for residential application are summarized. The rationale used in the development of the cost model was to: (1) collect cost data on complete systems and on the major equipment used in these systems; (2) reduce these data and establish relationships between cost and other engineering parameters such as weight, size, power level, etc; and (3) derive simple correlations from which cost-to-the-user can be calculated from performance requirements. The equipment considered in the survey included heat exchangers, fans, motors, and turbocompressors. This kind of hardware represents more than 2/3 of the total cost of conventional air conditioners.

  2. Liquid air cycle engines

    NASA Technical Reports Server (NTRS)

    Rosevear, Jerry

    1992-01-01

    Given here is a definition of Liquid Air Cycle Engines (LACE) and existing relevant technologies. Heat exchanger design and fabrication techniques, the handling of liquid hydrogen to achieve the greatest heat sink capabilities, and air decontamination to prevent heat exchanger fouling are discussed. It was concluded that technology needs to be extended in the areas of design and fabrication of heat exchangers to improve reliability along with weight and volume reductions. Catalysts need to be improved so that conversion can be achieved with lower quantities and lower volumes. Packaging studies need to be investigated both analytically and experimentally. Recycling with slush hydrogen needs further evaluation with experimental testing.

  3. 10 CFR 431.96 - Uniform test method for the measurement of energy efficiency of commercial air conditioners and...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... paragraphs (d) and (e) of this section will be used. Energy Efficiency Standards ... efficiency of commercial air conditioners and heat pumps. 431.96 Section 431.96 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT...

  4. 10 CFR Appendix F to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Room Air Conditioners

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... of Room Air Conditioners F Appendix F to Subpart B of Part 430 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Test Procedures Pt. 430, Subpt. B, App. F Appendix F to Subpart B of Part 430—Uniform Test Method for Measuring the Energy Consumption of Room...

  5. 10 CFR Appendix F to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Room Air Conditioners

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... of Room Air Conditioners F Appendix F to Subpart B of Part 430 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Test Procedures Pt. 430, Subpt. B, App. F Appendix F to Subpart B of Part 430—Uniform Test Method for Measuring the Energy Consumption of Room...

  6. Particulate matter concentrations in residences: an intervention study evaluating stand-alone filters and air conditioners

    PubMed Central

    Batterman, S.; Du, L.; Mentz, G.; Mukherjee, B.; Parker, E.; Godwin, C.; Chin, J.-Y.; O'Toole, A.; Robins, T.; Rowe, Z.; Lewis, T.

    2014-01-01

    This study, a randomized controlled trial, evaluated the effectiveness of free-standing air filters and window air conditioners (ACs) in 126 low-income households of children with asthma. Households were randomized into a control group, a group receiving a free-standing HEPA filter placed in the child's sleeping area, and a group receiving the filter and a window-mounted AC. Indoor air quality (IAQ) was monitored for week-long periods over three to four seasons. High concentrations of particulate matter (PM) and carbon dioxide were frequently seen. When IAQ was monitored, filters reduced PM levels in the child's bedroom by an average of 50%. Filter use varied greatly among households and declined over time, for example, during weeks when pollutants were monitored, filter use was initially high, averaging 84 ± 27%, but dropped to 63 ± 33% in subsequent seasons. In months when households were not visited, use averaged only 34 ± 30%. Filter effectiveness did not vary in homes with central or room ACs. The study shows that measurements over multiple seasons are needed to characterize air quality and filter performance. The effectiveness of interventions using free-standing air filters depends on occupant behavior, and strategies to ensure filter use should be an integral part of interventions. PMID:22145709

  7. Modeling of a second-generation solar-driven Rankine air conditioner. Final report

    SciTech Connect

    Denius, M.W.; Batton, W.D.

    1984-07-01

    Ten configurations of a second-generation (2G), solar-powered, Rankine-driven air conditioner were simulated and the data presented for use in companion studies. The results of the analysis show that the boiling-in-collector (BIC) configuration generates more power per collector area than the other configurations. The models used to simulate the configuration are presented in this report. The generated data are also presented. Experimental work was done under this study to both improve a novel refrigerant and oil lubrication system for the centrifugal compressor and investigate the aerodynamic unloading characteristics of the centrifugal compressor. The information generated was used to define possible turbo-gearbox configurations for use in the second generation computer simulation.

  8. Air Quality Management Process Cycle

    EPA Pesticide Factsheets

    Air quality management are activities a regulatory authority undertakes to protect human health and the environment from the harmful effects of air pollution. The process of managing air quality can be illustrated as a cycle of inter-related elements.

  9. Development of Small Gas-fired Ammonia Absorption Air Conditioner for Residential Use

    NASA Astrophysics Data System (ADS)

    Sawada, Takashi; Yamamoto, Yoshiaki; Kobayashi, Hirotake; Shimaoka, Takaharu; Kawahara, Michinori; Uedono, Norio

    Due to the global environmental problems, the usage of natural refrigerants, such as water, ammonia, and hydrocarbons, are examined widely. Especially, absorption heat pump system using ammonia and water is penetrated widely for residential use in the U.S. and Europe, because it is easy to make the air-cooled system and to perform with high COP for heating. Authors have been developing an ammonia/water heat pump system for residential use. This system is driven by natural gas and supplies chilled water for cooling and hot water for heating. The results of performance tests indicated 6.8kW for cooling capacity and 10.3kW for heating capacity. And, some indexes which were related the charge of ammonium and the weight of the out-door unit, were compared with the same item of other equipments, such as, gas-fired LiBr absorption air-conditioners and gas engine driven heat pumps for residential use. The objective of this paper is to introduce the specifications and performance test results of the latest model, and to evaluate the performance of this heat pump system.

  10. Flow control of a centrifugal fan in a commercial air conditioner

    NASA Astrophysics Data System (ADS)

    Kim, Jiyu; Bang, Kyeongtae; Choi, Haecheon; Seo, Eung Ryeol; Kang, Yonghun

    2015-11-01

    Air-conditioning fans require a low noise level to provide user comfort and quietness. The aerodynamic noise sources are generated by highly unsteady, turbulent structures near the fan blade. In this study, we investigate the flow characteristics of a centrifugal fan in an air-conditioner indoor unit and suggest control ideas to develop a low noise fan. The experiment is conducted at the operation condition where the Reynolds number is 163000 based on the blade tip velocity and chord length. Intermittent separation occurs at the blade leading edge and thus flow significantly fluctuates there, whereas vortex shedding occurs at the blade trailing edge. Furthermore, the discharge flow observed in the axial plane near the shroud shows low-frequency intermittent behaviors, resulting in high Reynolds stresses. To control these flow structures, we modify the shapes of the blade leading edge and shroud of the centrifugal fan and obtain noise reduction. The flow characteristics of the base and modified fans will be discussed. Supported by 0420-20130051.

  11. Field evaluation of advanced controls for the retrofit of packaged air conditioners and heat pumps

    SciTech Connect

    Wang, Weimin; Katipamula, Srinivas; Ngo, Hung; Underhill, Ronald M.; Taasevigen, Danny J.; Lutes, Robert G.

    2015-09-01

    This paper documents the magnitude of energy savings achievable in the field by retrofitting existing packaged rooftop units (RTUs) with advanced control strategies not ordinarily used for RTUs. A total of 66 RTUs on 8 different buildings were retrofitted with a commercially available advanced controller for improving RTU operational efficiency. The controller features enhanced air-side economizer control, multi-speed fan control, and demand controlled ventilation. Of the 66 RTUs, 18 are packaged heat pumps and the rest are packaged air conditioners with gas heat. The eight buildings cover four building types and four climate conditions. Based on the data collected for about a whole year, the advanced controller reduced the normalized annual RTU energy consumption between 22% and 90%, with an average of 57% for all RTUs. The average fractional savings uncertainty was 12% at 95% confidence level. Normalized annual electricity savings were in the range between 0.47 kWh/h (kWh per hour of RTU operation) and 7.21 kWh/h, with an average of 2.39 kWh/h. RTUs greater than 53 kW and runtime greater than 14 hours per day had payback periods less than 3 years even at $0.05/kWh.

  12. Alternative Refrigerant Evaluation for High-Ambient-Temperature Environments: R-22 and R-410A Alternatives for Rooftop Air Conditioners

    SciTech Connect

    Abdelaziz, Omar; Shrestha, Som S.; Shen, Bo; Linkous, Randall Lee; Goetzler, William; Guernsey, Matt; Bargach, Youssef

    2016-09-01

    The Oak Ridge National Laboratory (ORNL) High-Ambient-Temperature Evaluation Program for Low-Global Warming Potential (Low-GWP) Refrigerants aims to develop an understanding of the performance of low-GWP alternative refrigerants relative to hydrochlorofluorocarbon (HCFC) and hydrofluorocarbon (HFC) refrigerants in packaged or Rooftop Unit (RTU) air conditioners under high-ambient-temperature conditions. This final report describes the parties involved, the alternative refrigerants selection process, the test procedures, and the final results.

  13. High efficiency air cycle air conditioning system

    SciTech Connect

    Rannenberg, G. C.

    1985-11-19

    An air cycle air conditioning system is provided with regenerative heat exchangers upstream and downstream of an expansion turbine. A closedloop liquid circulatory system serially connects the two regenerative heat exchangers for regeneration without the bulk associated with air-to-air heat exchange. The liquid circulatory system may also provide heat transport to a remote sink heat exchanger and from a remote load as well as heat exchange within the sink heat exchanger and load for enhanced compactness and efficiency.

  14. Greenhouse gas emissions for refrigerant choices in room air conditioner units.

    PubMed

    Galka, Michael D; Lownsbury, James M; Blowers, Paul

    2012-12-04

    In this work, potential replacement refrigerants for window-mounted room air conditioners (RACs) in the U.S. have been evaluated using a greenhouse gas (GHG) emissions analysis. CO(2)-equivalent emissions for several hydrofluoroethers (HFEs) and other potential replacements were compared to the most widely used refrigerants today. Included in this comparison are pure refrigerants that make up a number of hydrofluorocarbon (HFC) mixtures, pure hydrocarbons, and historically used refrigerants such as propane and ammonia. GHG emissions from direct and indirect sources were considered in this thermodynamic analysis. Propylene, dimethyl ether, ammonia, R-152a, propane, and HFE-152a all performed effectively in a 1 ton window unit and produced slightly lower emissions than the currently used R-22 and R-134a. The results suggest that regulation of HFCs in this application would have some effect on reducing emissions since end-of-life emissions remain at 55% of total refrigerant charge despite EPA regulations that mandate 80% recovery. Even so, offsite emissions due to energy generation dominate over direct GHG emissions and all the refrigerants perform similarly in totals of indirect GHG emissions.

  15. Cooling the Planet: Opportunities for Deployment of Superefficient Room Air Conditioners

    SciTech Connect

    Shah, Nihar; Waide, Paul; Phadke, Amol

    2013-04-01

    This report presents the results of an analysis, commissioned by the U.S. Department of Energy, of Air Conditioner (AC) efficiency in support of the Super-efficient Equipment and Appliance Deployment (SEAD) initiative.1 The International Energy Studies group at Lawrence Berkeley National Laboratory in collaboration with Navigant Consulting Inc. performed the analysis. SEAD aims to transform the global market by increasing the penetration of highly efficient equipment and appliances. SEAD partners work together in voluntary activities to: (1) “raise the efficiency ceiling” by pulling superefficient appliances and equipment into the market through cooperation on measures like incentives, procurement, awards, and research and development (R&D) investments; (2) “raise the efficiency floor” by working together to bolster national or regional policies like minimum efficiency standards; and (3) “strengthen the efficiency foundations” of programs by coordinating technical work to support these activities.2 The objective of this analysis is to provide the background technical information necessary to improve the efficiency of ACs and to provide a foundation for the activities of SEAD participating countries. We find that even the best currently available technology offers large efficiency improvement opportunities (35% to 50% reduction in energy consumption from the market average) in most SEAD countries. The cost effective efficiency improvements range from 20% to 30% reduction in energy consumption based on a consumer perspective.

  16. The System Impact of Air-Conditioner Under-voltage Protection Schemes

    SciTech Connect

    Lu, Ning; Yang, Bo; Huang, Zhenyu; Bravo, Richard

    2009-03-31

    This paper presents simulation results of evaluating an under-voltage protection scheme designed to take stalled air-conditioner (a/c) units offline such that the slow voltage recovery phenomena can be solved on areas heavily loaded with a/c motors during summer peak periods. A three feeder test-bed has been first used to quantify the effectiveness of the protection scheme and the sensitivity of the under-voltage relay settings. Then two real system events of the Western US power grid have been studied to evaluate the area impact of the protection scheme proposed by Southern California Edison. The study demonstrates that by taking all or most of the stalled a/c unit offline, the feeder voltage will recover in a few seconds, much quicker than the tens of seconds that the standard thermal relays imbedded in the motors need to trip the units. The drawback of the control scheme is that after the voltage recover, it settled at a higher voltage than before the faults because a large chuck of load has been shed.

  17. 10 CFR 431.92 - Definitions concerning commercial air conditioners and heat pumps.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... water, or gas, but may not include reverse cycle refrigeration as a heating means. Single package... measurement. Commercial package air-conditioning and heating equipment means air-cooled, water-cooled, evaporatively-cooled, or water source (not including ground water source) electrically operated, unitary...

  18. Using Field-Metered Data to Quantify Annual Energy Use of Portable Air Conditioners

    SciTech Connect

    Burke, Thomas; Willem, Henry; Ni, Chun Chun; Stratton, Hannah; Chen, Yuting; Ganeshalingam, Mohan; Iyer, Maithili; Price, Sarah; Dunham, Camilla

    2014-12-12

    As many regions of the United States experience rising temperatures, consumers have come to rely increasingly on cooling appliances (including portable air conditioners) to provide a comfortable indoor temperature. Home occupants sometimes use a portable air conditioner (PAC) to maintain a desired indoor temperature in a single room or enclosed space. Although PACs in residential use are few compared to centrally installed and room air conditioning (AC) units, the past few years have witnessed an increase of PACs use throughout the United States. There is, however, little information and few research projects focused on the energy consumption and performance of PACs, particularly studies that collect information from field applications of PACs. The operation and energy consumption of PACs may differ among geographic locations and households, because of variations in cooling load, frequency, duration of use, and other user-selected settings. In addition, the performance of building envelope (thermal mass and air leakage) as well as inter-zonal mixing within the building would substantially influence the ability to control and maintain desirable indoor thermal conditions. Lawrence Berkeley National Laboratory (LBNL) conducted an initial field-metering study aimed at increasing the knowledge and data related to PAC operation and energy consumption in the United States. LBNL performed its field-metering study from mid-April to late October 2014. The study, which monitored 19 sites in the Northeastern United States (4 in upstate New York and 15 near Philadelphia), collected real-time data on PAC energy consumption along with information regarding housing characteristics, consumer behavior, and environmental conditions that were expected to affect PAC performance. Given the limited number of test sites, this study was not intended to be statistically representative of PAC users in the United States but rather to understand the system response to the cooling demand and to

  19. Air Conditioner Charging. Automotive Mechanics. Air Conditioning. Instructor's Guide [and] Student Guide.

    ERIC Educational Resources Information Center

    Spignesi, B.

    This instructional package, one in a series of individualized instructional units on automobile air conditioning, consists of a student guide and an instructor guide dealing with air conditioning charging. Covered in the module are checking the air conditioning system for leaks, checking and adding refrigerant oil as needed, evacuating the system,…

  20. China Energy Efficiency Round Robin Testing Results for Room Air Conditioners

    SciTech Connect

    Zhou, Nan; Fridley, David; Zheng, Nina; Pierrot, Andre

    2010-06-07

    of all countries energy strategies. As we all know, a very large amount of total energy consumption is due to energy consuming products and equipment, which account for about 50% of China's total energy consumption. However, the current average energy utilization efficiency of this sector is only about 60%, 10 percent lower than the international advanced level. Therefore, China's energy consuming products and equipment sector holds great energy-saving potential. On the other hand, the energy supplied to these products is mainly from fossil fuel combustion, a major source of greenhouse gas (GHG) emissions. Therefore, improving the energy efficiency and augmenting the market share of market-dominant energy consuming products is of significant importance to achieving China's energy saving and emission reduction target and is an effective means to deal with energy and environmental constraints and climate change issues. Main energy consuming products generally include widely-used home appliances, industrial equipment, office equipment, transportation vehicles, etc. China is one of the major manufacturers and exporters of energy end-using products such as air-conditioners, refrigerators, televisions, etc. Their overall energy efficiency is comparatively low and the products are poorly designed, leading to great energy-saving potential. For example, electricity consumption of air conditioners accounts for about 20% of China's total electricity consumption and 40% of the summer electricity peak load in large and medium cities. However, less than 5% of units sold in the domestic market in 2009 reached the standard's highly efficient level of grade 2 above. The electricity consumption of electric motors and their related drive systems accounts for about 60% of China's total electricity consumption; however, less than 2% of the domestic market share consists of energy-efficient electric motor products. Promoting the energy efficiency and market shares of main energy

  1. Recent Research in Compression Refrigeration Cycle Air Source Heat Pumps.

    NASA Astrophysics Data System (ADS)

    Arai, Akira; Senshu, Takao

    The most important theme for heat pump air conditioners is the improvement of energy saving and comfort. Recently, cycle components, especially compressores and heat exchangers have been improved greatly in their performance and efficiency. As for compressors, large progress in their efficiencies have been made by detailed analysises such as mechanical losses and by the development of a new type compression mechanism. As for heat exchangers, various high heat transfer surfaces have been developed together with the improvement of the production technologies for them. Further, the effect of the capacity-modulated cycle is evaluated quantitatively through the improvements of static and transient cycle simulation technologies. And in order to realize this cffect, the electrically driven expansion valves heve been marketed. This review introduces the trends of these energy-saving technologies as well as comfort improvement studies.

  2. Flow, stock, and impact assessment of refrigerants in the Japanese household air conditioner sector.

    PubMed

    Xue, Mianqiang; Kojima, Naoya; Machimura, Takashi; Tokai, Akihiro

    2017-05-15

    Refrigerants provide society with great benefits while have the potential to cause adverse effects on the environment and human health. The present study estimated time-dependent flows and stocks and assessed the effects of refrigerants (R-22, R-410a, and R-32) in household air conditioners in Japan. It was found that stock of R-22 and R-410a peaked at 49,147t in 2000 and 55,994t in 2017, respectively. The largest flow of R-22 and R-410a to waste phase occurred at 3417t/yr. in 2005 and 4011t/yr. in 2023, respectively. The total global warming potential (GWP) due to refrigerant emissions increased from 3.6kt CO2 eq. in 1952 to 6999kt CO2 eq. in 2019, and then decreased to 5314kt CO2 eq. in 2030. The ozone depletion potential (ODP) peaked at 141t CFC-11 eq. in 2002. When substituting R-410a for R-22, the ODP decreased 50% while the GDP increased 8%. When substituting R-32 for R-410a, there was no effect on the ODP while the GDP decreased 6%. The human health damage due to the global warming effect of refrigerant emission was much higher than that due to the ozone depleting effect. The refrigerant emission in use and waste management phases dominated the human health damage. The dynamic estimation not only allows us to evaluate the performance of past policies but also supports the future sustainable management associated with the health effects of refrigerants.

  3. Future emissions and atmospheric fate of HFC-1234yf from mobile air conditioners in Europe.

    PubMed

    Henne, Stephan; Shallcross, Dudley E; Reimann, Stefan; Xiao, Ping; Brunner, Dominik; O'Doherty, Simon; Buchmann, Brigitte

    2012-02-07

    HFC-1234yf (2,3,3,3-tetrafluoropropene) is under discussion for replacing HFC-134a (1,1,1,2-tetrafluoroethane) as a cooling agent in mobile air conditioners (MACs) in the European vehicle fleet. Some HFC-1234yf will be released into the atmosphere, where it is almost completely transformed to the persistent trifluoroacetic acid (TFA). Future emissions of HFC-1234yf after a complete conversion of the European vehicle fleet were assessed. Taking current day leakage rates and predicted vehicle numbers for the year 2020 into account, European total HFC-1234yf emissions from MACs were predicted to range between 11.0 and 19.2 Gg yr(-1). Resulting TFA deposition rates and rainwater concentrations over Europe were assessed with two Lagrangian chemistry transport models. Mean European summer-time TFA mixing ratios of about 0.15 ppt (high emission scenario) will surpass previously measured levels in background air in Germany and Switzerland by more than a factor of 10. Mean deposition rates (wet + dry) of TFA were estimated to be 0.65-0.76 kg km(-2) yr(-1), with a maxium of ∼2.0 kg km(-2) yr(-1) occurring in Northern Italy. About 30-40% of the European HFC-1234yf emissions were deposited as TFA within Europe, while the remaining fraction was exported toward the Atlantic Ocean, Central Asia, Northern, and Tropical Africa. Largest annual mean TFA concentrations in rainwater were simulated over the Mediterranean and Northern Africa, reaching up to 2500 ng L(-1), while maxima over the continent of about 2000 ng L(-1) occurred in the Czech Republic and Southern Germany. These highest annual mean concentrations are at least 60 times lower than previously determined to be a safe level for the most sensitive aquatic life-forms. Rainwater concentrations during individual rain events would still be 1 order of magnitude lower than the no effect level. To verify these results future occasional sampling of TFA in the atmospheric environment should be considered. If future HFC-1234yf

  4. The Oklahoma Field Test: Air-Conditioning Electricity Savings from Standard Energy Conservation Measures, Radiant Barriers, and High-Efficiency Window Air Conditioners

    SciTech Connect

    Ternes, M.P.

    1992-01-01

    A field test involving 104 houses was performed in Tulsa, Oklahoma, to measure the air-conditioning electricity consumption of low-income houses equipped with window air conditioners, the reduction in this electricity consumption attributed to the installation of energy conservation measures (ECMs) as typically installed under the Oklahoma Weatherization Assistance Program (WAP), and the reduction achieved by the replacement of low-efficiency window air conditioners with high-efficiency units and the installation of attic radiant barriers. Air-conditioning electricity consumption and indoor temperature were monitored weekly during the pre-weatherization period (June to September 1988) and post-weatherization period (May to September 1989). House energy consumption models and regression analyses were used to normalize the air-conditioning electricity savings to average outdoor temperature conditions and the pre-weatherization indoor temperature of each house. The average measured pre-weatherization air-conditioning electricity consumption was 1664 kWh/year ($119/year). Ten percent of the houses used less than 250 kWh/year, while another 10% used more than 3000 kWh/year. An average reduction in air-conditioning electricity consumption of 535 kWh/year ($38/year and 28% of pre-weatherization consumption) was obtained from replacement of one low-efficiency window air conditioner (EER less than 7.0) per house with a high-efficiency unit (EER greater than 9.0). For approximately the same cost, savings tripled to 1503 kWh/year ($107/year and 41% of pre-weatherization consumption) in those houses with initial air-conditioning electricity consumption greater than 2750 kWh/year. For these houses, replacement of a low-efficiency air conditioner with a high-efficiency unit was cost effective using the incremental cost of installing a new unit now rather than later; the average installation cost for these houses under a weatherization program was estimated to be $786. The

  5. Experimental analysis of a window air conditioner with a R-22 and R32/R125/R134a mixture

    SciTech Connect

    Mei, V.C.; Chen, F.C.; Chen, D.T.; HuangFu, E.P.

    1995-07-01

    Much experimental and theoretical analysis of potential R-22 replacements has been accomplished. However, published information about the experimental analysis of any off-the-shelf air conditioner with a potential R-22 replacement at realistic, operating conditions is still rare. This type of work could be useful because it provides baseline data for comparing the performance of R-22 and its potential replacement at drop-in conditions. In this study, an off-the-shelf window air conditioner was tested at Air Conditioning and Refrigeration Institute (ARI)-rated indoor conditions and at different ambient temperatures, including the ARI-rated outdoor condition, with R-22 and with its potential replacement, a ternary mixture of R-32(30%)/R-125(10%)/R-134a(60%) (the ternary mixture). A test rig was built that provided for baseline operation and for the option of operating the system with a flooded evaporator by means of liquid over-feeding (LOF). The test results indicated the cooling capacity of the ternary mixture was 7.7% less than that of R-22 at 95{degrees}F ambient for baseline operation. The cooling capacity for both refrigerants improved when a flooded evaporator, or LOF, was used. For LOF operation, the cooling capacity of the ternary mixture was only 1.1% less than that of R-22. The ternary mixture had slightly higher compressor discharge pressure, a lower compressor discharge temperature, slightly lower compressor power consumption, and a higher compressor high/low pressure ratio.

  6. The Oklahoma Field Test: Air-conditioning electricity savings from standard energy conservation measures, radiant barriers, and high-efficiency window air conditioners

    SciTech Connect

    Ternes, M.P.; Levins, W.P.

    1992-08-01

    A field test Involving 104 houses was performed in Tulsa, Oklahoma, to measure the air-conditioning electricity consumption of low-income houses equipped with window air conditioners, the reduction in this electricity consumption attributed to the installation of energy conservation measures (ECMS) as typically installed under the Oklahoma Weatherization Assistance Program (WAP), and the reduction achieved by the replacement of low-efficiency window air conditioners with high-efficiency units and the installation of attic radiant barriers. Air-conditioning electricity consumption and indoor temperature were monitored weekly during the pre-weatherization period (June to September 1988) and post-weatherization period (May to September 1989). House energy consumption models and regression analyses were used to normalize the air-conditioning electricity savings to average outdoor temperature conditions and the pre-weatherization indoor temperature of each house. The following conclusions were drawn from the study: (1) programs directed at reducing air-conditioning electricity consumption should be targeted at clients with high consumption to improve cost effectiveness; (2) replacing low-efficiency air conditioners with high-efficiency units should be considered an option in a weatherization program directed at reducing air-conditioning electricity consumption; (3) ECMs currently being installed under the Oklahoma WAP (chosen based on effectiveness at reducing space-heating energy consumption) should continue to be justified based on their space-heating energy savings potential only; and (4) attic radiant barriers should not be included in the Oklahoma WAP if alternatives with verified savings are available or until further testing demonstrates energy savings or other benefits in this typo of housing.

  7. Study on the complexity pricing game and coordination of the duopoly air conditioner market with disturbance demand

    NASA Astrophysics Data System (ADS)

    Ma, Junhai; Xie, Lei

    2016-03-01

    The paper focuses on the dynamic pricing game of the duopoly air conditioner market with disturbance in demand and analyzes the influence of disturbance on the dynamic game system. Considering the demand for products, such as air conditioner, varies with different seasons, we assume three cases based on the condition of disturbance, including growth market (Case 1), declining market (Case 2) and completely random market (Case 3). By analyzing these three cases and making comparison among them, the paper shows that the growth market is more sensitive to the changing parameters such as the adjustment variable and the competitive factor than the declining market. It is more difficult to keep the system stable in a growth market. Although the demand is completely random, the dynamic system can reach a stable state, on condition that the adjustment variable is small enough. The results also indicate that the bullwhip effect between the order quantity and the actual demand is weakened gradually along with the price adjustment.

  8. High-efficiency gas heat pump air-conditioner equipped with absorption refrigerator

    NASA Astrophysics Data System (ADS)

    Imai, Yosuke; Ohashi, Toshinori; Okamoto, Hiroaki; Hihara, Eiji; Kawakami, Ryuichiro

    On conventional gas heat pump(GHP), waste heat from gas engine that uses as driving source is emitted into outside. So from the standpoint of efficient use of waste heat, it is assumed that waste heat from gas engine is used as driving source of absorption chiller, and high temperature condensate refrigerant in GHP is subcooled to middle temperature by cold source from absorption cycle, and as a result, GHP makes more efficiency. However, in equipping GHP with absorption cycle, downsizing and high-efficiency of absorption cycle is required. In this study, air-cooled subcooled adiabatic absorber is focused and physical phenomenon in it is analyzed, and finally one perception of the optimized designing is shown.

  9. Measurement of Fine Particles From Mobile and Stationary Sources, and Reducing the Air Conditioner Power Consumption in Hybrid Electric Vehicles

    NASA Astrophysics Data System (ADS)

    Brewer, Eli Henry

    We study the PM2.5and ultrafine exhaust emissions from a new natural gas-fired turbine power facility to better understand air pollution in California. To characterize the emissions from new natural gas turbines, a series of tests were performed on a GE LMS100 gas turbine. These tests included PM2.5 and wet chemical tests for SO2/SO 3 and NH3, as well as ultrafine (less than 100 nm in diameter) particulate matter measurements. The turbine exhaust had an average particle number concentration that was 2.3x103 times higher than ambient air. The majority of these particles were nanoparticles; at the 100 nm size, stack particle concentrations were about 20 times higher than ambient, and increased to 3.9x104 times higher on average in the 2.5 - 3 nm particle size range. This study also found that ammonia emissions were higher than expected, but in compliance with permit conditions. This was possibly due to an ammonia imbalance entering the catalyst, some flue gas bypassing the catalyst, or not enough catalyst volume. SO3 accounted for an average of 23% of the total sulfur oxides emissions measured. Some of the SO3 is formed in the combustion process, it is likely that the majority formed as the SO2 in the combustion products passed across the oxidizing CO catalyst and SCR catalyst. The 100 MW turbine sampled in this study emitted particle loadings similar to those previously measured from turbines in the SCAQMD area, however, the turbine exhaust contained far more particles than ambient air. The power consumed by an air conditioner accounts for a significant fraction of the total power used by hybrid and electric vehicles especially during summer. This study examined the effect of recirculation of cabin air on power consumption of mobile air conditioners both in-lab and on-road. Real time power consumption and vehicle mileage were recorded by an On Board Diagnostic monitor and carbon balance method. Vehicle mileage improved with increased cabin air recirculation. The

  10. Cardio-Muscular Conditioner

    NASA Technical Reports Server (NTRS)

    1993-01-01

    In the mid-sixties, Gary Graham, a Boeing designer, developed a cardiovascular conditioner for a planned Air Force orbiting laboratory. After the project was cancelled, Graham participated in space station conditioning studies for the Skylab program. Twenty years later, he used this expertise to develop the Shuttle 2000-1, a physical therapy and athletic development conditioner, available through Contemporary Designs. The machine is used by football teams, sports clinics and medical rehabilitation centers. Cardiovascular fitness and muscular strength development are promoted through both kinetic and plyometric exercises.

  11. Methodology for Automated Detection of Degradation and Faults in Packaged Air Conditioners and Heat Pumps Using Only Two Sensors

    SciTech Connect

    2016-02-10

    The software was created in the process of developing a system known as the Smart Monitoring and Diagnostic System (SMDS) for packaged air conditioners and heat pumps used on commercial buildings (known as RTUs). The SMDS provides automated remote monitoring and detection of performance degradation and faults in these RTUs and could increase the awareness by building owners and maintenance providers of the condition of the equipment, the cost of operating it in degraded condition, and the quality of maintenance and repair service when it is performed. The SMDS provides these capabilities and would enable conditioned-based maintenance rather than the reactive and schedule-based preventive maintenance commonly used today, when maintenance of RTUs is done at all. Improved maintenance would help ensure persistent peak operating efficiencies, reducing energy consumption by an estimated 10% to 30%.

  12. The use of heteroduplex analysis of polymerase chain reaction products to support the possible transmission of Legionella pneumophila from a malfunctioning automobile air conditioner.

    PubMed

    Pinar, Ahmet; Ramirez, Julio A; Schindler, Laura L; Miller, Richard D; Summersgill, James T

    2002-03-01

    Air conditioner condensates have not been previously associated with cases of Legionnaires' disease. We report the possible transmission of Legionella pneumophila serogroup 1 from a malfunctioning automobile air conditioning system's leaking water onto the floorboard of a car driven for a long distance by the patient. Heteroduplex analysis of polymerase chain reaction products was used to help establish an epidemiologic link between the water specimen and the patient.

  13. Improving Best Air Conditioner Efficiency by 20-30% through a High Efficiency Fan and Diffuser Stage Coupled with an Evaporative Condenser Pre-Cooler

    SciTech Connect

    Parker, Danny S; Sherwin, John R; Raustad, Richard

    2014-04-10

    The Florida Solar Energy Center (FSEC) conducted a research project to improve the best residential air conditioner condenser technology currently available on the market by retrofitting a commercially-available unit with both a high efficiency fan system and an evaporative pre-cooler. The objective was to integrate these two concepts to achieve an ultra-efficient residential air conditioner design. The project produced a working prototype that was 30% more efficient compared to the best currently-available technologies; the peak the energy efficiency ratio (EER) was improved by 41%. Efficiency at the Air-Conditioning and Refrigeration Institute (ARI) standard B-condition which is used to estimate seasonal energy efficiency ratio (SEER), was raised from a nominal 21 Btu/Wh to 32 Btu/Wh.

  14. Cascade Reverse Osmosis Air Conditioning System: Cascade Reverse Osmosis and the Absorption Osmosis Cycle

    SciTech Connect

    2010-09-01

    BEETIT Project: Battelle is developing a new air conditioning system that uses a cascade reverse osmosis (RO)-based absorption cycle. Analyses show that this new cycle can be as much as 60% more efficient than vapor compression, which is used in 90% of air conditioners. Traditional vapor-compression systems use polluting liquids for a cooling effect. Absorption cycles use benign refrigerants such as water, which is absorbed in a salt solution and pumped as liquid—replacing compression of vapor. The refrigerant is subsequently separated from absorbing salt using heat for re-use in the cooling cycle. Battelle is replacing thermal separation of refrigerant with a more efficient reverse osmosis process. Research has shown that the cycle is possible, but further investment will be needed to reduce the number of cascade reverse osmosis stages and therefore cost.

  15. Auto-ignition of lubricating oil working at high pressures in a compressor for an air conditioner.

    PubMed

    Kim, Chul Jin; Choi, Hyo Hyun; Sohn, Chae Hoon

    2011-01-15

    Auto-ignition of lubricating oil working in a compressor for an air conditioner is studied experimentally. The adopted lubricating oil is an unknown mixture with multi-components and known to have flash point temperature of 170 °C. First, its auto-ignition temperature is measured 365 °C at atmospheric pressure. The lubricating oil works under high-pressure condition up to 30 atm and it is heated and cooled down repeatedly. Accordingly, auto-ignition temperatures or flammable limits of lubricating oil are required at high pressures with respect to fire safety. Because there is not a standard test method for the purpose, a new ignition-test method is proposed in this study and thereby, auto-ignition temperatures are measured over the pressure range below 30 atm. The measured temperatures range from 215 °C to 255 °C and they strongly depend on pressure of gas mixture consisting of oil vapor, nitrogen, and oxygen. They are close to flash point temperature and the lubricating oil can be hazardous when it works for high-pressure operating condition and abundant air flows into a compressor.

  16. Experimental Analysis of 3D Flow in Scroll Casing of Multi-Blade Fan for Air-Conditioner

    NASA Astrophysics Data System (ADS)

    Kitadume, Michio; Kawahashi, Masaaki; Hirahara, Hiroyuki; Uchida, Tadashi; Yanagawa, Hideki

    The multi-blade fan, which has been widely used as a blower for air-conditioning systems of vehicles, is one of the well-established fluid machinery. However, many factors must be considered in its practical design because the flow generated in the fan is quite complicated with three-dimensionality and unsteadiness. The fundamental fan performance is primarily determined by the impeller of the fan, and is also affected by the scroll casing. However, the theoretical estimation of the effect of the casing on the performance has not been well established. In order to estimate the casing effect on fan performance, detailed three-dimensional (3D) flow analysis in the casing is necessary. Stereoscopic PIV (SPIV) is one of the useful techniques for experimental analysis of 3D flow fields. There are some difficulties in practical application of SPIV for flow analysis in fluid machinery with complicated geometry, but the results obtained provide useful information for understanding the 3D flow field. In this report, experimental investigation of the flow in the scroll casing has been carried out using PIV and SPIV under the premise of downsizing automobile air conditioner fans.

  17. Alternative Refrigerant Evaluation for High-Ambient-Temperature Environments: R-22 and R-410A Alternatives for Mini-Split Air Conditioners

    SciTech Connect

    Abdelaziz, Omar; Shrestha, Som S.; Munk, Jeffrey D.; Linkous, Randall Lee; Goetzler, William; Guernsey, Matt; Kassuga, Theo

    2015-10-01

    The Oak Ridge National Laboratory (ORNL) High-Ambient-Temperature Evaluation Program for low– global warming potential (Low-GWP) Refrigerants aims to develop an understanding of the performance of low-GWP alternative refrigerants to hydrochlorofluorocarbon (HCFC) and hydrofluorocarbon (HFC) refrigerants in mini-split air conditioners under high-ambient-temperature conditions. This final report describes the parties involved, the alternative refrigerant selection process, the test procedures, and the final results.

  18. Alternative Refrigerant Evaluation for High-Ambient Temperature Environments: R-22 and R-410A Alternatives for Mini-Split Air Conditioners

    SciTech Connect

    Abdelaziz, Omar; Munk, Jeffrey D.; Shrestha, Som S.; Linkous, Randall Lee; Goetzler, William; Guernsey, Matt; Kassuga, Theo

    2015-08-01

    The Oak Ridge National Laboratory (ORNL) High-Ambient Temperature Testing Program for Low-GWP Refrigerants aims to develop an understanding of the performance of low-Global Warming Potential (low-GWP) alternatives to Hydrochlorofluorocarbon (HCFC) and Hydrofluorocarbon (HFC) refrigerants in mini-split air conditioners under high ambient temperature conditions. This interim working paper describes the parties involved, the alternative refrigerants selection process, the test procedures, and the preliminary results.

  19. Modelling and simulation of air-conditioning cycles

    NASA Astrophysics Data System (ADS)

    Rais, Sandi; Kadono, Yoshinori; Murayama, Katsunori; Minakuchi, Kazuya; Takeuchi, Hisae; Hasegawa, Tatsuya

    2017-02-01

    The heat-pump cycle for air conditioning was investigated both numerically and experimentally by evaluating the coefficient of performance (COP) under Japanese Industrial Standard (JIS B 8619:1999) and ANSI/AHRI standard 750-2007 operating conditions. We used two expansion valve coefficients Cv_{(φ)} = 0.12 for standard operating conditions (Case 1) approaching 1.3 MPa at high pressure and 0.2 MPa at low pressure, and Cv_{(φ)} = 0.06 namely poor operating conditions (Case 2). To improve the performance of the air conditioner, we compared the performance for two outside air temperatures, 35 and 40 °C (Case 3). The simulation and experiment comparison resulted the decreasing of the COP for standard operating condition is equal to 14 %, from 3.47 to 2.95 and a decrease of the cooling capacity is equal to 18 %, from 309.72 to 253.53 W. This result was also occurred in poor operating condition which the COP was superior at 35 °C temperature.

  20. Modelling and simulation of air-conditioning cycles

    NASA Astrophysics Data System (ADS)

    Rais, Sandi; Kadono, Yoshinori; Murayama, Katsunori; Minakuchi, Kazuya; Takeuchi, Hisae; Hasegawa, Tatsuya

    2016-05-01

    The heat-pump cycle for air conditioning was investigated both numerically and experimentally by evaluating the coefficient of performance (COP) under Japanese Industrial Standard (JIS B 8619:1999) and ANSI/AHRI standard 750-2007 operating conditions. We used two expansion valve coefficients Cv_{(\\varphi )} = 0.12 for standard operating conditions (Case 1) approaching 1.3 MPa at high pressure and 0.2 MPa at low pressure, and Cv_{(\\varphi )} = 0.06 namely poor operating conditions (Case 2). To improve the performance of the air conditioner, we compared the performance for two outside air temperatures, 35 and 40 °C (Case 3). The simulation and experiment comparison resulted the decreasing of the COP for standard operating condition is equal to 14 %, from 3.47 to 2.95 and a decrease of the cooling capacity is equal to 18 %, from 309.72 to 253.53 W. This result was also occurred in poor operating condition which the COP was superior at 35 °C temperature.

  1. New and Green Multi-component Scaling and Corrosion Inhibitor for the Cooling Water of Central Air Conditioners

    NASA Astrophysics Data System (ADS)

    Li, Maodong; Dai, Chenlin; Yang, Bo; Qiao, Yue; Zhu, Zhiping

    2016-12-01

    A green multi-component inhibitor was developed in this study to obtain suitable scale and corrosion inhibitor for the cooling water treatment of central air conditioners. The inhibitor formulation consisted of hydrolyzed polymaleic anhydride/Tween-80/sodium N-lauroyl sarcosinate/tolyltriazole (named 4-HTSA). Weight loss test and electrochemical method were used to investigate the corrosion inhibition performance of 4-HTSA on A3 carbon steel and T2 red copper in synthetic cooling water, and the scale inhibition performance of 4-HTSA was studied by the calcium carbonate precipitation method. The influence of parameters, such as pH, temperature, scaling and corrosive ion, on 4-HTSA was researched. Scanning electron microscopy (SEM) and x-ray diffraction were used for examination of the scale, and corrosion coupons were analyzed by SEM/energy-dispersive x-ray spectroscopy. Results showed that 4-HTSA had excellent scale and corrosion inhibition performance and wide tolerance to pH, temperature and the concentration of scaling and corrosive ion. Polarization curves indicated that 4-HTSA was anodic inhibitor.

  2. New and Green Multi-component Scaling and Corrosion Inhibitor for the Cooling Water of Central Air Conditioners

    NASA Astrophysics Data System (ADS)

    Li, Maodong; Dai, Chenlin; Yang, Bo; Qiao, Yue; Zhu, Zhiping

    2017-02-01

    A green multi-component inhibitor was developed in this study to obtain suitable scale and corrosion inhibitor for the cooling water treatment of central air conditioners. The inhibitor formulation consisted of hydrolyzed polymaleic anhydride/Tween-80/sodium N-lauroyl sarcosinate/tolyltriazole (named 4-HTSA). Weight loss test and electrochemical method were used to investigate the corrosion inhibition performance of 4-HTSA on A3 carbon steel and T2 red copper in synthetic cooling water, and the scale inhibition performance of 4-HTSA was studied by the calcium carbonate precipitation method. The influence of parameters, such as pH, temperature, scaling and corrosive ion, on 4-HTSA was researched. Scanning electron microscopy (SEM) and x-ray diffraction were used for examination of the scale, and corrosion coupons were analyzed by SEM/energy-dispersive x-ray spectroscopy. Results showed that 4-HTSA had excellent scale and corrosion inhibition performance and wide tolerance to pH, temperature and the concentration of scaling and corrosive ion. Polarization curves indicated that 4-HTSA was anodic inhibitor.

  3. Cost-Benefit of Improving the Efficiency of Room Air Conditioners (Inverter and Fixed Speed) in India

    SciTech Connect

    Shah, Nihar; Abhyankar, Nikit; Park, Won Young; Phadke, Amol; Diddi, Saurabh; Ahuja, Deepanshu; Mukherjee, P. K.; Walia, Archana

    2016-06-30

    Improving efficiency of air conditioners (ACs) typically involves improving the efficiency of various components such as compressors, heat exchangers, expansion valves, refrigerant and fans. We estimate the incremental cost of improving the efficiency of room ACs based on the cost of improving the efficiency of its key components. Further, we estimate the retail price increase required to cover the cost of efficiency improvement, compare it with electricity bill savings, and calculate the payback period for consumers to recover the additional price of a more efficient AC. We assess several efficiency levels, two of which are summarized below in the report. The finding that significant efficiency improvement is cost effective from a consumer perspective is robust over a wide range of assumptions. If we assume a 50% higher incremental price compared to our baseline estimate, the payback period for the efficiency level of 3.5 ISEER is 1.1 years. Given the findings of this study, establishing more stringent minimum efficiency performance criteria (one star level) should be evaluated rigorously considering significant benefits to consumers, energy security and environment.

  4. Fuel conditioner

    SciTech Connect

    Nelson, M.L.; Nelson, O.L. Jr.

    1988-06-28

    A fuel conditioner is described comprising 10 to 80% of a polar oxygenated hydrocarbon having an average molecular weight from about 250 to about 500, an acid acid number from about 25 to about 125, and a saponification number from about 30 to about 250; and 5 to 50% of an oxygenated compatibilizing agent having a solubility parameter of from about 8.8 to about 11.5 and moderate to strong hydrogen-bonding capacity.

  5. Resources and Fact Sheets on Servicing Motor Vehicle Air Conditioners (Summary Page)

    EPA Pesticide Factsheets

    Page provides links to resources that can assist motor vehicle air-conditioning system technicians in understanding system servicing requirements and best practices, and learn about alternative refrigerants.

  6. 76 FR 19913 - Compliance Testing Procedures: Correction Factor for Room Air Conditioners

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-11

    ... that as atmospheric pressure drops, so does the air density and, therefore, the mass of air in a room. As atmospheric pressure drops, the efficiency of a unit would also drop because there would be less... (Atmospheric Pressure Inputs). Condenser Inlet Pressure psia 14.695 14.204 13.713 13.222 12.731...

  7. Solar-Powered, Liquid-Desiccant Air Conditioner for Low-Electricity Humidity Control

    DTIC Science & Technology

    2012-11-01

    42 6.1.1 ASHRAE Comfort Zone...Laboratory AHU air-handling unit AILR AIL Research ASHRAE American Society of Heating, Refrigerating, and Air- Conditioning Engineers Btu...psychrometric comfort zone • Chiller power • Reheat run-time • ə% of hours outside ASHRAE summer comfort zone • Reduce chiller/reheat run-time

  8. Solar Powered Liquid Desiccant Air Conditioner for Low-Electricity Humidity Control

    DTIC Science & Technology

    2012-07-01

    thermal comfort conditions. Liquid-desiccants are solutions that are hygroscopic but are easily able to be pumped and applied within heating, ventilating, and air conditioning (HVAC) equipment as necessary.

  9. Preliminary design package for residential heating/cooling system: Rankine air conditioner redesign

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A summary of the preliminary redesign and development of a marketable single family heating and cooling system is presented. The interim design and schedule status of the residential (3-ton) redesign, problem areas and solutions, and the definition of plans for future design and development activities were discussed. The proposed system for a single-family residential heating and cooling system is a single-loop, solar-assisted, hydronic-to-warm-air heating subsystem with solar-assisted domestic water heating and a Rankine-driven expansion air-conditioning subsystem.

  10. DEVELOPMENT OF A LINEAR COMPRESSOR FOR AIR CONDITIONERS AND HEAT PUMPS

    EPA Science Inventory

    The report discusses the design, building, testing, and delivering to the Environmental Protection Agency of a linear compressor for operation in a 3.0- ton (10.5 kW) residential air-conditioning and heat pumping system. The compressor design evolved from a linear resonant piston...

  11. Gohieria fusca (Acari: Astigmata) found in the filter dusts of air conditioners in China.

    PubMed

    Li, Chaopin; Zhan, Xiaodong; Zhao, Jinhong; Wei, Guo

    2014-10-06

    Objetivo: La Gohieria fusca (Oudemans, 1902) se reproduce en la harina de trigo, arroz, maíz, piensos, salvado de trigo y los medicamentos a base de hierbas, además de en otros productos almacenados; este ácaro puede tener una reactividad cruzada de leve a moderada con alérgenos de los ácaros del polvo domésticos, una importante fuente de alérgenos de interior asociada al asma y otras afecciones alérgicas. Los sistemas de aire acondicionado son indispensables en edificios públicos y civiles, y las pantallas de estos aparatos son los lugares donde más se acumula el polvo. Se realizó este estudio con el fin de investigar si la Gohieria fusca puede reproducirse en las pantallas de los acondicionadores de aire instalados en espacios públicos o viviendas en la ciudad de Wuhu, provincia de Anhui, China. Métodos: Se recogieron 430 muestras de polvo de los filtros de los sistemas de aire acondicionado en la cafeterías de centros educativos, mercados, hoteles y edificios civiles entre junio y septiembre de 2013, y se aisló la Gohieria fusca de dichas muestras. Resultados: Los resultados indicaron que la Gohieria fusca estaba presente en 98 de las 430 muestras (22,79%), y la tasa de reproducción fue significativa en los filtros del aire acondicionado de diferentes espacios (c2=18.294, P.

  12. 10 CFR 431.92 - Definitions concerning commercial air conditioners and heat pumps.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... total heating output of a central air-conditioning heat pump during its normal annual usage period for... heat pump (or its produced heating effect, depending on the mode of operation) to its net work input, when both the cooling (or heating) effect and the net work input are expressed in identical units...

  13. 10 CFR 431.92 - Definitions concerning commercial air conditioners and heat pumps.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... heat pumps. 431.92 Section 431.92 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY... that affect energy consumption, energy efficiency, water consumption, or water efficiency. Coefficient... humidity control of the supplied air, and reheating function. Energy Efficiency Ratio, or EER means...

  14. 75 FR 14368 - Energy Conservation Standards for Residential Central Air Conditioners and Heat Pumps: Public...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-25

    ... characterization, (3) markups to determine product price, (4) life-cycle cost and payback period, and (5) national... scheme including material and labor costs, and manufacturer's markups. In this way, DOE developed ``manufacturer selling prices'' for the baseline and more efficient motor designs. Later, in its Markups...

  15. 10 CFR 431.92 - Definitions concerning commercial air conditioners and heat pumps.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... include electrical resistance, steam, hot water, or gas, but may not include reverse cycle refrigeration..., and functional (or hydraulic) characteristics that affect energy consumption, energy efficiency, water consumption, or water efficiency. Coefficient of Performance, or COP means the ratio of the produced...

