Science.gov

Sample records for air conditioner performance

  1. Air Conditioner Compressor Performance Model

    SciTech Connect

    Lu, Ning; Xie, YuLong; Huang, Zhenyu

    2008-09-05

    During the past three years, the Western Electricity Coordinating Council (WECC) Load Modeling Task Force (LMTF) has led the effort to develop the new modeling approach. As part of this effort, the Bonneville Power Administration (BPA), Southern California Edison (SCE), and Electric Power Research Institute (EPRI) Solutions tested 27 residential air-conditioning units to assess their response to delayed voltage recovery transients. After completing these tests, different modeling approaches were proposed, among them a performance modeling approach that proved to be one of the three favored for its simplicity and ability to recreate different SVR events satisfactorily. Funded by the California Energy Commission (CEC) under its load modeling project, researchers at Pacific Northwest National Laboratory (PNNL) led the follow-on task to analyze the motor testing data to derive the parameters needed to develop a performance models for the single-phase air-conditioning (SPAC) unit. To derive the performance model, PNNL researchers first used the motor voltage and frequency ramping test data to obtain the real (P) and reactive (Q) power versus voltage (V) and frequency (f) curves. Then, curve fitting was used to develop the P-V, Q-V, P-f, and Q-f relationships for motor running and stalling states. The resulting performance model ignores the dynamic response of the air-conditioning motor. Because the inertia of the air-conditioning motor is very small (H<0.05), the motor reaches from one steady state to another in a few cycles. So, the performance model is a fair representation of the motor behaviors in both running and stalling states.

  2. Laboratory Performance Testing of Residential Window Air Conditioners

    SciTech Connect

    Winkler, J.; Booten, C.; Christensen, D.; Tomerlin, J.

    2013-03-01

    Window air conditioners are the dominant cooling product for residences, in terms of annual unit sales. They are inexpensive, portable and can be installed by the owner. For this reason, they are an attractive solution for supplemental cooling, for retrofitting air conditioning into a home which lacks ductwork, and for renters. Window air conditioners for sale in the United States are required to meet very modest minimum efficiency standards. Four window air conditioners' performance were tested in the Advanced HVAC Systems Laboratory on NREL's campus in Golden, CO. In order to separate and study the refrigerant system's performance, the unit's internal leakage pathways, the unit's fanforced ventilation, and the leakage around the unit resulting from installation in a window, a series of tests were devised that focused on each aspect of the unit's performance. These tests were designed to develop a detailed performance map to determine whole-house performance in different climates. Even though the test regimen deviated thoroughly from the industry-standard ratings test, the results permit simple calculation of an estimated rating for both capacity and efficiency that would result from a standard ratings test. Using this calculation method, it was found that the three new air conditioners' measured performance was consistent with their ratings. This method also permits calculation of equivalent SEER for the test articles. Performance datasets were developed across a broad range of indoor and outdoor operating conditions, and used them to generate performance maps.

  3. The Performance Evaluation of Room Air Conditioner Using R32

    NASA Astrophysics Data System (ADS)

    Taira, Shigeharu; Yazima, Ryuzaburo; Koyama, Shigeru

    This paper deals with an experimental study on the performance evaluation of a room air conditioner using R32. The test room air conditioner is a product developed for the R410A use. The COP, cooling and heating capacities, charge amount of refrigerant, electric power input, refrigerant thermodynamic states in the air conditioner etc. were measured for both refrigerant R410A and R32, based on JIS-C9612 standard. The experimental results of R32 are evaluated in comparison with the results of R410A, and the following are confirmed :(1) The performance of R32 is higher than R410A. This reason is mainly due to the pressure drop and heat exchange characteristics (in the evaporator and the condenser), (2) The charge amount of R32 is less than that of R410A. From the above results, the further improving the performance and saving the refrigerant amount are expected when refrigerant R410A is replaced with R32. The effects of the performance of components on the COP are also analyzed based on the measured thermodynamic states at both ends of components in the system. Then, it's clarified that the most effective factor is irreversibility of the compressor and the following is the pressure drop in low pressure side including the evaporator and the suction pipe in the system.

  4. Air Conditioner/Dehumidifier

    NASA Technical Reports Server (NTRS)

    1986-01-01

    An ordinary air conditioner in a very humid environment must overcool the room air, then reheat it. Mr. Dinh, a former STAC associate, devised a heat pipe based humidifier under a NASA Contract. The system used heat pipes to precool the air; the air conditioner's cooling coil removes heat and humidity, then the heat pipes restore the overcooled air to a comfortable temperature. The heat pipes use no energy, and typical savings are from 15-20%. The Dinh Company also manufactures a "Z" coil, a retrofit cooling coil which may be installed on an existing heater/air conditioner. It will also provide free hot water. The company has also developed a photovoltaic air conditioner and solar powered water pump.

  5. 16 CFR Appendix H to Part 305 - Cooling Performance and Cost for Central Air Conditioners

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 1 2011-01-01 2011-01-01 false Cooling Performance and Cost for Central Air Conditioners H Appendix H to Part 305 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC... RULEâ) Pt. 305, App. H Appendix H to Part 305—Cooling Performance and Cost for Central Air...

  6. 16 CFR Appendix H to Part 305 - Cooling Performance and Cost for Central Air Conditioners

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Cooling Performance and Cost for Central Air Conditioners H Appendix H to Part 305 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC... RULEâ) Pt. 305, App. H Appendix H to Part 305—Cooling Performance and Cost for Central Air...

  7. 16 CFR Appendix I to Part 305 - Heating Performance and Cost for Central Air Conditioners

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 1 2014-01-01 2014-01-01 false Heating Performance and Cost for Central Air... CONSERVATION ACT (âENERGY LABELING RULEâ) Pt. 305, App. I Appendix I to Part 305—Heating Performance and Cost for Central Air Conditioners Manufacturer's rated heating capacity (Btu's/hr.) Range of HSPF's...

  8. Evaluation of Annual Performance of Multi-type Air-conditioners for Buildings

    NASA Astrophysics Data System (ADS)

    Watanabe, Choyu; Ohashi, Ei-Ichiro; Hirota, Masafumi; Nagamatsu, Katsuaki; Nakayama, Hiroshi

    The partial thermal load performance tests of electric-motor driven multi-type air-conditioners for buildings, the rated cooling and heating capacities of which were 56 kW and 63 kW, respectively, were carried out using the air-enthalpy method testing apparatus. Based on the results of those tests, the applicability of JIS B 8616: 2006, which was developed for the estimation of the annual electricity consumption of packaged air-conditioners with rated cooling capacities less than 28 kW, to the multi-type air-conditioners with larger capacities were examined. It was found that JIS B 8616: 2006 generally overestimates COP under a relatively low thermal load operation. As a result, the annual electricity consumption is underestimated by JIS. The prediction error changes depending of the building uses, and it amounted to -17 % in the case of office and -6 % in the detached shop.

  9. 16 CFR Appendix H to Part 305 - Cooling Performance and Cost for Central Air Conditioners

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 1 2014-01-01 2014-01-01 false Cooling Performance and Cost for Central Air Conditioners H Appendix H to Part 305 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC... CONSERVATION ACT (âENERGY LABELING RULEâ) Pt. 305, App. H Appendix H to Part 305—Cooling Performance and...

  10. Ventilating Air-Conditioner

    NASA Technical Reports Server (NTRS)

    Dinh, Khanh

    1994-01-01

    Air-conditioner provides ventilation designed to be used alone or incorporated into cooling or heating system operates efficiently only by recirculating stale air within building. Energy needed to operate overall ventilating cooling or heating system slightly greater than operating nonventilating cooling or heating system. Helps to preserve energy efficiency while satisfying need for increased forced ventilation to prevent accumulation of undesired gases like radon and formaldehyde. Provides fresh treated air to variety of confined spaces: hospital surgeries, laboratories, clean rooms, and printing shops and other places where solvents used. In mobile homes and portable classrooms, eliminates irritant chemicals exuded by carpets, panels, and other materials, ensuring healthy indoor environment for occupants.

  11. Performance Characteristics of Cross-Fin-Tube-Type Heat Exchanger for Air Conditioner

    NASA Astrophysics Data System (ADS)

    Sasaki, Naoe; Kakiyama, Shiro; Sanuki, Noriyoshi

    The effects of enhanced heat transfer tube with ability to control the heat transfer disturbance by mechanical tube expanding were experimentally investigated on the performance characteristics of air-cooled cross-fin-tube-type heat exchanger for air conditioner. Three kinds of the enhanced heat transfer tube were developed and used in the experiment. The enhanced heat transfer tube was a kind of spirally grooved tube and composed with the fins smaller than those of the conventional spirally grooved tube excepting four fins located in orthogonal position on the tube circumference. The optimum groove number to enhance the performance of heat exchanger was also shown.

  12. Actual Performance Prediction of Split-type Room Air Conditioner which Considered Unsteady Operation Concerning Heat Island Problem

    NASA Astrophysics Data System (ADS)

    Shinomiya, Naruaki; Nishimura, Nobuya; Iyota, Hiroyuki; Nomura, Tomohiro

    Split type air conditioners are operated actually in the situation unlike the condition that was described in a product catalog. On the other hand, exhaust heat from air conditioner is considered as one of the causes of heat island problem in urban area, and the air conditioner performance and heat load affect exhaust heat amount. In this study, air conditioner performances in both standard summer day and severe hot day were examined by dynamic simulation which considered outdoor weather changes. As a result, actual performances of the air conditioner were demonstrated as a function of outdoor temperature, heat load and indoor temperature. The higher the outdoor temperature and heat load rise, the smaller influences of indoor temperature against COP became. In standard summer day, relative performance exceeded by 15 to 45% than that of JIS operating condition. Also, COP in severe hot day decreased about 6% at the peak time than that of standard day. As a result, the air conditioner exhaust heat during one day which was predicted by the proposed simulation model became about 16% smaller than the conventional prediction model.

  13. Evaluation of Annual Performance of Multi-type Air-Conditioners for Buildings

    NASA Astrophysics Data System (ADS)

    Hirota, Masafumi; Watanabe, Choyu; Furukawa, Masahide; Nagamatsu, Katsuaki

    The partial load performance tests of multi-type package air-conditioners for buildings powered by electric motors, the rating cooling performance of which was 56 kW, were carried out by using the air-enthalpy method testing apparatus. The coefficient of performance (COP) and annual energy consumption measured by those tests were closely compared with those estimated from the current calculating method (JIS B 8616:2006). It was found that the performance of the air-conditioner changes depending on the outdoor air temperature and the indoor thermal load. The current calculating method could not reproduce the deteriorations of COP that appeared under the low thermal load condition in both the cooling and heating seasons. As a result it seriously underestimated the annual energy consumption; the error amounted to as large as about 20 % of the measured annual electric power consumption. Based on these results, we have proposed new testing conditions for the performance evaluation and a calculation method of the annual energy consumption that can improve the accuracy of the estimation of the annual energy consumption.

  14. Evaluation of Annual Performance of Multi-type Air-Conditioners for Buildings

    NASA Astrophysics Data System (ADS)

    Watanabe, Choyu; Ohashi, Ei-Ichiro; Nagamatsu, Katsuaki; Nakayama, Hiroshi; Hirota, Masafumi

    In this paper, firstly the results of the partial thermal load performance tests of multi-type air-conditioners for buildings were shown. Tests were conducted by using the air-enthalpy method testing apparatus. Two types of air-conditioners, heat pump driven by electric motors (EHP) and that driven by gas engines (GHP), with a rated cooling capacity of 56 kW were tested. The coefficient of performance (COP) and the annual energy consumption measured by the above mentioned tests were closely compared with those predicted by JIS. In EHP,the measured COP indicates the maximum when the indoor thermal load is about 50% of the rated capacity, while COP in GHP decreases gradually as the thermal load is decreased. Based on these results, we examined the accuracies of COP and the annual energy consumption predicted by JIS. It was found that in both EHP and GHP the current calculating method prescribed in JIS could not duplicate the COP decrease that appeared under the low thermal load conditions. As a result, the annual energy consumption is seriously underestimated by JIS. The prediction errors of the annual energy consumption amounted to about 17% for EHP and 38% for GHP

  15. Stirling Air Conditioner for Compact Cooling

    SciTech Connect

    2010-09-01

    BEETIT Project: Infinia is developing a compact air conditioner that uses an unconventional high efficient Stirling cycle system (vs. conventional vapor compression systems) to produce cool air that is energy efficient and does not rely on polluting refrigerants. The Stirling cycle system is a type of air conditioning system that uses a motor with a piston to remove heat to the outside atmosphere using a gas refrigerant. To date, Stirling systems have been expensive and have not had the right kind of heat exchanger to help cool air efficiently. Infinia is using chip cooling technology from the computer industry to make improvements to the heat exchanger and improve system performance. Infinia’s air conditioner uses helium gas as refrigerant, an environmentally benign gas that does not react with other chemicals and does not burn. Infinia’s improvements to the Stirling cycle system will enable the cost-effective mass production of high-efficiency air conditioners that use no polluting refrigerants.

  16. EVALUATION OF REFRIGERANT FROM MOBILE AIR CONDITIONERS

    EPA Science Inventory

    The report gives results of a project to provide a scientific basis for choosing a reasonable standard of purity for recycled chlorofluorocarbon (CFC) refrigerant in operating automobile air conditioners. The quality of refrigerant from air conditioners in automobiles of differen...

  17. MOBILE AIR CONDITIONER REFRIGERANT EVALUATION

    EPA Science Inventory

    The paper discusses an evaluation of refrigerant from mobile air conditioners. The data gathered indicate that CFC-l2 refrigerant does not degrade significantly with use. Furthermore, while small amounts of contaminant are removed with the refrigerant during servicing, most of th...

  18. Performance characteristics of a turbo expander substituted for expansion valve on air-conditioner

    SciTech Connect

    Cho, Soo-Yong; Cho, Chong-Hyun; Kim, Chaesil

    2008-09-15

    An experimental study is conducted on a small turbo expander which could be applied to the expansion process in place of expansion valves in refrigerator or air-conditioner to improve the cycle efficiency by recovering energy from the throttling process. The operating gas is HFC134a and the maximum cooling capacity of experiment apparatus is 32.7 kW. Four different turbo expanders are tested to find the performance characteristics of the turbo expander when they operate at a low partial admission rate. The partial admission rate is 1.70% or 2.37, and expanders are operated in the supersonic flow. In the experiment, pressure and temperature are measured at 10 different locations in the experimental apparatus. In addition to these measurements, output power at the turbo expander is measured through a generator installed on a rotor shaft with the rotational speed. Performance data of the turbo expander are obtained at many part load operations by adjusting the output power of the generator. A maximum of 15.8% total-to-static efficiency is obtained when the pressure ratio and the partial admission ratio are 2.37 and 1.70%, respectively. Experimental results show that the optimal velocity ratio decreases when the pressure ratio is decreased, and peak efficiencies, which are obtained at locally maximized efficiency depending on the operating condition, vary linearly against the subcooling temperature or the pressure ratio. (author)

  19. Influence of surrounding structures upon the aerodynamic and acoustic performance of the outdoor unit of a split air-conditioner

    NASA Astrophysics Data System (ADS)

    Wu, Chengjun; Liu, Jiang; Pan, Jie

    2014-07-01

    DC-inverter split air-conditioner is widely used in Chinese homes as a result of its high-efficiency and energy-saving. Recently, the researches on its outdoor unit have focused on the influence of surrounding structures upon the aerodynamic and acoustic performance, however they are only limited to the influence of a few parameters on the performance, and practical design of the unit requires more detailed parametric analysis. Three-dimensional computational fluid dynamics(CFD) and computational aerodynamic acoustics(CAA) simulation based on FLUENT solver is used to study the influence of surrounding structures upon the aforementioned properties of the unit. The flow rate and sound pressure level are predicted for different rotating speed, and agree well with the experimental results. The parametric influence of three main surrounding structures(i.e. the heat sink, the bell-mouth type shroud and the outlet grille) upon the aerodynamic performance of the unit is analyzed thoroughly. The results demonstrate that the tip vortex plays a major role in the flow fields near the blade tip and has a great effect on the flow field of the unit. The inlet ring's size and throat's depth of the bell-mouth type shroud, and the through-flow area and configuration of upwind and downwind sections of the outlet grille are the most important factors that affect the aerodynamic performance of the unit. Furthermore, two improved schemes against the existing prototype of the unit are developed, which both can significantly increase the flow rate more than 6 %(i.e. 100 m3·h-1) at given rotating speeds. The inevitable increase of flow noise level when flow rate is increased and the advantage of keeping a lower rotating speed are also discussed. The presented work could be a useful guideline in designing the aerodynamic and acoustic performance of the split air-conditioner in engineering practice.

  20. Residential air conditioner cycling: A case study

    SciTech Connect

    Strickler, G.F.; Noell, S.K.

    1988-02-01

    Southern California Edison currently operates its Residential Air Conditioner Cycling Program as a production program on a systemwide basis. Air conditioner cycling enables Edison to cycle, or switch off, at predetermined intervals, approximately 100,000 air conditioners throughout the Edison service areas. Activation of this system reduces peak demands for load shaping capability. Benefits of this method of peak reduction include the potential for system load factor improvement and/or for deferral of construction of new generation facilities. Edison began testing hardware for direct load control in 1976. Experimental test programs were implemented from 1978 through 1980. These successful test programs resulted in the decision to implement the Residential Air Conditioner Cycling Program on a systemwide basis in 1983.

  1. High Efficiency Room Air Conditioner

    SciTech Connect

    Bansal, Pradeep

    2015-01-01

    This project was undertaken as a CRADA project between UT-Battelle and Geberal Electric Company and was funded by Department of Energy to design and develop of a high efficiency room air conditioner. A number of novel elements were investigated to improve the energy efficiency of a state-of-the-art WAC with base capacity of 10,000 BTU/h. One of the major modifications was made by downgrading its capacity from 10,000 BTU/hr to 8,000 BTU/hr by replacing the original compressor with a lower capacity (8,000 BTU/hr) but high efficiency compressor having an EER of 9.7 as compared with 9.3 of the original compressor. However, all heat exchangers from the original unit were retained to provide higher EER. The other subsequent major modifications included- (i) the AC fan motor was replaced by a brushless high efficiency ECM motor along with its fan housing, (ii) the capillary tube was replaced with a needle valve to better control the refrigerant flow and refrigerant set points, and (iii) the unit was tested with a drop-in environmentally friendly binary mixture of R32 (90% molar concentration)/R125 (10% molar concentration). The WAC was tested in the environmental chambers at ORNL as per the design rating conditions of AHAM/ASHRAE (Outdoor- 95F and 40%RH, Indoor- 80F, 51.5%RH). All these modifications resulted in enhancing the EER of the WAC by up to 25%.

  2. An automobile air conditioner design model

    SciTech Connect

    Kyle, D M; Mei, V C; Chen, F C

    1992-12-01

    A computer program has been developed to predict the steady-state performance of vapor compression automobile air conditioners and heat pumps. The code is based on the residential heat pump model developed at the Oak Ridge National Laboratory (ORNL). Most calculations are based on fundamental physical principles, in conjunction with generalized correlations available in the research literature. Automobile air conditioning components that can be specified as input to the program include open and hermetic compressors; finned tube condensers; finned tube and plate-fin style evaporators; thermostatic expansion valves (TXV), capillary tube, and short tube expansion devices; refrigerant mass; and evaporator pressure regulator and all interconnecting tubing. Pressure drop, heat transfer rates, and latent capacity ratio for the new plate-fin evaporator submodel are shown to agree well with laboratory data. The program can be used with a variety of refrigerants, including R-134a.

  3. Monitoring and evaluation of replacing low-efficiency air conditioners with high-efficiency air conditioners in single-family detached houses in Austin, Texas

    SciTech Connect

    Burns, R.; Hough, R.E. and Associates, Inc., Syracuse, NY )

    1991-10-01

    The US DOE initiated this project to evaluate the performance of an air conditioner retrofit program in Austin, Texas. The City's Austin's Resource Management Department pursued this project to quantify the retrofit effect of replacing low-efficiency air conditioners with high-efficiency air conditioners in single-family detached homes. If successfully implemented, this retrofit program could help defer construction of a new power plant which is a major goal of this department. The project compares data collected from 12 houses during two cooling seasons under pre-retrofit and then post-retrofit air conditioner units. The existing low-efficiency air conditioners were monitored during the 1987 cooling season, replaced during the 1987--88 heating season with new, smaller sized, high-efficiency units, and then monitored again during the 1988 cooling season. Results indicated that the air conditioner retrofits reduce the annual air conditioner electric consumption and peak electric demand by an average of 38%. When normalized to the nominal capacity of the air conditioner, average demand savings were 1.12 W/ft{sup 2} and estimated annual energy savings were 1.419 kWh/ft{sup 2}. Individual air conditioner power requirements were found to be a well defined function of outdoor temperature as expected. In the absence of detailed data, estimates of the peak demand reductions of new air conditioners can be made from the manufacturer's specifications. Air conditioner energy consumption proved to be strongly linear as a function of the outdoor temperature as expected when taken as an aggregate. No noticeable differences in the diversity factor of the air conditioner usage were found. Analysis of the retrofit effect using PRISM yields estimates of the reduction in normalized annual consumption (NAC) and annual cooling consumption of 12% and 30%. 2 refs., 11 figs., 17 tabs.

  4. Development of a solar-powered residential air conditioner

    NASA Technical Reports Server (NTRS)

    1975-01-01

    An extensive review of the literature was conducted which was concerned with the characterization of systems and equipment that could be applicable to the development of solar-powered air conditioners based on the Rankine cycle approach, and the establishment of baseline data defining the performance, physical characteristics, and cost of systems using the LiBr/H2O absorption cycle.

  5. Switching on the Aire conditioner.

    PubMed

    Matsumoto, Mitsuru

    2015-12-01

    Aire has been cloned as the gene responsible for a hereditary type of organ-specific autoimmune disease. Aire controls the expression of a wide array of tissue-restricted Ags by medullary thymic epithelial cells (mTECs), thereby leading to clonal deletion and Treg-cell production, and ultimately to the establishment of self-tolerance. However, relatively little is known about the mechanism responsible for the control of Aire expression itself. In this issue of the European Journal of Immunology, Haljasorg et al. [Eur. J. Immunol. 2015. 45: 3246-3256] have reported the presence of an enhancer element for Aire that binds with NF-κB components downstream of the TNF receptor family member, RANK (receptor activator of NF-κB). The results suggest that RANK has a dual mode of action in Aire expression: one involving the promotion of mTEC differentiation and the other involving activation of the molecular switch for Aire within mature mTECs. PMID:26643138

  6. Properties and Cycle Performance of Refrigerant Blends Operating Near and Above the Refrigerant Critical Point, Task 2: Air Conditioner System Study

    SciTech Connect

    Piotr A. Domanski; W. Vance Payne

    2002-10-31

    The main goal of this project was to investigate and compare the performance of an R410A air conditioner to that of an R22 air conditioner, with specific interest in performance at high ambient temperatures at which the condenser of the R410A system may be operating above the refrigerant's critical point. Part 1 of this project consisted of conducting comprehensive measurements of thermophysical for refrigerant R125 and refrigerant blends R410A and R507A and developing new equation of state formulations and mixture models for predicting thermophysical properties of HFC refrigerant blends. Part 2 of this project conducted performance measurements of split-system, 3-ton R22 and R410A residential air conditioners in the 80 to 135 F (27.8 to 57.2 C) outdoor temperature range and development of a system performance model. The performance data was used in preparing a beta version of EVAP-COND, a windows-based simulation package for predicting performance of finned-tube evaporators and condensers. The modeling portion of this project also included the formulation of a model for an air-conditioner equipped with a thermal expansion valve (TXV). Capacity and energy efficiency ratio (EER) were measured and compared. The R22 system's performance was measured over the outdoor ambient temperature range of 80 to 135 F (27.8 to 57.2 C). The same test range was planned for the R410A system. However, the compressor's safety system cut off the compressor at the 135.0 F (57.2 C) test temperature. The highest measurement on this system was at 130.0 F (54.4 C). Subsequently, a custom-manufactured R410A compressor with a disabled safety system and a more powerful motor was installed and performance was measured at outdoor temperatures up to 155.0 F (68.3 C). Both systems had similar capacity and EER performance at 82.0 F (27.8 C). The capacity and EER degradation of both systems were nearly linearly dependent with rising ambient outdoor ambient test temperatures. The performance

  7. Development of a solar-powered residential air conditioner

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The initial objective of the program was the optimization (in terms of cost and performance) of a Rankine cycle mechanical refrigeration system which utilizes thermal energy from a flat solar collector for air conditioning residential buildings. However, feasibility investigations of the adsorption process revealed that a dessicant-type air conditioner offers many significant advantages. As a result, limited efforts were expended toward the optimization of such a system.

  8. 10 CFR 429.15 - Room air conditioners.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Room air conditioners. 429.15 Section 429.15 Energy... COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.15 Room air conditioners. (a) Sampling plan for selection of units for testing. (1) The requirements of § 429.11 are applicable to room air...

  9. Assessment of Environmentally Friendly Refrigerants for Window Air Conditioners

    SciTech Connect

    Bansal, Pradeep; Shen, Bo

    2014-01-01

    This paper presents technical assessment of environmentally friendly refrigerants for window air conditioners that currently use refrigerant R410A for residential and commercial applications. The alternative refrigerants that are studied for its replacement include R32, R600a, R290, R1234yf, R1234ze and a mixture of R32 (90% molar concentration) and R125 (10% molar concentration). Baseline experiments were performed on a window unit charged with R410A. The ORNL Heat Pump Design Model was calibrated with the baseline data and was used to assess the comparative performance of the WAC with alternative refrigerants. The paper discusses the advantages and disadvantages of each refrigerants and their suitability for window air conditioners.

  10. Analysis of Environmentally Friendly Refrigerant Options for Window Air Conditioners

    DOE PAGESBeta

    Bansal, Pradeep; Shen, Bo

    2015-03-12

    This paper presents a technical assessment of environmentally friendly refrigerants as alternatives to R410A for window air conditioners. The alternative refrigerants that are studied for its replacement include R32, a mixture of R32/R125 with 90%/10% molar concentration, R600a, R290, R1234yf, R1234ze and R134a. Baseline experiments were performed on a window unit charged with R410A. The heat pump design model (HPDM) was modified and calibrated with the baseline data and was used to evaluate the comparative performance of the WAC with alternative refrigerants. The paper discusses the advantages and disadvantages of each refrigerants and their suitability for window air conditioners. Amongmore » all the refrigerants studied, R32 offers the best efficiency and the lowest Global Warming Potential (GWP), and hence its use will result in the overall environmental friendliness.« less

  11. Analysis of Environmentally Friendly Refrigerant Options for Window Air Conditioners

    SciTech Connect

    Bansal, Pradeep; Shen, Bo

    2015-03-12

    This paper presents a technical assessment of environmentally friendly refrigerants as alternatives to R410A for window air conditioners. The alternative refrigerants that are studied for its replacement include R32, a mixture of R32/R125 with 90%/10% molar concentration, R600a, R290, R1234yf, R1234ze and R134a. Baseline experiments were performed on a window unit charged with R410A. The heat pump design model (HPDM) was modified and calibrated with the baseline data and was used to evaluate the comparative performance of the WAC with alternative refrigerants. The paper discusses the advantages and disadvantages of each refrigerants and their suitability for window air conditioners. Among all the refrigerants studied, R32 offers the best efficiency and the lowest Global Warming Potential (GWP), and hence its use will result in the overall environmental friendliness.

  12. Development and Analysis of Desiccant Enhanced Evaporative Air Conditioner Prototype

    SciTech Connect

    Kozubal, E.; Woods, J.; Judkoff, R.

    2012-04-01

    This report documents the design of a desiccant enhanced evaporative air conditioner (DEVAP AC) prototype and the testing to prove its performance. Previous numerical modeling and building energy simulations indicate a DEVAP AC can save significant energy compared to a conventional vapor compression AC (Kozubal et al. 2011). The purposes of this research were to build DEVAP prototypes, test them to validate the numerical model, and identify potential commercialization barriers.

  13. 10 CFR 429.15 - Room air conditioners.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Room air conditioners. 429.15 Section 429.15 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION CERTIFICATION, COMPLIANCE, AND ENFORCEMENT FOR CONSUMER PRODUCTS AND COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.15 Room air conditioners. (a) Sampling plan for selection of units for testing. (1)...

  14. 16 CFR Appendix E to Part 305 - Room Air Conditioners

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 1 2012-01-01 2012-01-01 false Room Air Conditioners E Appendix E to Part 305 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS RULE... Appendix E to Part 305—Room Air Conditioners Range Information Manufacturer's rated cooling capacity in...

  15. 16 CFR Appendix E to Part 305 - Room Air Conditioners

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 1 2013-01-01 2013-01-01 false Room Air Conditioners E Appendix E to Part 305 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS RULE... Appendix E to Part 305—Room Air Conditioners Range Information Manufacturer's rated cooling capacity in...

  16. 16 CFR Appendix E to Part 305 - Room Air Conditioners

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Room Air Conditioners E Appendix E to Part 305 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS RULE... Appendix E to Part 305—Room Air Conditioners Range Information Manufacturer's rated cooling capacity in...

  17. Energy savings potential in air conditioners and chiller systems

    SciTech Connect

    Kaya, Durmus; Alidrisi, Hisham

    2014-01-22

    In the current paper we quantified and evaluated the energy saving potential in air conditioners and chiller systems. Here, we also showed how to reduce the cost of air conditioners and chiller systems in existing facilities on the basis of payback periods. Among the measures investigated were: (1) installing higher efficiency air conditioners, (2) installing higher efficiency chillers, (3) duty cycling air conditioning units, and (4) utilizing existing economizers on air conditioning units. For each method, examples were provided from Arizona, USA. In these examples, the amount of saved energy, the financial evaluation of this energy, and the investment cost and pay back periods were calculated.

  18. Energy savings potential in air conditioners and chiller systems

    DOE PAGESBeta

    Kaya, Durmus; Alidrisi, Hisham

    2014-01-22

    In the current paper we quantified and evaluated the energy saving potential in air conditioners and chiller systems. Here, we also showed how to reduce the cost of air conditioners and chiller systems in existing facilities on the basis of payback periods. Among the measures investigated were: (1) installing higher efficiency air conditioners, (2) installing higher efficiency chillers, (3) duty cycling air conditioning units, and (4) utilizing existing economizers on air conditioning units. For each method, examples were provided from Arizona, USA. In these examples, the amount of saved energy, the financial evaluation of this energy, and the investment costmore » and pay back periods were calculated.« less

  19. High efficiency novel window air conditioner

    DOE PAGESBeta

    Bansal, Pradeep

    2015-01-01

    This paper presents the technical development of a high efficiency window air conditioner. In order to achieve higher energy efficiency ratio (EER), the original capacity of the R410A unit was downgraded by replacing the original compressor with a lower capacity but higher EER compressor, while all heat exchangers and the chassis from the original unit were retained. The other subsequent major modifications included – the AC fan motor being replaced with a brushless high efficiency electronically commuted motor (ECM) motor, the capillary tube being replaced with a needle valve to better control the refrigerant flow and refrigerant set points, andmore » R410A being replaced with drop-in environmentally friendly binary mixture of R32 (85% molar concentration)/R125 (15% molar concentration). All these modifications resulted in significant EER enhancement of the modified unit.« less

  20. High efficiency novel window air conditioner

    SciTech Connect

    Bansal, Pradeep

    2015-01-01

    This paper presents the technical development of a high efficiency window air conditioner. In order to achieve higher energy efficiency ratio (EER), the original capacity of the R410A unit was downgraded by replacing the original compressor with a lower capacity but higher EER compressor, while all heat exchangers and the chassis from the original unit were retained. The other subsequent major modifications included – the AC fan motor being replaced with a brushless high efficiency electronically commuted motor (ECM) motor, the capillary tube being replaced with a needle valve to better control the refrigerant flow and refrigerant set points, and R410A being replaced with drop-in environmentally friendly binary mixture of R32 (85% molar concentration)/R125 (15% molar concentration). All these modifications resulted in significant EER enhancement of the modified unit.

  1. Building America Top Innovations 2013 Profile – High-Efficiency Window Air Conditioners

    SciTech Connect

    none,

    2013-09-01

    This Top Innovation profile explains how comprehensive performance testing by the National Renewable Energy Laboratory led to simple, affordable methods that homeowners could employ for increasing the energy efficiency of window air conditioners.

  2. Development of a solar-powered residential air conditioner: System optimization preliminary specification

    NASA Technical Reports Server (NTRS)

    Rousseau, J.; Hwang, K. C.

    1975-01-01

    Investigations aimed at the optimization of a baseline Rankine cycle solar powered air conditioner and the development of a preliminary system specification were conducted. Efforts encompassed the following: (1) investigations of the use of recuperators/regenerators to enhance the performance of the baseline system, (2) development of an off-design computer program for system performance prediction, (3) optimization of the turbocompressor design to cover a broad range of conditions and permit operation at low heat source water temperatures, (4) generation of parametric data describing system performance (COP and capacity), (5) development and evaluation of candidate system augmentation concepts and selection of the optimum approach, (6) generation of auxiliary power requirement data, (7) development of a complete solar collector-thermal storage-air conditioner computer program, (8) evaluation of the baseline Rankine air conditioner over a five day period simulating the NASA solar house operation, and (9) evaluation of the air conditioner as a heat pump.

  3. Understanding Energy Impacts of Oversized Air Conditioners; NREL Highlights, Research & Development, NREL (National Renewable Energy Laboratory)

    SciTech Connect

    2015-06-01

    This NREL highlight describes a simulation-based study that analyzes the energy impacts of oversized residential air conditioners. Researchers found that, if parasitic power losses are minimal, there is very little increase in energy use for oversizing an air conditioner. The research demonstrates that new residential air conditioners can be sized primarily based on comfort considerations, because capacity typically has minimal impact on energy efficiency. The results of this research can be useful for contractors and homeowners when choosing a new air conditioner or heat pump during retrofits of existing homes. If the selected unit has a crankcase heater, performing proper load calculations to be sure the new unit is not oversized will help avoid excessive energy use.

  4. Improving Air-Conditioner and Heat Pump Modeling (Presentation)

    SciTech Connect

    Winkler, J.

    2012-03-01

    A new approach to modeling residential air conditioners and heat pumps allows users to model systems by specifying only the more readily-available SEER/EER/HSPF-type metrics. Manufacturer data was used to generate full sets of model inputs for over 450 heat pumps and air conditioners. A sensitivity analysis identified which inputs can be safely defaulted 'behind-the-scenes' without negatively impacting the reliability of energy simulations.

  5. Control Technologies for Room Air-conditioner and Packaged Air-conditioner

    NASA Astrophysics Data System (ADS)

    Ito, Nobuhisa

    Trends of control technologies about air-conditioning machineries, especially room or packaged air conditioners, are presented in this paper. Multiple air conditioning systems for office buildings are mainly described as one application of the refrigeration cycle control technologies including sensors for thermal comfort and heating/ cooling loads are also described as one of the system control technologies. Inverter systems and related technologies for driving variable speed compressors are described in both case of including induction motors and brushless DC motors. Technologies for more accurate control to meet various kind of regulations such as ozone layer destruction, energy saving and global warming, and for eliminating harmonic distortion of power source current, as a typical EMC problem, will be urgently desired.

  6. Air-conditioner filters enriching dust mites allergen.

    PubMed

    Zhan, Xiaodong; Li, Chaopin; Xu, Haifeng; Xu, Pengfei; Zhu, Haibin; Diao, Jidong; Li, Na; Zhao, Beibei

    2015-01-01

    We detected the concentration of dust mites allergen (Der f1 & Der p1) in the air of different places before and after the starting of air-conditioners in Wuhu City, Anhui, China, and to discuss the relation between the dust mites allergen in air-conditioner filters and the asthma attack. The dust samples were collected from the air-conditioner filters in dining rooms, shopping malls, hotels and households respectively. Concentrations of dust mites major group allergen 1 (Der f 1, Der p1) were detected with enzyme linked immunosorbent assay (ELISA), and the dust mite immune activities were determined by dot-ELISA. The concentration of Der f1 in dining rooms, shopping malls, hotels and households was 1.52 μg/g, 1.24 μg/g, 1.31 μg/g and 1.46 μg/g respectively, and the concentration of Der p1 in above-mentioned places was 1.23 μg/g, 1.12 μg/g, 1.16 μg/g and 1.18 μg/g respectively. The concentration of Der f1 & Der p1 in air was higher after the air-conditioners starting one hours later, and the difference was significant (P<0.05, respectively). Additionally, dot-ELISA findings revealed that the allergen extracted from the dust was capable of reacting with IgE from the sera of asthma mice allergic to dust mites. The study concludes that air-conditioner filters can enrich dust mites major group allergen, and the allergens can induce asthma. The air-conditioner filters shall be cleaned or replaced regularly to prevent or reduce accumulation of the dust mites and its allergens. PMID:26064381

  7. Air-conditioner filters enriching dust mites allergen

    PubMed Central

    Zhan, Xiaodong; Li, Chaopin; Xu, Haifeng; Xu, Pengfei; Zhu, Haibin; Diao, Jidong; Li, Na; Zhao, Beibei

    2015-01-01

    We detected the concentration of dust mites allergen (Der f1 & Der p1) in the air of different places before and after the starting of air-conditioners in Wuhu City, Anhui, China, and to discuss the relation between the dust mites allergen in air-conditioner filters and the asthma attack. The dust samples were collected from the air-conditioner filters in dining rooms, shopping malls, hotels and households respectively. Concentrations of dust mites major group allergen 1 (Der f 1, Der p1) were detected with enzyme linked immunosorbent assay (ELISA), and the dust mite immune activities were determined by dot-ELISA. The concentration of Der f1 in dining rooms, shopping malls, hotels and households was 1.52 μg/g, 1.24 μg/g, 1.31 μg/g and 1.46 μg/g respectively, and the concentration of Der p1 in above-mentioned places was 1.23 μg/g, 1.12 μg/g, 1.16 μg/g and 1.18 μg/g respectively. The concentration of Der f1 & Der p1 in air was higher after the air-conditioners starting one hours later, and the difference was significant (P<0.05, respectively). Additionally, dot-ELISA findings revealed that the allergen extracted from the dust was capable of reacting with IgE from the sera of asthma mice allergic to dust mites. The study concludes that air-conditioner filters can enrich dust mites major group allergen, and the allergens can induce asthma. The air-conditioner filters shall be cleaned or replaced regularly to prevent or reduce accumulation of the dust mites and its allergens. PMID:26064381

  8. Development of a solar powered residential air conditioner (General optimization)

    NASA Technical Reports Server (NTRS)

    Lowen, D. J.

    1976-01-01

    A commercially available 3-ton residential Lithium Bromide (LiBr) absorption air conditioner was modified for use with lower temperature solar heated water. The modification included removal of components such as the generator, concentration control chamber, liquid trap, and separator; and the addition of a Chrysler designed generator, an off-the-shelf LiBr-solution pump. The design goal of the modified unit was to operate with water as the heat-transfer fluid at a target temperature of 85 C (185 F), 29.4 C (85 F) cooling water inlet, producing 10.5 kW (3 tons) of cooling. Tests were performed on the system before and after modification to provide comparative data. At elevated temperatures (96 C, 205 F), the test results show that Lithium Bromide was carried into the condenser due to the extremely violent boiling and degraded the evaporator performance.

  9. Dirty air conditioners: Energy implications of coil fouling

    SciTech Connect

    Siegel, Jeffrey; Walker, Iain; Sherman, Max

    2002-03-01

    Residential air conditioning is responsible for a substantial amount of peak electrical demand and energy consumption throughout most of the United States. Coil fouling, the deposition of indoor dusts and other particulate matter on evaporator heat exchangers, increases system pressure drop and, correspondingly, decreases system air flow and air conditioner performance. In this paper, we apply experimental and simulation results describing particle deposition on evaporator coils as well as research about indoor particle and dust concentrations to determine coil fouling rates. The results suggest that typical coils foul enough to double evaporator pressure drop in about 7.5 years, much sooner than the expected 15-30 year life time for an evaporator coil. The most important parameters in determining coil fouling times are the efficiency of the filter and indoor particle concentrations, although filter bypass and duct and coil design are important as well. The reduced air flows that result from coil fouling cause typical efficiency and capacity degradations of less than 5%, however they can be much greater for marginal systems or extreme conditions. These energy issues, as well as possible indoor air quality issues resulting from fouling by biological aerosols, suggest that regular coil cleaning to ameliorate low flow and the elimination of filter bypass should be an important part of residential air conditioning commissioning and maintenance practices.

  10. Rooftop Unitary Air Conditioner with Integral Dedicated Outdoor Air System

    SciTech Connect

    Tiax Llc

    2006-02-28

    Energy use of rooftop and other unitary air-conditioners in commercial applications accounts for about 1 quad (10{sup 15} Btu) of primary energy use annually in the U.S. [Reference 7]. The realization that this cooling equipment accounts for the majority of commercial building cooled floorspace and the majority also of commercial building energy use has spurred development of improved-efficiency equipment as well as development of stricter standards addressing efficiency levels. Another key market driver affecting design of rooftop air-conditioning equipment has been concern regarding comfort and the control of humidity. Trends for increases in outdoor air ventilation rates in certain applications, and the increasing concern about indoor air quality problems associated with humidity levels and moisture in buildings points to a need for improved dehumidification capability in air-conditioning equipment of all types. In many cases addressing this issue exacerbates energy efficiency, and vice versa. The integrated dedicated outdoor air system configuration developed in this project addresses both energy and comfort/humidity issues.

  11. 16 CFR 305.12 - Labeling for central air conditioners, heat pumps, and furnaces.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Labeling for central air conditioners, heat... (âAPPLIANCE LABELING RULEâ) Required Disclosures § 305.12 Labeling for central air conditioners, heat pumps, and furnaces. (a) Layout. All energy labels for central air conditioners, heat pumps,...

  12. 10 CFR 429.15 - Room air conditioners.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Room air conditioners. 429.15 Section 429.15 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION CERTIFICATION, COMPLIANCE, AND ENFORCEMENT FOR CONSUMER PRODUCTS AND... selected and tested to ensure that— (i) Any represented value of estimated annual operating cost,...

  13. Domestic Refrigeration, Freezer, and Window Air Conditioner Service. Teacher Edition.

    ERIC Educational Resources Information Center

    Clemons, Mark

    This curriculum guide contains six units of instruction for a course in domestic refrigerator, freezer, and window air conditioner service. The units cover the following topics: (1) service fundamentals; (2) mechanical components and functions; (3) electrical components and control devices; (4) refrigerator and freezer service; (5) domestic ice…

  14. 16 CFR Appendix E to Part 305 - Room Air Conditioners

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 1 2011-01-01 2011-01-01 false Room Air Conditioners E Appendix E to Part 305 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS RULE CONCERNING DISCLOSURES REGARDING ENERGY CONSUMPTION AND WATER USE OF CERTAIN HOME APPLIANCES AND...

  15. Dehumidifying Characteristics of Polymer Electrolyte Dehumidifying Cell and its Application to Air Conditioner

    NASA Astrophysics Data System (ADS)

    Kyakuno, Takahiro; Hattori, Kikuo; Ikeda, Takanobu; Araki, Takuto; Onda, Kazuo

    Lots of the chlorofluorocarbon (CFC) has been released to atmosphere, resulting that the ozone layer in the stratosphere has been destroyed by the released CFC. Therefore, air conditioners without using CFC have been required to be developed. One of the candidates for such air conditioners is a combined conditioner of the dehumidifying cell by the proton exchange membrane (PEM) and the air cooler by water evaporation. But, we need to understand the operating principle of the dehumidifying cell because the performance of existing dehumidifying cells are not cleared. In this study, first we measured the transmissibility and the electro-osmotic coefficient nd of water vapor through the membrane electrode assembly, the water vapor diffusivity through the diffusion electrode, and the mass transfer coefficient between the flow in channel and the diffusion electrode, as important factors to determine the dehumidifying performance. These factors were adopted in our analysis of the dehumidifying cell performance, where the conservation equations of mass and energy with an equivalent electric circuit of the cell are solved simultaneously. Calculated results can describe well the experimental dehumidifying performance. By using this simulation code we predicted the coefficient of performance (COP) of our novel air conditioner. Calculated COP’s for test cell are as small as 0.10 or 0.21, but could be 4 when we can get the PEM with high nd of 5.

  16. 10 CFR 431.92 - Definitions concerning commercial air conditioners and heat pumps.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... applications; rated for sensible coefficient of performance (SCOP) and tested in accordance with 10 CFR 431.96... split system air conditioner incorporating a single refrigerant circuit, with one or more outdoor units... resistance, steam, hot water, or gas. The equipment incorporates a single refrigerant circuit, with one...

  17. 10 CFR 431.92 - Definitions concerning commercial air conditioners and heat pumps.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... electricity. Packaged terminal heat pump means a packaged terminal air conditioner that utilizes reverse cycle... indoor grilles, outdoor louvers, various ventilation options, indoor free air discharges, ductwork,...

  18. Optimal Design of Automotive Thermoelectric Air Conditioner (TEAC)

    NASA Astrophysics Data System (ADS)

    Attar, Alaa; Lee, HoSung; Weera, Sean

    2014-06-01

    The present work is an analytical study of the optimal design of an automotive thermoelectric air conditioner (TEAC) using a new optimal design method with dimensional analysis that has been recently developed by our research group. The optimal design gives not only the optimal current but also the optimal geometry (i.e., the number of thermocouples, the geometric factor, or the hot fluid parameters). The optimal design for the TEAC is carried out with two configurations: air-to-liquid and air-to-air heat exchangers.

  19. Mist Formation in Heat Exchanger of Air-Conditioners

    NASA Astrophysics Data System (ADS)

    Ishihara, Isao; Matsumoto, Ryosuke; Shibata, Yutaka

    The mist formation is found occasionally at the outlet of the air-conditioner, especially in the high temperature and high humidity environment. When the condensation takes place, a certain degree of the super-saturation is needed. Some researchers introduced the critical saturation model1-3) into the condensation process concerning with the super-saturation. However, under the ordinary environmental conditions where air-conditioners are installed, there are many nuclei for the phase change such as dusts in the humid air. They may offer the trigger to condense; that is to form the mist. In this research, with taking into account the super-saturation depending on the diameter of foreign nucleus, the mist formation is numerically predicted by solving boundary layer equations for the cold parallel plate channel simulating the heat exchanger of air-conditioner with the slit fins. The effects of the humidity and channel dimension on the mist formation rate and on heat and mass transfer are investigated. In addition, the numerical results are compared with those for the plate channel reported previously.

  20. Technical and economic analysis of energy efficiency of Chinese room air conditioners

    SciTech Connect

    Fridley, David G.; Rosenquist, Gregory; Jiang, Lin; Li, Aixian; Xin, Dingguo; Cheng, Jianhong

    2001-02-01

    China has experienced tremendous growth in the production and sales of room air conditioners over the last decade. Although minimum room air conditioner energy efficiency standards have been in effect since 1989, no efforts were made during most of the 1990's to update the standard to be more reflective of current market conditions. In 1999, China's State Bureau of Technical Supervision (SBTS) included in their annual plan the development and revision of the 1989 room air conditioner standard, and experts from SBTS worked together with LBNL to analyze the new standards. Based on the engineering and life cycle-cost analyses performed, the most predominant type of room air conditioner in the Chinese market (split-type with a cooling capacity between 2500 and 4500 W (8500 Btu/h and 15,300Btu/h)) can have its efficiency increased cost-effectively to an energy efficiency ratio (EER) of 2.92 W/W (9.9 Btu/hr/W). If an EER standard of 2.92 W/W became effective in 2001, Chinese consumers would be estimated to save over 3.5 billion Yuan (420 million U.S. dollars) over the period of 2001-2020. Carbon emissions over the same period would be reduced by approximately 12 million metric tonnes.

  1. Centrifugal compressors for automotive air conditioners -- Component design

    SciTech Connect

    Yun, H.; Smith, J.L. Jr.

    1996-12-31

    The application of a novel, electric motor-driven, variable-speed centrifugal compressor for automotive air conditioners has been investigated. For the feasibility analysis, a configuration design has been performed. It includes refrigerant selection, thermodynamic cycle analysis, compressor aerodynamic design, and mechanical layout of the integrated motor-compressor structure. Both the motor constraints (provided by the Laboratory for Electromagnetic and Electronic Systems at M.I.T.) and the compressor constraints were considered for the configuration design. The result is an inter-cooled two-stage compression system using R123 as the refrigerant. The inter-cooling is achieved by feeding back a small fraction of the condenser liquid into the return channel between the first and the second stage through the electric motor. At the design condition, the pressure ratio is 3.2 for the first stage and 1.9 for the second stage. The design rotational speed is 75,000 rpm, and the maximum cooling capacity is 5,275 Watts. High efficiency is expected by varying the compressor speed to match the required cooling load at each instant.

  2. Low GWP Refrigerants Modelling Study for a Room Air Conditioner Having Microchannel Heat Exchangers

    SciTech Connect

    Shen, Bo; Bhandari, Mahabir S

    2016-01-01

    Microchannel heat exchangers (MHX) have found great successes in residential and commercial air conditioning applications, being compact heat exchangers, to reduce refrigerant charge and material cost. This investigation aims to extend the application of MHXs in split, room air conditioners (RAC), per fundamental heat exchanger and system modelling. For this paper, microchannel condenser and evaporator models were developed, using a segment-to-segment modelling approach. The microchannel heat exchanger models were integrated to a system design model. The system model is able to predict the performance indices, such as cooling capacity, efficiency, sensible heat ratio, etc. Using the calibrated system and heat exchanger models, we evaluated numerous low GWP (global warming potential) refrigerants. The predicted system performance indices, e.g. cooling efficiency, compressor discharge temperature, and required compressor displacement volume etc., are compared. Suitable replacements for R22 and R-410A for the room air conditioner application are recommended.

  3. Building pressurization control with rooftop air conditioners

    SciTech Connect

    Winter, S.

    1982-10-01

    The modulated exhaust fan appears to be the most cost effective positive means to maintain close building pressure control with rooftop air conditioning, but because building construction and applications vary, every building's pressure control needs must be analyzed. Requirements will vary from no relief to barometric dampers to return fans to modulated exhaust fans. As heating and cooling costs continue to rise and tighter building codes prevail, proper selection of building pressure control is one area that must be monitored more carefully by the HVAC system designer.

  4. 10 CFR 429.16 - Central air conditioners and heat pumps.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... air conditioning heat pumps: The seasonal energy efficiency ratio (SEER in British thermal units per... 10 Energy 3 2013-01-01 2013-01-01 false Central air conditioners and heat pumps. 429.16 Section..., energy consumption or other measure of energy consumption of the central air conditioner or heat pump...

  5. 10 CFR 429.16 - Central air conditioners and heat pumps.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... air conditioning heat pumps: The seasonal energy efficiency ratio (SEER in British thermal units per... 10 Energy 3 2014-01-01 2014-01-01 false Central air conditioners and heat pumps. 429.16 Section..., energy consumption or other measure of energy consumption of the central air conditioner or heat pump...

  6. 10 CFR 429.16 - Central air conditioners and heat pumps.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... air conditioning heat pumps: The seasonal energy efficiency ratio (SEER in British thermal units per... 10 Energy 3 2012-01-01 2012-01-01 false Central air conditioners and heat pumps. 429.16 Section..., energy consumption or other measure of energy consumption of the central air conditioner or heat pump...

  7. Study on Variable Capacity Control Mechanism of Scroll Compressor for Automotive Air Conditioner

    NASA Astrophysics Data System (ADS)

    Hirano, Takahisa; Shigeoka, Tetsuo

    As for the automotive air conditioner, (1) to keep the automotive cabin temperature in a comfortable region, (2) to improve driving feeling, (3) to drive the air conditioning system economically through all seasons, are universally required. Recently, from these points, compressors with variable capacity control mechanism for automotive air conditioners have been remarkably requested. We have developed a scroll comoressor with variable capacity control mechanism. The capacity control mechanism, which changes the channel area of the bypass hole continuously, according to the suction gas pressure and the discharge gas pressure, has been developed. In this report, we describe the mechanism of variable capacity control and the performance simulation program that has been developed for the scroll compressor. Further, we describe the measuring results of cylinder pressure behavior, the results of energy loss analysis and the effect of comfort, drivability, power saving in the refrigerating cycle using the developed capacity control compressor.

  8. A hybrid air conditioner driven by a hybrid solar collector

    NASA Astrophysics Data System (ADS)

    Al-Alili, Ali

    The objective of this thesis is to search for an efficient way of utilizing solar energy in air conditioning applications. The current solar Air Conditioners (A/C)s suffer from low Coefficient of Performance (COP) and performance degradation in hot and humid climates. By investigating the possible ways of utilizing solar energy in air conditioning applications, the bottlenecks in these approaches were identified. That resulted in proposing a novel system whose subsystem synergy led to a COP higher than unity. The proposed system was found to maintain indoor comfort at a higher COP compared to the most common solar A/Cs, especially under very hot and humid climate conditions. The novelty of the proposed A/C is to use a concentrating photovoltaic/thermal collector, which outputs thermal and electrical energy simultaneously, to drive a hybrid A/C. The performance of the hybrid A/C, which consists of a desiccant wheel, an enthalpy wheel, and a vapor compression cycle (VCC), was investigated experimentally. This work also explored the use of a new type of desiccant material, which can be regenerated with a low temperature heat source. The experimental results showed that the hybrid A/C is more effective than the standalone VCC in maintaining the indoor conditions within the comfort zone. Using the experimental data, the COP of the hybrid A/C driven by a hybrid solar collector was found to be at least double that of the current solar A/Cs. The innovative integration of its subsystems allows each subsystem to do what it can do best. That leads to lower energy consumption which helps reduce the peak electrical loads on electric utilities and reduces the consumer operating cost since less energy is purchased during the on peak periods and less solar collector area is needed. In order for the proposed A/C to become a real alternative to conventional systems, its performance and total cost were optimized using the experimentally validated model. The results showed that for an

  9. Zero Carryover Liquid-Desiccant Air Conditioner for Solar Applications: Preprint

    SciTech Connect

    Lowenstein, A.; Slayzak, S.; Kozubal, E.

    2006-07-01

    A novel liquid-desiccant air conditioner that dries and cools building supply air will transform the use of direct-contact liquid-desiccant systems in HVAC applications, improving comfort, air quality, and providing energy-efficient humidity control.

