Science.gov

Sample records for air conditioning heating

  1. Air Conditioning and Heating Technology--II.

    ERIC Educational Resources Information Center

    Gattone, Felix

    Twenty-eight chapters and numerous drawings provide information for instructors and students of air conditioning and heating technology. Chapter 1 lists the occupational opportunities in the field. Chapter 2 covers the background or development of the industry of air conditioning and heating technology. Chapter 3 includes some of the principle…

  2. Standardized Curriculum for Heating and Air Conditioning.

    ERIC Educational Resources Information Center

    Mississippi State Dept. of Education, Jackson. Office of Vocational, Technical and Adult Education.

    Standardized vocational education course titles and core contents for two courses in Mississippi are provided: heating and air conditioning I and II. The first course contains the following units: (1) orientation; (2) safety; (3) refrigeration gauges and charging cylinder; (4) vacuum pump service operations; (5) locating refrigerant leaks; (6)…

  3. [Air quality control systems: heating, ventilating, and air conditioning (HVAC)].

    PubMed

    Bellucci Sessa, R; Riccio, G

    2004-01-01

    After a brief illustration of the principal layout schemes of Heating, Ventilating, and Air Conditioning (HVAC), the first part of this paper summarizes the standards, both voluntary and compulsory, regulating HVAC facilities design and installation with regard to the question of Indoor Air Quality (IAQ). The paper then examines the problem of ventilation systems maintenance and the essential hygienistic requirements in whose absence HVAC facilities may become a risk factor for people working or living in the building. Lastly, the paper deals with HVAC design strategies and methods, which aim not only to satisfy comfort and air quality requirements, but also to ensure easy and effective maintenance procedures.

  4. Refrigeration, Heating & Air Conditioning. Post Secondary Curriculum Guide.

    ERIC Educational Resources Information Center

    Garrison, Joe C.; And Others

    This curriculum guide was designed for use in postsecondary refrigeration, heating and air conditioning education programs in Georgia. Its purpose is to provide for the development of entry level skills in refrigeration, heating, and air conditioning in the areas of air conditioning knowledge, theoretical structure, tool usage, diagnostic ability,…

  5. Mountain Plains Learning Experience Guide: Heating, Refrigeration, & Air Conditioning.

    ERIC Educational Resources Information Center

    Carey, John

    This Heating, Refrigeration, and Air Conditioning course is comprised of eleven individualized units: (1) Refrigeration Tools, Materials, and Refrigerant; (2) Basic Heating and Air Conditioning; (3) Sealed System Repairs; (4) Basic Refrigeration Systems; (5) Compression Systems and Compressors; (6) Refrigeration Controls; (7) Electric Circuit…

  6. Heating, Ventilation, and Air Conditioning Series. Duty Task List.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This task list is intended for use in planning and/or evaluating a competency-based course in heating, ventilation, and air conditioning. The guide outlines the tasks entailed in eight different duties typically required of employees in the following occupations: residential installer, domestic refrigeration technician, air conditioning and…

  7. Heating, Ventilating, Air Conditioning and Dehumidifying Systems.

    DTIC Science & Technology

    1980-08-01

    not be connected to other ventilating systems. Duct runs shall be as short as possible to avoid leakage of moisture. I b. Special Considerations. (1...For rectangular duct design, see the SMACNA -Low Pressure Duct Construction Standards. Under jnormal applications, a minimum duct size of 6 by 6 inches...prevent leakage of the moisture-laden discharge air into the intake duct , and the intake and discharge outlets shall be located to prevent any

  8. Heating, Ventilation and Air-Conditioning Systems, Part of Indoor Air Quality Design Tools for Schools

    EPA Pesticide Factsheets

    The main purposes of a Heating, Ventilation, and Air-Conditioning system are to help maintain good indoor air quality through adequate ventilation with filtration and provide thermal comfort. HVAC systems are among the largest energy consumers in schools.

  9. Heating and Air Conditioning Specialist. Teacher Edition. Automotive Service Series.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This instructor's guide contains materials for teaching the heating and air conditioning specialist component of a competency-based instructional program for students preparing for employment in the automotive service trade. It is based on the National Institute of Automotive Service Excellence task lists. The six instructional units presented…

  10. State Skill Standards: Heating, Ventilation, Air Conditioning, and Refrigeration

    ERIC Educational Resources Information Center

    Ball, Larry; Soukup, Dennis

    2006-01-01

    The Department of Education has undertaken an ambitious effort to develop statewide career and technical education skill standards. The standards in this document are for Heating, Ventilation, Air Conditioning and Refrigeration (HVAC&R) programs and are designed to clearly state what the student should know and be able to do upon completion of…

  11. Careers for the 70's in Heating and Air Conditioning

    ERIC Educational Resources Information Center

    Toner, James P.

    1974-01-01

    In a trade encompassing all others in construction, installation foremen for heating/air conditioning firms spend a varied day (repairing a water heater, overseeing installation crews). Decision-makers who must think while using their hands, they rely heavily on preparation in math, mechanical drawing, blueprint reading, physics, and electicity.…

  12. Advanced Print Reading. Heating, Ventilation and Air Conditioning.

    ERIC Educational Resources Information Center

    Oregon State Dept. of Education, Salem.

    This is a workbook for students learning advanced blueprint reading for heating, ventilation, and air conditioning applications. The workbook contains eight units covering the following material: architectural working drawings; architectural symbols and dimensions; basic architectural electrical symbols; wiring symbols; basic piping symbols;…

  13. Air Conditioning, Heating, and Refrigeration: Scope and Sequence.

    ERIC Educational Resources Information Center

    Nashville - Davidson County Metropolitan Public Schools, TN.

    This scope and sequence guide, developed for an air conditioning, heating, and refrigeration vocational education program, represents an initial step in the development of a systemwide articulated curriculum sequence for all vocational programs within the Metropolitan Nashville Public School System. It was developed as a result of needs expressed…

  14. An Analysis of the Air Conditioning, Refrigerating and Heating Occupation.

    ERIC Educational Resources Information Center

    Frass, Melvin R.; Krause, Marvin

    The general purpose of the occupational analysis is to provide workable, basic information dealing with the many and varied duties performed in the air conditioning, refrigerating, and heating occupation. The document opens with a brief introduction followed by a job description. The bulk of the document is presented in table form. Six duties are…

  15. Air Conditioning, Heating, and Refrigeration. Competency-Based Curriculum Manual.

    ERIC Educational Resources Information Center

    Gourley, Frank A., Jr.

    This manual was developed to serve as an aid to administrators and instructors involved with postsecondary air conditioning, heating, and refrigeration programs. The first of six chapters contains general information on program implementation, the curriculum design, facilities and equipment requirements, and textbooks and references. Chapter 2…

  16. Heating, Ventilating, and Air Conditioning. Energy Technology Series.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This course in heating, ventilating, and air conditioning is one of 16 courses in the Energy Technology Series developed for an Energy Conservation-and-Use Technology curriculum. Intended for use in two-year postsecondary technical institutions to prepare technicians for employment, the courses are also useful in industry for updating employees in…

  17. Heating, Air-Conditioning, and Refrigeration Technician. National Skill Standards.

    ERIC Educational Resources Information Center

    Vocational Technical Education Consortium of States, Decatur, GA.

    This guide contains information on the knowledge and skills identified by industry as essential to the job performance of heating, air-conditioning, and refrigeration technicians. It is intended to assist training providers in public and private institutions, as well as in industry, to develop and implement training that will provide workers with…

  18. Criterion-Referenced Test (CRT) Items for Air Conditioning, Heating and Refrigeration.

    ERIC Educational Resources Information Center

    Davis, Diane, Ed.

    These criterion-referenced test (CRT) items for air conditioning, heating, and refrigeration are keyed to the Missouri Air Conditioning, Heating, and Refrigeration Competency Profile. The items are designed to work with both the Vocational Instructional Management System and Vocational Administrative Management System. For word processing and…

  19. Temperature and Humidity Independent Control Research on Ground Source Heat Pump Air Conditioning System

    NASA Astrophysics Data System (ADS)

    Chen, G.; Wang, L. L.

    Taking green demonstration center building air conditioning system as an example, this paper presents the temperature and humidity independent control system combined with ground source heat pump system, emphasis on the design of dry terminal device system, fresh air system and ground source heat pump system.

  20. Air Conditioning, Heating, and Ventilating: Construction, Supervision, and Inspection. Course of Study.

    ERIC Educational Resources Information Center

    Messer, John D.

    This course of study on air conditioning, heating, and ventilating is part of a construction, supervision, and inspection series, which provides instructional materials for community or junior college technical courses in the inspection program. Material covered pertains to: piping and piping systems; air movers; boilers; heat exchangers; cooling…

  1. Energy-efficient heat recovery systems for air conditioning of indoor swimming pools

    SciTech Connect

    Elsayed, M.M.; El-Refaee, M.M.; Borhan, Y.A.

    1997-12-31

    Analysis of a conventional air-conditioning system for indoor swimming pools during the summer season is presented. The analysis showed that the cooling load is characterized by a large latent heat fraction. As a result, a reheating process must be used downstream of the cooling coil to achieve the proper design comfort condition in the pool area. This, in turn, increases the energy requirement per unit cooling load of the pool. Two heat recovery systems are proposed to reduce this energy. In the first system, ambient air is used for the reheating process in an air-to-air heat exchanger. In the second system, mixed air--recirculated and ambient air--is used for the reheating process. Heat recovery efficiency is defined as an index of the energy savings resulting from the use of the heat recovery system compared to that of a conventional air-conditioning system. At a wide range of ambient conditions it is found that the energy savings could be up to 70% of the energy required to operate a conventional air-conditioning system. A parametric study was carried out to size the air-to-air heat exchanger associated with these heat recovery systems, and the results showed that a heat exchanger having an effectiveness of 0.5 would give satisfactory results. The proposed heat recovery systems are also compared to the case of reheating using the heat rejection from the condenser of the refrigeration machine. The comparison showed that the proposed systems save more energy than reheating using the condenser heat. A typical case study is given to demonstrate the savings in energy consumption when these systems are used.

  2. Experimental investigation on the photovoltaic-thermal solar heat pump air-conditioning system on water-heating mode

    SciTech Connect

    Fang, Guiyin; Hu, Hainan; Liu, Xu

    2010-09-15

    An experimental study on operation performance of photovoltaic-thermal solar heat pump air-conditioning system was conducted in this paper. The experimental system of photovoltaic-thermal solar heat pump air-conditioning system was set up. The performance parameters such as the evaporation pressure, the condensation pressure and the coefficient of performance (COP) of heat pump air-conditioning system, the water temperature and receiving heat capacity in water heater, the photovoltaic (PV) module temperature and the photovoltaic efficiency were investigated. The experimental results show that the mean photovoltaic efficiency of photovoltaic-thermal (PV/T) solar heat pump air-conditioning system reaches 10.4%, and can improve 23.8% in comparison with that of the conventional photovoltaic module, the mean COP of heat pump air-conditioning system may attain 2.88 and the water temperature in water heater can increase to 42 C. These results indicate that the photovoltaic-thermal solar heat pump air-conditioning system has better performances and can stably work. (author)

  3. Energy Performance Comparison of Heating and Air Conditioning Systems for Multi-Family Residential Buildings

    SciTech Connect

    Wang, Weimin; Zhang, Jian; Jiang, Wei; Liu, Bing

    2011-07-31

    The type of heating, ventilation and air conditioning (HVAC) system has a large impact on the heating and cooling energy consumption in multifamily residential buildings. This paper compares the energy performance of three HVAC systems: a direct expansion (DX) split system, a split air source heat pump (ASHP) system, and a closed-loop water source heat pump (WSHP) system with a boiler and an evaporative fluid cooler as the central heating and cooling source. All three systems use gas furnace for heating or heating backup. The comparison is made in a number of scenarios including different climate conditions, system operation schemes and applicable building codes. It is found that with the minimum code-compliant equipment efficiency, ASHP performs the best among all scenarios except in extremely code climates. WSHP tends to perform better than the split DX system in cold climates but worse in hot climates.

  4. Wireless Condition Monitoring and Maintenance for Rooftop Packaged Heating, Ventilation, and Air-Conditioning

    SciTech Connect

    Katipamula, Srinivas; Brambley, Michael R.

    2004-06-01

    Rooftop package air-conditioning and heat pumps, while representing over half of U.S. commercial-building cooling energy consumption, are some of the most neglected of building systems. They are often found with inoperable dampers, dirty/clogged filters and coils, incorrect refrigerant charges, failing compressors, failed fans, missing enclosure panels, un-calibrated controls, failed sensors, and other problems. Frequently, actual operating hours deviate considerably from intended (and assumed) schedules. Although there are no reliable estimates on what fraction of the units operate under degraded conditions and the energy inefficiencies associated with such operations, a range of savings from 10 to 30% are generally believed to be achievable by enhancing operation of these units. Potential national energy savings from proper operation range from 23 to 70 trillion Btus annually in the U.S. Since the cost associated with conventional monitoring and servicing is quite high, conventional monitoring is seldom done. Combinations of wireless sensing and data acquisition, monitoring tools, automated diagnostics and prognostics show considerable promise to help remedy this maintenance problem for package HVAC units and the underserved small commercial building sector in which they are predominantly installed. This paper characterizes the current problem with maintenance of packaged air conditioners and heat pumps, provides estimates of the total energy impacts of the problem, and describes a generic system in which these developing technologies are used to provide real-time condition monitoring for package HVAC units and their components. Costs with today's technology are provided and future costs are estimated, showing that benefits will greatly exceed costs in many cases particularly if low-cost wireless monitoring is used.

  5. Subterranean heat exchanger for refrigeration air conditioning equipment

    SciTech Connect

    Rothwell, H.

    1980-09-30

    Heat exchanger apparatus for use with refrigeration cycle heating and cooling equipment is disclosed. In the preferred embodiment, it cooperates with and modifies refrigeration equipment including a compressor, an expansion valve, an evaporator coil and a closed loop for cycling refrigerant. This apparatus is a sealed container adapted to be placed in a well extending into artesian (Relatively heated or chilled) formations whereby the water of the formation stabilizes the temperature around the unit and enables heating and cooling. The sealed unit receives refrigerant from the top which flows along the sidewall at a reduced temperature, thereby condensing on the sidewall and trickling down the sidewall to collect in a sump at the bottom where the compressor pump picks up condensed refrigerant as a liquid and pumps it out of the artesian well to the connected refrigeration equipment.

  6. Colonization by Cladosporium spp. of painted metal surfaces associated with heating and air conditioning systems

    NASA Technical Reports Server (NTRS)

    Ahearn, D. G.; Simmons, R. B.; Switzer, K. F.; Ajello, L.; Pierson, D. L.

    1991-01-01

    Cladosporium cladosporioides and C. hebarum colonized painted metal surfaces of covering panels and register vents of heating, air conditioning and ventilation systems. Hyphae penetrated the paint film and developed characteristic conidiophores and conidia. The colonies were tightly appressed to the metal surface and conidia were not readily detectable via standard air sampling procedures.

  7. [Transfer of organisms during exchange of heat and moisture in air conditioning installations (author's transl)].

    PubMed

    Beckert, J; Sinner, G

    1975-07-01

    With the exhaust air from ventilation and air conditioning installations escaping into the open, the heat content is also lost which fresh air from outside obtains at considerable expense of energy and technical equipment. The heat content, on the other hand, consists of about equal proportions of sensible heat and latent heat which is associated with the moisture content of the air. In order to regain the heat content of the escaping air so as to be able to use it again - and this is becoming increasingly important with rising energy costs - heat exchangers are necessary which remove the heat content from the exhaust air and transfer it to the fresh air from outside. With the high proportion of latent heat, this energy exchange is only effective if the latent heat can also be regained. For this purpose it is essential to have exchange surfaces which store and transfer both heat and moisture. To achieve this they must come into contact with the exhaust air stream and the fresh air stream alternately. Technically, this is done in a simple way by resolving rotor-like storage material. But a rigid separation of the air streams is no longer possible. Even if it is known that there are very highly developed sealing elements between the fixed and moving parts, the question whether particles from the exhaust air can get into the newly introduced outside air through the rotating storage material still gains in importance in certain types of usuage. For example, this is of importance for hospitals, especially in the operation areas in which air conditioning is desirable for 24 hours daily on hygienic grounds, but also in schools and offices where the present normal practice, for economic reasons, of recirculating air is to be avoided to stop the transference of infections pathogens and odours. In various places, experiments have been carried out earlier with heat exchangers consisting of asbestos board and with rotating storage material coated with lithium chloride and a

  8. Experimental investigation on performance of ice storage air-conditioning system with separate heat pipe

    SciTech Connect

    Fang, Guiyin; Liu, Xu; Wu, Shuangmao

    2009-11-15

    An experimental study on operation performance of ice storage air-conditioning system with separate helical heat pipe is conducted in this paper. The experimental system of ice storage air-conditioning system with separate heat pipe is set up. The performance parameters such as the evaporation pressure and the condensation pressure of refrigeration system, the refrigeration capacity and the COP (coefficient of performance) of the system, the IPF (ice packing factor) and the cool storage capacity in the cool storage tank during charging period, and the cool discharge rate and the cool discharge capacity in the cool storage tank, the outlet water temperature in the cool storage tank and the outlet air temperature in room unit during discharging period are investigated. The experimental results show that the ice storage air-conditioning system with separate helical heat pipe can stably work during charging and discharging period. This indicates that the ice storage air-conditioning system with separate helical heat pipe is well adapted to cool storage air-conditioning systems in building. (author)

  9. Physiological and subjective responses in the elderly when using floor heating and air conditioning systems.

    PubMed

    Hashiguchi, Nobuko; Tochihara, Yutaka; Ohnaka, Tadakatsu; Tsuchida, Chiaki; Otsuki, Tamio

    2004-11-01

    The purpose of this study was to investigate the effects of a floor heating and air conditioning system on thermal responses of the elderly. Eight elderly men and eight university students sat for 90 minutes in a chair under the following 3 conditions: air conditioning system (A), floor heating system (F) and no heating system (C). The air temperature of sitting head height for condition A was 25 degrees C, and the maximum difference in vertical air temperature was 4 degrees C. The air and floor temperature for condition F were 21 and 29 degrees C, respectively. The air temperature for condition C was 15 degrees C. There were no significant differences in rectal temperature and mean skin temperature between condition A and F. Systolic blood pressure of the elderly men in condition C significantly increased compared to those in condition A and F. No significant differences in systolic blood pressure between condition A and F were found. The percentage of subjects who felt comfortable under condition F was higher than that of those under condition A in both age groups, though the differences between condition F and A was not significant. Relationships between thermal comfort and peripheral (e.g., instep, calf, hand) skin temperature, and the relationship between thermal comfort and leg thermal sensation were significant for both age groups. However, the back and chest skin temperature and back thermal sensation for the elderly, in contrast to that for the young, was not significantly related to thermal comfort. These findings suggested that thermal responses and physiological strain using the floor heating system did not significantly differ from that using the air conditioning system, regardless of the subject age and despite the fact that the air temperature with the floor heating system was lower. An increase in BP for elderly was observed under the condition in which the air temperature was 15 degrees C, and it was suggested that it was necessary for the elderly

  10. REACH. Air Conditioning Units.

    ERIC Educational Resources Information Center

    Garrison, Joe; And Others

    As a part of the REACH (Refrigeration, Electro-Mechanical, Air-Conditioning, Heating) electromechanical cluster, this student manual contains individualized instructional units in the area of air conditioning. The instructional units focus on air conditioning fundamentals, window air conditioning, system and installation, troubleshooting and…

  11. Acoustical prediction methods for heating, ventilating, and air-conditioning (HVAC) systems

    NASA Astrophysics Data System (ADS)

    Ryherd, S. R.; Wang, L. M.

    2005-09-01

    The goal of this project is to compare and contrast various aspects of acoustical prediction methods for heating, ventilating, and air-conditioning (HVAC) systems. The three methods include two commonly used software programs and a custom spread sheet developed by the authors based on the American's Society of Heating, Refrigeration, and Air-conditioning Engineers (ASHRAE) Applications Handbook. Preliminary results indicate relatively good agreement between the three methods analyzed. The degree of disparity is predominately effected by the assumptions required by the end user. Research methods and results will be presented. This project provides a greater understanding of these acoustical prediction methods and their limitations.

  12. Geothermal as a heat sink application for raising air conditioning efficency

    NASA Astrophysics Data System (ADS)

    Ibrahim, Hesham Safwat Osman Mohamed

    2016-04-01

    Objective: Geothermal applications in heating, ventilation, air-conditioning is a US technology for more than 30 years old ,which saves more than 30% average energy cost than the traditional air-conditioning systems systems. Applying this technology in Middle East and African countries would be very feasible specially in Egypt specially as it suffers Electric crisis --The temperature of the condensers and the heat rejecting equipment is much higher than the Egyptian land at different depth which is a great advantages, and must be measured, recorded, and studied accurately -The Far goal of the proposal is to construct from soil analysis a temperature gradient map for Egypt and , African countries on different depth till 100 m which is still unclear nowadays and must be measured and recorded in databases through researches - The main model of the research is to study the heat transfer gradient through the ground earth borehole,grout,high density polyethylene pipes , and water inlet temperature which affect the electric efficiency of the ground source heat pump air conditioning unit Impact on the Region: Such research result will contribute widely in Energy saving sector specially the air conditioning sector in Egypt and the African countries which consumes more than 30% of the electric consumption of the total consumption . and encouraging Green systems such Geothermal to be applied

  13. Heating, Air Conditioning and Refrigeration. Vocational Education Curriculum Guide. Industrial and Technical Education.

    ERIC Educational Resources Information Center

    West Virginia State Vocational Curriculum Lab., Cedar Lakes.

    This curriculum guide contains 17 units that provides the basic curriculum components required to develop lesson plans for the heating, air conditioning, and refrigeration curriculum. The guide is not intended to be a complete, self-contained curriculum, but instead provides the teacher with a number of informational items related to the learning…

  14. Technology evaluation of heating, ventilation, and air conditioning for MIUS application

    NASA Technical Reports Server (NTRS)

    Gill, W. L.; Keough, M. B.; Rippey, J. O.

    1974-01-01

    Potential ways of providing heating, ventilation, and air conditioning for a building complex serviced by a modular integrated utility system (MIUS) are examined. Literature surveys were conducted to investigate both conventional and unusual systems to serve this purpose. The advantages and disadvantages of the systems most compatible with MIUS are discussed.

  15. Introduction to Heating, Ventilation and Air Conditioning (HVAC). Instructor Edition. Introduction to Construction Series.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This instructor's guide contains the materials required to teach a competency-based introductory course in heating, ventilating, and air conditioning (HVAC) to students who have chosen to explore careers in construction. It contains three units: HVAC materials, HVAC tools, and applied skills. Each instructional unit includes some or all of the…

  16. Introduction to Heating, Ventilation and Air Conditioning (HVAC). Introduction to Construction Series. Instructor Edition.

    ERIC Educational Resources Information Center

    Associated General Contractors of America, Washington, DC.

    This module on introductory heating, ventilating, and air conditioning (HVAC) is one of a series of modules designed to teach basic skills necessary for entry-level employment in this field. The module contains four instructional units that cover the following topics: (1) HVAC materials; (2) HVAC tools; (3) HVAC layout; and (4) HVAC basic skills.…

  17. VESL for Heating and Air Conditioning: A Competency-based Curriculum Guide. Project OSCAER.

    ERIC Educational Resources Information Center

    Lopez-Valadez, Jeanne, Ed.; Pankratz, David, Ed.

    This guide is intended for vocational educators developing the vocational English as a second language (VESL) component of a course in heating and air conditioning. The introductory section examines assumptions about second language learning and instruction and VESL classes, local adaptations of the curriculum, and sample VESL lessons. The chapter…

  18. 10 CFR 429.43 - Commercial heating, ventilating, air conditioning (HVAC) equipment.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... ensure that— (i) Any represented value of energy consumption or other measure of energy usage of a basic... 10 Energy 3 2012-01-01 2012-01-01 false Commercial heating, ventilating, air conditioning (HVAC) equipment. 429.43 Section 429.43 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION CERTIFICATION,...

  19. 10 CFR 429.43 - Commercial heating, ventilating, air conditioning (HVAC) equipment.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... ensure that— (i) Any represented value of energy consumption or other measure of energy usage of a basic... 10 Energy 3 2013-01-01 2013-01-01 false Commercial heating, ventilating, air conditioning (HVAC) equipment. 429.43 Section 429.43 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION CERTIFICATION,...

  20. 10 CFR 429.43 - Commercial heating, ventilating, air conditioning (HVAC) equipment.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... of energy consumption or other measure of energy usage of a basic model for which consumers would... 10 Energy 3 2014-01-01 2014-01-01 false Commercial heating, ventilating, air conditioning (HVAC) equipment. 429.43 Section 429.43 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION CERTIFICATION,...

  1. Getting Down to Business: Air Conditioning and Heating Service, Module 36. Teacher Guide. Entrepreneurship Training Components.

    ERIC Educational Resources Information Center

    Sanderson, Barbara

    This is the thirty-sixth in a set of 36 teacher guides to the Entrepreneurial Training Modules and accompanies CE 031 100. The purpose of the module is to give students some idea of what it is like to own and operate an air conditioning and heating service. Following an overview are general notes on use of the module. Suggested steps for module…

  2. Heating, Air Conditioning and Refrigeration Curriculum Guide. Michigan Trade and Industrial Education.

    ERIC Educational Resources Information Center

    Michigan State Univ., East Lansing. Coll. of Agriculture and Natural Resources Education Inst.

    This task-based curriculum guide for heating, air conditioning, and refrigeration is intended to help the teacher develop a classroom management system where students learn by doing. Introductory materials include a Dictionary of Occupational Titles job code and title sheet, a career ladder, a matrix relating duty/task numbers to job titles, and a…

  3. Heating, Ventilation, Air Conditioning. Resource Manual for Custodial Training Course #3.

    ERIC Educational Resources Information Center

    Florida State Dept. of Education, Tallahassee. School Plant Management Section.

    Intended as a manual to provide school custodians with some understanding of basic functions of heating, ventilating, and air conditioning equipment for safe, efficient operation. Contains general rules and specifications for providing custodians with a more complete awareness of their equipment and the field of "Climate Control" within the…

  4. Heating, Ventilation, Air-conditioning, and Refrigeration. Ohio's Competency Analysis Profile.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Vocational Instructional Materials Lab.

    Developed through a modified DACUM (Developing a Curriculum) process involving business, industry, labor, and community agency representatives in Ohio, this document is a comprehensive and verified employer competency profile for heating, ventilation, air conditioning, and refrigeration occupations. The list contains units (with and without…

  5. Getting Down to Business: Air Conditioning and Heating Service, Module 36. [Student Guide]. Entrepreneurship Training Components.

    ERIC Educational Resources Information Center

    Sanderson, Barbara

    This module on owning and operating an air conditioning and heating service is one of 36 in a series on entrepreneurship. The introduction tells the student what topics will be covered and suggests other modules to read in related occupations. Each unit includes student goals, a case study, and a discussion of the unit subject matter. Learning…

  6. Local mean age measurements for heating, cooling, and isothermal supply air conditions

    SciTech Connect

    Han, H.; Kuehn, T.H.; Kim, Y.

    1999-07-01

    The objective of this paper is to investigate the effect on room ventilation of thermal buoyancy caused by temperature differences between surfaces and the supply air. Spatial distributions of local mean age were obtained in a half-scale environmental chamber under well-controlled temperature conditions simulating isothermal ventilation, cooling, and heating. Air was supplied and returned through slots in the ceiling. Sulfur hexafluoride (SF{sub 6}) tracer gas concentration was measured by an electron capture gas chromatograph. Tracer gas concentration was measured at various points in the chamber versus time after a pulse injection was applied in the supply air duct. The maximum local mean age (LMA) was obtained near the center of a large recirculation zone for isothermal conditions. The results for cooling conditions showed a relatively uniform LMA distribution in the space compared to the isothermal conditions, as the room air was well mixed by the cold downdraft from the supply. However, there was a large variation in local air change indices in the space for the heating condition because of stable thermal stratification. Warm supply air could not penetrate into the lower half of the space but short-circuited to the exhaust duct. The model results in the present study can be converted to full-scale situations using similitude and can be used for validating computational fluid dynamics codes.

  7. Waking the sleeping giant: Introducing new heat exchanger technology into the residential air-conditioning marketplace

    SciTech Connect

    Chapp, T.; Voss, M.; Stephens, C.

    1998-07-01

    The Air Conditioning Industry has made tremendous strides in improvements to the energy efficiency and reliability of its product offerings over the past 40 years. These improvement can be attributed to enhancements of components, optimization of the energy cycle, and modernized and refined manufacturing techniques. During this same period, energy consumption for space cooling has grown significantly. In January of 1992, the minimum efficiency requirement for central air conditioning equipment was raised to 10 SEER. This efficiency level is likely to increase further under the auspices of the National Appliance Energy Conservation Act (NAECA). A new type of heat exchanger was developed for air conditioning equipment by Modine Manufacturing Company in the early 1990's. Despite significant advantages in terms of energy efficiency, dehumidification, durability, and refrigerant charge there has been little interest expressed by the air conditioning industry. A cooperative effort between Modine, various utilities, and several state energy offices has been organized to test and demonstrate the viability of this heat exchanger design throughout the nation. This paper will review the fundamentals of heat exchanger design and document this simple, yet novel technology. These experiences involving equipment retrofits have been documented with respect to the performance potential of air conditioning system constructed with PF{trademark} Heat Exchangers (generically referred to as microchannel heat exchangers) from both an energy efficiency as well as a comfort perspective. The paper will also detail the current plan to introduce 16 to 24 systems into an extended field test throughout the US which commenced in the Fall of 1997.

  8. High efficiency air cycle air conditioning system

    SciTech Connect

    Rannenberg, G. C.

    1985-11-19

    An air cycle air conditioning system is provided with regenerative heat exchangers upstream and downstream of an expansion turbine. A closedloop liquid circulatory system serially connects the two regenerative heat exchangers for regeneration without the bulk associated with air-to-air heat exchange. The liquid circulatory system may also provide heat transport to a remote sink heat exchanger and from a remote load as well as heat exchange within the sink heat exchanger and load for enhanced compactness and efficiency.

  9. Towards energy efficient operation of Heating, Ventilation and Air Conditioning systems via advanced supervisory control design

    NASA Astrophysics Data System (ADS)

    Oswiecinska, A.; Hibbs, J.; Zajic, I.; Burnham, K. J.

    2015-11-01

    This paper presents conceptual control solution for reliable and energy efficient operation of heating, ventilation and air conditioning (HVAC) systems used in large volume building applications, e.g. warehouse facilities or exhibition centres. Advanced two-level scalable control solution, designed to extend capabilities of the existing low-level control strategies via remote internet connection, is presented. The high-level, supervisory controller is based on Model Predictive Control (MPC) architecture, which is the state-of-the-art for indoor climate control systems. The innovative approach benefits from using passive heating and cooling control strategies for reducing the HVAC system operational costs, while ensuring that required environmental conditions are met.

  10. Performance Analysis of Air-to-Water Heat Pump in Latvian Climate Conditions

    NASA Astrophysics Data System (ADS)

    Kazjonovs, Janis; Sipkevics, Andrejs; Jakovics, Andris; Dancigs, Andris; Bajare, Diana; Dancigs, Leonards

    2014-12-01

    Strategy of the European Union in efficient energy usage demands to have a higher proportion of renewable energy in the energy market. Since heat pumps are considered to be one of the most efficient heating and cooling systems, they will play an important role in the energy consumption reduction in buildings aimed to meet the target of nearly zero energy buildings set out in the EU Directive 2010/31/EU. Unfortunately, the declared heat pump Coefficient of Performance (COP) corresponds to a certain outdoor temperature (+7 °C), therefore different climate conditions, building characteristics and settings result in different COP values during the year. The aim of this research is to investigate the Seasonal Performance factor (SPF) values of air-to-water heat pump which better characterize the effectiveness of heat pump in a longer selected period of time, especially during the winter season, in different types of residential buildings in Latvian climate conditions. Latvia has four pronounced seasons of near-equal length. Winter starts in mid-December and lasts until mid-March. Latvia is characterized by cold, maritime climate (duration of the average heating period being 203 days, the average outdoor air temperature during the heating period being 0.0 °C, the coldest five-day average temperature being -20.7 °C, the average annual air temperature being +6.2 °C, the daily average relative humidity being 79 %). The first part of this research consists of operational air-towater heat pump energy performance monitoring in different residential buildings during the winter season. The second part of the research takes place under natural conditions in an experimental construction stand which is located in an urban environment in Riga, Latvia. The inner area of this test stand, where air-to-water heat pump performance is analyzed, is 9 m2. The ceiling height is 3 m, all external wall constructions (U = 0.16 W/(m2K)) have ventilated facades. To calculate SPF, the

  11. Capability of air filters to retain airborne bacteria and molds in heating, ventilating and air-conditioning (HVAC) systems.

    PubMed

    Möritz, M; Peters, H; Nipko, B; Rüden, H

    2001-07-01

    The capability of air filters (filterclass: F6, F7) to retain airborne outdoor microorganisms was examined in field experiments in two heating, ventilating and air conditioning (HVAC) systems. At the beginning of the 15-month investigation period, the first filter stages of both HVAC systems were equipped with new unused air filters. The number of airborne bacteria and molds before and behind the filters were determined simultaneously in 14 days-intervals using 6-stage Andersen cascade impactors. Under relatively dry (< 80% R. H.) and warm (> 12 degrees C) outdoor air conditions air filters led to a marked reduction of airborne microorganism concentrations (bacteria by approximately 70% and molds by > 80%). However, during long periods of high relative humidity (> 80% R. H.) a proliferation of bacteria on air filters with subsequent release into the filtered air occurred. These microorganisms were mainly smaller than 1.1 microns therefore being part of the respirable fraction. The results showed furthermore that one possibility to avoid microbial proliferation is to limit the relative humidity in the area of the air filters to 80% R. H. (mean of 3 days), e.g. by using preheaters in front of air filters in HVAC-systems.

  12. The RD/D opportunities for large air-conditioning and heat-pump systems

    NASA Astrophysics Data System (ADS)

    MacDonald, M.; Goldenberg, D.; Hudgins, E.

    1982-06-01

    The marketplace factors that constrain a more rapid implementation of energy-conserving heating, ventilating, and air conditioning (HVAC) systems and system operation in commercial buildings are summarized. The focus was on large air conditioning and heat pump equipment. Use of currently available energy-efficient equipment and systems is presently limited by the economic situation of the building owners. Although case histories of energy-efficient buildings highlight the potential of new and existing equipment and systems, the majority of systems and equipment being installed today do not measure up to that potential. The major recommendations deal with developing the market for energy-efficient HVAC systems by reversing existing market forces that promote energy consumption; promoting technical research and educational programs; increasing the number of technical people competent in the area of high-efficiency system application and maintenance.

  13. Application information on typical hygrometers used in heating, ventilating and air conditioning (HVAC) systems

    SciTech Connect

    Kao, J.Y.; Snyder, W.J.

    1982-01-01

    Hygrometer selection information is provided for application in heating, ventilating and air-conditioning (HVAC) systems. A general review of hygrometer literature has been provided and the most commonly used ones for HVAC are discussed. Typical hygrometer parameters are listed to indicate the type of performance that can be expected. Laboratory test results of self-regulating, salt-phase transition hygrometers are presented and discussed in detail.

  14. Potential Evaluation of Solar Heat Assisted Desiccant Hybrid Air Conditioning System

    NASA Astrophysics Data System (ADS)

    Tran, Thien Nha; Hamamoto, Yoshinori; Akisawa, Atsushi; Kashiwagi, Takao

    The solar thermal driven desiccant dehumidification-absorption cooling hybrid system has superior advantage in hot-humid climate regions. The reasonable air processing of desiccant hybrid air conditioning system and the utility of clean and free energy make the system environment friendly and energy efficient. The study investigates the performance of the desiccant dehumidification air conditioning systems with solar thermal assistant. The investigation is performed for three cases which are combinations of solar thermal and absorption cooling systems with different heat supply temperature levels. Two solar thermal systems are used in the study: the flat plate collector (FPC) and the vacuum tube with compound parabolic concentrator (CPC). The single-effect and high energy efficient double-, triple-effect LiBr-water absorption cooling cycles are considered for cooling systems. COP of desiccant hybrid air conditioning systems are determined. The evaluation of these systems is subsequently performed. The single effect absorption cooling cycle combined with the flat plate collector solar system is found to be the most energy efficient air conditioning system.

  15. Vortex shedding induced energy harvesting from piezoelectric materials in heating, ventilation and air conditioning flows

    NASA Astrophysics Data System (ADS)

    Weinstein, L. A.; Cacan, M. R.; So, P. M.; Wright, P. K.

    2012-04-01

    A cantilevered piezoelectric beam is excited in a heating, ventilation and air conditioning (HVAC) flow. This excitation is amplified by the interactions between (a) an aerodynamic fin attached at the end of the piezoelectric cantilever and (b) the vortex shedding downstream from a bluff body placed in the air flow ahead of the fin/cantilever assembly. The positioning of small weights along the fin enables tuning of the energy harvester to operate at resonance for flow velocities from 2 to 5 m s-1, which are characteristic of HVAC ducts. In a 15 cm diameter air duct, power generation of 200 μW for a flow speed of 2.5 m s-1 and power generation of 3 mW for a flow speed of 5 m s-1 was achieved. These power outputs are sufficient to power a wireless sensor node for HVAC monitoring systems or other sensors for smart building technology.

  16. Cool Roofs in Guangzhou, China: Outdoor Air Temperature Reductions during Heat Waves and Typical Summer Conditions.

    PubMed

    Cao, Meichun; Rosado, Pablo; Lin, Zhaohui; Levinson, Ronnen; Millstein, Dev

    2015-12-15

    In this paper, we simulate temperature reductions during heat-wave events and during typical summer conditions from the installation of highly reflective "cool" roofs in the Chinese megacity of Guangzhou. We simulate temperature reductions during six of the strongest historical heat-wave events over the past decade, finding average urban midday temperature reductions of 1.2 °C. In comparison, we simulate 25 typical summer weeks between 2004 and 2008, finding average urban midday temperature reductions of 0.8 °C, indicating that air temperature sensitivity to urban albedo in Guangzhou varies with meteorological conditions. We find that roughly three-fourths of the variance in air temperature reductions across all episodes can be accounted for by a linear regression, including only three basic properties related to the meteorological conditions: mean daytime temperature, humidity, and ventilation to the greater Guangzhou urban area. While these results highlight the potential for cool roofs to mitigate peak temperatures during heat waves, the temperature reductions reported here are based on the upper bound case, which increases albedos of all roofs (but does not modify road albedo or wall albedo).

  17. Gas Engine-Driven Heat Pump Chiller for Air-Conditioning and Hot Water Supply Systems

    NASA Astrophysics Data System (ADS)

    Fujita, Toshihiko; Mita, Nobuhiro; Moriyama, Tadashi; Hoshino, Norimasa; Kimura, Yoshihisa

    A gas engine-driven heat pump (GHP) uses a natural gas-or LPG-powered engine to drive the compressor in a vapor-compression refrigeration cycle. The GHP has the benefits of being able to use the fuel energy effectively by recovering waste heat from the engine jacket coolant and exhaust gas and also to keep high efficiency even at part-load operation by varying the engine speed with relative ease. Hence, energy-efficient heat source systems for air-conditioning and hot water supply may be constructed with GHP chillers in place of conventional electrical-driven heat pump chillers. GHPs will necessarily contribute to the peak shaving of electrical demand in summer. In this study, the performance characteristics of a 457kW GHP chiller have been investigated by a simulation model analysis, for both cooling and heating modes. From the results of the analysis, it has been found that the part-load characteristics of the GHP chiller are fairly well. The evaluation of the heat source systems using GHP chillers will be described in Part 2.

  18. An Analysis of Price Determination and Markups in the Air-Conditioning and Heating Equipment Industry

    SciTech Connect

    Dale, Larry; Millstein, Dev; Coughlin, Katie; Van Buskirk, Robert; Rosenquist, Gregory; Lekov, Alex; Bhuyan, Sanjib

    2004-01-30

    In this report we calculate the change in final consumer prices due to minimum efficiency standards, focusing on a standard economic model of the air-conditioning and heating equipment (ACHE) wholesale industry. The model examines the relationship between the marginal cost to distribute and sell equipment and the final consumer price in this industry. The model predicts that the impact of a standard on the final consumer price is conditioned by its impact on marginal distribution costs. For example, if a standard raises the marginal cost to distribute and sell equipment a small amount, the model predicts that the standard will raise the final consumer price a small amount as well. Statistical analysis suggest that standards do not increase the amount of labor needed to distribute equipment the same employees needed to sell lower efficiency equipment can sell high efficiency equipment. Labor is a large component of the total marginal cost to distribute and sell air-conditioning and heating equipment. We infer from this that standards have a relatively small impact on ACHE marginal distribution and sale costs. Thus, our model predicts that a standard will have a relatively small impact on final ACHE consumer prices. Our statistical analysis of U.S. Census Bureau wholesale revenue tends to confirm this model prediction. Generalizing, we find that the ratio of manufacturer price to final consumer price prior to a standard tends to exceed the ratio of the change in manufacturer price to the change in final consumer price resulting from a standard. The appendix expands our analysis through a typical distribution chain for commercial and residential air-conditioning and heating equipment.

  19. Gas Engine-Driven Heat Pump Chiller for Air-Conditioning and Hot Water Supply Systems

    NASA Astrophysics Data System (ADS)

    Fujita, Toshihiko; Mita, Nobuhiro; Moriyama, Tadashi; Hoshino, Norimasa; Kimura, Yoshihisa

    In Part 1 of this study, the performance characteristics of a 457kW gas engine-driven heat pump (GHP) chiller have been obtained from a simulation model analysis for both cooling and heating modes and it has been found that the part-load characteristics of the GHP chiller are fairly well. On the back of Part 1, a computer simulation program has been developed for the evaluation of GHP chiller systems to compare with the other types of heat source systems for air-conditioning and hot water supply applications. The simulation program can be used to estimate annual energy consumption, annual CO2 emission, etc. of the systems with the data of monthly and hourly thermal loads on various buildings, outdoor air conditions, and characteristics of various components comprising the systems. By applying this to some cases of medium-scale hotel, office, shop, and hospital buildings, it has been found that the GHP chiller systems have advantages particularly in the cases of hotels and hospitals where a lot of hot water demand exists. It has also been found that the combination of a GHP chiller and a direct-fired absorption water chiller boiler (hot and chilled water generator) appears promising.

  20. Summarized Data of Test Space Heating, Ventilation and Air Conditioning Inspections from the Building Assessment Survey and Evaluation Study

    EPA Pesticide Factsheets

    Information on the characteristics of the heating, ventilation, and air conditioning (HVAC) system(s) in the entire BASE building including types of ventilation, equipment configurations, and operation and maintenance issues

  1. Study and Development of an Air Conditioning System Operating on a Magnetic Heat Pump Cycle

    NASA Technical Reports Server (NTRS)

    Wang, Pao-Lien

    1991-01-01

    This report describes the design of a laboratory scale demonstration prototype of an air conditioning system operating on a magnetic heat pump cycle. Design parameters were selected through studies performed by a Kennedy Space Center (KSC) System Simulation Computer Model. The heat pump consists of a rotor turning through four magnetic fields that are created by permanent magnets. Gadolinium was selected as the working material for this demonstration prototype. The rotor was designed to be constructed of flat parallel disks of gadolinium with very little space in between. The rotor rotates in an aluminum housing. The laboratory scale demonstration prototype is designed to provide a theoretical Carnot Cycle efficiency of 62 percent and a Coefficient of Performance of 16.55.

  2. Heating, ventilating, and air conditioning deactivation thermal analysis of PUREX Plant

    SciTech Connect

    Chen, W.W.; Gregonis, R.A.

    1997-08-01

    Thermal analysis was performed for the proposed Plutonium Uranium Extraction Plant exhaust system after deactivation. The purpose of the analysis was to determine if enough condensation will occur to plug or damage the filtration components. A heat transfer and fluid flow analysis was performed to evaluate the thermal characteristics of the underground duct system, the deep-bed glass fiber filter No. 2, and the high-efficiency particulate air filters in the fourth filter building. The analysis is based on extreme variations of air temperature, relative humidity, and dew point temperature using 15 years of Hanford Site weather data as a basis. The results will be used to evaluate the need for the electric heaters proposed for the canyon exhaust to prevent condensation. Results of the analysis indicate that a condition may exist in the underground ductwork where the duct temperature can lead or lag changes in the ambient air temperature. This condition may contribute to condensation on the inside surfaces of the underground exhaust duct. A worst case conservative analysis was performed assuming that all of the water is removed from the moist air over the inside surface of the concrete duct area in the fully developed turbulent boundary layer while the moist air in the free stream will not condense. The total moisture accumulated in 24 hours is negligible. Water puddling would not be expected. The results of the analyses agree with plant operating experiences. The filters were designed to resist high humidity and direct wetting, filter plugging caused by slight condensation in the upstream duct is not a concern. 19 refs., 2 figs.

  3. Risk Assessment of Heating, Ventilating, and Air-Conditioning Strategies in Low-Load Homes

    SciTech Connect

    Poerschke, Andrew

    2016-02-17

    "Modern, energy efficient homes conforming to the Zero Energy Ready Home standard face the challenge of meeting high customer expectations for comfort. Traditional heating, ventilation, and air conditioning (HVAC) sizing and control strategies may be insufficient to adequately condition each zone due to unique load patterns in each room caused by a number of factors. These factors include solar heat gains, occupant-related gains, and gains associated with appliances and electronics. Because of shrinking shell loads, these intermittent factors are having an increasingly significant impact on the thermal load in each zone. Consequently, occupant comfort can be compromised. To evaluate the impact of climate and house geometry, as well as HVAC system and control strategies on comfort conditions, IBACOS analyzed the results of 99 TRNSYS multiple-zone simulations. The results of this analysis indicate that for simple-geometry and single-story plans, a single zone and thermostat can adequately condition the entire house. Demanding house geometry and houses with multiple stories require the consideration of multiple thermostats and multiple zones.

  4. Fungal colonization of air filters for use in heating, ventilating, and air conditioning (HVAC) systems.

    PubMed

    Simmons, R B; Crow, S A

    1995-01-01

    New and used cellulosic air filters for HVAC systems including those treated with antimicrobials were suspended in vessels with a range of relative humidities (55-99%) and containing non-sterile potting soil which stimulates fungal growth. Most filters yielded fungi prior to suspension in the chambers but only two of 14 nontreated filters demonstrated fungal colonization following use in HVAC systems. Filters treated with antimicrobials, particularly a phosphated amine complex, demonstrated markedly less fungal colonization than nontreated filters. In comparison with nontreated cellulosic filters, fungal colonization of antimicrobial-treated cellulosic filters was selective and delayed.

  5. Effect of heating-ventilation-air conditioning system sanitation on airborne fungal populations in residential environments.

    PubMed

    Garrison, R A; Robertson, L D; Koehn, R D; Wynn, S R

    1993-12-01

    Commercial air duct sanitation services are advertised to the public as being effective in reducing indoor aeroallergen levels despite the absence of published supporting data. Eight residential heat-ventilation-air conditioning (HVAC) systems in six homes and seven HVAC systems in five homes in winter and summer, respectively, were sampled to determine fungal colony forming units (CFUs) prior to and after an HVAC sanitation procedure was performed by a local company. Two houses in which no sanitation procedure was performed served as controls in each study phase. Two sample sets were obtained at each HVAC system prior to cleaning in order to determine baseline CFU levels. The test HVAC systems were then cleaned, and the HVAC systems allowed to operate as desired by the residents. Posttreatment sampling was performed 48 hours and then weekly after cleaning for 8 weeks. The HVAC systems were analyzed by exposing sterile 2% malt extract media plates at a 90-degree angle to the air flow at the air supply and air return vents. The baseline CFUs were similar in the control and study houses. Eight weeks after sanitation, the study houses demonstrated an overall CFU reduction of 92% during winter and 84% during summer. No reduction in CFU values was observed over the 8-week study period for the houses selected as controls. Further, HVAC sanitation appeared to reduce the number of fungal colonies entering and leaving the HVAC system, suggesting that the HVAC contained a significant percentage of the total fungal load in these homes. These data suggest that HVAC sanitation may be an effective tool in reducing airborne fungal populations in residential environments.

  6. Performance enhancement of an experimental air conditioning system by using TiO2/methanol nanofluid in heat pipe heat exchangers

    NASA Astrophysics Data System (ADS)

    Monirimanesh, Negin; Nowee, S. Mostafa; Khayyami, Shideh; Abrishamchi, Iman

    2016-05-01

    The effect of using nanofluid in thermosyphon-type heat pipe heat exchangers on energy conservation of an air-conditioning system was sought in this study. Innovatively, two heat exchangers in-series were deployed using TiO2/methanol nanofluids with 0-4 wt% concentrations as working fluids. The impacts of temperature and relative humidity on the effectiveness of 2 and 4-row heat exchangers were analyzed experimentally and more that 40 % energy saving was obtained.

  7. Modelica Library for Building Heating, Ventilation and Air-Conditioning Systems

    SciTech Connect

    Wetter, Michael

    2009-06-17

    This paper presents a freely available Modelica library for building heating, ventilation and air conditioning systems. The library is based on the Modelica.Fluid library. It has been developed to support research and development of integrated building energy and control systems. The primary applications are controls design, energy analysis and model-based operation. The library contains dynamic and steady-state component models that are applicable for analyzing fast transients when designing control algorithms and for conducting annual simulations when assessing energy performance. For most models, dimensional analysis is used to compute the performance for operating points that differ from nominal conditions. This allows parameterizing models in the absence of detailed geometrical information which is often impractical to obtain during the conceptual design phase of building systems. In the first part of this paper, the library architecture and the main classes are described. In the second part, an example is presented in which we implemented a model of a hydronic heating system with thermostatic radiator valves and thermal energy storage.

  8. The Maintenance of Heating, Ventilating and Air-Conditioning Systems and Indoor Air Quality in Schools: A Guide for School Facility Managers. Technical Bulletin.

    ERIC Educational Resources Information Center

    Wheeler, Arthur E.

    To help maintain good indoor air quality (IAQ) in schools, guidance for the development and implementation of an effective program for maintenance and operation of heating, ventilating, and air-conditioning (HVAC) systems are discussed. Frequently, a building's occupants will complain about IAQ when the temperature or humidity are at uncomfortable…

  9. [Heat and moisture exchangers for conditioning of inspired air of intubated patients in intensive care. The humidification properties of passive air exchangers under clinical conditions].

    PubMed

    Rathgeber, J; Züchner, K; Kietzmann, D; Weyland, W

    1995-04-01

    Heat and moisture exchangers (HME) are used as artificial noses for intubated patients to prevent tracheo-bronchial or pulmonary damage resulting from dry and cold inspired gases. HME are mounted directly on the tracheal tube, where they collect a large fraction of the heat and moisture of the expired air, adding this to the subsequent inspired breath. The effective performance depends on the water-retention capacity of the HME: the amount of water added to the inspired gas cannot exceed the stored water uptake of the previous breath. This study evaluates the efficiency of four different HME under laboratory and clinical conditions using a new moisture-measuring device. METHODS. In a first step, the absolute efficiency of four different HME (DAR Hygrobac, Gibeck Humid-Vent 2P, Pall BB 22-15 T, and Pall BB 100) was evaluated using a lung model simulating physiological heat and humidity conditions of the upper airways. The model was ventilated with tidal volumes of 500, 1,000, and 1,500 ml and different flow rates. The water content of the ventilated air was determined between tracheal tube and HME using a new high-resolution humidity meter and compared with the absolute water loss of the exhaled air at the gas outlet of a Siemens Servo C ventilator measured with a dew-point hygrometer. Secondly, the moisturizing efficiency was evaluated under clinical conditions in an intensive care unit with 25 intubated patients. Maintaining the ventilatory conditions for each patient, the HME were randomly changed. The humidity data were determined as described above and compared with the laboratory findings. RESULTS AND DISCUSSION. The water content at the respirator outlet is inversely equivalent to the humidity of the inspired gases and represents the water loss from the respiratory tract if the patient is ventilated with dry gases. Moisture retention and heating capacity decreased with higher volumes and higher flow rates. These data are simple to obtain without affecting the

  10. Effectiveness and humidification capacity investigation of liquid-to-air membrane energy exchanger under low heat capacity ratios at winter air conditions

    NASA Astrophysics Data System (ADS)

    Kassai, Miklos

    2015-06-01

    In this research, a novel small-scale single-panel liquid-to-air membrane energy exchanger has been used to numerically investigate the effect of given number of heat transfer units (4.5), different cold inlet air temperature (1.7, 5.0, 10.0 °C) and different low heat capacity ratio (0.4, 0.5, 0.6, 0.7, 0.8, 0.9) on the steady-state performance of the energy exchanger. This small-scale energy exchanger represents the full-scale prototypes well, saving manufacturing costs and time. Lithium chloride is used as a salt solution in the system and the steady-state total effectiveness of the exchanger is evaluated for winter inlet air conditions. The results show that total effectiveness of the energy exchanger decreases with heat capacity ratio in the mentioned range. Maximum numerical total effectiveness of 97% is achieved for the energy exchanger. Increasing the heat capacity ratio values on given inlet air temperature, the humidification capacity of energy exhanger is also investigated in this paper. The humidification performance increases with heat capacity ratio. The highest humidification performance (4.53 g/kg) can be reached when inlet air temperature is 1.7 °C, and heat capacity ratio is 1.0 in winter inlet air conditions in the range of low heat capacity ratio.

  11. Validation of the criteria for initiating the cleaning of heating, ventilation, and air-conditioning (HVAC) ductwork under real conditions.

    PubMed

    Lavoie, Jacques; Marchand, Geneviève; Cloutier, Yves; Lavoué, Jérôme

    2011-08-01

    Dust accumulation in the components of heating, ventilation, and air-conditioning (HVAC) systems is a potential source of contaminants. To date, very little information is available on recognized methods for assessing dust buildup in these systems. The few existing methods are either objective in nature, involving numerical values, or subjective in nature, based on experts' judgments. An earlier project aimed at assessing different methods of sampling dust in ducts was carried out in the laboratories of the Institut de recherche Robert-Sauvé en santé et en sécurité du travail (IRSST). This laboratory study showed that all the sampling methods were practicable, provided that a specific surface-dust cleaning initiation criterion was used for each method. However, these conclusions were reached on the basis of ideal conditions in a laboratory using a reference dust. The objective of this present study was to validate these laboratory results in the field. To this end, the laboratory sampling templates were replicated in real ducts and the three sampling methods (the IRSST method, the method of the U.S. organization National Air Duct Cleaner Association [NADCA] and that of the French organization Association pour la Prévention et l'Étude de la Contamination [ASPEC]) were used simultaneously in a statistically representative number of systems. The air return and supply ducts were also compared. Cleaning initiation criteria under real conditions were found to be 6.0 mg/100 cm(2) using the IRSST method, 2.0 mg/100 cm(2) using the NADCA method, and 23 mg/100 cm(2) using the ASPEC method. In the laboratory study, the criteria using the same methods were 6.0 for the IRSST method, 2.0 for the NADCA method, and 3.0 for the ASPEC method. The laboratory criteria for the IRSST and NADCA methods were therefore validated in the field. The ASPEC criterion was the only one to change. The ASPEC method therefore allows for the most accurate evaluation of dust accumulation in HVAC

  12. Ultrafine particle removal by residential heating, ventilating, and air-conditioning filters.

    PubMed

    Stephens, B; Siegel, J A

    2013-12-01

    This work uses an in situ filter test method to measure the size-resolved removal efficiency of indoor-generated ultrafine particles (approximately 7-100 nm) for six new commercially available filters installed in a recirculating heating, ventilating, and air-conditioning (HVAC) system in an unoccupied test house. The fibrous HVAC filters were previously rated by the manufacturers according to ASHRAE Standard 52.2 and ranged from shallow (2.5 cm) fiberglass panel filters (MERV 4) to deep-bed (12.7 cm) electrostatically charged synthetic media filters (MERV 16). Measured removal efficiency ranged from 0 to 10% for most ultrafine particles (UFP) sizes with the lowest rated filters (MERV 4 and 6) to 60-80% for most UFP sizes with the highest rated filter (MERV 16). The deeper bed filters generally achieved higher removal efficiencies than the panel filters, while maintaining a low pressure drop and higher airflow rate in the operating HVAC system. Assuming constant efficiency, a modeling effort using these measured values for new filters and other inputs from real buildings shows that MERV 13-16 filters could reduce the indoor proportion of outdoor UFPs (in the absence of indoor sources) by as much as a factor of 2-3 in a typical single-family residence relative to the lowest efficiency filters, depending in part on particle size.