  16. High-efficiency gas heat pump air-conditioner equipped with absorption refrigerator

    NASA Astrophysics Data System (ADS)

    Kawakami, Ryuichiro; Imai, Kazuya; Nakajima, Hidekazu; Okamoto, Hiroaki; Hihara, Eiji

    To improve rated efficiency and partial load efficiency of gas engine heat pump (GHP), we are developing a new type air-cooled absorption refrigerator which is driven by the engine waste hot water. To shape the compact absorption refrigerator body that was able to be built into the space of a GHP outdoor-unit, an air-cooled sub-cooled adiabatic absorber and flowing liquid film plate type generator were newly developed. Maximum cooling capacity was increased about 20%, rated load COP was increased 40%, and partial load COP was increased 46% or less, as a result of the combination examination of a prototype 8.0kW absorption refrigerator and a 56kW GHP at a laboratory.

  17. Spinning Reserves from Controllable Packaged Through the Wall Air Conditioner (PTAC) Units

    SciTech Connect

    Kirby, B.J.

    2003-04-02

    This report summarizes the feasibility of providing spinning reserves from packaged through the wall air conditioning (PTAC) units. Spinning reserves, together with non-spinning reserves, compose the contingency reserves; the essential resources that the power system operator uses to restore the generation and load balance and maintain bulk power system reliability in the event of a major generation or transmission outage. Spinning reserves are the fastest responding and most expensive reserves. Many responsive load technologies could (and we hope will) be used to provide spinning reserve. It is also easier for many loads (including air conditioning loads) to provide the relatively shorter and less frequent interruptions required to respond to contingencies than it is for them to reduce consumption for an entire peak period. Oak Ridge National Laboratory (ORNL) is conducting research on obtaining spinning reserve from large pumping loads and from residential and small commercial thermostat controlled heating, ventilation and air conditioning (HVAC) units. The technology selected for this project, Digi-Log's retrofit PTAC controller, offers significant advantages. To evaluate the availability of spinning reserve capacity from responsive heating and air conditioning loads, ORNL obtained data from a number of units operating over a year at a motel in the TVA service territory. A total of 24 PTAC units in as many rooms were fitted with Digi-Log's supervisory control unit that could be controlled from the motel front desk. Twelve of the rooms formed the group in which the controller was controlled from the hotel front desk only. The remaining twelve rooms were controlled by the occupant and formed the uncontrolled group. This enables us to evaluate the spinning reserve capacity from PTACS that were operating normally and from those under active energy management. A second generation of the Digi-Log controller that will respond quickly enough to provide spinning reserve

  18. A Novel, Low-Cost, Reduced-Sensor Approach for Providing Smart Renote Monitoring and Diagnostics for Packaged Air Conditioners and Heat Pumps

    SciTech Connect

    Brambley, Michael R.

    2009-09-01

    This report describes conceptually an approach to providing automated remote performance and conditioning monitoring and fault detection for air conditioners and heat pumps that shows great promise to reduce the capital and installation costs of such systems from over $1000 per unit to $200 to $400 per unit. The approach relies on non-intrusive electric load monitoring (NIELM) to enable separation of the power use signals of compressors and fans in the air conditioner or heat pump. Then combining information on the power uses and one or two air temperature measurements, changes in energy efficiency and occurrence of major faults would be detected. By decreasing the number of sensors used from between ten and twenty in current diagnostic monitoring systems to three for the envisaged system, the capital cost of the monitoring system hardware and the cost of labor for installation would be decreased significantly. After describing the problem being addressed and the concept for performance monitoring and fault detection in more detail, the report identifies specific conditions and faults that the proposed method would detect, discusses specific needs for successful use of the NIELM approach, and identifies the major elements in the path from concept to a commercialized monitoring and diagnostic system.

  19. COP improvement of refrigerator/freezers, air-conditioners, and heat pumps using nonazeotropic refrigerant mixtures

    NASA Technical Reports Server (NTRS)

    Westra, Douglas G.

    1993-01-01

    With the February, 1992 announcement by President Bush to move the deadline for outlawing CFC (chloro-fluoro-carbon) refrigerants from the year 2000 to the year 1996, the refrigeration and air-conditioning industries have been accelerating their efforts to find alternative refrigerants. Many of the alternative refrigerants being evaluated require synthetic lubricants, are less efficient, and have toxicity problems. One option to developing new, alternative refrigerants is to combine existing non-CFC refrigerants to form a nonazeotropic mixture, with the concentration optimized for the given application so that system COP (Coefficient Of Performance) may be maintained or even improved. This paper will discuss the dilemma that industry is facing regarding CFC phase-out and the problems associated with CFC alternatives presently under development. A definition of nonazeotropic mixtures will be provided, and the characteristics and COP benefits of nonazeotropic refrigerant mixtures will be explained using thermodynamic principles. Limitations and disadvantages of nonazeotropic mixtures will be discussed, and example systems using such mixtures will be reviewed.

  20. Hybrid respiration-signal conditioner

    NASA Technical Reports Server (NTRS)

    Rinard, G. A.; Steffen, D. A.; Sturm, R. E.

    1979-01-01

    Hybrid impedance-pneumograph and respiration-rate signal conditioner element of hand-held vital signs monitor measures changes in impedance of chest during breathing cycle and generates analog respiration signal as output along with synchronous square wave that can be monitored by breath-rate processor.

  1. Ventilation air, the economy cycle, and VAV

    SciTech Connect

    Haines, R.W.

    1994-10-01

    This article describes a simple yet effective method of providing both minimum and economy cycle control of outside air with a VAV system. Like most of the people in the HVAC industry, the author has been aware that there are problems with ventilation air and economy cycle outside air control when variable air volume (VAV) systems are used. It seemed obvious that the simple solution was to use an injection fan in the outside air intake to provide the minimum ventilation requirement under any operating condition of the VAV system and--presto--the problem would be solved. Recently the author was asked to prepare a seminar on HVAC controls for one of the ASHRAE chapters, with special emphasis on VAV systems. This forced him to take a careful look at the situation, and in the ensuing analysis, it became apparent that the previous look at the problem had not discovered the simplest and perhaps best solution.

  2. Air Conditioning System using Rankine Cycle

    NASA Astrophysics Data System (ADS)

    Nagatomo, Shigemi; Yamaguchi, Hiroichi; Hattori, Hitoshi; Futamura, Motonori

    Natural gas is used as the energy source to cope with the recent situation of increasing demand for electricity especially in summer. In this paper, the performance of a Rankine cycle air conditioning system driven by natural gas was studied. The following results were obtained : (1) Basic equations of performance, refrigerant mass flow rate and expander volume were developed by using the values of heating efficiency, regeneration efficiency, expander efficiency and compressor efficiency. (2) R134a refrigerant has been considered to be suitable for the Rankine cycle air conditioning system, compared with other refrigerants. (3)A Rankine cycle cooling system using R134a refrigerant as a single working fluid was developed. System COP of 0.47 was attained at typical operating condition.

  3. Concentrations of polybrominated diphenyl ethers (PBDEs) in central air-conditioner filter dust and relevance of non-dietary exposure in occupational indoor environments in Greece.

    PubMed

    Besis, Athanasios; Katsoyiannis, Athanasios; Botsaropoulou, Elisavet; Samara, Constantini

    2014-05-01

    Polybrominated Diphenyl Ethers (PBDEs) are ubiquitous in the indoor environment owing to their use in consumer products and various studies around the world have found higher concentrations indoors than outdoors. Central air conditioner (A/C) systems have been widely used in many workplaces, therefore, studying of PBDEs in central A/C filter dust is useful to better understand the occurrences and health implications of PBDEs in indoor environments. The present study examined the occurrence of PBDEs in central A/C filter dust collected from various workplaces (n = 20) in Thessaloniki, Greece. The sum concentrations of 21 target congeners (∑21PBDE) in A/C dust ranged between 84 and 4062 ng g(-1) with a median value of 1092 ng g(-1), while BDE-209 was found to be the most abundant BDE congener. The daily intake via dust ingestion of PBDEs estimated for the employees of the occupational settings ranged from 3 to 45 ng day(-1) (median 12 ng day(-1)).

  4. Solar-Powered, Liquid-Desiccant Air Conditioner for Low-Electricity Humidity Control: Report and Summary Report

    SciTech Connect

    Dean, J.; Kozubal, E.; Herrmann, L.; Miller, J.; Lowenstein, A.; Barker, G.; Slayzak, S.

    2012-11-01

    The primary objective of this project was to demonstrate the capabilities of a new high-performance, liquid-desiccant dedicated outdoor air system (DOAS) to enhance cooling efficiency and comfort in humid climates while substantially reducing electric peak demand at Tyndall Air Force Base (AFB), which is 12 miles east of Panama City, Florida.

  5. HUMID AIR TURBINE CYCLE TECHNOLOGY DEVELOPMENT PROGRAM

    SciTech Connect

    Richard Tuthill

    2002-07-18

    The Humid Air Turbine (HAT) Cycle Technology Development Program focused on obtaining HAT cycle combustor technology that will be the foundation of future products. The work carried out under the auspices of the HAT Program built on the extensive low emissions stationary gas turbine work performed in the past by Pratt & Whitney (P&W). This Program is an integral part of technology base development within the Advanced Turbine Systems Program at the Department of Energy (DOE) and its experiments stretched over 5 years. The goal of the project was to fill in technological data gaps in the development of the HAT cycle and identify a combustor configuration that would efficiently burn high moisture, high-pressure gaseous fuels with low emissions. The major emphasis will be on the development of kinetic data, computer modeling, and evaluations of combustor configurations. The Program commenced during the 4th Quarter of 1996 and closed in the 4th Quarter of 2001. It teamed the National Energy Technology Laboratory (NETL) with P&W, the United Technologies Research Center (UTRC), and a subcontractor on-site at UTRC, kraftWork Systems Inc. The execution of the program started with bench-top experiments that were conducted at UTRC for extending kinetic mechanisms to HAT cycle temperature, pressure, and moisture conditions. The fundamental data generated in the bench-top experiments was incorporated into the analytical tools available at P&W to design the fuel injectors and combustors. The NETL then used the hardware to conduct combustion rig experiments to evaluate the performance of the combustion systems at elevated pressure and temperature conditions representative of the HAT cycle. The results were integrated into systems analysis done by kraftWork to verify that sufficient understanding of the technology had been achieved and that large-scale technological application and demonstration could be undertaken as follow-on activity. An optional program extended the

  6. Seasonal performance of air conditioners - an analysis of the DOE test procedures: the thermostat and measurement errors. Report No. 2

    SciTech Connect

    Lamb, G.D.; Tree, D.R.

    1981-01-01

    Two aspects of the DOE test procedures are analyzed. First, the role of the thermostat in controlling the cycling of conditioning equipment is investigated. The test procedures call for a cycling scheme of 6 minutes on, 24 minutes off for Test D. To justify this cycling scheme as being representative of cycling in the field, it is assumed that the thermostat is the major factor in controlling the cycle rate. This assumption is examined by studying a closed-loop feedback model consisting of a thermostat, a heating/cooling plant and a conditioned space. Important parameters of this model are individually studied to determine their influence on the system. It is found that the switch differential and the anticipator gain are the major parameters in controlling the cycle rate. This confirms the thermostat's dominant role in the cycling of a system. The second aspect of the test procedures concerns transient errors or differences in the measurement of cyclic capacity. In particular, errors due to thermocouple response, thermocouple grid placement, dampers and nonuniform velocity and temperature distributions are considered. Problems in these four areas are mathematically modeled and the basic assumptions are stated. Results from these models help to clarify the problem areas and give an indication of the magnitude of the errors involved. It is found that major disagreement in measured capacity can arise in these four areas and can be mainly attributed to test set-up differences even though such differences are allowable in the test procedures. An understanding of such differences will aid in minimizing many problems in the measurement of cyclic capacity.

  7. Cost benefit analysis and energy savings of using compression and absorption chillers for air conditioners in hot and humid climates

    NASA Astrophysics Data System (ADS)

    Shekarchian, M.; Moghavvemi, M.; Motasemi, F.; Mahlia, T. M. I.

    2012-06-01

    The electricity consumption growth has increased steadily in the recent decade which is a great concern for the environment. Increasing the number of high-rise air-conditioned buildings and the rapid use of electrical appliances in residential and commercial sectors are two important factors for high electricity consumption. This paper investigates the annual energy required for cooling per unit area and the total energy cost per unit area for each type of air conditioning systems in hot and humid climates. The effects of changing the coefficient of performance (COP) of absorption chillers on cost saving was also investigated in this study. The results showed that using absorption chillers for cooling will increase the amount of energy consumption per unit area; however the energy cost per unit area will decrease. In addition this research indicates that for each 0.1 increment in COP of absorption chillers, there is about 500 USD/m2 saved cost.

  8. Solar-powered air-conditioning

    NASA Technical Reports Server (NTRS)

    Clark, D. C.; Rousseau, J.

    1977-01-01

    Report focuses on recent study on development of solar-powered residential air conditioners and is based on selected literature through 1975. Its purposes are to characterize thermal and mechanical systems that might be useful in development of Rankine-cycle approach to solar cooling and assessment of a Lithium Bromide/Water absorption cycle system.

  9. Accelerating Improvements in the Energy Efficiency of Room Air Conditioners (RACs) in India: Potential, Cost-Benefit, and Policies (Interim Assessment)

    SciTech Connect

    Abhyankar, Nikit; Shah, Nihar; Park, Won Young; Phadke, Amol

    2016-06-01

    Falling AC prices, increasing incomes, increasing urbanization, and high cooling requirements due to hot climate are all driving increasing uptake of Room Air Conditioners (RACs) in the Indian market. Air conditioning already comprises 40-60% of summer peak load in large metropolitan Indian cities such as Delhi and is likely to contribute 150 GW to the peak demand in 2030. Standards and labeling policies have contributed to improving the efficiency of RACs in India by about 2.5% in the last 10 years (2.5% per year) while inflation adjusted RAC prices have continued to decline. In this paper, we assess the technical feasibility, cost-benefit, and required policy enhancements by further accelerating the efficiency improvement of RACs in India. We find that there are examples of significantly more accelerated improvements such as those in Japan and Korea where AC efficiency improved by more than 7% per year resulting in almost a doubling of energy efficiency in 7 to 10 years while inflation adjusted AC prices continued to decline. We find that the most efficient RAC sold on the Indian market is almost twice as efficient as the typical AC sold on the market and hence see no technology constraints in a similar acceleration of improvement of efficiency. If starting 2018, AC efficiency improves at a rate of 6% instead of 3%, 40-60 GW of peak load (equivalent to connected load of 5-6 billion LED bulbs), and over 75 TWh/yr (equivalent to 60 million consumers consuming 100 kWh/month) will be saved by 2030; total peak load reduction would be as high as 50 GW. The net present value (NPV) of the consumer benefit between 2018-2030 will range from Rs 18,000 Cr in the most conservative case (in which prices don’t continue to decline and increase based estimates of today’s cost of efficiency improvement) to 140,000 Cr in a more realistic case (in which prices are not affected by accelerated efficiency improvement as shown by historical experience). This benefit is achievable by

  10. Physiological Signal Conditioner

    NASA Technical Reports Server (NTRS)

    Friedericks, C.

    1999-01-01

    Sensors 2000! is developing a Physiological Signal Conditioner (PSC) for monitoring of astronauts in the ISS Human Research Facility. The PSC is battery powered and worn by the crew. The Engineering Development Unit (PSC EDU) and the form-and-fit PSC Tooling Model will be displayed along with associated graphics and text explanations. Results of a recent advanced PSC-2 feasibility study will be presented. The presentation will stimulate discussion of the functional capabilities of a wireless, crew worn Physiological Signal Conditioner. Application of advanced technology to meet the conflicting demands of size, power, and functional capability will be of interest.

  11. Portable Body Temperature Conditioner

    DTIC Science & Technology

    2013-10-18

    TITLE: Portable Body Temperature Conditioner PRINCIPAL INVESTIGATOR...SUBTITLE 5a. CONTRACT NUMBER W81XWH-11-1-0792 Portable Body Temperature ...also have decreased thermoregulation due to blood loss. Normal core body temperature is defined as 37oC and core body temperature below 35oC and above

  12. DWPF Air Lift Pump Life Cycle Evaluation

    SciTech Connect

    IMRICH, KENNETH

    2004-03-15

    The Defense Waste Processing Facility (DWPF) air lift pump was successfully tested at Clemson for 72 days of operation. It provided sufficient flow to pump molten glass without excessive foaming. Slurry feeding also did not reveal any problems with cold cap stability. Metallurgically the Inconel 690 (690) portions of the pump were in excellent condition with no visual evidence of degradation even in high flow regions, i.e., air/melt interface and glass discharge regions. Spinel deposits, which completely covered the air passage on one side, were found at the inlet of each platinum/rhodium (Pt/Rh) nozzle. Although the deposits were extensive, they were porous and did not have an adverse effect on the operation of the pump. The technique used to secure the platinum/rhodium nozzles to the 690 housing appeared to be adequate with only minor oxidation of the 690 threads and glass in-leakage. Galvanic attack was observed where the nozzle formed a seal with the 690. Significant pitting of the 690 was observed around the entire seal. Intergranular cracking of the Pt/Rh alloy was extensive but the cause could not be determined. Testing would be required to evaluate the degradation. Data from the performance test and the metallurgical evaluation are being used to modify the design of the first DWPF production air lift pump. It will be fabricated entirely from 690 and use argon as the purge gas. It is intended to have a service life of 6 months. Recommendations for insertion, operation, and inspection of the pump are also included in this report. Performance data collected from the operation of the production pump will be used to further optimize the design. Laboratory exposure tests should also be performed to evaluate the galvanic effect between platinum/rhodium and 690.

  13. Selection of the air heat exchanger operating in a gas turbine air bottoming cycle

    NASA Astrophysics Data System (ADS)

    Chmielniak, Tadeusz; Czaja, Daniel; Lepszy, Sebastian

    2013-12-01

    A gas turbine air bottoming cycle consists of a gas turbine unit and the air turbine part. The air part includes a compressor, air expander and air heat exchanger. The air heat exchanger couples the gas turbine to the air cycle. Due to the low specific heat of air and of the gas turbine exhaust gases, the air heat exchanger features a considerable size. The bigger the air heat exchanger, the higher its effectiveness, which results in the improvement of the efficiency of the gas turbine air bottoming cycle. On the other hand, a device with large dimensions weighs more, which may limit its use in specific locations, such as oil platforms. The thermodynamic calculations of the air heat exchanger and a preliminary selection of the device are presented. The installation used in the calculation process is a plate heat exchanger, which is characterized by a smaller size and lower values of the pressure drop compared to the shell and tube heat exchanger. Structurally, this type of the heat exchanger is quite similar to the gas turbine regenerator. The method on which the calculation procedure may be based for real installations is also presented, which have to satisfy the economic criteria of financial profitability and cost-effectiveness apart from the thermodynamic criteria.

  14. Technical support document: Energy efficiency standards for consumer products: Room air conditioners, water heaters, direct heating equipment, mobile home furnaces, kitchen ranges and ovens, pool heaters, fluorescent lamp ballasts and television sets. Volume 1, Methodology

    SciTech Connect

    Not Available

    1993-11-01

    The Energy Policy and Conservation Act (P.L. 94-163), as amended, establishes energy conservation standards for 12 of the 13 types of consumer products specifically covered by the Act. The legislation requires the Department of Energy (DOE) to consider new or amended standards for these and other types of products at specified times. DOE is currently considering amending standards for seven types of products: water heaters, direct heating equipment, mobile home furnaces, pool heaters, room air conditioners, kitchen ranges and ovens (including microwave ovens), and fluorescent light ballasts and is considering establishing standards for television sets. This Technical Support Document presents the methodology, data, and results from the analysis of the energy and economic impacts of the proposed standards. This volume presents a general description of the analytic approach, including the structure of the major models.

  15. Attenuator And Conditioner

    DOEpatents

    Anderson, Gene R.; Armendariz, Marcelino G.; Carson, Richard F.; Bryan, Robert P.; Duckett, III, Edwin B.; Kemme, Shanalyn Adair; McCormick, Frederick B.; Peterson, David W.

    2006-04-04

    An apparatus and method of attenuating and/or conditioning optical energy for an optical transmitter, receiver or transceiver module is disclosed. An apparatus for attenuating the optical output of an optoelectronic connector including: a mounting surface; an array of optoelectronic devices having at least a first end; an array of optical elements having at least a first end; the first end of the array of optical elements optically aligned with the first end of the array of optoelectronic devices; an optical path extending from the first end of the array of optoelectronic devices and ending at a second end of the array of optical elements; and an attenuator in the optical path for attenuating the optical energy emitted from the array of optoelectronic devices. Alternatively, a conditioner may be adapted in the optical path for conditioning the optical energy emitted from the array of optoelectronic devices.

  16. 46 CFR 56.15-5 - Fluid-conditioner fittings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... allowable working pressure does not exceed one-fourth of the burst pressure or produce a primary stress... of the burst pressure or produce a primary stress greater than one-fifth of the ultimate tensile... brazed boiler steam air heaters are not considered fluid conditioner fittings and must meet...

  17. 46 CFR 56.15-5 - Fluid-conditioner fittings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... allowable working pressure does not exceed one-fourth of the burst pressure or produce a primary stress... of the burst pressure or produce a primary stress greater than one-fifth of the ultimate tensile... brazed boiler steam air heaters are not considered fluid conditioner fittings and must meet...

  18. 46 CFR 56.15-5 - Fluid-conditioner fittings.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... allowable working pressure does not exceed one-fourth of the burst pressure or produce a primary stress... of the burst pressure or produce a primary stress greater than one-fifth of the ultimate tensile... brazed boiler steam air heaters are not considered fluid conditioner fittings and must meet...

  19. 46 CFR 56.15-5 - Fluid-conditioner fittings.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... allowable working pressure does not exceed one-fourth of the burst pressure or produce a primary stress... of the burst pressure or produce a primary stress greater than one-fifth of the ultimate tensile... brazed boiler steam air heaters are not considered fluid conditioner fittings and must meet...

  20. 46 CFR 56.15-5 - Fluid-conditioner fittings.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... allowable working pressure does not exceed one-fourth of the burst pressure or produce a primary stress... of the burst pressure or produce a primary stress greater than one-fifth of the ultimate tensile... brazed boiler steam air heaters are not considered fluid conditioner fittings and must meet...

  1. 10 CFR Appendix M to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Central Air Conditioners and Heat Pumps

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... entering and leaving the indoor coil. If needed, use an air sampling device to divert air to a sensor(s... device may also divert air to a remotely located sensor(s) that measures dry bulb temperature. The air sampling device and the remotely located temperature sensor(s) may be used to determine the entering...

  2. Thermodynamic study of air-cycle and mercury-vapor-cycle systems for refrigerating cooling air for turbines or other components

    NASA Technical Reports Server (NTRS)

    Nachtigall, Alfred J; Freche, John C; Esgar, Jack B

    1956-01-01

    An analysis of air refrigeration systems indicated that air cycles are generally less satisfactory than simple heat exchangers unless high component efficiencies and high values of heat-exchanger effectiveness can be obtained. A system employing a mercury-vapor cycle appears to be feasible for refrigerating air that must enter the system at temperature levels of approximately 1500 degrees R, and this cycle is more efficient than the air cycle. Weight of the systems was not considered. The analysis of the systems is presented in a generalized dimensionless form.

  3. LIFE CYCLE DESIGN OF AIR INTAKE MANIFOLDS; PHASE I: 2.0 L FORD CONTOUR AIR INTAKE MANIFOLD

    EPA Science Inventory

    The project team applied the life cycle design methodology to the design analysis of three alternative air intake manifolds: a sand cast aluminum, brazed aluminum tubular, and nylon composite. The design analysis included a life cycle inventory analysis, environmental regulatory...

  4. Life cycle assessment comparison of photocatalytic coating and air purifier.

    PubMed

    Tichá, Marie; Žilka, Miroslav; Stieberová, Barbora; Freiberg, František

    2016-07-01

    This article presents a comparison of 2 very different options for removal of undesirable microorganisms and airborne pollutants from the indoor environment of hospitals, schools, homes, and other enclosed spaces using air purifiers and photocatalytic coatings based on nano titanium dioxide (TiO2 ). Both products were assessed by life cycle assessment (LCA) methodology from cradle-to-grave. The assessment also includes comparison of 2 different nano TiO2 production technologies, one by continuous hydrothermal synthesis and the other by a sulfate process. Results of the study showed a relatively large contribution of photocatalytic coatings to reducing the effects of selected indices in comparison with an air purifier, regardless of which nano TiO2 production method is used. Although the impacts of the sulfate process are significantly lower compared to those of hydrothermal synthesis when viewed in terms of production alone, taken in the context of the entire product life cycle, the net difference becomes less significant. The study has been elaborated within the Sustainable Hydrothermal Manufacturing of Nanomaterials (SHYMAN) project, which aims to develop competitive and sustainable continuous nanoparticle (NP) production technology based on supercritical hydrothermal synthesis. Integr Environ Assess Manag 2016;12:478-485. © 2016 SETAC.

  5. Air exchange rates from atmospheric CO2 daily cycle.

    PubMed

    Carrilho, João Dias; Mateus, Mário; Batterman, Stuart; da Silva, Manuel Gameiro

    2015-04-01

    We propose a new approach for measuring ventilation air exchange rates (AERs). The method belongs to the class of tracer gas techniques, but is formulated in the light of systems theory and signal processing. Unlike conventional CO2 based methods that assume the outdoor ambient CO2 concentration is constant, the proposed method recognizes that photosynthesis and respiration cycle of plants and processes associated with fuel combustion produce daily, quasi-periodic, variations in the ambient CO2 concentrations. These daily variations, which are within the detection range of existing monitoring equipment, are utilized for estimating ventilation rates without the need of a source of CO2 in the building. Using a naturally-ventilated residential apartment, AERs obtained using the new method compared favorably (within 10%) to those obtained using the conventional CO2 decay fitting technique. The new method has the advantages that no tracer gas injection is needed, and high time resolution results are obtained.

  6. Air exchange rates from atmospheric CO2 daily cycle

    PubMed Central

    Carrilho, João Dias; Mateus, Mário; Batterman, Stuart; da Silva, Manuel Gameiro

    2015-01-01

    We propose a new approach for measuring ventilation air exchange rates (AERs). The method belongs to the class of tracer gas techniques, but is formulated in the light of systems theory and signal processing. Unlike conventional CO2 based methods that assume the outdoor ambient CO2 concentration is constant, the proposed method recognizes that photosynthesis and respiration cycle of plants and processes associated with fuel combustion produce daily, quasi-periodic, variations in the ambient CO2 concentrations. These daily variations, which are within the detection range of existing monitoring equipment, are utilized for estimating ventilation rates without the need of a source of CO2 in the building. Using a naturally-ventilated residential apartment, AERs obtained using the new method compared favorably (within 10%) to those obtained using the conventional CO2 decay fitting technique. The new method has the advantages that no tracer gas injection is needed, and high time resolution results are obtained. PMID:26236090

  7. 10 CFR Appendix M to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Central Air Conditioners and Heat Pumps

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... testing with the following installed: (1) the most restrictive filter(s); (2) supplementary heating coils... ducted unit without having an indoor air filter installed is permissible as long as the minimum external... on region IV.) For heat pumps that use a time-adaptive defrost control system (see Definition...

  8. 10 CFR Appendix M to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Central Air Conditioners and Heat Pumps

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... for testing. Conduct testing with the following installed: (1) the most restrictive filter(s); (2... restriction. c. Testing a ducted unit without having an indoor air filter installed is permissible as long as... of section 4.2 for information on region IV.) For heat pumps that use a time-adaptive defrost...

  9. 10 CFR Appendix M to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Central Air Conditioners and Heat Pumps

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... testing with the following installed: (1) the most restrictive filter(s); (2) supplementary heating coils... ducted unit without having an indoor air filter installed is permissible as long as the minimum external... on region IV.) For heat pumps that use a time-adaptive defrost control system (see Definition...

  10. 10 CFR Appendix M to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Central Air Conditioners and Heat Pumps

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... testing with the following installed: (1) the most restrictive filter(s); (2) supplementary heating coils... ducted unit without having an indoor air filter installed is permissible as long as the minimum external... on region IV.) For heat pumps that use a time-adaptive defrost control system (see Definition...

  11. Dry Air Cooler Modeling for Supercritical Carbon Dioxide Brayton Cycle Analysis

    SciTech Connect

    Moisseytsev, A.; Sienicki, J. J.; Lv, Q.

    2016-07-28

    Modeling for commercially available and cost effective dry air coolers such as those manufactured by Harsco Industries has been implemented in the Argonne National Laboratory Plant Dynamics Code for system level dynamic analysis of supercritical carbon dioxide (sCO2) Brayton cycles. The modeling can now be utilized to optimize and simulate sCO2 Brayton cycles with dry air cooling whereby heat is rejected directly to the atmospheric heat sink without the need for cooling towers that require makeup water for evaporative losses. It has sometimes been stated that a benefit of the sCO2 Brayton cycle is that it enables dry air cooling implying that the Rankine steam cycle does not. A preliminary and simple examination of a Rankine superheated steam cycle and an air-cooled condenser indicates that dry air cooling can be utilized with both cycles provided that the cycle conditions are selected appropriately

  12. 75 FR 27227 - Energy Conservation Program: Energy Conservation Standards for Residential Central Air...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-14

    ... Central Air Conditioners and Heat Pumps AGENCY: Department of Energy, Office of Energy Efficiency and... conservation standards for residential central air conditioners and heat pumps; the analytical framework... preliminary technical support document for central air conditioners and heat pumps. The comment period...

  13. Comparison of the regulated air pollutant emission characteristics of real-world driving cycle and ECE cycle for motorcycles

    NASA Astrophysics Data System (ADS)

    Chiang, Hung-Lung; Huang, Pei-Hsiu; Lai, Yen-Ming; Lee, Ting-Yi

    2014-04-01

    Motorcycles are an important means of transportation, and their numbers have increased significantly in recent years. However, motorcycles can emit significant amounts of air pollutants; therefore, the emission characteristics and driving patterns of motorcycles are necessary baseline information for the implementation of control measures for motorcycles in urban areas. The selected motorcycles were equipped with global positioning systems (GPS) to obtain speed-time data for determination of the characteristics of real-world driving parameters, and an on-board exhaust gas analyser with data logger was employed to determine the instantaneous concentration of regulated air pollutants from motorcycle exhaust. Results indicated that the time proportions of acceleration, cruising, and deceleration are different from those of the Economic Commission for Europe (ECE) driving cycle, and the time percentages of acceleration and deceleration of the ECE cycle are much less than those in Taichung city. In general, the emission factors of the Taichung motorcycle driving cycle (TMDC) were higher HC and lower NOx emission than those of the ECE cycle. The average fuel consumption of tested motorcycles on three roads during workdays was 5% higher than that on weekends. The fuel consumption in the real-world motorcycle driving cycle was also about 7% higher than that of the ECE cycle, which again indicates that the ECE cycle is unsuitable for measuring fuel consumption in the Taichung metropolitan area. Therefore, understanding the local driving cycle is necessary for developing accurate emission data for air pollution control measures for urban areas.

  14. 7 CFR 3201.92 - Fuel conditioners.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Fuel conditioners. 3201.92 Section 3201.92... Designated Items § 3201.92 Fuel conditioners. (a) Definition. Products formulated to improve the performance... fuel system. (b) Minimum biobased content. The Federal preferred procurement product must have...

  15. 7 CFR 3201.92 - Fuel conditioners.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Fuel conditioners. 3201.92 Section 3201.92... Designated Items § 3201.92 Fuel conditioners. (a) Definition. Products formulated to improve the performance... fuel system. (b) Minimum biobased content. The Federal preferred procurement product must have...

  16. Power Output and Air Requirements of a Two-stroke Cycle Engine for Aeronautical Use

    NASA Technical Reports Server (NTRS)

    Paton, C R; Kemper, Carlton

    1927-01-01

    This investigation was undertaken to determine the pressure and amount of air necessary for satisfactory high-speed, two-stroke cycle operation and thus permit the power requirements of the air pump or blower to be determined. Based on power output and air requirement here obtained the two-stroke cycle engine would seem to be favorable for aeronautical use. No attempts were made to secure satisfactory operation at idling speeds.

  17. Space shuttle aps propellant thermal conditioner study

    NASA Technical Reports Server (NTRS)

    Fulton, D. L.

    1973-01-01

    An analytical and experimental effort was completed to evaluate a baffle type thermal conditioner for superheating O2 and H2 at supercritical pressures. The thermal conditioner consisted of a heat exchanger and an integral reactor (gas generator) operating on O2/H2 propellants. Primary emphasis was placed on the hydrogen conditioner with some effort on the oxygen conditioner and a study completed of alternate concepts for use in conditioning oxygen. A hydrogen conditioner was hot fire tested under a range of conditions to establish ignition, heat exchange and response parameters. A parallel technology task was completed to further evaluate the integral reactor and heat exchanger with the side mounted electrical spark igniter.

  18. Conditioner for a helically transported electron beam

    SciTech Connect

    Wang, C.

    1992-05-01

    The kinetic theory is developed to investigate a conditioner for a helically imported electron beam. Linear expressions for axial velocity spread are derived. Numerical simulation is used to check the theoretical results and examine nonlinear aspects of the conditioning process. The results show that in the linear regime the action of the beam conditioner on a pulsed beam mainly depends on the phase at which the beam enters the conditioner and depends only slightly on the operating wavelength. In the nonlinear regime, however, the action of the conditioner strongly depends on the operating wavelength and only slightly upon the entrance phase. For a properly chosen operating wavelength, a little less than the electron's relativistic cyclotron wavelength, the conditioner can decrease the axial velocity spread of a pulsed beam down to less than one-third of its initial value.

  19. Conditioner for a helically transported electron beam

    SciTech Connect

    Wang, C.

    1992-05-01

    The kinetic theory is developed to investigate a conditioner for a helically imported electron beam. Linear expressions for axial velocity spread are derived. Numerical simulation is used to check the theoretical results and examine nonlinear aspects of the conditioning process. The results show that in the linear regime the action of the beam conditioner on a pulsed beam mainly depends on the phase at which the beam enters the conditioner and depends only slightly on the operating wavelength. In the nonlinear regime, however, the action of the conditioner strongly depends on the operating wavelength and only slightly upon the entrance phase. For a properly chosen operating wavelength, a little less than the electron`s relativistic cyclotron wavelength, the conditioner can decrease the axial velocity spread of a pulsed beam down to less than one-third of its initial value.

  20. The optimization air separation plants for combined cycle MHD-power plant applications

    NASA Technical Reports Server (NTRS)

    Juhasz, A. J.; Springmann, H.; Greenberg, R.

    1980-01-01

    Some of the design approaches being employed during a current supported study directed at developing an improved air separation process for the production of oxygen enriched air for magnetohydrodynamics (MHD) combustion are outlined. The ultimate objective is to arrive at conceptual designs of air separation plants, optimized for minimum specific power consumption and capital investment costs, for integration with MHD combined cycle power plants.

  1. Low-noise pulse conditioner

    DOEpatents

    Bird, David A.

    1983-01-01

    A low-noise pulse conditioner is provided for driving electronic digital processing circuitry directly from differentially induced input pulses. The circuit uses a unique differential-to-peak detector circuit to generate a dynamic reference signal proportional to the input peak voltage. The input pulses are compared with the reference signal in an input network which operates in full differential mode with only a passive input filter. This reduces the introduction of circuit-induced noise, or jitter, generated in ground referenced input elements normally used in pulse conditioning circuits, especially speed transducer processing circuits.

  2. Technology Assessment Report: Duty Cycling Controllers Revisited

    SciTech Connect

    Webster, Tom; Benenson, Peter

    1998-05-01

    This report covers an assessment of two brands of energy management controllers that are currently being offered that utilize the principle of duty cycling to purportedly save energy for unitary air conditioners and heat pumps, gas furnaces, and gas fired boilers. The results of an extensive review of past research on this subject as well as a review of vendor sponsored field testing of these controllers compares these newer controllers to those of the past. Included also is a discussion of how the duty cycling principle is prone to misinterpretation as to its potential to save energy.

  3. Formulation of humic-based soil conditioners

    NASA Astrophysics Data System (ADS)

    Amanova, M. A.; Mamytova, G. A.; Mamytova, B. A.; Kydralieva, K. A.; Jorobekova, Sh. J.

    2009-04-01

    The goal of the study is to prepare soil conditioners (SC) able to carry out the following functions: (i) the chemical conditioning of soil mainly comprising the adjustment of pH, (ii) the balancing of inorganic nutrients, (iii) the physical conditioning of soil mainly comprising the improvement of water permeability, air permeability and water retention properties, and (iv) improvement of the ecological system concerning of useful microorganisms activity in the soil. The SC was made of a mixture of inorganic ingredients, a chemical composition and physical and chemical properties of which promoted improvement of physical characteristic of soil and enrichment by its mineral nutritious elements. In addition to aforesaid ingredients, this soil conditioner contains agronomical-valued groups of microorganisms having the function promoting the growth of the crop. As organic component of SC humic acids (HA) was used. HA serve many major functions that result in better soil and plant health. In soil, HA can increase microbial and mycorrhizal activity while enhancing nutrient uptake by plant roots. HA work as a catalyst by stimulating root and plant growth, it may enhance enzymatic activity that in turn accelerates cell division which can lead to increased yields. HA can help to increase crop yields, seed germination, and much more. In short, humic acids helps keep healthy plants health. The first stage goal was to evaluate mineral and organic ingredients for formulation of SC. Soil conditioners assessed included ash and slag. The use of slags has been largelly used in agriculture as a source of lime and phosphoric acid. The silicic acid of slags reduces Al-acitivity thus, promoting a better assimilation of P-fertilizer by plants. Additionally, silicic acid is also known to improve soil moisture capacity, thus enhancing soil water availability to plants. Physico-chemical characteristics of ash and slag were determined, as a total - about 20 samples. Results include

  4. Air cycle machine for an aircraft environmental control system

    NASA Technical Reports Server (NTRS)

    Decrisantis, Angelo A. (Inventor); O'Coin, James R. (Inventor); Taddey, Edmund P. (Inventor)

    2010-01-01

    An ECS system includes an ACM mounted adjacent an air-liquid heat exchanger through a diffuser that contains a diffuser plate. The diffuser plate receives airflow from the ACM which strikes the diffuser plate and flows radially outward and around the diffuser plate and into the air-liquid heat exchanger to provide minimal pressure loss and proper flow distribution into the air-liquid heat exchanger with significantly less packaging space.

  5. CAESCAP: A computer code for compressed-air energy-storage-plant cycle analysis

    NASA Astrophysics Data System (ADS)

    Fort, J. A.

    1982-10-01

    The analysis code, CAESCAP, was developed as an aid in comparing and evaluating proposed compressed air energy storage (CAES) cycles. Input consists of component parameters and working fluid conditions at points along a cycle. The code calculates thermodynamic properties at each point and then calculates overall cycle performance. Working fluid capabilities include steam, air, nitrogen, and parahydrogen. The CAESCAP code was used to analyze a variety of CAES cycles. The combination of straightforward input and flexible design make the code easy and inexpensive to use.

  6. Application of high temperature air heaters to advanced power generation cycles

    SciTech Connect

    Thompson, T R; Boss, W H; Chapman, J N

    1992-03-01

    Recent developments in ceramic composite materials open up the possibility of recuperative air heaters heating air to temperatures well above the feasible with metal tubes. A high temperature air heater (HTAH) has long been recognized as a requirement for the most efficient MHD plants in order to reach high combustor flame temperatures. The application of gas turbines in coal-fired plants of all types has been impeded because of the problems in cleaning exhaust gas sufficiently to avoid damage to the turbine. With a possibility of a HTAH, such plants may become feasible on the basis of air turbine cycles, in which air is compressed and heated in the HTAH before being applied to turbine. The heat exchanger eliminates the need for the hot gas cleanup system. The performance improvement potential of advanced cycles with HTAH application including the air turbine cycle in several variations such as the DOE program on ``Coal-Fired Air Furnace Combined Cycle...,`` variations originated by the authors, and the MHD combined cycle are presented. The status of development of ceramic air heater technology is included.

  7. Carbon dioxide, ground air and carbon cycling in Gibraltar karst

    NASA Astrophysics Data System (ADS)

    Mattey, D. P.; Atkinson, T. C.; Barker, J. A.; Fisher, R.; Latin, J.-P.; Durrell, R.; Ainsworth, M.

    2016-07-01

    We put forward a general conceptual model of CO2 behaviour in the vadose zone of karst aquifers, based on physical principles of air flow through porous media and caves, combined with a geochemical interpretation of cave monitoring data. This 'Gibraltar model' links fluxes of water, air and carbon through the soil with the porosity of the vadose zone, the circulation of ground air and the ventilation of caves. Gibraltar hosts many natural caves whose locations span the full length and vertical range of the Rock. We report results of an 8-year monitoring study of carbon in soil organic matter and bedrock carbonate, dissolved inorganic carbon in vadose waters, and gaseous CO2 in soil, cave and ground air. Results show that the regime of cave air CO2 results from the interaction of cave ventilation with a reservoir of CO2-enriched ground air held within the smaller voids of the bedrock. The pCO2 of ground air, and of vadose waters that have been in close contact with it, are determined by multiple factors that include recharge patterns, vegetation productivity and root respiration, and conversion of organic matter to CO2 within the soil, the epikarst and the whole vadose zone. Mathematical modelling and field observations show that ground air is subject to a density-driven circulation that reverses seasonally, as the difference between surface and underground temperatures reverses in sign. The Gibraltar model suggests that cave air pCO2 is not directly related to CO2 generated in the soil or the epikarstic zone, as is often assumed. Ground air CO2 formed by the decay of organic matter (OM) washed down into the deeper unsaturated zone is an important additional source of pCO2. In Gibraltar the addition of OM-derived CO2 is the dominant control on the pCO2 of ground air and the Ca-hardness of waters within the deep vadose zone. The seasonal regime of CO2 in cave air depends on the position of a cave in relation to the density-driven ground air circulation pattern which

  8. Technical support document: Energy efficiency standards for consumer products: Room air conditioners, water heaters, direct heating equipment, mobile home furnaces, kitchen ranges and ovens, pool heaters, fluorescent lamp ballasts and television sets. Volume 2, Fluorescent lamp ballasts, television sets, room air conditioners, and kitchen ranges and ovens

    SciTech Connect

    Not Available

    1993-11-01

    This document is divided into ``volumes`` B through E, dealing with individual classes of consumer products. Chapters in each present engineering analysis, base case forecasts, projected national impacts of standards, life-cycle costs and payback periods, impacts on manufacturers, impacts of standards on electric utilities, and environmental effects. Supporting appendices are included.

  9. High efficiency laser spectrum conditioner

    DOEpatents

    Greiner, Norman R.

    1980-01-01

    A high efficiency laser spectrum conditioner for generating a collinear parallel output beam containing a predetermined set of frequencies from a multifrequency laser. A diffraction grating and spherical mirror are used in combination, to disperse the various frequencies of the input laser beam and direct these frequencies along various parallel lines spatially separated from one another to an apertured mask. Selection of the desired frequencies is accomplished by placement of apertures at locations on the mask where the desired frequencies intersect the mask. A recollimated parallel output beam with the desired set of frequencies is subsequently generated utilizing a mirror and grating matched and geometrically aligned in the same manner as the input grating and mirror.

  10. Low-noise pulse conditioner

    DOEpatents

    Bird, D.A.

    1981-06-16

    A low-noise pulse conditioner is provided for driving electronic digital processing circuitry directly from differentially induced input pulses. The circuit uses a unique differential-to-peak detector circuit to generate a dynamic reference signal proportional to the input peak voltage. The input pulses are compared with the reference signal in an input network which operates in full differential mode with only a passive input filter. This reduces the introduction of circuit-induced noise, or jitter, generated in ground referenced input elements normally used in pulse conditioning circuits, especially speed transducer processing circuits. This circuit may be used for conditioning the sensor signal from the Fidler coil in a gas centrifuge for separation of isotopic gaseous mixtures.

  11. Innovative open air brayton combined cycle systems for the next generation nuclear power plants

    NASA Astrophysics Data System (ADS)

    Zohuri, Bahman

    The purpose of this research was to model and analyze a nuclear heated multi-turbine power conversion system operating with atmospheric air as the working fluid. The air is heated by a molten salt, or liquid metal, to gas heat exchanger reaching a peak temperature of 660 0C. The effects of adding a recuperator or a bottoming steam cycle have been addressed. The calculated results are intended to identify paths for future work on the next generation nuclear power plant (GEN-IV). This document describes the proposed system in sufficient detail to communicate a good understanding of the overall system, its components, and intended uses. The architecture is described at the conceptual level, and does not replace a detailed design document. The main part of the study focused on a Brayton --- Rankine Combined Cycle system and a Recuperated Brayton Cycle since they offer the highest overall efficiencies. Open Air Brayton power cycles also require low cooling water flows relative to other power cycles. Although the Recuperated Brayton Cycle achieves an overall efficiency slightly less that the Brayton --- Rankine Combined Cycle, it is completely free of a circulating water system and can be used in a desert climate. Detailed results of modeling a combined cycle Brayton-Rankine power conversion system are presented. The Rankine bottoming cycle appears to offer a slight efficiency advantage over the recuperated Brayton cycle. Both offer very significant advantages over current generation Light Water Reactor steam cycles. The combined cycle was optimized as a unit and lower pressure Rankine systems seem to be more efficient. The combined cycle requires a lot less circulating water than current power plants. The open-air Brayton systems appear to be worth investigating, if the higher temperatures predicted for the Next Generation Nuclear Plant do materialize.

  12. A PILOT STUDY OF THE INFLUENCE OF RESIDENTIAL HAC DUTY CYCLE ON INDOOR AIR QUALITY (AE)

    EPA Science Inventory

    A simple methodology was developed to collect measurements of duty cycle, the fraction of time the heating and air conditioning (HAC) system was operating, inside residences. The primary purpose of the measurements was to assess whether the HAC duty cycle was related to reductio...

  13. A PILOT STUDY OF THE INFLUENCE OF RESIDENTIAL HAC DUTY CYCLE ON INDOOR AIR QUALITY

    EPA Science Inventory

    A simple methodology was developed to collect measurements of duty cycle, the fraction of time the heating and air conditioning (HAC) system was operating inside residences. The primary purpose of the measurements was to assess whether the HAC duty cycle was related to reducti...

  14. Thermodynamic Cycle and CFD Analyses for Hydrogen Fueled Air-breathing Pulse Detonation Engines

    NASA Technical Reports Server (NTRS)

    Povinelli, Louis A.; Yungster, Shaye

    2002-01-01

    This paper presents the results of a thermodynamic cycle analysis of a pulse detonation engine (PDE) using a hydrogen-air mixture at static conditions. The cycle performance results, namely the specific thrust, fuel consumption and impulse are compared to a single cycle CFD analysis for a detonation tube which considers finite rate chemistry. The differences in the impulse values were indicative of the additional performance potential attainable in a PDE.

  15. Integrated air separation plant-integrated gasification combined cycle power generator

    SciTech Connect

    Allam, R.J.; Topham, A.

    1992-01-21

    This patent describes an integrated gasification combined cycle power generation system, comprising an air separation unit wherein air is compressed, cooled, and separated into an oxygen and nitrogen enriched fractions, a gasification system for generating a fuel gas, an air compressor system for supplying compressed air for use in combusting the fuel gas, a combustion zone for effecting combustion of the compressed air and the fuel gas, and a gas turbine for effecting the generation of power from the resulting combusted gases from the combustion zone in the combined cycle power generation system. It comprises independently compressing feed air to the air separation unit to pressures of from 8 to 20 bar from the compressor system used to compress air for the combustion zone; cryogenically separating the air in the air separation unit having at least one distillation column operating at pressures of between 8 and 20 bar and producing an oxygen enriched fraction consisting of low purity oxygen, and; utilizing at least a portion of the low purity oxygen for effecting gasification of a carbon containing fuel source by partial oxidation in the gasification system and thereby generating a fuel gas stream; removing at least a portion of a nitrogen enriched fraction from the air separation unit and boosting its pressures to a pressure substantially equal to that of the fuel gas stream; and expanding at least another portion of the nitrogen enriched fraction in an expansion engine.

  16. INFLUENCE OF RESIDENTIAL HVAC DUTY CYCLE ON INDOOR AIR QUALITY

    EPA Science Inventory

    Measurements of duty cycle, the fraction of time the heating and cooling (HVAC) system was operating, were made in homes during the spring season of the RTP Particulate Matter Panel Study and the Tampa Asthmatic Children's Study. A temperature sensor/logger placed on an outlet...

  17. Can air pollution negate the health benefits of cycling and walking?

    PubMed

    Tainio, Marko; de Nazelle, Audrey J; Götschi, Thomas; Kahlmeier, Sonja; Rojas-Rueda, David; Nieuwenhuijsen, Mark J; de Sá, Thiago Hérick; Kelly, Paul; Woodcock, James

    2016-06-01

    Active travel (cycling, walking) is beneficial for the health due to increased physical activity (PA). However, active travel may increase the intake of air pollution, leading to negative health consequences. We examined the risk-benefit balance between active travel related PA and exposure to air pollution across a range of air pollution and PA scenarios. The health effects of active travel and air pollution were estimated through changes in all-cause mortality for different levels of active travel and air pollution. Air pollution exposure was estimated through changes in background concentrations of fine particulate matter (PM2.5), ranging from 5 to 200μg/m3. For active travel exposure, we estimated cycling and walking from 0 up to 16h per day, respectively. These refer to long-term average levels of active travel and PM2.5 exposure. For the global average urban background PM2.5 concentration (22μg/m3) benefits of PA by far outweigh risks from air pollution even under the most extreme levels of active travel. In areas with PM2.5 concentrations of 100μg/m3, harms would exceed benefits after 1h 30min of cycling per day or more than 10h of walking per day. If the counterfactual was driving, rather than staying at home, the benefits of PA would exceed harms from air pollution up to 3h 30min of cycling per day. The results were sensitive to dose-response function (DRF) assumptions for PM2.5 and PA. PA benefits of active travel outweighed the harm caused by air pollution in all but the most extreme air pollution concentrations.

