Science.gov

Sample records for air conditioning costs

  1. An Investigation of Energy Consumption and Cost in Large Air-Conditioned Buildings. An Interim Report.

    ERIC Educational Resources Information Center

    Milbank, N. O.

    Two similarly large buildings and air conditioning systems are comparatively analyzed as to energy consumption, costs, and inefficiency during certain measured periods of time. Building design and velocity systems are compared to heating, cooling, lighting and distribution capabilities. Energy requirements for pumps, fans and lighting are found to…

  2. SUMMARY OF ELECTRIC SERVICE COSTS FOR TOTALLY AIR CONDITIONED SCHOOLS PREPARED FOR HOUSTON INDEPENDENT SCHOOL DISTRICT, MAY 31, 1967.

    ERIC Educational Resources Information Center

    WHITESIDES, M.M.

    THIS REPORT IS A COMPILATION OF DATA ON ELECTRIC AIR CONDITIONING COSTS, OPERATIONS AND MAINTENANCE. AIR CONDITIONING UNITS ARE COMPARED IN TERMS OF ELECTRIC VERSUS NON-ELECTRIC, AUTOMATIC VERSUS OPERATED, AIR COOLED VERSUS WATER COOLED, RECIPROCATING VERSUS CENTRIFUGAL COMPRESSORS, SPACE AND NOISE, REHEAT, MAINTENANCE AND ORIGINAL COST. DATA ARE…

  3. Cost and Energy Savings Opportunities with Heating, Air Conditioning and Lighting Systems in Schools.

    ERIC Educational Resources Information Center

    Electric Energy Association, New York, NY.

    Great potential exists for saving energy and operating costs with a wide variety of heat conservation systems. Two major electric services--space conditioning and lighting--afford cost and energy savings opportunities. These services are detailed in checklist fashion in this brochure, with the suggestions included under space conditioning…

  4. Low-Flow Liquid Desiccant Air-Conditioning: Demonstrated Performance and Cost Implications

    SciTech Connect

    Kozubal, E.; Herrmann, L.; Deru, M.; Clark, J.; Lowenstein, A.

    2014-09-01

    Cooling loads must be dramatically reduced when designing net-zero energy buildings or other highly efficient facilities. Advances in this area have focused primarily on reducing a building's sensible cooling loads by improving the envelope, integrating properly sized daylighting systems, adding exterior solar shading devices, and reducing internal heat gains. As sensible loads decrease, however, latent loads remain relatively constant, and thus become a greater fraction of the overall cooling requirement in highly efficient building designs, particularly in humid climates. This shift toward latent cooling is a challenge for heating, ventilation, and air-conditioning (HVAC) systems. Traditional systems typically dehumidify by first overcooling air below the dew-point temperature and then reheating it to an appropriate supply temperature, which requires an excessive amount of energy. Another dehumidification strategy incorporates solid desiccant rotors that remove water from air more efficiently; however, these systems are large and increase fan energy consumption due to the increased airside pressure drop of solid desiccant rotors. A third dehumidification strategy involves high flow liquid desiccant systems. These systems require a high maintenance separator to protect the air distribution system from corrosive desiccant droplet carryover and so are more commonly used in industrial applications and rarely in commercial buildings. Both solid desiccant systems and most high-flow liquid desiccant systems (if not internally cooled) add sensible energy which must later be removed to the air stream during dehumidification, through the release of sensible heat during the sorption process.

  5. REACH. Air Conditioning Units.

    ERIC Educational Resources Information Center

    Garrison, Joe; And Others

    As a part of the REACH (Refrigeration, Electro-Mechanical, Air-Conditioning, Heating) electromechanical cluster, this student manual contains individualized instructional units in the area of air conditioning. The instructional units focus on air conditioning fundamentals, window air conditioning, system and installation, troubleshooting and…

  6. Air-Conditioning Mechanic.

    ERIC Educational Resources Information Center

    Marine Corps Inst., Washington, DC.

    This student guide, one of a series of correspondence training courses designed to improve the job performance of members of the Marine Corps, deals with the skills needed by air conditioning mechanics. Addressed in the four chapters, or lessons, of the manual are the following topics: principles of air conditioning, refrigeration components as…

  7. The Effect of Computers on School Air-Conditioning.

    ERIC Educational Resources Information Center

    Fickes, Michael

    2000-01-01

    Discusses the issue of increased air-conditioning demand when schools equip their classrooms with computers that require enhanced and costlier air-conditioning systems. Air-conditioning costs are analyzed in two elementary schools and a middle school. (GR)

  8. No-reheat air-conditioning

    NASA Technical Reports Server (NTRS)

    Obler, H. D.

    1980-01-01

    Air conditioning system, for environmentally controlled areas containing sensitive equipment, regulates temperature and humidity without wasteful and costly reheating. System blends outside air with return air as dictated by various sensors to ensure required humidity in cooled spaces (such as computer room).

  9. High efficiency air cycle air conditioning system

    SciTech Connect

    Rannenberg, G. C.

    1985-11-19

    An air cycle air conditioning system is provided with regenerative heat exchangers upstream and downstream of an expansion turbine. A closedloop liquid circulatory system serially connects the two regenerative heat exchangers for regeneration without the bulk associated with air-to-air heat exchange. The liquid circulatory system may also provide heat transport to a remote sink heat exchanger and from a remote load as well as heat exchange within the sink heat exchanger and load for enhanced compactness and efficiency.

  10. Air Conditioning Does Reduce Air Pollution Indoors

    ERIC Educational Resources Information Center

    Healy, Bud

    1970-01-01

    Report of the winter meeting of the American Society of Heating, Refrigerating and Air-Conditioning Engineers. Subjects covered are--(1) title subject, (2) predictions for the human habitat in 1994, (3) fans, and (4) fire safety in buildings. (JW)

  11. Air conditioned suit

    NASA Technical Reports Server (NTRS)

    Carl, G. R. (Inventor)

    1973-01-01

    An environmentally controlled suit is described consisting of an airtight outergarment attached by an airtight bellows to the wall of a sterile chamber, an undergarment providing for circulation of air near the skin of the wearer, and a circulation system comprised of air supply and distribution to the extremities of the undegarment and central collection and exhaust of air from the midsection of the undergarment. A workman wearing the undergarment and attached circulation system enters the outer garment through a tunnel in the chamber wall and the attached bellows to work in the chamber without any danger of spreading bacteria.

  12. Air conditioning system

    DOEpatents

    Lowenstein, Andrew; Miller, Jeffrey; Gruendeman, Peter; DaSilva, Michael

    2005-02-01

    An air conditioner comprises a plurality of plates arranged in a successively stacked configuration with portions thereof having a spaced apart arrangement, and defining between successive adjacent pairs of plates at the spaced apart portions a first and second series of discrete alternating passages wherein a first air stream is passed through the first series of passages and a second air stream is passed through the second series of passages; and said stacked configuration of plates forming integrally therewith a liquid delivery means for delivering from a source a sufficient quantity of a liquid to the inside surfaces of the first series of fluid passages in a manner which provides a continuous flow of the liquid from a first end to a second end of the plurality of plates while in contact with the first air stream.

  13. Energy-Efficient Air Conditioning

    SciTech Connect

    Krigger, J.; Stewart, K.

    1999-06-30

    Many people buy or use air conditioners without understanding their designs, components, and operating principles. Proper sizing, selection, installation, maintenance, and correct use are keys to cost-effective operation and lower overall costs. This publication discusses both central and room air conditioners. Heat pumps, which provide both home cooling and heating, are not covered in this publication. Contact www.eren.doe.gov/consumerinfo for more information.

  14. High Energy Efficiency Air Conditioning

    SciTech Connect

    Edward McCullough; Patrick Dhooge; Jonathan Nimitz

    2003-12-31

    This project determined the performance of a new high efficiency refrigerant, Ikon B, in a residential air conditioner designed to use R-22. The refrigerant R-22, used in residential and small commercial air conditioners, is being phased out of production in developed countries beginning this year because of concerns regarding its ozone depletion potential. Although a replacement refrigerant, R-410A, is available, it operates at much higher pressure than R-22 and requires new equipment. R-22 air conditioners will continue to be in use for many years to come. Air conditioning is a large part of expensive summer peak power use in many parts of the U.S. Previous testing and computer simulations of Ikon B indicated that it would have 20 - 25% higher coefficient of performance (COP, the amount of cooling obtained per energy used) than R-22 in an air-cooled air conditioner. In this project, a typical new R-22 residential air conditioner was obtained, installed in a large environmental chamber, instrumented, and run both with its original charge of R-22 and then with Ikon B. In the environmental chamber, controlled temperature and humidity could be maintained to obtain repeatable and comparable energy use results. Tests with Ikon B included runs with and without a power controller, and an extended run for several months with subsequent analyses to check compatibility of Ikon B with the air conditioner materials and lubricant. Baseline energy use of the air conditioner with its original R-22 charge was measured at 90 deg F and 100 deg F. After changeover to Ikon B and a larger expansion orifice, energy use was measured at 90 deg F and 100 deg F. Ikon B proved to have about 19% higher COP at 90 deg F and about 26% higher COP at 100 deg F versus R-22. Ikon B had about 20% lower cooling capacity at 90 deg F and about 17% lower cooling capacity at 100 deg F versus R-22 in this system. All results over multiple runs were within 1% relative standard deviation (RSD). All of these

  15. Air Conditioning Overflow Sensor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Technology Transfer Office at Stennis Space Center helped a local inventor develop a prototype of an attachment for central air conditioners and heat pumps that helps monitor water levels to prevent condensation overflow. The sensor will indicate a need for drain line maintenance and prevent possible damage caused by drain pan water spillover. An engineer in the Stennis Space Center prototype Development Laboratory used SSC sensor technology in the development of the sensor.

  16. Air conditioning and refrigeration engineering

    SciTech Connect

    Kreith, F.

    1999-12-01

    This book supplies the basics of design, from selecting the optimum system and equipment to preparing the drawings and specifications. It discusses the four phases of preparing a project: gathering information, developing alternatives, evaluating alternatives, and selling the best solution. In addition, the author breaks down the responsibilities of the engineer design documents, computer aided design, and government codes and standards. It provides you with an easy reference to all aspects of the topic. This resource addresses the most current areas of interest, such as computer aided design and drafting, desiccant air conditioning and energy conservation. It is a thorough and convenient guide to air conditioning and refrigeration engineering. Contents include: introduction; psychrometrics; air-conditioning processes and cycles; refrigerants and refrigeration cycles; outdoor design conditions and indoor design criteria; load calculations; air handling units and packaged units; refrigeration components and evaporative coolers; water systems; heating systems; refrigeration systems; thermal storage system; air system basics; absorption systems; air-conditioning systems and selection; and desiccant dehumidification and air-conditioning.

  17. Computer Developments in Air Conditioning.

    ERIC Educational Resources Information Center

    Pancoast, Ferendino, Grafton and Skeels, Architects, Miami, FL.

    Proceedings of a conference on the present and future uses of computer techniques in the air conditioning field. The recommendation of this report is, for the most part, negative insofar as it applies to the use of computers for design by the small office. However, there should be an awareness of their usefulness in controlling the environmental…

  18. NASA/Air Force Cost Model: NAFCOM

    NASA Technical Reports Server (NTRS)

    Winn, Sharon D.; Hamcher, John W. (Technical Monitor)

    2002-01-01

    The NASA/Air Force Cost Model (NAFCOM) is a parametric estimating tool for space hardware. It is based on historical NASA and Air Force space projects and is primarily used in the very early phases of a development project. NAFCOM can be used at the subsystem or component levels.

  19. Thermal Environment for Classrooms. Central System Approach to Air Conditioning.

    ERIC Educational Resources Information Center

    Triechler, Walter W.

    This speech compares the air conditioning requirements of high-rise office buildings with those of large centralized school complexes. A description of one particular air conditioning system provides information about the system's arrangement, functions, performance efficiency, and cost effectiveness. (MLF)

  20. Concentrated Solar Air Conditioning for Buildings Project

    NASA Technical Reports Server (NTRS)

    McLaughlin, Rusty

    2010-01-01

    This slide presentation reviews project to implement the use of solar power to provide air conditioning for NASA buildings. Included is an overall conceptual schematic, and an diagram of the plumbing and instrumentation for the project. The use of solar power to power air conditioning in buildings, particularly in the Southwest, could save a significant amount of money. DOD studies have concluded that air conditioning accounts for 30-60% of total energy expenditures.

  1. Air Conditioning. Performance Objectives. Intermediate Course.

    ERIC Educational Resources Information Center

    Long, William

    Several intermediate performance objectives and corresponding criterion measures are listed for each of seven terminal objectives for an intermediate air conditioning course. The titles of the seven terminal objectives are Refrigeration Cycle, Job Requirement Skills, Air Conditioning, Trouble Shooting, Performance Test, Shop Management, and S.I.E.…

  2. HEATING AND AIR CONDITIONING EDUCATIONAL PROGRAM.

    ERIC Educational Resources Information Center

    Lennox Industries, Inc., Marshalltown, IA.

    INCREASED MOTIVATION, INCREASED INITIAL COMPREHENSION, AND INCREASED RETENTION ARE THE PRIME GOALS OF THE LENNOX HEATING AND AIR CONDITIONING EDUCATION PROGRAM. IT IS A COMPLETE PROGRAM WITH ALL THE TEACHING TOOLS REQUIRED TO PRODUCE A KNOWLEDGEABLE HEATING AND AIR-CONDITIONING INSTALLER OR SERVICE MAN. THIS INSTRUCTIONAL PROGRAM IS DESIGNED…

  3. Air Conditioning. FOS: Fundamentals of Service.

    ERIC Educational Resources Information Center

    Employment and Training Administration (DOL), Washington, DC. Office of Youth Programs.

    This manual on air conditioning is one of a series of power mechanics texts and visual aids covering theory of operation, diagnosis, and repair. Information is presented for use by vocational students and teachers as well as shop servicemen and laymen. Focus is on air conditioning systems for mobile machines, but most of the information also…

  4. Air Conditioning and Heating Technology--II.

    ERIC Educational Resources Information Center

    Gattone, Felix

    Twenty-eight chapters and numerous drawings provide information for instructors and students of air conditioning and heating technology. Chapter 1 lists the occupational opportunities in the field. Chapter 2 covers the background or development of the industry of air conditioning and heating technology. Chapter 3 includes some of the principle…

  5. Low cost bare-plate solar air collector

    SciTech Connect

    Maag, W.L.; Wenzler, C.J.; Rom, F.E.; VanArsdale, D.R.

    1980-09-01

    The purpose of this project was to develop a low cost, bare-plate collector, determine its performance for a variety of climatic conditions, analyze the economics of this type of solar collector and evaluate specific applications. Two prototype collectors were designed, fabricated and installed into an instrumented test system. Tests were conducted for a period of five months. Results of the tests showed consistent operating efficiencies of 60% or greater with air preheat temperature uses up to 20/sup 0/F for one of the prototypes. The economic analyses indicated that an installed cost of between $5 and $10 per square foot would make this type of solar system economically viable. For the materials of construction and the type of fabrication and installation perceived, these costs for the bare-plate solar collector are believed to be attainable. Specific applications for preheating ventilation air for schools were evaluated and judged to be economically viable.

  6. Mine ventilation and air conditioning. 3. edition

    SciTech Connect

    Hartman, H.L.; Mutmansky, J.M.; Ramani, R.V.; Wang, Y.J.

    1998-12-31

    This revised edition presents an engineering design approach to ventilation and air conditioning as part of the comprehensive environmental control of the mine atmosphere. It provides an in-depth look, for practitioners who design and operate mines, into the health and safety aspects of environmental conditions in the underground workplace. The contents include: Environmental control of the mine atmosphere; Properties and behavior of air; Mine air-quality control; Mine gases; Dusts and other mine aerosols; Mine ventilation; Airflow through mine openings and ducts; Mine ventilation circuits and networks; Natural ventilation; Fan application to mines; Auxiliary ventilation and controlled recirculation; Economics of airflow; Control of mine fires and explosions; Mine air conditioning; Heat sources and effect in mines; Mine air conditioning systems; Appendices; References; Answers to selected problems; and Index.

  7. Breakthrough Video: Desiccant Enhanced Evaporative Air Conditioning

    SciTech Connect

    2012-01-01

    Researchers at the National Renewable Energy Laboratory (NREL) invented a breakthrough technology that improves air conditioning in a novel way—with heat. NREL combined desiccant materials, which remove moisture from the air using heat, and advanced evaporative technologies to develop a cooling unit that uses 90% less electricity and up to 80% less total energy than traditional air conditioning (AC). This solution, called the desiccant enhanced evaporative air conditioner (DEVAP), also controls humidity more effectively to improve the comfort of people in buildings.

  8. Uncertainty in air quality observations using low-cost sensors

    NASA Astrophysics Data System (ADS)

    Castell, Nuria; Dauge, Franck R.; Dongol, Rozina; Vogt, Matthias; Schneider, Philipp

    2016-04-01

    Air pollution poses a threat to human health, and the WHO has classified air pollution as the world's largest single environmental health risk. In Europe, the majority of the population lives in areas where air quality levels frequently exceed WHO's ambient air quality guidelines. The emergence of low-cost, user-friendly and very compact air pollution platforms allowing observations at high spatial resolution in near real-time, provides us with new opportunities to simultaneously enhance existing monitoring systems as well as enable citizens to engage in more active environmental monitoring (citizen science). However the data sets generated by low-cost sensors show often questionable data quality. For many sensors, neither their error characteristics nor how their measurement capability holds up over time or through a range of environmental conditions, have been evaluated. We have conducted an exhaustive evaluation of the commercial low-cost platform AQMesh (measuring NO, NO2, CO, O3, PM10 and PM2.5) in laboratory and in real-world conditions in the city of Oslo (Norway). Co-locations in field of 24 platforms were conducted over a 6 month period (April to September 2015) allowing to characterize the temporal variability in the performance. Additionally, the field performance included the characterization on different monitoring urban monitoring sites characteristic of both traffic and background conditions. All the evaluations have been conducted against CEN reference method analyzers maintained according to the Norwegian National Reference Laboratory quality system. The results show clearly that a good performance in laboratory does not imply similar performance in real-world outdoor conditions. Moreover, laboratory calibration is not suitable for subsequent measurements in urban environments. In order to reduce the errors, sensors require on-site field calibration. Even after such field calibration, the platforms show a significant variability in the performance

  9. Troubleshooting the residential air conditioning system

    SciTech Connect

    Puzio, H.

    1996-01-01

    In order to effectively diagnose problems in a residential air conditioning system, the technician should develop and follow a logical step-by-step troubleshooting procedure. A list of problems, along with possible causes and solutions, that a technician may encounter when servicing a residential air conditioner is presented.

  10. HEALTH COSTS OF AIR POLLUTION DAMAGES: A STUDY OF HOSPITALIZATION COSTS

    EPA Science Inventory

    An investigation of the hospitalization costs of exposure to air pollution in Allegheny County, Pennsylvania was conducted to determine whether persons exposed to air pollution incurred higher incidences of hospitalization or additional costs for treatment. A hospitalization data...

  11. Reduced bleed air extraction for DC-10 cabin air conditioning

    NASA Technical Reports Server (NTRS)

    Newman, W. H.; Viele, M. R.; Hrach, F. J.

    1980-01-01

    It is noted that a significant fuel savings can be achieved by reducing bleed air used for cabin air conditioning. Air in the cabin can be recirculated to maintain comfortable ventilation rates but the quality of the air tends to decrease due to entrainment of smoke and odors. Attention is given to a development system designed and fabricated under the NASA Engine Component Improvement Program to define the recirculation limit for the DC-10. It is shown that with the system, a wide range of bleed air reductions and recirculation rates is possible. A goal of 0.8% fuel savings has been achieved which results from a 50% reduction in bleed extraction from the engine.

  12. AIRQino, a low-cost air quality mobile platform

    NASA Astrophysics Data System (ADS)

    Zaldei, Alessandro; Vagnoli, Carolina; Di Lonardo, Sara; Gioli, Beniamino; Gualtieri, Giovanni; Toscano, Piero; Martelli, Francesca; Matese, Alessandro

    2015-04-01

    Recent air quality regulations (Directive 2008/50/EC) enforce the transition from point-based monitoring networks to new tools that must be capable of mapping and forecasting air quality on the totality of land area, and therefore the totality of citizens. This implies new technologies such as models and additional indicative measurements, are needed in addition to accurate fixed air quality monitoring stations, that until now have been taken as reference by local administrators for the enforcement of various mitigation strategies. However, due to their sporadic spatial distribution, they cannot describe the highly resolved spatial pollutant variations within cities. Integrating additional indicative measurements may provide adequate information on the spatial distribution of the ambient air quality, also allowing for a reduction of the required minimum number of fixed sampling points, whose high cost and complex maintenance still remain a crucial concern for local administrators. New low-cost and small size sensors are becoming available, that could be employed in air quality monitoring including mobile applications. However, accurate assessment of their accuracy and performance both in controlled and real monitoring conditions is crucially needed. Quantifying sensor response is a significant challenge due to the sensitivity to ambient temperature and humidity and the cross-sensitivity to others pollutant species. This study reports the development of an Arduino compatible electronic board (AIRQino) which integrates a series of low-cost metal oxide and NDIR sensors for air quality monitoring, with sensors to measure air temperature, relative humidity, noise, solar radiation and vertical acceleration. A comparative assessment was made for CO2, CO, NO2, CH4, O3, VOCs concentrations, temperature and relative humidity. A controlled climatic chamber study (-80°C / +80°C) was performed to verify temperature and humidity interference using reference gas cylinders and

  13. Thermal analysis of car air conditioning

    NASA Astrophysics Data System (ADS)

    Trzebiński, Daniel; Szczygieł, Ireneusz

    2010-10-01

    Thermodynamic analysis of car air cooler is presented in this paper. Typical refrigerator cycles are studied. The first: with uncontrolled orifice and non controlled compressor and the second one with the thermostatic controlled expansion valve and externally controlled compressor. The influence of the refrigerant decrease and the change of the air temperature which gets to exchangers on the refrigeration efficiency of the system; was analysed. Also, its effectiveness and the power required to drive the compressor were investigated. The impact of improper refrigerant charge on the performance of air conditioning systems was also checked.

  14. BEETIT: Building Cooling and Air Conditioning

    SciTech Connect

    2010-09-01

    BEETIT Project: The 14 projects that comprise ARPA-E’s BEETIT Project, short for “Building Energy Efficiency Through Innovative Thermodevices,” are developing new approaches and technologies for building cooling equipment and air conditioners. These projects aim to drastically improve building energy efficiency and reduce greenhouse gas emissions such as carbon dioxide (CO2) at a cost comparable to current technologies.

  15. ALTERNATIVE TECHNOLOGIES FOR REFRIGERATION AND AIR-CONDITIONING APPLICATIONS

    EPA Science Inventory

    The report gives results of an assessment of refrigeration technologies that are alternatives to vapor compression refrigeration for use in five application categories: domestic air conditioning, commercial air conditioning, mobile air conditioning, domestic refrigeration, and co...

  16. Automobile air-conditioning unit. Final report

    SciTech Connect

    Schaetzle, W.J.

    1982-12-01

    In this study the refrigerant in the automobile air-conditioner is compressed by thermal energy in a unique compression system rather than by work in a standard compressor. The compression uses an intermittent compression process with a solid absorbent. The vapor is absorbed by an absorbent at relatively low temperature and ejected as the absorbent temperature is raised. A set of one way valves limits flow to one direction. Major contributions are heat transfer requirements, molecular sieve-refrigerant matching, minimizing non-producing mass, solving thermal fatigue and shock problems, and applying this to automobile air-conditioning. The performance study shows energy savings up to fifty percent are possible, depending on engine load. A twenty percent energy savings with the vehicle tested with the air-conditioner in operation is average. The study also showed that less fuel is used with the windows open than with the air-conditioner operating.

  17. MOBILE AIR-CONDITIONING RECYCLING MANUAL

    EPA Science Inventory

    The report gives guidelines on the recovery and recycle of the chlorofluorocarbon (CFC), dichlorodifluoromethane (CFC-12), from mobile air conditions. It is intended for wide distribution internationally and is especially for use by developing countries and the World Bank to ass...

  18. Standardized Curriculum for Heating and Air Conditioning.

    ERIC Educational Resources Information Center

    Mississippi State Dept. of Education, Jackson. Office of Vocational, Technical and Adult Education.

    Standardized vocational education course titles and core contents for two courses in Mississippi are provided: heating and air conditioning I and II. The first course contains the following units: (1) orientation; (2) safety; (3) refrigeration gauges and charging cylinder; (4) vacuum pump service operations; (5) locating refrigerant leaks; (6)…

  19. Solar powered desiccant air conditioning system

    NASA Astrophysics Data System (ADS)

    1981-07-01

    A solar-powered desiccant air conditioning system using silica gel was developed, and modifications to the existing unit and additional testing are proposed to demonstrate the feasibility of the unit. Conversion from a rotating bed to a fixed bed of silica gel is proposed. Some general plans for commercialization are briefly discussed.

  20. Air Conditioning and Refrigeration Book IV.

    ERIC Educational Resources Information Center

    Eckes, William; Fulkerson, Dan

    This publication is the concluding text in a four-part curriculum for air conditioning and refrigeration. Materials in Book 4 are designed to complement theoretical and functional elements in Books 1-3. Instructional materials in this publication are written in terms of student performance using measurable objectives. The course includes six…

  1. Air Conditioning and Refrigeration Supplementary Units.

    ERIC Educational Resources Information Center

    Winston, Del; And Others

    This document contains supplemental materials for special needs high school students intended to facilitate their mainstreaming in regular air conditioning and refrigeration courses. Teacher's materials precede the materials for students and include general notes for the instructor, additional suggestions, two references, a questionnaire on the…

  2. Readings in Air Conditioning and Refrigeration.

    ERIC Educational Resources Information Center

    Uberto, Jeffrey A.

    Designed to encourage vocational high school students to read by offering reading materials relevant to their vocational goals, this document contains thirty-seven articles related to air conditioning and refrigeration which have been selected from trade journals, magazines, and newspapers and adapted to the students' reading capabilities. A…

  3. Fundamentals of Air Conditioning and Refrigeration.

    ERIC Educational Resources Information Center

    Clemons, Mark

    This set of instructional materials provides secondary and postsecondary students with a state-of-the-art curriculum for the air conditioning and refrigeration industry that includes the many changes brought by new Environmental Protection Agency (EPA) regulations. Introductory materials explain the use of this publication and provide the…

  4. Air Conditioning and Refrigeration. Book One.

    ERIC Educational Resources Information Center

    Wantiez, Gary W.

    Designed to provide students with the basic skills for an occupation in air conditioning and refrigeration, this curriculum guide includes seven major areas, each consisting of one or more units of instruction. These areas and their respective units are titled as follows: Orientation (history and development, and job opportunities), Safety…

  5. Air Conditioning and Refrigeration Book III.

    ERIC Educational Resources Information Center

    Eckes, William; Fulkerson, Dan

    Designed to present theory as a functional aspect, this air conditioning and refrigeration curriculum guide is comprised of nine units of instruction. Unit titles include (1) Job Orientation, (2) Applying for a Job, (3) Customer Relations, (4) Business Management, (5) Psychometrics, (6) Residential Heat Loss and Heat Gain, (7) Duct Design and…

  6. Air Conditioning and Refrigeration. Book Two.

    ERIC Educational Resources Information Center

    Wantiez, Gary W.

    This curriculum guide (book II), along with book I, is designed to provide students with the basic skills for an occupation in air conditioning and refrigeration. Six major areas are included, each consisting of one or more units of instruction. These areas and their respective units are titled as follows: Electricity (fundamentals of electricity,…

  7. Metrics for Air Conditioning & Refrigeration, Heating, Ventilating.

    ERIC Educational Resources Information Center

    Cooper, Gloria S., Ed.; Magisos, Joel H., Ed.

    Designed to meet the job-related metric measurement needs of the air conditioning and refrigeration, heating and ventilating student, this instructional package is one of three for the construction occupations cluster, part of a set of 55 packages for metric instruction in different occupations. The package is intended for students who already…

  8. Thermal conditions and perceived air quality in an air-conditioned auditorium

    NASA Astrophysics Data System (ADS)

    Polednik, Bernard; Guz, Łukasz; Skwarczyński, Mariusz; Dudzińska, Marzenna R.

    2016-07-01

    The study reports measurements of indoor air temperature (T) and relative humidity (RH), perceived air quality (PAQ) and CO2, fine aerosol particle number (PN) and mass (PM1) concentrations in an air conditioned auditorium. The measurements of these air physical parameters have been carried out in the unoccupied auditorium with the air conditioning system switched off (AC off mode) and in the unoccupied and occupied auditorium with the air conditioning system switched off during the night and switched on during the day (AC on/off mode). The average indoor air thermal parameters, CO2 concentration and the PAQ value (in decipols) were elevated, while average PM1 concentration was lower in the AC on/off mode. A statistically significant (p < 0.001) positive correlation has been observed between T and PAQ values and CO2 concentrations (r = 0.66 and r = 0.59, respectively) in that AC mode. A significant negative correlation has been observed between T and PN and PM1 concentrations (r = -0.38 and r = -0.49, respectively). In the AC off mode the above relations between T and the particle concentrations were not that unequivocal. These findings may be of importance as they indicate that in certain AC operation modes the indoor air quality deteriorates along with the variation of the indoor air microclimate and room occupation. This, in turn, may adversely affect the comfort and productivity of the users of air conditioned premises.

  9. Smart Sensors Enable Smart Air Conditioning Control

    PubMed Central

    Cheng, Chin-Chi; Lee, Dasheng

    2014-01-01

    In this study, mobile phones, wearable devices, temperature and human motion detectors are integrated as smart sensors for enabling smart air conditioning control. Smart sensors obtain feedback, especially occupants' information, from mobile phones and wearable devices placed on human body. The information can be used to adjust air conditioners in advance according to humans' intentions, in so-called intention causing control. Experimental results show that the indoor temperature can be controlled accurately with errors of less than ±0.1 °C. Rapid cool down can be achieved within 2 min to the optimized indoor capacity after occupants enter a room. It's also noted that within two-hour operation the total compressor output of the smart air conditioner is 48.4% less than that of the one using On-Off control. The smart air conditioner with wearable devices could detect the human temperature and activity during sleep to determine the sleeping state and adjusting the sleeping function flexibly. The sleeping function optimized by the smart air conditioner with wearable devices could reduce the energy consumption up to 46.9% and keep the human health. The presented smart air conditioner could provide a comfortable environment and achieve the goals of energy conservation and environmental protection. PMID:24961213

  10. Smart sensors enable smart air conditioning control.

    PubMed

    Cheng, Chin-Chi; Lee, Dasheng

    2014-01-01

    In this study, mobile phones, wearable devices, temperature and human motion detectors are integrated as smart sensors for enabling smart air conditioning control. Smart sensors obtain feedback, especially occupants' information, from mobile phones and wearable devices placed on human body. The information can be used to adjust air conditioners in advance according to humans' intentions, in so-called intention causing control. Experimental results show that the indoor temperature can be controlled accurately with errors of less than ±0.1 °C. Rapid cool down can be achieved within 2 min to the optimized indoor capacity after occupants enter a room. It's also noted that within two-hour operation the total compressor output of the smart air conditioner is 48.4% less than that of the one using On-Off control. The smart air conditioner with wearable devices could detect the human temperature and activity during sleep to determine the sleeping state and adjusting the sleeping function flexibly. The sleeping function optimized by the smart air conditioner with wearable devices could reduce the energy consumption up to 46.9% and keep the human health. The presented smart air conditioner could provide a comfortable environment and achieve the goals of energy conservation and environmental protection. PMID:24961213

  11. Air Conditioning System using Rankine Cycle

    NASA Astrophysics Data System (ADS)

    Nagatomo, Shigemi; Yamaguchi, Hiroichi; Hattori, Hitoshi; Futamura, Motonori

    Natural gas is used as the energy source to cope with the recent situation of increasing demand for electricity especially in summer. In this paper, the performance of a Rankine cycle air conditioning system driven by natural gas was studied. The following results were obtained : (1) Basic equations of performance, refrigerant mass flow rate and expander volume were developed by using the values of heating efficiency, regeneration efficiency, expander efficiency and compressor efficiency. (2) R134a refrigerant has been considered to be suitable for the Rankine cycle air conditioning system, compared with other refrigerants. (3)A Rankine cycle cooling system using R134a refrigerant as a single working fluid was developed. System COP of 0.47 was attained at typical operating condition.

  12. Alternative Air Conditioning Technologies: Underfloor AirDistribution (UFAD)

    SciTech Connect

    Webster, Tom

    2004-06-01

    Recent trends in today's office environment make it increasingly more difficult for conventional centralized HVAC systems to satisfy the environmental preferences of individual officer workers using the standardized approach of providing a single uniform thermal and ventilation environment. Since its original introduction in West Germany during the 1950s, the open plan office containing modular workstation furniture and partitions is now the norm. Thermostatically controlled zones in open plan offices typically encompass relatively large numbers of workstations in which a diverse work population having a wide range of preferred temperatures must be accommodated. Modern office buildings are also being impacted by a large influx of heat-generating equipment (computers, printers, etc.) whose loads may vary considerably from workstation to workstation. Offices are often reconfigured during the building's lifetime to respond to changing tenant needs, affecting the distribution of within-space loads and the ventilation pathways among and over office partitions. Compounding this problem, there has been a growing awareness of the importance of the comfort, health, and productivity of individual office workers, giving rise to an increased demand among employers and employees for a high-quality work environment. During recent years an increasing amount of attention has been paid to air distribution systems that individually condition the immediate environments of office workers within their workstations to address the issues outlined above. As with task/ambient lighting systems, the controls for the ''task'' components of these systems are partially or entirely decentralized and under the control of the occupants. Typically, the occupant has control over the speed and direction, and in some cases the temperature, of the incoming air supply. Variously called ''task/ambient conditioning,'' ''localized thermal distribution,'' and ''personalized air conditioning'' systems, these

  13. Regulatory Considerations of Lower Cost Air Pollution Sensor Data Performance

    EPA Science Inventory

    Low-cost, portable air quality sensors could be the next generation of air monitoring, however, this nascent technology is not without risk. This article looks at how the U.S. Environmental Protection Agency (EPA) uses air monitoring data, the procedures followed to ensure and a...

  14. Controlling Urban Air Pollution: A Benefit-Cost Assessment.

    ERIC Educational Resources Information Center

    Krupnick, Alan J.; Portney, Paul R.

    1991-01-01

    The pros and cons of air pollution control efforts are discussed. Both national and regional air pollution control plans are described. Topics of discussion include benefit-cost analysis, air quality regulation, reducing ozone in the urban areas, the Los Angeles plan, uncertainties, and policy implications. (KR)

  15. Innovative Air Conditioning and Climate Control

    NASA Technical Reports Server (NTRS)

    Graf, John

    2015-01-01

    NASA needed to develop a desiccant wheel based humidity removal system to enable the long term testing of the Orion CO2 scrubber on the International Space Station. In the course of developing that system, we learned three things that are relevant to energy efficient air conditioning of office towers. NASA developed a conceptual design for a humidity removal system for an office tower environment. We are looking for interested partners to prototype and field test this concept.

  16. Numerical simulation and nasal air-conditioning

    PubMed Central

    Keck, Tilman; Lindemann, Jörg

    2011-01-01

    Heating and humidification of the respiratory air are the main functions of the nasal airways in addition to cleansing and olfaction. Optimal nasal air conditioning is mandatory for an ideal pulmonary gas exchange in order to avoid desiccation and adhesion of the alveolar capillary bed. The complex three-dimensional anatomical structure of the nose makes it impossible to perform detailed in vivo studies on intranasal heating and humidification within the entire nasal airways applying various technical set-ups. The main problem of in vivo temperature and humidity measurements is a poor spatial and time resolution. Therefore, in vivo measurements are feasible only to a restricted extent, solely providing single temperature values as the complete nose is not entirely accessible. Therefore, data on the overall performance of the nose are only based on one single measurement within each nasal segment. In vivo measurements within the entire nose are not feasible. These serious technical issues concerning in vivo measurements led to a large number of numerical simulation projects in the last few years providing novel information about the complex functions of the nasal airways. In general, numerical simulations merely calculate predictions in a computational model, e.g. a realistic nose model, depending on the setting of the boundary conditions. Therefore, numerical simulations achieve only approximations of a possible real situation. The aim of this review is the synopsis of the technical expertise on the field of in vivo nasal air conditioning, the novel information of numerical simulations and the current state of knowledge on the influence of nasal and sinus surgery on nasal air conditioning. PMID:22073112

  17. Magnetic Refrigeration Technology for High Efficiency Air Conditioning

    SciTech Connect

    Boeder, A; Zimm, C

    2006-09-30

    Magnetic refrigeration was investigated as an efficient, environmentally friendly, flexible alternative to conventional residential vapor compression central air conditioning systems. Finite element analysis (FEA) models of advanced geometry active magnetic regenerator (AMR) beds were developed to minimize bed size and thus magnet mass by optimizing geometry for fluid flow and heat transfer and other losses. Conventional and magnetocaloric material (MCM) regenerator fabrication and assembly techniques were developed and advanced geometry passive regenerators were built and tested. A subscale engineering prototype (SEP) magnetic air conditioner was designed, constructed and tested. A model of the AMR cycle, combined with knowledge from passive regenerator experiments and FEA results, was used to design the regenerator beds. A 1.5 Tesla permanent magnet assembly was designed using FEA and the bed structure and plenum design was extensively optimized using FEA. The SEP is a flexible magnetic refrigeration platform, with individually instrumented beds and high flow rate and high frequency capability, although the current advanced regenerator geometry beds do not meet performance expectations, probably due to manufacturing and assembly tolerances. A model of the AMR cycle was used to optimize the design of a 3 ton capacity magnetic air conditioner, and the system design was iterated to minimize external parasitic losses such as heat exchanger pressure drop and fan power. The manufacturing cost for the entire air conditioning system was estimated, and while the estimated SEER efficiency is high, the magnetic air conditioning system is not cost competitive as currently configured. The 3 ton study results indicate that there are other applications where magnetic refrigeration is anticipated to have cost advantages over conventional systems, especially applications where magnetic refrigeration, through the use of its aqueous heat transfer fluid, could eliminate intermediate

  18. Air-Microfluidics: Creating Small, Low-cost, Portable Air Quality Sensors

    EPA Science Inventory

    Air-microfluidics shows great promise in dramatically reducing the size, cost, and power requirements of future air quality sensors without compromising their accuracy. Microfabrication provides a suite of relatively new tools for the development of micro electro mechanical syste...

  19. Seminar 14 - Desiccant Enhanced Air Conditioning: Desiccant Enhanced Evaporative Air Conditioning (Presentation)

    SciTech Connect

    Kozubal, E.

    2013-02-01

    This presentation explains how liquid desiccant based coupled with an indirect evaporative cooler can efficiently produce cool, dry air, and how a liquid desiccant membrane air conditioner can efficiently provide cooling and dehumidification without the carryover problems of previous generations of liquid desiccant systems. It provides an overview to a liquid desiccant DX air conditioner that can efficiently provide cooling and dehumidification to high latent loads without the need for reheat, explains how liquid desiccant cooling and dehumidification systems can outperform vapor compression based air conditioning systems in hot and humid climates, explains how liquid desiccant cooling and dehumidification systems work, and describes a refrigerant free liquid desiccant based cooling system.

  20. Influence of indoor air quality (IAQ) objectives on air-conditioned offices in Hong Kong.

    PubMed

    Hui, Pui-Shan; Mui, Kwok-Wai; Wong, Ling-Tim

    2008-09-01

    It is costly to sample all air pollutants of a general community. Air sampling should be conducted based on a practical assessment strategy and monitoring plan. In Hong Kong, the Environmental Protection Department (HKEPD) launched an Indoor Air Quality (IAQ) certification scheme to grade workplace IAQ as 'Excellent' or 'Good' by measuring the levels of nine common indoor air pollutants, namely carbon dioxide (CO(2)), carbon monoxide (CO), respirable suspended particulates (RSP), nitrogen dioxide (NO(2)), ozone (O(3)), formaldehyde (HCHO), total volatile organic compounds (TVOC), radon (Rn), and airborne bacteria count (ABC). Although average office IAQ performance has been improved since the implementation of this certification scheme, there are still resource issues and technical difficulties. To streamline the assessment of office IAQ performance, this study proposes a simple index of IAQ benchmarks formulated in compliance with the HKEPD requirements. In particular, three of the nine listed common air pollutants were selected as the 'representatives' for the overall satisfactory IAQ. Together with the assessment results of 422 Hong Kong air-conditioned offices, the index was evaluated in terms of test sensitivity, specificity and predictive values. Proved to be feasible to describe the IAQ of some air-conditioned offices, this IAQ index would be a useful tool for policymakers, building owners and professionals to quantify IAQ performance in offices and to make decisions on resources and manpower management for efficient mitigation actions. PMID:17973197

  1. Preliminary estimates of operating costs for lighter than air transports

    NASA Technical Reports Server (NTRS)

    Smith, C. L.; Ardema, M. D.

    1975-01-01

    A preliminary set of operating cost relationships are presented for airship transports. The starting point for the development of the relationships is the direct operating cost formulae and the indirect operating cost categories commonly used for estimating costs of heavier than air commercial transports. Modifications are made to the relationships to account for the unique features of airships. To illustrate the cost estimating method, the operating costs of selected airship cargo transports are computed. Conventional fully buoyant and hybrid semi-buoyant systems are investigated for a variety of speeds, payloads, ranges, and altitudes. Comparisons are made with aircraft transports for a range of cargo densities.

  2. Preliminary estimates of operating costs for lighter than air transports

    NASA Technical Reports Server (NTRS)

    Smith, C. L.; Ardema, M. D.

    1975-01-01

    Presented is a preliminary set of operating cost relationships for airship transports. The starting point for the development of the relationships is the direct operating cost formulae and the indirect operating cost categories commonly used for estimating costs of heavier than air commercial transports. Modifications are made to the relationships to account for the unique features of airships. To illustrate the cost estimating method, the operating costs of selected airship cargo transports are computed. Conventional fully buoyant and hybrid semi-buoyant systems are investigated for a variety of speeds, payloads, ranges, and altitudes. Comparisons are made with aircraft transports for a range of cargo densities.

  3. Alternative non-CFC mobile air conditioning

    SciTech Connect

    Mei, V.C.; Chen, F.C.; Kyle, D.M.

    1992-09-01

    Concern about the destruction of the global environment by chlorofluorocarbon (CFC) fluids has become an impetus in the search for alternative, non-CFC refrigerants and cooling methods for mobile air conditioning (MAC). While some alternative refrigerants have been identified, they are not considered a lasting solution because of their high global warming potential, which could result in their eventual phaseout. In view of this dilemma, environmentally acceptable alternative cooling methods have become important. This report, therefore, is aimed mainly at the study of alternative automotive cooling methodologies, although it briefly discusses the current status of alternative refrigerants. The alternative MACs can be divided into work-actuated and heat-actuated systems. Work-actuated systems include conventional MAC, reversed Brayton air cycle, rotary vane compressor air cycle, Stirling cycle, thermoelectric (TE) cooling, etc. Heat-actuated MACs include metal hydride cooling, adsorption cooling, ejector cooling, absorption cycle, etc. While we are better experienced with some work-actuated cycle systems, heat-actuated cycle systems have a high potential for energy savings with possible waste heat applications. In this study, each altemative cooling method is discussed for its advantages and its limits.

  4. COSTS OF AIR POLLUTION ABATEMENT SYSTEMS FOR SEWAGE SLUDGE INCINERATORS

    EPA Science Inventory

    Capital and annual costs were calculated for applying six different air pollution control systems to municipal sewage sludge incinerators that were using multiple-hearth furnaces. The systems involved three principal types of air pollution equipment-wet scrubbers, fabric filters,...

  5. Conditions for free-air laser communications in Buenos Aires

    NASA Astrophysics Data System (ADS)

    Sica, D. S.; Castro, E. H.

    2005-08-01

    The wavelength, availability, range and power budget of an infrared free-space laser communication system critically depend on the atmospheric channel, which in turn is closely related to local weather conditions. As a result, the atmospheric propagation characteristics of the transmission medium must be taken into account from the beginning in the design of a free-space laser communication link. The most important linear effects that affect the attenuation of laser beam propagation through the atmosphere are absorption, scattering and turbulence. Weather parameters such as humidity, temperature and visibility are essential in determining the performance of a free-space laser communication system. Based on weather data recorded in Buenos Aires city (Argentina) at every hour during two years and made available to us by the Servicio Meteorologico Nacional (National Meteorological Service of the Argentinean Air Force), we calculate attenuation of laser radiation for an horizontal transmission path of 1 km for a near infrared direct detection optical communication system. Then, with these results, we estimate link availability and draw conclusions about when it is more convenient to transfer information.

  6. Meteorology applied to urban air pollution problems: concepts from COST 715

    NASA Astrophysics Data System (ADS)

    Fisher, B.; Kukkonen, J.; Piringer, M.; Rotach, M. W.; Schatzmann, M.

    2006-02-01

    The outcome of COST 715 is reviewed from the viewpoint of a potential user who is required to consider urban meteorology within an air pollution assessment. It is shown that descriptive concepts are helpful for understanding the complex structure of the urban boundary layer, but that they only apply under a limited number of conditions. However such concepts are necessary to gain insight into both simple and complex air pollution models. It is argued that wider considerations are needed when considering routine air quality assessments involving an air quality model's formulation and pedigree. Moreover there appears to be a reluctance from model developers to move away from familiar concepts of the atmospheric boundary layer even if they are not appropriate to urban areas. An example is given from COST 715 as to how routine urban meteorological measurements of wind speed may be used and adapted for air quality assessments. Reference to the full COST 715 study is made which provides further details.

  7. Refrigeration, Heating & Air Conditioning. Post Secondary Curriculum Guide.

    ERIC Educational Resources Information Center

    Garrison, Joe C.; And Others

    This curriculum guide was designed for use in postsecondary refrigeration, heating and air conditioning education programs in Georgia. Its purpose is to provide for the development of entry level skills in refrigeration, heating, and air conditioning in the areas of air conditioning knowledge, theoretical structure, tool usage, diagnostic ability,…

  8. An Evaluation of the AirCare Program Based on Cost-Benefit and Cost-Effectiveness Analyses

    ERIC Educational Resources Information Center

    Bi, Hsiaotao T.; Wang, Dianle

    2006-01-01

    A cost-benefit analysis of the AirCare program in the province of British Columbia on the basis of emissions cost factors from the literature showed a benefit outweighing the cost. Furthermore, a cost-effectiveness analysis comparing the AirCare program with a hybrid-car rebate program revealed that the AirCare program is more effective in…

  9. NASA Air Force Cost Model (NAFCOM): Capabilities and Results

    NASA Technical Reports Server (NTRS)

    McAfee, Julie; Culver, George; Naderi, Mahmoud

    2011-01-01

    NAFCOM is a parametric estimating tool for space hardware. Uses cost estimating relationships (CERs) which correlate historical costs to mission characteristics to predict new project costs. It is based on historical NASA and Air Force space projects. It is intended to be used in the very early phases of a development project. NAFCOM can be used at the subsystem or component levels and estimates development and production costs. NAFCOM is applicable to various types of missions (crewed spacecraft, uncrewed spacecraft, and launch vehicles). There are two versions of the model: a government version that is restricted and a contractor releasable version.

  10. Heating, ventilation and air conditioning systems

    SciTech Connect

    Kyle, D.M.; Sullivan, R.A.

    1993-02-01

    A study is made of several outstanding issues concerning the commercial development of environmental control systems for electric vehicles (EVs). Engineering design constraints such as federal regulations and consumer requirements are first identified. Next, heating and cooling loads in a sample automobile are calculated using a computer model available from the literature. The heating and cooling loads are then used as a basis for estimating the electrical consumption that is to be expected for heat pumps installed in EVs. The heat pump performance is evaluated using an automobile heat pump computer model which has been developed recently at Oak Ridge National Laboratory (ORNL). The heat pump design used as input to the model consists of typical finned-tube heat exchangers and a hermetic compressor driven by a variable-speed brushless dc motor. The simulations suggest that to attain reasonable system efficiencies, the interior heat exchangers that are currently installed as automobile air conditioning will need to be enlarged. Regarding the thermal envelope of the automobile itself, calculations are made which show that considerable energy savings will result if steps are taken to reduce {open_quote}hot soak{close_quote} temperatures and if the outdoor air ventilation rate is well controlled. When these changes are made, heating and cooling should consume less than 10% of the total stored electrical energy for steady driving in most U.S. climates. However, this result depends strongly upon the type of driving: The fraction of total power for heating and cooling ({open_quote}range penalty{close_quote}) increases sharply for driving scenarios having low average propulsion power, such as stop-and-go driving.

  11. The Design of Research Laboratories. Part I: A General Assessment. Part II: Air Conditioning and Conditioned Rooms.

    ERIC Educational Resources Information Center

    Legget, R. F.; Hutcheon, N. B.

    Design factors in the planning of research laboratories are described which include--(1) location, (2) future expansion, (3) internal flexibility, (4) provision of services, (5) laboratory furnishing, (6) internal traffic, (7) space requirements, and (8) building costs. A second part discusses air-conditioning and conditioned rooms--(1)…

  12. APPCD - INTEGRATED AIR POLLUTION CONTROL SYSTEM (IAPCS)COST MODEL

    EPA Science Inventory

    The Integrated Air Pollution Control System (IAPCS)Cost Model is a compiled model written in FORTRAN and C language which is designed to be used on an IBM or compatible PC with 640K or lower RAM and at least 1.5 Mb of hard drive space. It was developed over the past several years...

  13. Air Conditioner Charging. Automotive Mechanics. Air Conditioning. Instructor's Guide [and] Student Guide.

    ERIC Educational Resources Information Center

    Spignesi, B.

    This instructional package, one in a series of individualized instructional units on automobile air conditioning, consists of a student guide and an instructor guide dealing with air conditioning charging. Covered in the module are checking the air conditioning system for leaks, checking and adding refrigerant oil as needed, evacuating the system,…

  14. Refrigeration and Air-Conditioning Technology Workshop

    NASA Astrophysics Data System (ADS)

    Lewis, P. J.; Counce, D. M.

    1993-12-01

    The Alternative Fluorocarbon Environmental Acceptability Study (AFEAS), a consortium of fluorocarbon manufacturers, and the U.S. Department of Energy (DOE) are collaborating on a project to evaluate the energy use and global warming impacts of CFC alternatives. The goal of this project is to identify technologies that could replace the use of CFC's in refrigeration, heating, and air-conditioning equipment; to evaluate the direct impacts of chemical emissions on global warming; and to compile accurate estimates of energy use and indirect CO2 emissions of substitute technologies. The first phase of this work focused on alternatives that could be commercialized before the year 2000. The second phase of the project is examining not-in-kind and next-generation technologies that could be developed to replace CFC's, HCFC's, and HFC's over a longer period. As part of this effort, Oak Ridge National Laboratory held a workshop on June 23-25, 1993. The preliminary agenda covered a broad range of alternative technologies and at least one speaker was invited to make a brief presentation at the workshop on each technology. Some of the invited speakers were unable to participate, and in a few cases other experts could not be identified. As a result, those technologies were not represented at the workshop. Each speaker was asked to prepare a five to seven page paper addressing six key issues concerning the technology he/she is developing. These points are listed in the sidebar. Each expert also spoke for 20 to 25 minutes at the workshop and answered questions from the other participants concerning the presentation and area of expertise. The primary goal of the presentations and discussions was to identify the developmental state of the technology and to obtain comparable data on system efficiencies.

  15. Selection and costing of heat exchangers. Air-cooled type

    NASA Astrophysics Data System (ADS)

    1994-12-01

    ESDU 94043 extends the information in ESDU 92013 which, when an air-cooled exchanger is found appropriate and is costed, provides the results for a datum design 40 ft (12.2 m) long with G-fins and 1 in (25 mm) diameter tube operating at a noise level of 85 dBa. It provides factors derived from an analysis of manufacturer's data to be applied to the cost results from ESDU 92013 to account for variations in those parameters and features. Additional guidance on the configuration and use of air-cooled exchangers is given. The data are incorporated in ESDUpac A9213 which is a Fortran program that implements the selection and costing method of ESDU 92013. It is provided on disc in the software volume compiled to run under DOS with a user-friendly interface that prompts on screen for input data.

  16. INTEGRATED AIR POLLUTION CONTROL SYSTEM (IAPCS) COST MODEL (AIR POLLUTION TECHNOLOGY BRANCH, AIR POLLUTION PREVENTION AND CONTROL DIVISION, NRMRL)

    EPA Science Inventory

    The Air Pollution Technology Branch's (APPCD, NRMRL) Integrated Air Pollution Control System Cost Model is a compiled model written in FORTRAN and C language that is designed to be used on an IBM or compatible PC with 640K or lower RAM and at least 1.5 Mb of hard drive space. It ...

  17. [A trouble in air conditioning in the operating area].

    PubMed

    Katsumata, Kiyoshi; Kaneko, Takehiko; Owaki, Akira

    2004-07-01

    We experienced malfunction of air conditioning system in the operating area. Rust inside the circulating pipe to the operating area was an obstacle to inflow of cold and hot water. Installing an additional air conditioning system and treatment with chemicals to remove the dust made it possible to adjust room temperature appropriately. Anesthesiologists should be interested and understand equipments used in the operation area such as air conditioning system. PMID:15298259

  18. Payers' dilemma: looming costs for chronic conditions.

    PubMed

    Herskovitz, Stephen

    2005-02-01

    Biotech products for chronic conditions will be coming with regularity in the next few years, and these represent both a clinical opportunity and a financial challenge for health plans. So far, few payers have figured out how to make such treatments available without breaking the bank. The challenges ahead and strategies for handling them. PMID:23393448

  19. Possible Economies in Air-Conditioning by Accepting Temperature Swings.

    ERIC Educational Resources Information Center

    Loudon, A. G.; Petherbridge, P.

    Public building air conditioning systems, which use constant and varying heat and cooling loads, are compared and investigated. Experiments indicated that constant temperature controls based on outside air temperature alone were inefficient. Ventilating a building with outside air and the methods of doing so are cited as being the most economical…

  20. Repair Air Conditioning, COC Bldg 2605, Basement Plan. By Strategic ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Repair Air Conditioning, COC Bldg 2605, Basement Plan. By Strategic Air Command, Civil Engineering. Drawing no. R-156, sheet no. 1 of 4, 15 August 1968; project no. MAR-125-8;CE-572; file drawer 2605-5. Last revised 31 August 1968?. Scale one-eighth inch and one-quarter inch to one foot. 29x41 inches. pencil on paper - March Air Force Base, Strategic Air Command, Combat Operations Center, 5220 Riverside Drive, Moreno Valley, Riverside County, CA

  1. Repair Air Conditioning, COC Bldg 2605, First Floor Plan. By ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Repair Air Conditioning, COC Bldg 2605, First Floor Plan. By Strategic Air Command, Civil Engineering. Drawing no. R-156, sheet no. 2 of 4, 15 August 1968; project no. MAR-125-8;CE-572; file drawer 2605-6. Scale one-eighth inch to one foot. 29x41 inches. pencil on paper 405 - March Air Force Base, Strategic Air Command, Combat Operations Center, 5220 Riverside Drive, Moreno Valley, Riverside County, CA

  2. Solar-powered air-conditioning

    NASA Technical Reports Server (NTRS)

    Clark, D. C.; Rousseau, J.

    1977-01-01

    Report focuses on recent study on development of solar-powered residential air conditioners and is based on selected literature through 1975. Its purposes are to characterize thermal and mechanical systems that might be useful in development of Rankine-cycle approach to solar cooling and assessment of a Lithium Bromide/Water absorption cycle system.

  3. The Influence of Meteorological Conditions on Air Pollution

    ERIC Educational Resources Information Center

    Campbell, N. A.; Gipps, J.