  13. Energy-Efficient Supermarket Heating, Ventilation, and Air Conditioning in Humid Climates in the United States

    SciTech Connect

    Clark, J.

    2015-03-01

    Supermarkets are energy-intensive buildings that consume the greatest amount of electricity per square foot of building of any building type in the United States and represent 5% of total U.S. commercial building primary energy use (EIA 2005). Refrigeration and heating, ventilation, and air-conditioning (HVAC) systems are responsible for a large proportion of supermarkets’ total energy use. These two systems sometimes work together and sometimes compete, but the performance of one system always affects the performance of the other. To better understand these challenges and opportunities, the Commercial Buildings team at the National Renewable Energy Laboratory investigated several of the most promising strategies for providing energy-efficient HVAC for supermarkets and quantified the resulting energy use and costs using detailed simulations. This research effort was conducted on behalf of the U.S. Department of Energy (DOE) Commercial Building Partnerships (CBP) (Baechler et al. 2012; Parrish et al. 2013; Antonopoulos et al. 2014; Hirsch et al. 2014). The goal of CBP was to reduce energy use in the commercial building sector by creating, testing, and validating design concepts on the pathway to net zero energy commercial buildings. Several CBP partners owned or operated buildings containing supermarkets and were interested in optimizing the energy efficiency of supermarket HVAC systems in hot-humid climates. These partners included Walmart, Target, Whole Foods Market, SUPERVALU, and the Defense Commissary Agency.

  14. Commercialization of air conditioning heat pump/water heater. Final technical report, Volume 1: Transmittal documents; Executive summary; Project summary

    SciTech Connect

    1996-01-30

    This is the final technical report on a commercialization project for an air conditioning heat pump water heater. The objective of the project was to produce a saleable system which would be economically competitive with natural gas and cost effective with regard to initial cost versus annual operating costs. The development and commercialization of the system is described.

  15. Articulated, Performance-Based Instruction Objectives Guide for Air Conditioning, Refrigeration, and Heating. Volume II (Second Year).

    ERIC Educational Resources Information Center

    Henderson, William Edward, Jr., Ed.

    This articulation guide contains 17 units of instruction for the second year of a two-year vocational program designed to prepare the high school graduate to install, maintain, and repair various types of residential and commercial heating, air conditioning, and refrigeration equipment. The units are designed to help the student to expand and…

  16. Multimedia Approach to Self-Paced Individualized Instruction in Air Conditioning, Refrigeration and Heating and Other Vocational Programs. Final Report.

    ERIC Educational Resources Information Center

    Oil Belt Vocational Technical School, El Dorado, AR.

    A multimedia, self-paced, individualized instructional program was designed to meet the needs of students in air conditioning, refrigeration, and heating programs at Oil Belt Vocational Technical School (Arkansas). The multimedia approach provided for video-based presentations to meet the needs for visual contact with the classroom and for…

  17. Ontology for Life-Cycle Modeling of Heating, Ventilating, and Air Conditioning (HVAC) Systems: Experimental Applications Using Revit

    DTIC Science & Technology

    2012-03-01

    Center, Construction Engineering Research Laboratory (ERDC-CERL) has developed a core life- cycle building information model ( BIM ) based on three...was to promote consistency and quality of content created for Building Information Models ( BIMs ) across various disciplines. The HVAC MVD was...MVD. 15. SUBJECT TERMS building information modeling ( BIM ), ontology, Army facilities, heating, ventilating, and air-conditioning (HVAC) systems

  18. Theoretical Study on Dynamic Characteristics of Energy Efficiency Standard Value of Ground Water Heat Pump Air-conditioning System

    NASA Astrophysics Data System (ADS)

    Peng, Yi; Wang, Zhiwei; Zhang, Zhonghe; Cao, Wei; Li, Peng

    The energy efficiency standard value of the ground water heat pump air-conditioning system is the benchmar parameter for energy saving operation and control of the system. According to each loop's process energy consumption of the system, the control equation of energy efficiency standard value of the water source side loop, heat pump unit and user side loop is established respectively. The dynamic characteristics of the standard value variation with the air-conditioning hourly heating and cooling load is revealed, and the energy efficiency standard value of each loop can be also obtained, and the qualitative sensitivity analysis of the dynamic characteristics in each subsystem is carried out. For system energy saving operation and control, the basic data and theoretical guidance can be provided.

  19. Demand Controlled Economizer Cycles: A Direct Digital Control Scheme for Heating, Ventilating, and Air Conditioning Systems,

    DTIC Science & Technology

    1984-05-01

    includes a heating coil and thermostatic control to maintain the air in this path at an elevated temperature, typically around 80 degrees Farenheit (80 F...1238 Aug 1 1236 1237 52 1074 1126 50 1033 1083 Sep 8 8 5W 862 7T 600 678 75 603 7r Oct 51 400 451 119 204 323 115 207 322 ov 64 123 287 187 71 258

  20. T & I--Air Conditioning, Refrigeration, and Heating--Heating Units. Kit No. 87. Instructor's Manual [and] Student Learning Activity Guide.

    ERIC Educational Resources Information Center

    Simmons, Mike

    An instructor's manual and student activity guide on air conditioning, refrigeration, and heating units are provided in this set of prevocational education materials which focuses on the vocational area of trade and industry. (This set of materials is one of ninety-two prevocational education sets arranged around a cluster of seven vocational…

  1. Air Conditioning Does Reduce Air Pollution Indoors

    ERIC Educational Resources Information Center

    Healy, Bud

    1970-01-01

    Report of the winter meeting of the American Society of Heating, Refrigerating and Air-Conditioning Engineers. Subjects covered are--(1) title subject, (2) predictions for the human habitat in 1994, (3) fans, and (4) fire safety in buildings. (JW)

  2. IMPACT OF HEATING AND AIR CONDITIONING SYSTEM OPERATION AND LEAKAGE ON VENTILATION AND INTERCOMPARTMENT TRANSPORT: STUDIES IN UNOCCUPIED AND OCCUPIED TENNESSEE VALLEY HOMES

    EPA Science Inventory

    Forced-air heating and air conditioning (HAC) systems caused an average and maximum increase in air infiltration rates of 1.8- and 4.3-fold, respectively, during brief whole-house studies of tracer gas decay In 39 occupied houses. An average Increase in air infiltration rate of 0...

  3. Commercialization of air conditioning heat pump/water heater. Final technical report, Volume 3: Appendix F through I

    SciTech Connect

    1996-01-30

    This is the final technical report on a commercialization project for an air conditioning heat pump water heater. The objective of the project was to produce a saleable system which would be economically competitive with natural gas and cost effective with regard to initial cost versus annual operating costs. The development and commercialization of the system is described. Compiled data included in numerous figures, tables and graphs.

  4. Commercialization of air conditioning heat pump/water heater. Final technical report, Volume 2: Appendix A through E

    SciTech Connect

    1996-01-30

    This is the final technical report on a commercialization project for an air conditioning heat pump water heater. The objective of the project was to produce a saleable system which would be economically competitive with natural gas and cost effective with regard to initial cost versus annual operating costs. The development and commercialization of the system is described. Compiled data included in numerous figures, tables and graphs.

  5. Measured performance of the heat exchanger in the NASA icing research tunnel under severe icing and dry-air conditions

    NASA Technical Reports Server (NTRS)

    Olsen, W.; Vanfossen, J.; Nussle, R.

    1987-01-01

    Measurements were made of the pressure drop and thermal perfomance of the unique refrigeration heat exchanger in the NASA Lewis Icing Research Tunnel (IRT) under severe icing and frosting conditions and also with dry air. This data will be useful to those planning to use or extend the capability of the IRT and other icing facilities (e.g., the Altitude Wind Tunnel-AWT). The IRT heat exchanger and refrigeration system is able to cool air passing through the test section down to at least a total temperature of -30 C (well below icing requirements), and usually up to -2 C. The system maintains a uniform temperature across the test section at all airspeeds, which is more difficult and time consuming at low airspeeds, at high temperatures, and on hot, humid days when the cooling towers are less efficient. The very small surfaces of the heat exchanger prevent any icing cloud droplets from passing through it and going through the tests section again. The IRT heat exchanger was originally designed not to be adversely affected by severe icing. During a worst-case icing test the heat exchanger iced up enough so that the temperature uniformaity was no worse than about +/- 1 deg C. The conclusion is that the heat exchanger design performs well.

  6. Influence of road traffic, residential heating and meteorological conditions on PM10 concentrations during air pollution critical episodes.

    PubMed

    Gualtieri, Giovanni; Toscano, Piero; Crisci, Alfonso; Di Lonardo, Sara; Tartaglia, Mario; Vagnoli, Carolina; Zaldei, Alessandro; Gioli, Beniamino

    2015-12-01

    The importance of road traffic, residential heating and meteorological conditions as major drivers of urban PM10 concentrations during air pollution critical episodes has been assessed in the city of Florence (Italy) during the winter season. The most significant meteorological variables (wind speed and atmospheric stability) explained 80.5-85.5% of PM10 concentrations variance, while a marginal role was played by major emission sources such as residential heating (12.1%) and road traffic (5.7%). The persistence of low wind speeds and unstable atmospheric conditions was the leading factor controlling PM10 during critical episodes. A specific PM10 critical episode was analysed, following a snowstorm that caused a "natural" scenario of 2-day dramatic road traffic abatement (-43%), and a massive (up to +48%) and persistent (8 consecutive days) increase in residential heating use. Even with such a strong variability in local PM10 emissions, the role of meteorological conditions was prominent, revealing that short-term traffic restrictions are insufficient countermeasures to reduce the health impacts and risks of PM10 critical episodes, while efforts should be made to anticipate those measures by linking them with air quality and weather forecasts.

  7. Effectiveness of photocatalytic filter for removing volatile organic compounds in the heating, ventilation, and air conditioning system.

    PubMed

    Yu, Kuo-Pin; Lee, Grace Whei-May; Huang, Wei-Ming; Wu, Chih-Cheng; Lou, Chia-ling; Yang, Shinhao

    2006-05-01

    Nowadays, the heating, ventilation, and air conditioning (HVAC) system has been an important facility for maintaining indoor air quality. However, the primary function of typical HVAC systems is to control the temperature and humidity of the supply air. Most indoor air pollutants, such as volatile organic compounds (VOCs), cannot be removed by typical HVAC systems. Thus, some air handling units for removing VOCs should be added in typical HVAC systems. Among all of the air cleaning techniques used to remove indoor VOCs, photocatalytic oxidation is an attractive alternative technique for indoor air purification and deodorization. The objective of this research is to investigate the VOC removal efficiency of the photocatalytic filter in a HVAC system. Toluene and formaldehyde were chosen as the target pollutants. The experiments were conducted in a stainless steel chamber equipped with a simplified HVAC system. A mechanical filter coated with Degussa P25 titania photocatalyst and two commercial photocatalytic filters were used as the photocatalytic filters in this simplified HVAC system. The total air change rates were controlled at 0.5, 0.75, 1, 1.25, and 1.5 hr(-1), and the relative humidity (RH) was controlled at 30%, 50%, and 70%. The ultraviolet lamp used was a 4-W, ultraviolet-C (central wavelength at 254 nm) strip light bulb. The first-order decay constant of toluene and formaldehyde found in this study ranged from 0.381 to 1.01 hr(-1) under different total air change rates, from 0.34 to 0.433 hr(-1) under different RH, and from 0.381 to 0.433 hr(-1) for different photocatalytic filters.

  8. Air heating system

    DOEpatents

    Primeau, John J.

    1983-03-01

    A self-starting, fuel-fired, air heating system including a vapor generator, a turbine, and a condenser connected in a closed circuit such that the vapor output from the vapor generator is conducted to the turbine and then to the condenser where it is condensed for return to the vapor generator. The turbine drives an air blower which passes air over the condenser for cooling the condenser. Also, a condensate pump is driven by the turbine. The disclosure is particularly concerned with the provision of heat exchanger and circuitry for cooling the condensed fluid output from the pump prior to its return to the vapor generator.

  9. American Society Of Heating, Refrigeration, And Air Conditioning Engineers (ASH RAE) Thermographic Standard 101 P

    NASA Astrophysics Data System (ADS)

    Snow, Frank J.

    1982-03-01

    The new ASHRAE Standard 101P, entitled "Application of Infrared Sensing Devices to the Assessment of Building Heat Loss", addresses the requirements upon infrared equipment when they are to be used for locating deficiencies which may exist in the thermal envelope of a building. Five categories of survey type are set up by the standard: imaging, airborne survey; non-imaging, spot radiometer; non-imaging, line scanner; imaging, exterior survey; and imaging, interior survey. It is intended that the standard will enable a prospective user of such equipments to better understand what level of information detail is obtainable from their proper application and show how the equipment specifications influence the conditions under which thermal measurements are to be made.

  10. Energy Savings Potential and Research, Development, & Demonstration Opportunities for Residential Building Heating, Ventilation, and Air Conditioning Systems

    SciTech Connect

    Goetzler, William; Zogg, Robert; Young, Jim; Schmidt, Justin

    2012-10-01

    This report is an assessment of 135 different heating, ventilation, and air-conditioning (HVAC) technologies for U.S. residential buildings to identify and provide analysis on 19 priority technology options in various stages of development. The analyses include an estimation of technical energy-savings potential, descriptions of technical maturity, descriptions of non-energy benefits, descriptions of current barriers for market adoption, and descriptions of the technology's applicability to different building or HVAC equipment types. From these technology descriptions, are suggestions for potential research, development and demonstration (RD&D) initiatives that would support further development of the priority technology options.

  11. Energy Savings Potential and Research, Development, & Demonstration Opportunities for Commercial Building Heating, Ventilation, and Air Conditioning Systems

    SciTech Connect

    none,

    2011-09-01

    This report covers an assessment of 182 different heating, ventilation, and air-conditioning (HVAC) technologies for U.S. commercial buildings to identify and provide analysis on 17 priority technology options in various stages of development. The analyses include an estimation of technical energy-savings potential, description of technical maturity, description of non-energy benefits, description of current barriers for market adoption, and description of the technology’s applicability to different building or HVAC equipment types. From these technology descriptions, are suggestions for potential research, development and demonstration (RD&D) initiatives that would support further development of the priority technology options.

  12. Air flow resistance of three heat and moisture exchanging filter designs under wet conditions: implications for patient safety.

    PubMed

    Morgan-Hughes, N J; Mills, G H; Northwood, D

    2001-08-01

    Heat and moisture exchanging filters (HMEFs) can be blocked by secretions. We have studied HMEF performance under wet conditions to see which particular design features predispose to this complication. Dar Hygrobac-S (composite felt filter and cellulose exchanger), Dar Hygroster (composite pleated ceramic membrane and cellulose exchanger) and Pall BB22-15 (pleated ceramic membrane) HMEFs were tested. Saline retention, saline concealment, and changes in air flow resistance when wet were assessed. The cellulose exchanger in the composite Hygrobac-S and Hygroster retained saline, producing a 'tampon' effect, associated with bi-directional air flow resistances in excess of the international standard of a 5 cm H(2)O pressure drop at 60 litre min(-1) air flow. Furthermore, high air flow resistances occurred before free saline was apparent within the transparent filter housing. The pleat only BB22-15 showed a significant increase in expiratory air flow resistance, but only after the presence of saline was apparent. These data imply that composite HMEFs with cellulose exchangers are more likely to block or cause excessive work of breathing as a result of occult accumulation of patient secretions than pleat only HMEFs.

  13. Efficiency of Energy Use in the United States: Transportation, space heating, and air conditioning provide opportunities for large energy savings.

    PubMed

    Hirst, E; Moyers, J C

    1973-03-30

    We described three uses of energy for which greater efficiency is feasible: transportation, space heating, and air conditioning. Shifts to less energy-intensive transportation modes could substantially reduce energy consumption; the magnitude of such savings would, of course, depend on the extent of such shifts and possible load factor changes. The hypothetical transportation scenario described here results in a 22 percent savings in energy for transportation in 1970, a savings of 2800 trillion Btu. To the homeowner, increasing the amount of building insulation and, in some cases, adding storm windows would reduce energy consumption and provide monetary savings. If all homes in 1970 had the "economic optimum" amount of insulation, energy consumption for residential heating would have been 42 percent less than if the homes were insulated to meet the pre-1971 FHA standards, a savings of 3100 trillion Btu. Increased utilization of energy-efficient air conditioners and of building insulation would provide significant energy savings and help to reduce peak power demands during the summer. A 67 percent increase in energy efficiency for room air conditioners would have saved 15.8 billion kilowatt-hours in 1970. In conclusion, it is possible-from an engineering point of view-to effect considerable energy savings in the United States. Increases in the efficiency of energy use would provide desired end results with smaller energy inputs. Such measures will not reduce the level of energy consumption, but they could slow energy growth rates.

  14. Development and Design of a User Interface for a Computer Automated Heating, Ventilation, and Air Conditioning System

    SciTech Connect

    Anderson, B.; /Fermilab

    1999-10-08

    A user interface is created to monitor and operate the heating, ventilation, and air conditioning system. The interface is networked to the system's programmable logic controller. The controller maintains automated control of the system. The user through the interface is able to see the status of the system and override or adjust the automatic control features. The interface is programmed to show digital readouts of system equipment as well as visual queues of system operational statuses. It also provides information for system design and component interaction. The interface is made easier to read by simple designs, color coordination, and graphics. Fermi National Accelerator Laboratory (Fermi lab) conducts high energy particle physics research. Part of this research involves collision experiments with protons, and anti-protons. These interactions are contained within one of two massive detectors along Fermilab's largest particle accelerator the Tevatron. The D-Zero Assembly Building houses one of these detectors. At this time detector systems are being upgraded for a second experiment run, titled Run II. Unlike the previous run, systems at D-Zero must be computer automated so operators do not have to continually monitor and adjust these systems during the run. Human intervention should only be necessary for system start up and shut down, and equipment failure. Part of this upgrade includes the heating, ventilation, and air conditioning system (HVAC system). The HVAC system is responsible for controlling two subsystems, the air temperatures of the D-Zero Assembly Building and associated collision hall, as well as six separate water systems used in the heating and cooling of the air and detector components. The BYAC system is automated by a programmable logic controller. In order to provide system monitoring and operator control a user interface is required. This paper will address methods and strategies used to design and implement an effective user interface

  15. Use of Disinfectants and Sanitizers in Heating, Ventilation, Air Conditioning, and Refrigeration Systems

    EPA Pesticide Factsheets

    This letter is to brings attention several concerns that the Agency has regarding the use of sanitizer and/or disinfectant products, and other types of antimicrobial products, to treat the surfaces of heating, ventilation

  16. High Efficiency Integrated Space Conditioning, Water Heating and Air Distribution System for HUD-Code Manufactured Housing

    SciTech Connect

    Henry DeLima; Joe Akin; Joseph Pietsch

    2008-09-14

    Recognizing the need for new space conditioning and water heating systems for manufactured housing, DeLima Associates assembled a team to develop a space conditioning system that would enhance comfort conditions while also reducing energy usage at the systems level. The product, Comboflair® was defined as a result of a needs analysis of project sponsors and industry stakeholders. An integrated system would be developed that would combine a packaged airconditioning system with a small-duct, high-velocity air distribution system. In its basic configuration, the source for space heating would be a gas water heater. The complete system would be installed at the manufactured home factory and would require no site installation work at the homesite as is now required with conventional split-system air conditioners. Several prototypes were fabricated and tested before a field test unit was completed in October 2005. The Comboflair® system, complete with ductwork, was installed in a 1,984 square feet, double-wide manufactured home built by Palm Harbor Homes in Austin, TX. After the home was transported and installed at a Palm Harbor dealer lot in Austin, TX, a data acquisition system was installed for remote data collection. Over 60 parameters were continuously monitored and measurements were transmitted to a remote site every 15 minutes for performance analysis. The Comboflair® system was field tested from February 2006 until April 2007. The cooling system performed in accordance with the design specifications. The heating system initially could not provide the needed capacity at peak heating conditions until the water heater was replaced with a higher capacity standard water heater. All system comfort goals were then met. As a result of field testing, we have identified improvements to be made to specific components for incorporation into production models. The Comboflair® system will be manufactured by Unico, Inc. at their new production facility in St. Louis

  17. Characteristic Analysis of Vuilleumier Cycle Machine and Its Application to Air-Conditioning Heat Pump

    NASA Astrophysics Data System (ADS)

    Sekiya, Hiroshi

    The Vuilleumier (VM) cycle machine is realized as a regenerative and external-combustion machine in the same way as a Stirling (ST) cycle machine. In the VM cycle, heat enters the cyc1e from hot and cold temperature heat sources and is delivered to an intermediate temperature heat source by a working gas. In consequence of the theoretical cycle, output power is not produced. The VM cycle machine is made of the same elements as the ST cycle machine and also closely connected with the ST cycle machine in its working principle. By means of analysis using an isothermal model, it is found that the VM cycle machine is internally divided into a ST engine and a ST refrigerator. In addition, the calculated results by a simulation model based on a so-called 3rd-order method clarify that the VM cycle machine has different featuers from the ST cycle macine with regard to the working gas behavior, the energy flow and the performance depending on the revolution speed. Application of the VM cycle machine to a heat pump for heating and cooling takes effect on the environment and energy problems arising on a terrestrial scale. In reacent years, research and development have been making on the VM haet pumps.

  18. Semi-volatile organic compounds in heating, ventilation, and air-conditioning filter dust in retail stores.

    PubMed

    Xu, Y; Liang, Y; Urquidi, J R; Siegel, J A

    2015-02-01

    Retail stores contain a wide range of products that can emit a variety of indoor pollutants. Among these chemicals, phthalate esters and polybrominated diphenyl ethers (PBDEs) are two important categories of semi-volatile organic compounds (SVOCs). Filters in heating, ventilation, and air-conditioning (HVAC) system collect particles from large volumes of air and thus potentially provide spatially and temporally integrated SVOC concentrations. This study measured six phthalate and 14 PBDE compounds in HVAC filter dust in 14 retail stores in Texas and Pennsylvania, United States. Phthalates and PBDEs were widely found in the HVAC filter dust in retail environment, indicating that they are ubiquitous indoor pollutants. The potential co-occurrence of phthalates and PBDEs was not strong, suggesting that their indoor sources are diverse. The levels of phthalates and PBDEs measured in HVAC filter dust are comparable to concentrations found in previous investigations of settled dust in residential buildings. Significant correlations between indoor air and filter dust concentrations were found for diethyl phthalate, di-n-butyl phthalate, and benzyl butyl phthalate. Reasonable agreement between measurements and an equilibrium model to describe SVOC partitioning between dust and gas-phase is achieved.

  19. ASME N511-19XX, Standard for periodic in-service testing of nuclear air treatment, heating, ventilating and air conditioning systems

    SciTech Connect

    1997-08-01

    A draft version of the Standard is presented in this document. The Standard covers the requirements for periodic in-service testing of nuclear safety-related air treatment, heating, ventilating, and air conditioning systems in nuclear facilities. The Standard provides a basis for the development of test programs and does not include acceptance criteria, except in cases where the results of one test influence the performance of other tests. The Standard covers general inspection and test requirements, reference values, inspection and test requirements, generic tests, acceptance criteria, in-service test requirements, testing following an abnormal incident, corrective action requirements, and quality assurance. Mandatory appendices provide a visual inspection checklist and four test procedures. Non-mandatory appendices provide additional information and guidance on mounting frame pressure leak test procedure, corrective action, challenge gas substitute selection criteria, and test program development. 8 refs., 10 tabs.

  20. Air conditioning versus heating: climate control is more energy demanding in Minneapolis than in Miami

    NASA Astrophysics Data System (ADS)

    Sivak, Michael

    2013-03-01

    Energy demand for climate control was analyzed for Miami (the warmest large metropolitan area in the US) and Minneapolis (the coldest large metropolitan area). The following relevant parameters were included in the analysis: (1) climatological deviations from the desired indoor temperature as expressed in heating and cooling degree days, (2) efficiencies of heating and cooling appliances, and (3) efficiencies of power-generating plants. The results indicate that climate control in Minneapolis is about 3.5 times as energy demanding as in Miami. This finding suggests that, in the US, living in cold climates is more energy demanding than living in hot climates.

  1. Heating, Ventilating, and Air-Conditioning: Recent Advances in Diagnostics and Controls to Improve Air-Handling System Performance

    SciTech Connect

    Wray, Craig; Wray, Craig P.; Sherman, Max H.; Walker, I.S.; Dickerhoff, D.J.; Federspiel, C.C.

    2008-02-01

    The performance of air-handling systems in buildings needs to be improved. Many of the deficiencies result from myths and lore and a lack of understanding about the non-linear physical principles embedded in the associated technologies. By incorporating these principles, a few important efforts related to diagnostics and controls have already begun to solve some of the problems. This paper illustrates three novel solutions: one rapidly assesses duct leakage, the second configures ad hoc duct-static-pressure reset strategies, and the third identifies useful intermittent ventilation strategies. By highlighting these efforts, this paper seeks to stimulate new research and technology developments that could further improve air-handling systems.

  2. New-construction techniques and HVAC (heating, venting and air conditioning) overpressurization for radon reduction in schools

    SciTech Connect

    Witter, K.A.; Craig, A.B.; Saum, D.

    1988-04-01

    Construction of a school in Fairfax County, Virginia, is being carefully monitored since elevated indoor radon levels have been identified in many existing houses near the site. Soil-gas radon concentrations measured prior to pouring of the slabs were also indicative of a potential radon problem should the soil gas enter the school; however, subslab radon measurements collected thus far are lower than anticipated. In addition, the school's heating, ventilating, and air-conditioning (HVAC) system has been designed to operate continously in overpressurization to help reduce pressure-driven entry of radon-containing soil gas into the building. Following completion, indoor radon levels in the school will be monitored to determine the effectiveness of these radon-resistant new-construction techniques and HVAC overpressurization in limiting radon entry into the school.

  3. A vacuum tube vee-trough collector for solar heating and air conditioning applications

    NASA Technical Reports Server (NTRS)

    Selcuk, M. K.

    1978-01-01

    An analysis is conducted of the performance of a vee-trough vacuum tube collector proposed for use in solar heating and cooling applications. The vee-trough reflector is a triangular sectioned, flat surfaced reflector, whose axis is laid in the East-West direction. A vacuum tube receiver placed at the bottom of the vee-trough collects solar heat most efficiently since convection is completely eliminated. Radiation losses are reduced by use of selective coatings on the absorber. Owing to its high temperature capabilities (300-400 F), the proposed scheme could also be used for power generation applications in combination with an organic Rankine conversion system. It is especially recommended for unattended pumping stations since the reflectors only require reversal once every six months.

  4. Control Strategies for Reducing Heating, Ventilating, and Air Conditioning (HVAC) Energy Consumption in Single Buildings.

    DTIC Science & Technology

    1983-03-01

    deadband is increased to 5°F. Zone-mixing dampers will then begin to supply warm air when the zone temperature drops to 70.5°F and will supply the maximum...diagnostic capability, and interface to EMCS systems. Since many types of centrifugal and reciprocating compressors rely on oil in the refrigerant for...Electrically powered chiller operating cost (Ref 8) .. ......... 5.4 V/kW-hr Oil -fired, hot water boiler operating cost (Ref 8) .. ......... 6.96 $/MBtu

  5. Development of a Self-Tuning Controller for HVAC (Heating, Ventilating, and Air Conditioning) Systems.

    DTIC Science & Technology

    1985-08-01

    AD-RI69 329 DEVELOPMENT OF A SELF-TUNING CONTROLLER FORR f (HEATING VENTILATING AND.. (U) NARL CIVIL ENGINEERING LAB PORT HUENEME CA R E-KIRTS ET AL...Facilities Engineering Command I PROGRAM NO: Z0371-O1-221B0% ___ NAVAL CIVIL ENGINEERING LABORATORYT C S PORT HUENEME, CALIFORNIA 93043 LLJ Approved for...UITNUBR NAVAL CIVIL ENGINEERING LABORATORY 64710N; Port Hueneme, California 93043 Z0371-01-221B I I CONTROLLING OFFICE NAME AND ADDRESS 12 REPORT DATE Naval

  6. Heating, Ventilation, and Air Conditioning Design Strategy for a Hot-Humid Production Builder

    SciTech Connect

    Kerrigan, P.

    2014-03-01

    BSC worked directly with the David Weekley Homes - Houston division to redesign three floor plans in order to locate the HVAC system in conditioned space. The purpose of this project is to develop a cost effective design for moving the HVAC system into conditioned space. In addition, BSC conducted energy analysis to calculate the most economical strategy for increasing the energy performance of future production houses. This is in preparation for the upcoming code changes in 2015. The builder wishes to develop an upgrade package that will allow for a seamless transition to the new code mandate. The following research questions were addressed by this research project: 1. What is the most cost effective, best performing and most easily replicable method of locating ducts inside conditioned space for a hot-humid production home builder that constructs one and two story single family detached residences? 2. What is a cost effective and practical method of achieving 50% source energy savings vs. the 2006 International Energy Conservation Code for a hot-humid production builder? 3. How accurate are the pre-construction whole house cost estimates compared to confirmed post construction actual cost? BSC and the builder developed a duct design strategy that employs a system of dropped ceilings and attic coffers for moving the ductwork from the vented attic to conditioned space. The furnace has been moved to either a mechanical closet in the conditioned living space or a coffered space in the attic.

  7. Theoretical and experimental validation study on automotive air-conditioning based on heat pipe and LNG cold energy for LNG-fueled heavy vehicles

    NASA Astrophysics Data System (ADS)

    Deng, Dong; Cheng, Jiang-ping; Zhang, Sheng-chang; Ge, Fang-gen

    2017-03-01

    As a clean fuel, LNG has been used in heavy vehicles widely in China. Before reaching the engine for combustion, LNG store in a high vacuum multi-layer thermal insulation tank and need to be evaporated from its cryogenic state to natural gas. During the evaporation, the available cold energy of LNG has been calculated. The concept has been proposed that the separated type heat pipe technology is employed to utilize the available cold energy for automotive air-conditioning. The experiment has been conducted to validate the proposal. It is found that it is feasible to use the separated type heat pipe to convey the cold energy from LNG to automotive air-conditioning. And the cooling capacity of the automotive air-conditioning increase with the LNG consumption and air flow rate increasing.

  8. Heating, Ventilation, and Air Conditioning Design Strategy for a Hot-Humid Production Builder

    SciTech Connect

    Kerrigan, P.

    2014-03-01

    Building Science Corporation (BSC) worked directly with the David Weekley Homes - Houston division to develop a cost-effective design for moving the HVAC system into conditioned space. In addition, BSC conducted energy analysis to calculate the most economical strategy for increasing the energy performance of future production houses in preparation for the upcoming code changes in 2015. This research project addressed the following questions: 1. What is the most cost effective, best performing and most easily replicable method of locating ducts inside conditioned space for a hot-humid production home builder that constructs one and two story single family detached residences? 2. What is a cost effective and practical method of achieving 50% source energy savings vs. the 2006 International Energy Conservation Code for a hot-humid production builder? 3. How accurate are the pre-construction whole house cost estimates compared to confirmed post construction actual cost?

  9. RESULTS OF A PILOT FIELD STUDY TO EVALUATE THE EFFECTIVENESS OF CLEANING RESIDENTIAL HEATING AND AIR-CONDITIONING SYSTEMS AND THE IMPACT ON INDOOR AIR QUALITY AND SYSTEM PERFORMANCE

    EPA Science Inventory

    The report discusses and gives results of a pilot field study to evaluate the effectiveness of air duct cleaning (ADC) as a source removal technique in residential heating and air-conditioning (HAC) systems and its impact on airborne particle, fiber, and bioaerosol concentrations...

  10. Comparison of methods to evaluate the fungal biomass in heating, ventilation, and air-conditioning (HVAC) dust.

    PubMed

    Biyeyeme Bi Mve, Marie-Jeanne; Cloutier, Yves; Lacombe, Nancy; Lavoie, Jacques; Debia, Maximilien; Marchand, Geneviève

    2016-12-01

    Heating, ventilation, and air-conditioning (HVAC) systems contain dust that can be contaminated with fungal spores (molds), which may have harmful effects on the respiratory health of the occupants of a building. HVAC cleaning is often based on visual inspection of the quantity of dust, without taking the mold content into account. The purpose of this study is to propose a method to estimate fungal contamination of dust in HVAC systems. Comparisons of different analytical methods were carried out on dust deposited in a controlled-atmosphere exposure chamber. Sixty samples were analyzed using four methods: culture, direct microscopic spore count (DMSC), β-N-acetylhexosaminidase (NAHA) dosing and qPCR. For each method, the limit of detection, replicability, and repeatability were assessed. The Pearson correlation coefficients between the methods were also evaluated. Depending on the analytical method, mean spore concentrations per 100 cm(2) of dust ranged from 10,000 to 682,000. Limits of detection varied from 120 to 217,000 spores/100 cm(2). Replicability and repeatability were between 1 and 15%. Pearson correlation coefficients varied from -0.217 to 0.83. The 18S qPCR showed the best sensitivity and precision, as well as the best correlation with the culture method. PCR targets only molds, and a total count of fungal DNA is obtained. Among the methods, mold DNA amplification by qPCR is the method suggested for estimating the fungal content found in dust of HVAC systems.

  11. Articulated, Performance-Based Instruction Objectives Guide for Air Conditioning, Refrigeration, and Heating (Environmental Control System Installer/Servicer). Edition I.

    ERIC Educational Resources Information Center

    Henderson, William Edward, Jr., Ed.

    This articulation guide contains 17 units of instruction for the first year of a two-year vocational program designed to prepare the high school graduate to install, maintain, and repair various types of residential and commercial heating, air conditioning, and refrigeration equipment. The units are to introduce the student to fundamental theories…

  12. The Postmeeting Publication of Material Presented at the February 1968 Semiannual Meeting of the American Society of Heating, Refrigerating, and Air-Conditioning Engineers.

    ERIC Educational Resources Information Center

    Johns Hopkins Univ., Baltimore, MD. Center for Research in Scientific Communication.

    Reported is a study of the subsequent dissemination of information by authors who presented material at a meeting of the American Society of Heating, Refrigerating, and Air Conditioning Engineers (ASHRAE). The results of the survey include the following: 57 percent of the authors submitted the material to journals, and, although some papers were…

  13. Air Conditioning Overflow Sensor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Technology Transfer Office at Stennis Space Center helped a local inventor develop a prototype of an attachment for central air conditioners and heat pumps that helps monitor water levels to prevent condensation overflow. The sensor will indicate a need for drain line maintenance and prevent possible damage caused by drain pan water spillover. An engineer in the Stennis Space Center prototype Development Laboratory used SSC sensor technology in the development of the sensor.

  14. Energy Savings and Economics of Advanced Control Strategies for Packaged Air-Conditioning Units with Gas Heat

    SciTech Connect

    Wang, Weimin; Katipamula, Srinivas; Huang, Yunzhi; Brambley, Michael R.

    2011-12-31

    Pacific Northwest National Laboratory (PNNL) with funding from the U.S. Department of Energy's Building Technologies Program (BTP) evaluated a number of control strategies that can be implemented in a controller, to improve the operational efficiency of the packaged air conditioning units. The two primary objectives of this research project are: (1) determine the magnitude of energy savings achievable by retrofitting existing packaged air conditioning units with advanced control strategies not ordinarily used for packaged units and (2) estimating what the installed cost of a replacement control with the desired features should be in various regions of the U.S. This document reports results of the study.

  15. Air regenerating and conditioning

    NASA Technical Reports Server (NTRS)

    Grishayenkov, B. G.

    1975-01-01

    Various physicochemical methods of regenerating and conditioning air for spacecraft are described with emphasis on conditions which affect efficiency of the system. Life support systems used in closed, hermetically sealed environments are discussed with references to actual application in the Soviet Soyuz and Voskhod manned spacecraft. Temperature and humidity control, removal of carbon dioxide, oxygen regeneration, and removal of bacteria and viruses are among the factors considered.

  16. The effect of different inlet conditions of air in a rectangular channel on convection heat transfer: Turbulence flow

    SciTech Connect

    Kurtbas, Irfan

    2008-10-15

    Theoretical and empirical correlations for duct flow are given for hydrodynamically and thermally developed flow in most of previous studies. However, this is commonly not a realistic inlet configuration for heat exchanger, in which coolant flow generally turns through a serpentine shaped passage before entering heat sinks. Accordingly, an experimental investigation was carried out to determine average heat transfer coefficients in uniformly heated rectangular channel with 45 and 90 turned flow, and with wall mounted a baffle. The channel was heated through bottom side with the baffle. In present work, a detailed study was conducted for three different height of entry channel (named as the ratio of the height of entry channel to the height of test section (anti H{sub c}=h{sub c}/H)) by varying Reynolds number (Re{sub Dh}). Another variable parameter was the ratio of the baffle height to the channel height (anti H{sub b}=h{sub b}/H). Only one baffle was attached on the bottom (heating) surface. The experimental procedure was validated by comparing the data for the straight channel with no baffle. Reynolds number (Re{sub Dh}) was varied from 2800 to 30,000, so the flow was considered as only turbulent regime. All experiments were conduced with air accordingly; Prandtl number (Pr) was approximately fixed at 0.71. The results showed that average Nusselt number for {theta}=45 and {theta}=90 were 9% and 30% higher, respectively, than that of the straight channel without baffle. Likewise, the pressure drop increased up to 4.4 to 5.3 times compare to the straight channel. (author)

  17. Impact of heating and air conditioning system operation and leakage on ventilation and intercompartment transport: studies in unoccupied and occupied Tennessee Valley homes.

    PubMed

    Matthews, T G; Wilson, D L; Thompson, C V; Monar, K P; Dudney, C S

    1990-02-01

    Forced-air heating and air conditioning (HAC) systems caused an average and maximum increase in air infiltration rates of 1.8- and 4.3-fold, respectively, during brief whole-house studies of tracer gas decay in 39 occupied houses. An average increase in air infiltration rate of 0.33 +/- 0.37 h-1 corresponded to an incremental air leak of 240 m3/h, based on approximate house volume. More detailed tracer gas decay studies were performed in basement, kitchen and bedroom locations of six homes with low air infiltration rates (i.e., less than 0.25 h-1). The HAC mixed the indoor air efficiently between measurement sites. HAC operation also caused 1.1- to 3.6-fold increases in air infiltration rates, corresponding to absolute increases of 0.02 to 0.1 h-1. In an unoccupied research house, three-fold increases in average air infiltration rate with HAC operation (i.e., from 0.13 to 0.36 h-1) were reduced to two-fold (i.e., from 0.10 to 0.18 h-1) by sealing the external HAC unit and crawlspace ductwork system. This sealing also resulted in a 30 percent reduction in crawlspace-to-indoor transport rates with the HAC turned on. Blower door tests indicated a less than 20 percent reduction in house leakage area.

  18. International Energy Agency Building Energy Simulation Test and Diagnostic Method for Heating, Ventilating, and Air-Conditioning Equipment Models (HVAC BESTEST); Volume 1: Cases E100-E200

    SciTech Connect

    Neymark, J.; Judkoff, R.

    2002-01-01

    This report describes the Building Energy Simulation Test for Heating, Ventilating, and Air-Conditioning Equipment Models (HVAC BESTEST) project conducted by the Tool Evaluation and Improvement International Energy Agency (IEA) Experts Group. The group was composed of experts from the Solar Heating and Cooling (SHC) Programme, Task 22, Subtask A. The current test cases, E100-E200, represent the beginning of work on mechanical equipment test cases; additional cases that would expand the current test suite have been proposed for future development.

  19. Heat Pipe Thermal Conditioning Panel

    NASA Technical Reports Server (NTRS)

    Saaski, E. W.

    1973-01-01

    The development, fabrication, and evaluation of heat pipe thermal conditioning panels are discussed. The panels were designed and fabricated to be compatible with several planned NASA space vehicles, in terms of panel size, capacity, temperature gradients, and integration with various heat exchangers and electronic components. It was satisfactorily demonstrated that the heat pipe thermal conditioning panel meets the thermal efficiency and heat transport requirements.

  20. Development of a Novel Home Cogeneration System using a Polymer Electrolyte Fuel Cell which Enabled Air Conditioning by Its Low-TemperatureWaste Heat

    NASA Astrophysics Data System (ADS)

    Nishimura, Nobuya; Honda, Kuniaki; Kawakami, Ryuichiro; Nishikawa, Toshimichi; Iyota, Hiroyuki; Nomura, Tomohiro

    Micro-scale distributed power generation system, which means a micro-cogeneration system in almost cases, has been paid a great attention from a standpoint of saving fossil fuels' consumption and preventing global warming. Especially, polymer electrolyte fuel cell (PEFC) is considered the most promising power generation system for small scale commercial use and residential use. In the PEFC cogeneration system, small amount of waste heat at low temperature from a cell stack is almost used to produce hot water. Therefore, in the paper, we proposed a new heat utilization method of the waste heat for air conditioning. In the proposed home cogeneration system, absorption refrigerator is introduced in order to produce chilled water. Thermal performances of the proposed system have been analyzed by a computer simulation which was developed for the prediction both of power generation characteristics of PEFC and absorption refrigerator's behavior.

  1. AN ASSESSMENT OF THE STATE OF THE ART, AND POTENTIAL DESIGN IMPROVEMENTS, FOR FLAT-TUBE HEAT EXCHANGERS IN AIR CONDITIONING AND REFRIGERATION APPLICATIONS - PHASE I

    SciTech Connect

    Jacobi, A.M.; Park, Y.; Tafti, D.; Zhang, X.

    2001-09-30

    Project objective is to evaluate the air-side heat transfer and pressure-drop performance of serpentine-fin, flat-tube heat exchangers. This assessment is conducted for smooth, corrugated, and interrupted fins, over a wide range of geometric and operating parameters, spanning HVAC and R applications. The performance of serpentine-fin, flat-tube exchangers is compared to that of conventional round-tube designs, which are considered the technology baseline. The research includes a literature review, a preliminary comparison of flat-tube to round-tube performance, a computational fluid dynamic study of flow through the heat exchangers, and complementary modeling to predict the performance of flat-tube designs over a wide range of conditions. Recommendations are provided for a new experimental study to provide performance data for dry, wet, and frosted-surface conditions. Specific flow visualization and naphthalene sublimation experiments are recommended to understand the flow and heat transfer interactions in the flat-tube geometry. These data could be used to evaluate condensate retention and frost-formation effects on flat-tube heat exchanger performance, and to compare this behavior to that of the conventional round-tube geometry. These findings will be highly valuable to design and development engineers as they work toward the next generation of highly compact, energy efficient HVAC and R systems.

  2. Evolution of microbial aerosol behaviour in heating, ventilating and air-conditioning systems--quantification of Staphylococcus epidermidis and Penicillium oxalicum viability.

    PubMed

    Forthomme, A; Andrès, Y; Joubert, A; Simon, X; Duquenne, P; Bemer, D; Le Coq, L

    2013-01-01

    The aim of this study was to develop an experimental set-up and a methodology to uniformly contaminate several filter samples with high concentrations of cultivable bacteria and fungi. An experimental set-up allows contaminating simultaneously up to four filters for range of velocities representative of heating, ventilating and air-conditioning systems. The test aerosol was composed of a microbial consortium of one bacterium (Staphylococcus epidermidis) and one fungus (Penicillium oxalicum) and aerosol generation was performed in wet conditions. Firstly, the experimental set-up was validated in regards to homogeneity of the air flows. The bioaerosol was also characterized in terms of number and particle size distribution using two particle counters: optical particle counter Grimm 1.109 (optical diameters) and TSI APS 3321 (aerodynamic diameters). Moreover, stabilities of the number of particles generated were measured. Finally, concentrations of cultivable microorganisms were measured with BioSamplers (SKC) downstream of the four filters.

  3. Evolution of microbial aerosol behaviour in heating, ventilating and air-conditioning systems--quantification of Staphylococcus epidermidis and Penicillium oxalicum viability.

    PubMed

    Forthomme, A; Andrès, Y; Joubert, A; Simon, X; Duquenne, P; Bemer, D; Le Coq, L

    2012-01-01

    The aim of this study was to develop an experimental set-up and a methodology to uniformly contaminate several filter samples with high concentrations of cultivable bacteria and fungi. An experimental set-up allows contaminating simultaneously up to four filters for range of velocities representative of heating, ventilating and air-conditioning systems. The test aerosol was composed of a microbial consortium of one bacterium (Staphylococcus epidermidis) and one fungus (Penicillium oxalicum) and aerosol generation was performed in wet conditions. Firstly, the experimental set-up was validated in regards to homogeneity of the air flows. The bioaerosol was also characterized in terms of the number and particle size distribution using two particle counters: optical particle counter Grimm 1.109 (optical diameters) and TSI APS 3321 (aerodynamic diameters). Moreover, stabilities of the number of particles generated were measured. Finally, concentrations of cultivable microorganisms were measured with BioSamplers SKC downstream of the four filters.

  4. Air Conditioning and Refrigeration Book III.

    ERIC Educational Resources Information Center

    Eckes, William; Fulkerson, Dan

    Designed to present theory as a functional aspect, this air conditioning and refrigeration curriculum guide is comprised of nine units of instruction. Unit titles include (1) Job Orientation, (2) Applying for a Job, (3) Customer Relations, (4) Business Management, (5) Psychometrics, (6) Residential Heat Loss and Heat Gain, (7) Duct Design and…

  5. Effects of mineral nutrition conditions on heat tolerance of chufa (Сyperus esculentus L.) plant communities to super optimal air temperatures in the BTLSS

    NASA Astrophysics Data System (ADS)

    Shklavtsova, E. S.; Ushakova, S. A.; Shikhov, V. N.; Anishchenko, O. V.

    2014-09-01

    The use of mineralized human wastes as a basis for nutrient solutions will increase the degree of material closure of bio-technical human life support systems. As stress tolerance of plants is determined, among other factors, by the conditions under which they have been grown before exposure to a stressor, the purpose of the study is to investigate the level of tolerance of chufa (Cyperus esculentus L.) plant communities grown in solutions based on mineralized human wastes to a damaging air temperature, 45 °C. Experiments were performed with 30-day-old chufa plant communities grown hydroponically, on expanded clay aggregate, under artificial light, at 690 μmol m-2 s-1 PAR and at a temperature of 25 °C. Plants were grown in Knop’s solution and solutions based on human wastes mineralized according to Yu.A. Kudenko’s method, which contained nitrogen either as ammonium and urea or as nitrates. The heat shock treatment lasted 20 h at 690 and 1150 μmol m-2 s-1 PAR. Chufa heat tolerance was evaluated based on parameters of CO2 gas exchange, the state of its photosynthetic apparatus (PSA), and intensity of peroxidation of leaf lipids. Chufa plants grown in the solutions based on mineralized human wastes that contained ammonium and urea had lower heat tolerance than plants grown in standard mineral solutions. Heat tolerance of the plants grown in the solutions based on mineralized human wastes that mainly contained nitrate nitrogen was insignificantly different from the heat tolerance of the plants grown in standard mineral solutions. A PAR intensity increase from 690 μmol m-2 s-1 to 1150 μmol m-2 s-1 enhanced heat tolerance of chufa plant communities, irrespective of the conditions of mineral nutrition under which they had been grown.

  6. Boundary conditions for heat transfer and evaporative cooling in the trachea and air sac system of the domestic fowl: a two-dimensional CFD analysis.

    PubMed

    Sverdlova, Nina S; Lambertz, Markus; Witzel, Ulrich; Perry, Steven F

    2012-01-01

    Various parts of the respiratory system play an important role in temperature control in birds. We create a simplified computational fluid dynamics (CFD) model of heat exchange in the trachea and air sacs of the domestic fowl (Gallus domesticus) in order to investigate the boundary conditions for the convective and evaporative cooling in these parts of the respiratory system. The model is based upon published values for respiratory times, pressures and volumes and upon anatomical data for this species, and the calculated heat exchange is compared with experimentally determined values for the domestic fowl and a closely related, wild species. In addition, we studied the trachea histologically to estimate the thickness of the heat transfer barrier and determine the structure and function of moisture-producing glands. In the transient CFD simulation, the airflow in the trachea of a 2-dimensional model is evoked by changing the volume of the simplified air sac. The heat exchange between the respiratory system and the environment is simulated for different ambient temperatures and humidities, and using two different models of evaporation: constant water vapour concentration model and the droplet injection model. According to the histological results, small mucous glands are numerous but discrete serous glands are lacking on the tracheal surface. The amount of water and heat loss in the simulation is comparable with measured respiratory values previously reported. Tracheal temperature control in the avian respiratory system may be used as a model for extinct or rare animals and could have high relevance for explaining how gigantic, long-necked dinosaurs such as sauropoda might have maintained a high metabolic rate.

  7. Air conditioned suit

    NASA Technical Reports Server (NTRS)

    Carl, G. R. (Inventor)

    1973-01-01

    An environmentally controlled suit is described consisting of an airtight outergarment attached by an airtight bellows to the wall of a sterile chamber, an undergarment providing for circulation of air near the skin of the wearer, and a circulation system comprised of air supply and distribution to the extremities of the undegarment and central collection and exhaust of air from the midsection of the undergarment. A workman wearing the undergarment and attached circulation system enters the outer garment through a tunnel in the chamber wall and the attached bellows to work in the chamber without any danger of spreading bacteria.

  8. Air conditioning system

    DOEpatents

    Lowenstein, Andrew; Miller, Jeffrey; Gruendeman, Peter; DaSilva, Michael

    2005-02-01

    An air conditioner comprises a plurality of plates arranged in a successively stacked configuration with portions thereof having a spaced apart arrangement, and defining between successive adjacent pairs of plates at the spaced apart portions a first and second series of discrete alternating passages wherein a first air stream is passed through the first series of passages and a second air stream is passed through the second series of passages; and said stacked configuration of plates forming integrally therewith a liquid delivery means for delivering from a source a sufficient quantity of a liquid to the inside surfaces of the first series of fluid passages in a manner which provides a continuous flow of the liquid from a first end to a second end of the plurality of plates while in contact with the first air stream.

  9. Simulation model air-to-air plate heat exchanger

    SciTech Connect

    Wetter, Michael

    1999-01-01

    A simple simulation model of an air-to-air plate heat exchanger is presented. The model belongs to a collection of simulation models that allows the eflcient computer simulation of heating, ventilation, and air-conditioning (HVAC) systems. The main emphasis of the models is to shorten computation time and to use only input data that are known in the design process of an HVAC system. The target of the models is to describe the behavior of HVAC components in the part-load operation mode, which is becoming increasingly important in energy eficient HVAC systems. The models are intended to be used for yearly energy calculations or load calculations with time steps of about 10 minutes or larger. Short- time dynamic effects, which are of interest for different aspects of control theory, are neglected. The part-load behavior is expressed in terms of the nominal condition and the dimensionless variation of the heat transfer with change of mass flow and temperature. The effectiveness- NTU relations are used to parametrize the convective heat transfer at nominal conditions and to compute the part-load condition. If the heat transfer coefficients on the two exchanger sides are not equal (i. e. due to partial bypassing of air), their ratio can be easily calculated and set as a parameter. The model is static and uses explicit equations only. The explicit model formulation ensures short computation time and numerical stability, which allows using the model with sophisticated engineering methods like automatic system optimization. This paper fully outlines the algorithm description and its simplifications. It is not tailored for any particular simulation program to ensure easy implementation in any simulation program.

  10. Reducing Energy Usage in Residential and Industrial Buildings via the Sealing of Heating and Air Conditioning Ductwork

    NASA Astrophysics Data System (ADS)

    Witriol, Norman; Katz, Myron; McKim, Robert; Erinjeri, Jinson; Saber, Aziz

    2003-03-01

    Many existing residential and industrial heating and cooling systems have leaky ductwork. These leaks result in large energy losses, and thus significantly higher than necessary utility costs. We will discuss the use of extensions of well investigated cost effective sealing methodologies to ductwork, and quantify the energy savings that can be achieved by sealing these leaks.

  11. Fundamentals of Refrigeration; Air Conditioning and Heating Mechanics 1--Appliance Repair 2: 9013.01 and 9025.05.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    Providing the student with an understanding of the basic refrigeration fundamentals, the course introduces the various types of tools and equipment used in this trade. The course consists of 90 clock hours and is organized into six instructional blocks. The student will gain an understanding of trade terminology, heat and temperature, transfer of…

  12. Heat Recovery Ventilation for Housing: Air-to-Air Heat Exchangers.

    ERIC Educational Resources Information Center

    Corbett, Robert J.; Miller, Barbara

    The air-to-air heat exchanger (a fan powered ventilation device that recovers heat from stale outgoing air) is explained in this six-part publication. Topic areas addressed are: (1) the nature of air-to-air heat exchangers and how they work; (2) choosing and sizing the system; (3) installation, control, and maintenance of the system; (4) heat…

  13. Heat Transfer from Finned Metal Cylinders in an Air Stream

    NASA Technical Reports Server (NTRS)

    Biermann, Arnold, E; Pinkel, Benjamin

    1935-01-01

    This report presents the results of tests made to supply design information for the construction of metal fins for the cooling of heated cylindrical surfaces by an air stream. A method is given for determining fin dimensions for a maximum heat transfer with the expenditure of a given amount of material for a variety of conditions of air flow and metals.

  14. Heat pipe thermal conditioning panel

    NASA Technical Reports Server (NTRS)

    Saaski, E. W.; Loose, J. D.; Mccoy, K. E.

    1974-01-01

    Thermal control of electronic hardware and experiments on future space vehicles is critical to proper functioning and long life. Thermal conditioning panels (cold plates) are a baseline control technique in current conceptual studies. Heat generating components mounted on the panels are typically cooled by fluid flowing through integral channels within the panel. However, replacing the pumped fluid coolant loop within the panel with heat pipes offers attractive advantages in weight, reliability, and installation. This report describes the development and fabrication of two large 0.76 x 0.76 m heat pipe thermal conditioning panels to verify performance and establish the design concept.

  15. Development of a method for bacteria and virus recovery from heating, ventilation, and air conditioning (HVAC) filters.

    PubMed

    Farnsworth, James E; Goyal, Sagar M; Kim, Seung Won; Kuehn, Thomas H; Raynor, Peter C; Ramakrishnan, M A; Anantharaman, Senthilvelan; Tang, Weihua

    2006-10-01

    The aim of the work presented here is to study the effectiveness of building air handling units (AHUs) in serving as high volume sampling devices for airborne bacteria and viruses. An HVAC test facility constructed according to ASHRAE Standard 52.2-1999 was used for the controlled loading of HVAC filter media with aerosolized bacteria and virus. Nonpathogenic Bacillus subtilis var. niger was chosen as a surrogate for Bacillus anthracis. Three animal viruses; transmissible gastroenteritis virus (TGEV), avian pneumovirus (APV), and fowlpox virus were chosen as surrogates for three human viruses; SARS coronavirus, respiratory syncytial virus, and smallpox virus; respectively. These bacteria and viruses were nebulized in separate tests and injected into the test duct of the test facility upstream of a MERV 14 filter. SKC Biosamplers upstream and downstream of the test filter served as reference samplers. The collection efficiency of the filter media was calculated to be 96.5 +/- 1.5% for B. subtilis, however no collection efficiency was measured for the viruses as no live virus was ever recovered from the downstream samplers. Filter samples were cut from the test filter and eluted by hand-shaking. An extraction efficiency of 105 +/- 19% was calculated for B. subtilis. The viruses were extracted at much lower efficiencies (0.7-20%). Our results indicate that the airborne concentration of spore-forming bacteria in building AHUs may be determined by analyzing the material collected on HVAC filter media, however culture-based analytical techniques are impractical for virus recovery. Molecular-based identification techniques such as PCR could be used.

  16. Heat Pipe Thermal Conditioning Panel

    NASA Technical Reports Server (NTRS)

    Saaski, E. W.

    1973-01-01

    The technology involved in designing and fabricating a heat pipe thermal conditioning panel to satisfy a broad range of thermal control system requirements on NASA spacecraft is discussed. The design specifications were developed for a 30 by 30 inch heat pipe panel. The fundamental constraint was a maximum of 15 gradient from source to sink at 300 watts input and a flux density of 2 watts per square inch. The results of the performance tests conducted on the panel are analyzed.