  18. An inlet air washer/chiller system for combined cycle planet repowering

    SciTech Connect

    Sengupta, U.; Soroka, G. )

    1989-01-01

    A conditioning method to achieve increased output at any relative humidity condition is an air washer and absorption chiller arrangement. At elevated temperatures and low humidity, the air washer operates as an evaporative cooler without the chiller in operation. In this mode, the air washer will give similar results as a media type evaporative cooler at a fraction of the pressure loss. In the air washer plus chiller operating mode the chiller maintains cooling effectiveness of the air washer during periods of high relative humidity. This makes such a system very appropriate anywhere relative humidity is high. Many combined cycle plants utilize supplemental firing of the heat recovery steam generators to offset the loss of gas turbine power at high ambient temperatures. This paper shows that in contrast to supplementary firing, the combination air washer/chiller system can generate power more efficiently and at lower cost.

  19. Cryogenic hydrogen-induced air-liquefaction technologies for combined-cycle propulsion applications

    NASA Technical Reports Server (NTRS)

    Escher, William J. D.

    1992-01-01

    Given here is a technical assessment of the realization of cryogenic hydrogen induced air liquefaction technologies in a prospective onboard aerospace vehicle process setting. The technical findings related to the status of air liquefaction technologies are reviewed. Compact lightweight cryogenic heat exchangers, heat exchanger atmospheric constituent fouling alleviation measures, para/ortho-hydrogen shift-conversion catalysts, cryogenic air compressors and liquid air pumps, hydrogen recycling using slush hydrogen as a heat sink, liquid hydrogen/liquid air rocket-type combustion devices, and technically related engine concepts are discussed. Much of the LACE work is related to aerospaceplane propulsion concepts that were developed in the 1960's. Emphasis is placed on the Liquid Air Cycle Engine (LACE).

  20. 21 CFR 882.1845 - Physiological signal conditioner.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... signal conditioner. (a) Identification. A physiological signal conditioner is a device such as an integrator or differentiator used to modify physiological signals for recording and processing. (b... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Physiological signal conditioner. 882.1845...

  1. 21 CFR 882.1845 - Physiological signal conditioner.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... signal conditioner. (a) Identification. A physiological signal conditioner is a device such as an integrator or differentiator used to modify physiological signals for recording and processing. (b... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Physiological signal conditioner. 882.1845...

  2. 21 CFR 882.1845 - Physiological signal conditioner.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... signal conditioner. (a) Identification. A physiological signal conditioner is a device such as an integrator or differentiator used to modify physiological signals for recording and processing. (b... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Physiological signal conditioner. 882.1845...

  3. 21 CFR 882.1845 - Physiological signal conditioner.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... signal conditioner. (a) Identification. A physiological signal conditioner is a device such as an integrator or differentiator used to modify physiological signals for recording and processing. (b... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Physiological signal conditioner. 882.1845...

  4. 21 CFR 882.1845 - Physiological signal conditioner.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... signal conditioner. (a) Identification. A physiological signal conditioner is a device such as an integrator or differentiator used to modify physiological signals for recording and processing. (b... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Physiological signal conditioner. 882.1845...

  5. Photovoltaic array: Power conditioner interface characteristics

    NASA Technical Reports Server (NTRS)

    Gonzalez, C. C.; Hill, G. M.; Ross, R. G., Jr.

    1982-01-01

    The electrical output (power, current, and voltage) of flat plate solar arrays changes constantly, due primarily to changes in cell temperature and irradiance level. As a result, array loads such as dc-to-ac power conditioners must be capable of accommodating widely varying input levels while maintaining operation at or near the maximum power point of the array. The array operating characteristics and extreme output limits necessary for the systematic design of array load interfaces under a wide variety of climatic conditions are studied. A number of interface parameters are examined, including optimum operating voltage, voltage energy, maximum power and current limits, and maximum open circuit voltage. The effect of array degradation and I-V curve fill factor or the array power conditioner interface is also discussed. Results are presented as normalized ratios of power conditioner parameters to array parameters, making the results universally applicable to a wide variety of system sizes, sites, and operating modes.

  6. Combined rankine and vapor compression cycles

    DOEpatents

    Radcliff, Thomas D.; Biederman, Bruce P.; Brasz, Joost J.

    2005-04-19

    An organic rankine cycle system is combined with a vapor compression cycle system with the turbine generator of the organic rankine cycle generating the power necessary to operate the motor of the refrigerant compressor. The vapor compression cycle is applied with its evaporator cooling the inlet air into a gas turbine, and the organic rankine cycle is applied to receive heat from a gas turbine exhaust to heat its boiler within one embodiment, a common condenser is used for the organic rankine cycle and the vapor compression cycle, with a common refrigerant, R-245a being circulated within both systems. In another embodiment, the turbine driven generator has a common shaft connected to the compressor to thereby eliminate the need for a separate motor to drive the compressor. In another embodiment, an organic rankine cycle system is applied to an internal combustion engine to cool the fluids thereof, and the turbo charged air is cooled first by the organic rankine cycle system and then by an air conditioner prior to passing into the intake of the engine.

  7. Late - Cycle Injection of Air/Oxygen - Enriched Air for Diesel Exhaust Emissions Control

    SciTech Connect

    Mather, Daniel

    2000-08-20

    Reduce the ''Engine Out'' particulates using the ''In Cylinder'' technique of late cycle auxiliary gas injection (AGI). Reduce the ''Engine Out'' NOx by combining AGI with optimization of fuel injection parameters. Maintain or Improve the Fuel Efficiency.

  8. Study of hydraulic air compression for Ocean Thermal Energy Conversion open-cycle application

    NASA Astrophysics Data System (ADS)

    Golshani, A.; Chen, F. C.

    1983-01-01

    A hydraulic air compressor, which requires no mechanical moving parts and operates in a nearly isothermal mode, can be an alternative for the noncondensible gas disposal of an Ocean Thermal Energy Conversion (OTEC) open-cycle power system. The compressor requires only a downward flow of water to accomplish air compression. An air compressor test loop was assembled and operated to obtain test data that would lead to the design of an OTEC hydraulic air compressor. A one dimensional, hydraulic gas compressor, computer model was employed to simulate the laboratory experiments, and it was tuned to fit the test results. A sensitivity study that shows the effects of various parameters on the applied head of the hydraulic air compression is presented.

  9. Electric power generating plant having direct coupled steam and compressed air cycles

    DOEpatents

    Drost, Monte K.

    1982-01-01

    An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

  10. Electric power generating plant having direct-coupled steam and compressed-air cycles

    DOEpatents

    Drost, M.K.

    1981-01-07

    An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

  11. Effect of fast freeze-thaw cycles on mechanical properties of ordinary-air-entrained concrete.

    PubMed

    Shang, Huai-shuai; Cao, Wei-qun; Wang, Bin

    2014-01-01

    Freezing-thawing resistance is a very significant characteristic for concrete in severe environment (such as cold region with the lowest temperature below 0°C). In this study, ordinary-air-entrained (O-A-E) concrete was produced in a laboratory environment; the compressive strength, cubic compressive strength of C50, C40, C30, C25, and C20 ordinary-air-entrained concrete, tensile strength, and cleavage strength of C30 ordinary-air-entrained concrete were measured after fast freeze-thaw cycles. The effects of fast freeze-thaw cycles on the mechanical properties (compressive strength and cleavage strength) of ordinary-air-entrained concrete materials are investigated on the basis of the experimental results. And the concise mathematical formula between mechanical behavior and number of fast freeze-thaw cycles was established. The experiment results can be used as a reference in design, maintenance, and life prediction of ordinary-air-entrained concrete structure (such as dam, offshore platform, etc.) in cold regions.

  12. Effect of Fast Freeze-Thaw Cycles on Mechanical Properties of Ordinary-Air-Entrained Concrete

    PubMed Central

    Shang, Huai-shuai; Cao, Wei-qun; Wang, Bin

    2014-01-01

    Freezing-thawing resistance is a very significant characteristic for concrete in severe environment (such as cold region with the lowest temperature below 0°C). In this study, ordinary-air-entrained (O-A-E) concrete was produced in a laboratory environment; the compressive strength, cubic compressive strength of C50, C40, C30, C25, and C20 ordinary-air-entrained concrete, tensile strength, and cleavage strength of C30 ordinary-air-entrained concrete were measured after fast freeze-thaw cycles. The effects of fast freeze-thaw cycles on the mechanical properties (compressive strength and cleavage strength) of ordinary-air-entrained concrete materials are investigated on the basis of the experimental results. And the concise mathematical formula between mechanical behavior and number of fast freeze-thaw cycles was established. The experiment results can be used as a reference in design, maintenance, and life prediction of ordinary-air-entrained concrete structure (such as dam, offshore platform, etc.) in cold regions. PMID:24895671

  13. Influence of cycle exercise on acetone in expired air and skin gas.

    PubMed

    Yamai, Kazuaki; Ohkuwa, Tetsuo; Itoh, Hiroshi; Yamazaki, Yoshihiko; Tsuda, Takao

    2009-01-01

    This study investigated the influence of cycle exercise on acetone concentration in expired air and skin gas. The subjects for this experiment were eight healthy males. Subjects performed a continuous graded exercise test on a cycle ergometer. The workloads were 360 (1.0 kg), 720 (2.0 kg), 990 (2.75 kg) kgm/min, and each stage was 5 min in duration. A pedaling frequency of 60 rpm was maintained. Acetone concentration was analyzed by gas chromatography. The acetone concentration in expired air and skin gas during exercise at 990 kgm/min intensity was significantly increased compared with the basal level. The skin-gas acetone concentration at 990 kgm/min significantly increased compared with the 360 kgm/min (P < 0.05). The acetone excretion of expired air at 720 kgm/min and 990 kgm/min significantly increased compared with the basal level (P < 0.05). Acetone concentration in expired air was 4-fold greater than skin gas at rest and 3-fold greater during exercise (P < 0.01). Skin gas acetone concentration significantly related with expired air (r = 0.752; P < 0.01). This study confirmed that the skin-gas acetone concentration reflected that of expired air.

  14. The relationship of air temperature variations over the northern hemisphere during the secular and 11-year solar cycles

    NASA Technical Reports Server (NTRS)

    Ryzhakov, L. Y.; Tomskaya, A. S.

    1978-01-01

    A comparison was made of air temperature anomaly maps for the months of January and July against a background of high and low secular solar activity, with and without regard for the 11 year cycle. By comparing temperature variations during the 11 year and secular cycles, it is found that the 11 year cycle influences thermal conditions more strongly than the secular cycle, and that temperature differences between extreme phases of the solar cycles are greater in January than in July.

  15. Cost and energy consumption estimates for the aluminum-air battery anode fuel cycle

    NASA Astrophysics Data System (ADS)

    1990-01-01

    At the request of DOE's Office of Energy Storage and Distribution (OESD), Pacific Northwest Laboratory (PNL) conducted a study to generate estimates of the energy use and costs associated with the aluminum anode fuel cycle of the aluminum-air (Al-air) battery. The results of this analysis indicate that the cost and energy consumption characteristics of the mechanically rechargeable Al-air battery system are not as attractive as some other electrically rechargeable electric vehicle battery systems being developed by OESD. However, there are distinct advantages to mechanically rechargeable batteries, which may make the Al-air battery (or other mechanically rechargeable batteries) attractive for other uses, such as stand-alone applications. Fuel cells, such as the proton exchange membrane (PEM), and advanced secondary batteries may be better suited to electric vehicle applications.

  16. Cost and energy consumption estimates for the aluminum-air battery anode fuel cycle

    SciTech Connect

    Humphreys, K.K.; Brown, D.R.

    1990-01-01

    At the request of DOE's Office of Energy Storage and Distribution (OESD), Pacific Northwest Laboratory (PNL) conducted a study to generate estimates of the energy use and costs associated with the aluminum anode fuel cycle of the aluminum-air (Al-air) battery. The results of this analysis indicate that the cost and energy consumption characteristics of the mechanically rechargeable Al-air battery system are not as attractive as some other electrically rechargeable electric vehicle battery systems being developed by OESD. However, there are distinct advantages to mechanically rechargeable batteries, which may make the Al-air battery (or other mechanically rechargeable batteries) attractive for other uses, such as stand-alone applications. Fuel cells, such as the proton exchange membrane (PEM), and advanced secondary batteries may be better suited to electric vehicle applications. 26 refs., 3 figs., 25 tabs.

  17. Air Evaporation closed cycle water recovery technology - Advanced energy saving designs

    NASA Technical Reports Server (NTRS)

    Morasko, Gwyndolyn; Putnam, David F.; Bagdigian, Robert

    1986-01-01

    The Air Evaporation water recovery system is a visible candidate for Space Station application. A four-man Air Evaporation open cycle system has been successfully demonstrated for waste water recovery in manned chamber tests. The design improvements described in this paper greatly enhance the system operation and energy efficiency of the air evaporation process. A state-of-the-art wick feed design which results in reduced logistics requirements is presented. In addition, several design concepts that incorporate regenerative features to minimize the energy input to the system are discussed. These include a recuperative heat exchanger, a heat pump for energy transfer to the air heater, and solar collectors for evaporative heat. The addition of the energy recovery devices will result in an energy reduction of more than 80 percent over the systems used in earlier manned chamber tests.

  18. Feasibility and operating costs of an air cycle for CCHP in a fast food restaurant

    DOE PAGES

    Perez-Blanco, Horacio; Vineyard, Edward

    2016-05-06

    This work considers the possibilities of an air-based Brayton cycle to provide the power, heating and cooling needs of fast-food restaurants. A model of the cycle based on conventional turbomachinery loss coefficients is formulated. The heating, cooling and power capabilities of the cycle are extracted from simulation results. Power and thermal loads for restaurants in Knoxville, TN and in International Falls, MN, are considered. It is found that the cycle can meet the loads by setting speed and mass flow-rate apportionment between the power and cooling functional sections. The associated energy costs appear elevated when compared to the cost ofmore » operating individual components or a more conventional, absorption-based CHP system. Lastly, a first-order estimate of capital investments is provided. Suggestions for future work whereby the operational costs could be reduced are given in the conclusions.« less

  19. Feasibility and operating costs of an air cycle for CCHP in a fast food restaurant

    SciTech Connect

    Perez-Blanco, Horacio; Vineyard, Edward

    2016-05-06

    This work considers the possibilities of an air-based Brayton cycle to provide the power, heating and cooling needs of fast-food restaurants. A model of the cycle based on conventional turbomachinery loss coefficients is formulated. The heating, cooling and power capabilities of the cycle are extracted from simulation results. Power and thermal loads for restaurants in Knoxville, TN and in International Falls, MN, are considered. It is found that the cycle can meet the loads by setting speed and mass flow-rate apportionment between the power and cooling functional sections. The associated energy costs appear elevated when compared to the cost of operating individual components or a more conventional, absorption-based CHP system. Lastly, a first-order estimate of capital investments is provided. Suggestions for future work whereby the operational costs could be reduced are given in the conclusions.

  20. Consequential life cycle air emissions externalities for plug-in electric vehicles in the PJM interconnection

    NASA Astrophysics Data System (ADS)

    Weis, Allison; Jaramillo, Paulina; Michalek, Jeremy

    2016-02-01

    We perform a consequential life cycle analysis of plug-in electric vehicles (PEVs), hybrid electric vehicles (HEVs), and conventional gasoline vehicles in the PJM interconnection using a detailed, normative optimization model of the PJM electricity grid that captures the change in power plant operations and related emissions due to vehicle charging. We estimate and monetize the resulting human health and environmental damages from life cycle air emissions for each vehicle technology. We model PJM using the most recent data available (2010) as well as projections of the PJM grid in 2018 and a hypothetical scenario with increased wind penetration. We assess a range of sensitivity cases to verify the robustness of our results. We find that PEVs have higher life cycle air emissions damages than gasoline HEVs in the recent grid scenario, which has a high percentage of coal generation on the margin. In particular, battery electric vehicles with large battery capacity can produce two to three times as much air emissions damage as gasoline HEVs, depending on charge timing. In our future 2018 grid scenarios that account for predicted coal plant retirements, PEVs would produce air emissions damages comparable to or slightly lower than HEVs.

  1. Thermodynamic analysis of five compressed-air energy-storage cycles. [Using CAESCAP computer code

    SciTech Connect

    Fort, J. A.

    1983-03-01

    One important aspect of the Compressed-Air Energy-Storage (CAES) Program is the evaluation of alternative CAES plant designs. The thermodynamic performance of the various configurations is particularly critical to the successful demonstration of CAES as an economically feasible energy-storage option. A computer code, the Compressed-Air Energy-Storage Cycle-Analysis Program (CAESCAP), was developed in 1982 at the Pacific Northwest Laboratory. This code was designed specifically to calculate overall thermodynamic performance of proposed CAES-system configurations. The results of applying this code to the analysis of five CAES plant designs are presented in this report. The designs analyzed were: conventional CAES; adiabatic CAES; hybrid CAES; pressurized fluidized-bed CAES; and direct coupled steam-CAES. Inputs to the code were based on published reports describing each plant cycle. For each cycle analyzed, CAESCAP calculated the thermodynamic station conditions and individual-component efficiencies, as well as overall cycle-performance-parameter values. These data were then used to diagram the availability and energy flow for each of the five cycles. The resulting diagrams graphically illustrate the overall thermodynamic performance inherent in each plant configuration, and enable a more accurate and complete understanding of each design.

  2. Study on feasible applications of stirling cycle machine

    NASA Astrophysics Data System (ADS)

    1990-03-01

    The feasibily study of a stirling cycle machine was made on its application to air conditioners and refrigerating machines as well as on the utilization of various heat sources such as LNG cryogenic heat, solar energy, and that of incinerator waste heat. Its application to the air conditioners was technically verified already by the development research which has been made by New Energy and Industrial Technology Development Organization. Its application research on the field of the refrigerating machines is promoted, but it is considered that the machines will also play an important role in promoting the latest leading techniques such as superconductivity. LNG cryogenic power generation is the new field which has been technically developed first in Japan in the world in which country a large quantity of LNG is consumed, and the high efficiency utilization of the stirling cycle machines in this field is expected to be realized in future. It is a important problem to establish the technical basis of a solar energy stirling cycle machine, and they are promoting to develop this machine for practical use not only in Japan but also in many countries in the world. Further, the technical development of the stirling cycle machines utilizing heat sources such as waste heat, geothermal heat, and woody fuel, is also laid on an important situation.

  3. Observation of the water cycle from space with the Atmospheric Infrared Sounder (AIRS)

    NASA Astrophysics Data System (ADS)

    Chahine, M. T.; Waliser, D. E.; Fetzer, E. J.; Olsen, E. T.

    2007-12-01

    AIRS is one of six instruments on board the Aqua satellite, part of NASA's Earth Observing System launched in a sun synchronous near polar orbit on May 4, 2002. AIRS and its partner microwave instrument, AMSU A, provide high quality data facilitating studies of the global water and energy cycles, climate variation and trends, and the response of the climate system to increased greenhouse gases. The exceptional stability of the AIRS instrument provides a climate record of thermal infrared radiance spectra spanning the 3.74 15.4 mm spectral band with 2378 channels at a nominal resolution of 1/1200. (Chahine et al, in BAMS, July 2006) Accurate knowledge of the vertical distribution of water vapor in the atmosphere is critically important to the determination of the warming the Earth will experience as a result of anthropogenic forcing. Comparison of the AIRS specific humidity product to state of the art climate models has shown most models exhibit a pattern of drier than observed (by 10 25%) in the tropics below 800 hPa and moister than observed (by 25 100%) between 300 and 600 hPa in the extra tropics (Pierce et al, GRL 2006). The AIRS water vapor measurements also reveal tropospheric moisture perturbations that are much larger than those depicted in previous NCAR/NCEP reanalysis and ECMWF analysis datasets, both of which have been widely used as observations to validate models. This suggests that the impact of convection induced downdrafts on the atmospheric boundary layer is significantly underestimated in both ECMWF and NCEP reanalysis (Fu et al., GRL 2006). AIRS data have led to the discovery of significant differences in the lower troposphere moisture and temperature fields during the spatial temporal evolution of the Madden Julian Oscillation (MJO). The anomalous lower troposphere temperature structure is observed in detail by AIRS for the Indian and western Pacific Oceans, while it remains much less well defined in the NCEP temperature fields (Tian et al

  4. Dimensional approach on hot air turbine power plant in opened cycle for straw recycling

    NASA Astrophysics Data System (ADS)

    Bălănescu, D. T.; Homutescu, V. M.; Atanasiu, M. V.

    2016-08-01

    Currently, disposal of straw is one of the biggest problems that crop plant producers are facing. The ideal case implies not only to get rid of straw but also to recover its energetic potential. In this context, the performance of a hot air turbine power plant operating in open cycle, with straw as fuel, was analyzed in a previous study and proved to be a very interesting solution for straw disposal. As consequence, dimensional analysis of the hot air turbine power plant is required into the next step and this makes the subject of the present study. The dimensional analysis is focused on the compressed air heater - the largest component of the Power Plant, with crucial role in what concerns its entire size and mass. Once both performance and dimensional analysis performed, the final conclusions are drawn in an overall approach, by taking also into consideration the economic aspects.

  5. Effect of duty-cycles on the air plasma gas-phase of dielectric barrier discharges

    NASA Astrophysics Data System (ADS)

    Barni, R.; Biganzoli, I.; Dell'Orto, E. C.; Riccardi, C.

    2015-10-01

    An experimental investigation concerning the effects of a duty-cycle in the supply of a dielectric barrier discharge in atmospheric pressure air has been performed. Electrical characteristics of the discharge have been measured, focusing mainly on the statistical properties of the current filaments and on dielectric surface charging, both affected by the frequent repetition of breakdown imposed by the duty-cycle. Information on the gas-phase composition was gathered too. In particular, a strong enhancement in the ozone formation rate is observed when suitable long pauses separate the active discharge phases. A simulation of the chemical kinetics in the gas-phase, based on a simplified discharge modeling, is briefly described in order to shed light on the observed increase in ozone production. The effect of a duty-cycle on surface modification of polymeric films in order to increase their wettability has been investigated too.

  6. Cell module and fuel conditioner

    NASA Technical Reports Server (NTRS)

    Hoover, D. Q., Jr.

    1981-01-01

    The results of the completed tests on Stack 561 and the on-going tests of 562 (23 cell stacks of the MK-1 and M-2 designs respectively) are reported and their performance is compared. Results of the on-going endurance test of Stack 560 (5 cell, MK-2) are reported. Plans for fabrication of Stacks 563 and 564 (23 cell stacks of the MK-1 and MK-2 design) are summarized. Results of the burner tests are given. Excellent performance was achieved on simulated anode exhaust gas over very wide load and air/fuel ranges.

  7. Thermo-economic comparative analysis of gas turbine GT10 integrated with air and steam bottoming cycle

    NASA Astrophysics Data System (ADS)

    Czaja, Daniel; Chmielnak, Tadeusz; Lepszy, Sebastian

    2014-12-01

    A thermodynamic and economic analysis of a GT10 gas turbine integrated with the air bottoming cycle is presented. The results are compared to commercially available combined cycle power plants based on the same gas turbine. The systems under analysis have a better chance of competing with steam bottoming cycle configurations in a small range of the power output capacity. The aim of the calculations is to determine the final cost of electricity generated by the gas turbine air bottoming cycle based on a 25 MW GT10 gas turbine with the exhaust gas mass flow rate of about 80 kg/s. The article shows the results of thermodynamic optimization of the selection of the technological structure of gas turbine air bottoming cycle and of a comparative economic analysis. Quantities are determined that have a decisive impact on the considered units profitability and competitiveness compared to the popular technology based on the steam bottoming cycle. The ultimate quantity that can be compared in the calculations is the cost of 1 MWh of electricity. It should be noted that the systems analyzed herein are power plants where electricity is the only generated product. The performed calculations do not take account of any other (potential) revenues from the sale of energy origin certificates. Keywords: Gas turbine air bottoming cycle, Air bottoming cycle, Gas turbine, GT10

  8. Analyzing the possibility of constructing the air heating system for an integrated solid fuel gasification combined-cycle power plant

    NASA Astrophysics Data System (ADS)

    Mikula, V. A.; Ryzhkov, A. F.; Val'tsev, N. V.

    2015-11-01

    Combined-cycle power plants operating on solid fuel have presently been implemented only in demonstration projects. One of possible ways for improving such plants consists in making a shift to hybrid process circuits of integrated gasification combined-cycle plants with external firing of solid fuel. A high-temperature air heater serving to heat compressed air is a key element of the hybrid process circuit. The article describes application of a high-temperature recuperative metal air heater in the process circuit of an integrated gasification combined-cycle power plant (IGCC). The available experience with high-temperature air heating is considered, and possible air heater layout arrangements are analyzed along with domestically produced heat-resistant grades of steel suitable for manufacturing such air heater. An alternative (with respect to the traditional one) design is proposed, according to which solid fuel is fired in a noncooled furnace extension, followed by mixing the combustion products with recirculation gases, after which the mixture is fed to a convective air heater. The use of this design makes it possible to achieve considerably smaller capital outlays and operating costs. The data obtained from thermal and aerodynamic calculations of the high-temperature air heater with a thermal capacity of 258 MW for heating air to a temperature of up to 800°C for being used in the hybrid process circuit of a combined-cycle power plant are presented.

  9. Life-cycle CO{sub 2} emissions for air-blown gasification combined-cycle using selexol

    SciTech Connect

    Doctor, R.D.; Molburg, J.C.; Thimmapuram, P.; Berry, G.F.; Livengood, C.D.

    1993-06-01

    Initiatives to limit carbon dioxide (CO{sub 2}) emissions have drawn considerable interest to integrated gasification combined-cycle (IGCC) power generation. With its higher efficiency, this process can reduce CO{sub 2} production. It is also amenable to CO{sub 2} capture, because CO{sub 2} Can be removed before combustion and the associated dilution with atmospheric nitrogen. This paper presents a process-design baseline that encompasses the IGCC system, CO{sub 2} transport -by pipeline, and land-based sequestering of CO{sub 2} in geological reservoirs. The intent of this study is to provide the CO{sub 2} budget, or an ``equivalent CO{sub 2}`` budget, associated with each of the individual energy-cycle steps. Design capital and operating costs for the process are included in the fill study but are not reported in the present paper. The value used for the equivalent CO{sub 2} budget will be 1 kg CO{sub 2}/kWh{sub e}. The base case is a 470-MW (at the busbar) IGCC system using an air-blown Kellogg Rust Westinghouse (KRW) agglomerating fluidized-bed gasifier, US Illinois {number_sign}6 bituminous coal feed, and in-bed sulfur removal. Mining, feed preparation, and conversion result in a net electric power production of 461 MW, with a CO{sub 2} release rate of 0.830 kg/kWh{sub e}. In the CO{sub 2} recovery case, the gasifier output is taken through water-gas shift and then to Selexol, a glycol-based absorber-stripper process that recovers CO{sub 2} before it enters the combustion turbine. This process results in 350 MW at the busbar.

  10. Cell module and fuel conditioner

    NASA Technical Reports Server (NTRS)

    Hoover, D. Q., Jr.

    1980-01-01

    The computer code for the detailed analytical model of the MK-2 stacks is described. An ERC proprietary matrix is incorporated in the stacks. The mechanical behavior of the stack during thermal cycles under compression was determined. A 5 cell stack of the MK-2 design was fabricated and tested. Designs for the next three stacks were selected and component fabrication initiated. A 3 cell stack which verified the use of wet assembly and a new acid fill procedure were fabricated and tested. Components for the 2 kW test facility were received or fabricated and construction of the facility is underway. The definition of fuel and water is used in a study of the fuel conditioning subsystem. Kinetic data on several catalysts, both crushed and pellets, was obtained in the differential reactor. A preliminary definition of the equipment requirements for treating tap and recovered water was developed.

  11. Fundamental Study of Absorption Cycle without Electric Solution Pump

    NASA Astrophysics Data System (ADS)

    Tsujimori, Atsushi; Sato, Kazuo; Nakao, Kazushige; Ohgushi, Tetsuro; Katsuta, Masafumi

    The absorption refrigerant cycle has been used in Japan, as energy shortage problem is more and more serious and environmental protection is of increasing importance. This type of air conditioner and chiller consume less electric power input than the electric one. However, the absorption refrigerator of large cooling capacity consumes some electric power with the required facility. Then in this research, the absorption cycle without the electric solution pump is proposed using a capillary pump and the possibility of making this cycle running using LiBr solution as a working fluid is investigated. As a result, it was found that the absorption cycle could be reached using a capillary wick in the generator to circulate the refrigerant and kept the strong and weak solution low pressure.

  12. 21 CFR 870.2050 - Biopotential amplifier and signal conditioner.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Biopotential amplifier and signal conditioner. 870.2050 Section 870.2050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Biopotential amplifier and signal conditioner. (a) Identification. A biopotential amplifier and...

  13. 21 CFR 870.2050 - Biopotential amplifier and signal conditioner.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Biopotential amplifier and signal conditioner. 870.2050 Section 870.2050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Biopotential amplifier and signal conditioner. (a) Identification. A biopotential amplifier and...

  14. 21 CFR 870.2060 - Transducer signal amplifier and conditioner.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Transducer signal amplifier and conditioner. 870.2060 Section 870.2060 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Transducer signal amplifier and conditioner. (a) Identification. A transducer signal amplifier...

  15. 21 CFR 870.2050 - Biopotential amplifier and signal conditioner.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Biopotential amplifier and signal conditioner. 870.2050 Section 870.2050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Biopotential amplifier and signal conditioner. (a) Identification. A biopotential amplifier and...

  16. 21 CFR 870.2060 - Transducer signal amplifier and conditioner.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Transducer signal amplifier and conditioner. 870.2060 Section 870.2060 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Transducer signal amplifier and conditioner. (a) Identification. A transducer signal amplifier...

  17. 21 CFR 870.2050 - Biopotential amplifier and signal conditioner.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Biopotential amplifier and signal conditioner. 870.2050 Section 870.2050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Biopotential amplifier and signal conditioner. (a) Identification. A biopotential amplifier and...

  18. 21 CFR 870.2060 - Transducer signal amplifier and conditioner.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Transducer signal amplifier and conditioner. 870.2060 Section 870.2060 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Transducer signal amplifier and conditioner. (a) Identification. A transducer signal amplifier...

  19. 21 CFR 870.2050 - Biopotential amplifier and signal conditioner.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Biopotential amplifier and signal conditioner. 870.2050 Section 870.2050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Biopotential amplifier and signal conditioner. (a) Identification. A biopotential amplifier and...

  20. 21 CFR 870.2060 - Transducer signal amplifier and conditioner.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Transducer signal amplifier and conditioner. 870.2060 Section 870.2060 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Transducer signal amplifier and conditioner. (a) Identification. A transducer signal amplifier...

  1. 21 CFR 870.2060 - Transducer signal amplifier and conditioner.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Transducer signal amplifier and conditioner. 870.2060 Section 870.2060 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Transducer signal amplifier and conditioner. (a) Identification. A transducer signal amplifier...

  2. Successive dehumidification/regeneration cycles by LiCL desiccant for air-conditioning system

    NASA Astrophysics Data System (ADS)

    Bouzenada, S.; Kaabi, A. N.; Fraikin, L.; Léonard, A.

    2017-02-01

    Dehumidification by desiccant is a new application in air-conditioning system. This technology is providing important advantages in solving many problems and brings environmentally friendly products. Desiccants are natural substances that are capable of showing a strong attraction for water vapour and can be regenerated. They can undergo continuous cycles. An experimental study is carried out on successive phases of absorption/regeneration, during 7 days by using LiCl desiccant and on separate phases. The effect of climatic parameters on moisture removal rate and salt concentration on absorption and regeneration processes is discussed. The results show that higher air humidity gives a higher mass transfer potential then a higher moisture rate absorbed dm/dt. The decrease of salt concentration affects the dm/dt and vapour pressure. Also, these results show that at regeneration temperature, the amount of water desorbed is nearly equal to the amount of water absorbed (equilibrium condition) for a complete cycle. The amount of 7.87 mg of water vapor can be absorbed in the first hour of absorption cycle for 12.6144 mg at 50% of relative humidity, and 7.004mg for 36.31 mg of initial mass subjected at 70% RH. The LiCl desiccant is able to return to almost its original concentration 31.39% during regeneration phase. Also, LiCl desiccant is able to be regenerated at low temperature 40°C which can be easily obtained by using solar energy. Then, the LiCl is a good hygroscopic material for using in liquid desiccant air-conditioning system.

  3. Infrared pulse characterization using four-wave mixing inside a few cycle pulse filament in air

    SciTech Connect

    Marceau, Claude Thomas, Steven; Kassimi, Yacine; Gingras, Guillaume; Witzel, Bernd

    2014-02-03

    We demonstrate a four-wave mixing (FWM) technique to measure near- and mid-infrared (IR) laser pulse shapes in time domain. Few cycle 800 nm laser pulses were synchronized with the IR pulse and focused colinearly to generate a plasma filament in air. Second harmonic radiation around 400 nm was generated through FWM, with a yield proportional to the IR pulse intensity. Excellent signal to noise ratio was observed from 2.1 μm to 18 μm. With proper phase stabilization of the IR beam, this technique is a promising step toward direct electric field sensing of near-IR pulses in air.

  4. Monitoring of Plant Light/Dark Cycles Using Air-coupled Ultrasonic Spectroscopy

    NASA Astrophysics Data System (ADS)

    Fariñas, M. D.; Sancho-Knapik, D.; Peguero-Pina, J.; Gil-Pelegrín, E.; Álvarez-Arenas, T. E. G.

    This work presents the application of a technique based on the excitation, sensing and spectral analysis of leaves thickness resonances using air-coupled and wide-band ultrasound to monitor variations in leaves properties due to the plant response along light/dark cycles. The main features of these resonances are determined by the tautness of the cells walls in such a way that small modifications produced by variations in the transpiration rate, stomata aperture or water potential have a direct effect on the thickness resonances that can be measured in a completely non-invasive and contactless way. Results show that it is possible to monitor leaves changes due to variations in light intensity along the diurnal cycle, moreover, the technique reveals differences in the leaf response for different species and also within the same species but for specimens grown under different conditions that present different cell structures at the tissue level.

  5. Study and Development of an Air Conditioning System Operating on a Magnetic Heat Pump Cycle

    NASA Technical Reports Server (NTRS)

    Wang, Pao-Lien

    1991-01-01

    This report describes the design of a laboratory scale demonstration prototype of an air conditioning system operating on a magnetic heat pump cycle. Design parameters were selected through studies performed by a Kennedy Space Center (KSC) System Simulation Computer Model. The heat pump consists of a rotor turning through four magnetic fields that are created by permanent magnets. Gadolinium was selected as the working material for this demonstration prototype. The rotor was designed to be constructed of flat parallel disks of gadolinium with very little space in between. The rotor rotates in an aluminum housing. The laboratory scale demonstration prototype is designed to provide a theoretical Carnot Cycle efficiency of 62 percent and a Coefficient of Performance of 16.55.

  6. A theoretical study of limit cycle oscillations of plenum air cushions

    NASA Astrophysics Data System (ADS)

    Hinchey, M. J.; Sullivan, P. A.

    1981-11-01

    Air cushion vehicles (ACV) are prone to the occurrence of dynamic instabilities which frequently appear as stable finite amplitude oscillations. The aim of this work is to ascertain if the non-linearities characteristics of ACV dynamics generate limit cycle oscillations for cushion systems operating at conditions for which a linear theory predicts instability. The types of non-linearity that can occur are discussed, and an analysis is presented for a single cell flexible skirted plenum chamber constrained to move in pure heave only. Two cushion feed cases are considered: a plenum box supply and a duct. The results obtained by a Galerkin/describing function analysis are compared with those generated by a full numerical simulation. For the plenum box supply system, it is shown that the limit cycles can be suppressed by using a piston to introduce high frequency small amplitude volume oscillations into the plenum chamber.

  7. Antimicrobial and antifungal effects of tissue conditioners containing a photocatalyst.

    PubMed

    Uchimaru, Masayuki; Sakai, Takako; Moroi, Ryoji; Shiota, Susumu; Shibata, Yukie; Deguchi, Mikito; Sakai, Hidetaka; Yamashita, Yoshihisa; Terada, Yoshihiro

    2011-01-01

    This study examined the antimicrobial/antifungal ability of a tissue conditioner containing a photocatalyst for Escherichia coli, Streptococcus mutans, Staphylococcus aureus and Candida albicans. The photocatalyst was mixed with tissue conditioners powders at concentrations of 0, 10, 15, and 20 wt%. Tissue conditioners powders containing a photocatalyst were mixed with liquid to make test specimens. Test specimens inoculated by each microorganism were irradiated by ultraviolet light for 0-, 2- and 4 hours. The antimicrobial/antifungal effects were evaluated by the CFU technique. The CFU values of each microorganism for tissue conditioners containing a photocatalyst showed significant decrease following UV-irradiation. The improvement in antimicrobial/antifungal effects was concomitant with the increase of the mixing ratio and the irradiation time. Therefore, the results indicated that tissue conditioners containing a photocatalyst might have photocatalytic ability.

  8. Engine Cycle Analysis of Air Breathing Microwave Rocket with Reed Valves

    SciTech Connect

    Fukunari, Masafumi; Komatsu, Reiji; Yamaguchi, Toshikazu; Komurasaki, Kimiya; Arakawa, Yoshihiro; Katsurayama, Hiroshi

    2011-11-10

    The Microwave Rocket is a candidate for a low cost launcher system. Pulsed plasma generated by a high power millimeter wave beam drives a blast wave, and a vehicle acquires impulsive thrust by exhausting the blast wave. The thrust generation process of the Microwave Rocket is similar to a pulse detonation engine. In order to enhance the performance of its air refreshment, the air-breathing mechanism using reed valves is under development. Ambient air is taken to the thruster through reed valves. Reed valves are closed while the inside pressure is high enough. After the time when the shock wave exhausts at the open end, an expansion wave is driven and propagates to the thrust-wall. The reed valve is opened by the negative gauge pressure induced by the expansion wave and its reflection wave. In these processes, the pressure oscillation is important parameter. In this paper, the pressure oscillation in the thruster was calculated by CFD combined with the flux through from reed valves, which is estimated analytically. As a result, the air-breathing performance is evaluated using Partial Filling Rate (PFR), the ratio of thruster length to diameter L/D, and ratio of opening area of reed valves to superficial area {alpha}. An engine cycle and predicted thrust was explained.

  9. Ionic Liquid Electrolytes for Li–Air Batteries: Lithium Metal Cycling

    PubMed Central

    Grande, Lorenzo; Paillard, Elie; Kim, Guk-Tae; Monaco, Simone; Passerini, Stefano

    2014-01-01

    In this work, the electrochemical stability and lithium plating/stripping performance of N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (Pyr14TFSI) are reported, by investigating the behavior of Li metal electrodes in symmetrical Li/electrolyte/Li cells. Electrochemical impedance spectroscopy measurements and galvanostatic cycling at different temperatures are performed to analyze the influence of temperature on the stabilization of the solid electrolyte interphase (SEI), showing that TFSI-based ionic liquids (ILs) rank among the best candidates for long-lasting Li–air cells. PMID:24815072

  10. Life Cycle Cost Analyses of U.S. Air Force Heating Plants

    DTIC Science & Technology

    1989-08-01

    1989. 31 ORNL/TM- 11146 internal Distribution 1. D. W. Burton 17. V. K. Wilkinson 2. E. C. Fox 18-20. J. M. Young 3 -7. F. P. Griffin 21. Central Research...required for the heating plant operation are assumed to follow the standard "bathtub" reliability curve as shown in Fig. 3 . The first three years of...ORNL/TM- 11146 NOAK RIDGE ~NATIONAL N LABORATORY Life-Cycle Cost Analyses of U.S.Air Force Heating Plants V. K. Wilkinson DTI * ~DI LECT A’roreve-3f

  11. Ionic liquid electrolytes for Li-air batteries: lithium metal cycling.

    PubMed

    Grande, Lorenzo; Paillard, Elie; Kim, Guk-Tae; Monaco, Simone; Passerini, Stefano

    2014-05-08

    In this work, the electrochemical stability and lithium plating/stripping performance of N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (Pyr14TFSI) are reported, by investigating the behavior of Li metal electrodes in symmetrical Li/electrolyte/Li cells. Electrochemical impedance spectroscopy measurements and galvanostatic cycling at different temperatures are performed to analyze the influence of temperature on the stabilization of the solid electrolyte interphase (SEI), showing that TFSI-based ionic liquids (ILs) rank among the best candidates for long-lasting Li-air cells.

  12. Enhanced cycling stability of hybrid Li-air batteries enabled by ordered Pd3Fe intermetallic electrocatalyst.

    PubMed

    Cui, Zhiming; Li, Longjun; Manthiram, Arumugam; Goodenough, John B

    2015-06-17

    We report an ordered Pd3Fe intermetallic catalyst that exhibits significantly enhanced activity and durability for the oxygen reduction reaction under alkaline conditions. Ordered Pd3Fe enables a hybrid Li-air battery to exhibit the best reported full-cell cycling performance (220 cycles, 880 h).

  13. Biannual cycles of organochlorine pesticide enantiomers in arctic air suggest changing sources and pathways

    NASA Astrophysics Data System (ADS)

    Bidleman, T. F.; Jantunen, L. M.; Hung, H.; Ma, J.; Stern, G. A.; Rosenberg, B.; Racine, J.

    2014-09-01

    Air samples collected during 1994-2000 at the Canadian arctic air monitoring station Alert (82°30' N, 62°20' W) were analyzed by enantiospecific gas chromatography - mass spectrometry for α-hexachlorocyclohexane (α-HCH), trans-chlordane (TC) and cis-chlordane (CC). Results were expressed as enantiomer fractions (EF = quantities of (+)/[(+) + (-)] enantiomers), where EFs = 0.5, <0.5 and >0.5 indicate racemic composition, and preferential depletion of (+) and (-) enantiomers, respectively. Long-term average EFs were close to racemic values for α-HCH (0.504 ± 0.004, n = 197) and CC (0.505 ± 0.004, n = 162), and deviated farther from racemic for TC (0.470 ± 0.013, n = 165). Digital filtration analysis revealed biannual cycles of lower α-HCH EFs in summer-fall and higher EFs in winter-spring. These cycles suggest volatilization of partially degraded α-HCH with EF < 0.5 from open water and advection to Alert during the warm season, and background transport of α-HCH with EF > 0.5 during the cold season. The contribution of sea-volatilized α-HCH was only 11% at Alert, vs. 32% at Resolute Bay (74.68° N, 94.90° W) in 1999. EFs of TC also followed biannual cycles of lower and higher values in the warm and cold seasons. These were in phase with low and high cycles of the TC/CC ratio (expressed as FTC = TC/(TC + CC)), which suggests greater contribution of microbially "weathered" TC in summer-fall vs. winter-spring. CC was closer to racemic than TC and displayed seasonal cycles only in 1997-1998. EF profiles are likely to change with rising contribution of secondary emission sources, weathering of residues in the environment, and loss of ice cover in the Arctic. Enantiomer-specific analysis could provide added forensic capability to air monitoring programs.

  14. Annual cycles of organochlorine pesticide enantiomers in Arctic air suggest changing sources and pathways

    NASA Astrophysics Data System (ADS)

    Bidleman, T. F.; Jantunen, L. M.; Hung, H.; Ma, J.; Stern, G. A.; Rosenberg, B.; Racine, J.

    2015-02-01

    Air samples collected during 1994-2000 at the Canadian Arctic air monitoring station Alert (82°30' N, 62°20' W) were analysed by enantiospecific gas chromatography-mass spectrometry for α-hexachlorocyclohexane (α-HCH), trans-chlordane (TC) and cis-chlordane (CC). Results were expressed as enantiomer fractions (EF = peak areas of (+)/[(+) + (-)] enantiomers), where EFs = 0.5, < 0.5 and > 0.5 indicate racemic composition, and preferential depletion of (+) and (-) enantiomers, respectively. Long-term average EFs were close to racemic values for α -HCH (0.504 ± 0.004, n = 197) and CC (0.505 ± 0.004, n = 162), and deviated farther from racemic for TC (0.470 ± 0.013, n = 165). Digital filtration analysis revealed annual cycles of lower α-HCH EFs in summer-fall and higher EFs in winter-spring. These cycles suggest volatilization of partially degraded α-HCH with EF < 0.5 from open water and advection to Alert during the warm season, and background transport of α-HCH with EF > 0.5 during the cold season. The contribution of sea-volatilized α-HCH was only 11% at Alert, vs. 32% at Resolute Bay (74.68° N, 94.90° W) in 1999. EFs of TC also followed annual cycles of lower and higher values in the warm and cold seasons. These were in phase with low and high cycles of the TC/CC ratio (expressed as FTC = TC/(TC+CC)), which suggests greater contribution of microbially "weathered" TC in summer-fall versus winter-spring. CC was closer to racemic than TC and displayed seasonal cycles only in 1997-1998. EF profiles are likely to change with rising contribution of secondary emission sources, weathering of residues in the environment, and loss of ice cover in the Arctic. Enantiomer-specific analysis could provide added forensic capability to air monitoring programs.

  15. Cell module and fuel conditioner development

    NASA Technical Reports Server (NTRS)

    Hoover, D. Q., Jr.

    1981-01-01

    The test results of and post test analysis of Stack 559 are reported. The design features and construction status of Stacks 560, 561, 562 and 563 are described. The measurements of cell materials compressibility are rationalized and summarized and an explanation of their uses is given. Preliminary results of a manifold material/coating survey are given. The results of shift converter catalyst performance tests and reforming catalyst aging tests are reported. State points for full load and part load operation of the fuel conditioning subsystem tabulated. Work on the data base for the fuel conditioner ancillary subsystems is summarized.

  16. Evaluation of rotor-bearing system dynamic response to unbalance. [air conditioning equipment

    NASA Technical Reports Server (NTRS)

    Thaller, R. E.; Ozimek, D. W.

    1979-01-01

    The vibration environment within air conditioner rotating machinery referred to as an air cycle machine (ACM) was investigated to effectively increase ACM reliability. To assist in the selection of design changes which would result in improved ACM performance, various design modifications were incorporated into a baseline ACM configuration. For each design change, testing was conducted with the best balance achieveable (baseline) and with various degrees of unbalance. Relationships between unbalance (within the context of design changes) and the parameters associated with design goals were established. The results of rotor dynamics tests used to establish these relationships are presented.

  17. Low-cycle fatigue of two austenitic alloys in hydrogen gas and air at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Jaske, C. E.; Rice, R. C.

    1976-01-01

    The low-cycle fatigue resistance of type 347 stainless steel and Hastelloy Alloy X was evaluated in constant-amplitude, strain-controlled fatigue tests conducted under continuous negative strain cycling at a constant strain rate of 0.001 per sec and at total axial strain ranges of 1.5, 3.0, and 5.0 percent in both hydrogen gas and laboratory air environments in the temperature range 538-871 C. Elevated-temperature, compressive-strain hold-time experiments were also conducted. In hydrogen, the cyclic stress-strain behavior of both materials at 538 C was characterized by appreciable cyclic hardening at all strain ranges. At 871 C neither material hardened significantly; in fact, at 5% strain range 347 steel showed continuous cyclic softening until failure. The fatigue resistance of 347 steel was slightly higher than that of Alloy X at all temperatures and strain ranges. Ten-minute compressive hold time experiments at 760 and 871 C resulted in increased fatigue lives for 347 steel and decreased fatigue lives for Alloy X. Both alloys showed slightly lower fatigue resistance in air than in hydrogen. Some fractographic and metallographic results are also given.

  18. Performance and cycle life of carbon- and conductive-based air electrodes for rechargeable Zn-air battery applications

    NASA Astrophysics Data System (ADS)

    Chellapandi Velraj, Samgopiraj

    The development of high-performance, cyclically stable bifunctional air electrodes are critical to the commercial deployment of rechargeable Zn-air batteries. The carbon material predominantly used as support material in the air electrodes due to its higher surface area and good electrical conductivity suffers from corrosion at high oxygen evolution overpotentials. This study addresses the carbon corrosion issues and suggests alternate materials to replace the carbon as support in the air electrode. In this study, Sm0.5Sr0.5CoO3-delta with good electrochemical performance and cyclic lifetime was identified as an alternative catalyst material to the commonly used La0.4Ca 0.6CoO3 catalyst for the carbon-based bifunctional electrodes. Also, a comprehensive study on the effects of catalyst morphology, testing conditions on the cycle life as well as the relevant degradation mechanism for the carbon-based electrode was conducted in this dissertation. The cyclic life of the carbon-based electrodes was strongly dependent on the carbon support material, while the degradation mechanisms were entirely controlled by the catalyst particle size/morphology. Some testing conditions like resting time and electrolyte concentration did not change the cyclic life or degradation mechanism of the carbon-based electrode. The current density used for cyclic testing was found to dictate the degradation mechanism leading to the electrode failure. An alternate way to circumvent the carbon corrosion is to replace the carbon support with a suitable electrically-conductive ceramic material. In this dissertation, LaNi0.9Mn0.1O3, LaNi 0.8Co0.2O3, and NiCo2O4 were synthesized and evaluated as prospective support materials due to their good electrical conductivity and their ability to act as the catalyst needed for the bifunctional electrode. The carbon-free electrodes had remarkably higher catalytic activity for oxygen evolution reaction (OER) when compared to the carbon-based electrode. However

  19. Daily Cycle of Air Temperature and Surface Temperature in Stone Forest

    NASA Astrophysics Data System (ADS)

    Wang, K.; Li, Y.; Wang, X.; Yuan, M.