  10. Huffing air conditioner fluid: a cool way to die?

    PubMed

    Phatak, Darshan R; Walterscheid, Jeffrey

    2012-03-01

    "Huffing," the form of substance abuse involving inhalants, is growing in popularity because of the ease and availability of chemical inhalants in many household products. The purpose in huffing is to achieve euphoria when the chemicals in question interact with the central nervous system in combination with oxygen displacement. The abuser is lulled into a false sense of safety despite the well-documented potential for lethal cardiac arrhythmia and the effects of chronic inhalant abuse, including multisystem organ failure, and brain damage. Huffing air conditioner fluid is a growing problem given the accessibility to outdoor units and their fluid components, such as difluorochloromethane(chlorodifluoromethane, Freon), and we have classified multiple cases of accidental death due to the toxicity of difluorochloromethane. Given the ubiquity of these devices and the vast lack of gating or security devices, they make an inviting target for inhalant abusers. Acute huffing fatalities have distinct findings that are present at the scene, given the position of the decedent and proximity to the air conditioner unit. The purpose of the autopsy in these cases is to exclude other potential causes of death and to procure specimens for toxicological analysis. PMID:22442834

  11. 48 CFR 52.223-12 - Refrigeration Equipment and Air Conditioners.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 2 2012-10-01 2012-10-01 false Refrigeration Equipment... Provisions and Clauses 52.223-12 Refrigeration Equipment and Air Conditioners. As prescribed in 23.804(b), insert the following clause: Refrigeration Equipment and Air Conditioners (MAY 1995) The Contractor...

  12. 48 CFR 52.223-12 - Refrigeration Equipment and Air Conditioners.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 2 2011-10-01 2011-10-01 false Refrigeration Equipment... Provisions and Clauses 52.223-12 Refrigeration Equipment and Air Conditioners. As prescribed in 23.804(b), insert the following clause: Refrigeration Equipment and Air Conditioners (MAY 1995) The Contractor...

  13. 48 CFR 52.223-12 - Refrigeration Equipment and Air Conditioners.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 2 2010-10-01 2010-10-01 false Refrigeration Equipment... Provisions and Clauses 52.223-12 Refrigeration Equipment and Air Conditioners. As prescribed in 23.804(b), insert the following clause: Refrigeration Equipment and Air Conditioners (MAY 1995) The Contractor...

  14. 48 CFR 52.223-12 - Refrigeration Equipment and Air Conditioners.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 2 2013-10-01 2013-10-01 false Refrigeration Equipment... Provisions and Clauses 52.223-12 Refrigeration Equipment and Air Conditioners. As prescribed in 23.804(b), insert the following clause: Refrigeration Equipment and Air Conditioners (MAY 1995) The Contractor...

  15. 48 CFR 52.223-12 - Refrigeration Equipment and Air Conditioners.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 2 2014-10-01 2014-10-01 false Refrigeration Equipment... Provisions and Clauses 52.223-12 Refrigeration Equipment and Air Conditioners. As prescribed in 23.804(b), insert the following clause: Refrigeration Equipment and Air Conditioners (MAY 1995) The Contractor...

  16. 10 CFR 431.92 - Definitions concerning commercial air conditioners and heat pumps.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... heat pumps. 431.92 Section 431.92 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Commercial Air Conditioners and Heat Pumps § 431.92 Definitions concerning commercial air conditioners and heat pumps. The following definitions...

  17. 10 CFR 431.92 - Definitions concerning commercial air conditioners and heat pumps.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... effect of an air conditioner or heat pump (or its produced heating effect, depending on the mode of... heat pumps. 431.92 Section 431.92 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Commercial Air Conditioners and Heat Pumps §...

  18. Techno-Economic Analysis of Indian Draft Standard Levels for RoomAir Conditioners

    SciTech Connect

    McNeil, Michael A.; Iyer, Maithili

    2007-03-01

    The Indian Bureau of Energy Efficiency (BEE) finalized its first set of efficiency standards and labels for room air conditioners in July of 2006. These regulations followed soon after the publication of levels for frost-free refrigerators in the same year. As in the case of refrigerators, the air conditioner program introduces Minimum Efficiency Performance Standards (MEPS) and comparative labels simultaneously, with levels for one to five stars. Also like the refrigerator program, BEE defined several successive program phases of increasing stringency. In support of BEE's refrigerator program, Lawrence Berkeley National Laboratory (LBNL) produced an analysis of national impacts of standards in collaboration with the Collaborative Labeling and Standards Program (CLASP). That analysis drew on LBNL's experience with standards programs in the United States, as well as many other countries. Subsequently, as part of the process for setting optimal levels for air conditioner regulations, CLASP commissioned LBNL to provide support to BEE in the form of a techno-economic evaluation of air conditioner efficiency technologies. This report describes the methodology and results of this techno-economic evaluation. The analysis consists of three components: (1) Cost effectiveness to consumers of efficiency technologies relative to current baseline. (2) Impacts on the current market from efficiency regulations. (3) National energy and financial impacts. The analysis relied on detailed and up-to-date technical data made available by BEE and industry representatives. Technical parameters were used in conjunction with knowledge about air conditioner use patterns in the residential and commercial sectors, and prevailing marginal electricity prices, in order to give an estimate of per-unit financial impacts. In addition, the overall impact of the program was evaluated by combining unit savings with market forecasts in order to yield national impacts. LBNL presented preliminary results

  19. Rating procedure for mixed-air-source unitary air conditioners and heat pumps operating in the cooling mode

    SciTech Connect

    Domanski, P.A.

    1986-02-01

    A procedure is presented for rating split, residential air conditioners and heat pumps operating in the cooling mode that are made up of an evaporator unit combined with a condensing unit that has been rated under current procedures in conjunction with a different evaporator unit. The procedure allows calculation of capacity at the 95/sup 0/ F rating point and seasonal energy efficiency ratio, SEER, without performing laboratory tests of the complete system.

  20. Shortening the Defrost Time on a Heat Pump Air Conditioner

    NASA Astrophysics Data System (ADS)

    Kuwahara, Eiji; Yamazaki, Masaya; Kawamura, Toshiaki

    Methods to shorten the defrost time have been studied on a heat pump air conditioner. The experiment has been carried out using a 0.75kW heat pump and the energy balance during defrosting has been analyzed. We have found that the following methods are effective to shorten the defrost time; (1) Increase in power inqut to the compressor during defrosting, (2) Utilization of the compressor for thermal energy storage, (3) Reduction of the water left on the outdoor heat exchanger fins. The heat pump with the new defrosting system has been made on an experimental basis. lts defrost time is 1 minute and 55 seconds under the defrost condition of the Japanese Industrial Standard. The defrost time of a conventional heat pump is about 4 or 5 minutes.

  1. Mycoflora of air-conditioners dust from Riyadh, Saudi Arabia.

    PubMed

    Bagy, M M; Gohar, Y M

    1988-01-01

    Using the hair baiting technique, 6 genera and 14 species were collected on Sabouraud's dextrose agar from 37 dust samples from air-conditioners. The most common fungi were Chrysosporium tropicum, C. indicum, C. keratinophilum, Aspergillus flavus followed by Acremonium strictum and Scopulariopsis brevicaulis. Using the dilution-plate method, 26 genera and 52 species were collected from 37 dust samples on glucose-(23 genera and 45 species) and cellulose-(18 genera and 34 species) Czapek's agar at 28 degrees C. The most prevalent species were Aspergillus niger, A. flavus, Penicillium chrysogenum, Stachybotrys chartarum, Ulocladium atrum, Mucor racemosus and Fusarium solani and A. niger, A. flavus, Trichoderma viride, P. chrysogenum, Ulocladium atrum, Chaetomium globosum, C. spirale, Stachybotrys chartarum and Mucor racemosus on the two media, respectively. PMID:3236219

  2. High-Efficiency Rooftop Air Conditioners: Small Commercial ACs Could Add Up to Big Energy Savings

    SciTech Connect

    Hollomon, J Bradford; Gilbride, Theresa L.

    2003-04-01

    This paper describes a technology procurement conducted by DOE, PNNL, and the Defense Logistics Agency to increase the availability of energy-efficient, packaged, unitary ''rooftop'' air conditioners. The procurement encourages air conditioner manufacturers to produce equipment that exceeds federal energy efficiency standards by at least 25 percent at a lower first cost. Program developers have also sought to aggregate market demand by organizing groups of large-volume buyers of air conditioning equipment. A Cost Estimator tool developed by PNNL to help consumers determine the cost effectiveness, based on local climate conditions, of purchasing energy efficient air conditioners for their own facilities is also described.

  3. High-Efficiency Rooftop Air Conditioners: Innovative Procurement to Achieve Advances in Technology

    SciTech Connect

    Hollomon, Brad

    2003-08-01

    The U.S. Department of Energy, Defense Logistics Agency, and Pacific Northwest National Laboratory recently conducted a technology procurement to increase the availability of energy-efficient, packaged unitary ''rooftop'' air conditioners. The procurement encouraged air conditioner manufacturers to produce equipment that exceeded US energy efficiency standards by at least 25% at a lower life-cycle cost. An outgrowth of the project, a web-based cost estimator tool is now available to help consumers determine the cost-effectiveness of purchasing energy-efficient air conditioners based on climate conditions and other factors at their own locations.

  4. Effect of air-conditioner on fungal contamination

    NASA Astrophysics Data System (ADS)

    Hamada, Nobuo; Fujita, Tadao

    Air-conditioners (AC) produce much dew and wet conditions inside their apparatus, when in operation. We studied the fungal contamination in AC and found that the average fungal contamination of AC filters was about 5-fold greater than that of a carpet, and Cladosporium and Penicillium were predominant in AC filters. The fungal contamination inside AC, which were used everyday, increased more markedly than those not used daily, e.g. a few days per week or rarely. Moreover, the airborne fungal contamination in rooms during air-conditioning was about 2-fold greater than one in rooms without AC, and was highest when air-conditioning started and decreased gradually with time. We recognized that the airborne fungal contamination was controlled by the environmental condition of the rooms, in which AC were used. It is suggested that AC might promote mold allergies in users via airborne fungal spores derived from the AC. On the other hand, AC was estimated to remove moisture in the room atmosphere and carpets, and reduce the relative humidity in rooms. It was found that the average fungal contamination in the house dust of carpets with AC was suppressed by two-third of that in rooms without AC. The use of AC for suppressing fungal hazards was discussed.

  5. Using Field-Metered Data to Quantify Annual Energy Use of Portable Air Conditioners

    SciTech Connect

    Burke, Thomas; Willem, Henry; Ni, Chun Chun; Stratton, Hannah; Chen, Yuting; Ganeshalingam, Mohan; Iyer, Maithili; Price, Sarah; Dunham, Camilla

    2014-12-01

    As many regions of the United States experience rising temperatures, consumers have come to rely increasingly on cooling appliances (including portable air conditioners) to provide a comfortable indoor temperature. Home occupants sometimes use a portable air conditioner (PAC) to maintain a desired indoor temperature in a single room or enclosed space. Although PACs in residential use are few compared to centrally installed and room air conditioning (AC) units, the past few years have witnessed an increase of PACs use throughout the United States. There is, however, little information and few research projects focused on the energy consumption and performance of PACs, particularly studies that collect information from field applications of PACs. The operation and energy consumption of PACs may differ among geographic locations and households, because of variations in cooling load, frequency, duration of use, and other user-selected settings. In addition, the performance of building envelope (thermal mass and air leakage) as well as inter-zonal mixing within the building would substantially influence the ability to control and maintain desirable indoor thermal conditions. Lawrence Berkeley National Laboratory (LBNL) conducted an initial field-metering study aimed at increasing the knowledge and data related to PAC operation and energy consumption in the United States.

  6. Improved Modeling of Residential Air Conditioners and Heat Pumps for Energy Calculations

    SciTech Connect

    Cutler, D.; Winkler, J.; Kruis, N.; Christensen, C.; Brendemuehl, M.

    2013-01-01

    This report presents improved air conditioner and heat pump modeling methods in the context of whole-building simulation tools, with the goal of enabling more accurate evaluation of cost effective equipment upgrade opportunities and efficiency improvements in residential buildings.

  7. Optimum dry-cooling sub-systems for a solar air conditioner

    NASA Technical Reports Server (NTRS)

    Chen, J. L. S.; Namkoong, D.

    1978-01-01

    Dry-cooling sub-systems for residential solar powered Rankine compression air conditioners were economically optimized and compared with the cost of a wet cooling tower. Results in terms of yearly incremental busbar cost due to the use of dry-cooling were presented for Philadelphia and Miami. With input data corresponding to local weather, energy rate and capital costs, condenser surface designs and performance, the computerized optimization program yields design specifications of the sub-system which has the lowest annual incremental cost.

  8. A Proposal for the Time Domain Modeling of Split Air Conditioners for Consumer Reimbursement Studies

    NASA Astrophysics Data System (ADS)

    Rezende, Paulo Henrique Oliveira; Almeida Junior, Afonso Bernardino; Gondim, Isaque Nogueira; Oliveira, José Carlos

    2015-04-01

    This paper deals with computer application procedures for the evaluation of the causal consistency between anomalous phenomena manifested in electrical networks, along with the physical damage associated with electrical equipment and possible reimbursement requests. The focus is on the development of an air conditioner appliance model of the type known as split founded upon a representation, in the time domain, in accordance with the Alternative Transients Program (ATP) simulator requirements. This approach permits investigations concerning the performance of the product when submitted to ideal and non-ideal supply conditions. Once the equipment model is implemented in the program, a set of investigative studies are carried out to show the device performance under specific energy quality disturbance conditions. In addition, there are still the results for the validation of the process established through the correlation between computational performance of the air conditioner with corresponding studies carried out experimentally, which are presented herein. Moreover, once the effectiveness of the developed model is verified, it is implemented into the Requests for Reimbursement Software. Investigations related to the correlation between disturbances and the levels of thermal and dielectric tolerance are then performed aiming at illustrating the use of the research results for the reimbursement analyzes purposes.

  9. Air Sample Conditioner Helps the Waste Treatment Plant Meet Emissions Standards

    SciTech Connect

    Glissmeyer, John A.; Flaherty, Julia E.; Pekour, Mikhail S.

    2014-12-02

    The air in three of the Hanford Site Waste Treatment and Immobilization Plant (WTP) melter off-gas discharge stacks will be hot and humid after passing through the train of emission abatement equipment. The off-gas temperature and humidity levels will be incompatible with the airborne emissions monitoring equipment required for this type of stack. To facilitate sampling from these facilities, an air sample conditioner system will be installed to introduce cool, dry air into the sample stream to reduce the temperature and dew point. This will avoid thermal damage to the instrumentation and problematic condensation. The complete sample transport system must also deliver at least 50% of the particles in the sample airstream to the sample collection and on-line analysis equipment. The primary components of the sample conditioning system were tested in a laboratory setting. The sample conditioner itself is based on a commercially-available porous tube filter design. It consists of a porous sintered metal tube inside a coaxial metal jacket. The hot gas sample stream passes axially through the porous tube, and the dry, cool air is injected into the jacket and through the porous wall of the inner tube, creating an effective sample diluter. The dilution and sample air mix along the entire length of the porous tube, thereby simultaneously reducing the dew point and temperature of the mixed sample stream. Furthermore, because the dilution air enters through the porous tube wall, the sample stream does not come in contact with the porous wall and particle deposition is reduced in this part of the sampling system. Tests were performed with an environmental chamber to supply air with the temperature and humidity needed to simulate the off-gas conditions. Air from the chamber was passed through the conditioning system to test its ability to reduce the temperature and dew point of the sample stream. To measure particle deposition, oil droplets in the range of 9 to 11 micrometer

  10. Energy Impacts of Oversized Residential Air Conditioners -- Simulation Study of Retrofit Sequence Impacts

    SciTech Connect

    Booten, C.; Christensen, C.; Winkler, J.

    2014-11-01

    This research addresses the question of what are the energy consequences for oversizing of an air conditioner in a home. Conventional wisdom holds that oversizing the AC results in significant energy penalties. However, the reason for this was shown to be due to crankcase heaters and not due to cycling performance of the AC, and is only valid for a particular set of assumptions. Adding or removing individual characteristics, such as ducts or crankcase heaters, can have measurable impacts on energy use. However, with all other home characteristics held constant, oversizing the AC generally has a small effect on cooling energy use, even if the cycling performance of the unit is poor. The relevant aspects of air conditioner modeling are discussed to illustrate the effects of the cycling loss coefficient, Cd, capacity, climate, ducts and parasitic losses such as crankcase heaters. A case study of a typical 1960's vintage home demonstrates results in the context of whole building simulations using EnergyPlus.

  11. Development of a solar-powered residential air conditioner: Economic analysis

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The results of investigations aimed at the development of cost models to be used in the economic assessment of Rankine-powered air conditioning systems for residential application are summarized. The rationale used in the development of the cost model was to: (1) collect cost data on complete systems and on the major equipment used in these systems; (2) reduce these data and establish relationships between cost and other engineering parameters such as weight, size, power level, etc; and (3) derive simple correlations from which cost-to-the-user can be calculated from performance requirements. The equipment considered in the survey included heat exchangers, fans, motors, and turbocompressors. This kind of hardware represents more than 2/3 of the total cost of conventional air conditioners.

  12. EER, COP, and the Second Law Efficiency for Air Conditioners

    ERIC Educational Resources Information Center

    Leff, Harvey S.; Teeters, William D.

    1978-01-01

    Describes the relationship existing between coefficient of performance (COP) and energy efficiency ratio (EER) in air conditioning units and introduces new efficiency parameters measured relative to the energy extracted from the primary energy source. (SL)

  13. EPA evaluation of the 'Pass Master Vehicle Air Conditioner Cut-Off' Device. Technical report

    SciTech Connect

    Penninga, T.J.

    1980-08-01

    The conclusions of the EPA evaluation of the 'Pass Master Vehicle Air Conditioner Compressor Cut-Off Device' under the provisions of Section 511 of the Motor Vehicle Information and Cost Savings Act are announced. The Pass Master device disengages the air conditioning compressor during hard vehicle acceleration modes. The reduced engine loading will result in some fuel savings.

  14. Experimental Study on Efficiency Improvement of R410A Scroll Compressor for Air Conditioner

    NASA Astrophysics Data System (ADS)

    Sawai, Kiyoshi; Sakuda, Atsushi; Iida, Noboru; Hiwata, Akira; Morimoto, Takashi; Ishii, Noriaki

    In scroll compressors, an increase in oil flow rate into thecompression chamber improves sealing effectsand decreases refrigerant leakage. On the other hand, as the oil supplies the heat energy, the suction refrigerantis heated and the volumetric efficiency degreases. In the present study, we made an apparatus which suppliesthe oil into the compression chamber while measuring the mass flow rate, thus investigating the relationshipbetween the oil flow rate and the compressor performance. Experimental results indicated that the presentR410A scroll compressor provided higher performance as the oil flow rate decreased under the rated conditionof the air-conditioner. In addition, based on the experimental results, we discussed that the oil flow in thecapillary installed in the orbiting scroll was considered to be a laminar flow, and the volumetric efficiencywould degrease by the effect of a quarter of the oil heat energy.

  15. Swozzle based burner tube premixer including inlet air conditioner for low emissions combustion

    DOEpatents

    Tuthill, Richard Sterling; Bechtel, II, William Theodore; Benoit, Jeffrey Arthur; Black, Stephen Hugh; Bland, Robert James; DeLeonardo, Guy Wayne; Meyer, Stefan Martin; Taura, Joseph Charles; Battaglioli, John Luigi

    2002-01-01

    A burner for use in a combustion system of a heavy-duty industrial gas turbine includes a fuel/air premixer having an air inlet, a fuel inlet, and an annular mixing passage. The fuel/air premixer mixes fuel and air into a uniform mixture for injection into a combustor reaction zone. The burner also includes an inlet flow conditioner disposed at the air inlet of the fuel/air premixer for controlling a radial and circumferential distribution of incoming air. The pattern of perforations in the inlet flow conditioner is designed such that a uniform air flow distribution is produced at the swirler inlet annulus in both the radial and circumference directions. The premixer includes a swozzle assembly having a series of preferably air foil shaped turning vanes that impart swirl to the airflow entering via the inlet flow conditioner. Each air foil contains internal fuel flow passages that introduce natural gas fuel into the air stream via fuel metering holes that pass through the walls of the air foil shaped turning vanes. By injecting fuel in this manner, an aerodynamically clean flow field is maintained throughout the premixer. By injecting fuel via two separate passages, the fuel/air mixture strength distribution can be controlled in the radial direction to obtain optimum radial concentration profiles for control of emissions, lean blow outs, and combustion driven dynamic pressure activity as machine and combustor load are varied.

  16. 10 CFR Appendix F to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Room Air Conditioners

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... conditioners at 10 CFR 430.32(b). 1. Definitions. 1.1“Active mode” means a mode in which the room air... 10 Energy 3 2012-01-01 2012-01-01 false Uniform Test Method for Measuring the Energy Consumption of Room Air Conditioners F Appendix F to Subpart B of Part 430 Energy DEPARTMENT OF ENERGY...

  17. 10 CFR Appendix F to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Room Air Conditioners

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... conditioners at 10 CFR 430.32(b). 1. Definitions. 1.1“Active mode” means a mode in which the room air... 10 Energy 3 2013-01-01 2013-01-01 false Uniform Test Method for Measuring the Energy Consumption of Room Air Conditioners F Appendix F to Subpart B of Part 430 Energy DEPARTMENT OF ENERGY...

  18. 10 CFR Appendix F to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Room Air Conditioners

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... conditioners at 10 CFR 430.32(b). 1. Definitions. 1.1 “Active mode” means a mode in which the room air... 10 Energy 3 2014-01-01 2014-01-01 false Uniform Test Method for Measuring the Energy Consumption of Room Air Conditioners F Appendix F to Subpart B of Part 430 Energy DEPARTMENT OF ENERGY...

  19. 10 CFR 431.96 - Uniform test method for the measurement of energy efficiency of commercial air conditioners and...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... efficiency of commercial air conditioners and heat pumps. 431.96 Section 431.96 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Commercial... energy efficiency of commercial air conditioners and heat pumps. (a) Scope. This section contains...

  20. 10 CFR 431.96 - Uniform test method for the measurement of energy efficiency of commercial air conditioners and...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... efficiency of commercial air conditioners and heat pumps. 431.96 Section 431.96 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Commercial... energy efficiency of commercial air conditioners and heat pumps. (a) Scope. This section contains...

  1. Additional cooling and heating load improvements in seasonal performance modeling of room and central air conditioners and heat pumps. Topical report, Subtask 3. 2

    SciTech Connect

    Not Available

    1980-04-09

    The study focuses on improving the load modeling technique of Seasonal Performance Model (SPM) in order to estimate a more realistic load for seasonal analysis calculations on an hourly basis. A computer simulation program, Seasonal Performance Model Load (SPMLD), was used to calculate the cooling and heating loads for a typical residence in Caribou, Maine; Columbia, Missouri; and Fort Worth, Texas. The derivation of the SPMLD is described and changes made to improve cooling and heating load estimates are identified. (MCW)

  2. Progress towards Managing Residential Electricity Demand: Impacts of Standards and Labeling for Refrigerators and Air Conditioners in India

    SciTech Connect

    McNeil, Michael A.; Iyer, Maithili

    2009-05-30

    The development of Energy Efficiency Standards and Labeling (EES&L) began in earnest in India in 2001 with the Energy Conservation Act and the establishment of the Indian Bureau of Energy Efficiency (BEE). The first main residential appliance to be targeted was refrigerators, soon to be followed by room air conditioners. Both of these appliances are of critical importance to India's residential electricity demand. About 15percent of Indian households own a refrigerator, and sales total about 4 million per year, but are growing. At the same time, the Indian refrigerator market has seen a strong trend towards larger and more consumptive frost-free units. Room air conditioners in India have traditionally been sold to commercial sector customers, but an increasing number are going to the residential sector. Room air conditioner sales growth in India peaked in the last few years at 20percent per year. In this paper, we perform an engineering-based analysis using data specific to Indian appliances. We evaluate costs and benefits to residential and commercial sector consumers from increased equipment costs and utility bill savings. The analysis finds that, while the BEE scheme presents net benefits to consumers, there remain opportunities for efficiency improvement that would optimize consumer benefits, according to Life Cycle Cost analysis. Due to the large and growing market for refrigerators and air conditioners in India, we forecast large impacts from the standards and labeling program as scheduled. By 2030, this program, if fully implemented would reduce Indian residential electricity consumption by 55 TWh. Overall savings through 2030 totals 385 TWh. Finally, while efficiency levels have been set for several years for refrigerators, labels and MEPS for these products remain voluntary. We therefore consider the negative impact of this delay of implementation to energy and financial savings achievable by 2030.

  3. 16 CFR 305.12 - Labeling for central air conditioners, heat pumps, and furnaces.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... pumps, and furnaces. 305.12 Section 305.12 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS... pumps, and furnaces. (a) Layout. All energy labels for central air conditioners, heat pumps, and furnaces (including boilers) shall use one size, similar colors, and typefaces with consistent...

  4. 16 CFR 305.12 - Labeling for central air conditioners, heat pumps, and furnaces.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... pumps, and furnaces. 305.12 Section 305.12 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS... pumps, and furnaces. (a) Layout. All energy labels for central air conditioners, heat pumps, and furnaces (including boilers) shall use one size, similar colors, and typefaces with consistent...

  5. 16 CFR 305.12 - Labeling for central air conditioners, heat pumps, and furnaces.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... pumps, and furnaces. 305.12 Section 305.12 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS... pumps, and furnaces. (a) Layout. All energy labels for central air conditioners, heat pumps, and furnaces (including boilers) shall use one size, similar colors, and typefaces with consistent...

  6. RETROFITTING AN AUTOMOTIVE AIR CONDITIONER WITH HFC-134A, ADDITIVE, AND MINERAL OIL

    EPA Science Inventory

    The paper gives results of an evaluation of a lubricant additive developed for use in retrofitting motor vehicle air conditioners. he additive was designed to enable HFC-134a to be used as a retrofit refrigerant with the existing mineral oil in CVC-12 systems. he goal of the proj...

  7. Improved Modeling of Residential Air Conditioners and Heat Pumps for Energy Calculations

    SciTech Connect

    Cutler, D.; Winkler, J.; Kruis, N.; Christensen, C.; Brandemuehl, M.

    2013-01-01

    This report presents improved air conditioner and heat pump modeling methods in the context of whole-building simulation tools, with the goal of enabling more accurate evaluation of cost-effective equipment upgrade opportunities and efficiency improvements in residential buildings.

  8. Product lifetime, energy efficiency and climate change: A case study of air conditioners in Japan.

    PubMed

    Nishijima, Daisuke

    2016-10-01

    This study proposed a modelling technique for estimating life-cycle CO2 emissions of durable goods by considering changes in product lifetime and energy efficiency. The stock and flow of durable goods was modelled by Weibull lifetime distributions and the trend in annual energy efficiency (i.e., annual electricity consumption) of an "average" durable good was formulated as a reverse logistic curve including a technologically critical value (i.e., limit energy efficiency) with respect to time. I found that when the average product lifetime is reduced, there is a trade-off between the reduction in emissions during product use (use phase), due to the additional purchases of new, more energy-efficient air conditioners, and the increase in emissions arising from the additional production of new air conditioners stimulated by the reduction of the average product lifetime. A scenario analysis focused on residential air conditioners in Japan during 1972-2013 showed that for a reduction of average lifetime of 1 year, if the air conditioner energy efficiency limit can be improved by 1.4% from the estimated current efficiency level, then CO2 emissions can be reduced by approximately the same amount as for an extension of average product lifetime of 1 year. PMID:27423771

  9. Experimental Validation of the Optimum Design of an Automotive Air-to-Air Thermoelectric Air Conditioner (TEAC)

    NASA Astrophysics Data System (ADS)

    Attar, Alaa; Lee, HoSung; Weera, Sean

    2015-06-01

    The optimization of thermoelectric air conditioners (TEAC) has been a challenging topic due to the multitude of variables that must be considered. The present work discusses an experimental validation of the optimum design for an automotive air-to-air TEAC. The TEAC optimum design was obtained by using a new optimal design method with dimensional analysis that has been recently developed. The design constraints were obtained through a previous analytical study on the same topic. To simplify the problem, a unit cell representing the entire TEAC system was analytically simulated and experimentally tested. Moreover, commercial TEC modules and heat sinks were selected and tested based on the analytical optimum design results.

  10. Development of a solar-powered residential air conditioner: Screening analysis

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Screening analysis aimed at the definition of an optimum configuration of a Rankine cycle solar-powered air conditioner designed for residential application were conducted. Initial studies revealed that system performance and cost were extremely sensitive to condensing temperature and to the type of condenser used in the system. Consequently, the screening analyses were concerned with the generation of parametric design data for different condenser approaches; i. e., (1) an ambient air condenser, (2) a humidified ambient air condenser (3) an evaporative condenser, and (4) a water condenser (with a cooling tower). All systems feature a high performance turbocompressor and a single refrigerant (R-11) for the power and refrigeration loops. Data were obtained by computerized methods developed to permit system characterization over a broad range of operating and design conditions. The criteria used for comparison of the candidate system approaches were (1) overall system COP (refrigeration effect/solar heat input), (2) auxiliary electric power for fans and pumps, and (3) system installed cost or cost to the user.

  11. Development of Small Gas-fired Ammonia Absorption Air Conditioner for Residential Use

    NASA Astrophysics Data System (ADS)

    Sawada, Takashi; Yamamoto, Yoshiaki; Kobayashi, Hirotake; Shimaoka, Takaharu; Kawahara, Michinori; Uedono, Norio

    Due to the global environmental problems, the usage of natural refrigerants, such as water, ammonia, and hydrocarbons, are examined widely. Especially, absorption heat pump system using ammonia and water is penetrated widely for residential use in the U.S. and Europe, because it is easy to make the air-cooled system and to perform with high COP for heating. Authors have been developing an ammonia/water heat pump system for residential use. This system is driven by natural gas and supplies chilled water for cooling and hot water for heating. The results of performance tests indicated 6.8kW for cooling capacity and 10.3kW for heating capacity. And, some indexes which were related the charge of ammonium and the weight of the out-door unit, were compared with the same item of other equipments, such as, gas-fired LiBr absorption air-conditioners and gas engine driven heat pumps for residential use. The objective of this paper is to introduce the specifications and performance test results of the latest model, and to evaluate the performance of this heat pump system.

  12. Comparison of residential air-to-air heat pump and air-conditioner/gas furnace systems in 16 California climatic zones

    SciTech Connect

    Ayres, J.M.; Lau, H.

    1987-06-01

    Heat pumps with coefficients of performance ranging from 2.5 to 3.1 and gas furnaces with thermal efficiencies of 75% to 90% are analyzed through DOE-2 computer simulations and life-cycle cost analyses. The annual heating performances and the life-cycle costs of air-to-air heat pump and air-conditioner/gas furnace systems operating in single-family detached residences located in 16 climatic zones defined by the California Energy Commission are compared. With standard performance equipment, heat pumps cost more in all zones except for China Lake and Sacramento, but with high performance equipment, heat pumps cost less in all zones except for Fresno and Mt. Shasta.

  13. Development of solar driven absorption air conditioners and heat pumps

    NASA Astrophysics Data System (ADS)

    Dao, K.; Wahlig, M.; Wali, E.; Rasson, J.; Molishever, E.

    1980-03-01

    The development of absorption refrigeration systems for solar active heating and cooling applications is discussed. The approaches investigated are those using air-cooled condenser-absorber and those leading to coefficient of performances (COP) that increase continuously with heat source temperature. This is primarily an experimental project, with the emphasis on designing, fabricating and testing absorption chillers in operating regimes that are particularly suited for solar energy applications. Its demonstrated that the conventional single-effect ammonia-water absorption cycle can be used (with minor modifications) for solar cooling.

  14. Human location and recognition for intelligent air conditioners

    NASA Astrophysics Data System (ADS)

    Sun, Bing; Li, Ke; Weng, Fei; Liu, Yuncai

    2010-08-01

    Through analyzing the low resolution video captured by a single camera fixed on the air condition, this paper proposes an approach that can automatically estimate the person's location and recognize the person's identification in real time. Human location can be obtained by smart geometry calculation with the knowledge of the camera intrinsic parameters and living experience. Human recognition has been found to be very difficult in reality, especially when the person is walking at a distance in the complexity indoor conditions. For optimal performance, we use the shape feature gait energy image (GEI) as the basis, since it isn't sensitive the noise. Then we extract more efficient features using the histograms of oriented gradients (HOG) and do the dimensionality reduction by the coupled subspaces analysis and discriminant analysis with tensor representation (CSA+DATER), Finally the classical Bayesian Theory is used for fusion of the result of HOG and the result of CSA+DATER. The proposed approach is tested on our lab database to evaluate the performance of the human location and recognition. To verify the robust of our human recognition approach especially, CMU MoBo gait database is used. Experimental results show that the proposed approach has a high accuracy rate in both human identification recognition and location estimation.

  15. A liquid over-feeding military air conditioner

    SciTech Connect

    Mei, V.C.; Chen, F.C.

    1995-07-01

    A 3.3-ton military air conditioning unit has been studied experimentally in both baseline (as received) and as modified for liquid over-feeding (LOF) operation. Tne baseline test, using a proper refrigerant charge, showed the measured cooling capacity to be less than 1% off the rated capacity at 95{degrees}F ambient temperature. The test results indicate that LOF operation outperforms the baseline case over a wide ambient temperature range in terms of cooling capacity, power consumption, and system coefficient of performance (COP). At a 95{degrees}F test point, LOF operation has a cooling capacity of 51,100 BTU per hour, which is a 28.9% improvement over the baseline operation capacity of 39,600 BTU per hour. The COP for LOF at 95{degrees}F is 2.62, which is 29% better than the baseline COP of 2.03. However, an optimal refrigerant charge is essential for LOF to work properly.

  16. The Oklahoma Field Test: Air-conditioning electricity savings from standard energy conservation measures, radiant barriers, and high-efficiency window air conditioners

    SciTech Connect

    Ternes, M.P.; Levins, W.P.

    1992-08-01

    A field test Involving 104 houses was performed in Tulsa, Oklahoma, to measure the air-conditioning electricity consumption of low-income houses equipped with window air conditioners, the reduction in this electricity consumption attributed to the installation of energy conservation measures (ECMS) as typically installed under the Oklahoma Weatherization Assistance Program (WAP), and the reduction achieved by the replacement of low-efficiency window air conditioners with high-efficiency units and the installation of attic radiant barriers. Air-conditioning electricity consumption and indoor temperature were monitored weekly during the pre-weatherization period (June to September 1988) and post-weatherization period (May to September 1989). House energy consumption models and regression analyses were used to normalize the air-conditioning electricity savings to average outdoor temperature conditions and the pre-weatherization indoor temperature of each house. The following conclusions were drawn from the study: (1) programs directed at reducing air-conditioning electricity consumption should be targeted at clients with high consumption to improve cost effectiveness; (2) replacing low-efficiency air conditioners with high-efficiency units should be considered an option in a weatherization program directed at reducing air-conditioning electricity consumption; (3) ECMs currently being installed under the Oklahoma WAP (chosen based on effectiveness at reducing space-heating energy consumption) should continue to be justified based on their space-heating energy savings potential only; and (4) attic radiant barriers should not be included in the Oklahoma WAP if alternatives with verified savings are available or until further testing demonstrates energy savings or other benefits in this typo of housing.

  17. The Oklahoma Field Test: Air-Conditioning Electricity Savings from Standard Energy Conservation Measures, Radiant Barriers, and High-Efficiency Window Air Conditioners

    SciTech Connect

    Ternes, M.P.

    1992-01-01

    A field test involving 104 houses was performed in Tulsa, Oklahoma, to measure the air-conditioning electricity consumption of low-income houses equipped with window air conditioners, the reduction in this electricity consumption attributed to the installation of energy conservation measures (ECMs) as typically installed under the Oklahoma Weatherization Assistance Program (WAP), and the reduction achieved by the replacement of low-efficiency window air conditioners with high-efficiency units and the installation of attic radiant barriers. Air-conditioning electricity consumption and indoor temperature were monitored weekly during the pre-weatherization period (June to September 1988) and post-weatherization period (May to September 1989). House energy consumption models and regression analyses were used to normalize the air-conditioning electricity savings to average outdoor temperature conditions and the pre-weatherization indoor temperature of each house. The average measured pre-weatherization air-conditioning electricity consumption was 1664 kWh/year ($119/year). Ten percent of the houses used less than 250 kWh/year, while another 10% used more than 3000 kWh/year. An average reduction in air-conditioning electricity consumption of 535 kWh/year ($38/year and 28% of pre-weatherization consumption) was obtained from replacement of one low-efficiency window air conditioner (EER less than 7.0) per house with a high-efficiency unit (EER greater than 9.0). For approximately the same cost, savings tripled to 1503 kWh/year ($107/year and 41% of pre-weatherization consumption) in those houses with initial air-conditioning electricity consumption greater than 2750 kWh/year. For these houses, replacement of a low-efficiency air conditioner with a high-efficiency unit was cost effective using the incremental cost of installing a new unit now rather than later; the average installation cost for these houses under a weatherization program was estimated to be $786. The

  18. Greenhouse gas emissions for refrigerant choices in room air conditioner units.

    PubMed

    Galka, Michael D; Lownsbury, James M; Blowers, Paul

    2012-12-01

    In this work, potential replacement refrigerants for window-mounted room air conditioners (RACs) in the U.S. have been evaluated using a greenhouse gas (GHG) emissions analysis. CO(2)-equivalent emissions for several hydrofluoroethers (HFEs) and other potential replacements were compared to the most widely used refrigerants today. Included in this comparison are pure refrigerants that make up a number of hydrofluorocarbon (HFC) mixtures, pure hydrocarbons, and historically used refrigerants such as propane and ammonia. GHG emissions from direct and indirect sources were considered in this thermodynamic analysis. Propylene, dimethyl ether, ammonia, R-152a, propane, and HFE-152a all performed effectively in a 1 ton window unit and produced slightly lower emissions than the currently used R-22 and R-134a. The results suggest that regulation of HFCs in this application would have some effect on reducing emissions since end-of-life emissions remain at 55% of total refrigerant charge despite EPA regulations that mandate 80% recovery. Even so, offsite emissions due to energy generation dominate over direct GHG emissions and all the refrigerants perform similarly in totals of indirect GHG emissions. PMID:23136858

  19. Room Air Conditioners; Appliance Repair--Advanced: 9027.04.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    This Quinmester course includes installations, electrical and mechanical servicing, reverse cycle air conditioning, malfunctions, troubleshooting and repair, discharge, pump down, and recharging the system. The course may be taught as a two or three Quinmester credit course. In each instance the course consists of six instructional blocks:…

  20. USAF Bioenvironmental Noise Data Handbook. Volume 167: MA-3M air conditioner

    NASA Astrophysics Data System (ADS)

    Rau, T. H.

    1982-06-01

    The MA-3M is an electric motor-driven air conditioner designed to cool electronic equipment on aircraft during ground maintenance. This report provides measured and extrapolated data defining the bioacoustic environments produced by this unit operating at a normal rated condition. Near-field data are reported for 37 locations in a wide variety of physical and psychoacoustic measures: overall and band sound pressure levels, C-weighted and A-weighted sound levels, preferred speech interference levels, perceived noise levels, and limiting times for total daily exposure of personnel with and without standard Air Force ear protectors.

  1. Automotive absorption air conditioner utilizing solar and motor waste heat

    NASA Technical Reports Server (NTRS)

    Popinski, Z. (Inventor)

    1981-01-01

    In combination with the ground vehicles powered by a waste heat generating electric motor, a cooling system including a generator for driving off refrigerant vapor from a strong refrigerant absorbant solution is described. A solar collector, an air-cooled condenser connected with the generator for converting the refrigerant vapor to its liquid state, an air cooled evaporator connected with the condenser for returning the liquid refrigerant to its vapor state, and an absorber is connected to the generator and to the evaporator for dissolving the refrigerant vapor in the weak refrigerant absorbant solution, for providing a strong refrigerant solution. A pump is used to establish a pressurized flow of strong refrigerant absorbant solution from the absorber through the electric motor, and to the collector.

  2. Measure Guideline. Air Conditioner Diagnostics, Maintenance, and Replacement

    SciTech Connect

    Springer, David; Dakin, Bill

    2013-03-01

    This guideline responds to the need for an efficient means of identifying, diagnosing, and repairing faults in air conditioning systems in existing homes that are undergoing energy upgrades. Inadequate airflow due to constricted ducts or undersized filters, improper refrigerant charge, and other system defects can be corrected at a fraction of the cost of equipment replacement and can yield significant savings. The guideline presents a two-step approach to diagnostics and repair.

  3. Measure Guideline: Air Conditioner Diagnostics, Maintenance, and Replacement

    SciTech Connect

    Springer, D.; Dakin, B.

    2013-03-01

    This guideline responds to the need for an efficient means of identifying, diagnosing, and repairing faults in air conditioning systems in existing homes that are undergoing energy upgrades. Inadequate airflow due to constricted ducts or undersized filters, improper refrigerant charge, and other system defects can be corrected at a fraction of the cost of equipment replacement and can yield significant savings. The guideline presents a two-step approach to diagnostics and repair.

  4. Comprehensive Assessment of Influence of Enhanced Component in Vapor Compression Air Conditioning System on Performance

    NASA Astrophysics Data System (ADS)

    Shinomiya, Naruaki; Nishimura, Nobuya; Iyota, Hiroyuki

    System performance prediction model for air-cooled air conditioner has been developed, and influences of Grooved tubes on performance of air conditioners with R410A were quantitatively investigated. Calculated results with simulation model correspond approximately to measured results by the authors and other researchers. After that, performances of air conditioners with grooved tubes were predicted. Results show that condensation heat transfer coefficients decrease with the rise of air conditioning load rate, and boiling heat transfer coefficients increase with the rise of air conditioning load rate. On the other hand, pressure drops increase 1.2-1.4 times in evaporator. Then, COPs of air conditioners with the grooved tube are 1.16 times higher than COP of air-conditioners with the smooth tube.

  5. Desiccant-assisted air conditioner improves IAQ and comfort

    SciTech Connect

    Meckler, M. )

    1994-10-01

    This article describes a system which offers the advantage of downsizing the evaporator coil and condensing unit capacities for comparable design loads, which in turn provides numerous benefits. Airborne microorganisms, which are responsible for many acute diseases, infections, and allergies, are well protected indoors by the moisture surrounding them. While the human body is generally the host for various bacteria and viruses, fungi can grow in moist places. It has been concluded that an optimum relative humidity (RH) range of 40 to 60 percent is necessary to minimize or eliminate the bacterial, viral, and fungal growth. In addition, humidity also has an effect on air cleanliness--it reduces the presence of dust particles--and on the deterioration of the building structure and its contents. Therefore, controlling humidity is a very important factor to human comfort in minimizing adverse health effects and maximizing the structural longevity of the building.

  6. Liquid Desiccant in Air Conditioners: Nano-Engineered Porous Hollow Fiber Membrane-Based Air Conditioning System

    SciTech Connect

    2010-09-02

    BEETIT Project: UTRC is developing an air conditioning system that is optimized for use in warm and humid climates. UTRC’s air conditioning system integrates a liquid drying agent or desiccant and a traditional vapor compression system found in 90% of air conditioners. The drying agent reduces the humidity in the air before it is cooled, using less energy. The technology uses a membrane as a barrier between the air and the liquid salt stream allowing only water vapor to pass through and not the salt molecules. This solves an inherent problem with traditional liquid desiccant systems—carryover of the liquid drying agent into the conditioned air stream—which eliminates corrosion and health issues

  7. Alternative Refrigerant Evaluation for High-Ambient Temperature Environments: R-22 and R-410A Alternatives for Mini-Split Air Conditioners

    SciTech Connect

    Abdelaziz, Omar; Munk, Jeffrey D.; Shrestha, Som S.; Linkous, Randall Lee; Goetzler, William; Guernsey, Matt; Kassuga, Theo

    2015-08-01

    The Oak Ridge National Laboratory (ORNL) High-Ambient Temperature Testing Program for Low-GWP Refrigerants aims to develop an understanding of the performance of low-Global Warming Potential (low-GWP) alternatives to Hydrochlorofluorocarbon (HCFC) and Hydrofluorocarbon (HFC) refrigerants in mini-split air conditioners under high ambient temperature conditions. This interim working paper describes the parties involved, the alternative refrigerants selection process, the test procedures, and the preliminary results.

  8. Alternative Refrigerant Evaluation for High-Ambient-Temperature Environments: R-22 and R-410A Alternatives for Mini-Split Air Conditioners

    SciTech Connect

    Abdelaziz, Omar; Shrestha, Som S.; Munk, Jeffrey D.; Linkous, Randall Lee; Goetzler, William; Guernsey, Matt; Kassuga, Theo

    2015-10-01

    The Oak Ridge National Laboratory (ORNL) High-Ambient-Temperature Evaluation Program for low– global warming potential (Low-GWP) Refrigerants aims to develop an understanding of the performance of low-GWP alternative refrigerants to hydrochlorofluorocarbon (HCFC) and hydrofluorocarbon (HFC) refrigerants in mini-split air conditioners under high-ambient-temperature conditions. This final report describes the parties involved, the alternative refrigerant selection process, the test procedures, and the final results.

  9. Measurement of Fine Particles From Mobile and Stationary Sources, and Reducing the Air Conditioner Power Consumption in Hybrid Electric Vehicles

    NASA Astrophysics Data System (ADS)

    Brewer, Eli Henry

    We study the PM2.5and ultrafine exhaust emissions from a new natural gas-fired turbine power facility to better understand air pollution in California. To characterize the emissions from new natural gas turbines, a series of tests were performed on a GE LMS100 gas turbine. These tests included PM2.5 and wet chemical tests for SO2/SO 3 and NH3, as well as ultrafine (less than 100 nm in diameter) particulate matter measurements. The turbine exhaust had an average particle number concentration that was 2.3x103 times higher than ambient air. The majority of these particles were nanoparticles; at the 100 nm size, stack particle concentrations were about 20 times higher than ambient, and increased to 3.9x104 times higher on average in the 2.5 - 3 nm particle size range. This study also found that ammonia emissions were higher than expected, but in compliance with permit conditions. This was possibly due to an ammonia imbalance entering the catalyst, some flue gas bypassing the catalyst, or not enough catalyst volume. SO3 accounted for an average of 23% of the total sulfur oxides emissions measured. Some of the SO3 is formed in the combustion process, it is likely that the majority formed as the SO2 in the combustion products passed across the oxidizing CO catalyst and SCR catalyst. The 100 MW turbine sampled in this study emitted particle loadings similar to those previously measured from turbines in the SCAQMD area, however, the turbine exhaust contained far more particles than ambient air. The power consumed by an air conditioner accounts for a significant fraction of the total power used by hybrid and electric vehicles especially during summer. This study examined the effect of recirculation of cabin air on power consumption of mobile air conditioners both in-lab and on-road. Real time power consumption and vehicle mileage were recorded by an On Board Diagnostic monitor and carbon balance method. Vehicle mileage improved with increased cabin air recirculation. The

  10. Energy savings and economics of advanced control strategies for packaged air conditioners with gas heat

    SciTech Connect

    Wang, Weimin; Katipamula, Srinivas; Huang, Yunzhi; Brambley, Michael R.

    2013-10-01

    This paper presents an evaluation of the potential energy savings from adding advanced control to existing packaged air conditioners. Advanced control options include air-side economizer, multi-speed fan control, demand control ventilation and staged cooling. The energy and cost savings from the different control strategies individually and in combination are estimated using the EnergyPlus detailed energy simulation program for four building types, namely, a small office building, a stand-alone retail building, a strip mall building and a supermarket building. For each of the four building types, the simulation was run for 16 locations covering all 15 climate zones in the U.S. The maximum installed cost of a replacement controller that provides acceptable payback periods to owners is estimated.

  11. 10 CFR Appendix F to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Room Air Conditioners

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Uniform Test Method for Measuring the Energy Consumption of Room Air Conditioners F Appendix F to Subpart B of Part 430 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Test Procedures Pt. 430, Subpt. B, App. F Appendix F to Subpart B of Part 430—Uniform...

  12. 10 CFR Appendix F to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Room Air Conditioners

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Uniform Test Method for Measuring the Energy Consumption of Room Air Conditioners F Appendix F to Subpart B of Part 430 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Test Procedures Pt. 430, Subpt. B, App. F Appendix F to Subpart B of Part 430—Uniform...

  13. Modeling of a second-generation solar-driven Rankine air conditioner. Final report

    SciTech Connect

    Denius, M.W.; Batton, W.D.

    1984-07-01

    Ten configurations of a second-generation (2G), solar-powered, Rankine-driven air conditioner were simulated and the data presented for use in companion studies. The results of the analysis show that the boiling-in-collector (BIC) configuration generates more power per collector area than the other configurations. The models used to simulate the configuration are presented in this report. The generated data are also presented. Experimental work was done under this study to both improve a novel refrigerant and oil lubrication system for the centrifugal compressor and investigate the aerodynamic unloading characteristics of the centrifugal compressor. The information generated was used to define possible turbo-gearbox configurations for use in the second generation computer simulation.

  14. Evaluation of malodor for automobile air conditioner evaporator by using laboratory-scale test cooling bench.

    PubMed

    Kim, Kyung Hwan; Kim, Sun Hwa; Jung, Young Rim; Kim, Man Goo

    2008-09-12

    As one of the measures to improve the environment in an automobile, malodor caused by the automobile air-conditioning system evaporator was evaluated and analyzed using laboratory-scale test cooling bench. The odor was simulated with an evaporator test cooling bench equipped with an airflow controller, air temperature and relative humidity controller. To simulate the same odor characteristics that occur from automobiles, one previously used automobile air conditioner evaporator associated with unpleasant odors was selected. The odor was evaluated by trained panels and collected with aluminum polyester bags. Collected samples were analyzed by thermal desorption into a cryotrap and subsequent gas chromatographic separation, followed by simultaneous olfactometry, flame ionization detector and identified by atomic emission detection and mass spectrometry. Compounds such as alcohols, aldehydes, and organic acids were identified as responsible odor-active compounds. Gas chromatography/flame ionization detection/olfactometry combined sensory method with instrumental analysis was very effective as an odor evaluation method in an automobile air-conditioning system evaporator. PMID:18701113

  15. Experimental Analysis of 3D Flow in Scroll Casing of Multi-Blade Fan for Air-Conditioner

    NASA Astrophysics Data System (ADS)

    Kitadume, Michio; Kawahashi, Masaaki; Hirahara, Hiroyuki; Uchida, Tadashi; Yanagawa, Hideki

    The multi-blade fan, which has been widely used as a blower for air-conditioning systems of vehicles, is one of the well-established fluid machinery. However, many factors must be considered in its practical design because the flow generated in the fan is quite complicated with three-dimensionality and unsteadiness. The fundamental fan performance is primarily determined by the impeller of the fan, and is also affected by the scroll casing. However, the theoretical estimation of the effect of the casing on the performance has not been well established. In order to estimate the casing effect on fan performance, detailed three-dimensional (3D) flow analysis in the casing is necessary. Stereoscopic PIV (SPIV) is one of the useful techniques for experimental analysis of 3D flow fields. There are some difficulties in practical application of SPIV for flow analysis in fluid machinery with complicated geometry, but the results obtained provide useful information for understanding the 3D flow field. In this report, experimental investigation of the flow in the scroll casing has been carried out using PIV and SPIV under the premise of downsizing automobile air conditioner fans.

  16. Flow control of a centrifugal fan in a commercial air conditioner

    NASA Astrophysics Data System (ADS)

    Kim, Jiyu; Bang, Kyeongtae; Choi, Haecheon; Seo, Eung Ryeol; Kang, Yonghun

    2015-11-01

    Air-conditioning fans require a low noise level to provide user comfort and quietness. The aerodynamic noise sources are generated by highly unsteady, turbulent structures near the fan blade. In this study, we investigate the flow characteristics of a centrifugal fan in an air-conditioner indoor unit and suggest control ideas to develop a low noise fan. The experiment is conducted at the operation condition where the Reynolds number is 163000 based on the blade tip velocity and chord length. Intermittent separation occurs at the blade leading edge and thus flow significantly fluctuates there, whereas vortex shedding occurs at the blade trailing edge. Furthermore, the discharge flow observed in the axial plane near the shroud shows low-frequency intermittent behaviors, resulting in high Reynolds stresses. To control these flow structures, we modify the shapes of the blade leading edge and shroud of the centrifugal fan and obtain noise reduction. The flow characteristics of the base and modified fans will be discussed. Supported by 0420-20130051.

  17. Field evaluation of advanced controls for the retrofit of packaged air conditioners and heat pumps

    SciTech Connect

    Wang, Weimin; Katipamula, Srinivas; Ngo, Hung; Underhill, Ronald M.; Taasevigen, Danny J.; Lutes, Robert G.

    2015-09-01

    This paper documents the magnitude of energy savings achievable in the field by retrofitting existing packaged rooftop units (RTUs) with advanced control strategies not ordinarily used for RTUs. A total of 66 RTUs on 8 different buildings were retrofitted with a commercially available advanced controller for improving RTU operational efficiency. The controller features enhanced air-side economizer control, multi-speed fan control, and demand controlled ventilation. Of the 66 RTUs, 18 are packaged heat pumps and the rest are packaged air conditioners with gas heat. The eight buildings cover four building types and four climate conditions. Based on the data collected for about a whole year, the advanced controller reduced the normalized annual RTU energy consumption between 22% and 90%, with an average of 57% for all RTUs. The average fractional savings uncertainty was 12% at 95% confidence level. Normalized annual electricity savings were in the range between 0.47 kWh/h (kWh per hour of RTU operation) and 7.21 kWh/h, with an average of 2.39 kWh/h. RTUs greater than 53 kW and runtime greater than 14 hours per day had payback periods less than 3 years even at $0.05/kWh.

  18. A Novel, Low-Cost, Reduced-Sensor Approach for Providing Smart Renote Monitoring and Diagnostics for Packaged Air Conditioners and Heat Pumps

    SciTech Connect

    Brambley, Michael R.

    2009-09-01

    This report describes conceptually an approach to providing automated remote performance and conditioning monitoring and fault detection for air conditioners and heat pumps that shows great promise to reduce the capital and installation costs of such systems from over $1000 per unit to $200 to $400 per unit. The approach relies on non-intrusive electric load monitoring (NIELM) to enable separation of the power use signals of compressors and fans in the air conditioner or heat pump. Then combining information on the power uses and one or two air temperature measurements, changes in energy efficiency and occurrence of major faults would be detected. By decreasing the number of sensors used from between ten and twenty in current diagnostic monitoring systems to three for the envisaged system, the capital cost of the monitoring system hardware and the cost of labor for installation would be decreased significantly. After describing the problem being addressed and the concept for performance monitoring and fault detection in more detail, the report identifies specific conditions and faults that the proposed method would detect, discusses specific needs for successful use of the NIELM approach, and identifies the major elements in the path from concept to a commercialized monitoring and diagnostic system.