  17. Risk Factors in Heating, Ventilating, and Air-Conditioning Systemsfor Occupant Symptoms in U.S. Office Buildings: the EPA BASE Study

    SciTech Connect

    Mendell, M.J.; Lei-Gomez, Q.; Mirer, A.; Seppanen, O.; Brunner, G.

    2006-10-01

    Nonspecific building-related symptoms among occupants of modern office buildings worldwide are common and may be associated with important reductions in work performance, but their etiology remains uncertain. Characteristics of heating, ventilating, and air-conditioning (HVAC) systems in office buildings that increase risk of indoor contaminants or reduce effectiveness of ventilation may cause adverse exposures and subsequent increase in these symptoms among occupants. We analyzed data collected by the U.S. EPA from a representative sample of 100 large U.S. office buildings--the Building Assessment and Survey Evaluation (BASE) study--using multivariate logistic regression models with generalized estimating equations adjusted for potential personal and building confounders. We estimated odds ratios (ORs) and 95% confidence intervals (CIs) for associations between seven building-related symptom outcomes and selected HVAC system characteristics. Among factors of HVAC design or configuration: Outdoor air intakes less than 60 m above the ground were associated with approximately doubled odds of most symptoms assessed. Sealed (non-operable) windows were associated with increases in skin and eye symptoms (ORs= 1.9, 1.3, respectively). Outdoor air intake without an intake fan was associated with an increase in eye symptoms (OR=1.7). Local cooling coils were associated with increased headache (OR=1.5). Among factors of HVAC condition, maintenance, or operation: the presence of humidification systems in good condition was associated with an increase in headache (OR=1.4), whereas the presence of humidification systems in poor condition was associated with increases in fatigue/difficulty concentrating, as well as upper respiratory symptoms (ORs=1.8, 1.5). No regularly scheduled inspections for HVAC components was associated with increased eye symptoms, cough and upper respiratory symptoms (ORs=2.2, 1.6, 1.5). Less frequent cleaning of cooling coils or drip pans was associated

  18. Ideas and perspectives: Heat stress: more than hot air

    NASA Astrophysics Data System (ADS)

    De Boeck, Hans J.; Van De Velde, Helena; De Groote, Toon; Nijs, Ivan

    2016-10-01

    Climate models project an important increase in the frequency and intensity of heat waves. In gauging the impact on plant responses, much of the focus has been on air temperatures, while a critical analysis of leaf temperatures during heat extremes has not been conducted. Nevertheless, direct physiological consequences from heat depend primarily on leaf rather than on air temperatures. We discuss how the interplay between various environmental variables and the plants' stomatal response affects leaf temperatures and the potential for heat stress by making use of both an energy balance model and field data. The results demonstrate that this interplay between plants and environment can cause leaf temperature to vary substantially at the same air temperature. In general, leaves tended to heat up when radiation was high and when stomates were closed, as expected. But perhaps counterintuitively, high air humidity also raised leaf temperatures, while humid conditions are typically regarded as benign with respect to plant survival since they limit water loss. High wind speeds brought the leaf temperature closer to the air temperature, which can imply either cooling or warming (i.e. abating or reinforcing heat stress) depending on other prevailing conditions. The results thus indicate that heat waves characterized by similar extreme air temperatures may pose little danger under some atmospheric conditions but could be lethal in other cases. The trends illustrated here should give ecologists and agronomists a more informed indication about which circumstances are most conducive to the occurrence of heat stress.

  19. A quantitative determination of air-water heat fluxes in Hermit Lake, New Hampshire under varying meteorological conditions, time of day, and time of year

    NASA Astrophysics Data System (ADS)

    Kyper, Nicholas D.

    An extensive heat flux study is performed at Hermit Lake, New Hampshire from May 26, 2010 till November 7, 2010 to determine the effects of the five individual heat fluxes on Hermit Lake and the surrounding amphibian community. Hermit Lake was chosen due to the relatively long meteorological observations record within the White Mountains of New Hampshire, a new lakeside meteorological station, and ongoing phenology studies of the surrounding eco-system. Utilizing meteorological data from the lakeside weather station and moored water temperature sensors, the incident (Qi), blackbody ( Qbnet ), latent (Qe), sensible (Q s), and net (Qn) heat fluxes are calculated. The incident heat flux is the dominate term in the net flux, accounting for 93% of the variance found in Qn and producing a heat gain of ˜ 19x108 J m-2 throughout the period of study. This large gain produces a net gain of heat in the lake until October 1, 2010, where gains by Qi are offset by the large combined losses of Qbnet , Qs, and Qe thereby producing a gradual decline of heat within the lake. The latent and blackbody heat fluxes produce the largest losses of heat in the net heat flux with a total losses of ˜ -8x108 J m-2 and ˜ -7x108 J m-2, respectively. The sensible heat flux is negligible, producing a total minimal loss of ˜ -1x108 J m-2. Overall the net heat produces a net gain of heat of 2x108 J m-2 throughout the study period. Frog calls indicative of breeding are recorded from May 26, 2010 until August 16, 2010. The spring peeper, American toad, and green frog each produced enough actively calling days to be compared to air temperature, surface water temperature, and wind speed data, as well as data from the five heat fluxes. Linear regression analysis reveals that certain water temperature thresholds affect the calling activities of the spring peeper and green frog, while higher wind speeds have a dramatic effect on the calling activities of both the green frog and American toad. All three

  20. The effectiveness of a heated air curtain

    NASA Astrophysics Data System (ADS)

    Frank, Daria

    2014-11-01

    Air curtains are high-velocity plane turbulent jets which are installed in the doorway in order to reduce the heat and the mass exchange between two environments. The air curtain effectiveness E is defined as the fraction of the exchange flow prevented by the air curtain compared to the open-door situation. In the present study, we investigate the effects of an opposing buoyancy force on the air curtain effectiveness. Such an opposing buoyancy force arises for example if a downwards blowing air curtain is heated. We conducted small-scale experiments using water as the working fluid with density differences created by salt and sugar. The effectiveness of a downwards blowing air curtain was measured for situations in which the initial density of the air curtain was less than both the indoor and the outdoor fluid density, which corresponds to the case of a heated air curtain. We compare the effectiveness of the heated air curtain to the case of the neutrally buoyant air curtain. It is found that the effectiveness starts to decrease if the air curtain is heated beyond a critical temperature. Furthermore, we propose a theoretical model to describe the dynamics of the buoyant air curtain. Numerical results obtained from solving this model corroborate our experimental findings.

  1. Possible Economies in Air-Conditioning by Accepting Temperature Swings.

    ERIC Educational Resources Information Center

    Loudon, A. G.; Petherbridge, P.

    Public building air conditioning systems, which use constant and varying heat and cooling loads, are compared and investigated. Experiments indicated that constant temperature controls based on outside air temperature alone were inefficient. Ventilating a building with outside air and the methods of doing so are cited as being the most economical…

  2. Computer Developments in Air Conditioning.

    ERIC Educational Resources Information Center

    Pancoast, Ferendino, Grafton and Skeels, Architects, Miami, FL.

    Proceedings of a conference on the present and future uses of computer techniques in the air conditioning field. The recommendation of this report is, for the most part, negative insofar as it applies to the use of computers for design by the small office. However, there should be an awareness of their usefulness in controlling the environmental…

  3. Alternative non-CFC mobile air conditioning

    SciTech Connect

    Mei, V.C.; Chen, F.C.; Kyle, D.M.

    1992-09-01

    Concern about the destruction of the global environment by chlorofluorocarbon (CFC) fluids has become an impetus in the search for alternative, non-CFC refrigerants and cooling methods for mobile air conditioning (MAC). While some alternative refrigerants have been identified, they are not considered a lasting solution because of their high global warming potential, which could result in their eventual phaseout. In view of this dilemma, environmentally acceptable alternative cooling methods have become important. This report, therefore, is aimed mainly at the study of alternative automotive cooling methodologies, although it briefly discusses the current status of alternative refrigerants. The alternative MACs can be divided into work-actuated and heat-actuated systems. Work-actuated systems include conventional MAC, reversed Brayton air cycle, rotary vane compressor air cycle, Stirling cycle, thermoelectric (TE) cooling, etc. Heat-actuated MACs include metal hydride cooling, adsorption cooling, ejector cooling, absorption cycle, etc. While we are better experienced with some work-actuated cycle systems, heat-actuated cycle systems have a high potential for energy savings with possible waste heat applications. In this study, each altemative cooling method is discussed for its advantages and its limits.

  4. The air-conditioning capacity of the human nose.

    PubMed

    Naftali, Sara; Rosenfeld, Moshe; Wolf, Michael; Elad, David

    2005-04-01

    The nose is the front line defender of the respiratory system. Unsteady simulations in three-dimensional models have been developed to study transport patterns in the human nose and its overall air-conditioning capacity. The results suggested that the healthy nose can efficiently provide about 90% of the heat and the water fluxes required to condition the ambient inspired air to near alveolar conditions in a variety of environmental conditions and independent of variations in internal structural components. The anatomical replica of the human nose showed the best performance and was able to provide 92% of the heating and 96% of the moisture needed to condition the inspired air to alveolar conditions. A detailed analysis explored the relative contribution of endonasal structural components to the air-conditioning process. During a moderate breathing effort, about 11% reduction in the efficacy of nasal air-conditioning capacity was observed.

  5. A solar air collector with integrated latent heat thermal storage

    NASA Astrophysics Data System (ADS)

    Charvat, Pavel; Ostry, Milan; Mauder, Tomas; Klimes, Lubomir

    2012-04-01

    Simulations of the behaviour of a solar air collector with integrated latent heat thermal storage were performed. The model of the collector was created with the use of coupling between TRNSYS 17 and MATLAB. Latent heat storage (Phase Change Material - PCM) was integrated with the solar absorber. The model of the latent heat storage absorber was created in MATLAB and the model of the solar air collector itself was created in TRNSYS with the use of TYPE 56. The model of the latent heat storage absorber allows specification of the PCM properties as well as other parameters. The simulated air collector was the front and back pass collector with the absorber in the middle of the air cavity. Two variants were considered for comparison; the light-weight absorber made of sheet metal and the heat-storage absorber with the PCM. Simulations were performed for the climatic conditions of the Czech Republic (using TMY weather data).

  6. Air Conditioning System using Rankine Cycle

    NASA Astrophysics Data System (ADS)

    Nagatomo, Shigemi; Yamaguchi, Hiroichi; Hattori, Hitoshi; Futamura, Motonori

    Natural gas is used as the energy source to cope with the recent situation of increasing demand for electricity especially in summer. In this paper, the performance of a Rankine cycle air conditioning system driven by natural gas was studied. The following results were obtained : (1) Basic equations of performance, refrigerant mass flow rate and expander volume were developed by using the values of heating efficiency, regeneration efficiency, expander efficiency and compressor efficiency. (2) R134a refrigerant has been considered to be suitable for the Rankine cycle air conditioning system, compared with other refrigerants. (3)A Rankine cycle cooling system using R134a refrigerant as a single working fluid was developed. System COP of 0.47 was attained at typical operating condition.

  7. High frequency-heated air turbojet

    NASA Technical Reports Server (NTRS)

    Miron, J. H. D.

    1986-01-01

    A description is given of a method to heat air coming from a turbojet compressor to a temperature necessary to produce required expansion without requiring fuel. This is done by high frequency heating, which heats the walls corresponding to the combustion chamber in existing jets, by mounting high frequency coils in them. The current transformer and high frequency generator to be used are discussed.

  8. Assessment of costs and benefits associated with resolution of Generic Safety Issue 143 -- Availability of heating, ventilation, and air conditioning and chilled water systems

    SciTech Connect

    Daling, P.M.; Marler, J.E.; Vo, T.V.; Phan, H.K.; Friley, J.R.

    1995-03-01

    The Pacific Northwest Laboratory, under contract to the US Nuclear Regulatory Commission, has conducted an assessment of the values (benefits) and impacts (costs) associated with potential resolutions to Generic Issue 143--``Availability of Heating, Ventilation, and Air Conditioning (HVAC) and Chilled Water Systems.`` The key objectives of the study were to (a) identify vulnerabilities related to failures of HVAC, chilled water, and room-cooling systems, (b) develop estimates of room heatup rates and safety-related equipment vulnerabilities following losses of HVAC/room-cooler systems, (c) develop estimates of the core damage frequencies and public risks associated with failures of these systems, (d) develop proposed resolution strategies to this generic issue, and (e) perform a value/impact analysis of the proposed resolutions. Detailed probabilistic risk assessments for four representative plants form the basis for the core damage frequency and public risk calculations. Internally initiated core damage sequences as well as external event were considered. Three proposed resolution strategies were developed for this safety issue, and it was determined that all three were not cost effective. Additional evaluations were performed to develop ``generic`` insights on potential design-related vulnerabilities and potential high-frequency (>10{sup {minus}4}/reactor-yr) accident sequences that involve failures of HVAC/room-cooling functions. It was concluded that, although high-frequency accident sequences may exist at some plants, these sequences are plant-specific in nature or have been resolved through hardware and/or operational changes. The plant-specific individual plant examinations appear to be an effective vehicle for identification and resolution of these plant-specific anomalies and hardware configurations.

  9. TEM study on the initial oxidation of Zircaloy-4 thin foil specimens heated in a low vacuum air condition at 280-300 °C

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Zhou, Bang-xin; Zhu, Wei; Wen, Bang; Yao, Mei-yi; Li, Qiang; Wu, Lu; Zhang, Jin-long; Fang, Zhong-qiang

    2017-04-01

    As one of the important structural materials in nuclear industry, the corrosion resistance of zirconium alloy limits their in-pile application. Therefore, it is necessary to investigate the corrosion mechanism of zirconium alloys. The zirconium-oxygen reaction at the O/M interface is one of the factors that affect the oxidation process. There are few reports in this regard. Ideally, the reaction process at the O/M interface has certain relevance with the initiation oxidation of zirconium, which provided a new way to investigate the reaction process by observing the initiation oxidation behaviours. To investigate the oxidation behaviours of zirconium alloy at the initial stage, in this paper, zircaloy-4 TEM thin foil specimens in 3 mm diameter were studied by TEM observation after heating in air condition with a vacuum of 3 Pa at 280 °C, 290 °C and 300 °C for 30 min exposures. The results show that, ZrO2 begin to nucleate at a size of 3-5 nm at a high Zr/O ratio of 10.4 and oxide layer formed while Zr/O was 4.6. As a result of stress caused by the P.B ratio of Zr, slip bands formed and a bcc structure sub-oxide b-ZrOx (a = 0.51 nm) grew up along with the slip bands was observed. At both sides of b-ZrOx, two hcp structure sub-oxides having the same a-axis lattice parameter and different c-axis lattice parameter were detected.

  10. Air-to-water heat pumps for the home

    SciTech Connect

    Bodzin, S.

    1997-07-01

    Heat pump water heaters may be on the rise again. Retrofitters have shied away from this form of water heating due to concerns about cost, moise, efficiency, and maintaenance. Recent advances have overcome some of these problems and are helping the technology find a niche in both hot and cold climates. The topics covered in this article include the following: how heat pump water heaters work; air source from where to where, including air conditioning, heat recovery ventilation, hybrid systems; nuisances; maintenance; costs; to install or not to install; performance: a trick to quantify. 2 figs.

  11. Application of solar energy to air conditioning systems

    NASA Technical Reports Server (NTRS)

    Nash, J. M.; Harstad, A. J.

    1976-01-01

    The results of a survey of solar energy system applications of air conditioning are summarized. Techniques discussed are both solar powered (absorption cycle and the heat engine/Rankine cycle) and solar related (heat pump). Brief descriptions of the physical implications of various air conditioning techniques, discussions of status, proposed technological improvements, methods of utilization and simulation models are presented, along with an extensive bibliography of related literature.

  12. Performance evaluation of a selected three-ton air-to-air heat pump in the heating mode

    NASA Astrophysics Data System (ADS)

    Domingorena, A. A.; Ball, S. J.

    1980-01-01

    An air-to-air split system residential heat pump of nominal under laboratory conditions. This was the second of a planned series of experiments to obtain a data base of system and component performance for heat pumps. The system was evaluated under both steady-state and frosting-defrosting conditions; sensitivity of the system performance to variations in the refrigerant charge was measured. From the steady-state tests, the heating capacity and coefficient of performance were computed, and evaluations were made of the performance parameters of the fan and fan motor units, the heat exchangers and refrigerant metering device, and the compressor. System heat losses were analyzed. The frosting-defrosting tests allowed the observation of system and component performance under dynamic conditions, and measurement of performance degradation under frosting conditions.

  13. Numerical simulation and nasal air-conditioning

    PubMed Central

    Keck, Tilman; Lindemann, Jörg

    2011-01-01

    Heating and humidification of the respiratory air are the main functions of the nasal airways in addition to cleansing and olfaction. Optimal nasal air conditioning is mandatory for an ideal pulmonary gas exchange in order to avoid desiccation and adhesion of the alveolar capillary bed. The complex three-dimensional anatomical structure of the nose makes it impossible to perform detailed in vivo studies on intranasal heating and humidification within the entire nasal airways applying various technical set-ups. The main problem of in vivo temperature and humidity measurements is a poor spatial and time resolution. Therefore, in vivo measurements are feasible only to a restricted extent, solely providing single temperature values as the complete nose is not entirely accessible. Therefore, data on the overall performance of the nose are only based on one single measurement within each nasal segment. In vivo measurements within the entire nose are not feasible. These serious technical issues concerning in vivo measurements led to a large number of numerical simulation projects in the last few years providing novel information about the complex functions of the nasal airways. In general, numerical simulations merely calculate predictions in a computational model, e.g. a realistic nose model, depending on the setting of the boundary conditions. Therefore, numerical simulations achieve only approximations of a possible real situation. The aim of this review is the synopsis of the technical expertise on the field of in vivo nasal air conditioning, the novel information of numerical simulations and the current state of knowledge on the influence of nasal and sinus surgery on nasal air conditioning. PMID:22073112

  14. Performance Evaluation of Photovoltaic Solar Air Conditioning

    NASA Astrophysics Data System (ADS)

    Snegirjovs, A.; Shipkovs, P.; Lebedeva, K.; Kashkarova, G.; Migla, L.; Gantenbein, P.; Omlin, L.

    2016-12-01

    Information on the electrical-driven solar air conditioning (SAC) is rather scanty. A considerable body of technical data mostly concerns large-scale photo-voltaic solar air conditioning (PV-SAC) systems. Reliable information about the energy output has arisen only in recent years; however, it is still not easily accessible, and sometimes its sources are closed. Despite these facts, solar energy researchers, observers and designers devote special attention to this type of SAC systems. In this study, performance evaluation is performed for the PV-SAC technology, in which low-power (up to 15 kWp of cooling power on average) systems are used. Such a system contains a PV electric-driven compression chiller with cold and heat sensible thermal storage capacities, and a rejected energy unit used for preheating domestic hot water (DHW). In a non-cooling season, it is possible to partly employ the system in the reverse mode for DHW production. In this mode, the ambient air serves as a heat source. Besides, free cooling is integrated in the PV-SAC concept.

  15. Air-sea heat fluxes associated to mesoscale eddies in the Southwestern Atlantic Ocean and their dependence on different regional conditions

    NASA Astrophysics Data System (ADS)

    Leyba, Inés M.; Saraceno, Martín; Solman, Silvina A.

    2016-11-01

    Heat fluxes between the ocean and the atmosphere largely represent the link between the two media. A possible mechanism of interaction is generated by mesoscale ocean eddies. In this work we evaluate if eddies in Southwestern Atlantic (SWA) Ocean may significantly affect flows between the ocean and the atmosphere. Atmospherics conditions associated with eddies were examined using data of sea surface temperature (SST), sensible (SHF) and latent heat flux (LHF) from NCEP-CFSR reanalysis. On average, we found that NCEP-CFSR reanalysis adequately reflects the variability expected from eddies in the SWA, considering the classical eddy-pumping theory: anticyclonic (cyclonic) eddies cause maximum positive (negative) anomalies with maximum mean anomalies of 0.5 °C (-0.5 °C) in SST, 6 W/m2 (-4 W/m2) in SHF and 12 W/m2 (-9 W/m2) in LHF. However, a regional dependence of heat fluxes associated to mesoscale cyclonic eddies was found: in the turbulent Brazil-Malvinas Confluence (BMC) region they are related with positive heat flux anomaly (ocean heat loss), while in the rest of the SWA they behave as expected (ocean heat gain). We argue that eddy-pumping do not cool enough the center of the cyclonic eddies in the BMC region simply because most of them trapped very warm waters when they originate in the subtropics. The article therefore concludes that in the SWA: (1) a robust link exists between the SST anomalies generated by eddies and the local anomalous heat flow between the ocean and the atmosphere; (2) in the BMC region cyclonic eddies are related with positive heat anomalies, contrary to what is expected.

  16. High Energy Efficiency Air Conditioning

    SciTech Connect

    Edward McCullough; Patrick Dhooge; Jonathan Nimitz

    2003-12-31

    This project determined the performance of a new high efficiency refrigerant, Ikon B, in a residential air conditioner designed to use R-22. The refrigerant R-22, used in residential and small commercial air conditioners, is being phased out of production in developed countries beginning this year because of concerns regarding its ozone depletion potential. Although a replacement refrigerant, R-410A, is available, it operates at much higher pressure than R-22 and requires new equipment. R-22 air conditioners will continue to be in use for many years to come. Air conditioning is a large part of expensive summer peak power use in many parts of the U.S. Previous testing and computer simulations of Ikon B indicated that it would have 20 - 25% higher coefficient of performance (COP, the amount of cooling obtained per energy used) than R-22 in an air-cooled air conditioner. In this project, a typical new R-22 residential air conditioner was obtained, installed in a large environmental chamber, instrumented, and run both with its original charge of R-22 and then with Ikon B. In the environmental chamber, controlled temperature and humidity could be maintained to obtain repeatable and comparable energy use results. Tests with Ikon B included runs with and without a power controller, and an extended run for several months with subsequent analyses to check compatibility of Ikon B with the air conditioner materials and lubricant. Baseline energy use of the air conditioner with its original R-22 charge was measured at 90 deg F and 100 deg F. After changeover to Ikon B and a larger expansion orifice, energy use was measured at 90 deg F and 100 deg F. Ikon B proved to have about 19% higher COP at 90 deg F and about 26% higher COP at 100 deg F versus R-22. Ikon B had about 20% lower cooling capacity at 90 deg F and about 17% lower cooling capacity at 100 deg F versus R-22 in this system. All results over multiple runs were within 1% relative standard deviation (RSD). All of these

  17. Alternative Air Conditioning Technologies: Underfloor AirDistribution (UFAD)

    SciTech Connect

    Webster, Tom

    2004-06-01

    Recent trends in today's office environment make it increasingly more difficult for conventional centralized HVAC systems to satisfy the environmental preferences of individual officer workers using the standardized approach of providing a single uniform thermal and ventilation environment. Since its original introduction in West Germany during the 1950s, the open plan office containing modular workstation furniture and partitions is now the norm. Thermostatically controlled zones in open plan offices typically encompass relatively large numbers of workstations in which a diverse work population having a wide range of preferred temperatures must be accommodated. Modern office buildings are also being impacted by a large influx of heat-generating equipment (computers, printers, etc.) whose loads may vary considerably from workstation to workstation. Offices are often reconfigured during the building's lifetime to respond to changing tenant needs, affecting the distribution of within-space loads and the ventilation pathways among and over office partitions. Compounding this problem, there has been a growing awareness of the importance of the comfort, health, and productivity of individual office workers, giving rise to an increased demand among employers and employees for a high-quality work environment. During recent years an increasing amount of attention has been paid to air distribution systems that individually condition the immediate environments of office workers within their workstations to address the issues outlined above. As with task/ambient lighting systems, the controls for the ''task'' components of these systems are partially or entirely decentralized and under the control of the occupants. Typically, the occupant has control over the speed and direction, and in some cases the temperature, of the incoming air supply. Variously called ''task/ambient conditioning,'' ''localized thermal distribution,'' and ''personalized air conditioning'' systems, these

  18. Local Air Quality Conditions and Forecasts

    MedlinePlus

    Local Air Quality Conditions Zip Code: State : My Current Location Map Center Forecast AQI Current AQI Current Ozone Current PM ... Ozone Loop PM Loop AQI: Good (0 - 50) Air quality is considered satisfactory, and air pollution poses little ...

  19. Forced convection heat transfer to air/water vapor mixtures

    NASA Technical Reports Server (NTRS)

    Richards, D. R.; Florschuetz, L. W.

    1984-01-01

    Heat transfer coefficients were measured using both dry and humid air in the same forced convection cooling scheme and were compared using appropriate nondimensional parameters (Nusselt, Prandtl and Reynolds numbers). A forced convection scheme with a complex flow field, two dimensional arrays of circular jets with crossflow, was utilized with humidity ratios (mass ratio of water vapor to air) up to 0.23. The dynamic viscosity, thermal conductivity and specific heat of air, steam and air/steam mixtures are examined. Methods for determining gaseous mixture properties from the properties of their pure components are reviewed as well as methods for determining these properties with good confidence. The need for more experimentally determined property data for humid air is discussed. It is concluded that dimensionless forms of forced convection heat transfer data and empirical correlations based on measurements with dry air may be applied to conditions involving humid air with the same confidence as for the dry air case itself, provided that the thermophysical properties of the humid air mixtures are known with the same confidence as their dry air counterparts.

  20. Packaged residential active-solar space-conditioning system. Appendix B. CSI roof integrated air heating and domestic hot water system. Final subcontract report

    SciTech Connect

    Not Available

    1986-05-01

    This report documents the design and design development process by Contemporary Systems Inc. for a roof-integrated, air-based modular solar collector that uses conventional building practices. Contemporary Systems Inc. (CSI) tested the system their engineers designed in two houses in Walpole, New Hampshire for a twelve-month period. The system was easily installed and performed successfully throughout the test period, displaying winter energy efficiency collection ratios in excess of 30:1 on an integrated monthly basis. CSI concludes that their system can result in an in-place cost of about $100/MMBtu or less than 50% of the cost of the most current solar space and water heating system.

  1. 5. PHOTOGRAPHIC COPY OF ORIGINAL DRAWINGS, ELECTRIC AIR AND HEATING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. PHOTOGRAPHIC COPY OF ORIGINAL DRAWINGS, ELECTRIC AIR AND HEATING UNIT, PLAN AND ELEVATION - Wyoming Air National Guard Base, Electric, Air & Heating Plant, Cheyenne Airport, Cheyenne, Laramie County, WY

  2. 10 CFR 431.92 - Definitions concerning commercial air conditioners and heat pumps.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... total heating output of a central air-conditioning heat pump during its normal annual usage period for... heat pump (or its produced heating effect, depending on the mode of operation) to its net work input, when both the cooling (or heating) effect and the net work input are expressed in identical units...

  3. Heating, ventilation and air conditioning system optimization: a study of the effect of climate, building design, system selection and control strategy on the energy consumption of a typical office building in London and Athens

    NASA Astrophysics Data System (ADS)

    Spasis, Georgios

    The increasing demand for air conditioning in commercial buildings imposes a serious threat to Europe's CO2 reduction targets. Architects and engineers are therefore in a key position to help reduce the impact of buildings on the environment by taking appropriate decisions concerning the design of the building and the associated heating, ventilation and air conditioning (HVAC) system. The thesis studies the effect of a number of building and HVAC system related design factors on the energy performance of a notional air-conditioned office building employing either a variable air volume (VAV) system with terminal re-heaters, or a four-pipe fan coil unit (FCU) system with fresh air supply from a central plant, using mainly a dynamic simulation tool and the response surface methodology. The evaluation of the energy performance of the HVAC systems is for two types of climate, using typical weather data for London (UK) and Athens (Greece). It has been found that the design variables associated with the solar radiation through the transparent building elements and the internal heat gains should be the main concern of the building designer. On the other hand, the HVAC system engineer should give emphasis to the parameters associated with the plant performance and operation, as well as the temperature control set-points. It has been shown that it is possible to reduce the carbon emissions of the base case scenario by up to 88% depending on the HVAC system and the climate for which it is simulated. The carbon savings, however, are reduced by up to 22% where humidification is provided. This reduction differs depending on the HVAC system and the climatic conditions. The VAV system is more energy efficient than the FCU system, mainly due to the exploitation of the free cooling capacity of the outdoor air. The difference in carbon emissions between the two systems drops when both of them are simulated for the Athens as opposed to the London typical weather conditions. It has

  4. Mathematical modeling of heat exchange between mine air and rock mass during fire

    SciTech Connect

    A.E. Krasnoshtein; B.P. Kazakov; A.V. Shalimov

    2006-05-15

    Solution of problems on heat exchange between ventilating air and rock mass and on gas admixture propagation in mine workings serve as a base for considering changes in heat-gas-air state at a mine after inflammation. The presented mathematical relations allow calculation of a varied velocity and movement direction of air flows, their temperatures and smoking conditions during fire.

  5. Concentrated Solar Air Conditioning for Buildings Project

    NASA Technical Reports Server (NTRS)

    McLaughlin, Rusty

    2010-01-01

    This slide presentation reviews project to implement the use of solar power to provide air conditioning for NASA buildings. Included is an overall conceptual schematic, and an diagram of the plumbing and instrumentation for the project. The use of solar power to power air conditioning in buildings, particularly in the Southwest, could save a significant amount of money. DOD studies have concluded that air conditioning accounts for 30-60% of total energy expenditures.

  6. Measurement of Vehicle Air Conditioning Pull-Down Period

    SciTech Connect

    Thomas, John F.; Huff, Shean P.; Moore, Larry G.; West, Brian H.

    2016-08-01

    Air conditioner usage was characterized for high heat-load summer conditions during short driving trips using a 2009 Ford Explorer and a 2009 Toyota Corolla. Vehicles were parked in the sun with windows closed to allow the cabin to become hot. Experiments were conducted by entering the instrumented vehicles in this heated condition and driving on-road with the windows up and the air conditioning set to maximum cooling, maximum fan speed and the air flow setting to recirculate cabin air rather than pull in outside humid air. The main purpose was to determine the length of time the air conditioner system would remain at or very near maximum cooling power under these severe-duty conditions. Because of the variable and somewhat uncontrolled nature of the experiments, they serve only to show that for short vehicle trips, air conditioning can remain near or at full cooling capacity for 10-minutes or significantly longer and the cabin may be uncomfortably warm during much of this time.

  7. No-reheat air-conditioning

    NASA Technical Reports Server (NTRS)

    Obler, H. D.

    1980-01-01

    Air conditioning system, for environmentally controlled areas containing sensitive equipment, regulates temperature and humidity without wasteful and costly reheating. System blends outside air with return air as dictated by various sensors to ensure required humidity in cooled spaces (such as computer room).

  8. Study of long term options for electric vehicle air conditioning

    SciTech Connect

    Dieckmann, J.; Mallory, D.

    1991-07-01

    There are strong incentives in terms of national energy and environmental policy to encourage the commercialization of electrically powered vehicles in the U.S. Among these incentives are reduced petroleum consumption, improved electric generation capacity utilization, reduced IC engine emissions, and, depending on the primary fuel used for electric power generation, reduced emissions of carbon dioxide. A basic requirement for successfully commercializing any motor vehicle in the US is provision of adequate passenger comfort heating and air conditioning (cooling). Although air conditioning is generally sold as optional equipment, in excess of 80% of the automobiles and small trucks sold in the US have air conditioning systems. In current, pre-commercial electric vehicles, comfort heating is provided by a liquid fuel fired heater that heats water which is circulated through the standard heater core in the conventional interior air handling unit. Air conditioning is provided by electric motor driven compressors, installed in a system having, perhaps, an {open_quotes}upsized{close_quotes} condenser and a standard evaporator (front and rear evaporators in some instances) installed in the conventional interior air handler. Although this approach is adequate in the near term for initial commercialization efforts, a number of shortcomings of this arrangement, as well as longer range concerns need to be addressed. In this project, the long term alternatives for cooling and heating electric vehicles effectively, efficiently (with minimum range penalties), and without adverse environmental impacts have been examined. Identification of options that can provide both heating and cooling is important, in view of the disadvantages of carrying separate heating and cooling systems in the vehicle.

  9. Study of long term options for electric vehicle air conditioning

    SciTech Connect

    Dieckmann, J.; Mallory, D. , Inc., Cambridge, MA )

    1991-07-01

    There are strong incentives in terms of national energy and environmental policy to encourage the commercialization of electrically powered vehicles in the U.S. Among these incentives are reduced petroleum consumption, improved electric generation capacity utilization, reduced IC engine emissions, and, depending on the primary fuel used for electric power generation, reduced emissions of carbon dioxide. A basic requirement for successfully commercializing any motor vehicle in the US is provision of adequate passenger comfort heating and air conditioning (cooling). Although air conditioning is generally sold as optional equipment, in excess of 80% of the automobiles and small trucks sold in the US have air conditioning systems. In current, pre-commercial electric vehicles, comfort heating is provided by a liquid fuel fired heater that heats water which is circulated through the standard heater core in the conventional interior air handling unit. Air conditioning is provided by electric motor driven compressors, installed in a system having, perhaps, an [open quotes]upsized[close quotes] condenser and a standard evaporator (front and rear evaporators in some instances) installed in the conventional interior air handler. Although this approach is adequate in the near term for initial commercialization efforts, a number of shortcomings of this arrangement, as well as longer range concerns need to be addressed. In this project, the long term alternatives for cooling and heating electric vehicles effectively, efficiently (with minimum range penalties), and without adverse environmental impacts have been examined. Identification of options that can provide both heating and cooling is important, in view of the disadvantages of carrying separate heating and cooling systems in the vehicle.

  10. Air-to-air heat exchangers and the indoor environment

    SciTech Connect

    Vine, E.

    1987-02-01

    Air-to-air heat exchangers were installed in 366 energy-efficient homes as part of a demonstration program in the United States. The median incremental cost of AAHX was $1268 ($7.42/mS), and it was less expensive (per square meter) to install this equipment in larger houses than in smaller houses. While most occupants did not notice problems with their AAHX, some households did experience problems related to noise, unpleasant drafts, condensation around the AAHX, and core freezing. Occupants of energy-efficient homes were found to have less problems with their indoor environment (especially mildew/mold and condensation) than a group of control homes.

  11. Steady-state computer design model for air-to-air heat pumps

    NASA Astrophysics Data System (ADS)

    Fischer, S. K.; Rice, C. K.

    1981-12-01

    A FORTRAN-4 computer program to predict the steady-state performance of conventional, vapor compression, electrically-driven, air-to-air heat pumps in both heating and cooling modes is described. This model is intended to serve as an analytical design tool for use by heat pump manufacturers, consulting engineers, research institutions, and universities in studies directed toward the improvement of heat pump performance. The heat pump design model allows the user to specify: system operating conditions, compressor characteristics, refrigerant flow control devices, fin-and-tube heat exchanger parameters, fan and indoor duct characteristics, and any of ten refrigerants. The model will compute: system capacity and COP (or EER), compressor and fan motor power consumptions, coil outlet air dry- and wet-bulb temperatures, air- and refrigerant-side pressure drops, a summary of the refrigerant-side states throughout the cycle, and overall compressor efficiencies and heat exchanger effectiveness. Documentation of how to use and/or modify the model is provided.

  12. Air Conditioning. Performance Objectives. Intermediate Course.

    ERIC Educational Resources Information Center

    Long, William

    Several intermediate performance objectives and corresponding criterion measures are listed for each of seven terminal objectives for an intermediate air conditioning course. The titles of the seven terminal objectives are Refrigeration Cycle, Job Requirement Skills, Air Conditioning, Trouble Shooting, Performance Test, Shop Management, and S.I.E.…

  13. Fluid flow and heat transfer in an air-to-water double-pipe heat exchanger

    NASA Astrophysics Data System (ADS)

    Sheikholeslami, M.; Gorji-Bandpy, M.; Ganji, D. D.

    2015-11-01

    This paper reports experimental and numerical investigations on flow and heat transfer in an air-to-water double-pipe heat exchanger. The working fluids are air and water. To achieve fully developed conditions, the heat exchanger was built with additional lengths before and after the test section. The inner and outer tube was made from copper and Plexiglas, respectively. The experiments are conducted in the range of air flow Reynolds number for various cases with different water flow rate and water inlet temperature. Correlations for the Nusselt number and friction factor are presented according to experimental data. Also the commercial code ANSYS 15 is used for numerical simulation. Results show that the Nusselt number is an increasing function of Reynolds number and Prandtl number which are calculated at bulk temperature.

  14. Modelling heat and mass transfer in a membrane-based air-to-air enthalpy exchanger

    NASA Astrophysics Data System (ADS)

    Dugaria, S.; Moro, L.; Del, D., Col

    2015-11-01

    The diffusion of total energy recovery systems could lead to a significant reduction in the energy demand for building air-conditioning. With these devices, sensible heat and humidity can be recovered in winter from the exhaust airstream, while, in summer, the incoming air stream can be cooled and dehumidified by transferring the excess heat and moisture to the exhaust air stream. Membrane based enthalpy exchangers are composed by different channels separated by semi-permeable membranes. The membrane allows moisture transfer under vapour pressure difference, or water concentration difference, between the two sides and, at the same time, it is ideally impermeable to air and other contaminants present in exhaust air. Heat transfer between the airstreams occurs through the membrane due to the temperature gradient. The aim of this work is to develop a detailed model of the coupled heat and mass transfer mechanisms through the membrane between the two airstreams. After a review of the most relevant models published in the scientific literature, the governing equations are presented and some simplifying assumptions are analysed and discussed. As a result, a steady-state, two-dimensional finite difference numerical model is setup. The developed model is able to predict temperature and humidity evolution inside the channels. Sensible and latent heat transfer rate, as well as moisture transfer rate, are determined. A sensitive analysis is conducted in order to determine the more influential parameters on the thermal and vapour transfer.

  15. Onset of freezing in residential air-to-air heat exchangers

    NASA Astrophysics Data System (ADS)

    Fisk, W. J.; Chant, R.; Archer, K.; Hekmat, D.; Offermann, F.; Pedersen, B.

    1984-11-01

    Mechanical ventilation of residences, with heat recovery in air-to-air heat exchangers, is an increasingly common practice. When this technique of ventilation is used in cold climates, however, freezing can occur in the air-to-air heat exchanger and substantially reduce its performance. A laboratory investigation was conducted to determine the indoor and outdoor environmental conditions that lead to freezing. In a cross flow, counterflow, and enthalpy-type cross flow heat exchanger, respectively, freezing was observed when the inlet temperature of the cold airstream was below -7 to -3 C, approximately -6 C, and -8 to 12 C, for a typical range of indoor humidities. These results are in fair agreement with the theoretical predictions presented and with data from two field studies conducted with similar heat exchangers. Data from a previous laboratory study of a counterflow heat exchanger and tabulated data supplied by ASHRAE, however, indicate that freezing is initiated at significantly lower cold airstream temperatures, particularly when the warm airstream is humid.

  16. Liquid over-feeding air conditioning system and method

    DOEpatents

    Mei, Viung C.; Chen, Fang C.

    1993-01-01

    A refrigeration air conditioning system utilizing a liquid over-feeding operation is described. A liquid refrigerant accumulator-heat exchanger is placed in the system to provide a heat exchange relationship between hot liquid refrigerant discharged from condenser and a relatively cool mixture of liquid and vaporous refrigerant discharged from the evaporator. This heat exchange relationship substantially sub-cools the hot liquid refrigerant which undergoes little or no evaporation across the expansion device and provides a liquid over-feeding operation through the evaporator for effectively using 100 percent of evaporator for cooling purposes and for providing the aforementioned mixture of liquid and vaporous refrigerant.

  17. Liquid over-feeding air conditioning system and method

    DOEpatents

    Mei, V.C.; Chen, F.C.

    1993-09-21

    A refrigeration air conditioning system utilizing a liquid over-feeding operation is described. A liquid refrigerant accumulator-heat exchanger is placed in the system to provide a heat exchange relationship between hot liquid refrigerant discharged from condenser and a relatively cool mixture of liquid and vaporous refrigerant discharged from the evaporator. This heat exchange relationship substantially sub-cools the hot liquid refrigerant which undergoes little or no evaporation across the expansion device and provides a liquid over-feeding operation through the evaporator for effectively using 100 percent of evaporator for cooling purposes and for providing the aforementioned mixture of liquid and vaporous refrigerant. 1 figure.

  18. Air Heating Associated with Transient Luminous Events

    NASA Astrophysics Data System (ADS)

    Riousset, J. A.; Pasko, V. P.; Bourdon, A.

    2009-12-01

    The understanding of ambient gas heating processes initiated by needle-shaped filaments of ionization, called streamers, embedded in originally cold air (near room temperature) represents a long standing problem, which is of interest for studies of long laboratory sparks and natural lightning discharges [e.g., Gallimberti et al., C. R. Physique, 3, 1335, 2002]. The observed phenomenology of a subset of the recently observed transient luminous events in the middle atmosphere, which originate from thundercloud tops [e.g, Wescott et al., JGR, 106, 21549, 2001; Pasko et al., Nature, 416, 152, 2002; Su et al., Nature, 423, 974, 2003; Krehbiel et al., Nature Geoscience, 1, 233, 2008; Cummer et al., Nature Geoscience, 2, 617, 2009, Riousset et al., JGR, 10.1029/2009JA014286, 2009, in press], indicate that these events may be related to conventional lightning leader processes and therefore are associated with significant heating of the air in the regions of atmosphere through which they propagate [Pasko and George, JGR, 107, 1458, 2002]. Many of the small scale features observed in sprites at higher altitudes [e.g., Stenbaek-Nielsen et al., GRL, 104, L11105, 2007, and references therein] can be interpreted in terms of corona streamers, which, after appropriate scaling with air density, are fully analogous to those, which initiate spark discharges in relatively short (several cm) gaps at near ground pressure [Liu et al., JGR, 114, A00E03, 2009, and references therein] and which constitute building blocks of streamer zones of conventional lightning leaders in long gaps [Gallimberti et al., 2002]. The recent reports of infrasound bursts originating from 60-80 km altitudes in sprites, with durations consistent with the optical widths of the sprites [e.g., Farges, in Lightning: Principles, Instruments and Applications, p. 417, Betz et al., (eds.), Springer, 2009], provide an additional motivation for studies of the heating of the ambient air and associated chemical effects

  19. Study and development of an air conditioning system operating on a magnetic heat pump cycle (design and testing of flow directors)

    NASA Technical Reports Server (NTRS)

    Wang, Pao-Lien

    1992-01-01

    This report describes the fabrication, design of flow director, fluid flow direction analysis and testing of flow director of a magnetic heat pump. The objectives of the project are: (1) to fabricate a demonstration magnetic heat pump prototype with flow directors installed; and (2) analysis and testing of flow director and to make sure working fluid loops flow through correct directions with minor mixing. The prototype was fabricated and tested at the Development Testing Laboratory of Kennedy Space Center. The magnetic heat pump uses rear earth metal plates rotate in and out of a magnetic field in a clear plastic housing with water flowing through the rotor plates to provide temperature lift. Obtaining the proper water flow direction has been a problem. Flow directors were installed as flow barriers between separating point of two parallel loops. Function of flow directors were proven to be excellent both analytically and experimentally.

  20. 10 CFR 431.92 - Definitions concerning commercial air conditioners and heat pumps.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... water, or gas, but may not include reverse cycle refrigeration as a heating means. Single package... measurement. Commercial package air-conditioning and heating equipment means air-cooled, water-cooled, evaporatively-cooled, or water source (not including ground water source) electrically operated, unitary...

  1. The solar assisted air-source heat pump system, part 1

    NASA Astrophysics Data System (ADS)

    Hino, T.

    1980-11-01

    A new heat pump heating and air conditioning system was proposed and tested. It features the effective utilization of climatic conditions as its heat sources and sinks, to improve the thermodynamic efficiencies. Reduced electricity consumption, utility load leveling and the least environmental pollutions are expected. The outdoor unit of this heat pump is composed of aluminum panels that are painted black to enhance the radiative heat exchange and fixed almost perpendicularly to improve the natural convective heat transfer with air. The working fluid is halocarbon and commonly used in the heat transfer circuits and the refrigeration cycle. In the heating cycle, the liquid refrigerant evaporates in the passages of the panel. When insolation to the panels is sufficient to meet the heat pump evaporator capacity, the panel temperature will be almost the same as the outdoor air temperature. Thus little convective heat loss to the surrounding air occurs. As the insolation decreases the panel temperature falls several degrees below the outdoor air to absorb heat out of the air until the equilibrium condition is reached.

  2. Project BEST Vocational English as a Second Language Curriculum: Communication Skills in Training and Employment in Heating, Refrigeration, and Air Conditioning.

    ERIC Educational Resources Information Center

    Herman, Barbara; Pankratz, David

    Information is provided on the Vocational English as a Second Language (VESL) component of Oakton Community College's Project BEST (Building Energy Systems Technology), a bilingual vocational training program designed to teach limited English proficient students of Polish or Hispanic origin the basics of heating, refrigeration, and air…

  3. The effects of air leaks on solar air heating systems

    NASA Technical Reports Server (NTRS)

    Elkin, R.; Cash, M.

    1979-01-01

    This paper presents the results of an investigation to determine the effects of leakages in collector and duct work on the system performance of a typical single-family residence solar air heating system. Positive (leakage out) and negative (leakage in) pressure systems were examined. Collector and duct leakage rates were varied from 10 to 30 percent of the system flow rate. Within the range of leakage rates investigated, solar contribution to heated space and domestic hot water loads was found to be reduced up to 30 percent from the no-leak system contribution with duct leakage equally divided between supply and return duct; with supply duct leakage greater than return leakage a reduction of up to 35 percent was noted. The negative pressure system exhibited a reduction in solar contribution somewhat larger than the positive pressure system for the same leakage rates.

  4. Estimation of low-potential heat recuperation efficiency of smoke fumes in a condensation heat utilizer under various operation conditions of a boiler and a heating system

    NASA Astrophysics Data System (ADS)

    Ionkin, I. L.; Ragutkin, A. V.; Luning, B.; Zaichenko, M. N.

    2016-06-01

    For enhancement of the natural gas utilization efficiency in boilers, condensation heat utilizers of low-potential heat, which are constructed based on a contact heat exchanger, can be applied. A schematic of the contact heat exchanger with a humidifier for preheating and humidifying of air supplied in the boiler for combustion is given. Additional low-potential heat in this scheme is utilized for heating of the return delivery water supplied from a heating system. Preheating and humidifying of air supplied for combustion make it possible to use the condensation utilizer for heating of a heat-transfer agent to temperature exceeding the dewpoint temperature of water vapors contained in combustion products. The decision to mount the condensation heat utilizer on the boiler was taken based on the preliminary estimation of the additionally obtained heat. The operation efficiency of the condensation heat utilizer is determined by its structure and operation conditions of the boiler and the heating system. The software was developed for the thermal design of the condensation heat utilizer equipped by the humidifier. Computation investigations of its operation are carried out as a function of various operation parameters of the boiler and the heating system (temperature of the return delivery water and smoke fumes, air excess, air temperature at the inlet and outlet of the condensation heat utilizer, heating and humidifying of air in the humidifier, and portion of the circulating water). The heat recuperation efficiency is estimated for various operation conditions of the boiler and the condensation heat utilizer. Recommendations on the most effective application of the condensation heat utilizer are developed.

  5. Solar assisted heat pump on air collectors: A simulation tool

    SciTech Connect

    Karagiorgas, Michalis; Galatis, Kostas; Tsagouri, Manolis; Tsoutsos, Theocharis; Botzios-Valaskakis, Aristotelis

    2010-01-15

    The heating system of the bioclimatic building of the Greek National Centre for Renewable Energy Sources (CRES) comprises two heating plants: the first one includes an air source heat pump, Solar Air Collectors (SACs) and a heat distribution system (comprising a fan coil unit network); the second one is, mainly, a geothermal heat pump unit to cover the ground floor thermal needs. The SAC configuration as well as the fraction of the building heating load covered by the heating plant are assessed in two operation modes; the direct (hot air from the collectors is supplied directly to the heated space) and the indirect mode (warm air from the SAC or its mixture with ambient air is not supplied directly to the heated space but indirectly into the evaporator of the air source heat pump). The technique of the indirect mode of heating aims at maximizing the efficiency of the SAC, saving electrical power consumed by the compressor of the heat pump, and therefore, at optimizing the coefficient of performance (COP) of the heat pump due to the increased intake of ambient thermal energy by means of the SAC. Results are given for three research objectives: assessment of the heat pump efficiency whether in direct or indirect heating mode; Assessment of the overall heating plant efficiency on a daily or hourly basis; Assessment of the credibility of the suggested simulation model TSAGAIR by comparing its results with the TRNSYS ones. (author)

  6. Reduced bleed air extraction for DC-10 cabin air conditioning

    NASA Technical Reports Server (NTRS)

    Newman, W. H.; Viele, M. R.; Hrach, F. J.

    1980-01-01

    It is noted that a significant fuel savings can be achieved by reducing bleed air used for cabin air conditioning. Air in the cabin can be recirculated to maintain comfortable ventilation rates but the quality of the air tends to decrease due to entrainment of smoke and odors. Attention is given to a development system designed and fabricated under the NASA Engine Component Improvement Program to define the recirculation limit for the DC-10. It is shown that with the system, a wide range of bleed air reductions and recirculation rates is possible. A goal of 0.8% fuel savings has been achieved which results from a 50% reduction in bleed extraction from the engine.

  7. Register Closing Effects on Forced Air Heating System Performance

    SciTech Connect

    Walker, Iain S.

    2003-11-01

    Closing registers in forced air heating systems and leaving some rooms in a house unconditioned has been suggested as a method of quickly saving energy for California consumers. This study combined laboratory measurements of the changes in duct leakage as registers are closed together with modeling techniques to estimate the changes in energy use attributed to closing registers. The results of this study showed that register closing led to increased energy use for a typical California house over a wide combination of climate, duct leakage and number of closed registers. The reduction in building thermal loads due to conditioning only a part of the house was offset by increased duct system losses; mostly due to increased duct leakage. Therefore, the register closing technique is not recommended as a viable energy saving strategy for California houses with ducts located outside conditioned space. The energy penalty associated with the register closing technique was found to be minimized if registers furthest from the air handler are closed first because this tends to only affect the pressures and air leakage for the closed off branch. Closing registers nearer the air handler tends to increase the pressures and air leakage for the whole system. Closing too many registers (more than 60%) is not recommended because the added flow resistance severely restricts the air flow though the system leading to safety concerns. For example, furnaces may operate on the high-limit switch and cooling systems may suffer from frozen coils.

  8. The heat transfer of cooling fins on moving air

    NASA Technical Reports Server (NTRS)

    Doetsch, Hans

    1935-01-01

    The present report is a comparison of the experimentally defined temperature and heat output of cooling fins in the air stream with theory. The agreement is close on the basis of a mean coefficient of heat transfer with respect to the total surface. A relationship is established between the mean coefficient of heat transfer, the dimensions of the fin arrangement, and the air velocity.

  9. 21 CFR 211.46 - Ventilation, air filtration, air heating and cooling.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 4 2012-04-01 2012-04-01 false Ventilation, air filtration, air heating and cooling. 211.46 Section 211.46 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Buildings and Facilities § 211.46 Ventilation, air filtration, air heating and cooling. (a)...

  10. 21 CFR 211.46 - Ventilation, air filtration, air heating and cooling.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 4 2013-04-01 2013-04-01 false Ventilation, air filtration, air heating and cooling. 211.46 Section 211.46 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Buildings and Facilities § 211.46 Ventilation, air filtration, air heating and cooling. (a)...

  11. 21 CFR 211.46 - Ventilation, air filtration, air heating and cooling.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 4 2014-04-01 2014-04-01 false Ventilation, air filtration, air heating and cooling. 211.46 Section 211.46 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Buildings and Facilities § 211.46 Ventilation, air filtration, air heating and cooling. (a)...

  12. 21 CFR 211.46 - Ventilation, air filtration, air heating and cooling.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 4 2011-04-01 2011-04-01 false Ventilation, air filtration, air heating and cooling. 211.46 Section 211.46 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Buildings and Facilities § 211.46 Ventilation, air filtration, air heating and cooling. (a)...

  13. Airshuffler implementation at freezer air outlets for heat transfer enhancement

    NASA Astrophysics Data System (ADS)

    Ćerezci, Gökhan; Darka, Murat; Şenman, Ozan

    2016-06-01

    A study which is composed of computational simulation and experimental validation has been conducted for implementation of small, vane type geometries at freezer air outlets, similar to microvortex generators used in aircraft wings, in order to improve the heat transfer efficiency inside the freezer compartment by decreasing airside thermal resistance and improving the air distribution. Both simulation and experimental validation were performed in a loaded condition which was prepared according to `Household refrigerating appliances - characteristics and test methods - IEC 62552 [1]. Solutions for the incompressible K-epsilon (k-ɛ) turbulence model obtained for Bosch KDN 49 refrigerator freezer both with and without airshufflers at air outlets, which are similar to vane type microvortex generators with different geometric dimensions. The airshuffler dimensions were chosen with design of experiment (DOE) principles for finding the optimum geometry. The best combinations were tested according to cooling rate inside freezer compartment. Results were evaluated for feasibility of implementing of vortex generating surfaces (airshufflers) for cooling appliances.

  14. Magnetic Refrigeration Technology for High Efficiency Air Conditioning

    SciTech Connect

    Boeder, A; Zimm, C

    2006-09-30

    Magnetic refrigeration was investigated as an efficient, environmentally friendly, flexible alternative to conventional residential vapor compression central air conditioning systems. Finite element analysis (FEA) models of advanced geometry active magnetic regenerator (AMR) beds were developed to minimize bed size and thus magnet mass by optimizing geometry for fluid flow and heat transfer and other losses. Conventional and magnetocaloric material (MCM) regenerator fabrication and assembly techniques were developed and advanced geometry passive regenerators were built and tested. A subscale engineering prototype (SEP) magnetic air conditioner was designed, constructed and tested. A model of the AMR cycle, combined with knowledge from passive regenerator experiments and FEA results, was used to design the regenerator beds. A 1.5 Tesla permanent magnet assembly was designed using FEA and the bed structure and plenum design was extensively optimized using FEA. The SEP is a flexible magnetic refrigeration platform, with individually instrumented beds and high flow rate and high frequency capability, although the current advanced regenerator geometry beds do not meet performance expectations, probably due to manufacturing and assembly tolerances. A model of the AMR cycle was used to optimize the design of a 3 ton capacity magnetic air conditioner, and the system design was iterated to minimize external parasitic losses such as heat exchanger pressure drop and fan power. The manufacturing cost for the entire air conditioning system was estimated, and while the estimated SEER efficiency is high, the magnetic air conditioning system is not cost competitive as currently configured. The 3 ton study results indicate that there are other applications where magnetic refrigeration is anticipated to have cost advantages over conventional systems, especially applications where magnetic refrigeration, through the use of its aqueous heat transfer fluid, could eliminate intermediate

  15. Heat recovery and air preheating apparatus for textile dryer ovens

    SciTech Connect

    Hebrank, W.H.

    1982-07-06

    Heat recovery and replacement air preheating apparatus for use in textile heat treatment machinery is disclosed as including a pair of thermal recovery and storage units wherein each storage unit contains a plurality of thermal mass disks which operate as heat sponges to pick up heat from exhausts as it leaves the dryer and subsequently to put that heat into entering replacement air whereby the cost in elevating the replacement air is greatly reduced. A control valve connected between the two thermal storage units cycles the reverse exhaust and replacement air flows alternately through the thermal storage units in a manner that a substantial amount of the exhaust heat does not reach the ambient environment and the alternating replacement air flow maintains the thermal heat recovery and storage units and associated apparatus cool and clean of lint and the like residuals.

  16. ALTERNATIVE TECHNOLOGIES FOR REFRIGERATION AND AIR-CONDITIONING APPLICATIONS

    EPA Science Inventory

    The report gives results of an assessment of refrigeration technologies that are alternatives to vapor compression refrigeration for use in five application categories: domestic air conditioning, commercial air conditioning, mobile air conditioning, domestic refrigeration, and co...