    1975-01-01

    Explains the distribution of air pollutants as related to such meteorological conditions as temperature inversions, ground inversion, and wind velocity. Uses a power station to illustrate the effect of some of the meteorological conditions mentioned. (GS)

  4. Cost of crashes related to road conditions, United States, 2006.

    PubMed

    Zaloshnja, Eduard; Miller, Ted R

    2009-10-01

    This is the first study to estimate the cost of crashes related to road conditions in the U.S. To model the probability that road conditions contributed to the involvement of a vehicle in the crash, we used 2000-03 Large Truck Crash Causation Study (LTCCS) data, the only dataset that provides detailed information whether road conditions contributed to crash occurrence. We applied the logistic regression results to a costed national crash dataset in order to calculate the probability that road conditions contributed to the involvement of a vehicle in each crash. In crashes where someone was moderately to seriously injured (AIS-2-6) in a vehicle that harmfully impacted a large tree or medium or large non-breakaway pole, or if the first harmful event was collision with a bridge, we changed the calculated probability of being road-related to 1. We used the state distribution of costs of fatal crashes where road conditions contributed to crash occurrence or severity to estimate the respective state distribution of non-fatal crash costs. The estimated comprehensive cost of traffic crashes where road conditions contributed to crash occurrence or severity was $217.5 billion in 2006. This represented 43.6% of the total comprehensive crash cost. The large share of crash costs related to road design and conditions underlines the importance of these factors in highway safety. Road conditions are largely controllable. Road maintenance and upgrading can prevent crashes and reduce injury severity. PMID:20184840

  5. Assessment of socioeconomic costs to China's air pollution

    NASA Astrophysics Data System (ADS)

    Xia, Yang; Guan, Dabo; Jiang, Xujia; Peng, Liqun; Schroeder, Heike; Zhang, Qiang

    2016-08-01

    Particulate air pollution has had a significant impact on human health in China and it is associated with cardiovascular and respiratory diseases and high mortality and morbidity. These health impacts could be translated to reduced labor availability and time. This paper utilized a supply-driven input-output (I-O) model to estimate the monetary value of total output losses resulting from reduced working time caused by diseases related to air pollution across 30 Chinese provinces in 2007. Fine particulate matter (PM2.5) pollution was used as an indicator to assess impacts to health caused by air pollution. The developed I-O model is able to capture both direct economic costs and indirect cascading effects throughout inter-regional production supply chains and the indirect effects greatly outnumber the direct effects in most Chinese provinces. Our results show the total economic losses of 346.26 billion Yuan (approximately 1.1% of the national GDP) based on the number of affected Chinese employees (72 million out of a total labor population of 712 million) whose work time in years was reduced because of mortality, hospital admissions and outpatient visits due to diseases resulting from PM2.5 air pollution in 2007. The loss is almost the annual GDP of Vietnam in 2010. The proposed modelling approach provides an alternative method for health-cost measurement with additional insights on inter-industrial and inter-regional linkages along production supply chains.

  6. Heating, Ventilation, and Air Conditioning Series. Duty Task List.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This task list is intended for use in planning and/or evaluating a competency-based course in heating, ventilation, and air conditioning. The guide outlines the tasks entailed in eight different duties typically required of employees in the following occupations: residential installer, domestic refrigeration technician, air conditioning and…

  7. Air Conditioning and Refrigeration Program Articulation, 1981-1982.

    ERIC Educational Resources Information Center

    Dallas County Community Coll. District, TX.

    Based on a survey of high school programs and courses in the Dallas County Community College District (DCCCD), this articulated program is designed to prepare students for entry-level employment in the air conditioning and refrigeration industry, including residential and commercial air conditioning and commercial refrigeration. The skills and…

  8. Mountain Plains Learning Experience Guide: Heating, Refrigeration, & Air Conditioning.

    ERIC Educational Resources Information Center

    Carey, John

    This Heating, Refrigeration, and Air Conditioning course is comprised of eleven individualized units: (1) Refrigeration Tools, Materials, and Refrigerant; (2) Basic Heating and Air Conditioning; (3) Sealed System Repairs; (4) Basic Refrigeration Systems; (5) Compression Systems and Compressors; (6) Refrigeration Controls; (7) Electric Circuit…

  9. Residential Heat and Air Conditioning. Florida Vocational Program Guide.

    ERIC Educational Resources Information Center

    University of South Florida, Tampa. Dept. of Adult and Vocational Education.

    The program guide for residential heat and air conditioning courses in Florida identifies primary considerations for the organization, operation, and evaluation of a vocational education program. Following an occupational description for the job title for air-conditioning installer-servicer, window unit, and its Dictionary of Occupational Titles…

  10. Ice storage systems spark air conditioning savings

    SciTech Connect

    Kohlenberger, C.R.

    1981-03-01

    Thermal storage systems similar to giant storage batteries are explained by means of storing energy (either hot or cold) during these off-peak times for use at the more convenient time when the actual load is impressed on to the system. This load shifting, of course, does not actually save energy. It merely shifts the load to a time when the electric utility can more conveniently handle that load. In fact, more actual KW hours may be utilized by this shift, but with the resulting cost to the consumer being reduced. System concepts are described and energy cost comparisons are made. Various methods of ice making systems are presented and analyzed.

  11. Simulation of air quality and cost to ventilate swine farrowing facilities in winter

    PubMed Central

    Park, Jae Hong; Peters, Thomas M.; Altmaier, Ralph; Sawvel, Russell A.; Anthony, T. Renée

    2016-01-01

    We developed a simulation model to study the effect of ventilation airflow rate with and without filtered recirculation on airborne contaminant concentrations (dust, NH3, CO, and CO2) for swine farrowing facilities. Energy and mass balance equations were used to simulate the indoor air quality and operational cost for a variety of ventilation conditions over a 3-month winter period, using time-varied outdoor temperature. The sensitivity of input and output parameters on indoor air quality and operational cost were evaluated. Significant factors affecting model output included mean winter temperature, generation rate of contaminants, pit-air-exchange ratio, and recirculation ratio. As mean outdoor temperature was decreased from −2.5 °C to −12.5 °C, total operational costs were increased from $872 to $1304. Dust generation rate affected dust concentrations linearly. When dust generation rates changed −50% and +100% from baseline, indoor dust concentrations were changed −50% and +100%, respectively. The selection of a pit-air-exchange ratio was found critical to NH3 concentration, but has little impact on other contaminants or cost. As the pit-air-exchange ratio was increased from 0.1 to 0.3, the NH3 concentration was increased by a factor of 1.5. The recirculation ratio affected both IAQ factors and total operational cost. As the recirculation ratio decreased to 0, inhalable and respirable dust concentrations, humidity, NH3 and CO2 concentrations decreased and total operational cost ($2216) was 104% more than with pit-fan-only ventilation ($1088). When the recirculation ratio was 1, the total operational cost was increased by $573 (53%) compared to pit-fan-only. Simulation provides a useful tool for examining the costs and benefits to installing common ventilation technology to CAFO and, ultimately, making sound management decisions. PMID:26937062

  12. Air conditioning system with supplemental ice storing and cooling capacity

    DOEpatents

    Weng, Kuo-Lianq; Weng, Kuo-Liang

    1998-01-01

    The present air conditioning system with ice storing and cooling capacity can generate and store ice in its pipe assembly or in an ice storage tank particularly equipped for the system, depending on the type of the air conditioning system. The system is characterized in particular in that ice can be produced and stored in the air conditioning system whereby the time of supplying cooled air can be effectively extended with the merit that the operation cycle of the on and off of the compressor can be prolonged, extending the operation lifespan of the compressor in one aspect. In another aspect, ice production and storage in great amount can be performed in an off-peak period of the electrical power consumption and the stored ice can be utilized in the peak period of the power consumption so as to provide supplemental cooling capacity for the compressor of the air conditioning system whereby the shift of peak and off-peak power consumption can be effected with ease. The present air conditioning system can lower the installation expense for an ice-storing air conditioning system and can also be applied to an old conventional air conditioning system.

  13. Air-conditioning in the human nasal cavity.

    PubMed

    Elad, David; Wolf, Michael; Keck, Tilman

    2008-11-30

    Healthy humans normally breathe through their nose even though its complex geometry imposes a significantly higher resistance in comparison with mouth breathing. The major functional roles of nasal breathing are defense against infiltrating particles and conditioning of the inspired air to nearly alveolar conditions in order to maintain the internal milieu of the lung. The state-of-the-art of the existing knowledge on nasal air-conditioning will be discussed in this review, including in vivo measurements in humans and computational studies on nasal air-conditioning capacity. Areas where further studies will improve our understanding and may help medical diagnosis and intervention in pathological states will be introduced. PMID:18565805

  14. Recent design and cost studies for air blown gasification

    SciTech Connect

    Dawes, S.G.; Mordecai, M.; Welford, G.B.; Otter, N.R.

    1997-12-31

    The Air Blown Gasification Cycle (ABGC) (formerly known as the British Coal Topping Cycle) is a high efficiency low cost system for producing power with excellent environmental performance. High efficiency is achieved without the complexity associated with other advanced cycles and the technology can be introduced in a modular fashion. Being a simple air blown fluid bed gasifier and combustor combination it is capable of using a wide range of fuels and is particularly suited for dealing with high ash melting point fuels found in areas of the world short of natural gas. An extensive program of pilot plant testing of a variety of fuels is now being completed on the test facility at the Coal Technology Development Division (CTDD) of British Coal as part of a UK program to develop the Air Blown Gasification Cycle. This program is supplying data to produce a design specification for a Prototype Integrated Plant (PIP) of around 90 MWe, and is managed by a consortium, the Clean Coal Power Generation Group. The paper summarizes recent results and operating experience for the pilot plant including fuel behavior studies, research in hot gas cleaning (particulate and gaseous contaminants), and gas combustion experience. The various cost studies undertaken on the ABGC are outlined and compared, including recent studies by EPRI.

  15. Desiccant Enhanced Evaporative Air Conditioning: Parametric Analysis and Design; Preprint

    SciTech Connect

    Woods, J.; Kozubal, E.

    2012-10-01

    This paper presents a parametric analysis using a numerical model of a new concept in desiccant and evaporative air conditioning. The concept consists of two stages: a liquid desiccant dehumidifier and a dew-point evaporative cooler. Each stage consists of stacked air channel pairs separated by a plastic sheet. In the first stage, a liquid desiccant film removes moisture from the process (supply-side) air through a membrane. An evaporatively-cooled exhaust airstream on the other side of the plastic sheet cools the desiccant. The second-stage indirect evaporative cooler sensibly cools the dried process air. We analyze the tradeoff between device size and energy efficiency. This tradeoff depends strongly on process air channel thicknesses, the ratio of first-stage to second-stage area, and the second-stage exhaust air flow rate. A sensitivity analysis reiterates the importance of the process air boundary layers and suggests a need for increasing airside heat and mass transfer enhancements.

  16. Multiple Chronic Conditions and Healthcare Costs among Adults

    PubMed Central

    Sambamoorthi, Usha; Tan, Xi; Deb, Arijita

    2015-01-01

    The prevalence of multiple chronic conditions (MCC) is increasing among individuals of all ages. MCC are associated with poor health outcomes. The presence of MCC has profound healthcare utilization and cost implications for public and private insurance payers, individuals, and families. Investigators have used a variety of definitions for MCC to evaluate costs associated with MCC. The objective of this article is to examine the current literature in estimating excess costs associated with MCC among adults. The discussion highlights some of the theoretical and technical merits of various MCC definitions and models used to estimate the excess costs associated with MCC. PMID:26400220

  17. Air and water pollution control: a benefit-cost assessment

    SciTech Connect

    Freeman, A.M. III

    1982-01-01

    Freeman attempts to assess the net benefits associated with environmental programs dealing with air and water quality. He concludes that stationary controls have been justified, but that mobile sources and water controls, as presently designed and implemented, have had costs greater than benefits to society. The reviewer notes that the book is more than just a compendium of mechanistic, technical detail; there is rather, far more general information on how economists view environmental problems than suggested by the title. An example is the discussions of the various approaches to valuing environmental benefits.

  18. Commercialization of air conditioning heat pump/water heater. Final technical report, Volume 1: Transmittal documents; Executive summary; Project summary

    SciTech Connect

    1996-01-30

    This is the final technical report on a commercialization project for an air conditioning heat pump water heater. The objective of the project was to produce a saleable system which would be economically competitive with natural gas and cost effective with regard to initial cost versus annual operating costs. The development and commercialization of the system is described.

  19. Extreme conditions in a dissolving air nanobubble

    NASA Astrophysics Data System (ADS)

    Yasui, Kyuichi; Tuziuti, Toru; Kanematsu, Wataru

    2016-07-01

    Numerical simulations of the dissolution of an air nanobubble in water have been performed taking into account the effect of bubble dynamics (inertia of the surrounding liquid). The presence of stable bulk nanobubbles is not assumed in the present study because the bubble radius inevitably passes the nanoscale in the complete dissolution of a bubble. The bubble surface is assumed to be clean because attachment of hydrophobic materials on the bubble surface could considerably change the gas diffusion rate. The speed of the bubble collapse (the bubble wall speed) increases to about 90 m/s or less. The shape of a bubble is kept nearly spherical because the amplitude of the nonspherical component of the bubble shape is negligible compared to the instantaneous bubble radius. In other words, a bubble never disintegrates into daughter bubbles during the dissolution. At the final moment of the dissolution, the temperature inside a bubble increases to about 3000 K due to the quasiadiabatic compression. The bubble temperature is higher than 1000 K only for the final 19 ps. However, the Knudsen number is more than 0.2 for this moment, and the error associated with the continuum model should be considerable. In the final 2.3 ns, only nitrogen molecules are present inside a bubble as the solubility of nitrogen is the lowest among the gas species. The radical formation inside a bubble is negligible because the probability of nitrogen dissociation is only on the order of 10-15. The pressure inside a bubble, as well as the liquid pressure at the bubble wall, increases to about 5 GPa at the final moment of dissolution. The pressure is higher than 1 GPa for the final 0.7 ns inside a bubble and for the final 0.6 ns in the liquid at the bubble wall. The liquid temperature at the bubble wall increases to about 360 K from 293 K at the final stage of the complete dissolution.

  20. Extreme conditions in a dissolving air nanobubble.

    PubMed

    Yasui, Kyuichi; Tuziuti, Toru; Kanematsu, Wataru

    2016-07-01

    Numerical simulations of the dissolution of an air nanobubble in water have been performed taking into account the effect of bubble dynamics (inertia of the surrounding liquid). The presence of stable bulk nanobubbles is not assumed in the present study because the bubble radius inevitably passes the nanoscale in the complete dissolution of a bubble. The bubble surface is assumed to be clean because attachment of hydrophobic materials on the bubble surface could considerably change the gas diffusion rate. The speed of the bubble collapse (the bubble wall speed) increases to about 90 m/s or less. The shape of a bubble is kept nearly spherical because the amplitude of the nonspherical component of the bubble shape is negligible compared to the instantaneous bubble radius. In other words, a bubble never disintegrates into daughter bubbles during the dissolution. At the final moment of the dissolution, the temperature inside a bubble increases to about 3000 K due to the quasiadiabatic compression. The bubble temperature is higher than 1000 K only for the final 19 ps. However, the Knudsen number is more than 0.2 for this moment, and the error associated with the continuum model should be considerable. In the final 2.3 ns, only nitrogen molecules are present inside a bubble as the solubility of nitrogen is the lowest among the gas species. The radical formation inside a bubble is negligible because the probability of nitrogen dissociation is only on the order of 10^{-15}. The pressure inside a bubble, as well as the liquid pressure at the bubble wall, increases to about 5 GPa at the final moment of dissolution. The pressure is higher than 1 GPa for the final 0.7 ns inside a bubble and for the final 0.6 ns in the liquid at the bubble wall. The liquid temperature at the bubble wall increases to about 360 K from 293 K at the final stage of the complete dissolution. PMID:27575216

  1. Assessment of Indoor Air Quality Benefits and Energy Costs of Mechanical Ventilation

    SciTech Connect

    Logue, J.M.; Price, P.N.; Sherman, M.H.; Singer, B.C.

    2011-07-01

    Intake of chemical air pollutants in residences represents an important and substantial health hazard. Sealing homes to reduce air infiltration can save space conditioning energy, but can also increase indoor pollutant concentrations. Mechanical ventilation ensures a minimum amount of outdoor airflow that helps reduce concentrations of indoor emitted pollutants while requiring some energy for fan(s) and thermal conditioning of the added airflow. This work demonstrates a physics based, data driven modeling framework for comparing the costs and benefits of whole-house mechanical ventilation and applied the framework to new California homes. The results indicate that, on a population basis, the health benefits from reduced exposure to indoor pollutants in New California homes are worth the energy costs of adding mechanical ventilation as specified by ASHRAE Standard 62.2.This study determines the health burden for a subset of pollutants in indoor air and the costs and benefits of ASHRAE's mechanical ventilation standard (62.2) for new California homes. Results indicate that, on a population basis, the health benefits of new home mechanical ventilation justify the energy costs.

  2. Application of solar energy to air conditioning systems

    NASA Technical Reports Server (NTRS)

    Nash, J. M.; Harstad, A. J.

    1976-01-01

    The results of a survey of solar energy system applications of air conditioning are summarized. Techniques discussed are both solar powered (absorption cycle and the heat engine/Rankine cycle) and solar related (heat pump). Brief descriptions of the physical implications of various air conditioning techniques, discussions of status, proposed technological improvements, methods of utilization and simulation models are presented, along with an extensive bibliography of related literature.

  3. [Hospital Costs of Ambulatory Care-Sensitive Conditions in Germany].

    PubMed

    Fischbach, D

    2016-03-01

    Ambulatory care-sensitive conditions (ACSC) are defined as conditions that lead to a hospital admission of which the onset could have been prevented through a more easily accessible ambulatory sector or one that provides better quality care. They are used by health-care systems as a quality indicator for the ambulatory sector. The definition for ACSC varies internationally. Sets of conditions have been defined and evaluated already in various countries, e. g., USA, England, New Zealand and Canada, but not yet for Germany. Therefore this study aims to evaluate the hospital costs of ACSC in Germany using the National Health Service's set of ACSC. In order to calculate these costs a model has been set up for the time period between 2003 and 2010. It is based on G-DRG browsers issued by the German Institute for the Hospital Remuneration System as required by German law. Within these browsers all relevant DRG-ICD combinations have been extracted. The number of cases per combination was then multiplied by their corresponding cost weights and the average effective base rates. The results were then aggregated into their corresponding ICD groups and then into their respective conditions which lead to the costs per condition and the total costs. The total number of cases and total costs were then compared to another second source. These calculations resulted in 11.7 million cases, of which 10.7% were defined as ambulatory care-sensitive. Within the analysed time period the number of ambulatory care-sensitive cases increased by 6% in total and had a 0.9% CAGR. The corresponding costs amounted to a total of EUR 37.6B and to EUR 3.3B for ACSC. 60% of the costs were caused by three of the 19 ACSC. These results validate that it is worthwhile to further investigate this quality indicator for the ambulatory sector. PMID:25918929

  4. Proposal for a low cost close air support aircraft for the year 2000: The Raptor

    NASA Technical Reports Server (NTRS)

    Brown, Jerome D.; Dewitt, Ward S.; Mcdonald, Mark; Riley, John W.; Roberts, Anthony E.; Watson, Sean; Whelan, Margaret M.

    1991-01-01

    The Raptor is a proposed low cost Close Air Support (CAS) aircraft for the U.S. Military. The Raptor incorporates a 'cranked arrow' wing planform, and uses canards instead of a traditional horizontal tail. The Raptor is designed to be capable of responsive delivery of effective ordnance in close proximity to friendly ground forces during the day, night, and 'under the weather' conditions. Details are presented of the Raptor's mission, configuration, performance, stability and control, ground support, manufacturing, and overall cost to permit engineering evaluation of the proposed design. A description of the design process and analysis methods used is also provided.

  5. Controlling air pollution from passenger ferries: cost-effectiveness of seven technological options.

    PubMed

    Farrell, Alexander E; Corbett, James J; Winebrake, James J

    2002-12-01

    Continued interest in improving air quality in the United States along with renewed interest in the expansion of urban passenger ferry service has created concern about air pollution from ferry vessels. This paper presents a methodology for estimating the air pollution emissions from passenger ferries and the costs of emissions control strategies. The methodology is used to estimate the emissions and costs of retrofitting or re-powering ferries with seven technological options (combinations of propulsion and emission control systems) onto three vessels currently in service in San Francisco Bay. The technologies include improved engine design, cleaner fuels (including natural gas), and exhaust gas cleanup devices. The three vessels span a range of ages and technologies, from a 25-year-old monohull to a modern, high-speed catamaran built only four years ago. By looking at a range of technologies, vessel designs, and service conditions, a sense of the broader implications of controlling emissions from passenger ferries across a range of vessels and service profiles is provided. Tier 2-certified engines are the most cost-effective choice, but all options are cost-effective relative to other emission control strategies already in place in the transportation system. PMID:12540045

  6. The microbiological quality of air improves when using air conditioning systems in cars

    PubMed Central

    2010-01-01

    Background Because of better comfort, air conditioning systems are a common feature in automobiles these days. However, its impact on the number of particles and microorganisms inside the vehicle - and by this its impact on the risk of an allergic reaction - is yet unknown. Methods Over a time period of 30 months, the quality of air was investigated in three different types of cars (VW Passat, VW Polo FSI, Seat Alhambra) that were all equipped with a automatic air conditioning system. Operation modes using fresh air from outside the car as well as circulating air from inside the car were examined. The total number of microorganisms and the number of mold spores were measured by impaction in a high flow air sampler. Particles of 0.5 to 5.0 μm diameter were counted by a laser particle counter device. Results Overall 32 occasions of sampling were performed. The concentration of microorganisms outside the cars was always higher than it was inside the cars. Few minutes after starting the air conditioning system the total number of microorganisms was reduced by 81.7%, the number of mold spores was reduced by 83.3%, and the number of particles was reduced by 87.8%. There were no significant differences neither between the types of cars nor between the types of operation mode of the air conditioning system (fresh air vs. circulating air). All parameters that were looked for in this study improved during utilization of the car's air conditioning system. Conclusions We believe that the risk of an allergic reaction will be reduced during use also. Nevertheless, we recommend regular maintenance of the system and replacement of older filters after defined changing intervals. PMID:20515449

  7. Prevalence and Costs of Five Chronic Conditions in Children.

    PubMed

    Miller, Gabrielle F; Coffield, Edward; Leroy, Zanie; Wallin, Robin

    2016-10-01

    The objective is to examine the prevalence and health-care costs associated with asthma, epilepsy, hypertension, food allergies, and diabetes in children aged 0-18 years. Prevalence was calculated using 2005-2012 Medical Expenditure Panel Survey (MEPS) data, a population-based, nationally representative sample. Using MEPS, two-part models estimated the cost of each condition for all children while controlling for sociodemographic categories. Prevalence rates varied by race and ethnicity across conditions. Females had higher prevalence of all chronic conditions, except epilepsy. An additional US$1,377.60-US$9,059.49 annually were spent on medical expenses for children aged 0-18 years, with asthma, diabetes, or epilepsy compared to children without these conditions. This is the first study to examine the costs and prevalence of chronic health conditions in children and adolescents using a single data set. Understanding the odds of having a condition by sociodemographic categories highlights disparities that can potentially inform school nurses on the best allocation of resources to serve students. PMID:27044668

  8. Pioneer developments in self-contained air conditioning

    SciTech Connect

    Steinfeld, H.K.

    1986-01-01

    This is a story covering a chapter in the air conditioning industry when that industry was young. It had created the science through the inventions of Dr. Carrier and had developed the art of large systems to a high degree. But prior to 1930, only big jobs were installed, in all of which the air was pre-conditioned by sprays of water. Air conditioning solely for the benefit of the ordinary citizen was not available, and the progress of developing small equipment was lacking. It was only with the invention of ''Freon 12'' in 1930 by Thomas Midgley that all pieces seemed to fall into place for the design of self-contained units. Large companies and small entrepreneurs were ready to enter the field and combine newly developed components like hermetic compressors, improved electrical equipment, capacitors, etc., and lightweight finned coils.

  9. Non-CFC air conditioning for transit buses

    SciTech Connect

    Pesaran, A.A.; Parent, Y.O.; Bharathan, D.

    1992-11-01

    In the United Sates, more than 80% of transit city buses are air conditioned. Vapor compression refrigeration systems are standard for air conditioning buses and account for up to 25% of fuel consumption in the cooling season. Vapor compression devices use chlorofluorocarbons (CFCs), chemicals that contributes to Earths`s ozone depletion and to global warming. Currently, evaporative cooling is an economical alternative to CFC vapor compression refrigeration for air conditioning buses. It does not use CFCs but is restricted in use to arid climates. This limitation can be eliminated by dehumidifying the supply air using desiccants. We studied desiccant systems for cooling transit buses and found that the use of a desiccant-assisted evaporative cooling system is feasible and can deliver the required cooling. The weight and the size of the desiccant system though larger than vapor compression systems, can be easily accommodated within a bus. Fuel consumption for naming desiccant systems was about 70% less than CFC refrigeration system, resulting in payback periods of less than 2.5 years under most circumstances. This preliminary study indicated that desiccant systems combined with evaporative cooling is a CFC-free option to vapor compression refrigeration for air conditioning of transit buses. The concept is ready to be tested in a fun prototype scale in a commercial bus.

  10. Non-CFC air conditioning for transit buses

    SciTech Connect

    Pesaran, A.A.; Parent, Y.O.; Bharathan, D.

    1992-11-01

    In the United Sates, more than 80% of transit city buses are air conditioned. Vapor compression refrigeration systems are standard for air conditioning buses and account for up to 25% of fuel consumption in the cooling season. Vapor compression devices use chlorofluorocarbons (CFCs), chemicals that contributes to Earths's ozone depletion and to global warming. Currently, evaporative cooling is an economical alternative to CFC vapor compression refrigeration for air conditioning buses. It does not use CFCs but is restricted in use to arid climates. This limitation can be eliminated by dehumidifying the supply air using desiccants. We studied desiccant systems for cooling transit buses and found that the use of a desiccant-assisted evaporative cooling system is feasible and can deliver the required cooling. The weight and the size of the desiccant system though larger than vapor compression systems, can be easily accommodated within a bus. Fuel consumption for naming desiccant systems was about 70% less than CFC refrigeration system, resulting in payback periods of less than 2.5 years under most circumstances. This preliminary study indicated that desiccant systems combined with evaporative cooling is a CFC-free option to vapor compression refrigeration for air conditioning of transit buses. The concept is ready to be tested in a fun prototype scale in a commercial bus.

  11. Trend of Refrigeration and Air-Conditioning Technology in Korea

    NASA Astrophysics Data System (ADS)

    Oh, Hoo-Kyu; Papk, Ki-Won

    It can be said that refrigeration and air-conditioning technology in Korea dates back to the ancient dynasty, all the way up to the Sokkuram(700s) and Seokbinggo(1700s), But modern refrigeration and air-conditioning technology was first developed in and introduced to Korea in the1960swith the modernization of Korea, Today it is at a level which meets that of advanced countries in both the industrial and domestic fields. As of 2003, there were about 700 companies that owned cold storage/freezing/refrigeration facilities, with cold storage capacity of about 2,000, 000tons and capacity per company of about 3,000 tons. These facilities most are continuously expanding and automating their facilities. 62 million units of refrigeration and air-conditioning machinery and equipment were produced in 2003, worth a total of 7.7 trillion won(about 7.7 thousand million US). On the academic side there are 9 universities and 12 junior colleges with courses in either refrigeration and air-conditioning or architectural equipment. Academic societies such as the Society of Air-conditioning and Refrigerating Engineers of Korea(SAREK), and industrial societies like the Korean Association of Refrigeration(KAR) are active members of the refrigeration and air-conditioning industry. The1eare also national/government-established research institutions such as the Korea Institute of Science and Technology(KIST), the Korea Institute of Machinery and Materials (KIMM), the Korea Institute of Energy Research(KIER), and the Korea Institute of Industrial Technology (KITECH).

  12. An Expert Fault Diagnosis System for Vehicle Air Conditioning Product Development

    NASA Astrophysics Data System (ADS)

    Tan, C. F.; Tee, B. T.; Khalil, S. N.; Chen, W.; Rauterberg, G. W. M.

    2015-09-01

    The paper describes the development of the vehicle air-conditioning fault diagnosis system in automotive industries with expert system shell. The main aim of the research is to diagnose the problem of new vehicle air-conditioning system development process and select the most suitable solution to the problems. In the vehicle air-conditioning manufacturing industry, process can be very costly where an expert and experience personnel needed in certain circumstances. The expert of in the industry will retire or resign from time to time. When the expert is absent, their experience and knowledge is difficult to retrieve or lost forever. Expert system is a convenient method to replace expert. By replacing the expert with expert system, the accuracy of the processes will be increased compared to the conventional way. Therefore, the quality of product services that are produced will be finer and better. The inputs for the fault diagnosis are based on design data and experience of the engineer.

  13. High-Density, High-Resolution, Low-Cost Air Quality Sensor Networks for Urban Air Monitoring

    NASA Astrophysics Data System (ADS)

    Mead, M. I.; Popoola, O. A.; Stewart, G.; Bright, V.; Kaye, P.; Saffell, J.

    2012-12-01

    , temperature, relative humidity, wind speed and direction. The network incorporates existing GPRS infrastructures for real time sending of data with low overheads in terms of cost, effort and installation. In this paper we present data from the SNAQ Heathrow project as well as previous deployments showing measurement capability at the ppb level for NO, NO2 and CO. We show that variability can be observed and measured quantitatively using these sensor networks over widely differing time scales from individual emission events, diurnal variability associated with traffic and meteorological conditions, through to longer term synoptic weather conditions and seasonal behaviour. This work demonstrates a widely applicable generic capability to urban areas, airports as well as other complex emissions environments making this sensor system methodology valuable for scientific, policy and regulatory issues. We conclude that the low-cost high-density network philosophy has the potential to provide a more complete assessment of the high-granularity air quality structure generally observed in the environment. Further, when appropriately deployed, has the potential to offer a new paradigm in air quality quantification and monitoring.

  14. Personal Air Pollution Exposure Monitoring using Low Cost Sensors in Chennai City

    NASA Astrophysics Data System (ADS)

    Reddy Yasa, Pavan; Shiva, Nagendra S. N.

    2016-04-01

    Air quality in many cities is deteriorating due to rapid urbanization and motorization. In the past, most of the health impacts studies in the urban areas have considered stationary air quality monitoring station data for health impact assessment. Since, there exist a spatial and temporal variation of air quality because of rapid change in land use pattern and complex interaction between emission sources and meteorological conditions, the human exposure assessment using stationary data may not provide realistic information. In such cases low cost sensors monitoring is viable in providing both spatial and temporal variations of air pollutant concentrations. In the present study an attempt has been made to use low cost sensor for monitoring the personal exposure to the two criteria pollutants CO and PM2.5 at 3 different locations of Chennai city. Maximum and minimum concentrations of CO and PM2.5 were found to be 5.4ppm, 0.8ppm and 534.8μg/m3, 1.9μg/m3 respectively. Results showed high concentrations near the intersection and low concentrations in the straight road.

  15. Winter weather conditions vs. air quality in Tricity, Poland

    NASA Astrophysics Data System (ADS)

    Nidzgorska-Lencewicz, Jadwiga; Czarnecka, Małgorzata

    2015-02-01

    The principal aim of this paper is to assess the influence of meteorological conditions on the variability of sulfur dioxide and PM10 particulate matter concentration of pollutants during winter with consideration of an excess of admissible standards. The basis for the analysis were hourly concentrations of PM10 and sulfur dioxide as well as the basic meteorological elements automatically recorded at five stations located in the Tricity agglomeration, and operating within the weather station network belonging to the Agency of Regional Air Quality Monitoring in the Gdańsk Metropolitan Area (ARMAAG). The analysis covers the calendar winters (December-February) in the years 2004/2005 through 2009/2010. The variability of the concentrations of both pollutants under certain weather conditions, i.e. air temperature and relative humidity, atmospheric pressure, as well as wind speed and direction, were evaluated by means of cluster analysis using k-means belonging to a group of non-hierarchical cluster analysis method. The composite effect of meteorological conditions on the variability of sulfur dioxide and PM10 concentrations in isolated clusters were determined by multiple linear regression, using a stepwise procedure, at the significance level α = 0.05 and α = 0.01. The effect of individual weather elements on the pattern of concentration levels was determined using partial regression coefficients. Clusters grouping the highest concentrations of pollutants were characterised, in most cases, by the lowest air temperature and a lower wind speed, and often a higher pressure, and sometimes slightly lower relative air humidity, i.e. the conditions of anticyclonic weather. Weather conditions had a statistically significant effect on the concentrations of both pollutants in all clusters; however, air temperature and wind speed had the crucial role. Thermal conditions were the decisive factor in the winter season 2005/2006 with the most frequent, overnormative daily

  16. Study of long term options for electric vehicle air conditioning

    SciTech Connect

    Dieckmann, J.; Mallory, D. , Inc., Cambridge, MA )

    1991-07-01

    There are strong incentives in terms of national energy and environmental policy to encourage the commercialization of electrically powered vehicles in the U.S. Among these incentives are reduced petroleum consumption, improved electric generation capacity utilization, reduced IC engine emissions, and, depending on the primary fuel used for electric power generation, reduced emissions of carbon dioxide. A basic requirement for successfully commercializing any motor vehicle in the US is provision of adequate passenger comfort heating and air conditioning (cooling). Although air conditioning is generally sold as optional equipment, in excess of 80% of the automobiles and small trucks sold in the US have air conditioning systems. In current, pre-commercial electric vehicles, comfort heating is provided by a liquid fuel fired heater that heats water which is circulated through the standard heater core in the conventional interior air handling unit. Air conditioning is provided by electric motor driven compressors, installed in a system having, perhaps, an [open quotes]upsized[close quotes] condenser and a standard evaporator (front and rear evaporators in some instances) installed in the conventional interior air handler. Although this approach is adequate in the near term for initial commercialization efforts, a number of shortcomings of this arrangement, as well as longer range concerns need to be addressed. In this project, the long term alternatives for cooling and heating electric vehicles effectively, efficiently (with minimum range penalties), and without adverse environmental impacts have been examined. Identification of options that can provide both heating and cooling is important, in view of the disadvantages of carrying separate heating and cooling systems in the vehicle.

  17. Study of long term options for electric vehicle air conditioning

    SciTech Connect

    Dieckmann, J.; Mallory, D.

    1991-07-01

    There are strong incentives in terms of national energy and environmental policy to encourage the commercialization of electrically powered vehicles in the U.S. Among these incentives are reduced petroleum consumption, improved electric generation capacity utilization, reduced IC engine emissions, and, depending on the primary fuel used for electric power generation, reduced emissions of carbon dioxide. A basic requirement for successfully commercializing any motor vehicle in the US is provision of adequate passenger comfort heating and air conditioning (cooling). Although air conditioning is generally sold as optional equipment, in excess of 80% of the automobiles and small trucks sold in the US have air conditioning systems. In current, pre-commercial electric vehicles, comfort heating is provided by a liquid fuel fired heater that heats water which is circulated through the standard heater core in the conventional interior air handling unit. Air conditioning is provided by electric motor driven compressors, installed in a system having, perhaps, an {open_quotes}upsized{close_quotes} condenser and a standard evaporator (front and rear evaporators in some instances) installed in the conventional interior air handler. Although this approach is adequate in the near term for initial commercialization efforts, a number of shortcomings of this arrangement, as well as longer range concerns need to be addressed. In this project, the long term alternatives for cooling and heating electric vehicles effectively, efficiently (with minimum range penalties), and without adverse environmental impacts have been examined. Identification of options that can provide both heating and cooling is important, in view of the disadvantages of carrying separate heating and cooling systems in the vehicle.

  18. State Skill Standards: Heating, Ventilation, Air Conditioning, and Refrigeration

    ERIC Educational Resources Information Center

    Ball, Larry; Soukup, Dennis

    2006-01-01

    The Department of Education has undertaken an ambitious effort to develop statewide career and technical education skill standards. The standards in this document are for Heating, Ventilation, Air Conditioning and Refrigeration (HVAC&R) programs and are designed to clearly state what the student should know and be able to do upon completion of an…

  19. Advanced Print Reading. Heating, Ventilation and Air Conditioning.

    ERIC Educational Resources Information Center

    Oregon State Dept. of Education, Salem.

    This is a workbook for students learning advanced blueprint reading for heating, ventilation, and air conditioning applications. The workbook contains eight units covering the following material: architectural working drawings; architectural symbols and dimensions; basic architectural electrical symbols; wiring symbols; basic piping symbols;…

  20. Air Conditioning, Heating, and Refrigeration. Competency-Based Curriculum Manual.

    ERIC Educational Resources Information Center

    Gourley, Frank A., Jr.

    This manual was developed to serve as an aid to administrators and instructors involved with postsecondary air conditioning, heating, and refrigeration programs. The first of six chapters contains general information on program implementation, the curriculum design, facilities and equipment requirements, and textbooks and references. Chapter 2…

  1. Heating, Air-Conditioning, and Refrigeration Technician. National Skill Standards.

    ERIC Educational Resources Information Center

    Vocational Technical Education Consortium of States, Decatur, GA.

    This guide contains information on the knowledge and skills identified by industry as essential to the job performance of heating, air-conditioning, and refrigeration technicians. It is intended to assist training providers in public and private institutions, as well as in industry, to develop and implement training that will provide workers with…

  2. An Analysis of the Air Conditioning, Refrigerating and Heating Occupation.

    ERIC Educational Resources Information Center

    Frass, Melvin R.; Krause, Marvin

    The general purpose of the occupational analysis is to provide workable, basic information dealing with the many and varied duties performed in the air conditioning, refrigerating, and heating occupation. The document opens with a brief introduction followed by a job description. The bulk of the document is presented in table form. Six duties are…

  3. Air Conditioning, Heating, and Refrigeration: Scope and Sequence.

    ERIC Educational Resources Information Center

    Nashville - Davidson County Metropolitan Public Schools, TN.

    This scope and sequence guide, developed for an air conditioning, heating, and refrigeration vocational education program, represents an initial step in the development of a systemwide articulated curriculum sequence for all vocational programs within the Metropolitan Nashville Public School System. It was developed as a result of needs expressed…

  4. Heating and Air Conditioning Specialist. Teacher Edition. Automotive Service Series.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This instructor's guide contains materials for teaching the heating and air conditioning specialist component of a competency-based instructional program for students preparing for employment in the automotive service trade. It is based on the National Institute of Automotive Service Excellence task lists. The six instructional units presented…

  5. Heating, Ventilating, and Air Conditioning. Energy Technology Series.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This course in heating, ventilating, and air conditioning is one of 16 courses in the Energy Technology Series developed for an Energy Conservation-and-Use Technology curriculum. Intended for use in two-year postsecondary technical institutions to prepare technicians for employment, the courses are also useful in industry for updating employees in…

  6. Careers for the 70's in Heating and Air Conditioning

    ERIC Educational Resources Information Center

    Toner, James P.

    1974-01-01

    In a trade encompassing all others in construction, installation foremen for heating/air conditioning firms spend a varied day (repairing a water heater, overseeing installation crews). Decision-makers who must think while using their hands, they rely heavily on preparation in math, mechanical drawing, blueprint reading, physics, and electicity.…

  7. Modelling and simulation of air-conditioning cycles

    NASA Astrophysics Data System (ADS)

    Rais, Sandi; Kadono, Yoshinori; Murayama, Katsunori; Minakuchi, Kazuya; Takeuchi, Hisae; Hasegawa, Tatsuya

    2016-05-01

    The heat-pump cycle for air conditioning was investigated both numerically and experimentally by evaluating the coefficient of performance (COP) under Japanese Industrial Standard (JIS B 8619:1999) and ANSI/AHRI standard 750-2007 operating conditions. We used two expansion valve coefficients Cv_{(\\varphi )} = 0.12 for standard operating conditions (Case 1) approaching 1.3 MPa at high pressure and 0.2 MPa at low pressure, and Cv_{(\\varphi )} = 0.06 namely poor operating conditions (Case 2). To improve the performance of the air conditioner, we compared the performance for two outside air temperatures, 35 and 40 °C (Case 3). The simulation and experiment comparison resulted the decreasing of the COP for standard operating condition is equal to 14 %, from 3.47 to 2.95 and a decrease of the cooling capacity is equal to 18 %, from 309.72 to 253.53 W. This result was also occurred in poor operating condition which the COP was superior at 35 °C temperature.

  8. Ice storage rooftop retrofit for rooftop air conditioning

    SciTech Connect

    Tomlinson, J.J.; Jennings, L.W.

    1997-09-01

    A significant fraction of the floor space in commercial and federal buildings is cooled by single-package rooftop air conditioning units. These units are located on flat roofs and usually operate during the day under hot conditions. They are usually less energy efficient than a chiller system for building cooling. Several U.S. companies are developing systems that employ ice storage in conjunction with chillers to replace older, inefficient rooftop units for improved performance and minimal use of on-peak electricity. Although the low evaporator temperatures needed for ice making tend to reduce the efficiency of the chiller, the overall operating costs of the ice storage system may be lower than that of a packaged, conventional rooftop installation. One version of this concept, the Roofberg{reg_sign} System developed by the Calmac Corporation, was evaluated on a small building at Oak Ridge National Laboratory in Oak Ridge, Tennessee. The Roofberg system consists of a chiller, an ice storage tank, and one or more rooftop units whose evaporator coils have been adapted to use a glycol solution for cooling. The ice storage component decouples the cooling demand of the building from the operation of the chiller. Therefore, the chiller can operate at night (cooler, more efficient condensing temperatures) to meet a daytime cooling demand. This flexibility permits a smaller chiller to satisfy a larger peak cooling load. Further, the system can be operated to shift the cooling demand to off-peak hours when electricity from the utility is generated more efficiently and at lower cost. This Roofberg system was successfully installed last year on a small one-story office building in Oak Ridge and is currently being operated to cool the building. The building and system were sufficiently instrumented to allow a determination of the performance and efficiency of the Roofberg system. Although the energy efficiency of a simulated Roofberg storage/chiller concept operating in the

  9. Calibration Methods for Air Coupled Antennas - COST Action TU1208

    NASA Astrophysics Data System (ADS)

    Marecos, Vânia; Solla, Mercedes; Fontul, Simona; Pajewski, Lara

    2016-04-01

    This work focuses on the comparison of different methods for calibrating air coupled antennas: Coring, Surface Reflection Method (SRM) and Common Mid-Point (CMP) through the analysis of GPR data collected in a test site with different pavement solutions. Research activities have been carried out during a Short Term Scientific Mission (STSM) funded by the COST (European Cooperation in Science and Technology) Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar" in December 2015. The use of GPR in transport infrastructures represents one of the most significant advances for obtaining continuous data along the road, with the advantage of operation at traffic speed and being a non-destructive technique. Its main application has been the evaluation of layer thickness. For the determination of layer thickness, it is necessary to know the velocity of the signal, which depends on the dielectric constant of the material, and the two-way travel time of the reflected signal that is recorded by the GPR system. The calculation of the dielectric value of the materials can be done using different approaches such as: using fixed values based on experience, laboratory determination of dielectric values, applying the SRM, performing back calculation from ground truth references such as cores and test pits, or using the CMP method. The problem with using ground truth is that it is time consuming, labour intensive and intrusive to traffic, in addition, a drill core is not necessarily representative of the whole surveyed area. Regarding the surface reflection technique, one of the problems is that it only measures the dielectric value from the layer surface and not from the whole layer. Recent works already started to address some of these challenges proposing new approaches for GPR layer thickness measurements using multiple antennas to calculate the average dielectric value of the asphalt layer, taking advantage of significant hardware improvements in GPR

  10. Hollow Fiber Membrane Dehumidification Device for Air Conditioning System.

    PubMed

    Zhao, Baiwang; Peng, Na; Liang, Canzeng; Yong, Wai Fen; Chung, Tai-Shung

    2015-01-01

    In order to provide a comfortable living and working environment indoors in tropical countries, the outdoor air often needs to be cooled and dehumidified before it enters the rooms. Membrane separation is an emerging technology for air dehumidification and it is based on the solution diffusion mechanism. Water molecules are preferentially permeating through the membranes due to its smaller kinetic diameter and higher condensability than the other gases. Compared to other dehumidification technologies such as direct cooling or desiccation, there is no phase transition involved in membrane dehumidification, neither the contact between the fresh air stream and the desiccants. Hence, membrane dehumidification would not only require less energy consumption but also avoid cross-contamination problems. A pilot scale air dehumidification system is built in this study which comprises nine pieces of one-inch PAN/PDMS hollow fiber membrane modules. A 150 h long-term test shows that the membrane modules has good water vapor transport properties by using a low vacuum force of only 0.78 bar absolute pressure at the lumen side. The water vapor concentration of the feed humid air decreases dramatically from a range of 18-22 g/m³ to a range of 13.5-18.3 g/m³. Most importantly, the total energy saving is up to 26.2% compared with the conventional air conditioning process. PMID:26580660

  11. Hollow Fiber Membrane Dehumidification Device for Air Conditioning System

    PubMed Central

    Zhao, Baiwang; Peng, Na; Liang, Canzeng; Yong, Wai Fen; Chung, Tai-Shung

    2015-01-01

    In order to provide a comfortable living and working environment indoors in tropical countries, the outdoor air often needs to be cooled and dehumidified before it enters the rooms. Membrane separation is an emerging technology for air dehumidification and it is based on the solution diffusion mechanism. Water molecules are preferentially permeating through the membranes due to its smaller kinetic diameter and higher condensability than the other gases. Compared to other dehumidification technologies such as direct cooling or desiccation, there is no phase transition involved in membrane dehumidification, neither the contact between the fresh air stream and the desiccants. Hence, membrane dehumidification would not only require less energy consumption but also avoid cross-contamination problems. A pilot scale air dehumidification system is built in this study which comprises nine pieces of one-inch PAN/PDMS hollow fiber membrane modules. A 150 h long-term test shows that the membrane modules has good water vapor transport properties by using a low vacuum force of only 0.78 bar absolute pressure at the lumen side. The water vapor concentration of the feed humid air decreases dramatically from a range of 18–22 g/m3 to a range of 13.5–18.3 g/m3. Most importantly, the total energy saving is up to 26.2% compared with the conventional air conditioning process. PMID:26580660

  12. A strategy for oxygen conditioning at high altitude: comparison with air conditioning.

    PubMed

    West, John B

    2015-09-15

    Large numbers of people live or work at high altitude, and many visit to trek or ski. The inevitable hypoxia impairs physical working capacity, and at higher altitudes there is also cognitive impairment. Twenty years ago oxygen enrichment of room air was introduced to reduce the hypoxia, and this is now used in dormitories, hotels, mines, and telescopes. However, recent advances in technology now allow large amounts of oxygen to be obtained from air or cryogenic oxygen sources. As a result it is now feasible to oxygenate large buildings and even institutions such as hospitals. An analogy can be drawn between air conditioning that has improved the living and working conditions of millions of people who live in hot climates and oxygen conditioning that can do the same at high altitude. Oxygen conditioning is similar to air conditioning except that instead of cooling the air, the oxygen concentration is raised, thus reducing the equivalent altitude. Oxygen conditioning on a large scale could transform living and working conditions at high altitude, where it could be valuable in homes, hospitals, schools, dormitories, company headquarters, banks, and legislative settings. PMID:26139219

  13. Cost benefit analysis and energy savings of using compression and absorption chillers for air conditioners in hot and humid climates

    NASA Astrophysics Data System (ADS)

    Shekarchian, M.; Moghavvemi, M.; Motasemi, F.; Mahlia, T. M. I.

    2012-06-01

    The electricity consumption growth has increased steadily in the recent decade which is a great concern for the environment. Increasing the number of high-rise air-conditioned buildings and the rapid use of electrical appliances in residential and commercial sectors are two important factors for high electricity consumption. This paper investigates the annual energy required for cooling per unit area and the total energy cost per unit area for each type of air conditioning systems in hot and humid climates. The effects of changing the coefficient of performance (COP) of absorption chillers on cost saving was also investigated in this study. The results showed that using absorption chillers for cooling will increase the amount of energy consumption per unit area; however the energy cost per unit area will decrease. In addition this research indicates that for each 0.1 increment in COP of absorption chillers, there is about 500 USD/m2 saved cost.

  14. TEWI Evaluation for Household Refrigeration and Air-Conditioning Systems

    NASA Astrophysics Data System (ADS)

    Sobue, Atsushi; Watanabe, Koichi

    In the present study, we have quantitatively evaluated the global warming impact by household refrigerator and air-conditioning systems on the basis of reliable TEWI information. In TEWI evaluation of household refrigerators, the percentage of the impact by refrigerant released to the atmosphere (direct effect) is less than 18.6% in TEWI. In case of room air-conditioners, however, the percentage of direct effect is less than 5.4% in TEWI. Therefore, it was confirmed that impact by CO2 released as a result of the energy consumed to drive the refrigeration or air-conditioning systems throughout their lifetime (indirect effect) is far larger than direct effect by the entire system. A reduction of indirect effect by energy saving is the most effective measure in reducing the global warming impact by refrigeration and air-conditioning systems, For a realization of the energy saving, not only the advanced improvement in energy efficiency by household appliance manufacturers but also the improvement of consumer's mind in selecting the systems and a way of using are concluded important.

  15. An efficient new automobile air-conditioning system based on CO{sub 2} vapor compression

    SciTech Connect

    Pettersen, J.

    1994-12-31

    A new, efficient, and environmentally safe automobile air-conditioning system based on carbon dioxide (CO{sub 2}) vapor compression has been developed. Although working pressures and component design are different, the basic principles are similar to those of current chlorofluorocarbon/hydrofluorocarbon (CFC/HFC) units. With the construction and testing of a laboratory prototype, it has been documented that the new system is highly competitive with current CFC-12 and HFC-134a units in terms of efficiency, capacity, cost, weight, and dimensions. The CO{sub 2} concept thus offers a solution to the environmental problem associated with automobile air conditioning and eliminates all uncertainties with respect to possible unforeseen effects from new refrigerant compounds. Further advantages of the natural fluid CO{sub 2} as a refrigerant are: no need for recycling or recovery, low cost of fluid, excellent availability, well-known properties, and more compact machinery and components.

  16. Frequency and Costs of Hospital Transfers for Ambulatory Sensitive Conditions

    PubMed Central

    Axon, R. Neal; Gebregziabher, Mulugeta; Craig, Janet; Zhang, Jingwen; Mauldin, Patrick; Moran, William P.

    2015-01-01

    Objectives Nursing home (NH) patients are frequently transferred to emergency departments (EDs) and/or hospitalized in situations where transfer might have been avoided. This study describes the frequency of NH transfers for ambulatory care sensitive conditions (ACSC) and estimates associated expenditures. Study Design Retrospective cohort study of 62,379 NH patients with Medicare coverage receiving care in South Carolina between 2007 and 2009. Methods Subjects were analyzed to determine the frequency acute ED or hospital care for conditions. Comparison is made to similar patients transferred for acute treatment of non-ACSCs. Generalized linear models were used to estimate the costs attributable to treating ACSCs. Results 20,867 NH subjects were transferred from NHs to acute care facilities, and 85.3% of subjects had at least one episode of care for an ACSC. An average of 13,317 subjects were transferred for an average of 17,060 episodes of ED or hospital care per year between 2007 and 2009. More ACSC patients transferred to EDs were subsequently admitted to the hospital (50.4% vs. 25%, p<0.0001). In adjusted analyses, mean ED costs/episode of care ($401 vs. $294, p<0.0001) were higher, but mean hospitalization costs/episode of care were lower ($8,356 vs. $10,226, p<0.0001) for ACSC patients compared to non-ACSC patients. Conclusion A significant proportion of Medicare NH patients are treated acutely for ACSCs which are associated with higher healthcare utilization and costs. Better access to on-site evaluation might enable significant cost savings and reduce morbidity in this population. PMID:25880150

  17. Retrofitting Inefficient Rooftop Air-Conditioning Units Reduces U.S. Navy Energy Use (Fact Sheet)

    SciTech Connect

    Not Available

    2014-04-01

    As part of the U.S. Navy's overall energy strategy, the National Renewable Energy Laboratory (NREL) partnered with the Naval Facilities Engineering Command (NAVFAC) to demonstrate market-ready energy efficiency measures, renewable energy generation, and energy systems integration. One such technology - retrofitting rooftop air-conditioning units with an advanced rooftop control system - was identified as a promising source for reducing energy use and costs, and can contribute to increasing energy security.

  18. Commercialization of air conditioning heat pump/water heater. Final technical report, Volume 3: Appendix F through I

    SciTech Connect

    1996-01-30

    This is the final technical report on a commercialization project for an air conditioning heat pump water heater. The objective of the project was to produce a saleable system which would be economically competitive with natural gas and cost effective with regard to initial cost versus annual operating costs. The development and commercialization of the system is described. Compiled data included in numerous figures, tables and graphs.

  19. Commercialization of air conditioning heat pump/water heater. Final technical report, Volume 2: Appendix A through E

    SciTech Connect

    1996-01-30

    This is the final technical report on a commercialization project for an air conditioning heat pump water heater. The objective of the project was to produce a saleable system which would be economically competitive with natural gas and cost effective with regard to initial cost versus annual operating costs. The development and commercialization of the system is described. Compiled data included in numerous figures, tables and graphs.

  20. An Analysis of Price Determination and Markups in the Air-Conditioning and Heating Equipment Industry

    SciTech Connect

    Dale, Larry; Millstein, Dev; Coughlin, Katie; Van Buskirk, Robert; Rosenquist, Gregory; Lekov, Alex; Bhuyan, Sanjib

    2004-01-30

    In this report we calculate the change in final consumer prices due to minimum efficiency standards, focusing on a standard economic model of the air-conditioning and heating equipment (ACHE) wholesale industry. The model examines the relationship between the marginal cost to distribute and sell equipment and the final consumer price in this industry. The model predicts that the impact of a standard on the final consumer price is conditioned by its impact on marginal distribution costs. For example, if a standard raises the marginal cost to distribute and sell equipment a small amount, the model predicts that the standard will raise the final consumer price a small amount as well. Statistical analysis suggest that standards do not increase the amount of labor needed to distribute equipment the same employees needed to sell lower efficiency equipment can sell high efficiency equipment. Labor is a large component of the total marginal cost to distribute and sell air-conditioning and heating equipment. We infer from this that standards have a relatively small impact on ACHE marginal distribution and sale costs. Thus, our model predicts that a standard will have a relatively small impact on final ACHE consumer prices. Our statistical analysis of U.S. Census Bureau wholesale revenue tends to confirm this model prediction. Generalizing, we find that the ratio of manufacturer price to final consumer price prior to a standard tends to exceed the ratio of the change in manufacturer price to the change in final consumer price resulting from a standard. The appendix expands our analysis through a typical distribution chain for commercial and residential air-conditioning and heating equipment.

  1. Interaction of Failed Fuel Rods Under Air Ingress Conditions

    SciTech Connect

    Hozer, Zoltan; Windberg, Peter; Nagy, Imre; Maroti, Laszlo; Matus, Lajos; Horvath, Marta; Csordas, Anna Pinter; Balasko, Marton; Czitrovszky, Aladar; Jani, Peter

    2003-03-15

    In the late phase of a severe reactor accident, the molten corium interacts with the vessel wall, and it can lead to the failure of the lower head. Through the failed bottom wall, part of the corium can flow into the cavity, and air can enter the primary circuit. The residual fuel in the core periphery will be further oxidized in air atmosphere. The degradation process will accelerate, and new chemical species will be formed, which can have an impact on the release of radioactive materials.Two experiments were carried out with electrically heated nine-rod pressurized water reactor-type bundles in the CODEX (COre Degradation EXperiment) facility to provide experimental data on the behavior of real fuel bundles under air oxidation conditions. The main objective of the tests was the investigation of oxidation phenomena, and some other important aspects (e.g., enhanced fission product release) were not addressed.The CODEX air ingress tests indicated the acceleration of oxidation phenomena and core degradation processes during the late phase of the vessel melt through accident, when air can have access to the residual fuel bundles in the reactor core. The degradation process was accompanied with zirconium-nitride formation and release of uranium-rich aerosols.

  2. Do residential air-conditioning rebates miss the mark?

    SciTech Connect

    Stickney, B.; Shepard, M.

    1994-12-31

    The rebates utilities provide for residential central air conditioners and heat pumps to encourage improved cooling efficiency may inadvertently reward higher peak demand in many cases. This problem could be avoided by using both efficiency and peak performance to determine eligibility for rebates. Such changes to incentive formulas would better align the utilities` DSM programs with the dual goals of improved efficiency and peak demand reduction. Improved peak performance would be especially advantageous for sunbelt utilities whose residential cooling load is highly coincident with the summer peak. Air conditioning has been called the utilities` ``load from hell,`` because it is intermittent, unpredictable, and is the largest contributor to summer peak demand, requiring massive investments in power generation and delivery capacity. It is no wonder then that more DSM programs are targeted at space cooling than at any other end use. Ironically, however, all of the residential rebate programs the authors examined for central air conditioners and heat pumps are based on the seasonal energy efficiency ratio (SEER), which provides a valuable measure of seasonal energy efficiency but is not a good indicator of peak demand. Residential central air conditioning incentive programs for eight major utilities are based exclusively on SEER and most ratchet up the incentive levels with increasing SEER. None include the measure for peak demand for residential cooling equipment, which is the so-called energy efficiency ratio, or EER.