  19. Air Conditioner Charging. Automotive Mechanics. Air Conditioning. Instructor's Guide [and] Student Guide.

    ERIC Educational Resources Information Center

    Spignesi, B.

    This instructional package, one in a series of individualized instructional units on automobile air conditioning, consists of a student guide and an instructor guide dealing with air conditioning charging. Covered in the module are checking the air conditioning system for leaks, checking and adding refrigerant oil as needed, evacuating the system,…

  20. China Energy Efficiency Round Robin Testing Results for Room Air Conditioners

    SciTech Connect

    Zhou, Nan; Fridley, David; Zheng, Nina; Pierrot, Andre

    2010-06-07

    of all countries energy strategies. As we all know, a very large amount of total energy consumption is due to energy consuming products and equipment, which account for about 50% of China's total energy consumption. However, the current average energy utilization efficiency of this sector is only about 60%, 10 percent lower than the international advanced level. Therefore, China's energy consuming products and equipment sector holds great energy-saving potential. On the other hand, the energy supplied to these products is mainly from fossil fuel combustion, a major source of greenhouse gas (GHG) emissions. Therefore, improving the energy efficiency and augmenting the market share of market-dominant energy consuming products is of significant importance to achieving China's energy saving and emission reduction target and is an effective means to deal with energy and environmental constraints and climate change issues. Main energy consuming products generally include widely-used home appliances, industrial equipment, office equipment, transportation vehicles, etc. China is one of the major manufacturers and exporters of energy end-using products such as air-conditioners, refrigerators, televisions, etc. Their overall energy efficiency is comparatively low and the products are poorly designed, leading to great energy-saving potential. For example, electricity consumption of air conditioners accounts for about 20% of China's total electricity consumption and 40% of the summer electricity peak load in large and medium cities. However, less than 5% of units sold in the domestic market in 2009 reached the standard's highly efficient level of grade 2 above. The electricity consumption of electric motors and their related drive systems accounts for about 60% of China's total electricity consumption; however, less than 2% of the domestic market share consists of energy-efficient electric motor products. Promoting the energy efficiency and market shares of main energy

  1. Performance of a photovoltaically powered air-conditioning system

    SciTech Connect

    Kern, Jr, E. C.; Millner, A. R.

    1980-01-01

    A vapor-compression air conditioner coupled directly to a photovoltaic array is discussed. Previous analyses of such a system are reviewed, and a development system designed to test the concept is described. Preliminary experiments indicate that the performance of this initial system falls considerably short of analytic expectations.

  2. Future emissions and atmospheric fate of HFC-1234yf from mobile air conditioners in Europe.

    PubMed

    Henne, Stephan; Shallcross, Dudley E; Reimann, Stefan; Xiao, Ping; Brunner, Dominik; O'Doherty, Simon; Buchmann, Brigitte

    2012-02-01

    HFC-1234yf (2,3,3,3-tetrafluoropropene) is under discussion for replacing HFC-134a (1,1,1,2-tetrafluoroethane) as a cooling agent in mobile air conditioners (MACs) in the European vehicle fleet. Some HFC-1234yf will be released into the atmosphere, where it is almost completely transformed to the persistent trifluoroacetic acid (TFA). Future emissions of HFC-1234yf after a complete conversion of the European vehicle fleet were assessed. Taking current day leakage rates and predicted vehicle numbers for the year 2020 into account, European total HFC-1234yf emissions from MACs were predicted to range between 11.0 and 19.2 Gg yr(-1). Resulting TFA deposition rates and rainwater concentrations over Europe were assessed with two Lagrangian chemistry transport models. Mean European summer-time TFA mixing ratios of about 0.15 ppt (high emission scenario) will surpass previously measured levels in background air in Germany and Switzerland by more than a factor of 10. Mean deposition rates (wet + dry) of TFA were estimated to be 0.65-0.76 kg km(-2) yr(-1), with a maxium of ∼2.0 kg km(-2) yr(-1) occurring in Northern Italy. About 30-40% of the European HFC-1234yf emissions were deposited as TFA within Europe, while the remaining fraction was exported toward the Atlantic Ocean, Central Asia, Northern, and Tropical Africa. Largest annual mean TFA concentrations in rainwater were simulated over the Mediterranean and Northern Africa, reaching up to 2500 ng L(-1), while maxima over the continent of about 2000 ng L(-1) occurred in the Czech Republic and Southern Germany. These highest annual mean concentrations are at least 60 times lower than previously determined to be a safe level for the most sensitive aquatic life-forms. Rainwater concentrations during individual rain events would still be 1 order of magnitude lower than the no effect level. To verify these results future occasional sampling of TFA in the atmospheric environment should be considered. If future HFC-1234yf

  3. 16 CFR 305.12 - Labeling for central air conditioners, heat pumps, and furnaces.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 CFR part 430 for non-weatherized, and mobile home furnaces and content of labels for weatherized... Department of Energy for those products in 10 CFR part 430, manufacturers shall affix labels to covered... conditioners issued by the Department of Energy in 10 CFR part 430. (1) Headlines and texts, as illustrated...

  4. Development of a Double-Effect Air-Conditioner Heater (DEACH). Phase 3 and final report, January 1990-December 1991. Phase 3, September 1987-December 1991. Overall project

    SciTech Connect

    De Vuono, A.C.; Hanna, W.T.; Osborne, R.L.; Ball, D.A.

    1992-04-01

    The report describes development efforts on a Double-Effect Air-Conditioner Heater (DEACH). Based on a double-effect LiBr/H2O absorption cycle, the DEACH was focused on residential applications with the primary objective being a low first-cost efficient gas-fired cooling system. The concept included compact integrated heat exchangers, direct heat rejection to outdoor air (no cooling tower), and ability to self-decrystallize. The performance goals of the system were essentially demonstrated in a full-scale (3 refrigeration ton), fully integrated breadboard. However, the projected manufacturing cost was somewhat above the original target and even further above that deemed competitive at the end of the project. Therefore, technical development was stopped in late 1991.

  5. Study on Improvement of the Suction Valve in a Reciprocating Compressor for an Automotive Air-Conditioner

    NASA Astrophysics Data System (ADS)

    Koyabu, Eitaro; Tsukiji, Tetsuhiro; Matsumura, Yoshito; Sato, Taizo

    The simplified test model of the commercial reciprocating compressor for an automotive air-conditioner, which is developed in the previous study, is used to measure the displacement of the suction valves using as train gauge and to investigate the velocity distributions of the discharge flow from the valves using PIV (Particle Image Velocimetry) technique. This paper is focused on the effects of shape of the suction valve on the vibration-reduction. First, the size of the conventional valve hole and the width of the tip of the conventional valve are changed and seven new valves are manufactured to reduce the vibration of the valve. Consequently, it is found that one of the new valves is the most effective for the vibration-reduction. Next the influence of the natural frequency on the vibration-reduction is investigated using one of the new valves by changing the material and the thickness of the valve. Finally, the reason of the vibration-reduction for one of the new valves is discussed from the results of the flow analysis around the valve. The vibration-reduction for one of the new valves is confirmed by measurement of the displacement of the valve in the reciprocating compressor for the automotive air-conditioner.

  6. 10 CFR Appendix M to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Central Air Conditioners and Heat Pumps

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Uniform Test Method for Measuring the Energy Consumption of Central Air Conditioners and Heat Pumps M Appendix M to Subpart B of Part 430 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Test Procedures Pt. 430, Subpt. B, App. M Appendix M to Subpart B...

  7. 10 CFR Appendix M to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Central Air Conditioners and Heat Pumps

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Uniform Test Method for Measuring the Energy Consumption of Central Air Conditioners and Heat Pumps M Appendix M to Subpart B of Part 430 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Test Procedures Pt. 430, Subpt. B, App. M Appendix M to Subpart B...

  8. 10 CFR Appendix M to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Central Air Conditioners and Heat Pumps

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Uniform Test Method for Measuring the Energy Consumption of Central Air Conditioners and Heat Pumps M Appendix M to Subpart B of Part 430 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Test Procedures Pt. 430, Subpt. B, App. M Appendix M to Subpart B...

  9. 10 CFR Appendix M to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Central Air Conditioners and Heat Pumps

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Uniform Test Method for Measuring the Energy Consumption of Central Air Conditioners and Heat Pumps M Appendix M to Subpart B of Part 430 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Test Procedures Pt. 430, Subpt. B, App. M Appendix M to Subpart B...

  10. Development of a double-effect air conditioner-heater (deach) phase 2. Final report, January 1989-December 1989

    SciTech Connect

    De Vuono, A.C.; Landstrom, D.K.; Osborne, R.L.; Christensen, R.N.; Flanigan, L.

    1992-12-01

    The report describes the results of Phase II of a multi-phase project to develop a high-efficiency, gas-fired, residential size air-conditioner/heater based on a double-effect, absorption cycle using LiBr and water as working fluids. The results discussed include experimental and analytical analysis of various options for key components and subsystems including absorber, direct expansion evaporator, solution heat exchangers and burner/generator subsystem. The thermodynamic model used to evaluate various system design tradeoffs is also discussed. The results of the Phase II effort provided the basis for full-scale, integrated breadboard testing to be conducted in Phase III of the project.

  11. Optimal coupling and feasibility of a solar-powered year-round ejector air conditioner

    SciTech Connect

    Sokolov, M.; Hershgal, D. )

    1993-06-01

    An ejector refrigeration system that uses a conventional refrigerant (R-114) is introduced as a possible mechanism for providing solar-based air-conditioning. Optimal coupling conditions between the collectors' energy output and energy requirements of the cooling system, are investigated. Operation at such optimal conditions assures maximized overall efficiency. Procedures leading to the evaluation of the performance of a real system are disclosed. Design curves for such a system with R-114 as refrigerant are provided. A multi-ejectors arrangement that provides an efficient adjustment for variations of ambient conditions, is described. Year-round air-conditioning is facilitated by rerouting the refrigerant flow through a heating mode of the system. Calculations are carried out for illustrative configurations in which relatively low condensing temperature (water reservoirs, cooling towers, or moderate climate) can be maintained.

  12. Cardio-Muscular Conditioner

    NASA Technical Reports Server (NTRS)

    1993-01-01

    In the mid-sixties, Gary Graham, a Boeing designer, developed a cardiovascular conditioner for a planned Air Force orbiting laboratory. After the project was cancelled, Graham participated in space station conditioning studies for the Skylab program. Twenty years later, he used this expertise to develop the Shuttle 2000-1, a physical therapy and athletic development conditioner, available through Contemporary Designs. The machine is used by football teams, sports clinics and medical rehabilitation centers. Cardiovascular fitness and muscular strength development are promoted through both kinetic and plyometric exercises.

  13. Improving Best Air Conditioner Efficiency by 20-30% through a High Efficiency Fan and Diffuser Stage Coupled with an Evaporative Condenser Pre-Cooler

    SciTech Connect

    Parker, Danny S; Sherwin, John R; Raustad, Richard

    2014-04-10

    The Florida Solar Energy Center (FSEC) conducted a research project to improve the best residential air conditioner condenser technology currently available on the market by retrofitting a commercially-available unit with both a high efficiency fan system and an evaporative pre-cooler. The objective was to integrate these two concepts to achieve an ultra-efficient residential air conditioner design. The project produced a working prototype that was 30% more efficient compared to the best currently-available technologies; the peak the energy efficiency ratio (EER) was improved by 41%. Efficiency at the Air-Conditioning and Refrigeration Institute (ARI) standard B-condition which is used to estimate seasonal energy efficiency ratio (SEER), was raised from a nominal 21 Btu/Wh to 32 Btu/Wh.

  14. Auto-ignition of lubricating oil working at high pressures in a compressor for an air conditioner.

    PubMed

    Kim, Chul Jin; Choi, Hyo Hyun; Sohn, Chae Hoon

    2011-01-15

    Auto-ignition of lubricating oil working in a compressor for an air conditioner is studied experimentally. The adopted lubricating oil is an unknown mixture with multi-components and known to have flash point temperature of 170 °C. First, its auto-ignition temperature is measured 365 °C at atmospheric pressure. The lubricating oil works under high-pressure condition up to 30 atm and it is heated and cooled down repeatedly. Accordingly, auto-ignition temperatures or flammable limits of lubricating oil are required at high pressures with respect to fire safety. Because there is not a standard test method for the purpose, a new ignition-test method is proposed in this study and thereby, auto-ignition temperatures are measured over the pressure range below 30 atm. The measured temperatures range from 215 °C to 255 °C and they strongly depend on pressure of gas mixture consisting of oil vapor, nitrogen, and oxygen. They are close to flash point temperature and the lubricating oil can be hazardous when it works for high-pressure operating condition and abundant air flows into a compressor. PMID:20934810

  15. High-Efficiency Variable Dehumidification for Air Conditioners: ClimaStat

    SciTech Connect

    West, Michael K., Ph.D. P.E.

    2006-04-30

    Advantek has successfully developed the first low-cost technology offering significant improvement in both Seasonal Energy Efficiency (SEER) and comfort & humidity control. A production prototype was constructed based on a commercial roof top package unit. The prototype was operated under a wide range of psychrometric conditions. Test data was analyzed to identify refinements, which were implemented to further improve performance in an iterative procedure that resulted in a fully optimized technology. The latest results show an increase in dehumidification capacity of 56% with ClimaStat™ in full dehumidify mode vs. with ClimaStat™ off. Dehumidification improved by a factor of 1.7 to 1.9 – meaning that the unit can provide nearly twice the water removal per unit of sensible cooling load. Performance testing results have been consistent, verifiable and repeatable. . ClimaStat™ cost-effectively controls humidity on-demand and improves indoor air quality while reducing annual energy costs. Test data clearly shows that ClimaStat™ costs 20% to 60% less to operate. ClimaStat™ is ready for market.

  16. COP improvement of refrigerator/freezers, air-conditioners, and heat pumps using nonazeotropic refrigerant mixtures

    NASA Astrophysics Data System (ADS)

    Westra, Douglas G.

    1993-02-01

    With the February, 1992 announcement by President Bush to move the deadline for outlawing CFC (chloro-fluoro-carbon) refrigerants from the year 2000 to the year 1996, the refrigeration and air-conditioning industries have been accelerating their efforts to find alternative refrigerants. Many of the alternative refrigerants being evaluated require synthetic lubricants, are less efficient, and have toxicity problems. One option to developing new, alternative refrigerants is to combine existing non-CFC refrigerants to form a nonazeotropic mixture, with the concentration optimized for the given application so that system COP (Coefficient Of Performance) may be maintained or even improved. This paper will discuss the dilemma that industry is facing regarding CFC phase-out and the problems associated with CFC alternatives presently under development. A definition of nonazeotropic mixtures will be provided, and the characteristics and COP benefits of nonazeotropic refrigerant mixtures will be explained using thermodynamic principles. Limitations and disadvantages of nonazeotropic mixtures will be discussed, and example systems using such mixtures will be reviewed.

  17. COP improvement of refrigerator/freezers, air-conditioners, and heat pumps using nonazeotropic refrigerant mixtures

    NASA Technical Reports Server (NTRS)

    Westra, Douglas G.

    1993-01-01

    With the February, 1992 announcement by President Bush to move the deadline for outlawing CFC (chloro-fluoro-carbon) refrigerants from the year 2000 to the year 1996, the refrigeration and air-conditioning industries have been accelerating their efforts to find alternative refrigerants. Many of the alternative refrigerants being evaluated require synthetic lubricants, are less efficient, and have toxicity problems. One option to developing new, alternative refrigerants is to combine existing non-CFC refrigerants to form a nonazeotropic mixture, with the concentration optimized for the given application so that system COP (Coefficient Of Performance) may be maintained or even improved. This paper will discuss the dilemma that industry is facing regarding CFC phase-out and the problems associated with CFC alternatives presently under development. A definition of nonazeotropic mixtures will be provided, and the characteristics and COP benefits of nonazeotropic refrigerant mixtures will be explained using thermodynamic principles. Limitations and disadvantages of nonazeotropic mixtures will be discussed, and example systems using such mixtures will be reviewed.

  18. 76 FR 19913 - Compliance Testing Procedures: Correction Factor for Room Air Conditioners

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-11

    ... contained in the petition. (75 FR 72739, Nov. 26, 2010). In addition to a comment from AHAM reiterating... that as atmospheric pressure drops, so does the air density and, therefore, the mass of air in a room. As atmospheric pressure drops, the efficiency of a unit would also drop because there would be...

  19. Preliminary design package for residential heating/cooling system: Rankine air conditioner redesign

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A summary of the preliminary redesign and development of a marketable single family heating and cooling system is presented. The interim design and schedule status of the residential (3-ton) redesign, problem areas and solutions, and the definition of plans for future design and development activities were discussed. The proposed system for a single-family residential heating and cooling system is a single-loop, solar-assisted, hydronic-to-warm-air heating subsystem with solar-assisted domestic water heating and a Rankine-driven expansion air-conditioning subsystem.

  20. DEVELOPMENT OF A LINEAR COMPRESSOR FOR AIR CONDITIONERS AND HEAT PUMPS

    EPA Science Inventory

    The report discusses the design, building, testing, and delivering to the Environmental Protection Agency of a linear compressor for operation in a 3.0- ton (10.5 kW) residential air-conditioning and heat pumping system. The compressor design evolved from a linear resonant piston...

  1. Development of a solar-powered residential air conditioner. Program review

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Progress in the effort to develop a residential solar-powered air conditioning system is reported. The topics covered include the objectives, scope and status of the program. The results of state-of-art, design, and economic studies and component and system data are also presented.

  2. Improving the Operating Efficiency of Packaged Air Conditioners and Heat Pumps

    SciTech Connect

    Katipamula, Srinivas; Wang, Weimin; Vowles, Mira

    2014-03-10

    This article discusses several control strategies that can significantly reduce energy consumption associated with packaged rooftop units RTUs). Although all of the considered strategies are widely used in built-up air-handing units, they are not commonly used in existing RTUs. Both simulation and field evaluations show that adding these control strategies to existing RTUs can reduce their energy consumption by between 30% and 60%.

  3. High-efficiency gas heat pump air-conditioner equipped with absorption refrigerator

    NASA Astrophysics Data System (ADS)

    Imai, Yosuke; Ohashi, Toshinori; Okamoto, Hiroaki; Hihara, Eiji; Kawakami, Ryuichiro

    On conventional gas heat pump(GHP), waste heat from gas engine that uses as driving source is emitted into outside. So from the standpoint of efficient use of waste heat, it is assumed that waste heat from gas engine is used as driving source of absorption chiller, and high temperature condensate refrigerant in GHP is subcooled to middle temperature by cold source from absorption cycle, and as a result, GHP makes more efficiency. However, in equipping GHP with absorption cycle, downsizing and high-efficiency of absorption cycle is required. In this study, air-cooled subcooled adiabatic absorber is focused and physical phenomenon in it is analyzed, and finally one perception of the optimized designing is shown.

  4. Local Voltage Support from Distributed Energy Resources to Prevent Air Conditioner Motor Stalling

    SciTech Connect

    Baone, Chaitanya A; Xu, Yan; Kueck, John D

    2010-01-01

    Microgrid voltage collapse often happens when there is a high percentage of low inertia air-conditioning (AC) motors in the power systems. The stalling of the AC motors results in Fault Induced Delayed Voltage Recovery (FIDVR). A hybrid load model including typical building loads, AC motor loads, and other induction motor loads is built to simulate the motoring stalling phenomena. Furthermore, distributed energy resources (DE) with local voltage support capability are utilized to boost the local bus voltage during a fault, and prevent the motor stalling. The simulation results are presented. The analysis of the simulation results show that local voltage support from multiple DEs can effectively and economically solve the microgrid voltage collapse problem.

  5. Centrifugal compressors for automotive air conditioners -- System design and operation strategy

    SciTech Connect

    Yun, H.; Smith, J.L. Jr.

    1996-12-31

    System designs and operation strategies for a motor-driven, variable-speed compression system (described in the companion paper) have been developed. Systems which can cover the required range of operating conditions (i.e., various cooling loads) have been designed. They require a compromise between high efficiency at high cooling loads and compressor surge prevention at low cooling loads. Therefore, compressor operation strategies consist of a variable speed strategy for stable operating points (to match the cooling load at any instant) and a compressor stabilization strategy (to prevent compressor surge instability at low cooling load operations) for unstable operating points. The system design and the operation strategy study results indicate that the novel compression device can improve the overall system efficiency by matching the compressor characteristics with the rest of the air conditioning system.

  6. Spinning Reserves from Controllable Packaged Through the Wall Air Conditioner (PTAC) Units

    SciTech Connect

    Kirby, B.J.

    2003-04-02

    This report summarizes the feasibility of providing spinning reserves from packaged through the wall air conditioning (PTAC) units. Spinning reserves, together with non-spinning reserves, compose the contingency reserves; the essential resources that the power system operator uses to restore the generation and load balance and maintain bulk power system reliability in the event of a major generation or transmission outage. Spinning reserves are the fastest responding and most expensive reserves. Many responsive load technologies could (and we hope will) be used to provide spinning reserve. It is also easier for many loads (including air conditioning loads) to provide the relatively shorter and less frequent interruptions required to respond to contingencies than it is for them to reduce consumption for an entire peak period. Oak Ridge National Laboratory (ORNL) is conducting research on obtaining spinning reserve from large pumping loads and from residential and small commercial thermostat controlled heating, ventilation and air conditioning (HVAC) units. The technology selected for this project, Digi-Log's retrofit PTAC controller, offers significant advantages. To evaluate the availability of spinning reserve capacity from responsive heating and air conditioning loads, ORNL obtained data from a number of units operating over a year at a motel in the TVA service territory. A total of 24 PTAC units in as many rooms were fitted with Digi-Log's supervisory control unit that could be controlled from the motel front desk. Twelve of the rooms formed the group in which the controller was controlled from the hotel front desk only. The remaining twelve rooms were controlled by the occupant and formed the uncontrolled group. This enables us to evaluate the spinning reserve capacity from PTACS that were operating normally and from those under active energy management. A second generation of the Digi-Log controller that will respond quickly enough to provide spinning reserve

  7. 75 FR 14368 - Energy Conservation Standards for Residential Central Air Conditioners and Heat Pumps: Public...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-25

    ... standards for these products; the results of preliminary analyses performed by DOE for these products; and potential energy conservation standard levels derived from these analyses that DOE could consider for these... results of preliminary analyses; and potential energy conservation standard levels derived from...

  8. 75 FR 7987 - Energy Conservation Standards for Residential Clothes Dryers and Room Air Conditioners: Public...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-23

    ... final rule in the Federal Register (FR) establishing the first set of performance standards for residential clothes dryers; the new standards became effective on May 14, 1994. 56 FR 22250. DOE initiated a... rulemaking (ANOPR) in the Federal Register on November 14, 1994. 59 FR 56423. Pursuant to the...

  9. Solar-Powered, Liquid-Desiccant Air Conditioner for Low-Electricity Humidity Control: Report and Summary Report

    SciTech Connect

    Dean, J.; Kozubal, E.; Herrmann, L.; Miller, J.; Lowenstein, A.; Barker, G.; Slayzak, S.

    2012-11-01

    The primary objective of this project was to demonstrate the capabilities of a new high-performance, liquid-desiccant dedicated outdoor air system (DOAS) to enhance cooling efficiency and comfort in humid climates while substantially reducing electric peak demand at Tyndall Air Force Base (AFB), which is 12 miles east of Panama City, Florida.

  10. 7 CFR 3201.92 - Fuel conditioners.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Fuel conditioners. 3201.92 Section 3201.92... Designated Items § 3201.92 Fuel conditioners. (a) Definition. Products formulated to improve the performance... fuel system. (b) Minimum biobased content. The Federal preferred procurement product must have...

  11. 7 CFR 3201.92 - Fuel conditioners.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Fuel conditioners. 3201.92 Section 3201.92... Designated Items § 3201.92 Fuel conditioners. (a) Definition. Products formulated to improve the performance... fuel system. (b) Minimum biobased content. The Federal preferred procurement product must have...

  12. Cost benefit analysis and energy savings of using compression and absorption chillers for air conditioners in hot and humid climates

    NASA Astrophysics Data System (ADS)

    Shekarchian, M.; Moghavvemi, M.; Motasemi, F.; Mahlia, T. M. I.

    2012-06-01

    The electricity consumption growth has increased steadily in the recent decade which is a great concern for the environment. Increasing the number of high-rise air-conditioned buildings and the rapid use of electrical appliances in residential and commercial sectors are two important factors for high electricity consumption. This paper investigates the annual energy required for cooling per unit area and the total energy cost per unit area for each type of air conditioning systems in hot and humid climates. The effects of changing the coefficient of performance (COP) of absorption chillers on cost saving was also investigated in this study. The results showed that using absorption chillers for cooling will increase the amount of energy consumption per unit area; however the energy cost per unit area will decrease. In addition this research indicates that for each 0.1 increment in COP of absorption chillers, there is about 500 USD/m2 saved cost.

  13. Concentrations of polybrominated diphenyl ethers (PBDEs) in central air-conditioner filter dust and relevance of non-dietary exposure in occupational indoor environments in Greece.

    PubMed

    Besis, Athanasios; Katsoyiannis, Athanasios; Botsaropoulou, Elisavet; Samara, Constantini

    2014-05-01

    Polybrominated Diphenyl Ethers (PBDEs) are ubiquitous in the indoor environment owing to their use in consumer products and various studies around the world have found higher concentrations indoors than outdoors. Central air conditioner (A/C) systems have been widely used in many workplaces, therefore, studying of PBDEs in central A/C filter dust is useful to better understand the occurrences and health implications of PBDEs in indoor environments. The present study examined the occurrence of PBDEs in central A/C filter dust collected from various workplaces (n = 20) in Thessaloniki, Greece. The sum concentrations of 21 target congeners (∑21PBDE) in A/C dust ranged between 84 and 4062 ng g(-1) with a median value of 1092 ng g(-1), while BDE-209 was found to be the most abundant BDE congener. The daily intake via dust ingestion of PBDEs estimated for the employees of the occupational settings ranged from 3 to 45 ng day(-1) (median 12 ng day(-1)). PMID:24556227

  14. 16 CFR Appendix I to Part 305 - Heating Performance and Cost for Central Air Conditioners

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... ACTS OF CONGRESS RULE CONCERNING DISCLOSURES REGARDING ENERGY CONSUMPTION AND WATER USE OF CERTAIN HOME APPLIANCES AND OTHER PRODUCTS REQUIRED UNDER THE ENERGY POLICY AND CONSERVATION ACT (âAPPLIANCE...

  15. 16 CFR Appendix H to Part 305 - Cooling Performance and Cost for Central Air Conditioners

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... ACTS OF CONGRESS RULE CONCERNING DISCLOSURES REGARDING ENERGY CONSUMPTION AND WATER USE OF CERTAIN HOME APPLIANCES AND OTHER PRODUCTS REQUIRED UNDER THE ENERGY POLICY AND CONSERVATION ACT (âAPPLIANCE...

  16. 16 CFR Appendix I to Part 305 - Heating Performance and Cost for Central Air Conditioners

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... ACTS OF CONGRESS RULE CONCERNING DISCLOSURES REGARDING ENERGY CONSUMPTION AND WATER USE OF CERTAIN HOME APPLIANCES AND OTHER PRODUCTS REQUIRED UNDER THE ENERGY POLICY AND CONSERVATION ACT (âAPPLIANCE...

  17. 16 CFR Appendix I to Part 305 - Heating Performance and Cost for Central Air Conditioners

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... ACTS OF CONGRESS RULE CONCERNING DISCLOSURES REGARDING ENERGY CONSUMPTION AND WATER USE OF CERTAIN HOME APPLIANCES AND OTHER PRODUCTS REQUIRED UNDER THE ENERGY POLICY AND CONSERVATION ACT (âAPPLIANCE...

  18. 16 CFR Appendix H to Part 305 - Cooling Performance and Cost for Central Air Conditioners

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... ACTS OF CONGRESS RULE CONCERNING DISCLOSURES REGARDING ENERGY CONSUMPTION AND WATER USE OF CERTAIN HOME APPLIANCES AND OTHER PRODUCTS REQUIRED UNDER THE ENERGY POLICY AND CONSERVATION ACT (âAPPLIANCE...

  19. 16 CFR Appendix I to Part 305 - Heating Performance and Cost for Central Air Conditioners

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... ACTS OF CONGRESS RULE CONCERNING DISCLOSURES REGARDING ENERGY CONSUMPTION AND WATER USE OF CERTAIN HOME APPLIANCES AND OTHER PRODUCTS REQUIRED UNDER THE ENERGY POLICY AND CONSERVATION ACT (âAPPLIANCE...

  20. Technical support document: Energy efficiency standards for consumer products: Room air conditioners, water heaters, direct heating equipment, mobile home furnaces, kitchen ranges and ovens, pool heaters, fluorescent lamp ballasts and television sets. Volume 1, Methodology

    SciTech Connect

    Not Available

    1993-11-01

    The Energy Policy and Conservation Act (P.L. 94-163), as amended, establishes energy conservation standards for 12 of the 13 types of consumer products specifically covered by the Act. The legislation requires the Department of Energy (DOE) to consider new or amended standards for these and other types of products at specified times. DOE is currently considering amending standards for seven types of products: water heaters, direct heating equipment, mobile home furnaces, pool heaters, room air conditioners, kitchen ranges and ovens (including microwave ovens), and fluorescent light ballasts and is considering establishing standards for television sets. This Technical Support Document presents the methodology, data, and results from the analysis of the energy and economic impacts of the proposed standards. This volume presents a general description of the analytic approach, including the structure of the major models.

  1. Effect of metal conditioner on bonding of porcelain to cobalt-chromium alloy

    PubMed Central

    Kajihara, Yutaro; Takenouchi, Yoshihisa; Tanaka, Takuo; Suzuki, Shiro; Minami, Hiroyuki

    2016-01-01

    PURPOSE The purpose of this study was to evaluate the efficacy of two different metal conditioners for non-precious metal alloys for the bonding of porcelain to a cobalt-chromium (Co-Cr) alloy. MATERIALS AND METHODS Disk-shaped specimens (2.5×10.0 mm) were cast with Co-Cr alloy and used as adherend materials. The bonding surfaces were polished with a 600-grid silicon carbide paper and airborne-particle abraded using 110 µm alumina particles. Bonding specimens were fabricated by applying and firing either of the metal conditioners on the airborne-particle abraded surface, followed by firing porcelain into 5 mm in diameter and 3 mm in height. Specimens without metal conditioner were also fabricated. Shear bond strength for each group (n=8) were measured and compared (α=.05). Sectional view of bonding interface was observed by SEM. EDS analysis was performed to determine the chemical elements of metal conditioners and to determine the failure modes after shear test. RESULTS There were significant differences among three groups, and two metal conditioner-applied groups showed significantly higher values compared to the non-metal conditioner group. The SEM observation of the sectional view at bonding interface revealed loose contact at porcelain-alloy surface for non-metal conditioner group, however, close contact at both alloy-metal conditioner and metal conditioner-porcelain interfaces for both metal conditioner-applied groups. All the specimens showed mixed failures. EDS analysis showed that one metal conditioner was Si-based material, and another was Ti-based material. Si-based metal conditioner showed higher bond strengths compared to the Ti-based metal conditioner, but exhibited more porous failure surface failure. CONCLUSION Based on the results of this study, it can be stated that the application of metal conditioner is recommended for the bonding of porcelain to cobalt-chromium alloys. PMID:26949481

  2. Air Conditioning. Performance Objectives. Intermediate Course.

    ERIC Educational Resources Information Center

    Long, William

    Several intermediate performance objectives and corresponding criterion measures are listed for each of seven terminal objectives for an intermediate air conditioning course. The titles of the seven terminal objectives are Refrigeration Cycle, Job Requirement Skills, Air Conditioning, Trouble Shooting, Performance Test, Shop Management, and S.I.E.…

  3. Attenuator And Conditioner

    DOEpatents

    Anderson, Gene R.; Armendariz, Marcelino G.; Carson, Richard F.; Bryan, Robert P.; Duckett, III, Edwin B.; Kemme, Shanalyn Adair; McCormick, Frederick B.; Peterson, David W.

    2006-04-04

    An apparatus and method of attenuating and/or conditioning optical energy for an optical transmitter, receiver or transceiver module is disclosed. An apparatus for attenuating the optical output of an optoelectronic connector including: a mounting surface; an array of optoelectronic devices having at least a first end; an array of optical elements having at least a first end; the first end of the array of optical elements optically aligned with the first end of the array of optoelectronic devices; an optical path extending from the first end of the array of optoelectronic devices and ending at a second end of the array of optical elements; and an attenuator in the optical path for attenuating the optical energy emitted from the array of optoelectronic devices. Alternatively, a conditioner may be adapted in the optical path for conditioning the optical energy emitted from the array of optoelectronic devices.

  4. Automobile air-conditioning unit. Final report

    SciTech Connect

    Schaetzle, W.J.

    1982-12-01

    In this study the refrigerant in the automobile air-conditioner is compressed by thermal energy in a unique compression system rather than by work in a standard compressor. The compression uses an intermittent compression process with a solid absorbent. The vapor is absorbed by an absorbent at relatively low temperature and ejected as the absorbent temperature is raised. A set of one way valves limits flow to one direction. Major contributions are heat transfer requirements, molecular sieve-refrigerant matching, minimizing non-producing mass, solving thermal fatigue and shock problems, and applying this to automobile air-conditioning. The performance study shows energy savings up to fifty percent are possible, depending on engine load. A twenty percent energy savings with the vehicle tested with the air-conditioner in operation is average. The study also showed that less fuel is used with the windows open than with the air-conditioner operating.

  5. Flow Analysis around the Suction Valve and the Effect of the Flow on the Vibration-Reduction of the Valve in a Reciprocating Compressor for an Automotive Air-Conditioner

    NASA Astrophysics Data System (ADS)

    Sato, Taizo; Tsukiji, Tetsuhiro; Koyabu, Eitaro; Nakamura, Yusuke

    In the present study the simplified test model of the commercial reciprocating compressor for an automotive air-conditioner is designed to investigate the velocity distributions of the discharge flow from the suction valve using PIV (Particle Image Velocimetry) technique and to measure the displacement of the valve. The displacement of the conventional valve in the test model is observed using the high speed video camera and is also measured using a strain gauge. On the other hand the velocity distributions around the suction valve are measured using PIV and the relation between the velocity distributions and the movement of the valve is investigated. Furthermore the new valve with the shape improved from the conventional valve is designed and the results of the flow visualization and the measurement of the valve displacement for the new valve are compared with those of the conventional valve. We found that the vibration of the new valve can be suppressed compared with the conventional one from the experiment using both the present test model and the commercial reciprocating compressor. The reason of the vibration-reduction for the new valve is discussed from the results of the present flow analysis.

  6. Zigzag configurations and air classifier performance

    SciTech Connect

    Peirce, J.; Wittenberg, N.

    1984-03-01

    The fundamental aspects of zigzag air classifier configurations are studied in terms of the design and operation of a waste-to-energy production facility. The development of a method of performance evaluation defined by operating range is examined. Historically, air classification has been used in industry and agriculture in mineral extraction, limestone sizing, and seed and grain cleaning. However, the adaption of air classifiers to resource recovery and waste-to-energy production facilities presents new problems due to the complex and variable nature of the wastes. A series of configurations providing a continuous range of zigzag classifier shape components are tested. Each configuration is evaluated to determine its efficiency of separation, and sensitivity to operating air speeds. Results indicate that the configuration of a zigzag classifier does not influence its peak efficiency of separation. However, findings point to distinct limits on operating parameters which lead to peak efficiencies for the different configurations. These operating range values represent the sensitivity of the air classifier to changes in the air flow. A major finding concerns the effect of configuration on the particle size distribution observed in the material exiting the classifier: smaller particles appear to be influenced by configuration changes and larger particles do not. A new method for classifer performance evaluation is developed and applied.

  7. Zigzag configurations and air classifier performance

    SciTech Connect

    Peirce, J.J.; Wittenberg, N.

    1984-03-01

    The fundamental aspects of zigzag air classifier configurations are studied in terms of the design and operation of a waste-to-energy production facility. The development of a method of performance evaluation defined by operating range is examined. Historically, air classification has been used in industry and agriculture in mineral extraction, limestone sizing, and seed and grain cleaning. However, the adaption of air classifiers to resource recovery and waste-to-energy production facilities presents new problems due to the complex and variable nature of the wastes. A series of configurations providing a continuous range of zigzag classifier shape components are tested. Each configuration is evaluated to determine its efficiency of separation, and sensitivity to operating air speeds. Results indicate that the configuration of a zigzag classifier does not influence its peak efficiency of separation. However, findings point to distinct limits on operating parameters which lead to peak efficiencies for the different configurations. These operating range values represent the sensitivity of the air classifier to changes in the air flow. A major finding concerns the effect of configuration on the particle size distribution observed in the material exiting the classifier: smaller particles appear to be influenced by configuration changes and larger particles do not. A new method for classifier performance evaluation is developed and applied.

  8. High Energy Efficiency Air Conditioning

    SciTech Connect

    Edward McCullough; Patrick Dhooge; Jonathan Nimitz

    2003-12-31

    This project determined the performance of a new high efficiency refrigerant, Ikon B, in a residential air conditioner designed to use R-22. The refrigerant R-22, used in residential and small commercial air conditioners, is being phased out of production in developed countries beginning this year because of concerns regarding its ozone depletion potential. Although a replacement refrigerant, R-410A, is available, it operates at much higher pressure than R-22 and requires new equipment. R-22 air conditioners will continue to be in use for many years to come. Air conditioning is a large part of expensive summer peak power use in many parts of the U.S. Previous testing and computer simulations of Ikon B indicated that it would have 20 - 25% higher coefficient of performance (COP, the amount of cooling obtained per energy used) than R-22 in an air-cooled air conditioner. In this project, a typical new R-22 residential air conditioner was obtained, installed in a large environmental chamber, instrumented, and run both with its original charge of R-22 and then with Ikon B. In the environmental chamber, controlled temperature and humidity could be maintained to obtain repeatable and comparable energy use results. Tests with Ikon B included runs with and without a power controller, and an extended run for several months with subsequent analyses to check compatibility of Ikon B with the air conditioner materials and lubricant. Baseline energy use of the air conditioner with its original R-22 charge was measured at 90 deg F and 100 deg F. After changeover to Ikon B and a larger expansion orifice, energy use was measured at 90 deg F and 100 deg F. Ikon B proved to have about 19% higher COP at 90 deg F and about 26% higher COP at 100 deg F versus R-22. Ikon B had about 20% lower cooling capacity at 90 deg F and about 17% lower cooling capacity at 100 deg F versus R-22 in this system. All results over multiple runs were within 1% relative standard deviation (RSD). All of these

  9. Positive Displacement Compressor Technology for Air Congitioners

    NASA Astrophysics Data System (ADS)

    Nagatomo, Shigemi

    Trends of compressor technologies for air conditioners are presented in this paper. HFC refrigerants such is R410A and R407C are promising candidates as an alternative for R22. Performance of rotary and scroll compressors in the operation with R410A and R407C are described. In addition, compressor technologies such as efficiency improvement, reliability and simulation methods are described in both cases of rotary and scroll compressors. Advanced compressor technologies developed for air conditioners are desired in the field of the global environment protection and the energy saving.

  10. Impact of air pollutants on athletic performance

    SciTech Connect

    Pierson, W.E. )

    1989-05-01

    Human controlled and observational studies both lead to the conclusion of air pollution adversely affecting athletic performance during training and competition. The dosage of various air pollutants during exercise is much higher due to the marked increase in ventilatory rate and concomitant nasal and oral breathing. This is particularly true for sulfur dioxide which is a highly water-soluble gas and is normally absorbed in the upper airway during nasal breathing. With heavy exercise, oral pharyngeal breathing is the predominant mode of breathing and much larger amounts of sulfur dioxide are delivered to the lower airway resulting in significant impact upon the lower respiratory tract. More recently, several controlled human studies have shown that a combination of exercise and air pollutants such as ozone (O3) or sulfur dioxides (SO2) cause a significant increase in bronchoconstriction and air flow obstruction when compared to the same exposure at rest. In strenuous athletic competition such as the Olympic Games where small increments of time often determine the ultimate success of athletes, the impact of air pollutants and subsequent adverse ventilatory changes can affect athletic performance. 62 references.

  11. 10 CFR Appendix M to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Central Air Conditioners and Heat Pumps

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... coefficient calculation. 3.9 Test procedures for Frost Accumulation heating mode tests (the H2, H22, H2V, and... during cyclic tests and frost accumulation tests, if needed, to produce stabilized room air temperatures... system (see Definition 1.42), the manufacturer must specify the frosting interval to be used during...

  12. An analysis of air-turborocket performance

    NASA Astrophysics Data System (ADS)

    Bussi, Giuseppe; Colasurdo, Guido; Pastrone, Dario

    1993-06-01

    In order to assess the capabilities of the air-turborocket, an off-design analysis of a representative LOX-LH2 fed engine is carried out. Working lines on an envisageable compressor map are drawn for different flight conditions along a typical transatmospheric vehicle flight path. Characteristic aspects of the air-turborocket behavior in the spontaneous and controlled mode are highlighted. Specific thrust and propellant consumption at full throttle are computed, both in the dry and augmented mode. Performance achievable by exploiting the permissible mass flow range of the compressor map via the variation of the nozzle throat area, is shown.

  13. Cell module and fuel conditioner development

    NASA Technical Reports Server (NTRS)

    Hoover, D. Q., Jr.

    1981-01-01

    The test results of and post test analysis of Stack 559 are reported. The design features and construction status of Stacks 560, 561, 562 and 563 are described. The measurements of cell materials compressibility are rationalized and summarized and an explanation of their uses is given. Preliminary results of a manifold material/coating survey are given. The results of shift converter catalyst performance tests and reforming catalyst aging tests are reported. State points for full load and part load operation of the fuel conditioning subsystem tabulated. Work on the data base for the fuel conditioner ancillary subsystems is summarized.

  14. Hybrid respiration-signal conditioner

    NASA Technical Reports Server (NTRS)

    Rinard, G. A.; Steffen, D. A.; Sturm, R. E.

    1979-01-01

    Hybrid impedance-pneumograph and respiration-rate signal conditioner element of hand-held vital signs monitor measures changes in impedance of chest during breathing cycle and generates analog respiration signal as output along with synchronous square wave that can be monitored by breath-rate processor.

  15. Flow Analysis around the Suction Valve and the Vibration Characteristics of the Valve in a Compressor for Automotive Air-Conditioner

    NASA Astrophysics Data System (ADS)

    Sato, Taizo; Tsukiji, Tetsuhiro

    The displacement of the suction valve in a compressor for automotive air-conditioning and the flow around the valve are investigated using a flow visualization technique. The visualization is conducted using the real compressor, which is improved to observe inside under the actual condition. Turbulent flow around the suction valve is solved using a computational fluid dynamics simulation. The flow is assumed to be an incompressible three-dimensional and viscous. The standard k-ε turbulent model is used Furthermore the pressure pulsations, the flow velocity and the displacements of the suction valves are analyzed numerically using the system simulation program we developed. The calculated results using a computational fluid dynamics are compared with the flow visualization results and the vibrations of the valve are discussed.

  16. Aerodynamic performance of a Wells air turbine

    NASA Astrophysics Data System (ADS)

    Raghunathan, S.; Tan, C. P.

    1983-06-01

    Experiments were performed in a unidirectional flow rig to assess the performance of the Wells self-rectifying air turbine. Results indicated that the efficiency of the turbine was very sensitive to the Reynolds number based on blade chord. Increase in Reynolds number by a factor of three resulted in an increase in peak efficiency from 37 to 60 percent. Increases in the solidity of the blade produced increases in pressure drop and power output but decreases in efficiency. The hub-to-tip ratio had only a weak influence on the turbine performance but is critical for starting conditions. It is concluded that a hub-to-tip ratio of 0.6 and a solidity of 0.6 are the most favorable values, taking into consideration both the starting and running performances.

  17. Thermionic reactor power conditioner design for nuclear electric propulsion.

    NASA Technical Reports Server (NTRS)

    Jacobsen, A. S.; Tasca, D. M.

    1971-01-01

    Consideration of the effects of various thermionic reactor parameters and requirements upon spacecraft power conditioning design. A basic spacecraft is defined using nuclear electric propulsion, requiring approximately 120 kWe. The interrelationships of reactor operating characteristics and power conditioning requirements are discussed and evaluated, and the effects on power conditioner design and performance are presented.

  18. ECONOMICS AND PERFORMANCE MODELING (AIR POLLUTION TECHNOLOGY BRANCH, AIR POLLUTION PREVENTION AND CONTROL DIVISION, NRMRL)

    EPA Science Inventory

    NRMRL's Air Pollution Prevention and Control Division's Air Pollution Technology Branch (APTB) is active in the development, refinement, and maintenance of economic and performance evaluation models that provide agency-wide support for estimating costs for air pollution preventio...

  19. Understanding the Dehumidification Performance of Air-Conditioning Equipment at Part-Load Conditions

    SciTech Connect

    Don B. Shirey III; Hugh I. Henderson Jr; Richard A. Raustad

    2006-01-01

    Air conditioner cooling coils typically provide both sensible cooling and moisture removal. Data from a limited number of field studies (Khattar et al. 1985; Henderson and Rengarajan 1996; Henderson 1998) have demonstrated that the moisture removal capacity of a cooling coil degrades at part-load conditions--especially when the supply fan operates continuously while the cooling coil cycles on and off. Degradation occurs because moisture that condenses on the coil surfaces during the cooling cycle evaporates back into air stream when the coil is off. This degradation affects the ability of cooling equipment to maintain proper indoor humidity levels and may negatively impact indoor air quality. This report summarizes the results of a comprehensive project to better understand and quantify the moisture removal (dehumidification) performance of cooling coils at part-load conditions. A review of the open literature was initially conducted to learn from previous research on this topic. Detailed performance measurements were then collected for eight cooling coils in a controlled laboratory setting to understand the impact of coil geometry and operating conditions on transient moisture condensation and evaporation by the coils. Measurements of cooling coil dehumidification performance and space humidity levels were also collected at seven field test sites. Finally, an existing engineering model to predict dehumidification performance degradation for single-stage cooling equipment at part-load conditions (Henderson and Rengarajan 1996) was enhanced to include a broader range of fan control strategies and an improved theoretical basis for modeling off-cycle moisture evaporation from cooling coils. The improved model was validated with the laboratory measurements, and this report provides guidance for users regarding proper model inputs. The model is suitable for use in computerized calculation procedures such as hourly or sub-hourly building energy simulation programs (e

  20. Unipolar pulse and bipolar noise testing of wideband signal noise conditioner (MC476-0132-0034)

    NASA Technical Reports Server (NTRS)

    Harris, J. E.

    1977-01-01

    Information is presented on performance characteristics of the shuttle orbiter wideband signal conditioner when subjected to special types of input signals. Design analysis of the signal flow path through the signal conditioning amplifier was performed followed by acutal testing of the amplifier with various signal inputs. Results indicate that the signal conditioner should perform acceptably if the shuttle orbiter flight vibration signal levels are in accord with preflight predictions.

  1. Study of the test method for prediction of air conditioning equipment seasonal performance

    SciTech Connect

    Thomas, S.B.

    1980-05-01

    The test procedure, Method of Testing, Rating and Estimating the Seasonal Performance of Central Air-Conditioners and Heat Pumps Operating in the Cooling Mode, has been analyzed. The analysis of the test procedure incorporated two main functions: (1) to determine the validity of the test procedure; and (2) to determine if there are other alternate methods of obtaining the same results with less testing burden. Data were collected from industry and analyzed for any significant trends. Certain conclusions are drawn about the energy efficiency ratios, degradation coefficients and seasonal energy efficiency ratios. An error analysis was performed on the test procedure to determine the approximate amount of error when using this procedure. A semi-empirical model assuming a first order system response was developed to determine the factors that affect the part-load and cooling-load factors. The corresponding transient characteristics are then determined in terms of a single time constant. A thermostat demand cycle is used to determine the relationship between on-time and cycle-time. Recommendations are made regarding an alternate method being used to determine the seasonal energy efficiency ratio.

  2. Life Cycle Assessment of Residential Heating and Cooling Systems in Minnesota A comprehensive analysis on life cycle greenhouse gas (GHG) emissions and cost-effectiveness of ground source heat pump (GSHP) systems compared to the conventional gas furnace and air conditioner system

    NASA Astrophysics Data System (ADS)

    Li, Mo

    Ground Source Heat Pump (GSHP) technologies for residential heating and cooling are often suggested as an effective means to curb energy consumption, reduce greenhouse gas (GHG) emissions and lower homeowners' heating and cooling costs. As such, numerous federal, state and utility-based incentives, most often in the forms of financial incentives, installation rebates, and loan programs, have been made available for these technologies. While GSHP technology for space heating and cooling is well understood, with widespread implementation across the U.S., research specific to the environmental and economic performance of these systems in cold climates, such as Minnesota, is limited. In this study, a comparative environmental life cycle assessment (LCA) is conducted of typical residential HVAC (Heating, Ventilation, and Air Conditioning) systems in Minnesota to investigate greenhouse gas (GHG) emissions for delivering 20 years of residential heating and cooling—maintaining indoor temperatures of 68°F (20°C) and 75°F (24°C) in Minnesota-specific heating and cooling seasons, respectively. Eight residential GSHP design scenarios (i.e. horizontal loop field, vertical loop field, high coefficient of performance, low coefficient of performance, hybrid natural gas heat back-up) and one conventional natural gas furnace and air conditioner system are assessed for GHG and life cycle economic costs. Life cycle GHG emissions were found to range between 1.09 × 105 kg CO2 eq. and 1.86 × 10 5 kg CO2 eq. Six of the eight GSHP technology scenarios had fewer carbon impacts than the conventional system. Only in cases of horizontal low-efficiency GSHP and hybrid, do results suggest increased GHGs. Life cycle costs and present value analyses suggest GSHP technologies can be cost competitive over their 20-year life, but that policy incentives may be required to reduce the high up-front capital costs of GSHPs and relatively long payback periods of more than 20 years. In addition

  3. Athletic performance and urban air pollution.

    PubMed Central

    Shephard, R J

    1984-01-01

    Air pollution may affect athletic performance. In Los Angeles, contaminants include carbon monoxide, ozone, peroxyacetylnitrate (PAN) and nitrogen oxides, whereas in older European cities, such as Sarajevo, "reducing smog" of sulfur dioxide is the main hazard. The carbon monoxide and ozone levels expected in Los Angeles this summer could affect the athletes' performance in endurance events at the Olympic Games. Carbon monoxide may also impair psychomotor abilities, and PAN causes visual disturbances. The only likely physiologic consequence from reducing smog is an increase in the workload of the respiratory system and thus a decrease in endurance performance. While carbon monoxide has been blamed for myocardial infarctions, nitrogen oxides for pulmonary edema and sulfur dioxide for deaths due to respiratory failure, the only illnesses that are likely to be more frequent than usual among young athletes exposed to high levels of these pollutants are upper respiratory tract infections. Therapeutic tactics include the avoidance of pollution, the administration of oxygen, vitamin C and vitamin E, and general reassurance. PMID:6744156

  4. Low-noise pulse conditioner

    DOEpatents

    Bird, David A.

    1983-01-01

    A low-noise pulse conditioner is provided for driving electronic digital processing circuitry directly from differentially induced input pulses. The circuit uses a unique differential-to-peak detector circuit to generate a dynamic reference signal proportional to the input peak voltage. The input pulses are compared with the reference signal in an input network which operates in full differential mode with only a passive input filter. This reduces the introduction of circuit-induced noise, or jitter, generated in ground referenced input elements normally used in pulse conditioning circuits, especially speed transducer processing circuits.

  5. Conditioner for a helically transported electron beam

    SciTech Connect

    Wang, Changbiao.

    1992-05-01

    The kinetic theory is developed to investigate a conditioner for a helically transported electron beam. Linear expressions for axial velocity spread are derived. Numerical simulation is used to check the theoretical results and examine nonlinear aspects of the conditioning process. The results show that in the linear regime the action of the beam conditioner on a pulsed beam mainly depends on the phase at which the beam enters the conditioner and depends only slightly on the operating wavelength. In the nonlinear regime, however, the action of the conditioner strongly depends on the operating wavelength and only slightly upon the entrance phase. For a properly chosen operating wavelength, a little less than the electron's relativistic cyclotron wavelength, the conditioner can decrease the axial velocity spread of a pulsed beam down to less than one-third of its initial value.

  6. Conditioner for a helically transported electron beam

    SciTech Connect

    Wang, Changbiao

    1992-05-01

    The kinetic theory is developed to investigate a conditioner for a helically transported electron beam. Linear expressions for axial velocity spread are derived. Numerical simulation is used to check the theoretical results and examine nonlinear aspects of the conditioning process. The results show that in the linear regime the action of the beam conditioner on a pulsed beam mainly depends on the phase at which the beam enters the conditioner and depends only slightly on the operating wavelength. In the nonlinear regime, however, the action of the conditioner strongly depends on the operating wavelength and only slightly upon the entrance phase. For a properly chosen operating wavelength, a little less than the electron`s relativistic cyclotron wavelength, the conditioner can decrease the axial velocity spread of a pulsed beam down to less than one-third of its initial value.

  7. Space shuttle aps propellant thermal conditioner study

    NASA Technical Reports Server (NTRS)

    Fulton, D. L.

    1973-01-01

    An analytical and experimental effort was completed to evaluate a baffle type thermal conditioner for superheating O2 and H2 at supercritical pressures. The thermal conditioner consisted of a heat exchanger and an integral reactor (gas generator) operating on O2/H2 propellants. Primary emphasis was placed on the hydrogen conditioner with some effort on the oxygen conditioner and a study completed of alternate concepts for use in conditioning oxygen. A hydrogen conditioner was hot fire tested under a range of conditions to establish ignition, heat exchange and response parameters. A parallel technology task was completed to further evaluate the integral reactor and heat exchanger with the side mounted electrical spark igniter.

  8. Conditioner for a helically transported electron beam

    SciTech Connect

    Wang, C.

    1992-05-01

    The kinetic theory is developed to investigate a conditioner for a helically imported electron beam. Linear expressions for axial velocity spread are derived. Numerical simulation is used to check the theoretical results and examine nonlinear aspects of the conditioning process. The results show that in the linear regime the action of the beam conditioner on a pulsed beam mainly depends on the phase at which the beam enters the conditioner and depends only slightly on the operating wavelength. In the nonlinear regime, however, the action of the conditioner strongly depends on the operating wavelength and only slightly upon the entrance phase. For a properly chosen operating wavelength, a little less than the electron's relativistic cyclotron wavelength, the conditioner can decrease the axial velocity spread of a pulsed beam down to less than one-third of its initial value.

  9. Conditioner for a helically transported electron beam

    SciTech Connect

    Wang, C.