  17. Do-It-Yourself Additives Recharge Auto Air Conditioning

    NASA Technical Reports Server (NTRS)

    2010-01-01

    In planning for a return mission to the Moon, NASA aimed to improve the thermal control systems that keep astronauts comfortable and cool while inside a spacecraft. Goddard Space Flight Center awarded a Small Business Innovation Research (SBIR) contract to Mainstream Engineering Corporation, of Rockledge, Florida, to develop a chemical/mechanical heat pump. IDQ Inc., of Garland, Texas, exclusively licensed the technology and incorporates it into its line of Arctic Freeze products for automotive air conditioning applications. While working on the design, Mainstream Engineering came up with a unique liquid additive called QwikBoost to enhance the performance of the advanced heat pump design.

  18. Prestressing buried pipelines by heating with air

    SciTech Connect

    King, G. )

    1993-11-01

    Buried pipelines operating at elevated temperatures experience high longitudinal compressive stresses because the surrounding soil prevents thermal expansion. At high operating temperatures, buried pipelines can push through the soil at bends and buckle catastrophically. In soft soils they can lose lateral stability, and they can develop plastic failures. Thermally induced problems can be prevented with varying degrees of success by using thicker wall pipe, higher strength prevented with varying degrees of success by using thicker wall pipe, higher strength steel, longer radius bends, deeper burial, better backfill compaction, and/or prestressing during construction. Prestressing is most appropriate for pipelines operating at temperatures more than 80 C above ambient. One technique for prestressing a buried pipeline, that has been found to be both easy and economical for a liquid sulfur pipeline in Alberta, is to heat it with hot air and bury it while it is still hot. Pipe diameter and prestressing temperature both have a significant impact on the kind of heating equipment that is required.

  19. Heat Waves, Urban Vegetation, and Air Pollution

    NASA Astrophysics Data System (ADS)

    Churkina, G.; Grote, R.; Butler, T. M.

    2014-12-01

    Fast-track programs to plant millions of trees in cities around the world aim at the reduction of summer temperatures, increase carbon storage, storm water control, provision of space for recreation, as well as poverty alleviation. Although these multiple benefits speak positively for urban greening programs, the programs do not take into account how close human and natural systems are coupled in urban areas. Elevated temperatures together with anthropogenic emissions of air and water pollutants distinguish the urban system. Urban and sub-urban vegetation responds to ambient changes and reacts with pollutants. Neglecting the existence of this coupling may lead to unforeseen drawbacks of urban greening programs. The potential for emissions from urban vegetation combined with anthropogenic emissions to produce ozone has long been recognized. This potential increases under rising temperatures. Here we investigate how global change induced heat waves affect emissions of volatile organic compounds (VOC) from urban vegetation and corresponding ground-level ozone levels. We also quantify other ecosystem services provided by urban vegetation (e.g., cooling and carbon storage) and their sensitivity to climate change. In this study we use Weather Research and Forecasting Model with coupled atmospheric chemistry (WRF-CHEM) to quantify these feedbacks in Berlin, Germany during the heat waves in 2003 and 2006. We highlight the importance of the vegetation for urban areas under changing climate and discuss associated tradeoffs.

  20. Absorption and adsorption chillers applied to air conditioning systems

    NASA Astrophysics Data System (ADS)

    Kuczyńska, Agnieszka; Szaflik, Władysław

    2010-07-01

    This work presents an application possibility of sorption refrigerators driven by low temperature fluid for air conditioning of buildings. Thermodynamic models were formulated and absorption LiBr-water chiller with 10 kW cooling power as well as adsorption chiller with silica gel bed were investigated. Both of them are using water for desorption process with temperature Tdes = 80 °C. Coefficient of performance (COP) for both cooling cycles was analyzed in the same conditions of the driving heat source, cooling water Tc = 25 °C and temperature in evaporator Tevap = 5 °C. In this study, the computer software EES was used to investigate the performance of absorption heat pump system and its behaviour in configuration with geothermal heat source.

  1. Selection of the air heat exchanger operating in a gas turbine air bottoming cycle

    NASA Astrophysics Data System (ADS)

    Chmielniak, Tadeusz; Czaja, Daniel; Lepszy, Sebastian

    2013-12-01

    A gas turbine air bottoming cycle consists of a gas turbine unit and the air turbine part. The air part includes a compressor, air expander and air heat exchanger. The air heat exchanger couples the gas turbine to the air cycle. Due to the low specific heat of air and of the gas turbine exhaust gases, the air heat exchanger features a considerable size. The bigger the air heat exchanger, the higher its effectiveness, which results in the improvement of the efficiency of the gas turbine air bottoming cycle. On the other hand, a device with large dimensions weighs more, which may limit its use in specific locations, such as oil platforms. The thermodynamic calculations of the air heat exchanger and a preliminary selection of the device are presented. The installation used in the calculation process is a plate heat exchanger, which is characterized by a smaller size and lower values of the pressure drop compared to the shell and tube heat exchanger. Structurally, this type of the heat exchanger is quite similar to the gas turbine regenerator. The method on which the calculation procedure may be based for real installations is also presented, which have to satisfy the economic criteria of financial profitability and cost-effectiveness apart from the thermodynamic criteria.

  2. 40 CFR 86.161-00 - Air conditioning environmental test facility ambient requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... elements that are discussed are ambient air temperature and humidity, minimum test cell size, solar heating..., within the test cell, during all phases of the air conditioning test sequence to 95 ±2 °F on average and... of 30 second intervals. Records of cell air temperatures and values of average test temperatures...

  3. 40 CFR 86.161-00 - Air conditioning environmental test facility ambient requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... elements that are discussed are ambient air temperature and humidity, minimum test cell size, solar heating..., within the test cell, during all phases of the air conditioning test sequence to 95 ±2 °F on average and... of 30 second intervals. Records of cell air temperatures and values of average test temperatures...

  4. Thermal conditions and perceived air quality in an air-conditioned auditorium

    NASA Astrophysics Data System (ADS)

    Polednik, Bernard; Guz, Łukasz; Skwarczyński, Mariusz; Dudzińska, Marzenna R.

    2016-07-01

    The study reports measurements of indoor air temperature (T) and relative humidity (RH), perceived air quality (PAQ) and CO2, fine aerosol particle number (PN) and mass (PM1) concentrations in an air conditioned auditorium. The measurements of these air physical parameters have been carried out in the unoccupied auditorium with the air conditioning system switched off (AC off mode) and in the unoccupied and occupied auditorium with the air conditioning system switched off during the night and switched on during the day (AC on/off mode). The average indoor air thermal parameters, CO2 concentration and the PAQ value (in decipols) were elevated, while average PM1 concentration was lower in the AC on/off mode. A statistically significant (p < 0.001) positive correlation has been observed between T and PAQ values and CO2 concentrations (r = 0.66 and r = 0.59, respectively) in that AC mode. A significant negative correlation has been observed between T and PN and PM1 concentrations (r = -0.38 and r = -0.49, respectively). In the AC off mode the above relations between T and the particle concentrations were not that unequivocal. These findings may be of importance as they indicate that in certain AC operation modes the indoor air quality deteriorates along with the variation of the indoor air microclimate and room occupation. This, in turn, may adversely affect the comfort and productivity of the users of air conditioned premises.

  5. Air Conditioning and Refrigeration Supplementary Units.

    ERIC Educational Resources Information Center

    Winston, Del; And Others

    This document contains supplemental materials for special needs high school students intended to facilitate their mainstreaming in regular air conditioning and refrigeration courses. Teacher's materials precede the materials for students and include general notes for the instructor, additional suggestions, two references, a questionnaire on the…

  6. Fundamentals of Air Conditioning and Refrigeration.

    ERIC Educational Resources Information Center

    Clemons, Mark

    This set of instructional materials provides secondary and postsecondary students with a state-of-the-art curriculum for the air conditioning and refrigeration industry that includes the many changes brought by new Environmental Protection Agency (EPA) regulations. Introductory materials explain the use of this publication and provide the…

  7. Air Conditioning and Refrigeration. Book One.

    ERIC Educational Resources Information Center

    Wantiez, Gary W.

    Designed to provide students with the basic skills for an occupation in air conditioning and refrigeration, this curriculum guide includes seven major areas, each consisting of one or more units of instruction. These areas and their respective units are titled as follows: Orientation (history and development, and job opportunities), Safety…

  8. Air Conditioning and Refrigeration Book IV.

    ERIC Educational Resources Information Center

    Eckes, William; Fulkerson, Dan

    This publication is the concluding text in a four-part curriculum for air conditioning and refrigeration. Materials in Book 4 are designed to complement theoretical and functional elements in Books 1-3. Instructional materials in this publication are written in terms of student performance using measurable objectives. The course includes six…

  9. MOBILE AIR-CONDITIONING RECYCLING MANUAL

    EPA Science Inventory

    The report gives guidelines on the recovery and recycle of the chlorofluorocarbon (CFC), dichlorodifluoromethane (CFC-12), from mobile air conditions. It is intended for wide distribution internationally and is especially for use by developing countries and the World Bank to ass...

  10. Readings in Air Conditioning and Refrigeration.

    ERIC Educational Resources Information Center

    Uberto, Jeffrey A.

    Designed to encourage vocational high school students to read by offering reading materials relevant to their vocational goals, this document contains thirty-seven articles related to air conditioning and refrigeration which have been selected from trade journals, magazines, and newspapers and adapted to the students' reading capabilities. A…

  11. Air Conditioning and Refrigeration. Book Two.

    ERIC Educational Resources Information Center

    Wantiez, Gary W.

    This curriculum guide (book II), along with book I, is designed to provide students with the basic skills for an occupation in air conditioning and refrigeration. Six major areas are included, each consisting of one or more units of instruction. These areas and their respective units are titled as follows: Electricity (fundamentals of electricity,…

  12. Design of Solar Heat Sheet for Air Heaters

    NASA Astrophysics Data System (ADS)

    Priya, S. Shanmuga; Premalatha, M.; Thirunavukkarasu, I.

    2011-12-01

    The technique of harnessing solar energy for drying offers significant potential to dry agricultural products such as food grains, fruits, vegetables and medicinal plants, thereby eliminating many of the problems experienced with open-sun drying and industrial drying, besides saving huge quantities of fossil fuels. A great deal of experimental work over the last few decades has already demonstrated that agricultural products can be satisfactorily dehydrated using solar energy. Various designs of small scale solar dryers have been developed in the recent past, mainly for drying agricultural products. Major problems experienced with solar dryers are their non-reliability as their operation largely depends on local weather conditions. While back-up heaters and hybrid dryers partly solved this issue, difficulties in controlling the drying air temperature and flow rate remains a problem, and affects the quality of the dried product. This study is aimed at eliminating the fluctuations in the quality of hot air supplied by simple solar air heaters used for drying fruits, vegetables and other applications. It is an attempt to analyse the applicability of the combination of an glazed transpired solar collector (tank), thermal storage and a intake fan(suction fan) to achieve a steady supply of air at a different atmospheric temperature and flow rate for drying fruits and vegetables. Development of an efficient, low-cost and reliable air heating system for drying applications is done.

  13. Dynamic Performance of a Residential Air-to-Air Heat Pump.

    ERIC Educational Resources Information Center

    Kelly, George E.; Bean, John

    This publication is a study of the dynamic performance of a 5-ton air-to-air heat pump in a residence in Washington, D.C. The effect of part-load operation on the heat pump's cooling and heating coefficients of performance was determined. Discrepancies between measured performance and manufacturer-supplied performance data were found when the unit…

  14. Smart Sensors Enable Smart Air Conditioning Control

    PubMed Central

    Cheng, Chin-Chi; Lee, Dasheng

    2014-01-01

    In this study, mobile phones, wearable devices, temperature and human motion detectors are integrated as smart sensors for enabling smart air conditioning control. Smart sensors obtain feedback, especially occupants' information, from mobile phones and wearable devices placed on human body. The information can be used to adjust air conditioners in advance according to humans' intentions, in so-called intention causing control. Experimental results show that the indoor temperature can be controlled accurately with errors of less than ±0.1 °C. Rapid cool down can be achieved within 2 min to the optimized indoor capacity after occupants enter a room. It's also noted that within two-hour operation the total compressor output of the smart air conditioner is 48.4% less than that of the one using On-Off control. The smart air conditioner with wearable devices could detect the human temperature and activity during sleep to determine the sleeping state and adjusting the sleeping function flexibly. The sleeping function optimized by the smart air conditioner with wearable devices could reduce the energy consumption up to 46.9% and keep the human health. The presented smart air conditioner could provide a comfortable environment and achieve the goals of energy conservation and environmental protection. PMID:24961213

  15. Smart sensors enable smart air conditioning control.

    PubMed

    Cheng, Chin-Chi; Lee, Dasheng

    2014-06-24

    In this study, mobile phones, wearable devices, temperature and human motion detectors are integrated as smart sensors for enabling smart air conditioning control. Smart sensors obtain feedback, especially occupants' information, from mobile phones and wearable devices placed on human body. The information can be used to adjust air conditioners in advance according to humans' intentions, in so-called intention causing control. Experimental results show that the indoor temperature can be controlled accurately with errors of less than ±0.1 °C. Rapid cool down can be achieved within 2 min to the optimized indoor capacity after occupants enter a room. It's also noted that within two-hour operation the total compressor output of the smart air conditioner is 48.4% less than that of the one using On-Off control. The smart air conditioner with wearable devices could detect the human temperature and activity during sleep to determine the sleeping state and adjusting the sleeping function flexibly. The sleeping function optimized by the smart air conditioner with wearable devices could reduce the energy consumption up to 46.9% and keep the human health. The presented smart air conditioner could provide a comfortable environment and achieve the goals of energy conservation and environmental protection.

  16. Low-Flow Liquid Desiccant Air Conditioning: General Guidance and Site Considerations

    SciTech Connect

    Kozubal, E.; Herrmann, L.; Deru, M.; Clark, J.

    2014-09-01

    Dehumidification or latent cooling in buildings is an area of growing interest that has been identified as needing more research and improved technologies for higher performance. Heating, ventilating, and air-conditioning (HVAC) systems typically expend excessive energy by using overcool-and-reheat strategies to dehumidify buildings. These systems first overcool ventilation air to remove moisture and then reheat the air to meet comfort requirements. Another common strategy incorporates solid desiccant rotors that remove moisture from the air more efficiently; however, these systems increase fan energy consumption because of the high airside pressure drop of solid desiccant rotors and can add heat of absorption to the ventilation air. Alternatively, liquid desiccant air-conditioning (LDAC) technology provides an innovative dehumidification solution that: (1) eliminates the need for overcooling and reheating from traditional cooling systems; and (2) avoids the increased fan energy and air heating from solid desiccant rotor systems.

  17. Cold Climate and Retrofit Applications for Air-to-Air Heat Pumps

    SciTech Connect

    Baxter, Van D

    2015-01-01

    Air source heat pumps (ASHP) including air-to-air ASHPs are easily applied to buildings almost anywhere for new construction as well as retrofits or renovations. They are widespread in milder climate regions but their use in cold regions is hampered due to low heating efficiency and capacity at cold outdoor temperatures. Retrofitting air-to-air ASHPs to existing buildings is relatively easy if the building already has an air distribution system. For buildings without such systems alternative approaches are necessary. Examples are ductless, minisplit heat pumps or central heat pumps coupled to small diameter, high velocity (SDHV) air distribution systems. This article presents two subjects: 1) a summary of R&D investigations aimed at improving the cold weather performance of ASHPs, and 2) a brief discussion of building retrofit options using air-to-air ASHP systems.

  18. Investigating the urban heat island effect on air quality

    NASA Astrophysics Data System (ADS)

    Loughner, C. P.; Allen, D. J.; Dickerson, R. R.; Pickering, K. E.; Shou, Y.; Zhang, D.

    2009-12-01

    Urbanization impacts meteorology and air quality in and downwind of cities. An urban heat island can increase the temperature in and downwind of cities. An increase in temperature may worsen air quality by increasing the amount of photochemically produced ozone. During an air pollution episode on July 9, 2007, in which 8-hour maximum ozone and 24-hour average PM2.5 concentrations reached 125ppb and 40μg/m3 respectively, the Washington, DC urban heat island propagated downwind over Columbia, MD and then Baltimore, MD further amplifying the temperature in and downwind of Baltimore. With the use of the Weather Research and Forecasting model coupled with an urban canopy model (WRF/UCM) and EPA’s Community Multi-scale Air Quality (CMAQ) model, the air quality is analyzed within the urban heat island. In addition, the interactions between the Chesapeake Bay breeze, the urban heat island, and the air chemistry are analyzed.

  19. Indoor air pollution by different heating systems: coal burning, open fireplace and central heating.

    PubMed

    Moriske, H J; Drews, M; Ebert, G; Menk, G; Scheller, C; Schöndube, M; Konieczny, L

    1996-11-01

    Investigations of indoor air pollution by different heating systems in private homes are described. Sixteen homes, 7 with coal burning, 1 with open fireplace (wood burning) and 8 with central heating have been investigated. We measured the concentrations of carbon monoxide, carbon dioxide and sedimented dust in indoor air, of total suspended particulates, heavy metals and of polycyclic aromatic hydrocarbons in indoor and outdoor air. Measurements were taken during winter (heating period) and during summer (non-heating period). Generally, we found higher indoor air pollution in homes with coal burning and open fireplace than in homes with central heating. Especially, the concentrations of carbon monoxide, sedimented dust and of some heavy metals were higher. In one case, we found also high indoor air pollution in a home with central heating. This apartment is on the ground floor of a block of flats, and the central heating system in the basement showed a malfunctioning of the exhaust system.

  20. The Impact of Winter Heating on Air Pollution in China

    PubMed Central

    Xiao, Qingyang; Ma, Zongwei; Li, Shenshen; Liu, Yang

    2015-01-01

    Fossil-fuel combustion related winter heating has become a major air quality and public health concern in northern China recently. We analyzed the impact of winter heating on aerosol loadings over China using the MODIS-Aqua Collection 6 aerosol product from 2004–2012. Absolute humidity (AH) and planetary boundary layer height (PBL) -adjusted aerosol optical depth (AOD*) was constructed to reflect ground-level PM2.5 concentrations. GIS analysis, standard statistical tests, and statistical modeling indicate that winter heating is an important factor causing increased PM2.5 levels in more than three-quarters of central and eastern China. The heating season AOD* was more than five times higher as the non-heating season AOD*, and the increase in AOD* in the heating areas was greater than in the non-heating areas. Finally, central heating tend to contribute less to air pollution relative to other means of household heating. PMID:25629878

  1. The impact of winter heating on air pollution in China.

    PubMed

    Xiao, Qingyang; Ma, Zongwei; Li, Shenshen; Liu, Yang

    2015-01-01

    Fossil-fuel combustion related winter heating has become a major air quality and public health concern in northern China recently. We analyzed the impact of winter heating on aerosol loadings over China using the MODIS-Aqua Collection 6 aerosol product from 2004-2012. Absolute humidity (AH) and planetary boundary layer height (PBL) -adjusted aerosol optical depth (AOD*) was constructed to reflect ground-level PM2.5 concentrations. GIS analysis, standard statistical tests, and statistical modeling indicate that winter heating is an important factor causing increased PM2.5 levels in more than three-quarters of central and eastern China. The heating season AOD* was more than five times higher as the non-heating season AOD*, and the increase in AOD* in the heating areas was greater than in the non-heating areas. Finally, central heating tend to contribute less to air pollution relative to other means of household heating.

  2. AIR EMISSIONS FROM RESIDENTIAL HEATING: THE WOOD HEATING OPTION PUT INTO ENVIRONMENTAL PERSPECTIVE

    EPA Science Inventory

    The paper compares the national scale (rather than local) air quality impacts of the various residential space heating options. Specifically, it compares the relative contribution of the space heating options to fine particulate emissions, greenhouse gas emissions, and acid preci...

  3. The Oak Ridge Heat Pump Models: I. A Steady-State Computer Design Model of Air-to-Air Heat Pumps

    SciTech Connect

    Fischer, S.K. Rice, C.K.

    1999-12-10

    The ORNL Heat Pump Design Model is a FORTRAN-IV computer program to predict the steady-state performance of conventional, vapor compression, electrically-driven, air-to-air heat pumps in both heating and cooling modes. This model is intended to serve as an analytical design tool for use by heat pump manufacturers, consulting engineers, research institutions, and universities in studies directed toward the improvement of heat pump performance. The Heat Pump Design Model allows the user to specify: system operating conditions, compressor characteristics, refrigerant flow control devices, fin-and-tube heat exchanger parameters, fan and indoor duct characteristics, and any of ten refrigerants. The model will compute: system capacity and COP (or EER), compressor and fan motor power consumptions, coil outlet air dry- and wet-bulb temperatures, air- and refrigerant-side pressure drops, a summary of the refrigerant-side states throughout the cycle, and overall compressor efficiencies and heat exchanger effectiveness. This report provides thorough documentation of how to use and/or modify the model. This is a revision of an earlier report containing miscellaneous corrections and information on availability and distribution of the model--including an interactive version.

  4. Preliminary design package for residential heating/cooling system: Rankine air conditioner redesign

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A summary of the preliminary redesign and development of a marketable single family heating and cooling system is presented. The interim design and schedule status of the residential (3-ton) redesign, problem areas and solutions, and the definition of plans for future design and development activities were discussed. The proposed system for a single-family residential heating and cooling system is a single-loop, solar-assisted, hydronic-to-warm-air heating subsystem with solar-assisted domestic water heating and a Rankine-driven expansion air-conditioning subsystem.

  5. Modelling and simulation of air-conditioning cycles

    NASA Astrophysics Data System (ADS)

    Rais, Sandi; Kadono, Yoshinori; Murayama, Katsunori; Minakuchi, Kazuya; Takeuchi, Hisae; Hasegawa, Tatsuya

    2017-02-01

    The heat-pump cycle for air conditioning was investigated both numerically and experimentally by evaluating the coefficient of performance (COP) under Japanese Industrial Standard (JIS B 8619:1999) and ANSI/AHRI standard 750-2007 operating conditions. We used two expansion valve coefficients Cv_{(φ)} = 0.12 for standard operating conditions (Case 1) approaching 1.3 MPa at high pressure and 0.2 MPa at low pressure, and Cv_{(φ)} = 0.06 namely poor operating conditions (Case 2). To improve the performance of the air conditioner, we compared the performance for two outside air temperatures, 35 and 40 °C (Case 3). The simulation and experiment comparison resulted the decreasing of the COP for standard operating condition is equal to 14 %, from 3.47 to 2.95 and a decrease of the cooling capacity is equal to 18 %, from 309.72 to 253.53 W. This result was also occurred in poor operating condition which the COP was superior at 35 °C temperature.

  6. Modelling and simulation of air-conditioning cycles

    NASA Astrophysics Data System (ADS)

    Rais, Sandi; Kadono, Yoshinori; Murayama, Katsunori; Minakuchi, Kazuya; Takeuchi, Hisae; Hasegawa, Tatsuya

    2016-05-01

    The heat-pump cycle for air conditioning was investigated both numerically and experimentally by evaluating the coefficient of performance (COP) under Japanese Industrial Standard (JIS B 8619:1999) and ANSI/AHRI standard 750-2007 operating conditions. We used two expansion valve coefficients Cv_{(\\varphi )} = 0.12 for standard operating conditions (Case 1) approaching 1.3 MPa at high pressure and 0.2 MPa at low pressure, and Cv_{(\\varphi )} = 0.06 namely poor operating conditions (Case 2). To improve the performance of the air conditioner, we compared the performance for two outside air temperatures, 35 and 40 °C (Case 3). The simulation and experiment comparison resulted the decreasing of the COP for standard operating condition is equal to 14 %, from 3.47 to 2.95 and a decrease of the cooling capacity is equal to 18 %, from 309.72 to 253.53 W. This result was also occurred in poor operating condition which the COP was superior at 35 °C temperature.

  7. Low GWP Refrigerants Modelling Study for a Room Air Conditioner Having Microchannel Heat Exchangers

    SciTech Connect

    Shen, Bo; Bhandari, Mahabir S

    2016-01-01

    Microchannel heat exchangers (MHX) have found great successes in residential and commercial air conditioning applications, being compact heat exchangers, to reduce refrigerant charge and material cost. This investigation aims to extend the application of MHXs in split, room air conditioners (RAC), per fundamental heat exchanger and system modelling. For this paper, microchannel condenser and evaporator models were developed, using a segment-to-segment modelling approach. The microchannel heat exchanger models were integrated to a system design model. The system model is able to predict the performance indices, such as cooling capacity, efficiency, sensible heat ratio, etc. Using the calibrated system and heat exchanger models, we evaluated numerous low GWP (global warming potential) refrigerants. The predicted system performance indices, e.g. cooling efficiency, compressor discharge temperature, and required compressor displacement volume etc., are compared. Suitable replacements for R22 and R-410A for the room air conditioner application are recommended.

  8. Development of low-cost air-to-air heat exchangers. Final report

    SciTech Connect

    Not Available

    1982-11-08

    In summary, comparing the TMG heat exchanger with the well-constructed and high-performance air-to-air heat exchangers assumed for analysis purposes in the LBL studies, the TMG heat exchanger is cost effective for use in low-infiltration houses heated with natural gas, oil and electricity in climates with 4000 or more heating degree (/sup 0/F) days. Experimental and field testing of the final Prototype B air-to-air heat exchanger gave a strong indication that this unit was ready for the market. A Vermont architect ordered 14 units from a pilot production run for a housing project in St. Johnsbury. These units were installed in the late winter of 1981-1982. The units have given excellent service to the point that the architect has considered the use of air-to-air heat exchangers in every subsequent job. Fabrication of the heat exchangers is being done by a small Vermont firm, Echo Fabrications, established primarily to produce air-to-air heat exchangers for the residential and agricultural market. The unit is being marketed under the tradename ECHOCHANGER and is being marketed, distributed and installed by Memphremagog Heat Exchangers, Inc. of Newport, Vermont.

  9. Innovative Air Conditioning and Climate Control

    NASA Technical Reports Server (NTRS)

    Graf, John

    2015-01-01

    NASA needed to develop a desiccant wheel based humidity removal system to enable the long term testing of the Orion CO2 scrubber on the International Space Station. In the course of developing that system, we learned three things that are relevant to energy efficient air conditioning of office towers. NASA developed a conceptual design for a humidity removal system for an office tower environment. We are looking for interested partners to prototype and field test this concept.

  10. Seminar 14 - Desiccant Enhanced Air Conditioning: Desiccant Enhanced Evaporative Air Conditioning (Presentation)

    SciTech Connect

    Kozubal, E.

    2013-02-01

    This presentation explains how liquid desiccant based coupled with an indirect evaporative cooler can efficiently produce cool, dry air, and how a liquid desiccant membrane air conditioner can efficiently provide cooling and dehumidification without the carryover problems of previous generations of liquid desiccant systems. It provides an overview to a liquid desiccant DX air conditioner that can efficiently provide cooling and dehumidification to high latent loads without the need for reheat, explains how liquid desiccant cooling and dehumidification systems can outperform vapor compression based air conditioning systems in hot and humid climates, explains how liquid desiccant cooling and dehumidification systems work, and describes a refrigerant free liquid desiccant based cooling system.

  11. Reduced heat stress in offices in the tropics using solar powered drying of the supply air.

    PubMed

    Gunnarsen, L; Santos, A M B

    2002-12-01

    Many solutions to indoor climate problems known from developed countries may have prohibitive installation and running costs in developing countries. The purpose was to develop a low-cost solution to heat stress in a hot and humid environment based on solar powered drying of supply air. Dry supply air may facilitate personal cooling by increased evaporation of sweat. Heat acclimatized people with efficient sweating may in particular benefit from this cooling. A prototype solar powered supply system for dried-only air was made. Air from the system was mixed with room air, heated to six different combinations of temperature and humidity and led to Personal Units for Ventilation and Cooling (PUVAC) in six cubicles simulating office workplaces. A total of 123 heat acclimatized subjects were exposed 45 min in each of the cubicles. A model for the combined effect of operative temperature of room, moisture content of room air, temperature of supply air and moisture content of supply air was developed based on the experiments. Reduction of moisture content in the supply air by 1.6 g/kg had the same effect as lowering the operative temperature by 1 degree C. The solar-powered system for supplying dry air is a low-cost alternative to traditional air conditioning in hot and humid regions.

  12. Development of a passive waste heat recovery system. Final report. [Air to air heat exchangers

    SciTech Connect

    Garriss, J.E.

    1984-02-15

    The invention described operates as an effective waste heat reclamation device without the disadvantages of requiring operating power or imposing spatial requirements on equipment location. Electrical power, if used at all, is only for control purposes. The two air streams can be far apart, and may have significantly different elevations. Accordingly, this invention offers some distinct advantages over existing concepts. The first step in this project was to review the basic concept, as described by the patent, for its applicability to industrial waste heat recovery systems. System specifications for a demonstration unit were then developed. A simplified mathematical model was developed to study system performance and size certain equipment items. To facilitate this work, the mathematical model was programmed for use on a Texas Instruments-59 programmable calculator. Following this, specific equipment was specified and layout drawings were prepared. The discussion details these efforts. The equipment was then built and its performance measured.

  13. Optimal integration condition between the gas turbine air compressor and the air separation unit of IGCC power plant

    SciTech Connect

    Lee, C.; Kim, H.T.; Yun, Y.

    1997-12-31

    Parametric studies are conducted for optimizing the integration design between gas turbine compressor and air separation unit (ASU) of integrated gasification combined cycle (IGCC) power plant. The ASU is assumed as low pressure double-distillation column process which is integrated at the interstage location of the compressor, and integration design criteria of air extraction and reversing heat exchanger are defined and mathematically formulated. With the performance prediction of compressor by through-flow analysis, the effects of pinch-point temperature difference (PTD) in the reversing heat exchanger, the amount and the pressure of extracted air are quantitatively examined. As the extraction air amount or the PTD is increased, the power consumption is increased. The compressor efficiency deteriorates as the increase of the flow rate of air extracted at higher pressure while improving at lower pressure air extraction. Furthermore, optimal integration condition for compressor efficiency maximization is found by generating the compressor characteristic curve.

  14. Thermal storage HVAC system retrofit provides economical air conditioning

    SciTech Connect

    Smith, S.F. )

    1993-03-01

    This article describes an EMS-controlled HVAC system that meets the ventilation and cooling needs of an 18,000-seat indoor ice hockey arena. The Buffalo Memorial Auditorium (affectionately referred to as the Aud) was built in 1937 under the Works Project Administration of the federal government. Its original configuration included a 12,000-seat arena with an ice skating rink. By the late 1980s, the city was unsuccessfully attempting to attract events and tenants to the auditorium, which lacked air conditioning and other modern amenities. Thus, it was decided to renovate the facility to make it marketable. The first phase of the renovation included installing an air-conditioning system in the arena and repairing the existing building systems that were inoperable because of deferred maintenance. After considering the existing conditions (such as size of the space, intermittent usage, construction restrictions, operating budgets and the limited operations staff), the engineering team designed an innovative HVAC system. The system's features include: a carbon dioxide monitoring device that controls the intake of outside air; an ice storage system that provides chilled water and shifts electrical demand to off-peak hours; and a design that uses the building mass as a heat sink. A new energy management system (EMS) determines building cooling needs based on the type of event, ambient conditions and projected audience size. Then, it selects the most economical method to obtain the desired arena temperature.

  15. Heat Transfer Characteristics and Performance of a Spirally Coiled Heat Exchanger under Sensible Cooling Conditions

    NASA Astrophysics Data System (ADS)

    Wongwises, Somchai; Naphon, Paisarn

    In the present study, new experimental data on the heat transfer characteristics and the performance of a spirally coiled heat exchanger under sensible cooling conditions is presented. The spiral-coil heat exchanger consists of a steel shell and a spirally coiled tube unit. The spiral-coil unit consists of six layers of concentric spirally coiled tubes. Each tube is fabricated by bending a 9.27mm diameter straight copper tube into a spiral-coil of five turns. The innermost and outermost diameters of each spiral-coil are 67.7 and 227.6mm, respectively. Air and water are used as working fluids in shell side and tube side, respectively. A mathematical model based on the conservation of energy is developed to determine the heat transfer characteristics. There is a reasonable agreement between the results obtained from the experiment and those obtained from the model and a good agreement for the high air mass flow rate region. The results obtained from the parametric study are also discussed.

  16. An Optimization Approach to Analyzing the Effect of Supply Water and Air Temperatures in Planning an Air Conditioning System

    NASA Astrophysics Data System (ADS)

    Karino, Naoki; Shiba, Takashi; Yokoyama, Ryohei; Ito, Koichi

    In planning an air conditioning system, supply water and air temperatures are important factors from the viewpoint of cost reduction. For example, lower temperature supply water and air reduce the coefficient of performance of a refrigeration machine, and increase the thickness of heat insulation material. However, they enable larger temperature differences, and reduce equipment sizes and power demand. The purposes of this paper are to propose an optimal planning method for a cold air distribution system, and to analyze the effect of supply water and air temperatures on the long-term economics through a numerical study for an office building. As a result, it is shown that the proposed method effectively determines supply water and air temperatures for a cold air distribution system, and that the influence of supply air temperature is larger than that of supply water temperature on the long-term economics.

  17. Thermodynamic analysis and optimization of air-cooled heat exchangers

    NASA Astrophysics Data System (ADS)

    Salimpour, Mohammad Reza; Bahrami, Zabihollah

    2011-01-01

    In the present study, a thermodynamic second-law analysis was performed to investigate the effects of different geometry and flow parameters on the air-cooled heat exchanger performance. For this purpose, the entropy generation due to heat transfer and pressure loss of internal and external flows of the air-cooled heat exchanger was calculated; and it was observed that the total entropy generation has a minimum at special tube-side Reynolds number. Also, it was seen that the increasing of the tube-side Reynolds number resulted in the rise of the irreversibility of the air-cooled heat exchanger. The results also showed when air-side Reynolds number decreased, the entropy generation rate of the external flow reduced. Finally, based on the computed results, a new correlation was developed to predict the optimum Reynolds number of the tube-side fluid flow.

  18. Balloons and Bottles: Activities on Air-Sea Heat Exchange.

    ERIC Educational Resources Information Center

    Murphree, Tom

    1998-01-01

    Presents an activity designed to demonstrate how heating and cooling an air mass affects its temperature, volume, density, and pressure. Illustrates how thermal energy can cause atmospheric motion such as expansion, contraction, and winds. (Author/WRM)

  19. Airborne Asbestos Exposures from Warm Air Heating Systems in Schools.

    PubMed

    Burdett, Garry J; Dewberry, Kirsty; Staff, James

    2016-01-01

    The aim of this study was to investigate the concentrations of airborne asbestos that can be released into classrooms of schools that have amosite-containing asbestos insulation board (AIB) in the ceiling plenum or other spaces, particularly where there is forced recirculation of air as part of a warm air heating system. Air samples were collected in three or more classrooms at each of three schools, two of which were of CLASP (Consortium of Local Authorities Special Programme) system-built design, during periods when the schools were unoccupied. Two conditions were sampled: (i) the start-up and running of the heating systems with no disturbance (the background) and (ii) running of the heating systems during simulated disturbance. The simulated disturbance was designed to exceed the level of disturbance to the AIB that would routinely take place in an occupied classroom. A total of 60 or more direct impacts that vibrated and/or flexed the encapsulated or enclosed AIB materials were applied over the sampling period. The impacts were carried out at the start of the sampling and repeated at hourly intervals but did not break or damage the AIB. The target air volume for background samples was ~3000 l of air using a static sampler sited either below or ~1 m from the heater outlet. This would allow an analytical sensitivity (AS) of 0.0001 fibres per millilitre (f ml(-1)) to be achieved, which is 1000 times lower than the EU and UK workplace control limit of 0.1 f ml(-1). Samples with lower volumes of air were also collected in case of overloading and for the shorter disturbance sampling times used at one site. The sampler filters were analysed by phase contrast microscopy (PCM) to give a rapid determination of the overall concentration of visible fibres (all types) released and/or by analytical transmission electron microscopy (TEM) to determine the concentration of asbestos fibres. Due to the low number of fibres, results were reported in terms of both the calculated

  20. Airborne Asbestos Exposures from Warm Air Heating Systems in Schools

    PubMed Central

    Burdett, Garry J.; Dewberry, Kirsty; Staff, James

    2016-01-01

    The aim of this study was to investigate the concentrations of airborne asbestos that can be released into classrooms of schools that have amosite-containing asbestos insulation board (AIB) in the ceiling plenum or other spaces, particularly where there is forced recirculation of air as part of a warm air heating system. Air samples were collected in three or more classrooms at each of three schools, two of which were of CLASP (Consortium of Local Authorities Special Programme) system-built design, during periods when the schools were unoccupied. Two conditions were sampled: (i) the start-up and running of the heating systems with no disturbance (the background) and (ii) running of the heating systems during simulated disturbance. The simulated disturbance was designed to exceed the level of disturbance to the AIB that would routinely take place in an occupied classroom. A total of 60 or more direct impacts that vibrated and/or flexed the encapsulated or enclosed AIB materials were applied over the sampling period. The impacts were carried out at the start of the sampling and repeated at hourly intervals but did not break or damage the AIB. The target air volume for background samples was ~3000 l of air using a static sampler sited either below or ~1 m from the heater outlet. This would allow an analytical sensitivity (AS) of 0.0001 fibres per millilitre (f ml−1) to be achieved, which is 1000 times lower than the EU and UK workplace control limit of 0.1 f ml−1. Samples with lower volumes of air were also collected in case of overloading and for the shorter disturbance sampling times used at one site. The sampler filters were analysed by phase contrast microscopy (PCM) to give a rapid determination of the overall concentration of visible fibres (all types) released and/or by analytical transmission electron microscopy (TEM) to determine the concentration of asbestos fibres. Due to the low number of fibres, results were reported in terms of both the calculated

  1. Air Source Cold Climate Heat Pump

    DTIC Science & Technology

    2013-08-01

    The buildings were modified so that one zone used the cold climate heat pump and the other zone used its original modern central HVAC system . Both...been updated with insulation, a sheet metal roof, and a modern central HVAC system . Both buildings had two zones for heating and cooling, which...climate heat pump and the other zone used its original modern central HVAC system . Both zones were instrumented so that energy consumption and

  2. Forced convection heat transfer to air/water vapor mixtures

    NASA Technical Reports Server (NTRS)

    Richards, D. R.; Florschuetz, L. W.

    1986-01-01

    Heat transfer coefficients were measured using both dry air and air/water vapor mixtures in the same forced convection cooling test rig (jet array impingement configurations) with mass ratios of water vapor to air up to 0.23. The primary objective was to verify by direct experiment that selected existing methods for evaluation of viscosity and thermal conductivity of air/water vapor mixtures could be used with confidence to predict heat transfer coefficients for such mixtures using as a basis heat transfer data for dry air only. The property evaluation methods deemed most appropriate require as a basis a measured property value at one mixture composition in addition to the property values for the pure components.

  3. Combined Heat, Air, Moisture, and Pollutants Transport in Building Environmental Systems

    NASA Astrophysics Data System (ADS)

    Zhang, Jianshun Jensen S.

    Combined heat, air, moisture and pollutants transport (CHAMP) exists across multi-scales of a building environmental system (BES): around the building, through the building shell/envelope, inside a multizone building, and in the micro-environments around occupants. This paper reviews previous work and presents a system model for simulating these transport processes and their impacts on indoor environmental quality. Components of the system model include a multizone network flow model for whole building, a room model for air and pollutant movement in ventilated spaces, a coupled heat, air, moisture, and pollutant transport model for building shell, an HVAC model for describing the dynamics of the heating, ventilating and air-conditioning (HVAC) system, and shared databases of weather conditions, transport properties of building materials, and volatile organic compounds (VOCs) emissions from building materials and furnishings. The interactions among the different components, and challenges in developing the CHAMP system model for intelligent control of BES are also discussed.

  4. Air Conditioning with Magnetic Refrigeration : An Efficient, Green Compact Cooling System Using Magnetic Refrigeration

    SciTech Connect

    2010-09-01

    BEETIT Project: Astronautics is developing an air conditioning system that relies on magnetic fields. Typical air conditioners use vapor compression to cool air. Vapor compression uses a liquid refrigerant to circulate within the air conditioner, absorb the heat, and pump the heat out into the external environment. Astronautics’ design uses a novel property of certain materials, called “magnetocaloric materials”, to achieve the same result as liquid refrigerants. These magnetocaloric materials essentially heat up when placed within a magnetic field and cool down when removed, effectively pumping heat out from a cooler to warmer environment. In addition, magnetic refrigeration uses no ozone-depleting gases and is safer to use than conventional air conditioners which are prone to leaks.

  5. Opportunities for Saving Energy and Improving Air Quality in Urban Heat Islands

    SciTech Connect

    Akbari, Hashem

    2007-07-01

    World energy use is the main contributor to atmospheric CO2. In 2002, about 7.0 giga metric tons of carbon (GtC) were emitted internationally by combustion of gas, liquid, and solid fuels (CDIAC, 2006), 2 to 5 times the amount contributed by deforestation (Brown et al., 1988). The share of atmospheric carbon emissions for the United States from fossil fuel combustion was 1.6 GtC. Increasing use of fossil fuel and deforestation together have raised atmospheric CO{sub 2} concentration some 25% over the last 150 years. According to global climate models and preliminary measurements, these changes in the composition of the atmosphere have already begun raising the Earth's average temperature. If current energy trends continue, these changes could drastically alter the Earth's temperature, with unknown but potentially catastrophic physical and political consequences. During the last three decades, increased energy awareness has led to conservation efforts and leveling of energy consumption in the industrialized countries. An important byproduct of this reduced energy use is the lowering of CO{sub 2} emissions. Of all electricity generated in the United States, about one-sixth is used to air-condition buildings. The air-conditioning use is about 400 tera-watt-hours (TWh), equivalent to about 80 million metric tons of carbon (MtC) emissions, and translating to about $40 billion (B) per year. Of this $40 B/year, about half is used in cities that have pronounced 'heat islands'. The contribution of the urban heat island to the air-conditioning demand has increased over the last 40 years and it is currently at about 10%. Metropolitan areas in the United States (e.g., Los Angeles, Phoenix, Houston, Atlanta, and New York City) have typically pronounced heat islands that warrant special attention by anyone concerned with broad-scale energy efficiency (HIG, 2006). The ambient air is primarily heated through three processes: direct absorption of solar radiation, convection of heat

  6. Bioaerosol deposition on an air-conditioning cooling coil

    NASA Astrophysics Data System (ADS)

    Wu, Yan; Chen, Ailu; Luhung, Irvan; Gall, Elliott T.; Cao, Qingliang; Chang, Victor Wei-Chung; Nazaroff, William W.

    2016-11-01

    This study is concerned with the role of a fin-and-tube heat exchanger in modifying microbial indoor air quality. Specifically, depositional losses of ambient bioaerosols and particles onto dry (not cooled) and wet (cool) coil surfaces were measured for different airspeeds passing through the test coil. Total, bacterial and fungal DNA concentrations in condensate water produced by a wet coil were also quantified by means of fluorescent dsDNA-binding dye and qPCR assays. Results revealed that the deposition of bioaerosols and total particles is substantial on coil surfaces, especially when wet and cool. The average deposition fraction was 0.14 for total DNA, 0.18 for bacterial DNA and 0.22 for fungal DNA on the dry coil, increasing to 0.51 for total DNA, 0.50 for bacterial DNA and 0.68 for fungal DNA on the wet coil. Overall, as expected, deposition fractions increased with increasing particle size and increasing airspeed. Deposited DNA was removed from the cooling coil surfaces through the flow of condensing water at a rate comparable to the rate of direct deposition from air. A downward trend of bacterial and fungal DNA measured in condensate water over time provides suggestive evidence of biological growth on heat exchangers during nonoperational times of a ventilation system. This investigation provides new information about bioaerosol deposition onto a conventional fin-and-tube cooling coil, a potentially important factor influencing indoor exposure to microbial aerosols in air-conditioned buildings.

  7. Principles of Refrigeration. Automotive Mechanics. Air Conditioning. Instructor's Guide [and] Student Guide.

    ERIC Educational Resources Information Center

    Spignesi, B.

    This instructional package, one in a series of individualized instructional units on automobile air conditioning, consists of a student guide and an instructor guide dealing with the principles of refrigeration. Covered in the module are defining the term heat, defining the term British Thermal Unit (BTU), defining the term latent heat, listing…

  8. A Procedure for the Design of Air-Heated Ice-Prevention Systems

    NASA Technical Reports Server (NTRS)

    Neel, C. B.

    1954-01-01

    A procedure proposed for use in the design of air-heated systems for the continuous prevention of ice formation on airplane components is set forth. Required heat-transfer and air-pressure-loss equations are presented, and methods of selecting appropriate meteorological conditions for flight over specified geographical areas and for the calculation of water-drop-impingement characteristics are suggested. In order to facilitate the design, a simple electrical analogue was devised which solves the complex heat-transfer relationships existing in the thermal-system analysis. The analogue is described and an illustration of its application to design is given.

  9. Self-defrosting recuperative air-to-air heat exchanger

    DOEpatents

    Drake, Richard L.

    1993-01-01

    A heat exchanger includes a stationary spirally or concentrically wound heat exchanger core with rotating baffles on upper and lower ends thereof. The rotating baffles include rotating inlets and outlets which are in communication with respective fixed inlets and outlets via annuli. The rotation of the baffles causes a concurrent rotation of the temperature distribution within the stationary exchanger core, thereby preventing frost build-up in some applications and preventing the formation of hot spots in other applications.

  10. A fundamentally new approach to air-cooled heat exchangers.

    SciTech Connect

    Koplow, Jeffrey P.

    2010-01-01

    We describe breakthrough results obtained in a feasibility study of a fundamentally new architecture for air-cooled heat exchangers. A longstanding but largely unrealized opportunity in energy efficiency concerns the performance of air-cooled heat exchangers used in air conditioners, heat pumps, and refrigeration equipment. In the case of residential air conditioners, for example, the typical performance of the air cooled heat exchangers used for condensers and evaporators is at best marginal from the standpoint the of achieving maximum the possible coefficient of performance (COP). If by some means it were possible to reduce the thermal resistance of these heat exchangers to a negligible level, a typical energy savings of order 30% could be immediately realized. It has long been known that a several-fold increase in heat exchanger size, in conjunction with the use of much higher volumetric flow rates, provides a straight-forward path to this goal but is not practical from the standpoint of real world applications. The tension in the market place between the need for energy efficiency and logistical considerations such as equipment size, cost and operating noise has resulted in a compromise that is far from ideal. This is the reason that a typical residential air conditioner exhibits significant sensitivity to reductions in fan speed and/or fouling of the heat exchanger surface. The prevailing wisdom is that little can be done to improve this situation; the 'fan-plus-finned-heat-sink' heat exchanger architecture used throughout the energy sector represents an extremely mature technology for which there is little opportunity for further optimization. But the fact remains that conventional fan-plus-finned-heat-sink technology simply doesn't work that well. Their primary physical limitation to performance (i.e. low thermal resistance) is the boundary layer of motionless air that adheres to and envelops all surfaces of the heat exchanger. Within this boundary layer

  11. Effects of respirators under heat/work conditions

    SciTech Connect

    James, R.; Dukes-Dobos, F.; Smith, R.

    1984-06-01

    Physiological responses and perceived strain of five unacclimatized male subjects were studied. The subjects were exposed to heat during an exercise task and were evaluated while wearing half and full facepiece, cartridge-type, air-purifying respirators, and without a respirator. The exercise consisted of walking on a treadmill for a period of 1 hour in a controlled environmental chamber at each of two different energy expenditure levels (200 and 400 kcal/hr)(approx. = 58 and 116 Watts) and two different heat exposures (air temperatures of 25/sup 0/C and 43.3./sup 0/C). The results indicated that wearing a full facepiece respirator imposed significant physiological strain added to that caused by the heat and workloads used in the study. Five of the six physiological measures show this increased physiological strain: (1) heart rate; (2) minute ventilation; (3) oxygen consumption; (4) energy expenditure; and (5) oral temperature. There was no detectable effect on sweat rate. Although subjective ratings indicated more discomfort with increasing physiological strain, the observed correlations between such measures were low (T/sub b/ < .60). The net consequence of the significant effects indicates that workers' tolerance to moderate or high levels of work under hot conditions while wearing a respirator is reduced. The reduction is more pronounced when wearing a full mask than when wearing a half mask. Changes in respirator design which minimize respiratory dead space are suggested to alleviate this problem. Otherwise, prevention of excessive physiological strain from respirator use when working at moderate or higher levels at hot job sites could necessitate more rest breaks or limiting work time under such conditions.

  12. Air-side flow and heat transfer in compact heat exchangers: A discussion of enhancement mechanisms

    SciTech Connect

    Jacobi, A.M.; Shah, R.K.

    1998-10-01

    The behavior of air flows in complex heat exchanger passages is reviewed with a focus on the heat transfer effects of boundary-layer development, turbulence, spanwise and streamwise vortices, and wake management. Each of these flow features is discussed for the plain, wavy, and interrupted passages found in contemporary compact heat exchanger designs. Results from the literature are used to help explain the role of these mechanisms in heat transfer enhancement strategies.

  13. [Hygienic evaluation of direct heating of the air delivered to the shaft].

    PubMed

    Velichkovskiĭ, B T; Malikov, Iu K; Troitskaia, N A; Belen'kaia, M A; Sergeeva, N V; Shirokova, O V; Kashanskiĭ, S V; Slyshkina, T V; Simonova, O V; Zykova, V A

    2011-01-01

    The paper gives the results of exploring a test pre-heating system for the air (APHS) delivered to the shaft. The system has been first used in the Urals. The supply air is heated by burning natural gas in the air current. The APHS system with a RG air heater (000 "Gas-Engineering") is equipped in addition to the existing heaters to enhance heat supply reliability in northern conditions. The data of the studies show that in all periods of the heating season (interseason, moderate frosts, the coldest month), the concentrations of hazardous substances, such as nitric oxides, nitric dioxide, sulfur dioxide, carbon dioxide, benz(a)pyrene, solid aerosol in the shaft-delivered air, do not exceed those given in the existing regulation provided that the design operating conditions are met. With the maximum gas consumption, the coldest month only was marked by the nitric dioxide content being greater than the standard values, causing the maximum projected natural gas consumption to be lower in the APHS system. The air level of nitric dioxide proved to be a major hygiene indicator while using this air heater.

  14. Using natural refrigerants (hydrocarbons) in air conditioning systems

    SciTech Connect

    Mathur, G.D.

    1998-07-01

    condensation heat transfer coefficients for R-290 and R-600a. The system performance and the heat transfer coefficients for R-290 and R-600a have been compared to systems with R-22, R- 134a, and R-12. The environmental impact of R-290 and R-600a has also been discussed. The information outlined in this paper can be used for designing residential, commercial, and automotive air conditioning systems.

  15. Self-defrosting recuperative air-to-air heat exchanger

    DOEpatents

    Drake, R.L.

    1993-12-28

    A heat exchanger is described which includes a stationary spirally or concentrically wound heat exchanger core with rotating baffles on upper and lower ends thereof. The rotating baffles include rotating inlets and outlets which are in communication with respective fixed inlets and outlets via annuli. The rotation of the baffles causes a concurrent rotation of the temperature distribution within the stationary exchanger core, thereby preventing frost build-up in some applications and preventing the formation of hot spots in other applications. 3 figures.

  16. Guidelines on Thermal Comfort of Air Conditioned Indoor Environment

    NASA Astrophysics Data System (ADS)

    Miura, Toyohiko

    The thermal comfort of air conditioned indoor environment for workers depended, of course, on metabolic rate of work, race, sex, age, clothing, climate of the district and state of acclimatization. The attention of the author was directed to the seasonal variation and the sexual difference of comfortable temperature and a survey through a year was conducted on the thermal comfort, and health conditions of workers engaged in light work in a precision machine factory, in some office workers. Besides, a series of experiments were conducted for purpose of determinning the optimum temperature of cooling in summer time in relation to the outdoor temperature. It seemed that many of workers at present would prefer somewhat higher temperature than those before the World War II. Forty years ago the average homes and offices were not so well heated as today, and clothing worn on the average was considerably heavier.

  17. Flat plate solar air heater with latent heat storage

    NASA Astrophysics Data System (ADS)

    Touati, B.; Kerroumi, N.; Virgone, J.

    2017-02-01

    Our work contains two parts, first is an experimental study of the solar air heater with a simple flow and forced convection, we can use thatlaste oneit in many engineering's sectors as solardrying, space heating in particular. The second part is a numerical study with ansys fluent 15 of the storage of part of this solar thermal energy produced,using latent heat by using phase change materials (PCM). In the experimental parts, we realize and tested our solar air heater in URER.MS ADRAR, locate in southwest Algeria. Where we measured the solarradiation, ambient temperature, air flow, thetemperature of the absorber, glasses and the outlet temperature of the solar air heater from the Sunrise to the sunset. In the second part, we added a PCM at outlet part of the solar air heater. This PCM store a part of the energy produced in the day to be used in peak period at evening by using the latent heat where the PCMs present a grateful storagesystem.A numerical study of the fusion or also named the charging of the PCM using ANSYS Fluent 15, this code use the method of enthalpies to solve the fusion and solidification formulations. Furthermore, to improve the conjugate heat transfer between the heat transfer fluid (Air heated in solar plate air heater) and the PCM, we simulate the effect of adding fins to our geometry. Also, four user define are write in C code to describe the thermophysicalpropriety of the PCM, and the inlet temperature of our geometry which is the temperature at the outflow of the solar heater.

  18. Air-density-dependent model for analysis of air heating associated with streamers, leaders, and transient luminous events

    NASA Astrophysics Data System (ADS)

    Riousset, Jeremy A.; Pasko, Victor P.; Bourdon, Anne

    2010-12-01

    Blue and gigantic jets are transient luminous events in the middle atmosphere that form when conventional lightning leaders escape upward from the thundercloud. The conditions in the Earth's atmosphere (i.e., air density, reduced electric field, etc.) leading to conversion of hot leader channels driven by thermal ionization near cloud tops to nonthermal streamer forms observed at higher altitudes are not understood at present. This paper presents a formulation of a streamer-to-spark transition model that allows studies of gas dynamics and chemical kinetics involved in heating of air in streamer channels for a given air density N under assumption of constant applied electric field E. The model accounts for the dynamic expansion of the heated air in the streamer channel and resultant effects of E/N variations on plasma kinetics, the vibrational excitation of nitrogen molecules N2(v), effects of gains in electron energy in collisions with N2(v), and associative ionization processes involving N2(A3Σu+) and N2(a'1Σu-) species. The results are in excellent agreement with available experimental data at ground and near-ground air pressures and demonstrate that for the air densities corresponding to 0-70 km altitudes the kinetic effects lead to a significant acceleration of the heating, with effective heating times scaling closer to 1/N than to 1/N2 predicted on the basis of similarity laws for Joule heating. This acceleration is attributed to a strong reduction in electron losses due to three-body attachment and electron-ion recombination processes with reduction of air pressure.

  19. Experimental and Numerical Analysis of Air Flow, Heat Transfer and Thermal Comfort in Buildings with Different Heating Systems

    NASA Astrophysics Data System (ADS)

    Sabanskis, A.; Virbulis, J.

    2016-04-01

    Monitoring of temperature, humidity and air flow velocity is performed in 5 experimental buildings with the inner size of 3×3×3 m3 located in Riga, Latvia. The buildings are equipped with different heating systems, such as an air-air heat pump, air-water heat pump, capillary heating mat on the ceiling and electric heater. Numerical simulation of air flow and heat transfer by convection, conduction and radiation is carried out using OpenFOAM software and compared with experimental data. Results are analysed regarding the temperature and air flow distribution as well as thermal comfort.

  20. On free convection heat transfer with well defined boundary conditions

    SciTech Connect

    Davies, M.R.D.; Newport, D.T.; Dalton, T.M.

    1999-07-01

    The scaling of free convection heat transfer is investigated. The non-dimensional groups for Boussinesq and fully compressible variable property free convection, driven by isothermal surfaces, are derived using a previously published novel method of dimensional analysis. Both flows are described by a different set of groups. The applicability of each flow description is experimentally investigated for the case of the isothermal horizontal cylinder in an air-filled isothermal enclosure. The approach taken to the boundary conditions differs from that of previous investigations. Here, it is argued that the best definition of the boundary conditions is achieved for heat exchange between the cylinder and the enclosure rather than the cylinder and an arbitrarily chosen fluid region. The enclosure temperature is shown both analytically and experimentally to affect the Nusselt number. The previously published view that the Boussinesq approximation has only a limited range of application is confirmed, and the groups derived for variable property compressible free convection are demonstrated to be correct experimentally. A new correlation for horizontal cylinder Nusselt number prediction is presented.