  3. The Oklahoma Field Test: Air-Conditioning Electricity Savings from Standard Energy Conservation Measures, Radiant Barriers, and High-Efficiency Window Air Conditioners

    SciTech Connect

    Ternes, M.P.

    1992-01-01

    A field test involving 104 houses was performed in Tulsa, Oklahoma, to measure the air-conditioning electricity consumption of low-income houses equipped with window air conditioners, the reduction in this electricity consumption attributed to the installation of energy conservation measures (ECMs) as typically installed under the Oklahoma Weatherization Assistance Program (WAP), and the reduction achieved by the replacement of low-efficiency window air conditioners with high-efficiency units and the installation of attic radiant barriers. Air-conditioning electricity consumption and indoor temperature were monitored weekly during the pre-weatherization period (June to September 1988) and post-weatherization period (May to September 1989). House energy consumption models and regression analyses were used to normalize the air-conditioning electricity savings to average outdoor temperature conditions and the pre-weatherization indoor temperature of each house. The average measured pre-weatherization air-conditioning electricity consumption was 1664 kWh/year ($119/year). Ten percent of the houses used less than 250 kWh/year, while another 10% used more than 3000 kWh/year. An average reduction in air-conditioning electricity consumption of 535 kWh/year ($38/year and 28% of pre-weatherization consumption) was obtained from replacement of one low-efficiency window air conditioner (EER less than 7.0) per house with a high-efficiency unit (EER greater than 9.0). For approximately the same cost, savings tripled to 1503 kWh/year ($107/year and 41% of pre-weatherization consumption) in those houses with initial air-conditioning electricity consumption greater than 2750 kWh/year. For these houses, replacement of a low-efficiency air conditioner with a high-efficiency unit was cost effective using the incremental cost of installing a new unit now rather than later; the average installation cost for these houses under a weatherization program was estimated to be $786. The

  4. Evaluation of Nationwide Health Costs of Air Pollution and Cigarette Smoking

    ERIC Educational Resources Information Center

    Williams, J. R.; Justus, C. G.

    1974-01-01

    The findings of this study indicate cigarette smoking causes more respiratory diseases than does air pollution. The 1970 nationwide health cost of respiratory diseases is estimated at $6.22 billion. The effect of air pollution accounts for between 1 and 5 percent of this total cost while cigarette smoking represents 68 percent. (MLB)

  5. 16 CFR Appendix H to Part 305 - Cooling Performance and Cost for Central Air Conditioners

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 1 2011-01-01 2011-01-01 false Cooling Performance and Cost for Central Air Conditioners H Appendix H to Part 305 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC... RULEâ) Pt. 305, App. H Appendix H to Part 305—Cooling Performance and Cost for Central Air...

  6. 16 CFR Appendix H to Part 305 - Cooling Performance and Cost for Central Air Conditioners

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Cooling Performance and Cost for Central Air Conditioners H Appendix H to Part 305 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC... RULEâ) Pt. 305, App. H Appendix H to Part 305—Cooling Performance and Cost for Central Air...

  7. 16 CFR Appendix I to Part 305 - Heating Performance and Cost for Central Air Conditioners

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 1 2014-01-01 2014-01-01 false Heating Performance and Cost for Central Air... CONSERVATION ACT (âENERGY LABELING RULEâ) Pt. 305, App. I Appendix I to Part 305—Heating Performance and Cost for Central Air Conditioners Manufacturer's rated heating capacity (Btu's/hr.) Range of HSPF's...

  8. Solar air conditioning with solid absorbents and earth cooling

    NASA Astrophysics Data System (ADS)

    Mayer, E.

    An experimental design is described for an efficient desiccant cooling system using natural cold sink to reduce the moisture content of the ambient air. Used in a warm, humid, tropical climate, the unit is shown to provide up to 0.77 ton of refrigeration under extreme conditions with an average daily coefficient of performance of 0.5. Solar heat is applied to regenerate the silica gel.

  9. [Simulation and air-conditioning in the nose].

    PubMed

    Keck, T; Lindemann, J

    2010-05-01

    Heating and humidification of the respiratory air are the main functions of the nasal airways in addition to cleansing and olfaction. Optimal nasal air conditioning is mandatory for an ideal pulmonary gas exchange in order to avoid dessication and adhesion of the alveolar capillary bed. The complex three-dimensional anatomical structure of the nose makes it impossible to perform detailed in vivo studies on intranasal heating and humidification within the entire nasal airways applying various technical set-ups. The main problem of in vivo temperature and humidity measurements is a poor spatial and time resolution. Therefore, in vivo measurements are feasible to a restricted extent, only providing single temperature values as the complete nose is not entirely accessible. Therefore, data on the overall performance of the nose are only based on one single measurement within each nasal segment. In vivo measurements within the entire nose are not feasible. These serious technical issues concerning in vivo measurements led to a large number of numerical simulation projects in the last few years providing novel information about the complex functions of the nasal airways. In general, numerical simulations only calculate predictions in a computational model, e. g. realistic nose model, depending on the setting of the boundary conditions. Therefore, numerical simulations achieve only approximations of a possible real situation. The aim of this report is the synopsis of the technical expertise on the field of in vivo nasal air conditioning, the novel information of numerical simulations and the current state of knowledge on the influence of nasal and sinus surgery on nasal air conditioning. PMID:20352565

  10. Solar air-conditioning-active, hybrid and passive

    SciTech Connect

    Yellott, J. I.

    1981-04-01

    After a discussion of summer air conditioning requirements in the United States, active, hybrid, and passive cooling systems are defined. Active processes and systems include absorption, Rankine cycle, and a small variety of miscellaneous systems. The hybrid solar cooling and dehumidification technology of desiccation is covered as well as evaporative cooling. The passive solar cooling processes covered include convective, radiative and evaporative cooling. Federal and state involvement in solar cooling is then discussed. (LEW)

  11. COST ANALYSIS OF INDOOR AIR CONTROL TECHNIQUES (INDOOR ENVIRONMENT MANAGEMENT BRANCH, AIR POLLUTION PREVENTION AND CONTROL DIVISION, NRMRL)

    EPA Science Inventory

    Several studies have been completed addressing the costs and the cost-effectiveness of alternative indoor air quality (IAQ) control measures.A simplified methodology has been defined that can be used by IAQ diagnosticians, architects/engineers, building owners/operators, and th...

  12. Cost Analysis of Online Courses. AIR 2000 Annual Forum Paper.

    ERIC Educational Resources Information Center

    Milam, John H., Jr.

    This paper presents a complex, hybrid, method of cost analysis of online courses, which incorporates data on expenditures; student/course enrollment; departmental consumption/contribution; space utilization/opportunity costs; direct non-personnel costs; computing support; faculty/staff workload; administrative overhead at the department, dean, and…

  13. 19 CFR 24.18 - Preclearance of air travelers in a foreign country; reimbursable cost.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 1 2011-04-01 2011-04-01 false Preclearance of air travelers in a foreign country... Preclearance of air travelers in a foreign country; reimbursable cost. (a) Preclearance is the tentative examination and inspection of air travelers and their baggage at foreign places where U.S. Customs...

  14. 19 CFR 24.18 - Preclearance of air travelers in a foreign country; reimbursable cost.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 1 2013-04-01 2013-04-01 false Preclearance of air travelers in a foreign country... Preclearance of air travelers in a foreign country; reimbursable cost. (a) Preclearance is the tentative examination and inspection of air travelers and their baggage at foreign places where U.S. Customs...

  15. High Technology Centrifugal Compressor for Commercial Air Conditioning Systems

    SciTech Connect

    Ruckes, John

    2006-04-15

    R&D Dynamics, Bloomfield, CT in partnership with the State of Connecticut has been developing a high technology, oil-free, energy-efficient centrifugal compressor called CENVA for commercial air conditioning systems under a program funded by the US Department of Energy. The CENVA compressor applies the foil bearing technology used in all modern aircraft, civil and military, air conditioning systems. The CENVA compressor will enhance the efficiency of water and air cooled chillers, packaged roof top units, and other air conditioning systems by providing an 18% reduction in energy consumption in the unit capacity range of 25 to 350 tons of refrigeration The technical approach for CENVA involved the design and development of a high-speed, oil-free foil gas bearing-supported two-stage centrifugal compressor, CENVA encompassed the following high technologies, which are not currently utilized in commercial air conditioning systems: Foil gas bearings operating in HFC-134a; Efficient centrifugal impellers and diffusers; High speed motors and drives; and System integration of above technologies. Extensive design, development and testing efforts were carried out. Significant accomplishments achieved under this program are: (1) A total of 26 builds and over 200 tests were successfully completed with successively improved designs; (2) Use of foil gas bearings in refrigerant R134a was successfully proven; (3) A high speed, high power permanent magnet motor was developed; (4) An encoder was used for signal feedback between motor and controller. Due to temperature limitations of the encoder, the compressor could not operate at higher speed and in turn at higher pressure. In order to alleviate this problem a unique sensorless controller was developed; (5) This controller has successfully been tested as stand alone; however, it has not yet been integrated and tested as a system; (6) The compressor successfully operated at water cooled condensing temperatures Due to temperature

  16. Effect of Intake Air Filter Condition on Vehicle Fuel Economy

    SciTech Connect

    Norman, Kevin M; Huff, Shean P; West, Brian H

    2009-02-01

    The U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy and the U.S. Environmental Protection Agency (EPA) jointly maintain a fuel economy website (www.fueleconomy.gov), which helps fulfill their responsibility under the Energy Policy Act of 1992 to provide accurate fuel economy information [in miles per gallon (mpg)] to consumers. The site provides information on EPA fuel economy ratings for passenger cars and light trucks from 1985 to the present and other relevant information related to energy use such as alternative fuels and driving and vehicle maintenance tips. In recent years, fluctuations in the price of crude oil and corresponding fluctuations in the price of gasoline and diesel fuels have renewed interest in vehicle fuel economy in the United States. (User sessions on the fuel economy website exceeded 20 million in 2008 compared to less than 5 million in 2004 and less than 1 million in 2001.) As a result of this renewed interest and the age of some of the references cited in the tips section of the website, DOE authorized the Oak Ridge National Laboratory (ORNL) Fuels, Engines, and Emissions Research Center (FEERC) to initiate studies to validate and improve these tips. This report documents a study aimed specifically at the effect of engine air filter condition on fuel economy. The goal of this study was to explore the effects of a clogged air filter on the fuel economy of vehicles operating over prescribed test cycles. Three newer vehicles (a 2007 Buick Lucerne, a 2006 Dodge Charger, and a 2003 Toyota Camry) and an older carbureted vehicle were tested. Results show that clogging the air filter has no significant effect on the fuel economy of the newer vehicles (all fuel injected with closed-loop control and one equipped with MDS). The engine control systems were able to maintain the desired AFR regardless of intake restrictions, and therefore fuel consumption was not increased. The carbureted engine did show a decrease in

  17. In-Cab Air Quality of Trucks Air Conditioned and Kept in Electrified Truck Stop

    SciTech Connect

    Lee, Doh-Won; Zietsman, Josias; Farzaneh, Mohamadreza; Li, Wen-Whai; Olvera, Hector; Storey, John Morse; Kranendonk, Laura

    2009-01-01

    At night, long-haul truck drivers rest inside the cabins of their vehicles. Therefore, the in-cab air quality while air conditioning (A/C) is being provided can be a great concern to the drivers health. The effect of using different A/C methods [truck's A/C, auxiliary power unit (APU), and truck stop electrification (TSE) unit] on in-cab air quality of a heavy-duty diesel vehicle was investigated at an electrified truck stop in the El Paso, Texas, area. The research team measured the in-cabin and the ambient air quality adjacent to the parked diesel truck as well as emissions from the truck and an APU while it was providing A/C. The measured results were compared and analyzed. On the basis of these results, it was concluded that the TSE unit provided better in-cab air quality while supplying A/C. Furthermore, the truck and APU exhaust emissions were measured, and fuel consumption of the truck (while idling) and the APU (during operation) were compared. The results led to the finding that emissions from the APU were less than those from the truck's engine idling, but the APU consumed more fuel than the engine while providing A/C under given conditions.

  18. A cost-efficiency and health benefit approach to improve urban air quality.

    PubMed

    Miranda, A I; Ferreira, J; Silveira, C; Relvas, H; Duque, L; Roebeling, P; Lopes, M; Costa, S; Monteiro, A; Gama, C; Sá, E; Borrego, C; Teixeira, J P

    2016-11-01

    When ambient air quality standards established in the EU Directive 2008/50/EC are exceeded, Member States are obliged to develop and implement Air Quality Plans (AQP) to improve air quality and health. Notwithstanding the achievements in emission reductions and air quality improvement, additional efforts need to be undertaken to improve air quality in a sustainable way - i.e. through a cost-efficiency approach. This work was developed in the scope of the recently concluded MAPLIA project "Moving from Air Pollution to Local Integrated Assessment", and focuses on the definition and assessment of emission abatement measures and their associated costs, air quality and health impacts and benefits by means of air quality modelling tools, health impact functions and cost-efficiency analysis. The MAPLIA system was applied to the Grande Porto urban area (Portugal), addressing PM10 and NOx as the most important pollutants in the region. Four different measures to reduce PM10 and NOx emissions were defined and characterized in terms of emissions and implementation costs, and combined into 15 emission scenarios, simulated by the TAPM air quality modelling tool. Air pollutant concentration fields were then used to estimate health benefits in terms of avoided costs (external costs), using dose-response health impact functions. Results revealed that, among the 15 scenarios analysed, the scenario including all 4 measures lead to a total net benefit of 0.3M€·y(-1). The largest net benefit is obtained for the scenario considering the conversion of 50% of open fire places into heat recovery wood stoves. Although the implementation costs of this measure are high, the benefits outweigh the costs. Research outcomes confirm that the MAPLIA system is useful for policy decision support on air quality improvement strategies, and could be applied to other urban areas where AQP need to be implemented and monitored. PMID:27348699

  19. Towards energy efficient operation of Heating, Ventilation and Air Conditioning systems via advanced supervisory control design

    NASA Astrophysics Data System (ADS)

    Oswiecinska, A.; Hibbs, J.; Zajic, I.; Burnham, K. J.

    2015-11-01

    This paper presents conceptual control solution for reliable and energy efficient operation of heating, ventilation and air conditioning (HVAC) systems used in large volume building applications, e.g. warehouse facilities or exhibition centres. Advanced two-level scalable control solution, designed to extend capabilities of the existing low-level control strategies via remote internet connection, is presented. The high-level, supervisory controller is based on Model Predictive Control (MPC) architecture, which is the state-of-the-art for indoor climate control systems. The innovative approach benefits from using passive heating and cooling control strategies for reducing the HVAC system operational costs, while ensuring that required environmental conditions are met.

  20. Geothermal as a heat sink application for raising air conditioning efficency

    NASA Astrophysics Data System (ADS)

    Ibrahim, Hesham Safwat Osman Mohamed

    2016-04-01

    Objective: Geothermal applications in heating, ventilation, air-conditioning is a US technology for more than 30 years old ,which saves more than 30% average energy cost than the traditional air-conditioning systems systems. Applying this technology in Middle East and African countries would be very feasible specially in Egypt specially as it suffers Electric crisis --The temperature of the condensers and the heat rejecting equipment is much higher than the Egyptian land at different depth which is a great advantages, and must be measured, recorded, and studied accurately -The Far goal of the proposal is to construct from soil analysis a temperature gradient map for Egypt and , African countries on different depth till 100 m which is still unclear nowadays and must be measured and recorded in databases through researches - The main model of the research is to study the heat transfer gradient through the ground earth borehole,grout,high density polyethylene pipes , and water inlet temperature which affect the electric efficiency of the ground source heat pump air conditioning unit Impact on the Region: Such research result will contribute widely in Energy saving sector specially the air conditioning sector in Egypt and the African countries which consumes more than 30% of the electric consumption of the total consumption . and encouraging Green systems such Geothermal to be applied

  1. Aid Effectiveness, Transaction Costs and Conditionality in the Education Sector

    ERIC Educational Resources Information Center

    Ashford, Richard; Biswas, Shampa

    2010-01-01

    The reduction of transaction costs is a commonly mentioned yet rarely elaborated goal for aid effectiveness in educational development. The casual use of the concept of transaction costs conceals which costs may be reduced, which costs are required and, indeed, what transaction costs actually are. Examining issues related to harmonizing the…

  2. Performance of Desiccant Particle Dispersion Type Air Conditioning System

    NASA Astrophysics Data System (ADS)

    Hatano, Hiroyuki; Suzuki, Koichi; Kojima, Hiromitsu

    An investigation of desiccant air conditioning system is performed to demonstrate its performance in a dispersed desiccant particle systems, based on its higher gas solid contacting efficiency and isothermal dehumidification. Particle dispersion is achieved using the risers of a circulating fluidized bed, CFB, or of a pneumatic conveyer. The risers used for dehumidification are 1390 mm in height and 22 mm in diameter. The former is used to evaluate the overall dehumidification performance and the latter is used to measure the axial humidity distribution under 0.88 m/s of a superficial air velocity. Based on the results of the overall performance by changing solid loading rates, Gs, from 0.4 kg/m2s up to 6 kg/m2s, desiccant particle dispersion shows higher performance in dehumidification, while axial humidity distribution shows very rapid adsorption rate in the entrance zone of the riser. Removal of adsorption heat accelerates dehumidification rate compared to the adiabatic process.

  3. Report: landfill alternative daily cover: conserving air space and reducing landfill operating cost.

    PubMed

    Haughey, R D

    2001-02-01

    Title 40, Part 258 of the Code of Federal Regulations, Solid Waste Disposal Facility Criteria, commonly referred to as Subtitle D, became effective on October 9, 1993. It establishes minimum criteria for solid waste disposal facility siting, design, operations, groundwater monitoring and corrective action, and closure and postclosure maintenance, while providing EPA-approved state solid waste regulatory programs flexibility in implementing the criteria. Section 258.21(a) [40 CFR 258.21(a)] requires owners or operators of municipal solid waste landfill (MSWLF) units to cover disposed solid waste with 30cm of earthen material at the end of the operating day, or at more frequent intervals, if necessary, to control disease vectors, fires, odours, blowing litter, and scavenging. This requirement is consistent with already existing solid waste facility regulations in many states. For many MSWLFs, applying daily cover requires the importation of soil which increases landfill operating costs. Daily cover also uses valuable landfill air space, reducing potential operating revenue and the landfill's operating life. 40 CFR 258.21 (b) allows the director of an approved state to approve alternative materials of an alternative thickness if the owner or operator demonstrates that the alternative material and thickness will control disease vectors, fires, odours, blowing litter, and scavenging without presenting a threat to human health and the environment. Many different types of alternative daily cover (ADC) are currently being used, including geosynthetic tarps, foams, garden waste, and auto shredder fluff. These materials use less air space than soil and can reduce operating costs. This paper discusses the variety of ADCs currently being used around the country and their applicability to different climates and operating conditions, highlighting the more unusual types of ADC, the types of demonstrations necessary to obtain approval of ADC, and the impact on landfill air space

  4. Particulate composition characteristics under different ambient air quality conditions.

    PubMed

    Tsai, Jiun-Horng; Chang, Lisa Tzu-Chi; Huang, Yao-Sheng; Chiang, Hung-Lung

    2011-07-01

    Particulate compositions including elemental carbon (EC), organic carbon (OC), water-soluble ionic species, and elemental compositions were investigated during the period from 2004 to 2006 in southern Taiwan. The correlation between the pollutant standard index (PSI) of ambient air quality and the various particle compositions was also addressed in this study. PSI revealed a correlation with fine (r = 0.74) and coarse (r = 0.80) particulate matter (PM). PSI manifested a significant correlation with the amount of analyzed ionic species (r approximately 0.80) in coarse and fine particles and a moderate correlation with carbon content (r = 0.63) in fine particles; however, it showed no correlation with elemental content. Although the ambient air quality ranged from good to moderate, the ionic species including chloride (Cl-), nitrate (NO3-), sulfate (SO4(2-)), sodium (Na+), ammonium (NH4+), magnesium (Mg2+), and calcium (Ca2+) increased significantly (1.5-3.7 times for Daliao and 1.8-6.9 times for Tzouying) in coarse PM. For fine particles, NO3-, SO4(2-), NH4+, and potassium (K+) also increased significantly (1.3-2.4 times for Daliao and 2.8-9.6 times for Tzouying) when the air quality went from good to moderate. For meteorological parameters, temperature evidenced a slightly negative correlation with PM concentration and PSI value, which implied a high PM concentration in the low-temperature condition. This reflects the high frequency of PM episodes in winter and spring in southern Taiwan. In addition, the mixing height increase from 980 to 1450 m corresponds to the air quality condition changing from unhealthy to good. PMID:21850835

  5. Can airborne fungal allergens pass through an air-conditioning system. [Aspergillus fumigatus

    SciTech Connect

    Elixmann, J.H. ); Linskens, H.F.; Schata, M.; Jorde, W. )

    1989-01-01

    Fungal spores, an important fraction of aeroplankton particles, can be filtered in an air-conditioning system, resulting in a drastic reduction of the spore count in the air-conditioned rooms. Nevertheless, using the EISA inhibition test against Aspergillus fumigatus, it was found that air samples from air-conditioned rooms show inhibition of the serum activity of a highly sensitized patient. There is evidence that airborne allergens can pass both coarse and fine filters of an air-conditioning system.

  6. Alternate working fluids for solar air conditioning applications

    NASA Technical Reports Server (NTRS)

    Evans, R. D.; Beck, J. K.

    1978-01-01

    An experimental investigation of sixteen different refrigerant-absorbent fluid pairs has been carried out in order to determine their suitability as the working fluid in a solar-powered absorption cycle air conditioner. The criteria used in the initial selection of a refrigerant-absorbent pair included: high affinity (large negative deviation from Raoult's Law), high solubility, low specific heat, low viscosity, stability, corrosive properties, safety, and cost. For practical solar considerations of a fluid pair, refrigerants were selected with low boiling points whereas absorbent fluids were selected with a boiling point considerably above that of the refrigerant. Additional restrictions are determined by the operating temperatures of the absorber and the generator; these temperatures were specified as 100 F (39 C) and 170 F (77 C). Data are presented for a few selected pressures at the specified absorber and generator temperatures.

  7. Analysis of non-CFC automotive air conditioning

    SciTech Connect

    Mei, V.C.; Chen, F.C. ); Sullivan, R.A. )

    1991-01-01

    Concern about the destruction of the global environment by chlorofluorocarbon (CFC) fluids has become an impetus in searching for alternative non-CFC refrigerants and cooling methods for mobile air conditioning (MAC). While some alternative refrigerants have been identified, they are not considered a lasting solution because of their high global warming potential (GWP), which could result in their eventual phase-out. In view of this dilemma, environmentally acceptable alternative cooling methods have become important. This study discusses the advantages and the limits of some of the alternative automotive cooling methodologies. 19 refs., 6 figs.

  8. Liquid over-feeding air conditioning system and method

    DOEpatents

    Mei, V.C.; Chen, F.C.

    1993-09-21

    A refrigeration air conditioning system utilizing a liquid over-feeding operation is described. A liquid refrigerant accumulator-heat exchanger is placed in the system to provide a heat exchange relationship between hot liquid refrigerant discharged from condenser and a relatively cool mixture of liquid and vaporous refrigerant discharged from the evaporator. This heat exchange relationship substantially sub-cools the hot liquid refrigerant which undergoes little or no evaporation across the expansion device and provides a liquid over-feeding operation through the evaporator for effectively using 100 percent of evaporator for cooling purposes and for providing the aforementioned mixture of liquid and vaporous refrigerant. 1 figure.

  9. Liquid over-feeding air conditioning system and method

    DOEpatents

    Mei, Viung C.; Chen, Fang C.

    1993-01-01

    A refrigeration air conditioning system utilizing a liquid over-feeding operation is described. A liquid refrigerant accumulator-heat exchanger is placed in the system to provide a heat exchange relationship between hot liquid refrigerant discharged from condenser and a relatively cool mixture of liquid and vaporous refrigerant discharged from the evaporator. This heat exchange relationship substantially sub-cools the hot liquid refrigerant which undergoes little or no evaporation across the expansion device and provides a liquid over-feeding operation through the evaporator for effectively using 100 percent of evaporator for cooling purposes and for providing the aforementioned mixture of liquid and vaporous refrigerant.

  10. Use of waste heat for automotive air conditioning

    SciTech Connect

    Hamner, R.M.

    1981-01-01

    The ejector-compression refrigeration system, a heat powered system which can be operated as a heat pump, is described. The operation of the system is discussed in general and the ejector itself is described in more detail. The central thrust of the paper is the application of the system to comfort air conditioning of automobiles. The advantages, limitations, and recommendations for future research and development are given. Several analyses of the theoretical cycle are made and equations describing the operation of the ejector are derived. A brief bibliography is listed.

  11. Do-It-Yourself Additives Recharge Auto Air Conditioning

    NASA Technical Reports Server (NTRS)

    2010-01-01

    In planning for a return mission to the Moon, NASA aimed to improve the thermal control systems that keep astronauts comfortable and cool while inside a spacecraft. Goddard Space Flight Center awarded a Small Business Innovation Research (SBIR) contract to Mainstream Engineering Corporation, of Rockledge, Florida, to develop a chemical/mechanical heat pump. IDQ Inc., of Garland, Texas, exclusively licensed the technology and incorporates it into its line of Arctic Freeze products for automotive air conditioning applications. While working on the design, Mainstream Engineering came up with a unique liquid additive called QwikBoost to enhance the performance of the advanced heat pump design.

  12. Performance and evaluation of gas engine driven rooftop air conditioning equipment at the Willow Grove (PA) Naval Air Station

    SciTech Connect

    Armstrong, P.R.; Conover, D.R.

    1993-05-01

    In a field evaluation conducted for the US Department of Energy (DOE) Office of Federal Energy Management Program (FEMP), the Pacific Northwest Laboratory (PNL) examined the performance of a new US energy-related technology under the FEMP Test Bed Demonstration Program. The technology was a 15-ton natural gas engine driven roof top air conditioning unit. Two such units were installed on a naval retail building to provide space conditioning to the building. Under the Test Bed Demonstration Program, private and public sector interests are focused to support the installation and evaluation of new US technologies in the federal sector. Participating in this effort under a Cooperative Research and Development Agreement (CRADA) with DOE were the American Gas Cooling Center, Philadelphia Electric Company, Thermo King Corporation, and the US Naval Air Station at Willow Grove, Pennsylvania. Equipment operating and service data as well as building interior and exterior conditions were secured for the 1992 cooling season. Based on a computer assessment of the building using standard weather data, a comparison was made with the energy and operating costs associated with the previous space conditioning system. Based on performance during the 1992 cooling season and adjusted to a normal weather year, the technology will save the site $6,000/yr in purchased energy costs. An additional $9,000 in savings due to electricity demand ratchet charge reductions will also be realized. Detailed information on the technology, the installation, and the results of the technology test are provided to illustrate the advantages to the federal sector of using this technology. A history of the CRADA development process is also reported.

  13. Control of Computer Room Air Conditioning using IT Equipment Sensors

    SciTech Connect

    Bell, Geoffrey C.; Storey, Bill; Patterson, Michael K.

    2009-09-30

    The goal of this demonstration was to show how sensors in IT equipment could be accessed and used to directly control computer room air conditioning. The data provided from the sensors is available on the IT network and the challenge for this project was to connect this information to the computer room air handler's control system. A control strategy was developed to enable separate control of the chilled water flow and the fans in the computer room air handlers. By using these existing sensors in the IT equipment, an additional control system is eliminated (or could be redundant) and optimal cooling can be provided saving significant energy. Using onboard server temperature sensors will yield significant energy reductions in data centers. Intel hosted the demonstration in its Santa Clara, CA data center. Intel collaborated with IBM, HP, Emerson, Wunderlich-Malec Engineers, FieldServer Technologies, and LBNL to install the necessary components and develop the new control scheme. LBNL also validated the results of the demonstration.

  14. Solar Absorption Refrigeration System for Air-Conditioning of a Classroom Building in Northern India

    NASA Astrophysics Data System (ADS)

    Agrawal, Tanmay; Varun; Kumar, Anoop

    2015-10-01

    Air-conditioning is a basic tool to provide human thermal comfort in a building space. The primary aim of the present work is to design an air-conditioning system based on vapour absorption cycle that utilizes a renewable energy source for its operation. The building under consideration is a classroom of dimensions 18.5 m × 13 m × 4.5 m located in Hamirpur district of Himachal Pradesh in India. For this purpose, cooling load of the building was calculated first by using cooling load temperature difference method to estimate cooling capacity of the air-conditioning system. Coefficient of performance of the refrigeration system was computed for various values of strong and weak solution concentration. In this work, a solar collector is also designed to provide required amount of heat energy by the absorption system. This heat energy is taken from solar energy which makes this system eco-friendly and sustainable. A computer program was written in MATLAB to calculate the design parameters. Results were obtained for various values of solution concentrations throughout the year. Cost analysis has also been carried out to compare absorption refrigeration system with conventional vapour compression cycle based air-conditioners.

  15. True costs of air medical vs. ground ambulance systems.

    PubMed

    Bruhn, J D; Williams, K A; Aghababian, R

    1993-08-01

    The economic model created in this paper replaces the existing University of Massachusetts Medical Center's New England Life Flight (NELF) helicopter ambulance service with a ground ambulance system to investigate comparative costs. The model is based on a less than 30-minute response time to the patient, similar medical team staffing and equal service area. The annual budgetary cost of the replacement ground network is $3,804,000 while the helicopter ambulance costs are $1,686,500 (based on 1991 dollars). The cost per patient transported is $4,475 for the ground system and $2,811 for the helicopter system. The comparison finds that the commonly held notion that condemns helicopters as an excessively expensive technology for patient transport is incorrect. Future research to address intermediate alternatives using similar analytical technology assessment techniques is recommended. PMID:10127870

  16. On the impact of entrapped air in infiltration under ponding conditions. Part a: Preferential air flow path effects on infiltration

    NASA Astrophysics Data System (ADS)

    Mizrahi, Guy; Weisbrod, Noam; Furman, Alex

    2015-04-01

    Entrapped air effects on infiltration under ponding conditions could be important for massive infiltration of managed aquifer recharge (MAR) or soil aquifer treatment (SAT) of treated wastewater. Earlier studies found that under ponding conditions, air is being entrapped and compressed until it reaches a pressure which will enable the air to escape (unstable air flow). They also found that entrapped air could reduce infiltration by 70-90%. Most studies have dealt with entrapped air effects when soil surface topography is flat. The objective of this study is to investigate, under ponding conditions, the effects of: (1) irregular surface topography on preferential air flow path development (stable air flow); (2) preferential air flow path on infiltration; and (3) hydraulic head on infiltration when air is trapped. Column experiments were used to investigate these particular effects. A 140 cm deep and 30 cm wide column packed with silica sand was used under two boundary conditions: in the first, air can only escape vertically upward through the soil surface; in the second, air is free to escape through 20 ports installed along the column perimeter. The surface was flooded with 13 liters of water, with ponding depth decreasing with time. Two soil surface conditions were tested: flat surface and irregular surface (high and low surface zones). Additionally, Helle-show experiments were conducted in order to obtain a visual observation of preferential air flow path development. The measurements were carried out using a tension meter, air pressure transducers, TDR and video cameras. It was found that in irregular surfaces, stable air flow through preferential paths was developed in the high altitude zones. Flat surface topography caused unstable air flow through random paths. Comparison between irregular and flat surface topography showed that the entrapped air pressure was lower and the infiltration rate was about 40% higher in the irregular surface topography than in the

  17. Absorption and adsorption chillers applied to air conditioning systems

    NASA Astrophysics Data System (ADS)

    Kuczyńska, Agnieszka; Szaflik, Władysław

    2010-07-01

    This work presents an application possibility of sorption refrigerators driven by low temperature fluid for air conditioning of buildings. Thermodynamic models were formulated and absorption LiBr-water chiller with 10 kW cooling power as well as adsorption chiller with silica gel bed were investigated. Both of them are using water for desorption process with temperature Tdes = 80 °C. Coefficient of performance (COP) for both cooling cycles was analyzed in the same conditions of the driving heat source, cooling water Tc = 25 °C and temperature in evaporator Tevap = 5 °C. In this study, the computer software EES was used to investigate the performance of absorption heat pump system and its behaviour in configuration with geothermal heat source.

  18. Guidelines on Thermal Comfort of Air Conditioned Indoor Environment

    NASA Astrophysics Data System (ADS)

    Miura, Toyohiko

    The thermal comfort of air conditioned indoor environment for workers depended, of course, on metabolic rate of work, race, sex, age, clothing, climate of the district and state of acclimatization. The attention of the author was directed to the seasonal variation and the sexual difference of comfortable temperature and a survey through a year was conducted on the thermal comfort, and health conditions of workers engaged in light work in a precision machine factory, in some office workers. Besides, a series of experiments were conducted for purpose of determinning the optimum temperature of cooling in summer time in relation to the outdoor temperature. It seemed that many of workers at present would prefer somewhat higher temperature than those before the World War II. Forty years ago the average homes and offices were not so well heated as today, and clothing worn on the average was considerably heavier.

  19. Impact of air pollution control costs on the cost and spatial arrangement of cellulosic biofuel production in the U.S.

    PubMed

    Murphy, Colin W; Parker, Nathan C

    2014-02-18

    Air pollution emissions regulation can affect the location, size, and technology choice of potential biofuel production facilities. Difficulty in obtaining air pollutant emission permits and the cost of air pollution control devices have been cited by some fuel producers as barriers to development. This paper expands on the Geospatial Bioenergy Systems Model (GBSM) to evaluate the effect of air pollution control costs on the availability, cost, and distribution of U.S. biofuel production by subjecting potential facility locations within U.S. Clean Air Act nonattainment areas, which exceed thresholds for healthy air quality, to additional costs. This paper compares three scenarios: one with air quality costs included, one without air quality costs, and one in which conversion facilities were prohibited in Clean Air Act nonattainment areas. While air quality regulation may substantially affect local decisions regarding siting or technology choices, their effect on the system as a whole is small. Most biofuel facilities are expected to be sited near to feedstock supplies, which are seldom in nonattainment areas. The average cost per unit of produced energy is less than 1% higher in the scenarios with air quality compliance costs than in scenarios without such costs. When facility construction is prohibited in nonattainment areas, the costs increase by slightly over 1%, due to increases in the distance feedstock is transported to facilities in attainment areas. PMID:24467277

  20. Intrabronchial Valve Treatment for Prolonged Air Leak: Can We Justify the Cost?

    PubMed Central

    Podgaetz, Eitan; Zamora, Felix; Gibson, Heidi; Andrade, Rafael S.; Hall, Eric; Dincer, H. Erhan

    2016-01-01

    Background. Prolonged air leak is defined as an ongoing air leak for more than 5 days. Intrabronchial valve (IBV) treatment is approved for the treatment of air leaks. Objective. To analyze our experience with IBV and valuate its cost-effectiveness. Methods. Retrospective analysis of IBV from June 2013 to October 2014. We analyzed direct costs based on hospital and operating room charges. We used average costs in US dollars for the analysis not individual patient data. Results. We treated 13 patients (9 M/4 F), median age of 60 years (38 to 90). Median time from diagnosis to IBV placement was 9.8 days, time from IBV placement to chest tube removal was 3 days, and time from IBV placement to hospital discharge was 4 days. Average room and board costs were $14,605 including all levels of care. IBV cost is $2750 per valve. The average number of valves used was 4. Total cost of procedure, valves, and hospital stay until discharge was $13,900. Conclusion. In our limited experience, the use of IBV to treat prolonged air leaks is safe and appears cost-effective. In pure financial terms, the cost seems justified for any air leak predicted to last greater than 8 days. PMID:27445523

  1. Cost analysis of new and retrofit hot-air type solar assisted heating systems

    NASA Technical Reports Server (NTRS)

    Stewart, R. D.; Hawkins, B. J.

    1978-01-01

    A detailed cost analysis/cost improvement study was performed on two Department of Energy/National Aeronautics and Space Administration operational test sites to determine actual costs and potential cost improvements of new and retrofit hot air type, solar assisted heating and hot water systems for single family sized structures. This analysis concentrated on the first cost of a system which included procurement, installation, and integration of a solar assisted heating and hot water system on a new or retrofit basis; it also provided several cost projections which can be used as inputs to payback analyses, depending upon the degree of optimism or future improvements assumed. Cost definitions were developed for five categories of cost, and preliminary estimates were developed for each. The costing methodology, approach, and results together with several candidate low cost designs are described.

  2. Meteorology applied to urban air pollution problems: concepts from COST 715

    NASA Astrophysics Data System (ADS)

    Fisher, P.; Kukkonen, J.; Piringer, M.; Rotach, M. W.; Schatzmann, M.

    2005-08-01

    This selective review of the COST 715 considers simple descriptive concepts in urban meteorology with particular attention to air pollution assessment. It is shown that these are helpful for understanding the complex structure of the urban boundary layer, but that simple concepts only apply under a limited number of occasions. However such concepts are necessary for insight into how both simple and complex air pollution models perform. Wider considerations are needed when considering routine air quality assessments involving an air quality model's formulation and pedigree. It is argued that there is a reluctance from model developers to move away from familiar concepts of the atmospheric boundary layer even if they are not appropriate to urban areas. An example is given from COST 715 as to how routine urban meteorological measurements of wind speed may be used and adapted for air quality assessments. Reference to the full COST 715 study is made which provides further details.

  3. Upgrade of Compressed Air Control System Reduces Energy Costs at Michelin Tire Plant

    SciTech Connect

    2002-01-01

    This case study highlights the upgraded compressed air system at a Michelin tire manufacturing plant in Spartanburg, South Carolina. The controls upgrade project enabled multiple compressor operation without blow-off, and significantly reduced energy costs.

  4. NREL's Energy-Saving Technology for Air Conditioning Cuts Peak Power Loads Without Using Harmful Refrigerants (Fact Sheet)

    SciTech Connect

    Not Available

    2012-07-01

    This fact sheet describes how the DEVAP air conditioner was invented, explains how the technology works, and why it won an R&D 100 Award. Desiccant-enhanced evaporative (DEVAP) air-conditioning will provide superior comfort for commercial buildings in any climate at a small fraction of the electricity costs of conventional air-conditioning equipment, releasing far less carbon dioxide and cutting costly peak electrical demand by an estimated 80%. Air conditioning currently consumes about 15% of the electricity generated in the United States and is a major contributor to peak electrical demand on hot summer days, which can lead to escalating power costs, brownouts, and rolling blackouts. DEVAP employs an innovative combination of air-cooling technologies to reduce energy use by up to 81%. DEVAP also shifts most of the energy needs to thermal energy sources, reducing annual electricity use by up to 90%. In doing so, DEVAP is estimated to cut peak electrical demand by nearly 80% in all climates. Widespread use of this cooling cycle would dramatically cut peak electrical loads throughout the country, saving billions of dollars in investments and operating costs for our nation's electrical utilities. Water is already used as a refrigerant in evaporative coolers, a common and widely used energy-saving technology for arid regions. The technology cools incoming hot, dry air by evaporating water into it. The energy absorbed by the water as it evaporates, known as the latent heat of vaporization, cools the air while humidifying it. However, evaporative coolers only function when the air is dry, and they deliver humid air that can lower the comfort level for building occupants. And even many dry climates like Phoenix, Arizona, have a humid season when evaporative cooling won't work well. DEVAP extends the applicability of evaporative cooling by first using a liquid desiccant-a water-absorbing material-to dry the air. The dry air is then passed to an indirect evaporative

  5. Performance Evaluation of a Low-Cost, Real-Time Community Air Monitoring Station

    EPA Science Inventory

    The US EPA’s Village Green Project (VGP) is an example of using innovative technology to enable community-level low-cost real-time air pollution measurements. The VGP is an air monitoring system configured as a park bench located outside of a public library in Durham, NC. ...

  6. Community Air Sensor Network (CAIRSENSE) Project: Lower Cost, Continuous Ambient Monitoring Methods

    EPA Science Inventory

    Advances in air pollution sensor technology have enabled the development of small and low cost systems to measure outdoor air pollution. The deployment of numerous sensors across a small geographic area would have potential benefits to supplement existing monitoring networks and ...

  7. Measurements of surface air temperatures in Lombok with low cost miniature data loggers

    NASA Astrophysics Data System (ADS)

    Sudiarta, I. W.; Yadnya, M. S.; Mardiana, L.; Kuripan, I. N.

    2014-09-01

    The global warming and climate change are two of our major problems in this decade. Local impacts of global warming need to be investigated since it depends on local conditions. Understanding variability of local weather especially surface air temperature requires many observations, not only periodic but also covers large area. In this paper, we report our progress in developing low cost miniature data loggers for temperature measurements. The data loggers are based on microcontrollers ATMega8L and 10 kΩ thermistors. Calibration results in laboratory and in field have indicated that the temperature obtained by data loggers shows good agreement with thermometer readings. It is found that errors of temperature measurements are less than 0.3 °C. We have performed preliminary temperature measurements in Lombok Island using twenty data loggers for about one week duration. Temperature variation in Lombok shows localized temperature distribution that is affected by position and topography.

  8. An approach to monitoring HVAC (heating ventilating and air conditioning) technology developments in Japan

    SciTech Connect

    Lewis, P.M.; Ashton, W.B.; McDonald, S.C.

    1987-12-01

    This paper presents a discussion of methods for periodicaly monitoring Japanese advanced technology developments for equipment and components in the heating ventilating and air conditioning (HVAC) industry. The emphasis in the approach recommended is on evaluation of foreign literature - both technical and trade publications - because of both the increasing availability of these materials and the usefulness of information they present. Although not a comprehensive nor completely detailed source of information, HVAC technology literature is an important component of ''scanning the business/technical environmental'' for many purposes. Moreover, despite obstacles in obtaining and translating some important literature, useful knowledge can be obtained from many foreign literature sources for relatively modest costs.

  9. Low cost sensors for PM and related air pollutants in the US and India

    EPA Science Inventory

    Emerging air quality sensors have a variety of possible applications. If accurate and reliable, they have a number of benefits over conventional monitors. They are low-cost, lightweight, and have low power consumption. Because of their low cost, a dense array of sensors instal...

  10. COST ANALYSIS OF ACTIVATED CARBON VERSUS PHOTOCATALYTIC OXIDATION FOR REMOVING ORGANIC COMPOUNDS FROM INDOOR AIR

    EPA Science Inventory

    A cost comparison has been conducted of 1 m3/s indoor air cleaners using granular activated carbon (GAC) vs. photocatalytic oxidation (PCO) for treating a steady-state inlet volatile organic compound (VOC) concentration of 0.3 mg/m3. The commercial GAC unit was costed assuming t...

  11. The Oklahoma Field Test: Air-conditioning electricity savings from standard energy conservation measures, radiant barriers, and high-efficiency window air conditioners

    SciTech Connect

    Ternes, M.P.; Levins, W.P.

    1992-08-01

    A field test Involving 104 houses was performed in Tulsa, Oklahoma, to measure the air-conditioning electricity consumption of low-income houses equipped with window air conditioners, the reduction in this electricity consumption attributed to the installation of energy conservation measures (ECMS) as typically installed under the Oklahoma Weatherization Assistance Program (WAP), and the reduction achieved by the replacement of low-efficiency window air conditioners with high-efficiency units and the installation of attic radiant barriers. Air-conditioning electricity consumption and indoor temperature were monitored weekly during the pre-weatherization period (June to September 1988) and post-weatherization period (May to September 1989). House energy consumption models and regression analyses were used to normalize the air-conditioning electricity savings to average outdoor temperature conditions and the pre-weatherization indoor temperature of each house. The following conclusions were drawn from the study: (1) programs directed at reducing air-conditioning electricity consumption should be targeted at clients with high consumption to improve cost effectiveness; (2) replacing low-efficiency air conditioners with high-efficiency units should be considered an option in a weatherization program directed at reducing air-conditioning electricity consumption; (3) ECMs currently being installed under the Oklahoma WAP (chosen based on effectiveness at reducing space-heating energy consumption) should continue to be justified based on their space-heating energy savings potential only; and (4) attic radiant barriers should not be included in the Oklahoma WAP if alternatives with verified savings are available or until further testing demonstrates energy savings or other benefits in this typo of housing.

  12. 40 CFR 86.162-03 - Approval of alternative air conditioning test simulations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... alternative air conditioning test simulations. (a) Upon petition from a manufacturer or upon the Agency's own initiative, the Administrator will approve a simulation of the environmental cell for air conditioning test... the tailpipe emissions, air conditioning compressor load, and fuel economy. (2) For any...

  13. 24 CFR 3280.813 - Outdoor outlets, fixtures, air-conditioning equipment, etc.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Electrical Systems § 3280.813 Outdoor outlets, fixtures, air-conditioning equipment, etc. (a) Outdoor.../or air conditioning equipment located outside the manufactured home, shall have permanently affixed, adjacent to the outlet, a metal tag which reads: This Connection Is for Air Conditioning Equipment Rated...

  14. Prediction of Air Conditioning Load Response for Providing Spinning Reserve - ORNL Report

    SciTech Connect

    Kueck, John D; Kirby, Brendan J; Ally, Moonis Raza; Rice, C Keith

    2009-02-01

    This report assesses the use of air conditioning load for providing spinning reserve and discusses the barriers and opportunities. Air conditioning load is well suited for this service because it often increases during heavy load periods and can be curtailed for short periods with little impact to the customer. The report also provides an appendix describing the ambient temperature effect on air conditioning load.

  15. 14 CFR 203.5 - Compliance as condition on operations in air transportation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Compliance as condition on operations in... DEFENSES § 203.5 Compliance as condition on operations in air transportation. It shall be a condition on... 18900 as fully as if that air carrier or foreign air carrier had in fact filed a properly...

  16. 14 CFR 203.5 - Compliance as condition on operations in air transportation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Compliance as condition on operations in... DEFENSES § 203.5 Compliance as condition on operations in air transportation. It shall be a condition on... 18900 as fully as if that air carrier or foreign air carrier had in fact filed a properly...

  17. 14 CFR 203.5 - Compliance as condition on operations in air transportation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Compliance as condition on operations in... DEFENSES § 203.5 Compliance as condition on operations in air transportation. It shall be a condition on... 18900 as fully as if that air carrier or foreign air carrier had in fact filed a properly...

  18. 14 CFR 203.5 - Compliance as condition on operations in air transportation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Compliance as condition on operations in... DEFENSES § 203.5 Compliance as condition on operations in air transportation. It shall be a condition on... 18900 as fully as if that air carrier or foreign air carrier had in fact filed a properly...

  19. Estimation of economic costs of particulate air pollution from road transport in China

    NASA Astrophysics Data System (ADS)

    Guo, X. R.; Cheng, S. Y.; Chen, D. S.; Zhou, Y.; Wang, H. Y.

    2010-09-01

    Valuation of health effects of air pollution is becoming a critical component of the performance of cost-benefit analysis of pollution control measures, which provides a basis for setting priorities for action. Beijing has focused on control of transport emission as vehicular emissions have recently become an important source of air pollution, particularly during Olympic games and Post-games. In this paper, we conducted an estimation of health effects and economic cost caused by road transport-related air pollution using an integrated assessment approach which utilizes air quality model, engineering, epidemiology, and economics. The results show that the total economic cost of health impacts due to air pollution contributed from transport in Beijing during 2004-2008 was 272, 297, 310, 323, 298 million US (mean value), respectively. The economic costs of road transport accounted for 0.52, 0.57, 0.60, 0.62, and 0.58% of annual Beijing GDP from 2004 to 2008. Average cost per vehicle and per ton of PM 10 emission from road transport can also be estimated as 106 US /number and 3584 US $ t -1, respectively. These findings illustrate that the impact of road transport contributed particulate air pollution on human health could be substantial in Beijing, whether in physical and economic terms. Therefore, some control measures to reduce transport emissions could lead to considerable economic benefit.

  20. Arduino-based control system for measuring ammonia in air using conditionally-deployed diffusive samplers

    NASA Astrophysics Data System (ADS)

    Ham, J. M.; Williams, C.; Shonkwiler, K. B.

    2012-12-01

    Arduino microcontrollers, wireless modules, and other low-cost hardware were used to develop a new type of air sampler for monitoring ammonia at strong areal sources like dairies, cattle feedlots, and waste treatment facilities. Ammonia was sampled at multiple locations on the periphery of an operation using Radiello diffusive passive samplers (Cod. RAD168- and RAD1201-Sigma-Aldrich). However, the samplers were not continuously exposed to the air. Instead, each sampling station included two diffusive samplers housed in specialized tubes that sealed the cartridges from the atmosphere. If a user-defined set of wind and weather conditions were met, the Radiellos were deployed into the air using a micro linear actuator. Each station was solar-powered and controlled by Arduinos that were linked to a central weather station using Xbee wireless modules (Digi International Inc.). The Arduinos also measured the total time of exposure using hall-effect sensors to verify the position of the cartridge (i.e., deployed or retracted). The decision to expose or retract the samplers was made every five minutes based on wind direction, wind speed, and time of day. Typically, the diffusive samplers were replaced with fresh cartridges every two weeks and the used samplers were analyzed in the laboratory using ion chromatography. Initial studies were conducted at a commercial dairy in northern Colorado. Ammonia emissions along the Front Range of Colorado can be transported into the mountains where atmospheric deposition of nitrogen can impact alpine ecosystems. Therefore, low-cost air quality monitoring equipment is needed that can be widely deployed in the region. Initial work at the dairy showed that ammonia concentrations ranged between 600 to 1200 ppb during the summer; the highest concentrations were downwind of a large anaerobic lagoon. Time-averaged ammonia concentrations were also used to approximate emissions using inverse dispersion models. This methodology provides a

  1. Cascade Reverse Osmosis Air Conditioning System: Cascade Reverse Osmosis and the Absorption Osmosis Cycle

    SciTech Connect

    2010-09-01

    BEETIT Project: Battelle is developing a new air conditioning system that uses a cascade reverse osmosis (RO)-based absorption cycle. Analyses show that this new cycle can be as much as 60% more efficient than vapor compression, which is used in 90% of air conditioners. Traditional vapor-compression systems use polluting liquids for a cooling effect. Absorption cycles use benign refrigerants such as water, which is absorbed in a salt solution and pumped as liquid—replacing compression of vapor. The refrigerant is subsequently separated from absorbing salt using heat for re-use in the cooling cycle. Battelle is replacing thermal separation of refrigerant with a more efficient reverse osmosis process. Research has shown that the cycle is possible, but further investment will be needed to reduce the number of cascade reverse osmosis stages and therefore cost.

  2. Indoor air quality and energy performance of air-conditioned office buildings in Singapore.

    PubMed

    Sekhar, S C; Tham, K W; Cheong, K W

    2003-12-01

    An integrated indoor air quality (IAQ)-energy audit methodology has been developed in this study in Singapore, which provides a rigorous and systematic method of obtaining the status-quo assessment of an 'IAQ signature' in a building. The methodology entails a multi-disciplinary model in obtaining measured data pertaining to different dimensions within the built environment such as the physical, chemical, biological, ventilation, and occupant response characteristics. This paper describes the audit methodology and presents the findings from five air-conditioned office buildings in Singapore. The research has also led to the development of an indoor pollutant standard index (IPSI), which is discussed in this paper. Other performance indicators such as, the ventilation index and the energy index as well as the building symptom index (BSI) are also presented and discussed in the context of an integrated approach to IAQ and energy. Several correlation attempts were made on the various symptoms, indoor air acceptability, thermal comfort, BSI and IPSI, and while BSI values are found to correlate among them as well as with IAQ and THERMAL COMFORT acceptability, no such correlation was observed between BSI and IPSI. This would suggest that the occupants' perception of symptoms experienced as well as environmental acceptability is quite distinct from IAQ acceptability determined from empirical measurements of indoor pollutants, which reinforces the complex nature of IAQ issues. PMID:14636226

  3. Understanding the Dehumidification Performance of Air-Conditioning Equipment at Part-Load Conditions

    SciTech Connect

    Don B. Shirey III; Hugh I. Henderson Jr; Richard A. Raustad

    2006-01-01

    Air conditioner cooling coils typically provide both sensible cooling and moisture removal. Data from a limited number of field studies (Khattar et al. 1985; Henderson and Rengarajan 1996; Henderson 1998) have demonstrated that the moisture removal capacity of a cooling coil degrades at part-load conditions--especially when the supply fan operates continuously while the cooling coil cycles on and off. Degradation occurs because moisture that condenses on the coil surfaces during the cooling cycle evaporates back into air stream when the coil is off. This degradation affects the ability of cooling equipment to maintain proper indoor humidity levels and may negatively impact indoor air quality. This report summarizes the results of a comprehensive project to better understand and quantify the moisture removal (dehumidification) performance of cooling coils at part-load conditions. A review of the open literature was initially conducted to learn from previous research on this topic. Detailed performance measurements were then collected for eight cooling coils in a controlled laboratory setting to understand the impact of coil geometry and operating conditions on transient moisture condensation and evaporation by the coils. Measurements of cooling coil dehumidification performance and space humidity levels were also collected at seven field test sites. Finally, an existing engineering model to predict dehumidification performance degradation for single-stage cooling equipment at part-load conditions (Henderson and Rengarajan 1996) was enhanced to include a broader range of fan control strategies and an improved theoretical basis for modeling off-cycle moisture evaporation from cooling coils. The improved model was validated with the laboratory measurements, and this report provides guidance for users regarding proper model inputs. The model is suitable for use in computerized calculation procedures such as hourly or sub-hourly building energy simulation programs (e

  4. Cooling System Using Natural Circulation for Air Conditioning

    NASA Astrophysics Data System (ADS)

    Okazaki, Takashi; Seshimo, Yu

    In this paper, Cooling systems with natural circulation loop of refrigerants are reviewed. The cooling system can largely reduce energy consumption of a cooling system for the telecommunication base site. The cooling system consists of two refrigeration units; vapor compression refrigeration unit and sub-cooling unit with a natural-circulation loop. The experiments and calculations were carried out to evaluate the cycle performance of natural circulation loop with HFCs and CO2. The experimental results showed that the cooling capacity of R410A is approximately 30% larger than that of R407C at the temperature difference of 20K and the cooling capacity of CO2 was approximately 4-13% larger than that of R410A under the two-phase condition. On the other hand, the cooling capacity of CO2 was approximately 11% smaller than that of R410A under the supercritical condition. The cooling capacity took a maximum value at an amount of refrigerant and lineally increased as the temperature difference increases and the slightly increased as the height difference. The air intake temperature profile in the inlet of the heat exchangers makes the reverse circulation under the supercritical state and the driving head difference for the reverse circulation depends on the density change to temperature under the supercritical state. Also, a new fan control method to convert the reverse circulation into the normal circulation was reviewed.

  5. Energy Savings and Economics of Advanced Control Strategies for Packaged Air-Conditioning Units with Gas Heat

    SciTech Connect

    Wang, Weimin; Katipamula, Srinivas; Huang, Yunzhi; Brambley, Michael R.

    2011-12-31

    Pacific Northwest National Laboratory (PNNL) with funding from the U.S. Department of Energy's Building Technologies Program (BTP) evaluated a number of control strategies that can be implemented in a controller, to improve the operational efficiency of the packaged air conditioning units. The two primary objectives of this research project are: (1) determine the magnitude of energy savings achievable by retrofitting existing packaged air conditioning units with advanced control strategies not ordinarily used for packaged units and (2) estimating what the installed cost of a replacement control with the desired features should be in various regions of the U.S. This document reports results of the study.

  6. On the impact of entrapped air in infiltration under ponding conditions: Part a: Preferential air flow path effects on infiltration

    NASA Astrophysics Data System (ADS)

    Weisbord, N.; Mizrahi, G.; Furman, A.