    1992-05-01

    The kinetic theory is developed to investigate a conditioner for a helically imported electron beam. Linear expressions for axial velocity spread are derived. Numerical simulation is used to check the theoretical results and examine nonlinear aspects of the conditioning process. The results show that in the linear regime the action of the beam conditioner on a pulsed beam mainly depends on the phase at which the beam enters the conditioner and depends only slightly on the operating wavelength. In the nonlinear regime, however, the action of the conditioner strongly depends on the operating wavelength and only slightly upon the entrance phase. For a properly chosen operating wavelength, a little less than the electron`s relativistic cyclotron wavelength, the conditioner can decrease the axial velocity spread of a pulsed beam down to less than one-third of its initial value.

  10. Formulation of humic-based soil conditioners

    NASA Astrophysics Data System (ADS)

    Amanova, M. A.; Mamytova, G. A.; Mamytova, B. A.; Kydralieva, K. A.; Jorobekova, Sh. J.

    2009-04-01

    The goal of the study is to prepare soil conditioners (SC) able to carry out the following functions: (i) the chemical conditioning of soil mainly comprising the adjustment of pH, (ii) the balancing of inorganic nutrients, (iii) the physical conditioning of soil mainly comprising the improvement of water permeability, air permeability and water retention properties, and (iv) improvement of the ecological system concerning of useful microorganisms activity in the soil. The SC was made of a mixture of inorganic ingredients, a chemical composition and physical and chemical properties of which promoted improvement of physical characteristic of soil and enrichment by its mineral nutritious elements. In addition to aforesaid ingredients, this soil conditioner contains agronomical-valued groups of microorganisms having the function promoting the growth of the crop. As organic component of SC humic acids (HA) was used. HA serve many major functions that result in better soil and plant health. In soil, HA can increase microbial and mycorrhizal activity while enhancing nutrient uptake by plant roots. HA work as a catalyst by stimulating root and plant growth, it may enhance enzymatic activity that in turn accelerates cell division which can lead to increased yields. HA can help to increase crop yields, seed germination, and much more. In short, humic acids helps keep healthy plants health. The first stage goal was to evaluate mineral and organic ingredients for formulation of SC. Soil conditioners assessed included ash and slag. The use of slags has been largelly used in agriculture as a source of lime and phosphoric acid. The silicic acid of slags reduces Al-acitivity thus, promoting a better assimilation of P-fertilizer by plants. Additionally, silicic acid is also known to improve soil moisture capacity, thus enhancing soil water availability to plants. Physico-chemical characteristics of ash and slag were determined, as a total - about 20 samples. Results include

  11. Cell module and fuel conditioner

    NASA Technical Reports Server (NTRS)

    Hoover, D. Q., Jr.

    1981-01-01

    The results of the completed tests on Stack 561 and the on-going tests of 562 (23 cell stacks of the MK-1 and M-2 designs respectively) are reported and their performance is compared. Results of the on-going endurance test of Stack 560 (5 cell, MK-2) are reported. Plans for fabrication of Stacks 563 and 564 (23 cell stacks of the MK-1 and MK-2 design) are summarized. Results of the burner tests are given. Excellent performance was achieved on simulated anode exhaust gas over very wide load and air/fuel ranges.

  12. Dynamic Performance of a Residential Air-to-Air Heat Pump.

    ERIC Educational Resources Information Center

    Kelly, George E.; Bean, John

    This publication is a study of the dynamic performance of a 5-ton air-to-air heat pump in a residence in Washington, D.C. The effect of part-load operation on the heat pump's cooling and heating coefficients of performance was determined. Discrepancies between measured performance and manufacturer-supplied performance data were found when the unit…

  13. Low-noise pulse conditioner

    DOEpatents

    Bird, D.A.

    1981-06-16

    A low-noise pulse conditioner is provided for driving electronic digital processing circuitry directly from differentially induced input pulses. The circuit uses a unique differential-to-peak detector circuit to generate a dynamic reference signal proportional to the input peak voltage. The input pulses are compared with the reference signal in an input network which operates in full differential mode with only a passive input filter. This reduces the introduction of circuit-induced noise, or jitter, generated in ground referenced input elements normally used in pulse conditioning circuits, especially speed transducer processing circuits. This circuit may be used for conditioning the sensor signal from the Fidler coil in a gas centrifuge for separation of isotopic gaseous mixtures.

  14. High efficiency laser spectrum conditioner

    DOEpatents

    Greiner, Norman R.

    1980-01-01

    A high efficiency laser spectrum conditioner for generating a collinear parallel output beam containing a predetermined set of frequencies from a multifrequency laser. A diffraction grating and spherical mirror are used in combination, to disperse the various frequencies of the input laser beam and direct these frequencies along various parallel lines spatially separated from one another to an apertured mask. Selection of the desired frequencies is accomplished by placement of apertures at locations on the mask where the desired frequencies intersect the mask. A recollimated parallel output beam with the desired set of frequencies is subsequently generated utilizing a mirror and grating matched and geometrically aligned in the same manner as the input grating and mirror.

  15. Lithium-Air Battery: High Performance Cathodes for Lithium-Air Batteries

    SciTech Connect

    2010-08-01

    BEEST Project: Researchers at Missouri S&T are developing an affordable lithium-air (Li-Air) battery that could enable an EV to travel up to 350 miles on a single charge. Today’s EVs run on Li-Ion batteries, which are expensive and suffer from low energy density compared with gasoline. This new Li-Air battery could perform as well as gasoline and store 3 times more energy than current Li-Ion batteries. A Li-Air battery uses an air cathode to breathe oxygen into the battery from the surrounding air, like a human lung. The oxygen and lithium react in the battery to produce electricity. Current Li-Air batteries are limited by the rate at which they can draw oxygen from the air. The team is designing a battery using hierarchical electrode structures to enhance air breathing and effective catalysts to accelerate electricity production.

  16. Advanced Signal Conditioners for Data-Acquisition Systems

    NASA Technical Reports Server (NTRS)

    Lucena, Angel; Perotti, Jose; Eckhoff, Anthony; Medelius, Pedro

    2004-01-01

    Signal conditioners embodying advanced concepts in analog and digital electronic circuitry and software have been developed for use in data-acquisition systems that are required to be compact and lightweight, to utilize electric energy efficiently, and to operate with high reliability, high accuracy, and high power efficiency, without intervention by human technicians. These signal conditioners were originally intended for use aboard spacecraft. There are also numerous potential terrestrial uses - especially in the fields of aeronautics and medicine, wherein it is necessary to monitor critical functions. Going beyond the usual analog and digital signal-processing functions of prior signal conditioners, the new signal conditioner performs the following additional functions: It continuously diagnoses its own electronic circuitry, so that it can detect failures and repair itself (as described below) within seconds. It continuously calibrates itself on the basis of a highly accurate and stable voltage reference, so that it can continue to generate accurate measurement data, even under extreme environmental conditions. It repairs itself in the sense that it contains a micro-controller that reroutes signals among redundant components as needed to maintain the ability to perform accurate and stable measurements. It detects deterioration of components, predicts future failures, and/or detects imminent failures by means of a real-time analysis in which, among other things, data on its present state are continuously compared with locally stored historical data. It minimizes unnecessary consumption of electric energy. The design architecture divides the signal conditioner into three main sections: an analog signal section, a digital module, and a power-management section. The design of the analog signal section does not follow the traditional approach of ensuring reliability through total redundancy of hardware: Instead, following an approach called spare parts tool box, the

  17. PERFORMANCE TESTING OF AIR CLEANING PRODUCTS

    EPA Science Inventory

    The paper discuses the application of the Environmental Technology Verification (ETV) Program for products that clean ventilation air to the problem of protecting buildings from chemical and biological attack. This program is funded by the U.S. Environmental Protection Agency und...

  18. Air sampler performance at Ford's farm range

    SciTech Connect

    Glissmeyer, J.A.; Johnston, J.W.

    1984-07-01

    An air-sampling system for a large-caliber depleted uranium (DU) penetrator firing range was tested. The objectives of the test were: to determine the bias between the monitoring readings and DU concentrations; and to determine if the target bay real-time monitor (RTM) tracks the decaying dust concentration. The test procedure was to operate total and respirable airborne particle samplers adjacent to the target bay monitors. A series of air samples was also taken after the test firings adjacent to the target bay RTM. Exhaust particle samples were analyzed for gross alpha, gross beta and uranium content. The target bay RTM correlated well (0.977) with the sequential samples. Average concentration from the RTM did not correlate with either the long-term total or respirable sampler DU concentrations. The monitor used to confirm a low dust concentration when the door is open correlated well (0.810) with the RTM; the other bay monitor did not. In the ventilation discharge, the long-term average monitor readings did not correlate with DU concentrations, probably due to levels near lower detection limits. Smearable surface-contamination samples showed highest contamination on the equipment, gravel floor and exhaust intake. The location air-intake contamination increased over the first 3 rounds. Contamination was reduced by a low-pressure water spray washdown to about the same concentration as often the second round, then remained at about twice the level. 2 references, 18 figures, 16 tables. (MF)

  19. Residential Forced Air System Cabinet Leakage and Blower Performance

    SciTech Connect

    Walker, Iain S.; Dickerhoff, Darryl J.; Delp, William W.

    2010-03-01

    This project evaluated the air leakage and electric power consumption of Residential HVAC components, with a particular focus on air leakage of furnace cabinets. Laboratory testing of HVAC components indicated that air leakage can be significant and highly variable from unit to unit ? indicating the need for a standard test method and specifying maximum allowable air leakage in California State energy codes. To further this effort, this project provided technical assistance for the development of a national standard for Residential HVAC equipment air leakage. This standard is being developed by ASHRAE and is called"ASHRAE Standard 193P - Method of test for Determining the Air Leakage Rate of HVAC Equipment". The final part of this project evaluated techniques for measurement of furnace blower power consumption. A draft test procedure for power consumption was developed in collaboration with the Canadian General Standards Board: CSA 823"Performance Standard for air handlers in residential space conditioning systems".

  20. Thermal performance of a new solar air heater

    SciTech Connect

    Tiris, C.; Ozbalta, N.; Tiris, M.; Dincer, I.

    1995-05-01

    A solar air heater, part of a food drying system using solar energy as a renewable energy source for heat, was developed and tested for several agricultural products (i.e., sultana grapes, green beans, sweet peppers, chili peppers). Drying processes were conducted in the chamber with forced natural air heated partly by solar energy. Solar air heater performances were discussed along with estimates of energy efficiency of the system. The obtained results indicate that the present system is efficiency and effective.

  1. HVAC system performance and indoor air quality

    SciTech Connect

    Newman, J.L. )

    1991-01-01

    This paper reports that in the mid-seventies, the American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE) promulgated ASHRAE Standard 90-75 Energy Conservation in New Building Design, which called for revised minimum ventilation rates and the elimination of energy-wasting HVAC systems. Most building codes which cover energy conservation in the late seventies and eighties referred to this standard. This lowering of ventilation rates, coupled with the tighter building envelope (walls, windows, doors and roof) led to a reduction in outside air, both by engineering design and by minimizing infiltration through the structure. The minimum ventilation rates are based on the assumption that average concentrations of tobacco smoke exist in all enclosed spaces (30 percent of the population being smokers at two cigarettes per hour), rather than having separate rates for smoking and nonsmoking areas, as in the 1981 revision of the Standard. If tobacco smoke is ever declared a carcinogen, it will undoubtedly prompt a review of Standard 62-1989, as well as hasten totally smoke-free buildings.

  2. Performance status of the AIRS instrument thirteen years after launch

    NASA Astrophysics Data System (ADS)

    Elliott, Denis A.; Pagano, Thomas S.; Aumann, Hartmut H.; Broberg, Steven E.

    2015-09-01

    The Atmospheric Infrared Sounder (AIRS) is a hyperspectral infrared instrument on the EOS Aqua Spacecraft, launched on May 4, 2002. AIRS has 2378 infrared channels ranging from 3.7 μm to 15.4 μm and a 13.5 km footprint at nadir. AIRS is a "facility" instrument developed by NASA as an experimental demonstration of advanced technology for remote sensing and the benefits of high resolution infrared spectra to science investigations. AIRS, in conjunction with the Advanced Microwave Sounding Unit (AMSU), produces temperature profiles with 1K/km accuracy on a global scale, as well as water vapor profiles and trace gas amounts for CO2 , CO, SO2 , O3 and CH4. AIRS data are used for weather forecasting, climate process studies and validating climate models. The AIRS instrument has far exceeded its required design life of 5 years, with nearly 13 years of routine science operations that began on August 31, 2002. While the instrument has performed exceptionally well, with little sign of wear, the AIRS Project continues to monitor and maintain the health of AIRS, characterize its behavior and improve performance where possible. Radiometric stability has been monitored and trending shows better than 16 mK/year stability. Spectral calibration stability is better than 1 ppm/year. At this time we expect the AIRS to continue to perform well into the next decade. This paper contains updates to previous instrument status reports, with emphasis on the last three years.

  3. Thermotechnical performance of an air-cooled tuyere with air cooling channels in series

    NASA Astrophysics Data System (ADS)

    Shen, Yuansheng; Zhou, Yuanyuan; Zhu, Tao; Duan, Guangbin

    2016-03-01

    To reduce the cooling air consumption for an air-cooled tuyere, an air-cooled tuyere with air cooling channels in series is developed based on several hypotheses, i.e., a transparent medium in the blast furnace, among others, and the related mathematical models are introduced and developed. Referring to the data from a BF site, the thermotechnical computation for the air-cooled tuyere was performed, and the results show that when the temperature of the inlet cooling air increases, the temperatures for the outlet cooling air, the outer surface of the tuyere, the walls of the air cooling channels and the center channel as well as the heat going into the center channel increase, but the heat absorbed by the cooling air flowing through the air cooling channels decreases. When the cooling air flow rate under the standard state increases, the physical parameters mentioned above change in an opposite directions. Compared to a water-cooled tuyere, the energy savings for an air-cooled tuyere are more than 0.23 kg/min standard coal.

  4. PERFORMANCE TESTING OF THE TETRADYNE HIGH SPEED AIR JET SKIMMER

    EPA Science Inventory

    The U.S. Environmental Protection Agency evaluated the performance of the prototype Tetradyne High Speed Air Jet Skimmer at their OHMSETT test facility at Leonardo, New Jersey. The skimmer depends on an air-jet impacting the water surface at an angle and deflecting rapidly moving...

  5. Aeroacoustic Characteristics of Model Jet Test Facility Flow Conditioners

    NASA Technical Reports Server (NTRS)

    Kinzie, Kevin W.; Henderson, Brenda S.; Haskin, Harry H.

    2005-01-01

    An experimental investigation of flow conditioning devices used to suppress internal rig noise in high speed, high temperature experimental jet facilities is discussed. The aerodynamic and acoustic characteristics of a number of devices including pressure loss and extraneous noise generation are measured. Both aerodynamic and acoustic characteristics are strongly dependent on the porosity of the flow conditioner and the closure ratio of the duct system. For unchoked flow conditioners, the pressure loss follows conventional incompressible flow models. However, for choked flow conditioners, a compressible flow model where the duct and flow conditioner system is modeled as a convergent-divergent nozzle can be used to estimate pressure loss. Choked flow conditioners generate significantly more noise than unchoked conditioners. In addition, flow conditioners with small hole diameters or sintered metal felt material generate less self-noise noise compared to flow conditioners with larger holes.

  6. Performance verification of an air solar collector

    NASA Technical Reports Server (NTRS)

    Miller, D. C.; Romaker, R. F.

    1979-01-01

    Procedures and results of battery of qualification tests performed by independent certification agency on commercial solar collector are presented in report. Reported results were used as basis in judging collector suitable for field installation in residential and commerical buildings.

  7. The antimicrobial activity of a dentin conditioner combined with antibacterial agents.

    PubMed

    Botelho, Michael G

    2005-01-01

    Dental hand instruments are not efficient in removing all infected dentin when performing carious removal for minimal intervention techniques. The use of an antibacterial dentin conditioner may therefore be useful when restoring cavities that have residual carious dentin. Antibacterial agents--chlorhexidine hydrochloride, cetylpyridinium chloride, cetrimide, benzaIkonium chloride and sodium hypochlorite, were added either to a dentin conditioner used for glass ionomer cements or distilled water at 1% concentration. Dentin conditioning solutions at pH 2.5, 4.9 and 7.7 were also prepared, along with 1% aqueous thymol. Using an agar diffusion test, 25 microl aliquots were examined for their inhibitory effects on three cariogenic bacteria. After 24 hours, an agar pellet was extracted adjacent to the agar well and placed on a second inoculated agar plate to observe sustained inhibitory effects, after which this procedure was repeated one more time. Antibacterial dentin conditioners showed significant inhibitory effect compared to the control over the three test periods (p<0.016). The combination of dentin conditioners with antibacterial agents significantly reduced the inhibitory effect compared to the antibacterial aqueous solutions (p<0.016). One-percent aqueous thymol showed no inhibitory effect against the test bacteria. The cetrimide-dentin conditioner showed the greatest inhibitory effect against all three test bacteria over the three experimental periods (p<0.016). The inhibitory effect of antibacterial agents was significantly reduced when combined with a dentin conditioner. Only the cetrimide-dentin conditioner combination produced significant inhibitory effects against all three test organisms. PMID:15765961

  8. Photovoltaic array: Power conditioner interface characteristics

    NASA Technical Reports Server (NTRS)

    Gonzalez, C. C.; Hill, G. M.; Ross, R. G., Jr.

    1982-01-01

    The electrical output (power, current, and voltage) of flat plate solar arrays changes constantly, due primarily to changes in cell temperature and irradiance level. As a result, array loads such as dc-to-ac power conditioners must be capable of accommodating widely varying input levels while maintaining operation at or near the maximum power point of the array. The array operating characteristics and extreme output limits necessary for the systematic design of array load interfaces under a wide variety of climatic conditions are studied. A number of interface parameters are examined, including optimum operating voltage, voltage energy, maximum power and current limits, and maximum open circuit voltage. The effect of array degradation and I-V curve fill factor or the array power conditioner interface is also discussed. Results are presented as normalized ratios of power conditioner parameters to array parameters, making the results universally applicable to a wide variety of system sizes, sites, and operating modes.

  9. Performance of a double pass solar air collector

    SciTech Connect

    Ramani, B.M.; Gupta, Akhilesh; Kumar, Ravi

    2010-11-15

    Double pass counter flow solar air collector with porous material in the second air passage is one of the important and attractive design improvement that has been proposed to improve the thermal performance. This paper presents theoretical and experimental analysis of double pass solar air collector with and without porous material. A mathematical model has been developed based on volumetric heat transfer coefficient. Effects of various parameters on the thermal performance and pressure drop characteristics have been discussed. Comparison of results reveals that the thermal efficiency of double pass solar air collector with porous absorbing material is 20-25% and 30-35% higher than that of double pass solar air collector without porous absorbing material and single pass collector respectively. (author)

  10. 21 CFR 882.1845 - Physiological signal conditioner.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Physiological signal conditioner. 882.1845 Section... signal conditioner. (a) Identification. A physiological signal conditioner is a device such as an integrator or differentiator used to modify physiological signals for recording and processing....

  11. 21 CFR 882.1845 - Physiological signal conditioner.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Physiological signal conditioner. 882.1845 Section... signal conditioner. (a) Identification. A physiological signal conditioner is a device such as an integrator or differentiator used to modify physiological signals for recording and processing....

  12. 21 CFR 882.1845 - Physiological signal conditioner.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Physiological signal conditioner. 882.1845 Section... signal conditioner. (a) Identification. A physiological signal conditioner is a device such as an integrator or differentiator used to modify physiological signals for recording and processing....

  13. 21 CFR 882.1845 - Physiological signal conditioner.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Physiological signal conditioner. 882.1845 Section... signal conditioner. (a) Identification. A physiological signal conditioner is a device such as an integrator or differentiator used to modify physiological signals for recording and processing....

  14. 21 CFR 882.1845 - Physiological signal conditioner.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Physiological signal conditioner. 882.1845 Section... signal conditioner. (a) Identification. A physiological signal conditioner is a device such as an integrator or differentiator used to modify physiological signals for recording and processing....

  15. Performance of underfloor air distribution: Results of a field study

    SciTech Connect

    Fisk, William; Faulkner, David; Sullivan, Douglas

    2004-09-02

    Underfloor air distribution (UFAD) is a new method of supplying heated or cooled air throughout a building. Reported advantages of UFAD include easy relocation of air supply diffusers, energy savings, and improved indoor air quality (IAQ). We measured several aspects of the performance of an UFAD system installed in a medium-size office building. The measured air change effectiveness was very close to unity, which is comparable to that measured in buildings with typical overhead air distribution. The pollutant removal efficiency for carbon dioxide was 13 percent higher than expected in a space with well-mixed air, suggesting a 13 percent reduction in exposures to occupant generated pollutants. The increase in indoor air temperatures with height above the floor was only 1 to 2 C (2-4 F). This amount of thermal stratification could reduce the sensible energy requirements for cooling of outdoor air by approximately 10 percent. The occupants level of satisfaction with thermal conditions w as well above average and this high satisfaction rating could possibly be due, in all or part, to the use of a UFAD system. The results of this study provide some evidence of moderate energy and IAQ-related benefits of UFAD. Before general conclusions are drawn, the benefits need to be confirmed in other studies.

  16. Locally produced natural conditioners for dewatering of faecal sludge.

    PubMed

    Gold, Moritz; Dayer, Pauline; Faye, Marie Christine Amie Sene; Clair, Guillaume; Seck, Alsane; Niang, Seydou; Morgenroth, Eberhard; Strande, Linda

    2016-11-01

    In urban areas of low-income countries, treatment of faecal sludge (FS) is insufficient or non-existent. This results in large amounts of FS being dumped into the environment. Existing treatment technologies for FS, such as settling-thickening tanks and drying beds, are land intensive which is limiting in urban areas. Enhanced settling and dewatering by conditioning was evaluated in order to reduce the treatment footprint (or increase treatment capacity). Conventional wastewater conditioners, such as commercially available lime and polymers, are expensive, and commonly rely on complex supply chains for use in low-income countries. Therefore, the treatment performance of five conditioners which could be produced locally was evaluated: Moringa oleifera seeds and press cake, Jatropha curcas seeds, Jatropha Calotropis leaves and chitosan. M. oleifera seeds and press cake, and chitosan improved settling and dewatering and had a similar performance compared to lime and polymers. Optimal dosages were 400-500 kg M. oleifera/t TS, 300-800 kg lime/t TS and 25-50 kg polymer solution/t TS. In comparison, chitosan required 1.5-3.75 kg/t TS. These dosages are comparable to those recommended for wastewater (sludge). The results indicate that conditioning of FS can reduce total suspended solids (TSS) in the effluent of settling-thickening tanks by 22-81% and reduce dewatering time with drying beds by 59-97%. This means that the area of drying beds could be reduced by 59-97% with end-use as soil conditioner, or 9-26% as solid fuel. Least expensive options and availability will depend on the local context. In Dakar, Senegal, chitosan produced from shrimp waste appears to be most promising. PMID:26984372

  17. Performance of underfloor air distribution in a fieldsetting

    SciTech Connect

    Fisk, W.J.; Faulkner, D.; Sullivan, D.P.; Chao, C.; Wan, M.P.; Zagreus, L.; Webster, T.

    2005-10-01

    Underfloor air distribution (UFAD) is a new method of supplying heated or cooled air throughout a building. Reported advantages of UFAD include energy savings and improved indoor air quality (IAQ). We measured several aspects of the performance of an UFAD system installed in a medium-size office building. The measured air change effectiveness was very close to unity, which is comparable to that measured in buildings with typical overhead air distribution. The pollutant removal efficiency for carbon dioxide was 13% higher than expected in a space with well-mixed air, suggesting a 13% reduction in exposures to occupant generated pollutants. The increase in indoor air temperatures with height above the floor was only 1 to 2 C. This amount of thermal stratification could reduce the sensible energy requirements for cooling of outdoor air by approximately 10%. The occupant's level of satisfaction with thermal conditions was well above average and this high satisfaction rating could possibly be due, in all or part, to the use of a UFAD system. The results of this study provide some evidence of moderate energy and IAQ-related benefits of UFAD. Before general conclusions are drawn, the benefits need to be confirmed in other studies.

  18. PremAir{trademark} catalyst systems: A new approach to clean air

    SciTech Connect

    Poles, T.; Anderson, D.R.; Durilla, M.; Heck, R.; Hoke, J.; Ober, R.; Rudy, W.

    1996-12-01

    PremAir{trademark} catalyst systems represents a new approach to air pollution control--one that focuses on destroying pollutants already in the air. PremAir is the trademark for a family of developmental catalysts capable of reducing ozone, carbon monoxide and potentially other pollutants in ambient air that comes into contact with catalyst-coated surfaces. The more air that comes into contact with the surface the more pollutants that can be destroyed. For this reason, Engelhard has focused its attention on heat-exchange equipment such as automotive radiators and air-conditioner condensers. It is because of advances in catalysis achieved at Engelhard that PremAir catalysts are active at the low temperatures found in these environments. In Los Angeles, which has the country`s worst smog problem, approximately one trillion cubic feet per day of air pass through car radiators and five trillion cubic feet per day pass through air conditioners. Most of the research, development and testing work performed to date has been on ozone catalysts and their application to car radiators. This paper discusses that work and the potential benefits associated with the PremAir technology. In addition, preliminary work on stationary applications of this new technology is discussed.

  19. High Performance Cathodes for Li-Air Batteries

    SciTech Connect

    Xing, Yangchuan

    2013-08-22

    The overall objective of this project was to develop and fabricate a multifunctional cathode with high activities in acidic electrolytes for the oxygen reduction and evolution reactions for Li-air batteries. It should enable the development of Li-air batteries that operate on hybrid electrolytes, with acidic catholytes in particular. The use of hybrid electrolytes eliminates the problems of lithium reaction with water and of lithium oxide deposition in the cathode with sole organic electrolytes. The use of acid electrolytes can eliminate carbonate formation inside the cathode, making air breathing Li-air batteries viable. The tasks of the project were focused on developing hierarchical cathode structures and bifunctional catalysts. Development and testing of a prototype hybrid Li-air battery were also conducted. We succeeded in developing a hierarchical cathode structure and an effective bifunctional catalyst. We accomplished integrating the cathode with existing anode technologies and made a pouch prototype Li-air battery using sulfuric acid as catholyte. The battery cathodes contain a nanoscale multilayer structure made with carbon nanotubes and nanofibers. The structure was demonstrated to improve battery performance substantially. The bifunctional catalyst developed contains a conductive oxide support with ultra-low loading of platinum and iridium oxides. The work performed in this project has been documented in seven peer reviewed journal publications, five conference presentations, and filing of two U.S. patents. Technical details have been documented in the quarterly reports to DOE during the course of the project.

  20. Performance of Desiccant Particle Dispersion Type Air Conditioning System

    NASA Astrophysics Data System (ADS)

    Hatano, Hiroyuki; Suzuki, Koichi; Kojima, Hiromitsu

    An investigation of desiccant air conditioning system is performed to demonstrate its performance in a dispersed desiccant particle systems, based on its higher gas solid contacting efficiency and isothermal dehumidification. Particle dispersion is achieved using the risers of a circulating fluidized bed, CFB, or of a pneumatic conveyer. The risers used for dehumidification are 1390 mm in height and 22 mm in diameter. The former is used to evaluate the overall dehumidification performance and the latter is used to measure the axial humidity distribution under 0.88 m/s of a superficial air velocity. Based on the results of the overall performance by changing solid loading rates, Gs, from 0.4 kg/m2s up to 6 kg/m2s, desiccant particle dispersion shows higher performance in dehumidification, while axial humidity distribution shows very rapid adsorption rate in the entrance zone of the riser. Removal of adsorption heat accelerates dehumidification rate compared to the adiabatic process.

  1. Indoor air quality standards of performance applications guide

    SciTech Connect

    Linder, R.J.; Dorgan, C.B.; Dorgan, C.E.

    1999-07-01

    This paper discusses the development and application of standards of performance (SOPs) for HVAC and R equipment, plumbing systems, and building envelope systems in relation to maintaining acceptable indoor air quality (IAQ) in buildings. The utilization of the SOP procedure, developed in ASHRAE Research Project 853, will aid in the proper operation of systems and verify that acceptable building IAQ levels are obtained.

  2. OXIDANT AIR POLLUTION AND WORK PERFORMANCE OF CITRUS HARVEST LABOR

    EPA Science Inventory

    The project assesses the effect of photochemical oxidants on the work performance of twelve individual citrus pickers in the South Coast Air Basin of southern California. A model of the picker's decision problem is constructed in which oxidants influence the individual's picking ...

  3. Preliminary investigations on improving air-augmented rocket performance

    NASA Astrophysics Data System (ADS)

    Anil, K. N.; Damodaran, K. A.

    1994-05-01

    Use of the Petal nozzle instead of the conventional conical nozzle as the primary stream representing fuel-rich gases exiting from a rocket nozzle has demonstrated considerable improvement in the performance of an air-augmented rocket. This can be attributed to the improved mixing of the hot, exhaust gases containing unburnt fuel with the surrounding airstream, and subsequent heat release.

  4. Contact urticaria from protein hydrolysates in hair conditioners.

    PubMed

    Niinimäki, A; Niinimäki, M; Mäkinen-Kiljunen, S; Hannuksela, M

    1998-11-01

    Protein hydrolysates (PHs) are added to hair-care products (to "repair" broken hair), soaps, bath gels, creams, etc. From one to 22 PHs used in hair-care products (collagen, keratin, elastin, milk, wheat, almond, and silk) were tested in three patient groups: A) 11 hairdressers with hand dermatitis B) 2160 consecutive adults with suspected allergic respiratory disease subjected to routine skin prick tests C) 28 adults with atopic dermatitis. In group A, all the 22 PHs were tested with scratch and patch tests. In groups B and C, one to three PHs were tested with prick tests. Positive scratch/prick test reactions were seen in 12 patients from three PHs altogether. All were women with atopic dermatitis, and all reacted to at least hydroxypropyl trimonium hydrolyzed collagen (Crotein Q). In three patients, prick and open tests with a hair conditioner containing Crotein Q were performed with positive results. One patient reported contact urticaria on her hands, and two reported acute urticaria on their head, face, and upper body from a hair conditioner containing Crotein Q. In seven of the eight studied sera, specific IgE to Crotein Q was detected. In conclusion, PHs of hair cosmetics can cause contact urticaria, especially in patients with atopic dermatitis. PMID:9860241

  5. Supporting Air-Conditioning Controller Design Using Evolutionary Computation

    NASA Astrophysics Data System (ADS)

    Kojima, Kazuyuki; Watanuki, Keiichi

    In recent years, as part of the remarkable development of electronic techniques, electronic control has been applied to various systems. Many sensors and actuators have been implemented into those systems, and energy efficiency and performance have been greatly improved. However, these systems have been complicated, and much time has been required to develop system controllers. In this paper, a method of automatic controller design for those systems is described. In order to automate the design of an electronic controller, an evolutionary hardware is applied. First, the framework for applying the genetic algorithm to the automation of controller design is described. In particular, the coding of a chromosome is shown in detail. Then, how to make a fitness function is represented, with an air conditioner as an example, and the controller of the air conditioner is developed automatically using our proposed framework. Finally, an evolutionary simulation is performed to confirm our framework.

  6. AirJump: Using Interfaces to Instantly Perform Simultaneous Extractions.

    PubMed

    Berry, Scott M; Pezzi, Hannah M; LaVanway, Alex J; Guckenberger, David J; Anderson, Meghan A; Beebe, David J

    2016-06-22

    Analyte isolation is an important process that spans a range of biomedical disciplines, including diagnostics, research, and forensics. While downstream analytical techniques have advanced in terms of both capability and throughput, analyte isolation technology has lagged behind, increasingly becoming the bottleneck in these processes. Thus, there exists a need for simple, fast, and easy to integrate analyte separation protocols to alleviate this bottleneck. Recently, a new class of technologies has emerged that leverages the movement of paramagnetic particle (PMP)-bound analytes through phase barriers to achieve a high efficiency separation in a single or a few steps. Specifically, the passage of a PMP/analyte aggregate through a phase interface (aqueous/air in this case) acts to efficiently "exclude" unbound (contaminant) material from PMP-bound analytes with higher efficiency than traditional washing-based solid-phase extraction (SPE) protocols (i.e., bind, wash several times, elute). Here, we describe for the first time a new type of "exclusion-based" sample preparation, which we term "AirJump". Upon realizing that much of the contaminant carryover stems from interactions with the sample vessel surface (e.g., pipetting residue, wetting), we aim to eliminate the influence of that factor. Thus, AirJump isolates PMP-bound analyte by "jumping" analyte directly out of a free liquid/air interface. Through careful characterization, we have demonstrated the validity of AirJump isolation through comparison to traditional washing-based isolations. Additionally, we have confirmed the suitability of AirJump in three important independent biological isolations, including protein immunoprecipitation, viral RNA isolation, and cell culture gene expression analysis. Taken together, these data sets demonstrate that AirJump performs efficiently, with high analyte yield, high purity, no cross contamination, rapid time-to-isolation, and excellent reproducibility. PMID:27249333

  7. Implications of air pollution effects on athletic performance

    SciTech Connect

    Pierson, W.E.; Covert, D.S.; Koenig, J.Q.; Namekata, T.; Kim, Y.S.

    1986-06-01

    Both controlled human studies and observational studies suggest that air pollution adversely affects athletic performance during both training and competition. The air pollution dosage during exercise is much higher than during rest because of a higher ventilatory rate and both nasal and oral breathing in the former case. For example, sulfur dioxide, which is a highly water-soluble gas, is almost entirely absorbed in the upper respiratory tract during nasal breathing. However, with oral pharyngeal breathing, the amount of sulfur dioxide that is absorbed is significantly less, and with exercise and oral pharyngeal breathing a significant decrease in upper airway absorption occurs, resulting in a significantly larger dosage of this pollutant being delivered to the tracheobronchial tree. Recently, several controlled human studies have shown that the combination of exercise and pollutant exposure (SO/sub 2/ or O/sub 3/) caused a marked bronchoconstriction and reduced ventilatory flow when compared to pollution exposure at rest. In a situation like the Olympic Games where milliseconds and millimeters often determine the success of athletes, air pollution can be an important factor in affecting their performance. This paper examines possible impacts of air pollution on athletic competition.

  8. Review: Implications of air pollution effects on athletic performance

    NASA Astrophysics Data System (ADS)

    Pierson, William E.; Covert, David S.; Koenig, Jane Q.; Namekata, Tsukasa; Kim, Yoon Shin

    Both controlled human studies and observational studies suggest air pollution adversely affects athletic performance during both training and competition. The air pollution dosage during exercise is much higher than during rest because of a higher ventilatory rate and both nasal and oral breathing in the former case. For example, SO 2 which is a highly water soluble gas, is almost entirely absorbed in the upper respiratory tract during nasal breathing. However, with oral pharyngeal breathing, the amount of sulfur dioxide that is absorbed is significantly less, and with exercise and oral pharyngeal breathing a significant decrease in upper airway absorption occurs, resulting in a significantly larger dosage of this pollutant being delivered to the tracheobronchial tree. Recently, several controlled human studies have shown that the combination of exercise and pollutant exposure (SO 2 or O 3) caused a marked bronchoconstriction and reduced ventilatory flow when compared with pollution exposure at rest. In a situation like the Olympic Games where ms and mm often determine success of athletes, air pollution can be an important factor in affecting their performance. This paper examines possible impacts of air pollution on athletic competition.

  9. Effect of air pollution on athlete health and performance.

    PubMed

    Rundell, Kenneth William

    2012-05-01

    Unfavourable effects on the respiratory and the cardiovascular systems from short-term and long-term inhalation of air pollution are well documented. Exposure to freshly generated mixed combustion emissions such as those observed in proximity to roadways with high volumes of traffic and those from ice-resurfacing equipment are of particular concern. This is because there is a greater toxicity from freshly generated whole exhaust than from its component parts. The particles released from emissions are considered to cause oxidative damage and inflammation in the airways and the vascular system, and may be related to decreased exercise performance. However, few studies have examined this aspect. Several papers describe deleterious effects on health from chronic and acute air pollution exposure. However, there has been no research into the effects of long-term exposure to air pollution on athletic performance and a paucity of studies that describe the effects of acute exposure on exercise performance. The current knowledge of exercising in the high-pollution environment and the consequences that it may have on athlete performance are reviewed. PMID:22267572

  10. Energy-Efficient Air Conditioning

    SciTech Connect

    Krigger, J.; Stewart, K.

    1999-06-30

    Many people buy or use air conditioners without understanding their designs, components, and operating principles. Proper sizing, selection, installation, maintenance, and correct use are keys to cost-effective operation and lower overall costs. This publication discusses both central and room air conditioners. Heat pumps, which provide both home cooling and heating, are not covered in this publication. Contact www.eren.doe.gov/consumerinfo for more information.

  11. Determinants of elite-level air rifle shooting performance.

    PubMed

    Ihalainen, S; Kuitunen, S; Mononen, K; Linnamo, V

    2016-03-01

    This study focused on identifying the most important factors determining performance in elite-level air rifle shooting technique. Forty international- and national-level shooters completed a simulated air rifle shooting competition series. From a total of 13 795 shots in 319 tests, shooting score and 17 aiming point trajectory variables were measured with an optoelectronic device and six postural balance variables were measured with force platform. Principal component analysis revealed six components in the air rifle shooting technique: aiming time, stability of hold, measurement time, cleanness of triggering, aiming accuracy, and timing of triggering. Multiple regression analysis identified four of those, namely stability of hold, cleanness of triggering, aiming accuracy, and timing of triggering as the most important predictors of shooting performance, accounting for 81% of the variance in shooting score. The direct effect of postural balance on performance was small, accounting for less than 1% of the variance in shooting score. Indirectly, the effect can be greater through a more stable holding ability, to which postural balance was correlated significantly (R = 0.55, P < 0.001). The results of the present study can be used in assessing athletes' technical strengths and weaknesses and in directing training programs on distinct shooting technical components. PMID:25850700

  12. High-Performance Sorbents for Carbon Dioxide Capture from Air

    SciTech Connect

    Sholl, David; Jones, Christopher

    2013-03-13

    This project has focused on capture of CO{sub 2} from ambient air (“air capture”). If this process is technically and economically feasible, it could potentially contribute to net reduction of CO{sub 2} emissions in ways that are complementary to better developed techniques for CO{sub 2} from concentrated point sources. We focused on cyclic adsorption processes for CO{sub 2} capture from air in which the entire cycle is performed at moderate temperatures. The project involved both experimental studies of sorbent materials and process level modeling of cyclic air capture processes. In our experimental work, a series of amine-functionalized silica adsorbents were prepared and characterized to determine the impact of molecular architecture on CO{sub 2} capture. Some key findings were: • Amine functionalized silicas can be prepared with high enough CO{sub 2} capacities under ambient conditions to merit consideration for use in air capture processes. • Primary amines are better candidates for CO{sub 2} capture than secondary or tertiary amines, both in terms of amine efficiency for CO{sub 2} adsorption and enhanced water affinity. • Mechanistic understanding of degradation of these materials can enable control of molecular architecture to significantly improve material stability. Our process modeling work provided the first publically available cost and energy estimates for cyclic adsorption processes for air capture of CO{sub 2}. Some key findings were: • Cycles based on diurnal ambient heating and cooling cannot yield useful purities or amounts of captured CO{sub 2}. • Cycles based on steam desorption at 110 oC can yield CO{sub 2} purities of ~88%. • The energy requirements for cycles using steam desorption are dominated by needs for thermal input, which results in lower costs than energy input in the form of electricity. Cyclic processes with operational costs of less than $100 tCO{sub 2}-net were described, and these results point to process and

  13. Cell module and fuel conditioner development

    NASA Technical Reports Server (NTRS)

    Hoover, D. Q., Jr.

    1982-01-01

    The phosphoric acid fuel cell module (stack) development which culminated in an 80 cell air-cooled stack with separated gas cooling and treed cooling plates is described. The performance of the 80 cell stack was approx. 100 mV per cell higher than that attained during phase 1. The components and materials performed stably for over 8000 hours in a 5 cell stack. The conceptual design of a fuel conditioning system is described.

  14. Insights into PEMFC Performance Degradation from HCl in Air

    SciTech Connect

    O Baturina; A Epshteyn; P Northrup; K Swider-Lyons

    2011-12-31

    The performance degradation of a proton exchange membrane fuel cell (PEMFC) is studied in the presence of HCl in the air stream. The cathode employing carbon-supported platinum nanoparticles (Pt/C) was exposed to 4 ppm HCl in air while the cell voltage was held at 0.6 V. The HCl poisoning results in generation of chloride and chloroplatinate ions on the surface of Pt/C catalyst as determined by a combination of electrochemical tests and ex-situ chlorine K-edge X-Ray absorption near-edge structure (XANES) spectroscopy. The chloride ions inhibit the oxygen reduction reaction (ORR) and likely affect the wetting properties of diffusion media/catalyst layer, while the chloroplatinate ions are responsible for enhanced platinum particle growth most likely due to platinum dissolution-redeposition. The chloride ions can cause corrosion of the Pt nanoparticles in the presence of aqueous HCl in air even if no potential is applied. Although the majority of chloride ions are desorbed from the Pt surface by hydrogen treatment of the cathode, they partially remain in the system and re-adsorb on platinum at cell voltages of 0.5-0.9 V. Chloride ions are removed from the system and fuel cell performance at 0.5-0.7 V is restored by multiple exposures to low potentials.

  15. 21 CFR 870.2060 - Transducer signal amplifier and conditioner.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Transducer signal amplifier and conditioner. 870.2060 Section 870.2060 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Transducer signal amplifier and conditioner. (a) Identification. A transducer signal amplifier...

  16. 21 CFR 870.2050 - Biopotential amplifier and signal conditioner.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Biopotential amplifier and signal conditioner. 870.2050 Section 870.2050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Biopotential amplifier and signal conditioner. (a) Identification. A biopotential amplifier and...

  17. 21 CFR 870.2050 - Biopotential amplifier and signal conditioner.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Biopotential amplifier and signal conditioner. 870.2050 Section 870.2050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Biopotential amplifier and signal conditioner. (a) Identification. A biopotential amplifier and...

  18. 21 CFR 870.2050 - Biopotential amplifier and signal conditioner.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Biopotential amplifier and signal conditioner. 870.2050 Section 870.2050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Biopotential amplifier and signal conditioner. (a) Identification. A biopotential amplifier and...

  19. 21 CFR 870.2050 - Biopotential amplifier and signal conditioner.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Biopotential amplifier and signal conditioner. 870.2050 Section 870.2050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Biopotential amplifier and signal conditioner. (a) Identification. A biopotential amplifier and...

  20. 21 CFR 870.2060 - Transducer signal amplifier and conditioner.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Transducer signal amplifier and conditioner. 870.2060 Section 870.2060 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Transducer signal amplifier and conditioner. (a) Identification. A transducer signal amplifier...

  1. 21 CFR 870.2060 - Transducer signal amplifier and conditioner.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Transducer signal amplifier and conditioner. 870.2060 Section 870.2060 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Transducer signal amplifier and conditioner. (a) Identification. A transducer signal amplifier...

  2. 21 CFR 870.2050 - Biopotential amplifier and signal conditioner.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Biopotential amplifier and signal conditioner. 870.2050 Section 870.2050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Biopotential amplifier and signal conditioner. (a) Identification. A biopotential amplifier and...

  3. 21 CFR 870.2060 - Transducer signal amplifier and conditioner.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Transducer signal amplifier and conditioner. 870.2060 Section 870.2060 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Transducer signal amplifier and conditioner. (a) Identification. A transducer signal amplifier...

  4. 21 CFR 870.2060 - Transducer signal amplifier and conditioner.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Transducer signal amplifier and conditioner. 870.2060 Section 870.2060 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Transducer signal amplifier and conditioner. (a) Identification. A transducer signal amplifier...

  5. Cold air performance of a 12.766-centimeter-tip-diameter axial-flow cooled turbine. 2: Effect of air ejection on turbine performance

    NASA Technical Reports Server (NTRS)

    Haas, J. E.; Kofskey, M. G.

    1977-01-01

    An air cooled version of a single-stage, axial-flow turbine was investigated to determine aerodynamic performance with and without air ejection from the stator and rotor blades surfaces to simulate the effect of cooling air discharge. Air ejection rate was varied from 0 to 10 percent of turbine mass flow for both the stator and the rotor. A primary-to-air ejection temperature ratio of about 1 was maintained.

  6. [Performance of internal-loop air-lift nitrifying bioreactor].

    PubMed

    Lin, Feng-Mei; Zheng, Ping; Zhao, Yang-Yang; Hu, Bao-Lan; Chen, Jian-Song

    2002-07-01

    The performance of internal-loop air-lift nitrifying bioreactor was good with strong tolerance to influent ammonia concentration (78.49 mmol/L), high volume converting rate (163.18 mmol/L.d) and obvious working stability (ammonia removal > 94.42%). During operation of internal-loop air-lift bioreactor, the nitrifying activated sludge was granulated. The nitrifying granular activated sludge began to appear on day 45. Its average diameter was 0.83 mm, settling velocity was 55.53 m/h and specific ammonia removal rate was 0.95 mmol (NH4(+)-N)/g (VS).d. The nitrifying granular activated sludge had the activity for anaerobic ammonia oxidation with ammonia oxidation rate of 0.23 mmol (NH4(+)-N)/g(VS).d and nitrite reduction rate of 0.24 mmol (NO2(-)-N)/g(VS).d. PMID:12385250

  7. Performance Prediction Method of CO2 Cycle for Air Cooling

    NASA Astrophysics Data System (ADS)

    Koyama, Shigeru; Xue, Jun; Kuwahara, Ken

    From the perspective of global environmental protection and energy-saving, the research and development on high-efficiency heat pump and refrigeration systems using environment-friendly refrigerants have become one of the most important issues in the air-conditioning and refrigeration sector. In the present work, a steady-state model of the CO2 transcritical cycle for air cooling, which consists of a rotary compressor, a fin-tube gas cooler,a fin-tube evaporator and an expansion valve, has been developed. The detailed model of fin-tube heat exchanger has been constructed by means of the finite volume method, in which the local heat transfer and flow characteristics are evaluated. It should be noted that the effects of the dew condensation generated on the cooling surface are considered in the evaporator model. As a calculation example, the effects of the indoor air wet-bulb temperature on the cycle performance have been examined with this developed simulator.

  8. Combustion performance evaluation of air staging of palm oil blends.

    PubMed

    Mohd Jaafar, Mohammad Nazri; Eldrainy, Yehia A; Mat Ali, Muhammad Faiser; Wan Omar, W Z; Mohd Hizam, Mohd Faizi Arif

    2012-02-21

    The problems of global warming and the unstable price of petroleum oils have led to a race to develop environmentally friendly biofuels, such as palm oil or ethanol derived from corn and sugar cane. Biofuels are a potential replacement for fossil fuel, since they are renewable and environmentally friendly. This paper evaluates the combustion performance and emission characteristics of Refined, Bleached, and Deodorized Palm Oil (RBDPO)/diesel blends B5, B10, B15, B20, and B25 by volume, using an industrial oil burner with and without secondary air. Wall temperature profiles along the combustion chamber axis were measured using a series of thermocouples fitted axially on the combustion chamber wall, and emissions released were measured using a gas analyzer. The results show that RBDPO blend B25 produced the maximum emission reduction of 56.9% of CO, 74.7% of NOx, 68.5% of SO(2), and 77.5% of UHC compared to petroleum diesel, while air staging (secondary air) in most cases reduces the emissions further. However, increasing concentrations of RBDPO in the blends also reduced the energy released from the combustion. The maximum wall temperature reduction was 62.7% for B25 at the exit of the combustion chamber. PMID:22296110

  9. Metal-air cell with performance enhancing additive

    SciTech Connect

    Friesen, Cody A; Buttry, Daniel

    2015-11-10

    Systems and methods drawn to an electrochemical cell comprising a low temperature ionic liquid comprising positive ions and negative ions and a performance enhancing additive added to the low temperature ionic liquid. The additive dissolves in the ionic liquid to form cations, which are coordinated with one or more negative ions forming ion complexes. The electrochemical cell also includes an air electrode configured to absorb and reduce oxygen. The ion complexes improve oxygen reduction thermodynamics and/or kinetics relative to the ionic liquid without the additive.

  10. Design and performance of large telescopes operated in open air

    NASA Astrophysics Data System (ADS)

    Zago, Lorenzo

    1986-01-01

    Innovative designs of enclosures are being studied for the generation of large telescopes which are presently being developed, essentially in order to keep costs from increasing unacceptably with the size of the telescopes. These studies and the generally positive experience with MMT-type buildings, largely open to the wind during observation times, are confirming the trend toward a radical change of philosophy in the concept for telescope enclosures. The aim of the preliminary studies was to achieve a comprehensive view of the different aspects of the open air environment and their influence on the design of the telescope and its performance. The paper describes some of these studies.

  11. Fatigue and associated performance decrements in air transport operations

    NASA Technical Reports Server (NTRS)

    Lyman, E. G.; Orlady, H. W.

    1981-01-01

    A study of safety reports was conducted to examine the hypothesis that fatigue and associated performance decrements occur in air transport operations, and that these are associated with some combination of factors: circadian desynchronosis, duty time; pre-duty activity; sleep; work scheduling; workload; and environmental deprivation. The findings are based on a selected sample of reported incidents in which the reporter associated fatigue with the occurrence. In comparing the fatigue reports with a control set, significant performance decrements were found to exist related to time-of-day, awareness and attention to duty, less significantly, final phases of flights. The majority of the fatigue incidents involved such unsafe events as altitude deviations, takeoffs and landing without clearance, and the like. Considerations of duty and sleep are the major factors in the reported fatigue conditions.

  12. Indoor air quality and energy performance of air-conditioned office buildings in Singapore.

    PubMed

    Sekhar, S C; Tham, K W; Cheong, K W

    2003-12-01

    An integrated indoor air quality (IAQ)-energy audit methodology has been developed in this study in Singapore, which provides a rigorous and systematic method of obtaining the status-quo assessment of an 'IAQ signature' in a building. The methodology entails a multi-disciplinary model in obtaining measured data pertaining to different dimensions within the built environment such as the physical, chemical, biological, ventilation, and occupant response characteristics. This paper describes the audit methodology and presents the findings from five air-conditioned office buildings in Singapore. The research has also led to the development of an indoor pollutant standard index (IPSI), which is discussed in this paper. Other performance indicators such as, the ventilation index and the energy index as well as the building symptom index (BSI) are also presented and discussed in the context of an integrated approach to IAQ and energy. Several correlation attempts were made on the various symptoms, indoor air acceptability, thermal comfort, BSI and IPSI, and while BSI values are found to correlate among them as well as with IAQ and THERMAL COMFORT acceptability, no such correlation was observed between BSI and IPSI. This would suggest that the occupants' perception of symptoms experienced as well as environmental acceptability is quite distinct from IAQ acceptability determined from empirical measurements of indoor pollutants, which reinforces the complex nature of IAQ issues. PMID:14636226

  13. Dynamic modeling of brushless dc motor-power conditioner unit for electromechanical actuator application

    NASA Technical Reports Server (NTRS)

    Demerdash, N. A.; Nehl, T. W.

    1979-01-01

    A comprehensive digital model for the analysis of the dynamic-instantaneous performance of a power conditioner fed samarium-cobalt permanent magnet brushless DC motor is presented. The particular power conditioner-machine system at hand, for which this model was developed, is a component of an actual prototype electromechanical actuator built for NASA-JSC as a possible alternative to hydraulic actuators as part of feasibility studies for the shuttle orbiter applications. Excellent correlation between digital simulated and experimentally obtained performance data was achieved for this specific prototype. This is reported on in this paper. Details of one component of the model, its applications and the corresponding results are given in this paper.

  14. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  15. An improved high-performance lithium-air battery

    NASA Astrophysics Data System (ADS)

    Jung, Hun-Gi; Hassoun, Jusef; Park, Jin-Bum; Sun, Yang-Kook; Scrosati, Bruno

    2012-07-01

    Although dominating the consumer electronics markets as the power source of choice for popular portable devices, the common lithium battery is not yet suited for use in sustainable electrified road transport. The development of advanced, higher-energy lithium batteries is essential in the rapid establishment of the electric car market. Owing to its exceptionally high energy potentiality, the lithium-air battery is a very appealing candidate for fulfilling this role. However, the performance of such batteries has been limited to only a few charge-discharge cycles with low rate capability. Here, by choosing a suitable stable electrolyte and appropriate cell design, we demonstrate a lithium-air battery capable of operating over many cycles with capacity and rate values as high as 5,000 mAh gcarbon-1 and 3 A gcarbon-1, respectively. For this battery we estimate an energy density value that is much higher than those offered by the currently available lithium-ion battery technology.

  16. An improved high-performance lithium-air battery.

    PubMed

    Jung, Hun-Gi; Hassoun, Jusef; Park, Jin-Bum; Sun, Yang-Kook; Scrosati, Bruno

    2012-07-01

    Although dominating the consumer electronics markets as the power source of choice for popular portable devices, the common lithium battery is not yet suited for use in sustainable electrified road transport. The development of advanced, higher-energy lithium batteries is essential in the rapid establishment of the electric car market. Owing to its exceptionally high energy potentiality, the lithium-air battery is a very appealing candidate for fulfilling this role. However, the performance of such batteries has been limited to only a few charge-discharge cycles with low rate capability. Here, by choosing a suitable stable electrolyte and appropriate cell design, we demonstrate a lithium-air battery capable of operating over many cycles with capacity and rate values as high as 5,000 mAh g(carbon)(-1) and 3 A g(carbon)(-1), respectively. For this battery we estimate an energy density value that is much higher than those offered by the currently available lithium-ion battery technology. PMID:22717445

  17. Air pollution, athletic health and performance at the Olympic Games.

    PubMed

    Fitch, Ken

    2016-01-01

    The objective of this study was to briefly review air pollution and its effects on athletes' health and performance and to examine air quality (AQ) at specific Olympic Summer Games between 1964 and 2008. It will focus on any attempts made by the cities hosting these Olympics to improve AQ for the Games and if undertaken, how successful these were. The author had a medical role at five of the seven Olympic Games that will be examined and hence has personal experiences. Information was obtained from the readily accessible official reports of the Olympic Games, relevant published papers and books and the internet. For each of these seven Olympic Games, monitoring AQ was far below current acceptable standards and for the majority, minimal or no data on major pollutants was available. From what can be ascertained, at these Games, AQ varied but was less than optimal in most if not all. Nevertheless, there were few reported or known unfavorable effects on the health of Olympic athletes. To date, there have been few reported consequences of sub-optimal AQ at Olympic Games. The focus on AQ at Olympic Games has gradually increased over the past five decades and is expected to continue into the future. PMID:25786594

  18. Fume hood performance: Face velocity variability inconsistent air volume systems

    SciTech Connect

    Volin, C.E.; Joao, R.V.; Gershey, E.L.; Reiman, J.S.; Party, E.