  1. Intermittent heat instabilities in an air plume

    NASA Astrophysics Data System (ADS)

    Le Mouël, Jean-Louis; Kossobokov, Vladimir G.; Perrier, Frederic; Morat, Pierre

    2016-08-01

    We report the results of heating experiments carried out in an abandoned limestone quarry close to Paris, in an isolated room of a volume of about 400 m3. A heat source made of a metallic resistor of power 100 W was installed on the floor of the room, at distance from the walls. High-quality temperature sensors, with a response time of 20 s, were fixed on a 2 m long bar. In a series of 24 h heating experiments the bar had been set up horizontally at different heights or vertically along the axis of the plume to record changes in temperature distribution with a sampling time varying from 20 to 120 s. When taken in averages over 24 h, the temperatures present the classical shape of steady-state plumes, as described by classical models. On the contrary, the temperature time series show a rich dynamic plume flow with intermittent trains of oscillations, spatially coherent, of large amplitude and a period around 400 s, separated by intervals of relative quiescence whose duration can reach several hours. To our knowledge, no specific theory is available to explain this behavior, which appears to be a chaotic interaction between a turbulent plume and a stratified environment. The observed behavior, with first-order factorization of a smooth spatial function with a global temporal intermittent function, could be a universal feature of some turbulent plumes in geophysical environments.

  2. 40 CFR 86.167-17 - AC17 Air Conditioning Emissions Test Procedure.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... New Otto-Cycle Complete Heavy-Duty Vehicles; Test Procedures § 86.167-17 AC17 Air Conditioning...-conditioning cycle, a 30-minute soak period under simulated solar heat, followed by measurement of emissions over an SC03 drive cycle and a Highway Fuel Economy Driving Schedule (HFET) drive cycle. The vehicle...

  3. Self-heating of dried industrial wastewater sludge: lab-scale investigation of supporting conditions.

    PubMed

    Della Zassa, M; Biasin, A; Zerlottin, M; Refosco, D; Canu, P

    2013-06-01

    We studied the reactivity of dried sludge produced by treatment of wastewater, mainly from tanneries. The solids transformations have been first characterized with thermal analysis (TGA and DSC) proving that exothermic transformation takes place at fairly low temperature, before the total organic combustion that occurs in air above 400°C. The onset of low temperature reactions depends on the heating rate and it can be below 100°C at very small heating rate. Then, we reproducibly determined the conditions to trigger dried sludge self-heating at the laboratory scale, on samples in the 0.2-0.3 kg size. Thermal insulation, some aeration and addition of water are key factors. Mastering the self-heating at this scale allows more detailed investigations as well as manipulation of conditions, to understand its nature, course and remediation. Here we report proves and discussions on the role of air, water, particle size, porosity and biological activity, as well as proving that also dried sludge from similar sources lead to self-heating. Tests demonstrate that air and water are simultaneously required for significant self-heating to occur. They act in diverging directions, both triggering the onset of the reactions and damping the temperature rise, by supporting heat loss. The higher the O2 concentration, the higher the solids heating rate. More added water prolongs the exothermic phase. Further additions of water can reactivate the material. Water emphasizes the exothermic processes, but it is not sufficient to start it in an air-free atmosphere. The initial solid moisture concentration (between 8% and 15%) affects the onset of self-heating as intuitive. The sludge particles size strongly determines the strength and extent of the heat release, indicating that surface reactions are taking place. In pelletized particles, limitations to water and air permeability mitigates the reaction course.

  4. Influence of Ventilation Ratio on Desiccant Air Conditioning System's Efficiency Performance

    NASA Astrophysics Data System (ADS)

    Tran, Thien Nha; Akisawa, Atsushi; Kashiwagi, Takao; Hamamoto, Yoshinori

    Ventilation air is a concern for engineers since ventilated air controls indoor air contamination; additional ventilation, however, increases the energy consumption of buildings. The study investigates the energy efficiency performance of the desiccant dehumidification air conditioning system in the context of ventilation for a hot-humid climate such as summer in Japan. The investigation focuses on the variable ratio of ventilation air as required by the application of air conditioning system. The COP of the desiccant air conditioning system is determined. The evaluation is subsequently performed by comparing the desiccant based system with the conventional absorption cooling system and the vapor compression cooling system. Based on 12 desiccant rotor simulations, it is found that the desiccant regeneration temperature required varies between 47°C to 85°C as ventilation ratio increases from 0. 0 to 100%, and up to 52. 5°C as the ventilation ratio achieves 14%. The heat required for regenerating desiccant accounts for 55% and higher of the system's total heat consumption; the system is expected to be energy efficient by using wasted heat from the absorption chiller for desiccant regeneration; and its energy efficiency expands as the ratio of ventilation air rises above 15% compared with the conventional absorption cooling system. The energy efficiency also benefits as the ratio rises beyond 70% against the conventional vapor compression cooling system.

  5. Dry/wet performance of a plate-fin air-cooled heat exchanger with continuous corrugated fins

    SciTech Connect

    Hauser, S.G.; Kreid, D.K.; Johnson, B.M.

    1981-01-01

    The performance and operating characteristics of a plate-fin heat exchanger in dry/wet or deluge operations was experimentally determined. Development of the deluge heat/mass transfer model continued. The experiments were conducted in a specially-designed wind tunnel at the PNL. Air that was first heated and humidified to specified conditions was circulated at a controlled rate through a 2 ft x 6 ft heat exchanger module. The heat exchanger used in the tests was a wavy surface, plate fin on tube configuration. Hot water was circulated through the tubes at high flow rates to maintain an essentially isothermal condition on the tube side. Deionized water sprayed on the top of the vertically oriented plate fins was collected at the bottom of the core and recirculated. Instrumentation was provided for measurement of flow rates and thermodynamic conditions in the air, in the core circulation water, and in the deluge water. Measurements of the air side pressure drop and heat rejection rate were made as a function of air flow rate, air inlet temperature and humidity, deluge water flow rate, and the core inclination from the vertical. An overall heat transfer coefficient and an effective deluge film convective coefficient was determined. The deluge model, for predicting heat transfer from a wet finned heat exchanger was further developed and refined, and a major extension of the model was formulated that permits simultaneous calculation of both the heat transfer and evaporation rates from the wetted surface. The experiments showed an increase in the heat rejection rate due to wetting, accompanied by a proportional increase in the air side pressure drop. For operation at the same air side pressure drop, the enhancement ratio Q/sub w//Q/sub d/ varied between 2 and 5 for the conditions tested. Thus, the potential enhancement of heat transfer due to wetting can be substantial.

  6. 21 CFR 211.46 - Ventilation, air filtration, air heating and cooling.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Ventilation, air filtration, air heating and cooling. 211.46 Section 211.46 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS: GENERAL CURRENT GOOD MANUFACTURING PRACTICE FOR FINISHED...

  7. Heat transfer analysis for high temperature preheated air combustion in furnace

    SciTech Connect

    Taniguchi, H.; Arai, N.; Kudo, K.; Aoki, K.

    1998-07-01

    The high temperature preheated air combustion system has been recently developed and techniques of heat transfer analysis pose important problems in its application to the industrial field. The three-dimensional simulation has to be introduced, therefore, for the above heat transfer analysis with combustion, fluid flow and heat transfer. Another effort may be introduced to reduce the computing time of heat transfer analysis by means of some simplification in software of chemical simulation, etc. If one has introduced the application of the high temperature preheated air combustion technique in natural gas firing, the non-gray radiation should be applied to each radiant gas of CO{sub 2}, H{sub 2}O, CO or CH{sub 4}, in this analysis. Finally, the authors would like to refer the inverse computation of radiation heat transfer in furnace which has been proposed by one of the authors and another researcher in the United States. If one tries to estimate the performance of an industrial furnace, the heat flux on heating material is the most important factor which has been fixed as input data of computation. Therefore, the heat transfer analysis may be sometimes reversed by fixed data of heat flux and proceeded by trial and error method, in order to obtain the initial condition of heat source and furnace facilities.

  8. Air Conditioner Charging. Automotive Mechanics. Air Conditioning. Instructor's Guide [and] Student Guide.

    ERIC Educational Resources Information Center

    Spignesi, B.

    This instructional package, one in a series of individualized instructional units on automobile air conditioning, consists of a student guide and an instructor guide dealing with air conditioning charging. Covered in the module are checking the air conditioning system for leaks, checking and adding refrigerant oil as needed, evacuating the system,…

  9. DEVELOPMENT OF A LINEAR COMPRESSOR FOR AIR CONDITIONERS AND HEAT PUMPS

    EPA Science Inventory

    The report discusses the design, building, testing, and delivering to the Environmental Protection Agency of a linear compressor for operation in a 3.0- ton (10.5 kW) residential air-conditioning and heat pumping system. The compressor design evolved from a linear resonant piston...

  10. Heat transfer properties, moisture loss, product yield, and soluble proteins in chicken breast patties during air convection cooking.

    PubMed

    Murphy, R Y; Johnson, E R; Duncan, L K; Clausen, E C; Davis, M D; March, J A

    2001-04-01

    Chicken breast patties were processed in an air convection oven at air temperatures of 149 to 218 C, air velocities of 7.1 to 12.7 m3/min, and air relative humidities of 40 to 95%. The air humidity was controlled via introducing steam into the oven. The patties were processed to a final center temperature of 50 to 80 C. Heat flux, heat transfer coefficient, moisture loss in the cooked chicken patties, the product yield, and the changes of soluble proteins in the product were evaluated for the cooking system. During cooking, heat flux varied with the processing time. Heat flux increased with increasing air humidity. The effective heat transfer coefficient was obtained for different cooking conditions. Air humidity in the oven affected the heat transfer coefficient. The moisture loss in the cooked products increased with increasing the final product temperature and the oven air temperature. The soluble proteins in the cooked patties decreased with increasing the final product temperature. Increasing humidity increased heat transfer coefficient and therefore reduced cooking time. Reducing oven temperature, reducing internal temperature, and increasing air humidity increased the product yield. Soluble proteins might be used as an indicator for the degree of cooking. The results from this study are important for evaluating commercial thermal processes and improving product yields.

  11. The effect of external boundary conditions on condensation heat transfer in rotating heat pipes

    NASA Technical Reports Server (NTRS)

    Daniels, T. C.; Williams, R. J.

    1979-01-01

    Experimental evidence shows the importance of external boundary conditions on the overall performance of a rotating heat pipe condenser. Data are presented for the boundary conditions of constant heat flux and constant wall temperature for rotating heat pipes containing either pure vapor or a mixture of vapor and noncondensable gas as working fluid.

  12. Preservation of Cognitive Performance with Age during Exertional Heat Stress under Low and High Air Velocity

    PubMed Central

    Wright Beatty, Heather E.; Keillor, Jocelyn M.; Hardcastle, Stephen G.; Boulay, Pierre; Kenny, Glen P.

    2015-01-01

    Older adults may be at greater risk for occupational injuries given their reduced capacity to dissipate heat, leading to greater thermal strain and potentially cognitive decrements. Purpose. To examine the effects of age and increased air velocity, during exercise in humid heat, on information processing and attention. Methods. Nine young (24 ± 1 years) and 9 older (59 ± 1 years) males cycled 4 × 15 min (separated by 15 min rest) at a fixed rate of heat production (400 W) in humid heat (35°C, 60% relative humidity) under 0.5 (low) and 3.0 (high) m·s−1 air velocity wearing coveralls. At rest, immediately following exercise (end exercise), and after the final recovery, participants performed an abbreviated paced auditory serial addition task (PASAT, 2 sec pace). Results. PASAT numbers of correct responses at end exercise were similar for young (low = 49 ± 3; high = 51 ± 3) and older (low = 46 ± 5; high = 47 ± 4) males and across air velocity conditions, and when scored relative to age norms. Psychological sweating, or an increased sweat rate with the administration of the PASAT, was observed in both age groups in the high condition. Conclusion. No significant decrements in attention and speeded information processing were observed, with age or altered air velocity, following intermittent exercise in humid heat. PMID:25874223

  13. Effect of heterogenous and homogenous air gaps on dry heat loss through the garment.

    PubMed

    Mert, Emel; Psikuta, Agnes; Bueno, Marie-Ange; Rossi, René M

    2015-11-01

    In real life conditions, the trapped air between the human body and the garment has uneven shape and vary over the body parts as a consequence of the complex geometry of the human body. However, the existing clothing models assume uniform air layer between the human body and the garment or its full contact, which may cause large error in the output of simulations. Therefore, the aim of this study was to investigate the effect of a heterogeneous vertical air gap with different configuration of folds (size and frequency) on dry heat loss using a heated cylinder (Torso). It was found that the presence of folds in the garment led to an increased heat loss from the body in comparison to a homogeneous air gap of comparable size. Interestingly, the size of folds did not have an influence on the dry heat loss. Additionally, the effect of the contact area on dry heat loss became important when exceeding a threshold of about 42%. The results from this study are useful for modelling of a realistic dry heat loss through the clothing and contribute to the improvement of design of protective and active sport garments.

  14. Effect of heterogenous and homogenous air gaps on dry heat loss through the garment

    NASA Astrophysics Data System (ADS)

    Mert, Emel; Psikuta, Agnes; Bueno, Marie-Ange; Rossi, René M.

    2015-11-01

    In real life conditions, the trapped air between the human body and the garment has uneven shape and vary over the body parts as a consequence of the complex geometry of the human body. However, the existing clothing models assume uniform air layer between the human body and the garment or its full contact, which may cause large error in the output of simulations. Therefore, the aim of this study was to investigate the effect of a heterogeneous vertical air gap with different configuration of folds (size and frequency) on dry heat loss using a heated cylinder (Torso). It was found that the presence of folds in the garment led to an increased heat loss from the body in comparison to a homogeneous air gap of comparable size. Interestingly, the size of folds did not have an influence on the dry heat loss. Additionally, the effect of the contact area on dry heat loss became important when exceeding a threshold of about 42 %. The results from this study are useful for modelling of a realistic dry heat loss through the clothing and contribute to the improvement of design of protective and active sport garments.

  15. EnergyPlus Air Source Integrated Heat Pump Model

    SciTech Connect

    Shen, Bo; Adams, Mark B.; New, Joshua Ryan

    2016-03-30

    This report summarizes the development of the EnergyPlus air-source integrated heat pump model. It introduces its physics, sub-models, working modes, and control logic. In addition, inputs and outputs of the new model are described, and input data file (IDF) examples are given.

  16. Heat tolerance of higher plants cenosis to damaging air temperatures

    NASA Astrophysics Data System (ADS)

    Ushakova, Sofya; Shklavtsova, Ekaterina

    Designing sustained biological-technical life support systems (BTLSS) including higher plants as a part of a photosynthesizing unit, it is important to foresee the multi species cenosis reaction on either stress-factors. Air temperature changing in BTLSS (because of failure of a thermoregulation system) up to the values leading to irreversible damages of photosynthetic processes is one of those factors. However, it is possible to increase, within the certain limits, the plant cenosis tolerance to the unfavorable temperatures’ effect due to the choice of the higher plants possessing resistance both to elevated and to lowered air temperatures. Besides, the plants heat tolerance can be increased when subjecting them during their growing to the hardening off temperatures’ effect. Thus, we have come to the conclusion that it is possible to increase heat tolerance of multi species cenosis under the damaging effect of air temperature of 45 (°) СC.

  17. Temperature distribution of air source heat pump barn with different air flow

    NASA Astrophysics Data System (ADS)

    He, X.; Li, J. C.; Zhao, G. Q.

    2016-08-01

    There are two type of airflow form in tobacco barn, one is air rising, the other is air falling. They are different in the structure layout and working principle, which affect the tobacco barn in the distribution of temperature field and velocity distribution. In order to compare the temperature and air distribution of the two, thereby obtain a tobacco barn whose temperature field and velocity distribution are more uniform. Taking the air source heat pump tobacco barn as the investigated subject and establishing relevant mathematical model, the thermodynamics of the two type of curing barn was analysed and compared based on Fluent. Provide a reasonable evidence for chamber arrangement and selection of outlet for air source heat pump tobacco barn.

  18. Highly integrated system solutions for air conditioning.

    PubMed

    Bartz, Horst

    2002-08-01

    Starting with the air handling unit, new features concerning energy efficient air treatment in combination with optimisation of required space were presented. Strategic concepts for the supply of one or more operating suites with a modular based air handling system were discussed. The operating theatre ceiling itself, as a major part of the whole integrated system, is no longer a simple air outlet: additional functions have been added in so-called media-bridges, so that it has changed towards a medical apparatus serving as a daily tool for the physicians and the operating staff. Last and not least, the servicing of the whole system has become an integral part of the facility management with remote access to the main functions and controls. The results are understood to be the basis for a discussion with specialists from medical and hygienic disciplines as well as with technically orientated people representing the hospital and building-engineering.

  19. Air-Conditioning for Electric Vehicles

    NASA Technical Reports Server (NTRS)

    Popinski, Z.

    1984-01-01

    Combination of ammonia-absorption refrigerator, roof-mounted solar collectors, and 200 degrees C service electric-vehicle motor provides evaporative space-heating/space cooling system for electric-powered and hybrid fuel/electric vehicles.

  20. Parametric study of fluid flow and heat transfer over louvered fins of air heat pump evaporator

    NASA Astrophysics Data System (ADS)

    Muszyński, Tomasz; Kozieł, Sławomir Marcin

    2016-09-01

    Two-dimensional numerical investigations of the fluid flow and heat transfer have been carried out for the laminar flow of the louvered fin-plate heat exchanger, designed to work as an air-source heat pump evaporator. The transferred heat and the pressure drop predicted by simulation have been compared with the corresponding experimental data taken from the literature. Two dimensional analyses of the louvered fins with varying geometry have been conducted. Simulations have been performed for different geometries with varying louver pitch, louver angle and different louver blade number. Constant inlet air temperature and varying velocity ranging from 2 to 8 m/s was assumed in the numerical experiments. The air-side performance is evaluated by calculating the temperature and the pressure drop ratio. Efficiency curves are obtained that can be used to select optimum louver geometry for the selected inlet parameters. A total of 363 different cases of various fin geometry for 7 different air velocities were investigated. The maximum heat transfer improvement interpreted in terms of the maximum efficiency has been obtained for the louver angle of 16 ° and the louver pitch of 1.35 mm. The presented results indicate that varying louver geometry might be a convenient way of enhancing performance of heat exchangers.

  1. Controlling energy in an air-conditioning system

    SciTech Connect

    Lamar, R. H.; Davis, R. A.

    1985-03-26

    A system for minimizing the energy consumption in a central air conditioning unit incorporating a refrigeration unit which is normally in operation to supplement or substitute for the cooling effect of outside air. The system employs sensor to sense the enthalpy of the return air entering the unit from the work space, the outside air entering the unit from the outside, and the washer air discharged into the work space from the unit, and controls the operation of the unit in accordance with the relative levels of enthalpy at these points. The energy content of the discharged washer air may be modified by modulating dampers controlling the proportion of outside and recirculated air, and also by modulating the washer which provides evaporative cooling and, in addition, cooling by refrigeration. The controls keep the outdoor air dampers normally closed when the enthalpy of the outdoor air is higher than the enthalpy of the return air and keep the outdoor air dampers normally opened when the enthalpy of the outside air is less than the enthalpy of the return air. Regulating means provide auxiliary signals to modulate the dampers to avoid adversely affecting the conditioning effect of the washer air in the work area, and also to enable the continued operation of the refrigeration unit without damage when the system would otherwise call for operating the unit at less than the minimum safe operating load.

  2. Relevance of air conditioning for 222Radon concentration in shops of the Savona Province, Italy.

    PubMed

    Panatto, Donatella; Ferrari, Paola; Lai, Piero; Gallelli, Giovanni

    2006-02-15

    Radon (222Rn) concentration was evaluated in shops of the Savona Province, Italy, between summer 2002 and winter 2002-2003. The main characteristics of each shops were recorded through a questionnaire investigating the ventilation rate and factors related to 222Rn precursors in the soil and the construction materials. The main variables that were related to radon concentration were the following: age of the building, level of the shop above ground, season of the year, wind exposure, active windows, and type of heating system. Shops equipped with individual air heating/conditioning systems exhibited radon concentrations that were three times higher than those of shops heated by centralized furnaces. Our data indicate that the level of pollution in the shops was of medium level, with an expected low impact on the salespersons' health. Only in wintertime, the action level of 200 Bq m(-3) for the confined environment was reached in 10 shops equipped with individual air heating/conditioning systems.

  3. Repair Air Conditioning, COC Bldg 2605, First Floor Plan. By ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Repair Air Conditioning, COC Bldg 2605, First Floor Plan. By Strategic Air Command, Civil Engineering. Drawing no. R-156, sheet no. 2 of 4, 15 August 1968; project no. MAR-125-8;CE-572; file drawer 2605-6. Scale one-eighth inch to one foot. 29x41 inches. pencil on paper 405 - March Air Force Base, Strategic Air Command, Combat Operations Center, 5220 Riverside Drive, Moreno Valley, Riverside County, CA

  4. Repair Air Conditioning, COC Bldg 2605, Basement Plan. By Strategic ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Repair Air Conditioning, COC Bldg 2605, Basement Plan. By Strategic Air Command, Civil Engineering. Drawing no. R-156, sheet no. 1 of 4, 15 August 1968; project no. MAR-125-8;CE-572; file drawer 2605-5. Last revised 31 August 1968?. Scale one-eighth inch and one-quarter inch to one foot. 29x41 inches. pencil on paper - March Air Force Base, Strategic Air Command, Combat Operations Center, 5220 Riverside Drive, Moreno Valley, Riverside County, CA

  5. Estimating ocean-air heat fluxes during cold air outbreaks by satellite

    NASA Technical Reports Server (NTRS)

    Chou, S. H.; Atlas, D.

    1981-01-01

    Nomograms of mean column heating due to surface sensible and latent heat fluxes were developed. Mean sensible heating of the cloud free region is related to the cloud free path (CFP, the distance from the shore to the first cloud formation) and the difference between land air and sea surface temperatures, theta sub 1 and theta sub 0, respectively. Mean latent heating is related to the CFP and the difference between land air and sea surface humidities q sub 1 and q sub 0 respectively. Results are also applicable to any path within the cloud free region. Corresponding heat fluxes may be obtained by multiplying the mean heating by the mean wind speed in the boundary layer. The sensible heating estimated by the present method is found to be in good agreement with that computed from the bulk transfer formula. The sensitivity of the solutions to the variations in the initial coastal soundings and large scale subsidence is also investigated. The results are not sensitive to divergence but are affected by the initial lapse rate of potential temperature; the greater the stability, the smaller the heating, other things being equal. Unless one knows the lapse rate at the shore, this requires another independent measurement. For this purpose the downwind slope of the square of the boundary layer height is used, the mean value of which is also directly proportional to the mean sensible heating. The height of the boundary layer should be measurable by future spaceborn lidar systems.

  6. Demonstration & Testing of ClimaStat for Improved DX Air-Conditioning Efficiency

    DTIC Science & Technology

    2013-04-01

    46 Figure 6.4-2 a(CCAFS) and b(MCASB) ASHRAE Standard 55 Comfort Zone data. comparison...Space Command ASHRAE – American Society of Heating, Refrigerating, and Air-Conditioning CCAFS- Cape Canaveral Air Force Station COP – Coefficient of...humidity, carbon-dioxide, and comfort. Ventilation was acceptable according to ASHRAE Standard 62 defined CO2 level 100% of the time at both sites

  7. Ground performance of air conditioning and water recycle system for a Space Plant Box.

    PubMed

    Tani, A; Okuma, T; Goto, E; Kitaya, Y; Saito, T; Takahashi, H

    2001-01-01

    Researchers from 5 Japanese universities have developed a plant growth facility (Space Plant Box) for seed to seed experiments under microgravity. The breadboard model of the Space Plant Box was fabricated by assembling subsystems developed for microgravity. The subsystems include air conditioning and water recycle system, air circulation system, water and nutrient delivery system, lighting system and plant monitoring system. The air conditioning and water recycle system is simply composed of a single heat exchanger, two fans and hydrophilic fibrous strings. The strings allow water movement from the cooler fin in the Cooling Box to root supporting materials in the Plant Growth Chamber driven by water potential deficit. Relative humidity in the Plant Growth Chamber can be changed over a wide range by controlling the ratio of latent heat exchange to sensible heat exchange on the cooling fin of the heat exchanger. The transpiration rate was successfully measured by circulating air inside the Plant Growth Chamber only. Most water was recycled and a small amount of water needed to be added from the outside. The simple, air conditioning and water recycle system for the Space Plant Box showed good performance through a barley (Hordeum vulgare L.) growth experiment.

  8. Recent Research in Compression Refrigeration Cycle Air Source Heat Pumps.

    NASA Astrophysics Data System (ADS)

    Arai, Akira; Senshu, Takao

    The most important theme for heat pump air conditioners is the improvement of energy saving and comfort. Recently, cycle components, especially compressores and heat exchangers have been improved greatly in their performance and efficiency. As for compressors, large progress in their efficiencies have been made by detailed analysises such as mechanical losses and by the development of a new type compression mechanism. As for heat exchangers, various high heat transfer surfaces have been developed together with the improvement of the production technologies for them. Further, the effect of the capacity-modulated cycle is evaluated quantitatively through the improvements of static and transient cycle simulation technologies. And in order to realize this cffect, the electrically driven expansion valves heve been marketed. This review introduces the trends of these energy-saving technologies as well as comfort improvement studies.

  9. The Influence of Meteorological Conditions on Air Pollution

    ERIC Educational Resources Information Center

    Campbell, N. A.; Gipps, J.

    1975-01-01

    Explains the distribution of air pollutants as related to such meteorological conditions as temperature inversions, ground inversion, and wind velocity. Uses a power station to illustrate the effect of some of the meteorological conditions mentioned. (GS)

  10. Heat transfer characteristics of laminar methane/air flame impinging normal to a cylindrical surface

    SciTech Connect

    Chander, Subhash; Ray, Anjan

    2007-11-15

    An experimental study has been conducted to determine the heat transfer characteristics of methane/air laminar flames impinging normal to a cylindrical surface. Effects of variations in the values of Reynolds number (Re = 600-1300), equivalence ratio ({phi} = 0.8-1.3), dimensionless separation distance (H/d = 1-5), and burner diameter to cylinder diameter ratio (d/D = 0.0538-0.1076) have been investigated. Three important configurations, viz., flame inner reaction zone far away, just touching and intercepted by the impingement surface, were examined in detail. High stagnation point heat fluxes were obtained when tip of the flame inner reaction zone just touched the target surface. Stagnation point heat fluxes were either zero or negative when the inner reaction zone was intercepted by the impingement surface. An off-stagnation peak in heat flux was obtained at moderate separation distances above the flame tip. Both stagnation point and peak heat fluxes increased with Re when the inner reaction zone length was less than the separation distance. Heat fluxes in the wall-jet region were high at high Re. Maximum heat fluxes were obtained for initially fuel-rich mixture conditions due to entrainment of the surrounding air. Smaller burner diameters produced high heat flux at the stagnation region for fixed Reynolds number and opposite trends were seen in the wall-jet region. A secondary rise in stagnation point heat flux was obtained at larger separation distances. This secondary rise in heat flux was quite significant for larger burner diameters and at low flow rates. Correlations were developed for stagnation point heat flux. Results were also compared with flat plate under identical operating conditions. (author)

  11. Section 609 of the Clean Air Act: Motor Vehicle Air Conditioning

    EPA Pesticide Factsheets

    Fact sheet provides a general overview of EPA regulations under Section 609 of the Clean Air Act, which is focused on preventing the release of refrigerants during the servicing of motor vehicle air-conditioning systems and similar appliances.

  12. Air Conditioning and Refrigeration Program Articulation, 1981-1982.

    ERIC Educational Resources Information Center

    Dallas County Community Coll. District, TX.

    Based on a survey of high school programs and courses in the Dallas County Community College District (DCCCD), this articulated program is designed to prepare students for entry-level employment in the air conditioning and refrigeration industry, including residential and commercial air conditioning and commercial refrigeration. The skills and…

  13. Application of solar energy to air-conditioning

    NASA Technical Reports Server (NTRS)

    Harstad, A. J.; Nash, J. M.

    1978-01-01

    Results of survey of application of solar energy to air-conditioning systems are summarized in report. Survey reviewed air-conditioning techniques that are most likely to find residential applications and that are compatible with solar-energy systems being developed.

  14. Air-sea heat exchange, an element of the water cycle

    NASA Technical Reports Server (NTRS)

    Chahine, M. T.

    1984-01-01

    The distribution and variation of water vapor, clouds and precipitation are examined. Principal driving forces for these distributions are energy exchange and evaporation at the air-sea interface, which are also important elements of air-sea interaction studies. The overall aim of air-sea interaction studies is to quantitatively determine mass, momentum and energy fluxes, with the goal of understanding the mechanisms controlling them. The results of general circulation simulations indicate that the atmosphere in mid-latitudes responds to changes in the oceanic surface conditions in the tropics. This correlation reflects the strong interaction between tropical and mid-latitude conditions caused by the transport of heat and momentum from the tropics. Studies of air-sea exchanges involve a large number of physica, chemical and dynamical processes including heat flux, radiation, sea-surface temperature, precipitation, winds and ocean currents. The fluxes of latent heat are studied and the potential use of satellite data in determining them evaluated. Alternative ways of inferring heat fluxes will be considered.

  15. Turbulent heat and mass transfers across a thermally stratified air-water interface

    NASA Technical Reports Server (NTRS)

    Papadimitrakis, Y. A.; Hsu, Y.-H. L.; Wu, J.

    1986-01-01

    Rates of heat and mass transfer across an air-water interface were measured in a wind-wave research facility, under various wind and thermal stability conditions (unless otherwise noted, mass refers to water vapor). Heat fluxes were obtained from both the eddy correlation and the profile method, under unstable, neutral, and stable conditions. Mass fluxes were obtained only under unstable stratification from the profile and global method. Under unstable conditions the turbulent Prandtl and Schmidt numbers remain fairly constant and equal to 0.74, whereas the rate of mass transfer varies linearly with bulk Richardson number. Under stable conditions the turbulent Prandtl number rises steadily to a value of 1.4 for a bulk Richardson number of about 0.016. Results of heat and mass transfer, expressed in the form of bulk aerodynamic coefficients with friction velocity as a parameter, are also compared with field data.

  16. Solar-powered air-conditioning

    NASA Technical Reports Server (NTRS)

    Clark, D. C.; Rousseau, J.

    1977-01-01

    Report focuses on recent study on development of solar-powered residential air conditioners and is based on selected literature through 1975. Its purposes are to characterize thermal and mechanical systems that might be useful in development of Rankine-cycle approach to solar cooling and assessment of a Lithium Bromide/Water absorption cycle system.

  17. The relationship between radiant heat, air temperature and thermal comfort at rest and exercise.

    PubMed

    Guéritée, Julien; Tipton, Michael J

    2015-02-01

    The aims of the present work were to investigate the relationships between radiant heat load, air velocity and body temperatures with or without coincidental exercise to determine the physiological mechanisms that drive thermal comfort and thermoregulatory behaviour. Seven male volunteers wearing swimming trunks in 18°C, 22°C or 26°C air were exposed to increasing air velocities up to 3 m s(-1) and self-adjusted the intensity of the direct radiant heat received on the front of the body to just maintain overall thermal comfort, at rest or when cycling (60 W, 60 rpm). During the 30 min of the experiments, skin and rectal temperatures were continuously recorded. We hypothesized that mean body temperature should be maintained stable and the intensity of the radiant heat and the mean skin temperatures would be lower when cycling. In all conditions, mean body temperature was lower when facing winds of 3 m s(-1) than during the first 5 min, without wind. When facing winds, in all but the 26°C air, the radiant heat was statistically higher at rest than when exercising. In 26°C air mean skin temperature was lower at rest than when exercising. No other significant difference was observed. In all air temperatures, high correlation coefficients were observed between the air velocity and the radiant heat load. Other factors that we did not measure may have contributed to the constant overall thermal comfort status despite dropping mean skin and body temperatures. It is suggested that the allowance to behaviourally adjust the thermal environment increases the tolerance of cold discomfort.

  18. Development of an Air-Source Heat Pump Integrated with a Water Heating / Dehumidification Module

    SciTech Connect

    Rice, C Keith; Uselton, Robert B.; Shen, Bo; Baxter, Van D; Shrestha, Som S

    2014-01-01

    A residential-sized dual air-source integrated heat pump (AS-IHP) concept is under development in partnership between ORNL and a manufacturer. The concept design consists of a two-stage air-source heat pump (ASHP) coupled on the air distribution side with a separate novel water heating/dehumidification (WH/DH) module. The motivation for this unusual equipment combination is the forecast trend for home sensible loads to be reduced more than latent loads. Integration of water heating with a space dehumidification cycle addresses humidity control while performing double-duty. This approach can be applied to retrofit/upgrade applications as well as new construction. A WH/DH module capable of ~1.47 L/h water removal and ~2 kW water heating capacity was assembled by the manufacturer. A heat pump system model was used to guide the controls design; lab testing was conducted and used to calibrate the models. Performance maps were generated and used in a TRNSYS sub-hourly simulation to predict annual performance in a well-insulated house. Annual HVAC/WH energy savings of ~35% are predicted in cold and hot-humid U.S. climates compared to a minimum efficiency baseline.

  19. Radiant heat test of Perforated Metal Air Transportable Package (PMATP).

    SciTech Connect

    Gronewald, Patrick James; Oneto, Robert; Mould, John; Pierce, Jim Dwight

    2003-08-01

    A conceptual design for a plutonium air transport package capable of surviving a 'worst case' airplane crash has been developed by Sandia National Laboratories (SNL) for the Japan Nuclear Cycle Development Institute (JNC). A full-scale prototype, designated as the Perforated Metal Air Transport Package (PMATP) was thermally tested in the SNL Radiant Heat Test Facility. This testing, conducted on an undamaged package, simulated a regulation one-hour aviation fuel pool fire test. Finite element thermal predictions compared well with the test results. The package performed as designed, with peak containment package temperatures less than 80 C after exposure to a one-hour test in a 1000 C environment.

  20. Development of solar driven absorption air conditioners and heat pumps

    NASA Astrophysics Data System (ADS)

    Dao, K.; Wahlig, M.; Wali, E.; Rasson, J.; Molishever, E.

    1980-03-01

    The development of absorption refrigeration systems for solar active heating and cooling applications is discussed. The approaches investigated are those using air-cooled condenser-absorber and those leading to coefficient of performances (COP) that increase continuously with heat source temperature. This is primarily an experimental project, with the emphasis on designing, fabricating and testing absorption chillers in operating regimes that are particularly suited for solar energy applications. Its demonstrated that the conventional single-effect ammonia-water absorption cycle can be used (with minor modifications) for solar cooling.

  1. An Investigation of Energy Consumption and Cost in Large Air-Conditioned Buildings. An Interim Report.

    ERIC Educational Resources Information Center

    Milbank, N. O.

    Two similarly large buildings and air conditioning systems are comparatively analyzed as to energy consumption, costs, and inefficiency during certain measured periods of time. Building design and velocity systems are compared to heating, cooling, lighting and distribution capabilities. Energy requirements for pumps, fans and lighting are found to…

  2. Air conditioning system with supplemental ice storing and cooling capacity

    DOEpatents

    Weng, Kuo-Lianq; Weng, Kuo-Liang

    1998-01-01

    The present air conditioning system with ice storing and cooling capacity can generate and store ice in its pipe assembly or in an ice storage tank particularly equipped for the system, depending on the type of the air conditioning system. The system is characterized in particular in that ice can be produced and stored in the air conditioning system whereby the time of supplying cooled air can be effectively extended with the merit that the operation cycle of the on and off of the compressor can be prolonged, extending the operation lifespan of the compressor in one aspect. In another aspect, ice production and storage in great amount can be performed in an off-peak period of the electrical power consumption and the stored ice can be utilized in the peak period of the power consumption so as to provide supplemental cooling capacity for the compressor of the air conditioning system whereby the shift of peak and off-peak power consumption can be effected with ease. The present air conditioning system can lower the installation expense for an ice-storing air conditioning system and can also be applied to an old conventional air conditioning system.

  3. The Calculation of the Heat Required for Wing Thermal Ice Prevention in Specified Icing Conditions

    NASA Technical Reports Server (NTRS)

    Bergrun, Norman R.; Jukoff, David; Schlaff, Bernard A.; Neel, Carr B., Jr.

    1947-01-01

    Flight tests were made in natural icing conditions with two 8-ft-chord heated airfoils of different sections. Measurements of meteorological variables conducive to ice formation were made simultaneously with the procurement of airfoil thermal data. The extent of knowledge on the meteorology of icing, the impingement of water drops on airfoil surfaces, and the processes of heat transfer and evaporation from a wetted airfoil surface have been increased to a point where the design of heated wings on a fundamental, wet-air basis now can be undertaken with reasonable certainty.

  4. Heat-transfer processes in air-cooled engine cylinders

    NASA Technical Reports Server (NTRS)

    Pinkel, Benjamin

    1938-01-01

    From a consideration of heat-transfer theory, semi-empirical expressions are set up for the transfer of heat from the combustion gases to the cylinder of an air-cooled engine and from the cylinder to the cooling air. Simple equations for the average head and barrel temperatures as functions of the important engine and cooling variables are obtained from these expressions. The expressions involve a few empirical constants, which may be readily determined from engine tests. Numerical values for these constants were obtained from single-cylinder engine tests for cylinders of the Pratt & Whitney 1535 and 1340-h engines. The equations provide a means of calculating the effect of the various engine and cooling variables on the cylinder temperatures and also of correlating the results of engine cooling tests. An example is given of the application of the equations to the correlation of cooling-test data obtained in flight.

  5. BEETIT: Building Cooling and Air Conditioning

    SciTech Connect

    2010-09-01

    BEETIT Project: The 14 projects that comprise ARPA-E’s BEETIT Project, short for “Building Energy Efficiency Through Innovative Thermodevices,” are developing new approaches and technologies for building cooling equipment and air conditioners. These projects aim to drastically improve building energy efficiency and reduce greenhouse gas emissions such as carbon dioxide (CO2) at a cost comparable to current technologies.

  6. Rubisco activase and wheat productivity under heat stress conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rubisco activase (RCA) constrains the photosynthetic potential of plants at high temperature (heat stress). We hypothesized that endogenous levels of RCA could serve as an important determinant of plant productivity under heat stress conditions. In this study, we investigated the possible relation...

  7. Experimental study of the heat transfer process of air around atmospheric arc plasma

    NASA Astrophysics Data System (ADS)

    Salimi Meidanshahi, F.; Madanipour, Kh.; Shokri, Babak

    2011-05-01

    The experimental investigation of thermodynamic properties such heat and mass transfer of plasmas has many applications in different industries. Laboratory atmospheric arc plasma is studied in this work. The refractive index of the air around the plasma is changed because of convection phenomena. When the convection creates the air flowing around the plasma, the density and consequently, the refractive index of air are distributed symmetrically. Moiré deflectometry is a technique of wave front analysis which in both Talbot effect and moiré technique is applied for measuring phase objects. Deflection of light beam passing through the inhomogeneous medium is utilized to obtain the refractive index distribution. In experimental set-up, an expanded collimated He-Ne laser propagate through the arc plasma and the around air. The temperature distribution is obtained by use of thermo-optic coefficient of air. To calculate the thermo- optic coefficient and the refractive index of air for a given wavelength of light and given atmospheric conditions (air temperature, pressure, and humidity), the Edlén equation is used. The convective heat transfer coefficient is obtained by calculating the temperature gradient on the plasma border. This method is not expensive, complicated and sensitive to environmental vibrations.

  8. Combination valance and conditioned air admission and return ducts

    SciTech Connect

    Sprout, F.C. Sr.

    1987-06-16

    This patent describes an improved air treatment system for a dwelling comprising: an air diffusion chamber associated with the ceiling and having at least a portion in a position of close proximity to an outer wall of the dwelling; an opening formed in the chamber faces downwardly in close proximity to the wall and parallels the wall for venting the chamber to the room; a conditioning unit having integral fan means generates a flow of conditioned air to the chamber; means conducts the air from the generating means to the chamber; means returns the air vented into the room to the air generating means; a suspended valance member associated with and extends below the chamber for concealment of the opening from view within the room; an auxiliary fan located in the air returning means to cause the returned air to be drawn through the air returning means and be forced into the integral fan means of the conditioning unit; the air return means comprises a network of interconnected concrete channels constructed directly in the ground to extend beneath each of the rooms of the structure and are concealed by the floor of the structure; and apertures extend through the flooring to communicate with the network of channels, the apertures are positioned to provide at least one aperture in each of the major rooms of the structure; and the network of interconnected channels additionally forms to receive service utilities for the structure.

  9. Zoning of the territory of Russia by the effectiveness of low-potential heat of the ground and atmospheric air for heating buildings

    NASA Astrophysics Data System (ADS)

    Vasilyev, G. P.; Kolesova, M. V.; Gornov, V. F.; Yurchenko, I. A.

    2016-06-01

    The article represents the results of researches to zone the territory of Russia and Europe division into districts of by efficiency of using for the heat supply of buildings of low-potential thermal energy of ground and free air and their combination. While modeling the heat regime of geothermal HPS in climatic conditions of different regions of the territory of Russia, the influence of the long-term extraction of geothermal heat energy on the ground heat regime has been taken into account as well as the influence of phase transitions of pore moisture in ground on the efficiency of operation of geothermal heat-pump heat-supply systems. Also considered were the sinking of temperatures of ground massif by long-term extraction of the heat energy from the ground as calculation parameters of the heat energy from the ground, and as calculation parameters of ground massif temperatures.

  10. Heat-tolerant rice cultivars retain grain appearance quality under free-air CO2 enrichment

    PubMed Central

    2014-01-01

    Background Heat-tolerant rice cultivars have been developed as a countermeasure to poor grain appearance quality under high temperatures. Recent studies showed that elevated CO2 concentrations (E-[CO2]) also reduce grain quality. To determine whether heat-tolerant cultivars also tolerate E-[CO2], we conducted a free-air CO2 enrichment (FACE) experiment with 12 rice cultivars differing in heat tolerance. Results The percentage of undamaged grains of five standard cultivars (Akitakomachi, Kinuhikari, Koshihikari, Matsuribare, Nipponbare) averaged 61.7% in the ambient [CO2] (AMB) plot and 51.7% in the FACE plot, whereas that of heat-tolerant cultivars (Eminokizuna, Wa2398, Kanto 257, Toyama 80, Mineharuka, Kanto 259, Saikai 290) averaged 73.5% in AMB and 71.3% in FACE. This resulted in a significant [CO2] by cultivar interaction. The percentage of white-base or white-back grains increased from 8.4% in AMB to 17.1% in FACE in the sensitive cultivars, but from only 2.1% in AMB to only 4.4% in FACE in the heat-tolerant cultivars. Conclusion Heat-tolerant cultivars retained their grain appearance quality at E-[CO2] under present air temperatures. Further improvements in appearance quality under present conditions will be needed to achieve improvements under E-[CO2], because E-[CO2] will likely lower the threshold temperature for heat stress. PMID:24920972

  11. Development of a Variable-Speed Residential Air-Source Integrated Heat Pump

    SciTech Connect

    Rice, C Keith; Shen, Bo; Munk, Jeffrey D; Ally, Moonis Raza; Baxter, Van D

    2014-01-01

    A residential air-source integrated heat pump (AS-IHP) is under development in partnership with a U.S. manufacturer. A nominal 10.6 kW (3-ton) cooling capacity variable-speed unit, the system provides both space conditioning and water heating. This multi-functional unit can provide domestic water heating (DWH) in either full condensing (FC) (dedicated water heating or simultaneous space cooling and water heating) or desuperheating (DS) operation modes. Laboratory test data were used to calibrate a vapor-compression simulation model for each mode of operation. The model was used to optimize the internal control options for efficiency while maintaining acceptable comfort conditions and refrigerant-side pressures and temperatures within allowable operating envelopes. Annual simulations were performed with the AS-IHP installed in a well-insulated house in five U.S. climate zones. The AS-IHP is predicted to use 45 to 60% less energy than a DOE minimum efficiency baseline system while meeting total annual space conditioning and water heating loads. Water heating energy use is lowered by 60 to 75% in cold to warmer climates, respectively. Plans are to field test the unit in Knoxville, TN.

  12. Modeling Validation and Control Analysis for Controlled Temperature and Humidity of Air Conditioning System

    PubMed Central

    Lee, Jing-Nang; Lin, Tsung-Min

    2014-01-01

    This study constructs an energy based model of thermal system for controlled temperature and humidity air conditioning system, and introduces the influence of the mass flow rate, heater and humidifier for proposed control criteria to achieve the controlled temperature and humidity of air conditioning system. Then, the reliability of proposed thermal system model is established by both MATLAB dynamic simulation and the literature validation. Finally, the PID control strategy is applied for controlling the air mass flow rate, humidifying capacity, and heating, capacity. The simulation results show that the temperature and humidity are stable at 541 sec, the disturbance of temperature is only 0.14°C, 0006 kgw/kgda in steady-state error of humidity ratio, and the error rate is only 7.5%. The results prove that the proposed system is an effective controlled temperature and humidity of an air conditioning system. PMID:25250390

  13. Modeling validation and control analysis for controlled temperature and humidity of air conditioning system.

    PubMed

    Lee, Jing-Nang; Lin, Tsung-Min; Chen, Chien-Chih

    2014-01-01

    This study constructs an energy based model of thermal system for controlled temperature and humidity air conditioning system, and introduces the influence of the mass flow rate, heater and humidifier for proposed control criteria to achieve the controlled temperature and humidity of air conditioning system. Then, the reliability of proposed thermal system model is established by both MATLAB dynamic simulation and the literature validation. Finally, the PID control strategy is applied for controlling the air mass flow rate, humidifying capacity, and heating, capacity. The simulation results show that the temperature and humidity are stable at 541 sec, the disturbance of temperature is only 0.14 °C, 0006 kg(w)/kg(da) in steady-state error of humidity ratio, and the error rate is only 7.5%. The results prove that the proposed system is an effective controlled temperature and humidity of an air conditioning system.

  14. Field Test of High Efficiency Residential Buildings with Ground-source and Air-source Heat Pump Systems

    SciTech Connect

    Ally, Moonis Raza; Munk, Jeffrey D; Baxter, Van D

    2011-01-01

    This paper describes the field performance of space conditioning and water heating equipment in four single-family residential structures with advanced thermal envelopes. Each structure features a different, advanced thermal envelope design: structural insulated panel (SIP); optimum value framing (OVF); insulation with embedded phase change materials (PCM) for thermal storage; and exterior insulation finish system (EIFS). Three of the homes feature ground-source heat pumps (GSHPs) for space conditioning and water heating while the fourth has a two-capacity air-source heat pump (ASHP) and a heat pump water heater (HPWH). Two of the GCHP-equipped homes feature horizontal ground heat exchange (GHX) loops that utillize the existing foundation and utility service trenches while the third features a vertical borehole with vertical u-tube GHX. All of the houses were operated under the same simulated occupancy conditions. Operational data on the house HVAC/Water heating (WH) systems are presented and factors influencing overall performance are summarized.

  15. 16 CFR Appendix I to Part 305 - Heating Performance and Cost for Central Air Conditioners

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 1 2013-01-01 2013-01-01 false Heating Performance and Cost for Central Air... RULEâ) Pt. 305, App. I Appendix I to Part 305—Heating Performance and Cost for Central Air Conditioners Manufacturer's rated heating capacity (Btu's/hr.) Range of HSPF's Low High Single Package Units Heat...

  16. 16 CFR Appendix I to Part 305 - Heating Performance and Cost for Central Air Conditioners

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 1 2011-01-01 2011-01-01 false Heating Performance and Cost for Central Air... RULEâ) Pt. 305, App. I Appendix I to Part 305—Heating Performance and Cost for Central Air Conditioners Manufacturer's rated heating capacity (Btu's/hr.) Range of HSPF's Low High Single Package Units Heat...

  17. 16 CFR Appendix I to Part 305 - Heating Performance and Cost for Central Air Conditioners

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 1 2012-01-01 2012-01-01 false Heating Performance and Cost for Central Air... RULEâ) Pt. 305, App. I Appendix I to Part 305—Heating Performance and Cost for Central Air Conditioners Manufacturer's rated heating capacity (Btu's/hr.) Range of HSPF's Low High Single Package Units Heat...

  18. 16 CFR Appendix I to Part 305 - Heating Performance and Cost for Central Air Conditioners

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Heating Performance and Cost for Central Air... RULEâ) Pt. 305, App. I Appendix I to Part 305—Heating Performance and Cost for Central Air Conditioners Manufacturer's rated heating capacity (Btu's/hr.) Range of HSPF's Low High Single Package Units Heat...

  19. Heat and mass transfer in a vertical channel under heat-gravitational convection conditions

    NASA Astrophysics Data System (ADS)

    Petrichenko, Michail; Nemova, Darya; Reich, Elisaveta; Subbotina, Svetlana; Khayrutdinova, Faina

    2016-03-01

    Heat-gravitational motion of an air flow in a vertical channel with one-sided heating in an area with low Reynolds number is stated in Boussinesq approximation. Hydraulic variables field in a heat-gravitational motion is modeled with the application of ANSYS-FLUENT. It is converted to average velocity and temperature values in a cross section of the channel. The value of an average velocity is determined by rate of heat supply in a barotropic flow with a polytropic coefficient nair access and in the absence of gaps. In a channel with closed air access inleakage of the cold air through gaps on an unheated side leads to decrease in an average speed at least twice in comparison to channel with free air access.

  20. Heat Dissipation from a Finned Cylinder at Different Fin-Plane/Air-stream Angles

    NASA Technical Reports Server (NTRS)

    Schey, Oscar W; Biermann, Arnold E

    1932-01-01

    This report gives the results of an experimental determination of the temperature distribution in and the heat dissipation from a cylindrical finned surface for various fin-plane/air-stream angles. A steel cylinder 4.5 inches in diameter having slightly tapered fins of 0.30-inch pitch and 0.6 -inch width was equipped with an electrical heating unit furnishing 13 to 248 B.T.U. per hour per square inch of inside wall area. Air at speeds form 30 to 150 miles per hour was directed at seven different angles from 0 degrees to 90 degrees with respect to the fin planes. The tests show the best angle for cooling at all air speeds to be about 45 degrees. With the same temperature for the two conditions and with an air speed of 76 miles per hour, the heat input to the cylinder can be increased 50 percent at 45 degrees fin-plane/air-stream angle over that at 0 degrees.

  1. ENERGY STAR Certified Non-AHRI Central Air Conditioner Equipment and Air Source Heat Pump

    EPA Pesticide Factsheets

    Certified models meet all ENERGY STAR requirements as listed in the Version 5.0 ENERGY STAR Program Requirements for Air Source Heat Pump and Central Air Conditioner Equipment that are effective as of September 15, 2015. A detailed listing of key efficiency criteria are available at http://www.energystar.gov/index.cfm?c=airsrc_heat.pr_crit_as_heat_pumps Listed products have been submitted to EPA by ENERGY STAR partners that do not participate in the AHRI certification program. EPA will continue to update this list with products that are certified by EPA-recognized certification bodies other than AHRI. The majority of ENERGY STAR products, certified by AHRI, can be found on the CEE/AHRI Verified Directory at http://www.ceedirectory.org/

  2. Influence of surface kinematics on air-sea heat flux

    NASA Astrophysics Data System (ADS)

    Veron, Fabrice; Melville, Ken

    2004-11-01

    The top few meters of the oceanic boundary layer play a critical role in the transfers of momentum, gas, mass and heat between the atmosphere and the ocean. These exchanges must necessarily transfer through the surface, and presumably, the rates at which they do are influence by the dynamics of the surface layer. Heat flux in particular is regulated by the thin surface thermal layer which, at most, is only a few millimeter thick. We are specifically interested in the influence of small coherent structures of the surface turbulence on the heat flux. Using active and passive infrared imaging, we measured the evolution the surface velocity and temperature fields over small areas of a few square meters. High-resolution surface Eulerian velocity fields using cross-correlation techniques (PIV) are obtained. Using active marking of the surface with an infrared CO2 laser, we have not only shown that it is possible to directly recover the Langrangian surface velocity, but also, by marking appropriate patterns on the surface we have been able to measure the shear strain, vorticity, and surface divergence. With the penetration depth of infrared radiation at these wavelengths being a few microns, these techniques appear to be quite apt for direct measurements of ocean surface turbulence. We have also found that the flux of heat through the surface appears to be influenced by the surface wave field. We will discuss the results in the context of air sea heat flux and ocean surface turbulence.

  3. Computer Simulation of Solar Air Heating Systems Using Rock Bed Thermal Storage Units.

    DTIC Science & Technology

    1980-12-01

    contributes rather insignificantly when determining the life cycle cost effectiveness of the air heating system. Also, with the above conditions but for 24...freeze or boil and materials used in the system generally have a long life expectancy. aintenance of the system is expected to be low if quality...average long term clearness index. XT is the ratio of Fi to Ho, is the extraterrestial radiation on a horizontal surface. To find the incident beam

  4. A custom flexible experimental setup to test air source heat pump for smart buildings

    NASA Astrophysics Data System (ADS)

    Cracium, Vasile S.; Bojesen, Carsten; Trifa, Viorel

    2012-09-01

    In this paper a custom made experimental stand is presented, named controlled lab environment (CLE or climatic box), built for testing an air source heat pump (ASHP) under controlled evaporator ambient conditions and verify the performance and behavior of a theoretical model of the ASHP as a basis for optimization and efficiency improvements. While the data acquisitions from experiments are not yet available, the paper presents the design considerations and schematics of the CLE and a thermodynamic model of an ASHP.

  5. 64. INTERIOR VIEW LOOKING DOWN LENGTH OF AIR CONDITIONING EQUIPMENT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    64. INTERIOR VIEW LOOKING DOWN LENGTH OF AIR CONDITIONING EQUIPMENT REPAIR SHOP. - Baltimore & Ohio Railroad, Mount Clare Shops, South side of Pratt Street between Carey & Poppleton Streets, Baltimore, Independent City, MD

  6. 10. Building 105, Facilities Engineering Building, 1830, interior, air condition ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Building 105, Facilities Engineering Building, 1830, interior, air condition repair shop, S end of building, looking N. - Watervliet Arsenal, Building 105, South Broadway, on Hudson River, Watervliet, Albany County, NY

  7. Transitioning to Low-GWP Alternatives in Unitary Air Conditioning

    EPA Pesticide Factsheets

    This fact sheet provides current information on low-Global Warming Potential (GWP) refrigerant alternatives used in unitary air-conditioning equipment, relevant to the Montreal Protocol on Substances that Deplete the Ozone Layer.

  8. Energy Saving Potentials and Air Quality Benefits of Urban Heat Island Mitigation

    SciTech Connect

    Akbari, Hashem

    2005-08-23

    Urban areas tend to have higher air temperatures than their rural surroundings as a result of gradual surface modifications that include replacing the natural vegetation with buildings and roads. The term ''Urban Heat Island'' describes this phenomenon. The surfaces of buildings and pavements absorb solar radiation and become extremely hot, which in turn warm the surrounding air. Cities that have been ''paved over'' do not receive the benefit of the natural cooling effect of vegetation. As the air temperature rises, so does the demand for air-conditioning (a/c). This leads to higher emissions from power plants, as well as increased smog formation as a result of warmer temperatures. In the United States, we have found that this increase in air temperature is responsible for 5-10% of urban peak electric demand for a/c use, and as much as 20% of population-weighted smog concentrations in urban areas. Simple ways to cool the cities are the use of reflective surfaces (rooftops and pavements) and planting of urban vegetation. On a large scale, the evapotranspiration from vegetation and increased reflection of incoming solar radiation by reflective surfaces will cool a community a few degrees in the summer. As an example, computer simulations for Los Angeles, CA show that resurfacing about two-third of the pavements and rooftops with reflective surfaces and planting three trees per house can cool down LA by an average of 2-3K. This reduction in air temperature will reduce urban smog exposure in the LA basin by roughly the same amount as removing the basin entire onroad vehicle exhaust. Heat island mitigation is an effective air pollution control strategy, more than paying for itself in cooling energy cost savings. We estimate that the cooling energy savings in U.S. from cool surfaces and shade trees, when fully implemented, is about $5 billion per year (about $100 per air-conditioned house).