    2015-12-01

    Entrapped air effects on infiltration under ponding conditions could be important for massive infiltration of managed aquifer recharge or soil aquifer treatment. Earlier studies found that under ponding conditions air could reduce infiltration by 70-90%. Most studies have dealt with entrapped air effects when soil surface topography is flat. The objective of this study is to investigate the effects of: (1) irregular surface topography on preferential air flow path development; (2) preferential air flow path on infiltration; and (3) hydraulic head on infiltration when air is trapped. Column experiments were used to investigate these particular effects. A 140 cm deep and 30 cm wide column packed with silica sand was used under two boundary conditions: in the first, air can only escape vertically upward through the soil surface; in the second, air is free to escape. The surface was flooded with 13 liters of water, with ponding depth decreasing with time. Two soil surface conditions were tested: flat surface and irregular. It was found that in irregular surfaces, stable air flow through preferential paths was developed in the high altitude zones. Flat surface topography caused unstable air flow through random paths. Comparison between irregular and flat surface topography showed that the entrapped air pressure was lower and the infiltration rate was about 40% higher in the irregular surface topography than in the flat surface topography. No difference of infiltration rate between flat and irregular surface topography was observed when air was free to escape along the infiltration path. It was also found that at the first stage of infiltration, higher hydraulic heads caused higher entrapped air pressures and lower infiltration rates. In contrast, higher hydraulic head results in higher infiltration rate, when air was free to escape. Our results suggest that during ponding conditions: (1) preferential air flow paths develop at high surface zones of irregular topography

  7. Field Demonstration of a High-Efficiency Packaged Rooftop Air Conditioning Unit at Fort Gordon, Augusta, GA

    SciTech Connect

    Armstrong, Peter R.; Sullivan, Gregory P.; Parker, Graham B.

    2006-03-31

    As part of a larger program targeting the market transformation of packaged rooftop air conditioning, five high-efficiency rooftop air conditioning products were selected in 2002 by the U.S. Department of Energy (DOE) under the Unitary Air Conditioner (UAC) Technology Procurement (http://www.pnl.gov/uac). In February 2003, Fort Gordon in Augusta, Georgia was chosen as the demonstration site. With the goal of validating the field performance and operation of one of the awarded products, a 10-ton high-efficiency packaged rooftop unit (RTU) manufactured by Global Energy Group (GEG) was installed at Fort Gordon in October 2003. Following equipment installation, power metering, air- and refrigerant-side instrumentation was installed on the GEG RTU and a 4-year old typical-efficiency 20-ton RTU manufactured by AAON . The GEG and AAON units were instrumented identically and operated May through July, 2005, to observe performance under a range of conditions. Based on the data collected as part of this demonstration, the GEG equipment performed at least 8% better in stage-1 (single compressor running) cooling and at least 16% better in stage-2 (both compressors running) than the baseline AAON equipment. Performance comparisons are based on what we call application EER normalized to equivalent specific fan power. The full-load, specific-fan-power-normalized application EERs at ARI design conditions were 10.48 Btu/Wh for the GEG and 9.00 Btu/Wh for the baseline machine. With a cost premium of nearly 50%, and slightly higher maintenance costs, the life-cycle cost analysis shows that the GEG technology pays for itself--a positive net-present value (NPV)--only in climates and buildings with long cooling seasons. Manufacture of this equipment on a larger scale can be expected to reduce costs to the point where it is more broadly cost-effective. The assumed 10-ton baseline and new-technology unit costs are $3824.00 and $5525.00 respectively. If the new technology cost is assumed

  8. Liquid Desiccant in Air Conditioners: Nano-Engineered Porous Hollow Fiber Membrane-Based Air Conditioning System

    SciTech Connect

    2010-09-02

    BEETIT Project: UTRC is developing an air conditioning system that is optimized for use in warm and humid climates. UTRC’s air conditioning system integrates a liquid drying agent or desiccant and a traditional vapor compression system found in 90% of air conditioners. The drying agent reduces the humidity in the air before it is cooled, using less energy. The technology uses a membrane as a barrier between the air and the liquid salt stream allowing only water vapor to pass through and not the salt molecules. This solves an inherent problem with traditional liquid desiccant systems—carryover of the liquid drying agent into the conditioned air stream—which eliminates corrosion and health issues

  9. Validation of two air quality models for Indian mining conditions.

    PubMed

    Chaulya, S K; Ahmad, M; Singh, R S; Bandopadhyay, L K; Bondyopadhay, C; Mondal, G C

    2003-02-01

    All major mining activity particularly opencast mining contributes to the problem of suspended particulate matter (SPM) directly or indirectly. Therefore, assessment and prediction are required to prevent and minimize the deterioration of SPM due to various opencast mining operations. Determination of emission rate of SPM for these activities and validation of air quality models are the first and foremost concern. In view of the above, the study was taken up for determination of emission rate for SPM to calculate emission rate of various opencast mining activities and validation of commonly used two air quality models for Indian mining conditions. To achieve the objectives, eight coal and three iron ore mining sites were selected to generate site specific emission data by considering type of mining, method of working, geographical location, accessibility and above all resource availability. The study covers various mining activities and locations including drilling, overburden loading and unloading, coal/mineral loading and unloading, coal handling or screening plant, exposed overburden dump, stock yard, workshop, exposed pit surface, transport road and haul road. Validation of the study was carried out through Fugitive Dust Model (FDM) and Point, Area and Line sources model (PAL2) by assigning the measured emission rate for each mining activity, meteorological data and other details of the respective mine as an input to the models. Both the models were run separately for the same set of input data for each mine to get the predicted SPM concentration at three receptor locations for each mine. The receptor locations were selected such a way that at the same places the actual filed measurement were carried out for SPM concentration. Statistical analysis was carried out to assess the performance of the models based on a set measured and predicted SPM concentration data. The value of coefficient of correlation for PAL2 and FDM was calculated to be 0.990-0.994 and 0

  10. Use of Air Modeling to Reduce Facility Demolition Costs

    SciTech Connect

    Smith, Dennis; Sanford, Peter; Parsons, Duane A.

    2003-02-26

    DOE faces the problem of decommissioning facilities contaminated with plutonium, uranium, and beryllium. The standard process has been to remove the contaminated process equipment from a facility, and then decontaminate the residual radiological and hazardous contamination from the facility structure to an ''unconditional release'' level. The facility would then be taken down as a clean demolition. Several beryllium-contaminated facilities were identified that will be particularly difficult to decontaminate to these release levels. A number of alternative decommissioning approaches were investigated that would require less decontamination, and thus reduced cost and schedule. Initial alternative approaches proposed erection of barriers (i.e. building-size tent structures with ventilation controls) to minimize the release of contamination to the environment. More recently we have investigated methods to control contamination at the structure surfaces before and during demolition, and model the risk posed to the workers, public, and the environment by the small residual material actually dispersed. This approach promises to minimize decontamination by removing only the highest contamination levels, and eliminates the need for erecting large contamination control structures along with the attendant ventilation equipment and administrative controls. The modeling has demonstrated the regulatory acceptability of this approach, and the approach is ready to be discussed with the regulators and the public.

  11. 32 CFR 809a.9 - Conditions for use of Air Force resources.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 6 2014-07-01 2014-07-01 false Conditions for use of Air Force resources. 809a.9 Section 809a.9 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE... Disturbance Intervention and Disaster Assistance § 809a.9 Conditions for use of Air Force resources. This...

  12. 32 CFR 809a.9 - Conditions for use of Air Force resources.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 6 2012-07-01 2012-07-01 false Conditions for use of Air Force resources. 809a.9 Section 809a.9 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE... Disturbance Intervention and Disaster Assistance § 809a.9 Conditions for use of Air Force resources. This...

  13. 32 CFR 809a.9 - Conditions for use of Air Force resources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Conditions for use of Air Force resources. 809a.9 Section 809a.9 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE... Disturbance Intervention and Disaster Assistance § 809a.9 Conditions for use of Air Force resources. This...

  14. 32 CFR 809a.9 - Conditions for use of Air Force resources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 6 2011-07-01 2011-07-01 false Conditions for use of Air Force resources. 809a.9 Section 809a.9 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE... Disturbance Intervention and Disaster Assistance § 809a.9 Conditions for use of Air Force resources. This...

  15. 32 CFR 809a.9 - Conditions for use of Air Force resources.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 6 2013-07-01 2013-07-01 false Conditions for use of Air Force resources. 809a.9 Section 809a.9 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE... Disturbance Intervention and Disaster Assistance § 809a.9 Conditions for use of Air Force resources. This...

  16. Assessing summertime urban air conditioning consumption in a semiarid environment

    NASA Astrophysics Data System (ADS)

    Salamanca, F.; Georgescu, M.; Mahalov, A.; Moustaoui, M.; Wang, M.; Svoma, B. M.

    2013-09-01

    Evaluation of built environment energy demand is necessary in light of global projections of urban expansion. Of particular concern are rapidly expanding urban areas in environments where consumption requirements for cooling are excessive. Here, we simulate urban air conditioning (AC) electric consumption for several extreme heat events during summertime over a semiarid metropolitan area with the Weather Research and Forecasting (WRF) model coupled to a multilayer building energy scheme. Observed total load values obtained from an electric utility company were split into two parts, one linked to meteorology (i.e., AC consumption) which was compared to WRF simulations, and another to human behavior. WRF-simulated non-dimensional AC consumption profiles compared favorably to diurnal observations in terms of both amplitude and timing. The hourly ratio of AC to total electricity consumption accounted for ˜53% of diurnally averaged total electric demand, ranging from ˜35% during early morning to ˜65% during evening hours. Our work highlights the importance of modeling AC electricity consumption and its role for the sustainable planning of future urban energy needs. Finally, the methodology presented in this article establishes a new energy consumption-modeling framework that can be applied to any urban environment where the use of AC systems is prevalent.

  17. Fuel-Free Compressed-Air Energy Storage: Fuel-Free, Ubiquitous Compressed-Air Energy Storage and Power Conditioning

    SciTech Connect

    2010-09-13

    GRIDS Project: General Compression has developed a transformative, near-isothermal compressed air energy storage system (GCAES) that prevents air from heating up during compression and cooling down during expansion. When integrated with renewable generation, such as a wind farm, intermittent energy can be stored in compressed air in salt caverns or pressurized tanks. When electricity is needed, the process is reversed and the compressed air is expanded to produce electricity. Unlike conventional compressed air energy storage (CAES) projects, no gas is burned to convert the stored high-pressure air back into electricity. The result of this breakthrough is an ultra-efficient, fully shapeable, 100% renewable and carbon-free power product. The GCAES™ system can provide high quality electricity and ancillary services by effectively integrating renewables onto the grid at a cost that is competitive with gas, coal and nuclear generation.

  18. Cost and energy consumption estimates for the aluminum-air battery anode fuel cycle

    NASA Astrophysics Data System (ADS)

    1990-01-01

    At the request of DOE's Office of Energy Storage and Distribution (OESD), Pacific Northwest Laboratory (PNL) conducted a study to generate estimates of the energy use and costs associated with the aluminum anode fuel cycle of the aluminum-air (Al-air) battery. The results of this analysis indicate that the cost and energy consumption characteristics of the mechanically rechargeable Al-air battery system are not as attractive as some other electrically rechargeable electric vehicle battery systems being developed by OESD. However, there are distinct advantages to mechanically rechargeable batteries, which may make the Al-air battery (or other mechanically rechargeable batteries) attractive for other uses, such as stand-alone applications. Fuel cells, such as the proton exchange membrane (PEM), and advanced secondary batteries may be better suited to electric vehicle applications.

  19. Cost and energy consumption estimates for the aluminum-air battery anode fuel cycle

    SciTech Connect

    Humphreys, K.K.; Brown, D.R.

    1990-01-01

    At the request of DOE's Office of Energy Storage and Distribution (OESD), Pacific Northwest Laboratory (PNL) conducted a study to generate estimates of the energy use and costs associated with the aluminum anode fuel cycle of the aluminum-air (Al-air) battery. The results of this analysis indicate that the cost and energy consumption characteristics of the mechanically rechargeable Al-air battery system are not as attractive as some other electrically rechargeable electric vehicle battery systems being developed by OESD. However, there are distinct advantages to mechanically rechargeable batteries, which may make the Al-air battery (or other mechanically rechargeable batteries) attractive for other uses, such as stand-alone applications. Fuel cells, such as the proton exchange membrane (PEM), and advanced secondary batteries may be better suited to electric vehicle applications. 26 refs., 3 figs., 25 tabs.

  20. Study on the Efficient Drive of a Desiccant Air Conditioning System

    NASA Astrophysics Data System (ADS)

    Jeong, Jong-Soo; Saito, Kiyoshi; Kawai, Sunao

    This paper constructs the static simulation model of a desiccant air conditioning system and gives the guidelines for the efficient drive of the desiccant air conditioning system. The desiccant air conditioning system is composed of a desiccant wheel, a heat exchanger, two evaporative coolers and a heater. The process air and regeneration air are supplied to this system. The desiccant is Silica gel. In the simulation model, two-dimensional model in space is adopted for the desiccant wheel. As the simulation result, it is clarified that optimum outlet temperature of the regeneration air in the heater, rotational speed of the desiccant wheel, the rejected air flow rate of the regeneration air, the process and regeneration air flow rate that maximize COP exist. For example, in case that the regeneration temperature is 63°C and relative humidity is 55% maximum COP is about 0.62.

  1. Multivariate analysis comparing microbial air content of an air-conditioned building and a naturally ventilated building over one year

    NASA Astrophysics Data System (ADS)

    Parat, Sylvie; Perdrix, Alain; Fricker-Hidalgo, Hélène; Saude, Isabelle; Grillot, Renee; Baconnier, Pierre

    Heating, ventilation and air-conditioning (HVAC) may be responsible for the production and spread of airborne microorganisms in office buildings. In order to compare airborne microbiological flora in an air-conditioned building with that in a naturally ventilated building, eight sets of measurements were made over a 1-year period. Concurrently with other environmental measurements, air samples were collected in each building, from three offices and from the outdoor air, using the Andersen single-stage sampler. Three different media were used to culture fungi, staphylococci and mesophilic bacteria. Multivariate analysis revealed a group of offices more contaminated than others, and a marked seasonal variation in fungal concentrations. A comparison of mean levels of microorganisms measured in the two buildings showed that the air microbial content was significantly higher and more variable in the naturally ventilated building than in the air-conditioned building. Moreover, in the naturally ventilated building, the interior fungal content was strongly dependent on the outdoor content, while in the air-conditioned building fungal concentrations remained constant despite significant variations measured outside. This was confirmed by a statistical comparison of the correlation coefficients between indoor and outdoor concentrations. No difference was observed regarding gaseous pollutants and temperature, but relative humidity was significantly higher in the air-conditioned building. The effect of HVAC was to prevent the intake of outdoor particles and to dilute the indoor concentrations. These results are consistent with the presence of high-efficiency filters and a steam humidifier in the HVAC system under study.

  2. Performance and evaluation of gas-engine-driven rooftop air conditioning equipment at the Willow Grove Naval Air Station. Final report (revised October 21, 1996)

    SciTech Connect

    Armstrong, P.R.; Katipamula, S.

    1996-10-01

    The performance was evaluated of a new US cooling technology that has been installed for the first time at a federal facility. The technology is a 15-ton natural gas-engine-driven rooftop air conditioning unit made by Thermo King. Two units were installed to serve the Navy Exchange at Willow Grove. The savings potential at Willow Grove is described and that in the federal sector estimated. Conditions for implementation are discussed. In summary, the new technology is generally cost-effective at sites where marginal electricity cost (per MBtu at the meter) is more than 4 times the marginal gas cost (per MBtu at the meter) and annual full-load-equivalent cooling hours exceed 2,000.

  3. Effectiveness and humidification capacity investigation of liquid-to-air membrane energy exchanger under low heat capacity ratios at winter air conditions

    NASA Astrophysics Data System (ADS)

    Kassai, Miklos

    2015-06-01

    In this research, a novel small-scale single-panel liquid-to-air membrane energy exchanger has been used to numerically investigate the effect of given number of heat transfer units (4.5), different cold inlet air temperature (1.7, 5.0, 10.0 °C) and different low heat capacity ratio (0.4, 0.5, 0.6, 0.7, 0.8, 0.9) on the steady-state performance of the energy exchanger. This small-scale energy exchanger represents the full-scale prototypes well, saving manufacturing costs and time. Lithium chloride is used as a salt solution in the system and the steady-state total effectiveness of the exchanger is evaluated for winter inlet air conditions. The results show that total effectiveness of the energy exchanger decreases with heat capacity ratio in the mentioned range. Maximum numerical total effectiveness of 97% is achieved for the energy exchanger. Increasing the heat capacity ratio values on given inlet air temperature, the humidification capacity of energy exhanger is also investigated in this paper. The humidification performance increases with heat capacity ratio. The highest humidification performance (4.53 g/kg) can be reached when inlet air temperature is 1.7 °C, and heat capacity ratio is 1.0 in winter inlet air conditions in the range of low heat capacity ratio.

  4. Low cost stable air electrode material for high temperature solid oxide electrolyte electrochemical cells

    DOEpatents

    Kuo, L.J.H.; Singh, P.; Ruka, R.J.; Vasilow, T.R.; Bratton, R.J.

    1997-11-11

    A low cost, lanthanide-substituted, dimensionally and thermally stable, gas permeable, electrically conductive, porous ceramic air electrode composition of lanthanide-substituted doped lanthanum manganite is provided which is used as the cathode in high temperature, solid oxide electrolyte fuel cells and generators. The air electrode composition of this invention has a much lower fabrication cost as a result of using a lower cost lanthanide mixture, either a natural mixture or an unfinished lanthanide concentrate obtained from a natural mixture subjected to incomplete purification, as the raw material in place of part or all of the higher cost individual lanthanum. The mixed lanthanide primarily contains a mixture of at least La, Ce, Pr, and Nd, or at least La, Ce, Pr, Nd and Sm in its lanthanide content, but can also include minor amounts of other lanthanides and trace impurities. The use of lanthanides in place of some or all of the lanthanum also increases the dimensional stability of the air electrode. This low cost air electrode can be fabricated as a cathode for use in high temperature, solid oxide fuel cells and generators. 4 figs.

  5. Low cost stable air electrode material for high temperature solid oxide electrolyte electrochemical cells

    DOEpatents

    Kuo, Lewis J. H.; Singh, Prabhakar; Ruka, Roswell J.; Vasilow, Theodore R.; Bratton, Raymond J.

    1997-01-01

    A low cost, lanthanide-substituted, dimensionally and thermally stable, gas permeable, electrically conductive, porous ceramic air electrode composition of lanthanide-substituted doped lanthanum manganite is provided which is used as the cathode in high temperature, solid oxide electrolyte fuel cells and generators. The air electrode composition of this invention has a much lower fabrication cost as a result of using a lower cost lanthanide mixture, either a natural mixture or an unfinished lanthanide concentrate obtained from a natural mixture subjected to incomplete purification, as the raw material in place of part or all of the higher cost individual lanthanum. The mixed lanthanide primarily contains a mixture of at least La, Ce, Pr, and Nd, or at least La, Ce, Pr, Nd and Sm in its lanthanide content, but can also include minor amounts of other lanthanides and trace impurities. The use of lanthanides in place of some or all of the lanthanum also increases the dimensional stability of the air electrode. This low cost air electrode can be fabricated as a cathode for use in high temperature, solid oxide fuel cells and generators.

  6. Allergies to molds caused by fungal spores in air conditioning equipment

    SciTech Connect

    Schata, M.; Jorde, W. ); Elixmann, J.H.; Linskens, H.F. )

    1989-01-01

    People suffering from various symptoms while in air-conditioned rooms often show sensitizations to fungi that can be isolated when the fungi are removed from air conditioners. By using specific challenge tests it was shown that fungal spores in air conditioners can evoke allergic symptoms. Hyposensitization was the specific therapy prescribed for such allergic reactions. After hyposensitization therapy, more than 70% of the patients so treated could live and work again in air-conditioned rooms without developing specific symptoms.

  7. Improving air pollution control policy in China--A perspective based on cost-benefit analysis.

    PubMed

    Gao, Jinglei; Yuan, Zengwei; Liu, Xuewei; Xia, Xiaoming; Huang, Xianjin; Dong, Zhanfeng

    2016-02-01

    To mitigate serious air pollution, the State Council of China promulgated the Air Pollution Prevention and Control Action Plan in 2013. To verify the feasibility and validity of industrial energy-saving and emission-reduction policies in the action plan, we conducted a cost-benefit analysis of implementing these policies in 31 provinces for the period of 2013 to 2017. We also completed a scenario analysis in this study to assess the cost-effectiveness of different measures within the energy-saving and the emission-reduction policies individually. The data were derived from field surveys, statistical yearbooks, government documents, and published literatures. The results show that total cost and total benefit are 118.39 and 748.15 billion Yuan, respectively, and the estimated benefit-cost ratio is 6.32 in the S3 scenario. For all the scenarios, these policies are cost-effective and the eastern region has higher satisfactory values. Furthermore, the end-of-pipe scenario has greater emission reduction potential than energy-saving scenario. We also found that gross domestic product and population are significantly correlated with the benefit-cost ratio value through the regression analysis of selected possible influencing factors. The sensitivity analysis demonstrates that benefit-cost ratio value is more sensitive to unit emission-reduction cost, unit subsidy, growth rate of gross domestic product, and discount rate among all the parameters. Compared with other provinces, the benefit-cost ratios of Beijing and Tianjin are more sensitive to changes of unit subsidy than unit emission-reduction cost. These findings may have significant implications for improving China's air pollution prevention policy. PMID:26595398

  8. Apparatus for supplying conditioned air at a substantially constant temperature and humidity

    NASA Technical Reports Server (NTRS)

    Obler, H. D. (Inventor)

    1980-01-01

    The apparatus includes a supply duct coupled to a source of supply air for carrying the supply air therethrough. A return duct is coupled to the supply duct for carrying return conditioned air therethrough. A temperature reducing device is coupled to the supply duct for decreasing the temperature of the supply and return conditioned air. A by-pass duct is coupled to the supply duct for selectively directing portions of the supply and return conditioned air around the temperature reducing device. Another by-pass duct is coupled to the return duct for selectively directing portions of the return conditioned air around the supply duct and the temperature reduction device. Controller devices selectively control the flow and amount of mixing of the supply and return conditioned air.

  9. Reducing the cost of Ca-based direct air capture of CO2.

    PubMed

    Zeman, Frank

    2014-10-01

    Direct air capture, the chemical removal of CO2 directly from the atmosphere, may play a role in mitigating future climate risk or form the basis of a sustainable transportation infrastructure. The current discussion is centered on the estimated cost of the technology and its link to "overshoot" trajectories, where atmospheric CO2 levels are actively reduced later in the century. The American Physical Society (APS) published a report, later updated, estimating the cost of a one million tonne CO2 per year air capture facility constructed today that highlights several fundamental concepts of chemical air capture. These fundamentals are viewed through the lens of a chemical process that cycles between removing CO2 from the air and releasing the absorbed CO2 in concentrated form. This work builds on the APS report to investigate the effect of modifications to the air capture system based on suggestions in the report and subsequent publications. The work shows that reduced carbon electricity and plastic packing materials (for the contactor) may have significant effects on the overall price, reducing the APS estimate from $610 to $309/tCO2 avoided. Such a reduction does not challenge postcombustion capture from point sources, estimated at $80/tCO2, but does make air capture a feasible alternative for the transportation sector and a potential negative emissions technology. Furthermore, air capture represents atmospheric reductions rather than simply avoided emissions. PMID:25207956

  10. Proposal for a Vehicle Level Test Procedure to Measure Air Conditioning Fuel Use

    SciTech Connect

    Rugh, J. P.

    2010-04-01

    The air-conditioning (A/C) compressor load significantly impacts the fuel economy of conventional vehicles and the fuel use/range of plug-in hybrid electric vehicles (PHEV). A National Renewable Energy Laboratory (NREL) vehicle performance analysis shows the operation of the air conditioner reduces the charge depletion range of a 40-mile range PHEV from 18% to 30% in a worst case hot environment. Designing for air conditioning electrical loads impacts PHEV and electric vehicle (EV) energy storage system size and cost. While automobile manufacturers have climate control procedures to assess A/C performance, and the U.S. EPA has the SCO3 drive cycle to measure indirect A/C emissions, there is no automotive industry consensus on a vehicle level A/C fuel use test procedure. With increasing attention on A/C fuel use due to increased regulatory activities and the development of PHEVs and EVs, a test procedure is needed to accurately assess the impact of climate control loads. A vehicle thermal soak period is recommended, with solar lamps that meet the SCO3 requirements or an alternative heating method such as portable electric heaters. After soaking, the vehicle is operated over repeated drive cycles or at a constant speed until steady-state cabin air temperature is attained. With this method, the cooldown and steady-state A/C fuel use are measured. This method can be run at either different ambient temperatures to provide data for the GREEN-MAC-LCCP model temperature bins or at a single representative ambient temperature. Vehicles with automatic climate systems are allowed to control as designed, while vehicles with manual climate systems are adjusted to approximate expected climate control settings. An A/C off test is also run for all drive profiles. This procedure measures approximate real-world A/C fuel use and assess the impact of thermal load reduction strategies.

  11. A Low Cost High Density Sensor Network for Air Quality at London Heathrow Airport

    NASA Astrophysics Data System (ADS)

    Bright, V.; Mead, M. I.; Popoola, O. A.; Baron, R. P.; Saffell, J.; Stewart, G.; Kaye, P.; Jones, R.

    2012-12-01

    Atmospheric composition within urban areas has a direct effect on the air quality of an environment in which a large majority of people live and work. Atmospheric pollutants including ozone (O3), nitrogen dioxide (NO2), volatile organic compounds (VOCs) and particulate matter (PM) can have a significant effect on human health. As such it is important to determine the potential exposure of individuals to these atmospheric constituents and investigate the processes that lead to the degradation of air quality within the urban environment. Whilst modelled pollutant levels on the local scale often suggest high degrees of spatial and temporal variability, the relatively sparse fixed site automated urban networks only provide low spatial resolution data that do not appear adequate in detecting such small scale variability. In this paper we demonstrate that measurements can now be made using networks of low-cost sensors that utilise a variety of techniques, including electrochemical and optical, to measure concentrations of atmospheric species. Once equipped with GPS and GPRS to determine position and transmit data respectively, these networks have the potential to provide valuable insights into pollutant variability inherent on the local or micro-scale. The methodology has been demonstrated successfully in field campaigns carried out in cities including London and Valencia, and is now being deployed as part of the Sensor Networks for Air Quality currently deployed at London Heathrow airport (SNAQ-Heathrow) which is outlined in the partner paper presented by Mead et al. (this conference). The SNAQ-Heathrow network of 50 sensor nodes will provide an unprecedented data set that includes measurements of O3, NO, NO2, CO, CO2, SO2, total VOCs, size-speciated PM as well as meteorological variables that include temperature, relative humidity, wind speed and direction. This network will provide high temporal (20 second intervals) and spatial (50 sites within the airport area

  12. Portable and low-cost sensors in monitoring air qualities in China

    NASA Astrophysics Data System (ADS)

    Ouyang, Bin; Popoola, Lekan; Jones, Roderic; Li, Chunlin; Chen, Jianmin

    2016-04-01

    The fast dynamics and the associated high spatial variability of the atmosphere calls for monitoring techniques that are robust, portable, low-power and ideally cheap (which thus allows for easy deployment and little maintenance needs over long measurement period), yet still offering sufficient sensitivity for measuring typical air pollutants at their ambient levels. We have over years developed a measuring suite (SNAQ box, Sensor Network for Air Quality), which weighs ~2.5 kg and has dimension of 30 cm (L)*20 cm (W)* 15 cm (H), and is capable of measuring wind speed and direction, relative humidity, gas species CO, NO, NO2, O3, SO2 (all based on electrochemical sensors), CO2 (based on NDIR, non-dispersive infrared) and total VOCs (based on PID, photoionization detector), and size-speciated particles (based on optical counting method with cut-off in size at 0.34 microns). Two of these boxes have been deployed in China during the 2015 Yangtze River campaign led by Fudan University, China during 22nd/Nov and 05th/Dec. One of the two boxes was mounted on a monitoring ship that sailed along the river aiming at capturing primarily emissions from ships, and the other was carried by a van that drove on roads but followed the track of the ship during the same period. Preliminary analysis of the data revealed that measurements were successful on both platforms for most of the targeted species with essentially no need of personnel interference during the entire campaign. Emission ratio of CO against NOx, or that of CO/NOx against CO2, for different dominating emission sources (vehicles vs. ships), can be readily quantified. Ongoing analysis includes correlating the measured pollution levels with different source profiles as well as meteorology conditions and understanding the background aerosol size profiles. We conclude that this technique provides a viable solution not only for routine point measurements of air quality in China, but also as construction unit for building

  13. 40 CFR 86.162-03 - Approval of alternative air conditioning test simulations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... conditioning test simulations. 86.162-03 Section 86.162-03 Protection of Environment ENVIRONMENTAL PROTECTION... alternative air conditioning test simulations. (a) Upon petition from a manufacturer or upon the Agency's own initiative, the Administrator will approve a simulation of the environmental cell for air conditioning...

  14. COMPOSITION CHANGES IN REFRIGERANT BLENDS FOR AUTOMOTIVE AIR CONDITIONING

    EPA Science Inventory

    Three refrigerant blends used to replace CFC-12 in automotive air conditioners were evaluated for composition changes due to typical servicing and leakage. When recommended service procedures were followed, changes in blend compositions were relatively small. Small changes in b...

  15. [Design, equipment, and management for air conditioning in operating room].

    PubMed

    Fuji, Kumiko; Mizuno, Ju

    2011-11-01

    In order to maintain air cleanliness in the operating room (OR) permanently, air exchange rate in the OR should be more than 15 times x hr(-1), the laminar air flow should be kept, and the numbers of the persons in the OR and the numbers of opening and closing OR door should be limited. High efficiency particulate air (HEPA) filter is effective in collection and removal of airborne microbes, and is used in the biological clean room. We need to design, equip, and manage the OR environment according to Guideline for Design and Operation of Hospital HVAC Systems HEAS-02-2004 established by Healthcare Engineering Association of Japan and Guideline for Prevention of Surgical Site Infection (SSI) established by the Center for Disease Control and Prevention (CDC) in the USA. PMID:22175178

  16. The Costs and Consequences of Quality at the Air Force Academy: A Professor's Perspective.

    ERIC Educational Resources Information Center

    Porter, David B.

    1994-01-01

    A professor at the Air Force Academy (Colorado) recounts that institution's 3 years of experience with total quality concepts. The model that guided initial quality education and training activities is described and evidence of progress reported. He concludes that the right kind of investment in quality is well worth the cost. (DB)

  17. [Reduce Energy Costs While Maintaining Healthy IAQ.] "Indoor Air Quality Tools for Schools" Update #17

    ERIC Educational Resources Information Center

    US Environmental Protection Agency, 2009

    2009-01-01

    This issue of "Indoor Air Quality Tools for Schools" Update ("IAQ TfS" Update) contains the following items: (1) News and Events; (2) Feature Article: Reduce Energy Costs while Maintaining Healthy IAQ; (3) Insight into Excellence: North East Independent School District ; (4) School Building Week 2009; and (5) Have Your Questions Answered!

  18. A PRELIMINARY METHODOLOGY FOR EVALUATING THE COST-EFFECTIVENESS OF ALTERNATIVE INDOOR AIR QUALITY APPROACHES

    EPA Science Inventory

    The report defines a simplified methodology that can be used by indoor air quality (IAQ) diagnosticians, architects/engineers, building owners/operators, and the scientific community for preliminary comparison of the cost-effectiveness of alternative IAQ control measures for any ...

  19. 16 CFR Appendix H to Part 305 - Cooling Performance and Cost for Central Air Conditioners

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 1 2014-01-01 2014-01-01 false Cooling Performance and Cost for Central Air Conditioners H Appendix H to Part 305 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC... CONSERVATION ACT (âENERGY LABELING RULEâ) Pt. 305, App. H Appendix H to Part 305—Cooling Performance and...

  20. Source attribution of air pollution by spatial scale separation using high spatial density networks of low cost air quality sensors

    NASA Astrophysics Data System (ADS)

    Heimann, I.; Bright, V. B.; McLeod, M. W.; Mead, M. I.; Popoola, O. A. M.; Stewart, G. B.; Jones, R. L.

    2015-07-01

    To carry out detailed source attribution for air quality assessment it is necessary to distinguish pollutant contributions that arise from local emissions from those attributable to non-local or regional emission sources. Frequently this requires the use of complex models and inversion methods, prior knowledge or assumptions regarding the pollution environment. In this paper we demonstrate how high spatial density and fast response measurements from low-cost sensor networks may facilitate this separation. A purely measurement-based approach to extract underlying pollution levels (baselines) from the measurements is presented exploiting the different relative frequencies of local and background pollution variations. This paper shows that if high spatial and temporal coverage of air quality measurements are available, the different contributions to the total pollution levels, namely the regional signal as well as near and far field local sources, can be quantified. The advantage of using high spatial resolution observations, as can be provided by low-cost sensor networks, lies in the fact that no prior assumptions about pollution levels at individual deployment sites are required. The methodology we present here, utilising measurements of carbon monoxide (CO), has wide applicability, including additional gas phase species and measurements obtained using reference networks. While similar studies have been performed, this is the first study using networks at this density, or using low cost sensor networks.

  1. The next generation of low-cost personal air quality sensors for quantitative exposure monitoring

    NASA Astrophysics Data System (ADS)

    Piedrahita, R.; Xiang, Y.; Masson, N.; Ortega, J.; Collier, A.; Jiang, Y.; Li, K.; Dick, R. P.; Lv, Q.; Hannigan, M.; Shang, L.

    2014-10-01

    Advances in embedded systems and low-cost gas sensors are enabling a new wave of low-cost air quality monitoring tools. Our team has been engaged in the development of low-cost, wearable, air quality monitors (M-Pods) using the Arduino platform. These M-Pods house two types of sensors - commercially available metal oxide semiconductor (MOx) sensors used to measure CO, O3, NO2, and total VOCs, and NDIR sensors used to measure CO2. The MOx sensors are low in cost and show high sensitivity near ambient levels; however they display non-linear output signals and have cross-sensitivity effects. Thus, a quantification system was developed to convert the MOx sensor signals into concentrations. We conducted two types of validation studies - first, deployments at a regulatory monitoring station in Denver, Colorado, and second, a user study. In the two deployments (at the regulatory monitoring station), M-Pod concentrations were determined using collocation calibrations and laboratory calibration techniques. M-Pods were placed near regulatory monitors to derive calibration function coefficients using the regulatory monitors as the standard. The form of the calibration function was derived based on laboratory experiments. We discuss various techniques used to estimate measurement uncertainties. The deployments revealed that collocation calibrations provide more accurate concentration estimates than laboratory calibrations. During collocation calibrations, median standard errors ranged between 4.0-6.1 ppb for O3, 6.4-8.4 ppb for NO2, 0.28-0.44 ppm for CO, and 16.8 ppm for CO2. Median signal to noise (S / N) ratios for the M-Pod sensors were higher than the regulatory instruments: for NO2, 3.6 compared to 23.4; for O3, 1.4 compared to 1.6; for CO, 1.1 compared to 10.0; and for CO2, 42.2 compared to 300-500. By contrast, lab calibrations added bias and made it difficult to cover the necessary range of environmental conditions to obtain a good calibration. A separate user study

  2. Benefits of Leapfrogging to Superefficiency and Low Global Warming Potential Refrigerants in Room Air Conditioning

    SciTech Connect

    Shah, Nihar K.; Wei, Max; Letschert, Virginie; Phadke, Amol A.

    2015-10-01

    Hydrofluorocarbons (HFCs) emitted from uses such as refrigerants and thermal insulating foam, are now the fastest growing greenhouse gases (GHGs), with global warming potentials (GWP) thousands of times higher than carbon dioxide (CO2). Because of the short lifetime of these molecules in the atmosphere,1 mitigating the amount of these short-lived climate pollutants (SLCPs) provides a faster path to climate change mitigation than control of CO2 alone. This has led to proposals from Africa, Europe, India, Island States, and North America to amend the Montreal Protocol on Substances that Deplete the Ozone Layer (Montreal Protocol) to phase-down high-GWP HFCs. Simultaneously, energy efficiency market transformation programs such as standards, labeling and incentive programs are endeavoring to improve the energy efficiency for refrigeration and air conditioning equipment to provide life cycle cost, energy, GHG, and peak load savings. In this paper we provide an estimate of the magnitude of such GHG and peak electric load savings potential, for room air conditioning, if the refrigerant transition and energy efficiency improvement policies are implemented either separately or in parallel.

  3. 32 CFR 855.7 - Conditions for use of Air Force airfields.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 6 2013-07-01 2013-07-01 false Conditions for use of Air Force airfields. 855.7 Section 855.7 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE AIRCRAFT CIVIL AIRCRAFT USE OF UNITED STATES AIR FORCE AIRFIELDS Civil Aircraft Landing Permits §...

  4. 32 CFR 855.7 - Conditions for use of Air Force airfields.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 6 2012-07-01 2012-07-01 false Conditions for use of Air Force airfields. 855.7 Section 855.7 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE AIRCRAFT CIVIL AIRCRAFT USE OF UNITED STATES AIR FORCE AIRFIELDS Civil Aircraft Landing Permits §...

  5. 32 CFR 855.7 - Conditions for use of Air Force airfields.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 6 2014-07-01 2014-07-01 false Conditions for use of Air Force airfields. 855.7 Section 855.7 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE AIRCRAFT CIVIL AIRCRAFT USE OF UNITED STATES AIR FORCE AIRFIELDS Civil Aircraft Landing Permits §...

  6. 32 CFR 855.7 - Conditions for use of Air Force airfields.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Conditions for use of Air Force airfields. 855.7 Section 855.7 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE AIRCRAFT CIVIL AIRCRAFT USE OF UNITED STATES AIR FORCE AIRFIELDS Civil Aircraft Landing Permits §...

  7. 32 CFR 855.7 - Conditions for use of Air Force airfields.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 6 2011-07-01 2011-07-01 false Conditions for use of Air Force airfields. 855.7 Section 855.7 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE AIRCRAFT CIVIL AIRCRAFT USE OF UNITED STATES AIR FORCE AIRFIELDS Civil Aircraft Landing Permits §...

  8. The Development of a Methodology for Estimating the Cost of Air Force On-the-Job Training.

    ERIC Educational Resources Information Center

    Samers, Bernard N.; And Others

    The Air Force uses a standardized costing methodology for resident technical training schools (TTS); no comparable methodology exists for computing the cost of on-the-job training (OJT). This study evaluates three alternative survey methodologies and a number of cost models for estimating the cost of OJT for airmen training in the Administrative…

  9. Marginal costing methods highlight the contributing cost of comorbid conditions in Medicare patients: a quasi-experimental case–control study of ischemic stroke costs

    PubMed Central

    2013-01-01

    Background Cost of illness studies are needed to provide estimates for input into cost-effectiveness studies and as information drivers to resource allocation. However, these studies often do not differentiate costs associated with the disease of interest and costs of co-morbidities. The goal of this study was to identify the 1-year cost of ischemic stroke compared to the annual cost of care for a comparable non-stroke group of South Carolina (SC) Medicare beneficiaries resulting in a marginal cost estimate. Methods SC data for 2004 and 2005 were used to estimate the mean 12 month cost of stroke for 2,976 Medicare beneficiaries hospitalized for Ischemic Stroke in 2004. Using nearest neighbor propensity score matching, a control group of non-stroke beneficiaries were matched on age, gender, race, risk factors, and Charlson comorbidity index and their costs were calculated. Marginal cost attributable to ischemic stroke was calculated as the difference between these two adjusted cost estimates. Results The total cost estimated for SC stroke patients for 1 year (2004) was $81.3 million. The cost for the matched comparison group without stroke was $54.4 million. Thus, the 2004 marginal costs to Medicare due to Ischemic stroke in SC are estimated to be $26.9 million. Conclusions Accurate estimates of cost of care for conditions, such as stroke, that are common in older patients with a high rate of comorbid conditions require the use of a marginal costing approach. Over estimation of cost of care for stroke may lead to prediction of larger savings than realizable from important stroke treatment and prevention programs, which may damage the credibility of program advocates, and jeopardize long term funding support. Additionally, correct cost estimates are needed as inputs for valid cost-effectiveness studies. Thus, it is important to use marginal costing for stroke, especially with the increasing public focus on evidence-based economic decision making to be expected with

  10. Introduction Analysis of Refrigerating and Air-Conditioning Technologies in Micro Grid Type Food Industrial Park

    NASA Astrophysics Data System (ADS)

    Shimazaki, Yoichi

    The aim of this study was to evaluate the refrigerating and air-conditioning technologies in cases of introducing both cogeneration system and energy network in food industrial park. The energy data of 14 factories were classified into steam, hot water, heating, cooling, refrigerating, freezing and electric power by interviews. The author developed a micro grid model based on linear programming so as to minimize the total system costs. The industrial park was divided into the 2,500 square meter mesh in order to take steam transport into consideration. Four cases were investigated. It was found that the electric power driven freezer was introduced compared with the ammonia absorption freezer. The ammonia absorption freezer was introduced in the factory that there is a little steam demand and large freezing demand at the same time.

  11. Development of a Ventilation and Air-conditioning System using Fixed Bed Desiccant Units

    NASA Astrophysics Data System (ADS)

    Miyazaki, Takahiko; Akisawa, Atsushi; Ueda, Yuki; Shindoh, Shinji; Godo, Masazumi; Takatsuka, Takeshi

    The study investigated fixed bed desiccant units for ventilation and air-conditioning. The role of the system is the dehumidification of the outdoor fresh air to be supplied to an air-conditioned room. Hence, the latent heat load of the air-conditioner in the room can be mitigated. The system consisted of two pairs of a desiccant unit and a heat storage unit. The microwave irradiation to the desiccant unit was examined as a candidate of the regeneration method of the system, and the performance of the microwave regeneration was compared with that of the hot air regeneration in terms of the supply air humidity ratio, outdoor air based COP, and the process air temperatures. The results revealed the effects of the switching time and the irradiation timing on the performance of the microwave irradiation.

  12. Comprehensive Assessment of Influence of Enhanced Component in Vapor Compression Air Conditioning System on Performance

    NASA Astrophysics Data System (ADS)

    Shinomiya, Naruaki; Nishimura, Nobuya; Iyota, Hiroyuki

    System performance prediction model for air-cooled air conditioner has been developed, and influences of Grooved tubes on performance of air conditioners with R410A were quantitatively investigated. Calculated results with simulation model correspond approximately to measured results by the authors and other researchers. After that, performances of air conditioners with grooved tubes were predicted. Results show that condensation heat transfer coefficients decrease with the rise of air conditioning load rate, and boiling heat transfer coefficients increase with the rise of air conditioning load rate. On the other hand, pressure drops increase 1.2-1.4 times in evaporator. Then, COPs of air conditioners with the grooved tube are 1.16 times higher than COP of air-conditioners with the smooth tube.

  13. The Rising Cost of Private Higher Education. AIR Forum 1981 Paper.

    ERIC Educational Resources Information Center

    Suttle, J. Lloyd

    The basis on which Yale University and other private institutions set annual tuition levels and long-term pricing policies is considered. The rising cost of private higher education is examined in relation to historical trends, economic data (price and income inflation), the financial condition of the institution, comparative cost data from other…

  14. Managing chronic conditions: economic analysis can help mitigate costs of diabetic ulcers.

    PubMed

    Amir, Leah

    2014-05-01

    Hospital finance leaders should perform economic analyses of emerging treatments for chronic conditions that could provide cost-effective alternatives to generally accepted standards of care. One such treatment for diabetic foot ulcers (DFUs) is noncontact low-frequency ultrasound, which has been shown to reduce both costs and healing times associated with these conditions. By reviewing results of clinical trials to understand the costs and treatment considerations for DFUs and other chronic conditions, finance leaders can engage in informed conversations with physicians on how best to manage costs. PMID:24851459

  15. Performance of a photovoltaically powered air-conditioning system

    SciTech Connect

    Kern, Jr, E. C.; Millner, A. R.

    1980-01-01

    A vapor-compression air conditioner coupled directly to a photovoltaic array is discussed. Previous analyses of such a system are reviewed, and a development system designed to test the concept is described. Preliminary experiments indicate that the performance of this initial system falls considerably short of analytic expectations.

  16. Retrofitting Air Conditioning and Duct Systems in Hot, Dry Climates

    SciTech Connect

    Shapiro, Carl; Aldrich, Robb; Arena, Lois

    2012-07-01

    This technical report describes CARB's work with Clark County Community Resources Division in Las Vegas, Nevada, to optimize procedures for upgrading cooling systems on existing homes in the area to implement health, safety, and energy improvements. Detailed monitoring of five AC systems showed that three of the five systems met or exceeded air flow rate goals.

  17. Societal costs of air pollution-related health hazards: A review of methods and results

    PubMed Central

    Pervin, Tanjima; Gerdtham, Ulf-G; Lyttkens, Carl Hampus

    2008-01-01

    This paper aims to provide a critical and systematic review of the societal costs of air pollution-related ill health (CAP), to explore methodological issues that may be important when assessing or comparing CAP across countries and to suggest ways in which future CAP studies can be made more useful for policy analysis. The methodology includes a systematic search based on the major electronic databases and the websites of a number of major international organizations. Studies are categorized by origin – OECD countries or non-OECD countries – and by publication status. Seventeen studies are included, eight from OECD countries and nine from non-OECD countries. A number of studies based on the ExternE methodology and the USA studies conducted by the Institute of Transportation are also summarized and discussed separately. The present review shows that considerable societal costs are attributable to air pollution-related health hazards. Nevertheless, given the variations in the methodologies used to calculate the estimated costs (e.g. cost estimation methods and cost components included), and inter-country differences in demographic composition and health care systems, it is difficult to compare CAP estimates across studies and countries. To increase awareness concerning the air pollution-related burden of disease, and to build links to health policy analyses, future research efforts should be directed towards theoretically sound and comprehensive CAP estimates with use of rich data. In particular, a more explicit approach should be followed to deal with uncertainties in the estimations. Along with monetary estimates, future research should also report all physical impacts and source-specific cost estimates, and should attempt to estimate 'avoidable cost' using alternative counterfactual scenarios. PMID:18786247

  18. Simulation of air gap vibration on aerostatic bearing under flow/structure coupled conditions

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Wu, Jianjin; Li, Dongsheng

    2008-10-01

    The vibration of aerostatic bearing air gap is one of the main factors, which restricts the precision of nano-processing and nano-measurement. Finite volume method was employed to obtain the air gap steady flow of different air gap thicknesses for the demonstration of vibrations under flow/structure coupled conditions. The unsteady flow of air gap was analyzed numerically by using the air gap flow & boundary movement control equations to get the pressure distribution on the slide surface and the amplitude of air gap for further study on the self-excited vibration of aerostatic bearings. Numerical analyses show that the highest aerostatic bearing amplitude is relative to the difference between load capacity and gravity at the initial moment as air gap rises, and the final air gap thickness has nothing to do with the initial air gap thickness. The results presented a new analytic demonstration for the research on the reduction of aerostatic bearing vibration.

  19. The influence of air-conditioning on street temperatures in the city of Paris

    NASA Astrophysics Data System (ADS)

    de Munck, C. S.; Pigeon, G.; Masson, V.; Marchadier, C.; Meunier, F.; Tréméac, B.; Merchat, M.

    2010-12-01

    A consequence of urban heat islands in summer is the increased use of air-conditioning during extreme heat events : the use of air-conditioning systems, while cooling the inside of buildings releases waste heat (as latent and sensible heat) in the lower part of the urban atmosphere, hence potentially increasing air street temperatures where the heat is released. This may lead locally to a further increase in air street temperatures, therefore increasing the air cooling demand, while at the same time lowering the efficiency of air-conditioning units. A coupled model consisting of a meso-scale meteorological model (MESO-NH) and an urban energy balance model (TEB) has been implemented with an air-conditioning module and used in combination to real spatialised datasets to understand and quantify potential increases in temperature due to air-conditioning heat releases for the city of Paris . In a first instance, the current types of air-conditioning systems co-existing in the city were simulated (underground chilled water network, wet cooling towers and individual air-conditioning units) to study the effects of latent and sensible heat releases on street temperatures. In a third instance, 2 scenarios were tested to characterise the impacts of likely future trends in air-conditioning equipment in the city : a first scenario for which current heat releases were converted to sensible heat, and a second based on 2030s projections of air-conditioning equipment at the scale of the city. All the scenarios showed an increase in street temperature which, as expected, was greater at night time than day time. For the first two scenarios, this increase in street temperatures was localised at or near the sources of air-conditioner heat releases, while the 2030s air-conditioning scenario impacted wider zones in the city. The amplitude of the increase in temperature varied from 0,25°C to 1°C for the air-conditioning current state, between 0,25°C and 2°C for the sensible heat

  20. The Effect of Air-Conditioning on Student and Teacher Performance.

    ERIC Educational Resources Information Center

    Phoenix Union High School District, AZ. Dept. of Research and Planning.

    The literature is reviewed to see if research shows a relationship between student and teacher performance and air conditioning of classrooms. The benefits of air conditioning in promoting learning are substantiated by studies that are summarized but not cited. The relationship of the report to the Phoenix Union High School System Advisory…

  1. Automotive Air Conditioning and Heating; Automotive Mechanics (Advanced): 9047.04.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    This document presents an outline for a 135-hour course designed to provide the student with all the foundations necessary to become employable in the automotive air conditioning and heating trade. The course of study includes an orientation to the world of work, the elementary physics of air conditioning and heating, and laboratory experiments…

  2. Criterion-Referenced Test (CRT) Items for Air Conditioning, Heating and Refrigeration.

    ERIC Educational Resources Information Center

    Davis, Diane, Ed.

    These criterion-referenced test (CRT) items for air conditioning, heating, and refrigeration are keyed to the Missouri Air Conditioning, Heating, and Refrigeration Competency Profile. The items are designed to work with both the Vocational Instructional Management System and Vocational Administrative Management System. For word processing and…

  3. 10 CFR 71.74 - Accident conditions for air transport of plutonium.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Accident conditions for air transport of plutonium. 71.74 Section 71.74 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PACKAGING AND TRANSPORTATION OF RADIOACTIVE MATERIAL Package, Special Form, and LSA-III Tests 2 § 71.74 Accident conditions for air transport...

  4. 10 CFR 71.74 - Accident conditions for air transport of plutonium.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Accident conditions for air transport of plutonium. 71.74 Section 71.74 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PACKAGING AND TRANSPORTATION OF RADIOACTIVE MATERIAL Package, Special Form, and LSA-III Tests 2 § 71.74 Accident conditions for air transport of plutonium. (a) Test conditions—Sequence...

  5. 10 CFR 71.74 - Accident conditions for air transport of plutonium.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Accident conditions for air transport of plutonium. 71.74 Section 71.74 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PACKAGING AND TRANSPORTATION OF RADIOACTIVE MATERIAL Package, Special Form, and LSA-III Tests 2 § 71.74 Accident conditions for air transport of plutonium. (a) Test conditions—Sequence...

  6. 10 CFR 71.74 - Accident conditions for air transport of plutonium.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Accident conditions for air transport of plutonium. 71.74 Section 71.74 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PACKAGING AND TRANSPORTATION OF RADIOACTIVE MATERIAL Package, Special Form, and LSA-III Tests 2 § 71.74 Accident conditions for air transport of plutonium. (a) Test conditions—Sequence...

  7. 10 CFR 71.74 - Accident conditions for air transport of plutonium.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Accident conditions for air transport of plutonium. 71.74 Section 71.74 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PACKAGING AND TRANSPORTATION OF RADIOACTIVE MATERIAL Package, Special Form, and LSA-III Tests 2 § 71.74 Accident conditions for air transport of plutonium. (a) Test conditions—Sequence...

  8. 40 CFR 86.162-03 - Approval of alternative air conditioning test simulations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... initiative, the Administrator will approve a simulation of the environmental cell for air conditioning test... environmental cell test data for the range of vehicles to be covered by the simulation including items such as the tailpipe emissions, air conditioning compressor load, and fuel economy. (2) For any...

  9. 40 CFR 86.166-12 - Method for calculating emissions due to air conditioning leakage.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... determine a refrigerant leakage rate in grams per year from vehicle-based air conditioning units. The... using the following equation: Grams/YRTOT = Grams/YRRP + Grams/YRSP + Grams/YRFH + Grams/YRMC + Grams/YRC Where: Grams/YRTOT = Total air conditioning system emission rate in grams per year and rounded...

  10. Commentary: Air-conditioning as a risk for increased use of healthservices

    SciTech Connect

    Mendell, Mark J.

    2004-06-01

    al. [2004], PRs allow a more appropriate estimate of the increase in each outcome associated with the risk factor of air-conditioning. The increase in prevalence was roughly estimated as [100* (crude PR * adjusted OR/crude OR)-100] %. Based on the data in Table 2 of Preziosi et al. [ 2004], estimates for the increased prevalence associated with air-conditioned offices include increases of 120% in otorhinolaryngology visits, and 40% in sickness absence. If these associated increases represented valid causal relationships, it would indicate enormous costs for employers and for society associated with air-conditioning systems, from increased health care and for reduced workplace productivity from sickness absence, in addition to a large burden of disease on workers.

  11. Costs of air-pollution-abatement systems for sewage-sludge incinerators. Final report

    SciTech Connect

    Annamraju, G.; Shah, Y.M.; Arora, M.L.

    1986-11-01

    Capital and annual costs were calculated for applying six different air-pollution-control systems to municipal sewage-sludge incinerators that were using multiple-hearth furnaces. The systems involved three principal types of air pollution equipment - wet scrubbers, fabric filters, and electrostatic precipitators - applied to three different plant sizes (plants incinerating 36, 72, and 300 tons of dry sludge per day in one, two, and eight multiple-hearth furnaces, respectively). Technical-feasibility studies indicated that all three types of controls could achieve a total particulate-removal efficiency of 99%.

  12. A model of coal conversion and its effect on power generating costs and air quality

    SciTech Connect

    Chalfin, J.; Urkowitz, A.G.

    1983-11-01

    A linear programming model is used to determine the probable costs associated with meeting a fixed electricity demand, assuming point source (air pollution) emissions currently regulated by EPA cannot be increased over levels which existed prior to utility boiler modification for conversion to burn coal. Sensitivity analysis estimates how costs would vary if the amount of allowable emissions were changed, or if the cost of fuels changes significantly. Thus, the incremental costs associated with reducing emissions by one additional ton are determined. Additionally, constraints used on the four coal types limited coal availability in accordance with actual production figures. The linear programming solution provides a marginal value associated with the production of one additional ton of each class of coal.

  13. Supporting Air-Conditioning Controller Design Using Evolutionary Computation

    NASA Astrophysics Data System (ADS)

    Kojima, Kazuyuki; Watanuki, Keiichi

    In recent years, as part of the remarkable development of electronic techniques, electronic control has been applied to various systems. Many sensors and actuators have been implemented into those systems, and energy efficiency and performance have been greatly improved. However, these systems have been complicated, and much time has been required to develop system controllers. In this paper, a method of automatic controller design for those systems is described. In order to automate the design of an electronic controller, an evolutionary hardware is applied. First, the framework for applying the genetic algorithm to the automation of controller design is described. In particular, the coding of a chromosome is shown in detail. Then, how to make a fitness function is represented, with an air conditioner as an example, and the controller of the air conditioner is developed automatically using our proposed framework. Finally, an evolutionary simulation is performed to confirm our framework.

  14. Reduction of air ion mobility to standard conditions

    NASA Astrophysics Data System (ADS)

    Tammet, H.

    1998-06-01

    The Langevin rule of the reduction of air ion mobility is adequate in case of zero-size ions. An alternative is the Stokes-Millikan equation that is adequate in the limit of macroscopic charged particles. The temperature variation of air ion mobility predicted by the Stokes-Millikan equation radically contradicts the Langevin rule. The temperature and pressure variation of air ion mobility is examined by using a new semiempirical model that describes the transition from the kinetic theory to the Stokes-Millikan equation. The model is valid in full mobility range. It allows to calculate at first the size of an ion according to the measured mobility and then the standard mobility according to the size. The ascent of the temperature-mobility curve on a logarithmic chart approaches the Langevin value of 1 only at very high mobilities not found in the atmosphere. The value of the ascent is 0.6 in the case of small ions of the mobility of 1.5 cm2 V-1 s-1 which brings about a considerable error when using the Langevin rule. It is recommended to store the natural values of the mobility in databases together with the values of temperature and pressure and to definitely indicate the method when the reduced mobilities are presented in publications.

  15. Reducing indoor air pollution by air conditioning is associated with improvements in cardiovascular health among the general population.