    1998-09-01

    A 3-year survey of 366 bench-type fume hoods in working laboratories in conventional, constant air volume settings showed that face velocities varied greatly from unit to unit and over time. Fume hoods with bypasses performed better than those without; however, even newly fabricated bypass hoods exhibited large variations. These variations were due to several factors; however, face velocities at 100 {+-} 10 ft/min at working sash heights in the range of 20 to 40 cm (8 to 16 inches) were attainable. The use of smoke showed poor containment, especially at face velocities below 85 ft/min (0.425 m/s) or above 130 ft/min (0.65 m/s) and when the hoods were obstructed by large items placed on the work surface. Auxiliary/supplemental air created unstable face velocities and poor smoke patterns. The analysis of 3 years of fume hood monitoring showed clearly the need for and importance of a maintenance program where the fume hood lower slots are cleaned and fans, ducts, dampers, and hoods are checked periodically.

  19. High performance target measurement flights from Vandenberg Air Force Base

    NASA Astrophysics Data System (ADS)

    Chalfant, C. P.; Rosen, H.; Jerger, J. H.

    A description is presented of a new launch facility which is being prepared for the High Performance Target Measurement (HPTEM) booster at Vandenberg Air Force Base (VAFB). A deactivated Atlas launch complex is currently being modified to allow the rocket to be launched from a semisilo. The underground launch operations building will contain a new control center and instrumentation room. Attention is given to the Multi-Spectral Measurement Program (MSMP), details concerning the launch facility, and a target and flight safety trajectory analysis. Construction and modification of the facility is scheduled to be completed in mid-1983. The first HPTEM launch is planned to occur in April 1984. The HPTEM launch facility can also be utilized to launch Aries I (single stage) and Aries II (two-stage) probes with minor modification.

  20. A Performance Map for Ideal Air Breathing Pulse Detonation Engines

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel E.

    2001-01-01

    The performance of an ideal, air breathing Pulse Detonation Engine is described in a manner that is useful for application studies (e.g., as a stand-alone, propulsion system, in combined cycles, or in hybrid turbomachinery cycles). It is shown that the Pulse Detonation Engine may be characterized by an averaged total pressure ratio, which is a unique function of the inlet temperature, the fraction of the inlet flow containing a reacting mixture, and the stoichiometry of the mixture. The inlet temperature and stoichiometry (equivalence ratio) may in turn be combined to form a nondimensional heat addition parameter. For each value of this parameter, the average total enthalpy ratio and total pressure ratio across the device are functions of only the reactant fill fraction. Performance over the entire operating envelope can thus be presented on a single plot of total pressure ratio versus total enthalpy ratio for families of the heat addition parameter. Total pressure ratios are derived from thrust calculations obtained from an experimentally validated, reactive Euler code capable of computing complete Pulse Detonation Engine limit cycles. Results are presented which demonstrate the utility of the described method for assessing performance of the Pulse Detonation Engine in several potential applications. Limitations and assumptions of the analysis are discussed. Details of the particular detonative cycle used for the computations are described.

  1. Regulatory Considerations of Lower Cost Air Pollution Sensor Data Performance

    EPA Science Inventory

    Low-cost, portable air quality sensors could be the next generation of air monitoring, however, this nascent technology is not without risk. This article looks at how the U.S. Environmental Protection Agency (EPA) uses air monitoring data, the procedures followed to ensure and a...

  2. Lemongrass-Incorporated Tissue Conditioner Against Candida albicans Culture

    PubMed Central

    Amornvit, Pokpong; Srithavaj, Theerathavaj

    2014-01-01

    Background: Tissue conditioner is applied popularly with dental prosthesis during wound healing process but it becomes a reservoir of oral microbiota, especially Candida species after long-term usage. Several antifungal drugs have been mixed with this material to control fungal level. In this study, lemongrass essential oil was added into COE-COMFORT tissue conditioner before being determined for anti-Candida efficacy. Materials and Methods: Lemongrass (Cymbopogon citratus) essential oil was primarily determined for antifungal activity against C. albicans American type culture collection (ATCC) 10231 and MIC (minimum inhibitory concentration) value by agar disk diffusion and broth microdilution methods, respectively. COE-COMFORT tissue conditioner was prepared as recommended by the manufacturer after a fixed volume of the oil at its MIC or higher concentrations were mixed thoroughly in its liquid part. Antifungal efficacy of the tissue conditioner with/without herb was finally analyzed. Results: Lemongrass essential oil displayed potent antifungal activity against C. albicans ATCC 10231and its MIC value was 0.06% (v/v). Dissimilarly, the tissue conditioner containing the oil at MIC level did not cease the growth of the tested fungus. Both reference and clinical isolates of C. albicans were completely inhibited after exposed to the tissue conditioner containing at least 0.25% (v/v) of the oil (approximately 4-time MIC). The tissue conditioner without herb or with nystatin was employed as negative or positive control, respectively. Conclusion: COE-COMFORT tissue conditioner supplemented with lemongrass essential oil obviously demonstrated another desirable property as in vitro anti-Candida efficacy to minimize the risk of getting Candidal infection. PMID:25177638

  3. Performance of Simple Gas Foil Thrust Bearings in Air

    NASA Technical Reports Server (NTRS)

    Bruckner, Robert J.

    2012-01-01

    Foil bearings are self-acting hydrodynamics devices used to support high speed rotating machinery. The advantages that they offer to process fluid lubricated machines include: high rotational speed capability, no auxiliary lubrication system, non-contacting high speed operation, and improved damping as compared to rigid hydrodynamic bearings. NASA has had a sporadic research program in this technology for almost 6 decades. Advances in the technology and understanding of foil journal bearings have enabled several new commercial products in recent years. These products include oil-free turbochargers for both heavy trucks and automobiles, high speed electric motors, microturbines for distributed power generation, and turbojet engines. However, the foil thrust bearing has not received a complimentary level of research and therefore has become the weak link of oil-free turbomachinery. In an effort to both provide machine designers with basic performance parameters and to elucidate the underlying physics of foil thrust bearings, NASA Glenn Research Center has completed an effort to experimentally measure the performance of simple gas foil thrust bearing in air. The database includes simple bump foil supported thrust bearings with full geometry and manufacturing techniques available to the user. Test conditions consist of air at ambient pressure and temperatures up to 500 C and rotational speeds to 55,000 rpm. A complete set of axial load, frictional torque, and rotational speed is presented for two different compliant sub-structures and inter-pad gaps. Data obtained from commercially available foil thrust bearings both with and without active cooling is presented for comparison. A significant observation made possible by this data set is the speed-load capacity characteristic of foil thrust bearings. Whereas for the foil journal bearing the load capacity increases linearly with rotational speed, the foil thrust bearing operates in the hydrodynamic high speed limit. In

  4. 76 FR 34867 - Safety Zone Regulations, Seafair Blue Angels Air Show Performance, Seattle, WA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-15

    ... SECURITY Coast Guard 33 CFR Part 165 Safety Zone Regulations, Seafair Blue Angels Air Show Performance... Guard will enforce the annual Seafair Blue Angels Air Show safety zone on Lake Washington, Seattle, WA...: The Coast Guard will enforce the Seafair Blue Angels Air Show Performance safety zone in 33 CFR...

  5. Development of a Ventilation and Air-conditioning System using Fixed Bed Desiccant Units

    NASA Astrophysics Data System (ADS)

    Miyazaki, Takahiko; Akisawa, Atsushi; Ueda, Yuki; Shindoh, Shinji; Godo, Masazumi; Takatsuka, Takeshi

    The study investigated fixed bed desiccant units for ventilation and air-conditioning. The role of the system is the dehumidification of the outdoor fresh air to be supplied to an air-conditioned room. Hence, the latent heat load of the air-conditioner in the room can be mitigated. The system consisted of two pairs of a desiccant unit and a heat storage unit. The microwave irradiation to the desiccant unit was examined as a candidate of the regeneration method of the system, and the performance of the microwave regeneration was compared with that of the hot air regeneration in terms of the supply air humidity ratio, outdoor air based COP, and the process air temperatures. The results revealed the effects of the switching time and the irradiation timing on the performance of the microwave irradiation.

  6. Improving air handler efficiency in houses

    SciTech Connect

    Walker, Iain S.

    2004-05-01

    Although furnaces, air conditioners and heat pumps have become significantly more efficient over the last couple of decades, residential air handlers have typical efficiencies of only 10% to 15% due to poor electric motor performance and aerodynamically poor fans and fan housings. Substantial increases in performance could be obtained through improved air handler design and construction. A prototype residential air handler intended to address these issues has recently been developed. The prototype and a standard production fan were tested in a full-scale duct system and test chamber at LBNL specifically designed for testing heating, ventilation, and air conditioning systems. The laboratory tests compared efficiency, total airflow, sensitivity to duct system flow resistance, and the effects of installation in a smaller cabinet. The test results showed that the prototype air handler had about twice the efficiency of the standard air handler (averaged over a wide range of operating conditions) and was less sensitive to duct system flow resistance changes. The performance of both air handlers was significantly reduced by reducing the clearance between the air handler and cabinet it was placed in. These test results showed that in addition to the large scope for performance improvement, air handler fans need to be tested in the cabinets they operate in.

  7. Influence of HX size and augmentation on performance potential of mixtures in air-to-air heat pumps

    SciTech Connect

    Rice, C.K.

    1993-05-01

    A modified Carnot analysis with finite heat exchanger (HX) sizes, counterflow HX configurations, and ideal glide matching was conducted for an air-to-air heat pump application. The purpose of the analysis was to determine the envelope of potential HX size and refrigerant-side augmentation benefits for ideal mixtures relative to pure refrigerant alternatives. The mixture COP benefits examined are those due to exact external fluid glide-matching of idealized mixtures in more effective heat exchangers. Maximum possible mixture COP gains are evaluated for four steady-state air-to-air heat pump conditions. Performance improvement opportunities are found to be primarily in the cooling mode. The effects of deviation from counterflow by use of crossflow and countercrossflow HX configurations are addressed. Refrigerant-side augmentation with pure and mixed refrigerants is examined for air-side dominant and air-to-refrigerant balanced HXs.

  8. 16 CFR Appendix E to Part 305 - Room Air Conditioners

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AND WATER USE LABELING FOR CONSUMER PRODUCTS UNDER THE ENERGY POLICY AND CONSERVATION ACT (âENERGY... Without Reverse Cycle and with Louvered Sides: Less than 6,000 Btu $42 $48 6,000 to 7,999 Btu 50 72 8,000 to 13,999 Btu 66 115 14,000 to 19,999 Btu 117 195 20,000 and more Btu 169 382 Without Reverse...

  9. Performance of the Tibet II/HD air shower array

    NASA Astrophysics Data System (ADS)

    Amenomori, M.; Ayabe, S.; Caidong; Danzengluobu; Ding, L. K.; Feng, Z. Y.; Fu, Y.; Guo, H. W.; He, M.; Hibino, K.; Hotta, N.; Huang, J.; Huang, Q.; Huo, A. X.; Izu, K.; Jia, H. Y.; Kajino, F.; Kasahara, K.; Katayose, Y.; Kawata, K.; Labaciren; Li, J. Y.; Lu, H.; Lu, S. L.; Luo, G. X.; Meng, X. R.; Mizutani, K.; Mu, J.; Nanjo, H.; Nishizawa, M.; Ohnishi, M.; Ohta, I.; Ouchi, T.; Ozawa, S.; Peng, Z. R.; Ren, J. R.; Saito, T.; Sakata, M.; Sasaki, T.; Shi, Z. Z.; Shibata, M.; Shiomi, A.; Shirai, T.; Sugimoto, H.; Taira, K.; Tan, Y. H.; Tateyama, N.; Torii, S.; Utsugi, T.; Wang, C. R.; Wang, H.; Xu, X. W.; Yamamoto, Y.; Yu, G. C.; Yuan, A. F.; Yuda, T.; Zhang, C. S.; Zhang, H. M.; Zhang, J. L.; Zhang, N. J.; Zhang, X. Y.; Zhaxiciren; Zhaxisangzhu

    2001-04-01

    Tibet II Air Shower Array consisting of scintillation counters with lattice of 15 m spacing has been operated with very high trigger rate of about 200 Hz. The threshold enegy of this array is estimated to be about 8 TeV for proton induced showers. Tibet High Density (HD) Array with 7.5 m spacing has been operated with the trigger rate of 115 Hz. The Mode energy of this array is estimated to be about 3 TeV for proton showers. Angular resolution of the arrays are estimated to be 0.9 degree above 10 TeV for Tibet II array, and 0.85 degree above TeV for HD array, resepectively. The angular resolution of these arrays and other array performances are examined by observing the Moon shadow resulting from the cosmic ray deficit in the direction of the Moon. Using the deflection of the Moon shadow to the east-west direction, the error of the array can be estimated by observing the displacement of the shadow in the north-south direction, because it is free from the effect of geomagnetic field, especially at Yangbajing in Tibet. The calibrations such as primary energy, angular resolution and pointing errors, directly using the Moon shadow has first been done by the Tibet experiment..

  10. Performance of Spherically Focused Air-Coupled Ultrasonic Transducers

    NASA Astrophysics Data System (ADS)

    Chimenti, D. E.; Song, Junho

    2007-03-01

    This paper reports the development, testing, and performance evaluation of spherically focused capacitive air-coupled ultrasonic transducers 1 and 5 cm in diameter. A flexible micro-machined copper/polyimide backplate permits a conformal fit to a spherically shaped fixture, forming the rear capacitor plate. A spherically deformed 6-μm aluminized Mylar foil forms the front capacitor plate, completing the transducer. The device's frequency spectrum is centered near 800 kHz with -6dB points at about 400 and 1200 kHz. The device's focal-plane behavior is successfully modeled theoretically as a focused piston radiator. The imaging and defect detection capabilities of the new transducer are demonstrated in a series of critical tests: a 250-μm wire is easily imaged in a confocal geometry with a second device. Composite, honeycomb, and wood samples are imaged in through-transmission C-scans, showing internal defects. A printed circuit board is imaged, showing features as small as 200-μm.

  11. Into rude air: hummingbird flight performance in variable aerial environments.

    PubMed

    Ortega-Jimenez, V M; Badger, M; Wang, H; Dudley, R

    2016-09-26

    Hummingbirds are well known for their ability to sustain hovering flight, but many other remarkable features of manoeuvrability characterize the more than 330 species of trochilid. Most research on hummingbird flight has been focused on either forward flight or hovering in otherwise non-perturbed air. In nature, however, hummingbirds fly through and must compensate for substantial environmental perturbation, including heavy rain, unpredictable updraughts and turbulent eddies. Here, we review recent studies on hummingbirds flying within challenging aerial environments, and discuss both the direct and indirect effects of unsteady environmental flows such as rain and von Kármán vortex streets. Both perturbation intensity and the spatio-temporal scale of disturbance (expressed with respect to characteristic body size) will influence mechanical responses of volant taxa. Most features of hummingbird manoeuvrability remain undescribed, as do evolutionary patterns of flight-related adaptation within the lineage. Trochilid flight performance under natural conditions far exceeds that of microair vehicles at similar scales, and the group as a whole presents many research opportunities for understanding aerial manoeuvrability.This article is part of the themed issue 'Moving in a moving medium: new perspectives on flight'. PMID:27528777

  12. B and F Signal Conditioner Checkout Unit

    NASA Technical Reports Server (NTRS)

    Magleby, Alyssa; McCool, Alex (Technical Monitor)

    2001-01-01

    ATK Thiokol Propulsion, Test Services uses B&F Signal Conditioning units to provide excitation power and shunt calibration information to the data recording systems. Gage measurements such as force, temperature, pressure, strain, etc. are recorded using this equipment. Approximately 2500 reusable instrumentation B&F Signal Conditioning units were purchased over an interval from 1978 to 1988 at a cost of around $1000 each. Through use and over time, the relay contacts on the signal conditioning mode cards have become corroded, resulting in excessive contact resistance. This causes inaccurate and inconsistent calibration data and could jeopardize the test results. These signal conditioning cards are needed for product testing for an estimated five more years, therefore, it is necessary to develop a solution to isolate the malfunctioning units for repair. The current screening method requires Test Area technicians to check cards manually, however the connections and measurements required for this process are inefficient and time consuming. To resolve this problem, funding was approved to design and build two B&F Signal Conditioner Checkout Units. Each unit will allow technicians to test relay contact resistance on signal conditioning mode cards before they are installed for data collection procedures. This tool will allow Test Area to resolve calibration accuracy problems and extend the life of the data acquisition equipment, as well as save troubleshooting time for the technicians.

  13. Embedding quantum into classical: contextualization vs conditionalization.

    PubMed

    Dzhafarov, Ehtibar N; Kujala, Janne V

    2014-01-01

    We compare two approaches to embedding joint distributions of random variables recorded under different conditions (such as spins of entangled particles for different settings) into the framework of classical, Kolmogorovian probability theory. In the contextualization approach each random variable is "automatically" labeled by all conditions under which it is recorded, and the random variables across a set of mutually exclusive conditions are probabilistically coupled (imposed a joint distribution upon). Analysis of all possible probabilistic couplings for a given set of random variables allows one to characterize various relations between their separate distributions (such as Bell-type inequalities or quantum-mechanical constraints). In the conditionalization approach one considers the conditions under which the random variables are recorded as if they were values of another random variable, so that the observed distributions are interpreted as conditional ones. This approach is uninformative with respect to relations between the distributions observed under different conditions because any set of such distributions is compatible with any distribution assigned to the conditions. PMID:24681665

  14. Embedding Quantum into Classical: Contextualization vs Conditionalization

    PubMed Central

    Dzhafarov, Ehtibar N.; Kujala, Janne V.

    2014-01-01

    We compare two approaches to embedding joint distributions of random variables recorded under different conditions (such as spins of entangled particles for different settings) into the framework of classical, Kolmogorovian probability theory. In the contextualization approach each random variable is “automatically” labeled by all conditions under which it is recorded, and the random variables across a set of mutually exclusive conditions are probabilistically coupled (imposed a joint distribution upon). Analysis of all possible probabilistic couplings for a given set of random variables allows one to characterize various relations between their separate distributions (such as Bell-type inequalities or quantum-mechanical constraints). In the conditionalization approach one considers the conditions under which the random variables are recorded as if they were values of another random variable, so that the observed distributions are interpreted as conditional ones. This approach is uninformative with respect to relations between the distributions observed under different conditions because any set of such distributions is compatible with any distribution assigned to the conditions. PMID:24681665

  15. AIRS PFM Pulse Tube Cooler System-level Performance

    NASA Technical Reports Server (NTRS)

    Ross, R.; Johnson, D.; Collins, S.; Green, K.; Wickman, H.

    1998-01-01

    JPL's Atmospheric Infrared Sounder (AIRS) instrument is being built to make precision measurements of air temperature over the surface of the Earth as a function of elevation; the flight instrument is in the final stages of assembly and checkout at this time, and uses a pair of TRW pulse tube cryocoolers operating at 55K to cool its sensitive IR focal plane.

  16. Indoor Air Quality and Student Performance [and Case Studies].

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC. Office of Radiation and Indoor Air.

    This report examines how indoor air quality (IAQ) affects a child's ability to learn and provides several case studies of schools that have successfully addressed their indoor air problems, the lessons learned from that experience, and what long-term practices and policies emerged from the effort. The report covers the effects from…

  17. Improving target orientation discrimination performance in air-to-air flight simulation

    NASA Astrophysics Data System (ADS)

    Serfoss, Gary Lee

    Despite significant advances, state-of-the-art image projectors still lack the ability to display object detail equivalent to a 20/20 visual acuity capability. Unfortunately, for proper close-in air combat training in a flight simulator, this level of detail is necessary if a pilot is to accurately determine the orientation of another aircraft at realistic ranges. This investigation evaluates a possible interim solution to this problem that could be implemented until projectors are developed that can provide adequate resolution. The research methodology involves enlarging the "enemy" aircraft by various amounts as a function of distance-resulting in an aircraft that still always gets smaller as it moves farther away, but just not as quickly as a "non-enlarged" target. The results from 20 male F-16 pilots provided the distances where the orientation of aircraft in the simulator could be determined as well as similar aircraft under "real-world" conditions. By using these distances, it was possible to determine the amount of magnification needed to identify necessary details of the simulated aircraft at the same distances as they are under "real-world" conditions. The final product is a magnification curve that can be used to modify how the simulated target changes in size as a function of distance. Results seem to indicate that performance in the simulator might be enhanced to match real flying conditions without unacceptably (or perhaps even noticeably) altering the size of the target. These results should be applicable (with minor modification) to many other aircraft and perhaps ground targets as well. Furthermore, it is anticipated that application can be made beyond flight simulation to other types of simulation where performance is also currently inhibited due to lack of display resolution.

  18. Performance of Air-cooled Engine Cylinders Using Blower Cooling

    NASA Technical Reports Server (NTRS)

    Schey, Oscar W; Ellerbrock, Herman H , Jr

    1936-01-01

    An investigation was made to obtain information on the minimum quantity of air and power required to cool conventional air cooled cylinders at various operating conditions when using a blower. The results of these tests show that the minimum power required for satisfactory cooling with an overall blower efficiency of 100 percent varied from 2 to 6 percent of the engine power depending on the operating conditions. The shape of the jacket had a large effect on the cylinder temperatures. Increasing the air speed over the front of the cylinder by keeping the greater part of the circumference of the cylinder covered by the jacket reduced the temperatures over the entire cylinder.

  19. 78 FR 25242 - Delegation of New Source Performance Standards and National Emission Standards for Hazardous Air...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-30

    ... Standards for Hazardous Air Pollutants for the States of Arizona, California, and Nevada AGENCY... Source Performance Standards (NSPS) and National Emission Standards for Hazardous Air Pollutants (NESHAP...: steckel.andrew@epa.gov . 3. Mail or deliver: Andrew Steckel (Air-4), U.S. Environmental Protection...

  20. Air Pollution and Its Effects on an Individual's Health and Exercise Performance.

    ERIC Educational Resources Information Center

    Singh, A. I. Clifford

    1988-01-01

    Air Pollution is a common environmental stressor affecting the training and competitive performance of athletes, commonly irritating the eyes, nose, and throat. The health and exercise effects of such primary and secondary air pollutants as carbon monoxide, sulfur dioxide, air particulates, ozone, and nitrogen dioxide are discussed. (CB)

  1. EMI Performance of the AIRS Cooler and Electronics

    NASA Technical Reports Server (NTRS)

    Johnson, D.; Collins, S.; Ross, R.

    1998-01-01

    The TRW pulse tube cryocooler for JPL's Atmospheric Infrared Sounder (AIRS) instrument is required to meet stringent requirements for radiated electric and magnetic fields, conducted emissions on the input power bus, and electromagnetic susceptivility.

  2. Improving Compressed Air System Performance: A Sourcebook for Industry

    SciTech Connect

    2003-11-01

    NREL will produce this sourcebook for DOE's Industrial Technologies Office as part of a series of documents on industrial energy equipment. The sourcebook is a reference for industrial compressed air system users, outlining opportunities to improve system efficiency.

  3. Electronic Power Conditioner for Ku-band Travelling Wave Tube

    NASA Astrophysics Data System (ADS)

    Kowstubha, Palle; Krishnaveni, K.; Ramesh Reddy, K.

    2016-07-01

    A highly sophisticated regulated power supply is known as electronic power conditioner (EPC) is required to energise travelling wave tubes (TWTs), which are used as RF signal amplifiers in satellite payloads. The assembly consisting of TWT and EPC together is known as travelling wave tube amplifier (TWTA). EPC is used to provide isolated and conditioned voltage rails with tight regulation to various electrodes of TWT and makes its RF performance independent of solar bus variations which are caused due to varying conditions of eclipse and sunlit. The payload mass and their power consumption is mainly due to the existence of TWTAs that represent about 35 % of total mass and about 70-90 % (based on the type of satellite application) of overall dc power consumption. This situation ensures a continuous improvement in the design of TWTAs and their associated EPCs to realize more efficient and light products. Critical technologies involved in EPCs are design and configuration, closed loop regulation, component and material selection, energy limiting of high voltage (HV) outputs and potting of HV card etc. This work addresses some of these critical technologies evolved in realizing and testing the state of art of EPC and it focuses on the design of HV supply with a HV and high power capability, up to 6 kV and 170 WRF, respectively required for a space TWTA. Finally, an experimental prototype of EPC with a dc power of 320 W provides different voltages required by Ku-band TWT in open loop configuration.

  4. Spectra of conditionalization and typicality in the multiverse

    NASA Astrophysics Data System (ADS)

    Azhar, Feraz

    2016-02-01

    An approach to testing theories describing a multiverse, that has gained interest of late, involves comparing theory-generated probability distributions over observables with their experimentally measured values. It is likely that such distributions, were we indeed able to calculate them unambiguously, will assign low probabilities to any such experimental measurements. An alternative to thereby rejecting these theories, is to conditionalize the distributions involved by restricting attention to domains of the multiverse in which we might arise. In order to elicit a crisp prediction, however, one needs to make a further assumption about how typical we are of the chosen domains. In this paper, we investigate interactions between the spectra of available assumptions regarding both conditionalization and typicality, and draw out the effects of these interactions in a concrete setting; namely, on predictions of the total number of species that contribute significantly to dark matter. In particular, for each conditionalization scheme studied, we analyze how correlations between densities of different dark matter species affect the prediction, and explicate the effects of assumptions regarding typicality. We find that the effects of correlations can depend on the conditionalization scheme, and that in each case atypicality can significantly change the prediction. In doing so, we demonstrate the existence of overlaps in the predictions of different "frameworks" consisting of conjunctions of theory, conditionalization scheme and typicality assumption. This conclusion highlights the acute challenges involved in using such tests to identify a preferred framework that aims to describe our observational situation in a multiverse.

  5. Compression-ignition Engine Performance at Altitudes and at Various Air Pressures and Temperatures

    NASA Technical Reports Server (NTRS)

    Moore, Charles S; Collins, John H

    1937-01-01

    Engine test results are presented for simulated altitude conditions. A displaced-piston combustion chamber on a 5- by 7-inch single cylinder compression-ignition engine operating at 2,000 r.p.m. was used. Inlet air temperature equivalent to standard altitudes up to 14,000 feet were obtained. Comparison between performance at altitude of the unsupercharged compression-ignition engine compared favorably with the carburetor engine. Analysis of the results for which the inlet air temperature, inlet air pressure, and inlet and exhaust pressure were varied indicates that engine performance cannot be reliably corrected on the basis of inlet air density or weight of air charge. Engine power increases with inlet air pressure and decreases with inlet air temperatures very nearly as straight line relations over a wide range of air-fuel ratios. Correction factors are given.

  6. Register Closing Effects on Forced Air Heating System Performance

    SciTech Connect

    Walker, Iain S.

    2003-11-01

    Closing registers in forced air heating systems and leaving some rooms in a house unconditioned has been suggested as a method of quickly saving energy for California consumers. This study combined laboratory measurements of the changes in duct leakage as registers are closed together with modeling techniques to estimate the changes in energy use attributed to closing registers. The results of this study showed that register closing led to increased energy use for a typical California house over a wide combination of climate, duct leakage and number of closed registers. The reduction in building thermal loads due to conditioning only a part of the house was offset by increased duct system losses; mostly due to increased duct leakage. Therefore, the register closing technique is not recommended as a viable energy saving strategy for California houses with ducts located outside conditioned space. The energy penalty associated with the register closing technique was found to be minimized if registers furthest from the air handler are closed first because this tends to only affect the pressures and air leakage for the closed off branch. Closing registers nearer the air handler tends to increase the pressures and air leakage for the whole system. Closing too many registers (more than 60%) is not recommended because the added flow resistance severely restricts the air flow though the system leading to safety concerns. For example, furnaces may operate on the high-limit switch and cooling systems may suffer from frozen coils.

  7. Performance of PEM Liquid-Feed Direct Methanol-Air Fuel Cells

    NASA Technical Reports Server (NTRS)

    Narayanan, S. R.

    1995-01-01

    A direct methanol-air fuel cell operating at near atmospheric pressure, low-flow rate air, and at temperatures close to 60oC would tremendously enlarge the scope of potential applications. While earlier studies have reported performance with oxygen, the present study focuses on characterizing the performance of a PEM liquid feed direct methanol-air cell consisting of components developed in house. These cells employ Pt-Ru catalyst in the anode, Pt at the cathode and Nafion 117 as the PEM. The effect of pressure, flow rate of air and temperature on cell performance has been studied. With air, the performance level is as high as 0.437 V at 300 mA/cm2 (90oC, 20 psig, and excess air flow) has been attained. Even more significant is the performance level at 60oC, 1 atm and low flow rates of air (3-5 times stoichiometric), which is 0.4 V at 150 mA/cm2. Individual electrode potentials for the methanol and air electrode have been separated and analyzed. Fuel crossover rates and the impact of fuel crossover on the performance of the air electrode have also been measured. The study identifies issues specific to the methanol-air fuel cell and provides a basis for improvement strategies.

  8. Performance evaluation of a selected three-ton air-to-air heat pump in the heating mode

    SciTech Connect

    Domingorena, A.A.; Ball, S.J.

    1980-01-01

    An air-to-air split system residential heat pump of nominal three-ton capacity was instrumented and tested in the heating mode under laboratory conditions. This was the second of a planned series of experiments to obtain a data base of system and component performance for heat pumps. The system was evaluated under both steady-state and frosting-defrosting conditions; sensitivity of the system performance to variations in the refrigerant charge was measured. From the steady-state tests, the heating capacity and coefficient of performance were computed, and evaluations were made of the performance parameters of the fan and fan motor units, the heat exchangers and refrigerant metering device, and the compressor. System heat losses were analyzed. The frosting-defrosting tests allowed the observation of system and component performance under dynamic conditions, and measurement of performance degradation under frosting conditions.

  9. 21 CFR 872.3750 - Bracket adhesive resin and tooth conditioner.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Bracket adhesive resin and tooth conditioner. 872... SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3750 Bracket adhesive resin and tooth conditioner. (a) Identification. A bracket adhesive resin and tooth conditioner is a...

  10. 21 CFR 872.3750 - Bracket adhesive resin and tooth conditioner.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Bracket adhesive resin and tooth conditioner. 872... SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3750 Bracket adhesive resin and tooth conditioner. (a) Identification. A bracket adhesive resin and tooth conditioner is a...

  11. 21 CFR 872.3750 - Bracket adhesive resin and tooth conditioner.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Bracket adhesive resin and tooth conditioner. 872... and tooth conditioner. (a) Identification. A bracket adhesive resin and tooth conditioner is a device... to a tooth surface. (b) Classification. Class II....

  12. 21 CFR 872.3750 - Bracket adhesive resin and tooth conditioner.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Bracket adhesive resin and tooth conditioner. 872... SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3750 Bracket adhesive resin and tooth conditioner. (a) Identification. A bracket adhesive resin and tooth conditioner is a...

  13. 21 CFR 872.3750 - Bracket adhesive resin and tooth conditioner.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Bracket adhesive resin and tooth conditioner. 872... SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3750 Bracket adhesive resin and tooth conditioner. (a) Identification. A bracket adhesive resin and tooth conditioner is a...

  14. Future Air Conditioning Energy Consumption in Developing Countriesand what can be done about it: The Potential of Efficiency in theResidential Sector

    SciTech Connect

    McNeil, Michael A.; Letschert, Virginie E.

    2007-05-01

    The dynamics of air conditioning are of particular interestto energy analysts, both because of the high energy consumption of thisproduct, but also its disproportionate impact on peak load. This paperaddresses the special role of this end use as a driver of residentialelectricity consumption in rapidly developing economies. Recent historyhas shown that air conditioner ownership can grow grows more rapidly thaneconomic growth in warm-climate countries. In 1990, less than a percentof urban Chinese households owned an air conditioner; by 2003 this numberrose to 62 percent. The evidence suggests a similar explosion of airconditioner use in many other countries is not far behind. Room airconditioner purchases in India are currently growing at 20 percent peryear, with about half of these purchases attributed to the residentialsector. This paper draws on two distinct methodological elements toassess future residential air conditioner 'business as usual' electricityconsumption by country/region and to consider specific alternative 'highefficiency' scenarios. The first component is an econometric ownershipand use model based on household income, climate and demographicparameters. The second combines ownership forecasts and stock accountingwith geographically specific efficiency scenarios within a uniqueanalysis framework (BUENAS) developed by LBNL. The efficiency scenariomodule considers current efficiency baselines, available technologies,and achievable timelines for development of market transformationprograms, such as minimum efficiency performance standards (MEPS) andlabeling programs. The result is a detailed set of consumption andemissions scenarios for residential air conditioning.

  15. Performance improvement of a cross-flow hydro turbine by air layer effect

    NASA Astrophysics Data System (ADS)

    Choi, Y. D.; Yoon, H. Y.; Inagaki, M.; Ooike, S.; Kim, Y. J.; Lee, Y. H.

    2010-08-01

    The purpose of this study is not only to investigate the effects of air layer in the turbine chamber on the performance and internal flow of the cross-flow turbine, but also to suggest a newly developed air supply method. Field test is performed in order to measure the output power of the turbine by a new air supply method. CFD analysis on the performance and internal flow of the turbine is conducted by an unsteady state calculation using a two-phase flow model in order to embody the air layer effect on the turbine performance effectively.The result shows that air layer effect on the performance of the turbine is considerable. The air layer located in the turbine runner passage plays the role of preventing a shock loss at the runner axis and suppressing a recirculation flow in the runner. The location of air suction hole on the chamber wall is very important factor for the performance improvement. Moreover, the ratio between air from suction pipe and water from turbine inlet is also significant factor of the turbine performance.

  16. Raytheon: Compressed Air System Upgrade Saves Energy and Improves Performance

    SciTech Connect

    Not Available

    2005-04-01

    In 2003, Raytheon Company upgraded the efficiency of the compressed air system at its Integrated Air Defense Center in Andover, Massachusetts, to save energy and reduce costs. Worn compressors and dryers were replaced, a more sophisticated control strategy was installed, and an aggressive leak detection and repair effort was carried out. The total cost of these improvements was $342,000; however, National Grid, a utility service provider, contributed a $174,000 incentive payment. Total annual energy and maintenance cost savings are estimated at $141,500, and energy savings are nearly 1.6 million kWh. This case study was prepared for the U.S. Department of Energy's Industrial Technologies Program.

  17. Do residential air-conditioning rebates miss the mark?

    SciTech Connect

    Stickney, B.; Shepard, M.

    1994-12-31

    The rebates utilities provide for residential central air conditioners and heat pumps to encourage improved cooling efficiency may inadvertently reward higher peak demand in many cases. This problem could be avoided by using both efficiency and peak performance to determine eligibility for rebates. Such changes to incentive formulas would better align the utilities` DSM programs with the dual goals of improved efficiency and peak demand reduction. Improved peak performance would be especially advantageous for sunbelt utilities whose residential cooling load is highly coincident with the summer peak. Air conditioning has been called the utilities` ``load from hell,`` because it is intermittent, unpredictable, and is the largest contributor to summer peak demand, requiring massive investments in power generation and delivery capacity. It is no wonder then that more DSM programs are targeted at space cooling than at any other end use. Ironically, however, all of the residential rebate programs the authors examined for central air conditioners and heat pumps are based on the seasonal energy efficiency ratio (SEER), which provides a valuable measure of seasonal energy efficiency but is not a good indicator of peak demand. Residential central air conditioning incentive programs for eight major utilities are based exclusively on SEER and most ratchet up the incentive levels with increasing SEER. None include the measure for peak demand for residential cooling equipment, which is the so-called energy efficiency ratio, or EER.

  18. Characterization of the LTC catalyst: Performance against common air pollutants

    NASA Technical Reports Server (NTRS)

    Collins, Marcia F.

    1987-01-01

    One of the important qualities of the Low-Temperature Catalyst (LTC) is the rapid oxidation of carbon monoxide to carbon dioxide under a wide variety of conditions. The catalytic material is a palladium-copper activated complex which reacts with various contaminant molecules through a continuous oxidation/reduction cycle. The alumina substrate enhances LTC activity with its favorable surface chemistry and very high surface area. About 10 percent surface water is necessary to facilitate the oxidation of CO. This reaction shows a log-log dependence on contact time, suggesting a Langmuir-Hinshelwood mechanism. In the tube tests, LTC removed 90 to 100 percent of contaminating carbon monoxide in the temperature region of 20 to 4000 C, and at ambient over a range of 25 to 65 percent relative humidity. In contrast, NO2 is chemisorbed by the LTC/alumina material--the amount strongly dependent on temperature increases but independent of humidity. The LTC catalyst has demonstrated excellent capability to remove an important variety of hazardous pollutant gases which are common factors to poor indoor air quality. The Instapure Air Filtration System incorporates the LTC catalyst in a 50:50 mixture with activated carbon to effectively remove particulate, odors, and hazardous gases at room temperature and humidities. The ability to remove hazardous gases is unique for the category of portable air filtration equipment. The wide variety of pollutant gases that LTC removes suggests that catalytic technology is adaptable to a considerable range of commercial and industrial applications.

  19. Performance and application of the Quantiflex air/oxygen mixer.

    PubMed

    Richardson, F J; Nunn, J F

    1976-11-01

    The Quantiflex air/oxygen mixer is designed to dispense mixtures of air and oxygen with separate controls for total gas flow rate and oxygen concentration of the mixture within the range 21-100%. A monitoring flowmeter is provided for the mixture and also, as a safety measure, for the oxygen component. This serves as an indicator that oxygen is flowing and also permits independent calculation of the oxygen concentration of the mixture. Delivered oxygen concentrations were found to be within +/- 2% of the indicated value at flow rates between 4 and 12 litre/min with the input pressures of either or both gases at 208-415 kPa (30-60 lbf/in2.) gauge, and with or without an output pressure of 20 kPa. At total flow rates of 1.5-2 litre/min there was a maximum discrepancy of 4% below and 8% above the indicated concentration in some delivered concentrations. Acceptability, ease, accuracy and quickness of use by nurses were compared with current methods using separate flowmeters for air and oxygen and calculating the required flow rates by means of arithmetic, graph and special-purpose slide-rule (Blease). The Quantiflex prototype was the most acceptable, the easiest, the most accurate and the fastest of the techniques investigated. PMID:136976

  20. Characterization of the LTC catalyst: Performance against common air pollutants

    NASA Astrophysics Data System (ADS)

    Collins, Marcia F.

    1987-04-01

    One of the important qualities of the Low-Temperature Catalyst (LTC) is the rapid oxidation of carbon monoxide to carbon dioxide under a wide variety of conditions. The catalytic material is a palladium-copper activated complex which reacts with various contaminant molecules through a continuous oxidation/reduction cycle. The alumina substrate enhances LTC activity with its favorable surface chemistry and very high surface area. About 10 percent surface water is necessary to facilitate the oxidation of CO. This reaction shows a log-log dependence on contact time, suggesting a Langmuir-Hinshelwood mechanism. In the tube tests, LTC removed 90 to 100 percent of contaminating carbon monoxide in the temperature region of 20 to 4000 C, and at ambient over a range of 25 to 65 percent relative humidity. In contrast, NO2 is chemisorbed by the LTC/alumina material--the amount strongly dependent on temperature increases but independent of humidity. The LTC catalyst has demonstrated excellent capability to remove an important variety of hazardous pollutant gases which are common factors to poor indoor air quality. The Instapure Air Filtration System incorporates the LTC catalyst in a 50:50 mixture with activated carbon to effectively remove particulate, odors, and hazardous gases at room temperature and humidities. The ability to remove hazardous gases is unique for the category of portable air filtration equipment. The wide variety of pollutant gases that LTC removes suggests that catalytic technology is adaptable to a considerable range of commercial and industrial applications.

  1. Performance Boosting Additive

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Mainstream Engineering Corporation was awarded Phase I and Phase II contracts from Goddard Space Flight Center's Small Business Innovation Research (SBIR) program in early 1990. With support from the SBIR program, Mainstream Engineering Corporation has developed a unique low cost additive, QwikBoost (TM), that increases the performance of air conditioners, heat pumps, refrigerators, and freezers. Because of the energy and environmental benefits of QwikBoost, Mainstream received the Tibbetts Award at a White House Ceremony on October 16, 1997. QwikBoost was introduced at the 1998 International Air Conditioning, Heating, and Refrigeration Exposition. QwikBoost is packaged in a handy 3-ounce can (pressurized with R-134a) and will be available for automotive air conditioning systems in summer 1998.

  2. Allergies to molds caused by fungal spores in air conditioning equipment

    SciTech Connect

    Schata, M.; Jorde, W. ); Elixmann, J.H.; Linskens, H.F. )

    1989-01-01

    People suffering from various symptoms while in air-conditioned rooms often show sensitizations to fungi that can be isolated when the fungi are removed from air conditioners. By using specific challenge tests it was shown that fungal spores in air conditioners can evoke allergic symptoms. Hyposensitization was the specific therapy prescribed for such allergic reactions. After hyposensitization therapy, more than 70% of the patients so treated could live and work again in air-conditioned rooms without developing specific symptoms.

  3. COMPOSITION CHANGES IN REFRIGERANT BLENDS FOR AUTOMOTIVE AIR CONDITIONING

    EPA Science Inventory

    Three refrigerant blends used to replace CFC-12 in automotive air conditioners were evaluated for composition changes due to typical servicing and leakage. When recommended service procedures were followed, changes in blend compositions were relatively small. Small changes in b...

  4. Contraction pre-conditioner in finite-difference electromagnetic modelling

    NASA Astrophysics Data System (ADS)

    Yavich, Nikolay; Zhdanov, Michael S.

    2016-09-01

    This paper introduces a novel approach to constructing an effective pre-conditioner for finite-difference (FD) electromagnetic modelling in geophysical applications. This approach is based on introducing an FD contraction operator, similar to one developed for integral equation formulation of Maxwell's equation. The properties of the FD contraction operator were established using an FD analogue of the energy equality for the anomalous electromagnetic field. A new pre-conditioner uses a discrete Green's function of a 1-D layered background conductivity. We also developed the formulae for an estimation of the condition number of the system of FD equations pre-conditioned with the introduced FD contraction operator. Based on this estimation, we have established that the condition number is bounded by the maximum conductivity contrast between the background conductivity and actual conductivity. When there are both resistive and conductive anomalies relative to the background, the new pre-conditioner is advantageous over using the 1-D discrete Green's function directly. In our numerical experiments with both resistive and conductive anomalies, for a land geoelectrical model with 1:10 contrast, the method accelerates convergence of an iterative method (BiCGStab) by factors of 2-2.5, and in a marine example with 1:50 contrast, by a factor of 4.6, compared to direct use of the discrete 1-D Green's function as a pre-conditioner.

  5. Transforming PC Power Supplies into Smart Car Battery Conditioners

    ERIC Educational Resources Information Center

    Rodriguez-Ascariz, J. M.; Boquete-Vazquez, L.

    2011-01-01

    This paper describes a laboratory project consisting of a PC power supply modification into an intelligent car-battery conditioner with both wireless and wired networking capabilities. Adding a microcontroller to an average PC power supply transforms it into a flexible, intelligent device that can be configured and that is suitable to keep car…

  6. Lift system and fan performance of air cushion supported vehicles

    NASA Astrophysics Data System (ADS)

    Moran, D. D.; Jennings, A. N.

    1982-02-01

    An analysis of the AALC JEFF lift systems and fans from the viewpoints of performance and structural design is performed. A summary of performance data related to the JEFF lift systems is presented, and suggested approaches for JEFF (A) lift fan design, for which these data provided the baseline information, are provided. Published methods of scaling fan performance data from model to full-scale are evaluated. Finally, the structural design characteristics of the JEFF fans are discussed.

  7. Adhesive bonding of super-elastic titanium-nickel alloy castings with a phosphate metal conditioner and an acrylic adhesive.

    PubMed

    Matsumura, H; Tanoue, N; Yanagida, H; Atsuta, M; Koike, M; Yoneyama, T

    2003-06-01

    The purpose of the current study was to evaluate the bonding characteristics of super-elastic titanium-nickel (Ti-Ni) alloy castings. Disk specimens were cast from a Ti-Ni alloy (Ti-50.85Ni mol%) using an arc centrifugal casting machine. High-purity titanium and nickel specimens were also prepared as experimental references. The specimens were air-abraded with alumina, and bonded with an adhesive resin (Super-Bond C & B). A metal conditioner containing a phosphate monomer (Cesead II Opaque Primer) was also used for priming the specimens. Post-thermocycling average bond strengths (MPa) of the primed groups were 41.5 for Ti-Ni, 30.4 for Ti and 19.5 for Ni, whereas those of the unprimed groups were 21.6 for Ti, 19.3 for Ti-Ni and 9.3 for Ni. Application of the phosphate conditioner elevated the bond strengths of all alloy/metals (P < 0.05). X-ray fluorescence analysis revealed that nickel was attached to the debonded resin surface of the resin-to-nickel bonded specimen, indicating that corrosion of high-purity nickel occurred at the resin-nickel interface. Durable bonding to super-elastic Ti-Ni alloy castings can be achieved with a combination of a phosphate metal conditioner and a tri-n-butylborane-initiated adhesive resin. PMID:12787464

  8. Autonomous Integrated Receive System (AIRS) requirements definition. Volume 3: Performance and simulation

    NASA Technical Reports Server (NTRS)

    Chie, C. M.; Su, Y. T.; Lindsey, W. C.; Koukos, J.

    1984-01-01

    The autonomous and integrated aspects of the operation of the AIRS (Autonomous Integrated Receive System) are discussed from a system operation point of view. The advantages of AIRS compared to the existing SSA receive chain equipment are highlighted. The three modes of AIRS operation are addressed in detail. The configurations of the AIRS are defined as a function of the operating modes and the user signal characteristics. Each AIRS configuration selection is made up of three components: the hardware, the software algorithms and the parameters used by these algorithms. A comparison between AIRS and the wide dynamics demodulation (WDD) is provided. The organization of the AIRS analytical/simulation software is described. The modeling and analysis is for simulating the performance of the PN subsystem is documented. The frequence acquisition technique using a frequency-locked loop is also documented. Doppler compensation implementation is described. The technological aspects of employing CCD's for PN acquisition are addressed.

  9. Functional performance testing of the universal super absorbing air filters FSU 70 „Air by Corneliu”

    NASA Astrophysics Data System (ADS)

    Raţiu, S.; Birtok-Băneasă, C.; Alexa, V.; Kiss, I.

    2015-06-01

    This paper presents the experimental methodology to carry out functional performance tests for an air filter with a particular design of its housing, generically named Universal super absorbing FSU 70 „Air by Corneliu”. The tests were carried out in the Internal Combustion Engines Laboratory, within the specialization "Road automotives" belonging to the Faculty of Engineering Hunedoara, component of “Politehnica” University of Timisoara. We present some comparative values of various operating parameters of the engine fitted, in the first measuring session, with the original filter, and then with the studied filter.

  10. Heating, Ventilating, and Air-Conditioning: Recent Advances in Diagnostics and Controls to Improve Air-Handling System Performance

    SciTech Connect

    Wray, Craig; Wray, Craig P.; Sherman, Max H.; Walker, I.S.; Dickerhoff, D.J.; Federspiel, C.C.

    2008-02-01

    The performance of air-handling systems in buildings needs to be improved. Many of the deficiencies result from myths and lore and a lack of understanding about the non-linear physical principles embedded in the associated technologies. By incorporating these principles, a few important efforts related to diagnostics and controls have already begun to solve some of the problems. This paper illustrates three novel solutions: one rapidly assesses duct leakage, the second configures ad hoc duct-static-pressure reset strategies, and the third identifies useful intermittent ventilation strategies. By highlighting these efforts, this paper seeks to stimulate new research and technology developments that could further improve air-handling systems.

  11. Evaluation of rotor-bearing system dynamic response to unbalance. [air conditioning equipment

    NASA Technical Reports Server (NTRS)

    Thaller, R. E.; Ozimek, D. W.

    1979-01-01

    The vibration environment within air conditioner rotating machinery referred to as an air cycle machine (ACM) was investigated to effectively increase ACM reliability. To assist in the selection of design changes which would result in improved ACM performance, various design modifications were incorporated into a baseline ACM configuration. For each design change, testing was conducted with the best balance achieveable (baseline) and with various degrees of unbalance. Relationships between unbalance (within the context of design changes) and the parameters associated with design goals were established. The results of rotor dynamics tests used to establish these relationships are presented.

  12. Air quality performed with satellite measurement within the QUITSAT project

    NASA Astrophysics Data System (ADS)

    Masieri, Samuele; Petritoli, Andrea; Premuda, Margarita; Kostadinov, Ivan; Bortoli, Daniele; Ravegnani, Fabrizio; Giovanelli, Giorgio

    Ground pollutants monitoring, using satellite observation, represents an interesting and high potential approach to air quality that could be inserted into Global monitoring systems. The QUITSAT Italian pilot project (air QUality with Integration of ground based and SAtellite measurements and chemical Transport and multiphase model), funded by the Italian Space Agency (ASI), proposes a new approach producing some interesting results in this frame. The approach focuses in the integration of the satellite observations (ENVISAT/SCIAMACHY and AURA/OMI) with the outputs of the GAMES (Gas Aerosol Modelling Evaluation System) chemical transport model, to provide the evaluation of the tropospheric profiles of some atmo-spheric compounds such as NO2 , O3 , HCHO and SO2 . This activity appears to be very useful to retrieve the surface concentration of trace gases from tropospheric columns of atmospheric compounds obtained with satellite instrumentation. The comparison with the in situ analyzer network over the Po' Valley shows a good correlation between the two data set. The corre-spondence can be improved taking into account also concentration gradients between different stations, classifying the ground base stations according to their rural or urban characteristics and considering the general orography of the ground. Results and methodology are presented and discussed.

  13. Smart Sensors Enable Smart Air Conditioning Control

    PubMed Central

    Cheng, Chin-Chi; Lee, Dasheng

    2014-01-01

    In this study, mobile phones, wearable devices, temperature and human motion detectors are integrated as smart sensors for enabling smart air conditioning control. Smart sensors obtain feedback, especially occupants' information, from mobile phones and wearable devices placed on human body. The information can be used to adjust air conditioners in advance according to humans' intentions, in so-called intention causing control. Experimental results show that the indoor temperature can be controlled accurately with errors of less than ±0.1 °C. Rapid cool down can be achieved within 2 min to the optimized indoor capacity after occupants enter a room. It's also noted that within two-hour operation the total compressor output of the smart air conditioner is 48.4% less than that of the one using On-Off control. The smart air conditioner with wearable devices could detect the human temperature and activity during sleep to determine the sleeping state and adjusting the sleeping function flexibly. The sleeping function optimized by the smart air conditioner with wearable devices could reduce the energy consumption up to 46.9% and keep the human health. The presented smart air conditioner could provide a comfortable environment and achieve the goals of energy conservation and environmental protection. PMID:24961213

  14. Smart sensors enable smart air conditioning control.

    PubMed

    Cheng, Chin-Chi; Lee, Dasheng

    2014-01-01

    In this study, mobile phones, wearable devices, temperature and human motion detectors are integrated as smart sensors for enabling smart air conditioning control. Smart sensors obtain feedback, especially occupants' information, from mobile phones and wearable devices placed on human body. The information can be used to adjust air conditioners in advance according to humans' intentions, in so-called intention causing control. Experimental results show that the indoor temperature can be controlled accurately with errors of less than ±0.1 °C. Rapid cool down can be achieved within 2 min to the optimized indoor capacity after occupants enter a room. It's also noted that within two-hour operation the total compressor output of the smart air conditioner is 48.4% less than that of the one using On-Off control. The smart air conditioner with wearable devices could detect the human temperature and activity during sleep to determine the sleeping state and adjusting the sleeping function flexibly. The sleeping function optimized by the smart air conditioner with wearable devices could reduce the energy consumption up to 46.9% and keep the human health. The presented smart air conditioner could provide a comfortable environment and achieve the goals of energy conservation and environmental protection. PMID:24961213

  15. Effects of Nonaqueous Electrolytes on the Performance of Primary Lithium/Air Batteries

    SciTech Connect

    Xu, Wu; Xiao, Jie; Wang, Deyu; Zhang, Jian; Zhang, Jiguang

    2009-12-18

    The factors affecting the cell performance of non-aqueous electrolytes in primary Li/air batteries operated in an ambient environment were investigated. Four organic additives or co-solvents were also evaluated in electrolytes for Li/air batteries. It has been found that the polarity of an electrolyte is a critical factor for the performance of Li/air batteries. This factor overweighs the effects from the viscosity, ionic conductivity, and oxygen solubility of the electrolytes. In addition, the volume of electrolyte added to a cell significantly affects the discharge performance of a Li/air battery. The strong Lewis base tris(pentafluorophenyl)borane reduces the discharge capacity of a Li/air battery even though its ability to dissolve a certain amount of lithium oxide was supposed to improve the cell performance of Li/air batteries. Addition of two crown ethers, 12-crown-4 and 15-crown-5, especially the former one, can significantly improve the discharge performance of the Li/air cells with electrolytes containing about 15% by weight of such compounds as co-solvents. However, addition of 18-crown-6 decreases the cell performance. The differences among the three crown ethers were investigated.

  16. Desiccant Enhanced Evaporative Air-Conditioning (DEVap): Evaluation of a New Concept in Ultra Efficient Air Conditioning

    SciTech Connect

    Kozubal, E.; Woods, J.; Burch, J.; Boranian, A.; Merrigan, T.

    2011-01-01

    NREL has developed the novel concept of a desiccant enhanced evaporative air conditioner (DEVap) with the objective of combining the benefits of liquid desiccant and evaporative cooling technologies into an innovative 'cooling core.' Liquid desiccant technologies have extraordinary dehumidification potential, but require an efficient cooling sink. DEVap's thermodynamic potential overcomes many shortcomings of standard refrigeration-based direct expansion cooling. DEVap decouples cooling and dehumidification performance, which results in independent temperature and humidity control. The energy input is largely switched away from electricity to low-grade thermal energy that can be sourced from fuels such as natural gas, waste heat, solar, or biofuels.

  17. The Effect of Air-Conditioning on Student and Teacher Performance.

    ERIC Educational Resources Information Center

    Phoenix Union High School District, AZ. Dept. of Research and Planning.

    The literature is reviewed to see if research shows a relationship between student and teacher performance and air conditioning of classrooms. The benefits of air conditioning in promoting learning are substantiated by studies that are summarized but not cited. The relationship of the report to the Phoenix Union High School System Advisory…

  18. 78 FR 12598 - Safety Zone; Seafair Blue Angels Air Show Performance, Seattle, WA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-25

    ... FR Federal Register NPRM Notice of Proposed Rulemaking A. Regulatory History and Information On July... Air Show. As a result no changes were made to the rule. As described in 69 FR 35249-01, the Coast... Seafair Blue Angels Air Show Performance, which include low flying high speed aircraft, and will do so...