  9. Survival of microorganisms in a rock bed under conditions simulating solar heat storage.

    PubMed

    Zervins, A; Babcock, M; Stone, R W

    1981-05-01

    A laboratory-scale unit containing about 360 kg of washed river gravel was designed to [ill] the use of rocks for heat storage. The unit was operated under varying conditions of temperature, relative humidity, and the addition of volatile nutrients over a 4-month period. Effluent air and rock surfaces were monitored for the presence of microorganisms. After 2 weeks, virtually no microorganisms were detected in the effluent air except when dry soil or compost was added as the inoculum. A small number of heat-resistant bacteria, but no fungi, were found to survive on the rock surfaces. Microorganisms isolated were either sporeforming bacteria or actinomycetes closely resembling Thermoactinomyces vulgaris. Microbial colonization of rock beds used for solar heat storage does not appear likely under routine operation.

  10. Extreme conditions in a dissolving air nanobubble

    NASA Astrophysics Data System (ADS)

    Yasui, Kyuichi; Tuziuti, Toru; Kanematsu, Wataru

    2016-07-01

    Numerical simulations of the dissolution of an air nanobubble in water have been performed taking into account the effect of bubble dynamics (inertia of the surrounding liquid). The presence of stable bulk nanobubbles is not assumed in the present study because the bubble radius inevitably passes the nanoscale in the complete dissolution of a bubble. The bubble surface is assumed to be clean because attachment of hydrophobic materials on the bubble surface could considerably change the gas diffusion rate. The speed of the bubble collapse (the bubble wall speed) increases to about 90 m/s or less. The shape of a bubble is kept nearly spherical because the amplitude of the nonspherical component of the bubble shape is negligible compared to the instantaneous bubble radius. In other words, a bubble never disintegrates into daughter bubbles during the dissolution. At the final moment of the dissolution, the temperature inside a bubble increases to about 3000 K due to the quasiadiabatic compression. The bubble temperature is higher than 1000 K only for the final 19 ps. However, the Knudsen number is more than 0.2 for this moment, and the error associated with the continuum model should be considerable. In the final 2.3 ns, only nitrogen molecules are present inside a bubble as the solubility of nitrogen is the lowest among the gas species. The radical formation inside a bubble is negligible because the probability of nitrogen dissociation is only on the order of 10-15. The pressure inside a bubble, as well as the liquid pressure at the bubble wall, increases to about 5 GPa at the final moment of dissolution. The pressure is higher than 1 GPa for the final 0.7 ns inside a bubble and for the final 0.6 ns in the liquid at the bubble wall. The liquid temperature at the bubble wall increases to about 360 K from 293 K at the final stage of the complete dissolution.

  11. Analysis of the performance of an air-water heat pump: Regulation of intrinsic performances

    NASA Astrophysics Data System (ADS)

    Martin-Neuville, H.; Reybillet, M.; Patureau, J. P.

    Improvements for an electrical compressor heat pump of around 12 kW with air as a heat source are examined. To test the heat pump under different weather conditions a test loop has been built. On the condenser side a water circuit with several capacities and heat exchangers simulates the thermal behavior of a 120 sq m dwelling. A commercial domestic heat pump was extensively tested. The instantaneous performance of the heat pump agreed well with the data claimed by the manufacturer. The annual energy saving, however, was significantly less due to the following: (1) loss of efficiency caused by defrosting cycles; (2) loss of efficiency due to inadequate thermal load matching between the heat pump and the house. It was shown that control of the condensing temperature can bring energy savings of 10 percent. This could probably also be realized by load matching with a compressor with a variable speed; and (3) the inefficient operation of components such as the evaporator and the condenser heat exchangers and the expansion valve. Optimization could lead to a considerable improvement. Modifications in the compressor are proposed which may lead to an increase in efficiency to 60 or 70 percent.

  12. Sweating responses during heat acclimation and moderate conditioning

    NASA Technical Reports Server (NTRS)

    Shvartz, E.; Bhattacharya, A.; Sperinde, S. J.; Brock, P. J.; Sciaraffa, D.; Van Beaumont, W.

    1979-01-01

    Experiments were conducted on ten young male subjects to determine sweating onset, distribution, and patterns as well as the relationships of these responses to body temperature during heat acclimation and moderate conditioning performed in temperate (24 C) conditions. The subjects are randomly assigned to two groups of five subjects each. The experimental period consisted of eight successive days of either graded exercise to exhaustion on a bicycle ergometer in heat (acclimation group) or in a temperate environment (control group). Major conclusions are that (1) acclimation and conditioning result in relatively more sweat rate on the limbs than on the torso, but that these changes are less related to body temperature than torso sweat rate; and (2) sweating sensitivity increases during acclimation and conditioning, but its contribution to heat acclimation is minor.

  13. Laboratory evaluation of 10 heat and moisture exchangers using simulated aeromedical evacuation conditions.

    PubMed

    Suliman, Huda S; Fecura, Stephen E; Baskin, Jonathan; Kalns, John E

    2011-06-01

    Heat and moisture exchangers (HMEs) are used for airway humidification in mechanically ventilated patients and have been evaluated only under hospital conditions. U.S. Air Force aeromedical evacuation transports are performed under rugged conditions further complicated by the cold and dry environment in military aircrafts, and HMEs are used to provide airway humidification for patients. This study evaluated 10 commercial HMEs using a test system that simulated aeromedical evacuation conditions. Although the American National Standards Institute recommends inspired air to be at an absolute humidity value of > or = 30 mg/L for mechanically ventilated patients, the highest absolute humidity by any HME was approximately 20 mg/L. Although none of the HMEs were able to maintain a temperature high enough to achieve the humidity standard of the American National Standards Institute, the clinical significance of this standard may be less important than the relative humidity maintained in the respired air, especially on evacuation flights of short duration.

  14. Automotive absorption air conditioner utilizing solar and motor waste heat

    NASA Technical Reports Server (NTRS)

    Popinski, Z. (Inventor)

    1981-01-01

    In combination with the ground vehicles powered by a waste heat generating electric motor, a cooling system including a generator for driving off refrigerant vapor from a strong refrigerant absorbant solution is described. A solar collector, an air-cooled condenser connected with the generator for converting the refrigerant vapor to its liquid state, an air cooled evaporator connected with the condenser for returning the liquid refrigerant to its vapor state, and an absorber is connected to the generator and to the evaporator for dissolving the refrigerant vapor in the weak refrigerant absorbant solution, for providing a strong refrigerant solution. A pump is used to establish a pressurized flow of strong refrigerant absorbant solution from the absorber through the electric motor, and to the collector.

  15. On boundary condition in heat-exchange processes

    NASA Astrophysics Data System (ADS)

    Stolyarov, E. P.

    2016-10-01

    This paper describes the numerical study of heat-exchange of solid body with high-temperature external flow. As follows from the Newton's boundary condition, connecting a heat-flux density with temperature difference between the flow and a body, the heat-exchange coefficient is physically equivalent to the body-surface-normal component of the entropy flux from external flow at equilibrium flow regime. The method of determination of the heat-exchange characteristics using the time-history temperature measurements by a thin-film thermocouple sensor is described. As it is shown from the numerical analysis, the asymptotic value of the heat-exchange coefficient that corresponded to equilibrium regime of external flow exists. Implementation time of this value, i.e. relaxation time, may be of some characteristic time scales of the sensor measuring layer.

  16. Heat waves in Argentina: how unusual was the 2008 heat wave in Buenos Aires?

    NASA Astrophysics Data System (ADS)

    Rusticucci, Matilde; Almeira, Gustavo; Kyselý, Jan; Lhotka, Ondřej

    2014-05-01

    We examine temporal variability of heat waves over Argentina, and estimate recurrence probability of the most severe heat wave in Buenos Aires that occurred in November 2008. The number of days in heat waves per decade was analysed, considering spells of days with maximum temperature above the 90th percentile (MaxTHW), minimum temperature above the 90th percentile (MinTHW), and both maximum and minimum temperatures above the corresponding 90th percentiles (EHW) for the October-March period. Decadal values in Buenos Aires experienced increases in all definitions of heat waves, but at other stations, combinations of different trends or decadal variability resulted in some cases in a decrease of extreme heat waves, as shown in Córdoba (central Argentina) and Las Lomitas (northern Argentina). In the northwestern part of the country, La Quiaca and Tinogasta showed a strong change in the last decade, mainly due to the increment in the persistence of extreme MinTHW but also accompanied by increases in MaxTHW. In general, other stations showed a clear positive trend in MinTHW and decadal variability in MaxTHW, with the largest EHW cases in the last decade. Using simulations with a stochastic first-order autoregressive model (AR1), which reproduces the structure of time series of daily maximum temperatures, we estimated recurrence probability of the longest and most severe heat wave in Buenos Aires (over 1909-2010, according to intensity measured by cumulative excess of daily maximum temperatures above the 90th percentile) that occurred from 3 to 14 November 2008. The results showed that the recurrence probability of such long and severe heat wave is small in the present climate but increases substantially even under a moderate warming trend. The return period of such heat wave is estimated to be in the order of several hundreds years in the present climate while in a climate warmer by 1 °C, the return period declines by an order of magnitude, and in a climate warmer by 4

  17. Investigation of Effectiveness of Air-Heating a Hollow Steel Propeller for Protection Against Icing. 2: 50% Impartitioned Blades

    NASA Technical Reports Server (NTRS)

    Perkins, Porter J.; Mulholland, Donald R.

    1948-01-01

    The icing protection afforded an internal air-heated propeller blade by radial partitioning at 50-percent chord to confine the heated air to the forward half of the blade was determined in the NACA Cleveland icing research tunnel. A modified production-model hollow steel propeller, was used for the investigation. Temperatures of the blade surfaces for several heating rates were measured under various tunnel Icing' conditions. Photographic observations of ice formations on blade surfaces and blade heat-exchanger effectiveness were obtained. With 50-percent partitioning of the blades, adequate icing protection at 1050 rpm was obtained with a heating rate of 26,000 Btu per hour per blade at the blade shank using an air temperature of 400 F with a flow rate of 280 pounds per hour per blade, which is one-third less heat than was found necessary for similar Ice protection with unpartitioned blades. The chordwise distribution of the applied heat, as determined by surface temperature measurements, was considered unsatisfactory with much of the heat dissipated well back of the leading edge. Heat-exchanger effectiveness of approximately 56 percent also Indicated poor utilization of available heat. This effectiveness was, however, 9 percent greater than that obtained from unpartitioned blades.

  18. Effect of the load size on the efficiency of microwave heating under stop flow and continuous flow conditions.

    PubMed

    Patil, Narendra G; Rebrov, Evgeny V; Eränen, Kari; Benaskar, Faysal; Meuldijk, Jan; Mikkola, Jyri-Pekka; Hessel, Volker; Hulshof, Lumbertus A; Murzin, Dmitry Yu; Schouten, Jaap C

    2012-01-01

    A novel heating efficiency analysis of the microwave heated stop-flow (i.e. stagnant liquid) and continuous-flow reactors has been presented. The thermal losses to the surrounding air by natural convection have been taken into account for heating efficiency calculation of the microwave heating process. The effect of the load diameter in the range of 4-29 mm on the heating efficiency of ethylene glycol was studied in a single mode microwave cavity under continuous flow and stop-flow conditions. The variation of the microwave absorbing properties of the load with temperature was estimated. Under stop-flow conditions, the heating efficiency depends on the load diameter. The highest heating efficiency has been observed at the load diameter close to the half wavelength of the electromagnetic field in the corresponding medium. Under continuous-flow conditions, the heating efficiency increased linearly. However, microwave leakage above the propagation diameter restricted further experimentation at higher load diameters. Contrary to the stop-flow conditions, the load temperature did not raise monotonously from the inlet to outlet under continuous-flow conditions. This was due to the combined effect of lagging convective heat fluxes in comparison to volumetric heating. This severely disturbs the uniformity of the electromagnetic field in the axial direction and creates areas of high and low field intensity along the load Length decreasing the heating efficiency as compared to stop-flow conditions.

  19. LiCl Dehumidifier LiBr absorption chiller hybrid air conditioning system with energy recovery

    DOEpatents

    Ko, Suk M.

    1980-01-01

    This invention relates to a hybrid air conditioning system that combines a solar powered LiCl dehumidifier with a LiBr absorption chiller. The desiccant dehumidifier removes the latent load by absorbing moisture from the air, and the sensible load is removed by the absorption chiller. The desiccant dehumidifier is coupled to a regenerator and the desiccant in the regenerator is heated by solar heated hot water to drive the moisture therefrom before being fed back to the dehumidifier. The heat of vaporization expended in the desiccant regenerator is recovered and used to partially preheat the driving fluid of the absorption chiller, thus substantially improving the overall COP of the hybrid system.

  20. Climate Change and Health Risks from Extreme Heat and Air Pollution in the Eastern United States

    NASA Astrophysics Data System (ADS)

    Limaye, V.; Vargo, J.; Harkey, M.; Holloway, T.; Meier, P.; Patz, J.

    2013-12-01

    Climate change is expected to exacerbate health risks from exposure to extreme heat and air pollution through both direct and indirect mechanisms. Directly, warmer ambient temperatures promote biogenic emissions of ozone precursors and favor the formation of ground-level ozone, while an anticipated increase in the frequency of stagnant air masses will allow fine particulates to accumulate. Indirectly, warmer summertime temperatures stimulate energy demand and exacerbate polluting emissions from the electricity sector. Thus, while technological adaptations such as air conditioning can reduce risks from exposures to extreme heat, they can trigger downstream damage to air quality and public health. Through an interdisciplinary modeling effort, we quantify the impacts of climate change on ambient temperatures, summer energy demand, air quality, and public health. The first phase of this work explores how climate change will directly impact the burden of heat-related mortality. Climatic patterns, demographic trends, and epidemiologic risk models suggest that populations in the eastern United States are likely to experience an increasing heat stress mortality burden in response to rising summertime air temperatures. We use North American Regional Climate Change Assessment Program modeling data to estimate mid-century 2-meter air temperatures and humidity across the eastern US from June-August, and quantify how long-term changes in actual and apparent temperatures from present-day will affect the annual burden of heat-related mortality across this region. With the US Environmental Protection Agency's Environmental Benefits Mapping and Analysis Program, we estimate health risks using concentration-response functions, which relate temperature increases to changes in annual mortality rates. We compare mid-century summertime temperature data, downscaled using the Weather Research and Forecasting model, to 2007 baseline temperatures at a 12 km resolution in order to estimate

  1. Impact of the electric compressor for automotive air conditioning system on fuel consumption and performance analysis

    NASA Astrophysics Data System (ADS)

    Zulkifli, A. A.; Dahlan, A. A.; Zulkifli, A. H.; Nasution, H.; Aziz, A. A.; Perang, M. R. M.; Jamil, H. M.; Misseri, M. N.

    2015-12-01

    Air conditioning system is the biggest auxiliary load in a vehicle where the compressor consumed the largest. Problem with conventional compressor is the cooling capacity cannot be control directly to fulfill the demand of thermal load inside vehicle cabin. This study is conducted experimentally to analyze the difference of fuel usage and air conditioning performance between conventional compressor and electric compressor of the air conditioning system in automobile. The electric compressor is powered by the car battery in non-electric vehicle which the alternator will recharge the battery. The car is setup on a roller dynamometer and the vehicle speed is varied at 0, 30, 60, 90 and 110 km/h at cabin temperature of 25°C and internal heat load of 100 and 400 Watt. The results shows electric compressor has better fuel consumption and coefficient of performance compared to the conventional compressor.

  2. Carbon Dioxide and Ionic Liquid Refrigerants: Compact, Efficient Air Conditioning with Ionic Liquid-Based Refrigerants

    SciTech Connect

    2010-10-01

    BEETIT Project: Notre Dame is developing an air-conditioning system with a new ionic liquid and CO2 as the working fluid. Synthetic refrigerants used in air conditioning and refrigeration systems are potent GHGs and can trap 1,000 times more heat in the atmosphere than CO2 alone—making CO2 an attractive alternative for synthetic refrigerants in cooling systems. However, operating cooling systems with pure CO2 requires prohibitively high pressures and expensive hardware. Notre Dame is creating a new fluid made of CO2 and ionic liquid that enables the use of CO2 at low pressures and requires minimal changes to existing hardware and production lines. This new fluid also produces no harmful emissions and can improve the efficiency of air conditioning systems— enabling new use of CO2 as a refrigerant in cooling systems.

  3. Desiccant outdoor air preconditioners maximize heat recovery ventilation potentials

    SciTech Connect

    Meckler, M.

    1995-12-31

    Microorganisms are well protected indoors by the moisture surrounding them if the relative humidity is above 70%. They can cause many acute diseases, infections, and allergies. Humidity also has an effect on air cleanliness and causes the building structure and its contents to deteriorate. Therefore, controlling humidity is a very important factor to human health and comfort and the structural longevity of a building. To date, a great deal of research has been done, and is continuing, in the use of both solid and liquid desiccants. This paper introduces a desiccant-assisted system that combines dehumidification and mechanical refrigeration by means of a desiccant preconditioning module that can serve two or more conventional air-conditioning units. It will be demonstrated that the proposed system, also having indirect evaporative cooling within the preconditioning module, can reduce energy consumption and provide significant cost savings, independent humidity and temperature control, and, therefore, improved indoor air quality and enhanced occupant comfort.

  4. Heat-and-mass transfer analysis from vegetable and fruit products stored in cold conditions

    NASA Astrophysics Data System (ADS)

    Tashtoush, B.

    Heat and mass transfer process taking place during fruit and vegetable products in cold storage are studied. A mathematical model describing these processes is presented and the resulting governing equations are solved for different storing conditions. The relative humidity of the ventilating air and the temperature of the stored product bulk are found for different initial air relative humidity and airflow rates. As the product bulk depth increased up to 4.2m, the relative humidity of the ventilating air approaches the steady state value. When the relative humidity is larger than the equilibrium relative humidity value, an increase in the ventilating air rate reduces the losses of the product during the period of its storage, while larger losses occur when the relative humidity values are lower than the equilibrium ones.

  5. Numerical simulation of hyperbolic heat conduction with convection boundary conditions and pulse heating effects

    NASA Technical Reports Server (NTRS)

    Glass, David E.; Tamma, Kumar K.; Railkar, Sudhir B.

    1989-01-01

    The paper describes the numerical simulation of hyperbolic heat conduction with convection boundary conditions. The effects of a step heat loading, a sudden pulse heat loading, and an internal heat source are considered in conjunction with convection boundary conditions. Two methods of solution are presened for predicting the transient behavior of the propagating thermal disturbances. In the first method, MacCormack's predictor-corrector method is employed for integrating the hyperbolic system of equations. Next, the transfinite element method, which employs specially tailored elements, is used for accurately representing the transient response of the propagating thermal wave fronts. The agreement between the results of various numerical test cases validate the representative behavior of the thermal wave fronts. Both methods represent hyperbolic heat conduction behavior by effectively modeling the sharp discontinuities of the propagating thermal disturbances.

  6. 16 CFR Appendix I to Part 305 - Heating Performance and Cost for Central Air Conditioners

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 1 2014-01-01 2014-01-01 false Heating Performance and Cost for Central Air... CONSERVATION ACT (âENERGY LABELING RULEâ) Pt. 305, App. I Appendix I to Part 305—Heating Performance and Cost for Central Air Conditioners Manufacturer's rated heating capacity (Btu's/hr.) Range of HSPF's...

  7. Solar Air Heating Metal Roofing for Reroofing, New Construction, and Retrofit

    DTIC Science & Technology

    2013-06-01

    roof, gym wall and roof before the ESTCP project. ......................... 14 Figure 9. Plan view schematic of solar air heating mechanical systems ...16 Figure 10. Schematic of domestic hot water heating system ................................................. 17...Gaffney Fitness Center, located at Fort Meade, Maryland. The solar air heating metal roofing system uses conventional metal roofing in a traditional

  8. Experimental study of convective heat transfer of compressed air flow in radially rotating ducts

    SciTech Connect

    Hwang, G.J,; Tzeng, S.C.; Mao, C.P.

    1999-07-01

    The convective heat transfer of pressurized air flow in radially rotating serpentine channel is investigated experimentally in the present study. The main governing parameters are the Prandtl number, the Reynolds number for forced convection, the rotation number for the Coriolis force induced cross stream secondary flow and the Grashof number for natural convection. To simulate the operation conditions of a real gas turbine, the present study kept the parameters in the test rig approximately the same as those in a real engine. The air in the present serpentine channel was pressurized to increase the air density for making up the low rotational speed in the experiment. Before entering the rotating ducts, the air was also cooled to gain a high density ratio of approximately 1/3 in the ducts. This high density ratio will give a similar order of magnitude of Grashof number in a real operation condition. The local heat transfer rate on the four channel walls are present and compared with that in existing literature.

  9. An analysis of water-to-air heat pump systems for use in government facilities

    NASA Astrophysics Data System (ADS)

    Fretzs, R. G.

    1980-09-01

    Energy consumption is an important issue for government managers. Examined in this thesis is one source of potential energy savings: a method of heating and cooling buildings. Water-to-air heat pumps are analyzed and cost comparisons to conventional heating/cooling systems (gas, fuel oil, electric resistance, and air-to-air heat pumps) are made. The theory of heat pump technology is presented to show how water source heat pumps achieve improved efficiencies over conventional systems. Sources of and disposal of water to support the systems are discussed. Cost comparisons are presented based on computer simulations and fuel cost graphs. Twenty-one percent of U.S. energy consumption is used to heat and cool buildings. Water-to-air heat pumps provide a 30-50 percent savings over other systems. Therefore, a potential 10 percent savings in total energy consumption exists through the use of water source heat pumps.

  10. Measurement of heat stress conditions at cow level and comparison to climate conditions at stationary locations inside a dairy barn.

    PubMed

    Schüller, Laura K; Heuwieser, Wolfgang

    2016-08-01

    The objectives of this study were to examine heat stress conditions at cow level and to investigate the relationship to the climate conditions at 5 different stationary locations inside a dairy barn. In addition, we compared the climate conditions at cow level between primiparous and multiparous cows for a period of 1 week after regrouping. The temperature-humidity index (THI) differed significantly between all stationary loggers. The lowest THI was measured at the window logger in the experimental stall and the highest THI was measured at the central logger in the experimental stall. The THI at the mobile cow loggers was 2·33 THI points higher than at the stationary loggers. Furthermore, the mean daily THI was higher at the mobile cow loggers than at the stationary loggers on all experimental days. The THI in the experimental pen was 0·44 THI points lower when the experimental cow group was located inside the milking parlour. The THI measured at the mobile cow loggers was 1·63 THI points higher when the experimental cow group was located inside the milking parlour. However, there was no significant difference for all climate variables between primiparous and multiparous cows. These results indicate, there is a wide range of climate conditions inside a dairy barn and especially areas with a great distance to a fresh air supply have an increased risk for the occurrence of heat stress conditions. Furthermore, the heat stress conditions are even higher at cow level and cows not only influence their climatic environment, but also generate microclimates within different locations inside the barn. Therefore climate conditions should be obtained at cow level to evaluate the heat stress conditions that dairy cows are actually exposed to.

  11. Low-Flow Liquid Desiccant Air-Conditioning: Demonstrated Performance and Cost Implications

    SciTech Connect

    Kozubal, E.; Herrmann, L.; Deru, M.; Clark, J.; Lowenstein, A.

    2014-09-01

    Cooling loads must be dramatically reduced when designing net-zero energy buildings or other highly efficient facilities. Advances in this area have focused primarily on reducing a building's sensible cooling loads by improving the envelope, integrating properly sized daylighting systems, adding exterior solar shading devices, and reducing internal heat gains. As sensible loads decrease, however, latent loads remain relatively constant, and thus become a greater fraction of the overall cooling requirement in highly efficient building designs, particularly in humid climates. This shift toward latent cooling is a challenge for heating, ventilation, and air-conditioning (HVAC) systems. Traditional systems typically dehumidify by first overcooling air below the dew-point temperature and then reheating it to an appropriate supply temperature, which requires an excessive amount of energy. Another dehumidification strategy incorporates solid desiccant rotors that remove water from air more efficiently; however, these systems are large and increase fan energy consumption due to the increased airside pressure drop of solid desiccant rotors. A third dehumidification strategy involves high flow liquid desiccant systems. These systems require a high maintenance separator to protect the air distribution system from corrosive desiccant droplet carryover and so are more commonly used in industrial applications and rarely in commercial buildings. Both solid desiccant systems and most high-flow liquid desiccant systems (if not internally cooled) add sensible energy which must later be removed to the air stream during dehumidification, through the release of sensible heat during the sorption process.

  12. Thermal grill conditioning: Effect on contact heat evoked potentials

    PubMed Central

    Jutzeler, Catherine R.; Warner, Freda M.; Wanek, Johann; Curt, Armin; Kramer, John L. K.

    2017-01-01

    The ‘thermal grill illusion’ (TGI) is a unique cutaneous sensation of unpleasantness, induced through the application of interlacing warm and cool stimuli. While previous studies have investigated optimal parameters and subject characteristics to evoke the illusion, our aim was to examine the modulating effect as a conditioning stimulus. A total of 28 healthy control individuals underwent three testing sessions on separate days. Briefly, 15 contact heat stimuli were delivered to the right hand dorsum, while the left palmar side of the hand was being conditioned with either neutral (32 °C), cool (20 °C), warm (40 °C), or TGI (20/40 °C). Rating of perception (numeric rating scale: 0–10) and evoked potentials (i.e., N1 and N2P2 potentials) to noxious contact heat stimuli were assessed. While cool and warm conditioning decreased cortical responses to noxious heat, TGI conditioning increased evoked potential amplitude (N1 and N2P2). In line with other modalities of unpleasant conditioning (e.g., sound, visual, and olfactory stimulation), cortical and possibly sub-cortical modulation may underlie the facilitation of contact heat evoked potentials. PMID:28079118

  13. Effect of green roofs on air temperature; measurement study of well-watered and dry conditions

    NASA Astrophysics Data System (ADS)

    Solcerova, Anna; van de Ven, Frans; Wang, Mengyu; van de Giesen, Nick

    2016-04-01

    Rapid urbanization and increasing number and duration of heat waves poses a need for understanding urban climate and ways to mitigate extremely high temperatures. One of repeatedly suggested and often investigated methods to moderate the so called urban heat island are green roofs. This study investigates several extensive green roofs in Utrecht (NL) and their effect on air temperature right above the roof surface. Air temperature was measured 15 and 30 cm above the roof surface and also in the substrate. We show that under normal condition is air above green roof, compared to white gravel roof, colder at night and warmer during day. This suggest that green roofs might help decrease air temperatures at night, when the urban heat island is strongest, but possibly contribute to high temperatures during daytime. We also measured situation when the green roofs wilted and dried out. Under such conditions green roof exhibits more similar behavior to conventional white gravel roof. Interestingly, pattern of soil temperature remains almost the same for both dry and well-prospering green roof, colder during day and warmer at night. As such, green roof works as a buffer of diurnal temperature changes.

  14. On the different regimes of gas heating in air plasmas

    NASA Astrophysics Data System (ADS)

    Pintassilgo, Carlos D.; Guerra, Vasco

    2015-10-01

    Simulations of the gas temperature in air (N2-20%O2) plasma discharges are presented for different values of the reduced electric field, E/N g, electron density n e, pressure and tube radius. This study is based on the solutions to the time-dependent gas thermal balance in a cylindrical geometry coupled to the electron, vibrational and chemical kinetics, for E/{{N}\\text{g}}=50 and 100 Td (1 Td = 10-17 V cm2), 109  ⩽  n e  ⩽  1011 cm-3, pressure in the range 1-20 Torr, and also considering different tube radius, 0.5, 1 and 1.5 cm. The competing role of different gas heating mechanisms is discussed in detail within the time range 0.01-100 ms. For times below 1 ms, gas heating occurs from O2 dissociation by electron impact through pre-dissociative excited states, e + O2  →  e + \\text{O}2*   →  e + 2O(3P) and …  →  e + O(3P) + O(1D), as well as through the quenching of N2 electronically excited states by O2. For longer times, simulation results show that gas heating comes from processes N(4S) + NO(X)  →  N2(X, v ~ 3) + O, N2(A) + O  →  NO(X) + N(2D), V-T N2-O collisions and the recombination of oxygen atoms at the wall. Depending on the given E/N g and n e values, each one of these processes can be an important gas-heating channel. The contribution of V-T N2-O exchanges to gas heating is important in the analysis of the gas temperature for different pressures and values of the tube radius. A global picture of these effects is given by the study of the fraction of the discharge power spent on gas heating, which is always ~15%. The values for the fractional power transferred to gas heating from vibrational and electronic excitation are also presented and discussed.

  15. High explosive violent reaction (HEVR) from slow heating conditions

    SciTech Connect

    Vigil, A.S.

    1999-03-01

    The high explosives (HEs) developed and used at the Los Alamos National Laboratory are designed to be insensitive to impact and thermal insults under all but the most extreme conditions. Nevertheless, violent reactions do occasionally occur when HE is involved in an accident. The HE response is closely dependent on the type of external stimulus that initiates the reaction. For example, fast heating of conventional HE will probably result in fairly benign burning, while long-term, slow heating of conventional HE is more likely to produce an HEVR that will do much more damage to the immediate surroundings. An HEVR (High Explosive Violent Reaction) can be defined as the rapid release of energy from an explosive that ranges from slightly faster than a deflagration (very rapid burning) to a reaction that approaches a detonation. A number of thermal analyses have been done to determine slow heat/cook-off conditions that produce HE self-heating that can build up to a catastrophic runaway reaction. The author specifies the conditions that control reaction violence, describes experiments that produced an HEVR, describes analyses done to determine a heating rate threshold for HEVR, and lists possible HEVR situations.

  16. Thermo-economic approach for absorption air condition onboard high-speed crafts

    NASA Astrophysics Data System (ADS)

    Seddiek, Ibrahim S.; Mosleh, Mosaad; Banawan, Adel A.

    2012-12-01

    High-speed crafts suffer from losing a huge amount of their machinery energy in the form of heat loss with the exhaust gases. This will surely increase the annual operating cost of this type of ships and an adverse effect on the environment. This paper introduces a suggestion that may contribute to overcoming such problems. It presents the possibility of reusing the energy lost by the ships' exhaust gases as heating source for an absorption air condition unit onboard high-speed crafts. As a numerical example; the proposed method was investigated at a high-speed craft operating in Red Sea between Egypt and the Kingdom of Saudi Arabia. The results obtained are very satisfactory. It showed the possibility of providing the required ship's air condition cooling load during sailing and in port. Economically, this will reduce the annual ship's operating cost. Moreover, it will achieve a valuable reduction of ship's emissions.

  17. In-situ air sparging under confined aquifer conditions

    SciTech Connect

    Breeding, L.B.; Swartz, T.E.; Pringle, C.C.

    1994-12-31

    In the summer of 1993, an effort to evaluate the effectiveness of in-situ air sparging (IAS) and soil vapor extraction (SVE) to remedy jet fuel condition found in Colorado River Terrace deposits was initiated by the Air Force Center for Environmental Excellence. Preliminary field tests were performed to develop air injection flow rates, IAS radius of influence, air entry pressure requirements, SVE radii of influence, SVE well head vacuum requirements, and SVE air extraction flow rates. In addition to the field tests, soil samples were, collected for formal geotechnical laboratory analysis. The information gathered from these preliminary field investigations were then used to design and install a pilot scale ground-water remediation system. The pilot scale system represents a modified version of the traditional IAS/SVE approach. Due to the presence of an overlying low permeability confining layer, the system was modified to inject and extract air from the phreatic zone. The vapor extraction wells are screened down into the saturated interval to provide an escape route for the air injected by the sparging system. This system is intended to trigger two remedial processes. The first is the physical stripping of dissolved phase volatile petroleum constituents as ground water contacts air channels forming around each sparge point. The second remedial process which may be activated by this system is enhanced aerobic biodegradation of organics due to the oxygenation of the saturated interval.

  18. Effect of heat treatment and storage conditions on mead composition.

    PubMed

    Kahoun, David; Řezková, Soňa; Královský, Josef

    2017-03-15

    The effects of heat treatment and storage conditions on the composition of pure mead (honey wine) made from only honey and water were investigated. Heat treatment experiments were performed at 7 different temperatures ranging from 40°C to100°C with 10°C increments for 60min. Storage condition experiments were performed at room temperature (20-25°C) in daylight without direct sunlight and in darkness in a refrigerator at 4°C for 1, 2, 4 and 12weeks. The parameters evaluated were phenolic compounds, peak area of unidentified compounds, 5-hydroxymethylfurfural content and antioxidant capacity. Significant changes in compound content were observed in the case of 6 identified compounds and 9 unidentified compounds. However, the antioxidant activity was not affected by the heat treatments or storage at room temperature.

  19. Negative air ion effects on human performance and physiological condition.

    PubMed

    Buckalew, L W; Rizzuto, A P

    1984-08-01

    Beneficial effects of exposure to negative air ions have been suggested, to include improved performance, mood, attention, and physiological condition. Existing support is clouded by methodological problems of control and standardization in treatment and equipment. This study investigated effects of negative ions produced by a commercially marketed air purification device on grip magnitude, coding, motor dexterity, reaction time, tracking, pulse, blood pressure, and temperature. Two groups of 12 males were exposed to 6 continuous h of either negative or "normal" ion environments under a double blind condition. Repeated measures (0,3,6 h) on each variable were obtained. MANOVA applied to change scores revealed no differences between groups, and 0 vs. 3 and 0 vs. 6-h group differences showed no significant alteration in any measure. Negative ions generated by an air purification device were concluded to produce no general or specific alteration of cognitive or psychomotor performance or physiological condition.

  20. Non-CFC air conditioning for transit buses

    SciTech Connect

    Pesaran, A.A.; Parent, Y.O.; Bharathan, D.

    1992-11-01

    In the United Sates, more than 80% of transit city buses are air conditioned. Vapor compression refrigeration systems are standard for air conditioning buses and account for up to 25% of fuel consumption in the cooling season. Vapor compression devices use chlorofluorocarbons (CFCs), chemicals that contributes to Earths's ozone depletion and to global warming. Currently, evaporative cooling is an economical alternative to CFC vapor compression refrigeration for air conditioning buses. It does not use CFCs but is restricted in use to arid climates. This limitation can be eliminated by dehumidifying the supply air using desiccants. We studied desiccant systems for cooling transit buses and found that the use of a desiccant-assisted evaporative cooling system is feasible and can deliver the required cooling. The weight and the size of the desiccant system though larger than vapor compression systems, can be easily accommodated within a bus. Fuel consumption for naming desiccant systems was about 70% less than CFC refrigeration system, resulting in payback periods of less than 2.5 years under most circumstances. This preliminary study indicated that desiccant systems combined with evaporative cooling is a CFC-free option to vapor compression refrigeration for air conditioning of transit buses. The concept is ready to be tested in a fun prototype scale in a commercial bus.

  1. Non-CFC air conditioning for transit buses

    SciTech Connect

    Pesaran, A.A.; Parent, Y.O.; Bharathan, D.

    1992-11-01

    In the United Sates, more than 80% of transit city buses are air conditioned. Vapor compression refrigeration systems are standard for air conditioning buses and account for up to 25% of fuel consumption in the cooling season. Vapor compression devices use chlorofluorocarbons (CFCs), chemicals that contributes to Earths`s ozone depletion and to global warming. Currently, evaporative cooling is an economical alternative to CFC vapor compression refrigeration for air conditioning buses. It does not use CFCs but is restricted in use to arid climates. This limitation can be eliminated by dehumidifying the supply air using desiccants. We studied desiccant systems for cooling transit buses and found that the use of a desiccant-assisted evaporative cooling system is feasible and can deliver the required cooling. The weight and the size of the desiccant system though larger than vapor compression systems, can be easily accommodated within a bus. Fuel consumption for naming desiccant systems was about 70% less than CFC refrigeration system, resulting in payback periods of less than 2.5 years under most circumstances. This preliminary study indicated that desiccant systems combined with evaporative cooling is a CFC-free option to vapor compression refrigeration for air conditioning of transit buses. The concept is ready to be tested in a fun prototype scale in a commercial bus.

  2. Trend of Refrigeration and Air-Conditioning Technology in Korea

    NASA Astrophysics Data System (ADS)

    Oh, Hoo-Kyu; Papk, Ki-Won

    It can be said that refrigeration and air-conditioning technology in Korea dates back to the ancient dynasty, all the way up to the Sokkuram(700s) and Seokbinggo(1700s), But modern refrigeration and air-conditioning technology was first developed in and introduced to Korea in the1960swith the modernization of Korea, Today it is at a level which meets that of advanced countries in both the industrial and domestic fields. As of 2003, there were about 700 companies that owned cold storage/freezing/refrigeration facilities, with cold storage capacity of about 2,000, 000tons and capacity per company of about 3,000 tons. These facilities most are continuously expanding and automating their facilities. 62 million units of refrigeration and air-conditioning machinery and equipment were produced in 2003, worth a total of 7.7 trillion won(about 7.7 thousand million US). On the academic side there are 9 universities and 12 junior colleges with courses in either refrigeration and air-conditioning or architectural equipment. Academic societies such as the Society of Air-conditioning and Refrigerating Engineers of Korea(SAREK), and industrial societies like the Korean Association of Refrigeration(KAR) are active members of the refrigeration and air-conditioning industry. The1eare also national/government-established research institutions such as the Korea Institute of Science and Technology(KIST), the Korea Institute of Machinery and Materials (KIMM), the Korea Institute of Energy Research(KIER), and the Korea Institute of Industrial Technology (KITECH).

  3. Performance assessment and transient optimization of multi-stage solid desiccant air conditioning systems with building PV/T integration

    NASA Astrophysics Data System (ADS)

    Gadalla, Mohamed; Saghafifar, Mohammad

    2016-09-01

    One of the popular solar air conditioning technologies is desiccant air conditioning. Nonetheless, single stage desiccant air conditioning systems' coefficient of performance (COP) are relatively low. Therefore, multi-stage solid desiccant air conditioning systems are recommended. In this paper, an integrated double-stage desiccant air conditioning systems and PV/T collector is suggested for hot and humid climates such as the UAE. The results for the PV/T implementation in the double-stage desiccant cooling system are assessed against the PV/T results for a single-stage desiccant air conditioning system. In order to provide a valid comparative evaluation between the single and double stage desiccant air conditioning systems, an identical PV/T module, in terms of dimensions, is incorporated into these systems. The overall required auxiliary air heating is abated by 46.0% from 386.8 MWh to 209.0 MWh by replacing the single stage desiccant air conditioning system with the proposed double stage configuration during June to October. Moreover, the overall averaged solar share during the investigated months for the single and double stage systems are 36.5% and 43.3%.

  4. Effects of Changes in Meteorological Conditions on Lake Evaporation, Water Temperature, and Heat Budget in a Deep Lake

    NASA Astrophysics Data System (ADS)

    Ito, Yuji; Momii, Kazuro

    To reveal effects of changes in meteorological conditions on lake evaporation, water temperature, and heat budget in a deep lake, sensitivity analyses have been performed for Lake Ikeda, Kagoshima prefecture. In the study, the sensitivities of three aspects to the 10%-increased solar radiation, air temperature, relative humidity, and wind speed were estimated based on numerical calculations for 1981-2005 with the verified one-dimensional mathematical model that computes thermal transfer in the lake. The results demonstrated that the meteorological component which gives the largest evaporation-promoting effect was solar radiation and the component which brings the largest lake-heating was air temperature. When solar radiation was increased, the vapor pressure difference between lake-surface and atmosphere was increased and the atmospheric stability was decreased, which present the desirable condition for evaporation. Air temperature being higher, the lake-surface was intensively heated by increased atmospheric radiation. As for the humidity case, lake evaporation was decreased in any season due to decrease in vapor pressure difference. Although rise in water temperature was caused by decrease in latent heat, it was inhibited with cooling by sensible heat. Wind being up, water temperature was fallen at the lake-surface and risen around the 20 m depth by vertical thermal mixing effect. The mixing effect prevented from releasing heat to atmosphere, resulting in the secondary large lake-heating but smaller than air temperature case.

  5. Simulations of sizing and comfort improvements for residential forced-air heating and cooling systems

    SciTech Connect

    Walker, I.S.; Degenetais, G.; Siegel, J.A.

    2002-05-01

    In many parts of North America residential HVAC systems are installed outside conditioned space. This leads to significant energy losses and poor occupant comfort due to conduction and air leakage losses from the air distribution ducts. In addition, cooling equipment performance is sensitive to air flow and refrigerant charge that have been found to be far from manufacturers specifications in most systems. The simulation techniques discussed in this report were developed in an effort to provide guidance on the savings potentials and comfort gains that can be achieved by improving ducts (sealing air leaks) and equipment (correct air-flow and refrigerant charge). The simulations include the complex air flow and thermal interactions between duct systems, their surroundings and the conditioned space. They also include cooling equipment response to air flow and refrigerant charge effects. Another key aspect of the simulations is that they are dynamic to account for cyclic losses from the HVAC system and the effect of cycle length on energy and comfort performance. To field test the effect of changes to residential HVAC systems requires extensive measurements to be made for several months for each condition tested. This level of testing is often impractical due to cost and time limitations. Therefore the Energy Performance of Buildings Group at LBNL developed a computer simulation tool that models residential HVAC system performance. This simulation tool has been used to answer questions about equipment downsizing, duct improvements, control strategies and climate variation so that recommendations can be made for changes in residential construction and HVAC installation techniques that would save energy, reduce peak demand and result in more comfortable homes. Although this study focuses on California climates, the simulation tool could easily be applied to other climates. This report summarizes the simulation tool and discusses the significant developments that allow

  6. 10 CFR 431.92 - Definitions concerning commercial air conditioners and heat pumps.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., and functional (or hydraulic) characteristics that affect energy consumption, energy efficiency, water..., steam, or electricity. Packaged terminal heat pump means a packaged terminal air conditioner...

  7. Solar Absorption Refrigeration System for Air-Conditioning of a Classroom Building in Northern India

    NASA Astrophysics Data System (ADS)

    Agrawal, Tanmay; Varun; Kumar, Anoop

    2015-10-01

    Air-conditioning is a basic tool to provide human thermal comfort in a building space. The primary aim of the present work is to design an air-conditioning system based on vapour absorption cycle that utilizes a renewable energy source for its operation. The building under consideration is a classroom of dimensions 18.5 m × 13 m × 4.5 m located in Hamirpur district of Himachal Pradesh in India. For this purpose, cooling load of the building was calculated first by using cooling load temperature difference method to estimate cooling capacity of the air-conditioning system. Coefficient of performance of the refrigeration system was computed for various values of strong and weak solution concentration. In this work, a solar collector is also designed to provide required amount of heat energy by the absorption system. This heat energy is taken from solar energy which makes this system eco-friendly and sustainable. A computer program was written in MATLAB to calculate the design parameters. Results were obtained for various values of solution concentrations throughout the year. Cost analysis has also been carried out to compare absorption refrigeration system with conventional vapour compression cycle based air-conditioners.

  8. Enabling Smart Air Conditioning by Sensor Development: A Review

    PubMed Central

    Cheng, Chin-Chi; Lee, Dasheng

    2016-01-01

    The study investigates the development of sensors, in particular the use of thermo-fluidic sensors and occupancy detectors, to achieve smart operation of air conditioning systems. Smart operation refers to the operation of air conditioners by the reinforcement of interaction to achieve both thermal comfort and energy efficiency. Sensors related to thermal comfort include those of temperature, humidity, and pressure and wind velocity anemometers. Improvements in their performance in the past years have been studied by a literature survey. Traditional occupancy detection using passive infra-red (PIR) sensors and novel methodologies using smartphones and wearable sensors are both discussed. Referring to the case studies summarized in this study, air conditioning energy savings are evaluated quantitatively. Results show that energy savings of air conditioners before 2000 was 11%, and 30% after 2000 by the integration of thermo-fluidic sensors and occupancy detectors. By utilizing wearable sensing to detect the human motions, metabolic rates and related information, the energy savings can reach up to 46.3% and keep the minimum change of predicted mean vote (∆PMV→0), which means there is no compromise in thermal comfort. This enables smart air conditioning to compensate for the large variations from person to person in terms of physiological and psychological satisfaction, and find an optimal temperature for everyone in a given space. However, this tendency should be evidenced by more experimental results in the future. PMID:27916906

  9. Enabling Smart Air Conditioning by Sensor Development: A Review.

    PubMed

    Cheng, Chin-Chi; Lee, Dasheng

    2016-11-30

    The study investigates the development of sensors, in particular the use of thermo-fluidic sensors and occupancy detectors, to achieve smart operation of air conditioning systems. Smart operation refers to the operation of air conditioners by the reinforcement of interaction to achieve both thermal comfort and energy efficiency. Sensors related to thermal comfort include those of temperature, humidity, and pressure and wind velocity anemometers. Improvements in their performance in the past years have been studied by a literature survey. Traditional occupancy detection using passive infra-red (PIR) sensors and novel methodologies using smartphones and wearable sensors are both discussed. Referring to the case studies summarized in this study, air conditioning energy savings are evaluated quantitatively. Results show that energy savings of air conditioners before 2000 was 11%, and 30% after 2000 by the integration of thermo-fluidic sensors and occupancy detectors. By utilizing wearable sensing to detect the human motions, metabolic rates and related information, the energy savings can reach up to 46.3% and keep the minimum change of predicted mean vote (∆PMV→0), which means there is no compromise in thermal comfort. This enables smart air conditioning to compensate for the large variations from person to person in terms of physiological and psychological satisfaction, and find an optimal temperature for everyone in a given space. However, this tendency should be evidenced by more experimental results in the future.

  10. Mathematical and experimental investigation of heat control and power increase in air-cooled aircraft engines

    NASA Technical Reports Server (NTRS)

    Gosslau, F

    1929-01-01

    In order to understand the numerical relations between the air velocity, temperature of the cylinder walls, heat dissipation, cylinder dimensions and type of construction an experimental plant was installed in the Siemens and Halske laboratory. The experimental cylinder was exposed to the air stream of a wind tunnel. The compression chamber was heated by an electrically heated oil bath kept constantly in motion by a stirrer. The wall temperatures were measured by thermocouples. The air stream was produced a seven-watt blower. The air flowed through a current rectifier (honeycomb), diffuser, air chamber with quieting sieves and a nozzle.

  11. Thermophysical characterization of composite materials under transient heating conditions

    NASA Technical Reports Server (NTRS)

    Roetling, J.; Hanson, J.

    1972-01-01

    Thermophysical property measurements were made under transient heating conditions on several materials being considered for use in SCOUT rocket motors. The materials included were ATJ graphite, MX 2600 silica phenolic, FM 5272 cellulose phenolic, and two carbon-carbon composites: CARBITEX 700 and RPP-4. The ATJ was included as a reference or base line material to check performance of the transient tests as it was not expected to be sensitive to heating rate. Measurements included in the program were thermal conductivity, strength, compressive stress-strain (carbon-carbon only), thermal expansion and the effective thermal expansion under partially restrained conditions. Development of this latter measurement was a major part of the program. It consisted of partially restraining the expansion of a specimen as it was heated, measuring the load and strain which occurred (together with a simultaneous modulus determination by superimposing a small cyclic load) and using these quantities to calculate what the effective thermal expansion would have to be to produce the observed stress and deformation. For materials which are sensitive to heating rate, such as reinforced phenolics, it was believed that this would provide a more realistic determination of the thermal expansion as it more nearly simulates the conditions experienced in end use.

  12. Predicted Turbine Heat Transfer for a Range of Test Conditions

    NASA Technical Reports Server (NTRS)

    Boyle, R. J.; Lucci, B. L.

    1996-01-01

    Comparisons are shown between predictions and experimental data for blade and endwall heat transfer. The comparisons of computational domain parisons are given for both vane and rotor geometries over an extensive range of Reynolds and Mach numbers. Comparisons are made with experimental data from a variety of sources. A number of turbulence models are available for predicting blade surface heat transfer, as well as aerodynamic performance. The results of an investigation to determine the turbulence model which gives the best agreement with experimental data over a wide range of test conditions are presented.

  13. Comfort air temperature influence on heating and cooling loads of a residential building

    NASA Astrophysics Data System (ADS)

    Stanciu, C.; Șoriga, I.; Gheorghian, A. T.; Stanciu, D.

    2016-08-01

    The paper presents the thermal behavior and energy loads of a two-level residential building designed for a family of four, two adults and two students, for different inside comfort levels reflected by the interior air temperature. Results are intended to emphasize the different thermal behavior of building elements and their contribution to the building's external load. The most important contributors to the building thermal loss are determined. Daily heating and cooling loads are computed for 12 months simulation in Bucharest (44.25°N latitude) in clear sky conditions. The most important aspects regarding sizing of thermal energy systems are emphasized, such as the reference months for maximum cooling and heating loads and these loads’ values. Annual maximum loads are encountered in February and August, respectively, so these months should be taken as reference for sizing thermal building systems, in Bucharest, under clear sky conditions.

  14. A neural network based optimization system provides on-line coal fired furnace air flow balancing for heat rate improvement and NO{sub x} reduction

    SciTech Connect

    Radl, B.J.; Roland, W. Jr.

    1995-12-31

    The optimization system provides on-line, real-time air flow balancing without extensive testing or large complex physical models. NO{sub x} emissions and unit heat rate are very sensitive to air distribution and turbulence in the combustion zone. These issues are continuously changing due to ambient conditions, coal quality and the condition of plant equipment. This report discusses applying on-line, real-time and neural network to adjust secondary air flow and overfire air flow to reduce NO{sub x} and improve heat rate on various coal fired boiler designs.

  15. Effect of excess air on the optimization of heating appliances for biomass combustion

    SciTech Connect

    Menghini, D.; Marra, F.S.; Allouis, C.; Beretta, F.

    2008-07-15

    The performance of a domestic appliance for wood logs combustion is a function of several variables, such as the geometric design of the appliance and its operating parameters. Among them, air feeding conditions are really decisive if the objective function is the maximization of the heat recovered from flue gases. Therefore, even if pollutant emissions have to be ever considered, the amount of excess air can be seen as a fundamental parameter in the definition of thermal efficiency of the appliance. In this paper the role of this parameter is analysed. The analysis is conducted by linking the results obtained from experimental data, detailed CFD simulations and a simplified mathematical model based on a network of CSTR. The derivation of an idealized schematization of the appliance was essential to realize the role of excess air variations, with more generality than with respect to a specific appliance configuration. Conversely, while the experimental data and CFD results were necessary to derive the simplified model, the indications given by this simplified model were useful to analyze results coming from both experiments and detailed numerical simulations. It has been evidenced the need to distinguish between the role of excess air in the chemical combustion and in the heat recovery in the appliance as well as to quantify the feedback between these two processes. (author)

  16. Heat pumps

    NASA Astrophysics Data System (ADS)

    Gilli, P. V.

    1982-11-01

    Heat pumps for residential/commercial space heating and hot tap water make use of free energy of direct or indirect solar heat and save from about 40 to about 70 percent of energy if compared to a conventional heating system with the same energy basis. In addition, the electrically driven compressor heat pump is able to substitute between 40% (bivalent alternative operation) to 100% (monovalent operation) of the fuel oil of an oilfired heating furnace. For average Central European conditions, solar space heating systems with high solar coverage factor show the following sequence of increasing cost effectiveness: pure solar systems (without heat pumps); heat pump assisted solar systems; solar assisted heat pump systems; subsoil/water heat pumps; air/water heat pumps; air/air heat pumps.

  17. Thermal control of a lidar laser system using a non-conventional ram air heat exchanger

    NASA Technical Reports Server (NTRS)

    Killough, Brian D.; Alexander, William, Jr.; Swofford, Doyle P.

    1990-01-01

    This paper describes the analysis and performance testing of a uniquely designed external heat exchanger. The heat exchanger is attached externally to an aircraft and is used to cool a laser system within the fuselage. Estimates showed insufficient cooling capacity with a conventional staggered tube array in the limited space available. Thus, a non-conventional design wes developed with larger tube and fin area exposed to the ram air to increase the heat transfer performance. The basic design consists of 28 circular finned aluminum tubes arranged in two parallel banks. Wind tunnel tests were performed to simulate air and liquid flight conditions for the non-conventional parallel bank arrangement and the conventional staggered tube arrangement. Performance comparisons of each of the two designs are presented. Test results are used in a computer model of the heat exchanger to predict the operating performance for the entire flight profile. These analyses predict significantly improved performance over the conventional design and show adequate thermal control margins.

  18. Air Circulation and Heat Exchange Under Reduced Pressures

    NASA Technical Reports Server (NTRS)

    Rygalov, V.; Wheeler, R.; Dixon, M.; Fowler, P.; Hillhouse, L.

    2010-01-01

    Heat exchange rates decrease non-linearly with reductions in atmospheric pressure. This decrease creates risk of thermal stress (elevated leaf temperatures) for plants under reduced pressures. Forced convection (fans) significantly increases heat exchange rate under almost all pressures except below 10 kPa. Plant cultivation techniques under reduced pressures will require forced convection. The cooling curve technique is a reliable means of assessing the influence of environmental variables like pressure and gravity on gas exchange of plant. These results represent the extremes of gas exchange conditions for simple systems under variable pressures. In reality, dense plant canopies will exhibit responses in between these extremes. More research is needed to understand the dependence of forced convection on atmospheric pressure. The overall thermal balance model should include latent and radiative exchange components.

  19. Transpired Solar Collector at NREL's Waste Handling Facility Uses Solar Energy to Heat Ventilation Air (Fact Sheet)

    SciTech Connect

    Not Available

    2010-09-01

    The transpired solar collector was installed on NREL's Waste handling Facility (WHF) in 1990 to preheat ventilation air. The electrically heated WHF was an ideal candidate for the this technology - requiring a ventilation rate of 3,000 cubic feet per meter to maintain safe indoor conditions.

  20. Increased Air Velocity Reduces Thermal and Cardiovascular Strain in Young and Older Males during Humid Exertional Heat Stress.

    PubMed

    Wright Beatty, Heather E; Hardcastle, Stephen G; Boulay, Pierre; Flouris, Andreas D; Kenny, Glen P

    2015-01-01

    Older adults have been reported to have a lower evaporative heat loss capacity than younger adults during exercise when full sweat evaporation is permitted. However, it is unclear how conditions of restricted evaporative and convective heat loss (i.e., high humidity, clothing insulation) alter heat stress. to the purpose of this study was to examine the heat stress responses of young and older males during and following exercise in a warm/humid environment under two different levels of air velocity. Ten young (YOUNG: 24±2 yr) and 10 older (OLDER: 59±3 yr) males, matched for body surface area performed 4×15-min cycling bouts (15-min rest) at a fixed rate of heat production (400 W) in warm/humid conditions (35°C, 60% relative humidity) under 0.5 (Low) and 3.0 (High) m·s(-1) air velocity while wearing work coveralls. Rectal (Tre) and mean skin (MTsk) temperatures, heart rate (HR), local sweat rate, % max skin blood flow (SkBF) (recovery only), and blood pressure (recovery only) were measured. High air velocity reduced core and skin temperatures (p < 0.05) equally in YOUNG and OLDER males (p > 0.05) but was more effective in reducing cardiovascular strain (absolute and % max HR; p < 0.05) in YOUNG males (p < 0.05). Greater increases in local dry heat loss responses (% max SkBF and cutaneous vascular conductance) were detected across time in OLDER than YOUNG males in both conditions (p < 0.05). Local dry heat loss responses and cardiovascular strain were attenuated during the High condition in YOUNG compared to OLDER (p < 0.05). High air velocity reduced the number of males surpassing the 38.0°C Tre threshold from 90% (Low) to 50% (High). Despite age-related local heat loss differences, YOUNG and OLDER males had similar levels of heat stress during intermittent exercise in warm and humid conditions while wearing work coveralls. Increased air velocity was effective in reducing heat stress equally, and cardiovascular strain to a greater extent, in YOUNG and OLDER

  1. Influence mechanism on flow and heat transfer characteristics for air-cooled steam condenser cells

    NASA Astrophysics Data System (ADS)

    He, Wei Feng; Dai, Yi Ping; Li, Mao Qing; Ma, Qing Zhong

    2012-09-01

    Air-cooled steam condensers (ACSCs) have been extensively utilized to reject waste heat in power industry to save water resources. However, ACSC performance is so sensitive to ambient wind that almost all the air-cooled power plants in China are less efficient compared to design conditions. It is shown from previous research that the influence of ambient wind on the cell performance differs from its location in the condenser. As a result, a numerical model including two identical ACSC cells are established, and the different influence on the performance of the cells is demonstrated and analyzed through the computational fluid dynamics method. Despite the great influence from the wind speeds, similar cell performance is obtained for the two cells under both windless and wind speed conditions when the wind parallels to the steam duct. Fan volumetric effectiveness which characterizes the fan performance, as well as the exchanger heat transfer rate, drops obviously with the increasing wind speed, and performance difference between the exchanger pair in the same A-frame also rises continuously. Furthermore, different flow and heat transfer characteristics of the windward and leeward cell are obtained at different wind angles, and ambient wind enhances the performance of the leeward cell, while that of the windward one changes little.