    2013-12-01

    Urbanization is one of the most profound human activities that impact on climate change. In cities, where are highly artificial areas, the conflict between human activity and natural climate is particularly prominent. Urban areas always have the larger area of impervious land, the higher consumption of greenhouse gases, more emissions of anthropogenic heat and air pollution, all contribute to the urban warming phenomena. Understanding the mechanisms causing a variety of phenomena involved in the urban warming is critical to distinguish the anthropogenic effect and natural variation in the climate change. However, the exact dynamics of urban warming were poorly understood, and effective control strategies are not available. Here we present a study of the daily cycle of air temperature and surface temperature in Stone Forest. The specific heat of the stones in the Stone Forest and concrete of the man-made structures within the cities are approximate. Besides, the height of the Stone Forest and the height of buildings within the city are also similar. As a scenic area, the Stone Forest is being preserved and only opened for sightseeing. There is no anthropogenic heat, as well air pollution within the Stone Forest. The thermal environment in Stone Forest can be considered to be a simulation of thermal environment in the city, which can reveal the effect of man-made structures on urban thermal environment. We conducted the field studies and numerical analysis in the Stone Forest for 4 typical urban morphology and environment scenarios, including high-rise compact cities, low-rise sparse cities, garden cities and isolated single stone. Air temperature and relative humidity were measured every half an hour in 15 different locations, which within different spatial distribution of stones and can represent the four urban scenarios respectively. At the same time, an infrared camera was used to take thermal images and get the hourly surface temperatures of stones and

  20. Life-cycle assessment of selected management options for air pollution control residues from waste incineration.

    PubMed

    Fruergaard, Thilde; Hyks, Jiri; Astrup, Thomas

    2010-09-15

    Based on available technology and emission data seven selected management options for air-pollution-control (APC) residues from waste incineration were evaluated by life-cycle assessment (LCA) using the EASEWASTE model. Scenarios were evaluated with respect to both non-toxicity impact categories (e.g. global warming) and toxicity related impact categories (e.g. ecotoxicity and human toxicity). The assessment addressed treatment and final placement of 1 tonne of APC residue in seven scenarios: 1) direct landfilling without treatment (baseline), 2) backfilling in salt mines, 3) neutralization of waste acid, 4) filler material in asphalt, 5) Ferrox stabilization, 6) vitrification, and 7) melting with automobile shredder residues (ASR). The management scenarios were selected as examples of the wide range of different technologies available worldwide while at the same time using realistic technology data. Results from the LCA were discussed with respect to importance of: energy consumption/substitution, material substitution, leaching, air emissions, time horizon aspects for the assessment, and transportation distances. The LCA modeling showed that thermal processes were associated with the highest loads in the non-toxicity categories (energy consumption), while differences between the remaining alternatives were small and generally considered insignificant. In the toxicity categories, all treatment/utilization options were significantly better than direct landfilling without treatment (lower leaching), although the thermal processes had somewhat higher impacts than the others options (air emissions). Transportation distances did not affect the overall ranking of the management alternatives.

  1. Utilizing Crowdsourced Data for Studies of Cycling and Air Pollution Exposure: A Case Study Using Strava Data.

    PubMed

    Sun, Yeran; Mobasheri, Amin

    2017-03-08

    With the development of information and communications technology, user-generated content and crowdsourced data are playing a large role in studies of transport and public health. Recently, Strava, a popular website and mobile app dedicated to tracking athletic activity (cycling and running), began offering a data service called Strava Metro, designed to help transportation researchers and urban planners to improve infrastructure for cyclists and pedestrians. Strava Metro data has the potential to promote studies of cycling and health by indicating where commuting and non-commuting cycling activities are at a large spatial scale (street level and intersection level). The assessment of spatially varying effects of air pollution during active travel (cycling or walking) might benefit from Strava Metro data, as a variation in air pollution levels within a city would be expected. In this paper, to explore the potential of Strava Metro data in research of active travel and health, we investigate spatial patterns of non-commuting cycling activities and associations between cycling purpose (commuting and non-commuting) and air pollution exposure at a large scale. Additionally, we attempt to estimate the number of non-commuting cycling trips according to environmental characteristics that may help identify cycling behavior. Researchers who are undertaking studies relating to cycling purpose could benefit from this approach in their use of cycling trip data sets that lack trip purpose. We use the Strava Metro Nodes data from Glasgow, United Kingdom in an empirical study. Empirical results reveal some findings that (1) when compared with commuting cycling activities, non-commuting cycling activities are more likely to be located in outskirts of the city; (2) spatially speaking, cyclists riding for recreation and other purposes are more likely to be exposed to relatively low levels of air pollution than cyclists riding for commuting; and (3) the method for estimating of the

  2. Utilizing Crowdsourced Data for Studies of Cycling and Air Pollution Exposure: A Case Study Using Strava Data

    PubMed Central

    Sun, Yeran; Mobasheri, Amin

    2017-01-01

    With the development of information and communications technology, user-generated content and crowdsourced data are playing a large role in studies of transport and public health. Recently, Strava, a popular website and mobile app dedicated to tracking athletic activity (cycling and running), began offering a data service called Strava Metro, designed to help transportation researchers and urban planners to improve infrastructure for cyclists and pedestrians. Strava Metro data has the potential to promote studies of cycling and health by indicating where commuting and non-commuting cycling activities are at a large spatial scale (street level and intersection level). The assessment of spatially varying effects of air pollution during active travel (cycling or walking) might benefit from Strava Metro data, as a variation in air pollution levels within a city would be expected. In this paper, to explore the potential of Strava Metro data in research of active travel and health, we investigate spatial patterns of non-commuting cycling activities and associations between cycling purpose (commuting and non-commuting) and air pollution exposure at a large scale. Additionally, we attempt to estimate the number of non-commuting cycling trips according to environmental characteristics that may help identify cycling behavior. Researchers who are undertaking studies relating to cycling purpose could benefit from this approach in their use of cycling trip data sets that lack trip purpose. We use the Strava Metro Nodes data from Glasgow, United Kingdom in an empirical study. Empirical results reveal some findings that (1) when compared with commuting cycling activities, non-commuting cycling activities are more likely to be located in outskirts of the city; (2) spatially speaking, cyclists riding for recreation and other purposes are more likely to be exposed to relatively low levels of air pollution than cyclists riding for commuting; and (3) the method for estimating of the

  3. Influence of number of dental autoclave treatment cycles on rotational performance of commercially available air-turbine handpieces.

    PubMed

    Nagai, Masahiro; Takakuda, Kazuo

    2006-06-01

    The influence of number of autoclave treatment cycles (N) on rotational speed and total indicated run-out of commercially available air-turbine handpieces from five manufacturers was investigated at N=0, 50, 100, 150, 200, 250 and 300 cycles, and the significance in the test results was assessed by Dunnett's multiple comparison test. Some air-turbine handpieces showed the significant differences in rotational speed at N=300 cycles, however, the decreases of the rotational speeds were only 1 to 3.5 percent. Some air-turbine handpieces showed the significant differences in total indicated run-out, however, the respective values were smaller than that at N=0 cycle. Accordingly, it can be considered that the ball bearing in the air-turbine handpieces is not affected significantly by autoclave. To further evaluate rotational performance, this study focused on the rotational vibration of the ball bearing components of the air-turbine, as measured by Fast Fourier Transform (FFT) analysis; the power spectra of frequency of the ball's revolution, frequency of the cage's rotation and frequency of the ball's rotation were comparatively investigated at N=0, 150 and 300 cycles, and the influence of autoclave was evaluated qualitatively. No abnormalities in the ball bearings were recognized.

  4. Effect of Gas/Steam Turbine Inlet Temperatures on Combined Cycle Having Air Transpiration Cooled Gas Turbine

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Singh, O.

    2012-10-01

    Worldwide efforts are being made for further improving the gas/steam combined cycle performance by having better blade cooling technology in topping cycle and enhanced heat recovery in bottoming cycle. The scope of improvement is possible through turbines having higher turbine inlet temperatures (TITs) of both gas turbine and steam turbine. Literature review shows that a combined cycle with transpiration cooled gas turbine has not been analyzed with varying gas/steam TITs. In view of above the present study has been undertaken for thermodynamic study of gas/steam combined cycle with respect to variation in TIT in both topping and bottoming cycles, for air transpiration cooled gas turbine. The performance of combined cycle with dual pressure heat recovery steam generator has been evaluated for different cycle pressure ratios (CPRs) varying from 11 to 23 and the selection diagrams presented for TIT varying from 1,600 to 1,900 K. Both the cycle efficiency and specific work increase with TIT for each pressure ratio. For each TIT there exists an optimum pressure ratio for cycle efficiency and specific work. For the CPR of 23 the best cycle performance is seen at a TIT of 1,900 K for maximum steam temperature of 570 °C, which gives the cycle efficiency of 60.9 % with net specific work of 909 kJ/kg.

  5. Few-cycle pulse laser-induced damage of thin films in air and vacuum ambience

    NASA Astrophysics Data System (ADS)

    Kafka, Kyle R. P.; Talisa, Noah; Tempea, Gabriel; Austin, Drake R.; Neacsu, Catalin; Chowdhury, Enam A.

    2016-12-01

    Laser-induced damage mechanisms were investigated for an ultra-broadband chirped mirror, as part of a systematic study of few-cycle pulse laser-induced damage threshold (LIDT) of widely-used ultra-broadband optics, in vacuum and in air, for single and multi-pulse regimes (S-on-1). Microscopic analysis of damage morphology suggests that three different damage mechanisms occur across the fluence range 0.15-0.4J/cm2, while no ablation was yet observed. The three regimes resulted in shallow swelling (< 10 nm tall), tall blistering ( 150 nm tall), and annular blistering (damage suppressed at highest intensity, forming a ring shape). Descriptions of the potential mechanisms are discussed.

  6. Valuation of plug-in vehicle life-cycle air emissions and oil displacement benefits

    PubMed Central

    Michalek, Jeremy J.; Chester, Mikhail; Jaramillo, Paulina; Samaras, Constantine; Shiau, Ching-Shin Norman; Lave, Lester B.

    2011-01-01

    We assess the economic value of life-cycle air emissions and oil consumption from conventional vehicles, hybrid-electric vehicles (HEVs), plug-in hybrid-electric vehicles (PHEVs), and battery electric vehicles in the US. We find that plug-in vehicles may reduce or increase externality costs relative to grid-independent HEVs, depending largely on greenhouse gas and SO2 emissions produced during vehicle charging and battery manufacturing. However, even if future marginal damages from emissions of battery and electricity production drop dramatically, the damage reduction potential of plug-in vehicles remains small compared to ownership cost. As such, to offer a socially efficient approach to emissions and oil consumption reduction, lifetime cost of plug-in vehicles must be competitive with HEVs. Current subsidies intended to encourage sales of plug-in vehicles with large capacity battery packs exceed our externality estimates considerably, and taxes that optimally correct for externality damages would not close the gap in ownership cost. In contrast, HEVs and PHEVs with small battery packs reduce externality damages at low (or no) additional cost over their lifetime. Although large battery packs allow vehicles to travel longer distances using electricity instead of gasoline, large packs are more expensive, heavier, and more emissions intensive to produce, with lower utilization factors, greater charging infrastructure requirements, and life-cycle implications that are more sensitive to uncertain, time-sensitive, and location-specific factors. To reduce air emission and oil dependency impacts from passenger vehicles, strategies to promote adoption of HEVs and PHEVs with small battery packs offer more social benefits per dollar spent. PMID:21949359

  7. Valuation of plug-in vehicle life-cycle air emissions and oil displacement benefits.

    PubMed

    Michalek, Jeremy J; Chester, Mikhail; Jaramillo, Paulina; Samaras, Constantine; Shiau, Ching-Shin Norman; Lave, Lester B

    2011-10-04

    We assess the economic value of life-cycle air emissions and oil consumption from conventional vehicles, hybrid-electric vehicles (HEVs), plug-in hybrid-electric vehicles (PHEVs), and battery electric vehicles in the US. We find that plug-in vehicles may reduce or increase externality costs relative to grid-independent HEVs, depending largely on greenhouse gas and SO(2) emissions produced during vehicle charging and battery manufacturing. However, even if future marginal damages from emissions of battery and electricity production drop dramatically, the damage reduction potential of plug-in vehicles remains small compared to ownership cost. As such, to offer a socially efficient approach to emissions and oil consumption reduction, lifetime cost of plug-in vehicles must be competitive with HEVs. Current subsidies intended to encourage sales of plug-in vehicles with large capacity battery packs exceed our externality estimates considerably, and taxes that optimally correct for externality damages would not close the gap in ownership cost. In contrast, HEVs and PHEVs with small battery packs reduce externality damages at low (or no) additional cost over their lifetime. Although large battery packs allow vehicles to travel longer distances using electricity instead of gasoline, large packs are more expensive, heavier, and more emissions intensive to produce, with lower utilization factors, greater charging infrastructure requirements, and life-cycle implications that are more sensitive to uncertain, time-sensitive, and location-specific factors. To reduce air emission and oil dependency impacts from passenger vehicles, strategies to promote adoption of HEVs and PHEVs with small battery packs offer more social benefits per dollar spent.

  8. An outbreak of Serratia marcescens infection in a special-care baby unit of a community hospital in United Arab Emirates: the importance of the air conditioner duct as a nosocomial reservoir.

    PubMed

    Uduman, S A; Farrukh, A S; Nath, K N R; Zuhair, M Y H; Ifrah, A; Khawla, A D; Sunita, P

    2002-11-01

    We report an outbreak of Serratia marcescens infection in a special-care baby unit (SCBU) of a university-affiliated community hospital in the United Arab Emirates. The outbreak involved 36 infants and lasted for 20 weeks. Seven of the colonized infants developed invasive illnesses in the form of bacteraemia (four cases), bacteraemic meningitis (two) and clinical sepsis (one). Three other term infants had purulent conjunctivitis. There were five deaths with an overall mortality of 14%. S. marcescens was cultured from airflow samples from the air conditioning (AC) which was the reservoir of infection in this outbreak. Elimination of the nosocomial source and outbreak containment were eventually achieved by specialized robotic cleaning of the entire AC duct system of the SCBU. Strict adherence to the infection control policies was reinforced to prevent transmission of cross-infection.

  9. Project Themis: PIV Measurement of Elbow Flow through a Flow Conditioner

    DTIC Science & Technology

    2011-12-01

    Charts 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Project Themis: PIV Measurement of Elbow Flow through a Flow...Project Themis: PIV Measurement of Elbow Flow through a Flow Conditioner Benjamin Miller AFRL/RZSE (Jackson and Tull) Air Force Research...Max power = 20mJ @ 1kHz • Phantom V210 • 2,000 frames per second 45 CFM hose 90 ̊ long curve elbow VORTAB L/D = 30 • VORTAB placed one

  10. Integrating Human Indoor Air Pollutant Exposure within Life Cycle Impact Assessment

    SciTech Connect

    Hellweg, Stefanie; Demou, Evangelia; Bruzzi, Raffaella; Meijer, Arjen; Rosenbaum, Ralph K.; Huijbregts, Mark A.J.; McKone, Thomas E.

    2008-12-21

    Neglecting health effects from indoor pollutant emissions and exposure, as currently done in Life Cycle Assessment (LCA), may result in product or process optimizations at the expense of workers? or consumers? health. To close this gap, methods for considering indoor exposure to chemicals are needed to complement the methods for outdoor human exposure assessment already in use. This paper summarizes the work of an international expert group on the integration of human indoor and outdoor exposure in LCA, within the UNEP/SETAC Life Cycle Initiative. A new methodological framework is proposed for a general procedure to include human-health effects from indoor exposure in LCA. Exposure models from occupational hygiene and household indoor air quality studies and practices are critically reviewed and recommendations are provided on the appropriateness of various model alternatives in the context of LCA. A single-compartment box model is recommended for use as a default in LCA, enabling one to screen occupational and household exposures consistent with the existing models to assess outdoor emission in a multimedia environment. An initial set of model parameter values was collected. The comparison between indoor and outdoor human exposure per unit of emission shows that for many pollutants, intake per unit of indoor emission may be several orders of magnitude higher than for outdoor emissions. It is concluded that indoor exposure should be routinely addressed within LCA.

  11. Power Conditioner with Variable Switching Control for Thermoelectric Generator Systems

    NASA Astrophysics Data System (ADS)

    Nagayoshi, Hiroshi; Maiwa, Hiroshi; Kajikawa, Takenobu

    2013-07-01

    A thermoelectric (TE) power conditioner maintaining high efficiency over a wide input power range has been developed. Variable switching frequency operation is shown to give an improvement in efficient operating range. The input range showing more than 90% conversion efficiency is expanded to more than 25% by introducing a low-power controller circuit and variable switching frequency control. The TE power conditioner showed excellent response against a change in thermoelectric generator (TEG) output and load, making it suitable for automotive applications.

  12. Interim Report: Air-Cooled Condensers for Next Generation Geothermal Power Plants Improved Binary Cycle Performance

    SciTech Connect

    Daniel S. Wendt; Greg L. Mines

    2010-09-01

    As geothermal resources that are more expensive to develop are utilized for power generation, there will be increased incentive to use more efficient power plants. This is expected to be the case with Enhanced Geothermal System (EGS) resources. These resources will likely require wells drilled to depths greater than encountered with hydrothermal resources, and will have the added costs for stimulation to create the subsurface reservoir. It is postulated that plants generating power from these resources will likely utilize the binary cycle technology where heat is rejected sensibly to the ambient. The consumptive use of a portion of the produced geothermal fluid for evaporative heat rejection in the conventional flash-steam conversion cycle is likely to preclude its use with EGS resources. This will be especially true in those areas where there is a high demand for finite supplies of water. Though they have no consumptive use of water, using air-cooling systems for heat rejection has disadvantages. These systems have higher capital costs, reduced power output (heat is rejected at the higher dry-bulb temperature), increased parasitics (fan power), and greater variability in power generation on both a diurnal and annual basis (larger variation in the dry-bulb temperature). This is an interim report for the task ‘Air-Cooled Condensers in Next- Generation Conversion Systems’. The work performed was specifically aimed at a plant that uses commercially available binary cycle technologies with an EGS resource. Concepts were evaluated that have the potential to increase performance, lower cost, or mitigate the adverse effects of off-design operation. The impact on both cost and performance were determined for the concepts considered, and the scenarios identified where a particular concept is best suited. Most, but not all, of the concepts evaluated are associated with the rejection of heat. This report specifically addresses three of the concepts evaluated: the use of

  13. Ontology for Life-Cycle Modeling of Heating, Ventilating, and Air Conditioning (HVAC) Systems: Experimental Applications Using Revit

    DTIC Science & Technology

    2012-03-01

    Center, Construction Engineering Research Laboratory (ERDC-CERL) has developed a core life- cycle building information model ( BIM ) based on three...was to promote consistency and quality of content created for Building Information Models ( BIMs ) across various disciplines. The HVAC MVD was...MVD. 15. SUBJECT TERMS building information modeling ( BIM ), ontology, Army facilities, heating, ventilating, and air-conditioning (HVAC) systems

  14. High cycle fatigue behavior of implant Ti-6Al-4V in air and simulated body fluid.

    PubMed

    Liu, Yong-jie; Cui, Shi-ming; He, Chao; Li, Jiu-kai; Wang, Qing-yuan

    2014-01-01

    Ti-6Al-4V implants that function as artificial joints are usually subjected to long-term cyclic loading. To study long-term fatigue behaviors of implant Ti-6Al-4V in vitro and in vivo conditions exceeding 107 cycles, constant stress amplitude fatigue experiments were carried out at ultrasonic frequency (20 kHz) with two different surface conditions (ground and polished) in ambient air and in a simulated body fluid. The initiation mechanisms of fatigue cracks were investigated with scanning electron microscopy. Improvement of fatigue strength is pronounced for polished specimens below 106 cycles in ambient air since fatigue cracks are initiated from surfaces of specimens. While the cycles exceed 106, surface conditions have no effect on fatigue behaviors because the defects located within the specimens become favorable sites for crack initiation. The endurance limit at 108 cycles of polished Ti-6Al-4V specimens decreases by 7% if it is cycled in simulated body fluid instead of ambient air. Fracture surfaces show that fatigue failure is initiated from surfaces in simulated body fluid. Surface improvement has a beneficial effect on fatigue behaviors of Ti-6Al-4V at high stress amplitudes. The fatigue properties of Ti-6Al-4V deteriorate and the mean endurance limits decrease significantly in simulated body fluid.

  15. Air-Sea Exchange and Atmospheric Cycling of Mercury in South China Sea

    NASA Astrophysics Data System (ADS)

    Tseng, C. M.; Liu, C. S.; Lamborg, C. H.

    2014-12-01

    Limited knowledge exists concerning the role of the low-latitude marginal seas in mercury (Hg) emissions on a global scale, especially tropical-subtropical and monsoon-dominated marginal seas in East Asia. To assess this potential mobilization of Hg through air-sea gas exchange, we have determined the dissolved elemental Hg (DEM) and gaseous elemental Hg (GEM) concentrations in surface seawater and atmosphere, respectively, during seasonal oceanographic cruises to the SouthEast Asian Time-series Study (SEATS) station (18 oN, 116 oE) from 2003 to 2007. The sampling and analysis of GEM and DEM were performed on board ship by using an on-line mercury analyzer (GEMA). Over the SCS, the GEM concentrations are elevated 2-3 times above global background values, with higher enhancements in the winter when the northeast monsoon draws air from China. The impact of long-range transport, as controlled by seasonal monsoons, has on the Hg atmospheric distribution and cycling in the SCS. The DEM concentration varied seasonally, with a high in summer and a low in winter and showed a positive correlation with sea surface temperature (SST). The elevated DEM concentration in summer appears mainly abiologically driven. In winter, the SCS acts as a sink of atmosphere Hg0 as a result of low SST and high wind of the year, enhanced vertical mixing and elevated atmospheric gaseous elemental mercury. Annually, the SCS serves as a source of Hg0 to the atmosphere of 300±50 pmol m-2 d-1 (390±60 kmol Hg y-1, ~2.6% of global emission in ~1% of global ocean area), suggesting high regional Hg pollution impacts from the surrounding Mainland (mostly China).

  16. Solar Cycle and Anthropogenic Forcing of Surface-Air Temperature at Armagh Observatory, Northern Ireland

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    2010-01-01

    A comparison of 10-yr moving average (yma) values of Armagh Observatory (Northern Ireland) surface-air temperatures with selected solar cycle indices (sunspot number (SSN) and the Aa geomagnetic index (Aa)), sea-surface temperatures in the Nino 3.4 region, and Mauna Loa carbon dioxide (CO2) (MLCO2) atmospheric concentration measurements reveals a strong correlation (r = 0.686) between the Armagh temperatures and Aa, especially, prior to about 1980 (r = 0.762 over the interval of 1873-1980). For the more recent interval 1963-2003, the strongest correlation (r = 0.877) is between Armagh temperatures and MLCO2 measurements. A bivariate fit using both Aa and Mauna Loa values results in a very strong fit (r = 0.948) for the interval 1963-2003, and a trivariate fit using Aa, SSN, and Mauna Loa values results in a slightly stronger fit (r = 0.952). Atmospheric CO2 concentration now appears to be the stronger driver of Armagh surface-air temperatures. An increase of 2 C above the long-term mean (9.2 C) at Armagh seems inevitable unless unabated increases in anthropogenic atmospheric gases can be curtailed. The present growth in 10-yma Armagh temperatures is about 0.05 C per yr since 1982. The present growth in MLCO2 is about 0.002 ppmv, based on an exponential fit using 10-yma values, although the growth appears to be steepening, thus, increasing the likelihood of deleterious effects attributed to global warming.

  17. Dynamic evaluation of a regional air quality model: Assessing the emissions-induced weekly ozone cycle

    NASA Astrophysics Data System (ADS)

    Pierce, Thomas; Hogrefe, Christian; Trivikrama Rao, S.; Porter, P. Steven; Ku, Jia-Yeong

    2010-09-01

    Air quality models are used to predict changes in pollutant concentrations resulting from envisioned emission control policies. Recognizing the need to assess the credibility of air quality models in a policy-relevant context, we perform a dynamic evaluation of the Community Multiscale Air Quality (CMAQ) modeling system for the "weekend ozone effect" to determine if observed changes in ozone due to weekday-to-weekend (WDWE) reductions in precursor emissions can be accurately simulated. The weekend ozone effect offers a unique opportunity for dynamic evaluation, as it is a widely documented phenomenon that has persisted since the 1970s. In many urban areas of the Unites States, higher ozone has been observed on weekends than weekdays, despite dramatically reduced emissions of ozone precursors (nitrogen oxides [NO x] and volatile organic compounds [VOCs]) on weekends. More recent measurements, however, suggest shifts in the spatial extent or reductions in WDWE ozone differences. Using 18 years (1988-2005) of observed and modeled ozone and temperature data across the northeastern United States, we re-examine the long-term trends in the weekend effect and confounding factors that may be complicating the interpretation of this trend and explore whether CMAQ can replicate the temporal features of the observed weekend effect. The amplitudes of the weekly ozone cycle have decreased during the 18-year period in our study domain, but the year-to-year variability in weekend minus weekday (WEWD) ozone amplitudes is quite large. Inter-annual variability in meteorology appears to influence WEWD differences in ozone, as well as WEWD differences in VOC and NO x emissions. Because of the large inter-annual variability, modeling strategies using a single episode lasting a few days or a few episodes in a given year may not capture the WEWD signal that exists over longer time periods. The CMAQ model showed skill in predicting the absolute values of ozone concentrations during the

  18. Air--Sea CO2 Cycling in the Southeastern Beaufort Sea

    NASA Astrophysics Data System (ADS)

    Else, Brent Gordon Thomas

    During the fourth International Polar Year, an interdisciplinary study was conducted to examine the couplings between sea ice, ocean, atmosphere, and ecosystem in the southeastern Beaufort Sea. This thesis examines components of the system that control the air-sea exchange of carbon dioxide. Using eddy covariance measurements, we found enhanced CO2 exchange associated with new ice formation in winter flaw leads. This exchange was typically directed towards the surface, although we also measured one instance of outgassing. Sea surface dissolved CO2 measurements (pCO 2sw) in Amundsen Gulf showed significant undersaturation with respect to the atmosphere at freeze-up, followed by a slow increase over the winter until spring phytoplankton blooms caused strong undersaturation at break-up. Over the summer, pCO2sw increased until becoming slightly supersaturated due to surface warming. Along the southern margins of Amundsen Gulf and on the Mackenzie Shelf we found pCO2sw supersaturations in the fall due to wind-driven coastal upwelling. In the spring, this upwelling occurred along the landfast ice edges of Amundsen Gulf. By combining observations of enhanced winter gas exchange with observations of pCO 2sw in Amundsen Gulf, we derived an annual budget of air-sea CO2 exchange for the region. This exercise showed that uptake through the winter season was as important as the open water season, making the overall annual uptake of CO2 about double what had previously been calculated. Prior to this work, the prevailing paradigm of airsea CO2 cycling in Arctic polynya regions posited that strong CO2 absorption occurs in the open water seasons, and that a potential outgassing during the winter is inhibited by the sea ice cover. As a new paradigm, we propose that the spatial and temporal variability of many processes---including phytoplankton blooms, sea surface temperature and salinity changes, upwelling, river input, continental shelf processes, and the potential for high rates

  19. Nuclear Air-Brayton Combined Cycle Power Conversion Design, Physical Performance Estimation and Economic Assessment

    NASA Astrophysics Data System (ADS)

    Andreades, Charalampos

    The combination of an increased demand for electricity for economic development in parallel with the widespread push for adoption of renewable energy sources and the trend toward liberalized markets has placed a tremendous amount of stress on generators, system operators, and consumers. Non-guaranteed cost recovery, intermittent capacity, and highly volatile market prices are all part of new electricity grids. In order to try and remediate some of these effects, this dissertation proposes and studies the design and performance, both physical and economic, of a novel power conversion system, the Nuclear Air-Brayton Combined Cycle (NACC). The NACC is a power conversion system that takes a conventional industrial frame type gas turbine, modifies it to accept external nuclear heat at 670°C, while also maintaining its ability to co-fire with natural gas to increase temperature and power output at a very quick ramp rate. The NACC addresses the above issues by allowing the generator to gain extra revenue through the provision of ancillary services in addition to energy payments, the grid operator to have a highly flexible source of capacity to back up intermittent renewable energy sources, and the consumer to possibly see less volatile electricity prices and a reduced probability of black/brown outs. This dissertation is split into six sections that delve into specific design and economic issues related to the NACC. The first section describes the basic design and modifications necessary to create a functional externally heated gas turbine, sets a baseline design based upon the GE 7FB, and estimates its physical performance under nominal conditions. The second section explores the off-nominal performance of the NACC and characterizes its startup and shutdown sequences, along with some of its safety measures. The third section deals with the power ramp rate estimation of the NACC, a key performance parameter in a renewable-heavy grid that needs flexible capacity. The

  20. Analysis of Transient Behavior of a Vapor Compression Refrigeration Cycle

    NASA Astrophysics Data System (ADS)

    Fukushima, Toshihiko; Miyamoto, Seigo

    A mathematical model for a vapor compression refrigeration cycle for automotive air conditioner is developed, which basically consists of compressor, condenser, receiver, expansion valve, evaporator, suction pressure control valve and piping. The main purpose of this model is to provide the designer with a tool for improving cooling capacity and investigating capacity control of the refrigeration cycle at transient conditions. A lumped parameter system is used for the mathematical model of the condenser and the evaporator, that is obtained with volume integral of the equation of continuity and energy over a bounded volume region. The compressor model and the piping models are also lumped parameter systems, and heat capacity of their walls are taken into account. The theoretical solutions of this model are in good agreement with the experimental results.

  1. B and F Signal Conditioner Checkout Unit

    NASA Technical Reports Server (NTRS)

    Magleby, Alyssa; McCool, Alex (Technical Monitor)

    2001-01-01

    ATK Thiokol Propulsion, Test Services uses B&F Signal Conditioning units to provide excitation power and shunt calibration information to the data recording systems. Gage measurements such as force, temperature, pressure, strain, etc. are recorded using this equipment. Approximately 2500 reusable instrumentation B&F Signal Conditioning units were purchased over an interval from 1978 to 1988 at a cost of around $1000 each. Through use and over time, the relay contacts on the signal conditioning mode cards have become corroded, resulting in excessive contact resistance. This causes inaccurate and inconsistent calibration data and could jeopardize the test results. These signal conditioning cards are needed for product testing for an estimated five more years, therefore, it is necessary to develop a solution to isolate the malfunctioning units for repair. The current screening method requires Test Area technicians to check cards manually, however the connections and measurements required for this process are inefficient and time consuming. To resolve this problem, funding was approved to design and build two B&F Signal Conditioner Checkout Units. Each unit will allow technicians to test relay contact resistance on signal conditioning mode cards before they are installed for data collection procedures. This tool will allow Test Area to resolve calibration accuracy problems and extend the life of the data acquisition equipment, as well as save troubleshooting time for the technicians.

  2. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  3. Spectra of conditionalization and typicality in the multiverse

    NASA Astrophysics Data System (ADS)

    Azhar, Feraz

    2016-02-01

    An approach to testing theories describing a multiverse, that has gained interest of late, involves comparing theory-generated probability distributions over observables with their experimentally measured values. It is likely that such distributions, were we indeed able to calculate them unambiguously, will assign low probabilities to any such experimental measurements. An alternative to thereby rejecting these theories, is to conditionalize the distributions involved by restricting attention to domains of the multiverse in which we might arise. In order to elicit a crisp prediction, however, one needs to make a further assumption about how typical we are of the chosen domains. In this paper, we investigate interactions between the spectra of available assumptions regarding both conditionalization and typicality, and draw out the effects of these interactions in a concrete setting; namely, on predictions of the total number of species that contribute significantly to dark matter. In particular, for each conditionalization scheme studied, we analyze how correlations between densities of different dark matter species affect the prediction, and explicate the effects of assumptions regarding typicality. We find that the effects of correlations can depend on the conditionalization scheme, and that in each case atypicality can significantly change the prediction. In doing so, we demonstrate the existence of overlaps in the predictions of different "frameworks" consisting of conjunctions of theory, conditionalization scheme and typicality assumption. This conclusion highlights the acute challenges involved in using such tests to identify a preferred framework that aims to describe our observational situation in a multiverse.

  4. 21 CFR 872.3750 - Bracket adhesive resin and tooth conditioner.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Bracket adhesive resin and tooth conditioner. 872... and tooth conditioner. (a) Identification. A bracket adhesive resin and tooth conditioner is a device... to a tooth surface. (b) Classification. Class II....

  5. 21 CFR 872.3750 - Bracket adhesive resin and tooth conditioner.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Bracket adhesive resin and tooth conditioner. 872... and tooth conditioner. (a) Identification. A bracket adhesive resin and tooth conditioner is a device... to a tooth surface. (b) Classification. Class II....

  6. 21 CFR 872.3750 - Bracket adhesive resin and tooth conditioner.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Bracket adhesive resin and tooth conditioner. 872... and tooth conditioner. (a) Identification. A bracket adhesive resin and tooth conditioner is a device... to a tooth surface. (b) Classification. Class II....

  7. 21 CFR 872.3750 - Bracket adhesive resin and tooth conditioner.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Bracket adhesive resin and tooth conditioner. 872... and tooth conditioner. (a) Identification. A bracket adhesive resin and tooth conditioner is a device... to a tooth surface. (b) Classification. Class II....

  8. 21 CFR 872.3750 - Bracket adhesive resin and tooth conditioner.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Bracket adhesive resin and tooth conditioner. 872... and tooth conditioner. (a) Identification. A bracket adhesive resin and tooth conditioner is a device... to a tooth surface. (b) Classification. Class II....

  9. 10 CFR 429.15 - Room air conditioners.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... DEPARTMENT OF ENERGY ENERGY CONSERVATION CERTIFICATION, COMPLIANCE, AND ENFORCEMENT FOR CONSUMER PRODUCTS AND... certification report shall include the following public product-specific information: The energy efficiency... consumption or other measure of energy consumption of a basic model for which consumers would favor...

  10. 10 CFR 429.15 - Room air conditioners.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... DEPARTMENT OF ENERGY ENERGY CONSERVATION CERTIFICATION, COMPLIANCE, AND ENFORCEMENT FOR CONSUMER PRODUCTS AND... certification report shall include the following public product-specific information: The energy efficiency... consumption or other measure of energy consumption of a basic model for which consumers would favor...

  11. 10 CFR 429.15 - Room air conditioners.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... DEPARTMENT OF ENERGY ENERGY CONSERVATION CERTIFICATION, COMPLIANCE, AND ENFORCEMENT FOR CONSUMER PRODUCTS AND... certification report shall include the following public product-specific information: The energy efficiency... consumption or other measure of energy consumption of a basic model for which consumers would favor...

  12. Performance analysis of a bio-gasification based combined cycle power plant employing indirectly heated humid air turbine

    NASA Astrophysics Data System (ADS)

    Mukherjee, S.; Mondal, P.; Ghosh, S.

    2016-07-01

    Rapid depletion of fossil fuel has forced mankind to look into alternative fuel resources. In this context, biomass based power generation employing gas turbine appears to be a popular choice. Bio-gasification based combined cycle provides a feasible solution as far as grid-independent power generation is concerned for rural electrification projects. Indirectly heated gas turbine cycles are promising alternatives as they avoid downstream gas cleaning systems. Advanced thermodynamic cycles have become an interesting area of study to improve plant efficiency. Water injected system is one of the most attractive options in this field of applications. This paper presents a theoretical model of a biomass gasification based combined cycle that employs an indirectly heated humid air turbine (HAT) in the topping cycle. Maximum overall electrical efficiency is found to be around 41%. Gas turbine specific air consumption by mass is minimum when pressure ratio is 6. The study reveals that, incorporation of the humidification process helps to improve the overall performance of the plant.

  13. A spatially and temporally explicit life cycle inventory of air pollutants from gasoline and ethanol in the United States.

    PubMed

    Tessum, Christopher W; Marshall, Julian D; Hill, Jason D

    2012-10-16

    The environmental health impacts of transportation depend in part on where and when emissions occur during fuel production and combustion. Here we describe spatially and temporally explicit life cycle inventories (LCI) of air pollutants from gasoline, ethanol derived from corn grain, and ethanol from corn stover. Previous modeling for the U.S. by Argonne National Laboratory (GREET: Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) suggested that life cycle emissions are generally higher for ethanol from corn grain or corn stover than for gasoline. Our results show that for ethanol, emissions are concentrated in the Midwestern "Corn Belt". We find that life cycle emissions from ethanol exhibit different temporal patterns than from gasoline, reflecting seasonal aspects of farming activities. Enhanced chemical speciation beyond current GREET model capabilities is also described. Life cycle fine particulate matter emissions are higher for ethanol from corn grain than for ethanol from corn stover; for black carbon, the reverse holds. Overall, our results add to existing state-of-the-science transportation fuel LCI by providing spatial and temporal disaggregation and enhanced chemical speciation, thereby offering greater understanding of the impacts of transportation fuels on human health and opening the door to advanced air dispersion modeling of fuel life cycles.

  14. Allergies to molds caused by fungal spores in air conditioning equipment

    SciTech Connect

    Schata, M.; Jorde, W. ); Elixmann, J.H.; Linskens, H.F. )

    1989-01-01

    People suffering from various symptoms while in air-conditioned rooms often show sensitizations to fungi that can be isolated when the fungi are removed from air conditioners. By using specific challenge tests it was shown that fungal spores in air conditioners can evoke allergic symptoms. Hyposensitization was the specific therapy prescribed for such allergic reactions. After hyposensitization therapy, more than 70% of the patients so treated could live and work again in air-conditioned rooms without developing specific symptoms.

  15. COMPOSITION CHANGES IN REFRIGERANT BLENDS FOR AUTOMOTIVE AIR CONDITIONING

    EPA Science Inventory

    Three refrigerant blends used to replace CFC-12 in automotive air conditioners were evaluated for composition changes due to typical servicing and leakage. When recommended service procedures were followed, changes in blend compositions were relatively small. Small changes in b...

  16. Characteristic Analysis of Vuilleumier Cycle Machine and Its Application to Air-Conditioning Heat Pump

    NASA Astrophysics Data System (ADS)

    Sekiya, Hiroshi

    The Vuilleumier (VM) cycle machine is realized as a regenerative and external-combustion machine in the same way as a Stirling (ST) cycle machine. In the VM cycle, heat enters the cyc1e from hot and cold temperature heat sources and is delivered to an intermediate temperature heat source by a working gas. In consequence of the theoretical cycle, output power is not produced. The VM cycle machine is made of the same elements as the ST cycle machine and also closely connected with the ST cycle machine in its working principle. By means of analysis using an isothermal model, it is found that the VM cycle machine is internally divided into a ST engine and a ST refrigerator. In addition, the calculated results by a simulation model based on a so-called 3rd-order method clarify that the VM cycle machine has different featuers from the ST cycle macine with regard to the working gas behavior, the energy flow and the performance depending on the revolution speed. Application of the VM cycle machine to a heat pump for heating and cooling takes effect on the environment and energy problems arising on a terrestrial scale. In reacent years, research and development have been making on the VM haet pumps.

  17. Adhesive bonding of super-elastic titanium-nickel alloy castings with a phosphate metal conditioner and an acrylic adhesive.

    PubMed

    Matsumura, H; Tanoue, N; Yanagida, H; Atsuta, M; Koike, M; Yoneyama, T

    2003-06-01

    The purpose of the current study was to evaluate the bonding characteristics of super-elastic titanium-nickel (Ti-Ni) alloy castings. Disk specimens were cast from a Ti-Ni alloy (Ti-50.85Ni mol%) using an arc centrifugal casting machine. High-purity titanium and nickel specimens were also prepared as experimental references. The specimens were air-abraded with alumina, and bonded with an adhesive resin (Super-Bond C & B). A metal conditioner containing a phosphate monomer (Cesead II Opaque Primer) was also used for priming the specimens. Post-thermocycling average bond strengths (MPa) of the primed groups were 41.5 for Ti-Ni, 30.4 for Ti and 19.5 for Ni, whereas those of the unprimed groups were 21.6 for Ti, 19.3 for Ti-Ni and 9.3 for Ni. Application of the phosphate conditioner elevated the bond strengths of all alloy/metals (P < 0.05). X-ray fluorescence analysis revealed that nickel was attached to the debonded resin surface of the resin-to-nickel bonded specimen, indicating that corrosion of high-purity nickel occurred at the resin-nickel interface. Durable bonding to super-elastic Ti-Ni alloy castings can be achieved with a combination of a phosphate metal conditioner and a tri-n-butylborane-initiated adhesive resin.

  18. Magnetic Refrigeration Technology for High Efficiency Air Conditioning

    SciTech Connect

    Boeder, A; Zimm, C

    2006-09-30

    Magnetic refrigeration was investigated as an efficient, environmentally friendly, flexible alternative to conventional residential vapor compression central air conditioning systems. Finite element analysis (FEA) models of advanced geometry active magnetic regenerator (AMR) beds were developed to minimize bed size and thus magnet mass by optimizing geometry for fluid flow and heat transfer and other losses. Conventional and magnetocaloric material (MCM) regenerator fabrication and assembly techniques were developed and advanced geometry passive regenerators were built and tested. A subscale engineering prototype (SEP) magnetic air conditioner was designed, constructed and tested. A model of the AMR cycle, combined with knowledge from passive regenerator experiments and FEA results, was used to design the regenerator beds. A 1.5 Tesla permanent magnet assembly was designed using FEA and the bed structure and plenum design was extensively optimized using FEA. The SEP is a flexible magnetic refrigeration platform, with individually instrumented beds and high flow rate and high frequency capability, although the current advanced regenerator geometry beds do not meet performance expectations, probably due to manufacturing and assembly tolerances. A model of the AMR cycle was used to optimize the design of a 3 ton capacity magnetic air conditioner, and the system design was iterated to minimize external parasitic losses such as heat exchanger pressure drop and fan power. The manufacturing cost for the entire air conditioning system was estimated, and while the estimated SEER efficiency is high, the magnetic air conditioning system is not cost competitive as currently configured. The 3 ton study results indicate that there are other applications where magnetic refrigeration is anticipated to have cost advantages over conventional systems, especially applications where magnetic refrigeration, through the use of its aqueous heat transfer fluid, could eliminate intermediate

  19. Smart Sensors Enable Smart Air Conditioning Control

    PubMed Central

    Cheng, Chin-Chi; Lee, Dasheng

    2014-01-01

    In this study, mobile phones, wearable devices, temperature and human motion detectors are integrated as smart sensors for enabling smart air conditioning control. Smart sensors obtain feedback, especially occupants' information, from mobile phones and wearable devices placed on human body. The information can be used to adjust air conditioners in advance according to humans' intentions, in so-called intention causing control. Experimental results show that the indoor temperature can be controlled accurately with errors of less than ±0.1 °C. Rapid cool down can be achieved within 2 min to the optimized indoor capacity after occupants enter a room. It's also noted that within two-hour operation the total compressor output of the smart air conditioner is 48.4% less than that of the one using On-Off control. The smart air conditioner with wearable devices could detect the human temperature and activity during sleep to determine the sleeping state and adjusting the sleeping function flexibly. The sleeping function optimized by the smart air conditioner with wearable devices could reduce the energy consumption up to 46.9% and keep the human health. The presented smart air conditioner could provide a comfortable environment and achieve the goals of energy conservation and environmental protection. PMID:24961213

  20. Smart sensors enable smart air conditioning control.

    PubMed

    Cheng, Chin-Chi; Lee, Dasheng

    2014-06-24

    In this study, mobile phones, wearable devices, temperature and human motion detectors are integrated as smart sensors for enabling smart air conditioning control. Smart sensors obtain feedback, especially occupants' information, from mobile phones and wearable devices placed on human body. The information can be used to adjust air conditioners in advance according to humans' intentions, in so-called intention causing control. Experimental results show that the indoor temperature can be controlled accurately with errors of less than ±0.1 °C. Rapid cool down can be achieved within 2 min to the optimized indoor capacity after occupants enter a room. It's also noted that within two-hour operation the total compressor output of the smart air conditioner is 48.4% less than that of the one using On-Off control. The smart air conditioner with wearable devices could detect the human temperature and activity during sleep to determine the sleeping state and adjusting the sleeping function flexibly. The sleeping function optimized by the smart air conditioner with wearable devices could reduce the energy consumption up to 46.9% and keep the human health. The presented smart air conditioner could provide a comfortable environment and achieve the goals of energy conservation and environmental protection.

  1. Effect of metal conditioner on bonding of porcelain to cobalt-chromium alloy

    PubMed Central

    Kajihara, Yutaro; Takenouchi, Yoshihisa; Tanaka, Takuo; Suzuki, Shiro; Minami, Hiroyuki

    2016-01-01

    PURPOSE The purpose of this study was to evaluate the efficacy of two different metal conditioners for non-precious metal alloys for the bonding of porcelain to a cobalt-chromium (Co-Cr) alloy. MATERIALS AND METHODS Disk-shaped specimens (2.5×10.0 mm) were cast with Co-Cr alloy and used as adherend materials. The bonding surfaces were polished with a 600-grid silicon carbide paper and airborne-particle abraded using 110 µm alumina particles. Bonding specimens were fabricated by applying and firing either of the metal conditioners on the airborne-particle abraded surface, followed by firing porcelain into 5 mm in diameter and 3 mm in height. Specimens without metal conditioner were also fabricated. Shear bond strength for each group (n=8) were measured and compared (α=.05). Sectional view of bonding interface was observed by SEM. EDS analysis was performed to determine the chemical elements of metal conditioners and to determine the failure modes after shear test. RESULTS There were significant differences among three groups, and two metal conditioner-applied groups showed significantly higher values compared to the non-metal conditioner group. The SEM observation of the sectional view at bonding interface revealed loose contact at porcelain-alloy surface for non-metal conditioner group, however, close contact at both alloy-metal conditioner and metal conditioner-porcelain interfaces for both metal conditioner-applied groups. All the specimens showed mixed failures. EDS analysis showed that one metal conditioner was Si-based material, and another was Ti-based material. Si-based metal conditioner showed higher bond strengths compared to the Ti-based metal conditioner, but exhibited more porous failure surface failure. CONCLUSION Based on the results of this study, it can be stated that the application of metal conditioner is recommended for the bonding of porcelain to cobalt-chromium alloys. PMID:26949481

  2. Transforming PC Power Supplies into Smart Car Battery Conditioners

    ERIC Educational Resources Information Center

    Rodriguez-Ascariz, J. M.; Boquete-Vazquez, L.

    2011-01-01

    This paper describes a laboratory project consisting of a PC power supply modification into an intelligent car-battery conditioner with both wireless and wired networking capabilities. Adding a microcontroller to an average PC power supply transforms it into a flexible, intelligent device that can be configured and that is suitable to keep car…

  3. [Life support of the Mars exploration crew. Control of a zeolite system for carbon dioxide removal from space cabin air within a closed air regeneration cycle].

    PubMed

    Chekov, Iu F

    2009-01-01

    The author describes a zeolite system for carbon dioxide removal integrated into a closed air regeneration cycle aboard spacecraft. The continuous operation of a double-adsorbent regeneration system with pCO2-dependable productivity is maintained through programmable setting of adsorption (desorption) semicycle time. The optimal system regulation curve is presented within the space of statistical performance family obtained in quasi-steady operating modes with controlled parameters of the recurrent adsorption-desorption cycle. The automatically changing system productivity ensures continuous intake of concentrated CO2. Control of the adsorption-desorption process is based on calculation of the differential adsorption (desorption) heat from gradient of adsorbent and test inert substance temperatures. The adaptive algorithm of digital control is implemented through the standard spacecraft interface with the board computer system and programmable microprocessor-based controllers.

  4. Dynamic Evaluation of a Regional Air Quality Model: Assessing the Emissions-Induced Weekly Ozone Cycle

    EPA Science Inventory

    Air quality models are used to predict changes in pollutant concentrations resulting from envisioned emission control policies. Recognizing the need to assess the credibility of air quality models in a policy-relevant context, we perform a dynamic evaluation of the community Mult...