  19. EMERGING AIR QUALITY MODELING TECHNOLOGY FOR HIGH PERFORMANCE COMPUTING AND COMMUNICATION ENVIRONMENTS

    EPA Science Inventory

    To demonstrate applications of the HPCC technologies in air quality models, we organized the Specialty Evening Session 1, "Emerging Air Quality Modeling Technologies for High Performance Computing and Communication Environment" as a part of the Twenty First NATO/CCMS Internationa...

  20. 75 FR 23589 - Safety Zone Regulations, Seafair Blue Angels Air Show Performance, Seattle, WA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-04

    ... June 24, 2004, the Coast Guard published a Final Rule in the Federal Register (69 FR 35250) to... SECURITY Coast Guard 33 CFR Part 165 Safety Zone Regulations, Seafair Blue Angels Air Show Performance... Guard will enforce a safety zone on Lake Washington, WA for the annual Seafair Blue Angels Air Show...

  1. 78 FR 39594 - Safety Zone; Seafair Blue Angels Air Show Performance, Seattle, WA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-02

    ... SECURITY Coast Guard 33 CFR Part 165 Safety Zone; Seafair Blue Angels Air Show Performance, Seattle, WA... enforce the annual Seafair Blue Angels Air Show safety zone on Lake Washington, Seattle, WA from 9 a.m. on..., which will be flying in place of the Blue Angels this year. All of the parameters of the zone...

  2. A proposed method for quantifying low-air-loss mattress performance by moisture transport.

    PubMed

    Figliola, Robert S

    2003-01-01

    Because they are believed to control the microclimate of the skin by removing or reducing perspiration accumulation and providing localized cooling, low-air-loss mattress systems are used for the treatment and prevention of pressure ulcers. However, no clear, universally agreed upon definition exists for their design, and reproducible standards on which to base their performance or assess their anticipated clinical effect are lacking. A clinically relevant, reproducible, mechanistic, controlled laboratory test methodology was developed to assess and compare the moisture transport properties of a variety of low-air-loss products by measuring and balancing the complete moisture transport into and out of low-air-loss mattress systems. Using a controlled and defined operating environment, the low-air-loss system is moisture- and weight-loaded using a patient skin moisture analog. Moisture and air transport properties into and out of the environment are measured. Total moisture balance, comparing total moisture change of the analog against the time-based moisture transport data, validates the results. Using mattresses from various manufacturers, time-based data using the study method showed important differences in low-air-loss characteristics related to mattress system design, performance, and function. The observed time-averaged moisture transport performance values indicate that several systems meet an acceptable minimum level of performance, but performance levels between different low-air-loss mattress systems vary markedly. PMID:12532032

  3. AIRS pulse tube cooler system-level and in-space performance comparison

    NASA Technical Reports Server (NTRS)

    Ross, R. G.

    2002-01-01

    This paper presents the derivation of the test and analysis techniques as well as the measured system-level performance of the flight AIRS coolers during instrument-level, spacecraft-level, and in-space operation.

  4. PERFORMANCE OF ACTIVATED SLUDGE-POWDERED ACTIVATED CARBON-WET AIR REGENERATION SYSTEMS

    EPA Science Inventory

    The investigation summarized in this report was undertaken to evaluate the performance of powdered activated carbon (PAC) technology used in conjuntion with wet air regeneration (WAR) at municipal wastewater treatment plants. xcessive ash concentrations accumulated in the mixed l...

  5. Results from experimental investigations of the performance of air condensers for steam turbine units

    NASA Astrophysics Data System (ADS)

    Fedorov, V. A.; Mil'man, O. O.; Kolesnikov, N. V.; Anan'ev, P. A.; Dunaev, S. N.; Mikhal'kov, A. M.; Mosin, A. V.; Kondrat'ev, A. V.

    2013-02-01

    Results from experimental investigations of the model versions of Type ABC GI air condensers are presented, and it is shown that these condensers have better performance characteristics as compared with their analogs that are currently in operation.

  6. MULTISCALE AIR QUALITY SIMULATION PLATFORM (MAQSIP): INITIAL APPLICATIONS AND PERFORMANCE FOR TROPOSPHERIC OZONE AND PARTICULATE MATTER

    EPA Science Inventory

    This manuscript provides an overview of the formulation, process considerations, and performance for simulating tropospheric ozone and particulate matter distributions of the Multiscale Air Quality Simulation Platform (MAQSIP). MAQSIP is a comprehensive atmospheric chemistry/tran...

  7. PERFORMANCE OF ACTIVATED SLUDGE-POWDERED ACTIVATED CARBON-WET AIR REGENERATION SYSTEMS

    EPA Science Inventory

    The investigation summarized in the report was undertaken to evaluate the performance of powdered activated carbon (PAC) technology used in conjunction with wet air regeneration (WAR) at municipal wastewater treatment plants. Excessive ash concentrations accumulated in the mixed ...

  8. Seminar 14 - Desiccant Enhanced Air Conditioning: Desiccant Enhanced Evaporative Air Conditioning (Presentation)

    SciTech Connect

    Kozubal, E.

    2013-02-01

    This presentation explains how liquid desiccant based coupled with an indirect evaporative cooler can efficiently produce cool, dry air, and how a liquid desiccant membrane air conditioner can efficiently provide cooling and dehumidification without the carryover problems of previous generations of liquid desiccant systems. It provides an overview to a liquid desiccant DX air conditioner that can efficiently provide cooling and dehumidification to high latent loads without the need for reheat, explains how liquid desiccant cooling and dehumidification systems can outperform vapor compression based air conditioning systems in hot and humid climates, explains how liquid desiccant cooling and dehumidification systems work, and describes a refrigerant free liquid desiccant based cooling system.

  9. Preliminary performance estimates of an oblique, all-wing, remotely piloted vehicle for air-to-air combat

    NASA Technical Reports Server (NTRS)

    Nelms, W. P., Jr.; Bailey, R. O.

    1974-01-01

    A computerized aircraft synthesis program has been used to assess the effects of various vehicle and mission parameters on the performance of an oblique, all-wing, remotely piloted vehicle (RPV) for the highly maneuverable, air-to-air combat role. The study mission consists of an outbound cruise, an acceleration phase, a series of subsonic and supersonic turns, and a return cruise. The results are presented in terms of both the required vehicle weight to accomplish this mission and the combat effectiveness as measured by turning and acceleration capability. This report describes the synthesis program, the mission, the vehicle, and results from sensitivity studies. An optimization process has been used to establish the nominal RPV configuration of the oblique, all-wing concept for the specified mission. In comparison to a previously studied conventional wing-body canard design for the same mission, this oblique, all-wing nominal vehicle is lighter in weight and has higher performance.

  10. High-Performance Lithium-Air Battery with a Coaxial-Fiber Architecture.

    PubMed

    Zhang, Ye; Wang, Lie; Guo, Ziyang; Xu, Yifan; Wang, Yonggang; Peng, Huisheng

    2016-03-24

    The lithium-air battery has been proposed as the next-generation energy-storage device with a much higher energy density compared with the conventional lithium-ion battery. However, lithium-air batteries currently suffer enormous problems including parasitic reactions, low recyclability in air, degradation, and leakage of liquid electrolyte. Besides, they are designed into a rigid bulk structure that cannot meet the flexible requirement in the modern electronics. Herein, for the first time, a new family of fiber-shaped lithium-air batteries with high electrochemical performances and flexibility has been developed. The battery exhibited a discharge capacity of 12,470 mAh g(-1) and could stably work for 100 cycles in air; its electrochemical performances were well maintained under bending and after bending. It was also wearable and formed flexible power textiles for various electronic devices. PMID:26929017

  11. Bacterial counts associated with sawdust and recycled manure bedding treated with commercial conditioners.

    PubMed

    Hogan, J S; Bogacz, V L; Thompson, L M; Romig, S; Schoenberger, P S; Weiss, W P; Smith, K L

    1999-08-01

    Bacteria counts associated with untreated organic bedding materials were compared with those of bedding treated with either an alkaline commercial bedding conditioner, acidic commercial bedding conditioner, or hydrated lime. Bedding materials were recycled manure and kiln-dried sawdust. The effects of bedding treatments on bacteria counts differed between bedding types. Each of the bedding treatments significantly reduced bacteria in recycled manure prior to use. The alkaline conditioner and hydrated lime effectively inhibited bacteria in recycled manure for 1 d. Bedding counts and teat swabs of cows housed on recycled manure treated with the alkaline conditioner were reduced on d 2. The use of the acid conditioner in recycled manure had little effect on bacteria in bedding. Sawdust differed from recycled manure in that bacteria in untreated sawdust prior to use were minimal, and populations increased rapidly during the first 2 d after use as bedding. The acid conditioner had a bacteriostatic effect in sawdust, evident by the reduction of bacteria on d 2. The alkaline conditioner and hydrated lime did not alter bacteria counts in sawdust compared with untreated sawdust. Antibacterial activity of each conditioner deteriorated between d 2 and d 6 in both beddings. The antibacterial activities of conditioners were related to the pH of bedding materials. The use of commercial bedding conditioners initially reduced bacterial counts; however, the antibacterial effects had diminished between d 2 and 6 after use in bedding. PMID:10480094

  12. Comparative Performance of Male and Female Enlistees on Air Force Selection Measures.

    ERIC Educational Resources Information Center

    Vitola, Bert M.; Wilbourn, James M.

    Male and female enlistee samples were compared for total groups and by enlistment region in terms of their performance on the Airman Qualifying Examination and the Armed Services Vocational Aptitude Battery. Women in the Air Force test-retest performance were evaluated on the Armed Forces Women's Selection Test. WAF performance on the AFWST was…

  13. Performance Data Errors in Air Carrier Operations: Causes and Countermeasures

    NASA Technical Reports Server (NTRS)

    Berman, Benjamin A.; Dismukes, R Key; Jobe, Kimberly K.

    2012-01-01

    Several airline accidents have occurred in recent years as the result of erroneous weight or performance data used to calculate V-speeds, flap/trim settings, required runway lengths, and/or required climb gradients. In this report we consider 4 recent studies of performance data error, report our own study of ASRS-reported incidents, and provide countermeasures that can reduce vulnerability to accidents caused by performance data errors. Performance data are generated through a lengthy process involving several employee groups and computer and/or paper-based systems. Although much of the airline indUStry 's concern has focused on errors pilots make in entering FMS data, we determined that errors occur at every stage of the process and that errors by ground personnel are probably at least as frequent and certainly as consequential as errors by pilots. Most of the errors we examined could in principle have been trapped by effective use of existing procedures or technology; however, the fact that they were not trapped anywhere indicates the need for better countermeasures. Existing procedures are often inadequately designed to mesh with the ways humans process information. Because procedures often do not take into account the ways in which information flows in actual flight ops and time pressures and interruptions experienced by pilots and ground personnel, vulnerability to error is greater. Some aspects of NextGen operations may exacerbate this vulnerability. We identify measures to reduce the number of errors and to help catch the errors that occur.

  14. Correlation of full-scale helicopter rotor performance in air with model-scale Freon data

    NASA Technical Reports Server (NTRS)

    Yeager, W. T., Jr.; Mantay, W. R.

    1976-01-01

    An investigation was conducted in a transonic dynamics tunnel to measure the performance of a 1/5 scale model helicopter rotor in a Freon atmosphere. Comparisons were made between these data and full scale data obtained in air. Both the model and full scale tests were conducted at advance ratios between 0.30 and 0.40 and advancing tip Mach numbers between 0.79 and 0.95. Results show that correlation of model scale rotor performance data obtained in Freon with full scale rotor performance data in air is good with regard to data trends. Mach number effects were found to be essentially the same for the model rotor performance data obtained in Freon and the full scale rotor performance data obtained in air. It was determined that Reynolds number effects may be of the same magnitude or smaller than rotor solidity effects or blade elastic modeling in rotor aerodynamic performance testing.

  15. Dynamic performance testing of prototype 3 ton air-cooled carrier absorption chiller

    SciTech Connect

    Borst, R.R.; Wood, B.D.

    1985-05-01

    The performance of a prototype 3 ton cooling capacity air-cooled lithium bromide/water absorption chiller was tested using an absorption chiller test facility which was modified to expand its testing capabilities to include air-cooled chillers in addition to water-cooled chillers. Temperatures of the three externally supplied fluid loops: hot water, chilled water, and cooling air, were varied in order to determine the effects this would have on the two principal measures of chiller performance: cooling capacity and thermal coefficient of performance (COP). A number of interrelated factors were identified as contributing to less than expected performance. For comparison, experimental correlations of other investigators for this and other similar absorption chillers are presented. These have been plotted as both contour and three-dimensional performance maps in order to more clearly show the functional dependence of the chiller performance on the fluid loop temperatures.

  16. Dynamic performance testing of prototype 3 ton air-cooled carrier absorption chiller

    NASA Astrophysics Data System (ADS)

    Borst, R. R.; Wood, B. D.

    1985-05-01

    The performance of a prototype three ton cooling capacity air-cooled lithium bromide/water absorption chiller was tested using an absorption chiller test facility which was modified to expand its testing capabilities to include air-cooled chillers in addition to water-cooled chillers. Temperatures of the three externally supplied fluid loops: hot water, chilled water, and cooling air, were varied in order to determine the effects this would have on the two principal measures of chiller performance: cooling capacity and thermal coefficient of performance (COP). A number of interrelated factors were identified as contributing to less than expected performance. For comparison, experimental correlations of other investigators for this and other similar absorption chillers are presented. These have been plotted as both contour and three-dimensional performance maps in order to more clearly show the functional dependence of the chiller performance on the fluid loop temperatures.

  17. Performance Evaluation of Industrial Hygiene Air Monitoring Sensors

    SciTech Connect

    Maughan, A D.; Glissmeyer, John A.; Birnbaum, Jerome C.

    2004-12-10

    Tests were performed to evaluate the accuracy, precision and response time of certain commercially available handheld toxic gas monitors. The tests were conducted by PNNL in the Chemical Chamber Test Facility for CH2MHill Hanford Company. The instruments were tested with a set of dilute test gases including ammonia, nitrous oxide, and a mixture of organic vapors (acetone, benzene, ethanol, hexane, toluene and xylene). The certified gases were diluted to concentrations that may be encountered in the outdoor environment above the underground tank farms containing radioactive waste at the U.S. Department of Energy's Hanford site, near Richland, Washington. The challenge concentrations are near the lower limits of instrument sensitivity and response time. The performance test simulations were designed to look at how the instruments respond to changes in test gas concentrations that are similar to field conditions.

  18. Influence of Ventilation Ratio on Desiccant Air Conditioning System's Efficiency Performance

    NASA Astrophysics Data System (ADS)

    Tran, Thien Nha; Akisawa, Atsushi; Kashiwagi, Takao; Hamamoto, Yoshinori

    Ventilation air is a concern for engineers since ventilated air controls indoor air contamination; additional ventilation, however, increases the energy consumption of buildings. The study investigates the energy efficiency performance of the desiccant dehumidification air conditioning system in the context of ventilation for a hot-humid climate such as summer in Japan. The investigation focuses on the variable ratio of ventilation air as required by the application of air conditioning system. The COP of the desiccant air conditioning system is determined. The evaluation is subsequently performed by comparing the desiccant based system with the conventional absorption cooling system and the vapor compression cooling system. Based on 12 desiccant rotor simulations, it is found that the desiccant regeneration temperature required varies between 47°C to 85°C as ventilation ratio increases from 0. 0 to 100%, and up to 52. 5°C as the ventilation ratio achieves 14%. The heat required for regenerating desiccant accounts for 55% and higher of the system's total heat consumption; the system is expected to be energy efficient by using wasted heat from the absorption chiller for desiccant regeneration; and its energy efficiency expands as the ratio of ventilation air rises above 15% compared with the conventional absorption cooling system. The energy efficiency also benefits as the ratio rises beyond 70% against the conventional vapor compression cooling system.

  19. Thermodynamic performance of a hybrid air cycle refrigeration system using a desiccant rotor

    NASA Astrophysics Data System (ADS)

    Hwang, Kyudae; Song, Chan Ho; Kim, Sung Ki; Saito, Kiyoshi; Kawai, Sunao

    2013-03-01

    Due to the concern on global warming, the demand for a system using natural refrigerant is increasing and many researches have been devoted to develop systems with natural refrigerants. Among natural refrigerant systems, an air cycle system has emerged as one of alternatives of Freon gas system due to environmentally friendly feature in spite of the inherent low efficiency. To overcome the technical barrier, this study proposed combination of multiple systems as a hybrid cycle to achieve higher efficiency of an air cycle system. The hybrid air cycle adopts a humidity control units such as an adsorber and a desorber to obtain the cooling effect from latent heat as well as sensible heat. To investigate the efficacy of the hybrid air cycle, the cooling performance of a hybrid air cycle is investigated analytically and experimentally. From the simulation result, it is found that COP of the hybrid air cycle is two times higher than that of the conventional air cycle. The experiments are conducted on the performance of the desiccant system according to the rotation speed in the system and displayed the feasibility of the key element in the hybrid air cycle system. From the results, it is shown that the system efficiency can be enhanced by utilization of the exhausted heat through the ambient heat exchanger with advantage of controlling the humidity by the desiccant rotor.

  20. High-performance air acoustic detection and classification sensor

    NASA Astrophysics Data System (ADS)

    Porter, Richard; Raines, Robert; Jones, Barry

    2009-05-01

    Acoustic signals are a principal detection modality for unattended sensor systems. However, the performance of these systems is frequently suboptimal due to insufficient dynamic range in small systems or excess power consumption in larger systems. This paper discusses an approach to developing an unattended ground sensor (UGS) system that has the best features of both worlds. This system, developed by McQ Inc., has exceptional dynamic range (> 100 dB) while operating at power levels of 1.5-5 watts. The system also has a user definable signal parameter library and automated detection methodology that will be described.

  1. Effect of vehicle type on the performance of second generation air bags for child occupants.

    PubMed

    Arbogast, Kristy B; Durbin, Dennis R; Kallan, Michael J; Winston, Flaura K

    2003-01-01

    Passenger air bags experienced considerable design modification in the late 1990s, principally to mitigate risks to child passengers. This study utilized Data from the Partners for Child Passenger Safety study, a large-scale child-focused crash surveillance system, to examine the effect of vehicle type on the differential performance of first and second generation air bags on injuries to restrained children in frontal impact crashes. Our results show that the benefit of second-generation air bags was seen in passenger cars - those children exposed to second-generation air bags were half as likely to sustain a serious injury - and minivans. However, in SUVs the data suggest no reduction in injury risk with the new designs. This field data provides crucial real-world experience to the automotive industry as they work towards the next generation of air bag designs. PMID:12941218

  2. Measured Performance of a Low Temperature Air Source Heat Pump

    SciTech Connect

    Johnson, R. K.

    2013-09-01

    A 4-ton Low Temperature Heat Pump (LTHP) manufactured by Hallowell International was installed in a residence near New Haven, Connecticut and monitored over two winters of operation. After attending to some significant service issues, the heat pump operated as designed. This report should be considered a review of the dual compressor 'boosted heat pump' technology. The Low Temperature Heat Pumpsystem operates with four increasing levels of capacity (heat output) as the outdoor temperature drops. The system was shown to select capacity correctly, supplying the appropriate amount of heat to the house across the full range of outdoor temperatures. The system's Coefficient of Performance (Seasonal COP, or SCOP) over two entire winters was calculated, based on measured data, to be 3.29over the first winter and 2.68 over the second winter. A second seasonal efficiency calculation by a different method yielded a SCOP of 2.78 for the first winter and 2.83 for the second winter. This second seasonal efficiency calculation was determined by comparing measured heat pump energy use to the in situ energy use with resistance heat alone. This method is the ratio of the slopes of thedaily energy use load lines.

  3. Troubleshooting the residential air conditioning system

    SciTech Connect

    Puzio, H.

    1996-01-01

    In order to effectively diagnose problems in a residential air conditioning system, the technician should develop and follow a logical step-by-step troubleshooting procedure. A list of problems, along with possible causes and solutions, that a technician may encounter when servicing a residential air conditioner is presented.

  4. PacRIM II: A review of AirSAR operations and system performance

    NASA Technical Reports Server (NTRS)

    Moller, D.; Chu, A.; Lou, Y.; Miller, T.; O'Leary, E.

    2001-01-01

    In this paper we briefly review the AirSAR system, its expected performance, and quality of data obtained during that mission. We discuss the system hardware calibration methodologies, and present quantitative performance values of radar backscatter and interferometric height errors (random and systematic) from PACRIM II calibration data.

  5. Experimental investigation on performance of ice storage air-conditioning system with separate heat pipe

    SciTech Connect

    Fang, Guiyin; Liu, Xu; Wu, Shuangmao

    2009-11-15

    An experimental study on operation performance of ice storage air-conditioning system with separate helical heat pipe is conducted in this paper. The experimental system of ice storage air-conditioning system with separate heat pipe is set up. The performance parameters such as the evaporation pressure and the condensation pressure of refrigeration system, the refrigeration capacity and the COP (coefficient of performance) of the system, the IPF (ice packing factor) and the cool storage capacity in the cool storage tank during charging period, and the cool discharge rate and the cool discharge capacity in the cool storage tank, the outlet water temperature in the cool storage tank and the outlet air temperature in room unit during discharging period are investigated. The experimental results show that the ice storage air-conditioning system with separate helical heat pipe can stably work during charging and discharging period. This indicates that the ice storage air-conditioning system with separate helical heat pipe is well adapted to cool storage air-conditioning systems in building. (author)

  6. Cold-air performance of a tip turbine designed to drive a lift fan. 1: Baseline performance

    NASA Technical Reports Server (NTRS)

    Haas, J. E.; Kofskey, M. G.; Hotz, G. M.; Futral, S. M., Jr.

    1976-01-01

    Full admission baseline performance was obtained for a 0.4 linear scale of the LF460 lift fan turbine over a range of speeds and pressure ratios without leakage air. These cold-air tests covered a range of speeds from 40 to 140 percent of design equivalent speed and a range of scroll inlet to diffuser exit static pressure ratios from 2.0 to 4.2. Results are presented in terms of specific work, torque, mass flow, efficiency, and total pressure drop.

  7. Cell module and fuel conditioner development

    NASA Technical Reports Server (NTRS)

    Feret, J. M.

    1982-01-01

    The efforts performed to develop a phosphoric acid fuel cell (PAFC) stack design having a 10 kW power rating for operation at higher than atmospheric pressure based on the existing Mark II design configuration are described. The work involves: (1) Performance of pertinent functional analysis, trade studies and thermodynamic cycle analysis for requirements definition and system operating parameter selection purposes, (2) characterization of fuel cell materials and components, and performance testing and evaluation of the repeating electrode components, (3) establishment of the state-of-the-art manufacturing technology for all fuel cell components at Westinghouse and the fabrication of short stacks of various sites, and (4) development of a 10 kW PAFC stack design for higher pressure operation utilizing the top down systems engineering approach.

  8. Improving the performance of a compression ignition engine by directing flow of inlet air

    NASA Technical Reports Server (NTRS)

    Kemper, Carlton

    1946-01-01

    The object of this report is to present the results of tests performed by the National Advisory Committee for Aeronautics to determine the effect on engine performance of directing the flow of the inlet air to a 5-inch by 7-inch cylinder, solid injection, compression ignition engine, After a few preliminary tests, comparative runs were made at a speed of 1500 r.p.m. with and without directed air flow. It was found that directing the flow of the inlet air toward the fuel injection valve gave steadier engine operation, and an appreciable increase in power, and decreased fuel consumption. The results indicate the possibility of improving the performance of a given type of combustion chamber without changing its shape and with no change in valve timing. They would also seem to prove that directional turbulence, set up before the inlet valve of a four-stroke cycle engine, continues in the engine cylinder throughout the compression stroke.

  9. The effects of advection solvers on the performance of air quality models

    SciTech Connect

    Tanrikulu, S.; Odman, M.T.

    1996-12-31

    The available numerical solvers for the advection term in the chemical species conservation equation have different properties, and consequently introduce different types of errors. These errors can affect the performance of air quality models and lead to biases in model results. In this study, a large number of advection solvers have been studied and six of them were identified as having potential for use in photochemical models. The identified solvers were evaluated extensively using various numerical tests that are relevant to air quality simulations. Among the solvers evaluated, three of them showed better performance in terms of accuracy and some other characteristics such as conservation of mass and positivity. They are the solvers by Bott, Yuamartino, and Dabdub and Seinfeld. These three solvers were incorporated into the SARMAP Air Quality Model (SAQM) and the August 3-6, 1990 ozone episode in the San Joaquin Valley of California was simulated with each. A model performance analysis was conducted for each simulation using the rich air quality database of the 1990 San Joaquin Valley Air Quality Study. The results of the simulations were compared with each other and the effects of advection solvers on the performance of the model are discussed.

  10. Cell module and fuel conditioner development

    NASA Technical Reports Server (NTRS)

    Hoover, D. Q., Jr.

    1981-01-01

    The results of pretesting and performance testing of Stack 564 are reported. The design features, progress in fabrication and plans for assembly of Stack 800 are given. The status of endurance testing of Stack 560 is reported. The design, fabrication, test procedures and preliminary tests of the 10 kW double counterflow reformer and the reformer test stand are described. Results of vendor contacts to define the performance and cost of fuel conditioning system components are reported. The results of burner tests and continuing development of the BOLTAR program are reported.

  11. Cell module and fuel conditioner development

    NASA Technical Reports Server (NTRS)

    Feret, J. M.

    1981-01-01

    A phosphoric acid fuel cell (PAFC) stack design having a 10 kW power rating for operation at higher than atmospheric pressure based on the existing Mark II design configuration is described. Functional analysis, trade studies and thermodynamic cycle analysis for requirements definition and system operating parameter selection purposes were performed. Fuel cell materials and components, and performance testing and evaluation of the repeating electrode components were characterized. The state of the art manufacturing technology for all fuel cell components and the fabrication of short stacks of various sites were established. A 10 kW PAFC stack design for higher pressure operation utilizing the top down systems engineering aproach was developed.

  12. Air Conditioning Overflow Sensor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Technology Transfer Office at Stennis Space Center helped a local inventor develop a prototype of an attachment for central air conditioners and heat pumps that helps monitor water levels to prevent condensation overflow. The sensor will indicate a need for drain line maintenance and prevent possible damage caused by drain pan water spillover. An engineer in the Stennis Space Center prototype Development Laboratory used SSC sensor technology in the development of the sensor.

  13. Performance of High Temperature Air Combustion Boiler with Low NOx Emission

    NASA Astrophysics Data System (ADS)

    Kobayashi, Hiromichi; Ito, Yoshihito; Tsuruta, Naoki; Yoshikawa, Kunio

    Thermal performance in the experiments and three-dimensional numerical simulations for a high temperature air combustion boiler where fuel can be efficiently combusted by high temperature preheated air (800°C-1000°C) is examined. The boiler can burn not only natural gas but also low calorific gas (e. g. full gasification gas obtained from coal or wastes). In the boiler, four regenerative burners are installed. This boiler has new features that not only air but also gasification gas is heated up to 900°C, and combination of burners is switched every 15 seconds where two burners are used as inlets of fuel and air and the other two burners are used as outlets of exhaust gas. Natural gas and syngas obtained from coal are burned. The NOx emission for each fuel is less than 50ppm. The heat transfer of three-dimensional calculation is predicted higher than that of experiment.

  14. Stress and physiological, behavioral and performance patterns of children under varied air ion levels

    NASA Astrophysics Data System (ADS)

    Fornof, K. T.; Gilbert, G. O.

    1988-12-01

    The possibility that individual differences in reactivity to stressors are a major factor underlying discordant results reported for air ion studies prompted an investigation of response patterns in school children under both normal indoor air ion levels and moderately increased negative air ion levels (4000±500/cm3). It was hypothesized that the impact of stressors is reduced with high negative air ionization, and that resultant changes in stress effects would be differentially exhibited according to the children's normal degree of stimulus reactivity. A counter-balanced, replicative, withinssubject design was selected, and the subjects were 12 environmentally sensitive, 1st 4th grade school children. In addition to monitoring stress effects on activity level, attention span, concentration to task and conceptual performance, measures were also made of urinary 5-hydroxyindole acetic acid levels and skin resistance response (SRR) to determine if changes extended to the physiological state. The cold water test was used to add physical stress and enable calculations of Lacey's autonomic lability scores (ALS) as indicators of individual reactivity. The results show main effects for air ions on both physiological parameters, with 48% less change in %SRR ( P<0.01) and 46% less change in urinary 5-HIAA levels ( P<0.055) during negative air ions, indicating increased stress tolerance. Strong interactive effects for ALS x air ion condition appeared, with high and low ALS children reacting oppositely to negative air ions in measures of skin resistance level ( P<0.01), wrist activity ( P<0.01) and digit span backwards ( P<0.004). Thus individual differences in autonomic reactivity and the presence or absence of stressors appear as critical elements for internal validity, and in preventing consequent skewed results from obscuring progress in air ion research.

  15. The effect of air entrapment on the performance of squeeze film dampers: Experiments and analysis

    NASA Astrophysics Data System (ADS)

    Diaz Briceno, Sergio Enrique

    Squeeze film dampers (SFDs) are an effective means to introduce the required damping in rotor-bearing systems. They are a standard application in jet engines and are commonly used in industrial compressors. Yet, lack of understanding of their operation has confined the design of SFDs to a costly trial and error process based on prior experience. The main factor deterring the success of analytical models for the prediction of SFDs' performance lays on the modeling of the dynamic film rupture. Usually, the cavitation models developed for journal bearings are applied to SFDs. Yet, the characteristic motion of the SFD results in the entrapment of air into the oil film, thus producing a bubbly mixture that can not be represented by these models. In this work, an extensive experimental study establishes qualitatively and---for the first time---quantitatively the differences between operation with vapor cavitation and with air entrainment. The experiments show that most operating conditions lead to air entrainment and demonstrate the paramount effect it has on the performance of SFDs, evidencing the limitation of currently available models. Further experiments address the operation of SFDs with controlled bubbly mixtures. These experiments bolster the possibility of modeling air entrapment by representing the lubricant as a homogeneous mixture of air and oil and provide a reliable data base for benchmarking such a model. An analytical model is developed based on a homogeneous mixture assumption and where the bubbles are described by the Rayleigh-Plesset equation. Good agreement is obtained between this model and the measurements performed in the SFD operating with controlled mixtures. A complementary analytical model is devised to estimate the amount of air entrained from the balance of axial flows in the film. A combination of the analytical models for prediction of the air volume fraction and of the hydrodynamic pressures renders promising results for prediction of the

  16. Performance and cycle life of carbon- and conductive-based air electrodes for rechargeable Zn-air battery applications

    NASA Astrophysics Data System (ADS)

    Chellapandi Velraj, Samgopiraj

    The development of high-performance, cyclically stable bifunctional air electrodes are critical to the commercial deployment of rechargeable Zn-air batteries. The carbon material predominantly used as support material in the air electrodes due to its higher surface area and good electrical conductivity suffers from corrosion at high oxygen evolution overpotentials. This study addresses the carbon corrosion issues and suggests alternate materials to replace the carbon as support in the air electrode. In this study, Sm0.5Sr0.5CoO3-delta with good electrochemical performance and cyclic lifetime was identified as an alternative catalyst material to the commonly used La0.4Ca 0.6CoO3 catalyst for the carbon-based bifunctional electrodes. Also, a comprehensive study on the effects of catalyst morphology, testing conditions on the cycle life as well as the relevant degradation mechanism for the carbon-based electrode was conducted in this dissertation. The cyclic life of the carbon-based electrodes was strongly dependent on the carbon support material, while the degradation mechanisms were entirely controlled by the catalyst particle size/morphology. Some testing conditions like resting time and electrolyte concentration did not change the cyclic life or degradation mechanism of the carbon-based electrode. The current density used for cyclic testing was found to dictate the degradation mechanism leading to the electrode failure. An alternate way to circumvent the carbon corrosion is to replace the carbon support with a suitable electrically-conductive ceramic material. In this dissertation, LaNi0.9Mn0.1O3, LaNi 0.8Co0.2O3, and NiCo2O4 were synthesized and evaluated as prospective support materials due to their good electrical conductivity and their ability to act as the catalyst needed for the bifunctional electrode. The carbon-free electrodes had remarkably higher catalytic activity for oxygen evolution reaction (OER) when compared to the carbon-based electrode. However

  17. Impact of the electric compressor for automotive air conditioning system on fuel consumption and performance analysis

    NASA Astrophysics Data System (ADS)

    Zulkifli, A. A.; Dahlan, A. A.; Zulkifli, A. H.; Nasution, H.; Aziz, A. A.; Perang, M. R. M.; Jamil, H. M.; Misseri, M. N.

    2015-12-01

    Air conditioning system is the biggest auxiliary load in a vehicle where the compressor consumed the largest. Problem with conventional compressor is the cooling capacity cannot be control directly to fulfill the demand of thermal load inside vehicle cabin. This study is conducted experimentally to analyze the difference of fuel usage and air conditioning performance between conventional compressor and electric compressor of the air conditioning system in automobile. The electric compressor is powered by the car battery in non-electric vehicle which the alternator will recharge the battery. The car is setup on a roller dynamometer and the vehicle speed is varied at 0, 30, 60, 90 and 110 km/h at cabin temperature of 25°C and internal heat load of 100 and 400 Watt. The results shows electric compressor has better fuel consumption and coefficient of performance compared to the conventional compressor.

  18. A Multiple Agent Model of Human Performance in Automated Air Traffic Control and Flight Management Operations

    NASA Technical Reports Server (NTRS)

    Corker, Kevin; Pisanich, Gregory; Condon, Gregory W. (Technical Monitor)

    1995-01-01

    A predictive model of human operator performance (flight crew and air traffic control (ATC)) has been developed and applied in order to evaluate the impact of automation developments in flight management and air traffic control. The model is used to predict the performance of a two person flight crew and the ATC operators generating and responding to clearances aided by the Center TRACON Automation System (CTAS). The purpose of the modeling is to support evaluation and design of automated aids for flight management and airspace management and to predict required changes in procedure both air and ground in response to advancing automation in both domains. Additional information is contained in the original extended abstract.

  19. Impact of Air Leakage on the Thermal and Moisture Performance of the Building Envelope

    SciTech Connect

    Karagiozis, A

    2001-08-15

    The air tightness of building envelopes systems is critical to the performance of a building. Uncontrolled airflow movements can cause moisture-induced damage by transporting large amounts of moisture, and may also impact occupant health and safety, sound control, fire control and energy efficiency. Building envelopes are often designed to control airflow by providing a resistance to the bulk flow. Implementation of air barrier systems to restrict airflow is commonly used to reduce the quantity of airflow movement between the exterior and interior environments through the wall. This paper presents a preliminary assessment of the influence of airflow on the moisture performance of a residential building envelope system. The combined heat, air and moisture (hygrothermal) transport in a selected wall is numerically investigated. Vapor diffusion, liquid transport and temperature dependent sorption isotherms are included in the investigation.

  20. Experimental study of heat transfer and thermal performance with longitudinal fins of solar air heater

    PubMed Central

    Chabane, Foued; Moummi, Noureddine; Benramache, Said

    2013-01-01

    The thermal performance of a single pass solar air heater with five fins attached was investigated experimentally. Longitudinal fins were used inferior the absorber plate to increase the heat exchange and render the flow fluid in the channel uniform. The effect of mass flow rate of air on the outlet temperature, the heat transfer in the thickness of the solar collector, and the thermal efficiency were studied. Experiments were performed for two air mass flow rates of 0.012 and 0.016 kg s−1. Moreover, the maximum efficiency values obtained for the 0.012 and 0.016 kg s−1 with and without fins were 40.02%, 51.50% and 34.92%, 43.94%, respectively. A comparison of the results of the mass flow rates by solar collector with and without fins shows a substantial enhancement in the thermal efficiency. PMID:25685486

  1. Polysaccharide (guar) as a soil conditioner. [Cyamopsis tetragonoloba

    SciTech Connect

    Wallace, A.

    1986-05-01

    The author tested a polysaccharide (guar) derived from guar bean (Cyamopsis tetragonoloba L. Taub.) was tested in soil flocculation tests and found that use of acid solutions to fully dissolve the guar leads to more effective soil conditioning than otherwise would be possible, and that guar does not lead to strong water-stable aggregates. Larger quantities were needed to improve emergence and growth of plants in a glasshouse than for synthetic soil conditioners. The effects of soil conditioning with guar did not last long.

  2. Preliminary analysis of problem of determining experimental performance of air-cooled turbine II : methods for determining cooling-air-flow characteristics

    NASA Technical Reports Server (NTRS)

    Ellerbrock, Herman H , Jr

    1950-01-01

    In the determination of the performance of an air-cooled turbine, the cooling-air-flow characteristics between the root and the tip of the blades must be evaluated. The methods, which must be verified and the unknown functions evaluated, that are expected to permit the determination of pressure, temperature, and velocity through the blade cooling-air passages from specific investigation are presented.

  3. Performance of Introducing Outdoor Cold Air for Cooling a Plant Production System with Artificial Light

    PubMed Central

    Wang, Jun; Tong, Yuxin; Yang, Qichang; Xin, Min

    2016-01-01

    The commercial use of a plant production system with artificial light (PPAL) is limited by its high initial construction and operation costs. The electric-energy consumed by heat pumps, applied mainly for cooling, accounts for 15–35% of the total electric-energy used in a PPAL. To reduce the electric-energy consumption, an air exchanger with low capacity (180 W) was used for cooling by introducing outdoor cold air. In this experiment, the indoor air temperature in two PPALs (floor area: 6.2 m2 each) was maintained at 25 and 20°C during photoperiod and dark period, respectively, for lettuce production. A null CO2 balance enrichment method was used in both PPALs. In one PPAL (PPALe), an air exchanger (air flow rate: 250 m3·h−1) was used along with a heat pump (cooling capacity: 3.2 kW) to maintain the indoor air temperature at the set-point. The other PPAL (PPALc) with only a heat pump (cooling capacity: 3.2 kW) was used for reference. Effects of introducing outdoor cold air on energy use efficiency, coefficient of performance (COP), electric-energy consumption for cooling and growth of lettuce were investigated. The results show that: when the air temperature difference between indoor and outdoor ranged from 20.2 to 30.0°C: (1) the average energy use efficiency of the air exchanger was 2.8 and 3.4 times greater than the COP of the heat pumps in the PPALe and PPALc, respectively; (2) hourly electric-energy consumption for cooling in the PPALe reduced by 15.8–73.7% compared with that in the PPALc; (3) daily supply of CO2 in the PPALe reduced from 0.15 to 0.04 kg compared with that in the PPALc with the outdoor air temperature ranging from −5.6 to 2.7°C; (4) no significant difference in lettuce growth was observed in both PPALs. The results indicate that using air exchanger to introduce outdoor cold air should be considered as an effective way to reduce electric-energy consumption for cooling with little effects on plant growth in a PPAL. PMID:27066012

  4. Performance of Introducing Outdoor Cold Air for Cooling a Plant Production System with Artificial Light.

    PubMed

    Wang, Jun; Tong, Yuxin; Yang, Qichang; Xin, Min

    2016-01-01

    The commercial use of a plant production system with artificial light (PPAL) is limited by its high initial construction and operation costs. The electric-energy consumed by heat pumps, applied mainly for cooling, accounts for 15-35% of the total electric-energy used in a PPAL. To reduce the electric-energy consumption, an air exchanger with low capacity (180 W) was used for cooling by introducing outdoor cold air. In this experiment, the indoor air temperature in two PPALs (floor area: 6.2 m(2) each) was maintained at 25 and 20°C during photoperiod and dark period, respectively, for lettuce production. A null CO2 balance enrichment method was used in both PPALs. In one PPAL (PPALe), an air exchanger (air flow rate: 250 m(3)·h(-1)) was used along with a heat pump (cooling capacity: 3.2 kW) to maintain the indoor air temperature at the set-point. The other PPAL (PPALc) with only a heat pump (cooling capacity: 3.2 kW) was used for reference. Effects of introducing outdoor cold air on energy use efficiency, coefficient of performance (COP), electric-energy consumption for cooling and growth of lettuce were investigated. The results show that: when the air temperature difference between indoor and outdoor ranged from 20.2 to 30.0°C: (1) the average energy use efficiency of the air exchanger was 2.8 and 3.4 times greater than the COP of the heat pumps in the PPALe and PPALc, respectively; (2) hourly electric-energy consumption for cooling in the PPALe reduced by 15.8-73.7% compared with that in the PPALc; (3) daily supply of CO2 in the PPALe reduced from 0.15 to 0.04 kg compared with that in the PPALc with the outdoor air temperature ranging from -5.6 to 2.7°C; (4) no significant difference in lettuce growth was observed in both PPALs. The results indicate that using air exchanger to introduce outdoor cold air should be considered as an effective way to reduce electric-energy consumption for cooling with little effects on plant growth in a PPAL. PMID:27066012

  5. Comparative study of solar air heater performance with various shapes and configurations of obstacles

    NASA Astrophysics Data System (ADS)

    Kulkarni, Kishor; Kim, Kwang-Yong

    2016-02-01

    An investigation is performed to find an optimum shape of obstacles attached to a solar air heater using three-dimensional Reynolds-averaged Navier-Stokes analyses of heat transfer and fluid flow. The Reynolds number, which is based on the hydraulic diameter of the channel, is in the range of 6800-10,000. The Nusselt number and friction factor are used to measure the thermal and aerodynamic performances of the solar air heater, respectively. Four different obstacle shapes (U-shaped, rectangular, trapezoidal, and pentagonal) and three arrangements of obstacles were tested to determine their effects on performance of the solar air heater. The results show that the performance factor (defined by a ratio of thermal to aerodynamic performance) was above unity for all the cases tested, and the pentagonal obstacle shape indicates the highest performance regardless of the Reynolds number. Detailed analyses of the thermal and flow fields are performed in order to obtain a better understanding of the heat transfer characteristics.

  6. A fundamentally new approach to air-cooled heat exchangers.

    SciTech Connect

    Koplow, Jeffrey P.

    2010-01-01

    We describe breakthrough results obtained in a feasibility study of a fundamentally new architecture for air-cooled heat exchangers. A longstanding but largely unrealized opportunity in energy efficiency concerns the performance of air-cooled heat exchangers used in air conditioners, heat pumps, and refrigeration equipment. In the case of residential air conditioners, for example, the typical performance of the air cooled heat exchangers used for condensers and evaporators is at best marginal from the standpoint the of achieving maximum the possible coefficient of performance (COP). If by some means it were possible to reduce the thermal resistance of these heat exchangers to a negligible level, a typical energy savings of order 30% could be immediately realized. It has long been known that a several-fold increase in heat exchanger size, in conjunction with the use of much higher volumetric flow rates, provides a straight-forward path to this goal but is not practical from the standpoint of real world applications. The tension in the market place between the need for energy efficiency and logistical considerations such as equipment size, cost and operating noise has resulted in a compromise that is far from ideal. This is the reason that a typical residential air conditioner exhibits significant sensitivity to reductions in fan speed and/or fouling of the heat exchanger surface. The prevailing wisdom is that little can be done to improve this situation; the 'fan-plus-finned-heat-sink' heat exchanger architecture used throughout the energy sector represents an extremely mature technology for which there is little opportunity for further optimization. But the fact remains that conventional fan-plus-finned-heat-sink technology simply doesn't work that well. Their primary physical limitation to performance (i.e. low thermal resistance) is the boundary layer of motionless air that adheres to and envelops all surfaces of the heat exchanger. Within this boundary layer

  7. NATIONAL PERFORMANCE AUDIT PROGRAM AMBIENT AIR AUDITS OF ANALYTICAL PROFEICIENCY--1988

    EPA Science Inventory

    This report presents the results of the U.S Environmental Protection Agencys 1988 National Ambient Air Performance Audit Program, Semiannual audits were conducted for lead, nitrate and sulfate on filter strips. ne audit was Conducted for high volume/PM10 size Selective inlet (ssi...

  8. Replacement Air Group Performance as a Criterion for Naval Aviation Training.

    ERIC Educational Resources Information Center

    Bale, Ronald M.; And Others

    The current criterion for prediction of performance of student naval aviators is the dichotomy of success versus failure in undergraduate flight training. This criterion has enabled the naval air training command to make reasonable estimates of the probability of an applicant or student completing flight training. However, a costly attrition…

  9. The Comparative Performance of Batteries: The Lead-Acid and the Aluminum-Air Cells.

    ERIC Educational Resources Information Center

    LeRoux, Xavier; And Others

    1996-01-01

    Describes a teaching program that shows how electrochemical principles can be conveyed by means of hands-on experiences of student-centered teaching experiments. Employs the readily available lead-acid cell and the simple aluminum-air cell. Discusses the batteries, equilibrium cell potential, performance comparison, current, electrode separation,…

  10. Swirl-can combustor performance to near-stoichiometric fuel-air ratio

    NASA Technical Reports Server (NTRS)

    Diehl, L. A.; Biaglow, J. A.

    1976-01-01

    Emissions and performance characteristics were determined for full-annulus swirl-can modular combustors operated to near stoichiometric fuel air ratios. The purposes of the tests were to obtain stoichiometric data at inlet air temperatures up to 894 K and to determine the effect of module number by investigating 120 and 72 module swirl-can combustors. The maximum average exit temperature obtained with the 120-module swirl-can combustor was 2465 K with a combustion efficiency of 95 percent at an inlet-air temperature of 894 K. The 72-module swirl-can combustor reached a maximum average exit temperature of 2306 K with a combustion efficiency of 92 percent at an inlet air temperature of 894 K. At a constant inlet air temperature, maximum oxides of nitrogen emission index values occurred at a fuel-air ratio of 0.037 for the 72-module design and 0.044 for the 120-module design. The combustor average exit temperature and combustion efficiency were calculated from emissions measurements. The measured emissions included carbon monoxide, unburned hydrocarbons, oxides of nitrogen, and smoke.

  11. Measuring critical care air support teams' performance during extended periods of duty.

    PubMed

    Lamb, Di

    2010-01-01

    The Royal Air Force (RAF) Critical Care Air Support Teams (CCASTs) aeromedically evacuate seriously injured service personnel. Long casualty evacuation chains create logistical constraints that must be considered when aeromedically evacuating patients. One constraint is the length of a CCAST mission and its potential effect on team member performance. Despite no evidence of patient care compromise, the RAF has commissioned a study to investigate whether CCAST mission length influences performance. Describing and understanding the role of a CCAST enabled fatigue to be defined. Factors essential to studying fatigue were then identified that were used to develop a theoretical model for designing a study to measure the effects of fatigue on CCAST performance. Relevant factors include the patient's clinical condition, team members' cognition and vigilance levels, and the occupational aviation environment. Further factors influencing overall performance include the duration and complexity of patient interventions, mission length, circadian influences, and fatigue countermeasures. PMID:20683231

  12. 2010-2011 Performance of the AirNow Satellite Data Processor

    NASA Astrophysics Data System (ADS)

    Pasch, A. N.; DeWinter, J. L.; Haderman, M. D.; van Donkelaar, A.; Martin, R. V.; Szykman, J.; White, J. E.; Dickerson, P.; Zahn, P. H.; Dye, T. S.

    2012-12-01

    The U.S. Environmental Protection Agency's (EPA) AirNow program provides maps of real time hourly Air Quality Index (AQI) conditions and daily AQI forecasts nationwide (http://www.airnow.gov). The public uses these maps to make health-based decisions. The usefulness of the AirNow air quality maps depends on the accuracy and spatial coverage of air quality measurements. Currently, the maps use only ground-based measurements, which have significant gaps in coverage in some parts of the United States. As a result, contoured AQI levels have high uncertainty in regions far from monitors. To improve the usefulness of air quality maps, scientists at EPA, Dalhousie University, and Sonoma Technology, Inc. have been working in collaboration with the National Aeronautics and Space Administration (NASA) and the National Oceanic and Atmospheric Administration (NOAA) to incorporate satellite-estimated surface PM2.5 concentrations into the maps via the AirNow Satellite Data Processor (ASDP). These satellite estimates are derived using NASA/NOAA satellite aerosol optical depth (AOD) retrievals and GEOS-Chem modeled ratios of surface PM2.5 concentrations to AOD. GEOS-Chem is a three-dimensional chemical transport model for atmospheric composition driven by meteorological input from the Goddard Earth Observing System (GOES). The ASDP can fuse multiple PM2.5 concentration data sets to generate AQI maps with improved spatial coverage. The goal of ASDP is to provide more detailed AQI information in monitor-sparse locations and augment monitor-dense locations with more information. We will present a statistical analysis for 2010-2011 of the ASDP predictions of PM2.5 focusing on performance at validation sites. In addition, we will present several case studies evaluating the ASDP's performance for multiple regions and seasons, focusing specifically on days when large spatial gradients in AQI and wildfire smoke impact were observed.

  13. Indoor Air Quality in 24 California Residences Designed as High-Performance Homes

    SciTech Connect

    Less, Brennan; Mullen, Nasim; Singer, Brett; Walker, Iain

    2015-07-01

    Today’s high performance green homes are reaching previously unheard of levels of airtightness and are using new materials, technologies and strategies, whose impacts on Indoor Air Quality (IAQ) cannot be fully anticipated from prior studies. This research study used pollutant measurements, home inspections, diagnostic testing and occupant surveys to assess IAQ in 24 new or deeply retrofitted homes designed to be high performance green buildings in California.

  14. Performance and evaluation of gas engine driven rooftop air conditioning equipment at the Willow Grove (PA) Naval Air Station

    SciTech Connect

    Armstrong, P.R.; Conover, D.R.

    1993-05-01

    In a field evaluation conducted for the US Department of Energy (DOE) Office of Federal Energy Management Program (FEMP), the Pacific Northwest Laboratory (PNL) examined the performance of a new US energy-related technology under the FEMP Test Bed Demonstration Program. The technology was a 15-ton natural gas engine driven roof top air conditioning unit. Two such units were installed on a naval retail building to provide space conditioning to the building. Under the Test Bed Demonstration Program, private and public sector interests are focused to support the installation and evaluation of new US technologies in the federal sector. Participating in this effort under a Cooperative Research and Development Agreement (CRADA) with DOE were the American Gas Cooling Center, Philadelphia Electric Company, Thermo King Corporation, and the US Naval Air Station at Willow Grove, Pennsylvania. Equipment operating and service data as well as building interior and exterior conditions were secured for the 1992 cooling season. Based on a computer assessment of the building using standard weather data, a comparison was made with the energy and operating costs associated with the previous space conditioning system. Based on performance during the 1992 cooling season and adjusted to a normal weather year, the technology will save the site $6,000/yr in purchased energy costs. An additional $9,000 in savings due to electricity demand ratchet charge reductions will also be realized. Detailed information on the technology, the installation, and the results of the technology test are provided to illustrate the advantages to the federal sector of using this technology. A history of the CRADA development process is also reported.

  15. 75 FR 48552 - Automatic Dependent Surveillance-Broadcast (ADS-B) Out Performance Requirements To Support Air...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-11

    ... (ADS-B) Out Performance Requirements To Support Air Traffic Control (ATC) Service; OMB Approval of..., ``Automatic Dependent Surveillance- Broadcast (ADS-B) Out Performance Requirements To Support Air Traffic... rule, ``Automatic Dependent Surveillance-Broadcast (ADS-B) Out Performance Requirements To Support...

  16. Development of a Ventilation and Air-conditioning System using Fixed Bed Desiccant Units

    NASA Astrophysics Data System (ADS)

    Miyazaki, Takahiko; Akisawa, Atsushi; Shindoh, Shinji; Masazumi, Godo; Takeshi, Takatsuka; Hamamoto, Yoshinori; Mori, Hideo

    The study investigated fixed bed desiccant units for ventilation and air-conditioning. The system mainly dehumidifies the outdoor fresh air to be supplied to an air-conditioned room. Hence, the airconditioning load of the air-conditioner in the room can be mitigated. Several adsorbents were compared from the viewpoints of humidity ratio at the outlet of the desiccant unit, dehumidified quantity per unit volume, and dehumidified quantity per unit adsorbent mass. The performance of the desiccant unit was predicted by simulation which was validated by comparison with experiment. The results revealed the most suitable adsorbent to reduce the desiccant unit size. It was also found that the humidity ratio at the outlet of the desiccant unit could be lowered by shortening the dimensionless switching time.

  17. Shampoo and Conditioners: What a Dermatologist Should Know?

    PubMed Central

    D'Souza, Paschal; Rathi, Sanjay K

    2015-01-01

    Dermatologists many a times encounter questions from patients and even colleagues asking about how to keep their hair looking clean, healthy and beautiful. Therefore, familiarity and a basic knowledge of the available hair care products will help them to guide their patients properly. A shampoo not only provides the cleaning of the scalp skin and hair as its primary function, but in addition also serves to condition and beautify hair and acts as an adjunct in the management of various scalp disorders. To achieve this, various ingredients in the correct proportion are mixed to provide a shampoo which is suitable for individuals having different hair types and hair need. Among the ingredients that go into the making of a shampoo are detergents, conditioners, thickeners, sequestering agents, pH adjusters, preservatives and specialty additives. Hair conditioners are designed to improve hair manageability, decrease hair static electricity and add luster. They are used in several ways depending upon the state of hair and requirement of the individual. This article attempts to put forward the basic and practical aspects regarding use of these products. PMID:26120149

  18. Performance of Silica Gel in the Role of Residual Air Drying

    NASA Technical Reports Server (NTRS)

    Jan, Darrell L.; Hogan, John A.; Koss, Brian; Palmer, Gary H.; Richardson, Justine; Linggi, Paul

    2014-01-01

    Removal of carbon dioxide (CO2) is a necessary step in air revitalization and is often accomplished with sorbent materials. Since moisture competes with CO2 in sorbent materials, it is necessary to remove the water first. This is typically accomplished in two stages: bulk removal and residual drying. Silica gel is used as the bulk drying material in the Carbon Dioxide Removal Assembly (CDRA) in operation on ISS. There has been some speculation that silica gel may also be capable of serving as the residual drying material. This paper will describe test apparatus and procedures for determining the performance of silica gel in residual air drying.

  19. Performance studies of energy consumption for single and multiple nozzle systems under impinging air jets

    NASA Astrophysics Data System (ADS)

    Etemoglu, Akin Burak; Can, Muhiddin

    2013-08-01

    Impinging air jets of various shapes, sizes and configurations are commonly used in heating, cooling and drying industrial processes. An analytical study has been carried out to optimise the thermal performance of single and multiple nozzle systems using impinging air jets. The optimisation of the nozzle array was given for practical purposes. The results show that within practical limits, a narrower nozzle size results in a greater heat and mass transfer coefficient. An economical analysis of the drying processes is also given for slot nozzles.