  2. A strategy for oxygen conditioning at high altitude: comparison with air conditioning.

    PubMed

    West, John B

    2015-09-15

    Large numbers of people live or work at high altitude, and many visit to trek or ski. The inevitable hypoxia impairs physical working capacity, and at higher altitudes there is also cognitive impairment. Twenty years ago oxygen enrichment of room air was introduced to reduce the hypoxia, and this is now used in dormitories, hotels, mines, and telescopes. However, recent advances in technology now allow large amounts of oxygen to be obtained from air or cryogenic oxygen sources. As a result it is now feasible to oxygenate large buildings and even institutions such as hospitals. An analogy can be drawn between air conditioning that has improved the living and working conditions of millions of people who live in hot climates and oxygen conditioning that can do the same at high altitude. Oxygen conditioning is similar to air conditioning except that instead of cooling the air, the oxygen concentration is raised, thus reducing the equivalent altitude. Oxygen conditioning on a large scale could transform living and working conditions at high altitude, where it could be valuable in homes, hospitals, schools, dormitories, company headquarters, banks, and legislative settings.

  3. Fluidized bed heat exchanger with water cooled air distributor and dust hopper

    DOEpatents

    Jukkola, Walfred W.; Leon, Albert M.; Van Dyk, Jr., Garritt C.; McCoy, Daniel E.; Fisher, Barry L.; Saiers, Timothy L.; Karstetter, Marlin E.

    1981-11-24

    A fluidized bed heat exchanger is provided in which air is passed through a bed of particulate material containing fuel. A steam-water natural circulation system is provided for heat exchange and the housing of the heat exchanger has a water-wall type construction. Vertical in-bed heat exchange tubes are provided and the air distributor is water-cooled. A water-cooled dust hopper is provided in the housing to collect particulates from the combustion gases and separate the combustion zone from a volume within said housing in which convection heat exchange tubes are provided to extract heat from the exiting combustion gases.

  4. Quantum heat current under non-perturbative and non-Markovian conditions: Applications to heat machines.

    PubMed

    Kato, Akihito; Tanimura, Yoshitaka

    2016-12-14

    We consider a quantum system strongly coupled to multiple heat baths at different temperatures. Quantum heat transport phenomena in this system are investigated using two definitions of the heat current: one in terms of the system energy and the other in terms of the bath energy. When we consider correlations among system-bath interactions (CASBIs)-which have a purely quantum mechanical origin-the definition in terms of the bath energy becomes different. We found that CASBIs are necessary to maintain the consistency of the heat current with thermodynamic laws in the case of strong system-bath coupling. However, within the context of the quantum master equation approach, both of these definitions are identical. Through a numerical investigation, we demonstrate this point for a non-equilibrium spin-boson model and a three-level heat engine model using the reduced hierarchal equations of motion approach under the strongly coupled and non-Markovian conditions. We observe the cyclic behavior of the heat currents and the work performed by the heat engine, and we find that their phases depend on the system-bath coupling strength. Through consideration of the bath heat current, we show that the efficiency of the heat engine decreases as the strength of the system-bath coupling increases, due to the CASBI contribution. In the case of a large system-bath coupling, the efficiency decreases further if the bath temperature is increased, even if the ratio of the bath temperatures is fixed, due to the discretized nature of energy eigenstates. This is also considered to be a unique feature of quantum heat engines.

  5. Quantum heat current under non-perturbative and non-Markovian conditions: Applications to heat machines

    NASA Astrophysics Data System (ADS)

    Kato, Akihito; Tanimura, Yoshitaka

    2016-12-01

    We consider a quantum system strongly coupled to multiple heat baths at different temperatures. Quantum heat transport phenomena in this system are investigated using two definitions of the heat current: one in terms of the system energy and the other in terms of the bath energy. When we consider correlations among system-bath interactions (CASBIs)—which have a purely quantum mechanical origin—the definition in terms of the bath energy becomes different. We found that CASBIs are necessary to maintain the consistency of the heat current with thermodynamic laws in the case of strong system-bath coupling. However, within the context of the quantum master equation approach, both of these definitions are identical. Through a numerical investigation, we demonstrate this point for a non-equilibrium spin-boson model and a three-level heat engine model using the reduced hierarchal equations of motion approach under the strongly coupled and non-Markovian conditions. We observe the cyclic behavior of the heat currents and the work performed by the heat engine, and we find that their phases depend on the system-bath coupling strength. Through consideration of the bath heat current, we show that the efficiency of the heat engine decreases as the strength of the system-bath coupling increases, due to the CASBI contribution. In the case of a large system-bath coupling, the efficiency decreases further if the bath temperature is increased, even if the ratio of the bath temperatures is fixed, due to the discretized nature of energy eigenstates. This is also considered to be a unique feature of quantum heat engines.

  6. Hollow Fiber Membrane Dehumidification Device for Air Conditioning System

    PubMed Central

    Zhao, Baiwang; Peng, Na; Liang, Canzeng; Yong, Wai Fen; Chung, Tai-Shung

    2015-01-01

    In order to provide a comfortable living and working environment indoors in tropical countries, the outdoor air often needs to be cooled and dehumidified before it enters the rooms. Membrane separation is an emerging technology for air dehumidification and it is based on the solution diffusion mechanism. Water molecules are preferentially permeating through the membranes due to its smaller kinetic diameter and higher condensability than the other gases. Compared to other dehumidification technologies such as direct cooling or desiccation, there is no phase transition involved in membrane dehumidification, neither the contact between the fresh air stream and the desiccants. Hence, membrane dehumidification would not only require less energy consumption but also avoid cross-contamination problems. A pilot scale air dehumidification system is built in this study which comprises nine pieces of one-inch PAN/PDMS hollow fiber membrane modules. A 150 h long-term test shows that the membrane modules has good water vapor transport properties by using a low vacuum force of only 0.78 bar absolute pressure at the lumen side. The water vapor concentration of the feed humid air decreases dramatically from a range of 18–22 g/m3 to a range of 13.5–18.3 g/m3. Most importantly, the total energy saving is up to 26.2% compared with the conventional air conditioning process. PMID:26580660

  7. Hollow Fiber Membrane Dehumidification Device for Air Conditioning System.

    PubMed

    Zhao, Baiwang; Peng, Na; Liang, Canzeng; Yong, Wai Fen; Chung, Tai-Shung

    2015-11-16

    In order to provide a comfortable living and working environment indoors in tropical countries, the outdoor air often needs to be cooled and dehumidified before it enters the rooms. Membrane separation is an emerging technology for air dehumidification and it is based on the solution diffusion mechanism. Water molecules are preferentially permeating through the membranes due to its smaller kinetic diameter and higher condensability than the other gases. Compared to other dehumidification technologies such as direct cooling or desiccation, there is no phase transition involved in membrane dehumidification, neither the contact between the fresh air stream and the desiccants. Hence, membrane dehumidification would not only require less energy consumption but also avoid cross-contamination problems. A pilot scale air dehumidification system is built in this study which comprises nine pieces of one-inch PAN/PDMS hollow fiber membrane modules. A 150 h long-term test shows that the membrane modules has good water vapor transport properties by using a low vacuum force of only 0.78 bar absolute pressure at the lumen side. The water vapor concentration of the feed humid air decreases dramatically from a range of 18-22 g/m³ to a range of 13.5-18.3 g/m³. Most importantly, the total energy saving is up to 26.2% compared with the conventional air conditioning process.

  8. Meteorological Conditions Favouring Development of Urban Air Pollution Episodes

    NASA Astrophysics Data System (ADS)

    Baklanov, Alexander; Kukkonen, Jaakko; Finardi, Sandro; Beekmann, Matthias; Sokhi, Ranjeet; Mahura, Alexander; Ginsburg, Alexander; Mažeikis, Adomas

    2013-04-01

    The causes of urban air pollution episodes are complex and depend on various factors including emissions, meteorological parameters, topography, atmospheric chemical processes and solar radiation. The relative importance of such factors is dependent on the geographical region, its surrounding emission source areas and the related climatic characteristics, as well as the season of the year. The key pollutants are PM10, PM2.5, O3 and NO2, as these cause the worst air quality problems in European cities. The main aim of this study realised within the MEGAPOLI project was to describe and quantify the influence of meteorological patterns on urban air pollution especially high-level concentrations air pollution episodes in megacities. Several European urban agglomerations and megacities, including the Po Valley, Helsinki, London, Paris, Moscow, Vilnius, were considered in the study. The study also carried out analysis of meteorological patterns leading to urban air pollution episodes considered by the development of suitable indicators linking particular meteorological conditions/ parameters to increased air pollution levels in the urban areas. These indicators constitute a useful tool for regulators in suggesting effective policies and mitigation measures. Finally, a combination of modelling and analysis of observations data can allow both the quality assurance of the new parameterisations as well as the verification of input emissions.

  9. Comparison of the high temperature heat flux sensor to traditional heat flux gages under high heat flux conditions.

    SciTech Connect

    Blanchat, Thomas K.; Hanks, Charles R.

    2013-04-01

    Four types of heat flux gages (Gardon, Schmidt-Boelter, Directional Flame Temperature, and High Temperature Heat Flux Sensor) were assessed and compared under flux conditions ranging between 100-1000 kW/m2, such as those seen in hydrocarbon fire or propellant fire conditions. Short duration step and pulse boundary conditions were imposed using a six-panel cylindrical array of high-temperature tungsten lamps. Overall, agreement between all gages was acceptable for the pulse tests and also for the step tests. However, repeated tests with the HTHFS with relatively long durations at temperatures approaching 1000ÀC showed a substantial decrease (10-25%) in heat flux subsequent to the initial test, likely due to the mounting technique. New HTHFS gages have been ordered to allow additional tests to determine the cause of the flux reduction.

  10. Observations of the convective plume of a lake under cold-air advective conditions

    NASA Technical Reports Server (NTRS)

    Bill, R. G., Jr.; Sutherland, R. A.; Bartholic, J. F.; Chen, E.

    1978-01-01

    Moderating effects of Lake Apopka, Florida, on downwind surface temperatures were evaluated under cold-air advective conditions. Point temperature measurements north and south of the lake and data obtained from a thermal scanner flown at 1.6 km indicate that surface temperatures directly downwind may be higher than surrounding surface temperatures by as much as 5 C under conditions of moderate winds (about 4 m/s). No substantial temperature effects were observed with surface wind speed less than 1 m/s. Fluxes of sensible and latent heat from Lake Apopka were calculated from measurements of lake temperature, net radiation, relative humidity, and air temperature above the lake. Bulk transfer coefficients and the Bowen ratio were calculated and found to be in agreement with reported data for nonadvective conditions.

  11. Integration of Thermal Indoor Conditions into Operational Heat Health Warning Systems

    NASA Astrophysics Data System (ADS)

    Koppe, C.; Becker, P.; Pfafferott, J.

    2009-09-01

    The 2003 heat wave in Western Europe with altogether 35,000 to 50,000 deaths in Europe, several thousands of which occurred in Germany, has clearly pointed out the danger arising from long periods with high heat load. As a consequence, Germany, as many other European countries, has started to implement a Heat Health Warning System (HHWS). The German HHWS is based on the ‘Perceived Temperature'. The 'Perceived Temperature' is determined through a heat budget model of the human organism which includes the main thermophysiologically relevant mechanisms of heat exchange with the atmosphere. The most important meteorological ambience parameters included in the model are air temperature, humidity, wind speed and radiation fluxes in the short-wave and long-wave ranges. In addition to using a heat budget model for the assessment of the thermal load, the German HHWS also takes into account that the human body reacts in different ways to its thermal environment due to physiological adaptation (short-term acclimatisation) and short-term behavioural adaptation. The restriction of such an approach, like the majority of approaches used to issue heat warnings, is that the threshold for a warning is generally derived from meteorological observations and that warnings are issued on the basis of weather forecasts. Both, the observed data and the weather forecasts are only available for outside conditions. The group of people who are most at risk of suffering from a heat wave, however, are the elderly and frail who mainly stay inside. The indoor situation, which varies largely from the conditions outside, is not taken into account by most of the warning systems. To overcome this limitation the DWD, in co-operation with the Fraunhofer Institute for Solar Energy Systems, has developed a model which simulates the thermal conditions in the indoor environment. As air-conditioning in private housing in Germany is not very common, the thermal indoor conditions depend on the outside

  12. TEWI Evaluation for Household Refrigeration and Air-Conditioning Systems

    NASA Astrophysics Data System (ADS)

    Sobue, Atsushi; Watanabe, Koichi

    In the present study, we have quantitatively evaluated the global warming impact by household refrigerator and air-conditioning systems on the basis of reliable TEWI information. In TEWI evaluation of household refrigerators, the percentage of the impact by refrigerant released to the atmosphere (direct effect) is less than 18.6% in TEWI. In case of room air-conditioners, however, the percentage of direct effect is less than 5.4% in TEWI. Therefore, it was confirmed that impact by CO2 released as a result of the energy consumed to drive the refrigeration or air-conditioning systems throughout their lifetime (indirect effect) is far larger than direct effect by the entire system. A reduction of indirect effect by energy saving is the most effective measure in reducing the global warming impact by refrigeration and air-conditioning systems, For a realization of the energy saving, not only the advanced improvement in energy efficiency by household appliance manufacturers but also the improvement of consumer's mind in selecting the systems and a way of using are concluded important.

  13. Increase in periosteal angiogenesis through heat shock conditioning

    PubMed Central

    2011-01-01

    Objective It is widely known that stress conditioning can protect microcirculation and induce the release of vasoactive factors for a period of several hours. Little, however, is known about the long-term effects of stress conditioning on microcirculation, especially on the microcirculation of the periosteum of the calvaria. For this reason, we used intravital fluorescence microscopy to investigate the effects of heat shock priming on the microcirculation of the periosteum over a period of several days. Methods Fifty-two Lewis rats were randomized into eight groups. Six groups underwent heat shock priming of the periosteum of the calvaria at 42.5°C, two of them (n = 8) for 15 minutes, two (n = 8) for 25 minutes and two (n = 8) for 35 minutes. After 24 hours, a periosteal chamber was implanted into the heads of the animals of one of each of the two groups mentioned above. Microcirculation and inflammatory responses were studied repeatedly over a period of 14 days using intravital fluorescence microscopy. The expression of heat shock protein (HSP) 70 was examined by immunohistochemistry in three further groups 24 hours after a 15-minute (n = 5), a 25-minute (n = 5) or a 35-minute (n = 5) heat shock treatment. Two groups that did not undergo priming were used as controls. One control group (n = 8) was investigated by intravital microscopy and the other (n = 5) by immunohistochemistry. Results During the entire observation period of 14 days, the periosteal chambers revealed physiological microcirculation of the periosteum of the calvaria without perfusion failures. A significant (p < 0.05) and continuous increase in functional capillary density was noted from day 5 to day 14 after 25-minute heat shock priming. Whereas a 15-minute exposure did not lead to an increase in functional capillary density, 35-minute priming caused a significant but reversible perfusion failure in capillaries. Non-perfused capillaries in the 35-minute treatment group were reperfused by day 10

  14. [Microbiological cleanness of the air in hospitals--rooms with air-condition].

    PubMed

    Krogulski, Adam; Kanclerski, Krzysztof

    2009-01-01

    The aim of the study was to valuate effectiveness of the air condition system in hospitals. It was done by estimation of bacteria and fungi concentration in the air. The study were performed in ten hospital rooms which were protected by EU 13 or EU 9 filters. Possible the most important source of fungi was not treated air incoming from outside. Only in four of the rooms concentrations of the fungi in the air were satisfactory and not exceeded 20 cfu/m3 (cfu--colony forming unit). However in two of them the number of fungi rise 4-5 times after the windows were opened. Concentration of the fungi in operating theater number 2 (1-2 cfu/m3) allow to valuate efficiency of air conditioning systems. The lowest bacteria concentration was in Intensive Care Unit (73 cfu/m3) but the highest in instrumentalists rum (1427 cfu/m3. where according to high fungi concentration (116 cfu/m3) the air conditioning systems was switched of and the ventilation was by open windows.

  15. Reduction in air emissions attainable through implementation of district heating and cooling

    SciTech Connect

    Bloomquist, R.G.

    1996-12-31

    District heating and cooling (DHC) can provide multiple opportunities to reduce air emissions associated with space conditioning and electricity generation, which contribute 30% to 50% of all such emissions. When DHC is combined with cogeneration (CHP), maximum reductions in sulfur oxides (SO{sub x}), nitrogen oxides (NO{sub x}), carbon dioxide (CO{sub 2}), particulates, and ozone-depleting chlorofluorocarbon (CFC) refrigerants can most effectively be achieved. Although significant improvements in air quality have been documented in Europe and Scandinavia due to DHC and CHP implementation, accurately predicting such improvements has been difficult. Without acceptable quantification methods, regulatory bodies are reluctant to grant air emissions credits, and local community leaders are unwilling to invest in DHC and CHP as preferred methods of providing energy or strategies for air quality improvement. The recent development and release of a number of computer models designed specifically to provide quantification of air emissions that can result from DHC and CHP implementation should help provide local, state, and national policymakers with information vital to increasing support and investment in DHC development.

  16. 16 CFR 305.12 - Labeling for central air conditioners, heat pumps, and furnaces.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... pumps, and furnaces. 305.12 Section 305.12 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS... air conditioners, heat pumps, and furnaces. (a) Layout. All energy labels for central air conditioners, heat pumps, and furnaces (including boilers) shall use one size, similar colors, and typefaces...

  17. A novel trapezoid fin pattern applicable for air-cooled heat sink

    NASA Astrophysics Data System (ADS)

    Chen, Chien-Hung; Wang, Chi-Chuan

    2015-11-01

    The present study proposed a novel step or trapezoid surface design applicable to air-cooled heat sink under cross flow condition. A total of five heat sinks were made and tested, and the corresponding fin patterns are (a) plate fin; (b) step fin (step 1/3, 3 steps); (c) 2-step fin (step 1/2, 2 steps); (d) trapezoid fin (trap 1/3, cutting 1/3 length from the rear end) and (e) trapezoid fin (trap 1/2, cutting 1/2 length from the rear end). The design is based on the heat transfer augmentation via (1) longer perimeter of entrance region and (2) larger effective temperature difference at the rear part of the heat sink. From the test results, it is found that either step or trapezoid design can provide a higher heat transfer conductance and a lower pressure drop at a specified frontal velocity. The effective conductance of trap 1/3 design exceeds that of plate surface by approximately 38 % at a frontal velocity of 5 m s-1 while retains a lower pressure drop of 20 % with its surface area being reduced by 20.6 %. For comparisons exploiting the overall thermal resistance versus pumping power, the resultant thermal resistance of the proposed trapezoid design 1/3, still reveals a 10 % lower thermal resistance than the plate fin surface at a specified pumping power.

  18. Desiccant Enhanced Evaporative Air-Conditioning (DEVap): Evaluation of a New Concept in Ultra Efficient Air Conditioning

    SciTech Connect

    Kozubal, E.; Woods, J.; Burch, J.; Boranian, A.; Merrigan, T.

    2011-01-01

    NREL has developed the novel concept of a desiccant enhanced evaporative air conditioner (DEVap) with the objective of combining the benefits of liquid desiccant and evaporative cooling technologies into an innovative 'cooling core.' Liquid desiccant technologies have extraordinary dehumidification potential, but require an efficient cooling sink. DEVap's thermodynamic potential overcomes many shortcomings of standard refrigeration-based direct expansion cooling. DEVap decouples cooling and dehumidification performance, which results in independent temperature and humidity control. The energy input is largely switched away from electricity to low-grade thermal energy that can be sourced from fuels such as natural gas, waste heat, solar, or biofuels.

  19. Forced convective flow and heat transfer of upward cocurrent air-water slug flow in vertical plain and swirl tubes

    SciTech Connect

    Chang, Shyy Woei; Yang, Tsun Lirng

    2009-10-15

    This experimental study comparatively examined the two-phase flow structures, pressured drops and heat transfer performances for the cocurrent air-water slug flows in the vertical tubes with and without the spiky twisted tape insert. The two-phase flow structures in the plain and swirl tubes were imaged using the computerized high frame-rate videography with the Taylor bubble velocity measured. Superficial liquid Reynolds number (Re{sub L}) and air-to-water mass flow ratio (AW), which were respectively in the ranges of 4000-10000 and 0.003-0.02 were selected as the controlling parameters to specify the flow condition and derive the heat transfer correlations. Tube-wise averaged void fraction and Taylor bubble velocity were well correlated by the modified drift flux models for both plain and swirl tubes at the slug flow condition. A set of selected data obtained from the plain and swirl tubes was comparatively examined to highlight the impacts of the spiky twisted tape on the air-water interfacial structure and the pressure drop and heat transfer performances. Empirical heat transfer correlations that permitted the evaluation of individual and interdependent Re{sub L} and AW impacts on heat transfer in the developed flow regions of the plain and swirl tubes at the slug flow condition were derived. (author)

  20. Study of Ram-air Heat Exchangers for Reducing Turbine Cooling-air Temperature of a Supersonic Aircraft Turbojet Engine

    NASA Technical Reports Server (NTRS)

    Diaguila, Anthony J; Livingood, John N B; Eckert, Ernst R G

    1956-01-01

    The sizes and weights of the cores of heat exchangers were determined analytically for possible application for reducing turbine cooling-air temperatures of an engine designed for a Mach number of 2.5 and an altitude The sizes and weights of the cores of heat exchangers were determined analytically for possible application for reducing turbine cooling-air temperatures of an engine designed for a Mach number of 2.5 and an altitude of 70,000 feet. A compressor-bleed-air weight flow of 2.7 pounds per second was assumed for the coolant; ram air was considered as the other fluid. Pressure drops and inlet states of both fluids were prescribed, and ranges of compressor-bleed-air temperature reductions and of the ratio of compressor-bleed to ram-air weight flows were considered.

  1. Japanese power electronics inverter technology and its impact on the American air conditioning industry

    SciTech Connect

    Ushimaru, Kenji.

    1990-08-01

    Since 1983, technological advances and market growth of inverter- driven variable-speed heat pumps in Japan have been dramatic. The high level of market penetration was promoted by a combination of political, economic, and trade policies in Japan. A unique environment was created in which the leading domestic industries-- microprocessor manufacturing, compressors for air conditioning and refrigerators, and power electronic devices--were able to direct the development and market success of inverter-driven heat pumps. As a result, leading US variable-speed heat pump manufacturers should expect a challenge from the Japanese producers of power devices and microprocessors. Because of the vertically-integrated production structure in Japan, in contrast to the out-sourcing culture of the United States, price competition at the component level (such as inverters, sensors, and controls) may impact the structure of the industry more severely than final product sales. 54 refs., 47 figs., 1 tab.

  2. Japanese power electronics inverter technology and its impact on the American air conditioning industry

    NASA Astrophysics Data System (ADS)

    Ushimaru, Kenji

    1990-08-01

    Since 1983, technological advances and market growth of inverter-driven variable-speed heat pumps in Japan have been dramatic. The high level of market penetration was promoted by a combination of political, economic, and trade policies in Japan. A unique environment was created in which the leading domestic industries, microprocessor manufacturing, compressors for air conditioning and refrigerators, and power electronic devices, were able to direct the development and market success of inverter-driven heat pumps. As a result, leading U.S. variable-speed heat pump manufacturers should expect a challenge from the Japanese producers of power devices and microprocessors. Because of the vertically-integrated production structure in Japan, in contrast to the out-sourcing culture of the United States, price competition at the component level (such as inverters, sensors, and controls) may impact the structure of the industry more severely than final product sales.

  3. Testing of heat exchangers in membrane oxygenators using air pressure.

    PubMed

    Hamilton, Carole; Stein, Jutta; Seidler, Rainer; Kind, Robert; Beck, Karin; Tosok, Jürgen; Upterfofel, Jörg

    2006-03-01

    All heat exchangers (HE) in membrane oxygenators are tested by the manufacturer for water leaks during the production phase. However, for safety reasons, it is highly recommended that HEs be tested again before clinical use. The most common method is to attach the heater-cooler to the HE and allow the water to recirculate for at least 10 min, during which time a water leak should be evident. To improve the detection of water leaks, a test was devised using a pressure manometer with an integrated bulb used to pressurize the HE with air. The cardiopulmonary bypass system is set up as per protocol. A pressure manometer adapted to a 1/2" tubing is connected to the water inlet side of the oxygenator. The water outlet side is blocked with a short piece of 1/2" deadend tubing. The HE is pressurized with 250 mmHg for at least 30 sec and observed for any drop. Over the last 2 years, only one oxygenator has been detected with a water leak in which the air-method leaktest was performed. This unit was sent back to the manufacturer who confirmed the failure. Even though the incidence of water leaks is very low, it does occur and it is, therefore, important that all HEs are tested before they are used clinically. This method of using a pressure manometer offers many advantages, as the HE can be tested outside of the operating room (OR), allowing earlier testing of the oxygenator, no water contact is necessary, and it is simple, easy and quick to perform.

  4. The Oklahoma Field Test: Air-conditioning electricity savings from standard energy conservation measures, radiant barriers, and high-efficiency window air conditioners

    SciTech Connect

    Ternes, M.P.; Levins, W.P.

    1992-08-01

    A field test Involving 104 houses was performed in Tulsa, Oklahoma, to measure the air-conditioning electricity consumption of low-income houses equipped with window air conditioners, the reduction in this electricity consumption attributed to the installation of energy conservation measures (ECMS) as typically installed under the Oklahoma Weatherization Assistance Program (WAP), and the reduction achieved by the replacement of low-efficiency window air conditioners with high-efficiency units and the installation of attic radiant barriers. Air-conditioning electricity consumption and indoor temperature were monitored weekly during the pre-weatherization period (June to September 1988) and post-weatherization period (May to September 1989). House energy consumption models and regression analyses were used to normalize the air-conditioning electricity savings to average outdoor temperature conditions and the pre-weatherization indoor temperature of each house. The following conclusions were drawn from the study: (1) programs directed at reducing air-conditioning electricity consumption should be targeted at clients with high consumption to improve cost effectiveness; (2) replacing low-efficiency air conditioners with high-efficiency units should be considered an option in a weatherization program directed at reducing air-conditioning electricity consumption; (3) ECMs currently being installed under the Oklahoma WAP (chosen based on effectiveness at reducing space-heating energy consumption) should continue to be justified based on their space-heating energy savings potential only; and (4) attic radiant barriers should not be included in the Oklahoma WAP if alternatives with verified savings are available or until further testing demonstrates energy savings or other benefits in this typo of housing.

  5. Time and Space Resolved Heat Transfer Measurements Under Nucleate Bubbles with Constant Heat Flux Boundary Conditions

    NASA Technical Reports Server (NTRS)

    Myers, Jerry G.; Hussey, Sam W.; Yee, Glenda F.; Kim, Jungho

    2003-01-01

    Investigations into single bubble pool boiling phenomena are often complicated by the difficulties in obtaining time and space resolved information in the bubble region. This usually occurs because the heaters and diagnostics used to measure heat transfer data are often on the order of, or larger than, the bubble characteristic length or region of influence. This has contributed to the development of many different and sometimes contradictory models of pool boiling phenomena and dominant heat transfer mechanisms. Recent investigations by Yaddanapyddi and Kim and Demiray and Kim have obtained time and space resolved heat transfer information at the bubble/heater interface under constant temperature conditions using a novel micro-heater array (10x10 array, each heater 100 microns on a side) that is semi-transparent and doubles as a measurement sensor. By using active feedback to maintain a state of constant temperature at the heater surface, they showed that the area of influence of bubbles generated in FC-72 was much smaller than predicted by standard models and that micro-conduction/micro-convection due to re-wetting dominated heat transfer effects. This study seeks to expand on the previous work by making time and space resolved measurements under bubbles nucleating on a micro-heater array operated under constant heat flux conditions. In the planned investigation, wall temperature measurements made under a single bubble nucleation site will be synchronized with high-speed video to allow analysis of the bubble energy removal from the wall.

  6. Conditional Reynolds stress in a strongly heated turbulent boundary layer with premixed combustion

    SciTech Connect

    Cheng, R.K.; Ng, T.T.

    1985-02-01

    A two-color laser Doppler anemometry technique has been used to measure velocity statistics and Reynolds stress in a turbulent boundary layer over a strongly heated wall (T/sub w/ = 1100 K) with premixed ethylene--air combustion. Measurements in the isothermal and nonreacting heated wall turbulent boundary layers were also made for comparison. Conditional velocity covariance -approx.(uv) are deduced using the quadrant and ''hole'' analysis methods. The conditional data obtained in the isothermal layer are in exellent agreement with those deduced by others based on hot-wire data. The results obtained in the heated and reacting layers indicate that the decrease in mean Reynolds stress can be attributed to a reduction in the -approx.(uv) contributions associated with a burst of low momentum fluid form the wall. The reduction is much more significant in the reacting layer than in the heated layer. Comparison with previous density shows that the changes in conditional -approx.(uv) contributions occur mostly within the constant density sublayer of combustion products adjacent to the wall. In the region where combustion reaction takes place, no significant change in the turbulence intensities or Reynolds stress is found.

  7. Motion of Optically Heated Spheres at the Water-Air Interface.

    PubMed

    Girot, A; Danné, N; Würger, A; Bickel, T; Ren, F; Loudet, J C; Pouligny, B

    2016-03-22

    A micrometer-sized spherical particle classically equilibrates at the water-air interface in partial wetting configuration, causing about no deformation to the interface. In condition of thermal equilibrium, the particle just undergoes faint Brownian motion, well visible under a microscope. We report experimental observations when the particle is made of a light-absorbing material and is heated up by a vertical laser beam. We show that, at small laser power, the particle is trapped in on-axis configuration, similarly to 2-dimensional trapping of a transparent sphere by optical forces. Conversely, on-axis trapping becomes unstable at higher power. The particle escapes off the laser axis and starts orbiting around the axis. We show that the laser-heated particle behaves as a microswimmer with velocities on the order of several 100 μm/s with just a few milliwatts of laser power.

  8. Experimental evaluation of dry/wet air-cooled heat exchangers. Progress report

    SciTech Connect

    Hauser, S.G.; Gruel, R.L.; Huenefeld, J.C.; Eschbach, E.J.; Johnson, B.M.; Kreid, D.K.

    1982-08-01

    The ultimate goal of this project was to contribute to the development of improved cooling facilities for power plants. Specifically, the objective during FY-81 was to experimentally determine the thermal performance and operating characteristics of an air-cooled heat exchanger surface manufactured by the Unifin Company. The performance of the spiral-wound finned tube surface (Unifin) was compared with two inherently different platefin surfaces (one developed by the Trane Co. and the other developed by the HOETERV Institute) which were previously tested as a part of the same continuing program. Under dry operation the heat transfer per unit frontal area per unit inlet temperature difference (ITD) of the Unifin surface was 10% to 20% below that of the other two surfaces at low fan power levels. At high fan power levels, the performances of the Unifin and Trane surfaces were essentially the same, and 25% higher than the HOETERV surface. The design of the Unifin surface caused a significantly larger air-side pressure drop through the heat exchanger both in dry and deluge operation. Generally higher overall heat transfer coefficients were calculated for the Unifin surface under deluged operation. They ranged from 2.0 to 3.5 Btu/hr-ft/sup 2/-/sup 0/F as compared to less than 2.0 Btu hr-ft/sup 2/-/sup 0/F for the Trane and HOETERV surfaces under similar conditions. The heat transfer enhancement due to the evaporative cooling effect was also measureably higher with the Unifin surface as compared to the Trane surface. This can be primarily attributed to the better wetting characteristics of the Unifin surface. If the thermal performance of the surfaces are compared at equal face velocities, the Unifin surface is as much as 35% better. This method of comparison accounts for the wetting characteristics while neglecting the effect of pressure drop. Alternatively the surfaces when compared at equal pressure drop essentially the same thermal performance.

  9. Solar air-conditioning-active, hybrid and passive

    SciTech Connect

    Yellott, J. I.

    1981-04-01

    After a discussion of summer air conditioning requirements in the United States, active, hybrid, and passive cooling systems are defined. Active processes and systems include absorption, Rankine cycle, and a small variety of miscellaneous systems. The hybrid solar cooling and dehumidification technology of desiccation is covered as well as evaporative cooling. The passive solar cooling processes covered include convective, radiative and evaporative cooling. Federal and state involvement in solar cooling is then discussed. (LEW)

  10. Survey of advanced-heat-pump developments for space conditioning

    SciTech Connect

    Fairchild, P.D.

    1981-01-01

    A survey of heat pump projects with special emphasis on those supported by DOE, EPRI, and the Gas Research Institute is presented. Some historical notes on heat pump development are discussed. Market and equipment trends, well water and ground-coupled heat pumps, heat-actuated heat pump development, and international interest in heat pumps are also discussed. 30 references.

  11. Influence of indoor air conditions on radon concentration in a detached house.

    PubMed

    Akbari, Keramatollah; Mahmoudi, Jafar; Ghanbari, Mahdi

    2013-02-01

    Radon is released from soil and building materials and can accumulate in residential buildings. Breathing radon and radon progeny for extended periods hazardous to health and can lead to lung cancer. Indoor air conditions and ventilation systems strongly influence indoor radon concentrations. This paper focuses on effects of air change rate, indoor temperature and relative humidity on indoor radon concentrations in a one family detached house in Stockholm, Sweden. In this study a heat recovery ventilation system unit was used to control the ventilation rate and a continuous radon monitor (CRM) was used to measure radon levels. FLUENT, a computational fluid dynamics (CFD) software package was used to simulate radon entry into the building and air change rate, indoor temperature and relative humidity effects using a numerical approach. The results from analytical solution, measurements and numerical simulations showed that air change rate, indoor temperature and moisture had significant effects on indoor radon concentration. Increasing air change rate reduces radon level and for a specific air change rate (in this work Ach = 0.5) there was a range of temperature and relative humidity that minimized radon levels. In this case study minimum radon levels were obtained at temperatures between 20 and 22 °C and a relative humidity of 50-60%.

  12. High Technology Centrifugal Compressor for Commercial Air Conditioning Systems

    SciTech Connect

    Ruckes, John

    2006-04-15

    R&D Dynamics, Bloomfield, CT in partnership with the State of Connecticut has been developing a high technology, oil-free, energy-efficient centrifugal compressor called CENVA for commercial air conditioning systems under a program funded by the US Department of Energy. The CENVA compressor applies the foil bearing technology used in all modern aircraft, civil and military, air conditioning systems. The CENVA compressor will enhance the efficiency of water and air cooled chillers, packaged roof top units, and other air conditioning systems by providing an 18% reduction in energy consumption in the unit capacity range of 25 to 350 tons of refrigeration The technical approach for CENVA involved the design and development of a high-speed, oil-free foil gas bearing-supported two-stage centrifugal compressor, CENVA encompassed the following high technologies, which are not currently utilized in commercial air conditioning systems: Foil gas bearings operating in HFC-134a; Efficient centrifugal impellers and diffusers; High speed motors and drives; and System integration of above technologies. Extensive design, development and testing efforts were carried out. Significant accomplishments achieved under this program are: (1) A total of 26 builds and over 200 tests were successfully completed with successively improved designs; (2) Use of foil gas bearings in refrigerant R134a was successfully proven; (3) A high speed, high power permanent magnet motor was developed; (4) An encoder was used for signal feedback between motor and controller. Due to temperature limitations of the encoder, the compressor could not operate at higher speed and in turn at higher pressure. In order to alleviate this problem a unique sensorless controller was developed; (5) This controller has successfully been tested as stand alone; however, it has not yet been integrated and tested as a system; (6) The compressor successfully operated at water cooled condensing temperatures Due to temperature

  13. Performance Assessment of Sodium to Air Finned Heat Exchanger for FBR

    SciTech Connect

    Noushad, I.B.; Ellappan, T.R.; Rajan, K.K.; Rajan, M.; Vaidyanathan, G.; Vinod, V.; Suresh Kumar, V.A.

    2006-07-01

    In pool type Fast Breeder Reactors (FBR) a passive Safety Grade Decay Heat Removal (SGDHR) system removes decay heat produced in the core when normal heat removal path through steam water system is not available. This is essential to maintain the core temperatures within limits. A Decay Heat Exchanger (DHX) picks the heat from the pool and transfers the heat to atmosphere through sodium to Air Heat Exchanger (AHX) situated at high elevation. Due to the temperature differences existent in the system density differences are generated causing a buoyant convective heat transfer. The system is completely passive as primary sodium, secondary sodium and air flows under natural convection. DHX is a sodium to sodium counter flow heat exchanger with primary sodium on shell side and secondary sodium on tube side. AHX is a cross flow heat exchanger with sodium on tube side and air flows in cross flow across the finned tubes. Capacity of a single loop of SGDHR is 8 MW. Four such loops are available for the decay heat removal. It has been seen that the decay heat removal to a large extent depends on the AHX performance. AHX tested have shown reduced heat removal capacity much as 30 to 40%, essentially due to the bypassing of the finned tubes by the air. It was felt that a geometrically similar AHX be tested in sodium. Towards this a 2 MW Sodium to air heat exchanger (AHX) was tested in the Steam Generator Test Facility (SGTF) constructed at Indira Gandhi Center for Atomic Research (IGCAR), Kalpakkam. The casing arrangement of the AHX was designed to minimise bypassing of air. (authors)

  14. Measured Performance of a Low Temperature Air Source Heat Pump

    SciTech Connect

    R.K. Johnson

    2013-09-01

    A 4-ton Low Temperature Heat Pump (LTHP) manufactured by Hallowell International was installed in a residence near New Haven, Connecticut and monitored over two winters of operation. After attending to some significant service issues, the heat pump operated as designed. This report should be considered a review of the dual compressor “boosted heat pump” technology. The Low Temperature Heat Pump system operates with four increasing levels of capacity (heat output) as the outdoor temperature drops.

  15. Vehicle cabin cooling system for capturing and exhausting heated boundary layer air from inner surfaces of solar heated windows

    DOEpatents

    Farrington, Robert B.; Anderson, Ren

    2001-01-01

    The cabin cooling system includes a cooling duct positioned proximate and above upper edges of one or more windows of a vehicle to exhaust hot air as the air is heated by inner surfaces of the windows and forms thin boundary layers of heated air adjacent the heated windows. The cabin cooling system includes at least one fan to draw the hot air into the cooling duct at a flow rate that captures the hot air in the boundary layer without capturing a significant portion of the cooler cabin interior air and to discharge the hot air at a point outside the vehicle cabin, such as the vehicle trunk. In a preferred embodiment, the cooling duct has a cross-sectional area that gradually increases from a distal point to a proximal point to the fan inlet to develop a substantially uniform pressure drop along the length of the cooling duct. Correspondingly, this cross-sectional configuration develops a uniform suction pressure and uniform flow rate at the upper edge of the window to capture the hot air in the boundary layer adjacent each window.

  16. Finite-Rate Ablation Boundary Conditions for Carbon-Phenolic Heat-Shield

    NASA Technical Reports Server (NTRS)

    Chen, Y.-K.; Milos, Frank S.

    2003-01-01

    A formulation of finite-rate ablation surface boundary conditions, including oxidation, nitridation, and sublimation of carbonaceous material with pyrolysis gas injection, has been developed based on surface species mass conservation. These surface boundary conditions are discretized and integrated with a Navier-Stokes solver. This numerical procedure can predict aerothermal heating, chemical species concentration, and carbonaceous material ablation rate over the heatshield surface of re-entry space vehicles. In this study, the gas-gas and gas-surface interactions are established for air flow over a carbon-phenolic heatshield. Two finite-rate gas-surface interaction models are considered in the present study. The first model is based on the work of Park, and the second model includes the kinetics suggested by Zhluktov and Abe. Nineteen gas phase chemical reactions and four gas-surface interactions are considered in the present model. There is a total of fourteen gas phase chemical species, including five species for air and nine species for ablation products. Three test cases are studied in this paper. The first case is a graphite test model in the arc-jet stream; the second is a light weight Phenolic Impregnated Carbon Ablator at the Stardust re-entry peak heating conditions, and the third is a fully dense carbon-phenolic heatshield at the peak heating point of a proposed Mars Sample Return Earth Entry Vehicle. Predictions based on both finite-rate gas- surface interaction models are compared with those obtained using B' tables, which were created based on the chemical equilibrium assumption. Stagnation point convective heat fluxes predicted using Park's finite-rate model are far below those obtained from chemical equilibrium B' tables and Zhluktov's model. Recession predictions from Zhluktov's model are generally lower than those obtained from Park's model and chemical equilibrium B' tables. The effect of species mass diffusion on predicted ablation rate is also

  17. Effect of Intake Air Filter Condition on Vehicle Fuel Economy

    SciTech Connect

    Norman, Kevin M; Huff, Shean P; West, Brian H

    2009-02-01

    The U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy and the U.S. Environmental Protection Agency (EPA) jointly maintain a fuel economy website (www.fueleconomy.gov), which helps fulfill their responsibility under the Energy Policy Act of 1992 to provide accurate fuel economy information [in miles per gallon (mpg)] to consumers. The site provides information on EPA fuel economy ratings for passenger cars and light trucks from 1985 to the present and other relevant information related to energy use such as alternative fuels and driving and vehicle maintenance tips. In recent years, fluctuations in the price of crude oil and corresponding fluctuations in the price of gasoline and diesel fuels have renewed interest in vehicle fuel economy in the United States. (User sessions on the fuel economy website exceeded 20 million in 2008 compared to less than 5 million in 2004 and less than 1 million in 2001.) As a result of this renewed interest and the age of some of the references cited in the tips section of the website, DOE authorized the Oak Ridge National Laboratory (ORNL) Fuels, Engines, and Emissions Research Center (FEERC) to initiate studies to validate and improve these tips. This report documents a study aimed specifically at the effect of engine air filter condition on fuel economy. The goal of this study was to explore the effects of a clogged air filter on the fuel economy of vehicles operating over prescribed test cycles. Three newer vehicles (a 2007 Buick Lucerne, a 2006 Dodge Charger, and a 2003 Toyota Camry) and an older carbureted vehicle were tested. Results show that clogging the air filter has no significant effect on the fuel economy of the newer vehicles (all fuel injected with closed-loop control and one equipped with MDS). The engine control systems were able to maintain the desired AFR regardless of intake restrictions, and therefore fuel consumption was not increased. The carbureted engine did show a decrease in

  18. Evaluation of Geothermal Heat Pump Systems under Various Conditions

    NASA Astrophysics Data System (ADS)

    Lee, S.; Bae, G.; Lee, K.

    2006-12-01

    Experimental and numerical test were accomplished to evaluate the relations between the geothermal system and the hydrogeological condition. Sand tank experiment was designed. Combinations of different gradients and temperature gradients were applied for testing the real-time monitoring performance. Numerical modeling results were compared with the experimental data. Water injection-system imitating open- and closed-loop geothermal heat pumps were applied to estimate the change of the distribution of ambient groundwater temperature. The experimental results of different settings were used to estimate the effects of shallow depth geothermal energy utilization on the groundwater system.

  19. Downward flow of water with entrained air in a nonuniformaly heated subdivided annulus

    SciTech Connect

    Johnston, B.S.; May, C.P.

    1992-01-01

    This paper describes an experimental study in which water was fed to a vertical annulus, entraining air in downward flow. The annulus was subdivided by longitudinal fins into four subchannels and was heated with an azimuthally varying heat flux. A bypass was provided to simulate flow in parallel channels. For steady liquid flow, inlet temperature, and pressure boundary conditions, the power was increased until critical heat flux was reached. Overheating characteristics were grouped according to the prevailing flow pattern. In annular flows (j{sub L} < 0.3 m/s) overheating of the whole test section occurs when steam production causes countercurrent flooding. In intermittent flows (0.3 < j{sub L} < 0.9 m/s) the overheating is confined to a portion of the hot subchannel. The mechanism is postulated to be stagnation of a large bubble. In bubble flows (0.9 m/s < j{sub L}) overheating occurs by diverting inlet flow to the bypass and again involves the whole test section. Except at the very lowest flow rates, critical heat flux occurs when the effluent liquid temperature is below saturation.

  20. Downward flow of water with entrained air in a nonuniformaly heated subdivided annulus

    SciTech Connect

    Johnston, B.S.; May, C.P.

    1992-10-01

    This paper describes an experimental study in which water was fed to a vertical annulus, entraining air in downward flow. The annulus was subdivided by longitudinal fins into four subchannels and was heated with an azimuthally varying heat flux. A bypass was provided to simulate flow in parallel channels. For steady liquid flow, inlet temperature, and pressure boundary conditions, the power was increased until critical heat flux was reached. Overheating characteristics were grouped according to the prevailing flow pattern. In annular flows (j{sub L} < 0.3 m/s) overheating of the whole test section occurs when steam production causes countercurrent flooding. In intermittent flows (0.3 < j{sub L} < 0.9 m/s) the overheating is confined to a portion of the hot subchannel. The mechanism is postulated to be stagnation of a large bubble. In bubble flows (0.9 m/s < j{sub L}) overheating occurs by diverting inlet flow to the bypass and again involves the whole test section. Except at the very lowest flow rates, critical heat flux occurs when the effluent liquid temperature is below saturation.

  1. In-Cab Air Quality of Trucks Air Conditioned and Kept in Electrified Truck Stop

    SciTech Connect

    Lee, Doh-Won; Zietsman, Josias; Farzaneh, Mohamadreza; Li, Wen-Whai; Olvera, Hector; Storey, John Morse; Kranendonk, Laura

    2009-01-01

    At night, long-haul truck drivers rest inside the cabins of their vehicles. Therefore, the in-cab air quality while air conditioning (A/C) is being provided can be a great concern to the drivers health. The effect of using different A/C methods [truck's A/C, auxiliary power unit (APU), and truck stop electrification (TSE) unit] on in-cab air quality of a heavy-duty diesel vehicle was investigated at an electrified truck stop in the El Paso, Texas, area. The research team measured the in-cabin and the ambient air quality adjacent to the parked diesel truck as well as emissions from the truck and an APU while it was providing A/C. The measured results were compared and analyzed. On the basis of these results, it was concluded that the TSE unit provided better in-cab air quality while supplying A/C. Furthermore, the truck and APU exhaust emissions were measured, and fuel consumption of the truck (while idling) and the APU (during operation) were compared. The results led to the finding that emissions from the APU were less than those from the truck's engine idling, but the APU consumed more fuel than the engine while providing A/C under given conditions.

  2. Air Conditioning Stall Phenomenon Testing, Model Development, and Simulation

    SciTech Connect

    Irminger, Philip; Rizy, D Tom; Li, Huijuan; Smith, Travis; Rice, C Keith; Li, Fangxing; Adhikari, Sarina

    2012-01-01

    Electric distribution systems are experiencing power quality issues of extended reduced voltage due to fault-induced delayed voltage recovery (FIDVR). FIDVR occurs in part because modern air conditioner (A/C) and heat pump compressor motors are much more susceptible to stalling during a voltage sag or dip such as a sub-transmission fault. They are more susceptible than older A/C compressor motors due to the low inertia of these newer and more energy efficient motors. There is a concern that these local reduced voltage events on the distribution system will become more frequent and prevalent and will combine over larger areas and challenge transmission system voltage and ultimately power grid reliability. The Distributed Energy Communications and Controls (DECC) Laboratory at Oak Ridge National Laboratory (ORNL) has been employed to (1) test, (2) characterize and (3) model the A/C stall phenomenon.

  3. Total environmental warming impact (TEWI) calculations for alternative automative air-conditioning systems

    SciTech Connect

    Sand, J.R.; Fischer, S.K.

    1997-01-01

    The Montreal Protocol phase-out of chlorofluorocarbons (CFCs) has required manufacturers to develop refrigeration and air-conditioning systems that use refrigerants that can not damage stratospheric ozone. Most refrigeration industries have adapted their designs to use hydrochlorofluorocarbon (HCFC) or hydrofluorocarbon (HFC) refrigerants; new automobile air- conditioning systems use HFC-134a. These industries are now being affected by scientific investigations of greenhouse warming and questions about the effects of refrigerants on global warming. Automobile air-conditioning has three separate impacts on global warming; (1) the effects of refrigerant inadvertently released to the atmosphere from accidents, servicing, and leakage; (2) the efficiency of the cooling equipment (due to the emission of C0{sub 2} from burning fuel to power the system); and (3) the emission of C0{sub 2} from burning fuel to transport the system. The Total Equivalent Warming Impact (TEWI) is an index that should be used to compare the global warming effects of alternative air-conditioning systems because it includes these contributions from the refrigerant, cooling efficiency, and weight. This paper compares the TEWI of current air-conditioning systems using HFC-134a with that of transcritical vapor compression system using carbon dioxide and systems using flammable refrigerants with secondary heat transfer loops. Results are found to depend on both climate and projected efficiency of C0{sub 2}systems. Performance data on manufacturing prototype systems are needed to verify the potential reductions in TEWI. Extensive field testing is also required to determine the performance, reliability, and ``serviceability`` of each alternative to HFC-134a to establish whether the potential reduction of TEWI can be achieved in a viable consumer product.

  4. Extraordinary heat during the 1930s US Dust Bowl and associated large-scale conditions

    NASA Astrophysics Data System (ADS)

    Donat, Markus G.; King, Andrew D.; Overpeck, Jonathan T.; Alexander, Lisa V.; Durre, Imke; Karoly, David J.

    2016-01-01

    Unusually hot summer conditions occurred during the 1930s over the central United States and undoubtedly contributed to the severity of the Dust Bowl drought. We investigate local and large-scale conditions in association with the extraordinary heat and drought events, making use of novel datasets of observed climate extremes and climate reanalysis covering the past century. We show that the unprecedented summer heat during the Dust Bowl years was likely exacerbated by land-surface feedbacks associated with springtime precipitation deficits. The reanalysis results indicate that these deficits were associated with the coincidence of anomalously warm North Atlantic and Northeast Pacific surface waters and a shift in atmospheric pressure patterns leading to reduced flow of moist air into the central US. Thus, the combination of springtime ocean temperatures and atmospheric flow anomalies, leading to reduced precipitation, also holds potential for enhanced predictability of summer heat events. The results suggest that hot drought, more severe than experienced during the most recent 2011 and 2012 heat waves, is to be expected when ocean temperature anomalies like those observed in the 1930s occur in a world that has seen significant mean warming.

  5. Cold energy release characteristics of an ice/air direct contact heat exchanger

    SciTech Connect

    Ohira, Akiyoshi; Yanadori, Michio; Iwabuchi, Kunihiko; Kimura, Toshikatsu; Tsubota, Yuji

    1998-12-31

    This paper deals with the cold energy release characteristics of an ice/air direct contact heat exchanger in a refined cold energy conveyance system. Characteristics of the outlet temperature, the humidity, and time history of released heat are examined when the initial height of the ice-cube-packed bed in the heat exchanger is changed. The following are the results obtained in these experiments: (1) Inlet air of 30 C is lowered to about 0 C by passing the air through the heat exchanger, and absolute humidity of the outlet air is reduced to about a quarter of that of the inlet air. (2) There is an optimum height of the ice-cube-packed bed for maximizing the amount of cold energy released. (3) This heat exchange method can supply about twice the amount of cold energy released by an ordinary fin-tube-type heat exchanger even if the air velocity in the heat exchanger is reduced to about 0.38 times that of the fin-tube-type heat exchanger.

  6. Exergy and Energy analysis of a ground-source heat pump for domestic water heating under simulated occupancy conditions

    SciTech Connect

    Ally, Moonis Raza; Munk, Jeffrey D; Baxter, Van D; Gehl, Anthony C

    2012-01-01

    This paper presents detailed analysis of a water to water ground source heat pump (WW-GSHP) to provide all the hot water needs in a 345 m2 house located in DOE climate zone 4 (mixed-humid). The protocol for hot water use is based on the Building America Research Benchmark Definition (Hendron 2008; Hendron and Engebrecht 2010) which aims to capture the living habits of the average American household and its impact on energy consumption. The entire house was operated under simulated occupancy conditions. Detailed energy and exergy analysis provides a complete set of information on system efficiency and sources of irreversibility, the main cause of wasted energy. The WW-GSHP was sized at 5.275 kW (1.5-ton) for this house and supplied hot water to a 303 L (80 gal) water storage tank. The WW-GSHP shared the same ground loop with a 7.56 kW (2.1-ton) water to air ground source heat pump (WA-GSHP) which provided space conditioning needs to the entire house. Data, analyses, and measures of performance for the WW-GSHP in this paper complements the results of the WA-GSHP published in this journal (Ally, Munk et al. 2012). Understanding the performance of GSHPs is vital if the ground is to be used as a viable renewable energy resource.

  7. Air Flow Path Dynamics In The Vadose Zone Under Various Land Surface Climate Boundary Conditions

    NASA Astrophysics Data System (ADS)

    Illangasekare, T. H.; Sakaki, T.; Schulte, P. E.; Cihan, A.; Christ, J.

    2010-12-01

    Vapor intrusion (VI) refers to the transport of volatile chemical vapors from subsurface sources to surface and subsurface structures through the vadose zone. Because of the difference in pressure between the inside of the building and the subsurface soil pores, vapor can enter the building through cracks in the foundation, slab and walls and utility openings. The processes that govern the vapor transport in the heterogeneous subsurface “outside the home” are complex, and the sampling to assess potential pathways is subjected to spatial and temporal variability. Spatial variability is a result of a number of factors that include changing soil and soil moisture conditions. Temporal variability is a result of transient heat, wind, ambient pressure and a water flux boundary conditions at the land-atmospheric interface. Fluctuating water table conditions controlled by recharge, pumping, and stream-aquifer interactions will also contribute to the transient vapor flux generation at the sources. When the soil moisture changes as a result of precipitation events and other soil surface boundary conditions, the soil moisture content changes and hence the air permeability. Therefore, the primary pathways for the vapor are preferential channels that change with the transient soil moisture distribution. Both field and laboratory studies have shown that heterogeneity has a significant influence on soil moisture conditions in unsaturated soils. Uncertainties in vapor transport predictions have been attributed to heterogeneity and spatial variability in hydraulic properties. In this study, our goal was to determine the role of soil moisture variability on vapor transport and intrusion as affected by the climate driven boundary conditions on the land surface. A series of experiments were performed to generate a comprehensive data set to understand and evaluate how the spatial and temporal variability of soil moisture affected by the mass and heat flux boundary conditions on the

  8. Solar Air Heating Metal Roofing for Reroofing, New Construction, and Retrofit

    DTIC Science & Technology

    2013-05-20

    annual energy and life cycle savings from developing a solar assisted geothermal heating and cooling system . The project is funded by the Department...to the geothermal loop. The measurements proved the solar heated air resource and attic exhaust fan system are adequate for solar heat recovery to...support a geothermal heating system . Subsequent to the radiant barrier installation the overall geothermal project was reconfigured due to budget

  9. Air-to-Water Heat Pumps With Radiant Delivery in Low-Load Homes

    SciTech Connect

    Backman, C.; German, A.; Dakin, B.; Springer, D.

    2013-12-01

    Space conditioning represents nearly 50% of average residential household energy consumption, highlighting the need to identify alternative cost-effective, energy-efficient cooling and heating strategies. As homes are better built, there is an increasing need for strategies that are particularly well suited for high performance, low load homes. ARBI researchers worked with two test homes in hot-dry climates to evaluate the in-situ performance of air-to-water heat pump (AWHP) systems, an energy efficient space conditioning solution designed to cost-effectively provide comfort in homes with efficient, safe, and durable operation. Two monitoring projects of test houses in hot-dry climates were initiated in 2010 to test this system. Both systems were fully instrumented and have been monitored over one year to capture complete performance data over the cooling and heating seasons. Results are used to quantify energy savings, cost-effectiveness, and system performance using different operating modes and strategies. A calibrated TRNSYS model was developed and used to evaluate performance in various climate regions. This strategy is most effective in tight, insulated homes with high levels of thermal mass (i.e. exposed slab floors).