  5. Municipal solid waste management health risk assessment from air emissions for China by applying life cycle analysis.

    PubMed

    Li, Hua; Nitivattananon, Vilas; Li, Peng

    2015-05-01

    This study is to quantify and objectively evaluate the extent of environmental health risks from three waste treatment options suggested by the national municipal solid waste management enhancing strategy (No [2011] 9 of the State Council, promulgated on 19 April 2011), which includes sanitary landfill, waste-to-energy incineration and compost, together with the material recovery facility through a case study in Zhangqiu City of China. It addresses potential chronic health risks from air emissions to residential receptors in the impacted area. It combines field survey, analogue survey, design documents and life cycle inventory methods in defining the source strength of chemicals of potential concern. The modelling of life cycle inventory and air dispersion is via integrated waste management(IWM)-2 and Screening Air Dispersion Model (Version 3.0) (SCREEN3). The health risk assessment is in accordance with United States Environmental Protection Agency guidance Risk Assessment Guidance for Superfund (RAGS), Volume I: Human Health Evaluation Manual (Part F, Supplemental Guidance for Inhalation Risk Assessment). The exposure concentration is based on long-term exposure to the maximum ground level contaminant in air under the 'reasonable worst situation' emissions and then directly compared with reference for concentration and unit risk factor/cancer slope factor derived from the national air quality standard (for a conventional pollutant) and toxicological studies (for a specific pollutant). Results from this study suggest that the option of compost with material recovery facility treatment may pose less negative health impacts than other options; the sensitivity analysis shows that the landfill integrated waste management collection rate has a great influence on the impact results. Further investigation is needed to validate or challenge the findings of this study.

  6. Seminar 14 - Desiccant Enhanced Air Conditioning: Desiccant Enhanced Evaporative Air Conditioning (Presentation)

    SciTech Connect

    Kozubal, E.

    2013-02-01

    This presentation explains how liquid desiccant based coupled with an indirect evaporative cooler can efficiently produce cool, dry air, and how a liquid desiccant membrane air conditioner can efficiently provide cooling and dehumidification without the carryover problems of previous generations of liquid desiccant systems. It provides an overview to a liquid desiccant DX air conditioner that can efficiently provide cooling and dehumidification to high latent loads without the need for reheat, explains how liquid desiccant cooling and dehumidification systems can outperform vapor compression based air conditioning systems in hot and humid climates, explains how liquid desiccant cooling and dehumidification systems work, and describes a refrigerant free liquid desiccant based cooling system.

  7. Effect of air-entry angle on performance of a 2-stroke-cycle compression-ignition engine

    NASA Technical Reports Server (NTRS)

    Earle, Sherod L; Dutee, Francis J

    1937-01-01

    An investigation was made to determine the effect of variations in the horizontal and vertical air-entry angles on the performance characteristics of a single-cylinder 2-stroke-cycle compression-ignition test engine. Performance data were obtained over a wide range of engine speed, scavenging pressure, fuel quantity, and injection advance angle with the optimum guide vanes. Friction and blower-power curves are included for calculating the indicated and net performances. The optimum horizontal air-entry angle was found to be 60 degrees from the radial and the optimum vertical angle to be zero, under which conditions a maximum power output of 77 gross brake horsepower for a specific fuel consumption of 0.52 pound per brake horsepower-hour was obtained at 1,800 r.p.m. and 16-1/2 inches of Hg scavenging pressure. The corresponding specific output was 0.65 gross brake horsepower per cubic inch of piston displacement. Tests revealed that the optimum scavenging pressure increased linearly with engine speed. The brake mean effective pressure increased uniformly with air quantity per cycle for any given vane angle and was independent of engine speed and scavenging pressure.

  8. Stability of amine-functionalized cellulose during temperature-vacuum-swing cycling for CO2 capture from air.

    PubMed

    Gebald, Christoph; Wurzbacher, Jan A; Tingaut, Philippe; Steinfeld, Aldo

    2013-09-03

    The stability of amine-functionalized nanofibrilated cellulose sorbent for direct air capture of CO2 is investigated during temperature-vacuum-swing (TVS) cycling. The presence of O2 at 90 °C degrades the sorbent, reducing its CO2 adsorption capacity by 30% after 15 h of treatment in moist air with a dew point of 22 °C. In contrast, exposure to moist CO2 at 90 °C with a dew point of 22 °C does not deteriorate its CO2 adsorption capacity after 15 h. Performing 100 TVS consecutive cycles, with CO2 adsorption from ambient air containing 400-530 ppm CO2 at 30 °C and 60% relative humidity and with CO2 desorption at 90 °C and 30 mbar, resulted in a reduction of the equilibrium CO2 adsorption capacity by maximum 5%. The average CO2 adsorption capacity during TVS cyclic operation is 0.90 mmol CO2/g.

  9. Effects of the 7-8-year cycle in daily mean air temperature as a cross-scale information transfer

    NASA Astrophysics Data System (ADS)

    Jajcay, Nikola; Hlinka, Jaroslav; Paluš, Milan

    2015-04-01

    Using a novel nonlinear time-series analysis method, an information transfer from larger to smaller scales of the air temperature variability has been observed in daily mean surface air temperature (SAT) data from European stations as the influence of the phase of slow oscillatory phenomena with periods around 6-11 years on amplitudes of the variability characterized by smaller temporal scales from a few months to 4-5 years [1]. The strongest effect is exerted by an oscillatory mode with the period close to 8 years and its influence can be seen in 1-2 °C differences of the conditional SAT means taken conditionally on the phase of the 8-year cycle. The size of this effect, however, changes in space and time. The changes in time are studied using sliding window technique, showing that the effect evolves in time, and during the last decades the effect is stronger and significant. Sliding window technique was used along with seasonal division of the data, and it has been found that the cycle is most pronounced in the winter season. Different types of surrogate data are applied in order to establish statistical significance and distinguish the effect of the 7-8-yr cycle from climate variability on shorter time scales. [1] M. Palus, Phys. Rev. Lett. 112 078702 (2014) This study is supported by the Ministry of Education, Youth and Sports of the Czech Republic within the Program KONTAKT II, Project No. LH14001.

  10. 78 FR 37220 - Proposed Information Collection Request; Comment Request; EPA-ICR No. 1774.05-Mobile Air...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-20

    ... AGENCY Proposed Information Collection Request; Comment Request; EPA-ICR No. 1774.05--Mobile Air Conditioner Retrofitting Program AGENCY: Environmental Protection Agency (EPA). ACTION: Notice. SUMMARY: The... Conditioner Retrofitting Program'' (EPA ICR No. 1774.05, OMB Control No. 2060-0450) to the Office...

  11. Life-cycle-assessment of the historical development of air pollution control and energy recovery in waste incineration

    SciTech Connect

    Damgaard, Anders; Riber, Christian; Fruergaard, Thilde; Hulgaard, Tore; Christensen, Thomas H.

    2010-07-15

    Incineration of municipal solid waste is a debated waste management technology. In some countries it is the main waste management option whereas in other countries it has been disregarded. The main discussion point on waste incineration is the release of air emissions from the combustion of the waste, but also the energy recovery efficiency has a large importance. The historical development of air pollution control in waste incineration was studied through life-cycle-assessment modelling of eight different air pollution control technologies. The results showed a drastic reduction in the release of air emissions and consequently a significant reduction in the potential environmental impacts of waste incineration. Improvements of a factor 0.85-174 were obtained in the different impact potentials as technology developed from no emission control at all, to the best available emission control technologies of today (2010). The importance of efficient energy recovery was studied through seven different combinations of heat and electricity recovery, which were modelled to substitute energy produced from either coal or natural gas. The best air pollution control technology was used at the incinerator. It was found that when substituting coal based energy production total net savings were obtained in both the standard and toxic impact categories. However, if the substituted energy production was based on natural gas, only the most efficient recovery options yielded net savings with respect to the standard impacts. With regards to the toxic impact categories, emissions from the waste incineration process were always larger than those from the avoided energy production based on natural gas. The results shows that the potential environmental impacts from air emissions have decreased drastically during the last 35 years and that these impacts can be partly or fully offset by recovering energy which otherwise should have been produced from fossil fuels like coal or natural gas.

  12. Life-cycle-assessment of the historical development of air pollution control and energy recovery in waste incineration.

    PubMed

    Damgaard, Anders; Riber, Christian; Fruergaard, Thilde; Hulgaard, Tore; Christensen, Thomas H

    2010-07-01

    Incineration of municipal solid waste is a debated waste management technology. In some countries it is the main waste management option whereas in other countries it has been disregarded. The main discussion point on waste incineration is the release of air emissions from the combustion of the waste, but also the energy recovery efficiency has a large importance. The historical development of air pollution control in waste incineration was studied through life-cycle-assessment modelling of eight different air pollution control technologies. The results showed a drastic reduction in the release of air emissions and consequently a significant reduction in the potential environmental impacts of waste incineration. Improvements of a factor 0.85-174 were obtained in the different impact potentials as technology developed from no emission control at all, to the best available emission control technologies of today (2010). The importance of efficient energy recovery was studied through seven different combinations of heat and electricity recovery, which were modelled to substitute energy produced from either coal or natural gas. The best air pollution control technology was used at the incinerator. It was found that when substituting coal based energy production total net savings were obtained in both the standard and toxic impact categories. However, if the substituted energy production was based on natural gas, only the most efficient recovery options yielded net savings with respect to the standard impacts. With regards to the toxic impact categories, emissions from the waste incineration process were always larger than those from the avoided energy production based on natural gas. The results shows that the potential environmental impacts from air emissions have decreased drastically during the last 35 years and that these impacts can be partly or fully offset by recovering energy which otherwise should have been produced from fossil fuels like coal or natural gas.

  13. Generation of sub-two-cycle mid-infrared pulses by four-wave mixing through filamentation in air.

    PubMed

    Fuji, Takao; Suzuki, Toshinori

    2007-11-15

    Generation of sub-two-cycle, microjoule pulses in the mid-infrared region is demonstrated. Fundamental and second-harmonic pulses of 25 fs Ti:sapphire amplifier output were focused into the air to produce extremely broadband mid-infrared pulses by four-wave difference-frequency generation through the filamentation. The full width at half-maximum of the spectral bandwidth reaches one octave (2.5-5.5 microm), which is sufficiently broad for sub-single-cycle pulse generation. The pulse width was estimated to be 13 fs, without any compressors, by cross-correlation frequency resolved optical gating. The output energy of more than a few microjoule is sufficient for spectroscopy.

  14. Comparative life-cycle air emissions of coal, domestic natural gas, LNG, and SNG for electricity generation.

    PubMed

    Jaramillo, Paulina; Griffin, W Michael; Matthews, H Scott

    2007-09-01

    The U.S. Department of Energy (DOE) estimates that in the coming decades the United States' natural gas (NG) demand for electricity generation will increase. Estimates also suggest that NG supply will increasingly come from imported liquefied natural gas (LNG). Additional supplies of NG could come domestically from the production of synthetic natural gas (SNG) via coal gasification-methanation. The objective of this study is to compare greenhouse gas (GHG), SOx, and NOx life-cycle emissions of electricity generated with NG/LNG/SNG and coal. This life-cycle comparison of air emissions from different fuels can help us better understand the advantages and disadvantages of using coal versus globally sourced NG for electricity generation. Our estimates suggest that with the current fleet of power plants, a mix of domestic NG, LNG, and SNG would have lower GHG emissions than coal. If advanced technologies with carbon capture and sequestration (CCS) are used, however, coal and a mix of domestic NG, LNG, and SNG would have very similar life-cycle GHG emissions. For SOx and NOx we find there are significant emissions in the upstream stages of the NG/ LNG life-cycles, which contribute to a larger range in SOx and NOx emissions for NG/LNG than for coal and SNG.

  15. Comparative life-cycle air emissions of coal, domestic natural gas, LNG, and SNG for electricity generation

    SciTech Connect

    Paulina Jaramillo; W. Michael Griffin; H. Scott Matthews

    2007-09-15

    The U.S. Department of Energy (DOE) estimates that in the coming decades the United States' natural gas (NG) demand for electricity generation will increase. Estimates also suggest that NG supply will increasingly come from imported liquefied natural gas (LNG). Additional supplies of NG could come domestically from the production of synthetic natural gas (SNG) via coal gasification-methanation. The objective of this study is to compare greenhouse gas (GHG), SOx, and NOx life-cycle emissions of electricity generated with NG/LNG/SNG and coal. This life-cycle comparison of air emissions from different fuels can help us better understand the advantages and disadvantages of using coal versus globally sourced NG for electricity generation. Our estimates suggest that with the current fleet of power plants, a mix of domestic NG, LNG, and SNG would have lower GHG emissions than coal. If advanced technologies with carbon capture and sequestration (CCS) are used, however, coal and a mix of domestic NG, LNG, and SNG would have very similar life-cycle GHG emissions. For SOx and NOx we find there are significant emissions in the upstream stages of the NG/LNG life-cycles, which contribute to a larger range in SOx and NOx emissions for NG/LNG than for coal and SNG. 38 refs., 3 figs., 2 tabs.

  16. High Energy Efficiency Air Conditioning

    SciTech Connect

    Edward McCullough; Patrick Dhooge; Jonathan Nimitz

    2003-12-31

    This project determined the performance of a new high efficiency refrigerant, Ikon B, in a residential air conditioner designed to use R-22. The refrigerant R-22, used in residential and small commercial air conditioners, is being phased out of production in developed countries beginning this year because of concerns regarding its ozone depletion potential. Although a replacement refrigerant, R-410A, is available, it operates at much higher pressure than R-22 and requires new equipment. R-22 air conditioners will continue to be in use for many years to come. Air conditioning is a large part of expensive summer peak power use in many parts of the U.S. Previous testing and computer simulations of Ikon B indicated that it would have 20 - 25% higher coefficient of performance (COP, the amount of cooling obtained per energy used) than R-22 in an air-cooled air conditioner. In this project, a typical new R-22 residential air conditioner was obtained, installed in a large environmental chamber, instrumented, and run both with its original charge of R-22 and then with Ikon B. In the environmental chamber, controlled temperature and humidity could be maintained to obtain repeatable and comparable energy use results. Tests with Ikon B included runs with and without a power controller, and an extended run for several months with subsequent analyses to check compatibility of Ikon B with the air conditioner materials and lubricant. Baseline energy use of the air conditioner with its original R-22 charge was measured at 90 deg F and 100 deg F. After changeover to Ikon B and a larger expansion orifice, energy use was measured at 90 deg F and 100 deg F. Ikon B proved to have about 19% higher COP at 90 deg F and about 26% higher COP at 100 deg F versus R-22. Ikon B had about 20% lower cooling capacity at 90 deg F and about 17% lower cooling capacity at 100 deg F versus R-22 in this system. All results over multiple runs were within 1% relative standard deviation (RSD). All of these

  17. Advanced Signal Conditioners for Data-Acquisition Systems

    NASA Technical Reports Server (NTRS)

    Lucena, Angel; Perotti, Jose; Eckhoff, Anthony; Medelius, Pedro

    2004-01-01

    Signal conditioners embodying advanced concepts in analog and digital electronic circuitry and software have been developed for use in data-acquisition systems that are required to be compact and lightweight, to utilize electric energy efficiently, and to operate with high reliability, high accuracy, and high power efficiency, without intervention by human technicians. These signal conditioners were originally intended for use aboard spacecraft. There are also numerous potential terrestrial uses - especially in the fields of aeronautics and medicine, wherein it is necessary to monitor critical functions. Going beyond the usual analog and digital signal-processing functions of prior signal conditioners, the new signal conditioner performs the following additional functions: It continuously diagnoses its own electronic circuitry, so that it can detect failures and repair itself (as described below) within seconds. It continuously calibrates itself on the basis of a highly accurate and stable voltage reference, so that it can continue to generate accurate measurement data, even under extreme environmental conditions. It repairs itself in the sense that it contains a micro-controller that reroutes signals among redundant components as needed to maintain the ability to perform accurate and stable measurements. It detects deterioration of components, predicts future failures, and/or detects imminent failures by means of a real-time analysis in which, among other things, data on its present state are continuously compared with locally stored historical data. It minimizes unnecessary consumption of electric energy. The design architecture divides the signal conditioner into three main sections: an analog signal section, a digital module, and a power-management section. The design of the analog signal section does not follow the traditional approach of ensuring reliability through total redundancy of hardware: Instead, following an approach called spare parts tool box, the

  18. Air-sea heat exchange, an element of the water cycle

    NASA Technical Reports Server (NTRS)

    Chahine, M. T.

    1984-01-01

    The distribution and variation of water vapor, clouds and precipitation are examined. Principal driving forces for these distributions are energy exchange and evaporation at the air-sea interface, which are also important elements of air-sea interaction studies. The overall aim of air-sea interaction studies is to quantitatively determine mass, momentum and energy fluxes, with the goal of understanding the mechanisms controlling them. The results of general circulation simulations indicate that the atmosphere in mid-latitudes responds to changes in the oceanic surface conditions in the tropics. This correlation reflects the strong interaction between tropical and mid-latitude conditions caused by the transport of heat and momentum from the tropics. Studies of air-sea exchanges involve a large number of physica, chemical and dynamical processes including heat flux, radiation, sea-surface temperature, precipitation, winds and ocean currents. The fluxes of latent heat are studied and the potential use of satellite data in determining them evaluated. Alternative ways of inferring heat fluxes will be considered.

  19. An air quality sensing system for cool air storage

    NASA Astrophysics Data System (ADS)

    Ngoy, T. J.; Joubert, T.-H.

    2016-02-01

    Cooling and ventilation systems play an important role in human occupied spaces. However, cooling using reversible air conditioners systems pollutes the environment and consumes a significant amount of energy. With global warming that experiences our environment, the large consumption of electrical energy and the operating instructions for reversible air conditioners, there is a need to find alternatives to those cooling systems. Hence this research project aims to investigate an air storage system, a microsystem reversible ventilation system using natural atmospheric air (renewable energy) for cooling at low consumption of energy. For the variation of the temperature range of comfort due to thermal heat produces by occupants, equipment and environment, an optimal transient automatic regulation of air flow as to be design in order to maintain the temperature of comfort in occupied spaces during peak hours.

  20. Performance Evaluation Method of Chemical Mechanical Polishing Pad Conditioner Using Digital Image Correlation Processing

    NASA Astrophysics Data System (ADS)

    Uneda, Michio; Omote, Tatsunori; Ishikawa, Ken-ichi; Ichikawa, Koichiro; Doi, Toshiro; Kurokawa, Syuhei; Ohnishi, Osamu

    2012-05-01

    In chemical mechanical polishing (CMP), conditioning is generally used for the regeneration of the pad surface texture. Currently, the performance evaluation of conditioners depends on the user's experience so that it is important to develop a novel quantitative evaluation method for conditioner performance. In this paper, we propose a novel evaluation method for conditioner performance using digital image correlation (DIC) processing. The proposed method can measure the in-plane micro-deformation distribution of the pad surface texture by conditioning. It is found that a pad surface deforms over 40 µm with conditioning and that the in-plane deformation value increases with a decrease in the mesh size of conditioner grains.

  1. Cell module and fuel conditioner development

    NASA Technical Reports Server (NTRS)

    Hoover, D. Q., Jr.

    1982-01-01

    The phosphoric acid fuel cell module (stack) development which culminated in an 80 cell air-cooled stack with separated gas cooling and treed cooling plates is described. The performance of the 80 cell stack was approx. 100 mV per cell higher than that attained during phase 1. The components and materials performed stably for over 8000 hours in a 5 cell stack. The conceptual design of a fuel conditioning system is described.

  2. Impact of Charge Degradation on the Life Cycle Climate Performance of a Residential Air-Conditioning System

    SciTech Connect

    Beshr, Mohamed; Aute, Vikrant; Abdelaziz, Omar; Fricke, Brian A; Radermacher, Reinhard

    2014-01-01

    Vapor compression systems continuously leak a small fraction of their refrigerant charge to the environment, whether during operation or servicing. As a result of the slow leak rate occurring during operation, the refrigerant charge decreases until the system is serviced and recharged. This charge degradation, after a certain limit, begins to have a detrimental effect on system capacity, energy consumption, and coefficient of performance (COP). This paper presents a literature review and a summary of previous experimental work on the effect of undercharging or charge degradation of different vapor compression systems, especially those without a receiver. These systems include residential air conditioning and heat pump systems utilizing different components and refrigerants, and water chiller systems. Most of these studies show similar trends for the effect of charge degradation on system performance. However, it is found that although much experimental work exists on the effect of charge degradation on system performance, no correlation or comparison between charge degradation and system performance yet exists. Thus, based on the literature review, three different correlations that characterize the effect of charge on system capacity and energy consumption are developed for different systems as follows: one for air-conditioning systems, one for vapor compression water-to-water chiller systems, and one for heat pumps. These correlations can be implemented in vapor compression cycle simulation tools to obtain a better prediction of the system performance throughout its lifetime. In this paper, these correlations are implemented in an open source tool for life cycle climate performance (LCCP) based design of vapor compression systems. The LCCP of a residential air-source heat pump is evaluated using the tool and the effect of charge degradation on the results is studied. The heat pump is simulated using a validated component-based vapor compression system model and

  3. Demand Controlled Economizer Cycles: A Direct Digital Control Scheme for Heating, Ventilating, and Air Conditioning Systems,

    DTIC Science & Technology

    1984-05-01

    includes a heating coil and thermostatic control to maintain the air in this path at an elevated temperature, typically around 80 degrees Farenheit (80 F...1238 Aug 1 1236 1237 52 1074 1126 50 1033 1083 Sep 8 8 5W 862 7T 600 678 75 603 7r Oct 51 400 451 119 204 323 115 207 322 ov 64 123 287 187 71 258

  4. Development of naval diesel engine duty cycles for air exhaust emission environmental impact analysis. Master's thesis

    SciTech Connect

    Markle, S.P.

    1994-05-01

    A strategy for testing naval diesel engines for exhaust emissions was developed. A survey of existing international and national standard diesel engine duty cycles was conducted. All were found to be inadequate for testing and certification of engine exhaust emissions from naval diesel powered ships. Naval ship data covering 11,500 hours of engine operation of four U.S. Navy LSD 41 Class amphibious ships was analyzed to develop a 27 point class operating profile. A procedure combining ship hull form characteristics, ship propulsion plant parameters, and ship operating profile was detailed to derive an 11-Mode duty cycle representative for testing LSD 41 Class propulsion diesel engines. A similar procedure was followed for ship service diesel engines. Comparisons with industry accepted duty cycles were conducted using exhaust emission contour plots for the Colt-Pielstick PC-4B diesel engines. Results showed the 11-Mode LSD 41 Class Duty Cycle best predicted ship propulsion engine emissions compared to the 27 point operating profile propeller curve. The procedure was applied to T-AO 187 Class with similar results. The application of civilian industry standards to measure naval diesel ship propulsion engine exhaust emissions was found to be inadequate. Engine exhaust flow chemistry post turbocharger was investigated using the SANDIA Lab computer tool CHEMKIN. Results showed oxidation and reduction reactions within exhaust gases are quenched in the exhaust stack. Since the exhaust stream in the stack is unreactive, emission sampling may be performed where most convenient. A proposed emission measurement scheme for LSD 41 Class ships was presented.

  5. Cell module and fuel conditioner development

    NASA Technical Reports Server (NTRS)

    Feret, J. M.

    1981-01-01

    A phosphoric acid fuel cell (PAFC) stack design having a 10 kW power rating for operation at higher than atmospheric pressure based on the existing Mark II design configuration is described. Functional analysis, trade studies and thermodynamic cycle analysis for requirements definition and system operating parameter selection purposes were performed. Fuel cell materials and components, and performance testing and evaluation of the repeating electrode components were characterized. The state of the art manufacturing technology for all fuel cell components and the fabrication of short stacks of various sites were established. A 10 kW PAFC stack design for higher pressure operation utilizing the top down systems engineering aproach was developed.

  6. Life cycle air emissions impacts and ownership costs of light-duty vehicles using natural gas as a primary energy source.

    PubMed

    Luk, Jason M; Saville, Bradley A; MacLean, Heather L

    2015-04-21

    This paper aims to comprehensively distinguish among the merits of different vehicles using a common primary energy source. In this study, we consider compressed natural gas (CNG) use directly in conventional vehicles (CV) and hybrid electric vehicles (HEV), and natural gas-derived electricity (NG-e) use in plug-in battery electric vehicles (BEV). This study evaluates the incremental life cycle air emissions (climate change and human health) impacts and life cycle ownership costs of non-plug-in (CV and HEV) and plug-in light-duty vehicles. Replacing a gasoline CV with a CNG CV, or a CNG CV with a CNG HEV, can provide life cycle air emissions impact benefits without increasing ownership costs; however, the NG-e BEV will likely increase costs (90% confidence interval: $1000 to $31 000 incremental cost per vehicle lifetime). Furthermore, eliminating HEV tailpipe emissions via plug-in vehicles has an insignificant incremental benefit, due to high uncertainties, with emissions cost benefits between -$1000 and $2000. Vehicle criteria air contaminants are a relatively minor contributor to life cycle air emissions impacts because of strict vehicle emissions standards. Therefore, policies should focus on adoption of plug-in vehicles in nonattainment regions, because CNG vehicles are likely more cost-effective at providing overall life cycle air emissions impact benefits.

  7. Positive Displacement Compressor Technology for Air Congitioners

    NASA Astrophysics Data System (ADS)

    Nagatomo, Shigemi

    Trends of compressor technologies for air conditioners are presented in this paper. HFC refrigerants such is R410A and R407C are promising candidates as an alternative for R22. Performance of rotary and scroll compressors in the operation with R410A and R407C are described. In addition, compressor technologies such as efficiency improvement, reliability and simulation methods are described in both cases of rotary and scroll compressors. Advanced compressor technologies developed for air conditioners are desired in the field of the global environment protection and the energy saving.

  8. Water loss control using pressure management: life-cycle energy and air emission effects.

    PubMed

    Stokes, Jennifer R; Horvath, Arpad; Sturm, Reinhard

    2013-10-01

    Pressure management is one cost-effective and efficient strategy for controlling water distribution losses. This paper evaluates the life-cycle energy use and emissions for pressure management zones in Philadelphia, Pennsylvania, and Halifax, Nova Scotia. It compares water savings using fixed-outlet and flow-modulated pressure control to performance without pressure control, considering the embedded electricity and chemical consumption in the lost water, manufacture of pipe and fittings to repair breaks caused by excess pressure, and pressure management. The resulting energy and emissions savings are significant. The Philadelphia and Halifax utilities both avoid approximately 130 million liters in water losses annually using flow-modulated pressure management. The conserved energy was 780 GJ and 1900 GJ while avoided greenhouse gas emissions were 50 Mg and 170 Mg a year by Philadelphia and Halifax, respectively. The life-cycle financial and environmental performance of pressure management systems compares favorably to the traditional demand management strategy of installing low-flow toilets. The energy savings may also translate to cost-effective greenhouse gas emission reductions depending on the energy mix used, an important advantage in areas where water and energy are constrained and/or expensive and greenhouse gas emissions are regulated as in California, for example.

  9. Cell module and fuel conditioner development

    NASA Technical Reports Server (NTRS)

    Feret, J. M.

    1982-01-01

    The efforts performed to develop a phosphoric acid fuel cell (PAFC) stack design having a 10 kW power rating for operation at higher than atmospheric pressure based on the existing Mark II design configuration are described. The work involves: (1) Performance of pertinent functional analysis, trade studies and thermodynamic cycle analysis for requirements definition and system operating parameter selection purposes, (2) characterization of fuel cell materials and components, and performance testing and evaluation of the repeating electrode components, (3) establishment of the state-of-the-art manufacturing technology for all fuel cell components at Westinghouse and the fabrication of short stacks of various sites, and (4) development of a 10 kW PAFC stack design for higher pressure operation utilizing the top down systems engineering approach.

  10. A Life-Cycle Cost Estimating Methodology for NASA-Developed Air Traffic Control Decision Support Tools

    NASA Technical Reports Server (NTRS)

    Wang, Jianzhong Jay; Datta, Koushik; Landis, Michael R. (Technical Monitor)

    2002-01-01

    This paper describes the development of a life-cycle cost (LCC) estimating methodology for air traffic control Decision Support Tools (DSTs) under development by the National Aeronautics and Space Administration (NASA), using a combination of parametric, analogy, and expert opinion methods. There is no one standard methodology and technique that is used by NASA or by the Federal Aviation Administration (FAA) for LCC estimation of prospective Decision Support Tools. Some of the frequently used methodologies include bottom-up, analogy, top-down, parametric, expert judgement, and Parkinson's Law. The developed LCC estimating methodology can be visualized as a three-dimensional matrix where the three axes represent coverage, estimation, and timing. This paper focuses on the three characteristics of this methodology that correspond to the three axes.

  11. Air Conditioning Overflow Sensor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Technology Transfer Office at Stennis Space Center helped a local inventor develop a prototype of an attachment for central air conditioners and heat pumps that helps monitor water levels to prevent condensation overflow. The sensor will indicate a need for drain line maintenance and prevent possible damage caused by drain pan water spillover. An engineer in the Stennis Space Center prototype Development Laboratory used SSC sensor technology in the development of the sensor.

  12. CPC air-blown integrated gasification combined cycle project. Quarterly report, October--December 1992

    SciTech Connect

    Not Available

    1993-01-01

    The overall project cost and schedule. The combustion turbine commercial operation date is scheduled for 7/1/95 with the combined cycle commercial operation date of 7/1/96. A two year demonstration period will commence after IGCC commercial operation. Details of costs on a total project and DOE Envelope basis along with detailed schedule components were covered. Major cost variances to date were discussed. The major variances this year relate to contracts which were anticipated to be finalized mid 1992 but which are not executed. These include GEESI, the ASU and key vessels. Some of these contracts are almost in place and others are scheduled for the first quarter 1993. Numerous project specifications, process flow diagrams, piping and instrument diagrams and other drawings have been reviewed and approved as part of the preliminary engineering process.

  13. Study of loading/air back-pulse cleaning cycles on the performance of ceramic membrane filters

    SciTech Connect

    Waggoner, Charles; Alderman, Steven; Parsons, Michael; Hogoncamp, Kristina; Alderman, Steven

    2007-07-01

    Available in abstract form only. Full text of publication follows: The most commonly identified threats to conventional glass fiber HEPA filter performance are moisture and rapid blinding of filters by smoke. Regenerable filter media composed of ceramics or sintered metal can be utilized as pre-filters to protect the more vulnerable glass fiber HEPA filters in the event of upset conditions. Additionally, used in a pre-filtering application, the use of these regenerable filters can potentially extend the lifetime of conventional units. A series of tests have been conducted using CeraMem ceramic membrane filters in an effort to evaluate their performance after repeated loading and air back pulse cleaning. This was done in an effort to access filter performance after repeated loading/cleaning cycles. The filters were loaded using a solid potassium chloride aerosol challenge. The filters were evaluated for pressure drop and filtering efficiency changes from one cleaning cycle to the next. Additionally, the particle size distribution of the aerosol penetrating the filters was measured. (authors)

  14. A Life Cycle Cost Analysis of the Proposed Replacement of Pope Air Force Base’s C-130E Fleet Using a Fleet Replacement Model

    DTIC Science & Technology

    2007-11-02

    A LIFE CYCLE COST ANALYSIS OF THE PROPOSED REPLACEMENT OF POPE AIR FORCE BASE’S C-130E FLEET USING A...Date 11 Mar 02 Report Type Final Dates Covered (from... to) Oct 2000 - Mar 2002 Title and Subtitle A Life Cycle Cost Analysis of the Proposed...a lack of spare parts, and structural problems, maintenance costs are rising at an exponential rate. Because of this, there may be a more cost

  15. Locally produced natural conditioners for dewatering of faecal sludge

    PubMed Central

    Gold, Moritz; Dayer, Pauline; Faye, Marie Christine Amie Sene; Clair, Guillaume; Seck, Alsane; Niang, Seydou; Morgenroth, Eberhard; Strande, Linda

    2016-01-01

    ABSTRACT In urban areas of low-income countries, treatment of faecal sludge (FS) is insufficient or non-existent. This results in large amounts of FS being dumped into the environment. Existing treatment technologies for FS, such as settling-thickening tanks and drying beds, are land intensive which is limiting in urban areas. Enhanced settling and dewatering by conditioning was evaluated in order to reduce the treatment footprint (or increase treatment capacity). Conventional wastewater conditioners, such as commercially available lime and polymers, are expensive, and commonly rely on complex supply chains for use in low-income countries. Therefore, the treatment performance of five conditioners which could be produced locally was evaluated: Moringa oleifera seeds and press cake, Jatropha curcas seeds, Jatropha Calotropis leaves and chitosan. M. oleifera seeds and press cake, and chitosan improved settling and dewatering and had a similar performance compared to lime and polymers. Optimal dosages were 400–500 kg M. oleifera/t TS, 300–800 kg lime/t TS and 25–50 kg polymer solution/t TS. In comparison, chitosan required 1.5–3.75 kg/t TS. These dosages are comparable to those recommended for wastewater (sludge). The results indicate that conditioning of FS can reduce total suspended solids (TSS) in the effluent of settling-thickening tanks by 22–81% and reduce dewatering time with drying beds by 59–97%. This means that the area of drying beds could be reduced by 59–97% with end-use as soil conditioner, or 9–26% as solid fuel. Least expensive options and availability will depend on the local context. In Dakar, Senegal, chitosan produced from shrimp waste appears to be most promising. PMID:26984372

  16. Locally produced natural conditioners for dewatering of faecal sludge.

    PubMed

    Gold, Moritz; Dayer, Pauline; Faye, Marie Christine Amie Sene; Clair, Guillaume; Seck, Alsane; Niang, Seydou; Morgenroth, Eberhard; Strande, Linda

    2016-11-01

    In urban areas of low-income countries, treatment of faecal sludge (FS) is insufficient or non-existent. This results in large amounts of FS being dumped into the environment. Existing treatment technologies for FS, such as settling-thickening tanks and drying beds, are land intensive which is limiting in urban areas. Enhanced settling and dewatering by conditioning was evaluated in order to reduce the treatment footprint (or increase treatment capacity). Conventional wastewater conditioners, such as commercially available lime and polymers, are expensive, and commonly rely on complex supply chains for use in low-income countries. Therefore, the treatment performance of five conditioners which could be produced locally was evaluated: Moringa oleifera seeds and press cake, Jatropha curcas seeds, Jatropha Calotropis leaves and chitosan. M. oleifera seeds and press cake, and chitosan improved settling and dewatering and had a similar performance compared to lime and polymers. Optimal dosages were 400-500 kg M. oleifera/t TS, 300-800 kg lime/t TS and 25-50 kg polymer solution/t TS. In comparison, chitosan required 1.5-3.75 kg/t TS. These dosages are comparable to those recommended for wastewater (sludge). The results indicate that conditioning of FS can reduce total suspended solids (TSS) in the effluent of settling-thickening tanks by 22-81% and reduce dewatering time with drying beds by 59-97%. This means that the area of drying beds could be reduced by 59-97% with end-use as soil conditioner, or 9-26% as solid fuel. Least expensive options and availability will depend on the local context. In Dakar, Senegal, chitosan produced from shrimp waste appears to be most promising.

  17. Regionalized life cycle impact assessment of air pollution on the global scale: Damage to human health and vegetation

    NASA Astrophysics Data System (ADS)

    van Zelm, Rosalie; Preiss, Philipp; van Goethem, Thomas; Van Dingenen, Rita; Huijbregts, Mark

    2016-06-01

    We developed regionalized characterization factors (CFs) for human health damage from particulate matter (PM2.5) and ozone, and for damage to vegetation from ozone, at the global scale. These factors can be used in the impact assessment phase of an environmental life cycle assessment. CFs express the overall damage of a certain pollutant per unit of emission of a precursor, i.e. primary PM2.5, nitrogen oxides (NOx), ammonia (NH3), sulfur dioxide (SO2) and non-methane volatile organic compounds (NMVOCs). The global chemical transport model TM5 was used to calculate intake fractions of PM2.5 and ozone for 56 world regions covering the whole globe. Furthermore, region-specific effect and damage factors were derived, using mortality rates, background concentrations and years of life lost. The emission-weighted world average CF for primary PM2.5 emissions is 629 yr kton-1, varying up to 3 orders of magnitude over the regions. Larger CFs were obtained for emissions in central Asia and Europe, and smaller factors in Australia and South America. The world average CFs for PM2.5 from secondary aerosols, i.e. NOx, NH3, and SO2, is 67.2 to 183.4 yr kton-1. We found that the CFs for ozone human health damage are 2-4 orders of magnitude lower compared to the CFs for damage due to primary PM2.5 and PM2.5 precursor emissions. Human health damage due to the priority air pollutants considered in this study was 1.7·10-2 yr capita-1 worldwide in year 2010, with primary PM2.5 emissions as the main contributor (62%). The emission-weighted world average CF for ecosystem damage due to ozone was 2.5 km2 yr kton-1 for NMVOCs and 8.7 m2 yr kg-1 for NOx emissions, varying 2-3 orders of magnitude over the regions. Ecosystem damage due to the priority air pollutants considered in this study was 1.6·10-4 km2 capita-1 worldwide in 2010, with NOx as the main contributor (72%). The spatial range in CFs stresses the importance of including spatial variation in life cycle impact assessment of

  18. Mercury isotopes in a forested ecosystem: Implications for air-surface exchange dynamics and the global mercury cycle

    NASA Astrophysics Data System (ADS)

    Demers, Jason D.; Blum, Joel D.; Zak, Donald R.

    2013-01-01

    ABSTRACT Forests mediate the biogeochemical cycling of mercury (Hg) between the atmosphere and terrestrial ecosystems; however, there remain many gaps in our understanding of these processes. Our objectives in this study were to characterize Hg isotopic composition within forests, and use natural abundance stable Hg isotopes to track sources and reveal mechanisms underlying the cycling of Hg. We quantified the stable Hg isotopic composition of foliage, forest floor, mineral soil, precipitation, and total gaseous mercury (THg(g)) in the atmosphere and in evasion from soil, in 10-year-old aspen forests at the Rhinelander FACE experiment in northeastern Wisconsin, USA. The effect of increased atmospheric CO2 and O3 concentrations on Hg isotopic composition was small relative to differences among forest ecosystem components. Precipitation samples had δ202Hg values of -0.74 to 0.06‰ and ∆199Hg values of 0.16 to 0.82‰. Atmospheric THg(g) had δ202Hg values of 0.48 to 0.93‰ and ∆199Hg values of -0.21 to -0.15‰. Uptake of THg(g) by foliage resulted in a large (-2.89‰) shift in δ202Hg values; foliage displayed δ202Hg values of -2.53 to -1.89‰ and ∆199Hg values of -0.37 to -0.23‰. Forest floor samples had δ202Hg values of -1.88 to -1.22‰ and ∆199Hg values of -0.22 to -0.14‰. Mercury isotopes distinguished geogenic sources of Hg and atmospheric derived sources of Hg in soil, and showed that precipitation Hg only accounted for ~16% of atmospheric Hg inputs. The isotopic composition of Hg evasion from the forest floor was similar to atmospheric THg(g); however, there were systematic differences in δ202Hg values and MIF of even isotopes (∆200Hg and ∆204Hg). Mercury evasion from the forest floor may have arisen from air-surface exchange of atmospheric THg(g), but was not the emission of legacy Hg from soils, nor re-emission of wet-deposition. This implies that there was net atmospheric THg(g) deposition to the forest soils. Furthermore, MDF of

  19. Diurnal HO2 cycles at clean air and urban sites in the troposphere

    NASA Technical Reports Server (NTRS)

    Hard, T. M.; Chan, C. Y.; Mehrabzadeh, A. A.; O'Brien, R. J.

    1992-01-01

    HO2 concentrations at two Oregon sites were determined for continuous periods of 36 to 48 hours, using fluorescence assay with gas expansion. At the sea level coastal site, NNW winds prevailed during daytime, and a point measurement of very low total nonmethane hydrocarbon concentration indicated the presence of remote tropospheric air of oceanic origin. At the urban site, HO2 was determined during moderately low ozone pollution levels. At both sites, maximum daily (HO2) was in the range of 1-2 x 10 exp 8/cu cm under clear-sky conditions, with an estimated overall uncertainty of 40 percent. HO2 was detected by continuous low-pressure sampling with flowing chemical conversion to HO, which was detected by laser-excited fluorescence. The instrumental response to HO2 was calibrated by the self-decay of HO2 at atmospheric pressure. Interference in the measured daytime HO2 concentrations by RO2 was estimated at less than 20 percent.

  20. Organics in the atmosphere: From air pollution to biogeochemical cycles and climate (Vilhelm Bjerknes Medal)

    NASA Astrophysics Data System (ADS)

    Kanakidou, Maria

    2016-04-01

    Organics are key players in the biosphere-atmosphere-climate interactions. They have also a significant anthropogenic component due to primary emissions or interactions with pollution. The organic pool in the atmosphere is a complex mixture of compounds of variable reactivity and properties, variable content in C, H, O, N and other elements depending on their origin and their history in the atmosphere. Multiphase atmospheric chemistry is known to produce organic acids with high oxygen content, like oxalic acid. This water soluble organic bi-acid is used as indicator for cloud processing and can form complexes with atmospheric Iron, affecting Iron solubility. Organics are also carriers of other nutrients like nitrogen and phosphorus. They also interact with solar radiation and with atmospheric water impacting on climate. In line with this vision for the role of organics in the atmosphere, we present results from a global 3-dimensional chemistry-transport model on the role of gaseous and particulate organics in atmospheric chemistry, accounting for multiphase chemistry and aerosol ageing in the atmosphere as well as nutrients emissions, atmospheric transport and deposition. Historical simulations and projections highlight the human impact on air quality and atmospheric deposition to the oceans. The results are put in the context of climate change. Uncertainties and implications of our findings for biogeochemical and climate modeling are discussed.

  1. Very-High-Cycle-Fatigue of in-service air-engine blades, compressor and turbine

    NASA Astrophysics Data System (ADS)

    Shanyavskiy, A. A.

    2014-01-01

    In-service Very-High-Cycle-Fatigue (VHCF) regime of compressor vane and turbine rotor blades of the Al-based alloy VD-17 and superalloy GS6K, respectively, was considered. Surface crack origination occurred at the lifetime more than 1500 hours for vanes and after 550 hours for turbine blades. Performed fractographic investigations have shown that subsurface crack origination in vanes took place inspite of corrosion pittings on the blade surface. This material behavior reflected lifetime limit that was reached by the criterion VHCF. In superalloy GS6K subsurface fatigue cracking took place with the appearance of flat facet. This phenomenon was discussed and compared with specimens cracking of the same superalloy but prepared by the powder technology. In turbine blades VHCF regime appeared because of resonance of blades under the influenced gas stream. Both cases of compressor-vanes and turbine blades in-service cracking were discussed with crack growth period and stress equivalent estimations. Recommendations to continue aircrafts airworthiness were made for in-service blades.

  2. Modeled Seasonal Variations of Firn Density Induced by Steady State Surface Air Temperature Cycle

    NASA Technical Reports Server (NTRS)

    Jun, Li; Zwally, H. Jay; Koblinsky, Chester J. (Technical Monitor)

    2001-01-01

    Seasonal variations of firn density in ice-sheet firn layers have been attributed to variations in deposition processes or other processes within the upper firn. A recent high-resolution (mm scale) density profile, measured along a 181 m core from Antarctica, showed small-scale density variations with a clear seasonal cycle that apparently was not-related to seasonal variations in deposition or known near-surface processes (Gerland and others 1999). A recent model of surface elevation changes (Zwally and Li, submitted) produced a seasonal variation in firn densification, and explained the seasonal surface elevation changes observed by satellite radar altimeters. In this study, we apply our 1-D time-dependent numerical model of firn densification that includes a temperature-dependent formulation of firn densification based on laboratory measurements of grain growth. The model is driven by a steady-state seasonal surface temperature and a constant accumulation rate appropriate for the measured Antarctic ice core. The modeled seasonal variations in firn density show that the layers of snow deposited during spring to mid-summer with the highest temperature history compress to the highest density, and the layers deposited during later summer to autumn with the lowest temperature history compress to the lowest density. The initial amplitude of the seasonal difference of about 0.13 reduces to about 0.09 in five years and asymptotically to 0.92 at depth, which is consistent with the core measurements.

  3. Air core notch-coil magnet with variable geometry for fast-field-cycling NMR

    NASA Astrophysics Data System (ADS)

    Kruber, S.; Farrher, G. D.; Anoardo, E.

    2015-10-01

    In this manuscript we present details on the optimization, construction and performance of a wide-bore (71 mm) α -helical-cut notch-coil magnet with variable geometry for fast-field-cycling NMR. In addition to the usual requirements for this kind of magnets (high field-to-power ratio, good magnetic field homogeneity, low inductance and resistance values) a tunable homogeneity and a more uniform heat dissipation along the magnet body are considered. The presented magnet consists of only one machined metallic cylinder combined with two external movable pieces. The optimal configuration is calculated through an evaluation of the magnetic flux density within the entire volume of interest. The magnet has a field-to-current constant of 0.728 mT/A, allowing to switch from zero to 0.125 T in less than 3 ms without energy storage assistance. For a cylindrical sample volume of 35 cm3 the effective magnet homogeneity is lower than 130 ppm.

  4. Solar cycle signal in air temperature in North America - Amplitude, gradient, phase and distribution

    NASA Technical Reports Server (NTRS)

    Currie, R. G.

    1981-01-01

    The considered investigation was motivated by three factors. One is related to an extension of single-channel MESA to multi-channel by Strand (1977), Morf et al. (1978), and Jones (1978). MESA is a high-resolution signal processing and spectrum analysis technique due to Burg (1975). The considered developments resulted in the discovery of the 11-year solar cycle signal in the change of the length of day by Currie (1980, 1981). They also led Currie (1981) to study the phase spectrum of the 11-year term in height H of sea level. The investigation tries to clarify the phase relations among the involved parameters. The second factor is connected with an application of the linear time domain technique used by Currie (1981) to temperature records to obtain more accurate information regarding the signal amplitude. The third factor of motivation is related to increases in the number of stations available for an analysis, the greater average length of the records, and the more accurate data set.

  5. Air core notch-coil magnet with variable geometry for fast-field-cycling NMR.

    PubMed

    Kruber, S; Farrher, G D; Anoardo, E

    2015-10-01

    In this manuscript we present details on the optimization, construction and performance of a wide-bore (71 mm) α-helical-cut notch-coil magnet with variable geometry for fast-field-cycling NMR. In addition to the usual requirements for this kind of magnets (high field-to-power ratio, good magnetic field homogeneity, low inductance and resistance values) a tunable homogeneity and a more uniform heat dissipation along the magnet body are considered. The presented magnet consists of only one machined metallic cylinder combined with two external movable pieces. The optimal configuration is calculated through an evaluation of the magnetic flux density within the entire volume of interest. The magnet has a field-to-current constant of 0.728 mT/A, allowing to switch from zero to 0.125 T in less than 3 ms without energy storage assistance. For a cylindrical sample volume of 35 cm(3) the effective magnet homogeneity is lower than 130 ppm.

  6. Polysaccharide (guar) as a soil conditioner. [Cyamopsis tetragonoloba

    SciTech Connect

    Wallace, A.

    1986-05-01

    The author tested a polysaccharide (guar) derived from guar bean (Cyamopsis tetragonoloba L. Taub.) was tested in soil flocculation tests and found that use of acid solutions to fully dissolve the guar leads to more effective soil conditioning than otherwise would be possible, and that guar does not lead to strong water-stable aggregates. Larger quantities were needed to improve emergence and growth of plants in a glasshouse than for synthetic soil conditioners. The effects of soil conditioning with guar did not last long.

  7. Bioconversion of eucalyptus bark waste into soil conditioner.

    PubMed

    Yadav, K R; Sharma, R K; Kothari, R M

    2002-01-01

    An optimized protocol for the bioconversion of eucalyptus bark was devised. It comprised: (i) mechanical reduction in bark size to 0.5-3.0 cm, (ii) moistening to 60-65%, (iii) fortification with ligninase-rich fungus Volvariella sp. (S-1) and 2% urea and (iv) maintenance of this composting mix under aerobic and ambient condition for 14-15 weeks. The resulting bark soil conditioner (BSC) was an easily crumbling, reddish brown biomass, with physico-chemical and microbial properties which would enrich soil fertility/productivity.