    PubMed

    Lin, Lian-Yu; Chuang, Hsiao-Chi; Liu, I-Jung; Chen, Hua-Wei; Chuang, Kai-Jen

    2013-10-01

    Indoor air pollution is associated with cardiovascular effects, however, little is known about the effects of improving indoor air quality on cardiovascular health. The aim of this study was to explore whether improving indoor air quality through air conditioning can improve cardiovascular health in human subjects. We recruited a panel of 300 healthy subjects from Taipei, aged 20 and over, to participate in six home visits each, to measure a variety of cardiovascular endpoints, including high sensitivity-C-reactive protein (hs-CRP), 8-hydroxy-2'-deoxyguanosine (8-OHdG), fibrinogen in plasma and heart rate variability (HRV). Indoor particles and total volatile organic compounds (VOCs) were measured simultaneously at the participant's home during each visit. Three exposure conditions were investigated in this study: participants were requested to keep their windows open during the first two visits, close their windows during the next two visits, and close the windows and turn on their air conditioners during the last two visits. We used linear mixed-effects models to associate the cardiovascular endpoints with individual indoor air pollutants. The results showed that increases in hs-CRP, 8-OHdG and fibrinogen, and decreases in HRV indices were associated with increased levels of indoor particles and total VOCs in single-pollutant and two-pollutant models. The effects of indoor particles and total VOCs on cardiovascular endpoints were greatest during visits with the windows open. During visits with the air conditioners turned on, no significant changes in cardiovascular endpoints were observed. In conclusion, indoor air pollution is associated with inflammation, oxidative stress, blood coagulation and autonomic dysfunction. Reductions in indoor air pollution and subsequent improvements in cardiovascular health can be achieved by closing windows and turning on air conditioners at home. PMID:23803502

  16. Low-Flow Liquid Desiccant Air Conditioning: General Guidance and Site Considerations

    SciTech Connect

    Kozubal, E.; Herrmann, L.; Deru, M.; Clark, J.

    2014-09-01

    Dehumidification or latent cooling in buildings is an area of growing interest that has been identified as needing more research and improved technologies for higher performance. Heating, ventilating, and air-conditioning (HVAC) systems typically expend excessive energy by using overcool-and-reheat strategies to dehumidify buildings. These systems first overcool ventilation air to remove moisture and then reheat the air to meet comfort requirements. Another common strategy incorporates solid desiccant rotors that remove moisture from the air more efficiently; however, these systems increase fan energy consumption because of the high airside pressure drop of solid desiccant rotors and can add heat of absorption to the ventilation air. Alternatively, liquid desiccant air-conditioning (LDAC) technology provides an innovative dehumidification solution that: (1) eliminates the need for overcooling and reheating from traditional cooling systems; and (2) avoids the increased fan energy and air heating from solid desiccant rotor systems.

  17. Combustion of Gaseous Fuels with High Temperature Air in Normal- and Micro-gravity Conditions

    NASA Technical Reports Server (NTRS)

    Wang, Y.; Gupta, A. K.

    2001-01-01

    The objective of this study is determine the effect of air preheat temperature on flame characteristics in normal and microgravity conditions. We have obtained qualitative (global flame features) and some quantitative information on the features of flames using high temperature combustion air under normal gravity conditions with propane and methane as the fuels. This data will be compared with the data under microgravity conditions. The specific focus under normal gravity conditions has been on determining the global flame features as well as the spatial distribution of OH, CH, and C2 from flames using high temperature combustion air at different equivalence ratio.

  18. Modified GDP through health cost analysis of air pollution: The case of Turkey

    SciTech Connect

    Zaim, K.K.

    1999-02-01

    Economic growth and performance is monitored through the gross domestic product (GDP) of a nation. It has long been recognized that the traditionally computed GDP does not account for gains and losses observed due to the consumption of natural resources and environmental services. Hence, the objective of this study is to modify the Turkish GDP by taking social cost associated with air pollution into consideration. To this end health benefits and economic costs of air-quality improvement are estimated. The computations are based on the dose-response coefficients reported in several studies. The results indicate that a decrease in PM{sub 10} and SO{sub 2} levels to the WHO guideline would have resulted in a total of 48.309 {times} 10{sup 10} and 153.38 {times} 10{sup 10} Turkish lira savings in 1990 and 1993, respectively. These correspond to 0.12% and 0.08% of 1990 and 1993 GDPs, respectively.

  19. 2-D Air-Breathing Lightcraft Engine Experiments in Hypersonic Conditions

    NASA Astrophysics Data System (ADS)

    Salvador, Israel I.; Myrabo, Leik N.; Minucci, Marco A. S.; de Oliveira, Antonio C.; Toro, Paulo G. P.; Chanes, José B.; Rego, Israel S.

    2011-11-01

    Experiments were performed with a 2-D, repetitively-pulsed (RP) laser Lightcraft model in hypersonic flow conditions. The main objective was the feasibility analysis for impulse generation with repetitively-pulsed air-breathing laser Lightcraft engines at hypersonic speeds. The future application of interest for this basic research endeavor is the laser launch of pico-, nano-, and micro-satellites (i.e., 0.1-100 kg payloads) into Low-Earth-Orbit, at low-cost and on-demand. The laser propulsion experiments employed a Hypersonic Shock Tunnel integrated with twin gigawatt pulsed Lumonics 620-TEA CO2 lasers (˜ 1 μs pulses), to produce the required test conditions. This hypersonic campaign was carried out at nominal Mach numbers ranging from 6 to 10. Time-dependent surface pressure distributions were recorded together with Schlieren movies of the flow field structure resulting from laser energy deposition. Results indicated laser-induced pressure increases of 0.7-0.9 bar with laser pulse energies of ˜ 170 J, on off-shroud induced breakdown condition, and Mach number of 7.

  20. Development of High Speed Inverter Rotary Compressor for the Air-conditioning System

    NASA Astrophysics Data System (ADS)

    Kang, Seoung-Min; Yang, Eun-soo; Shin, Jin-Ung; Park, Joon-Hong; Lee, Se-Dong; Ha, Jong-Hun; Son, Young-Boo; Lee, Byeong-Chul

    2015-08-01

    In order to meet the various operating loads of an air-conditioning system, an inverter compressor with a wide operational range is necessary. One of the ways to achieve a wide operation range is to drive a small capacity compressor at high speed. Moreover, it is possible to maximize the efficiency in part-load operation condition close to actual operating conditions and to reduce the cost by compact design of a small capacity compressor. In addition, the shortage of maximum capacity, due to the small rated capacity, is covered through high speed operation. However, in general, if the compressor operates at high speed, problems occurs such as reduced efficiency due to friction, increased noise, increased amount of oil discharge and decreased durability of the main components. In order to solve these problems the following have been investigated: optimized dimension parameters of the compression chamber, enhanced shaft design and the structure for the reduction of oil discharge and noise at high speed operation. Finally the high speed inverter rotary compressor with high efficiency and more compact size has been developed as compared with the conventional rotary compressor.

  1. The Aviation System Analysis Capability Air Carrier Cost-Benefit Model

    NASA Technical Reports Server (NTRS)

    Gaier, Eric M.; Edlich, Alexander; Santmire, Tara S.; Wingrove, Earl R.., III

    1999-01-01

    wide-ranging suite of economic and technical models that comprise ASAC. This report describes an Air Carrier Cost-Benefit Model (CBM) that meets these requirements. The ASAC CBM is distinguished from many of the aviation cost-benefit models by its exclusive focus on commercial air carriers. The model considers such benefit categories as time and fuel savings, utilization opportunities, reliability and capacity enhancements, and safety and security improvements. The model distinguishes between benefits that are predictable and those that occur randomly. By making such a distinction, the model captures the ability of air carriers to reoptimize scheduling and crew assignments for predictable benefits. In addition, the model incorporates a life-cycle cost module for new technology, which applies the costs of nonrecurring acquisitions, recurring maintenance and operation, and training to each aircraft equipment type independently.

  2. [Working ability between air and trimix breathing gas under 8 ATA air condition].

    PubMed

    Shibayama, M; Kosugi, S; Mohri, M; Yamamura, I; Oda, S; Kimura, A; Takeuchi, J; Mano, Y

    1990-04-01

    Pneumatic caisson work in Japan has come into operation since 1924. Afterward, this technique of compressed air work has been widely utilized in the construction of foundation basements, shafts of the bottom tunnel shields for subway and so forth. While using this technique of compressed air work means that workers have to be exposed to hyperbaric environment, this technique has risks of not only decompression sickness (DCS) but also toxicity of poisonous gas and/or oxygen deficiency. However, this technique is independent of city construction work and the operation of compressed air work higher than 5ATA (4.0 kg/cm2G) is actually been planning recently. Accordingly unmanned caisson work is considered as a better technique for such higher pressurized work, even though workers must enter into hyperbaric working fields for maintenance or repair of unmanned operated machinery and materials. This research is to establish the safe work under hyperbaric air environment at 8ATA. PMID:2400467

  3. Evaluating the performance of low cost chemical sensors for air pollution research.

    PubMed

    Lewis, Alastair C; Lee, James D; Edwards, Peter M; Shaw, Marvin D; Evans, Mat J; Moller, Sarah J; Smith, Katie R; Buckley, Jack W; Ellis, Matthew; Gillot, Stefan R; White, Andrew

    2016-07-18

    Low cost pollution sensors have been widely publicized, in principle offering increased information on the distribution of air pollution and a democratization of air quality measurements to amateur users. We report a laboratory study of commonly-used electrochemical sensors and quantify a number of cross-interferences with other atmospheric chemicals, some of which become significant at typical suburban air pollution concentrations. We highlight that artefact signals from co-sampled pollutants such as CO2 can be greater than the electrochemical sensor signal generated by the measurand. We subsequently tested in ambient air, over a period of three weeks, twenty identical commercial sensor packages alongside standard measurements and report on the degree of agreement between references and sensors. We then explore potential experimental approaches to improve sensor performance, enhancing outputs from qualitative to quantitative, focusing on low cost VOC photoionization sensors. Careful signal handling, for example, was seen to improve limits of detection by one order of magnitude. The quantity, magnitude and complexity of analytical interferences that must be characterised to convert a signal into a quantitative observation, with known uncertainties, make standard individual parameter regression inappropriate. We show that one potential solution to this problem is the application of supervised machine learning approaches such as boosted regression trees and Gaussian processes emulation. PMID:27104223

  4. The rise of low-cost sensing for managing air pollution in cities.

    PubMed

    Kumar, Prashant; Morawska, Lidia; Martani, Claudio; Biskos, George; Neophytou, Marina; Di Sabatino, Silvana; Bell, Margaret; Norford, Leslie; Britter, Rex

    2015-02-01

    Ever growing populations in cities are associated with a major increase in road vehicles and air pollution. The overall high levels of urban air pollution have been shown to be of a significant risk to city dwellers. However, the impacts of very high but temporally and spatially restricted pollution, and thus exposure, are still poorly understood. Conventional approaches to air quality monitoring are based on networks of static and sparse measurement stations. However, these are prohibitively expensive to capture tempo-spatial heterogeneity and identify pollution hotspots, which is required for the development of robust real-time strategies for exposure control. Current progress in developing low-cost micro-scale sensing technology is radically changing the conventional approach to allow real-time information in a capillary form. But the question remains whether there is value in the less accurate data they generate. This article illustrates the drivers behind current rises in the use of low-cost sensors for air pollution management in cities, while addressing the major challenges for their effective implementation. PMID:25483836

  5. A Low-Cost Sensing System for Cooperative Air Quality Monitoring in Urban Areas

    PubMed Central

    Brienza, Simone; Galli, Andrea; Anastasi, Giuseppe; Bruschi, Paolo

    2015-01-01

    Air quality in urban areas is a very important topic as it closely affects the health of citizens. Recent studies highlight that the exposure to polluted air can increase the incidence of diseases and deteriorate the quality of life. Hence, it is necessary to develop tools for real-time air quality monitoring, so as to allow appropriate and timely decisions. In this paper, we present uSense, a low-cost cooperative monitoring tool that allows knowing, in real-time, the concentrations of polluting gases in various areas of the city. Specifically, users monitor the areas of their interest by deploying low-cost and low-power sensor nodes. In addition, they can share the collected data following a social networking approach. uSense has been tested through an in-field experimentation performed in different areas of a city. The obtained results are in line with those provided by the local environmental control authority and show that uSense can be profitably used for air quality monitoring. PMID:26016912

  6. A low-cost sensing system for cooperative air quality monitoring in urban areas.

    PubMed

    Brienza, Simone; Galli, Andrea; Anastasi, Giuseppe; Bruschi, Paolo

    2015-01-01

    Air quality in urban areas is a very important topic as it closely affects the health of citizens. Recent studies highlight that the exposure to polluted air can increase the incidence of diseases and deteriorate the quality of life. Hence, it is necessary to develop tools for real-time air quality monitoring, so as to allow appropriate and timely decisions. In this paper, we present uSense, a low-cost cooperative monitoring tool that allows knowing, in real-time, the concentrations of polluting gases in various areas of the city. Specifically, users monitor the areas of their interest by deploying low-cost and low-power sensor nodes. In addition, they can share the collected data following a social networking approach. uSense has been tested through an in-field experimentation performed in different areas of a city. The obtained results are in line with those provided by the local environmental control authority and show that uSense can be profitably used for air quality monitoring. PMID:26016912

  7. High Efficiency Liquid-Desiccant Regenerator for Air Conditioning and Industrial Drying

    SciTech Connect

    Andrew Lowenstein

    2005-12-19

    Over 2 quads of fossil fuels are used each year for moisture removal. This includes industrial and agricultural processes where feedstocks and final products must be dried, as well as comfort conditioning of indoor spaces where the control of humidity is essential to maintaining healthy, productive and comfortable working conditions. Desiccants, materials that have a high affinity for water vapor, can greatly reduce energy use for both drying and dehumidification. An opportunity exists to greatly improve the competitiveness of advanced liquid-desiccant systems by increasing the efficiency of their regenerators. It is common practice within the chemical process industry to use multiple stage boilers to improve the efficiency of thermal separation processes. The energy needed to regenerate a liquid desiccant, which is a thermal separation process, can also be reduced by using a multiple stage boiler. In this project, a two-stage regenerator was developed in which the first stage is a boiler and the second stage is a scavenging-air regenerator. The only energy input to this regenerator is the natural gas that fires the boiler. The steam produced in the boiler provides the thermal energy to run the second-stage scavenging-air regenerator. This two-stage regenerator is referred to as a 1?-effect regenerator. A model of the high-temperature stage of a 1?-effect regenerator for liquid desiccants was designed, built and successfully tested. At nominal operating conditions (i.e., 2.35 gpm of 36% lithium chloride solution, 307,000 Btu/h firing rate), the boiler removed 153 lb/h of water from the desiccant at a gas-based efficiency of 52.9 % (which corresponds to a COP of 0.95 when a scavenging-air regenerator is added). The steam leaving the boiler, when condensed, had a solids concentration of less than 10 ppm. This low level of solids in the condensate places an upper bound of about 6 lb per year for desiccant loss from the regenerator. This low loss will not create

  8. Composition changes in refrigerant blends for automotive air conditioning

    SciTech Connect

    Jetter, J.J.; Delafield, F.R.; Ng, A.S.; Ratanaphruks, K.; Tufts, M.W.

    1999-07-01

    Three refrigerant blends used to replace the chlorofluorocarbon R-12 in automotive air conditioners were evaluated for composition changes due to typical servicing and leakage. When recommended service procedures were followed, changes in blend compositions were relatively small. Small changes in blend compositions caused no significant changes in refrigeration capacities. However, when recommended procedures were not followed, changes in compositions were relatively large. The amount of change in composition and the resulting effect on performance varied among the three refrigerant blends that were tested. Of the three blends, a quaternary blend containing hydrochlorofluorocarbon R-22 had the greatest changes in composition, while a binary blend containing hydrofluorocarbon R-134a had the smallest changes in composition.

  9. Air Conditioning Stall Phenomenon Testing, Model Development, and Simulation

    SciTech Connect

    Irminger, Philip; Rizy, D Tom; Li, Huijuan; Smith, Travis; Rice, C Keith; Li, Fangxing; Adhikari, Sarina

    2012-01-01

    Electric distribution systems are experiencing power quality issues of extended reduced voltage due to fault-induced delayed voltage recovery (FIDVR). FIDVR occurs in part because modern air conditioner (A/C) and heat pump compressor motors are much more susceptible to stalling during a voltage sag or dip such as a sub-transmission fault. They are more susceptible than older A/C compressor motors due to the low inertia of these newer and more energy efficient motors. There is a concern that these local reduced voltage events on the distribution system will become more frequent and prevalent and will combine over larger areas and challenge transmission system voltage and ultimately power grid reliability. The Distributed Energy Communications and Controls (DECC) Laboratory at Oak Ridge National Laboratory (ORNL) has been employed to (1) test, (2) characterize and (3) model the A/C stall phenomenon.

  10. Development of cold seawater air conditioning systems for application as a demand side management tool for Hawaii and other subtropical climates

    SciTech Connect

    Kaya, M.H.

    1996-10-01

    Because of the proximity to deep cold seawater for many coastal regions in Hawaii and the high demand for air conditioning in large buildings, seawater air conditioning (SWAC) is a major potential sustainable energy resource for Hawaii and other subtropical regions of the world. The basic concept of seawater air conditioning is the use deep cold seawater to cool the chilled water in one or more air conditioned buildings as opposed to using energy intensive refrigeration systems. The economic viability of the seawater air conditioning is determined by comparing the construction and operating costs of the seawater supply system to the construction and operating costs of conventional air conditioning systems. The State of Hawaii commissioned an analysis to identify the technical and economic opportunities and limitations in the use of SWAC in Hawaii. The result of this work is a feasibility analysis of SWAC systems in the state and the potential associated energy savings. The study looked at the prospects of installing such a system at a major new resort development on Oahu called West Beach.

  11. Impaired Air Conditioning within the Nasal Cavity in Flat-Faced Homo.

    PubMed

    Nishimura, Takeshi; Mori, Futoshi; Hanida, Sho; Kumahata, Kiyoshi; Ishikawa, Shigeru; Samarat, Kaouthar; Miyabe-Nishiwaki, Takako; Hayashi, Misato; Tomonaga, Masaki; Suzuki, Juri; Matsuzawa, Tetsuro; Matsuzawa, Teruo

    2016-03-01

    We are flat-faced hominins with an external nose that protrudes from the face. This feature was derived in the genus Homo, along with facial flattening and reorientation to form a high nasal cavity. The nasal passage conditions the inhaled air in terms of temperature and humidity to match the conditions required in the lung, and its anatomical variation is believed to be evolutionarily sensitive to the ambient atmospheric conditions of a given habitat. In this study, we used computational fluid dynamics (CFD) with three-dimensional topology models of the nasal passage under the same simulation conditions, to investigate air-conditioning performance in humans, chimpanzees, and macaques. The CFD simulation showed a horizontal straight flow of inhaled air in chimpanzees and macaques, contrasting with the upward and curved flow in humans. The inhaled air is conditioned poorly in humans compared with nonhuman primates. Virtual modifications to the human external nose topology, in which the nasal vestibule and valve are modified to resemble those of chimpanzees, change the airflow to be horizontal, but have little influence on the air-conditioning performance in humans. These findings suggest that morphological variation of the nasal passage topology was only weakly sensitive to the ambient atmosphere conditions; rather, the high nasal cavity in humans was formed simply by evolutionary facial reorganization in the divergence of Homo from the other hominin lineages, impairing the air-conditioning performance. Even though the inhaled air is not adjusted well within the nasal cavity in humans, it can be fully conditioned subsequently in the pharyngeal cavity, which is lengthened in the flat-faced Homo. Thus, the air-conditioning faculty in the nasal passages was probably impaired in early Homo members, although they have survived successfully under the fluctuating climate of the Plio-Pleistocene, and then they moved "Out of Africa" to explore the more severe climates of

  12. Impaired Air Conditioning within the Nasal Cavity in Flat-Faced Homo

    PubMed Central

    Nishimura, Takeshi; Mori, Futoshi; Hanida, Sho; Kumahata, Kiyoshi; Ishikawa, Shigeru; Samarat, Kaouthar; Miyabe-Nishiwaki, Takako; Hayashi, Misato; Tomonaga, Masaki; Suzuki, Juri; Matsuzawa, Tetsuro; Matsuzawa, Teruo

    2016-01-01

    We are flat-faced hominins with an external nose that protrudes from the face. This feature was derived in the genus Homo, along with facial flattening and reorientation to form a high nasal cavity. The nasal passage conditions the inhaled air in terms of temperature and humidity to match the conditions required in the lung, and its anatomical variation is believed to be evolutionarily sensitive to the ambient atmospheric conditions of a given habitat. In this study, we used computational fluid dynamics (CFD) with three-dimensional topology models of the nasal passage under the same simulation conditions, to investigate air-conditioning performance in humans, chimpanzees, and macaques. The CFD simulation showed a horizontal straight flow of inhaled air in chimpanzees and macaques, contrasting with the upward and curved flow in humans. The inhaled air is conditioned poorly in humans compared with nonhuman primates. Virtual modifications to the human external nose topology, in which the nasal vestibule and valve are modified to resemble those of chimpanzees, change the airflow to be horizontal, but have little influence on the air-conditioning performance in humans. These findings suggest that morphological variation of the nasal passage topology was only weakly sensitive to the ambient atmosphere conditions; rather, the high nasal cavity in humans was formed simply by evolutionary facial reorganization in the divergence of Homo from the other hominin lineages, impairing the air-conditioning performance. Even though the inhaled air is not adjusted well within the nasal cavity in humans, it can be fully conditioned subsequently in the pharyngeal cavity, which is lengthened in the flat-faced Homo. Thus, the air-conditioning faculty in the nasal passages was probably impaired in early Homo members, although they have survived successfully under the fluctuating climate of the Plio-Pleistocene, and then they moved “Out of Africa” to explore the more severe climates of

  13. Benefit-cost evaluation of an intra-regional air service in the Bay area

    NASA Technical Reports Server (NTRS)

    Haefner, L. E.

    1977-01-01

    Utilization of an iterative statistical model is presented to evaluate combinations of commuter airport sites and surface transportation facilities in confunction with service by a given commuter aircraft type in light of Bay Area regional growth alternatives and peak and off-peak regional travel patterns. The model evaluates such transportation options with respect to criteria of airline profitability, public acceptance, and public and private nonuser costs. It incorporates information modal split, peak and off-peak use of the air commuter fleet, terminal and airport cost, development costs and uses of land in proximity to the airport sites, regional population shifts, and induced zonal shifts in travel demand. The model is multimodal in its analytical capability, and performs exhaustive sensitivity analysis.

  14. Feasibility and operating costs of an air cycle for CCHP in a fast food restaurant

    DOE PAGESBeta

    Perez-Blanco, Horacio; Vineyard, Edward

    2016-05-06

    This work considers the possibilities of an air-based Brayton cycle to provide the power, heating and cooling needs of fast-food restaurants. A model of the cycle based on conventional turbomachinery loss coefficients is formulated. The heating, cooling and power capabilities of the cycle are extracted from simulation results. Power and thermal loads for restaurants in Knoxville, TN and in International Falls, MN, are considered. It is found that the cycle can meet the loads by setting speed and mass flow-rate apportionment between the power and cooling functional sections. The associated energy costs appear elevated when compared to the cost ofmore » operating individual components or a more conventional, absorption-based CHP system. Lastly, a first-order estimate of capital investments is provided. Suggestions for future work whereby the operational costs could be reduced are given in the conclusions.« less

  15. Integrated risk/cost planning models for the US Air Traffic system

    NASA Technical Reports Server (NTRS)

    Mulvey, J. M.; Zenios, S. A.

    1985-01-01

    A prototype network planning model for the U.S. Air Traffic control system is described. The model encompasses the dual objectives of managing collision risks and transportation costs where traffic flows can be related to these objectives. The underlying structure is a network graph with nonseparable convex costs; the model is solved efficiently by capitalizing on its intrinsic characteristics. Two specialized algorithms for solving the resulting problems are described: (1) truncated Newton, and (2) simplicial decomposition. The feasibility of the approach is demonstrated using data collected from a control center in the Midwest. Computational results with different computer systems are presented, including a vector supercomputer (CRAY-XMP). The risk/cost model has two primary uses: (1) as a strategic planning tool using aggregate flight information, and (2) as an integrated operational system for forecasting congestion and monitoring (controlling) flow throughout the U.S. In the latter case, access to a supercomputer is required due to the model's enormous size.

  16. Multiple Chronic Conditions: Prevalence, Health Consequences, and Implications for Quality, Care Management, and Costs

    PubMed Central

    Shields, Alexandra E.; Lee, Todd A.; Gibson, Teresa B.; Marder, William D.; Weiss, Kevin B.; Blumenthal, David

    2007-01-01

    Persons with multiple chronic conditions are a large and growing segment of the US population. However, little is known about how chronic conditions cluster, and the ramifications of having specific combinations of chronic conditions. Clinical guidelines and disease management programs focus on single conditions, and clinical research often excludes persons with multiple chronic conditions. Understanding how conditions in combination impact the burden of disease and the costs and quality of care received is critical to improving care for the 1 in 5 Americans with multiple chronic conditions. This Medline review of publications examining somatic chronic conditions co-occurring with 1 or more additional specific chronic illness between January 2000 and March 2007 summarizes the state of our understanding of the prevalence and health challenges of multiple chronic conditions and the implications for quality, care management, and costs. PMID:18026807

  17. Clean air and energy: from conflict to reconciliation. [Cost benefit analysis

    SciTech Connect

    Kolstad, C.D.; Schulze, W.D.; Williams, M.D.

    1982-01-01

    Unconstrained energy resource development in the Rocky Mountain west is likely to threaten the environment and the health and well-being of the people. Impacts may be associated with visibility degradation, toxic concentrations of gases, and deposition of acidic or toxic substances. Because the possible benefits of energy development in the region are very large, there is great concern that constraints imposed by air quality regulation may preclude the use of important resources or make unduly expensive energy produced from the region. The conflict between energy and clean air in the region is exacerbated by non-energy sources, such as copper smelters and urban areas, that already pose significant environmental threats. The hard policy question is not how to preserve clean air resources or how to develop energy but how to achieve and balance both goals. The effects and regulatory costs and benefits of air pollution control are discussed, and policy directions to protect air quality while pursuing energy development are presented.

  18. Desiccant Enhanced Evaporative Air-Conditioning (DEVap): Evaluation of a New Concept in Ultra Efficient Air Conditioning

    SciTech Connect

    Kozubal, E.; Woods, J.; Burch, J.; Boranian, A.; Merrigan, T.

    2011-01-01

    NREL has developed the novel concept of a desiccant enhanced evaporative air conditioner (DEVap) with the objective of combining the benefits of liquid desiccant and evaporative cooling technologies into an innovative 'cooling core.' Liquid desiccant technologies have extraordinary dehumidification potential, but require an efficient cooling sink. DEVap's thermodynamic potential overcomes many shortcomings of standard refrigeration-based direct expansion cooling. DEVap decouples cooling and dehumidification performance, which results in independent temperature and humidity control. The energy input is largely switched away from electricity to low-grade thermal energy that can be sourced from fuels such as natural gas, waste heat, solar, or biofuels.

  19. A packed bed dehumidifier/regenerator for solar air conditioning with liquid desiccants

    NASA Astrophysics Data System (ADS)

    Factor, H. M.; Grossman, G.

    1980-01-01

    A packed column air-liquid contactor has been studied in application to air dehumidification and regeneration in solar air conditioning with liquid desiccants. A theoretical model has been developed to predict the performance of the device under various operating conditions. Computer simulations based on the model are presented which indicate the practical range of air to liquid flux ratios and associated changes in air humidity and desiccant concentration. An experimental apparatus has been constructed and experiments performed with Monoethylene Glycol (MEG) and Lithium Bromide as desiccants. MEG experiments have yielded inaccurate results and have pointed out some practical problems associated with the use of Glycols. LiBr experiments show very good agreement with the theoretical model. Preheating of the air is shown to greatly enhance desiccant regeneration. The packed column yields good results as a dehumidifier/regenerator, provided pressure drop can be reduced with the use of suitable packing.

  20. A cost benefit approach to reactor sizing and nutrient supply for biotrickling filters for air pollution control

    SciTech Connect

    Deshusses, M.A.; Cox, H.H.J.

    1999-07-01

    In the present paper, a general model was developed that allows the selection of the most cost-effective operation of biotrickling filters for air pollution control. The model was demonstrated for a typical case of industrial pollution: 10,000 m{sup 3} h{sup {minus}1} airstream contaminated with 1.5 g m{sup {minus}3} toluene. The reactor design and operation were optimized with respect to the nutrient (nitrate) loading, which influenced the pollutant elimination capacity and the rate of reactor clogging by biomass. Integration of all pertinent costs and experimental data into the model demonstrated that biotrickling filtration was very competitive compared to conventional treatment technologies. For the case studied, a treatment cost optimum was obtained at a nutrient loading of 8 g N-nitrate per cubic meter bed volume per day. The range of cost effective treatment was 4 to 30 g N-nitrate m{sup {minus}3} d{sup {minus}1}. Overall, the general approach presented herein is widely applicable for the determination of the best reactor design and the optimum reactor operating conditions.

  1. SCHOOL AIR CONDITIONING/CASE STUDY, MCPHERSON HIGH SCHOOL.

    ERIC Educational Resources Information Center

    OSTENBERG, JOE W.

    THE STANFORD UNIVERSITY SCHOOL PLANNING LABORATORIES CONDUCTED AN EDUCATIONAL SURVEY OF THE EDUCATIONAL NEEDS OF THE MCPHERSON CITY SCHOOLS BY STUDYING THE EXISTING CONDITIONS, LOCAL ECONOMIES, AND POTENTIAL POPULATION GROWTH. IT WAS RECOMMENDED THAT A NEW SENIOR HIGH BE BUILT TO HOUSE 700-750 STUDENTS, THE ANTICIPATED ENROLLMENT 10 YEARS AFTER…

  2. 42 CFR 457.224 - FFP: Conditions relating to cost sharing.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 4 2010-10-01 2010-10-01 false FFP: Conditions relating to cost sharing. 457.224 Section 457.224 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN... or could be provided under a State CHIP program— (1) Any cost sharing amounts that...

  3. 42 CFR 457.224 - FFP: Conditions relating to cost sharing.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 4 2014-10-01 2014-10-01 false FFP: Conditions relating to cost sharing. 457.224 Section 457.224 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN... or could be provided under a State CHIP program— (1) Any cost sharing amounts that...

  4. 42 CFR 457.224 - FFP: Conditions relating to cost sharing.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 4 2011-10-01 2011-10-01 false FFP: Conditions relating to cost sharing. 457.224 Section 457.224 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN... or could be provided under a State CHIP program— (1) Any cost sharing amounts that...

  5. 42 CFR 457.224 - FFP: Conditions relating to cost sharing.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 4 2012-10-01 2012-10-01 false FFP: Conditions relating to cost sharing. 457.224 Section 457.224 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN... or could be provided under a State CHIP program— (1) Any cost sharing amounts that...

  6. System and method for conditioning intake air to an internal combustion engine

    SciTech Connect

    Sellnau, Mark C.

    2015-08-04

    A system for conditioning the intake air to an internal combustion engine includes a means to boost the pressure of the intake air to the engine and a liquid cooled charge air cooler disposed between the output of the boost means and the charge air intake of the engine. Valves in the coolant system can be actuated so as to define a first configuration in which engine cooling is performed by coolant circulating in a first coolant loop at one temperature, and charge air cooling is performed by coolant flowing in a second coolant loop at a lower temperature. The valves can be actuated so as to define a second configuration in which coolant that has flowed through the engine can be routed through the charge air cooler. The temperature of intake air to the engine can be controlled over a wide range of engine operation.

  7. Air conditioning in a tropical climate: Impacts upon European residents in Darwin, Australia

    NASA Astrophysics Data System (ADS)

    Auliciems, A.; Dedear, R.

    1986-09-01

    The efficacy of current practices in air conditioning is investigated in the two monsoonal seasons in Darwin. Assessment is made of atmospheric parameters, clothing, metabolic rate. Some 1000 questionnaires are applied dealing with adaptations, health perceptions and preferences as related to air cooling and ventilation. The findings are discussed with reference to energy balance calculations and current models of psychological control in thermoregulation. The results indicate that Darwin's population is considerably overcooled, and contrary to assumptions and practice, air conditioning is not desired in office buildings during the “Dry”. In the home, air conditioning is not regarded as essential. The indications are that a rationalization of air cooling to comply with natural variability in warmth would lead to a significant reduction in energy consumption, and an overall enhancement to the health and comfort of the population through the greater ventilation rates that would be economically feasible were design temperatures lifted.

  8. Cost characteristics of tilt-rotor, conventional air and high speed rail short-haul intercity passenger service

    NASA Technical Reports Server (NTRS)

    Schoendorfer, David L.; Morlok, Edward K.

    1985-01-01

    The cost analysis done to support an assessment of the potential for a small tilt-rotor aircraft to operate in short-haul intercity passenger service is described in detail. Anticipated costs of tilt-rotor air service were compared to the costs of two alternatives: conventional air and high speed rail (HSR). Costs were developed for corridor service, varying key market characteristics including distance, passenger volumes, and minimum frequency standards. The resulting cost vs output information can then be used to compare modal costs for essentially identical service quality and passenger volume or for different service levels and volumes for each mode, as appropriate. Extensive sensitivity analyses are performed. The cost-output features of these technologies are compared. Tilt-rotor is very attractive compared to HSR in terms of costs over the entire range of volume. It also has costs not dramatically different from conventional air, but tilt-rotor costs are generally higher. Thus some of its other advantages, such as the VTOL capability, must offset the cost disadvantage for it to be a preferred or competitive mode in any given market. These issues are addressed in the companion report which considers strategies for tilt-rotor development in commercial air service.

  9. Temperature and Humidity Independent Control Research on Ground Source Heat Pump Air Conditioning System

    NASA Astrophysics Data System (ADS)

    Chen, G.; Wang, L. L.

    Taking green demonstration center building air conditioning system as an example, this paper presents the temperature and humidity independent control system combined with ground source heat pump system, emphasis on the design of dry terminal device system, fresh air system and ground source heat pump system.

  10. Colonization by Cladosporium spp. of painted metal surfaces associated with heating and air conditioning systems

    NASA Technical Reports Server (NTRS)

    Ahearn, D. G.; Simmons, R. B.; Switzer, K. F.; Ajello, L.; Pierson, D. L.

    1991-01-01

    Cladosporium cladosporioides and C. hebarum colonized painted metal surfaces of covering panels and register vents of heating, air conditioning and ventilation systems. Hyphae penetrated the paint film and developed characteristic conidiophores and conidia. The colonies were tightly appressed to the metal surface and conidia were not readily detectable via standard air sampling procedures.

  11. 40 CFR 86.161-00 - Air conditioning environmental test facility ambient requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... to simulate the impact of an ambient heat load on the power requirements of the vehicle's air... elements that are discussed are ambient air temperature and humidity, minimum test cell size, solar heating... be shown that all of the ambient test condition performance requirements are satisfied. (d)...

  12. 40 CFR 86.161-00 - Air conditioning environmental test facility ambient requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Air conditioning environmental test facility ambient requirements. 86.161-00 Section 86.161-00 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations...

  13. 40 CFR 86.161-00 - Air conditioning environmental test facility ambient requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... to simulate the impact of an ambient heat load on the power requirements of the vehicle's air... elements that are discussed are ambient air temperature and humidity, minimum test cell size, solar heating... be shown that all of the ambient test condition performance requirements are satisfied. (d)...

  14. 40 CFR 86.161-00 - Air conditioning environmental test facility ambient requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Air conditioning environmental test facility ambient requirements. 86.161-00 Section 86.161-00 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations...

  15. 40 CFR 86.161-00 - Air conditioning environmental test facility ambient requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 19 2014-07-01 2014-07-01 false Air conditioning environmental test facility ambient requirements. 86.161-00 Section 86.161-00 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations...

  16. 40 CFR 86.167-17 - AC17 Air Conditioning Emissions Test Procedure.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 19 2013-07-01 2013-07-01 false AC17 Air Conditioning Emissions Test Procedure. 86.167-17 Section 86.167-17 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1977 and Later...

  17. 40 CFR 86.166-12 - Method for calculating emissions due to air conditioning leakage.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Method for calculating emissions due to air conditioning leakage. 86.166-12 Section 86.166-12 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for...

  18. 40 CFR 86.166-12 - Method for calculating emissions due to air conditioning leakage.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Method for calculating emissions due to air conditioning leakage. 86.166-12 Section 86.166-12 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for...

  19. 40 CFR 86.165-12 - Air conditioning idle test procedure.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Air conditioning idle test procedure. 86.165-12 Section 86.165-12 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1977 and Later Model Year...

  20. Air Conditioning, Heating, and Ventilating: Construction, Supervision, and Inspection. Course of Study.

    ERIC Educational Resources Information Center

    Messer, John D.

    This course of study on air conditioning, heating, and ventilating is part of a construction, supervision, and inspection series, which provides instructional materials for community or junior college technical courses in the inspection program. Material covered pertains to: piping and piping systems; air movers; boilers; heat exchangers; cooling…

  1. Influence of Boundary Conditions on Simulated U.S. Air Quality

    EPA Science Inventory

    One of the key inputs to regional-scale photochemical models frequently used in air quality planning and forecasting applications are chemical boundary conditions representing background pollutant concentrations originating outside the regional modeling domain. A number of studie...

  2. Evaluating Membrane Processes for Air Conditioning; Highlights in Research and Development, NREL (National Renewable Energy Laboratory)

    SciTech Connect

    2015-06-01

    This NREL Highlight discusses a recent state-of-the-art review of membrane processes for air conditioning that identifies future research opportunities. This highlight is being developed for the June 2015 S&T Alliance Board meeting.

  3. Fuel Savings and Emission Reductions from Next-Generation Mobile Air Conditioning Technology in India: Preprint

    SciTech Connect

    Chaney, L.; Thundiyil, K.; Chidambaram, S.; Abbi, Y. P.; Anderson, S.

    2007-05-01

    This paper quantifies the mobile air-conditioning fuel consumption of the typical Indian vehicle, exploring potential fuel savings and emissions reductions these systems for the next generation of vehicles.

  4. Air Quality Management Using Modern Remote Sensing and Spatial Technologies and Associated Societal Costs

    PubMed Central

    Uddin, Waheed

    2006-01-01

    This paper presents a study of societal costs related to public health due to the degradation of air quality and the lack of physical activity, both affected by our built environment. The paper further shows road safety as another public health concern. Traffic fatalities are the number one cause of death in the world. Traffic accidents result in huge financial loss to the people involved and the related public health cost is a significant part of the total societal cost. Motor vehicle exhausts and industrial emissions, gasoline vapors, and chemical solvents as well as natural sources emit nitrogen oxides and volatile organic compounds, which are precursors to the formation of ground-level Ozone. High concentration values of ground-level Ozone in hot summer days produce smog and lead to respiratory problems and loss in worker’s productivity. These factors and associated economic costs to society are important in establishing public policy and decision-making for sustainable transportation and development of communities in both industrialized and developing countries. This paper presents new science models for predicting ground-level Ozone and related air quality degradation. The models include predictor variables of daily climatological data, traffic volume and mix, speed, aviation data, and emission inventory of point sources. These models have been implemented in the user friendly AQMAN computer program and used for a case study in Northern Mississippi. Life-cycle benefits from reduced societal costs can be used to implement sustainable transportation policies, enhance investment decision-making, and protect public health and the environment. PMID:16968969

  5. Low-cost micro condition monitoring system based on LabVIEW and SQL server

    NASA Astrophysics Data System (ADS)

    Jia, Zhizhou; Guo, Yu; Fan, Yajun

    2013-03-01

    Due to most of the existing condition monitoring systems have a rather complicated structure and the high cost makes even big companies can only afford on a few key equipments, a developing scheme of low-cost micro condition monitoring system based on LabVIEW and SQL Server is proposed in this paper. The low-cost micro condition monitoring system can realize the effective monitoring to general machinery by full taking the advantages of LabVIEW and SQL Server respectively. The system supplements the existing condition monitoring systems to some extent. It affords good applicability and expanding ability, which make it suitable for the equipment management of enterprises for general equipment condition monitoring and health maintenance.

  6. A Portable Low-Cost High Density Sensor Network for Air Quality at London Heathrow Airport

    NASA Astrophysics Data System (ADS)

    Popoola, Olalekan; Mead, Iq; Bright, Vivien; Baron, Ronan; Saffell, John; Stewart, Gregor; Kaye, Paul; Jones, Roderic

    2013-04-01

    Outdoor air quality and its impact on human health and the environment have been well studied and it has been projected that poor air quality will surpass poor sanitation as the major course of environmental premature mortality by 2050 (IGAC / IGBP, release statement, 2012). Transport-related pollution has been regulated at various levels by enactment of legislations at local, national, regional and global stages. As part of the mitigation measures, routine measurements of atmospheric pollutants such as carbon monoxide (CO), nitric oxide (NO) and nitrogen dioxide (NO2) have to be established in areas where air quality problems are identified. In addition, emission inventories are also generated for different atmospheric environments including urban areas and airport environments required for air quality models. Whilst recognising that most of the existing sparse monitoring networks provide high temporal measurements, spatial data of these highly variable pollutants are not captured, making it difficult to adequately characterise the highly heterogeneous air quality. Spatial information is often obtained from model data which can only be constrained using measurements from the sparse monitoring networks. The work presented here shows the application of low-cost sensor networks aimed at addressing this missing spatial information. We have shown in previous studies the application of low-cost electrochemical sensor network instruments in monitoring road transport pollutants including CO, NO and NO2 in an urban environment (Mead et. al. 2012, accepted Atmospheric Environment). Modified versions of these instruments which include additional species such as O3, SO2, VOCs and CO2 are currently deployed at London Heathrow Airport (LHR) as part of the Sensor Network for Air Quality (SNAQ) project. Meteorology data such as temperature, relative humidity, wind speed and direction are also measured as well as size-speciated particulates (0.38 to 17.4 µm). A network of 50

  7. Solar technology assessment project. Volume 4: Solar air conditioning: Active, hybrid and passive

    NASA Astrophysics Data System (ADS)

    Yellott, J. I.

    1981-04-01

    The status of absorption cycle solar air conditioning and the Rankine cycle solar cooling system is reviewed. Vapor jet ejector chillers, solar pond based cooling, and photovoltaic compression air conditioning are also briefly discussed. Hybrid solar cooling by direct and indirect evaporative cooling, and dehumidification by desiccation are described and discussed. Passive solar cooling by convective and radiative processes, evaporative cooling by passive processes, and cooling with roof ponds and movable insulation are reviewed. Federal and state involvement in solar cooling is discussed.

  8. Open hardware, low cost, air quality stations for monitoring ozone in coastal area

    NASA Astrophysics Data System (ADS)

    Lima, Marco; Donzella, Davide; Pintus, Fabio; Fedi, Adriano; Ferrari, Daniele; Massabò, Marco

    2014-05-01

    Ozone concentrations in urban and coastal area are a great concern for citizens and, consequently regulator. In the last 20 years the Ozone concentration is almost doubled and it has attracted the public attention because of the well know harmful impacts on human health and biosphere in general. Official monitoring networks usually comprise high precision, high accuracy observation stations, usually managed by public administrations and environmental agency; unfortunately due to their high costs of installation and maintenance, the monitoring stations are relatively sparse. This kind of monitoring networks have been recognized to be unsuitable to effectively characterize the high variability of air quality, especially in areas where pollution sources are various and often not static. We present a prototype of a low cost station for air quality monitoring, specifically developed for complementing the official monitoring stations improving the representation of air quality spatial distribution. We focused on a semi-professional product that could guarantee the highest reliability at the lowest possible cost, supported by a consistent infrastructure for data management. We test two type of Ozone sensor electrochemical and metal oxide. This work is integrated in the ACRONET Paradigm ® project: an open-hardware platform strongly oriented on environmental monitoring. All software and hardware sources will be available on the web. Thus, a computer and a small amount of work tools will be sufficient to create new monitoring networks, with the only constraint to share all the data obtained. It will so possible to create a real "sensing community". The prototype is currently able to measure ozone level, temperature and relative humidity, but soon, with the upcoming changes, it will be able also to monitor dust, carbon monoxide and nitrogen dioxide, always through the use of commercial sensors. The sensors are grouped in a compact board that interfaces with a data

  9. Economic analysis of air-conditioning systems with off-peak chilled-water storage. Master's thesis

    SciTech Connect

    McMullen, B.J.; Papaprokopiou, N.D.

    1981-09-01

    This thesis investigates current methods of chilled-water storage for air conditioning applications and the economics of chilled-water storage with time-of-use electric utility rates. Current methods of chilled-water storage are investigated by comparing costs of construction materials for storage tanks and effectiveness and costs of anti-blending systems. The economics of chilled-water storage are analyzed by computing total life cycle costs of alternative air conditioning systems for two different sized buildings. Computer simulation is used to determine electric consumption for the buildings. The simulation of each building contains three options: no chilled-water storage, chiller operated only at night, and a small chiller supplemented by stored chilled-water. A gunite or Styrofoam tank with a moving partition anti-blending system is the least expensive and most effective storage system. The economics of chilled-water storage are sensitive to the size of the building analyzed. Operating the small chiller with supplemental chilled-water is economical in the smaller building. No chilled-water storage is the most economical option in the larger building. Operation of the chiller only at night was never economical.

  10. Cost Effective Measures to Reduce CO2 Emissions in the Air Freight Sector

    NASA Technical Reports Server (NTRS)

    Blinge, Magnus

    2003-01-01

    This paper presents cost effective measures to reduce CO2 emissions in the air freight sector. One door-to-door transport chain is studied in detail from a Scandinavian city to a city in southern Europe. The transport chain was selected by a group of representatives from the air freight sector in order to encompass general characteristics within the sector. Three different ways of shipping air cargo are studied, i.e., by air freighter, as belly freight (in passenger aircrafts) and trucking. CO2 emissions are calculated for each part of the transport chain and its relative importance towards the total amount CO2 emitted during the whole transport chain is shown. It is confirmed that the most CO2 emitting part of the transport chain is the actual flight and that it is in the take-off and climbing phases that most fuel are burned. It is also known that the technical development of aircraft implies a reduction in fuel consumption for each new generation of aircraft. Thus, the aircraft manufacturers have an important role in this development. Having confirmed these observations, this paper focuses on other factors that significantly affects the fuel consumption. Analyzed factors are, e.g., optimization of speed and altitude, traffic management, congestion on and around the airfields, tankering, "latest acceptance time" for goods and improving the load factor. The different factors relative contribution to the total emission levels for the transport chain has been estimated.

  11. Contribution of air conditioning adoption to future energy use under global warming.

    PubMed

    Davis, Lucas W; Gertler, Paul J

    2015-05-12

    As household incomes rise around the world and global temperatures go up, the use of air conditioning is poised to increase dramatically. Air conditioning growth is expected to be particularly strong in middle-income countries, but direct empirical evidence is scarce. In this paper we use high-quality microdata from Mexico to describe the relationship between temperature, income, and air conditioning. We describe both how electricity consumption increases with temperature given current levels of air conditioning, and how climate and income drive air conditioning adoption decisions. We then combine these estimates with predicted end-of-century temperature changes to forecast future energy consumption. Under conservative assumptions about household income, our model predicts near-universal saturation of air conditioning in all warm areas within just a few decades. Temperature increases contribute to this surge in adoption, but income growth by itself explains most of the increase. What this will mean for electricity consumption and carbon dioxide emissions depends on the pace of technological change. Continued advances in energy efficiency or the development of new cooling technologies could reduce the energy consumption impacts. Similarly, growth in low-carbon electricity generation could mitigate the increases in carbon dioxide emissions. However, the paper illustrates the enormous potential impacts in this sector, highlighting the importance of future research on adaptation and underscoring the urgent need for global action on climate change. PMID:25918391

  12. Contribution of air conditioning adoption to future energy use under global warming

    PubMed Central

    Davis, Lucas W.; Gertler, Paul J.

    2015-01-01

    As household incomes rise around the world and global temperatures go up, the use of air conditioning is poised to increase dramatically. Air conditioning growth is expected to be particularly strong in middle-income countries, but direct empirical evidence is scarce. In this paper we use high-quality microdata from Mexico to describe the relationship between temperature, income, and air conditioning. We describe both how electricity consumption increases with temperature given current levels of air conditioning, and how climate and income drive air conditioning adoption decisions. We then combine these estimates with predicted end-of-century temperature changes to forecast future energy consumption. Under conservative assumptions about household income, our model predicts near-universal saturation of air conditioning in all warm areas within just a few decades. Temperature increases contribute to this surge in adoption, but income growth by itself explains most of the increase. What this will mean for electricity consumption and carbon dioxide emissions depends on the pace of technological change. Continued advances in energy efficiency or the development of new cooling technologies could reduce the energy consumption impacts. Similarly, growth in low-carbon electricity generation could mitigate the increases in carbon dioxide emissions. However, the paper illustrates the enormous potential impacts in this sector, highlighting the importance of future research on adaptation and underscoring the urgent need for global action on climate change. PMID:25918391

  13. A systematic review and cost analysis of robot-assisted hysterectomy in malignant and benign conditions.

    PubMed

    Tapper, Anna-Maija; Hannola, Mikko; Zeitlin, Rainer; Isojärvi, Jaana; Sintonen, Harri; Ikonen, Tuija S

    2014-06-01

    In order to assess the effectiveness and costs of robot-assisted hysterectomy compared with conventional techniques we reviewed the literature separately for benign and malignant conditions, and conducted a cost analysis for different techniques of hysterectomy from a hospital economic database. Unlimited systematic literature search of Medline, Cochrane and CRD databases produced only two randomized trials, both for benign conditions. For the outcome assessment, data from two HTA reports, one systematic review, and 16 original articles were extracted and analyzed. Furthermore, one cost modelling and 13 original cost studies were analyzed. In malignant conditions, less blood loss, fewer complications and a shorter hospital stay were considered as the main advantages of robot-assisted surgery, like any mini-invasive technique when compared to open surgery. There were no significant differences between the techniques regarding oncological outcomes. When compared to laparoscopic hysterectomy, the main benefit of robot-assistance was a shorter learning curve associated with fewer conversions but the length of robotic operation was often longer. In benign conditions, no clinically significant differences were reported and vaginal hysterectomy was considered the optimal choice when feasible. According to Finnish data, the costs of robot-assisted hysterectomies were 1.5-3 times higher than the costs of conventional techniques. In benign conditions the difference in cost was highest. Because of expensive disposable supplies, unit costs were high regardless of the annual number of robotic operations. Hence, in the current distribution of cost pattern, economical effectiveness cannot be markedly improved by increasing the volume of robotic surgery. PMID:24703710

  14. Influence of Ventilation Ratio on Desiccant Air Conditioning System's Efficiency Performance

    NASA Astrophysics Data System (ADS)

    Tran, Thien Nha; Akisawa, Atsushi; Kashiwagi, Takao; Hamamoto, Yoshinori

    Ventilation air is a concern for engineers since ventilated air controls indoor air contamination; additional ventilation, however, increases the energy consumption of buildings. The study investigates the energy efficiency performance of the desiccant dehumidification air conditioning system in the context of ventilation for a hot-humid climate such as summer in Japan. The investigation focuses on the variable ratio of ventilation air as required by the application of air conditioning system. The COP of the desiccant air conditioning system is determined. The evaluation is subsequently performed by comparing the desiccant based system with the conventional absorption cooling system and the vapor compression cooling system. Based on 12 desiccant rotor simulations, it is found that the desiccant regeneration temperature required varies between 47°C to 85°C as ventilation ratio increases from 0. 0 to 100%, and up to 52. 5°C as the ventilation ratio achieves 14%. The heat required for regenerating desiccant accounts for 55% and higher of the system's total heat consumption; the system is expected to be energy efficient by using wasted heat from the absorption chiller for desiccant regeneration; and its energy efficiency expands as the ratio of ventilation air rises above 15% compared with the conventional absorption cooling system. The energy efficiency also benefits as the ratio rises beyond 70% against the conventional vapor compression cooling system.

  15. Benefit-cost analysis with uncertain information: an application in air pollution control

    SciTech Connect

    Ruby, M.G.

    1981-01-01

    This dissertation develops and demonstrates a form of the net present value decision rule for evaluating the economic advisability of air pollution control policies and projects. It follows a line of argument advanced by earlier authors to derive a formulation of the net present value rule that discounts future benefits and costs at the social rate of time preference but accounts for the lost opportunity costs of the higher returns available to private investments. Using this form, it explores the uncertainties in the resulting calculations, due to inadequate data, for an air pollution control project at a model stationary source of sulfur dioxide air emissions. It examines each of the variables in the rule for both a meso-scale and a long-range transport cast at three levels of background pollutant concentrations. Estimates are given for both the dominance of the variables at specific nominal values and the uncertainty in the individual terms. Detailed reviews are presented of the various financial, effects, and value variables required by the benefit-cost calculation for the model project. The value of an improvement in visibility from a reduction in sulfate particulate matter is calculated for both cases and each background concentration. The economic value of the reduction of ''regional haze'' was found to be greater than the value associated with reducing ''plume blight'' in even the low background case. The calculations of the relative importance and the relative contributions to uncertainty of the different variables gave similar results. Among the more important terms were the pollution estimates from the dispersion model, the value of (the change in risk of) morbidity, the dose-response functions and the thresholds for morbidity, and the financial terms, such as rates of interest. (JMT)

  16. Application of air classification and formulation to manage feedstock cost, quality and availability for bioenergy

    DOE PAGESBeta

    Thompson, Vicki S.; Lacey, Jeffrey A.; Hartley, Damon; Jindra, Michael A.; Aston, John E.; Thompson, David N.

    2016-04-22

    Biomass such as agricultural residues, energy crops and yard waste has significant potential to be used as renewable feedstocks for production of fuels, chemicals and energy. However, in a given location, biomass availability, cost and quality can vary markedly. Strategies to manage these traits must be identified and implemented so that consistent low-cost and high-quality feedstocks can be delivered to biorefineries year round. In this study, we examine air classification as a method to mitigate high ash concentrations in corn stover, switchgrass, and grass clippings. Formulation techniques were then used to produce blends that met ash quality and biomass quantitymore » specifications at the lowest possible cost for biopower and biochemical conversion applications. It was found that air classification can separate the biomass into light fractions which contain concentrated amounts of elemental ash components introduced through soil contamination such as sodium, alumina, silica, iron and titania; and heavy fractions that are depleted in these components and have relatively lower total ash content. Light fractions of corn stover and grass clippings were found to be suitable for combustion applications since they had less propensity to slag than the whole biomass material. The remaining heavy fractions of corn stover or grass clippings could then be blended with switchgrass to produce blends that met the 5% total ash specifications suggested for biochemical conversions. However, ternary blends of the three feedstocks were not possible due to the high ash content of grass clippings. Lastly, it was determined that air classification by itself was not suitable to prepare these feedstocks for pyrolysis due to high ash content.« less

  17. Study of a very low cost air combat maneuvering trainer aircraft

    NASA Technical Reports Server (NTRS)

    Hill, G. C.; Bowles, J. V.

    1976-01-01

    A very low cost aircraft for performing Air Combat Maneuvering (ACM) training was studied using the BD-5J sport plane as a point of departure. The installation of a larger engine and increased fuel capacity were required to meet the performance and mission objectives. Reduced wing area increased the simulation of the ACM engagement, and a comparison with current tactical aircraft is presented. Other factors affecting the training transfer are considered analytically, but a flight evaluation is recommended to determine the concept utility.

  18. Cost/benefit tradeoffs for reducing the energy consumption of the commercial air transportation system

    NASA Technical Reports Server (NTRS)

    Kraus, E. F.; Vanabkoude, J. C.

    1976-01-01

    The fuel saving potential and cost effectiveness of numerous operational and technical options proposed for reducing the fuel consumption of the U.S. commercial airline fleet was examined and compared. The impact of the most promising fuel conserving options on fuel consumption, passenger demand, operating costs and airline profits when implemented in the U.S. domestic and international airline fleets was determined. A forecast estimate was made of the potential fuel savings achievable in the U.S. scheduled air transportation system. Specifically, the means for reducing the jet fuel consumption of the U.S. scheduled airlines in domestic and international passenger operations were investigated. A design analysis was made of two turboprop aircraft as possible fuel conserving derivatives of the DC-9-30.

  19. Fuel Savings and Emission Reductions from Next-Generation Mobile Air Conditioning Technology in India

    SciTech Connect

    Chaney, L.; Thundiyil, K.; Andersen, S.; Chidambaram, S.; Abbi, Y. P.