  20. Effects of Automation Types on Air Traffic Controller Situation Awareness and Performance

    NASA Technical Reports Server (NTRS)

    Sethumadhavan, A.

    2009-01-01

    The Joint Planning and Development Office has proposed the introduction of automated systems to help air traffic controllers handle the increasing volume of air traffic in the next two decades (JPDO, 2007). Because fully automated systems leave operators out of the decision-making loop (e.g., Billings, 1991), it is important to determine the right level and type of automation that will keep air traffic controllers in the loop. This study examined the differences in the situation awareness (SA) and collision detection performance of individuals when they worked with information acquisition, information analysis, decision and action selection and action implementation automation to control air traffic (Parasuraman, Sheridan, & Wickens, 2000). When the automation was unreliable, the time taken to detect an upcoming collision was significantly longer for all the automation types compared with the information acquisition automation. This poor performance following automation failure was mediated by SA, with lower SA yielding poor performance. Thus, the costs associated with automation failure are greater when automation is applied to higher order stages of information processing. Results have practical implications for automation design and development of SA training programs.

  1. Finger Flexor Force Influences Performance in Senior Male Air Pistol Olympic Shooting

    PubMed Central

    Mon, Daniel; Zakynthinaki, María S.; Cordente, Carlos A.; Antón, Antonio J. Monroy; Rodríguez, Bárbara Rodríguez; Jiménez, David López

    2015-01-01

    The ability to stabilize the gun is crucial for performance in Olympic pistol shooting and is thought to be related to the shooters muscular strength. The present study examines the relation between performance and finger flexor force as well as shoulder abduction isometric force in senior male air pistol shooting. 46 Spanish national level shooters served as test subjects of the study. Two maximal force tests were carried out recording handgrip and deltoid force data under competition conditions, during the official training time at national Spanish championships. Performance was measured as the total score of 60 shots at competition. Linear regressions were calculated to examine the relations between performance and peak and average finger flexor forces, peak and average finger flexor forces relative to the BMI, peak and average shoulder abduction isometric forces, peak shoulder abduction isometric force relative to the BMI. The connection between performance and other variables such as age, weight, height, BMI, experience in years and training hours per week was also analyzed. Significant correlations were found between performance at competition and average and peak finger flexor forces. For the rest of the force variables no significant correlations were found. Significant correlations were also found between performance at competition and experience as well as training hours. No significant correlations were found between performance and age, weight, height or BMI. The study concludes that hand grip strength training programs are necessary for performance in air pistol shooting. PMID:26121145

  2. Finger Flexor Force Influences Performance in Senior Male Air Pistol Olympic Shooting.

    PubMed

    Mon, Daniel; Zakynthinaki, María S; Cordente, Carlos A; Antón, Antonio J Monroy; Rodríguez, Bárbara Rodríguez; Jiménez, David López

    2015-01-01

    The ability to stabilize the gun is crucial for performance in Olympic pistol shooting and is thought to be related to the shooters muscular strength. The present study examines the relation between performance and finger flexor force as well as shoulder abduction isometric force in senior male air pistol shooting. 46 Spanish national level shooters served as test subjects of the study. Two maximal force tests were carried out recording handgrip and deltoid force data under competition conditions, during the official training time at national Spanish championships. Performance was measured as the total score of 60 shots at competition. Linear regressions were calculated to examine the relations between performance and peak and average finger flexor forces, peak and average finger flexor forces relative to the BMI, peak and average shoulder abduction isometric forces, peak shoulder abduction isometric force relative to the BMI. The connection between performance and other variables such as age, weight, height, BMI, experience in years and training hours per week was also analyzed. Significant correlations were found between performance at competition and average and peak finger flexor forces. For the rest of the force variables no significant correlations were found. Significant correlations were also found between performance at competition and experience as well as training hours. No significant correlations were found between performance and age, weight, height or BMI. The study concludes that hand grip strength training programs are necessary for performance in air pistol shooting. PMID:26121145

  3. The Thermal Performance and Air Leakage Characteristics of Six Log Homes in Idaho.

    SciTech Connect

    Roos, Carolyn; Eklund, Ken; Baylon, David

    1993-08-01

    The thermal performance and air leakage characteristics of four electrically heated log houses located in Idaho are summarized. The air leakage and construction characteristics of two additional log homes are also examined. The energy consumption of the four homes was submetered at weekly reporting intervals for up to 16 months. Blower door tests and site audits were performed. In addition, conditions at two of these homes, including heat flux through the log walls, indoor and outdoor temperatures, solar flux and envelope tightness, were measured in detail over several days during winter conditions. The energy use and thermal performance of these two homes were then modeled using SUNCODE-PC, an hourly thermal simulation program employing a finite difference technique.

  4. Energy Performance Comparison of Heating and Air Conditioning Systems for Multi-Family Residential Buildings

    SciTech Connect

    Wang, Weimin; Zhang, Jian; Jiang, Wei; Liu, Bing

    2011-07-31

    The type of heating, ventilation and air conditioning (HVAC) system has a large impact on the heating and cooling energy consumption in multifamily residential buildings. This paper compares the energy performance of three HVAC systems: a direct expansion (DX) split system, a split air source heat pump (ASHP) system, and a closed-loop water source heat pump (WSHP) system with a boiler and an evaporative fluid cooler as the central heating and cooling source. All three systems use gas furnace for heating or heating backup. The comparison is made in a number of scenarios including different climate conditions, system operation schemes and applicable building codes. It is found that with the minimum code-compliant equipment efficiency, ASHP performs the best among all scenarios except in extremely code climates. WSHP tends to perform better than the split DX system in cold climates but worse in hot climates.

  5. The Impact of Trajectory Prediction Uncertainty on Air Traffic Controller Performance and Acceptability

    NASA Technical Reports Server (NTRS)

    Mercer, Joey S.; Bienert, Nancy; Gomez, Ashley; Hunt, Sarah; Kraut, Joshua; Martin, Lynne; Morey, Susan; Green, Steven M.; Prevot, Thomas; Wu, Minghong G.

    2013-01-01

    A Human-In-The-Loop air traffic control simulation investigated the impact of uncertainties in trajectory predictions on NextGen Trajectory-Based Operations concepts, seeking to understand when the automation would become unacceptable to controllers or when performance targets could no longer be met. Retired air traffic controllers staffed two en route transition sectors, delivering arrival traffic to the northwest corner-post of Atlanta approach control under time-based metering operations. Using trajectory-based decision-support tools, the participants worked the traffic under varying levels of wind forecast error and aircraft performance model error, impacting the ground automations ability to make accurate predictions. Results suggest that the controllers were able to maintain high levels of performance, despite even the highest levels of trajectory prediction errors.

  6. Environmental performance of air staged combustor with flue gas recirculation to burn coal/biomass

    SciTech Connect

    Anuar, S.H.; Keener, H.M.

    1995-12-31

    The environmental and thermal performance of a 1.07 m diameter, 440 kW atmospheric fluidized bed combustor operated at 700{degrees}C-920{degrees}C and burning coal was studied. Flue gas recirculation was incorporated to enhance the thermal performance and air staging was used to control emissions of SO{sub 2}, CO, NO{sub x} and N{sub 2}O. Studies focused on the effect of excess air, firing rate, and use of sorbent on system performance. The recirculation-staging mode with limestone had the highest thermal efficiency (0.67) using the firing equation. Emission data showed that flue gas recirculation (ratio of 0.7) significantly reduced NO{sub x} emissions; and that use of limestone sorbent at a Ca/S ratio of 3 reduced SO{sub 2} emissions by 64% to approximately 0.310 g/MJ.

  7. Effects of simulated domestic and international air travel on sleep, performance, and recovery for team sports.

    PubMed

    Fowler, P; Duffield, R; Vaile, J

    2015-06-01

    The present study examined effects of simulated air travel on physical performance. In a randomized crossover design, 10 physically active males completed a simulated 5-h domestic flight (DOM), 24-h simulated international travel (INT), and a control trial (CON). The mild hypoxia, seating arrangements, and activity levels typically encountered during air travel were simulated in a normobaric, hypoxic altitude room. Physical performance was assessed in the afternoon of the day before (D - 1 PM) and in the morning (D + 1 AM) and afternoon (D + 1 PM) of the day following each trial. Mood states and physiological and perceptual responses to exercise were also examined at these time points, while sleep quantity and quality were monitored throughout each condition. Sleep quantity and quality were significantly reduced during INT compared with CON and DOM (P < 0.01). Yo-Yo Intermittent Recovery level 1 test performance was significantly reduced at D + 1 PM following INT compared with CON and DOM (P < 0.01), where performance remained unchanged (P > 0.05). Compared with baseline, physiological and perceptual responses to exercise, and mood states were exacerbated following the INT trial (P < 0.05). Attenuated intermittent-sprint performance following simulated international air travel may be due to sleep disruption during travel and the subsequent exacerbated physiological and perceptual markers of fatigue. PMID:24750359

  8. Experimental performance study of a proposed desiccant based air conditioning system.

    PubMed

    Bassuoni, M M

    2014-01-01

    An experimental investigation on the performance of a proposed hybrid desiccant based air conditioning system referred as HDBAC is introduced in this paper. HDBAC is mainly consisted of a liquid desiccant dehumidification unit integrated with a vapor compression system (VCS). The VCS unit has a cooling capacity of 5.27 kW and uses 134a as refrigerant. Calcium chloride (CaCl2) solution is used as the working desiccant material. HDBAC system is used to serve low sensible heat factor applications. The effect of different parameters such as, process air flow rate, desiccant solution flow rate, evaporator box and condenser box solution temperatures, strong solution concentration and regeneration temperature on the performance of the system is studied. The performance of the system is evaluated using some parameters such as: the coefficient of performance (COPa), specific moisture removal and energy saving percentage. A remarkable increase of about 54% in the coefficient of performance of the proposed system over VCS with reheat is achieved. A maximum overall energy saving of about 46% is observed which emphasizes the use of the proposed system as an energy efficient air conditioning system. PMID:25685475

  9. Experimental performance study of a proposed desiccant based air conditioning system

    PubMed Central

    Bassuoni, M.M.

    2013-01-01

    An experimental investigation on the performance of a proposed hybrid desiccant based air conditioning system referred as HDBAC is introduced in this paper. HDBAC is mainly consisted of a liquid desiccant dehumidification unit integrated with a vapor compression system (VCS). The VCS unit has a cooling capacity of 5.27 kW and uses 134a as refrigerant. Calcium chloride (CaCl2) solution is used as the working desiccant material. HDBAC system is used to serve low sensible heat factor applications. The effect of different parameters such as, process air flow rate, desiccant solution flow rate, evaporator box and condenser box solution temperatures, strong solution concentration and regeneration temperature on the performance of the system is studied. The performance of the system is evaluated using some parameters such as: the coefficient of performance (COPa), specific moisture removal and energy saving percentage. A remarkable increase of about 54% in the coefficient of performance of the proposed system over VCS with reheat is achieved. A maximum overall energy saving of about 46% is observed which emphasizes the use of the proposed system as an energy efficient air conditioning system. PMID:25685475

  10. Carbon and Binder-Free Air Electrodes Composed of Co3O4 Nanofibers for Li-Air Batteries with Enhanced Cyclic Performance

    NASA Astrophysics Data System (ADS)

    Lee, Chan Kyu; Park, Yong Joon

    2015-08-01

    In this study, to fabricate a carbon free (C-free) air electrode, Co3O4 nanofibers were grown directly on a Ni mesh to obtain Co3O4 with a high surface area and good contact with the current collector (the Ni mesh). In Li-air cells, any C present in the air electrode promotes unwanted side reactions. Therefore, the air electrode composed of only Co3O4 nanofibers (i.e., C-free) was expected to suppress these side reactions, such as the decomposition of the electrolyte and formation of Li2CO3, which would in turn enhance the cyclic performance of the cell. As predicted, the Co3O4-nanofiber electrode successfully reduced the accumulation of reaction products during cycling, which was achieved through the suppression of unwanted side reactions. In addition, the cyclic performance of the Li-air cell was superior to that of a standard electrode composed of carbonaceous material.

  11. Performance evaluation of radiant cooling system integrated with air system under different operational strategies

    SciTech Connect

    Khan, Yasin; Khare, Vaibhav Rai; Mathur, Jyotirmay; Bhandari, Mahabir

    2015-06-01

    The paper describes a parametric study developed to estimate the energy savings potential of a radiant cooling system installed in a commercial building in India. The study is based on numerical modeling of a radiant cooling system installed in an Information Technology (IT) office building sited in the composite climate of Hyderabad. To evaluate thermal performance and energy consumption, simulations were carried out using the ANSYS FLUENT and EnergyPlus softwares, respectively. The building model was calibrated using the measured data for the installed radiant system. Then this calibrated model was used to simulate the energy consumption of a building using a conventional all-air system to determine the proportional energy savings. For proper handling of the latent load, a dedicated outside air system (DOAS) was used as an alternative to Fan Coil Unit (FCU). A comparison of energy consumption calculated that the radiant system was 17.5 % more efficient than a conventional all-air system and that a 30% savings was achieved by using a DOAS system compared with a conventional system. Computational Fluid Dynamics (CFD) simulation was performed to evaluate indoor air quality and thermal comfort. It was found that a radiant system offers more uniform temperatures, as well as a better mean air temperature range, than a conventional system. To further enhance the energy savings in the radiant system, different operational strategies were analyzed based on thermal analysis using EnergyPlus. The energy savings achieved in this parametric run were more than 10% compared with a conventional all-air system.

  12. Performance evaluation of radiant cooling system integrated with air system under different operational strategies

    DOE PAGESBeta

    Khan, Yasin; Khare, Vaibhav Rai; Mathur, Jyotirmay; Bhandari, Mahabir

    2015-03-26

    The paper describes a parametric study developed to estimate the energy savings potential of a radiant cooling system installed in a commercial building in India. The study is based on numerical modeling of a radiant cooling system installed in an Information Technology (IT) office building sited in the composite climate of Hyderabad. To evaluate thermal performance and energy consumption, simulations were carried out using the ANSYS FLUENT and EnergyPlus softwares, respectively. The building model was calibrated using the measured data for the installed radiant system. Then this calibrated model was used to simulate the energy consumption of a building usingmore » a conventional all-air system to determine the proportional energy savings. For proper handling of the latent load, a dedicated outside air system (DOAS) was used as an alternative to Fan Coil Unit (FCU). A comparison of energy consumption calculated that the radiant system was 17.5 % more efficient than a conventional all-air system and that a 30% savings was achieved by using a DOAS system compared with a conventional system. Computational Fluid Dynamics (CFD) simulation was performed to evaluate indoor air quality and thermal comfort. It was found that a radiant system offers more uniform temperatures, as well as a better mean air temperature range, than a conventional system. To further enhance the energy savings in the radiant system, different operational strategies were analyzed based on thermal analysis using EnergyPlus. Lastly, the energy savings achieved in this parametric run were more than 10% compared with a conventional all-air system.« less

  13. Performance evaluation of radiant cooling system integrated with air system under different operational strategies

    SciTech Connect

    Khan, Yasin; Khare, Vaibhav Rai; Mathur, Jyotirmay; Bhandari, Mahabir

    2015-03-26

    The paper describes a parametric study developed to estimate the energy savings potential of a radiant cooling system installed in a commercial building in India. The study is based on numerical modeling of a radiant cooling system installed in an Information Technology (IT) office building sited in the composite climate of Hyderabad. To evaluate thermal performance and energy consumption, simulations were carried out using the ANSYS FLUENT and EnergyPlus softwares, respectively. The building model was calibrated using the measured data for the installed radiant system. Then this calibrated model was used to simulate the energy consumption of a building using a conventional all-air system to determine the proportional energy savings. For proper handling of the latent load, a dedicated outside air system (DOAS) was used as an alternative to Fan Coil Unit (FCU). A comparison of energy consumption calculated that the radiant system was 17.5 % more efficient than a conventional all-air system and that a 30% savings was achieved by using a DOAS system compared with a conventional system. Computational Fluid Dynamics (CFD) simulation was performed to evaluate indoor air quality and thermal comfort. It was found that a radiant system offers more uniform temperatures, as well as a better mean air temperature range, than a conventional system. To further enhance the energy savings in the radiant system, different operational strategies were analyzed based on thermal analysis using EnergyPlus. Lastly, the energy savings achieved in this parametric run were more than 10% compared with a conventional all-air system.

  14. Performance of the AIRS Pulse Tube Coolers and Instrument—A First Year in Space

    NASA Astrophysics Data System (ADS)

    Ross, R. G.; Rodriguez, J. I.

    2004-06-01

    Launched on NASA's Aqua platform on May 4, 2002, JPL's Atmospheric Infrared Sounder (AIRS) instrument has completed a successful first year in space and captured a number of important lessons. AIRS is designed to make precision measurements of air temperature over the surface of the Earth and uses a redundant pair of TRW 55 K pulse tube cryocoolers to cool its sensitive IR focal plane. Soon after the instrument went cold, contamination of cryogenic surfaces led to increased cooler loads and the need for decontamination cycles. In addition, single event transients occurred while passing through the South Atlantic Anomaly (SAA) necessitating corrective actions. In November 2002 the fundamental operating strategy of the AIRS instrument was changed from the original strategy of running a single cooler and having the second cooler as a non-operating backup. Instead, based on a new system-level reliability analysis, both coolers began operation simultaneously. This change resolved the contamination and SAA driven interruptions and has enabled unprecedented levels of continuous science measurements. A review of the AIRS instrument cryogenic performance over the past year is presented including its contamination buildup and interrupt history. The reliability analysis conducted to justify two-cooler operation is also reviewed.

  15. Integrated air stream micromixer for performing bioanalytical assays on a plastic chip.

    PubMed

    Geissler, Matthias; Li, Kebin; Zhang, Xuefeng; Clime, Liviu; Robideau, Gregg P; Bilodeau, Guillaume J; Veres, Teodor

    2014-10-01

    This paper describes the design, functioning and use of an integrated mixer that relies on air flux to agitate microliter entities of fluid in an embedded microfluidic cavity. The system was fabricated from multiple layers of a thermoplastic elastomer and features circuits for both liquid and air supply along with pneumatic valves for process control. Internally-dyed polymer particles have been used to visualize flow within the fluid phase during agitation. Numerical modelling of the micromixer revealed an overall efficacy of 10(-1) to 10(-2) for momentum transfer at the air-water interface. Simulation of air vortex dynamics showed dependency of the flow pattern on the velocity of the flux entering the cavity. Three bioanalytical assays have been performed as proof-of-concept demonstrations. In a first assay, cells of Listeria monocytogenes were combined with magnetic nanoparticles (NPs), resulting in high-density coverage of the bacteria's surface with NPs after 1 min of agitation. This finding is contrasted by a control experiment without agitation for which interaction between bacteria and NPs remains low. In a second one, capture and release of genomic DNA from fungi through adsorption onto magnetic beads was tested and shown to be improved by agitation compared to non-agitated controls. A third assay finally involved fluorescently-labelled target oligonucleotide strands and polystyrene particles modified with DNA capture probes to perform detection of nucleic acids on beads. Excellent selectivity was obtained in a competitive hybridization process using a multiplexed micromixer chip design. PMID:25091476

  16. The Role of Radial Clearance on the Performance of Foil Air Bearings

    NASA Technical Reports Server (NTRS)

    Radil, Kevin; Howard, Samuel; Dykas, Brian

    2002-01-01

    Load capacity tests were conducted to determine how radial clearance variations affect the load capacity coefficient of foil air bearings. Two Generation III foil air bearings with the same design but possessing different initial radial clearances were tested at room temperature against an as-ground PS304 coated journal operating at 30,000 rpm. Increases in radial clearance were accomplished by reducing the journal's outside diameter via an in-place grinding system. From each load capacity test the bearing load capacity coefficient was calculated from the rule-of-thumb (ROT) model developed for foil air bearings. The test results indicate that, in terms of the load capacity coefficient, radial clearance has a direct impact on the performance of the foil air bearing. Each test bearing exhibited an optimum radial clearance that resulted in a maximum load capacity coefficient. Relative to this optimum value are two separate operating regimes that are governed by different modes of failure. Bearings operating with radial clearances less than the optimum exhibit load capacity coefficients that are a strong function of radial clearance and are prone to a thermal runaway failure mechanism and bearing seizure. Conversely, a bearing operating with a radial clearance twice the optimum suffered only a 20 percent decline in its maximum load capacity coefficient and did not experience any thermal management problems. However, it is unknown to what degree these changes in radial clearance had on other performance parameters, such as the stiffness and damping properties of the bearings.

  17. Performance comparison of air- and ground-coupled heat pump systems. Final report

    SciTech Connect

    Parker, J.D.; Kavanaugh, S.; Ramanathan, R.

    1984-01-01

    Research initiated in 1979 to compare the performance of air-coupled and ground-coupled heat pumps is described. Three heat pump systems were installed in small, neighboring all-electric residences served by the Oklahoma Gas and Electric Company in Perkins, Oklahoma. An air-coupled heat pump and two ground-coupled heat pumps - one with solar assistance - were field tested. However, equipment and instrumentation problems precluded gathering meaningful data for the solar-assisted ground-coupled system. Generally, the unassisted ground-coupled heat pump system proved superior to the air-coupled system, both in reducing peak demand and in consuming less energy on an annual basis. The unassisted ground-coupled system reduced summer and winter peak demand, and experienced no performance degradation due to buildup of rejected waste heat in the ground well. A polyethylene U-tube ground heat exchanger was installed in both ground-coupled systems midway through the project, replacing a five-inch annular PVC pipe arrangement that had functioned poorly. The U-tube performed well throughout the remainder of research. Differing lifestyles and thermostat changes by building occupants during the monitoring period produced quite different demands and loads in the test houses, but when results were normalized through simulation, the superior performance of the unassisted ground-coupled heat pump was confirmed.

  18. Performance evaluation of the Solar Building Test Facility

    NASA Technical Reports Server (NTRS)

    Jensen, R. N.

    1981-01-01

    The general performance of the NASA Solar Building Test Facility (SBTF) and its subsystems and components over a four year operational period is discussed, and data are provided for a typical one year period. The facility consists of a 4645 sq office building modified to accept solar heated water for operation of an absorption air conditioner and a baseboard heating system. An adjoining 1176 sq solar flat plate collector field with a 114 cu tank provides the solar heated water. The solar system provided 57 percent of the energy required for heating and cooling on an annual basis. The average efficiency of the solar collectors was 26 percent over a one year period.

  19. Magnetic Refrigeration Technology for High Efficiency Air Conditioning

    SciTech Connect

    Boeder, A; Zimm, C

    2006-09-30

    Magnetic refrigeration was investigated as an efficient, environmentally friendly, flexible alternative to conventional residential vapor compression central air conditioning systems. Finite element analysis (FEA) models of advanced geometry active magnetic regenerator (AMR) beds were developed to minimize bed size and thus magnet mass by optimizing geometry for fluid flow and heat transfer and other losses. Conventional and magnetocaloric material (MCM) regenerator fabrication and assembly techniques were developed and advanced geometry passive regenerators were built and tested. A subscale engineering prototype (SEP) magnetic air conditioner was designed, constructed and tested. A model of the AMR cycle, combined with knowledge from passive regenerator experiments and FEA results, was used to design the regenerator beds. A 1.5 Tesla permanent magnet assembly was designed using FEA and the bed structure and plenum design was extensively optimized using FEA. The SEP is a flexible magnetic refrigeration platform, with individually instrumented beds and high flow rate and high frequency capability, although the current advanced regenerator geometry beds do not meet performance expectations, probably due to manufacturing and assembly tolerances. A model of the AMR cycle was used to optimize the design of a 3 ton capacity magnetic air conditioner, and the system design was iterated to minimize external parasitic losses such as heat exchanger pressure drop and fan power. The manufacturing cost for the entire air conditioning system was estimated, and while the estimated SEER efficiency is high, the magnetic air conditioning system is not cost competitive as currently configured. The 3 ton study results indicate that there are other applications where magnetic refrigeration is anticipated to have cost advantages over conventional systems, especially applications where magnetic refrigeration, through the use of its aqueous heat transfer fluid, could eliminate intermediate

  20. Co3O4 nanoparticles decorated carbon nanofiber mat as binder-free air-cathode for high performance rechargeable zinc-air batteries.

    PubMed

    Li, Bing; Ge, Xiaoming; Goh, F W Thomas; Hor, T S Andy; Geng, Dongsheng; Du, Guojun; Liu, Zhaolin; Zhang, Jie; Liu, Xiaogang; Zong, Yun

    2015-02-01

    An efficient, durable and low cost air-cathode is essential for a high performance metal-air battery for practical applications. Herein, we report a composite bifunctional catalyst, Co3O4 nanoparticles-decorated carbon nanofibers (CNFs), working as an efficient air-cathode in high performance rechargeable Zn-air batteries (ZnABs). The particles-on-fibers nanohybrid materials were derived from electrospun metal-ion containing polymer fibers followed by thermal carbonization and a post annealing process in air at a moderate temperature. Electrochemical studies suggest that the nanohybrid material effectively catalyzes oxygen reduction reaction via an ideal 4-electron transfer process and outperforms Pt/C in catalyzing oxygen evolution reactions. Accordingly, the prototype ZnABs exhibit a low discharge-charge voltage gap (e.g. 0.7 V, discharge-charge at 2 mA cm(-2)) with higher stability and longer cycle life compared to their counterparts constructed using Pt/C in air-cathode. Importantly, the hybrid nanofiber mat readily serves as an integrated air-cathode without the need of any further modification. Benefitting from its efficient catalytic activities and structural advantages, particularly the 3D architecture of highly conductive CNFs and the high loading density of strongly attached Co3O4 NPs on their surfaces, the resultant ZnABs show significantly improved performance with respect to the rate capability, cycling stability and current density, promising good potential in practical applications. PMID:25522330

  1. Seasonal versus Episodic Performance Evaluation for an Eulerian Photochemical Air Quality Model

    SciTech Connect

    Jin, Ling; Brown, Nancy J.; Harley, Robert A.; Bao, Jian-Wen; Michelson, Sara A; Wilczak, James M

    2010-04-16

    This study presents detailed evaluation of the seasonal and episodic performance of the Community Multiscale Air Quality (CMAQ) modeling system applied to simulate air quality at a fine grid spacing (4 km horizontal resolution) in central California, where ozone air pollution problems are severe. A rich aerometric database collected during the summer 2000 Central California Ozone Study (CCOS) is used to prepare model inputs and to evaluate meteorological simulations and chemical outputs. We examine both temporal and spatial behaviors of ozone predictions. We highlight synoptically driven high-ozone events (exemplified by the four intensive operating periods (IOPs)) for evaluating both meteorological inputs and chemical outputs (ozone and its precursors) and compare them to the summer average. For most of the summer days, cross-domain normalized gross errors are less than 25% for modeled hourly ozone, and normalized biases are between {+-}15% for both hourly and peak (1 h and 8 h) ozone. The domain-wide aggregated metrics indicate similar performance between the IOPs and the whole summer with respect to predicted ozone and its precursors. Episode-to-episode differences in ozone predictions are more pronounced at a subregional level. The model performs consistently better in the San Joaquin Valley than other air basins, and episodic ozone predictions there are similar to the summer average. Poorer model performance (normalized peak ozone biases <-15% or >15%) is found in the Sacramento Valley and the Bay Area and is most noticeable in episodes that are subject to the largest uncertainties in meteorological fields (wind directions in the Sacramento Valley and timing and strength of onshore flow in the Bay Area) within the boundary layer.

  2. Analytical predictions of liquid and air photovoltaic/thermal flat-plate collector performance

    SciTech Connect

    Raghuraman, P.; Hendrie, S.D.

    1980-01-01

    Two separate one-dimensional analyses have been developed for the prediction of the thermal and electrical performance of both liquid and air flat-plate photovoltaic/thermal (PV/T) collectors. The analyses account for the temperature difference between the primary insolation absorber (the photovoltaic cells) and the secondary absorber (a thermal absorber flat plate). The results of the analyses are compared with test measurements, and therefrom, design recommendations are made to maximize the total energy extracted from the collectors.

  3. Materials performance in the atmospheric fluidized-bed cogeneration air heater experiment

    SciTech Connect

    Natesan, K.; Podolski, W.; Wang, D.Y.; Teats, F.G. ); Gerritsen, W.; Stewart, A.; Robinson, K. )

    1991-02-01

    The Atmospheric Fluidized-Bed Cogeneration Air Heater Experiment (ACAHE) sponsored by the US Department of Energy (DOE) was initiated to assess the performance of various heat-exchanger materials to be used in fluidized-bed combustion air heater systems. Westinghouse Electric Corporation, through subcontracts with Babcock Wilcox, Foster Wheeler, and ABB Combustion Engineering Systems, prepared specifications and hardware for the ACAHE tests. Argonne National Laboratory contracted with Rockwell International to conduct tests in the DOE atmospheric fluidized-bed combustion facility. This report presents an overview of the project, a description of the facility and the test hardware, the test operating conditions, a summary of the operation, and the results of analyzing specimens from several uncooled and cooled probes exposed in the facility. Extensive microstructural analyses of the base alloys, claddings, coatings, and weldments were performed on specimens exposed in several probes for different lengths of time. Alloy penetration data were determined for several of the materials as a function of specimen orientation and the exposure location in the combustor. Finally, the data were compared with earlier laboratory test data, and the long-term performance of candidate materials for air-heater applications was assessed.

  4. Materials performance in the atmospheric fluidized-bed cogeneration air heater experiment

    SciTech Connect

    Natesan, K.; Podolski, W.; Wang, D.Y.; Teats, F.G.; Gerritsen, W.; Stewart, A.; Robinson, K.

    1991-02-01

    The Atmospheric Fluidized-Bed Cogeneration Air Heater Experiment (ACAHE) sponsored by the US Department of Energy (DOE) was initiated to assess the performance of various heat-exchanger materials to be used in fluidized-bed combustion air heater systems. Westinghouse Electric Corporation, through subcontracts with Babcock & Wilcox, Foster Wheeler, and ABB Combustion Engineering Systems, prepared specifications and hardware for the ACAHE tests. Argonne National Laboratory contracted with Rockwell International to conduct tests in the DOE atmospheric fluidized-bed combustion facility. This report presents an overview of the project, a description of the facility and the test hardware, the test operating conditions, a summary of the operation, and the results of analyzing specimens from several uncooled and cooled probes exposed in the facility. Extensive microstructural analyses of the base alloys, claddings, coatings, and weldments were performed on specimens exposed in several probes for different lengths of time. Alloy penetration data were determined for several of the materials as a function of specimen orientation and the exposure location in the combustor. Finally, the data were compared with earlier laboratory test data, and the long-term performance of candidate materials for air-heater applications was assessed.

  5. Solar-powered air-conditioning

    NASA Technical Reports Server (NTRS)

    Clark, D. C.; Rousseau, J.

    1977-01-01

    Report focuses on recent study on development of solar-powered residential air conditioners and is based on selected literature through 1975. Its purposes are to characterize thermal and mechanical systems that might be useful in development of Rankine-cycle approach to solar cooling and assessment of a Lithium Bromide/Water absorption cycle system.

  6. Hydrodynamic air lubricated compliant surface bearing for an automotive gas turbine engine. 1: Journal bearing performance

    NASA Technical Reports Server (NTRS)

    Ruscitto, D.; Mccormick, J.; Gray, S.

    1978-01-01

    A 38.1 mm (1.5 inch) diameter Hydresil Compliant Surface Air Lubricated Journal Bearing was designed and tested to obtain bearing performance characteristics at both room temperature and 315 C (600 F). Testing was performed at various speeds up to 60,000 rpm with varying loads. Rotating sensors provided an opportunity to examine the film characteristics of the compliant surface bearing. In addition to providing minimum film thickness values and profiles, many other insights into bearing operation were gained such as the influence of bearing fabrication accuracy and the influence of smooth foil deflection between the bumps.

  7. A Belief-Based Model of Air Traffic Controllers Performing Separation Assurance

    NASA Technical Reports Server (NTRS)

    Landry, S.J.

    2009-01-01

    A model of an air traffic controller performing a separation assurance task was produced. The model was designed to be simple to use and deploy in a simulator, but still provide realistic behavior. The model is based upon an evaluation of the safety function of the controller for separation assurance, and utilizes fast and frugal heuristics and belief networks to establish a knowledge set for the controller model. Based on this knowledge set, the controller acts to keep aircraft separated. Validation results are provided to demonstrate the model s performance.

  8. Evaluating the performance of low cost chemical sensors for air pollution research.

    PubMed

    Lewis, Alastair C; Lee, James D; Edwards, Peter M; Shaw, Marvin D; Evans, Mat J; Moller, Sarah J; Smith, Katie R; Buckley, Jack W; Ellis, Matthew; Gillot, Stefan R; White, Andrew

    2016-07-18

    Low cost pollution sensors have been widely publicized, in principle offering increased information on the distribution of air pollution and a democratization of air quality measurements to amateur users. We report a laboratory study of commonly-used electrochemical sensors and quantify a number of cross-interferences with other atmospheric chemicals, some of which become significant at typical suburban air pollution concentrations. We highlight that artefact signals from co-sampled pollutants such as CO2 can be greater than the electrochemical sensor signal generated by the measurand. We subsequently tested in ambient air, over a period of three weeks, twenty identical commercial sensor packages alongside standard measurements and report on the degree of agreement between references and sensors. We then explore potential experimental approaches to improve sensor performance, enhancing outputs from qualitative to quantitative, focusing on low cost VOC photoionization sensors. Careful signal handling, for example, was seen to improve limits of detection by one order of magnitude. The quantity, magnitude and complexity of analytical interferences that must be characterised to convert a signal into a quantitative observation, with known uncertainties, make standard individual parameter regression inappropriate. We show that one potential solution to this problem is the application of supervised machine learning approaches such as boosted regression trees and Gaussian processes emulation. PMID:27104223

  9. Resonance-mode effect on microcantilever mass-sensing performance in air.

    PubMed

    Xia, Xiaoyuan; Li, Xinxin

    2008-07-01

    This research investigates the air drag damping effect of the micromachined cantilevers in different resonance modes on the quality factor, which are operated in ambient air. Based on a simplified dish-string model for air drag force acting on the resonant cantilever, the air drag damping properties of the cantilevers vibrating in different modes are analyzed with theoretic vibration mechanics, which is complemented and further confirmed with finite-element simulation. Four kinds of integrated cantilevers, which resonate in the first flexural mode, the second flexural mode, the first torsional mode, and the second torsional mode, respectively, are designed and fabricated by using micromachining techniques. Finally, biomolecular sensing experiments are carried out to verify the theoretical results obtained before. From both the modeling and experimental results, it can be seen that damping characteristics of the torsional cantilever resonators are generally better than that of the flexural ones, and quality factor of the cantilever resonator in a higher-frequency mode is always superior to that in a lower-frequency one. Among the four kinds of microcantilever resonators operated in our experiments, the one operated in the second flexural modes exhibits the highest Q factor and the best biomass sensing performance. PMID:18681721

  10. The Sensitivity of Precooled Air-Breathing Engine Performance to Heat Exchanger Design Parameters

    NASA Astrophysics Data System (ADS)

    Webber, H.; Bond, A.; Hempsell, M.

    The issues relevant to propulsion design for Single Stage To Orbit (SSTO) vehicles are considered. In particular two air- breathing engine concepts involving precooling are compared; SABRE (Synergetic Air-Breathing and Rocket Engine) as designed for the Skylon SSTO launch vehicle, and a LACE (Liquid Air Cycle Engine) considered in the 1960's by the Americans for an early generation spaceplane. It is shown that through entropy minimisation the SABRE has made substantial gains in performance over the traditional LACE precooled engine concept, and has shown itself as the basis of a viable means of realising a SSTO vehicle. Further, it is demonstrated that the precooler is a major source of thermodynamic irreversibility within the engine cycle and that further reduction in entropy can be realised by increasing the heat transfer coefficient on the air side of the precooler. If this were to be achieved, it would improve the payload mass delivered to orbit by the Skylon launch vehicle by between 5 and 10%.

  11. Preservation of Cognitive Performance with Age during Exertional Heat Stress under Low and High Air Velocity

    PubMed Central

    Wright Beatty, Heather E.; Keillor, Jocelyn M.; Hardcastle, Stephen G.; Boulay, Pierre; Kenny, Glen P.

    2015-01-01

    Older adults may be at greater risk for occupational injuries given their reduced capacity to dissipate heat, leading to greater thermal strain and potentially cognitive decrements. Purpose. To examine the effects of age and increased air velocity, during exercise in humid heat, on information processing and attention. Methods. Nine young (24 ± 1 years) and 9 older (59 ± 1 years) males cycled 4 × 15 min (separated by 15 min rest) at a fixed rate of heat production (400 W) in humid heat (35°C, 60% relative humidity) under 0.5 (low) and 3.0 (high) m·s−1 air velocity wearing coveralls. At rest, immediately following exercise (end exercise), and after the final recovery, participants performed an abbreviated paced auditory serial addition task (PASAT, 2 sec pace). Results. PASAT numbers of correct responses at end exercise were similar for young (low = 49 ± 3; high = 51 ± 3) and older (low = 46 ± 5; high = 47 ± 4) males and across air velocity conditions, and when scored relative to age norms. Psychological sweating, or an increased sweat rate with the administration of the PASAT, was observed in both age groups in the high condition. Conclusion. No significant decrements in attention and speeded information processing were observed, with age or altered air velocity, following intermittent exercise in humid heat. PMID:25874223

  12. Resonance-mode effect on microcantilever mass-sensing performance in air

    SciTech Connect

    Xia Xiaoyuan; Li Xinxin

    2008-07-15

    This research investigates the air drag damping effect of the micromachined cantilevers in different resonance modes on the quality factor, which are operated in ambient air. Based on a simplified dish-string model for air drag force acting on the resonant cantilever, the air drag damping properties of the cantilevers vibrating in different modes are analyzed with theoretic vibration mechanics, which is complemented and further confirmed with finite-element simulation. Four kinds of integrated cantilevers, which resonate in the first flexural mode, the second flexural mode, the first torsional mode, and the second torsional mode, respectively, are designed and fabricated by using micromachining techniques. Finally, biomolecular sensing experiments are carried out to verify the theoretical results obtained before. From both the modeling and experimental results, it can be seen that damping characteristics of the torsional cantilever resonators are generally better than that of the flexural ones, and quality factor of the cantilever resonator in a higher-frequency mode is always superior to that in a lower-frequency one. Among the four kinds of microcantilever resonators operated in our experiments, the one operated in the second flexural modes exhibits the highest Q factor and the best biomass sensing performance.

  13. Performance of commercial aluminium alloys as anodes in gelled electrolyte aluminium-air batteries

    NASA Astrophysics Data System (ADS)

    Pino, M.; Chacón, J.; Fatás, E.; Ocón, P.

    2015-12-01

    The evaluation of commercial aluminium alloys, namely, Al2024, Al7475 and Al1085, for Al-air batteries is performed. Pure Al cladded Al2024 and Al7475 are also evaluated. Current rates from 0.8 mA cm-2 to 8.6 mA cm-2 are measured in a gel Al-air cell composed of the commercial alloy sample, a commercial air-cathode and an easily synthesizable gelled alkaline electrolyte. The influence of the alloying elements and the addition to the electrolyte of ZnO and ZnCl2, as corrosion inhibitors is studied and analysed via EDX/SEM. Specific capacities of up to 426 mAh/g are obtained with notably flat potential discharges of 1.3-1.4 V. The competition between self-corrosion and oxidation reactions is also discussed, as well as the influence of the current applied on that process. Al7475 is determined to have the best behaviour as anode in Al-air primary batteries, and cladding process is found to be an extra protection against corrosion at low current discharges. Conversely, Al1085 provided worse results because of an unfavourable metallic composition.

  14. Performance and economic enhancement of cogeneration gas turbines through compressor inlet air cooling

    NASA Astrophysics Data System (ADS)

    Delucia, M.; Bronconi, R.; Carnevale, E.

    1994-04-01

    Gas turbine air cooling systems serve to raise performance to peak power levels during the hot months when high atmospheric temperatures cause reductions in net power output. This work describes the technical and economic advantages of providing a compressor inlet air cooling system to increase the gas turbine's power rating and reduce its heat rate. The pros and cons of state-of-the-art cooling technologies, i.e., absorption and compression refrigeration, with and without thermal energy storage, were examined in order to select the most suitable cooling solution. Heavy-duty gas turbine cogeneration systems with and without absorption units were modeled, as well as various industrial sectors, i.e., paper and pulp, pharmaceuticals, food processing, textiles, tanning, and building materials. The ambient temperature variations were modeled so the effects of climate could be accounted for in the simulation. The results validated the advantages of gas turbine cogeneration with absorption air cooling as compared to other systems without air cooling.

  15. Performance Validation Approach for the GTX Air-Breathing Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Trefny, Charles J.; Roche, Joseph M.

    2002-01-01

    The primary objective of the GTX effort is to determine whether or not air-breathing propulsion can enable a launch vehicle to achieve orbit in a single stage. Structural weight, vehicle aerodynamics, and propulsion performance must be accurately known over the entire flight trajectory in order to make a credible assessment. Structural, aerodynamic, and propulsion parameters are strongly interdependent, which necessitates a system approach to design, evaluation, and optimization of a single-stage-to-orbit concept. The GTX reference vehicle serves this purpose, by allowing design, development, and validation of components and subsystems in a system context. The reference vehicle configuration (including propulsion) was carefully chosen so as to provide high potential for structural and volumetric efficiency, and to allow the high specific impulse of air-breathing propulsion cycles to be exploited. Minor evolution of the configuration has occurred as analytical and experimental results have become available. With this development process comes increasing validation of the weight and performance levels used in system performance determination. This paper presents an overview of the GTX reference vehicle and the approach to its performance validation. Subscale test rigs and numerical studies used to develop and validate component performance levels and unit structural weights are outlined. The sensitivity of the equivalent, effective specific impulse to key propulsion component efficiencies is presented. The role of flight demonstration in development and validation is discussed.

  16. Development of a High Performance Air Source Heat Pump for the US Market

    SciTech Connect

    Abdelaziz, Omar; Shen, Bo; Gao, Zhiming; Baxter, Van D; Iu, Ipseng

    2011-01-01

    Heat pumps present a significant advantage over conventional residential heating technologies due to higher energy efficiencies and less dependence on imported oil. The US development of heat pumps dates back to the 1930 s with pilot units being commercially available in the 1950 s. Reliable and cost competitive units were available in the US market by the 1960 s. The 1973 oil embargo led to increased interest in heat pumps prompting significant research to improve performance, particularly for cold climate locations. Recent increasing concerns on building energy efficiency and environmental emissions have prompted a new wave of research in heat pump technology with special emphasis on reducing performance degradation at colder outdoor air temperatures. A summary of the advantages and limitations of several performance improvement options sought for the development of high performance air source heat pump systems for cold climate applications is the primary focus of this paper. Some recommendations for a high performance cold climate heat pump system design most suitable for the US market are presented.

  17. Evaluation of the Air Quality Monitor's Performance on the International Space Station

    NASA Technical Reports Server (NTRS)

    Limero, Thomas; Reese, Eric; Ballard, Ken; Durham, Tamara

    2010-01-01

    The Air Quality Monitor (AQM) was flown to the International Space Station (ISS) as an experiment to evaluate its potential to replace the aging Volatile Organic Analyzer (VOA), which ceased operations in August 2009. The AQM (Figure 1) is a small gas chromatography/differential mobility spectrometer (GC/DMS) manufactured by Sionex. Data was presented at last year s ISIMS conference that detailed the preparation of the AQM for flight, including instrument calibration. Furthermore, initial AQM data was compared to VOA results from simultaneous runs of the two instruments. Although comparison with VOA data provided a measure of confidence in the AQM performance, it is the comparison with results from simultaneously acquired air samples (grab sample containers-GSCs) that will define the success (or failure) of the AQM performance. This paper will update the progress in the AQM investigation by comparing AQM data to results from the analyses of GSC samples, returned from ISS. Additionally, a couple of example will illustrate the AQM s ability to detect disruptions in the spacecraft s air quality. Discussion will also focus upon a few unexpected issues that have arisen and how these will be a addressed in the final operational unit now being built.

  18. Co3O4 nanoparticles decorated carbon nanofiber mat as binder-free air-cathode for high performance rechargeable zinc-air batteries

    NASA Astrophysics Data System (ADS)

    Li, Bing; Ge, Xiaoming; Goh, F. W. Thomas; Hor, T. S. Andy; Geng, Dongsheng; Du, Guojun; Liu, Zhaolin; Zhang, Jie; Liu, Xiaogang; Zong, Yun

    2015-01-01

    An efficient, durable and low cost air-cathode is essential for a high performance metal-air battery for practical applications. Herein, we report a composite bifunctional catalyst, Co3O4 nanoparticles-decorated carbon nanofibers (CNFs), working as an efficient air-cathode in high performance rechargeable Zn-air batteries (ZnABs). The particles-on-fibers nanohybrid materials were derived from electrospun metal-ion containing polymer fibers followed by thermal carbonization and a post annealing process in air at a moderate temperature. Electrochemical studies suggest that the nanohybrid material effectively catalyzes oxygen reduction reaction via an ideal 4-electron transfer process and outperforms Pt/C in catalyzing oxygen evolution reactions. Accordingly, the prototype ZnABs exhibit a low discharge-charge voltage gap (e.g. 0.7 V, discharge-charge at 2 mA cm-2) with higher stability and longer cycle life compared to their counterparts constructed using Pt/C in air-cathode. Importantly, the hybrid nanofiber mat readily serves as an integrated air-cathode without the need of any further modification. Benefitting from its efficient catalytic activities and structural advantages, particularly the 3D architecture of highly conductive CNFs and the high loading density of strongly attached Co3O4 NPs on their surfaces, the resultant ZnABs show significantly improved performance with respect to the rate capability, cycling stability and current density, promising good potential in practical applications.An efficient, durable and low cost air-cathode is essential for a high performance metal-air battery for practical applications. Herein, we report a composite bifunctional catalyst, Co3O4 nanoparticles-decorated carbon nanofibers (CNFs), working as an efficient air-cathode in high performance rechargeable Zn-air batteries (ZnABs). The particles-on-fibers nanohybrid materials were derived from electrospun metal-ion containing polymer fibers followed by thermal carbonization

  19. Performance Analysis of Air-to-Water Heat Pump in Latvian Climate Conditions

    NASA Astrophysics Data System (ADS)

    Kazjonovs, Janis; Sipkevics, Andrejs; Jakovics, Andris; Dancigs, Andris; Bajare, Diana; Dancigs, Leonards

    2014-12-01

    Strategy of the European Union in efficient energy usage demands to have a higher proportion of renewable energy in the energy market. Since heat pumps are considered to be one of the most efficient heating and cooling systems, they will play an important role in the energy consumption reduction in buildings aimed to meet the target of nearly zero energy buildings set out in the EU Directive 2010/31/EU. Unfortunately, the declared heat pump Coefficient of Performance (COP) corresponds to a certain outdoor temperature (+7 °C), therefore different climate conditions, building characteristics and settings result in different COP values during the year. The aim of this research is to investigate the Seasonal Performance factor (SPF) values of air-to-water heat pump which better characterize the effectiveness of heat pump in a longer selected period of time, especially during the winter season, in different types of residential buildings in Latvian climate conditions. Latvia has four pronounced seasons of near-equal length. Winter starts in mid-December and lasts until mid-March. Latvia is characterized by cold, maritime climate (duration of the average heating period being 203 days, the average outdoor air temperature during the heating period being 0.0 °C, the coldest five-day average temperature being -20.7 °C, the average annual air temperature being +6.2 °C, the daily average relative humidity being 79 %). The first part of this research consists of operational air-towater heat pump energy performance monitoring in different residential buildings during the winter season. The second part of the research takes place under natural conditions in an experimental construction stand which is located in an urban environment in Riga, Latvia. The inner area of this test stand, where air-to-water heat pump performance is analyzed, is 9 m2. The ceiling height is 3 m, all external wall constructions (U = 0.16 W/(m2K)) have ventilated facades. To calculate SPF, the

  20. The effect of prolonged exposure to 750 C air on the tribological performance of PM212

    NASA Technical Reports Server (NTRS)

    Bemis, Kirk; Bogdanski, Michael S.; Dellacorte, Christopher; Sliney, Harold E.

    1994-01-01

    The effect of prolonged exposure to 750 C air on the tribological performance and dimensional stability of PM212, a high temperature, self-lubricating composite, is studied. PM212, by weight, contains 70 percent metal-bonded Cr3C2, 15 percent BaF2/CaF2 eutectic, and 15 percent silver. Rub blocks were fabricated from PM212 by cold isostatic pressing followed by sintering. Prior to tribo-testing, the rub blocks were exposed to 750 C air for periods ranging from 100 to 1000 hours. Then, the rub blocks were slid against nickel-based superalloy disks in a double-rub-block tribometer in air under a 66 N load at temperatures from 25 to 750 C with a sliding velocity of 0.36 m/s. Unexposed rub blocks were tested for baseline comparison. Friction coefficients ranged from 0.24 to 0.37 for the unexposed rub blocks and from 0.32 to 0.56 for the exposed ones. Wear for both the composite blocks and superalloy disks was typically in the moderate to low range of 10(exp -5) to 10(exp -6) mm(exp 3)/N-m. Friction and wear data were similar for the rub blocks exposed for 100, 500, and 1000 hours. Prolonged exposure to 750 C air increased friction and wear of the PM212 rub blocks at room temperature, but their triboperformance remained unaffected at higher temperatures, probably due to the formation of lubricious metal oxides. Dimensional stability of the composite was studied by exposing specimens of varying thicknesses for 500 hours in air at 750 C. Block thicknesses were found to increase with increased exposure time until steady state was reached after 100 hours of exposure, probably due to oxidation.

  1. Research on inert gas narcosis and air velocity effects on metabolic performance

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The effects of air velocity on metabolic performance are studied by using high forced airflow in a closed environment as a mechanism to control the concentration of volatile animal wastes. Air velocities between 100 and 200 ft/min are without significant effects on the metabolism of rats. At velocities of 200 ft/min and above, oxygen consumption and CO2 production as well as food consumption increase. In most instances, the changes are on the order of 5-10%. At the same time, the RQ for the animals increases slightly and generally correlates well with oxygen consumption and CO2 production. Experiments on the nature of inert gas narcosis show that halothane and methoxyflurane are rather potent inhibitors of the NADH:O2 oxidoreductase system in rats. These experiments suggest that the mechanism of inert gas narcosis is not mandatorily related to a membrane surface phenomenon.

  2. Effects of stance angle on postural stability and performance with national-standard air pistol competitors.

    PubMed

    Hawkins, Richard Nelson

    2013-01-01

    The effects of stance angle on postural stability and shooting processes were studied using eight national-standard male air-pistol shooters. Each shooter performed 60 shots each in four stance angles (0°, 15°, 30° and 45° from the line of fire). Postural stability was determined by measuring change in centre of pressure with a dual-force platform system assessing centre-of-pressure (COP) excursion (average difference of the centre of pressure from the mean) and COP speed (total COP path divided by time). Shooting process measures were determined by using a NOPTEL ST-2000 optoelectronic system. Score was assessed with a Sius Ascor S10 electronic scoring system. The results revealed no significant difference among the various stance angles; COP excursion or COP speed, p>0.05. Results indicated a significant stance angle effect with the shooting process measure, hit fine (percentage of hold within an area the size of the 10-ring when centred over the actual shot; p = 0.025) and the shooting performance measure adjusted score (raw score adjusted for true zero; p=0.008). Moreover, best overall performance was with a stance angle of 15°. These findings suggest that stance angle may affect pistol stability and performance in air-pistol athletes. PMID:24050465

  3. A performance assessment and adjustment program for air quality monitoring networks in Shanghai

    NASA Astrophysics Data System (ADS)

    Zhao, Laijun; Xie, Yujing; Wang, Jiajia; Xu, Xiang

    2015-12-01

    In this study, we evaluated the performance of Shanghai's air quality monitoring network (AQMN) using principal components analysis, an assignment method, and cluster analysis. Our goal was to improve the utilization of monitoring stations and evaluate Shanghai's air quality more comprehensively and accurately. Specifically, we (i) identified similar pollution sources or behaviors in the monitoring areas; (ii) identified redundant monitoring stations and re-evaluated the AQMN's performance without them; and (iii) proposed adjustments to the AQMN. We used data on particulates less than 2.5 μm (PM2.5) and 10 μm (PM10) in diameter, sulfur dioxide (SO2), nitrogen dioxide (NO2), ozone (O3), and carbon monoxide (CO) at stations in and around Shanghai from 1 January to 22 August 2014. For each pollutant, we grouped the monitoring stations into clusters based on their different pollution behaviors, revealing redundancy and inefficiency in the current AQMN that resulted from the concentrated station distribution and similarity of the monitoring environments. The analysis results showed that there exist redundant stations in the current AQMN of Shanghai. Furthermore, we proposed adjustments to Shanghai's AQMN: transfer four redundant stations and build a new station in the directions of the Taicang Experimental Primary School, Kunshan Zhenchuan Middle School, Suzhou Industrial Park, Wujiang Industrial Zone, and Jiaxing Monitoring Station. Our analysis suggests that, in addition to industrial, transportation, construction, and population influences inside Shanghai, external pollutants significantly affect Shanghai's air quality. Therefore, it is necessary to jointly prevent and control regional air pollution both in Shanghai and in neighboring cities.

  4. Influence of the air gap between protective clothing and skin on clothing performance during flash fire exposure

    NASA Astrophysics Data System (ADS)

    Ghazy, Ahmed; Bergstrom, Donald J.

    2011-10-01

    A finite volume model was developed to simulate transient heat transfer in protective clothing during flash fire exposure. The model accounts for the combined conduction-radiation heat transfer in the air gap between the fabric and skin. The variation in the fabric and air gap properties with temperature and the thermochemical reactions in the fabric are also considered. This study investigates the influence of the air gap in protective clothing on the energy transfer through the clothing and hence on its performance. Different parameters that affect the conduction-radiation heat transfer through the air gap such as the air gap absorption coefficient and the air gap width were studied. Finally, the paper demonstrates that an innovative and potentially significant way to improve protective clothing performance is to reduce the emissivity on the backside of the fabric.