  8. Adhesive bonding of resin composite to various titanium surfaces using different metal conditioners and a surface modification system

    PubMed Central

    ALMILHATTI, Hercules Jorge; NEPPELENBROEK, Karin Hermana; VERGANI, Carlos Eduardo; MACHADO, Ana Lúcia; PAVARINA, Ana Cláudia; GIAMPAOLO, Eunice Teresinha

    2013-01-01

    Objective This study evaluated the effect of three metal conditioners on the shear bond strength (SBS) of a prosthetic composite material to cpTi grade I having three surface treatments. Material and Methods One hundred sixty eight rivet-shaped specimens (8.0x2.0 mm) were cast and subjected to polishing (P) or sandblasting with either 50 mm (50SB) or 250 mm (250SB) Al2O3. The metal conditioners Metal Photo Primer (MPP), Cesead II Opaque Primer (OP), Targis Link (TL), and one surface modification system Siloc (S), were applied to the specimen surfaces, which were covered with four 1-mm thick layers of resin composite. The resin layers were exposed to curing light for 90 s separately. Seven specimens from each experimental group were stored in water at 37ºC for 24 h while the other 7 specimens were subjected to 5,000 thermal cycles consisting of water baths at 4ºC and 60ºC (n=7). All specimens were subjected to SBS test (0.5 mm/min) until failure occurred, and further 28 specimens were analyzed using scanning electron microscope (SEM) and X-ray energy-dispersive spectroscopy (EDS). Data were analyzed by 3-way ANOVA followed by post-hoc Tukey's test (α=0.05). Results On 50SB surfaces, OP groups showed higher SBS means than MPP (P<0.05), while no significant difference was found among OP, S, and TL groups. On 250SB surfaces, OP and TL groups exhibited higher SBS than MPP and S (P<0.05). No significant difference in SBS was found between OP and TL groups nor between MPP and S groups. The use of conditioners on 250SB surfaces resulted in higher SBS means than the use of the same products on 50SB surfaces (P<0.05). Conclusion Sandblasting associated with the use of metal conditioners improves SBS of resin composites to cpTi. PMID:24473727

  9. Air pollutants and toxic emissions of various mileage motorcycles for ECE driving cycles

    NASA Astrophysics Data System (ADS)

    Tsai, Jiun-Horng; Huang, Pei-Hsiu; Chiang, Hung-Lung

    2017-03-01

    Motorcycles were selected to determine their fuel consumption and exhaust emissions following ECE driving cycles. Exhaust constituents including CO2, CO, NOx, total hydrocarbons (THC) and hydrocarbon species (27 paraffins, 9 olefins, 16 aromatics and 15 carbonyls) were investigated for this work. The age of 10- 90% of the selected motorcycles ranged from 2.5 to 12.4 years, and their mileage ranged from 5400 to 39,300 km. CO emission ranged from 1.4 to 6.4 g/km (median value: 2.98 g/km), THC from 0.41 to 1.54 g/km (median value: 0.98 g/km), NOx from 0.16 to 0.28 g/km (median value: 0.21 g/km), CO2 from 58.9 to 62.2 g/km (median value: 60.5 g/km) and fuel consumption from 30.7 to 36.4 km/L (median value: 33.4 km/L), corresponding to the percentage cumulative data from 10 to 90% of the selected motorcycles. Results indicated that the motorcycle exhaust emission and fuel consumption depended on their mileage and ages. An increase in mileage of 1000 km resulted in an increase of 103 mg for CO emission and 14.7 mg for hydrocarbon emission and a reduction of 1.52 mg NOx emission and 0.11 km per liter fuel consumption. For various VOC groups, a mileage increase of 1000 km corresponding to the increased exhaust emission of paraffins was 6.71 mg, olefins 1.90 mg, aromatics 7.04 mg, carbonyls 0.283 mg and 67 VOC species 15.9 mg. Fuel consumption and emissions of CO and hydrocarbon increased in motorcycles over the guaranteed mileage of 15,000 km.

  10. Cycling of Lead Through Soil, Air, and Household Dust in El Paso, Texas

    NASA Astrophysics Data System (ADS)

    Pingitore, N. E.; Clague, J.; Amaya, M. A.

    2008-12-01

    Elimination of leaded gasoline in the US is associated with a dramatic overall decrease in ambient lead in the environment and blood lead levels in our population. However, Pb is such a potent neurotoxin for children during the formative growth years that legislation for additional reduction of airborne lead levels is under consideration. X-ray absorption spectroscopy of a suite of samples of local (El Paso) soil, airborne particulate matter, and household dust reveals that lead humate is the dominant Pb species in these diverse environmental materials. Lead humate is a stable complex of Pb with the humus component of soil, a product of interaction between the humus and such introduced contaminant lead species as lead oxide, lead sulfate, etc. Because lead humate forms only in soil, we conclude that the source of the majority of the lead in El Paso's airborne particulate matter and household dust is local soils. Analysis of lead isotopes in selected samples is consistent with this conclusion. Re-entrainment of low-density (relative to most Pb species) humus soil particles is the apparent pathway from soil to air. Deposition of airborne particulate matter and pedal traction are the presumed mechanisms for transfer to household interiors. Reduction of airborne lead in El Paso by reducing input from its dominant local source may require extensive soil remediation, a tedious and expensive prospect. X-Ray absorption spectroscopy experiments were conducted at the Stanford Synchrotron Radiation Laboratory on beam lines 7-3, 10-2, and 11-2. Spectra were collected at the Pb L-III absorption edge in fluorescence mode using a 13-element or a 30-element Ge solid-state detector. This publication was made possible by grant numbers 1RO1-ES11367 and 1 S11 ES013339-04 from the National Institute of Environmental Health Sciences (NIEHS), NIH. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the NIEHS, NIH. Partial

  11. Shampoo and Conditioners: What a Dermatologist Should Know?

    PubMed Central

    D'Souza, Paschal; Rathi, Sanjay K

    2015-01-01

    Dermatologists many a times encounter questions from patients and even colleagues asking about how to keep their hair looking clean, healthy and beautiful. Therefore, familiarity and a basic knowledge of the available hair care products will help them to guide their patients properly. A shampoo not only provides the cleaning of the scalp skin and hair as its primary function, but in addition also serves to condition and beautify hair and acts as an adjunct in the management of various scalp disorders. To achieve this, various ingredients in the correct proportion are mixed to provide a shampoo which is suitable for individuals having different hair types and hair need. Among the ingredients that go into the making of a shampoo are detergents, conditioners, thickeners, sequestering agents, pH adjusters, preservatives and specialty additives. Hair conditioners are designed to improve hair manageability, decrease hair static electricity and add luster. They are used in several ways depending upon the state of hair and requirement of the individual. This article attempts to put forward the basic and practical aspects regarding use of these products. PMID:26120149

  12. Shampoo and Conditioners: What a Dermatologist Should Know?

    PubMed

    D'Souza, Paschal; Rathi, Sanjay K

    2015-01-01

    Dermatologists many a times encounter questions from patients and even colleagues asking about how to keep their hair looking clean, healthy and beautiful. Therefore, familiarity and a basic knowledge of the available hair care products will help them to guide their patients properly. A shampoo not only provides the cleaning of the scalp skin and hair as its primary function, but in addition also serves to condition and beautify hair and acts as an adjunct in the management of various scalp disorders. To achieve this, various ingredients in the correct proportion are mixed to provide a shampoo which is suitable for individuals having different hair types and hair need. Among the ingredients that go into the making of a shampoo are detergents, conditioners, thickeners, sequestering agents, pH adjusters, preservatives and specialty additives. Hair conditioners are designed to improve hair manageability, decrease hair static electricity and add luster. They are used in several ways depending upon the state of hair and requirement of the individual. This article attempts to put forward the basic and practical aspects regarding use of these products.

  13. Multi-scale approach to Euro-Atlantic climatic cycles based on phenological time series, air temperatures and circulation indexes.

    PubMed

    Mariani, Luigi; Zavatti, Franco

    2017-03-24

    The spectral periods in North Atlantic Oscillation (NAO), Atlantic Multidecadal Oscillation (AMO) and El Nino Southern Oscillation (ENSO) were analyzed and has been verified how they imprint a time series of European temperature anomalies (ETA), two European temperature time series and some phenological series (dates of cherry flowering and grapevine harvest). Such work had as reference scenario the linear causal chain MCTP (Macroscale Circulation→Temperature→Phenology of crops) that links oceanic and atmospheric circulation to surface air temperature which in its turn determines the earliness of appearance of phenological phases of plants. Results show that in the three segments of the MCTP causal chain are present cycles with the following central period in years (the % of the 12 analyzed time series interested by these cycles are in brackets): 65 (58%), 24 (58%), 20.5 (58%), 13.5 (50%), 11.5 (58%), 7.7 (75%), 5.5 (58%), 4.1 (58%), 3 (50%), 2.4 (67%). A comparison with short term spectral peaks of the four El Niño regions (nino1+2, nino3, nino3.4 and nino4) show that 10 of the 12 series are imprinted by periods around 2.3-2.4yr while 50-58% of the series are imprinted by El Niño periods of 4-4.2, 3.8-3.9, 3-3.1years. The analysis highlights the links among physical and biological variables of the climate system at scales that range from macro to microscale whose knowledge is crucial to reach a suitable understanding of the ecosystem behavior. The spectral analysis was also applied to a time series of spring - summer precipitation in order to evaluate the presence of peaks common with other 12 selected series with result substantially negative which brings us to rule out the existence of a linear causal chain MCPP (Macroscale Circulation→Precipitation→Phenology).

  14. Air exposure behavior of the semiterrestrial crab Neohelice granulata allows tolerance to severe hypoxia but not prevent oxidative damage due to hypoxia-reoxygenation cycle.

    PubMed

    de Lima, Tábata Martins; Geihs, Márcio Alberto; Nery, Luiz Eduardo Maia; Maciel, Fábio Everton

    2015-11-01

    The air exposure behavior of the semi-terrestrial crab Neohelice granulata during severe hypoxia was studied. This study also verified whether this behavior mitigates possible oxidative damage, namely lipoperoxidation, caused by hypoxia and reoxygenation cycles. The lethal time for 50% of the crabs subjected to severe hypoxia (0.5 mgO2 · L(-1)) with free access to air was compared to that of crabs subjected to severe hypoxia without access to air. Crabs were placed in aquaria divided into three zones: water (when the animal was fully submersed), land (when the animal was completely emerged) and intermediate (when the animal was in contact with both environments) zones. Then the crabs were held in this condition for 270 min, and the time spent in each zone was recorded. Lipid peroxidation (LPO) damage to the walking leg muscles was determined for the following four experimental conditions: a--normoxic water with free access to air; b--hypoxic water without access to air; c--hypoxic water followed by normoxic water without air access; and d--hypoxic water with free access to air. When exposed to hypoxic water, N. granulata spent significantly more time on land, 135.3 ± 17.7 min, whereas control animals (exposed to normoxic water) spent more time submerged, 187.4 ± 20.2 min. By this behavior, N. granulata was able to maintain a 100% survival rate when exposed to severe hypoxia. However, N. granulata must still return to water after periods of air exposure (~ 14 min), causing a sequence of hypoxia/reoxygenation events. Despite increasing the survival rate, hypoxia with air access does not decrease the lipid peroxidation damage caused by the hypoxia and reoxygenation cycle experienced by these crabs.

  15. The Role of Distribution Infrastructure and Equipment in the Life-cycle Air Emissions of Liquid Transportation Fuels

    NASA Astrophysics Data System (ADS)

    Strogen, Bret Michael

    Production of fuel ethanol in the United States has increased ten-fold since 1993, largely as a result of government programs motivated by goals to improve domestic energy security, economic development, and environmental impacts. Over the next decade, the growth of and eventually the total production of second generation cellulosic biofuels is projected to exceed first generation (e.g., corn-based) biofuels, which will require continued expansion of infrastructure for producing and distributing ethanol and perhaps other biofuels. In addition to identifying potential differences in tailpipe emissions from vehicles operating with ethanol-blended or ethanol-free gasoline, environmental comparison of ethanol to petroleum fuels requires a comprehensive accounting of life-cycle environmental effects. Hundreds of published studies evaluate the life-cycle emissions from biofuels and petroleum, but the operation and maintenance of storage, handling, and distribution infrastructure and equipment for fuels and fuel feedstocks had not been adequately addressed. Little attention has been paid to estimating and minimizing emissions from these complex systems, presumably because they are believed to contribute a small fraction of total emissions for petroleum and first generation biofuels. This research aims to quantify the environmental impacts associated with the major components of fuel distribution infrastructure, and the impacts that will be introduced by expanding the parallel infrastructure needed to accommodate more biofuels in our existing systems. First, the components used in handling, storing, and transporting feedstocks and fuels are physically characterized by typical operating throughput, utilization, and lifespan. US-specific life-cycle GHG emission and water withdrawal factors are developed for each major distribution chain activity by applying a hybrid life-cycle assessment methodology to the manufacturing, construction, maintenance and operation of each

  16. Life cycle air quality impacts of conventional and alternative light-duty transportation in the United States.

    PubMed

    Tessum, Christopher W; Hill, Jason D; Marshall, Julian D

    2014-12-30

    Commonly considered strategies for reducing the environmental impact of light-duty transportation include using alternative fuels and improving vehicle fuel economy. We evaluate the air quality-related human health impacts of 10 such options, including the use of liquid biofuels, diesel, and compressed natural gas (CNG) in internal combustion engines; the use of electricity from a range of conventional and renewable sources to power electric vehicles (EVs); and the use of hybrid EV technology. Our approach combines spatially, temporally, and chemically detailed life cycle emission inventories; comprehensive, fine-scale state-of-the-science chemical transport modeling; and exposure, concentration-response, and economic health impact modeling for ozone (O3) and fine particulate matter (PM2.5). We find that powering vehicles with corn ethanol or with coal-based or "grid average" electricity increases monetized environmental health impacts by 80% or more relative to using conventional gasoline. Conversely, EVs powered by low-emitting electricity from natural gas, wind, water, or solar power reduce environmental health impacts by 50% or more. Consideration of potential climate change impacts alongside the human health outcomes described here further reinforces the environmental preferability of EVs powered by low-emitting electricity relative to gasoline vehicles.

  17. Life cycle air quality impacts of conventional and alternative light-duty transportation in the United States

    PubMed Central

    Hill, Jason D.; Marshall, Julian D.

    2014-01-01

    Commonly considered strategies for reducing the environmental impact of light-duty transportation include using alternative fuels and improving vehicle fuel economy. We evaluate the air quality-related human health impacts of 10 such options, including the use of liquid biofuels, diesel, and compressed natural gas (CNG) in internal combustion engines; the use of electricity from a range of conventional and renewable sources to power electric vehicles (EVs); and the use of hybrid EV technology. Our approach combines spatially, temporally, and chemically detailed life cycle emission inventories; comprehensive, fine-scale state-of-the-science chemical transport modeling; and exposure, concentration–response, and economic health impact modeling for ozone (O3) and fine particulate matter (PM2.5). We find that powering vehicles with corn ethanol or with coal-based or “grid average” electricity increases monetized environmental health impacts by 80% or more relative to using conventional gasoline. Conversely, EVs powered by low-emitting electricity from natural gas, wind, water, or solar power reduce environmental health impacts by 50% or more. Consideration of potential climate change impacts alongside the human health outcomes described here further reinforces the environmental preferability of EVs powered by low-emitting electricity relative to gasoline vehicles. PMID:25512510

  18. Luni-solar 18.6- and solar cycle 10 - 11-year signals in USA air temperature records.

    NASA Astrophysics Data System (ADS)

    Currie, R. G.

    1993-02-01

    Spectrum analysis of 1197 USA air temperature records yields evidence for two peaks with periods 18.8±1.7 and 10.4±0.5 years. Tests by the t-statistic show that both are significant at confidence levels of 99.9 per cent, and both account for 23 per cent of total variance in the raw data. They are identified as the luni-solar 18.6 year Mn and solar cycle Sc 10 - 11 year signals in climate, induced by the twelfth largest constituent tide acting on the Earth and a variation of 10 to 11 years in the Sun's luminosity of the order of 0.1 per cent. Amplitude and phase of Mn wavetrains are highly non-stationary with respect to both time and geography; in particular, abrupt 180° phase changes in wave polarity are often observed. Amplitude and phase of the Sc waves are also highly non-stationary.

  19. Novel strategy to mitigate cathode catalyst degradation during air/air startup cycling via the atmospheric resistive switching mechanism of a hydrogen anode with a platinum catalyst supported on tantalum-doped titanium dioxide

    NASA Astrophysics Data System (ADS)

    Shintani, Haruhiko; Kojima, Yuya; Kakinuma, Katsuyoshi; Watanabe, Masahiro; Uchida, Makoto

    2015-10-01

    We propose a new strategy for alleviating the reverse current phenomenon using a unique "atmospheric resistive switching mechanism" (ARSM) of a metal oxide semiconductor support, such that the electrical resistivity changes depending on the gas atmosphere. The membrane-electrode assembly (MEA) using Ta-doped TiO2-supported platinum (Pt/Ta-TiO2) as the anode catalyst showed approximately one order of magnitude greater resistance in air than in hydrogen. The overpotential of the hydrogen oxidation reaction was negligible up to at least 1.5 A cm-2. The losses of electrochemically active surface area and carbon corrosion of the cathode catalyst during air/air startup cycling were significantly suppressed by the use of the Pt/Ta-TiO2 anode. The decrease in the degradation is attributed to a reduction of the reverse current due to a low oxygen reduction reaction rate at the anode, which showed high resistivity in air. These results demonstrate the effectiveness of the ARSM in mitigating cathode catalyst degradation during air/air startup cycling.

  20. Performance Optimization of an Air-Standard Irreversible Dual-Atkinson Cycle Engine Based on the Ecological Coefficient of Performance Criterion

    PubMed Central

    Gonca, Guven; Sahin, Bahri

    2014-01-01

    This paper presents an ecological performance analysis and optimization for an air-standard irreversible Dual-Atkinson cycle (DAC) based on the ecological coefficient of performance (ECOP) criterion which includes internal irreversibilities, heat leak, and finite-rate of heat transfer. A comprehensive numerical analysis has been realized so as to investigate the global and optimal performances of the cycle. The results obtained based on the ECOP criterion are compared with a different ecological function which is named as the ecologic objective-function and with the maximum power output conditions. The results have been attained introducing the compression ratio, cut-off ratio, pressure ratio, Atkinson cycle ratio, source temperature ratio, and internal irreversibility parameter. The change of cycle performance with respect to these parameters is investigated and graphically presented. PMID:25170525

  1. Effects of thermal cycling and thermal aging on the hermeticity and strength of silver-copper oxide air-brazed seals

    NASA Astrophysics Data System (ADS)

    Scott Weil, K.; Coyle, Christopher A.; Darsell, Jens T.; Xia, Gordon G.; Hardy, John S.

    Thermal cycle and exposure tests were conducted on ceramic-to-metal joints prepared by a new sealing technique. Known as reactive air brazing, this joining method is currently being considered for use in sealing various high-temperature solid-state electrochemical devices, including planar solid oxide fuel cells (pSOFC). In order to simulate a typical pSOFC application, test specimens were prepared by joining ceramic anode/electrolyte bilayers to metal washers, of the same composition as the common frame materials employed in pSOFC stacks, using a filler metal composed of 4 mol% CuO in silver. The brazed samples were exposure tested at 750 °C for 200, 400, and 800 h in both simulated fuel and air environments and thermally cycled at rapid rate (75 °C min -1) between room temperature and 750 °C for as many as 50 cycles. Subsequent joint strength testing and microstructural analysis indicated that the samples exposure tested in air displayed little degradation with respect to strength, hermeticity, or microstructure out to 800 h of exposure. Those tested in fuel showed no change in rupture strength or loss in hermeticity after 800 h of high-temperature exposure, but did undergo microstructural change due to the dissolution of hydrogen into the silver-based braze material. Air-brazed specimens subjected to rapid thermal cycling exhibited no loss in joint strength or hermeticity, but displayed initial signs of seal delamination along the braze-electrolyte interface after 50 cycles.

  2. Life-cycle assessment of greenhouse gas and air emissions of electric vehicles: A comparison between China and the U.S.

    NASA Astrophysics Data System (ADS)

    Huo, Hong; Cai, Hao; Zhang, Qiang; Liu, Fei; He, Kebin

    2015-05-01

    We evaluated the fuel-cycle emissions of greenhouse gases (GHGs) and air pollutants (NOx, SO2, PM10, and PM2.5) of electric vehicles (EVs) in China and the United States (U.S.), two of the largest potential markets for EVs in the world. Six of the most economically developed and populated regions in China and the U.S. were selected. The results showed that EV fuel-cycle emissions depend substantially on the carbon intensity and cleanness of the electricity mix, and vary significantly across the regions studied. In those regions with a low share of coal-based electricity (e.g., California), EVs can reduce GHG and air pollutant emissions (except for PM) significantly compared with conventional vehicles. However, in the Chinese regions and selected U.S. Midwestern states where coal dominates in the generation mix, EVs can reduce GHG emissions but increase the total and urban emissions of air pollutants. In 2025, EVs will offer greater reductions in GHG and air pollutant emissions because emissions from power plants will be better controlled; EVs in the Chinese regions examined, however, may still increase SO2 and PM emissions. Reductions of 60-85% in GHGs and air pollutants could be achieved were EVs charged with 80% renewable electricity or the electricity generated from the best available technologies of coal-fired power plants, which are futuristic power generation scenarios.

  3. Effects of polyacrylamide soil conditioner on the iron status of soybean plants. [Glycine max

    SciTech Connect

    Wallace, A.; Wallace, G.A.; Abouzamzam, A.M.; Char, J.W.

    1986-05-01

    An iron-inefficient cultivar of soybean (Glycine max L. Merr. Bragg cv. PI-54619-5-1 was grown in two different calcareous soils, a Natrargid and a Torrifluvents, to determine if improvement of soil aeration with a synthetic polyacrylamide as a soil conditioner would decrease the tendency of the cultivar to lime-induced chlorosis. The results suggest that when soil is well aerated with good drainage from use of the soil conditioner, the iron status of plants is improved.

  4. Unipolar pulse and bipolar noise testing of wideband signal noise conditioner (MC476-0132-0034)

    NASA Technical Reports Server (NTRS)

    Harris, J. E.

    1977-01-01

    Information is presented on performance characteristics of the shuttle orbiter wideband signal conditioner when subjected to special types of input signals. Design analysis of the signal flow path through the signal conditioning amplifier was performed followed by acutal testing of the amplifier with various signal inputs. Results indicate that the signal conditioner should perform acceptably if the shuttle orbiter flight vibration signal levels are in accord with preflight predictions.

  5. Air Conditioning with Magnetic Refrigeration : An Efficient, Green Compact Cooling System Using Magnetic Refrigeration

    SciTech Connect

    2010-09-01

    BEETIT Project: Astronautics is developing an air conditioning system that relies on magnetic fields. Typical air conditioners use vapor compression to cool air. Vapor compression uses a liquid refrigerant to circulate within the air conditioner, absorb the heat, and pump the heat out into the external environment. Astronautics’ design uses a novel property of certain materials, called “magnetocaloric materials”, to achieve the same result as liquid refrigerants. These magnetocaloric materials essentially heat up when placed within a magnetic field and cool down when removed, effectively pumping heat out from a cooler to warmer environment. In addition, magnetic refrigeration uses no ozone-depleting gases and is safer to use than conventional air conditioners which are prone to leaks.

  6. The Cross-Validation of the United States Air Force Submaximal Cycle Ergometer Test to Estimate Aerobic Capacity

    DTIC Science & Technology

    1994-06-01

    and Febiger, 199’. 2. Arts, F.JP., H. Kuipers , A.E. Jeukendrup, et al. A short cycle ergometry test to predict workload and maximal oxygen uptake. Int...133Description of Monark Cycle Ergometer Calibration Monark Cycle Ergometer calibration is achieved by first turning the resistance belt to zero on the free

  7. A high-fidelity multiphysics model for the new solid oxide iron-air redox battery. part I: Bridging mass transport and charge transfer with redox cycle kinetics

    NASA Astrophysics Data System (ADS)

    Jin, Xinfang; Zhao, Xuan; Huang, Kevin

    2015-04-01

    A high-fidelity two-dimensional axial symmetrical multi-physics model is described in this paper as an effort to simulate the cycle performance of a recently discovered solid oxide metal-air redox battery (SOMARB). The model collectively considers mass transport, charge transfer and chemical redox cycle kinetics occurring across the components of the battery, and is validated by experimental data obtained from independent research. In particular, the redox kinetics at the energy storage unit is well represented by Johnson-Mehl-Avrami-Kolmogorov (JMAK) and Shrinking Core models. The results explicitly show that the reduction of Fe3O4 during the charging cycle limits the overall performance. Distributions of electrode potential, overpotential, Nernst potential, and H2/H2O-concentration across various components of the battery are also systematically investigated.

  8. A high-fidelity multiphysics model for the new solid oxide iron-air redox battery part I: Bridging mass transport and charge transfer with redox cycle kinetics

    SciTech Connect

    Jin, XF; Zhao, X; Huang, K

    2015-04-15

    A high-fidelity two-dimensional axial symmetrical multi-physics model is described in this paper as an effort to simulate the cycle performance of a recently discovered solid oxide metal-air redox battery (SOMARB). The model collectively considers mass transport, charge transfer and chemical redox cycle kinetics occurring across the components of the battery, and is validated by experimental data obtained from independent research. In particular, the redox kinetics at the energy storage unit is well represented by Johnson-Mehl-Avrami-Kolmogorov (JIVIAK) and Shrinking Core models. The results explicitly show that the reduction of Fe3O4 during the charging cycle limits the overall performance. Distributions of electrode potential, overpotential, Nernst potential, and H-2/H2O-concentration across various components of the battery are also systematically investigated. (C) 2015 Elsevier B.V. All rights reserved.

  9. Solar Absorption Refrigeration System for Air-Conditioning of a Classroom Building in Northern India

    NASA Astrophysics Data System (ADS)

    Agrawal, Tanmay; Varun; Kumar, Anoop

    2015-10-01

    Air-conditioning is a basic tool to provide human thermal comfort in a building space. The primary aim of the present work is to design an air-conditioning system based on vapour absorption cycle that utilizes a renewable energy source for its operation. The building under consideration is a classroom of dimensions 18.5 m × 13 m × 4.5 m located in Hamirpur district of Himachal Pradesh in India. For this purpose, cooling load of the building was calculated first by using cooling load temperature difference method to estimate cooling capacity of the air-conditioning system. Coefficient of performance of the refrigeration system was computed for various values of strong and weak solution concentration. In this work, a solar collector is also designed to provide required amount of heat energy by the absorption system. This heat energy is taken from solar energy which makes this system eco-friendly and sustainable. A computer program was written in MATLAB to calculate the design parameters. Results were obtained for various values of solution concentrations throughout the year. Cost analysis has also been carried out to compare absorption refrigeration system with conventional vapour compression cycle based air-conditioners.

  10. Electronic Power Conditioner for Ku-band Travelling Wave Tube

    NASA Astrophysics Data System (ADS)

    Kowstubha, Palle; Krishnaveni, K.; Ramesh Reddy, K.

    2016-07-01

    A highly sophisticated regulated power supply is known as electronic power conditioner (EPC) is required to energise travelling wave tubes (TWTs), which are used as RF signal amplifiers in satellite payloads. The assembly consisting of TWT and EPC together is known as travelling wave tube amplifier (TWTA). EPC is used to provide isolated and conditioned voltage rails with tight regulation to various electrodes of TWT and makes its RF performance independent of solar bus variations which are caused due to varying conditions of eclipse and sunlit. The payload mass and their power consumption is mainly due to the existence of TWTAs that represent about 35 % of total mass and about 70-90 % (based on the type of satellite application) of overall dc power consumption. This situation ensures a continuous improvement in the design of TWTAs and their associated EPCs to realize more efficient and light products. Critical technologies involved in EPCs are design and configuration, closed loop regulation, component and material selection, energy limiting of high voltage (HV) outputs and potting of HV card etc. This work addresses some of these critical technologies evolved in realizing and testing the state of art of EPC and it focuses on the design of HV supply with a HV and high power capability, up to 6 kV and 170 WRF, respectively required for a space TWTA. Finally, an experimental prototype of EPC with a dc power of 320 W provides different voltages required by Ku-band TWT in open loop configuration.

  11. The comparison of cold-water immersion and cold air therapy on maximal cycling performance and recovery markers following strength exercises

    PubMed Central

    Hayter, Kane J.; Schumann, Moritz; Deakin, Glen B.

    2016-01-01

    This study examined the effects of cold-water immersion (CWI) and cold air therapy (CAT) on maximal cycling performance (i.e. anaerobic power) and markers of muscle damage following a strength training session. Twenty endurance-trained but strength-untrained male (n = 10) and female (n = 10) participants were randomised into either: CWI (15 min in 14 °C water to iliac crest) or CAT (15 min in 14 °C air) immediately following strength training (i.e. 3 sets of leg press, leg extensions and leg curls at 6 repetition maximum, respectively). Creatine kinase, muscle soreness and fatigue, isometric knee extensor and flexor torque and cycling anaerobic power were measured prior to, immediately after and at 24 (T24), 48 (T48) and 72 (T72) h post-strength exercises. No significant differences were found between treatments for any of the measured variables (p > 0.05). However, trends suggested recovery was greater in CWI than CAT for cycling anaerobic power at T24 (10% ± 2%, ES = 0.90), T48 (8% ± 2%, ES = 0.64) and T72 (8% ± 7%, ES = 0.76). The findings suggest the combination of hydrostatic pressure and cold temperature may be favourable for recovery from strength training rather than cold temperature alone. PMID:27069791

  12. Air conditioning system

    DOEpatents

    Lowenstein, Andrew; Miller, Jeffrey; Gruendeman, Peter; DaSilva, Michael

    2005-02-01

    An air conditioner comprises a plurality of plates arranged in a successively stacked configuration with portions thereof having a spaced apart arrangement, and defining between successive adjacent pairs of plates at the spaced apart portions a first and second series of discrete alternating passages wherein a first air stream is passed through the first series of passages and a second air stream is passed through the second series of passages; and said stacked configuration of plates forming integrally therewith a liquid delivery means for delivering from a source a sufficient quantity of a liquid to the inside surfaces of the first series of fluid passages in a manner which provides a continuous flow of the liquid from a first end to a second end of the plurality of plates while in contact with the first air stream.

  13. Frictional Characterization of Chemical-Mechanical Polishing Pad Surface and Diamond Conditioner Wear

    NASA Astrophysics Data System (ADS)

    Yamada, Yohei; Kawakubo, Masanori; Hirai, Osamu; Konishi, Nobuhiro; Kurokawa, Syuhei; Doi, Toshiro

    2008-08-01

    We evaluated a contact metrology instrument used in chemical-mechanical polishing (CMP) systems for high-volume manufacture and examined in situ coefficient of friction (COF) monitoring to identify the tribology of CMP, and subsequently to determine the useful lifespan of consumables. The results showed that the direct measurement of the wear of the pad allowed for an accurate determination of both pad thickness and the ideal time to replace the pad and conditioner disk based on pad wear rate. We also presented a clear correlation between the working grid area of the conditioner disk and the tribological behavior of the pad break-in procedure, leading to the result showing that the variation in tungsten film removal rate decreased as the working grid density of the conditioner disk increased. This study has proven the effectiveness of measuring friction force for better CMP control.

  14. Performance of a photovoltaically powered air-conditioning system

    SciTech Connect

    Kern, Jr, E. C.; Millner, A. R.

    1980-01-01

    A vapor-compression air conditioner coupled directly to a photovoltaic array is discussed. Previous analyses of such a system are reviewed, and a development system designed to test the concept is described. Preliminary experiments indicate that the performance of this initial system falls considerably short of analytic expectations.

  15. Flow conditioner for fuel injector for combustor and method for low-NO.sub.x combustor

    DOEpatents

    Dutta, Partha; Smith, Kenneth O.; Ritz, Frank J.

    2013-09-10

    An injector for a gas turbine combustor including a catalyst coated surface forming a passage for feed gas flow and a channel for oxidant gas flow establishing an axial gas flow through a flow conditioner disposed at least partially within an inner wall of the injector. The flow conditioner includes a length with an interior passage opening into upstream and downstream ends for passage of the axial gas flow. An interior diameter of the interior passage smoothly reduces and then increases from upstream to downstream ends.

  16. The Air Force Processes for Approving Air Force Life Cycle Management Center Single-Award Indefinite-Delivery Indefinite-Quantity Contracts Need Improvement

    DTIC Science & Technology

    2016-04-29

    Improperly‑ Approved D&F Contract Value FA8540-14-D-0001 Deputy Assistant Secretary (Contracting) August 15, 2011 Yes FA8505-11-D-0006 Deputy...Assistant Secretary (Contracting) September 6, 2011 Yes FA8519-14-D-00021 Military Deputy, Office of the Assistant Secretary of the Air Force...Acquisition) September 2, 2014 No $68,900,414 FA8528-14-D-0015 Senior Procurement Executive April 1, 2014 Yes FA8528-14-D-0023 Senior Procurement

  17. A Life Cycle Assessment Case Study of Coal-Fired Electricity Generation with Humidity Swing Direct Air Capture of CO2 versus MEA-Based Postcombustion Capture.

    PubMed

    van der Giesen, Coen; Meinrenken, Christoph J; Kleijn, René; Sprecher, Benjamin; Lackner, Klaus S; Kramer, Gert Jan

    2017-01-17

    Most carbon capture and storage (CCS) envisions capturing CO2 from flue gas. Direct air capture (DAC) of CO2 has hitherto been deemed unviable because of the higher energy associated with capture at low atmospheric concentrations. We present a Life Cycle Assessment of coal-fired electricity generation that compares monoethanolamine (MEA)-based postcombustion capture (PCC) of CO2 with distributed, humidity-swing-based direct air capture (HS-DAC). Given suitable temperature, humidity, wind, and water availability, HS-DAC can be largely passive. Comparing energy requirements of HS-DAC and MEA-PCC, we find that the parasitic load of HS-DAC is less than twice that of MEA-PCC (60-72 kJ/mol versus 33-46 kJ/mol, respectively). We also compare other environmental impacts as a function of net greenhouse gas (GHG) mitigation: To achieve the same 73% mitigation as MEA-PCC, HS-DAC would increase nine other environmental impacts by on average 38%, whereas MEA-PCC would increase them by 31%. Powering distributed HS-DAC with photovoltaics (instead of coal) while including recapture of all background GHG, reduces this increase to 18%, hypothetically enabling coal-based electricity with net-zero life-cycle GHG. We conclude that, in suitable geographies, HS-DAC can complement MEA-PCC to enable CO2 capture independent of time and location of emissions and recapture background GHG from fossil-based electricity beyond flue stack emissions.

  18. RuO2 nanoparticles decorated MnOOH/C as effective bifunctional electrocatalysts for lithium-air battery cathodes with long-cycling stability

    NASA Astrophysics Data System (ADS)

    Kim, Gil-Pyo; Lim, Dongwook; Park, Inyeong; Park, Hyelee; Shim, Sang Eun; Baeck, Sung-Hyeon

    2016-08-01

    Manganite (MnOOH) is one of the most effective electrocatalysts for oxygen reduction reaction (ORR), and RuO2 nanoparticles exhibit high activity for oxygen evolution reaction (OER). We herein report a facile means of producing well dispersed RuO2/MnOOH on Ketjen black (RuO2/MnOOH/C) as a bifunctional catalyst for lithium-air (Li-air) batteries. RuO2/MnOOH/C was simply synthesized using a hydrothermal/precipitation based method, and was used as a cathode for a Li-air battery using a Swagelok-type cell. The importance of dispersing active catalysts on a carbon support was clearly demonstrated by textural, charge-discharge voltammetric, and electrochemical impedance spectroscopic (EIS) analyses, comparing results with a catalyst produced by physically mixing RuO2/MnOOH with carbon (RuO2/MnOOH + C). RuO2/MnOOH/C showed low overpotential and stable cycleability up to 170th cycles with 1000 mAh g-1 of charge-discharge capacity, which was attributed to its enhanced active surface area and low charge-transfer resistance. The results obtained suggest that this strategy can be widely applied to bifunctional electrocatalysis, such as secondary batteries and regenerative fuel cell (RFC).

  19. Low-cycle fatigue of Type 347 stainless steel and Hastelloy alloy X in hydrogen gas and in air at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Jaske, C. E.; Rice, R. C.; Buchheit, R. D.; Roach, D. B.; Porfilio, T. L.

    1976-01-01

    An investigation was conducted to assess the low-cycle fatigue resistance of two alloys, Type 347 stainless steel and Hastelloy Alloy X, that were under consideration for use in nuclear-powered rocket vehicles. Constant-amplitude, strain-controlled fatigue tests were conducted under compressive strain cycling at a constant strain rate of 0.001/sec and at total axial strain ranges of 1.5, 3.0, and 5.0 %, in both laboratory-air and low-pressure hydrogen-gas environments at temperatures from 538 to 871 C. Specimens were obtained from three heats of Type 347 stainless steel bar and two heats of Hastelloy Alloy X. The tensile properties of each heat were determined at 21, 538, 649, and 760 C. The continuous cycling fatigue resistance was determined for each heat at temperatures of 538, 760, and 871 C. The Type 347 stainless steel exhibited equal or superior fatigue resistance to the Hastelloy Alloy X at all conditions of this study.

  20. Production cost and air emissions impacts of coal cycling in power systems with large-scale wind penetration

    NASA Astrophysics Data System (ADS)

    Oates, David Luke; Jaramillo, Paulina

    2013-06-01

    Wind power introduces variability into electric power systems. Due to the physical characteristics of wind, most of this variability occurs at inter-hour time-scales and coal units are therefore technically capable of balancing wind. Operators of coal-fired units have raised concerns that additional cycling will be prohibitively costly. Using PJM bid-data, we observe that coal operators are likely systematically under-bidding their startup costs. We then consider the effects of a 20% wind penetration scenario in the coal-heavy PJM West area, both when coal units bid business as usual startup costs, and when they bid costs accounting for the elevated wear and tear that occurs during cycling. We conclude that while 20% wind leads to increased coal cycling and reduced coal capacity factors under business as usual startup costs, including full startup costs shifts the burden of balancing wind onto more flexible units. This shift has benefits for CO2, NOX, and SO2 emissions as well as for the profitability of coal plants, as calculated by our dispatch model.

  1. Simulation Models of Leaf Area Index and Yield for Cotton Grown with Different Soil Conditioners.

    PubMed

    Su, Lijun; Wang, Quanjiu; Wang, Chunxia; Shan, Yuyang

    2015-01-01

    Simulation models of leaf area index (LAI) and yield for cotton can provide a theoretical foundation for predicting future variations in yield. This paper analyses the increase in LAI and the relationships between LAI, dry matter, and yield for cotton under three soil conditioners near Korla, Xinjiang, China. Dynamic changes in cotton LAI were evaluated using modified logistic, Gaussian, modified Gaussian, log normal, and cubic polynomial models. Universal models for simulating the relative leaf area index (RLAI) were established in which the application rate of soil conditioner was used to estimate the maximum LAI (LAIm). In addition, the relationships between LAIm and dry matter mass, yield, and the harvest index were investigated, and a simulation model for yield is proposed. A feasibility analysis of the models indicated that the cubic polynomial and Gaussian models were less accurate than the other three models for simulating increases in RLAI. Despite significant differences in LAIs under the type and amount of soil conditioner applied, LAIm could be described by aboveground dry matter using Michaelis-Menten kinetics. Moreover, the simulation model for cotton yield based on LAIm and the harvest index presented in this work provided important theoretical insights for improving water use efficiency in cotton cultivation and for identifying optimal application rates of soil conditioners.

  2. 2-in-1 shampoo technology: state-of-the-art shampoo and conditioner in one.

    PubMed

    Rushton, H; Gummer, C L; Flasch, H

    1994-01-01

    Consumers have expressed a need for cleaning and conditioning in one step. Conventional shampoo technology using anionic surfactants and cationic conditioners results in charge interaction and complexing of the ingredients. Neither shampoo nor conditioners achieves the desired result. The successful solution was to incorporate charge neutral dimethicone conditioning ingredients, suspended as microfine droplets within complex crystal lattices, into anionic surfactant shampoo technology. The same solution has also been applied to amphoteric surfactant systems. This provides complete cleaning, and hair conditioning fully equal to separate conditioners without the problems of sebum interactions and conditioner build-up. This was achieved by keeping the dimethicone in suspension throughout the shampoo process. During rinsing, excess water breaks the crystalline lattice and allows deposition of the dimethicone droplets onto the hair. Full cleaning and conditioning are, therefore, achieved in one application. Dimethicone build-up is not encountered as subsequent washes first remove soil and previously deposited dimethicone. Neither do neutral dimethicones show any reactions with sebum. The development of effective 2-in-1 technology has had a major impact on shampoo technology and consumer habits and practices. This has significantly changed the way consumers care for their hair.

  3. A review of polymer-based water conditioners for reduction of handling-related injury

    SciTech Connect

    Harnish, Ryan A.; Colotelo, Alison HA; Brown, Richard S.

    2011-01-01

    Fish are coated with an external layer of protective mucus. This layer serves as the primary barrier against infection or injury, reduces friction, and plays a role in ionic and osmotic regulation. However, the mucus layer is easily disturbed when fish are netted, handled, transported, stressed, or subjected to adverse water conditions. Water additives containing polyvinylpyrrolidone (PVP) or proprietary polymers have been used to prevent the deleterious effects of mucus layer disturbances in the commercial tropical fish industry, aquaculture, and for other fisheries management purposes. This paper reviews research on the effectiveness of water conditioners, and examines the contents and uses of a wide variety of commercially available water conditioners. Water conditioners containing polymers may reduce external damage to fish held in containers during scientific experimentation, including surgical implantation of electronic tags. However, there is a need to empirically test the effectiveness of water conditioners at preventing damage to and promoting healing of the mucus layer. A research agenda is provided to advance the science related to the use of water conditions to improve the condition of fish during handling and tagging.

  4. Investigation of Flow Conditioners for Compact Jet Engine Simulator Rig Noise Reduction

    NASA Technical Reports Server (NTRS)

    Doty, Michael J.; Haskin, Henry H.

    2011-01-01

    The design requirements for two new Compact Jet Engine Simulator (CJES) units for upcoming wind tunnel testing lead to the distinct possibility of rig noise contamination. The acoustic and aerodynamic properties of several flow conditioner devices are investigated over a range of operating conditions relevant to the CJES units to mitigate the risk of rig noise. An impinging jet broadband noise source is placed in the upstream plenum of the test facility permitting measurements of not only flow conditioner self-noise, but also noise attenuation characteristics. Several perforated plate and honeycomb samples of high porosity show minimal self-noise but also minimal attenuation capability. Conversely, low porosity perforated plate and sintered wire mesh conditioners exhibit noticeable attenuation but also unacceptable self-noise. One fine wire mesh sample (DP450661) shows minimal selfnoise and reasonable attenuation, particularly when combined in series with a 15.6 percent open area (POA) perforated plate upstream. This configuration is the preferred flow conditioner system for the CJES, providing up to 20 dB of broadband attenuation capability with minimal self-noise.

  5. 21 CFR 872.3765 - Pit and fissure sealant and conditioner.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Pit and fissure sealant and conditioner. 872.3765 Section 872.3765 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... depressions (faults in the enamel) in the biting surfaces of teeth to prevent cavities. (b)...

  6. 21 CFR 872.3765 - Pit and fissure sealant and conditioner.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Pit and fissure sealant and conditioner. 872.3765 Section 872.3765 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... depressions (faults in the enamel) in the biting surfaces of teeth to prevent cavities. (b)...

  7. 21 CFR 872.3765 - Pit and fissure sealant and conditioner.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Pit and fissure sealant and conditioner. 872.3765 Section 872.3765 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... depressions (faults in the enamel) in the biting surfaces of teeth to prevent cavities. (b)...

  8. 21 CFR 872.3765 - Pit and fissure sealant and conditioner.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Pit and fissure sealant and conditioner. 872.3765 Section 872.3765 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... depressions (faults in the enamel) in the biting surfaces of teeth to prevent cavities. (b)...

  9. 21 CFR 872.3765 - Pit and fissure sealant and conditioner.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Pit and fissure sealant and conditioner. 872.3765 Section 872.3765 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... depressions (faults in the enamel) in the biting surfaces of teeth to prevent cavities. (b)...

  10. Heart Rate Conditioning in Newborn Infants: Relationships Among Conditionability, Heart Rate Variability, and Sex

    ERIC Educational Resources Information Center

    Stamps, Leighton E.; Porges, Stephen W.

    1975-01-01

    Trace conditioning was evaluated in newborn infants by measurements of heart rate responses to a conditioned stimulus in anticipation of or in absence of the unconditioned stimulus. Data suggest females have higher levels of heart rate variability than males, which parallels their greater conditionability. (GO)

  11. Thirteen years of air pollution hourly monitoring in a large city: potential sources, trends, cycles and effects of car-free days.

    PubMed

    Masiol, Mauro; Agostinelli, Claudio; Formenton, Gianni; Tarabotti, Enzo; Pavoni, Bruno

    2014-10-01

    Thirteen air pollutant concentrations were measured hourly for 13 years (2000-2013) at an urban background site of a large city in the eastern Po Valley (Italy) and results were chemometrically analysed. The pollutant list includes CO, NO, NO2, NOx, O3, SO2, benzene, toluene, ethylbenzene, o-, m- and p-xylenes and PM10, all known or suspected of having adverse effects on human health. The hourly data were statistically processed to detect the long-term trends in relation to the changes in the emission scenarios occurred in the last decade. The most probable emission sources and atmospheric photochemical processes were investigated by analyzing the seasonal, weekly, diurnal cycles of pollutants and the lagged correlations amongst pollutants. The role of micro-meteorological factors upon the air quality was assessed by analyzing the relationships with key weather parameters, while the location of the potential sources was studied by matching atmospheric circulation and pollution data through bivariate polar plots and conditional probability functions. In addition, a new statistical procedure is presented and tested to analyze the periods when common mitigation measures were adopted in the city (e.g., the total stop of traffic and car-free days) and to evaluate their real effect upon the air quality. By providing direct information on the levels and trends of key pollutants, this study finally enables some general considerations about air pollution in an important hotspot of Southern Europe, the eastern Po Valley, where the levels of some key pollutants are still far from meeting the EC limit and target values. It may help policy-makers to take successful mitigation measures.

  12. BEETIT: Building Cooling and Air Conditioning

    SciTech Connect

    2010-09-01

    BEETIT Project: The 14 projects that comprise ARPA-E’s BEETIT Project, short for “Building Energy Efficiency Through Innovative Thermodevices,” are developing new approaches and technologies for building cooling equipment and air conditioners. These projects aim to drastically improve building energy efficiency and reduce greenhouse gas emissions such as carbon dioxide (CO2) at a cost comparable to current technologies.

  13. Scaling of Carbon Cycle Processes in a Mountain Ecosystem Using Isotopes of Respired Carbon Dioxide in Nocturnal Cold-air Drainage

    NASA Astrophysics Data System (ADS)

    Bond, B. J.; Barnard, H.; Conklin, D.; Hauck, M.; Kayler, Z.; Mix, A. C.; Phillips, C.; Pypker, T.; Sulzman, E.; Unsworth, M.

    2006-12-01

    Nocturnal air drainage in mountain ecosystems offers a unique opportunity for scaling of carbon cycle processes in complex terrain using stable isotopes. We have found that more than half of ecosystem-respired CO2 can be transferred advectively from a small (100 ha) watershed at night, and the range of CO2 concentrations in the air collected from a 37 m tower situated at the base of the watershed is sufficient for Keeling plot analysis to determine the carbon isotope composition of ecosystem-respired CO2, or δ13CR-eco. We now seek to determine, 1) What is the spatial "footprint" of δ13CR- eco measurements, and how does this footprint vary over time? 2) What is the relationship between δ13CR-eco and measurements of isofluxes from soils and foliage across a range of specific sites in the watershed? 3) What is the relationship between δ13CR-eco and carbon cycle processes in the watershed? To answer these questions we conducted extensive measurements of atmospheric processes, augmented by experimental releases of an inert gas (SF6) in collaboration with Dr. Brian Lamb, Washington State University. We installed and instrumented eight plots along a ridge-to-ridge transect; we are continuously measuring above- and belowground microclimate in all plots and in a subset of plots we are continuously measuring sapflow and periodically measuring soil and leaf respiration and their isotopic composition. Atmospheric analyses indicated that air collected for Keeling plot analysis represented a well-mixed sample of all or nearly all of the watershed, and for several hours of most nights this footprint was stable. Respiratory fluxes and isofluxes from both soils and foliage varied both temporally and spatially; the variation among plots was often greater than the temporal variation of a particular plot over the growing season. Scaled to the ecosystem level, respiratory fluxes from foliage exceeded soil fluxes by as much as a factor of two, and fluxes from the south-facing slope

  14. Keeping Cool: Use of Air Conditioning by Australians with Multiple Sclerosis

    PubMed Central

    Summers, Michael P.; Simmons, Rex D.; Verikios, George

    2012-01-01

    Despite the known difficulties many people with MS have with high ambient temperatures, there are no reported studies of air conditioning use and MS. This study systematically examined air conditioner use by Australians with MS. A short survey was sent to all participants in the Australian MS Longitudinal Study cohort with a response rate of 76% (n = 2,385). Questions included hours of air-conditioner use, areas cooled, type and age of equipment, and the personal effects of overheating. Air conditioners were used by 81.9% of respondents, with an additional 9.6% who could not afford an air conditioner. Regional and seasonal variation in air conditioning use was reported, with a national annual mean of 1,557 hours running time. 90.7% reported negative effects from overheating including increased fatigue, an increase in other MS symptoms, reduced household and social activities, and reduced work capacity. Households that include people with MS spend between 4 and 12 times more on keeping cool than average Australian households. PMID:22548176

  15. Southern Ocean abyssal oxygenation linked to the air-sea partitioning of carbon throughout the last glacial cycle

    NASA Astrophysics Data System (ADS)

    Jaccard, S.; Galbraith, E. D.; Martinez-Garcia, A.; Anderson, R. F.

    2015-12-01

    Although no single mechanism can account for the full amplitude of past atmospheric CO2 variability over glacial interglacial cycles, a build-up of biologically-stored carbon in the deep ocean has emerged as a central mechanism for low CO2 during the Last Glacial Maximum (LGM). However, the mechanisms for which this deeply sequestered carbon was released, and the relative importance it played in the history of atmospheric CO2 prior to the LGM, remain subjects of debate. Here, we present new redox-sensitive trace metal records from the Antarctic Zone of the Southern Ocean that provide an unprecedented reconstruction of transient changes in deep ocean oxygenation and, by inference, respired carbon storage throughout the last glacial cycle. Our results show that respired carbon was removed from the abyssal Southern Ocean during the northern hemisphere cold phases of the deglaciation, when atmospheric CO2 rose rapidly, due to a combination of dwindling iron fertilization by dust and enhanced deep ocean ventilation. Furthermore, our new records show that the correlation between atmospheric CO2 and abyssal Southern Ocean oxygenation was maintained throughout most of the prior 80 kyrs, consistent with a unifying role of the Southern Ocean through a coupled control on deep ocean circulation and iron fertilization.