    2007-01-01

    Up to 19.4% of vehicle fuel consumption in India is devoted to air conditioning (A/C). Indian A/C fuel consumption is almost four times the fuel penalty in the United States and close to six times that in the European Union because India's temperature and humidity are higher and because road congestion forces vehicles to operate inefficiently. Car A/C efficiency in India is an issue worthy of national attention considering the rate of increase of A/C penetration into the new car market, India's hot climatic conditions and high fuel costs. Car A/C systems originally posed an ozone layer depletion concern. Now that industrialized and many developing countries have moved away from ozone-depleting substances per Montreal Protocol obligations, car A/C impact on climate has captured the attention of policy makers and corporate leaders. Car A/C systems have a climate impact from potent global warming potential gas emissions and from fuel used to power the car A/Cs. This paper focuses on car A/C fuel consumption in the context of the rapidly expanding Indian car market and how new technological improvements can result in significant fuel savings and consequently, emission reductions. A 19.4% fuel penalty is associated with A/C use in the typical Indian passenger car. Car A/C fuel use and associated tailpipe emissions are strong functions of vehicle design, vehicle use, and climate conditions. Several techniques: reducing thermal load, improving vehicle design, improving occupants thermal comfort design, improving equipment, educating consumers on impacts of driver behaviour on MAC fuel use, and others - can lead to reduced A/C fuel consumption.

  20. Modeling Validation and Control Analysis for Controlled Temperature and Humidity of Air Conditioning System

    PubMed Central

    Lee, Jing-Nang; Lin, Tsung-Min

    2014-01-01

    This study constructs an energy based model of thermal system for controlled temperature and humidity air conditioning system, and introduces the influence of the mass flow rate, heater and humidifier for proposed control criteria to achieve the controlled temperature and humidity of air conditioning system. Then, the reliability of proposed thermal system model is established by both MATLAB dynamic simulation and the literature validation. Finally, the PID control strategy is applied for controlling the air mass flow rate, humidifying capacity, and heating, capacity. The simulation results show that the temperature and humidity are stable at 541 sec, the disturbance of temperature is only 0.14°C, 0006 kgw/kgda in steady-state error of humidity ratio, and the error rate is only 7.5%. The results prove that the proposed system is an effective controlled temperature and humidity of an air conditioning system. PMID:25250390

  1. Experimental investigation on performance of ice storage air-conditioning system with separate heat pipe

    SciTech Connect

    Fang, Guiyin; Liu, Xu; Wu, Shuangmao

    2009-11-15

    An experimental study on operation performance of ice storage air-conditioning system with separate helical heat pipe is conducted in this paper. The experimental system of ice storage air-conditioning system with separate heat pipe is set up. The performance parameters such as the evaporation pressure and the condensation pressure of refrigeration system, the refrigeration capacity and the COP (coefficient of performance) of the system, the IPF (ice packing factor) and the cool storage capacity in the cool storage tank during charging period, and the cool discharge rate and the cool discharge capacity in the cool storage tank, the outlet water temperature in the cool storage tank and the outlet air temperature in room unit during discharging period are investigated. The experimental results show that the ice storage air-conditioning system with separate helical heat pipe can stably work during charging and discharging period. This indicates that the ice storage air-conditioning system with separate helical heat pipe is well adapted to cool storage air-conditioning systems in building. (author)

  2. Performance and evaluation of gas engine driven rooftop air conditioning equipment at the Willow Grove (PA) Naval Air Station. Interim report, 1992 cooling season

    SciTech Connect

    Armstrong, P.R.; Conover, D.R.

    1993-05-01

    In a field evaluation conducted for the US Department of Energy (DOE) Office of Federal Energy Management Program (FEMP), the Pacific Northwest Laboratory (PNL) examined the performance of a new US energy-related technology under the FEMP Test Bed Demonstration Program. The technology was a 15-ton natural gas engine driven roof top air conditioning unit. Two such units were installed on a naval retail building to provide space conditioning to the building. Under the Test Bed Demonstration Program, private and public sector interests are focused to support the installation and evaluation of new US technologies in the federal sector. Participating in this effort under a Cooperative Research and Development Agreement (CRADA) with DOE were the American Gas Cooling Center, Philadelphia Electric Company, Thermo King Corporation, and the US Naval Air Station at Willow Grove, Pennsylvania. Equipment operating and service data as well as building interior and exterior conditions were secured for the 1992 cooling season. Based on a computer assessment of the building using standard weather data, a comparison was made with the energy and operating costs associated with the previous space conditioning system. Based on performance during the 1992 cooling season and adjusted to a normal weather year, the technology will save the site $6,000/yr in purchased energy costs. An additional $9,000 in savings due to electricity demand ratchet charge reductions will also be realized. Detailed information on the technology, the installation, and the results of the technology test are provided to illustrate the advantages to the federal sector of using this technology. A history of the CRADA development process is also reported.

  3. Simulation Based Low-Cost Composite Process Development at the US Air Force Research Laboratory

    NASA Technical Reports Server (NTRS)

    Rice, Brian P.; Lee, C. William; Curliss, David B.

    2003-01-01

    Low-cost composite research in the US Air Force Research Laboratory, Materials and Manufacturing Directorate, Organic Matrix Composites Branch has focused on the theme of affordable performance. Practically, this means that we use a very broad view when considering the affordability of composites. Factors such as material costs, labor costs, recurring and nonrecurring manufacturing costs are balanced against performance to arrive at the relative affordability vs. performance measure of merit. The research efforts discussed here are two projects focused on affordable processing of composites. The first topic is the use of a neural network scheme to model cure reaction kinetics, then utilize the kinetics coupled with simple heat transport models to predict, in real-time, future exotherms and control them. The neural network scheme is demonstrated to be very robust and a much more efficient method that mechanistic cure modeling approach. This enables very practical low-cost processing of thick composite parts. The second project is liquid composite molding (LCM) process simulation. LCM processing of large 3D integrated composite parts has been demonstrated to be a very cost effective way to produce large integrated aerospace components specific examples of LCM processes are resin transfer molding (RTM), vacuum assisted resin transfer molding (VARTM), and other similar approaches. LCM process simulation is a critical part of developing an LCM process approach. Flow simulation enables the development of the most robust approach to introducing resin into complex preforms. Furthermore, LCM simulation can be used in conjunction with flow front sensors to control the LCM process in real-time to account for preform or resin variability.

  4. INTEGRATED AIR POLLUTION CONTROL FOR COAL-FIRED UTILITY BOILERS: A COMPUTER MODEL APPROACH FOR DESIGN AND COST-ESTIMATING

    EPA Science Inventory

    The paper describes the Integrated Air Pollution Control System (IAPCS), a computerized program that can be used to estimate the cost and performance of pre-combustion, in situ, and post-combustion air pollution control configurations in pulverized-coal-fired utility boilers of 1...

  5. Energy-Efficient Supermarket Heating, Ventilation, and Air Conditioning in Humid Climates in the United States

    SciTech Connect

    Clark, J.

    2015-03-01

    Supermarkets are energy-intensive buildings that consume the greatest amount of electricity per square foot of building of any building type in the United States and represent 5% of total U.S. commercial building primary energy use (EIA 2005). Refrigeration and heating, ventilation, and air-conditioning (HVAC) systems are responsible for a large proportion of supermarkets’ total energy use. These two systems sometimes work together and sometimes compete, but the performance of one system always affects the performance of the other. To better understand these challenges and opportunities, the Commercial Buildings team at the National Renewable Energy Laboratory investigated several of the most promising strategies for providing energy-efficient HVAC for supermarkets and quantified the resulting energy use and costs using detailed simulations. This research effort was conducted on behalf of the U.S. Department of Energy (DOE) Commercial Building Partnerships (CBP) (Baechler et al. 2012; Parrish et al. 2013; Antonopoulos et al. 2014; Hirsch et al. 2014). The goal of CBP was to reduce energy use in the commercial building sector by creating, testing, and validating design concepts on the pathway to net zero energy commercial buildings. Several CBP partners owned or operated buildings containing supermarkets and were interested in optimizing the energy efficiency of supermarket HVAC systems in hot-humid climates. These partners included Walmart, Target, Whole Foods Market, SUPERVALU, and the Defense Commissary Agency.

  6. Correction of Temperatures of Air-Cooled Engine Cylinders for Variation in Engine and Cooling Conditions

    NASA Technical Reports Server (NTRS)

    Schey, Oscar W; Pinkel, Benjamin; Ellerbrock, Herman H , Jr

    1939-01-01

    Factors are obtained from semiempirical equations for correcting engine-cylinder temperatures for variation in important engine and cooling conditions. The variation of engine temperatures with atmospheric temperature is treated in detail, and correction factors are obtained for various flight and test conditions, such as climb at constant indicated air speed, level flight, ground running, take-off, constant speed of cooling air, and constant mass flow of cooling air. Seven conventional air-cooled engine cylinders enclosed in jackets and cooled by a blower were tested to determine the effect of cooling-air temperature and carburetor-air temperature on cylinder temperatures. The cooling air temperature was varied from approximately 80 degrees F. to 230 degrees F. and the carburetor-air temperature from approximately 40 degrees F. to 160 degrees F. Tests were made over a large range of engine speeds, brake mean effective pressures, and pressure drops across the cylinder. The correction factors obtained experimentally are compared with those obtained from the semiempirical equations and a fair agreement is noted.

  7. Low-cost inflatable lighter-than-air surveillance system for civilian applications

    NASA Astrophysics Data System (ADS)

    Kiddy, Jason S.; Chen, Peter C.; Niemczuk, John B.

    2002-08-01

    Today's society places an extremely high price on the value of human life and injury. Whenever possible, police and paramilitary actions are always directed towards saving as many lives as possible, whether it is the officer, perpetrator, or innocent civilians. Recently, the advent of robotic systems has enable law enforcement agencies to perform many of the most dangerous aspects of their jobs from relative safety. This is especially true to bomb disposal units but it is also gaining acceptance in other areas. An area where small, remotely operated machines may prove effective is in local aerial surveillance. Currently, the only aerial surveillance assets generally available to law enforcement agencies are costly helicopters. Unfortunately, most of the recently developed unmanned air vehicles (UAVs) are directed towards military applications and have limited civilian use. Systems Planning and Analysis, Inc. (SPA) has conceived and performed a preliminary analysis of a low-cost, inflatable, lighter- than-air surveillance system that may be used in a number of military and law enforcement surveillance situations. The preliminary analysis includes the concept definition, a detailed trade study to determine the optimal configuration of the surveillance system, high-pressure inflation tests, and a control analysis. This paper will provide the details in these areas of the design and provide an insight into the feasibility of such a system.

  8. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  9. Improving forecast skill by assimilation of quality-controlled AIRS temperature retrievals under partially cloudy conditions

    NASA Astrophysics Data System (ADS)

    Reale, O.; Susskind, J.; Rosenberg, R.; Brin, E.; Liu, E.; Riishojgaard, L. P.; Terry, J.; Jusem, J. C.

    2008-04-01

    The National Aeronautics and Space Administration (NASA) Atmospheric Infrared Sounder (AIRS) on board the Aqua satellite is now recognized as an important contributor towards the improvement of weather forecasts. At this time only a small fraction of the total data produced by AIRS is being used by operational weather systems. In fact, in addition to effects of thinning and quality control, the only AIRS data assimilated are radiance observations of channels unaffected by clouds. Observations in mid-lower tropospheric sounding AIRS channels are assimilated primarily under completely clear-sky conditions, thus imposing a very severe limitation on the horizontal distribution of the AIRS-derived information. In this work it is shown that the ability to derive accurate temperature profiles from AIRS observations in partially cloud-contaminated areas can be utilized to further improve the impact of AIRS observations in a global model and forecasting system. The analyses produced by assimilating AIRS temperature profiles obtained under partial cloud cover result in a substantially colder representation of the northern hemisphere lower midtroposphere at higher latitudes. This temperature difference has a strong impact, through hydrostatic adjustment, in the midtropospheric geopotential heights, which causes a different representation of the polar vortex especially over northeastern Siberia and Alaska. The AIRS-induced anomaly propagates through the model's dynamics producing improved 5-day forecasts.

  10. Improving Forecast Skill by Assimilation of Quality-controlled AIRS Temperature Retrievals under Partially Cloudy Conditions

    NASA Technical Reports Server (NTRS)

    Reale, O.; Susskind, J.; Rosenberg, R.; Brin, E.; Riishojgaard, L.; Liu, E.; Terry, J.; Jusem, J. C.

    2007-01-01

    The National Aeronautics and Space Administration (NASA) Atmospheric Infrared Sounder (AIRS) on board the Aqua satellite has been long recognized as an important contributor towards the improvement of weather forecasts. At this time only a small fraction of the total data produced by AIRS is being used by operational weather systems. In fact, in addition to effects of thinning and quality control, the only AIRS data assimilated are radiance observations of channels unaffected by clouds. Observations in mid-lower tropospheric sounding AIRS channels are assimilated primarily under completely clear-sky conditions, thus imposing a very severe limitation on the horizontal distribution of the AIRS-derived information. In this work it is shown that the ability to derive accurate temperature profiles from AIRS observations in partially cloud-contaminated areas can be utilized to further improve the impact of AIRS observations in a global model and forecasting system. The analyses produced by assimilating AIRS temperature profiles obtained under partial cloud cover result in a substantially colder representation of the northern hemisphere lower midtroposphere at higher latitudes. This temperature difference has a strong impact, through hydrostatic adjustment, in the midtropospheric geopotential heights, which causes a different representation of the polar vortex especially over northeastern Siberia and Alaska. The AIRS-induced anomaly propagates through the model's dynamics producing improved 5-day forecasts.

  11. Atmospheric Chemistry Measurements in Schools and Outreach Activities with Low-cost Air Quality Sensors

    NASA Astrophysics Data System (ADS)

    Fleming, Z.; Monks, P. S.; McKenzie, K.

    2014-12-01

    The increasing range of low cost air quality sensors entering the market-place or being developed in-house in the last couple of years has led to many possibilities for using these instruments for public outreach activities or citizen science projects. A range of instruments sent out into local schools for the children to interpret and analyse the data and put the air quality in their area into context. A teaching package with tutorials has been developed to bring the data to life and link in with curriculum.The instruments have also been positioned around the city of Leicester in the UK to help understand the spatial variations in air quality and to assess the impact of retro-fitting buses on a busy bus route. The data is easily accessible online on a near real time basis and the various instruments can be compared with others around the country or the world from classrooms around the world.We will give an overview of the instrumentation with a comparison with commercial and cutting edge research instrumentation, the type of activities that were carried out and the public outreach forums where the data can be used.

  12. Data Verification Tools for Minimizing Management Costs of Dense Air-Quality Monitoring Networks.

    PubMed

    Miskell, Georgia; Salmond, Jennifer; Alavi-Shoshtari, Maryam; Bart, Mark; Ainslie, Bruce; Grange, Stuart; McKendry, Ian G; Henshaw, Geoff S; Williams, David E

    2016-01-19

    Aiming at minimizing the costs, both of capital expenditure and maintenance, of an extensive air-quality measurement network, we present simple statistical methods that do not require extensive training data sets for automated real-time verification of the reliability of data delivered by a spatially dense hybrid network of both low-cost and reference ozone measurement instruments. Ozone is a pollutant that has a relatively smooth spatial spread over a large scale although there can be significant small-scale variations. We take advantage of these characteristics and demonstrate detection of instrument calibration drift within a few days using a rolling 72 h comparison of hourly averaged data from the test instrument with that from suitably defined proxies. We define the required characteristics of the proxy measurements by working from a definition of the network purpose and specification, in this case reliable determination of the proportion of hourly averaged ozone measurements that are above a threshold in any given day, and detection of calibration drift of greater than ±30% in slope or ±5 parts-per-billion in offset. By analyzing results of a study of an extensive deployment of low-cost instruments in the Lower Fraser Valley, we demonstrate that proxies can be established using land-use criteria and that simple statistical comparisons can identify low-cost instruments that are not stable and therefore need replacing. We propose that a minimal set of compliant reference instruments can be used to verify the reliability of data from a much more extensive network of low-cost devices. PMID:26654467

  13. Air Conditioning with Magnetic Refrigeration : An Efficient, Green Compact Cooling System Using Magnetic Refrigeration

    SciTech Connect

    2010-09-01

    BEETIT Project: Astronautics is developing an air conditioning system that relies on magnetic fields. Typical air conditioners use vapor compression to cool air. Vapor compression uses a liquid refrigerant to circulate within the air conditioner, absorb the heat, and pump the heat out into the external environment. Astronautics’ design uses a novel property of certain materials, called “magnetocaloric materials”, to achieve the same result as liquid refrigerants. These magnetocaloric materials essentially heat up when placed within a magnetic field and cool down when removed, effectively pumping heat out from a cooler to warmer environment. In addition, magnetic refrigeration uses no ozone-depleting gases and is safer to use than conventional air conditioners which are prone to leaks.

  14. Development of a Ventilation and Air-conditioning System using Fixed Bed Desiccant Units

    NASA Astrophysics Data System (ADS)

    Miyazaki, Takahiko; Akisawa, Atsushi; Shindoh, Shinji; Masazumi, Godo; Takeshi, Takatsuka; Hamamoto, Yoshinori; Mori, Hideo

    The study investigated fixed bed desiccant units for ventilation and air-conditioning. The system mainly dehumidifies the outdoor fresh air to be supplied to an air-conditioned room. Hence, the airconditioning load of the air-conditioner in the room can be mitigated. Several adsorbents were compared from the viewpoints of humidity ratio at the outlet of the desiccant unit, dehumidified quantity per unit volume, and dehumidified quantity per unit adsorbent mass. The performance of the desiccant unit was predicted by simulation which was validated by comparison with experiment. The results revealed the most suitable adsorbent to reduce the desiccant unit size. It was also found that the humidity ratio at the outlet of the desiccant unit could be lowered by shortening the dimensionless switching time.

  15. Heterogeneous copper-catalyzed hydroxylation of aryl iodides under air conditions.

    PubMed

    Ding, Guodong; Han, Hongling; Jiang, Tao; Wu, Tianbin; Han, Buxing

    2014-08-21

    In this work, the ligand-free heterogeneous copper Cu-g-C3N4 was synthesized and used for the hydroxylation of aryl iodides to synthesize phenols using cheap bases. The catalyst was conveniently prepared, air-tolerant, reusable and scalable, and is very efficient for a wide range of substrates. The synthesis of substituted phenols can be carried out under air conditions and has great potential for practical applications. PMID:24947007

  16. Medical costs and lost productivity from health conditions at volatile organic compound-contaminated Superfund sites

    SciTech Connect

    Lybarger, J.A.; Spengler, R.F.; Brown, D.R.; Lee, R.; Vogt, D.P. |; Perhac, R.M. Jr. |

    1998-10-01

    This paper estimates the health costs at Superfund sites for conditions associated with volatile organic compounds (VOCs) in drinking water. Health conditions were identified from published literature and registry information as occurring at excess rates in VOC-exposed populations. These health conditions were: (1) some categories of birth defects, (2) urinary tract disorders, (3) diabetes, (4) eczema and skin conditions, (5) anemia, (6) speech and hearing impairments in children under 10 years of age, and (7) stroke. Excess rates were used to estimate the excess number of cases occurring among the total population living within one-half mile of 258 Superfund sites. These sites had evidence of completed human exposure pathways for VOCs in drinking water. For each type of medical condition, an individual`s expected medical costs, long-term care costs, and lost work time due to illness or premature mortality were estimated. Costs were calculated to be approximately $330 million per year, in the absence of any remediation or public health intervention programs. The results indicate the general magnitude of the economic burden associated with a limited number of contaminants at a portion of all Superfund sites, thus suggesting that the burden would be greater than that estimated in this study if all contaminants at all Superfund sites could be taken into account.

  17. Heating, Ventilation, and Air Conditioning Design Strategy for a Hot-Humid Production Builder

    SciTech Connect

    Kerrigan, P.

    2014-03-01

    Building Science Corporation (BSC) worked directly with the David Weekley Homes - Houston division to develop a cost-effective design for moving the HVAC system into conditioned space. In addition, BSC conducted energy analysis to calculate the most economical strategy for increasing the energy performance of future production houses in preparation for the upcoming code changes in 2015. This research project addressed the following questions: 1. What is the most cost effective, best performing and most easily replicable method of locating ducts inside conditioned space for a hot-humid production home builder that constructs one and two story single family detached residences? 2. What is a cost effective and practical method of achieving 50% source energy savings vs. the 2006 International Energy Conservation Code for a hot-humid production builder? 3. How accurate are the pre-construction whole house cost estimates compared to confirmed post construction actual cost?

  18. Impact of the electric compressor for automotive air conditioning system on fuel consumption and performance analysis

    NASA Astrophysics Data System (ADS)

    Zulkifli, A. A.; Dahlan, A. A.; Zulkifli, A. H.; Nasution, H.; Aziz, A. A.; Perang, M. R. M.; Jamil, H. M.; Misseri, M. N.

    2015-12-01

    Air conditioning system is the biggest auxiliary load in a vehicle where the compressor consumed the largest. Problem with conventional compressor is the cooling capacity cannot be control directly to fulfill the demand of thermal load inside vehicle cabin. This study is conducted experimentally to analyze the difference of fuel usage and air conditioning performance between conventional compressor and electric compressor of the air conditioning system in automobile. The electric compressor is powered by the car battery in non-electric vehicle which the alternator will recharge the battery. The car is setup on a roller dynamometer and the vehicle speed is varied at 0, 30, 60, 90 and 110 km/h at cabin temperature of 25°C and internal heat load of 100 and 400 Watt. The results shows electric compressor has better fuel consumption and coefficient of performance compared to the conventional compressor.

  19. Carbon Dioxide and Ionic Liquid Refrigerants: Compact, Efficient Air Conditioning with Ionic Liquid-Based Refrigerants

    SciTech Connect

    2010-10-01

    BEETIT Project: Notre Dame is developing an air-conditioning system with a new ionic liquid and CO2 as the working fluid. Synthetic refrigerants used in air conditioning and refrigeration systems are potent GHGs and can trap 1,000 times more heat in the atmosphere than CO2 alone—making CO2 an attractive alternative for synthetic refrigerants in cooling systems. However, operating cooling systems with pure CO2 requires prohibitively high pressures and expensive hardware. Notre Dame is creating a new fluid made of CO2 and ionic liquid that enables the use of CO2 at low pressures and requires minimal changes to existing hardware and production lines. This new fluid also produces no harmful emissions and can improve the efficiency of air conditioning systems— enabling new use of CO2 as a refrigerant in cooling systems.

  20. Use of conditioned medium for efficient transformation and cost-effective cultivation of Nannochloropsis salina.

    PubMed

    Kang, Nam Kyu; Lee, Bongsoo; Shin, Sung-Eun; Jeon, Seungjib; Park, Min S; Yang, Ji-Won

    2015-04-01

    The oleaginous microalga Nannochloropsis sp. has been spotlighted as a promising candidate in genetic engineering research for biodiesel production. However, one of the major bottlenecks in the genetic manipulation against Nannochloropsis sp. is low transformation efficiency. Based on the idea that they grow rapidly in broth culture, the effect of conditioned medium on colonization and transformation efficiency of Nannochloropsis salina was investigated. Cells grown on agar plates with 20-40% conditioned medium produced colonies that were approximately 2.3-fold larger than cells grown without conditioned medium. More importantly, the transformation efficiency was about 2-fold greater on plates with 30% conditioned medium relative to those without conditioned medium. In addition, FAME productivity in liquid cultures with 100% conditioned medium increased up to 20% compared with cultures of control medium. These results suggest that conditioned medium can be applied for efficient transformation and cost-effective cultivation of N. salina for biodiesel production. PMID:25656867

  1. Cost of near-roadway and regional air pollution-attributable childhood asthma in Los Angeles County

    PubMed Central

    Brandt, Sylvia; Perez, Laura; Künzli, Nino; Lurmann, Fred; Wilson, John; Pastor, Manuel; McConnell, Rob

    2014-01-01

    Background Emerging evidence suggests that near-roadway air pollution (NRP) exposure causes childhood asthma. Associated costs are not well documented. Objective We estimated the cost of childhood asthma attributable to residential NRP exposure and regional ozone (O3) and nitrogen dioxide (NO2) in Los Angeles County. We developed a novel approach to apportion the costs between these exposures under different pollution scenarios. Methods We integrated results from a study of willingness to pay to reduce the burden of asthma with studies of health care utilization and charges to estimate the costs of an asthma case and exacerbation. We applied those costs to the number of asthma cases and exacerbations due to regional pollution in 2007 and to hypothetical scenarios of a 20% reduction in regional pollution in combination with a 20% reduction or increase in the proportion of the total population living within 75m of a major roadway. Results Cost of air pollution-related asthma in Los Angeles County in 2007 was $441 million for O3 and $202 million for NO2 in 2010 dollars. Cost of routine care (care in absence of exacerbation) accounted for 18% of the combined NRP and O3 cost and 39% of the combined NRP and NO2 cost—costs not recognized in previous analyses. NRP-attributable asthma accounted for 43% (O3) to 51% (NO2) of the total annual cost of exacerbations and routine care associated with pollution. Hypothetical scenarios showed that costs from increased NRP exposure may offset savings from reduced regional pollution. Conclusions Our model disaggregates the costs of regional pollution and NRP exposure and illustrates how they might vary under alternative exposure scenarios. The cost of air pollution is a substantial burden on families and an economic loss for society. PMID:25439228

  2. Potential Evaluation of Solar Heat Assisted Desiccant Hybrid Air Conditioning System

    NASA Astrophysics Data System (ADS)

    Tran, Thien Nha; Hamamoto, Yoshinori; Akisawa, Atsushi; Kashiwagi, Takao

    The solar thermal driven desiccant dehumidification-absorption cooling hybrid system has superior advantage in hot-humid climate regions. The reasonable air processing of desiccant hybrid air conditioning system and the utility of clean and free energy make the system environment friendly and energy efficient. The study investigates the performance of the desiccant dehumidification air conditioning systems with solar thermal assistant. The investigation is performed for three cases which are combinations of solar thermal and absorption cooling systems with different heat supply temperature levels. Two solar thermal systems are used in the study: the flat plate collector (FPC) and the vacuum tube with compound parabolic concentrator (CPC). The single-effect and high energy efficient double-, triple-effect LiBr-water absorption cooling cycles are considered for cooling systems. COP of desiccant hybrid air conditioning systems are determined. The evaluation of these systems is subsequently performed. The single effect absorption cooling cycle combined with the flat plate collector solar system is found to be the most energy efficient air conditioning system.

  3. Damage costs due to automotive air pollution and the influence of street canyons

    NASA Astrophysics Data System (ADS)

    Spadaro, Joseph V.; Rabl, Ari

    Using the methodology of the ExternE Project of the European Commission, we have evaluated the damage costs of automotive air pollution by way of two case studies in France: a trip across Paris, and a trip from Paris to Lyon. This methodology involves an analysis of the impact pathways, starting with the emissions (e.g., g/km of particles from tailpipe), followed by local and regional dispersion (e.g., incremental μg/m 3 of particles), calculation of the physical impacts using exposure-response functions (e.g., cases of respiratory hospital admissions), and finally multiplication by unit costs factors (e.g., ? per hospital admission). Damages are aggregated over all affected receptors in Europe. In addition to the local and regional dispersion calculations carried out so far by ExternE, we also consider the increased microscale impacts due to the trapping of pollutants in street canyons, using numerical simulations with the FLUENT software. We have evaluated impacts to human health, agricultural crops and building materials, due to particles, NO x, CO, HC and CO 2. Health impacts, especially reduced life expectancy, dominate in terms of cost. Damages for older cars (before 1997) range from 2 to 41 Euro cents/km, whereas for newer cars (since 1997), the range 1-9 Euro cents/km, and there is continuing progress in reducing the emissions further. In large cities, the particulate emissions of diesel cars lead to the highest damages, exceeding those of gasoline cars by a factor of 7. For cars before 1997 the order of magnitude of the damage costs is comparable to the price of gasoline, and the loss of life expectancy is comparable to that from traffic accidents.

  4. The next generation of low-cost personal air quality sensors for quantitative exposure monitoring

    NASA Astrophysics Data System (ADS)

    Piedrahita, R.; Xiang, Y.; Masson, N.; Ortega, J.; Collier, A.; Jiang, Y.; Li, K.; Dick, R.; Lv, Q.; Hannigan, M.; Shang, L.

    2014-03-01

    Advances in embedded systems and low-cost gas sensors are enabling a new wave of low cost air quality monitoring tools. Our team has been engaged in the development of low-cost wearable air quality monitors (M-Pods) using the Arduino platform. The M-Pods use commercially available metal oxide semiconductor (MOx) sensors to measure CO, O3, NO2, and total VOCs, and NDIR sensors to measure CO2. MOx sensors are low in cost and show high sensitivity near ambient levels; however they display non-linear output signals and have cross sensitivity effects. Thus, a quantification system was developed to convert the MOx sensor signals into concentrations. Two deployments were conducted at a regulatory monitoring station in Denver, Colorado. M-Pod concentrations were determined using laboratory calibration techniques and co-location calibrations, in which we place the M-Pods near regulatory monitors to then derive calibration function coefficients using the regulatory monitors as the standard. The form of the calibration function was derived based on laboratory experiments. We discuss various techniques used to estimate measurement uncertainties. A separate user study was also conducted to assess personal exposure and M-Pod reliability. In this study, 10 M-Pods were calibrated via co-location multiple times over 4 weeks and sensor drift was analyzed with the result being a calibration function that included drift. We found that co-location calibrations perform better than laboratory calibrations. Lab calibrations suffer from bias and difficulty in covering the necessary parameter space. During co-location calibrations, median standard errors ranged between 4.0-6.1 ppb for O3, 6.4-8.4 ppb for NO2, 0.28-0.44 ppm for CO, and 16.8 ppm for CO2. Median signal to noise (S/N) ratios for the M-Pod sensors were higher for M-Pods than the regulatory instruments: for NO2, 3.6 compared to 23.4; for O3, 1.4 compared to 1.6; for CO, 1.1 compared to 10.0; and for CO2, 42.2 compared to 300

  5. Minimum Energy type of Air Conditioning Controlby Switching Equilibrium Point of Control Variables

    NASA Astrophysics Data System (ADS)

    Takahata, Akihiko; Uchida, Kenko; Taira, Utaro

    In this paper, we propose an algorithm realizing minimum energy control for air conditioning. In the air conditioning system, control inputs are valve-open-value of cooler, heater and humidifier, and controlled variables are indoor temperature and humidity. That is, this system has three inputs and two outputs. The main step of the minimum energy algorithm is to switch two of the three actuators, depending on setpoints, for minimizing consumption energy. We apply this algorithm to a real plant, and show validity of the algorithm.

  6. 42 CFR 457.224 - FFP: Conditions relating to cost sharing.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 4 2013-10-01 2013-10-01 false FFP: Conditions relating to cost sharing. 457.224 Section 457.224 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) STATE CHILDREN'S HEALTH INSURANCE PROGRAMS (SCHIPs) ALLOTMENTS AND GRANTS TO STATES General Administration-Reviews and...

  7. 27 CFR 72.23 - Type and conditions of cost bond.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 2 2010-04-01 2010-04-01 false Type and conditions of cost bond. 72.23 Section 72.23 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE... claimant to effect removal of the forfeiture status of the property or carrier claimed to the...

  8. The role of risk communication in controlling indoor air quality repair costs

    SciTech Connect

    Odom, D. III; Barr, C.R.

    1997-08-01

    Indoor air quality (IAQ) cases often are characterized by a common progression of events: building occupants alert management to the presence of a problem, management is perceived as being slow to react or plays down the problem, and both groups become angry. Along the way, many opportunities for de-escalating the problem are missed, undermining the relationship between management and building occupants and causing repair costs to skyrocket. Responding effectively to IAQ problems in the workplace has a psychological as well as a technical component. The tenets of risk communication offer insight into the human response to danger in the environment. By following the principles of IAQ-specific risk communication presented in this paper, risk managers can develop effective messages, maintain two-way communications and occupant trust, and defuse the emotional reactions that cause so many IAQ situations to escalate into public relations nightmares.

  9. A Novel, Low-Cost, Reduced-Sensor Approach for Providing Smart Renote Monitoring and Diagnostics for Packaged Air Conditioners and Heat Pumps

    SciTech Connect

    Brambley, Michael R.

    2009-09-01

    This report describes conceptually an approach to providing automated remote performance and conditioning monitoring and fault detection for air conditioners and heat pumps that shows great promise to reduce the capital and installation costs of such systems from over $1000 per unit to $200 to $400 per unit. The approach relies on non-intrusive electric load monitoring (NIELM) to enable separation of the power use signals of compressors and fans in the air conditioner or heat pump. Then combining information on the power uses and one or two air temperature measurements, changes in energy efficiency and occurrence of major faults would be detected. By decreasing the number of sensors used from between ten and twenty in current diagnostic monitoring systems to three for the envisaged system, the capital cost of the monitoring system hardware and the cost of labor for installation would be decreased significantly. After describing the problem being addressed and the concept for performance monitoring and fault detection in more detail, the report identifies specific conditions and faults that the proposed method would detect, discusses specific needs for successful use of the NIELM approach, and identifies the major elements in the path from concept to a commercialized monitoring and diagnostic system.

  10. Optimization of microwave-assisted hot air drying conditions of okra using response surface methodology.

    PubMed

    Kumar, Deepak; Prasad, Suresh; Murthy, Ganti S

    2014-02-01

    Okra (Abelmoschus esculentus) was dried to a moisture level of 0.1 g water/g dry matter using a microwave-assisted hot air dryer. Response surface methodology was used to optimize the drying conditions based on specific energy consumption and quality of dried okra. The drying experiments were performed using a central composite rotatable design for three variables: air temperature (40-70 °C), air velocity (1-2 m/s) and microwave power level (0.5-2.5 W/g). The quality of dried okra was determined in terms of color change, rehydration ratio and hardness of texture. A second-order polynomial model was well fitted to all responses and high R(2) values (>0.8) were observed in all cases. The color change of dried okra was found higher at high microwave power and air temperatures. Rehydration properties were better for okra samples dried at higher microwave power levels. Specific energy consumption decreased with increase in microwave power due to decrease in drying time. The drying conditions of 1.51 m/s air velocity, 52.09 °C air temperature and 2.41 W/g microwave power were found optimum for product quality and minimum energy consumption for microwave-convective drying of okra. PMID:24493879

  11. Preliminary verification of instantaneous air temperature estimation for clear sky conditions based on SEBAL

    NASA Astrophysics Data System (ADS)

    Zhu, Shanyou; Zhou, Chuxuan; Zhang, Guixin; Zhang, Hailong; Hua, Junwei

    2016-03-01

    Spatially distributed near surface air temperature at the height of 2 m is an important input parameter for the land surface models. It is of great significance in both theoretical research and practical applications to retrieve instantaneous air temperature data from remote sensing observations. An approach based on Surface Energy Balance Algorithm for Land (SEBAL) to retrieve air temperature under clear sky conditions is presented. Taking the meteorological measurement data at one station as the reference and remotely sensed data as the model input, the research estimates the air temperature by using an iterative computation. The method was applied to the area of Jiangsu province for nine scenes by using MODIS data products, as well as part of Fujian province, China based on four scenes of Landsat 8 imagery. Comparing the air temperature estimated from the proposed method with that of the meteorological station measurement, results show that the root mean square error is 1.7 and 2.6 °C at 1000 and 30 m spatial resolution respectively. Sensitivity analysis of influencing factors reveals that land surface temperature is the most sensitive to the estimation precision. Research results indicate that the method has great potentiality to be used to estimate instantaneous air temperature distribution under clear sky conditions.

  12. High-resolution modelling of health impacts and related external cost from air pollution over 36 years using the integrated model system EVA

    NASA Astrophysics Data System (ADS)

    Brandt, Jørgen; Andersen, Mikael S.; Bønløkke, Jakob; Christensen, Jesper H.; Geels, Camilla; Hansen, Kaj M.; Hertel, Ole; Im, Ulas; Jensen, Steen S.; Ketzel, Matthias; Nielsen, Ole-Kenneth; Plejdrup, Marlene S.; Sigsgaard, Torben

    2016-04-01

    A high-resolution assessment of health impacts from air pollution and related external cost has been conducted for Denmark using the integrated EVA model system. The EVA system is based on the impact-pathway methodology, where the site-specific emissions will result, via atmospheric transport and chemistry, in a concentration distribution, which together with detailed population data, is used to estimate the population-level exposure. Using exposure-response functions and economic valuations, the exposure is transformed into impacts on human health and related external costs. In this study we have used a coupling of two chemistry transport models to calculate the air pollution concentration at different domain and scales; the Danish Eulerian Hemispheric Model (DEHM) to calculate the air pollution levels in the Northern Hemisphere with a resolution down to 5.6 km x 5.6 km and the Urban Background Model (UBM) to further calculate the air pollution in Denmark at 1 km x 1 km resolution using results from DEHM as boundary conditions. Both the emission data as well as the population density has been represented in the model system with the same high resolution. Previous health impact assessments related to air pollution have been made on a lower resolution. In this study, the integrated model system, EVA, has been used to estimate the health impacts and related external cost for Denmark at a 1 km x 1 km resolution. New developments of the integrated model system will be presented as well as the development of health impacts and related external costs in Europe and Denmark over a period of 36 years (1979-2014). Acknowledgements This work was funded by: DCE - National Centre for Environment and Energy. Project: "Health impacts and external costs from air pollution in Denmark over 25 years" and NordForsk under the Nordic Programme on Health and Welfare. Project: "Understanding the link between air pollution and distribution of related health impacts and welfare in the

  13. Unique, low-energy air-conditioning system using naturally-frozen ice

    SciTech Connect

    Kirkpatrick, D.L.; Masoero, M.; Socolow, R.H.; Taylor, T.B.

    1981-01-01

    An effective low-energy-consumption air-conditioning system, using naturally-frozen ice as the heat sink, has been successfully demonstrated. During the summer of 1980, a test building at Princeton University was cooled using ice frozen during the previous winter. The ice is produced outdoors by spraying water into winter air, and stored until summer in an excavated reservoir under an insulating blanket. During the air-conditioning season, melt water from the bottom of the lined, ice-filled reservoir is pumped through a conventional water-to-air heat exchanger within the conditioned space, to provide air cooling and dehumidification. The water warmed in the exchange is returned to the reservoir, to be recooled to 0/sup 0/C by the remaining ice. This approach not only significantly reduces the total energy required to produce a given cooling effect relative to other means in current use, but also shifts the time of major energy use away from the electric utility's summer load peak period.

  14. Prediction of air temperature in the aircraft cabin under different operational conditions

    NASA Astrophysics Data System (ADS)

    Volavý, F.; Fišer, J.; Nöske, I.

    2013-04-01

    This paper deals with the prediction of the air temperature in the aircraft cabin by means of Computational Fluid Dynamics. The simulations are performed on the CFD model which is based on geometry and cabin interior arrangement of the Flight Test Facility (FTF) located at Fraunhofer IBP, Germany. The experimental test flights under three different cabin temperatures were done in FTF and the various data were gathered during these flights. Air temperature in the cabin was measured on probes located near feet, torso and head of each passenger and also surface temperature and air temperature distributed from inlets were measured. The data were firstly analysed in order to obtain boundary conditions for cabin surfaces and inlets. Then the results of air temperature from the simulations were compared with measured data. The suitability and accuracy of the CFD approach for temperature prediction is discussed.

  15. Heating, Ventilation, and Air Conditioning Design Strategy for a Hot-Humid Production Builder

    SciTech Connect

    Kerrigan, P.

    2014-03-01

    BSC worked directly with the David Weekley Homes - Houston division to redesign three floor plans in order to locate the HVAC system in conditioned space. The purpose of this project is to develop a cost effective design for moving the HVAC system into conditioned space. In addition, BSC conducted energy analysis to calculate the most economical strategy for increasing the energy performance of future production houses. This is in preparation for the upcoming code changes in 2015. The builder wishes to develop an upgrade package that will allow for a seamless transition to the new code mandate. The following research questions were addressed by this research project: 1. What is the most cost effective, best performing and most easily replicable method of locating ducts inside conditioned space for a hot-humid production home builder that constructs one and two story single family detached residences? 2. What is a cost effective and practical method of achieving 50% source energy savings vs. the 2006 International Energy Conservation Code for a hot-humid production builder? 3. How accurate are the pre-construction whole house cost estimates compared to confirmed post construction actual cost? BSC and the builder developed a duct design strategy that employs a system of dropped ceilings and attic coffers for moving the ductwork from the vented attic to conditioned space. The furnace has been moved to either a mechanical closet in the conditioned living space or a coffered space in the attic.

  16. Volatile organic compounds associated with microbial growth in automobile air conditioning systems.

    PubMed

    Rose, L J; Simmons, R B; Crow, S A; Ahearn, D G

    2000-09-01

    Volatile organic compounds from Penicillium viridicatum and Methylobacterium mesophilicum growing on laboratory media and on component materials of automobile air conditioners were analyzed with gas chromatography and mass spectrometry. P. viridicatum produced compounds such as 4-methyl thiazole, terpenes and alcohols, whereas M. mesophilicum produced dimethyl disulfide, dimethyl trisulfide, and chlorophenol with growth on laboratory media. In comparison with laboratory media, fewer volatiles were detected from colonized foam insulation materials. Biofilms of M. mesophilicum on aluminum evaporator components produced mainly dimethyl disulfide. These biofilms, after inoculation with P. viridicatum, produced offensive smelling alcohols and esters such as 2-methyl propanol, 3-penten-2-ol, and the ethyl ester of butanoic acid. The moisture and substrates innate to the automobile air conditioning systems provided an environment suitable for microbial biofilm development and odor production. Reduction of retained moisture in the air conditioning system coupled with use of less susceptible or antimicrobial substrates are advised for remediation of the noxious odors. PMID:10915209

  17. [Study on air quality and pollution meteorology conditions of Guangzhou during the 2010 Asian games].

    PubMed

    Li, Ting-Yuan; Deng, Xue-Jiao; Fan, Shao-Jia; Wu, Dui; Li, Fei; Deng, Tao; Tan, Hao-Bo; Jiang, De-Hai

    2012-09-01

    Based on the monitoring data of NO2, O3, SO2, PM, visibility, regional air quality index (RAQI) and the atmospheric transport and diffusion data from Nov. 4, 2010 to Dec. 10, 2010 in Guangzhou area, the variations of air quality and meteorological conditions during the Guangzhou Asian Games were analyzed. It was found that, during the Asian Games, the air quality was better than the air quality before or after the Asian Games. The visibility was greater than the visibility before or after the Asian Games, while the concentrations of PM1 and PM2.5 were lower. The correlation coefficient between visibility and the concentrations of PM1, PM2.5 indicated anti-correlation relationships. Daily and hourly concentrations of NO2 and SO2 met the primary ambient air quality standards, whereas the daily concentration of PM10 and hourly concentration of O3 met the secondary ambient air quality standards. Pollutants had been well controlled during the Asian Games. The concentration of SO2 in Guangzhou was influenced by local sources and long distance transmission, while the concentration of NO2 was significantly influenced by local sources. The emissions of NO2, SO2 and PM10 surrounding Guangzhou had a trend to affect the concentrations in Guangzhou, but the situation of O3 was opposite, the relatively high concentration of O3 in Guangzhou had tendency to be transported to the surrounding areas. The pollution meteorology conditions in the period of Asian Games were better than the conditions before or after the Asian Games. The decrease in the concentrations during the Asian Games did not only benefit from the emission control by the government, but also from the good meteorological conditions. PMID:23243841

  18. Study of indoor radon levels in high-rise air-conditioned office buildings.

    PubMed

    Chao, C Y

    1999-12-01

    A series of measurements were conducted to study the indoor radon pollution in air-conditioned high-rise office buildings. Continuous monitoring of indoor radon levels in nine air-conditioned premises located in six office buildings in Hong Kong was conducted from August 1996 to February 1998. Each of the tests lasted for at least 48 hours. The measurement covered both day time monitoring while the air-conditioning was on and night time monitoring while the air-conditioning was off. The indoor radon level followed inversely the operation pattern of the mechanical ventilation systems in the buildings. During office hours when the mechanical ventilation was on, the indoor radon level decayed and after the mechanical ventilation was off during non-office hours, the radon level increased. The average indoor radon level during office hours on the nine premises varied from 87 Bq/m3 to 296 Bq/m3, and the indoor averaged radon levels over both day time and night time periods without mechanical ventilation were about 25 percent higher. The air infiltration rate and the radon emission characteristics from the building materials were estimated from the radon build-up curves which were observed after the mechanical ventilation was off. The radon decay curve observed after the mechanical ventilation system was turned on was used to calculate the total fresh air intake rate. Average radon emanation rates of the building materials in the six buildings varied from 0.0019 to 0.0033 Bq/m2s. It has been found that building infiltration rate accounted for about 10-30 percent of the total building ventilation rate in the buildings depending on building tightness. PMID:10633952

  19. 24 CFR 3280.813 - Outdoor outlets, fixtures, air-conditioning equipment, etc.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 5 2012-04-01 2012-04-01 false Outdoor outlets, fixtures, air-conditioning equipment, etc. 3280.813 Section 3280.813 Housing and Urban Development Regulations Relating to Housing and Urban Development (Continued) OFFICE OF ASSISTANT SECRETARY FOR HOUSING-FEDERAL HOUSING COMMISSIONER, DEPARTMENT OF HOUSING AND...

  20. Refrigeration and Air Conditioning Mechanic: Apprenticeship Course Outline. Apprenticeship and Industry Training. 1411.2

    ERIC Educational Resources Information Center

    Alberta Advanced Education and Technology, 2011

    2011-01-01

    The graduate of the Refrigeration and Air Conditioning Mechanic apprenticeship training is a journeyman who will: (1) supervise, train and coach apprentices; (2) use and maintain hand and power tools to the standards of competency and safety required in the trade; (3) have a thorough knowledge of the principle components of refrigeration systems,…

  1. 40 CFR 86.162-03 - Approval of alternative air conditioning test simulations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... initiative, the Administrator will approve a simulation of the environmental cell for air conditioning test... approvals will be granted, the Administrator will consider data showing how well the simulation matches environmental cell test data for the range of vehicles to be covered by the simulation including items such...

  2. 40 CFR 86.162-03 - Approval of alternative air conditioning test simulations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... initiative, the Administrator will approve a simulation of the environmental cell for air conditioning test... approvals will be granted, the Administrator will consider data showing how well the simulation matches environmental cell test data for the range of vehicles to be covered by the simulation including items such...

  3. Introduction to Heating, Ventilation and Air Conditioning (HVAC). Instructor Edition. Introduction to Construction Series.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This instructor's guide contains the materials required to teach a competency-based introductory course in heating, ventilating, and air conditioning (HVAC) to students who have chosen to explore careers in construction. It contains three units: HVAC materials, HVAC tools, and applied skills. Each instructional unit includes some or all of the…

  4. Getting Down to Business: Air Conditioning and Heating Service, Module 36. [Student Guide]. Entrepreneurship Training Components.

    ERIC Educational Resources Information Center

    Sanderson, Barbara

    This module on owning and operating an air conditioning and heating service is one of 36 in a series on entrepreneurship. The introduction tells the student what topics will be covered and suggests other modules to read in related occupations. Each unit includes student goals, a case study, and a discussion of the unit subject matter. Learning…

  5. Environmental Control System Installer/Servicer (Residential Air Conditioning Mechanic). V-TECS Guide.

    ERIC Educational Resources Information Center

    Meyer, Calvin F.; Benson, Robert T.

    This guide provides job relevant tasks, performance objectives, performance guides, resources, learning activitites, evaluation standards, and achievement testing in the occupation of environmental control system installer/servicer (residential air conditioning mechanic). It is designed to be used with any chosen teaching method. The course…

  6. Technology evaluation of heating, ventilation, and air conditioning for MIUS application

    NASA Technical Reports Server (NTRS)

    Gill, W. L.; Keough, M. B.; Rippey, J. O.

    1974-01-01

    Potential ways of providing heating, ventilation, and air conditioning for a building complex serviced by a modular integrated utility system (MIUS) are examined. Literature surveys were conducted to investigate both conventional and unusual systems to serve this purpose. The advantages and disadvantages of the systems most compatible with MIUS are discussed.

  7. PIC (PRODUCTS OF INCOMPLETE COMBUSTION) FORMATION UNDER PYROLYTIC AND STARVED AIR CONDITIONS

    EPA Science Inventory

    A comprehensive program of laboratory studies based on the non-flame mode of thermal decomposition produced much data on PIC (Products of Incomplete Combustion) formation, primarily under pyrolytic and starved air conditions. Most significantly, laboratory results from non-flame ...

  8. Instructional Guide for Air Conditioning and Refrigeration. V & TECC Curriculum Guide.

    ERIC Educational Resources Information Center

    Duenk, Lester G.; And Others

    This trade and industrial curriculum guide is intended for use in vocational programs that prepare students to enter the air conditioning/refrigeration field. The introductory section provides a statement of philosophy, objectives, block time schedule, and recommended facilities and equipment. Following the introductory section, eighteen blocks of…

  9. Refrigeration and Air Conditioning Equipment, 11-9. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This military-developed text consists of three blocks of instructional materials for use by those studying to become refrigeration and air conditioning specialists. Covered in the individual course blocks are the following topics: refrigeration and trouble analysis, thermodynamics, and principles of refrigeration; major components and domestic and…

  10. Military Curricula for Vocational & Technical Education. Refrigeration & Air Conditioning Specialist, Blocks I-II.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This plan of instruction, study guides, workbooks, and programmed texts for a secondary-postsecondary-level course in refrigeration and air conditioning are one of a number of military-developed curriculum packages selected for adaptation to vocational instruction and curriculum development in a civilian setting. It is the first section of a…

  11. Heating, Air Conditioning and Refrigeration. Vocational Education Curriculum Guide. Industrial and Technical Education.

    ERIC Educational Resources Information Center

    West Virginia State Vocational Curriculum Lab., Cedar Lakes.

    This curriculum guide contains 17 units that provides the basic curriculum components required to develop lesson plans for the heating, air conditioning, and refrigeration curriculum. The guide is not intended to be a complete, self-contained curriculum, but instead provides the teacher with a number of informational items related to the learning…

  12. Heating, Ventilation, Air-conditioning, and Refrigeration. Ohio's Competency Analysis Profile.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Vocational Instructional Materials Lab.

    Developed through a modified DACUM (Developing a Curriculum) process involving business, industry, labor, and community agency representatives in Ohio, this document is a comprehensive and verified employer competency profile for heating, ventilation, air conditioning, and refrigeration occupations. The list contains units (with and without…

  13. Military Curricula for Vocational & Technical Education. Refrigeration and Air Conditioning Specialist, Blocks VI-IX.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This plan of instruction, study guides, and workbooks for a secondary-postsecondary-level course in refrigeration and air conditioning are one of a number of military-developed curriculum packages selected for adaptation to vocational instruction and curriculum development in a civilian setting. It is the third section of a three-part course (see…

  14. Introduction to Heating, Ventilation and Air Conditioning (HVAC). Introduction to Construction Series. Instructor Edition.

    ERIC Educational Resources Information Center

    Associated General Contractors of America, Washington, DC.

    This module on introductory heating, ventilating, and air conditioning (HVAC) is one of a series of modules designed to teach basic skills necessary for entry-level employment in this field. The module contains four instructional units that cover the following topics: (1) HVAC materials; (2) HVAC tools; (3) HVAC layout; and (4) HVAC basic skills.…

  15. A laser Doppler system for the remote sensing of boundary layer winds in clear air conditions

    NASA Technical Reports Server (NTRS)

    Lawrence, T. R.; Krause, M. C.; Craven, C. E.; Morrison, L. K.; Thomson, J. A. L.; Cliff, W. C.; Huffaker, R. M.

    1975-01-01

    The system discussed uses a laser Doppler radar in combination with a velocity azimuth display mode of scanning to determine the three-dimensional wind field in the atmospheric boundary layer. An attractive feature of this CW monostatic system is that the ambient aerosol provides a 'sufficient' scattering target to permit operation under clear air conditions. Spatial resolution is achieved by focusing.

  16. Heating, Air Conditioning and Refrigeration Curriculum Guide. Michigan Trade and Industrial Education.

    ERIC Educational Resources Information Center

    Michigan State Univ., East Lansing. Coll. of Agriculture and Natural Resources Education Inst.

    This task-based curriculum guide for heating, air conditioning, and refrigeration is intended to help the teacher develop a classroom management system where students learn by doing. Introductory materials include a Dictionary of Occupational Titles job code and title sheet, a career ladder, a matrix relating duty/task numbers to job titles, and a…

  17. V-TECS Guide for Automobile Air Conditioning and Electrical System Technician.

    ERIC Educational Resources Information Center

    Meyer, Calvin F.; Benson, Robert T.

    This curriculum guide provides an outline for an eight-unit course to train automobile air conditioning and electrical system technicians. Each unit focuses on a duty that is composed of a number of performance objectives. For each objective, these materials are provided: a task, a standard of performance of task, source of standard, conditions…

  18. 14 CFR 203.5 - Compliance as condition on operations in air transportation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Compliance as condition on operations in air transportation. 203.5 Section 203.5 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS WAIVER OF WARSAW CONVENTION LIABILITY LIMITS...

  19. A GUIDE FOR USE IN DEVELOPING TRAINING PROGRAMS IN VOCATIONAL REFRIGERATION AND AIR CONDITIONING (DOMESTIC).

    ERIC Educational Resources Information Center

    Mississippi State Univ., State College.

    THE MATERIAL IN THIS CURRICULUM GUIDE WAS DEVELOPED TO HELP THE INSTRUCTOR TRAIN STUDENTS TO MEET THE ENTRY REQUIREMENTS FOR REFRIGERATION AND AIR CONDITIONING TRADESMEN. EXPERIENCED TEACHERS DETERMINED OBJECTIVES, DEVELOPED A JOB ANALYSIS, IDENTIFIED THE INSTRUCTIONAL CONTENT, SEQUENCED LEARNING EXPERIENCES, AND SELECTED PERTINENT LITERATURE. THE…

  20. Non-Print Instructional Materials for the Air Conditioning and Refrigeration Maintenance Field.

    ERIC Educational Resources Information Center

    Golitko, Raymond L., Ed.; And Others

    This catalog contains a listing of air conditioning/refrigeration maintenance audiovisual training materials from the Houston Community College System library media collection. The material is organized by subject heading. The media titles are listed in alphabetical order by title under each subject heading in the catalog. The citation for each…

  1. LINKING ETA MODEL WITH THE COMMUNITY MULTISCALE AIR QUALITY (CMAQ) MODELING SYSTEM: OZONE BOUNDARY CONDITIONS

    EPA Science Inventory

    A prototype surface ozone concentration forecasting model system for the Eastern U.S. has been developed. The model system is consisting of a regional meteorological and a regional air quality model. It demonstrated a strong prediction dependence on its ozone boundary conditions....

  2. Design of a test facility for gas-fired desiccant-based air conditioning systems

    SciTech Connect

    Jalalzadeh-Azar, A.A.; Steele, W.G.; Hodge, B.K.

    1996-12-31

    The design of a facility for testing desiccant-based air conditioning systems is presented. The determination of the performance parameters of desiccant systems is discussed including moisture removal capacity, latent and total cooling capacities, and efficiency indexes. The appropriate procedures and key measurements for determining these parameters are identified using uncertainty analysis.

  3. Urban air quality assessment using monitoring data of fractionized aerosol samples, chemometrics and meteorological conditions.

    PubMed

    Yotova, Galina I; Tsitouridou, Roxani; Tsakovski, Stefan L; Simeonov, Vasil D

    2016-01-01

    The present article deals with assessment of urban air by using monitoring data for 10 different aerosol fractions (0.015-16 μm) collected at a typical urban site in City of Thessaloniki, Greece. The data set was subject to multivariate statistical analysis (cluster analysis and principal components analysis) and, additionally, to HYSPLIT back trajectory modeling in order to assess in a better way the impact of the weather conditions on the pollution sources identified. A specific element of the study is the effort to clarify the role of outliers in the data set. The reason for the appearance of outliers is strongly related to the atmospheric condition on the particular sampling days leading to enhanced concentration of pollutants (secondary emissions, sea sprays, road and soil dust, combustion processes) especially for ultra fine and coarse particles. It is also shown that three major sources affect the urban air quality of the location studied-sea sprays, mineral dust and anthropogenic influences (agricultural activity, combustion processes, and industrial sources). The level of impact is related to certain extent to the aerosol fraction size. The assessment of the meteorological conditions leads to defining of four downwind patterns affecting the air quality (Pelagic, Western and Central Europe, Eastern and Northeastern Europe and Africa and Southern Europe). Thus, the present study offers a complete urban air assessment taking into account the weather conditions, pollution sources and aerosol fractioning. PMID:26942452

  4. VESL for Heating and Air Conditioning: A Competency-based Curriculum Guide. Project OSCAER.

    ERIC Educational Resources Information Center

    Lopez-Valadez, Jeanne, Ed.; Pankratz, David, Ed.