  5. Effects of conditioners on surface hardness of hair fibers: an investigation using atomic force microscopy.

    PubMed

    Ruetsch, S B; Kamath, Y K; Kintrup, L; Schwark, H-J

    2003-01-01

    Conditioners are known to have a prophylactic effect on hair damage caused by cosmetic chemical treatments or mechanical grooming procedures. They are known to impart softness and smoothness to hair by moisturizing the fiber. Since the amount of conditioners deposited on the fiber is very small in quantity, it is conceivable that mainly the surface is moisturized. This is especially true of polymeric conditioners, which deposit preferentially on the surface of the fiber, rather than penetrate into the cortex. Therefore, this study strictly investigates whether cationic polymeric conditioners impart softness to the surface cuticle cell as a result of their hydrophilicity, with no regard to its applicability to cosmetic effects. Such softening can be detected by indentation of the surface and can be quantified by measuring the depth of the indent in real time. Atomic force microscopy (AFM), equipped with nano-indentation capability, is ideally suited for this purpose. In this work it was used to determine changes in the microhardness (micromechanical properties) of the hair fiber surface as a result of fiber/conditioner/moisture interactions. In a preliminary study, we observed that the scale faces of hair treated with Polyquaternium 10 (PQ-10) conditioner gave deeper indents, while scale edges yielded shallower ones in comparison to cuticle cells of untreated hair. This suggests that the conditioner softens the scale face and hardens the scale edges. However, because of significant amounts of conditioner residues left on the scale face, this conclusion was rather ambiguous. Therefore, the study was repeated in which multiple indentations were made on the surface cuticle cells of a larger number of the same hair fibers before and after multiple applications of the conditioner. This reduces errors due to fiber-to-fiber variation in pre-existing microhardness differences in surface cuticle cells. Also, the larger number of fibers investigated in the current work

  6. Effects of polyacrylamide soil conditioner on the iron status of soybean plants. [Glycine max

    SciTech Connect

    Wallace, A.; Wallace, G.A.; Abouzamzam, A.M.; Char, J.W.

    1986-05-01

    An iron-inefficient cultivar of soybean (Glycine max L. Merr. Bragg cv. PI-54619-5-1 was grown in two different calcareous soils, a Natrargid and a Torrifluvents, to determine if improvement of soil aeration with a synthetic polyacrylamide as a soil conditioner would decrease the tendency of the cultivar to lime-induced chlorosis. The results suggest that when soil is well aerated with good drainage from use of the soil conditioner, the iron status of plants is improved.

  7. Performance potential of air turbo-ramjet employing supersonic through-flow fan

    NASA Technical Reports Server (NTRS)

    Kepler, C. E.; Champagne, G. A.

    1989-01-01

    A study was conducted to assess the performance potential of a supersonic through-flow fan in an advanced engine designed to power a Mach-5 cruise vehicle. It included a preliminary evaluation of fan performance requirements and the desirability of supersonic versus subsonic combustion, the design and performance of supersonic fans, and the conceptual design of a single-pass air-turbo-rocket/ramjet engine for a Mach 5 cruise vehicle. The study results showed that such an engine could provide high thrust over the entire speed range from sea-level takeoff to Mach 5 cruise, especially over the transonic speed range, and high fuel specific impulse at the Mach 5 cruise condition, with the fan windmilling.

  8. Air quality simulations for North America - MM5-CAMx modelling performance for main gaseous pollutants

    NASA Astrophysics Data System (ADS)

    Ferreira, J.; Rodriguez, A.; Monteiro, A.; Miranda, A. I.; Dios, M.; Souto, J. A.; Yarwood, G.; Nopmongcol, U.; Borrego, C.

    2012-06-01

    In the scope of the Air Quality Model Evaluation International Initiative (AQMEII) the air quality modelling system MM5-CAMx was applied to the North American (NA) domain for calendar year 2006. The simulation domain was defined according to the spatial resolution and the coordinate system of the emission databases provided and the common grid required by AQMEII for ensemble analysis. A Lambert Conformal Projection grid of around 5500 km by 3580 km with 24 × 24 km2 horizontal resolution was defined. Emissions available through AQMEII have been prepared to feed the CAMx model. Meteorological inputs were developed by the application of the meteorological model MM5, which was initialized by 1° resolution NCEP-FNL global data and run for the whole year of 2006. A spatial and temporal analysis of results based on the 2D surface fields and time series for regional monitoring stations was performed for the main gaseous pollutants. A detailed statistical analysis and evaluation against observations was carried out, considering three different sub-domains over North America, in order to comprehend the differences between the East, West and Central part. The exploitation of modelling results was based on the capabilities and analysis tools available through the ENSEMBLE software, developed and upgraded for AQMEII. Results have shown a good agreement between observed and modelled concentrations of O3 (especially regarding peaks) and NO2 and a weaker performance of the air quality model for CO and SO2. However, the model tends to underestimate O3 and overestimate NO2 and CO at night as a consequence of meteorology (weak vertical mixing due to underestimation of the Planetary Boundary Layer (PBL) height). This paper intends to be a valuable contribution to the overall AQMEII exercise since it aims to evaluate the performance of individual models to be used in the ensemble approach for the areas of interest.

  9. Performance of R-410A Alternative Refrigerants in a Reciprocating Compressor Designed for Air Conditioning Applications

    SciTech Connect

    Shrestha, Som S; Vineyard, Edward Allan; Mumpower, Kevin

    2016-01-01

    In response to environmental concerns raised by the use of refrigerants with high Global Warming Potential (GWP), the Air-Conditioning, Heating, and Refrigeration Institute (AHRI) has launched an industry-wide cooperative research program, referred to as the Low-GWP Alternative Refrigerants Evaluation Program (AREP), to identify and evaluate promising alternative refrigerants for major product categories. After successfully completing the first phase of the program in December 2013, AHRI launched a second phase of the Low-GWP AREP in 2014 to continue research in areas that were not previously addressed, including refrigerants in high ambient conditions, refrigerants in applications not tested in the first phase, and new refrigerants identified since testing for the program began. Although the Ozone Depletion Potential of R-410A is zero, this refrigerant is under scrutiny due to its high GWP. Several candidate alternative refrigerants have already demonstrated low global warming potential. Performance of these low-GWP alternative refrigerants is being evaluated for Air conditioning and heat pump applications to ensure acceptable system capacity and efficiency. This paper reports the results of a series of compressor calorimeter tests conducted for the second phase of the AREP to evaluate the performance of R-410A alternative refrigerants in a reciprocating compressor designed for air conditioning systems. It compares performance of alternative refrigerants ARM-71A, L41-1, DR-5A, D2Y-60, and R-32 to that of R-410A over a wide range of operating conditions. The tests showed that, in general, cooling capacities were slightly lower (except for the R-32), but energy efficiency ratios (EER) of the alternative refrigerants were comparable to that of R-410A.

  10. Silver electrodeposition on the activated carbon air cathode for performance improvement in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Pu, Liangtao; Li, Kexun; Chen, Zhihao; Zhang, Peng; Zhang, Xi; Fu, Zhou

    2014-12-01

    The present work was to study silver electrodeposition on the activated carbon (AC) air cathode for performance improvement in microbial fuel cells (MFCs). The treated cathodes were proved to be effective to enhance the performance of MFCs. The maximum power density of MFC with silver electrodeposition time of 50 s (Ag-50) cathode was 1080 ± 60 mW m-2, 69% higher than the bare AC air cathode. X-ray photoelectron spectroscopy (XPS) results showed that zero-valent, monovalent and divalent silver were present to transform mutually, which illustrated that the oxygen reduction reaction (ORR) at the cathode took place through four-electron pathway. From electrochemical impedance spectroscopy (EIS) analysis, the electrodeposition method made the total resistance of the electrodes largely reduced. Meanwhile the deposited silver had no toxic effects on anode culture but inhibited the biofilm growth of the cathodes. This kind of antimicrobial efficient cathode, prepared with a simple, fast and economical method, was of good benefit to the performance improvement of MFCs.

  11. Field performance of air-sparging system for removing TCE from groundwater

    SciTech Connect

    Rabideau, A.J.; Blayden, J.M.; Ganguly, C.

    1999-01-01

    The removal of volatile organic compounds from groundwater by air sparging (AS) is well-established, although reliable methods for predicting the time required to reach site closure have not been established. To develop and improved understanding of mass transfer processes that limit AS performance, two extended controlled shutdowns of an operating AS system were performed. Monitoring of TCE concentrations in source zone groundwater indicated tailing and rebound behavior similar to that observed for pump-and-treat systems. A simple two-compartment model provided a reasonable description of the 3-year AS history, using parameters calibrated from data collected during the first shutdown period. Comparison of the calibrated rate constants with parameters estimated from laboratory soil columns suggest that, for the study site, aqueous diffusion to discrete air channels has a stronger influence on system performance than rate-limited desorption. Predictions based on the calibrated model indicated that restoration of the source zone to drinking water standards would require approximately 1 decade for the current AS system.

  12. The comparative performance of an aviation engine at normal and high inlet air temperatures

    NASA Technical Reports Server (NTRS)

    Gardiner, Arthur W; Schey, Oscar W

    1928-01-01

    This report presents some results obtained during an investigation to determine the effect of high inlet air temperature on the performance of a Liberty 12 aviation engine. The purpose of this investigation was to ascertain, for normal service carburetor adjustments and a fixed ignition advance, the relation between power and temperature for the range of carburetor air temperatures that may be encountered when supercharging to sea level pressure at altitudes of over 20,000 feet and without intercooling when using plain aviation gasoline and mixtures of benzol and gasoline. The results show that for the conditions of test, both the brake and indicated power decrease with increase in air temperature at a faster rate than given by the theoretical assumption that power varies inversely as the square root of the absolute temperature. On a brake basis, the order of the difference in power for a temperature difference of 120 degrees F. Is 3 to 5 per cent. The observed relation between power and temperature when using the 30-70 blend was found to be linear. But, although these differences are noted, the above theoretical assumption may be considered as generally applicable except where greater precision over a wide range of temperatures is desired, in which case it appears necessary to test the particular engine under the given conditions. (author)

  13. Performance assessment of a solar-powered air quality and weather station placed on a school rooftop in Hong Kong

    EPA Science Inventory

    Emerging air pollution measurement technologies that require minimal infrastructure to deploy may lead to new insights on air pollution spatial variability in urban areas. Through a collaboration between the USEPA and HKEPD, this study evaluates the performance of a compact, roo...

  14. 42 CFR 84.1143 - Dust, fume, and mist air-purifying filter tests; performance requirements; general.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Dust, fume, and mist air-purifying filter tests; performance requirements; general. 84.1143 Section 84.1143 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF... Efficiency Respirators and Combination Gas Masks § 84.1143 Dust, fume, and mist air-purifying filter...

  15. 42 CFR 84.1143 - Dust, fume, and mist air-purifying filter tests; performance requirements; general.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Dust, fume, and mist air-purifying filter tests; performance requirements; general. 84.1143 Section 84.1143 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF... Efficiency Respirators and Combination Gas Masks § 84.1143 Dust, fume, and mist air-purifying filter...

  16. 42 CFR 84.1143 - Dust, fume, and mist air-purifying filter tests; performance requirements; general.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Dust, fume, and mist air-purifying filter tests; performance requirements; general. 84.1143 Section 84.1143 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF... Efficiency Respirators and Combination Gas Masks § 84.1143 Dust, fume, and mist air-purifying filter...

  17. 42 CFR 84.1143 - Dust, fume, and mist air-purifying filter tests; performance requirements; general.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Dust, fume, and mist air-purifying filter tests; performance requirements; general. 84.1143 Section 84.1143 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF... Efficiency Respirators and Combination Gas Masks § 84.1143 Dust, fume, and mist air-purifying filter...

  18. 42 CFR 84.1143 - Dust, fume, and mist air-purifying filter tests; performance requirements; general.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Dust, fume, and mist air-purifying filter tests; performance requirements; general. 84.1143 Section 84.1143 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF... Efficiency Respirators and Combination Gas Masks § 84.1143 Dust, fume, and mist air-purifying filter...

  19. Examination of the Community Multiscale Air Quality (CMAQ) Model Performance over the North American and European Domains

    EPA Science Inventory

    The CMAQ modeling system has been used to simulate the air quality for North America and Europe for the entire year of 2006 as part of the Air Quality Model Evaluation International Initiative (AQMEII) and the operational model performance of O3, fine particulate matte...

  20. Thermal performance analysis of optimized hexagonal finned heat sinks in impinging air jet

    NASA Astrophysics Data System (ADS)

    Yakut, Kenan; Yeşildal, Faruk; Karabey, Altuǧ; Yakut, Rıdvan

    2016-04-01

    In this study, thermal performance analysis of hexagonal finned heat sinks which optimized according to the experimental design and optimization method of Taguchi were investigated. Experiments of air jet impingement on heated hexagonal finned heat sinks were carried out adhering to the L18(21*36) orthogonal array test plan. Optimum geometries were determined and named OH-1, OH-2. Enhancement efficiency with the first law of thermodynamics was analyzed for optimized heat sinks with 100, 150, 200 mm heights of hexagonal fin. Nusselt correlations were found out and variations of enhancement efficiency with Reynolds number presented in η-Re graphics.

  1. Los Alamos Controlled Air Incinerator for radioactive waste. Volume I. Rationale, process, equipment, performance, and recommendations

    SciTech Connect

    Neuls, A.S.; Draper, W.E.; Koenig, R.A.; Newmyer, J.M.; Warner, C.L.

    1982-08-01

    This two-volume report is a detailed design and operating documentation of the Los Alamos National Laboratory Controlled Air Incinerator (CAI) and is an aid to technology transfer to other Department of Energy contractor sites and the commercial sector. Volume I describes the CAI process, equipment, and performance, and it recommends modifications based on Los Alamos experience. It provides the necessary information for conceptual design and feasibility studies. Volume II provides descriptive engineering information such as drawing, specifications, calculations, and costs. It aids duplication of the process at other facilities.

  2. An analysis of air-turborocket engine performance including effects of component changes

    NASA Technical Reports Server (NTRS)

    Luidens, Roger W; Weber, Richard J

    1956-01-01

    An analytical study of the air-turborocket engine is presented, showing both full-power operation over a range of flight speeds and part-power operation at several supersonic speeds. Engine weight, drag, and area variations are calculated in addition to the internal thrust coefficient and specific impulse. Tehe effects of changes in the component designs and efficiencies are indicated. Maximum specific impulse (including nacelle drag and using gasoline - nitric acid propellants) at Mach 2.3 is 1500 lb/(lb/sec). The performance is compared with that of a typical turbojet engine.

  3. Radial Clearance Found To Play a Key Role in the Performance of Compliant Foil Air Bearings

    NASA Technical Reports Server (NTRS)

    Radil, Kevin C.

    2003-01-01

    Compliant foil air bearings are at the forefront of the Oil-Free turbomachinery revolution, which supports gas turbine engines with hydrodynamic bearings that use air instead of oil as the working fluid. These types of bearings have been around for almost 50 years and have found a home in several commercial applications, such as in air cycle machines, turbocompressors, and microturbines, but are now being aggressively pursued for use in small and midrange aircraft gas turbine engines. Benefits include higher operating speeds and temperatures, lower maintenance costs, and greater reliability. The Oil-Free Turbomachinery team at the NASA Glenn Research Center is working to foster the transition of Oil-Free technology into gas turbine engines by performing in-house experiments on foil air bearings in order to gain a greater insight into their complex operating principles. A research program recently undertaken at Glenn focused on the concept of radial clearance and its influence on bearing performance. The tests were conducted on foil bearings with different radial clearances. As defined for a foil bearing, radial clearance is a measure of the small amount of shaft radial motion that is present from play that exists in the elastic support structure, such as between the top and bump foils and the bump foils and bearing shell (see the drawing). With an insufficient amount of radial clearance, the bearing imparts a high preload on the shaft, which when excessive, can reduce the loadcarrying capability of the bearing. On the other hand, systems using foil bearings with excessive radial clearance may experience rotordynamic instabilities because of low bearing preload. Therefore, without a more thorough understanding of radial clearance, it is difficult to accurately predict the performance of a given bearing design. The test program demonstrated that there is a direct correlation between radial clearance and the performance of foil air bearings. As shown in the graph, an

  4. Design Evolution and Performance Characterization of the GTX Air-Breathing Launch Vehicle Inlet

    NASA Technical Reports Server (NTRS)

    DeBonis, J. R.; Steffen, C. J., Jr.; Rice, T.; Trefny, C. J.

    2002-01-01

    The design and analysis of a second version of the inlet for the GTX rocket-based combine-cycle launch vehicle is discussed. The previous design did not achieve its predicted performance levels due to excessive turning of low-momentum comer flows and local over-contraction due to asymmetric end-walls. This design attempts to remove these problems by reducing the spike half-angle to 10- from 12-degrees and by implementing true plane of symmetry end-walls. Axisymmetric Reynolds-Averaged Navier-Stokes simulations using both perfect gas and real gas, finite rate chemistry, assumptions were performed to aid in the design process and to create a comprehensive database of inlet performance. The inlet design, which operates over the entire air-breathing Mach number range from 0 to 12, and the performance database are presented. The performance database, for use in cycle analysis, includes predictions of mass capture, pressure recovery, throat Mach number, drag force, and heat load, for the entire Mach range. Results of the computations are compared with experimental data to validate the performance database.

  5. Air Conditioning with Magnetic Refrigeration : An Efficient, Green Compact Cooling System Using Magnetic Refrigeration

    SciTech Connect

    2010-09-01

    BEETIT Project: Astronautics is developing an air conditioning system that relies on magnetic fields. Typical air conditioners use vapor compression to cool air. Vapor compression uses a liquid refrigerant to circulate within the air conditioner, absorb the heat, and pump the heat out into the external environment. Astronautics’ design uses a novel property of certain materials, called “magnetocaloric materials”, to achieve the same result as liquid refrigerants. These magnetocaloric materials essentially heat up when placed within a magnetic field and cool down when removed, effectively pumping heat out from a cooler to warmer environment. In addition, magnetic refrigeration uses no ozone-depleting gases and is safer to use than conventional air conditioners which are prone to leaks.

  6. 77 FR 47617 - Change of Names Given for the Performance Review Board for the Department of the Air Force.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-09

    ... with Lt Gen Basla, Chief, Information Dominance and Chief Information Officer, Office of the Secretary... July 19, 2012 (77 FR 19265-19266), to replace a member of the Air Force 2012 Performance Review...

  7. Indoor air pollutants in office environments: assessment of comfort, health, and performance.

    PubMed

    Wolkoff, Peder

    2013-07-01

    Concentrations of volatile organic compounds (VOCs) in office environments are generally too low to cause sensory irritation in the eyes and airways on the basis of estimated thresholds for sensory irritation. Furthermore, effects in the lungs, e.g. inflammatory effects, have not been substantiated at indoor relevant concentrations. Some VOCs, including formaldehyde, in combination may under certain environmental and occupational conditions result in reported sensory irritation. The odour thresholds of several VOCs are low enough to influence the perceived air quality that result in a number of acute effects from reported sensory irritation in eyes and airways and deterioration of performance. The odour perception (air quality) depends on a number of factors that may influence the odour impact. There is neither clear indication that office dust particles may cause sensory effects, even not particles spiked with glucans, aldehydes or phthalates, nor lung effects; some inflammatory effects may be observed among asthmatics. Ozone-initiated terpene reaction products may be of concern in ozone-enriched environments (≥0.1mg/m(3)) and elevated limonene concentrations, partly due to the production of formaldehyde. Ambient particles may cause cardio-pulmonary effects, especially in susceptible people (e.g. elderly and sick people); even, short-term effects, e.g. from traffic emission and candle smoke may possibly have modulating and delayed effects on the heart, but otherwise adverse effects in the airways and lung functions have not been observed. Secondary organic aerosols generated in indoor ozone-initiated terpene reactions appear not to cause adverse effects in the airways; rather the gaseous products are relevant. Combined exposure to particles and ozone may evoke effects in subgroups of asthmatics. Based on an analysis of thresholds for odour and sensory irritation selected compounds are recommended for measurements to assess the indoor air quality and to minimize

  8. Performance and emission characteristics of swirl-can combustors to near-stoichiometric fuel-air ratio

    NASA Technical Reports Server (NTRS)

    Diehl, L. A.; Trout, A. M.

    1976-01-01

    Emissions and performance characteristics were determined for two full annular swirl-can combustors operated to near stoichiometric fuel-air ratio. Test condition variations were as follows: combustor inlet-air temperatures, 589, 756, 839, and 894 K; reference velocities, 24 to 37 meters per second; inlet pressure, 62 newtons per square centimeter; and fuel-air ratios, 0.015 to 0.065. The combustor average exit temperature and combustor efficiency were calculated from the combustor exhaust gas composition. For fuel-air ratios greater than 0.04, the combustion efficiency decreased with increasing fuel-air ratios in a near-linear manner. Increasing the combustor inlet air temperature tended to offset this decrease. Maximum oxides of nitrogen emission indices occurred at intermediate fuel-air ratios and were dependent on combustor design. Carbon monoxide levels were extremely high and were the primary cause of poor combustion efficiency at the higher fuel-air ratios. Unburned hydrocarbons were low for all test conditions. For high fuel-air ratios SAE smoke numbers greater than 25 were produced, except at the highest inlet-air temperatures.

  9. Methods for measuring performance of vehicle cab air cleaning systems against aerosols and vapours.

    PubMed

    Bémer, D; Subra, I; Régnier, R

    2009-06-01

    Vehicle cabs equipped with an effective air cleaning and pressurization system, fitted to agricultural and off-road machineries, isolate drivers from the polluted environment, in which they are likely to work. These cabs provide protection against particulate and gaseous pollutants generated by these types of work activities. Two laboratory methods have been applied to determining the performance characteristics of two cabs of different design, namely, optical counting-based measurement of a potassium chloride (KCl) aerosol and fluorescein aerosol-based tracing. Results of cab confinement efficiency measurements agreed closely for these two methods implemented in the study. Measurements showed that high confinement efficiencies can be achieved with cabs, which are properly designed in ventilation/cleaning/airtightness terms. We also noted the importance of filter mounting airtightness, in which the smallest defect is reflected by significant degradation in cab performance. Determination of clean airflow rate by monitoring the decrease in test aerosol concentration in the test chamber gave excellent results. This method could represent an attractive alternative to methods involving gas tracing or air velocity measurement at blowing inlets. PMID:19406910

  10. Aqueous and air-compatible fabrication of high-performance conductive textiles.

    PubMed

    Wang, Xiaolong; Yan, Casey; Hu, Hong; Zhou, Xuechang; Guo, Ruisheng; Liu, Xuqing; Xie, Zhuang; Huang, Zhifeng; Zheng, Zijian

    2014-08-01

    This paper describes a fully aqueous- and air-compatible chemical approach to preparing high-performance conductive textiles. In this method, the surfaces of textile materials are first modified with an aqueous solution of double-bond-containing silane molecules to form a surface-anchoring layer for subsequent in situ free-radical polymerization of [2-(methacryloyloxy)ethyl]trimethylammonium chloride (METAC) in the air. Thin layers of poly-METAC (PMETAC) are therefore covalently grafted on top of the silane-modified textile surface. Cu- or Ni-coated textiles are finally fabricated by electroless deposition (ELD) onto the PMETAC-modified textiles. Parameters including polymerization time, temperature, and ELD conditions are studied to optimize the whole fabrication process. The as-made conductive textiles exhibit sheet resistance as low as 0.2 Ω sq(-1) , which makes them highly suitable for use as conductive wires and interconnects in flexible and wearable electronic devices. More importantly, the chemical method is fully compatible with the conventional "pad-dry-cure" fabrication process in the textile manufacturing industry, thus indicating that it is very promising for high-throughput and roll-to-roll fabrication of high-performance metal-coated conductive textiles in the future. PMID:24867263

  11. The calibration and flight test performance of the space shuttle orbiter air data system

    NASA Technical Reports Server (NTRS)

    Dean, A. S.; Mena, A. L.

    1983-01-01

    The Space Shuttle air data system (ADS) is used by the guidance, navigation and control system (GN&C) to guide the vehicle to a safe landing. In addition, postflight aerodynamic analysis requires a precise knowledge of flight conditions. Since the orbiter is essentially an unpowered vehicle, the conventional methods of obtaining the ADS calibration were not available; therefore, the calibration was derived using a unique and extensive wind tunnel test program. This test program included subsonic tests with a 0.36-scale orbiter model, transonic and supersonic tests with a smaller 0.2-scale model, and numerous ADS probe-alone tests. The wind tunnel calibration was further refined with subsonic results from the approach and landing test (ALT) program, thus producing the ADS calibration for the orbital flight test (OFT) program. The calibration of the Space Shuttle ADS and its performance during flight are discussed in this paper. A brief description of the system is followed by a discussion of the calibration methodology, and then by a review of the wind tunnel and flight test programs. Finally, the flight results are presented, including an evaluation of the system performance for on-board systems use and a description of the calibration refinements developed to provide the best possible air data for postflight analysis work.

  12. High-performance air-stable n-type carbon nanotube transistors with erbium contacts.

    PubMed

    Shahrjerdi, Davood; Franklin, Aaron D; Oida, Satoshi; Ott, John A; Tulevski, George S; Haensch, Wilfried

    2013-09-24

    So far, realization of reproducible n-type carbon nanotube (CNT) transistors suitable for integrated digital applications has been a difficult task. In this work, hundreds of n-type CNT transistors from three different low work function metals-erbium, lanthanum, and yttrium-are studied and benchmarked against p-type devices with palladium contacts. The crucial role of metal type and deposition conditions is elucidated with respect to overall yield and performance of the n-type devices. It is found that high oxidation rates and sensitivity to deposition conditions are the major causes for the lower yield and large variation in performance of n-type CNT devices with low work function metal contacts. Considerable improvement in device yield is attained using erbium contacts evaporated at high deposition rates. Furthermore, the air-stability of our n-type transistors is studied in light of the extreme sensitivity of these metals to oxidation. PMID:24006886

  13. Optimization and investigation of the effect of velocity distribution of air curtains on the performance of food refrigerated display cabinets

    NASA Astrophysics Data System (ADS)

    Wu, XueHong; Chang, ZhiJuan; Ma, QiuYang; Lu, YanLi; Yin, XueMei

    2016-08-01

    This paper focuses on improving the performance of the vertical open refrigerated display cabinets (VORDC) by optimizing the structure of deflector, which is affected by inlet velocity and velocity distribution of air curtains. The results show that the temperature of products located at the front and at the rear reduces as the increases of inlet velocity of air curtains. The increase of the inlet velocity of air curtains can strengthen the disturbance inside the VORDC, and also decrease the temperature of products inside the VORDC; the increase of the outer velocity of air curtain will exacerbate the disturbance outside the VORDC and decrease air curtain's performance. The present study can provide a theoretical foundation for the design of VORDC.

  14. Performance Enhancement Technology for the Vapor Compression Refrigeration Cycle

    NASA Astrophysics Data System (ADS)

    Man'o, Tatsunori

    High efficiency refrigerator have been developed. For energy saving that is concerned with against global warming, performance enhancement of vapor compression refrigerator is required in field of air condition and refrigeration facility. In this paper, a review of recent performance enhancement technologies for the vapor compression refrigeration cycle is presented. This review contains high performance cycles of large sized centrifugal chiller, small to middle sized chiller and packaged air conditioner. Moreover, researches and developments of the refrigeration cycle recovering throttling loss, applications of ejector to boost in compressor suction pressure and to recirculate vapor refrigerant in the evaporator for heat transfer enhancement, and applications of expander to employ expansion work for compression work, are reviewed.

  15. The Impact of Refrigerant Charge, Air Flow and Expansion Devices on the Measured Performance of an Air-Source Heat Pump Part I

    SciTech Connect

    Shen, Bo

    2011-01-01

    This paper describes extensive tests performed on a 3-ton R-22 split heat pump in heating mode. The tests contain 150 steady-state performance tests, 18 cyclic tests and 18 defrost tests. During the testing work, the refrigerant charge level was varied from 70 % to 130% relative to the nominal value; the outdoor temperature was altered by three levels at 17 F (-8.3 C), 35 F (1.7 C) and 47 F (8.3 C); indoor air flow rates ranged from 60% to 150% of the rated air flow rate; and the expansion device was switched from a fixed-orifice to a thermal expansion value. Detailed performance data from the extensive steady state cyclic and defrost testing performed were presented and compared.

  16. Air conditioning system

    DOEpatents

    Lowenstein, Andrew; Miller, Jeffrey; Gruendeman, Peter; DaSilva, Michael

    2005-02-01

    An air conditioner comprises a plurality of plates arranged in a successively stacked configuration with portions thereof having a spaced apart arrangement, and defining between successive adjacent pairs of plates at the spaced apart portions a first and second series of discrete alternating passages wherein a first air stream is passed through the first series of passages and a second air stream is passed through the second series of passages; and said stacked configuration of plates forming integrally therewith a liquid delivery means for delivering from a source a sufficient quantity of a liquid to the inside surfaces of the first series of fluid passages in a manner which provides a continuous flow of the liquid from a first end to a second end of the plurality of plates while in contact with the first air stream.

  17. Evaluation of initial collector field performance at the Langley Solar Building Test Facility

    NASA Technical Reports Server (NTRS)

    Boyle, R. J.; Knoll, R. H.; Jensen, R. N.

    1977-01-01

    The thermal performance of the solar collector field for the NASA Langley Solar Building Test Facility is given for October 1976 through January 1977. An 1180 square meter solar collector field with seven collector designs helped to provide hot water for the building heating system and absorption air conditioner. The collectors were arranged in 12 rows with nominally 51 collectors per row. Heat transfer rates for each row are calculated and recorded along with sensor, insolation, and weather data every 5 minutes using a mini-computer. The agreement between the experimental and predicted collector efficiencies was generally within five percentage points.

  18. Evaluation of initial collector field performance at the Langley Solar Building Test Facility

    NASA Technical Reports Server (NTRS)

    Boyle, R. J.; Jensen, R. N.; Knoll, R. H.

    1977-01-01

    The thermal performance of the solar collector field for the NASA Langley Solar Building Test Facility is given for October 1976 through January 1977. A 1,180 square meter solar collector field with seven collector designs helped to provide hot water for the building heating system and absorption air conditioner. The collectors were arranged in 12 rows with nominally 51 collectors per row. Heat transfer rates for each row were calculated and recorded along with sensor, insolation, and weather data every five minutes using a minicomputer. The agreement between the experimental and predicted collector efficiencies was generally within five percentage points.

  19. SMA actuated vertical deploy air dam: part 2 operation and test performance of prototype unit

    NASA Astrophysics Data System (ADS)

    Browne, Alan L.; Johnson, Nancy L.; Brown, Jeffrey

    2013-03-01

    Airflow over/under/around a vehicle can affect many important aspects of vehicle performance including vehicle drag (fuel economy) and cooling/heat exchange for the vehicle powertrain and A/C systems. Devices in current use to control airflow, with the exception of a few active spoilers, are of fixed geometry, orientation, and stiffness. Such devices can thus not be relocated, reoriented, etc. as driving conditions change and thus vehicle airflow cannot be adjusted to better suit the changed driving condition. Additionally, under-vehicle airflow control devices also reduce ground clearance presenting a challenge to designers to provide the needed control of airflow while maintaining sufficient ground clearance. The collaborative study, whose second part is documented in this paper, was successful in developing an SMA actuator based approach to reversibly deploying an air dam through vertical translation of its structure. Beyond feasibility, vehicle mounted prototype fully functional units demonstrated that this approach would add little weight to the existing stationary system, and could potentially perform well in the harsh under vehicle environment due to a lack of exposed bearings and pivots. This demonstration showed that actuation speed, force, and cyclic stability all could meet the application requirements. The solution, a dual point balanced actuation approach based on shape memory alloy wires, uses straight linear actuation to produce a reversible height change of 50 mm. On vehicle wind tunnel and onroad tests verified the potential for a reversibly deployable air dam to meet the otherwise conflicting goals of large ground clearance for off-road performance and optimum lower ground clearance for optimum fuel economy benefits.

  20. A Tool for Life Cycle Climate Performance (LCCP) Based Design of Residential Air Source Heat Pumps

    SciTech Connect

    Beshr, Mohamed; Aute, Vikrant; Abdelaziz, Omar; Fricke, Brian A; Radermacher, Reinhard

    2014-01-01

    A tool for the design of air source heat pumps (ASHP) based on their life cycle climate performance (LCCP) analysis is presented. The LCCP model includes direct and indirect emissions of the ASHP. The annual energy consumption of the ASHP is determined based on AHRI Standard 210/240. The tool can be used as an evaluation tool when the user inputs the required performance data based on the ASHP type selected. In addition, this tool has system design capability where the user inputs the design parameters of the different components of the heat pump and the tool runs the system simulation software to calculate the performance data. Additional features available in the tool include the capability to perform parametric analysis and sensitivity study on the system. The tool has 14 refrigerants, and 47 cities built-in with the option for the user to add more refrigerants, based on NIST REFPROP, and cities, using TMY-3 database. The underlying LCCP calculation framework is open source and can be easily customized for various applications. The tool can be used with any system simulation software, load calculation tool, and weather and emissions data type.

  1. Nocturnal air, road, and rail traffic noise and daytime cognitive performance and annoyance.

    PubMed

    Elmenhorst, Eva-Maria; Quehl, Julia; Müller, Uwe; Basner, Mathias

    2014-01-01

    Various studies indicate that at the same noise level and during the daytime, annoyance increases in the order of rail, road, and aircraft noise. The present study investigates if the same ranking can be found for annoyance to nocturnal exposure and next day cognitive performance. Annoyance ratings and performance change during combined noise exposure were also tested. In the laboratory 72 participants were exposed to air, road, or rail traffic noise and all combinations. The number of noise events and LAS,eq were kept constant. Each morning noise annoyance questionnaires and performance tasks were administered. Aircraft noise annoyance ranked first followed by railway and road noise. A possible explanation is the longer duration of aircraft noise events used in this study compared to road and railway noise events. In contrast to road and rail traffic, aircraft noise annoyance was higher after nights with combined exposure. Pooled noise exposure data showed small but significant impairments in reaction times (6 ms) compared to nights without noise. The noise sources did not have a differential impact on performance. Combined exposure to multiple traffic noise sources did not induce stronger impairments than a single noise source. This was reflected also in low workload ratings. PMID:24437761

  2. Design and manufacturing considerations for high-performance gimbals used for land, sea, air, and space

    NASA Astrophysics Data System (ADS)

    Sweeney, Mike; Redd, Lafe; Vettese, Tom; Myatt, Ray; Uchida, David; Sellers, Del

    2015-09-01

    High performance stabilized EO/IR surveillance and targeting systems are in demand for a wide variety of military, law enforcement, and commercial assets for land, sea, air, and space. Operating ranges, wavelengths, and angular resolution capabilities define the requirements for EO/IR optics and sensors, and line of sight stabilization. Many materials and design configurations are available for EO/IR pointing gimbals depending on trade-offs of size, weight, power (SWaP), performance, and cost. Space and high performance military aircraft applications are often driven toward expensive but exceptionally performing beryllium and aluminum beryllium components. Commercial applications often rely on aluminum and composite materials. Gimbal design considerations include achieving minimized mass and inertia simultaneous with demanding structural, thermal, optical, and scene stabilization requirements when operating in dynamic operational environments. Manufacturing considerations include precision lapping and honing of ball bearing interfaces, brazing, welding, and casting of complex aluminum and beryllium alloy structures, and molding of composite structures. Several notional and previously developed EO/IR gimbal platforms are profiled that exemplify applicable design and manufacturing technologies.

  3. Numerical simulation of heat transfer performance of an air-cooled steam condenser in a thermal power plant

    NASA Astrophysics Data System (ADS)

    Gao, Xiufeng; Zhang, Chengwei; Wei, Jinjia; Yu, Bo

    2009-09-01

    Numerical simulation of the thermal-flow characteristics and heat transfer performance is made of an air-cooled steam condenser (ACSC) in a thermal power plant by considering the effects of ambient wind speed and direction, air-cooled platform height, location of the main factory building and terrain condition. A simplified physical model of the ACSC combined with the measured data as input parameters is used in the simulation. The wind speed effects on the heat transfer performance and the corresponding steam turbine back pressure for different heights of the air-cooled platform are obtained. It is found that the turbine back pressure (absolute pressure) increases with the increase of wind speed and the decrease of platform height. This is because wind can not only reduce the flowrate in the axial fans, especially at the periphery of the air-cooled platform, due to cross-flow effects, but also cause an air temperature increase at the fan inlet due to hot air recirculation, resulting in the deterioration of the heat transfer performance. The hot air recirculation is found to be the dominant factor because the main factory building is situated on the windward side of the ACSC.

  4. The performance of a mobile air conditioning system with a water cooled condenser

    NASA Astrophysics Data System (ADS)

    Di Battista, Davide; Cipollone, Roberto

    2015-11-01

    Vehicle technological evolution lived, in recent years, a strong acceleration due to the increased awareness of environmental issues related to pollutants and climate altering emissions. This resulted in a series of international regulations on automotive sector which put technical challenges that must consider the engine and the vehicle as a global system, in order to improve the overall efficiency of the system. The air conditioning system of the cabin, for instance, is the one of the most important auxiliaries in a vehicle and requires significant powers. Its performances can be significantly improved if it is integrated within the engine cooling circuit, eventually modified with more temperature levels. In this paper, the Authors present a mathematical model of the A/C system, starting from its single components: compressors, condenser, flush valve and evaporator and a comparison between different refrigerant fluid. In particular, it is introduced the opportunity to have an A/C condenser cooled by a water circuit instead of the external air linked to the vehicle speed, as in the actual traditional configuration. The A/C condenser, in fact, could be housed on a low temperature water circuit, reducing the condensing temperature of the refrigeration cycle with a considerable efficiency increase.

  5. Performance and stability of a liquid anode high-temperature metal-air battery

    NASA Astrophysics Data System (ADS)

    Otaegui, L.; Rodriguez-Martinez, L. M.; Wang, L.; Laresgoiti, A.; Tsukamoto, H.; Han, M. H.; Tsai, C.-L.; Laresgoiti, I.; López, C. M.; Rojo, T.

    2014-02-01

    A High-Temperature Metal-Air Battery (HTMAB) that operates based on a simple redox reaction between molten metal and atmospheric oxygen at 600-1000 °C is presented. This innovative HTMAB concept combines the technology of conventional metal-air batteries with that of solid oxide fuel cells to provide a high energy density system for many applications. Electrochemical reversibility is demonstrated with 95% coulomb efficiency. Cell sealing has been identified as a key issue in order to determine the end-of-charge voltage, enhance coulomb efficiency and ensure long term stability. In this work, molten Sn is selected as anode material. Low utilization of the stored material due to precipitation of the SnO2 on the electrochemically active area limits the expected capacity, which should theoretically approach 903 mAh g-1. Nevertheless, more than 1000 charge/discharge cycles are performed during more than 1000 h at 800 °C, showing highly promising results of stability, reversibility and cyclability.

  6. Simple Freeze-Drying Procedure for Producing Nanocellulose Aerogel-Containing, High-Performance Air Filters.

    PubMed

    Nemoto, Junji; Saito, Tsuguyuki; Isogai, Akira

    2015-09-01

    Simple freeze-drying of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidized cellulose nanofibril (TOCN) dispersions in water/tert-butyl alcohol (TBA) mixtures was conducted to prepare TOCN aerogels as high-performance air filter components. The dispersibility of the TOCNs in the water/TBA mixtures, and the specific surface area (SSA) of the resulting TOCN aerogels, was investigated as a function of the TBA concentration in the mixtures. The TOCNs were homogeneously dispersed in the water/TBA mixtures at TBA concentrations up to 40% w/w. The SSAs of the TOCN aerogels exceeded 300 m2/g when the TBA concentration in the aqueous mixtures was in the range from 20% to 50% w/w. When a commercially available, high-efficiency particulate air (HEPA) filter was combined with TOCN/water/TBA dispersions prepared using 30% TBA, and the product was freeze-dried, the resulting TOCN aerogel-containing filters showed superior filtration properties. This was because nanoscale, spider-web-like networks of the TOCNs with large SSAs were formed within the filter. PMID:26301859

  7. Baxter Community—High Performance Green Building

    SciTech Connect

    2009-02-16

    This case study describes the Baxter community built by David Weekley Homes, which is reducing their energy demand through a number of techniques including advanced air sealing techniques, the installation of SEER 14 air conditioners, and Low-e windows in conjunction with conventional framing and insulation.

  8. Understanding of regional air pollution over China using CMAQ, part I performance evaluation and seasonal variation

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-Huan; Zhang, Yang; Cheng, Shu-Hui; Xing, Jia; Zhang, Qiang; Streets, David G.; Jang, Carey; Wang, Wen-Xing; Hao, Ji-Ming

    2010-07-01

    The U.S. EPA Models-3 Community Multiscale Air Quality (CMAQ) modeling system with the process analysis tool is applied to China to study the seasonal variations and formation mechanisms of major air pollutants. Simulations show distinct seasonal variations, with higher surface concentrations of sulfur dioxide (SO 2), nitrogen dioxide (NO 2), and particulate matter with aerodynamic diameter less than or equal to 10 μm (PM 10), column mass of carbon monoxide (CO) and NO 2, and aerosol optical depth (AOD) in winter and fall than other seasons, and higher 1-h O 3 and troposphere ozone residual (TOR) in spring and summer than other seasons. Higher concentrations of most species occur over the eastern China, where the air pollutant emissions are the highest in China. Compared with surface observations, the simulated SO 2, NO 2, and PM 10 concentrations are underpredicted throughout the year with NMBs of up to -51.8%, -32.0%, and -54.2%, respectively. Such large discrepancies can be attributed to the uncertainties in emissions, simulated meteorology, and deviation of observations based on air pollution index. Max. 1-h O 3 concentrations in Jan. and Jul. at 36-km are overpredicted with NMBs of 12.0% and 19.3% and agree well in Apr. and Oct. Simulated column variables can capture the high concentrations over the eastern China and low values in the central and western China. Underpredictions occur over the northeastern China for column CO in Apr., TOR in Jul., and AODs in both Apr. and Jul.; and overpredictions occur over the eastern China for column CO in Oct., NO 2 in Jan. and Oct., and AODs in Jan. and Oct. The simulations at 12-km show a finer structure in simulated concentrations than that at 36-km over higher polluted areas, but do not always give better performance than 36-km. Surface concentrations are more sensitive to grid resolution than column variables except for column NO 2, with higher sensitivity over mountain and coastal areas than other regions.

  9. Comparative Evaluation of Physical Properties of Four Tissue Conditioners Relined to Modeling Plastic Material

    PubMed Central

    Monzavi, Abbas; Siadat, Hakimeh; Atai, Mohammad; Alikhasi, Marzieh; Nazari, Vahideh; Sheikhzadeh, Sadigheh

    2013-01-01

    Objective: Little is known about the interaction of tissue conditioners and modeling plastics. This study evaluates the influence of a variety of commercial tissue conditioners on alteration of viscoelastic properties of modeling plastics. Materials and Methods: In this in vitro study, the dynamic viscoelastic properties of four commercially available tissue conditioners (TC), Visco-gel (VG), GC Soft-Liner (SL), FITT (FT), and Coe Comfort (CC), relined to modeling plastics with a thickness of 2mm were evaluated after 1 and 7 days of water immersion with the use of storage modulus, loss modulus, and tan delta parameters. Values for these three parameters for each tissue conditioner were statistically analyzed by Kruskal Wallis and Mann Whitney tests with P value sets at<0.05. Results: Complex modulus and loss tangent values of TC were not significantly different among specimens containing 0, 2, 5 and 10 wt.%-SZ, respectively. In FT and TC containing 2 wt.%-SZ, these values were not significantly different between 1 and 28 days in both water- and saliva immersions. Conclusion: The results suggest that relining with modeling plastics does affect TC’s inherent dynamic viscoelastic properties, while the other tissue conditioners investigated may be found to have changed viscoelastic properties as a consequence of vicinity to the modeling plastics. PMID:24910661

  10. Reinforced glass-ionomer cements: the influence of conditioners on marginal leakage.

    PubMed

    Yap, A U; Mok, B Y

    1997-06-01

    The purpose of this in vitro study was to evaluate the influence of conditioners on the enamel and dentine margin sealing ability of three different reinforced glass-ionomer cements. Two Class V preparations were made on the buccal and lingual surfaces of 36 freshly extracted molar teeth. Preparations were solely in enamel or dentine/cementum. The teeth were randomly divided into three groups of 12 and restored with either Ketac Silver (KS), Hi-Dense (HD) or Miracle-Mix (MM) with and without (-C) their respective conditioners. All materials were capsulated and were manipulated according to the manufacturers' instructions. The restorations were finished as recommended by the manufacturers and then stored in saline at 37 degrees C for 1 week, polished, thermally stressed, subjected to dye penetration, sectioned and scored. Rankings in the order of decreasing leakage were as follows: enamel margin KS > KS-C > HD-C > HD > MM > MM-C; dentine margin KS > HD-C > KS-C > HD > MM-C > MM. At the enamel margins, only HD showed a significant increase in leakage when conditioner was not used. At the dentine margin, however, KS had significantly more leakage than KS-C and HD-C had significantly more leakage than HD. There was no significant difference in leakage for MM both with and without conditioner. The influence of conditioners on marginal leakage appears to be both product and tissue specific. PMID:9219996

  11. Composition changes in refrigerant blends for automotive air conditioning

    SciTech Connect

    Jetter, J.J.; Delafield, F.R.; Ng, A.S.; Ratanaphruks, K.; Tufts, M.W.

    1999-07-01

    Three refrigerant blends used to replace the chlorofluorocarbon R-12 in automotive air conditioners were evaluated for composition changes due to typical servicing and leakage. When recommended service procedures were followed, changes in blend compositions were relatively small. Small changes in blend compositions caused no significant changes in refrigeration capacities. However, when recommended procedures were not followed, changes in compositions were relatively large. The amount of change in composition and the resulting effect on performance varied among the three refrigerant blends that were tested. Of the three blends, a quaternary blend containing hydrochlorofluorocarbon R-22 had the greatest changes in composition, while a binary blend containing hydrofluorocarbon R-134a had the smallest changes in composition.

  12. Recent Research in Compression Refrigeration Cycle Air Source Heat Pumps.

    NASA Astrophysics Data System (ADS)

    Arai, Akira; Senshu, Takao

    The most important theme for heat pump air conditioners is the improvement of energy saving and comfort. Recently, cycle components, especially compressores and heat exchangers have been improved greatly in their performance and efficiency. As for compressors, large progress in their efficiencies have been made by detailed analysises such as mechanical losses and by the development of a new type compression mechanism. As for heat exchangers, various high heat transfer surfaces have been developed together with the improvement of the production technologies for them. Further, the effect of the capacity-modulated cycle is evaluated quantitatively through the improvements of static and transient cycle simulation technologies. And in order to realize this cffect, the electrically driven expansion valves heve been marketed. This review introduces the trends of these energy-saving technologies as well as comfort improvement studies.

  13. Effect of double air injection on performance characteristics of centrifugal compressor

    NASA Astrophysics Data System (ADS)

    Hirano, Toshiyuki; Takano, Mizuki; Tsujita, Hoshio

    2015-02-01

    In the operation of a centrifugal compressor of turbocharger, instability phenomena such as rotating stall and surge are induced at a lower flow rate close to the maximum pressure ratio. In this study, for the suppression of surge phenomenon resulting in the extension of the stable operating range of centrifugal compressor to lower flow rate, the compressed air at the compressor exit was re-circulated and injected into the impeller inlet by using the double injection nozzle system. The experiments were performed to find out the optimum circumferential position of the second nozzle relative to the fixed first one and the optimum inner diameter of the injection nozzles, which are able to most effectively reduce the flow rate of surge inception. Moreover, in order to examine the universality of these optimum values, the experiments were carried out for two types of compressors.

  14. Indoor test for thermal performance evaluation of the Solaron (air) solar collector

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The test procedure used and the results obtained from an evaluation test program, conducted to obtain thermal performance data on a Solaron double glazed air solar collector under simulated conditions in a solar simulator are described. A time constant test and incident angle modifier test were also conducted to determine the transient effect and the incident angle effect on the collector. These results and the results of the collector load test are also discussed. The Solaron collector absorber plate is made of 24-gage steel, the coating is baked-on black paint, the cover consists of two sheets of 1/8-inch low-iron tempered glass, and the insulation is one thickness of 3 5/8-inch fiberglass batting.

  15. Enhanced Component Performance Study: Air-Operated Valves 1998–2013

    SciTech Connect

    Schroeder, John Alton

    2014-10-01

    This report presents a performance evaluation of air-operated valves (AOVs) at U.S. commercial nuclear power plants. The data used in this study are based on the operating experience failure reports from fiscal year 1998 through 2013 for the component reliability as reported in the Institute of Nuclear Power Operations (INPO) Consolidated Events Database (ICES). The AOV failure modes considered are failure-to-open/close, failure to operate or control, and spurious operation. The component reliability estimates and the reliability data are trended for the most recent 10-year period, while yearly estimates for reliability are provided for the entire active period. No statistically significant increasing or decreasing trends were identified in the AOV failure data.

  16. An All-Solid-State Fiber-Shaped Aluminum-Air Battery with Flexibility, Stretchability, and High Electrochemical Performance.

    PubMed

    Xu, Yifan; Zhao, Yang; Ren, Jing; Zhang, Ye; Peng, Huisheng

    2016-07-01

    Owing to the high theoretical energy density of metal-air batteries, the aluminum-air battery has been proposed as a promising long-term power supply for electronics. However, the available energy density from the aluminum-air battery is far from that anticipated and is limited by current electrode materials. Herein we described the creation of a new family of all-solid-state fiber-shaped aluminum-air batteries with a specific capacity of 935 mAh g(-1) and an energy density of 1168 Wh kg(-1) . The synthesis of an electrode composed of cross-stacked aligned carbon-nanotube/silver-nanoparticle sheets contributes to the remarkable electrochemical performance. The fiber shape also provides the aluminum-air batteries with unique advantages; for example, they are flexible and stretchable and can be woven into a variety of textiles for large-scale applications. PMID:27193636

  17. Effects of domestic air travel on technical and tactical performance and recovery in soccer.

    PubMed

    Fowler, Peter; Duffield, Rob; Vaile, Joanna

    2014-05-01

    The current study examined the effects of short-haul air travel on competition performance and subsequent recovery. Six male professional Australian football (soccer) players were recruited to participate in the study. Data were collected from 12 matches, which included 6 home and away matches against the same 4 teams. Together with the outcome of each match, data were obtained for team technical and tactical performance indicators and individual player-movement patterns. Furthermore, sleep quantity and quality, hydration, and perceptual fatigue were measured 2 days before, the day of, and 2 days after each match. More competition points were accumulated (P > .05, d = 1.10) and fewer goals were conceded (P > .05, d = 0.93) in home than in away matches. Furthermore, more shots on goal (P > .05, d = 1.17) and corners (P > .05, d = 1.45) and fewer opposition shots on goal (P > .05, d = 1.18) and corners (P < .05, d = 2.32) occurred, alongside reduced total distance covered (P > .05, d = 1.19) and low-intensity activity (P < .05, d = 2.25) during home than during away matches. However, while oxygen saturation was significantly lower during than before and after outbound and return travel (P < .01), equivocal differences in sleep quantity and quality, hydration, and perceptual fatigue were observed before and after competition away compared with home. These results suggest that, compared with short-haul air travel, factors including situational variables, territoriality, tactics, and athlete psychological state are more important in determining match outcome. Furthermore, despite the potential for disrupted recovery patterns, return travel did not impede player recovery or perceived readiness to train. PMID:24755963

  18. Design and performance of the Civil Air Patrol ARCHER hyperspectral processing system

    NASA Astrophysics Data System (ADS)

    Stevenson, Brian; O'Connor, Rory; Kendall, William; Stocker, Alan; Schaff, William; Alexa, Drew; Salvador, John; Eismann, Michael; Barnard, Kenneth; Kershenstein, John

    2005-06-01

    The Civil Air Patrol (CAP) is procuring Airborne Real-time Cueing Hyperspectral Enhanced Reconnaissance (ARCHER) systems to increase their search-and-rescue mission capability. These systems are being installed on a fleet of Gippsland GA-8 aircraft, and will position CAP to gain realworld mission experience with the application of hyperspectral sensor and processing technology to search and rescue. The ARCHER system design, data processing, and operational concept leverage several years of investment in hyperspectral technology research and airborne system demonstration programs by the Naval Research Laboratory (NRL) and Air Force Research Laboratory (AFRL). Each ARCHER system consists of a NovaSol-designed, pushbroom, visible/near-infrared (VNIR) hyperspectral imaging (HSI) sensor, a co-boresighted visible panchromatic high-resolution imaging (HRI) sensor, and a CMIGITS-III GPS/INS unit in an integrated sensor assembly mounted inside the GA-8 cabin. ARCHER incorporates an on-board data processing system developed by Space Computer Corporation (SCC) to perform numerous real-time processing functions including data acquisition and recording, raw data correction, target detection, cueing and chipping, precision image geo-registration, and display and dissemination of image products and target cue information. A ground processing station is provided for post-flight data playback and analysis. This paper describes the requirements and architecture of the ARCHER system, with emphasis on data processor design, components, software, interfaces, and displays. Key sensor performance characteristics and real-time data processing features are discussed. The use of the system for detecting and geo-locating ground targets in real-time is demonstrated using test data collected in Southern California in the fall of 2004.

  19. Hierarchically structured polysulfone/titania fibrous membranes with enhanced air filtration performance.

    PubMed

    Wan, Huigao; Wang, Na; Yang, Jianmao; Si, Yinsong; Chen, Kun; Ding, Bin; Sun, Gang; El-Newehy, Mohamed; Al-Deyab, Salem S; Yu, Jianyong

    2014-03-01

    Hierarchically structured, superhydrophobic filter medium exhibiting robust filtration performance to airborne particulate were prepared by a facile deposition of electrospun polysulfone/titania nanoparticles (PSU/TiO2 NPs) on a conventional nonwoven substrate. The air permeability, tensile strength and abrasion resistance of pristine PSU fibrous membranes could be finely controlled by regulating the solvent composition and number ratios of jets. By employing the TiO2 NPs incorporation, the pristine PSU fibers were endowed with promising superhydrophobicity with a water contact angle of up to 152°. The quantitative hierarchical roughness analysis using N2 adsorption method has confirmed the major contribution of TiO2 NPs on enhancing the porous structure and surface fractal features with irregular rough structure. Filtration performance studies have revealed that the filtration efficiency and pressure drop of resultant hybrid membranes could be manipulated by tuning the surface composition as well as the hierarchical structures. Furthermore, the as-prepared PSU/TiO2-5 membrane exhibited improved filtration efficiency (99.997%) and pressure drop (45.3 Pa) compared with pristine PSU membrane, which would make them a promising media for fine particle filtration, and a new insight was also provided into the design and development of high performance filter medium based on hierarchical structured fibers. PMID:24407655

  20. 75 FR 19310 - Delegation of New Source Performance Standards and National Emission Standards for Hazardous Air...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-14

    ... Standards for Hazardous Air Pollutants for the State of Louisiana AGENCY: Environmental Protection Agency... Hazardous Air Pollutants (NESHAPs) for all sources (both part 70 and non-part 70 sources). These...