  16. Strain-cycling fatigue behavior of ten structural metals tested in liquid helium (4 K), in liquid nitrogen (78 K), and in ambient air (300 K)

    NASA Technical Reports Server (NTRS)

    Nachtigall, A. J.

    1974-01-01

    Strain-cycling fatigue behavior of 10 different structural alloys and metals was investigated in liquid helium (4 K), in liquid nitrogen (78 K), and in ambient air (300 K). At high cyclic lives, fatigue resistance increased with decreasing temperature for all the materials investigated. At low cyclic lives, fatigue resistance generally decreased with decreasing temperature for the materials investigated. Only for Inconel 718 did fatigue resistance increase with decreasing temperature over the entire life range investigated. Comparison of the experimental fatigue behavior with that predicted by the Manson method of universal slopes showed that the fatigue behavior of these materials can be predicted for cryogenic temperatures by using material tensile properties obtained at those same temperatures.

  17. 129Xe nuclear magnetic resonance study of pitch-based activated carbon modified by air oxidation/pyrolysis cycles: a new approach to probe the micropore size.

    PubMed

    Romanenko, Konstantin V; Py, Xavier; d'Espinose de Lacaillerie, Jean-Baptiste; Lapina, Olga B; Fraissard, Jacques

    2006-02-23

    (129)Xe NMR has been used to study a series of homologous activated carbons obtained from a KOH-activated pitch-based carbon molecular sieve modified by air oxidation/pyrolysis cycles. A clear correlation between the pore size of microporous carbons and the (129)Xe NMR of adsorbed xenon is proposed for the first time. The virial coefficient delta(Xe)(-)(Xe) arising from binary xenon collisions varied linearly with the micropore size and appeared to be a better probe of the microporosity than the chemical shift extrapolated to zero pressure. This correlation was explained by the fact that the xenon collision frequency increases with increasing micropore size. The chemical shift has been shown to vary very little with temperature (less than 9 ppm) for xenon trapped inside narrow and wide micropores. This is indicative of a smooth xenon-surface interaction potential.

  18. Evaluation of an Absorption Heat Pump to Mitigate Plant Capacity Reduction Due to Ambient Temperature Rise for an Air-Cooled Ammonia and Water Cycle: Preprint

    SciTech Connect

    Bharathan, D.; Nix, G.

    2001-08-06

    Air-cooled geothermal plants suffer substantial decreases in generating capacity at increased ambient temperatures. As the ambient temperature rises by 50 F above a design value of 50 F, at low brine-resource temperatures, the decrease in generating capacity can be more than 50%. This decrease is caused primarily by increased condenser pressure. Using mixed-working fluids has recently drawn considerable attention for use in power cycles. Such cycles are more readily amenable to use of absorption ''heat pumps.'' For a system that uses ammonia and water as the mixed-working fluid, this paper evaluates using an absorption heat pump to reduce condenser backpressure. At high ambient temperatures, part of the turbine exhaust vapor is absorbed into a circulating mixed stream in an absorber in series with the main condenser. This steam is pumped up to a higher pressure and heated to strip the excess vapor, which is recondensed using an additional air-cooled condenser. The operating conditions are chosen to reconstitute this condensate back to the same concentration as drawn from the original system. We analyzed two power plants of nominal 1-megawatt capacity. The design resource temperatures were 250 F and 300 F. Ambient temperature was allowed to rise from a design value of 50 F to 100 F. The analyses indicate that using an absorption heat pump is feasible. For the 300 F resource, an increased brine flow of 30% resulted in a net power increase of 21%. For the 250 F resource, the increase was smaller. However, these results are highly plant- and equipment-specific because evaluations must be carried out at off-design conditions for the condenser. Such studies should be carried out for specific power plants that suffer most from increased ambient temperatures.

  19. Factors Regulating the Seasonal Cycle of Inter-continental Air Pollution Transport between Asia, the United States and Europe

    NASA Astrophysics Data System (ADS)

    Mauzerall, D. L.; Horowitz, L.; Kim, N.

    2002-12-01

    This talk will demonstrate the interdependency of air quality in the northern hemisphere on the emissions and subsequent transport of pollutants from each of the major industrialized continental regions. We examine the contribution that emissions from continental regions in the northern hemisphere make to the composition of the remote troposphere. We also examine the processes that control the concentration of reactive pollutants in continental boundary layers over the United States, Europe and East Asia and export from these boundary layers to the global troposphere. We use the MOZART-2 (Model of Ozone and Related Tracers, version 2) global chemical tracer model with tagged CO from fossil fuel and biomass burning emissions from each region. In conjunction with CO measurements from the Climate Monitoring and Diagnostic Lab (CMDL), we examine the influence that each regions' emissions have on remote surface locations in the northern hemisphere. We find that the remote troposphere of the northern hemisphere contains a mélange of CO emitted from different continental regions the contributions of which vary seasonally as a function of emissions, meteorology and atmospheric lifetime. To examine factors regulating the concentration distributions of O3, CO, NOx, PAN and HNO3 over the United States, Europe and Asia and their export to the global troposphere, we quantify and compare the seasonal contributions of chemistry, advection, convection and deposition to boundary layer concentrations of each chemical species and examine the horizontal and vertical fluxes of each species out of each regions boundary layer to the global troposphere.

  20. Seasonal cycle and temperature dependence of pinene oxidation products, dicarboxylic acids and nitrophenols in fine and coarse air particulate matter

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Müller, L.; Winterhalter, R.; Moortgat, G. K.; Hoffmann, T.; Pöschl, U.

    2010-05-01

    Filter samples of fine and coarse air particulate matter (PM) collected over a period of one year in central Europe (Mainz, Germany) were analyzed for water-soluble organic compounds (WSOCs), including the α- and β-pinene oxidation products pinic acid, pinonic acid and 3-methyl-1,2,3-butanetricarboxylic acid (3-MBTCA), as well as a variety of dicarboxylic acids and nitrophenols. Seasonal variations and other characteristic features in fine, coarse, and total PM (TSP) are discussed with regard to aerosol sources and sinks in comparison to data from other studies and regions. The ratios of adipic acid and phthalic acid to azelaic acid indicate that the investigated samples were mainly influenced by biogenic sources. A strong Arrhenius-type correlation was found between the 3-MBTCA concentration and inverse temperature (R2=0.79, n=52, Ea=126±10 kJ mol-1, temperature range 275-300 K). Model calculations suggest that the temperature dependence observed for 3-MBTCA can be explained by enhanced photochemical production due to an increase of hydroxyl radical (OH) concentration with increasing temperature, whereas the influence of gas-particle partitioning appears to play a minor role. The results indicate that the OH-initiated oxidation of pinonic acid is the rate-limiting step in the formation of 3-MBTCA, and that 3-MBTCA may be a suitable tracer for the chemical aging of biogenic secondary organic aerosol (SOA) by OH radicals. An Arrhenius-type temperature dependence was also observed for the concentration of pinic acid (R2=0.60, n=56, Ea=84±9 kJ mol-1); it can be tentatively explained by the temperature dependence of biogenic pinene emission as the rate-limiting step of pinic acid formation.

  1. Seasonal cycle and temperature dependence of pinene oxidation products, dicarboxylic acids and nitrophenols in fine and coarse air particulate matter

    NASA Astrophysics Data System (ADS)

    Zhang, Y. Y.; Müller, L.; Winterhalter, R.; Moortgat, G. K.; Hoffmann, T.; Pöschl, U.

    2010-08-01

    Filter samples of fine and coarse air particulate matter (PM) collected over a period of one year in central Europe (Mainz, Germany) were analyzed for water-soluble organic compounds (WSOCs), including the α- and β-pinene oxidation products pinic acid, pinonic acid and 3-methyl-1,2,3-butanetricarboxylic acid (3-MBTCA), as well as a variety of dicarboxylic acids and nitrophenols. Seasonal variations and other characteristic features in fine, coarse, and total PM (TSP) are discussed with regard to aerosol sources and sinks in comparison to data from other studies and regions. The ratios of adipic acid and phthalic acid to azelaic acid indicate that the investigated aerosol samples were mainly influenced by biogenic sources. A strong Arrhenius-type correlation was found between the 3-MBTCA concentration and inverse temperature (R2 = 0.79, n = 52, Ea = 126 ± 10 kJ mol-1, temperature range 275-300 K). Model calculations suggest that the temperature dependence observed for 3-MBTCA can be explained by enhanced photochemical production due to an increase of hydroxyl radical (OH) concentration with increasing temperature, whereas the influence of gas-particle partitioning appears to play a minor role. The results indicate that the OH-initiated oxidation of pinonic acid is the rate-limiting step in the formation of 3-MBTCA, and that 3-MBTCA may be a suitable tracer for the chemical aging of biogenic secondary organic aerosol (SOA) by OH radicals. An Arrhenius-type temperature dependence was also observed for the concentration of pinic acid (R2 = 0.60, n = 56, Ea = 84 ± 9 kJ mol-1); it can be tentatively explained by the temperature dependence of biogenic pinene emission as the rate-limiting step of pinic acid formation.

  2. Estimating the Mean Annual Surface Air Temperature at Armagh Observatory, Northern Ireland, and the Global Land-Ocean Temperature Index for Sunspot Cycle 24, the Current Ongoing Sunspot Cycle

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    2013-01-01

    As noted by Gray et al., Sir William Herschel was the first to suggest a possible close connection between the Sun and the Earth’s climate. The Sun, being the source of energy that impacts and drives the Earth’s climate system, displays a variety of changes over both short and long term time scales, the most obvious examples being the somewhat regular waxing and waning of sunspots with time (i.e., the sunspot cycle (SC)), first described by Samuel Heinrich Schwabe, a German apothecary and amateur astronomer who observed the Sun from Dessau, Germany, and the now well established variation of the Sun’s irradiance over the SC. Other factors related to the SC have been linked to changes in climate as well. Some of these other factors include the role of cosmic rays and the solar wind (i.e., the geomagnetic cycle) on climate, as well as the apparent close association between trends in global and northern hemispheric temperature and the length of the SC, although some investigators have described the inferred association between climate and, in particular, SC length as now being weak. More recently, Solheim et al. have reported on the relation between SC length and the average temperature in the same and immediately following SC for a number of meteorological stations in Norway and in the North Atlantic region. They noted that while they found no significant trend (correlation) between SC length and the average temperature when measured for the same cycle, in contrast, they found a significant negative trend when SC length was compared with the following cycle’s average temperature. From this observation, they suggested that average northern hemispheric temperature during the present ongoing SC (SC24) will be lower by about 0.9 °C than was seen in SC23 (spanning 1996–2007, based on yearly averages of sunspot number (SSN), and onset for SC24 occurring in 2008). The purpose of this Technical Publication (TP) is to examine the annual variations of the Armagh

  3. Method and apparatus for analog signal conditioner for high speed, digital x-ray spectrometer

    DOEpatents

    Warburton, W.K.; Hubbard, B.

    1999-02-09

    A signal processing system which accepts input from an x-ray detector-preamplifier and produces a signal of reduced dynamic range for subsequent analog-to-digital conversion is disclosed. The system conditions the input signal to reduce the number of bits required in the analog-to-digital converter by removing that part of the input signal which varies only slowly in time and retaining the amplitude of the pulses which carry information about the x-rays absorbed by the detector. The parameters controlling the signal conditioner`s operation can be readily supplied in digital form, allowing it to be integrated into a feedback loop as part of a larger digital x-ray spectroscopy system. 13 figs.

  4. Dynamic modeling of brushless dc motor-power conditioner unit for electromechanical actuator application

    NASA Technical Reports Server (NTRS)

    Demerdash, N. A.; Nehl, T. W.

    1979-01-01

    A comprehensive digital model for the analysis of the dynamic-instantaneous performance of a power conditioner fed samarium-cobalt permanent magnet brushless DC motor is presented. The particular power conditioner-machine system at hand, for which this model was developed, is a component of an actual prototype electromechanical actuator built for NASA-JSC as a possible alternative to hydraulic actuators as part of feasibility studies for the shuttle orbiter applications. Excellent correlation between digital simulated and experimentally obtained performance data was achieved for this specific prototype. This is reported on in this paper. Details of one component of the model, its applications and the corresponding results are given in this paper.

  5. Comparison of Anthropogenic CO2, NOx, and CO Emissions: Exploiting a Synergy Between Air Quality and Carbon Cycle Studies

    NASA Astrophysics Data System (ADS)

    Fischer, M. L.; Gurney, K. R.; Gregg, J. S.; Murtishaw, S.; Knox, S.; Andres, R. J.; Sieb, B.

    2005-05-01

    Studies of biospheric CO2 exchange at the regional to continental scale would be facilitated by spatiotemporally resolved estimates of CO2 emissions from fossil fuel combustion and other human activities. However, current estimates of fossil CO2 emissions do not provide sufficient temporal or spatial resolution for regional-scale investigations. The US-EPA National Emission Inventory (NEI) for criteria pollutants (e.g., NOx and CO) was developed for control of regional air quality and currently provides high resolution emissions estimates that are based, in part on, estimates of fuel consumption. Here we investigate the applicability of estimating CO2 emissions from either 1) NEI estimates of NOx or CO emissions, or 2) underlying information on fuel use contained within NEI. First, we calculate monthly sums of NOx and CO emissions separately for mobile, distributed area, and point sources for the 48 continental United States. We compare the aggregate NOx and CO emissions with monthly sums of each states CO2 emissions computed from sales of petroleum, natural gas, and coal as reported by the US Energy Information Agency (EIA). We then compute linear regressions to estimate CO:CO2 and NOx:CO2 emissions ratios and quantify the fraction of variance in CO2 captured by NOx and CO. Although the categories in the two data sets do not overlap perfectly, we find that in the cases where a close correspondence between fuel type and use is expected (e.g., petroleum and mobile sources), variations in NOx and CO explain approximately 80% of the variation in CO2 emissions. Second, we employ the Consolidated Community Emissions Processing Tool (CONCEPT) framework to extract estimates of fuel use or other proxy variables and estimate CO2 directly from the information contained in the NEI, and compare with the EIA estimates of CO2 emissions, and with NEI estimates of NOx and CO emissions as above. Finally, we discuss these results with consideration of previous atmospheric

  6. Comparison of Anthropogenic CO2, NOx, and CO Emissions: Exploiting a Synergy Between Air Quality and Carbon Cycle Studies

    NASA Astrophysics Data System (ADS)

    Fischer, M. L.; Gurney, K. R.; Gregg, J. S.; Murtishaw, S.; Knox, S.; Andres, R. J.; Sieb, B.

    2006-12-01

    Studies of biospheric CO2 exchange at the regional to continental scale would be facilitated by spatiotemporally resolved estimates of CO2 emissions from fossil fuel combustion and other human activities. However, current estimates of fossil CO2 emissions do not provide sufficient temporal or spatial resolution for regional-scale investigations. The US-EPA National Emission Inventory (NEI) for criteria pollutants (e.g., NOx and CO) was developed for control of regional air quality and currently provides high resolution emissions estimates that are based, in part on, estimates of fuel consumption. Here we investigate the applicability of estimating CO2 emissions from either 1) NEI estimates of NOx or CO emissions, or 2) underlying information on fuel use contained within NEI. First, we calculate monthly sums of NOx and CO emissions separately for mobile, distributed area, and point sources for the 48 continental United States. We compare the aggregate NOx and CO emissions with monthly sums of each states CO2 emissions computed from sales of petroleum, natural gas, and coal as reported by the US Energy Information Agency (EIA). We then compute linear regressions to estimate CO:CO2 and NOx:CO2 emissions ratios and quantify the fraction of variance in CO2 captured by NOx and CO. Although the categories in the two data sets do not overlap perfectly, we find that in the cases where a close correspondence between fuel type and use is expected (e.g., petroleum and mobile sources), variations in NOx and CO explain approximately 80% of the variation in CO2 emissions. Second, we employ the Consolidated Community Emissions Processing Tool (CONCEPT) framework to extract estimates of fuel use or other proxy variables and estimate CO2 directly from the information contained in the NEI, and compare with the EIA estimates of CO2 emissions, and with NEI estimates of NOx and CO emissions as above. Finally, we discuss these results with consideration of previous atmospheric

  7. 77 FR 8178 - Test Procedures for Central Air Conditioners and Heat Pumps: Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-14

    ... instructions in the Web site. Registration information, participant instructions, and information about the capabilities available to webinar participants will be published on the following Web site https://www1.... A link to the docket web page can be found at www.regulations.gov . The www.regulations.gov web...

  8. 77 FR 28519 - Test Procedure Guidance for Room Air Conditioners, Residential Dishwashers, and Residential...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-15

    .... A link to the docket web page can be found at www.regulations.gov . The www.regulations.gov web page..., DOE launched a new Web site dedicated to DOE guidance: http://www1.eere.energy.gov/guidance/default... publishes guidance in draft form on the guidance Web site. DOE accepts public comment on the draft...

  9. Analysis of Efficiency Standards for Air Conditioners, Heat Pumps, and Other Products

    EIA Publications

    2002-01-01

    A series of analyses showing the impacts of each of the selected provisions of the bills on energy supply, demand, and prices, macroeconomic variables where feasible, import dependence, and emissions.

  10. Value Engineering Study of Standard Family of Military Horizontal and Vertical Air Conditioners.

    DTIC Science & Technology

    1988-01-29

    Landino/ Cloetingh - STREE SUPIERIOR~ ELIITRtIc COMP~ANY Sn1STOC CONNECtICUT 060 0 fl(NONt E 203, $02 3B I MARTIN KAPLAN Vice President for Reseerch...MOST INEXPENSIVE INJ BOTH DAVID CLOETINGH TESTNG AND VERIFICATION: ENGINEERING COSTS, AND IN MASS QUA TITY FFI. WITHl 14OM TVEY WOZULD 1 SUBCONTRACT AND

  11. Investigation of Source of Irritant Gas Produced by PATRIOT Missile System Air Conditioners

    DTIC Science & Technology

    1986-03-31

    Octafluoro- 1 C3F8 188 Heptane, Hexadecafluoro- 2 CF 1 6 388 Propene, Hexafluoro- 1 C3F6 150 Pentane, Dodecafluoro- 2 C5F12 288 Butane, Decafluoro- 1...FORMULA M.WT. Cyclobutane, Octafluoro- 3 C4 F8 200 Ethene, Tetrafluoro- 2 C2F4 - 100 Ethane, Hexafluoro- 2 C2F6 138 Propane, Ocflouoro- 1 C3F8 188

  12. 75 FR 7987 - Energy Conservation Standards for Residential Clothes Dryers and Room Air Conditioners: Public...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-23

    .... Summary of the Analyses Performed by DOE A. Engineering Analysis B. Markups To Determine Product Prices C... areas: (1) Engineering, (2) markups to determine product price, (3) energy-use characterization, (4.... Markups To Determine Product Prices DOE derives consumer prices for products based on manufacturer...

  13. Evaluation of a clay-based acidic bedding conditioner for dairy cattle bedding.

    PubMed

    Proietto, R L; Hinckley, L S; Fox, L K; Andrew, S M

    2013-02-01

    This study investigated the effects of a clay-based acidic bedding conditioner on sawdust bedding pH, dry matter (DM), environmental pathogen counts, and environmental bacterial counts on teat ends of lactating dairy cows. Sixteen lactating Holstein cows were paired based on parity, days in milk, milk yield, and milk somatic cell count, and were negative for the presence of an intramammary pathogen. Within each pair, cows were randomly assigned to 1 of 2 treatments with 3-wk periods in a crossover design. Treatment groups consisted of 9 freestalls per group bedded with either untreated sawdust or sawdust with a clay-based acidic bedding conditioner, added at 3- to 4-d intervals over each 21-d period. Bedding and teat ends were aseptically sampled on d 0, 1, 2, 7, 14, and 21 for determination of environmental bacterial counts. At the same time points, bedding was sampled for DM and pH determination. The bacteria identified in the bedding material were total gram-negative bacteria, Streptococcus spp., and coliform bacteria. The bacteria identified on the teat ends were Streptococcus spp., coliform bacteria, and Klebsiella spp. Teat end score, milk somatic cell count, and intramammary pathogen presence were measured weekly. Bedding and teat cleanliness, environmental high and low temperatures, and dew point data were collected daily. The bedding conditioner reduced the pH, but not the DM, of the sawdust bedding compared with untreated sawdust. Overall environmental bacterial counts in bedding were lower for treated sawdust. Total bacterial counts in bedding and on teat ends increased with time over both periods. Compared with untreated sawdust, the treated bedding had lower counts of total gram-negative bacteria and streptococci, but not coliform counts. Teat end bacterial counts were lower for cows bedded on treated sawdust for streptococci, coliforms, and Klebsiella spp. compared with cows bedded on untreated sawdust. The clay-based acidic bedding conditioner

  14. Exposure data for cosmetic products: facial cleanser, hair conditioner, and eye shadow.

    PubMed

    Loretz, L J; Api, A M; Babcock, L; Barraj, L M; Burdick, J; Cater, K C; Jarrett, G; Mann, S; Pan, Y H L; Re, T A; Renskers, K J; Scrafford, C G

    2008-05-01

    Reliable exposure information for cosmetic and other personal care products and ingredients is needed in order to conduct safety assessments. Essential information includes both the amount of product applied, and the frequency of use. To obtain current data, a study to assess consumer use practices was undertaken. Three widely used types of cosmetic products - facial cleanser, hair conditioner, and eye shadow - were included in the study. Three hundred and sixty women, ages 18-69 years, who regularly use the products of interest, were recruited nationwide within the US. Subjects were provided with a new container of the brand of product they normally use and kept diaries and recorded detailed daily usage information over a two week period. Products were weighed at the start and completion of the study in order to determine the total amount of product used. Statistical analyses of the data were conducted to derive summary distributions of use patterns. The mean and median usage per application, respectively, for the three product types were: facial cleanser, 2.57 g and 2.11 g; hair conditioner, 13.13 g and 10.21 g; and eye shadow, 0.03 g and 0.009 g. The mean and median usage per day for the three product types was: facial cleanser, 4.06 g and 3.25 g; hair conditioner, 13.77 g and 10.62 g; and eye shadow, 0.04 g and 0.010 g. The mean number of applications per day for facial cleanser, hair conditioner, and eye shadow was 1.6, 1.1, and 1.2, respectively. This study provides an estimate of current exposure information for commonly used products which will be useful for risk assessment purposes.

  15. Seasonal cycle and interannual variability of the total CH4 mixing ratios in West Siberia: Results from AIRS/AMSU and chemistry transport models for 2003-2013

    NASA Astrophysics Data System (ADS)

    Lagutin, Anatoly; Mordvin, Egor

    Methane (CH4) is an important greenhouse gas. It has much higher global warming potential comparing to carbon dioxide on per mass emitted basis. Atmospheric methane also plays an important role in atmospheric ozone chemistry and is the main source of water vapor in the stratosphere. The recent increase of CH4 in 2007-2008, after a nearly stable period of about one decade, is attributed to the increased emissions from tropical and Arctic wetlands. However, many uncertainties regarding natural and anthropogenic methane emissions still exist. For example, the total CH4 emissions from wetlands in West Siberia are estimated to be in the range from 1.6 to 20 Tg/year. The main causes leading to such large uncertainties are significant spatial and temporal variation of CH4 emissions and the sparseness of ground observational networks. The purpose of this study is to investigate the seasonal cycle and interannual variability of the total CH4 mixing ratios (CH4-Tot) in West Siberia for 2003-2013 using the AIRS/AMSU-Aqua measurements and the results from chemistry transport models MOZART4 and ACTM-CCSR/NIES/FRCGC. The key feature of the proposed approach is chemistry transport model-based regression equation linking CH4-Tot with mid-upper tropospheric CH4 (in the layer from 50 to 250 hPa below the tropopause), the tropopause height and the surface temperature. The observational information in our approach comes from the AIRS/AMSU measurements. Comparison of the retrieved CH4-Tot with the measurements of CH4 from the Total Carbon Column Observing Network (TCCON) have shown that the model captures observed seasonal cycles and interannual variability at mid-latitude sites. The spatial and temporal distributions of CH4-Tot in West Siberia for 2003-2013 are presented. Analysis of deseasonalized time-series indicates that the total CH4 mixing ratios increases about 4 ppbv/yr from 2007. This work was supported in part by the Russian Foundation for Basic Research (grant No 13

  16. Occurrence of molecular abnormalities of cell cycle in L132 cells after in vitro short-term exposure to air pollution PM(2.5).

    PubMed

    Abbas, Imane; Garçon, Guillaume; Saint-Georges, Françoise; Billet, Sylvain; Verdin, Anthony; Gosset, Pierre; Mulliez, Philippe; Shirali, Pirouz

    2010-12-05

    To improve the knowledge of the underlying mechanisms implying in air pollution Particulate Matter (PM)-induced lung toxicity in humans, we were interested in the sequential occurrence of molecular abnormalities from TP53-RB gene signaling pathway activation in the L132 target human lung epithelial cell model. The most toxicologically relevant physical and chemical characteristics of air pollution PM(2.5) collected in Dunkerque, a French highly-industrialized sea-side city, were determined. L132 cells were exposed during 24, 48 and 72h to Dunkerque City's PM(2.5) (i.e. Lethal Concentration (LC)(10)=18.84μgPM/mL or 5.02μgPM/cm(2); LC(50)=75.36μgPM/mL or 20.10μgPM/cm(2)), TiO(2) and desorbed PM (i.e. dPM; EqLC(10)=15.42μg/mL or 4.11μgPM/cm(2); EqLC(50)=61.71μg/mL or 16.46μgPM/cm(2)), benzene (7μM) or Benzo[a]Pyrene (B[a]P; 1μM). Dunkerque City's PM(2.5) altered the gene expression and/or the protein concentration of several key cell cycle controllers from TP53-RB gene signaling pathway (i.e. P53; BCL2; P21; cyclin D1, cyclin-dependent kinase 1; retinoblastoma protein) in L132 cells, thereby leading to the occurrence of cell proliferation and apoptosis together. The activation of the critical cell cycle controllers under study might be related to PM-induced oxidative stress, through the possible involvement of covalent metals in redox systems, the metabolic activation of organic chemicals by enzyme-catalyzed reactions, and phagocytosis. Taken together, these results might ask the critical question whether there is a balance or, in contrast, rather an imbalance between the cell proliferation and the apoptosis occurring in PM-exposed L132 cells, with possible consequences in term of PM-induced lung tumorgenesis.

  17. NREL's Energy-Saving Technology for Air Conditioning Cuts Peak Power Loads Without Using Harmful Refrigerants (Fact Sheet)

    SciTech Connect

    Not Available

    2012-07-01

    This fact sheet describes how the DEVAP air conditioner was invented, explains how the technology works, and why it won an R&D 100 Award. Desiccant-enhanced evaporative (DEVAP) air-conditioning will provide superior comfort for commercial buildings in any climate at a small fraction of the electricity costs of conventional air-conditioning equipment, releasing far less carbon dioxide and cutting costly peak electrical demand by an estimated 80%. Air conditioning currently consumes about 15% of the electricity generated in the United States and is a major contributor to peak electrical demand on hot summer days, which can lead to escalating power costs, brownouts, and rolling blackouts. DEVAP employs an innovative combination of air-cooling technologies to reduce energy use by up to 81%. DEVAP also shifts most of the energy needs to thermal energy sources, reducing annual electricity use by up to 90%. In doing so, DEVAP is estimated to cut peak electrical demand by nearly 80% in all climates. Widespread use of this cooling cycle would dramatically cut peak electrical loads throughout the country, saving billions of dollars in investments and operating costs for our nation's electrical utilities. Water is already used as a refrigerant in evaporative coolers, a common and widely used energy-saving technology for arid regions. The technology cools incoming hot, dry air by evaporating water into it. The energy absorbed by the water as it evaporates, known as the latent heat of vaporization, cools the air while humidifying it. However, evaporative coolers only function when the air is dry, and they deliver humid air that can lower the comfort level for building occupants. And even many dry climates like Phoenix, Arizona, have a humid season when evaporative cooling won't work well. DEVAP extends the applicability of evaporative cooling by first using a liquid desiccant-a water-absorbing material-to dry the air. The dry air is then passed to an indirect evaporative

  18. Life cycle inventory analysis of regenerative thermal oxidation of air emissions from oriented strand board facilities in Minnesota - a perspective of global climate change

    SciTech Connect

    Nicholson, W.J.

    1997-12-31

    Life cycle inventory analysis has been applied to the prospective operation of regenerative thermal oxidation (RTO) technology at oriented strand board plants at Bemidji (Line 1) and Cook, Minnesota. The net system destruction of VOC`s and carbon monoxide, and at Cook a small quantity of particulate, has a very high environmental price in terms of energy and water use, global warming potential, sulfur and nitrogen oxide emissions, solids discharged to water, and solid waste deposited in landfills. The benefit of VOC destruction is identified as minor in terms of ground level ozone at best and possibly slightly detrimental. Recognition of environmental tradeoffs associated with proposed system changes is critical to sound decision-making. There are more conventional ways to address carbon monoxide emissions than combustion in RTO`s. In an environment in which global warming is a concern, fuel supplemental combustion for environmental control does not appear warranted. Consideration of non-combustion approaches to address air emission issues at the two operations is recommended. 1 ref., 5 tabs.

  19. Cloning and expression of StAR during gonadal cycle and hCG-induced oocyte maturation of air-breathing catfish, Clarias gariepinus.

    PubMed

    Sreenivasulu, G; Sridevi, P; Sahoo, P K; Swapna, I; Ge, W; Kirubagaran, R; Dutta-Gupta, A; Senthilkumaran, B

    2009-09-01

    Complementary DNAs encoding steroidogenic acute regulatory protein (StAR) have been isolated from different fish species, yet the relevance of StAR during gonadal cycle and more importantly in final oocyte maturation has not been assessed so far. A cDNA encoding StAR was isolated from the ovarian follicles of air-breathing catfish, Clarias gariepinus. Catfish StAR exhibited 55 to 72% identity at nucleotide level with other vertebrate orthologs. RT-PCR analysis of tissue distribution pattern demonstrated the presence of StAR mRNA in various tissues including gonads, kidney, liver, brain and intestine of catfish. Real-time RT-PCR analysis revealed high expression of StAR mRNA in the pre-spawning phase of ovary while it was low in preparatory, spawning and regressed phases. In testis, maximum expression was noticed during the preparatory phase. During human chorionic gonadotropin (hCG)-induced oocyte maturation, both in vitro and in vivo, StAR mRNA levels were augmented by 2 h and then declined gradually to reach basal levels by 12 h as that of saline-treated controls. Taken together, high level of expression during hCG-induced oocyte maturation vis-à-vis in spawning suggests a role for StAR, in addition to the steroidogenic enzyme genes in final oocyte maturation.

  20. Selective Ion Transporting Polymerized Ionic Liquid Membrane Separator for Enhancing Cycle Stability and Durability in Secondary Zinc-Air Battery Systems.

    PubMed

    Hwang, Ho Jung; Chi, Won Seok; Kwon, Ohchan; Lee, Jin Goo; Kim, Jong Hak; Shul, Yong-Gun

    2016-10-05

    Rechargeable secondary zinc-air batteries with superior cyclic stability were developed using commercial polypropylene (PP) membrane coated with polymerized ionic liquid as separators. The anionic exchange polymer was synthesized copolymerizing 1-[(4-ethenylphenyl)methyl]-3-butylimidazolium hydroxide (EBIH) and butyl methacrylate (BMA) monomers by free radical polymerization for both functionality and structural integrity. The ionic liquid induced copolymer was coated on a commercially available PP membrane (Celguard 5550). The coat allows anionic transfer through the separator and minimizes the migration of zincate ions to the cathode compartment, which reduces electrolyte conductivity and may deteriorate catalytic activity by the formation of zinc oxide on the surface of the catalyst layer. Energy dispersive X-ray spectroscopy (EDS) data revealed the copolymer-coated separator showed less zinc element in the cathode, indicating lower zinc crossover through the membrane. Ion coupled plasma optical emission spectroscopy (ICP-OES) analysis confirmed over 96% of zincate ion crossover was reduced. In our charge/discharge setup, the constructed cell with the ionic liquid induced copolymer casted separator exhibited drastically improved durability as the battery life increased more than 281% compared to the pure commercial PP membrane. Electrochemical impedance spectroscopy (EIS) during the cycle process elucidated the premature failure of cells due to the zinc crossover for the untreated cell and revealed a substantial importance must be placed in zincate control.

  1. Evaluation of 11 terrestrial carbon-nitrogen cycle models against observations from two temperate Free-Air CO2 Enrichment studies.

    PubMed

    Zaehle, Sönke; Medlyn, Belinda E; De Kauwe, Martin G; Walker, Anthony P; Dietze, Michael C; Hickler, Thomas; Luo, Yiqi; Wang, Ying-Ping; El-Masri, Bassil; Thornton, Peter; Jain, Atul; Wang, Shusen; Warlind, David; Weng, Ensheng; Parton, William; Iversen, Colleen M; Gallet-Budynek, Anne; McCarthy, Heather; Finzi, Adrien; Hanson, Paul J; Prentice, I Colin; Oren, Ram; Norby, Richard J

    2014-05-01

    We analysed the responses of 11 ecosystem models to elevated atmospheric [CO2 ] (eCO2 ) at two temperate forest ecosystems (Duke and Oak Ridge National Laboratory (ORNL) Free-Air CO2 Enrichment (FACE) experiments) to test alternative representations of carbon (C)-nitrogen (N) cycle processes. We decomposed the model responses into component processes affecting the response to eCO2 and confronted these with observations from the FACE experiments. Most of the models reproduced the observed initial enhancement of net primary production (NPP) at both sites, but none was able to simulate both the sustained 10-yr enhancement at Duke and the declining response at ORNL: models generally showed signs of progressive N limitation as a result of lower than observed plant N uptake. Nonetheless, many models showed qualitative agreement with observed component processes. The results suggest that improved representation of above-ground-below-ground interactions and better constraints on plant stoichiometry are important for a predictive understanding of eCO2 effects. Improved accuracy of soil organic matter inventories is pivotal to reduce uncertainty in the observed C-N budgets. The two FACE experiments are insufficient to fully constrain terrestrial responses to eCO2 , given the complexity of factors leading to the observed diverging trends, and the consequential inability of the models to explain these trends. Nevertheless, the ecosystem models were able to capture important features of the experiments, lending some support to their projections.

  2. Understanding the Dehumidification Performance of Air-Conditioning Equipment at Part-Load Conditions

    SciTech Connect

    Don B. Shirey III; Hugh I. Henderson Jr; Richard A. Raustad

    2006-01-01

    Air conditioner cooling coils typically provide both sensible cooling and moisture removal. Data from a limited number of field studies (Khattar et al. 1985; Henderson and Rengarajan 1996; Henderson 1998) have demonstrated that the moisture removal capacity of a cooling coil degrades at part-load conditions--especially when the supply fan operates continuously while the cooling coil cycles on and off. Degradation occurs because moisture that condenses on the coil surfaces during the cooling cycle evaporates back into air stream when the coil is off. This degradation affects the ability of cooling equipment to maintain proper indoor humidity levels and may negatively impact indoor air quality. This report summarizes the results of a comprehensive project to better understand and quantify the moisture removal (dehumidification) performance of cooling coils at part-load conditions. A review of the open literature was initially conducted to learn from previous research on this topic. Detailed performance measurements were then collected for eight cooling coils in a controlled laboratory setting to understand the impact of coil geometry and operating conditions on transient moisture condensation and evaporation by the coils. Measurements of cooling coil dehumidification performance and space humidity levels were also collected at seven field test sites. Finally, an existing engineering model to predict dehumidification performance degradation for single-stage cooling equipment at part-load conditions (Henderson and Rengarajan 1996) was enhanced to include a broader range of fan control strategies and an improved theoretical basis for modeling off-cycle moisture evaporation from cooling coils. The improved model was validated with the laboratory measurements, and this report provides guidance for users regarding proper model inputs. The model is suitable for use in computerized calculation procedures such as hourly or sub-hourly building energy simulation programs (e

  3. Proposal for a Vehicle Level Test Procedure to Measure Air Conditioning Fuel Use

    SciTech Connect

    Rugh, J. P.

    2010-04-01

    The air-conditioning (A/C) compressor load significantly impacts the fuel economy of conventional vehicles and the fuel use/range of plug-in hybrid electric vehicles (PHEV). A National Renewable Energy Laboratory (NREL) vehicle performance analysis shows the operation of the air conditioner reduces the charge depletion range of a 40-mile range PHEV from 18% to 30% in a worst case hot environment. Designing for air conditioning electrical loads impacts PHEV and electric vehicle (EV) energy storage system size and cost. While automobile manufacturers have climate control procedures to assess A/C performance, and the U.S. EPA has the SCO3 drive cycle to measure indirect A/C emissions, there is no automotive industry consensus on a vehicle level A/C fuel use test procedure. With increasing attention on A/C fuel use due to increased regulatory activities and the development of PHEVs and EVs, a test procedure is needed to accurately assess the impact of climate control loads. A vehicle thermal soak period is recommended, with solar lamps that meet the SCO3 requirements or an alternative heating method such as portable electric heaters. After soaking, the vehicle is operated over repeated drive cycles or at a constant speed until steady-state cabin air temperature is attained. With this method, the cooldown and steady-state A/C fuel use are measured. This method can be run at either different ambient temperatures to provide data for the GREEN-MAC-LCCP model temperature bins or at a single representative ambient temperature. Vehicles with automatic climate systems are allowed to control as designed, while vehicles with manual climate systems are adjusted to approximate expected climate control settings. An A/C off test is also run for all drive profiles. This procedure measures approximate real-world A/C fuel use and assess the impact of thermal load reduction strategies.

  4. Effects of soil conditioners on emergence and growth of tomato-cotton, and lettuce seedlings. [Lycopersicon esculentum; Gossypium hirsutum; Lactuea sativa

    SciTech Connect

    Wallace, A.; Wallace, G.A.

    1986-05-01

    The purpose of this paper is to demonstrate the extent to which seedling emergence and plant growth can be improved with use of new soil conditioners. The early findings regarding polymeric soil conditioners are still valid today, with the exception that much lower application rates are needed today, and different application methodology is available.

  5. Relationship between Fear Conditionability and Aversive Memories: Evidence from a Novel Conditioned-Intrusion Paradigm

    PubMed Central

    Wegerer, Melanie; Blechert, Jens; Kerschbaum, Hubert; Wilhelm, Frank H.

    2013-01-01

    Intrusive memories – a hallmark symptom of posttraumatic stress disorder (PTSD) – are often triggered by stimuli possessing similarity with cues that predicted or accompanied the traumatic event. According to learning theories, intrusive memories can be seen as a conditioned response to trauma reminders. However, direct laboratory evidence for the link between fear conditionability and intrusive memories is missing. Furthermore, fear conditioning studies have predominantly relied on standardized aversive stimuli (e.g. electric stimulation) that bear little resemblance to typical traumatic events. To investigate the general relationship between fear conditionability and aversive memories, we tested 66 mentally healthy females in a novel conditioned-intrusion paradigm designed to model real-life traumatic experiences. The paradigm included a differential fear conditioning procedure with neutral sounds as conditioned stimuli and short violent film clips as unconditioned stimuli. Subsequent aversive memories were assessed through a memory triggering task (within 30 minutes, in the laboratory) and ambulatory assessment (involuntary aversive memories in the 2 days following the experiment). Skin conductance responses and subjective ratings demonstrated successful differential conditioning indicating that naturalistic aversive film stimuli can be used in a fear conditioning experiment. Furthermore, aversive memories were elicited in response to the conditioned stimuli during the memory triggering task and also occurred in the 2 days following the experiment. Importantly, participants who displayed higher conditionability showed more aversive memories during the memory triggering task and during ambulatory assessment. This suggests that fear conditioning constitutes an important source of persistent aversive memories. Implications for PTSD and its treatment are discussed. PMID:24244407

  6. Diamond Conditioner Microwear Effect on Pad Surface Height Distribution in Tungsten Chemical Mechanical Polishing

    NASA Astrophysics Data System (ADS)

    Yamada, Yohei; Kawakubo, Masanori; Kadomura, Kazunori

    2011-05-01

    In this study, the surface topographies of chemical mechanical polishing (CMP) pad samples for varying levels of diamond microwear of a conditioner have been measured using a confocal microscope and an X-ray computer tomography (CT) scanner. The experimental results showed that the increase in the pad debris on the pad surface reduced the pad height ratio of the asperity called the “top surface area (TSA) ratio”. In addition, the overall removal rate in tungsten CMP was more dependent on the TSA ratio after polishing than on that after conditioning because the pad surface condition became worse with deformed asperities and micropores due to the insufficient conditioning.

  7. An experimental investigation of compressor stall using an on-line distortion indicator and signal conditioner

    NASA Technical Reports Server (NTRS)

    Costakis, W. G.; Wenzel, L. M.

    1975-01-01

    The relation of the steady-state and dynamic distortions and the stall margin of a J85-13 turbojet engine was investigated. A distortion indicator capable of computing two distortion indices was used. A special purpose signal conditioner was also used as an interface between transducer signals and distortion indicator. A good correlation of steady-state distortion and stall margin was established. The prediction of stall by using the indices as instantaneous distortion indicators was not successful. A sensitivity factor that related the loss of stall margin to the turbulence level was found.

  8. Investigation into the common mode rejection ratio of the physiological signal conditioner circuit

    NASA Technical Reports Server (NTRS)

    Obrien, Edward M.

    1992-01-01

    The common mode rejection ratio (CMRR) of the single operational amplifier (op amp) differential amplifier and of the three operational amplifier differential amplifier was investigated. The three op amp differential amplifier circuit is used in the signal conditioner circuit which amplifies signals such as the electromyograph or electrocardiogram. The investigation confirmed via SPICE modeling what has been observed by others in the recent literature that the CMRR for the circuit can be maximized without precision resistor values or precisely matched op amps. This can be done if one resistor in the final stage can be adjusted either by a potentiometer or by laser trimming in the case of hybrid circuit fabrication.

  9. Synoptic evaluation of carbon cycling in Beaufort Sea during summer: contrasting river inputs, ecosystem metabolism and air-sea CO2 fluxes

    NASA Astrophysics Data System (ADS)

    Forest, A.; Coupel, P.; Else, B.; Nahavandian, S.; Lansard, B.; Raimbault, P.; Papakyriakou, T.; Gratton, Y.; Fortier, L.; Tremblay, J.-É.; Babin, M.

    2013-10-01

    The accelerated decline in Arctic sea ice combined with an ongoing trend toward a more dynamic atmosphere is modifying carbon cycling in the Arctic Ocean. A critical issue is to understand how net community production (NCP; the balance between gross primary production and community respiration) responds to changes and modulates air-sea CO2 fluxes. Using data collected as part of the ArcticNet-Malina 2009 expedition in southeastern Beaufort Sea (Arctic Ocean), we synthesize information on sea ice, wind, river, water column properties, metabolism of the planktonic food web, organic carbon fluxes and pools, as well as air-sea CO2 exchange, with the aim of identifying indices of ecosystem response to environmental changes. Data were analyzed to develop a non-steady-state carbon budget and an assessment of NCP against air-sea CO2 fluxes. The mean atmospheric forcing was a mild upwelling-favorable wind (~5 km h-1) blowing from the N-E and a decaying ice cover (<80% concentration) was observed beyond the shelf, the latter being fully exposed to the atmosphere. We detected some areas where the surface mixed layer was net autotrophic owing to high rates of primary production (PP), but the ecosystem was overall net heterotrophic. The region acted nonetheless as a sink for atmospheric CO2 with a mean uptake rate of -2.0 ± 3.3 mmol C m-2d-1. We attribute this discrepancy to: (1) elevated PP rates (>600 mg C m-2d-1) over the shelf prior to our survey, (2) freshwater dilution by river runoff and ice melt, and (3) the presence of cold surface waters offshore. Only the Mackenzie River delta and localized shelf areas directly affected by upwelling were identified as substantial sources of CO2 to the atmosphere (>10mmol C m-2d-1). Although generally <100 mg C m-2d-1, daily PP rates cumulated to a total PP of ~437.6 × 103 t C, which was roughly twice higher than the organic carbon delivery by river inputs (~241.2 × 103 t C). Subsurface PP represented 37.4% of total PP for the

  10. Design of Interline Unified Power Quality Conditioner for Power Quality Disturbances using Simulink

    NASA Astrophysics Data System (ADS)

    Kumaraswamy, G.; Reddy, Y. Rajasekhar; Harikrishna, Ch.

    2012-10-01

    Proliferation of electronic equipment in commercial and industrial processes has resulted in increasingly sensitive electrical loads to be fed from power distribution system which introduce contamination to voltage and current waveforms at the point of common coupling of industrial loads. The unified power quality conditioner (UPQC) is connected between two different feeders (lines), hence this method of connection of the UPQC is called as Interline UPQC (IUPQC).This paper proposes a new connection for a UPQC to improve the power quality of two feeders in a distribution system. Interline Unified Power Quality Conditioner (IUPQC), specifically aims at the integration of series VSC and Shunt VSC to provide high quality power supply by means of voltage sag/swell compensation, harmonic elimination and power factor correction in a power distribution network, so that improved power quality can be made available at the point of common coupling. The structure, control and capability of the IUPQC are discussed in this paper. The efficiency of the proposed configuration has been verified through simulation using MATLAB/ SIMULINK.

  11. The application of the analog signal to discrete time interval converter to the signal conditioner power supplies

    NASA Technical Reports Server (NTRS)

    Schoenfeld, A. D.; Yu, Y.

    1973-01-01

    The Analog Signal to Discrete Time Interval Converter microminiaturized module was utilized to control the signal conditioner power supplies. The multi-loop control provides outstanding static and dynamic performance characteristics, exceeding those generally associated with single-loop regulators. Eight converter boards, each containing three independent dc to dc converter, were built, tested, and delivered.

  12. Synoptic evaluation of carbon cycling in the Beaufort Sea during summer: contrasting river inputs, ecosystem metabolism and air-sea CO2 fluxes

    NASA Astrophysics Data System (ADS)

    Forest, A.; Coupel, P.; Else, B.; Nahavandian, S.; Lansard, B.; Raimbault, P.; Papakyriakou, T.; Gratton, Y.; Fortier, L.; Tremblay, J.-É.; Babin, M.

    2014-05-01

    The accelerated decline in Arctic sea ice and an ongoing trend toward more energetic atmospheric and oceanic forcings are modifying carbon cycling in the Arctic Ocean. A critical issue is to understand how net community production (NCP; the balance between gross primary production and community respiration) responds to changes and modulates air-sea CO2 fluxes. Using data collected as part of the ArcticNet-Malina 2009 expedition in the southeastern Beaufort Sea (Arctic Ocean), we synthesize information on sea ice, wind, river, water column properties, metabolism of the planktonic food web, organic carbon fluxes and pools, as well as air-sea CO2 exchange, with the aim of documenting the ecosystem response to environmental changes. Data were analyzed to develop a non-steady-state carbon budget and an assessment of NCP against air-sea CO2 fluxes. During the field campaign, the mean wind field was a mild upwelling-favorable wind (~ 5 km h-1) from the NE. A decaying ice cover (< 80% concentration) was observed beyond the shelf, the latter being fully exposed to the atmosphere. We detected some areas where the surface mixed layer was net autotrophic owing to high rates of primary production (PP), but the ecosystem was overall net heterotrophic. The region acted nonetheless as a sink for atmospheric CO2, with an uptake rate of -2.0 ± 3.3 mmol C m-2 d-1 (mean ± standard deviation associated with spatial variability). We attribute this discrepancy to (1) elevated PP rates (> 600 mg C m-2 d-1) over the shelf prior to our survey, (2) freshwater dilution by river runoff and ice melt, and (3) the presence of cold surface waters offshore. Only the Mackenzie River delta and localized shelf areas directly affected by upwelling were identified as substantial sources of CO2 to the atmosphere (> 10 mmol C m-2 d-1). Daily PP rates were generally < 100 mg C m-2 d-1 and cumulated to a total PP of ~ 437.6 × 103 t C for the region over a 35-day period. This amount was about twice the

  13. Measurement of Vehicle Air Conditioning Pull-Down Period

    SciTech Connect

    Thomas, John F.; Huff, Shean P.; Moore, Larry G.; West, Brian H.

    2016-08-01

    Air conditioner usage was characterized for high heat-load summer conditions during short driving trips using a 2009 Ford Explorer and a 2009 Toyota Corolla. Vehicles were parked in the sun with windows closed to allow the cabin to become hot. Experiments were conducted by entering the instrumented vehicles in this heated condition and driving on-road with the windows up and the air conditioning set to maximum cooling, maximum fan speed and the air flow setting to recirculate cabin air rather than pull in outside humid air. The main purpose was to determine the length of time the air conditioner system would remain at or very near maximum cooling power under these severe-duty conditions. Because of the variable and somewhat uncontrolled nature of the experiments, they serve only to show that for short vehicle trips, air conditioning can remain near or at full cooling capacity for 10-minutes or significantly longer and the cabin may be uncomfortably warm during much of this time.