    This guide is intended for vocational educators developing the vocational English as a second language (VESL) component of a course in heating and air conditioning. The introductory section examines assumptions about second language learning and instruction and VESL classes, local adaptations of the curriculum, and sample VESL lessons. The chapter…

  5. Principles of Refrigeration. Automotive Mechanics. Air Conditioning. Instructor's Guide [and] Student Guide.

    ERIC Educational Resources Information Center

    Spignesi, B.

    This instructional package, one in a series of individualized instructional units on automobile air conditioning, consists of a student guide and an instructor guide dealing with the principles of refrigeration. Covered in the module are defining the term heat, defining the term British Thermal Unit (BTU), defining the term latent heat, listing…

  6. Heating, Ventilation, Air Conditioning. Resource Manual for Custodial Training Course #3.

    ERIC Educational Resources Information Center

    Florida State Dept. of Education, Tallahassee. School Plant Management Section.

    Intended as a manual to provide school custodians with some understanding of basic functions of heating, ventilating, and air conditioning equipment for safe, efficient operation. Contains general rules and specifications for providing custodians with a more complete awareness of their equipment and the field of "Climate Control" within the…

  7. Proceedings of the 1993 non-fluorocarbon insulation, refrigeration and air conditioning technology workshop

    SciTech Connect

    Not Available

    1994-09-01

    Sessions included: HFC blown polyurethanes, carbon dioxide blown foam and extruded polystyrenes, plastic foam insulations, evacuated panel insulation, refrigeration and air conditioning, absorption and adsorption and stirling cycle refrigeration, innovative cooling technologies, and natural refrigerants. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  8. Statistical modeling of urban air temperature distributions under different synoptic conditions

    NASA Astrophysics Data System (ADS)

    Beck, Christoph; Breitner, Susanne; Cyrys, Josef; Hald, Cornelius; Hartz, Uwe; Jacobeit, Jucundus; Richter, Katja; Schneider, Alexandra; Wolf, Kathrin

    2015-04-01

    Within urban areas air temperature may vary distinctly between different locations. These intra-urban air temperature variations partly reach magnitudes that are relevant with respect to human thermal comfort. Therefore and furthermore taking into account potential interrelations with other health related environmental factors (e.g. air quality) it is important to estimate spatial patterns of intra-urban air temperature distributions that may be incorporated into urban planning processes. In this contribution we present an approach to estimate spatial temperature distributions in the urban area of Augsburg (Germany) by means of statistical modeling. At 36 locations in the urban area of Augsburg air temperatures are measured with high temporal resolution (4 min.) since December 2012. These 36 locations represent different typical urban land use characteristics in terms of varying percentage coverages of different land cover categories (e.g. impervious, built-up, vegetated). Percentage coverages of these land cover categories have been extracted from different sources (Open Street Map, European Urban Atlas, Urban Morphological Zones) for regular grids of varying size (50, 100, 200 meter horizonal resolution) for the urban area of Augsburg. It is well known from numerous studies that land use characteristics have a distinct influence on air temperature and as well other climatic variables at a certain location. Therefore air temperatures at the 36 locations are modeled utilizing land use characteristics (percentage coverages of land cover categories) as predictor variables in Stepwise Multiple Regression models and in Random Forest based model approaches. After model evaluation via cross-validation appropriate statistical models are applied to gridded land use data to derive spatial urban air temperature distributions. Varying models are tested and applied for different seasons and times of the day and also for different synoptic conditions (e.g. clear and calm

  9. Total environmental warming impact (TEWI) calculations for alternative automative air-conditioning systems

    SciTech Connect

    Sand, J.R.; Fischer, S.K.

    1997-01-01

    The Montreal Protocol phase-out of chlorofluorocarbons (CFCs) has required manufacturers to develop refrigeration and air-conditioning systems that use refrigerants that can not damage stratospheric ozone. Most refrigeration industries have adapted their designs to use hydrochlorofluorocarbon (HCFC) or hydrofluorocarbon (HFC) refrigerants; new automobile air- conditioning systems use HFC-134a. These industries are now being affected by scientific investigations of greenhouse warming and questions about the effects of refrigerants on global warming. Automobile air-conditioning has three separate impacts on global warming; (1) the effects of refrigerant inadvertently released to the atmosphere from accidents, servicing, and leakage; (2) the efficiency of the cooling equipment (due to the emission of C0{sub 2} from burning fuel to power the system); and (3) the emission of C0{sub 2} from burning fuel to transport the system. The Total Equivalent Warming Impact (TEWI) is an index that should be used to compare the global warming effects of alternative air-conditioning systems because it includes these contributions from the refrigerant, cooling efficiency, and weight. This paper compares the TEWI of current air-conditioning systems using HFC-134a with that of transcritical vapor compression system using carbon dioxide and systems using flammable refrigerants with secondary heat transfer loops. Results are found to depend on both climate and projected efficiency of C0{sub 2}systems. Performance data on manufacturing prototype systems are needed to verify the potential reductions in TEWI. Extensive field testing is also required to determine the performance, reliability, and ``serviceability`` of each alternative to HFC-134a to establish whether the potential reduction of TEWI can be achieved in a viable consumer product.

  10. Waking the sleeping giant: Introducing new heat exchanger technology into the residential air-conditioning marketplace

    SciTech Connect

    Chapp, T.; Voss, M.; Stephens, C.

    1998-07-01

    The Air Conditioning Industry has made tremendous strides in improvements to the energy efficiency and reliability of its product offerings over the past 40 years. These improvement can be attributed to enhancements of components, optimization of the energy cycle, and modernized and refined manufacturing techniques. During this same period, energy consumption for space cooling has grown significantly. In January of 1992, the minimum efficiency requirement for central air conditioning equipment was raised to 10 SEER. This efficiency level is likely to increase further under the auspices of the National Appliance Energy Conservation Act (NAECA). A new type of heat exchanger was developed for air conditioning equipment by Modine Manufacturing Company in the early 1990's. Despite significant advantages in terms of energy efficiency, dehumidification, durability, and refrigerant charge there has been little interest expressed by the air conditioning industry. A cooperative effort between Modine, various utilities, and several state energy offices has been organized to test and demonstrate the viability of this heat exchanger design throughout the nation. This paper will review the fundamentals of heat exchanger design and document this simple, yet novel technology. These experiences involving equipment retrofits have been documented with respect to the performance potential of air conditioning system constructed with PF{trademark} Heat Exchangers (generically referred to as microchannel heat exchangers) from both an energy efficiency as well as a comfort perspective. The paper will also detail the current plan to introduce 16 to 24 systems into an extended field test throughout the US which commenced in the Fall of 1997.

  11. Effect of Intake Air Filter Condition on Light-Duty Gasoline Vehicles

    SciTech Connect

    Thomas, John F; Huff, Shean P; West, Brian H; Norman, Kevin M

    2012-01-01

    Proper maintenance can help vehicles perform as designed, positively affecting fuel economy, emissions, and the overall drivability. This effort investigates the effect of one maintenance factor, intake air filter replacement, with primary focus on vehicle fuel economy, but also examining emissions and performance. Older studies, dealing with carbureted gasoline vehicles, have indicated that replacing a clogged or dirty air filter can improve vehicle fuel economy and conversely that a dirty air filter can be significantly detrimental to fuel economy. The effect of clogged air filters on the fuel economy, acceleration and emissions of five gasoline fueled vehicles is examined. Four of these were modern vehicles, featuring closed-loop control and ranging in model year from 2003 to 2007. Three vehicles were powered by naturally aspirated, port fuel injection (PFI) engines of differing size and cylinder configuration: an inline 4, a V6 and a V8. A turbocharged inline 4-cylinder gasoline direct injection (GDI) engine powered vehicle was the fourth modern gasoline vehicle tested. A vintage 1972 vehicle equipped with a carburetor (open-loop control) was also examined. Results reveal insignificant fuel economy and emissions sensitivity of modern vehicles to air filter condition, but measureable effects on the 1972 vehicle. All vehicles experienced a measured acceleration performance penalty with clogged intake air filters.

  12. Influence of indoor air conditions on radon concentration in a detached house.

    PubMed

    Akbari, Keramatollah; Mahmoudi, Jafar; Ghanbari, Mahdi

    2013-02-01

    Radon is released from soil and building materials and can accumulate in residential buildings. Breathing radon and radon progeny for extended periods hazardous to health and can lead to lung cancer. Indoor air conditions and ventilation systems strongly influence indoor radon concentrations. This paper focuses on effects of air change rate, indoor temperature and relative humidity on indoor radon concentrations in a one family detached house in Stockholm, Sweden. In this study a heat recovery ventilation system unit was used to control the ventilation rate and a continuous radon monitor (CRM) was used to measure radon levels. FLUENT, a computational fluid dynamics (CFD) software package was used to simulate radon entry into the building and air change rate, indoor temperature and relative humidity effects using a numerical approach. The results from analytical solution, measurements and numerical simulations showed that air change rate, indoor temperature and moisture had significant effects on indoor radon concentration. Increasing air change rate reduces radon level and for a specific air change rate (in this work Ach = 0.5) there was a range of temperature and relative humidity that minimized radon levels. In this case study minimum radon levels were obtained at temperatures between 20 and 22 °C and a relative humidity of 50-60%. PMID:23159846

  13. Cost Analysis of an Air Brayton Receiver for a Solar Thermal Electric Power System in Selected Annual Production Volumes

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Pioneer Engineering and Manufacturing Company estimated the cost of manufacturing and Air Brayton Receiver for a Solar Thermal Electric Power System as designed by the AiResearch Division of the Garrett Corporation. Production costs were estimated at annual volumes of 100; 1,000; 5,000; 10,000; 50,000; 100,000 and 1,000,000 units. These costs included direct labor, direct material and manufacturing burden. A make or buy analysis was made of each part of each volume. At high volumes special fabrication concepts were used to reduce operation cycle times. All costs were estimated at an assumed 100% plant capacity. Economic feasibility determined the level of production at which special concepts were to be introduced. Estimated costs were based on the economics of the last half of 1980. Tooling and capital equipment costs were estimated for ach volume. Infrastructure and personnel requirements were also estimated.

  14. Cost of Herpes Zoster in Patients With Selected Immune-Compromised Conditions in the United States.

    PubMed

    Li, Qian; Chen, Shih-Yin; Burstin, Stuart J; Levin, Myron J; Suaya, Jose A

    2016-04-01

    Background.  This retrospective study investigates the healthcare costs of herpes zoster (HZ) in patients with selected immune-compromised (IC) conditions in the United States (US). Methods.  Patients with incident HZ diagnosis (index date) were selected from nationwide administrative claims databases from 2005 to 2009. Baseline IC groups, analyzed separately, included adults aged 18-64 years with the following: human immunodeficiency virus infection (HIV), solid organ transplant (SOT), bone marrow or stem cell transplant (BMSCT), or cancer; and older adults (aged ≥65 years) with cancer. Herpes zoster patients (n = 2020, n = 1053, n = 286, n = 13 178, and n = 9089, respectively) were 1-to-1 matched to controls without HZ (with randomly selected index date) in the same baseline group. The healthcare resource utilization and costs (2014 US dollars) during the first 2 postindex quarters were compared between matched cohorts with continuous enrollment during the quarter. Results.  Herpes zoster patients generally had greater use of inpatient, emergency room and outpatient services, and pain medications than matched controls (P < .05). The incremental costs of HZ during the first postindex quarter were $3056, $2649, $13 332, $2549, and $3108 for HIV, SOT, BMSCT, cancer in adults aged 18-64 years, and cancer in older adults, respectively (each P < .05). The incremental costs of HZ during the second quarter were only significant for adults aged 18-64 years with cancer ($1748, P < .05). The national incremental costs of HZ were projected to be $298 million annually across the 5 IC groups. Conclusions.  The healthcare cost associated with HZ among patients with studied IC conditions was sizable and occurred mainly during the first 90 days after diagnosis. PMID:27419151

  15. Cost of Herpes Zoster in Patients With Selected Immune-Compromised Conditions in the United States

    PubMed Central

    Li, Qian; Chen, Shih-Yin; Burstin, Stuart J.; Levin, Myron J.; Suaya, Jose A.

    2016-01-01

    Background. This retrospective study investigates the healthcare costs of herpes zoster (HZ) in patients with selected immune-compromised (IC) conditions in the United States (US). Methods. Patients with incident HZ diagnosis (index date) were selected from nationwide administrative claims databases from 2005 to 2009. Baseline IC groups, analyzed separately, included adults aged 18–64 years with the following: human immunodeficiency virus infection (HIV), solid organ transplant (SOT), bone marrow or stem cell transplant (BMSCT), or cancer; and older adults (aged ≥65 years) with cancer. Herpes zoster patients (n = 2020, n = 1053, n = 286, n = 13 178, and n = 9089, respectively) were 1-to-1 matched to controls without HZ (with randomly selected index date) in the same baseline group. The healthcare resource utilization and costs (2014 US dollars) during the first 2 postindex quarters were compared between matched cohorts with continuous enrollment during the quarter. Results. Herpes zoster patients generally had greater use of inpatient, emergency room and outpatient services, and pain medications than matched controls (P < .05). The incremental costs of HZ during the first postindex quarter were $3056, $2649, $13 332, $2549, and $3108 for HIV, SOT, BMSCT, cancer in adults aged 18–64 years, and cancer in older adults, respectively (each P < .05). The incremental costs of HZ during the second quarter were only significant for adults aged 18–64 years with cancer ($1748, P < .05). The national incremental costs of HZ were projected to be $298 million annually across the 5 IC groups. Conclusions. The healthcare cost associated with HZ among patients with studied IC conditions was sizable and occurred mainly during the first 90 days after diagnosis. PMID:27419151

  16. Talaromyces rubrifaciens, a new species discovered from heating, ventilation and air conditioning systems in China.

    PubMed

    Luo, Yi; Lu, Xiaohong; Bi, Wu; Liu, Fan; Gao, Weiwei

    2016-01-01

    A new Talaromyces species, T. rubrifaciens, was isolated from supply air outlets of heating, ventilation and air conditioning (HVAC) systems in three kinds of public building in Beijing and Nanjing, China. Morphologically it exhibits many characters of section Trachyspermi but is distinguished from other species of this section by restricted growth and broad and strictly biverticillate conidiophores. Phylogenetic analyses based on the internal transcribed spacer rDNA (ITS), β-tubulin (BenA), calmodulin (CaM) and RNA polymerase second largest subunit (RPB2) genes reveal that T. rubrifaciens is a distinct species in section Trachyspermi. PMID:27055570

  17. Fault tree analysis for exposure to refrigerants used for automotive air conditioning in the United States.

    PubMed

    Jetter, J J; Forte, R; Rubenstein, R

    2001-02-01

    A fault tree analysis was used to estimate the number of refrigerant exposures of automotive service technicians and vehicle occupants in the United States. Exposures of service technicians can occur when service equipment or automotive air-conditioning systems leak during servicing. The number of refrigerant exposures of service technicians was estimated to be 135,000 per year. Exposures of vehicle occupants can occur when refrigerant enters passenger compartments due to sudden leaks in air-conditioning systems, leaks following servicing, or leaks caused by collisions. The total number of exposures of vehicle occupants was estimated to be 3,600 per year. The largest number of exposures of vehicle occupants was estimated for leaks caused by collisions, and the second largest number of exposures was estimated for leaks following servicing. Estimates used in the fault tree analysis were based on a survey of automotive air-conditioning service shops, the best available data from the literature, and the engineering judgement of the authors and expert reviewers from the Society of Automotive Engineers Interior Climate Control Standards Committee. Exposure concentrations and durations were estimated and compared with toxicity data for refrigerants currently used in automotive air conditioners. Uncertainty was high for the estimated numbers of exposures, exposure concentrations, and exposure durations. Uncertainty could be reduced in the future by conducting more extensive surveys, measurements of refrigerant concentrations, and exposure monitoring. Nevertheless, the analysis indicated that the risk of exposure of service technicians and vehicle occupants is significant, and it is recommended that no refrigerant that is substantially more toxic than currently available substitutes be accepted for use in vehicle air-conditioning systems, absent a means of mitigating exposure. PMID:11332544

  18. Electricity savings ``soon come'' to Jamaica -- Assessing the potential for air conditioning and refrigeration end-use DSM

    SciTech Connect

    Conlon, T.; Hamzawi, E.; Campbell, V.

    1998-07-01

    With the support of the Inter-American Development Bank, the Global Environment Facility of the World Bank, and the Rockefeller Foundation, the national electric utility in Jamaica (Jamaica Public Service Company) has begun an assessment of the technical, economic, and financial opportunities for achieving demand-side management (DSM) energy savings in the air conditioning and refrigeration end uses. The feasibility and cost effectiveness of specific measures is being assessed for both the residential and commercials segments. While structures as a traditional load-research-based market assessment, the project uses ethnographic data collection and analysis techniques and involves collaboration with local contractors. The skills of local experts are being taped to identify and interview the key market players, and to develop an understanding of the barriers to and opportunities for energy efficiency present in the evolving equipment markets. The paper outlines methods and presents preliminary case study results for the air conditioning market. The authors identify major groups of market players and dominant types of equipment, and provide an overview of market dynamics. The volume of sales passing through both formal and informal distribution channels is estimated and market barriers are identified. Based on the findings of the study, recommendations will be made for future program and policy initiatives designed to mitigate selected barriers in each of the supply chains.

  19. Air Pollution modifies the association between successful and pathological aging throughout the frailty condition.

    PubMed

    Fougère, Bertrand; Vellas, Bruno; Billet, Sylvain; Martin, Perrine J; Gallucci, Maurizio; Cesari, Matteo

    2015-11-01

    The rapid growth in the number of older adults has many implications for public health, including the need to better understand the risks posed by environmental exposures. Aging leads to a decline and deterioration of functional properties at the cellular, tissue and organ level. This loss of functional properties yields to a loss of homeostasis and decreased adaptability to internal and external stress. Frailty is a geriatric syndrome characterized by weakness, weight loss, and low activity that is associated with adverse health outcomes. Frailty manifests as an age-related, biological vulnerability to stressors and decreased physiological reserves. Ambient air pollution exposure affects human health, and elderly people appear to be particularly susceptible to its adverse effects. The aim of this paper is to discuss the role of air pollution in the modulation of several biological mechanisms involved in aging. Evidence is presented on how air pollution can modify the bidirectional association between successful and pathological aging throughout the frailty conditions. PMID:26462883

  20. Maximum mixing times of methane and air under non-reacting and reacting conditions

    SciTech Connect

    Brasoveanu, D.; Gupta, A.K.

    1998-07-01

    Mixing times between methane and air under non-reacting or reacting conditions in the presence of rates of temperature and pressure and velocity gradients are examined using a mixing model based on the ideal gas law and the equation of continuity. The model is valid for low pressure combustors under non-reacting conditions. The model is also valid under reacting conditions for the fresh mixture which contains only trace amounts of combustion products. The effects of initial pressure, temperature and fluid composition on mixing time are also analyzed. In general, the exact mixing time has to be determined numerically. Nevertheless maximum values of mixing times can be determined analytically for a broad range of operational conditions. Results show that under both reacting and non-reacting conditions, the maximum mixing time is directly proportional to the initial pressure and temperature of mixture and inversely proportional to rates of pressure and temperature, and to velocity divergence. Mixing through fuel dispersion into the surrounding air is shown to be faster than via air penetration into the fuel flow. Rates of pressure of less than 1 atm/s acting along provide a mixing time in excess of one second which is unacceptably long for many applications, in particular gas turbine combustion. Rates of temperature produced by flame may provide mixing times shorter than 0.1 s. Mixing times of the order of a few milliseconds for efficient combustion and low emission, require high velocity gradients at the fuel-air boundary. Results show that enhanced mixing is achieved by combining temperature and velocity gradients. This analysis of mixing time is intended to provide important design guidelines for the development of high intensity, high efficiency and low emission combustors.

  1. Children's well-being at schools: Impact of climatic conditions and air pollution.

    PubMed

    Salthammer, Tunga; Uhde, Erik; Schripp, Tobias; Schieweck, Alexandra; Morawska, Lidia; Mazaheri, Mandana; Clifford, Sam; He, Congrong; Buonanno, Giorgio; Querol, Xavier; Viana, Mar; Kumar, Prashant

    2016-09-01

    Human civilization is currently facing two particular challenges: population growth with a strong trend towards urbanization and climate change. The latter is now no longer seriously questioned. The primary concern is to limit anthropogenic climate change and to adapt our societies to its effects. Schools are a key part of the structure of our societies. If future generations are to take control of the manifold global problems, we have to offer our children the best possible infrastructure for their education: not only in terms of the didactic concepts, but also with regard to the climatic conditions in the school environment. Between the ages of 6 and 19, children spend up to 8h a day in classrooms. The conditions are, however, often inacceptable and regardless of the geographic situation, all the current studies report similar problems: classrooms being too small for the high number of school children, poor ventilation concepts, considerable outdoor air pollution and strong sources of indoor air pollution. There have been discussions about a beneficial and healthy air quality in classrooms for many years now and in recent years extensive studies have been carried out worldwide. The problems have been clearly outlined on a scientific level and there are prudent and feasible concepts to improve the situation. The growing number of publications also highlights the importance of this subject. High carbon dioxide concentrations in classrooms, which indicate poor ventilation conditions, and the increasing particle matter in urban outdoor air have, in particular, been identified as primary causes of poor indoor air quality in schools. Despite this, the conditions in most schools continue to be in need of improvement. There are many reasons for this. In some cases, the local administrative bodies do not have the budgets required to address such concerns, in other cases regulations and laws stand in contradiction to the demands for better indoor air quality, and sometimes

  2. Evaluation of Refrigerating and Air Conditioning Devices in Energy Cascade Systems under the Restriction of Carbon Dioxide Emissions

    NASA Astrophysics Data System (ADS)

    Shimazaki, Yoichi; Akisawa, Atsushi; Kashiwagi, Takao

    It is necessary to introduce energy cascade systems into the industrial sector in Japan to reduce carbon dioxide emissions. The aim of this study is to evaluate the refrigerating and air conditioning devices in cases of introducing both energy cascade systems and thermal recycling systems in industries located around urban areas. The authors have developed an energy cascade model based on linear programming so as to minimize the total system costs with carbon taxes. Five cases are investigated. Limitation of carbon dioxide emissions results in the enhancement of heat cascading, where high temperature heat is supplied for process heating while low temperature one is shifted to refrigeration. It was found that increasing the amount of garbage combustor waste heat can reduce electric power for the turbo refrigerator by promoting waste heat driven ammonia absorption refrigerator.

  3. A low cost, disposable cable-shaped Al–air battery for portable biosensors

    NASA Astrophysics Data System (ADS)

    Fotouhi, Gareth; Ogier, Caleb; Kim, Jong-Hoon; Kim, Sooyeun; Cao, Guozhong; Shen, Amy Q.; Kramlich, John; Chung, Jae-Hyun

    2016-05-01

    A disposable cable-shaped flexible battery is presented using a simple, low cost manufacturing process. The working principle of an aluminum–air galvanic cell is used for the cable-shaped battery to power portable and point-of-care medical devices. The battery is catalyzed with a carbon nanotube (CNT)-paper matrix. A scalable manufacturing process using a lathe is developed to wrap a paper layer and a CNT-paper matrix on an aluminum wire. The matrix is then wrapped with a silver-plated copper wire to form the battery cell. The battery is activated through absorption of electrolytes including phosphate-buffered saline, NaOH, urine, saliva, and blood into the CNT-paper matrix. The maximum electric power using a 10 mm-long battery cell is over 1.5 mW. As a demonstration, an LED is powered using two groups of four batteries in parallel connected in series. Considering the material composition and the cable-shaped configuration, the battery is fully disposable, flexible, and potentially compatible with portable biosensors through activation by either reagents or biological fluids.

  4. Air conditioning impact on the dynamics of radon and its daughters concentration.

    PubMed

    Kozak, Krzysztof; Grządziel, Dominik; Połednik, Bernard; Mazur, Jadwiga; Dudzińska, Marzenna R; Mroczek, Mariusz

    2014-12-01

    Radon and its decay products are harmful pollutants present in indoor air and are responsible for the majority of the effective dose due to ionising radiation that people are naturally exposed to. The paper presents the results of the series of measurements of radon and its progeny (in unattached and attached fractions) as well as indoor air parameters: temperature, relative humidity, number and mass concentrations of fine aerosol particles. The measurements were carried out in the auditorium (lecture hall), which is an indoor air quality laboratory, in controlled conditions during two periods of time: when air conditioning (AC) was switched off (unoccupied auditorium) and when it was switched on (auditorium in normal use). The significant influence of AC and of students' presence on the dynamics of radon and its progeny was confirmed. A decrease in the mean value of radon and its attached progeny was found when AC was working. The mean value of radon equilibrium factor F was also lower when AC was working (0.49) than when it was off (0.61). The linear correlations were found between attached radon progeny concentration and particle number and mass concentration only when the AC was switched off. This research is being conducted with the aim to study the variability of radon equilibrium factor F which is essential to determine the effective dose due to radon and its progeny inhalation. PMID:24375376

  5. [The main ways of improvement of medical support of the Air Forces in modern conditions].

    PubMed

    Blaginin, A A; Grebeniuk, A N; Lizogub, I N

    2014-02-01

    Blaginin A.A., Grebenyuk A.N., Lizogub LN. - The main ways of improvement of medical support of the Air Forces in modern conditions. Aircrew conducting active hostilities suffers from the whole spectrum of factors and conditions of the combat situation. The main task for the medical service of the Air Force is to carry out preventive and curative action for aviation specialists who are responsible for the combat capability of aircraft formations. The medical service of the Air Force must have forces and facilities for planning, organization and implementation of the treatment of lightly wounded and sick aviation professionals with short periods of recovery, medical rehabilitation of aircrew qfter suffering injuries, diseases, sanatorium therapy of aircrew with partial failure of health, outpatient and inpatient medical examination aircrew - flight commissions, preventive rest of aviation specialists with symptoms of chronic fatigue. Should be trained aviation physicians, including both basic military medical education and in-depth study of the medical aspects of various fields of personnel of the Air Force. PMID:25046924

  6. Effect of green roofs on air temperature; measurement study of well-watered and dry conditions

    NASA Astrophysics Data System (ADS)

    Solcerova, Anna; van de Ven, Frans; Wang, Mengyu; van de Giesen, Nick

    2016-04-01

    Rapid urbanization and increasing number and duration of heat waves poses a need for understanding urban climate and ways to mitigate extremely high temperatures. One of repeatedly suggested and often investigated methods to moderate the so called urban heat island are green roofs. This study investigates several extensive green roofs in Utrecht (NL) and their effect on air temperature right above the roof surface. Air temperature was measured 15 and 30 cm above the roof surface and also in the substrate. We show that under normal condition is air above green roof, compared to white gravel roof, colder at night and warmer during day. This suggest that green roofs might help decrease air temperatures at night, when the urban heat island is strongest, but possibly contribute to high temperatures during daytime. We also measured situation when the green roofs wilted and dried out. Under such conditions green roof exhibits more similar behavior to conventional white gravel roof. Interestingly, pattern of soil temperature remains almost the same for both dry and well-prospering green roof, colder during day and warmer at night. As such, green roof works as a buffer of diurnal temperature changes.

  7. The costs, air quality, and human health effects of meeting peak electricity demand with installed backup generators.

    PubMed

    Gilmore, Elisabeth A; Lave, Lester B; Adams, Peter J

    2006-11-15

    Existing generators installed for backup during blackouts could be operated during periods of peak electricity demand, increasing grid reliability and supporting electricity delivery. Many generators, however, have non-negligible air emissions and may potentially damage air quality and harm human health. To evaluate using these generators, we compare the levelized private and social (health) costs of diesel internal combustion engines (ICE) with and without diesel particulate filters (DPF), natural gas ICEs, and microturbines to a new peaking plant in New York, NY. To estimate the social cost, first we calculate the upper range emissions for each generator option from producing 36,000 megawatt-hours (MWh) of electricity over 3 days. We then convert the emissions into ambient concentrations with a 3-D chemical transport model, PMCAMx, and Gaussian dispersion plumes. Using a Monte Carlo approach to incorporate the uncertainties, we calculate the health endpoints using concentration-response functions and multiply the response by its economic value. While uncontrolled diesel ICEs would harm air quality and health, a generator with a DPF has a social cost, comparable to natural gas options. We conclude on a full cost basis that backup generators, including controlled diesel ICEs, are a cost-effective method of meeting peak demand. PMID:17153991

  8. A pharmacoeconomic approach to assessing the costs and benefits of air quality interventions that improve health: a case study

    PubMed Central

    Lomas, James; Schmitt, Laetitia; Jones, Sally; McGeorge, Maureen; Bates, Elizabeth; Holland, Mike; Cooper, Duncan; Crowther, Richard; Ashmore, Mike; Rojas-Rueda, David; Weatherly, Helen; Richardson, Gerry; Bojke, Laura

    2016-01-01

    Objective This paper explores the use of pharmacoeconomic methods of valuation to health impacts resulting from exposure to poor air quality. In using such methods, interventions that reduce exposure to poor air quality can be directly compared, in terms of value for money (or cost-effectiveness), with competing demands for finite resources, including other public health interventions. Design Using results estimated as part of a health impact assessment regarding a West Yorkshire Low Emission Zone strategy, this paper quantifies cost-saving and health-improving implications of transport policy through its impact on air quality. Data source Estimates of health-related quality of life and the National Health Service (NHS)/Personal Social Services (PSS) costs for identified health events were based on data from Leeds and Bradford using peer-reviewed publications or Office for National Statistics releases. Population Inhabitants of the area within the outer ring roads of Leeds and Bradford. Main outcomes measures NHS and PSS costs and quality-adjusted life years (QALYs). Results Averting an all-cause mortality death generates 8.4 QALYs. Each coronary event avoided saves £28 000 in NHS/PSS costs and generates 1.1 QALYs. For every fewer case of childhood asthma, there will be NHS/PSS cost saving of £3000 and a health benefit of 0.9 QALYs. A single term, low birthweight birth avoided saves £2000 in NHS/PSS costs. Preventing a preterm birth saves £24 000 in NHS/PSS costs and generates 1.3 QALYs. A scenario modelled in the West Yorkshire Low Emission Zone Feasibility Study, where pre-EURO 4 buses and HGVs are upgraded to EURO 6 by 2016 generates an annual benefit of £2.08 million and a one-off benefit of £3.3 million compared with a net present value cost of implementation of £6.3 million. Conclusions Interventions to improve air quality and health should be evaluated and where improvement of population health is the primary objective, cost-effectiveness analysis

  9. Characterization of Francisella species isolated from the cooling water of an air conditioning system.

    PubMed

    Gu, Quan; Li, Xunde; Qu, Pinghua; Hou, Shuiping; Li, Juntao; Atwill, Edward R; Chen, Shouyi

    2015-01-01

    Strains of Francisella spp. were isolated from cooling water from an air conditioning system in Guangzhou, China. These strains are Gram negative, coccobacilli, non-motile, oxidase negative, catalase negative, esterase and lipid esterase positive. In addition, these bacteria grow on cysteine-supplemented media at 20 °C to 40 °C with an optimal growth temperature of 30 °C. Analysis of 16S rRNA gene sequences revealed that these strains belong to the genus Francisella. Biochemical tests and phylogenetic and BLAST analyses of 16S rRNA, rpoB and sdhA genes indicated that one strain was very similar to Francisella philomiragia and that the other strains were identical or highly similar to the Francisella guangzhouensis sp. nov. strain 08HL01032 we previously described. Biochemical and molecular characteristics of these strains demonstrated that multiple Francisella species exist in air conditioning systems. PMID:26413079

  10. Energy Performance Comparison of Heating and Air Conditioning Systems for Multi-Family Residential Buildings

    SciTech Connect

    Wang, Weimin; Zhang, Jian; Jiang, Wei; Liu, Bing

    2011-07-31

    The type of heating, ventilation and air conditioning (HVAC) system has a large impact on the heating and cooling energy consumption in multifamily residential buildings. This paper compares the energy performance of three HVAC systems: a direct expansion (DX) split system, a split air source heat pump (ASHP) system, and a closed-loop water source heat pump (WSHP) system with a boiler and an evaporative fluid cooler as the central heating and cooling source. All three systems use gas furnace for heating or heating backup. The comparison is made in a number of scenarios including different climate conditions, system operation schemes and applicable building codes. It is found that with the minimum code-compliant equipment efficiency, ASHP performs the best among all scenarios except in extremely code climates. WSHP tends to perform better than the split DX system in cold climates but worse in hot climates.

  11. Study of the cost/benefit tradeoffs for reducing the energy consumption of the commercial air transportation system

    NASA Technical Reports Server (NTRS)

    Hopkins, J. P.

    1976-01-01

    Practical means were assessed for achieving reduced fuel consumption in commercial air transportation. Five areas were investigated: current aircraft types, revised operational procedures, modifications to current aircraft, derivatives of current aircraft and new near-term fuel conservative aircraft. As part of a multiparticipant coordinated effort, detailed performance and operating cost data in each of these areas were supplied to the contractor responsible for the overall analysis of the cost/benefit tradeoffs for reducing the energy consumption of the domestic commercial air transportation system. A follow-on study was performed to assess the potential of an advanced turboprop transport aircraft concept. To provide a valid basis for comparison, an equivalent turbofan transport aircraft concept incorporating equal technology levels was also derived. The aircraft as compared on the basis of weight, size, fuel utilization, operational characteristics and costs.

  12. The feasibility study of the waste heat air-conditioning system for automobile

    NASA Astrophysics Data System (ADS)

    Lin, Gui-Ping; Yuan, Xiu-Gan; Mei, Zhi-Guang

    1994-06-01

    In this paper, the feasibility of application of a solid-absorption system using ammonia and chlorides as working pair to automobile air-conditioning system is investigated. This system has the advantages of minimum environmental problem and utilizing waste heat from the automobile engine as thermal energy input. Analyses show that the main problem associated with the application of solid-absorption system is the size of the reactors. Techniques to solve this problem are discussed.

  13. Industry sector analysis, Hong Kong: Air conditioning equipment. Export trade information

    SciTech Connect

    Not Available

    1993-01-01

    The market survey covers the air conditioning equipment market in Hong Kong. The analysis contains statistical and narrative information on projected market demand, end-users; receptivity of Hong Kong consumers to U.S. products; the competitive situation, and market access (tariffs, non-tariff barriers, standards, taxes, distribution channels). It also contains key contact information and information on upcoming trade events related to the industry.

  14. Application information on typical hygrometers used in heating, ventilating and air conditioning (HVAC) systems

    SciTech Connect

    Kao, J.Y.; Snyder, W.J.

    1982-01-01

    Hygrometer selection information is provided for application in heating, ventilating and air-conditioning (HVAC) systems. A general review of hygrometer literature has been provided and the most commonly used ones for HVAC are discussed. Typical hygrometer parameters are listed to indicate the type of performance that can be expected. Laboratory test results of self-regulating, salt-phase transition hygrometers are presented and discussed in detail.

  15. Potential emission savings from refrigeration and air conditioning systems by using low GWP refrigerants

    DOE PAGESBeta

    Beshr, Mohamed; Aute, Vikrant; Abdelaziz, Omar; Fricke, Brian; Radermacher, Reinhard

    2016-08-24

    Refrigeration and air conditioning systems have high, negative environmental impacts due to refrigerant charge leaks from the system and their corresponding high global warming potential. Thus, many efforts are in progress to obtain suitable low GWP alternative refrigerants and more environmentally friendly systems for the future. In addition, the system’s life cycle climate performance (LCCP) is a widespread metric proposed for the evaluation of the system’s environmental impact.

  16. Validation of the criteria for initiating the cleaning of heating, ventilation, and air-conditioning (HVAC) ductwork under real conditions.

    PubMed

    Lavoie, Jacques; Marchand, Geneviève; Cloutier, Yves; Lavoué, Jérôme

    2011-08-01

    Dust accumulation in the components of heating, ventilation, and air-conditioning (HVAC) systems is a potential source of contaminants. To date, very little information is available on recognized methods for assessing dust buildup in these systems. The few existing methods are either objective in nature, involving numerical values, or subjective in nature, based on experts' judgments. An earlier project aimed at assessing different methods of sampling dust in ducts was carried out in the laboratories of the Institut de recherche Robert-Sauvé en santé et en sécurité du travail (IRSST). This laboratory study showed that all the sampling methods were practicable, provided that a specific surface-dust cleaning initiation criterion was used for each method. However, these conclusions were reached on the basis of ideal conditions in a laboratory using a reference dust. The objective of this present study was to validate these laboratory results in the field. To this end, the laboratory sampling templates were replicated in real ducts and the three sampling methods (the IRSST method, the method of the U.S. organization National Air Duct Cleaner Association [NADCA] and that of the French organization Association pour la Prévention et l'Étude de la Contamination [ASPEC]) were used simultaneously in a statistically representative number of systems. The air return and supply ducts were also compared. Cleaning initiation criteria under real conditions were found to be 6.0 mg/100 cm(2) using the IRSST method, 2.0 mg/100 cm(2) using the NADCA method, and 23 mg/100 cm(2) using the ASPEC method. In the laboratory study, the criteria using the same methods were 6.0 for the IRSST method, 2.0 for the NADCA method, and 3.0 for the ASPEC method. The laboratory criteria for the IRSST and NADCA methods were therefore validated in the field. The ASPEC criterion was the only one to change. The ASPEC method therefore allows for the most accurate evaluation of dust accumulation in HVAC

  17. The Maintenance of Heating, Ventilating and Air-Conditioning Systems and Indoor Air Quality in Schools: A Guide for School Facility Managers. Technical Bulletin.

    ERIC Educational Resources Information Center

    Wheeler, Arthur E.

    To help maintain good indoor air quality (IAQ) in schools, guidance for the development and implementation of an effective program for maintenance and operation of heating, ventilating, and air-conditioning (HVAC) systems are discussed. Frequently, a building's occupants will complain about IAQ when the temperature or humidity are at uncomfortable…

  18. Air Pollution Sensors: Highlights from an EPA Workshop on the Evolution and Revolution in Low-Cost Participatory Air Monitoring

    EPA Science Inventory

    This article summarizes the findings from the EPA's Apps and Sensors for Air Pollution Workshop that was held March 26-27 of 2012. The workshop brought together researchers, developers, and community-based groups who have been working with sensors and apps in a variety of settin...

  19. Consistent pattern of elevated symptoms in air-conditioned office buildings: a reanalysis of epidemiologic studies.

    PubMed Central

    Mendell, M J; Smith, A H

    1990-01-01

    Published studies of the relation between type of building ventilation system and work-related symptom prevalence in office workers have been contradictory. A reanalysis was performed of six studies meeting specific eligibility criteria, combining published data with unpublished information obtained from study authors. Five eligible studies were from the United Kingdom, and one was from Denmark. Standardized categories of building ventilation type were created to allow comparison of effects across studies. Within each study, prevalence odds ratios (PORs) were calculated for symptoms in each ventilation category relative to a baseline category of naturally ventilated buildings. Air-conditioned buildings were consistently associated with increased prevalence of work-related headache (POR = 1.3-3.1), lethargy (POR = 1.4-5.1), and upper respiratory/mucus membrane symptoms (POR = 1.3-4.8). Humidification was not a necessary factor for the higher symptom prevalence associated with air-conditioning. Mechanical ventilation without air-conditioning was not associated with higher symptom prevalence. The consistent associations found between type of building ventilation and reported symptom prevalence have potentially important public health and economic implications. PMID:2400029

  20. Tourists’ attitudes towards ban on smoking in air-conditioned hotel lobbies in Thailand

    PubMed Central

    Viriyachaiyo, V; Lim, A

    2009-01-01

    Background: Thailand is internationally renowned for its stringent tobacco control measures. In Thailand, a regulation banning smoking in air-conditioned hotel lobbies was issued in late 2006, causing substantial apprehension within the hospitality industry. A survey of tourists’ attitudes toward the ban was conducted. Methods: A cross-sectional survey of 5550 travellers staying in various hotels in Bangkok, Surat Thani, Phuket, Krabi and Songkhla provinces, October 2005 to December 2006. Travellers aged 15 years or older with a check-in duration of at least one day and willing to complete the questionnaire were requested by hotel staff to fill in the 5-minute questionnaire at check-in or later at their convenience. Results: Secondhand cigarette smoke was recognised as harmful to health by 89.7% of respondents. 47.8% of travellers were aware of the Thai regulation banning smoking in air-conditioned restaurants. 80.9% of the respondents agreed with the ban, particularly female non-smokers. 38.6% of survey respondents indicated that they would be more likely to visit Thailand again because of the regulation, 53.4% that the regulation would not affect their decision and 7.9% that they would be less likely to visit Thailand again. Conclusion: Banning smoking in air-conditioned hotel lobbies in Thailand is widely supported by tourists. Enforcement of the regulation is more likely to attract tourists than dissuade them from holidaying in Thailand. PMID:19364754

  1. Air release measurements of V-oil 1404 downstream of a micro orifice at choked flow conditions

    NASA Astrophysics Data System (ADS)

    Freudigmann, H.-A.; Iben, U.; Pelz, P. F.

    2015-12-01

    This study presents measurements on air release of V-oil 1404 in the back flow of a micro orifice at choked flow conditions using a shadowgraph imaging method. The released air was determined at three positions downstream of the orifice for different pressure conditions. It was found that more than 23% of the initially dissolved air is released and appears downstream of the orifice in the form of bubbles.

  2. Thermodynamic model of a thermal storage air conditioning system with dynamic behavior

    SciTech Connect

    Fleming, E; Wen, SY; Shi, L; da Silva, AK

    2013-12-01

    A thermodynamic model was developed to predict transient behavior of a thermal storage system, using phase change materials (PCMs), for a novel electric vehicle climate conditioning application. The main objectives of the paper are to consider the system's dynamic behavior, such as a dynamic air flow rate into the vehicle's cabin, and to characterize the transient heat transfer process between the thermal storage unit and the vehicle's cabin, while still maintaining accurate solution to the complex phase change heat transfer. The system studied consists of a heat transfer fluid circulating between either of the on-board hot and cold thermal storage units, which we refer to as thermal batteries, and a liquid-air heat exchanger that provides heat exchange with the incoming air to the vehicle cabin. Each thermal battery is a shell-and-tube configuration where a heat transfer fluid flows through parallel tubes, which are surrounded by PCM within a larger shell. The system model incorporates computationally inexpensive semianalytic solution to the conjugated laminar forced convection and phase change problem within the battery and accounts for airside heat exchange using the Number of Transfer Units (NTUs) method for the liquid-air heat exchanger. Using this approach, we are able to obtain an accurate solution to the complex heat transfer problem within the battery while also incorporating the impact of the airside heat transfer on the overall system performance. The implemented model was benchmarked against a numerical study for a melting process and against full system experimental data for solidification using paraffin wax as the PCM. Through modeling, we demonstrate the importance of capturing the airside heat exchange impact on system performance, and we investigate system response to dynamic operating conditions, e.g., air recirculation. (C) 2013 Elsevier Ltd. All rights reserved.

  3. Heating, ventilating, and air conditioning deactivation thermal analysis of PUREX Plant

    SciTech Connect

    Chen, W.W.; Gregonis, R.A.

    1997-08-01

    Thermal analysis was performed for the proposed Plutonium Uranium Extraction Plant exhaust system after deactivation. The purpose of the analysis was to determine if enough condensation will occur to plug or damage the filtration components. A heat transfer and fluid flow analysis was performed to evaluate the thermal characteristics of the underground duct system, the deep-bed glass fiber filter No. 2, and the high-efficiency particulate air filters in the fourth filter building. The analysis is based on extreme variations of air temperature, relative humidity, and dew point temperature using 15 years of Hanford Site weather data as a basis. The results will be used to evaluate the need for the electric heaters proposed for the canyon exhaust to prevent condensation. Results of the analysis indicate that a condition may exist in the underground ductwork where the duct temperature can lead or lag changes in the ambient air temperature. This condition may contribute to condensation on the inside surfaces of the underground exhaust duct. A worst case conservative analysis was performed assuming that all of the water is removed from the moist air over the inside surface of the concrete duct area in the fully developed turbulent boundary layer while the moist air in the free stream will not condense. The total moisture accumulated in 24 hours is negligible. Water puddling would not be expected. The results of the analyses agree with plant operating experiences. The filters were designed to resist high humidity and direct wetting, filter plugging caused by slight condensation in the upstream duct is not a concern. 19 refs., 2 figs.

  4. Low-cost lipid production by an oleaginous yeast cultured in non-sterile conditions using model waste resources

    PubMed Central

    2014-01-01

    Background The yeast Metschnikowia pulcherrima, previously utilised as a biological control agent, was evaluated for its potential to produce lipids for biofuel production. Results Cultivation in low cost non-sterile conditions was achieved by exploiting its ability to grow at low temperature and pH and to produce natural antimicrobial compounds. Although not previously classified as oleaginous, a combination of low temperature and restricted nutrient availability triggered high levels of oil production in M. pulcherrima cultures. This regime was designed to trigger the sporulation process but prevent its completion to allow the accumulation of a subset of a normally transitional, but oil-rich, ‘pulcherrima’ cell type. This approach resulted in yields of up to 40% lipid, which compares favourably with other oleaginous microbes. We also demonstrate that M. pulcherrima metabolises glycerol and a diverse range of other sugars, suggesting that heterogeneous biomass could provide a suitable carbon source. M. pulcherrima also grows well in a minimal media containing no yeast extract. Finally, we demonstrate the potential of the yeast to produce lipids inexpensively on an industrial scale by culturing the yeast in a 500 L, open air, tank reactor without any significant contamination. Conclusions The production of antimicrobial compounds coupled to efficient growth at low temperature and pH enables culture of this oleaginous yeast in inexpensive, non-sterile conditions providing a potential route to economic biofuel production. PMID:24593824

  5. A database and tool for boundary conditions for regional air quality modeling: description and evaluation

    NASA Astrophysics Data System (ADS)

    Henderson, B. H.; Akhtar, F.; Pye, H. O. T.; Napelenok, S. L.; Hutzell, W. T.

    2014-02-01

    Transported air pollutants receive increasing attention as regulations tighten and global concentrations increase. The need to represent international transport in regional air quality assessments requires improved representation of boundary concentrations. Currently available observations are too sparse vertically to provide boundary information, particularly for ozone precursors, but global simulations can be used to generate spatially and temporally varying lateral boundary conditions (LBC). This study presents a public database of global simulations designed and evaluated for use as LBC for air quality models (AQMs). The database covers the contiguous United States (CONUS) for the years 2001-2010 and contains hourly varying concentrations of ozone, aerosols, and their precursors. The database is complemented by a tool for configuring the global results as inputs to regional scale models (e.g., Community Multiscale Air Quality or Comprehensive Air quality Model with extensions). This study also presents an example application based on the CONUS domain, which is evaluated against satellite retrieved ozone and carbon monoxide vertical profiles. The results show performance is largely within uncertainty estimates for ozone from the Ozone Monitoring Instrument and carbon monoxide from the Measurements Of Pollution In The Troposphere (MOPITT), but there were some notable biases compared with Tropospheric Emission Spectrometer (TES) ozone. Compared with TES, our ozone predictions are high-biased in the upper troposphere, particularly in the south during January. This publication documents the global simulation database, the tool for conversion to LBC, and the evaluation of concentrations on the boundaries. This documentation is intended to support applications that require representation of long-range transport of air pollutants.

  6. Cost Burden of Post Stroke Condition in Nigeria: A Pilot Study

    PubMed Central

    Birabi, Bridget N; Oke, Kayode Israel; Dienye, Paul O.; Okafor, Udoka Chris

    2012-01-01

    Aim: Estimation of cost burden of a disease condition is a very important part of health care policy making worldwide. Till now, such documents are lacking especially on non-communicable diseases in the health policy making process in Nigeria. This article therefore attempts to report the results of a prospective cross-sectional study on the cost burden of a cerebrovascular accident condition (stroke) in Nigeria. It estimates the direct health care cost for a minimum period of 12weeks and maximum of 36weeks for post stroke hemiplegia. Study Design/Setting: It was a collaborative cross-sectional study amongst centers situated in urban and sub-urban environments in Southern Nigeria. It involved a hospital of an Oil and Gas Company in Port Harcourt, Nigeria, two Government tertiary hospitals in Port Harcourt and Benin-City, all in South-South Nigeria, the industrial hub of the country. A Private Specialist hospital in Lagos, South-West Nigeria, the corporate hub of the country was also included. Method: Patients diagnosed and admitted for management for cerebrovascular accident (stroke) in the above named health facilities formed the subjects of this study. Medical records (case files) of two hundred and forty (240) stroke patients managed within the last six years (2005- 2011) were randomly selected from the medical record departments of the study centers. Files of the patients who were admitted during acute care period (without discharge against medical advice) and were followed on out-patient basis without default within the study period were purposively utilized. The files were then assessed for the various investigations and treatment interventions of acute and long term care and the costs thereof. Ethical approval to access patients’ case files was sought and granted by the Research Ethics Committee of the different study centers. Results: The results revealed that it requires an average of N95,100: 00 ($600) and N767,900: 00 ($4860)in a government and a

  7. Air- ice-snow interaction in the Northern Hemisphere under different stability conditions

    NASA Astrophysics Data System (ADS)

    Repina, Irina; Chechin, Dmitry; Artamonov, Arseny

    2013-04-01

    The traditional parameterizations of the atmospheric boundary layer are based on similarity theory and the coefficients of turbulent transfer, describing the atmospheric-surface interaction and the diffusion of impurities in the operational models of air pollution, weather forecasting and climate change. Major drawbacks of these parameterizations is that they are not applicable for the extreme conditions of stratification and currents over complex surfaces (such as sea ice, marginal ice zone or stormy sea). These problem could not be overcome within the framework of classical theory, i.e, by rectifying similarity functions or through the introduction of amendments to the traditional turbulent closure schemes. Lack of knowledge on the structure of the surface air layer and the exchange of momentum, heat and moisture between the rippling water surface and the atmosphere at different atmospheric stratifications is at present the major obstacle which impede proper functioning of the operational global and regional weather prediction models and expert models of climate and climate change. This is especially important for the polar regions, where in winter time the development of strong stable boundary layer in the presence of polynyas and leads usually occur. Experimental studies of atmosphere-ice-snow interaction under different stability conditions are presented. Strong stable and unstable conditions are discussed. Parametrizations of turbulent heat and gas exchange at the atmosphere ocean interface are developed. The dependence of the exchange coefficients and aerodynamic roughness on the atmospheric stratification over the snow and ice surface is experimentally confirmed. The drag coefficient is reduced with increasing stability. The behavior of the roughness parameter is simple. This result was obtained in the Arctic from the measurements over hummocked surface. The value of the roughness in the Arctic is much less than that observed over the snow in the middle and

  8. Performance of R-410A Alternative Refrigerants in a Reciprocating Compressor Designed for Air Conditioning Applications

    SciTech Connect

    Shrestha, Som S; Vineyard, Edward Allan; Mumpower, Kevin

    2016-01-01

    In response to environmental concerns raised by the use of refrigerants with high Global Warming Potential (GWP), the Air-Conditioning, Heating, and Refrigeration Institute (AHRI) has launched an industry-wide cooperative research program, referred to as the Low-GWP Alternative Refrigerants Evaluation Program (AREP), to identify and evaluate promising alternative refrigerants for major product categories. After successfully completing the first phase of the program in December 2013, AHRI launched a second phase of the Low-GWP AREP in 2014 to continue research in areas that were not previously addressed, including refrigerants in high ambient conditions, refrigerants in applications not tested in the first phase, and new refrigerants identified since testing for the program began. Although the Ozone Depletion Potential of R-410A is zero, this refrigerant is under scrutiny due to its high GWP. Several candidate alternative refrigerants have already demonstrated low global warming potential. Performance of these low-GWP alternative refrigerants is being evaluated for Air conditioning and heat pump applications to ensure acceptable system capacity and efficiency. This paper reports the results of a series of compressor calorimeter tests conducted for the second phase of the AREP to evaluate the performance of R-410A alternative refrigerants in a reciprocating compressor designed for air conditioning systems. It compares performance of alternative refrigerants ARM-71A, L41-1, DR-5A, D2Y-60, and R-32 to that of R-410A over a wide range of operating conditions. The tests showed that, in general, cooling capacities were slightly lower (except for the R-32), but energy efficiency ratios (EER) of the alternative refrigerants were comparable to that of R-410A.

  9. Study on an Efficient Dehumidifying Air-conditioning System utilizing Phase Change of Intermediate Pressure Refrigerant

    NASA Astrophysics Data System (ADS)

    Maeda, Kensaku; Inaba, Hideo

    The present study has proven a new dehumidifying system that aimed to reduce the sensible heat factor(SHF) of cooling process without using additional heat to relieve the internationally indicated conflict between energy saving and dehumidification necessary for keeping adequate indoor air quality (IAQ). In this system, we used intermediate pressure refrigerant in a vapor compression refrigerating cycle as heat transfer medium of a characteristic heat exchanger to precool the process air entering into an evaporator as well as to reheat the process air leaving from the evaporator. By this system, the present results achieved higher moisture removal and consequently higher efficiency of dehumidifying process. In addition to this fact, since this system has capability of integration into air-conditioning apparatus(HVAC system), it will be able to work for wide range of cooling load by variable SHF function. In the present paper, technical information, experimental results, and simulation results which assumed to apply this system into HVAC system are reported.

  10. TECNAIRE winter field campaign: turbulent characteristics and their influence on air quality conditions

    NASA Astrophysics Data System (ADS)

    Yagüe, Carlos; Román Cascón, Carlos; Maqueda, Gregorio; Sastre, Mariano; Arrillaga, Jon A.; Artíñano, Begoña; Diaz-Ramiro, Elías; Gómez-Moreno, Francisco J.; Borge, Rafael; Narros, Adolfo; Pérez, Javier

    2016-04-01

    An urban field campaign was conducted at an air pollution hot spot in Madrid city (Spain) during winter 2015 (from 16th February to 2nd March). The zone selected for the study is a square (Plaza Fernández Ladreda) located in the southern part of the city. This area is an important intersection of several principal routes, and therefore a significant impact in the air quality of the area is found due to the high traffic density. Meteorological data (wind speed and direction, air temperature, relative humidity, pressure, precipitation and global solar radiation) were daily recorded as well as micrometeorological measurements obtained from two sonic anemometers. To characterize this urban atmospheric boundary layer (uABL), micrometeorological parameters (turbulent kinetic energy -TKE-, friction velocity -u∗- and sensible heat flux -H-) are calculated, considering 5-minute average for variance and covariance evaluations. Furthermore, synoptic atmospheric features were analyzed. As a whole, a predominant influence of high pressure systems was found over the Atlantic Ocean and western Spain, affecting Madrid, but during a couple of days (17th and 21st February) some atmospheric instability played a role. The influence of the synoptic situation and specially the evolution of the micrometeorological conditions along the day on air quality characteristics (Particulate Matter concentrations: PM10, PM2.5 and PM1, and NOx concentrations) are analyzed and shown in detail. This work has been financed by Madrid Regional Research Plan through TECNAIRE (P2013/MAE-2972).

  11. An analytical approach to air defense: cost, effectiveness and SWOT analysis of employing fighter aircraft and modern SAM systems

    NASA Astrophysics Data System (ADS)

    Kus, Orcun; Kocaman, Ibrahim; Topcu, Yucel; Karaca, Volkan

    2012-05-01

    The problem of defending a specific airspace is among the main issues a military commander to solve. Proper protection of own airspace is crucial for mission success at the battlefield. The military doctrines of most world armed forces involve two main options of defending the airspace. One of them is utilizing formations of fighter aircraft, which is a flexible choice. The second option is deploying modern SAM (Surface to Air Missile) systems, which is more expansive. On the other hand the decision makers are to cope with miscellaneous restrictions such as the budgeting problems. This study defines air defense concept according to modern air warfare doctrine. It considers an air defense scenario over an arbitrary airspace and compares the performance and cost-effectiveness of employing fighter aircraft and SAM systems. It also presents SWOT (Strenghts - Weakness - Opportunities - Threats) analyses of air defense by fighter aircraft and by modern SAMs and tries to point out whichever option is better. We conclude that deploying SAMs has important advantages over using fighter aircraft by means of interception capacity within a given time period and is cost-effective.

  12. Ground-water conditions at Beale Air Force Base and vicinity, California

    USGS Publications Warehouse

    Page, R.W.

    1980-01-01

    Ground-water conditions were studied in a 168-square-mile area between the Sierra Nevada and the Feather River in Yuba County, Calif. The area is in the eastern part of the Sacramento Valley and includes most of Beale Air Force Base. Source, occurrence, movement, and chemical quality of the ground water were evaluated. Ground water occurs in sedimentary and volcanic rocks of Tertiary and Quaternary age. The base of the freshwater is in the undifferentiated sedimentary rocks of Oligocene and Eocene age, that contain water of high dissolved-solids concentration. The ground water occurs under unconfined and partly confined conditions. At Beale Air Force Base it is at times partly confined. Recharge is principally from the rivers. Pumpage in the study area was estimated to be 129,000 acre-feet in 1975. In the 1960's, water levels in most parts of the study area declined less rapidly than in earlier years or became fairly stable. In the 1970's, water levels at Beale Air Force Base declined only slightly. Spacing of wells on the base and rates of pumping are such that excessive pumping interference is avoided. Water quality at the base and throughout the study area is generally good. Dissolved-solids concentrations are 700 to 900 milligrams per liter in the undifferentiated sedimentary rocks beneath the base well field. (USGS)

  13. Experimental performance study of a proposed desiccant based air conditioning system.

    PubMed

    Bassuoni, M M

    2014-01-01

    An experimental investigation on the performance of a proposed hybrid desiccant based air conditioning system referred as HDBAC is introduced in this paper. HDBAC is mainly consisted of a liquid desiccant dehumidification unit integrated with a vapor compression system (VCS). The VCS unit has a cooling capacity of 5.27 kW and uses 134a as refrigerant. Calcium chloride (CaCl2) solution is used as the working desiccant material. HDBAC system is used to serve low sensible heat factor applications. The effect of different parameters such as, process air flow rate, desiccant solution flow rate, evaporator box and condenser box solution temperatures, strong solution concentration and regeneration temperature on the performance of the system is studied. The performance of the system is evaluated using some parameters such as: the coefficient of performance (COPa), specific moisture removal and energy saving percentage. A remarkable increase of about 54% in the coefficient of performance of the proposed system over VCS with reheat is achieved. A maximum overall energy saving of about 46% is observed which emphasizes the use of the proposed system as an energy efficient air conditioning system. PMID:25685475

  14. Experimental performance study of a proposed desiccant based air conditioning system

    PubMed Central

    Bassuoni, M.M.

    2013-01-01

    An experimental investigation on the performance of a proposed hybrid desiccant based air conditioning system referred as HDBAC is introduced in this paper. HDBAC is mainly consisted of a liquid desiccant dehumidification unit integrated with a vapor compression system (VCS). The VCS unit has a cooling capacity of 5.27 kW and uses 134a as refrigerant. Calcium chloride (CaCl2) solution is used as the working desiccant material. HDBAC system is used to serve low sensible heat factor applications. The effect of different parameters such as, process air flow rate, desiccant solution flow rate, evaporator box and condenser box solution temperatures, strong solution concentration and regeneration temperature on the performance of the system is studied. The performance of the system is evaluated using some parameters such as: the coefficient of performance (COPa), specific moisture removal and energy saving percentage. A remarkable increase of about 54% in the coefficient of performance of the proposed system over VCS with reheat is achieved. A maximum overall energy saving of about 46% is observed which emphasizes the use of the proposed system as an energy efficient air conditioning system. PMID:25685475

  15. LiCl dehumidifier LiBr absorption chiller hybrid air conditioning system with energy recovery

    SciTech Connect

    Ko, S.M.

    1980-06-03

    This invention relates to a hybrid air conditioning system that combines a solar powered LiCl dehumidifier with a LiBr absorption chiller. The desiccant dehumidifier removes the latent load by absorbing moisture from the air, and the sensible load is removed by the absorption chiller. The desiccant dehumidifier is coupled to a regenerator and the desiccant in the regenerator is heated by solar heated hot water to drive the moisture therefrom before being fed back to the dehumidifier. The heat of vaporization expended in the desiccant regenerator is recovered and used to partially preheat the driving fluid of the absorption chiller, thus substantially improving the overall COP of the hybrid system. 4 figs.

  16. Analysis of bidirectional PWM converter for application of residential solar air conditioning system

    SciTech Connect

    Kim, H.S.; Choe, G.H.; Yu, G.J.; Song, J.S.

    1994-12-31

    In the conventional solar air conditioning system the diode rectifier is used to build up DC link voltage from ac utility source. The diode rectifier is simple and cheap but the reverse of power flow cannot be made. It can derate the utilization of solar cell and also there have occurred the problems of low power factor and plentiful harmonics at the ac input side. Hence in addition to peak power cutting in summer, some advantages can be obtained by adopting the PWM converter to the solar air conditioner. As a result, obtained are the characteristics of the PWM converter such as low distorted current waveform, unity power factor. Also the proposed system is verified by examining the dynamics to step load change and also power reversal testing.

  17. LiCl Dehumidifier LiBr absorption chiller hybrid air conditioning system with energy recovery

    DOEpatents

    Ko, Suk M.

    1980-01-01

    This invention relates to a hybrid air conditioning system that combines a solar powered LiCl dehumidifier with a LiBr absorption chiller. The desiccant dehumidifier removes the latent load by absorbing moisture from the air, and the sensible load is removed by the absorption chiller. The desiccant dehumidifier is coupled to a regenerator and the desiccant in the regenerator is heated by solar heated hot water to drive the moisture therefrom before being fed back to the dehumidifier. The heat of vaporization expended in the desiccant regenerator is recovered and used to partially preheat the driving fluid of the absorption chiller, thus substantially improving the overall COP of the hybrid system.

  18. In-car particles and cardiovascular health: an air conditioning-based intervention study.

    PubMed

    Chuang, Hsiao-Chi; Lin, Lian-Yu; Hsu, Ya-Wen; Ma, Chih-Ming; Chuang, Kai-Jen

    2013-05-01

    Exposure to traffic-related particulate matter (PM) is considered a potential risk for cardiovascular events. Little is known about whether improving air quality in car can modify cardiovascular effects among human subjects during commuting. We recruited a panel of 60 healthy subjects to commute for 2 h by a car equipped with an air conditioning (AC) system during the morning rush hour in Taipei. Operation modes of AC system using outside air (OA-mode), circulating inside air (IA-mode) and turning off (Off-mode) were examined. Repeated measurements of heart rate variability (HRV) indices, PM≤2.5 μm in aerodynamic diameter (PM2.5) and noise level were conducted for each participant in different modes during the commute. We used linear mixed-effects models to associate HRV indices with in-car PM2.5. We found that decreases in HRV indices were associated with increased levels of in-car PM2.5. For Off-mode, an interquartile range (IQR) increase in in-car PM2.5 with 15-min moving average was associated with 2.7% and 4.1% decreases in standard deviation of NN intervals (SDNN) and the square root of the mean of the sum of the squares of differences between adjacent NN intervals (r-MSSD), respectively. During OA and IA modes, participants showed slight decreases in SDNN (OA mode: 0.1%; IA mode: 1.3%) and r-MSSD (OA mode: 1.1%; IA mode: 1.8%) by an IQR increase in in-car PM2.5 with 15-min moving average. We concluded that in-car PM2.5 is associated with autonomic alteration. Utilization of the car's AC system can improve air quality and modify the effects of in-car PM2.5 on HRV indices among human subjects during the commute. PMID:23523729

  19. Deemed Savings Estimates for Legacy Air Conditioning and WaterHeating Direct Load Control Programs in PJM Region

    SciTech Connect

    Goldman, Charles

    2007-03-01

    During 2005 and 2006, the PJM Interconnection (PJM) Load Analysis Subcommittee (LAS) examined ways to reduce the costs and improve the effectiveness of its existing measurement and verification (M&V) protocols for Direct Load Control (DLC) programs. The current M&V protocol requires that a PURPA-compliant Load Research study be conducted every five years for each Load-Serving Entity (LSE). The current M&V protocol is expensive to implement and administer particularly for mature load control programs, some of which are marginally cost-effective. There was growing evidence that some LSEs were mothballing or dropping their DLC programs in lieu of incurring the expense associated with the M&V. This project had several objectives: (1) examine the potential for developing deemed savings estimates acceptable to PJM for legacy air conditioning and water heating DLC programs, and (2) explore the development of a collaborative, regional, consensus-based approach for conducting monitoring and verification of load reductions for emerging load management technologies for customers that do not have interval metering capability.

  20. Development of ANFIS models for air quality forecasting and input optimization for reducing the computational cost and time

    NASA Astrophysics Data System (ADS)

    Prasad, Kanchan; Gorai, Amit Kumar; Goyal, Pramila

    2016-03-01

    This study aims to develop adaptive neuro-fuzzy inference system (ANFIS) for forecasting of daily air pollution concentrations of five air pollutants [sulphur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), ozone (O3) and particular matters (PM10)] in the atmosphere of a Megacity (Howrah). Air pollution in the city (Howrah) is rising in parallel with the economics and thus observing, forecasting and controlling the air pollution becomes increasingly important due to the health impact. ANFIS serve as a basis for constructing a set of fuzzy IF-THEN rules, with appropriate membership functions to generate the stipulated input-output pairs. The ANFIS model predictor considers the value of meteorological factors (pressure, temperature, relative humidity, dew point, visibility, wind speed, and precipitation) and previous day's pollutant concentration in different combinations as the inputs to predict the 1-day advance and same day air pollution concentration. The concentration value of five air pollutants and seven meteorological parameters of the Howrah city during the period 2009 to 2011 were used for development of the ANFIS model. Collinearity tests were conducted to eliminate the redundant input variables. A forward selection (FS) method is used for selecting the different subsets of input variables. Application of collinearity tests and FS techniques reduces the numbers of input variables and subsets which helps in reducing the computational cost and time. The performances of the models were evaluated on the basis of four statistical indices (coefficient of determination, normalized mean square error, index of agreement, and fractional bias).

  1. Performance Analysis of Air-to-Water Heat Pump in Latvian Climate Conditions

    NASA Astrophysics Data System (ADS)

    Kazjonovs, Janis; Sipkevics, Andrejs; Jakovics, Andris; Dancigs, Andris; Bajare, Diana; Dancigs, Leonards

    2014-12-01

    Strategy of the European Union in efficient energy usage demands to have a higher proportion of renewable energy in the energy market. Since heat pumps are considered to be one of the most efficient heating and cooling systems, they will play an important role in the energy consumption reduction in buildings aimed to meet the target of nearly zero energy buildings set out in the EU Directive 2010/31/EU. Unfortunately, the declared heat pump Coefficient of Performance (COP) corresponds to a certain outdoor temperature (+7 °C), therefore different climate conditions, building characteristics and settings result in different COP values during the year. The aim of this research is to investigate the Seasonal Performance factor (SPF) values of air-to-water heat pump which better characterize the effectiveness of heat pump in a longer selected period of time, especially during the winter season, in different types of residential buildings in Latvian climate conditions. Latvia has four pronounced seasons of near-equal length. Winter starts in mid-December and lasts until mid-March. Latvia is characterized by cold, maritime climate (duration of the average heating period being 203 days, the average outdoor air temperature during the heating period being 0.0 °C, the coldest five-day average temperature being -20.7 °C, the average annual air temperature being +6.2 °C, the daily average relative humidity being 79 %). The first part of this research consists of operational air-towater heat pump energy performance monitoring in different residential buildings during the winter season. The second part of the research takes place under natural conditions in an experimental construction stand which is located in an urban environment in Riga, Latvia. The inner area of this test stand, where air-to-water heat pump performance is analyzed, is 9 m2. The ceiling height is 3 m, all external wall constructions (U = 0.16 W/(m2K)) have ventilated facades. To calculate SPF, the

  2. Cool Roofs in Guangzhou, China: Outdoor Air Temperature Reductions during Heat Waves and Typical Summer Conditions.

    PubMed

    Cao, Meichun; Rosado, Pablo; Lin, Zhaohui; Levinson, Ronnen; Millstein, Dev

    2015-12-15

    In this paper, we simulate temperature reductions during heat-wave events and during typical summer conditions from the installation of highly reflective "cool" roofs in the Chinese megacity of Guangzhou. We simulate temperature reductions during six of the strongest historical heat-wave events over the past decade, finding average urban midday temperature reductions of 1.2 °C. In comparison, we simulate 25 typical summer weeks between 2004 and 2008, finding average urban midday temperature reductions of 0.8 °C, indicating that air temperature sensitivity to urban albedo in Guangzhou varies with meteorological conditions. We find that roughly three-fourths of the variance in air temperature reductions across all episodes can be accounted for by a linear regression, including only three basic properties related to the meteorological conditions: mean daytime temperature, humidity, and ventilation to the greater Guangzhou urban area. While these results highlight the potential for cool roofs to mitigate peak temperatures during heat waves, the temperature reductions reported here are based on the upper bound case, which increases albedos of all roofs (but does not modify road albedo or wall albedo). PMID:26523605

  3. Vibro-acoustic characterization of flexible hose in CO2 car air conditioning systems

    NASA Astrophysics Data System (ADS)

    Angelini, F.; Bergami, A.; Martarelli, M.; Tomasini, E. P.

    2008-06-01

    Following the EU directive 2006/40/EC proscribing from 2011 that refrigerant fluids must have a global warming potential not higher than 150, it will not be allowed anymore to employ the current R134a on car air conditioning systems. Maflow s.p.a (automotive hose maker) is developing products for each possible new refrigerant. This paper is focused on hoses for CO2 refrigerants operating in the worst conditions because of the high pressures and temperatures at which they are working (with R134a the high pressure is 18 bar and low pressure is 3 bar; with CO2 the high pressure is 100 bar and low pressure is 35 bar). Therefore the noise emission control of the CO2 air conditioning systems is very important. The aim of this study is to develop a standard measurement method for the vibro - acoustic characterization of High Pressure (HP - Shark F4) and Low Pressure (LP - ULEV) hoses to reduce noise emission and raise car passenger comfort; in particular deep research on high pressure hose. The method is based on the measurement of the vibration level of the hoses in a standard test bench by means of a Laser Doppler Vibrometer (LDV) and its acoustic emission by a sound intensity probe.

  4. Aggregated Modeling and Control of Air Conditioning Loads for Demand Response

    SciTech Connect

    Zhang, Wei; Lian, Jianming; Chang, Chin-Yao; Kalsi, Karanjit

    2013-06-21

    Demand response is playing an increasingly important role in the efficient and reliable operation of the electric grid. Modeling the dynamic behavior of a large population of responsive loads is especially important to evaluate the effectiveness of various demand response strategies. In this paper, a highly-accurate aggregated model is developed for a population of air conditioning loads. The model effectively includes statistical information of the population, systematically deals with load heterogeneity, and accounts for second-order dynamics necessary to accurately capture the transient dynamics in the collective response. Based on the model, a novel aggregated control strategy is designed for the load population under realistic conditions. The proposed controller is fully responsive and achieves the control objective without sacrificing end-use performance. The proposed aggregated modeling and control strategies are validated through realistic simulations using GridLAB-D. Extensive simulation results indicate that the proposed approach can effectively manage a large number of air conditioning systems to provide various demand response services, such as frequency regulation and peak load reduction.

  5. Pointed Wings, Low Wingloading and Calm Air Reduce Migratory Flight Costs in Songbirds

    PubMed Central

    Bowlin, Melissa S.; Wikelski, Martin

    2008-01-01

    Migratory bird, bat and insect species tend to have more pointed wings than non-migrants. Pointed wings and low wingloading, or body mass divided by wing area, are thought to reduce energy consumption during long-distance flight, but these hypotheses have never been directly tested. Furthermore, it is not clear how the atmospheric conditions migrants encounter while aloft affect their energy use; without such information, we cannot accurately predict migratory species' response(s) to climate change. Here, we measured the heart rates of 15 free-flying Swainson's Thrushes (Catharus ustulatus) during migratory flight. Heart rate, and therefore rate of energy expenditure, was positively associated with individual variation in wingtip roundedness and wingloading throughout the flights. During the cruise phase of the flights, heart rate was also positively associated with wind speed but not wind direction, and negatively but not significantly associated with large-scale atmospheric stability. High winds and low atmospheric stability are both indicative of the presence of turbulent eddies, suggesting that birds may be using more energy when atmospheric turbulence is high. We therefore suggest that pointed wingtips, low wingloading and avoidance of high winds and turbulence reduce flight costs for small birds during migration, and that climate change may have the strongest effects on migrants' in-flight energy use if it affects the frequency and/or severity of high winds and atmospheric instability. PMID:18478072

  6. Home air-conditioning, traffic exposure, and asthma and allergic symptoms among preschool children.

    PubMed

    Zuraimi, Mohamed Sultan; Tham, Kwok-Wai; Chew, Fook-Tim; Ooi, Peng-Lim; Koh, David

    2011-02-01

    Epidemiological data suggest that traffic exposures can influence asthma and allergic symptoms among preschool children; however, there is no information on risk reduction via home air-conditioning (AC). The aim of this study is to evaluate the associations of self-reported traffic densities with asthma and allergic symptoms among preschool children and determine whether AC is an effect modifier. A cross-sectional study adopting an expanded and modified ISAAC--International Study of Asthma and Allergies in Childhood conducted on randomly selected 2994 children living in homes without any indoor risk factors. Specific information on demographics, indoor home risk factors, and traffic variables were obtained. Adjusted prevalence ratios (PR) and 95% confidence interval (CI) were determined by Cox proportional hazard regression model with assumption of a constant risk period controlled for covariates. We found dose-response significant relationships between validated self-reported traffic densities and asthma and rhinitis symptoms. Among children sleeping in non-air-conditioned homes, there were stronger associations between asthma and rhinitis symptoms studied. PRs for heavy traffic density were 2.06 for wheeze (95% CI 0.97-4.38), 2.89 for asthma (1.14-7.32), 1.73 for rhinitis (1.00-2.99), and 3.39 for rhinoconjunctivitis (1.24-9.27). There were no associations found for children sleeping in air-conditioned homes. Our results suggest that AC in the bedroom modifies the health effects of traffic among preschool children. This finding suggests that attention should also be paid to ventilation characteristics of the homes to remediate health-related traffic pollution problems. PMID:20561230

  7. The economics of air quality regulation: the true costs of increased PM2.5 regulation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Potential best available control technologies (BACT) are being considered for promulgation by the San Joaquin Valley Air Pollution Control District and other jurisdictions in response to determinations of national ambient air quality standards non-attainment for ozone and PM2.5 by writing dairy-spec...

  8. Adsorbent Alkali Conditioning for Uranium Adsorption from Seawater. Adsorbent Performance and Technology Cost Evaluation

    SciTech Connect

    Tsouris, Costas; Mayes, Richard T.; Janke, Christopher James; Dai, Sheng; Das, S.; Liao, W. -P.; Kuo, Li-Jung; Wood, Jordana; Gill, Gary; Byers, Maggie Flicker; Schneider, Eric

    2015-09-30

    The Fuel Resources program of the Fuel Cycle Research and Development program of the Office of Nuclear Energy (NE) is focused on identifying and implementing actions to assure that nuclear fuel resources are available in the United States. An immense source of uranium is seawater, which contains an estimated amount of 4.5 billion tonnes of dissolved uranium. This unconventional resource can provide a price cap and ensure centuries of uranium supply for future nuclear energy production. NE initiated a multidisciplinary program with participants from national laboratories, universities, and research institutes to enable technical breakthroughs related to uranium recovery from seawater. The goal is to develop advanced adsorbents to reduce the seawater uranium recovery technology cost and uncertainties. Under this program, Oak Ridge National Laboratory (ORNL) has developed a new amidoxime-based adsorbent of high surface area, which tripled the uranium capacity of leading Japanese adsorbents. Parallel efforts have been focused on the optimization of the physicochemical and operating parameters used during the preparation of the adsorbent for deployment. A set of parameters that need to be optimized are related to the conditioning of the adsorbent with alkali solution, which is necessary prior to adsorbent deployment. Previous work indicated that alkali-conditioning parameters significantly affect the adsorbent performance. Initiated in 2014, this study had as a goal to determine optimal parameters such as base type and concentration, temperature, and duration of conditioning that maximize the uranium adsorption performance of amidoxime functionalized adsorbent, while keeping the cost of uranium production low. After base-treatment at various conditions, samples of adsorbent developed at ORNL were tested in this study with batch simulated seawater solution of 8-ppm uranium concentration, batch seawater spiked with uranium nitrate at 75-100 ppb uranium, and continuous

  9. Design and experimental investigation of an ejector in an air-conditioning and refrigeration system

    SciTech Connect

    AL-Khalidy, N.; Zayonia, A.

    1995-12-31

    This paper discusses the conservation of energy in a refrigerant ejector refrigerating machine using heat driven from the concentrator collectors. The working refrigerant was R-113. The design of an ejector operating in an air-conditioning and refrigerating system with a low thermal source (70 C to 100 C) is presented. The influence of three major parameters--boiler, condenser, and evaporator temperature--on ejector efficiency is discussed. Experimental results show that the condenser temperature is the major influence at a low evaporator temperature. The maximum ejector efficiency was 31%.

  10. Simulation of pulmonary air flow with a subject-specific boundary condition

    PubMed Central

    Yin, Youbing; Choi, Jiwoong; Hoffman, Eric A.; Tawhai, Merryn H.; Lin, Ching-Long

    2011-01-01

    We present a novel image-based technique to estimate a subject-specific boundary condition (BC) for computational fluid dynamics (CFD) simulation of pulmonary air flow. The information of regional ventilation for an individual is derived by registering two computed tomography (CT) lung datasets and then passed to the CT-resolved airways as the flow BC. The CFD simulations show that the proposed method predicts lobar volume changes consistent with direct image-measured metrics, whereas the other two traditional BCs (uniform velocity or uniform pressure) yield lobar volume changes and regional pressure differences inconsistent with observed physiology. PMID:20483412

  11. Estimating the risks of smoking, air pollution, and passive smoke on acute respiratory conditions

    SciTech Connect

    Ostro, B.D. )

    1989-06-01

    Five years of the annual Health Interview Survey, conducted by the National Center for Health Statistics, are used to estimate the effects of air pollution, smoking, and environmental tobacco smoke on respiratory restrictions in activity for adults, and bed disability for children. After adjusting for several socioeconomic factors, the multiple regression estimates indicate that an independent and statistically significant association exists between these three forms of air pollution and respiratory morbidity. The comparative risks of these exposures are computed and the plausibility of the relative risks is examined by comparing the equivalent doses with actual measurements of exposure taken in the homes of smokers. The results indicate that: (1) smokers will have a 55-75% excess in days with respiratory conditions severe enough to cause reductions in normal activity; (2) a 1 microgram increase in fine particulate matter air pollution is associated with a 3% excess in acute respiratory disease; and (3) a pack-a-day smoker will increase respiratory restricted days for a nonsmoking spouse by 20% and increase the number of bed disability days for young children living in the household by 20%. The results also indicate that the estimates of the effects of secondhand smoking on children are improved when the mother's work status is known and incorporated into the exposure estimate.

  12. The interaction of water mists and premixed propane-air flames under low-gravity conditions

    NASA Astrophysics Data System (ADS)

    Abbud-Madrid, Angel; Riedel, Edward P.; McKinnon, J. Thomas

    1999-01-01

    A preliminary investigation of the effect of water mists on premixed flame propagation in a cylindrical tube under low-gravity conditions has been conducted to define the scientific and technical objectives of the experiments to be performed on the Space Shuttle and International Space Station microgravity environments. The inhibiting characteristics of water mists in propagating flames of propane-air mixtures at various equivalence ratios are studied. The effects of droplet size and concentration on the laminar flame speed are used as the measure of fire suppression efficacy. Flame speed and propagation behavior are monitored by a video camera. Reduced gravity is obtained with an aircraft flying parabolic trajectories. Measurements and qualitative observations from the low-gravity experiments clearly show the effect of water mist on flame speed abatement, flame shape, and radiant emission. For lean propane-air mixtures, the flame speed increases at first with low water-mist concentrations and then decreases below its dry value when higher water-mist volumes are introduced in the tube. This phenomenon may be due in part to the heating of the unburned mixture ahead of the flame as a result of radiation absorption by the water droplets. For rich propane-air mixtures, similar behavior of flame speed vs. water concentration is encountered but in this case is mostly due to the formation of cellular flames. At high water loads both lean and rich flames exhibit extinction before reaching the end of the tube.

  13. Comparison of boundary conditions from Global Chemistry Model (GCM) for regional air quality application

    NASA Astrophysics Data System (ADS)

    Lam, Yun Fat; Cheung, Hung Ming; Fu, Joshua; Huang, Kan

    2015-04-01

    Applying Global Chemistry Model (GCM) for regional Boundary Conditions (BC) has become a common practice to account for long-range transport of air pollutants in the regional air quality modeling. The limited domain model such as CMAQ and CAMx requires a global BC to prescribe the real-time chemical flux at the boundary grids, in order to give a realistic estimate of boundary impacts. Several GCMs have become available recently for use in regional air quality studies. In this study, three GCM models (i.e., GEOS-chem, CHASER and IFS-CB05 MACC provided by Seoul National University, Nagoya University and ECWMF, respectively) for the year of 2010 were applied in CMAQ for the East Asia domain under the framework of Model Inter-comparison Study Asia Phase III (MISC-Asia III) and task force on Hemispheric Transport of Air Pollution (HTAP) jointed experiments. Model performance evaluations on vertical profile and spatial distribution of O3 and PM2.5 have been made on those three models to better understand the model uncertainties from the boundary conditions. Individual analyses on various mega-cities (i.e., Hong Kong, Guangzhou, Taipei, Chongqing, Shanghai, Beijing, Tianjin, Seoul and Tokyo) were also performed. Our analysis found that the monthly estimates of O3 for CHASER were a bit higher than GEOS-Chem and IFS-CB05 MACC, particularly in the northern part of China in the winter and spring, while the monthly averages of PM2.5 in GEOS-Chem were the lowest among the three models. The hourly maximum values of PM2.5 from those three models (GEOS-Chem, CHASER and IFS-CB05 MACC are 450, 321, 331 μg/m3, while the maximum O3 are 158, 212, 380 ppbv, respectively. Cross-comparison of CMAQ results from the 45 km resolution were also made to investigate the boundary impacts from the global GCMs. The results presented here provide insight on how global GCM selection influences the regional air quality simulation in East Asia.

  14. Future climate impact on unfavorable meteorological conditions for the dispersion of air pollution in Brussels

    NASA Astrophysics Data System (ADS)

    De Troch, Rozemien; Berckmans, Julie; Giot, Olivier; Hamdi, Rafiq; Termonia, Piet

    2015-04-01

    Belgium is one of the several countries in Europe where air quality levels of different pollutants such as ozone, NOx, and Particulate Matter (PM) still exceed the prescribed European norms multiple times a year (EEA, 2014). These pollution peaks have a great impact on health and environment, in particular in large cities and urban environments. It is well known that observed concentrations of air pollutants are strongly influenced by emissions and meteorological conditions and therefore is sensitive to climate change. As the effects of global climate change are increasingly felt in Belgium, policy makers express growing interest in quantifying its effect on air pollution and the effort required to meet the air quality targets in the next years and decennia (Lauwaet et al., 2014). In this study, two different stability indices are calculated for a 9-year period using present (1991-1999) and future (2047-2055) climate data that has been obtained from a dynamically downscaling of Global Climate Model data from the Arpège model using the ALARO model at 4 km spatial resolution. The ALARO model is described in detail in previous validation studies from De Troch et al. (2013) and Hamdi et al. (2013). The first index gives a measure of the horizontal and vertical transport of nonreactive pollutants in stable atmospheric conditions and has been proposed and tested by Termonia and Quinet (2004). It gives a characteristic length scale l which is the ratio of the mean horizontal wind speed and the Brunt-Väisälä frequency. In this way low values for l in the lower part of the boundary layer during an extended time span of 12 hours, correspond to calm situations and a stable atmosphere and thus indicate unfavorable conditions for the dispersion of air pollution. This transport index is similar to an index used in an old Pasquill-type scheme but is more convenient to use to detect the strongest pollution peaks. The well known Pasquill classes are also calculated in order to

  15. Effects of multiple chronic conditions on health care costs: an analysis based on an advanced tree-based regression model

    PubMed Central

    2013-01-01

    Background To analyze the impact of multimorbidity (MM) on health care costs taking into account data heterogeneity. Methods Data come from a multicenter prospective cohort study of 1,050 randomly selected primary care patients aged 65 to 85 years suffering from MM in Germany. MM was defined as co-occurrence of ≥3 conditions from a list of 29 chronic diseases. A conditional inference tree (CTREE) algorithm was used to detect the underlying structure and most influential variables on costs of inpatient care, outpatient care, medications as well as formal and informal nursing care. Results Irrespective of the number and combination of co-morbidities, a limited number of factors influential on costs were detected. Parkinson’s disease (PD) and cardiac insufficiency (CI) were the most influential variables for total costs. Compared to patients not suffering from any of the two conditions, PD increases predicted mean total costs 3.5-fold to approximately € 11,000 per 6 months, and CI two-fold to approximately € 6,100. The high total costs of PD are largely due to costs of nursing care. Costs of inpatient care were significantly influenced by cerebral ischemia/chronic stroke, whereas medication costs were associated with COPD, insomnia, PD and Diabetes. Except for costs of nursing care, socio-demographic variables did not significantly influence costs. Conclusions Irrespective of any combination and number of co-occurring diseases, PD and CI appear to be most influential on total health care costs in elderly patients with MM, and only a limited number of factors significantly influenced cost. Trial registration Current Controlled Trials ISRCTN89818205 PMID:23768192

  16. Meteorological factors and air pollution in Lithuanian forests: possible effects on tree condition.

    PubMed

    Ozolincius, Remigijus; Stakenas, Vidas; Serafinaviciute, Brigita

    2005-10-01

    This study investigates changes in tree condition and environmental factors in Lithuania during the active growing season in 1991-2001. The average crown defoliation and the proportion of healthy trees of Pinus sylvestris, Picea abies, Betula sp., Fraxinus excelsior, Alnus incana, Alnus glutinosa, Populus tremula, and Quercus robur, meteorological (average temperature, amount of precipitation, hydrothermal coefficient) and air pollution data (acidity of precipitation, concentrations of SO2, NO2 and exposure of O3) were analysed. During the period 1991-2001 the condition of Pinus sylvestris, Populus tremula showed a tendency of improvement, while defoliation of Fraxinus excelsior significantly increased. The proportion of healthy trees correlated well with the average temperature and O3 (AOT40), while defoliation correlated well with the acidity of precipitation and the concentrations of SO2 and NO2. Deciduous species appeared to be more sensitive to O3 exposure and conifers to the concentrations of SO2 and NO2. PMID:16005769

  17. Transformation of Sulfur Species during Steam/Air Regeneration on a Ni Biomass Conditioning Catalyst

    SciTech Connect

    Yung, M. M.; Cheah, S.; Magrini-Bair, K.; Kuhn, J. N.

    2012-07-06

    Sulfur K-edge XANES identified transformation of sulfides to sulfates during combined steam and air regeneration on a Ni/Mg/K/Al2O3 catalyst used to condition biomass-derived syngas. This catalyst was tested over multiple reaction/regeneration/reduction cycles. Postreaction catalysts showed the presence of sulfides on H2S-poisoned sites. Although H2S was observed to leave the catalyst bed during regeneration, sulfur remained on the catalyst, and a transformation from sulfides to sulfates was observed. Following the oxidative regeneration, the subsequent H2 reduction led to a partial reduction of sulfates back to sulfides, indicating the difficulty and sensitivity in achieving complete sulfur removal during regeneration for biomass-conditioning catalysts.

  18. An efficient heuristic method for dynamic portfolio selection problem under transaction costs and uncertain conditions

    NASA Astrophysics Data System (ADS)

    Najafi, Amir Abbas; Pourahmadi, Zahra

    2016-04-01

    Selecting the optimal combination of assets in a portfolio is one of the most important decisions in investment management. As investment is a long term concept, looking into a portfolio optimization problem just in a single period may cause loss of some opportunities that could be exploited in a long term view. Hence, it is tried to extend the problem from single to multi-period model. We include trading costs and uncertain conditions to this model which made it more realistic and complex. Hence, we propose an efficient heuristic method to tackle this problem. The efficiency of the method is examined and compared with the results of the rolling single-period optimization and the buy and hold method which shows the superiority of the proposed method.

  19. Condition monitoring and life-cycle cost design of stay cable by embedded OFBG sensors

    NASA Astrophysics Data System (ADS)

    Lan, C. M.; Ju, Y.; Li, H.

    2011-04-01

    Stay cables are one of the most critical structural components of a cable-stayed bridge. However, stay cables readily suffer from fatigue damage, corrosion damage and their coupled effect. Thus, condition monitoring of stay cables is important to ensure the integrity and safety of a bridge. Glass Fibre Reinforced Polymer Optical Fibre Bragg Grating (GFRP-OFBG) cable, a kind of fibre Bragg grating optical sensing technology-based smart stay cables is used in this study. The application of the smart stay cables on the Tianjin Yonghe Bridge was demonstrated and the vehicle live load effect and fatigue effect of smart stay cables were evaluated based on field monitoring data. Furthermore, the life-cycle cost analysis method of the stay cables is established. Finally, based on the nonlinear reliability index deterioration model, the optimal design of stay cable with different reference period is evaluated.

  20. Visibility characteristics and the impacts of air pollutants and meteorological conditions over Shanghai, China.

    PubMed

    Xue, Dan; Li, Chengfan; Liu, Qian

    2015-06-01

    In China, visibility condition has become an important issue that concerns both society and the scientific community. In order to study visibility characteristics and its influencing factors, visibility data, air pollutants, and meteorological data during the year 2013 were obtained over Shanghai. The temporal variation of atmospheric visibility was analyzed. The mean value of daily visibility of Shanghai was 19.1 km. Visibility exhibited an obvious seasonal cycle. The maximum and minimum visibility occurred in September and December with the values of 27.5 and 7.7 km, respectively. The relationships between the visibility and air pollutant data were calculated. The visibility had negative correlation with NO2, CO, PM2.5, PM10, and SO2 and weak positive correlation with O3. Meteorological data were clustered into four groups to reveal the joint contribution of meteorological variables to the daily average visibility. Usually, under the meteorological condition of high temperature and wind speed, the visibility of Shanghai reached about 25 km, while visibility decreased to 16 km under the weather type of low wind speed and temperature and high relative humid. Principle component analysis was also applied to identify the main cause of visibility variance. The results showed that the low visibility over Shanghai was mainly due to the high air pollution concentrations associated with low wind speed, which explained the total variance of 44.99 %. These results provide new knowledge for better understanding the variations of visibility and have direct implications to supply sound policy on visibility improvement in Shanghai. PMID:25980729

  1. Effect Of Air-Water Interface On Microorganism Transport Under Unsaturated Conditions

    NASA Astrophysics Data System (ADS)

    Torkzaban, S.; Hassanizadeh, S. M.; Schijven, J. F.

    2005-12-01

    Groundwater may become contaminated with pathogenic microorganisms from land application of treated wastewater, septic wells, and effluent from septic tanks, and leaking sewage pipes. The unsaturated zone is of special importance since it often represents the first line of natural defense against groundwater pollution. Moreover, many experimental studies have shown that contaminant removal is more significant under lower saturation levels. Interaction of microbial particles with the air-water interfaces (AWI) has been previously suggested to explain high removal of pathogenic microorganisms during transport through unsaturated soil. The objective of this research was to explore the effect of AWI on virus transport. The transport of bacteriophages MS2 and FiX174 in sand columns was studied under various conditions, such as different pH, and saturation levels. Fitting of a transport model to the breakthrough curves was performed to determine the adsorption parameters. FiX174 with isoelectric point of 6.7 exhibited high affinity to the air-water interface by decreasing pH from 7.5 to 6.2. MS2 with isoelectric point of 3.5 has lower affinity to air-water interfaces than FiX174, but has similar pH- dependence. These results show the importance of electrostatic interactions, instead of hydrophobic, between the AWI and viruses. Adsorption to AWI is strongly pH dependent, increasing as pH decreases. It was found that two-site kinetic model should be used for modeling of virus transport under unsaturated conditions Moreover, by draining the unsaturated column, we found out that the attached viruses to AWI are viable, which is in contrast with the literature where retained viruses to AWI are considered as inactivated.

  2. Gas Engine-Driven Heat Pump Chiller for Air-Conditioning and Hot Water Supply Systems

    NASA Astrophysics Data System (ADS)

    Fujita, Toshihiko; Mita, Nobuhiro; Moriyama, Tadashi; Hoshino, Norimasa; Kimura, Yoshihisa

    In Part 1 of this study, the performance characteristics of a 457kW gas engine-driven heat pump (GHP) chiller have been obtained from a simulation model analysis for both cooling and heating modes and it has been found that the part-load characteristics of the GHP chiller are fairly well. On the back of Part 1, a computer simulation program has been developed for the evaluation of GHP chiller systems to compare with the other types of heat source systems for air-conditioning and hot water supply applications. The simulation program can be used to estimate annual energy consumption, annual CO2 emission, etc. of the systems with the data of monthly and hourly thermal loads on various buildings, outdoor air conditions, and characteristics of various components comprising the systems. By applying this to some cases of medium-scale hotel, office, shop, and hospital buildings, it has been found that the GHP chiller systems have advantages particularly in the cases of hotels and hospitals where a lot of hot water demand exists. It has also been found that the combination of a GHP chiller and a direct-fired absorption water chiller boiler (hot and chilled water generator) appears promising.

  3. Emissions of halocarbons from mobile vehicle air conditioning system in Hong Kong.

    PubMed

    Yan, H H; Guo, H; Ou, J M

    2014-08-15

    During the implementation of Montreal Protocol, emission inventories of halocarbons in different sectors at regional scale are fundamental to the formulation of relevant management strategy and inspection of the implementation efficiency. This study investigated the emission profile of halocarbons used in the mobile vehicle air conditioning system, the leading sector of refrigeration industry in terms of the refrigerant bank, market and emission, in the Hong Kong Special Administrative Region, using a bottom-up approach developed by 2006 IPCC Good Practice Guidance. The results showed that emissions of CFC-12 peaked at 53 tons ODP (Ozone Depletion Potential) in 1992 and then gradually diminished, whereas HFC-134a presented an increasing emission trend since 1990s and the emissions of HFC-134a reached 65,000 tons CO2-equivelant (CO2-eq) by the end of 2011. Uncertainty analysis revealed relatively high levels of uncertainties for special-purpose vehicles and government vehicles. Moreover, greenhouse gas (GHG) abatements under different scenarios indicated that potential emission reduction of HFC-134a ranged from 4.1 to 8.4 × 10(5)tons CO2-eq. The findings in this study advance our knowledge of halocarbon emissions from mobile vehicle air conditioning system in Hong Kong. PMID:24997256

  4. Review of open-cycle desiccant air-conditioning concepts and systems

    SciTech Connect

    Wurm, J.

    1986-08-01

    This paper attempts to overview the development status of desiccant cooling. Over the past 30 years of progressively intensifying attention, this promising technology has become a domain of interest of many research agencies and manufacturing companies. As a result, the market potential for machines based on desiccant processes, particularly in comfort cooling and agricultural applications, is getting close to realization. One of the most important incentives of developing heat-activated, open-cycle desiccant cooling machines (air conditioners) has always been its potential simplicity. Such premise has been deceiving to a degree that in many instances has slowed the progress. However, the persistent analytical and material research brought some desiccant systems close to the marketplace. They provide attractive alternatives to consumers and utilities, offering particularly effective humidity and temperature control in cases of high fresh-air-makeup requirements. The control of bacteria, airborne particulates, as well as CO/sub 2/, combined with effective heating capability make them attractive for controlled-atmosphere agriculture. Finally, the capability of using low-temperature waste heat to drive the cycle becomes an important attribute of a desiccant concept, specifically when combined with a regular vapor-compression cooling machine in energy saving space-conditioning concepts. The presented assessment concludes that, particularly for specialized applications, machines based on open-cycle desiccant cooling processes are very close to playing an important role in the space-conditioning (including comfort control) marketplace.

  5. Energy and global warming impacts of next generation refrigeration and air conditioning technologies

    SciTech Connect

    Sand, J.R.; Fischer, S.K.; Baxter, V.D.

    1996-10-01

    Significant developments have occurred in hydrofluorocarbon (HFC) and the application of ammonia and hydrocarbons as refrigerant working fluids since the original TEWI (Total Equivalent Warming Impact) report in 1991. System operating and performance data on alternative refrigerants and refrigeration technologies justify and updated evaluation of these new alternative refrigerants and competing technologies in well-characterized applications. Analytical and experimental results are used to show quantitative comparisons between HFCS, HFC blends, hydrocarbons, and ammonia, used as refrigerants. An objective evaluation is presented for commercial and near commercial non-CFC refrigerants/blowing agents and alternative refrigeration technologies. This information is needed for objective and quantitative decisions on policies addressing greenhouse gas emissions from refrigeration and air conditioning equipment. The evaluation assesses the energy use and global warming impacts of refrigeration and air conditioning technologies that could be commercialized during the phase out of HCFCS. Quantitative comparison TEWI for two application areas are presented. Opportunities for significant reductions in TEWI are seen with currently known refrigerants through improved maintenance and servicing practices and improved product designs.

  6. An integrated assessment of two decades of air pollution policy making in Spain: Impacts, costs and improvements.

    PubMed

    Vedrenne, Michel; Borge, Rafael; Lumbreras, Julio; Conlan, Beth; Rodríguez, María Encarnación; de Andrés, Juan Manuel; de la Paz, David; Pérez, Javier; Narros, Adolfo

    2015-09-15

    This paper analyses the effects of policy making for air pollution abatement in Spain between 2000 and 2020 under an integrated assessment approach with the AERIS model for number of pollutants (NOx/NO2, PM10/PM2.5, O3, SO2, NH3 and VOC). The analysis of the effects of air pollution focused on different aspects: compliance with the European limit values of Directive 2008/50/EC for NO2 and PM10 for the Spanish air quality management areas; the evaluation of impacts caused by the deposition of atmospheric sulphur and nitrogen on ecosystems; the exceedance of critical levels of NO2 and SO2 in forest areas; the analysis of O3-induced crop damage for grapes, maize, potato, rice, tobacco, tomato, watermelon and wheat; health impacts caused by human exposure to O3 and PM2.5; and costs on society due to crop losses (O3), disability-related absence of work staff and damage to buildings and public property due to soot-related soiling (PM2.5). In general, air quality policy making has delivered improvements in air quality levels throughout Spain and has mitigated the severity of the impacts on ecosystems, health and vegetation in 2020 as target year. The findings of this work constitute an appropriate diagnosis for identifying improvement potentials for further mitigation for policy makers and stakeholders in Spain. PMID:25965050

  7. Performance Evaluation of a Lower-Cost, Real-Time Community Air Monitoring Station

    EPA Science Inventory

    These slides describe the Village Green Project prototype and how the measurements compare wtih nearby FEMs, including the OAQPS data collected at the AIRS site on the EPA-RTP campus and the NCDENR FEMs in the Triangle area.

  8. Consolidated Compressed Air System Reduces Power Consumption and Energy Costs (Augusta Newsprint Company)

    SciTech Connect

    2002-02-01

    Augusta Newsprint Company consolidated two compressed air systems at its facility in Augusta, GA. The results are a more streamlined system, added storage capacity, backflow prevention, and the elimination of unused equipment.

  9. Low-cost monitoring of Campylobacter in poultry houses by air sampling and quantitative PCR.

    PubMed

    Søndergaard, M S R; Josefsen, M H; Löfström, C; Christensen, L S; Wieczorek, K; Osek, J; Hoorfar, J

    2014-02-01

    The present study describes the evaluation of a method for the quantification of Campylobacter by air sampling in poultry houses. Sampling was carried out in conventional chicken houses in Poland, in addition to a preliminary sampling in Denmark. Each measurement consisted of three air samples, two standard boot swab fecal samples, and one airborne particle count. Sampling was conducted over an 8-week period in three flocks, assessing the presence and levels of Campylobacter in boot swabs and air samples using quantitative real-time PCR. The detection limit for air sampling was approximately 100 Campylobacter cell equivalents (CCE)/m3. Airborne particle counts were used to analyze the size distribution of airborne particles (0.3 to 10 μm) in the chicken houses in relation to the level of airborne Campylobacter. No correlation was found. Using air sampling, Campylobacter was detected in the flocks right away, while boot swab samples were positive after 2 weeks. All samples collected were positive for Campylobacter from week 2 through the rest of the rearing period for both sampling techniques, although levels 1- to 2-log CCE higher were found with air sampling. At week 8, the levels were approximately 10(4) and 10(5) CCE per sample for boot swabs and air, respectively. In conclusion, using air samples combined with quantitative real-time PCR, Campylobacter contamination could be detected earlier than by boot swabs and was found to be a more convenient technique for monitoring and/or to obtain enumeration data useful for quantitative risk assessment of Campylobacter. PMID:24490929

  10. Comparing the Costs and Benefits of Re-Accreditation Processes. AIR 2002 Forum Paper.

    ERIC Educational Resources Information Center

    Shibley, Lisa R.; Volkwein, J. Fredericks

    This study examined the costs and benefits of reaccredidation processes at a public research university. A case study approach was used to examining the costs and benefits of reaccredidation activities by Middle States Association (MSA), American Assembly of Collegiate Schools of Business-International Association for Management Education (AACSB),…

  11. Discipline Cost Indices and Their Applications. AIR 1991 Annual Forum Paper.

    ERIC Educational Resources Information Center

    Smith, Theresa

    This paper documents how the University of Oklahoma developed discipline cost indices which it then used in its budget allocation process. In order to overcome the interinstitutional comparison problems between universities which use different reporting and accounting methods, discipline cost indices were derived using data collected through the…

  12. Data Bases at a State Institution--Costs, Uses and Needs. AIR Forum Paper 1978.

    ERIC Educational Resources Information Center

    McLaughlin, Gerald W.

    The cost-benefit of administrative data at a state college is placed in perspective relative to the institutional involvement in computer use. The costs of computer operations, personnel, and peripheral equipment expenses related to instruction are analyzed. Data bases and systems support institutional activities, such as registration, and aid…

  13. Coal use by industry and the associated air pollution emissions in the period from 1980 to 2000 under alternative market and regulatory conditions

    SciTech Connect

    Roach, C.R.

    1983-01-01

    This study develops methods and data necessary to forecast both coal use and the associated air pollution emissions from US manufacturing industries in the period from 1980 to 2000 under alternative market and regulatory conditions. For the forecast and sensitivity analyses, a process model was developed to simulate industry's investment decisions for energy using equipment. Embodied in the process model are judgments on several practical issues of applied microeconomics, the most important being those concerning methods of investment decision making by industry. Under basecase assumptions, rapid growth in industrial coal use is forecast, a 9.8% compound rate of growth over the 1980 to 2000 period. If the base-case level of coal use was achieved and current air pollution rules were continued, a substantial increase in SO/sub 2/ and NO/sub x/ emissions would be realized; a 219% increase in industrial emissions of SO/sub 2/ and a 100% increase in NO/sub x/ emissions by the year 2000. To block this increase in emissions, a series of stricter air pollution regulations was simulated in the process model. With the high oil and gas prices assumed in the basecase, the stricter regulations did not slow the increase in coal use. However, the cost of stricter regulations may be a problem. The incremental cost of air pollution control (the cost per ton of pollutant reduction) rises steeply as stricter rules are imposed. A total cost of $4 billion could be incurred if very strict regulations (scrubber devices on all coal-fired systems) were imposed instead of continuing current policy.

  14. A scoping study on the costs of indoor air quality illnesses:an insurance loss reduction perspective

    SciTech Connect

    Chen, Allan; Vine, Edward L.

    1998-08-31

    The incidence of commercial buildings with poor indoor air quality (IAQ), and the frequency of litigation over the effects of poor IAQ is increasing. If so, these increases have ramifications for insurance carriers, which pay for many of the costs of health care and general commercial liability. However, little is known about the actual costs to insurance companies from poor IAQ in buildings. This paper reports on the results of a literature search of buildings-related, business and legal databases, and interviews with insurance and risk management representatives aimed at finding information on the direct costs to the insurance industry of poor building IAQ, as well as the costs of litigation. The literature search and discussions with insurance and risk management professionals reported in this paper turned up little specific information about the costs of IAQ-related problems to insurance companies. However, those discussions and certain articles in the insurance industry press indicate that there is a strong awareness and growing concern over the "silent crisis" of IAQ and its potential to cause large industry losses, and that a few companies are taking steps to address this issue. The source of these losses include both direct costs to insurers from paying health insurance and professional liability claims, as weIl as the cost of litigation. In spite of the lack of data on how IAQ-related health problems affect their business, the insurance industry has taken the anecdotal evidence about their reality seriously enough to alter their policies in ways that have lessened their exposure. We conclude by briefly discussing four activities that need to be addressed in the near future: (1) quantifying IAQ-related insurance costs by sector, (2) educating the insurance industry about the importance of IAQ issues, (3) examining IAQ impacts on the insurance industry in the residential sector, and (4) evaluating the relationship between IAQ improvements and their impact on

  15. The effect of simulated air conditions on N95 filtering facepiece respirators performance.

    PubMed

    Ramirez, Joel A; O'Shaughnessy, Patrick T

    2016-07-01

    The objective of this study was to determine the effect of several simulated air environmental conditions on the particle penetration and the breathing resistance of two N95 filtering facepiece respirator (FFR) models. The particle penetration and breathing resistance of the respirators were evaluated in a test system developed to mimic inhalation and exhalation breathing while relative humidity and temperature were modified. Breathing resistance was measured over 120 min using a calibrated pressure transducer under four different temperature and relative humidity conditions without aerosol loading. Particle penetration was evaluated before and after the breathing resistance test at room conditions using a sodium chloride aerosol measured with a scanning mobility particle sizer. Results demonstrated that increasing relative humidity and lowering external temperature caused significant increases in breathing resistance (p < 0.001). However, these same conditions did not influence the penetration or most penetrating particle size of the tested FFRs. The increase in breathing resistance varied by FFR model suggesting that some FFR media are less influenced by high relative humidity. PMID:26861653

  16. Influence of operating conditions on the air gasification of dry refinery sludge in updraft gasifier

    NASA Astrophysics Data System (ADS)

    Ahmed, R.; Sinnathambi, C. M.

    2013-06-01

    In the present work, details of the equilibrium modeling of dry refinery sludge (DRS) are presented using ASPEN PLUS Simulator in updraft gasifier. Due to lack of available information in the open journal on refinery sludge gasification using updraft gasifier, an evaluate for its optimum conditions on gasification is presented in this paper. For this purpose a Taguchi Orthogonal array design, statistical software is applied to find optimum conditions for DRS gasification. The goal is to identify the most significant process variable in DRS gasification conditions. The process variables include; oxidation zone temperature, equivalent ratio, operating pressure will be simulated and examined. Attention was focused on the effect of optimum operating conditions on the gas composition of H2 and CO (desirable) and CO2 (undesirable) in terms of mass fraction. From our results and finding it can be concluded that the syngas (H2 & CO) yield in term of mass fraction favors high oxidation zone temperature and at atmospheric pressure while CO2 acid gas favor at a high level of equivalent ratio as well as air flow rate favoring towards complete combustion.

  17. Validation of low-cost ozone measurement instruments suitable for use in an air-quality monitoring network

    NASA Astrophysics Data System (ADS)

    Williams, David E.; Henshaw, Geoff S.; Bart, Mark; Laing, Greer; Wagner, John; Naisbitt, Simon; Salmond, Jennifer A.

    2013-06-01

    This paper presents a novel low-cost instrument that uses a sensor based on conductivity changes of heated tungstic oxide, which is capable of accurately measuring ambient concentrations of ozone. A combination of temperature steps and air flow-rate steps is used to continually reset and re-zero the sensor. A two-stage calibration procedure is presented, in which a nonlinear transformation converts sensor resistance to a signal linear in ozone concentration, then a linear correlation is used to align the calibration with a reference instrument. The required calibration functions specific for the sensor, and control system for air flow rate and sensor temperature, are housed with the sensor in a compact, simple-to-exchange assembly. The instrument can be operated on solar power and uses cell phone technology to enable monitoring in remote locations. Data from field trials are presented here to demonstrate that both the accuracy and the stability of the instrument over periods of months are within a few parts-per-billion by volume. We show that common failure modes can be detected through measurement of signals available from the instrument. The combination of long-term stability, self-diagnosis, and simple, inexpensive repair means that the cost of operation and calibration of the instruments is significantly reduced in comparison with traditional reference instrumentation. These instruments enable the economical construction and operation of ozone monitoring networks of accuracy, time resolution and spatial density sufficient to resolve the local gradients that are characteristic of urban air pollution.

  18. Costs of Three Wolbachia Infections on the Survival of Aedes aegypti Larvae under Starvation Conditions

    PubMed Central

    Ross, Perran A.; Endersby, Nancy M.; Hoffmann, Ary A.

    2016-01-01

    The mosquito Aedes aegypti, the principal vector of dengue virus, has recently been infected experimentally with Wolbachia: intracellular bacteria that possess potential as dengue biological control agents. Wolbachia depend on their hosts for nutrients they are unable to synthesize themselves. Consequently, competition between Wolbachia and their host for resources could reduce host fitness under the competitive conditions commonly experienced by larvae of Ae. aegypti in the field, hampering the invasion of Wolbachia into natural mosquito populations. We assess the survival and development of Ae. aegypti larvae under starvation conditions when infected with each of three experimentally-generated Wolbachia strains: wMel, wMelPop and wAlbB, and compare their fitness to wild-type uninfected larvae. We find that all three Wolbachia infections reduce the survival of larvae relative to those that are uninfected, and the severity of the effect is concordant with previously characterized fitness costs to other life stages. We also investigate the ability of larvae to recover from extended food deprivation and find no effect of Wolbachia on this trait. Aedes aegypti larvae of all infection types were able to resume their development after one month of no food, pupate rapidly, emerge at a large size, and exhibit complete cytoplasmic incompatibility and maternal transmission. A lowered ability of Wolbachia-infected larvae to survive under starvation conditions will increase the threshold infection frequency required for Wolbachia to establish in highly competitive natural Ae. aegypti populations and will also reduce the speed of invasion. This study also provides insights into survival strategies of larvae when developing in stressful environments. PMID:26745630

  19. Reducing prospective memory error and costs in simulated air traffic control: External aids, extending practice, and removing perceived memory requirements.

    PubMed

    Loft, Shayne; Chapman, Melissa; Smith, Rebekah E

    2016-09-01

    In air traffic control (ATC), forgetting to perform deferred actions-prospective memory (PM) errors-can have severe consequences. PM demands can also interfere with ongoing tasks (costs). We examined the extent to which PM errors and costs were reduced in simulated ATC by providing extended practice, or by providing external aids combined with extended practice, or by providing external aids combined with instructions that removed perceived memory requirements. Participants accepted/handed-off aircraft and detected conflicts. For the PM task, participants were required to substitute alternative actions for routine actions when accepting aircraft. In Experiment 1, when no aids were provided, PM errors and costs were not reduced by practice. When aids were provided, costs observed early in practice were eliminated with practice, but residual PM errors remained. Experiment 2 provided more limited practice with aids, but instructions that did not frame the PM task as a "memory" task led to high PM accuracy without costs. Attention-allocation policies that participants set based on expected PM demands were modified as individuals were increasingly exposed to reliable aids, or were given instructions that removed perceived memory requirements. These findings have implications for the design of aids for individuals who monitor multi-item dynamic displays. (PsycINFO Database Record PMID:27608067

  20. Interaction of temperature, humidity, driver preferences, and refrigerant type on air conditioning compressor usage.

    PubMed

    Levine, C; Younglove, T; Barth, M

    2000-10-01

    Recent studies have shown large increases in vehicle emissions when the air conditioner (AC) compressor is engaged. Factors that affect the compressor-on percentage can have a significant impact on vehicle emissions and can also lead to prediction errors in current emissions models if not accounted for properly. During 1996 and 1997, the University of California, Riverside, College of Engineering-Center for Environmental Research and Technology (CE-CERT) conducted a vehicle activity study for the California Air Resources Board (CARB) in the Sacramento, CA, region. The vehicles were randomly selected from all registered vehicles in the region. As part of this study, ten vehicles were instrumented to collect AC compressor on/off data on a second-by-second basis in the summer of 1997. Temperature and humidity data were obtained and averaged on an hourly basis. The ten drivers were asked to complete a short survey about AC operational preferences. This paper examines the effects of temperature, humidity, refrigerant type, and driver preferences on air conditioning compressor activity. Overall, AC was in use in 69.1% of the trips monitored. The compressor was on an average of 64% of the time during the trips. The personal preference settings had a significant effect on the AC compressor-on percentage but did not interact with temperature. The refrigerant types, however, exhibited a differential response across temperature, which may necessitate separate modeling of the R12 refrigerant-equipped vehicles from the R134A-equipped vehicles. It should be noted that some older vehicles do get retrofitted with new compressors that use R134A; however, none of the vehicles in this study had been retrofitted. PMID:11288304