  14. Against Conditionalization

    DTIC Science & Technology

    1989-03-16

    Suggestion An "inductive method" for Carnap is characterized in part by a constant A, roughly giving the relative importance of empirical and logical...our probabilities, and the former implies that only relative frequencies, and not relative width, have influence. In Carnap [14] the lambda functions... Carnap writes, "We regard an inductive method characterized by A as the more successful in k [a specific state description], the smaller the mean

  15. Against Conditionalization

    DTIC Science & Technology

    1988-06-28

    gets the wrong answers concerning what a rational agent ought to believe. 6 Carnap’s Suggestion An "inductive method" for Carnap is characterized in...frequencies, and not relative width, have influence. In Carnap [13] the lambda functions provided a unique characterization of inductive methods-i.e., of...prior probabilities, subject to the relatively basic constraints of Carnap’s system. Carnap writes, "We regard an inductive method characterized by A

  16. Turfgrass Conditioner

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Using technology developed under contract to NASA for the Space Agricultural Program, a scientist at the Plant-Wise Biostimulant Company invented a product for turfgrass called the 3-D Concentrated Plant Growth Supplement. The supplement is a blend of fortified seaweed extracts, humic acid and plant nutrients that supplies grass with extra insurance to handle adverse conditions. The "3-D" refers to its three dimensions: foliar enhancement, physiological integrity, and foundation fortification. The stimulant is used on lawns and on golf courses.

  17. Water Conditioner

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Aqualizer is designed to cleanse water with minimal use of chemicals by stabilizing the ions in the water. Its applications are both recreational and industrial. A non-electrical passive device, the Aqualizer operates on the principle of catalytic water conditioning. It consists of a stainless steel pipe length with a helical core and is offered in a variety of sizes depending on the quantity of water to be treated. The device is based on NASA silver ionization technology used to purify drinking water aboard the Apollo spacecraft.

  18. Water Conditioner

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A home use water treatment incorporates technology developed to purify water aboard Space Shuttle Orbiters. The General Ionics Model IQ Bacteriostatic Water Softener softens water and inhibits bacteria growth in the filtering unit. Ionics used NASA silver ion technology as a basis for development of a silver carbon dense enough to remain on top of the water softening resin bed.

  19. Method and apparatus for analog signal conditioner for high speed, digital x-ray spectrometer

    DOEpatents

    Warburton, William K.; Hubbard, Bradley

    1999-01-01

    A signal processing system which accepts input from an x-ray detector-preamplifier and produces a signal of reduced dynamic range for subsequent analog-to-digital conversion. The system conditions the input signal to reduce the number of bits required in the analog-to-digital converter by removing that part of the input signal which varies only slowly in time and retaining the amplitude of the pulses which carry information about the x-rays absorbed by the detector. The parameters controlling the signal conditioner's operation can be readily supplied in digital form, allowing it to be integrated into a feedback loop as part of a larger digital x-ray spectroscopy system.

  20. Energy and economic performance analysis of an open cycle solar desiccant dehumidification air-conditioning system for application in Hong Kong

    SciTech Connect

    Li, Yutong; Lu, Lin; Yang, Hongxing

    2010-12-15

    In this article, a transient simulation model and the EnergyPlus were used to study the energy performance and economical feasibility for integrating a solar liquid desiccant dehumidification system with a conventional vapor compression air-conditioning system for the weather condition of Hong Kong. The vapor compression system capacity in the solar assisted air-conditioning system can be reduced to 19 kW from original 28 kW of a conventional air-conditioning system as a case study due to the solar desiccant cooling. The economical performance of the solar desiccant dehumidification system is compared with that of the conventional air-conditioning system. The results show that the energy saving potentials due to incorporation of the solar desiccant dehumidification system in a traditional air-conditioning system is significant for the hot wet weather in Hong Kong due to higher COP resulted from higher supply chilled water temperature from chiller plants. The annual operation energy savings for the hybrid system is 6760 kWh and the payback period of the hybrid system is around 7 years. The study shows that the solar assisted air-conditioning is a viable technology for utilizations in subtropical areas. (author)

  1. Air Vehicle Technology Integration Program (AVTIP). Delivery Order 0033: Advanced Sol-Gel Adhesion Processes - Transition Support

    DTIC Science & Technology

    2005-07-01

    or without an additional acid desmut. The use of an open air plasma process may improve the surface cleanliness, but the results were not conclusive...from PlasmaTreat -North America was used to clean and activate the surface of the aluminum alloy. This process blasts the surface of an object on the...conditioner with or without an additional acid desmut. The use of an open air plasma process may improve the surface cleanliness, but the results

  2. Daylighting Strategies for U. S. Air Force Office Facilities: Economic Analysis of Building Energy Performance and Life-Cycle Cost Modeling with Monte Carlo Method

    DTIC Science & Technology

    2009-03-26

    approximately $15-23 billion annually in energy consumption. Our research findings show that electrochromic windows have the lowest energy consumption...make emerging daylighitng technology, such as electrochromic windows, viable. Finally, we demonstrate the robustness of probabilistic life-cycle... Electrochromic Windows ...........................................................................................35 Windows and Daylighting

  3. Biochar and biological carbon cycling in temperate soils

    NASA Astrophysics Data System (ADS)

    McCormack, S. A.; Vanbergen, A. J.; Bardgett, R. D.; Hopkins, D. W.; Ostle, N.

    2012-04-01

    Production of biochar, the recalcitrant residue formed by pyrolysis of plant matter, is suggested as a means of increasing storage of stable carbon (C) in the soil (1). Biochar has also been shown to act as a soil conditioner, increasing the productivity of certain crops by reducing nutrient leaching and improving soil water-holding capacity. However, the response of soil carbon pools to biochar addition is not yet well understood. Studies have shown that biochar has highly variable effects on microbial C cycling and thus on soil C storage (2,3,4). This discrepancy may be partially explained by the response of soil invertebrates, which occupy higher trophic levels and regulate microbial activity. This research aims to understand the role of soil invertebrates (i.e. Collembola and nematode worms) in biochar-mediated changes to soil C dynamics across a range of plant-soil communities. An open-air, pot-based mesocosm experiment was established in May, 2011 at the Centre for Ecology and Hydrology, Edinburgh. Three treatments were included in a fully-factorial design: biochar (presence [2 % w/w] or absence), soil type (arable sandy, arable sandy loam, grassland sandy loam), and vegetation type (Hordeum vulgare, Lolium perenne, unvegetated). Monitored parameters include: invertebrate and microbial species composition, soil C fluxes (CO2 and trace gas evolution, leachate C content, primary productivity and soil C content), and soil conditions (pH, moisture content and water-holding capacity). Preliminary results indicate that biochar-induced changes to soil invertebrate communities and processes are affected by pre-existing soil characteristics, and that soil texture in particular may be an important determinant of soil response to biochar addition. 1. Lehmann, 2007. A handful of carbon. Nature 447, 143-144. 2. Liang et al., 2010. Black carbon affects the cycling of non-black carbon in soil. Organic Geochemistry 41, 206-213. 3. Van Zwieten et al., 2010. Influence of

  4. Enabling Smart Air Conditioning by Sensor Development: A Review

    PubMed Central

    Cheng, Chin-Chi; Lee, Dasheng

    2016-01-01

    The study investigates the development of sensors, in particular the use of thermo-fluidic sensors and occupancy detectors, to achieve smart operation of air conditioning systems. Smart operation refers to the operation of air conditioners by the reinforcement of interaction to achieve both thermal comfort and energy efficiency. Sensors related to thermal comfort include those of temperature, humidity, and pressure and wind velocity anemometers. Improvements in their performance in the past years have been studied by a literature survey. Traditional occupancy detection using passive infra-red (PIR) sensors and novel methodologies using smartphones and wearable sensors are both discussed. Referring to the case studies summarized in this study, air conditioning energy savings are evaluated quantitatively. Results show that energy savings of air conditioners before 2000 was 11%, and 30% after 2000 by the integration of thermo-fluidic sensors and occupancy detectors. By utilizing wearable sensing to detect the human motions, metabolic rates and related information, the energy savings can reach up to 46.3% and keep the minimum change of predicted mean vote (∆PMV→0), which means there is no compromise in thermal comfort. This enables smart air conditioning to compensate for the large variations from person to person in terms of physiological and psychological satisfaction, and find an optimal temperature for everyone in a given space. However, this tendency should be evidenced by more experimental results in the future. PMID:27916906

  5. Enabling Smart Air Conditioning by Sensor Development: A Review.

    PubMed

    Cheng, Chin-Chi; Lee, Dasheng

    2016-11-30

    The study investigates the development of sensors, in particular the use of thermo-fluidic sensors and occupancy detectors, to achieve smart operation of air conditioning systems. Smart operation refers to the operation of air conditioners by the reinforcement of interaction to achieve both thermal comfort and energy efficiency. Sensors related to thermal comfort include those of temperature, humidity, and pressure and wind velocity anemometers. Improvements in their performance in the past years have been studied by a literature survey. Traditional occupancy detection using passive infra-red (PIR) sensors and novel methodologies using smartphones and wearable sensors are both discussed. Referring to the case studies summarized in this study, air conditioning energy savings are evaluated quantitatively. Results show that energy savings of air conditioners before 2000 was 11%, and 30% after 2000 by the integration of thermo-fluidic sensors and occupancy detectors. By utilizing wearable sensing to detect the human motions, metabolic rates and related information, the energy savings can reach up to 46.3% and keep the minimum change of predicted mean vote (∆PMV→0), which means there is no compromise in thermal comfort. This enables smart air conditioning to compensate for the large variations from person to person in terms of physiological and psychological satisfaction, and find an optimal temperature for everyone in a given space. However, this tendency should be evidenced by more experimental results in the future.

  6. Effect of different cavity conditioners on microleakage of glass ionomer cement with a high viscosity in primary teeth

    PubMed Central

    Mazaheri, Romina; Pishevar, Leila; Shichani, Ava Vali; Geravandi, Sanas

    2015-01-01

    Background: Glass ionomer cement is a common material used in pediatric dentistry. The aim of this study was to evaluate the microleakage of high-viscosity glass ionomer restorations in deciduous teeth after conditioning with four different conditioners. Materials and Methods: Fifty intact primary canines were collected. Standard Class V cavities (2 mm × 1.5 mm × 3 mm) were prepared by one operator on all buccal tooth surfaces, including both enamel and dentin. The samples were divided into five groups with different conditioners (no conditioner, 20% acrylic acid, 35% phosphoric acid, 12% citric acid, and 17% ethylenediaminetetraacetic acid [EDTA]). Two-way — ANOVA, Kruskal–Wallis and Mann–Whitney tests were used to compare the means of microleakage between the five groups. The significance level was set at P < 0.05. Results: There was no significant difference between the means of microleakage in incisal (enamel) and gingival (dentin) margins (P = 0.34). Furthermore, there was no significant difference between the means of microleakage in enamel and dentin margins (P = 0.4). There was a significant difference between the means of microleakage in different groups (P = 0.03). Conclusion: Within the limitations of this study, it is suggested that 20% acrylic acid and 17% EDTA be used for cavity conditioning which can result in better chemical and micromechanical adhesion. PMID:26288623

  7. Development of polyvinylether refrigeration oil for hydrofluorocarbon air-conditioning systems

    SciTech Connect

    Tozaki, Toshinori; Konishi, Tsuneo; Nagamatsu, Noritoshi

    1998-10-01

    Polyolestor (POE) poses capillary tube blockage problems when it is used as an air-conditioner refrigeration oil. A polyvinylether (PVE) oil has been developed to settle such problems. The causes of blockage were determined by analyzing capillary tubes after testing them with PVE and POE in the laboratory and in actual equipment. PVE was confirmed to have superior performance over POE with respect to resistance of capillary tube blockage.

  8. 78 FR 20842 - Energy Conservation Program: Energy Conservation Standards for Residential Clothes Dryers and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-08

    ... conditioners without reverse cycle and with louvered sides as 24,999 British thermal units per hour (Btu/h), and the minimum cooling capacity for product class 5b for room air conditioners without reverse cycle... (NRDC), Alliance to Save Energy (ASE), Alliance for Water Efficiency (AWE), Northwest Power...

  9. In vitro short-term exposure to air pollution PM2.5-0.3 induced cell cycle alterations and genetic instability in a human lung cell coculture model.

    PubMed

    Abbas, Imane; Verdin, Anthony; Escande, Fabienne; Saint-Georges, Françoise; Cazier, Fabrice; Mulliez, Philippe; Courcot, Dominique; Shirali, Pirouz; Gosset, Pierre; Garçon, Guillaume

    2016-05-01

    Although its adverse health effects of air pollution particulate matter (PM2.5) are well-documented and often related to oxidative stress and pro-inflammatory response, recent evidence support the role of the remodeling of the airway epithelium involving the regulation of cell death processes. Hence, the overarching goals of the present study were to use an in vitro coculture model, based on human AM and L132 cells to study the possible alteration of TP53-RB gene signaling pathways (i.e. cell cycle phases, gene expression of TP53, BCL2, BAX, P21, CCND1, and RB, and protein concentrations of their active forms), and genetic instability (i.e. LOH and/or MSI) in the PM2.5-0.3-exposed coculture model. PM2.5-0.3 exposure of human AM from the coculture model induced marked cell cycle alterations after 24h, as shown by increased numbers of L132 cells in subG1 and S+G2 cell cycle phases, indicating apoptosis and proliferation. Accordingly, activation of the TP53-RB gene signaling pathways after the coculture model exposure to PM2.5-0.3 was reported in the L132 cells. Exposure of human AM from the coculture model to PM2.5-0.3 resulted in MS alterations in 3p chromosome multiple critical regions in L132 cell population. Hence, in vitro short-term exposure of the coculture model to PM2.5-0.3 induced cell cycle alterations relying on the sequential occurrence of molecular abnormalities from TP53-RB gene signaling pathway activation and genetic instability.

  10. Permitting Considerations for Installation of Inlet Air Foggers on Simple Cycle Combustion Turbines at the Duke Power Lincoln Combustion Turbine Facility

    EPA Pesticide Factsheets

    This document may be of assistance in applying the New Source Review (NSR) air permitting regulations including the Prevention of Significant Deterioration (PSD) requirements. This document is part of the NSR Policy and Guidance Database. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.

  11. NASA Tropical Rainfall Measurement Mission (TRMM): Effects of tropical rainfall on upper ocean dynamics, air-sea coupling and hydrologic cycle

    NASA Technical Reports Server (NTRS)

    Lagerloef, Gary; Busalacchi, Antonio J.; Liu, W. Timothy; Lukas, Roger B.; Niiler, Pern P.; Swift, Calvin T.

    1995-01-01

    This was a Tropical Rainfall Measurement Mission (TRMM) modeling, analysis and applications research project. Our broad scientific goals addressed three of the seven TRMM Priority Science Questions, specifically: What is the monthly average rainfall over the tropical ocean areas of about 10(exp 5) sq km, and how does this rain and its variability affect the structure and circulation of the tropical oceans? What is the relationship between precipitation and changes in the boundary conditions at the Earth's surface (e.g., sea surface temperature, soil properties, vegetation)? How can improved documentation of rainfall improve understanding of the hydrological cycle in the tropics?

  12. Magnetic cleansing of weathered/tarry oiled feathers--the role of pre-conditioners.

    PubMed

    Dao, Hien V; Ngeh, Lawrence N; Bigger, Stephen W; Orbell, John D; Healy, Margaret; Jessop, Rosalind; Dann, Peter

    2006-12-01

    Iron powder has previously been demonstrated to be effective in the removal, via magnetic harvesting, of a wide variety of oil contaminants from feathers and plumage. This study investigates the efficacy of magnetic cleansing for the removal from feathers of tarry contamination that has been allowed to weather. Clusters of feathers from Mallard duck (Anas platyrhnchos) and Little Penguin (Eudyptula minor) were completely immersed in a tarry contaminant and allowed to weather from one to fourteen days. The contaminant was removed using a magnetic cleansing protocol and the removal efficacy assessed gravimetrically. For one, seven and fourteen days of weathering, a final removal (after fourteen treatments) of more than 99% and 97% was achieved for duck feathers and penguin feathers, respectively. Repeating the experiments (for a seven-day weathering period) for both duck and penguin feathers, with the judicious application of a pre-conditioner (olive oil), further improved removal efficacy. A convenient method to screen for improved pre-conditioning agents is suggested.

  13. Cell-module and fuel-conditioner development. 8th quarterly report, July-September 1981

    SciTech Connect

    Hoover, Jr., D. Q.

    1981-10-01

    Progress on the second Phase of a six Phase program to develop commercially viable on-site integrated energy systems (OS/IES) using phosphoric acid fuel cell (PAFC) modules to convert fuel to electricity is reported. Phase II is a planned two year effort to develop appropriate fuel cell module and fuel conditioner conceptual designs. The fuel cell module development effort comprises three coordinated tasks: (1) design of large cell stacks; (2) stack fabrication; and (3) stack testing. The results of pretesting and performance testing of Stack 564 are reported. The pretesting was done in the new 2 kW loop at ERC. The design features, progress in fabrication and plans for assembly of Stack 800 are given. The status of endurance testing of Stack 560 is reported. The design, fabrication, test procedures and preliminary tests of the 10 kW counterflow reformer and the reformer test stand are described. Results of vendor contacts to define the performance and cost of fuel conditioning system components are reported, and the results of burner tests and continuing development of the BOLTAR program are reported. (WHK)

  14. Research: Testing of a Novel Portable Body Temperature Conditioner Using a Thermal Manikin.

    PubMed

    Heller, Daniel; Heller, Alex; Moujaes, Samir; Williams, Shelley J; Hoffmann, Ryan; Sarkisian, Paul; Khalili, Kaveh; Rockenfeller, Uwe; Browder, Timothy D; Kuhls, Deborah A; Fildes, John J

    2016-01-01

    A battery-operated active cooling/heating device was developed to maintain thermoregulation of trauma victims in austere environments while awaiting evacuation to a hospital for further treatment. The use of a thermal manikin was adopted for this study in order to simulate load testing and evaluate the performance of this novel portable active cooling/heating device for both continuous (external power source) and battery power. The performance of the portable body temperature conditioner (PBTC) was evaluated through cooling/heating fraction tests to analyze the heat transfer between a thermal manikin and circulating water blanket to show consistent performance while operating under battery power. For the cooling/heating fraction tests, the ambient temperature was set to 15°C ± 1°C (heating) and 30°C ± 1°C (cooling). The PBTC water temperature was set to 37°C for the heating mode tests and 15°C for the cooling mode tests. The results showed consistent performance of the PBTC in terms of cooling/heating capacity while operating under both continuous and battery power. The PBTC functioned as intended and shows promise as a portable warming/cooling device for operation in the field.

  15. Effect of shampoo, conditioner and permanent waving on the molecular structure of human hair

    PubMed Central

    Zhang, Yuchen; Alsop, Richard J.; Soomro, Asfia; Yang, Fei-Chi

    2015-01-01

    The hair is a filamentous biomaterial consisting of the cuticle, the cortex and the medulla, all held together by the cell membrane complex. The cortex mostly consists of helical keratin proteins that spiral together to form coiled-coil dimers, intermediate filaments, micro-fibrils and macro-fibrils. We used X-ray diffraction to study hair structure on the molecular level, at length scales between ∼3–90 Å, in hopes of developing a diagnostic method for diseases affecting hair structure allowing for fast and noninvasive screening. However, such an approach can only be successful if common hair treatments do not affect molecular hair structure. We found that a single use of shampoo and conditioner has no effect on packing of keratin molecules, structure of the intermediate filaments or internal lipid composition of the membrane complex. Permanent waving treatments are known to break and reform disulfide linkages in the hair. Single application of a perming product was found to deeply penetrate the hair and reduce the number of keratin coiled-coils and change the structure of the intermediate filaments. Signals related to the coiled-coil structure of the α-keratin molecules at 5 and 9.5 Å were found to be decreased while a signal associated with the organization of the intermediate filaments at 47 Å was significantly elevated in permed hair. Both these observations are related to breaking of the bonds between two coiled-coil keratin dimers. PMID:26557428

  16. Effect of shampoo, conditioner and permanent waving on the molecular structure of human hair.

    PubMed

    Zhang, Yuchen; Alsop, Richard J; Soomro, Asfia; Yang, Fei-Chi; Rheinstädter, Maikel C

    2015-01-01

    The hair is a filamentous biomaterial consisting of the cuticle, the cortex and the medulla, all held together by the cell membrane complex. The cortex mostly consists of helical keratin proteins that spiral together to form coiled-coil dimers, intermediate filaments, micro-fibrils and macro-fibrils. We used X-ray diffraction to study hair structure on the molecular level, at length scales between ∼3-90 Å, in hopes of developing a diagnostic method for diseases affecting hair structure allowing for fast and noninvasive screening. However, such an approach can only be successful if common hair treatments do not affect molecular hair structure. We found that a single use of shampoo and conditioner has no effect on packing of keratin molecules, structure of the intermediate filaments or internal lipid composition of the membrane complex. Permanent waving treatments are known to break and reform disulfide linkages in the hair. Single application of a perming product was found to deeply penetrate the hair and reduce the number of keratin coiled-coils and change the structure of the intermediate filaments. Signals related to the coiled-coil structure of the α-keratin molecules at 5 and 9.5 Å were found to be decreased while a signal associated with the organization of the intermediate filaments at 47 Å was significantly elevated in permed hair. Both these observations are related to breaking of the bonds between two coiled-coil keratin dimers.

  17. Characteristics of indoor radon and its progeny in a Japanese dwelling while using air appliances.

    PubMed

    Pornnumpa, C; Tokonami, S; Sorimachi, A; Kranrod, C

    2015-11-01

    Characteristics of radon and its progeny were investigated in different air conditions by turning four types of indoor air appliances on and off in a two-story concrete Japanese dwelling. The four appliances were air conditioner, air cleaner, gas heater and cooker hood. The measurements were done using two devices: (1) a Si-based semiconductor detector for continuous measurement of indoor radon concentration and (2) a ZnS(Ag) scintillation counting system for equilibrium-equivalent radon concentration. Throughout the entire experiment, the cooker hood was the most effective in decreasing indoor radon concentration over a long period of time and the less effective was the air conditioner, while the air cleaner and gas heater did not affect the concentration of radon. However, the results measured in each air condition will differ according to the lifestyles and activities of the inhabitants. In this study, indoor radon and its progeny in a Japanese dwelling will be characterised by the different air conditions.

  18. Observations of the 18.6-year cycle of air pressure and a theoretical model to explain certain aspects of this signal

    NASA Astrophysics Data System (ADS)

    O'Brien, D. P.; Currie, R. G.

    1993-07-01

    Evidence from barometric data in Japan, USSR, southern Europe, southern Africa, and South America shows that air pressure variations with period near 18.6-years can attain amplitudes as high as 0.9 mb, and are identified as induced by the luni-solar constituent tide M n (M for moon and n for nodal). Luni-solar waveforms commonly exhibit modulation effects due to the superposition of a longer period component with 180° changes in phase. Thus, the waveform amplitudes can be highly nonstationary. Pressure gradients at this period over subcontinental distances show that the amplitudes imply nonequilibrium conditions. A theoretical coupling mechanism between E-W and N-S wind systems and the Coriolis force is envoked to explain the sub-continental extent and the, sometimes abrupt, amplitude changes of the pressure systems over small distances.

  19. High-temperature low-cycle fatigue and tensile properties of Hastelloy X and alloy 617 in air and HTGR-helium

    SciTech Connect

    Strizak, J.P.; Brinkman, C.R.; Rittenhouse, P.L.

    1981-01-01

    Results of strain controlled fatigue and tensile tests are presented for two nickel base solution hardened alloys which are reference structural alloys for use in several high temperature gas cooled reactor concepts. These alloys, Hastelloy X Inconel 617, were tested at temperatures ranging from room temperature to 871/sup 0/C in air and impure helium. Materials were tested in the solution annealed as well as in the pre-aged condition where aging consisted of isothermal exposure at one of several temperatures for periods of up to 20,000 h. Comparisons are also given between the strain controlled fatigue lives of these alloys and several other commonly used alloys all tested at 538/sup 0/C.

  20. Filières nucléaires et gestion du plutonium et des actinides mineurs la recherche de la flexibilité du cycle

    NASA Astrophysics Data System (ADS)

    Thomas, Jean-Baptiste

    2002-10-01

    Transuranics management concerns all NPP types, because of the specifications for a sustainable development. Multiple recycling is mandatory. Neutronic abundance can be obtained in fast spectrum, or by adding external neutrons or (temporarily) with additional 235U. The LWRs can control the plutonium inventory and significantly reduce the amount of transuranics transferred to the geological repository, thanks to the use of innovative nuclear fuel in a limited part of the NPP fleet. HTR adapted to transuranics burning can help. In the future, in addition to the liquid metal FBR, a strategy based on a gas cooled technological line and advanced fuel opens a second path towards fast spectra. Strategies for defining the optimal mix of reactor types in the nuclear fleet at a given time and demonstrating the fuel cycle flexibility are under study. To cite this article: J.-B. Thomas, C. R. Physique 3 (2002) 783-796.

  1. Menstrual Cycle

    MedlinePlus

    ... receive Pregnancy email updates Enter email Submit The menstrual cycle Day 1 starts with the first day of ... drop around Day 25 . This signals the next menstrual cycle to begin. The egg will break apart and ...

  2. Non-photic, non-thermic circadecadal solar cycle interaction with cardiovascular circannual and circasemiannual variation in heated air-conditioned habitat.

    PubMed

    Watanabe, Yoshihiko; Cornélissen, Germaine; Katinas, George; Sothern, Robert B; Halberg, Franz; Watanabe, Misako; Watanabe, Fumihiko; Otsuka, Kuniaki

    2003-10-01

    In order to re-examine the extent to which secular circulatory variation can be resolved into possibly accountable, if not yet predictable behavior, the 15-year record of blood pressure and heart rate of an adult male cardiologist (Y.W.) is reanalyzed. Gliding spectral windows with an interval of 4 years progressively displaced throughout the data series examine monthly means from August 1987 to August 2002. A circannual variation is only intermittent and appears to drift for years. A circasemiannual variation is consistent and prominent, yet only for a fraction of the record examined. By contrast to the circadian rhythm in blood pressure and heart rate, which is reliably detectable in most subjects in clinical health, the circannual variation in the human circulation is inconsistent and hence should be monitored, as in this case for its assessment as one goes, a conclusion that also applies to the circasemiannual variation, prominent for years but not detected thereafter. The results prompt the search for interactions between the photic, thermic and societal effects of the seasons that, if solely pertinent, should yield a consistent 1-year spectral component. That non-photic effects may also play an important role may point to modulation by solar cycle stage and solar cycle number, perhaps mediated by the solar wind. This conclusion is extended in proof to the role played by the most recently discovered transannual component in human blood pressure and heart rate, which is a probable further signature of the solar wind. The beating of the transannual and circannual components documented on another data series may contribute to the lack of a consistent 1-year synchronized circannual variation in this case and many others.

  3. Estimates of Embodied Global Energy and Air-Emission Intensities of Japanese Products for Building a Japanese Input–Output Life Cycle Assessment Database with a Global System Boundary

    PubMed Central

    2012-01-01

    To build a life cycle assessment (LCA) database of Japanese products embracing their global supply chains in a manner requiring lower time and labor burdens, this study estimates the intensity of embodied global environmental burden for commodities produced in Japan. The intensity of embodied global environmental burden is a measure of the environmental burden generated globally by unit production of the commodity and can be used as life cycle inventory data in LCA. The calculation employs an input–output LCA method with a global link input–output model that defines a global system boundary grounded in a simplified multiregional input–output framework. As results, the intensities of embodied global environmental burden for 406 Japanese commodities are determined in terms of energy consumption, greenhouse-gas emissions (carbon dioxide, methane, nitrous oxide, perfluorocarbons, hydrofluorocarbons, sulfur hexafluoride, and their summation), and air-pollutant emissions (nitrogen oxide and sulfur oxide). The uncertainties in the intensities of embodied global environmental burden attributable to the simplified structure of the global link input–output model are quantified using Monte Carlo simulation. In addition, by analyzing the structure of the embodied global greenhouse-gas intensities we characterize Japanese commodities in the context of LCA embracing global supply chains. PMID:22881452

  4. Estimates of embodied global energy and air-emission intensities of Japanese products for building a Japanese input-output life cycle assessment database with a global system boundary.

    PubMed

    Nansai, Keisuke; Kondo, Yasushi; Kagawa, Shigemi; Suh, Sangwon; Nakajima, Kenichi; Inaba, Rokuta; Tohno, Susumu

    2012-08-21

    To build a life cycle assessment (LCA) database of Japanese products embracing their global supply chains in a manner requiring lower time and labor burdens, this study estimates the intensity of embodied global environmental burden for commodities produced in Japan. The intensity of embodied global environmental burden is a measure of the environmental burden generated globally by unit production of the commodity and can be used as life cycle inventory data in LCA. The calculation employs an input-output LCA method with a global link input-output model that defines a global system boundary grounded in a simplified multiregional input-output framework. As results, the intensities of embodied global environmental burden for 406 Japanese commodities are determined in terms of energy consumption, greenhouse-gas emissions (carbon dioxide, methane, nitrous oxide, perfluorocarbons, hydrofluorocarbons, sulfur hexafluoride, and their summation), and air-pollutant emissions (nitrogen oxide and sulfur oxide). The uncertainties in the intensities of embodied global environmental burden attributable to the simplified structure of the global link input-output model are quantified using Monte Carlo simulation. In addition, by analyzing the structure of the embodied global greenhouse-gas intensities we characterize Japanese commodities in the context of LCA embracing global supply chains.

  5. Sensitivity analysis of an Ocean Carbon Cycle Model in the North Atlantic: an investigation of parameters affecting the air-sea CO2 flux, primary production and export of detritus

    NASA Astrophysics Data System (ADS)

    Scott, V.; Kettle, H.; Merchant, C. J.

    2010-12-01

    The sensitivity of the biological parameters in a nutrient-phytoplankton-zooplankton-detritus (NPZD) model in the calculation of the air-sea CO2 flux, primary production and detrital export is analysed. The NPZD model is the Hadley Centre Ocean Carbon Cycle model (HadOCC) from the UK Met Office, used in the Hadley Centre Coupled Model 3 (HadCM3) and FAst Met Office and Universities Simulator (FAMOUS) GCMs. Here, HadOCC is coupled to the 1-D General Ocean Turbulence Model (GOTM) and forced with European Centre for Medium-Range Weather Forecasting meteorology to undertake a sensitivity analysis of its twenty biological parameters. Analyses are performed at three sites in the EuroSITES European Ocean Observatory Network: the Central Irminger Sea (60° N 40° W), the Porcupine Abyssal Plain (49° N 16° W) and the European Station for Time series in the Ocean Canary Islands (29° N 15° W) to assess variability in parameter sensitivities at different locations in the North Atlantic Ocean. Reasonable changes to the values of key parameters are shown to have a large effect on the calculation of the air-sea CO2 flux, primary production, and export of biological detritus to the deep ocean. Changes in the values of key parameters have a greater effect in more productive regions than in less productive areas. We perform the analysis using one-at-a-time perturbations and using a statistical emulator, and compare results. The most sensitive parameters are generic to many NPZD ocean ecosystem models. The air-sea CO2 flux is most influenced by variation in the parameters that control phytoplankton growth, detrital sinking and carbonate production by phytoplankton (the rain ratio). Primary production is most sensitive to the parameters that define the shape of the photosythesis-irradiance curve. Export production is most sensitive to the parameters that control the rate of detrital sinking and the remineralisation of detritus.

  6. Avoiding 100 new power plants by increasing efficiency of room air conditioners in India: opportunities and challenges

    SciTech Connect

    Phadke, Amol; Abhyankar, Nikit; Shah, Nihar

    2013-10-15

    Electricity demand for room ACs is growing very rapidly in emerging economies such as India. We estimate the electricity demand from room ACs in 2030 in India considering factors such as weather and income growth using market data on penetration of ACs in different income classes and climatic regions. We discuss the status of the current standards, labels, and incentive programs to improve the efficiency of room ACs in these markets and assess the potential for further large improvements in efficiency and find that efficiency can be improved by over 40% cost effectively. The total potential energy savings from Room AC efficiency improvement in India using the best available technology will reach over 118 TWh in 2030; potential peak demand saving is found to be 60 GW by 2030. This is equivalent to avoiding 120 new coal fired power plants of 500 MW each. We discuss policy options to complement, expand and improve the ongoing programs to capture this large potential.

  7. Avoiding 100 New Power Plants by Increasing Efficiency of Room Air Conditioners in India: Opportunities and Challenges

    SciTech Connect

    Phadke, Amol; Abhyankar, Nikit; Shah, Nihar

    2014-06-19

    Electricity demand for room ACs is growing very rapidly in emerging economies such as India. We estimate the electricity demand from room ACs in 2030 in India considering factors such as weather and income growth using market data on penetration of ACs in different income classes and climatic regions. We discuss the status of the current standards, labels, and incentive programs to improve the efficiency of room ACs in these markets and assess the potential for further large improvements in efficiency and find that efficiency can be improved by over 40percent cost effectively. The total potential energy savings from Room AC efficiency improvement in India using the best available technology will reach over 118 TWh in 2030; potential peak demand saving is found to be 60 GW by 2030. This is equivalent to avoiding 120 new coal fired power plants of 500 MW each. We discuss policy options to complement, expand and improve the ongoing programs to capture this large potential.

  8. Technique for monitoring ozone precursor hydrocarbons in air at photochemical assessment monitoring stations: Sorbent preconcentration, closed-cycle cooler cryofocusing, and GC-FID analysis

    NASA Astrophysics Data System (ADS)

    Oliver, Karen D.; Adams, Jeffrey R.; Hunter Daughtrey, E.; McClenny, William A.; Yoong, Matthias J.; Pardee, Michael A.

    An automated gas chromatograph (autoGC) system that may be used to collect and analyze both polar and nonpolar volatile organic compounds in ambient air has been evaluated. This system combines the use of dual multiadsorbent traps for sampling 57 min h -1 at ambient temperature, a dry helium purge to remove residual water from the sorbents, thermal desorption of analytes onto a Stirling-cooled trap for refocusing, and GC-flame ionization detection (FID). Method detection limits (MDLs), linearity, cleanliness, precision, and accuracy of the autoGC were determined for a set of 57 ozone precursor hydrocarbons. For most of the compounds tested, MDLs were less than 0.40 ppbv, the FID response was linear over the 5-40-ppbv range, and the trap-to-trap precision was ± 10%. This autoGC was found to be a reliable system that would be suitable for use in field sites such as the Photochemical Assessment Monitoring Stations network, which is being implemented in the United States of America.

  9. Stage-by-Stage and Parallel Flow Path Compressor Modeling for a Variable Cycle Engine, NASA Advanced Air Vehicles Program - Commercial Supersonic Technology Project - AeroServoElasticity

    NASA Technical Reports Server (NTRS)

    Kopasakis, George; Connolly, Joseph W.; Cheng, Larry

    2015-01-01

    This paper covers the development of stage-by-stage and parallel flow path compressor modeling approaches for a Variable Cycle Engine. The stage-by-stage compressor modeling approach is an extension of a technique for lumped volume dynamics and performance characteristic modeling. It was developed to improve the accuracy of axial compressor dynamics over lumped volume dynamics modeling. The stage-by-stage compressor model presented here is formulated into a parallel flow path model that includes both axial and rotational dynamics. This is done to enable the study of compressor and propulsion system dynamic performance under flow distortion conditions. The approaches utilized here are generic and should be applicable for the modeling of any axial flow compressor design accurate time domain simulations. The objective of this work is as follows. Given the parameters describing the conditions of atmospheric disturbances, and utilizing the derived formulations, directly compute the transfer function poles and zeros describing these disturbances for acoustic velocity, temperature, pressure, and density. Time domain simulations of representative atmospheric turbulence can then be developed by utilizing these computed transfer functions together with the disturbance frequencies of interest.

  10. Desiccant Enhanced Evaporative Air-Conditioning (DEVap): Evaluation of a New Concept in Ultra Efficient Air Conditioning

    SciTech Connect

    Kozubal, E.; Woods, J.; Burch, J.; Boranian, A.; Merrigan, T.

    2011-01-01

    NREL has developed the novel concept of a desiccant enhanced evaporative air conditioner (DEVap) with the objective of combining the benefits of liquid desiccant and evaporative cooling technologies into an innovative 'cooling core.' Liquid desiccant technologies have extraordinary dehumidification potential, but require an efficient cooling sink. DEVap's thermodynamic potential overcomes many shortcomings of standard refrigeration-based direct expansion cooling. DEVap decouples cooling and dehumidification performance, which results in independent temperature and humidity control. The energy input is largely switched away from electricity to low-grade thermal energy that can be sourced from fuels such as natural gas, waste heat, solar, or biofuels.

  11. Future Air Conditioning Energy Consumption in Developing Countriesand what can be done about it: The Potential of Efficiency in theResidential Sector

    SciTech Connect

    McNeil, Michael A.; Letschert, Virginie E.

    2007-05-01

    The dynamics of air conditioning are of particular interestto energy analysts, both because of the high energy consumption of thisproduct, but also its disproportionate impact on peak load. This paperaddresses the special role of this end use as a driver of residentialelectricity consumption in rapidly developing economies. Recent historyhas shown that air conditioner ownership can grow grows more rapidly thaneconomic growth in warm-climate countries. In 1990, less than a percentof urban Chinese households owned an air conditioner; by 2003 this numberrose to 62 percent. The evidence suggests a similar explosion of airconditioner use in many other countries is not far behind. Room airconditioner purchases in India are currently growing at 20 percent peryear, with about half of these purchases attributed to the residentialsector. This paper draws on two distinct methodological elements toassess future residential air conditioner 'business as usual' electricityconsumption by country/region and to consider specific alternative 'highefficiency' scenarios. The first component is an econometric ownershipand use model based on household income, climate and demographicparameters. The second combines ownership forecasts and stock accountingwith geographically specific efficiency scenarios within a uniqueanalysis framework (BUENAS) developed by LBNL. The efficiency scenariomodule considers current efficiency baselines, available technologies,and achievable timelines for development of market transformationprograms, such as minimum efficiency performance standards (MEPS) andlabeling programs. The result is a detailed set of consumption andemissions scenarios for residential air conditioning.

  12. Applied physiology of cycling.

    PubMed

    Faria, I E

    1984-01-01

    Historically, the bicycle has evolved through the stages of a machine for efficient human transportation, a toy for children, a finely-tuned racing machine, and a tool for physical fitness development, maintenance and testing. Recently, major strides have been made in the aerodynamic design of the bicycle. These innovations have resulted in new land speed records for human powered machines. Performance in cycling is affected by a variety of factors, including aerobic and anaerobic capacity, muscular strength and endurance, and body composition. Bicycle races range from a 200m sprint to approximately 5000km. This vast range of competitive racing requires special attention to the principle of specificity of training. The physiological demands of cycling have been examined through the use of bicycle ergometers, rollers, cycling trainers, treadmill cycling, high speed photography, computer graphics, strain gauges, electromyography, wind tunnels, muscle biopsy, and body composition analysis. These techniques have been useful in providing definitive data for the development of a work/performance profile of the cyclist. Research evidence strongly suggests that when measuring the cyclist's aerobic or anaerobic capacity, a cycling protocol employing a high pedalling rpm should be used. The research bicycle should be modified to resemble a racing bicycle and the cyclist should wear cycling shoes. Prolonged cycling requires special nutritional considerations. Ingestion of carbohydrates, in solid form and carefully timed, influences performance. Caffeine appears to enhance lipid metabolism. Injuries, particularly knee problems which are prevalent among cyclists, may be avoided through the use of proper gearing and orthotics. Air pollution has been shown to impair physical performance. When pollution levels are high, training should be altered or curtailed. Effective training programmes simulate competitive conditions. Short and long interval training, blended with long

  13. Effects of salicylic-lactic acid conditioner on the shear bond strength of brackets and enamel surfaces.

    PubMed

    Chang, W-G; Lim, B-S; Yoon, T-H; Lee, Y-K; Kim, C-W

    2005-04-01

    The purpose of this study was to evaluate the effects of salicylic-lactic (SL) acid conditioner on the shear bond strength of brackets. Fluoride releasing (Light-bond) and non-fluoride releasing (Enlight) composite adhesives were used after conditioning with 0.22% salicylic + 9% lactic acid or 34% phosphoric acid. Composite adhesives were light cured with either a halogen light curing (HLC) unit for 30-50 s or a plasma arc curing (PAC) unit for 4 s. The shear bond strength was measured with an Instron. Failure modes of debonded brackets were identified based on adhesive remnants on the bracket and tooth. Salicylic-lactic acid conditioning was found to provide adequate shear bond strength. Groups conditioned with SL acid were debonded mainly at the enamel-resin interface and comparatively clean enamel surface after debonding was observed than those conditioned with phosphoric acid. Using confocal laser scanning microscopic examinations, it was found that demineralization patterns between SL acid and phosphoric acid conditioned groups were not different when the same adhesive was used. The SL acid conditioner did not reduce the demineralization. Light-bond adhesive showed less demineralization than Enlight adhesive. The PAC unit can be recommended as an alterative to the HLC unit because it significantly reduces the irradiation time.

  14. High-Compression-Ratio; Atkinson-Cycle Engine Using Low-Pressure Direct Injection and Pneumatic-Electronic Valve Actuation Enabled by Ionization Current and Foward-Backward Mass Air Flow Sensor Feedback

    SciTech Connect

    Harold Schock; Farhad Jaberi; Ahmed Naguib; Guoming Zhu; David Hung

    2007-12-31

    This report describes the work completed over a two and one half year effort sponsored by the US Department of Energy. The goal was to demonstrate the technology needed to produce a highly efficient engine enabled by several technologies which were to be developed in the course of the work. The technologies included: (1) A low-pressure direct injection system; (2) A mass air flow sensor which would measure the net airflow into the engine on a per cycle basis; (3) A feedback control system enabled by measuring ionization current signals from the spark plug gap; and (4) An infinitely variable cam actuation system based on a pneumatic-hydraulic valve actuation These developments were supplemented by the use of advanced large eddy simulations as well as evaluations of fuel air mixing using the KIVA and WAVE models. The simulations were accompanied by experimental verification when possible. In this effort a solid base has been established for continued development of the advanced engine concepts originally proposed. Due to problems with the valve actuation system a complete demonstration of the engine concept originally proposed was not possible. Some of the highlights that were accomplished during this effort are: (1) A forward-backward mass air flow sensor has been developed and a patent application for the device has been submitted. We are optimistic that this technology will have a particular application in variable valve timing direct injection systems for IC engines. (2) The biggest effort on this project has involved the development of the pneumatic-hydraulic valve actuation system. This system was originally purchased from Cargine, a Swedish supplier and is in the development stage. To date we have not been able to use the actuators to control the exhaust valves, although the actuators have been successfully employed to control the intake valves. The reason for this is the additional complication associated with variable back pressure on the exhaust valves when

  15. Modeling the weekly cycle of NOx and CO emissions and their impacts on O3 in the Los Angeles-South Coast Air Basin during the CalNex 2010 field campaign

    NASA Astrophysics Data System (ADS)

    Kim, S.-W.; McDonald, B. C.; Baidar, S.; Brown, S. S.; Dube, B.; Ferrare, R. A.; Frost, G. J.; Harley, R. A.; Holloway, J. S.; Lee, H.-J.; McKeen, S. A.; Neuman, J. A.; Nowak, J. B.; Oetjen, H.; Ortega, I.; Pollack, I. B.; Roberts, J. M.; Ryerson, T. B.; Scarino, A. J.; Senff, C. J.; Thalman, R.; Trainer, M.; Volkamer, R.; Wagner, N.; Washenfelder, R. A.; Waxman, E.; Young, C. J.

    2016-02-01

    We developed a new nitrogen oxide (NOx) and carbon monoxide (CO) emission inventory for the Los Angeles-South Coast Air Basin (SoCAB) expanding the Fuel-based Inventory for motor-Vehicle Emissions and applied it in regional chemical transport modeling focused on the California Nexus of Air Quality and Climate Change (CalNex) 2010 field campaign. The weekday NOx emission over the SoCAB in 2010 is 620 t d-1, while the weekend emission is 410 t d-1. The NOx emission decrease on weekends is caused by reduced diesel truck activities. Weekday and weekend CO emissions over this region are similar: 2340 and 2180 t d-1, respectively. Previous studies reported large discrepancies between the airborne observations of NOx and CO mixing ratios and the model simulations for CalNex based on the available bottom-up emission inventories. Utilizing the newly developed emission inventory in this study, the simulated NOx and CO mixing ratios agree with the observations from the airborne and the ground-based in situ and remote sensing instruments during the field study. The simulations also reproduce the weekly cycles of these chemical species. Both the observations and the model simulations indicate that decreased NOx on weekends leads to enhanced photochemistry and increase of O3 and Ox (=O3 + NO2) in the basin. The emission inventory developed in this study can be extended to different years and other urban regions in the U.S. to study the long-term trends in O3 and its precursors with regional chemical transport models.

  16. Air Research

    EPA Pesticide Factsheets

    EPA's air research provides the critical science to develop and implement outdoor air regulations under the Clean Air Act and puts new tools and information in the hands of air quality managers and regulators to protect the air we breathe.

  17. Implementation of Tritium in the Lmdz-Iso General Circulation Model: First Promising Results for the Study of the Relationships Between Stratospheric Air Inputs into the Lower Troposphere in Polar Regions, Water Cycle and Climate

    NASA Astrophysics Data System (ADS)

    Cauquoin, A.; Jean Baptiste, P.; Risi, C. M.; Fourre, E.; Landais, A.

    2014-12-01

    Understanding the links between climate and water cycle is essential in the current context of global warming. The water isotopic composition, quantified as δD, δ18O or δ17O, has a great potential to trace the organization of present-day hydrological cycle. When recorded in various archives as tree rings, sediments, ice cores, they have also been largely used to reconstruct the past evolution of climate and water. The Antarctic cap is extremely sensitive to climate change. Moreover, this region is under the influence of exchanges between the troposphere and the stratosphere because of the presence of the polar vortex. Tritium (3H) has been shown to be an appropriate tracer for the intrusion of stratospheric air masses into the lower troposphere. Natural tritium is mainly produced by the interaction of cosmic radiations with the upper atmosphere. This tritium enters the hydrological cycle in the form of tritiated water molecules (HTO) and has a radioactive half-life of 4500±8 days. In an approach combining data and model, we have first implemented tritium in the coupled Laboratoire de Météorologie Dynamique Zoom (LMDZ) Atmospheric General Circulation Model developed at IPSL [Risi et al., 2010]: LMDZ-iso. The implementation of natural tritium uses the same model architecture as for the other water isotopes, after a correct description of associated cosmogenic production terms [Masarik and Beer, 2009]. The model is used in a configuration dedicated to the simulation of the stratosphere, with 39 layers. In this presentation, we will focus on the modeling of spatial and temporal natural variations of tritium content in precipitation. The model is validated against a compilation of available data for natural tritium. We show that the continental and latitudinal effects are well reproduced by the model and that simulated seasonal variations of the tritium content of precipitation are coherent with our current knowledge of troposphere-stratosphere exchanges. Masarik

  18. Cycle Analysis

    SciTech Connect

    Wright, Steven A.

    2012-03-20

    1. The Cycle Analysis code is an Microsoft Excel code that performs many different types of thermodynamic cycle analysis for power producing systems. The code will calculate the temperature and pressure and all other thermodynamic properties at the inlet and outlet of each component. The code also calculates the power that is produced, the efficiency, and the heat transported in the heater, gas chiller and recuperators. The code provides a schematic of the loop and provides the temperature and pressure at each location in the loop. The code also provides a T-S (temperature-entropy) diagram of the loop and often it provides an pressure enthalpy plot as well. 2. This version of the code concentrates on supercritical CO2 power cycles, but by simply changing the name of the working fluid many other types of fluids can be analyzed. The Cycle Analysis code provided here contains 18 different types of power cycles. Each cycle is contained in one worksheet or tab that the user can select. The user can change the yellow highlighted regions to perform different thermodynamic cycle analysis.

  19. Iron-Air Rechargeable Battery

    NASA Technical Reports Server (NTRS)

    Narayan, Sri R. (Inventor); Prakash, G.K. Surya (Inventor); Kindler, Andrew (Inventor)

    2014-01-01

    Embodiments include an iron-air rechargeable battery having a composite electrode including an iron electrode and a hydrogen electrode integrated therewith. An air electrode is spaced from the iron electrode and an electrolyte is provided in contact with the air electrode and the iron electrodes. Various additives and catalysts are disclosed with respect to the iron electrode, air electrode, and electrolyte for increasing battery efficiency and cycle life.

  20. Airbreathing combined cycle engine systems

    NASA Technical Reports Server (NTRS)

    Rohde, John

    1992-01-01

    The Air Force and NASA share a common interest in developing advanced propulsion systems for commercial and military aerospace vehicles which require efficient acceleration and cruise operation in the Mach 4 to 6 flight regime. The principle engine of interest is the turboramjet; however, other combined cycles such as the turboscramjet, air turborocket, supercharged ejector ramjet, ejector ramjet, and air liquefaction based propulsion are also of interest. Over the past months careful planning and program implementation have resulted in a number of development efforts that will lead to a broad technology base for those combined cycle propulsion systems. Individual development programs are underway in thermal management, controls materials, endothermic hydrocarbon fuels, air intake systems, nozzle exhaust systems, gas turbines and ramjet ramburners.