  10. Air-to-Water Heat Pumps With Radiant Delivery in Low-Load Homes

    SciTech Connect

    Backman, C.; German, A.; Dakin, B.; Springer, D.

    2013-12-01

    Space conditioning represents nearly 50% of average residential household energy consumption, highlighting the need to identify alternative cost-effective, energy-efficient cooling and heating strategies. As homes are better built, there is an increasing need for strategies that are particularly well suited for high performance, low load homes. ARBI researchers worked with two test homes in hot-dry climates to evaluate the in-situ performance of air-to-water heat pump systems, an energy efficient space conditioning solution designed to cost-effectively provide comfort in homes with efficient, safe, and durable operation. Two monitoring projects of test houses in hot-dry climates were initiated in 2010 to test this system. Both systems were fully instrumented and have been monitored over one year to capture complete performance data over the cooling and heating seasons. Results are used to quantify energy savings, cost-effectiveness, and system performance using different operating modes and strategies. A calibrated TRNSYS model was developed and used to evaluate performance in various climate regions. This strategy is most effective in tight, insulated homes with high levels of thermal mass (i.e. exposed slab floors).

  11. Heat generation in Aircraft tires under yawed rolling conditions

    NASA Technical Reports Server (NTRS)

    Dodge, Richard N.; Clark, Samuel K.

    1987-01-01

    An analytical model was developed for approximating the internal temperature distribution in an aircraft tire operating under conditions of yawed rolling. The model employs an assembly of elements to represent the tire cross section and treats the heat generated within the tire as a function of the change in strain energy associated with predicted tire flexure. Special contact scrubbing terms are superimposed on the symmetrical free rolling model to account for the slip during yawed rolling. An extensive experimental program was conducted to verify temperatures predicted from the analytical model. Data from this program were compared with calculation over a range of operating conditions, namely, vertical deflection, inflation pressure, yaw angle, and direction of yaw. Generally the analytical model predicted overall trends well and correlated reasonably well with individual measurements at locations throughout the cross section.

  12. Direct Digital Control of HVAC (Heating, Ventilating, and Air Conditioning).

    DTIC Science & Technology

    1985-01-01

    many feet downstream from the damper. For most HVAC applications, PI control is an adequate control technique. A more detailed description of PID control...consumption of two HVAC Systems with PI Control . (Ref 2) 26 Conventional Built-up Control D lirect Digital System complexity F igure 14. Relationships between

  13. Residential ventilation with heat recovery: Improving indoor air quality and saving energy

    NASA Astrophysics Data System (ADS)

    Roseme, G. D.; Berk, J. V.; Boegel, M. L.; Halsey, H. I.; Hollowell, C. D.; Rosenfeld, A. H.; Turiel, I.

    1980-05-01

    Residential air quality measurements were made and the use of mechanical ventilation systems with air-to-air heat exchangers is discussed as a promising means of pollutant control. A particular advantage of this control strategy is that the heat exchanger permits recovery of a large portion of the heat that would normally be lost in a simple exhaust ventilation system, and therefore maintains the energy efficiency of the house. An economic analysis is presented showing that installation of these systems in newly constructed homes is cost effective in most regions of the country.

  14. Performance of R-410A Alternative Refrigerants in a Reciprocating Compressor Designed for Air Conditioning Applications

    SciTech Connect

    Shrestha, Som S; Vineyard, Edward Allan; Mumpower, Kevin

    2016-01-01

    In response to environmental concerns raised by the use of refrigerants with high Global Warming Potential (GWP), the Air-Conditioning, Heating, and Refrigeration Institute (AHRI) has launched an industry-wide cooperative research program, referred to as the Low-GWP Alternative Refrigerants Evaluation Program (AREP), to identify and evaluate promising alternative refrigerants for major product categories. After successfully completing the first phase of the program in December 2013, AHRI launched a second phase of the Low-GWP AREP in 2014 to continue research in areas that were not previously addressed, including refrigerants in high ambient conditions, refrigerants in applications not tested in the first phase, and new refrigerants identified since testing for the program began. Although the Ozone Depletion Potential of R-410A is zero, this refrigerant is under scrutiny due to its high GWP. Several candidate alternative refrigerants have already demonstrated low global warming potential. Performance of these low-GWP alternative refrigerants is being evaluated for Air conditioning and heat pump applications to ensure acceptable system capacity and efficiency. This paper reports the results of a series of compressor calorimeter tests conducted for the second phase of the AREP to evaluate the performance of R-410A alternative refrigerants in a reciprocating compressor designed for air conditioning systems. It compares performance of alternative refrigerants ARM-71A, L41-1, DR-5A, D2Y-60, and R-32 to that of R-410A over a wide range of operating conditions. The tests showed that, in general, cooling capacities were slightly lower (except for the R-32), but energy efficiency ratios (EER) of the alternative refrigerants were comparable to that of R-410A.

  15. Analysis of non-CFC automotive air conditioning

    SciTech Connect

    Mei, V.C.; Chen, F.C. ); Sullivan, R.A. )

    1991-01-01

    Concern about the destruction of the global environment by chlorofluorocarbon (CFC) fluids has become an impetus in searching for alternative non-CFC refrigerants and cooling methods for mobile air conditioning (MAC). While some alternative refrigerants have been identified, they are not considered a lasting solution because of their high global warming potential (GWP), which could result in their eventual phase-out. In view of this dilemma, environmentally acceptable alternative cooling methods have become important. This study discusses the advantages and the limits of some of the alternative automotive cooling methodologies. 19 refs., 6 figs.

  16. Investigation of air cleaning system response to accident conditions

    SciTech Connect

    Andrae, R.W.; Bolstad, J.W.; Foster, R.D.; Gregory, W.S.; Horak, H.L.; Idar, E.S.; Martin, R.A.; Ricketts, C.I.; Smith, P.R.; Tang, P.K.

    1980-01-01

    Air cleaning system response to the stress of accident conditions are being investigated. A program overview and hghlight recent results of our investigation are presented. The program includes both analytical and experimental investigations. Computer codes for predicting effects of tornados, explosions, fires, and material transport are described. The test facilities used to obtain supportive experimental data to define structural integrity and confinement effectiveness of ventilation system components are described. Examples of experimental results for code verification, blower response to tornado transients, and filter response to tornado and explosion transients are reported.

  17. Analytical study of a gas-fired adsorptive air-conditioning system

    SciTech Connect

    Poyelle, F.; Guilleminot, J.J.; Meunier, F.

    1996-11-01

    Adsorptive air conditioning represents a potential alternative to chlorofluorocarbon (CFC) systems. But to compete with other systems, adsorption systems must exhibit sufficient figures of merit and energetic densities. An analytical study to predict the overall heat transfer coefficient in an adsorber has been conducted and is presented here. This study, based on a method-of-moment analysis, shows the influence of three parameters limiting the heat transfer in adsorbent beds. Heat transfer in adsorbent beds has been intensified. Using new consolidated materials, the machine utilizes two uniform temperature adsorbent beds in a cycle that incorporates both heat and mass recovery. It uses a zeolite-water pair. It is designed to produce 3 kW of cooling. Expected cooling performances are 300 W/kg of adsorbent with a coefficient of performance (COP) close to 0.8 and a cycle time of 20 minutes. The thermal conditions used to test the cycle are: the heater, 220 C; the cooler, 40 C; and the evaporation temperature, 3 C.

  18. Control of Computer Room Air Conditioning using IT Equipment Sensors

    SciTech Connect

    Bell, Geoffrey C.; Storey, Bill; Patterson, Michael K.

    2009-09-30

    The goal of this demonstration was to show how sensors in IT equipment could be accessed and used to directly control computer room air conditioning. The data provided from the sensors is available on the IT network and the challenge for this project was to connect this information to the computer room air handler's control system. A control strategy was developed to enable separate control of the chilled water flow and the fans in the computer room air handlers. By using these existing sensors in the IT equipment, an additional control system is eliminated (or could be redundant) and optimal cooling can be provided saving significant energy. Using onboard server temperature sensors will yield significant energy reductions in data centers. Intel hosted the demonstration in its Santa Clara, CA data center. Intel collaborated with IBM, HP, Emerson, Wunderlich-Malec Engineers, FieldServer Technologies, and LBNL to install the necessary components and develop the new control scheme. LBNL also validated the results of the demonstration.

  19. Effects of air velocity and clothing combination on heating efficiency of an electrically heated vest (EHV): a pilot study.

    PubMed

    Wang, Faming; Gao, Chuansi; Holmér, Ingvar

    2010-09-01

    Cold endangers the heat balance of the human body. Protective clothing is the natural and most common equipment against cold stress. However, clothing for cold protection may be bulky and heavy, affecting human performance and increasing the work load. In such cases, a heated garment with built-in heating elements may be helpful. This pilot study presents a method based on a thermal manikin to investigate the effects of air velocity and clothing combination on the heating efficiency of an electrically heated vest (EHV). An infrared thermal camera was used to detect surface temperature distributions of the EHV on the front and back. Results show that the heating efficiency of the EHV decreases with increasing air velocity. Changes in EHV sequence in the three-layer clothing combination also significantly affect the heating efficiency: it increases with the increasing number of layers on top of the EHV. The highest mean temperature on the inner surface of the EHV was 40.2 degrees C, which indicates that it is safe for the wearers. For the EHV to heat the human body effectively, we suggest that it be worn as a middle layer. Finally, the EHV is especially suitable for occupational groups whose metabolic rate is below 1.9 Mets.

  20. Air gasification of rice husk in bubbling fluidized bed reactor with bed heating by conventional charcoal.

    PubMed

    Makwana, J P; Joshi, Asim Kumar; Athawale, Gaurav; Singh, Dharminder; Mohanty, Pravakar

    2015-02-01

    An experimental study of air gasification of rice husk was conducted in a bench-scale fluidized bed gasifier (FBG) having 210 mm diameter and 1600 mm height. Heating of sand bed material was performed using conventional charcoal fuel. Different operating conditions like bed temperature, feeding rate and equivalence ratio (ER) varied in the range of 750-850 °C, 25-31.3 kg/h, and 0.3-0.38, respectively. Flow rate of air was kept constant (37 m(3)/h) during FBG experiments. The carbon conversion efficiencies (CCE), cold gas efficiency, and thermal efficiency were evaluated, where maximum CCE was found as 91%. By increasing ER, the carbon conversion efficiency was decreased. Drastic reduction in electric consumption for initial heating of gasifier bed with charcoal compared to ceramic heater was ∼45%. Hence rice husk is found as a potential candidate to use directly (without any processing) in FBG as an alternative renewable energy source from agricultural field.

  1. Field evaluation of advanced controls for the retrofit of packaged air conditioners and heat pumps

    SciTech Connect

    Wang, Weimin; Katipamula, Srinivas; Ngo, Hung; Underhill, Ronald M.; Taasevigen, Danny J.; Lutes, Robert G.

    2015-09-01

    This paper documents the magnitude of energy savings achievable in the field by retrofitting existing packaged rooftop units (RTUs) with advanced control strategies not ordinarily used for RTUs. A total of 66 RTUs on 8 different buildings were retrofitted with a commercially available advanced controller for improving RTU operational efficiency. The controller features enhanced air-side economizer control, multi-speed fan control, and demand controlled ventilation. Of the 66 RTUs, 18 are packaged heat pumps and the rest are packaged air conditioners with gas heat. The eight buildings cover four building types and four climate conditions. Based on the data collected for about a whole year, the advanced controller reduced the normalized annual RTU energy consumption between 22% and 90%, with an average of 57% for all RTUs. The average fractional savings uncertainty was 12% at 95% confidence level. Normalized annual electricity savings were in the range between 0.47 kWh/h (kWh per hour of RTU operation) and 7.21 kWh/h, with an average of 2.39 kWh/h. RTUs greater than 53 kW and runtime greater than 14 hours per day had payback periods less than 3 years even at $0.05/kWh.

  2. Age-related differences in heat loss capacity occur under both dry and humid heat stress conditions

    PubMed Central

    Larose, Joanie; Boulay, Pierre; Wright-Beatty, Heather E.; Sigal, Ronald J.; Hardcastle, Stephen

    2014-01-01

    This study examined the progression of impairments in heat dissipation as a function of age and environmental conditions. Sixty men (n = 12 per group; 20–30, 40–44, 45–49, 50–54, and 55–70 yr) performed four intermittent exercise/recovery cycles for a duration of 2 h in dry (35°C, 20% relative humidity) and humid (35°C, 60% relative humidity) conditions. Evaporative heat loss and metabolic heat production were measured by direct and indirect calorimetry, respectively. Body heat storage was measured as the temporal summation of heat production and heat loss during the sessions. Evaporative heat loss was reduced during exercise in the humid vs. dry condition in age groups 20–30 (−17%), 40–44 (−18%), 45–49 (−21%), 50–54 (−25%), and 55–70 yr (−20%). HE fell short of being significantly different between groups in the dry condition, but was greater in age group 20–30 yr (279 ± 10 W) compared with age groups 45–49 (248 ± 8 W), 50–54 (242 ± 6 W), and 55–70 yr (240 ± 7 W) in the humid condition. As a result of a reduced rate of heat dissipation predominantly during exercise, age groups 40–70 yr stored between 60–85 and 13–38% more heat than age group 20–30 yr in the dry and humid conditions, respectively. These age-related differences in heat dissipation and heat storage were not paralleled by significant differences in local sweating and skin blood flow, or by differences in core temperature between groups. From a whole body perspective, combined heat and humidity impeded heat dissipation to a similar extent across age groups, but, more importantly, intermittent exercise in dry and humid heat stress conditions created a greater thermoregulatory challenge for middle-aged and older adults. PMID:24812643

  3. The Oklahoma Field Test: Air-Conditioning Electricity Savings from Standard Energy Conservation Measures, Radiant Barriers, and High-Efficiency Window Air Conditioners

    SciTech Connect

    Ternes, M.P.

    1992-01-01

    general replacement of low-efficiency air conditioners (replacing units in all houses without considering pre-weatherization air-conditioning electricity consumption) was not cost effective in the test houses. ECMs installed under the Oklahoma WAP and installed in combination with an attic radiant barrier did not produce air-conditioning electricity savings that could be measured in the field test. The following conclusions were drawn from the study: (1) programs directed at reducing air-conditioning electricity consumption should be targeted at clients with high consumption to improve cost effectiveness; (2) replacing low-efficiency air conditioners with high-efficiency units should be considered an option in a weatherization program directed at reducing air-conditioning electricity consumption; (3) ECMs currently being installed under the Oklahoma WAP (chosen based on effectiveness at reducing space-heating energy consumption) should continue to be justified based on their space-heating energy savings potential only; and (4) attic radiant barriers should not be included in the Oklahoma WAP if alternatives with verified savings are available or until further testing demonstrates energy savings or other benefits in this type of housing.

  4. Correlation analysis of transient heat transfer characteristics for air precooling aggregate

    NASA Astrophysics Data System (ADS)

    Guo, Chaohong; Zeng, Miao; Lu, Fei; Tang, Dawei; Guan, Wei; Li, Li; Fu, Tingwu

    2017-04-01

    In dam works, air precooling of aggregate is a common and effective method to avoid temperature cracks in concrete structure. In order to offer a reliable design theory for the air precooling process to avoid unreasonable energy consumption, the transient heat transfer characteristics of the aggregate are intensively analyzed. The combined structure of the aggregate and the interstitial space in the hopper is treated as a porous structure, and the space-average method is used to simulate the transient heat transfer process. Simulation results show that size of the hopper and the average air velocity in the cross section have great influence on the transient heat transfer process of the aggregate, while the porosity in the range of 0.4‒0.5 has little influence. Nomograms are abstracted from simulation results, and then correlations of the compared excess temperature are precisely fitted to predict the air precooling transient heat transfer process of the aggregate.

  5. Improved Modeling of Residential Air Conditioners and Heat Pumps for Energy Calculations

    SciTech Connect

    Cutler, D.; Winkler, J.; Kruis, N.; Christensen, C.; Brendemuehl, M.

    2013-01-01

    This report presents improved air conditioner and heat pump modeling methods in the context of whole-building simulation tools, with the goal of enabling more accurate evaluation of cost effective equipment upgrade opportunities and efficiency improvements in residential buildings.

  6. Cascade Reverse Osmosis Air Conditioning System: Cascade Reverse Osmosis and the Absorption Osmosis Cycle

    SciTech Connect

    2010-09-01

    BEETIT Project: Battelle is developing a new air conditioning system that uses a cascade reverse osmosis (RO)-based absorption cycle. Analyses show that this new cycle can be as much as 60% more efficient than vapor compression, which is used in 90% of air conditioners. Traditional vapor-compression systems use polluting liquids for a cooling effect. Absorption cycles use benign refrigerants such as water, which is absorbed in a salt solution and pumped as liquid—replacing compression of vapor. The refrigerant is subsequently separated from absorbing salt using heat for re-use in the cooling cycle. Battelle is replacing thermal separation of refrigerant with a more efficient reverse osmosis process. Research has shown that the cycle is possible, but further investment will be needed to reduce the number of cascade reverse osmosis stages and therefore cost.

  7. Advantages of air conditioning and supercharging an LM6000 gas turbine inlet

    SciTech Connect

    Kolp, D.A.; Flye, W.M.; Guidotti, H.A.

    1995-07-01

    Of all the external factors affecting a gas turbine, inlet pressure and temperature have the greatest impact on performance. The effect of inlet temperature variations is especially pronounced in the new generation of high-efficiency gas turbines typified by the 40 MW GE LM6000. A reduction of 50 F (28 C) in inlet temperature can result in a 30 percent increase in power and a 4.5 percent improvement in heat rate. An elevation increase to 5,000 ft (1,524 m) above sea level decreases turbine output 17 percent; conversely supercharging can increase output more than 20 percent. This paper addresses various means of heating, cooling and supercharging LM6000 inlet air. An economic model is developed and sample cases are cited to illustrate the optimization of gas turbine inlet systems, taking into account site conditions, incremental equipment cost and subsequent performance enhancement.

  8. Development of air conditioning technologies to reduce CO2 emissions in the commercial sector

    PubMed Central

    Yoshida, Yukiko

    2006-01-01

    Background Architectural methods that take into account global environmental conservation generally concentrate on mitigating the heat load of buildings. Here, we evaluate the reduction of carbon dioxide (CO2) emissions that can be achieved by improving heating, ventilating, and air conditioning (HVAC) technologies. Results The Climate Change Research Hall (CCRH) of the National Institute for Environmental Studies (NIES) is used as a case study. CCRH was built in line with the "Green Government Buildings" program of the Government Buildings Department at the Ministry of Land, Infrastructure and Transport in Japan. We have assessed the technology used in this building, and found that there is a possibility to reduce energy consumption in the HVAC system by 30%. Conclusion Saving energy reduces CO2 emissions in the commercial sector, although emission factors depend on the country or region. Consequently, energy savings potential may serve as a criterion in selecting HVAC technologies with respect to emission reduction targets. PMID:17062161

  9. Housing characteristics and indoor air quality in households of Alaska Native children with chronic lung conditions.

    PubMed

    Singleton, R; Salkoski, A J; Bulkow, L; Fish, C; Dobson, J; Albertson, L; Skarada, J; Kovesi, T; McDonald, C; Hennessy, T W; Ritter, T

    2017-03-01

    Alaska Native children experience high rates of respiratory infections and conditions. Household crowding, indoor smoke, lack of piped water, and poverty have been associated with respiratory infections. We describe the baseline household characteristics of children with severe or chronic lung disease participating in a 2012-2015 indoor air study. We monitored indoor PM2.5, CO2 , relative humidity %, temperature, and VOCs and interviewed caregivers about children's respiratory symptoms. We evaluated the association between reported children's respiratory symptoms and indoor air quality indicators using multiple logistic regression analysis. Compared with general US households, study households were more likely overcrowded 73% (62%-82%) vs 3.2% (3.1%-3.3%); had higher woodstove use as primary heat source 16% (9%-25%) vs 2.1% (2.0%-2.2%); and higher proportion of children in a household with a smoker 49% (38%-60%) vs 26.2% (25.5%-26.8%). Median PM2.5 was 33 μg/m(3) . Median CO2 was 1401 ppm. VOCs were detectable in all homes. VOCs, smoker, primary wood heat, and PM2.5>25 μg/m(3) were associated with higher risk for cough between colds; VOCs were associated with higher risk for wheeze between colds and asthma diagnosis. High indoor air pollutant levels were associated with respiratory symptoms in household children, likely related to overcrowding, poor ventilation, woodstove use, and tobacco smoke.

  10. Predicted limits for evaporative cooling in heat stress relief of cattle in warm conditions.

    PubMed

    Berman, A

    2009-10-01

    Evaporative cooling of ambient air (EC) is a main path for heat stress relief in cattle kept in the shade of semi-confining structures. Evaporative cooling is particularly efficient in hot dry climates. We examined the potential of EC for heat stress relief in cattle in moderately warm and humid climates. The feasibility was examined by the reduction in ambient temperature (T(ac)) produced by EC as a function of ambient temperature (T(a)) and humidity (RH(a)). A data set (n = 139) of temperature and relative humidity (RH) produced by EC over a range of air temperature (25 to 50 degrees C) and humidity (10 to 70% RH) was analyzed by polynomial second order regressions. The analyses produced equations for the relations between ambient air temperature and ambient humidity and between respective conditions in air cooled by EC (T(c), RH(c)). Linear regressions were computed for a narrower temperature range (30 to 40 degrees C). In all equations, R(2) were >0.94 and regression terms were statistically significant. The T(ac) obtained by EC diminished by 0.3 degrees C per degrees C rise in T(a), indicating a reduced efficiency of EC with rising T(a). The T(ac) obtained by EC also was markedly reduced by rising ambient humidity and increased by RH(c). An attempt to sustain T(ac) at greater RH(a) by allowing a rise in RH(c) would only restore 2/3 of the reduction in T(ac) because the coefficient for the RH(a) effect on T(ac) is 1.5 larger than that of RH(c). The T(ac) attained by EC partially depends on the humidity in the cooled environment. Elevated RH(c) may impede animal skin and respiratory evaporative heat loss and lead to moisture accumulation in bedding. If the upper desired limit for RH(c) is 70%, at RH(a) smaller than 45% (typical for hot-dry environments) the T(ac) is larger than 7.5 degrees C, at RH(a) greater than 55% T(ac) is reduced to less than 5 degrees C, and at RH(a) of 57.5 to 60% T(ac) is about 2.5 degrees C. Coupling EC with forced air movement when T

  11. International Space Station Common Cabin Air Assembly Condensing Heat Exchanger Hydrophilic Coating Failures and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Balistreri, Steven F.; Shaw, Laura A.; Laliberte, Yvon

    2010-01-01

    The ability to control the temperature and humidity of an environment or habitat is critical for human survival. These factors are important to maintaining human health and comfort, as well as maintaining mechanical and electrical equipment in good working order to support the human and to accomplish mission objectives. The temperature and humidity of the International Space Station (ISS) United States On-orbit Segment (USOS) cabin air is controlled by the Common Cabin Air Assembly (CCAA). The CCAA consists of a fan, a condensing heat exchanger (CHX), an air/water separator, temperature and liquid sensors, and electrical controlling hardware and software. The CHX is the primary component responsible for control of temperature and humidity. The CCAA CHX contains a chemical coating that was developed to be hydrophilic and thus attract water from the humid influent air. This attraction forms the basis for water removal and therefore cabin humidity control. However, there have been several instances of CHX coatings becoming hydrophobic and repelling water. When this behavior is observed in an operational CHX, the unit s ability to remove moisture from the air is compromised and the result is liquid water carryover into downstream ducting and systems. This water carryover can have detrimental effects on the cabin atmosphere quality and on the health of downstream hardware. If the water carryover is severe and widespread, this behavior can result in an inability to maintain humidity levels in the USOS. This paper will describe the operation of the five CCAAs within in the USOS, the potential causes of the hydrophobic condition, and the impacts of the resulting water carryover to downstream systems. It will describe the history of this behavior and the actual observed impacts to the ISS USOS. Information on mitigation steps to protect the health of future CHX hydrophilic coatings and potential remediation techniques will also be discussed.

  12. Effect of refrigerant charge on the performance of air-conditioning systems

    SciTech Connect

    Goswami, D.Y.; Ek, G.; Leung, M.; Jotshi, C.K.; Sherif, S.A.; Colacino, F.

    1997-12-31

    An air-conditioning system operates in an optimal condition if the system is fully charged with specified amount of refrigerant. Poor field maintenance or refrigerant leakage causes low level of charge resulting in a lower thermal performance and higher operating cost. An experimental investigation was conducted to study the effect of low charge level of R-22 on the performance of a 3-ton residential air-conditioning system. The experimental results show that if a system is undercharged to 90%, the effect is small, 3.5% reduction in cooling capacity and 2% increase in COP. However, the system performance suffers serious degradation if the level of charge drops below 80%. An ice layer formed on the outer cooling coil surface impedes the heat transfer between the warm air and cold refrigerant vapor. An economic analysis shows that the cost of properly charging a system which has otherwise gone down to 85% charge level can pay for itself in savings in a short period of 3 to 4 months.

  13. Advanced variable speed air source integrated heat pump (AS-IHP) development - CRADA final report

    SciTech Connect

    Baxter, Van D.; Rice, C. Keith; Munk, Jeffrey D.; Ally, Moonis Raza; Shen, Bo

    2015-09-30

    Between August 2011 and September 2015, Oak Ridge National Laboratory (ORNL) and Nordyne, LLC (now Nortek Global HVAC LLC, NGHVAC) engaged in a Cooperative Research and Development Agreement (CRADA) to develop an air-source integrated heat pump (AS-IHP) system for the US residential market. Two generations of laboratory prototype systems were designed, fabricated, and lab-tested during 2011-2013. Performance maps for the system were developed using the latest research version of the DOE/ORNL Heat Pump Design Model, or HPDM, (Rice 1991; Rice and Jackson 2005; Shen et al 2012) as calibrated against the lab test data. These maps were the input to the TRNSYS (SOLAR Energy Laboratory, et al, 2010) system to predict annual performance relative to a baseline suite of equipment meeting minimum efficiency standards in effect in 2006 (combination of 13 SEER air-source heat pump (ASHP) and resistance water heater with Energy Factor (EF) of 0.9). Predicted total annual energy savings, while providing space conditioning and water heating for a tight, well insulated 2600 ft2 (242 m2) house at 5 U.S. locations, ranged from 46 to 61%, averaging 52%, relative to the baseline system (lowest savings at the cold-climate Chicago location). Predicted energy use for water heating was reduced 62 to 76% relative to resistance WH. Based on these lab prototype test and analyses results a field test prototype was designed and fabricated by NGHVAC. The unit was installed in a 2400 ft2 (223 m2) research house in Knoxville, TN and field tested from May 2014 to April 2015. Based on the demonstrated field performance of the AS-IHP prototype and estimated performance of a baseline system operating under the same loads and weather conditions, it was estimated that the prototype would achieve ~40% energy savings relative to the minimum efficiency suite. The estimated WH savings were >60% and SC mode savings were >50%. But estimated SH savings were only about 20%. It is believed that had the test

  14. [Sports and extreme conditions. Cardiovascular incidence in long term exertion and extreme temperatures (heat, cold)].

    PubMed

    Melin, B; Savourey, G

    2001-06-30

    During ultra-endurance exercise, both increase in body temperature and dehydration due to sweat losses, lead to a decrease in central blood volume. The heart rate drift allows maintaining appropriate cardiac output, in order to satisfy both muscle perfusion and heat transfer requirements by increasing skin blood flow. The resulting dehydration can impair thermal regulation and increase the risks of serious accidents as heat stroke. Endurance events, lasting more than 8 hours, result in large sweat sodium chloride losses. Thus, ingestion of large amounts of water with poor salt intake can induce symptomatic hyponatremia (plasma sodium < 130 mEq/L) which is also a serious accident. Heat environment increases the thermal constraint and when the air humidity is high, evaporation of sweat is compromise. Thus, thermal stress becomes uncompensable which increases the risk of cardiovascular collapse. Cold exposure induces physiological responses to maintain internal temperature by both limiting thermal losses and increasing metabolic heat production. Cold can induce accidental hypothermia and local frost-bites; moreover, it increases the risk of arrhythmia during exercise. Some guidelines (cardiovascular fitness, water and electrolyte intakes, protective clothing) are given for each extreme condition.

  15. Development and application of an underfloor air-conditioning system with improved outlets for a ``smart`` building in Tokyo

    SciTech Connect

    Matsunawa, Katashi; Iizuka, Hiroshi; Tanabe, Shinichi

    1995-12-31

    An underfloor air-conditioning system was developed and introduced into a high technology ``smart`` building in Tokyo. Experiments and numerical simulation studies were carried out prior to the introduction of the system, to preestimate its thermal comfort and energy saving effects. After the construction of the system, field measurement of the indoor environment and occupant surveys helped assess whether the system actually achieved its anticipated performance. The floor diffuser design was improved to prevent draft and local cooling of feet observed under the high cooling load condition. The results of these studies demonstrated that the indoor environment provided by the underfloor air-conditioning system with the improved type of outlet meets thermal comfort requirements recommended by ASHRAE Standard 55-92 and maintains good indoor air quality (IAQ). Moreover, these studies revealed that, compared with a conventional ceiling diffuser system, the underfloor air-conditioning system not only promotes exhaust heat removal with higher efficiency but also increases the use of natural energy. Possibilities to apply underfloor air-conditioning to task/ambient or personalized systems were also discussed. The studies suggest that the system should be considered as an appropriate choice available for air-conditioning systems in future smart buildings.

  16. Response of London's urban heat island to a marine air intrusion in an easterly wind regime

    NASA Astrophysics Data System (ADS)

    Chemel, C.; Sokhi, R. S.

    2010-09-01

    London is long known to develop a pronounced urban heat island (UHI) resulting primarily from the storage of heat in the urban fabric during the day and released during the night, the differences in thermal and radiative properties of the surface between urban and rural areas, and lack of evapotranspiration in urban areas. Under calm, clear, and dry weather conditions, the difference in near-surface air temperature between two representative urban centre and rural locations at a given time typically reaches several degrees (i.e. warming) during the night and can be negative (i.e. cooling) during the day. Like the majority of large cities in the world, London is located in a coastal area. On certain occasions cooler marine air from the North Sea is advected across London by a sea breeze or easterly winds. In our work we examine the effects of a marine air intrusion, in an easterly wind regime, on the structure of London's UHI for a case study on 7 May 2008. For this purpose, numerical simulations with the Weather Research and Forecast (WRF) model are performed for multiple nested domains with the innermost domain covering London and its rural surroundings at the kilometre scale. A sensitivity study is undertaken to assess how the categorisation of the urban land use and the parameterisation of the urban canopy in the model affect its performance characteristics for the near-surface air temperature field. The categorisation of the urban landuse, according to the fractional area that is built-up within each grid cell, is found to be key to capturing the spatial pattern of the temperature field. Using a multilayer rather than single layer urban canopy model improves the representation of the variability of the pattern and the intensity of the UHI. A notable outcome of this work is that the inclusion of building anthropogenic fluxes is comparatively less important as regards model performance for near-surface air temperature. The effects of the marine air intrusion on

  17. 40 CFR 1066.845 - AC17 air conditioning efficiency test procedure.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... solar heating is disabled for certain test intervals as described in this section. (d) Interior air... vehicle's windows and operate the vehicle over a preconditioning UDDS with no solar heating and with the... cooling fans. (3) Turn on solar heating within one minute after turning off the engine. Once the...

  18. Experimental validation of coupled heat, air and moisture transfer modeling in multilayer building components

    NASA Astrophysics Data System (ADS)

    Ferroukhi, M. Y.; Abahri, K.; Belarbi, R.; Limam, K.; Nouviaire, A.

    2016-10-01

    The present paper lies to study the coupled heat, air and moisture transfer in multi-layer building materials. Concerning the modeling part, the interest is to predict the hygrothermal behavior, by developing a macroscopic model that incorporates simultaneously the diffusive, convective and conductive effects on the building elements. Heat transfer is considered in the strongly coupled situation where the mass and heat flux are temperature, vapor pressure and total pressure dependents. The model input parameters are evaluated experimentally through the development of various experimental prototypes in the laboratory. Thereafter, an experimental setup has been established in order to evaluate the hygrothermal process of several multilayer walls configurations. The experimental procedure consists to follow the temperature and relative humidity evolutions within the samples thickness, submitted to controlled and fixed boundary conditions. This procedure points out diverging conclusion between different testing materials combinations (e.g. red-brick and polystyrene). In fact, the hygrothermal behavior of the tested configurations is completely dependent on both materials selection and their thermophysical properties. Finally, comparison between numerical and experimental results showed good agreement with acceptable errors margins with an average of 3 %.

  19. Measured Performance of a Low Temperature Air Source Heat Pump

    SciTech Connect

    Johnson, R. K.

    2013-09-01

    A 4-ton Low Temperature Heat Pump (LTHP) manufactured by Hallowell International was installed in a residence near New Haven, Connecticut and monitored over two winters of operation. After attending to some significant service issues, the heat pump operated as designed. This report should be considered a review of the dual compressor 'boosted heat pump' technology. The Low Temperature Heat Pumpsystem operates with four increasing levels of capacity (heat output) as the outdoor temperature drops. The system was shown to select capacity correctly, supplying the appropriate amount of heat to the house across the full range of outdoor temperatures. The system's Coefficient of Performance (Seasonal COP, or SCOP) over two entire winters was calculated, based on measured data, to be 3.29over the first winter and 2.68 over the second winter. A second seasonal efficiency calculation by a different method yielded a SCOP of 2.78 for the first winter and 2.83 for the second winter. This second seasonal efficiency calculation was determined by comparing measured heat pump energy use to the in situ energy use with resistance heat alone. This method is the ratio of the slopes of thedaily energy use load lines.

  20. 10 CFR 429.16 - Central air conditioners and heat pumps.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... CONSUMER PRODUCTS AND COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.16 Central air conditioners... mean divided by 1.05, where: ER02MY11.030 and (B) Any represented value of the energy efficiency or other measure of energy consumption of the central air conditioner or heat pump for which...

  1. 10 CFR 429.16 - Central air conditioners and heat pumps.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... CONSUMER PRODUCTS AND COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.16 Central air conditioners... mean divided by 1.05, where: ER02MY11.030 and (B) Any represented value of the energy efficiency or other measure of energy consumption of the central air conditioner or heat pump for which...

  2. 10 CFR 429.16 - Central air conditioners and heat pumps.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... CONSUMER PRODUCTS AND COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.16 Central air conditioners... mean divided by 1.05, where: ER02MY11.030 and (B) Any represented value of the energy efficiency or other measure of energy consumption of the central air conditioner or heat pump for which...

  3. Sensible Heat Flux from the Earth's Surface under Natural Convective Conditions.

    NASA Astrophysics Data System (ADS)

    Kondo, Junsei; Ishida, Sachinobu

    1997-02-01

    A value for the exchange speed of sensible heat CHU under natural convective conditions was determined by both indoor and field experiments. Regardless of the type of experiment, the relationships for the CHU were obtained as CHU = b(TS T)1/3. For a wet surface, Tv should be substituted for (TS T). Here, TS is the ground surface temperature, T the air temperature, and Tv the virtual temperature difference. In addition, b is a coefficient having a value of 0.0011 m s1 K1/3 for a smooth surface and 0.0038 m s1 K1/3 over a rough surface. From the field observation data, it was concluded that under strongly unstable conditions (1 > > 477) the best pair of stability profile functions was proposed.

  4. Heat transfer and pressure drop measurements in an air/molten salt direct-contact heat exchanger

    SciTech Connect

    Bohn, M.S.

    1988-11-01

    This paper presents a comparison of experimental data with a recently published model of heat exchange in irrigated packed beds. Heat transfer and pressure drop were measured in a 150 mm (ID) column with a 610-mm bed of metal Pall rings. Molten nitrate salt and preheated air were the working fluids with a salt inlet temperature of approximately 440{degree}C and air inlet temperatures of approximately 230{degree}C. A comparison between the experimental data and the heat transfer model is made on the basis of heat transfer from the salt. For the range of air and salt flow rates tested, 0.3 to 1.2 kg/m{sup 2} s air flow and 6 to 18 kg/m{sup 2} s salt flow, the data agree with the model within 22% standard deviation. In addition, a model for the column pressure drop was validated, agreeing with the experimental data within 18% standard deviation over the range of column pressure drop from 40 to 1250 Pa/m. 25 refs., 7 figs., 2 tabs.

  5. Prediction of Air Conditioning Load Response for Providing Spinning Reserve - ORNL Report

    SciTech Connect

    Kueck, John D; Kirby, Brendan J; Ally, Moonis Raza; Rice, C Keith

    2009-02-01

    This report assesses the use of air conditioning load for providing spinning reserve and discusses the barriers and opportunities. Air conditioning load is well suited for this service because it often increases during heavy load periods and can be curtailed for short periods with little impact to the customer. The report also provides an appendix describing the ambient temperature effect on air conditioning load.

  6. Conditional extraction of air-pollutant source signals from air-quality monitoring

    NASA Astrophysics Data System (ADS)

    Malby, Andrew R.; Whyatt, J. Duncan; Timmis, Roger J.

    2013-08-01

    Ambient air-quality data contain information about air-pollution sources that is currently under-exploited. This information could be used to assess trends in the emissions performance of specific sources, and to check at an early stage if policies or controls to reduce air-quality impacts from particular sources are working. Previous techniques for extracting such information have tended to adopt complex analyses and to rely on data from monitoring networks with many sites, thus limiting their applicability to non-specialist users and to networks with few sites. This paper describes simple techniques for 'conditionally' selecting data from one or two monitors, and for analysing and interpreting concentrations in terms of source performance or policy progress. Our techniques minimise the effects of variations in meteorology and source activity, so that the selected data give a more consistent indication of individual source performance. We demonstrate our techniques with a case study, in which we track the source performance of road traffic on the M4 motorway in London and show how impacts per vehicle have changed over time under different conditions of traffic flow and fleet composition.

  7. TECNAIRE winter field campaign: turbulent characteristics and their influence on air quality conditions

    NASA Astrophysics Data System (ADS)

    Yagüe, Carlos; Román Cascón, Carlos; Maqueda, Gregorio; Sastre, Mariano; Arrillaga, Jon A.; Artíñano, Begoña; Diaz-Ramiro, Elías; Gómez-Moreno, Francisco J.; Borge, Rafael; Narros, Adolfo; Pérez, Javier

    2016-04-01

    An urban field campaign was conducted at an air pollution hot spot in Madrid city (Spain) during winter 2015 (from 16th February to 2nd March). The zone selected for the study is a square (Plaza Fernández Ladreda) located in the southern part of the city. This area is an important intersection of several principal routes, and therefore a significant impact in the air quality of the area is found due to the high traffic density. Meteorological data (wind speed and direction, air temperature, relative humidity, pressure, precipitation and global solar radiation) were daily recorded as well as micrometeorological measurements obtained from two sonic anemometers. To characterize this urban atmospheric boundary layer (uABL), micrometeorological parameters (turbulent kinetic energy -TKE-, friction velocity -u∗- and sensible heat flux -H-) are calculated, considering 5-minute average for variance and covariance evaluations. Furthermore, synoptic atmospheric features were analyzed. As a whole, a predominant influence of high pressure systems was found over the Atlantic Ocean and western Spain, affecting Madrid, but during a couple of days (17th and 21st February) some atmospheric instability played a role. The influence of the synoptic situation and specially the evolution of the micrometeorological conditions along the day on air quality characteristics (Particulate Matter concentrations: PM10, PM2.5 and PM1, and NOx concentrations) are analyzed and shown in detail. This work has been financed by Madrid Regional Research Plan through TECNAIRE (P2013/MAE-2972).

  8. Experimental performance study of a proposed desiccant based air conditioning system.

    PubMed

    Bassuoni, M M

    2014-01-01

    An experimental investigation on the performance of a proposed hybrid desiccant based air conditioning system referred as HDBAC is introduced in this paper. HDBAC is mainly consisted of a liquid desiccant dehumidification unit integrated with a vapor compression system (VCS). The VCS unit has a cooling capacity of 5.27 kW and uses 134a as refrigerant. Calcium chloride (CaCl2) solution is used as the working desiccant material. HDBAC system is used to serve low sensible heat factor applications. The effect of different parameters such as, process air flow rate, desiccant solution flow rate, evaporator box and condenser box solution temperatures, strong solution concentration and regeneration temperature on the performance of the system is studied. The performance of the system is evaluated using some parameters such as: the coefficient of performance (COPa), specific moisture removal and energy saving percentage. A remarkable increase of about 54% in the coefficient of performance of the proposed system over VCS with reheat is achieved. A maximum overall energy saving of about 46% is observed which emphasizes the use of the proposed system as an energy efficient air conditioning system.

  9. Experimental performance study of a proposed desiccant based air conditioning system

    PubMed Central

    Bassuoni, M.M.

    2013-01-01

    An experimental investigation on the performance of a proposed hybrid desiccant based air conditioning system referred as HDBAC is introduced in this paper. HDBAC is mainly consisted of a liquid desiccant dehumidification unit integrated with a vapor compression system (VCS). The VCS unit has a cooling capacity of 5.27 kW and uses 134a as refrigerant. Calcium chloride (CaCl2) solution is used as the working desiccant material. HDBAC system is used to serve low sensible heat factor applications. The effect of different parameters such as, process air flow rate, desiccant solution flow rate, evaporator box and condenser box solution temperatures, strong solution concentration and regeneration temperature on the performance of the system is studied. The performance of the system is evaluated using some parameters such as: the coefficient of performance (COPa), specific moisture removal and energy saving percentage. A remarkable increase of about 54% in the coefficient of performance of the proposed system over VCS with reheat is achieved. A maximum overall energy saving of about 46% is observed which emphasizes the use of the proposed system as an energy efficient air conditioning system. PMID:25685475

  10. Investigation of residential central air conditioning load shapes in NEMS

    SciTech Connect

    Hamachi LaCommare, Kristina; Marnay, Chris; Gumerman, Etan; Chan, Peter; Rosenquist, Greg; Osborn, Julie

    2002-05-01

    This memo explains what Berkeley Lab has learned about how the residential central air-conditioning (CAC) end use is represented in the National Energy Modeling System (NEMS). NEMS is an energy model maintained by the Energy Information Administration (EIA) that is routinely used in analysis of energy efficiency standards for residential appliances. As part of analyzing utility and environmental impacts related to the federal rulemaking for residential CAC, lower-than-expected peak utility results prompted Berkeley Lab to investigate the input load shapes that characterize the peaky CAC end use and the submodule that treats load demand response. Investigations enabled a through understanding of the methodology by which hourly load profiles are input to the model and how the model is structured to respond to peak demand. Notably, it was discovered that NEMS was using an October-peaking load shape to represent residential space cooling, which suppressed peak effects to levels lower than expected. An apparent scaling down of the annual load within the load-demand submodule was found, another significant suppressor of the peak impacts. EIA promptly responded to Berkeley Lab's discoveries by updating numerous load shapes for the AEO2002 version of NEMS; EIA is still studying the scaling issue. As a result of this work, it was concluded that Berkeley Lab's customary end-use decrement approach was the most defensible way for Berkeley Lab to perform the recent CAC utility impact analysis. This approach was applied in conjunction with the updated AEO2002 load shapes to perform last year's published rulemaking analysis. Berkeley Lab experimented with several alternative approaches, including modifying the CAC efficiency level, but determined that these did not sufficiently improve the robustness of the method or results to warrant their implementation. Work in this area will continue in preparation for upcoming rulemakings for the other peak coincident end uses, commercial

  11. Development of New Air-Cooled Heat Pump Chiller 'Compact Cube'

    NASA Astrophysics Data System (ADS)

    Ookoshi, Yasushi; Ito, Takuya; Yamaguchi, Hiroshi; Kato, Yohei; Ochiai, Yasutaka; Tanaka, Kosuke; Uji, Yoshihiro; Nakayama, Hiroshi

    Further improvement of the performance is requested to air-cooled heat pump chiller from the viewpoint of the global warming prevention. Smaller unit is needed to facilitate the renewal from absorption chiller to air-cooled heat pump chiller. To meet such needs, we developed compact new air-cooled heat pump chiller with high efficiency, 'Compact cube'. The developed machine is side-flow type with U-shaped fin and tube heat exchangers. With this structure, the uniform air velocity, high packed density of the heat exchangers, and the unit miniaturization have been implemented. The refrigeration cycle with two-evaporating temperature has also been implemented. The cooling COP of this cycle is 2% higher compared with conventional one-evaporating temperature cycle because of the rise of average evaporating temperature. In a new model, a new control system, which controls both capacity of compressors and air flow rate corresponding to heat load, has been implemented. As a result, the developed machine achieved IPLV(Integrated Part load Value) to 6.2(MCHV-P1800AE) which is 29% better than the conventional unit.

  12. Experimental Heat Transfer and Bulk Air Temperature Measurements for a Multipass Internal Cooling Model with Ribs and Bleed

    NASA Technical Reports Server (NTRS)

    Thurman, Douglas; Poinsatte, Philip

    2001-01-01

    An experimental study was made to obtain heat transfer and air temperature data for a simple three-leg serpentine test section that simulates a turbine blade internal cooling passage with trip strips and bleed holes. The objectives were to investigate the interaction of ribs and various bleed conditions on internal cooling and to gain a better understanding of bulk air temperature in an internal passage. Steady-state heat transfer measurements were obtained using a transient technique with thermochromic liquid crystals. Trip strips were attached to one wall of the test section and were located either between or near the bleed holes. The bleed holes, used for film cooling, were metered to simulate the effect of external pressure on the turbine blade. Heat transfer enhancement was found to be greater for ribs near bleed holes compared to ribs between holes, and both configurations were affected slightly by bleed rates upstream. Air temperature measurements were taken at discrete locations along one leg of the model. Average bulk air temperatures were found to remain fairly constant along one leg of the model.

  13. Experimental Heat Transfer and Bulk Air Temperature Measurements for a Multipass Internal Cooling Model with Ribs and Bleed

    NASA Technical Reports Server (NTRS)

    Thurman, Douglas; Poinsatte, Philip

    2000-01-01

    An experimental study was made to obtain heat transfer and air temperature data for a simple 3-leg serpentine test section that simulates a turbine blade internal cooling passage with trip strips and bleed holes. The objectives were to investigate the interaction of ribs and various bleed conditions on internal cooling and to gain a better understanding of bulk air temperature in an internal passage. Steady state heat transfer measurements were obtained using a transient technique with thermochromic liquid crystals. Trip strips were attached to one wall of the test section and were located either between or near the bleed holes. The bleed holes, used for film cooling, were metered to simulate the effect of external pressure on the turbine blade. Heat transfer enhancement was found to be greater for ribs near bleed holes compared to ribs between holes, and both configurations were affected slightly by bleed rates upstream. Air temperature measurements were taken at discreet locations along one leg of the model. Average bulk air temperatures were found to remain fairly constant along one leg of the model.

  14. Experimental study on heat transfer performance of aluminium foam parallel-flow condenser in air conditioner

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Wan, Z. M.; Chang, H. W.; Wang, Y. D.

    2017-01-01

    Open cell aluminium foam was used in parallel-flow condenser in air conditioner, and two condensers with different pore density were fabricated. The experimental study was conducted on the heat transfer performance and temperature distribution. The experimental results show that both of the heat transfer load and air pressure drop increase with the increase of pore density, air velocity is 2.5m/s, the heat transfer capacities of the condenser with 10PPI and 8PPI are 4.786kw and 3.344kW respectively. Along the flow direction of refrigerant, the outlet temperatures of refrigerant drop with the rise of air velocity when the inlet temperature is constant. The outlet temperature of the refrigerant decreases with the increase of pore density.

  15. Heat transfer and energy analysis of a solar air collector with smooth plate

    NASA Astrophysics Data System (ADS)

    Chabane, Foued; Moummi, Noureddine

    2014-04-01

    The heat transfer and thermal performance of a single pass solar air heater a smooth plate was investigated experimentally. In the present paper, energy and heat transfer analysis of a solar air collector with smooth plate, this technique is used to determine the optimal thermal performance of flat plate solar air heater by considering the different system and operating parameters to obtain maximum thermal performance. Thermal performance is obtained for different mass flow rate varying in the array 0.0108-0.0202 kg/s with five values, solar intensity; tilt angle and ambient temperature. We discuss the thermal behavior of this type of collector with new design and with my proper construction. An experimental study was carried out on a prototype installed on the experimental tests platform within the University of Biskra in the Algeria. The effects of air mass flow rate, emissivity of channel plates and wind heat transfer coefficient on the accuracy of the criterion are also investigated.

  16. NREL's Energy-Saving Technology for Air Conditioning Cuts Peak Power Loads Without Using Harmful Refrigerants (Fact Sheet)

    SciTech Connect

    Not Available

    2012-07-01

    This fact sheet describes how the DEVAP air conditioner was invented, explains how the technology works, and why it won an R&D 100 Award. Desiccant-enhanced evaporative (DEVAP) air-conditioning will provide superior comfort for commercial buildings in any climate at a small fraction of the electricity costs of conventional air-conditioning equipment, releasing far less carbon dioxide and cutting costly peak electrical demand by an estimated 80%. Air conditioning currently consumes about 15% of the electricity generated in the United States and is a major contributor to peak electrical demand on hot summer days, which can lead to escalating power costs, brownouts, and rolling blackouts. DEVAP employs an innovative combination of air-cooling technologies to reduce energy use by up to 81%. DEVAP also shifts most of the energy needs to thermal energy sources, reducing annual electricity use by up to 90%. In doing so, DEVAP is estimated to cut peak electrical demand by nearly 80% in all climates. Widespread use of this cooling cycle would dramatically cut peak electrical loads throughout the country, saving billions of dollars in investments and operating costs for our nation's electrical utilities. Water is already used as a refrigerant in evaporative coolers, a common and widely used energy-saving technology for arid regions. The technology cools incoming hot, dry air by evaporating water into it. The energy absorbed by the water as it evaporates, known as the latent heat of vaporization, cools the air while humidifying it. However, evaporative coolers only function when the air is dry, and they deliver humid air that can lower the comfort level for building occupants. And even many dry climates like Phoenix, Arizona, have a humid season when evaporative cooling won't work well. DEVAP extends the applicability of evaporative cooling by first using a liquid desiccant-a water-absorbing material-to dry the air. The dry air is then passed to an indirect evaporative

  17. Heat exchanger design for hot air ericsson-brayton piston engine

    NASA Astrophysics Data System (ADS)

    Ďurčanský, P.; Lenhard, R.; Jandačka, J.

    2014-03-01

    One of the solutions without negative consequences for the increasing energy consumption in the world may be use of alternative energy sources in micro-cogeneration. Currently it is looking for different solutions and there are many possible ways. Cogeneration is known for long time and is widely used. But the installations are often large and the installed output is more suitable for cities or industry companies. When we will speak about decentralization, the small machines have to be used. The article deals with the principle of hot-air engines, their use in combined heat and electricity production from biomass and with heat exchangers as primary energy transforming element. In the article is hot air engine presented as a heat engine that allows the conversion of heat into mechanical energy while heat supply can be external. In the contribution are compared cycles of hot-air engine. Then are compared suitable heat exchangers for use with hot air Ericsson-Brayton engine. In the final part is proposal of heat exchanger for use in closed Ericsson-Brayton cycle.

  18. HEAT exchanger design for hot air Ericsson-Brayton piston engine

    NASA Astrophysics Data System (ADS)

    Ďurčanský, Peter; Lenhard, Richard; Jandačka, Jozef

    2013-10-01

    One of the solutions without negative consequences for the increasing energy consumption in the world may be use of alternative energy sources in micro-cogeneration. Currently it is looking for different solutions and there are many possible ways. Cogeneration is known for long time and is widely used. But the installations are often large and the installed output is more suitable for cities or industry companies. When we will speak about decentralization, the small machines have to be used. The article deals with the principle of hot-air engines, their use in combined heat and electricity production from biomass and with heat exchangers as primary energy transforming element. In the article is hot air engine presented as a heat engine that allows the conversion of heat into mechanical energy while heat supply can be external. In the contribution are compared cycles of hot-air engine. Then are compared suitable heat exchangers for use with hot air Ericsson-Brayton engine. In the final part is proposal of heat exchanger for use in closed Ericsson-Brayton cycle.

  19. Modification of the titanium nickelide surface using frictional treatment and subsequent heating in air

    NASA Astrophysics Data System (ADS)

    Korshunov, L. G.; Pushin, V. G.; Chernenko, N. L.

    2012-06-01

    The effect of a combined treatment including severe plastic deformation under the conditions of dry sliding friction and heating in air to temperatures of 300-480°C (holding for 1 h) on the structure and wear resistance of the surface layer of the Ti49.4Ni50.6 alloy has been investigated. It has been shown that this frictional treatment results in an amorphous-nanocrystalline structure in the surface layer (of thickness to 10 μm) of the Ti49.4Ni50.6 alloy. Heating to 300°C brings about the complete crystallization of the amorphous phase; as a result, the structure of the deformed surface layer of the alloy becomes single-phase, consisting of nanocrystals of the B2 phase. At 400°C, in this deformed surface layer there arises a nanocrystalline oxide (TiO2) phase whose amount reaches tens of volume percent. The sizes of crystals of the B2 phase and oxide TiO2 are in the range of 1-50 nm. The arising two-phase ( B2 + TiO2) nanocrystalline structure is located just below the oxide TiO2 film, which is less than 1 μm thick. With an increase in the heating temperature to 480°C, the deformed surface layer under consideration retains the nanocrystalline two-phase ( B2 + TiO2) structure, but an increase in the amount of the oxide phase and a decrease in the microhardness of this structure are observed. In some cases (heating at temperatures of 430 and 450°C), the presence of the two-phase ( B2 + TiO2) nanocrystalline surface layer leads to a noticeable (to ˜25%) enhancement in the adhesive wear resistance of the Ti49.4Ni50.6 alloy upon sliding friction in pair with steel 40Kh13.

  20. Understanding the Dehumidification Performance of Air-Conditioning Equipment at Part-Load Conditions

    SciTech Connect

    Don B. Shirey III; Hugh I. Henderson Jr; Richard A. Raustad

    2006-01-01

    Air conditioner cooling coils typically provide both sensible cooling and moisture removal. Data from a limited number of field studies (Khattar et al. 1985; Henderson and Rengarajan 1996; Henderson 1998) have demonstrated that the moisture removal capacity of a cooling coil degrades at part-load conditions--especially when the supply fan operates continuously while the cooling coil cycles on and off. Degradation occurs because moisture that condenses on the coil surfaces during the cooling cycle evaporates back into air stream when the coil is off. This degradation affects the ability of cooling equipment to maintain proper indoor humidity levels and may negatively impact indoor air quality. This report summarizes the results of a comprehensive project to better understand and quantify the moisture removal (dehumidification) performance of cooling coils at part-load conditions. A review of the open literature was initially conducted to learn from previous research on this topic. Detailed performance measurements were then collected for eight cooling coils in a controlled laboratory setting to understand the impact of coil geometry and operating conditions on transient moisture condensation and evaporation by the coils. Measurements of cooling coil dehumidification performance and space humidity levels were also collected at seven field test sites. Finally, an existing engineering model to predict dehumidification performance degradation for single-stage cooling equipment at part-load conditions (Henderson and Rengarajan 1996) was enhanced to include a broader range of fan control strategies and an improved theoretical basis for modeling off-cycle moisture evaporation from cooling coils. The improved model was validated with the laboratory measurements, and this report provides guidance for users regarding proper model inputs. The model is suitable for use in computerized calculation procedures such as hourly or sub-hourly building energy simulation programs (e

  1. Fuel-Free Compressed-Air Energy Storage: Fuel-Free, Ubiquitous Compressed-Air Energy Storage and Power Conditioning

    SciTech Connect

    2010-09-13

    GRIDS Project: General Compression has developed a transformative, near-isothermal compressed air energy storage system (GCAES) that prevents air from heating up during compression and cooling down during expansion. When integrated with renewable generation, such as a wind farm, intermittent energy can be stored in compressed air in salt caverns or pressurized tanks. When electricity is needed, the process is reversed and the compressed air is expanded to produce electricity. Unlike conventional compressed air energy storage (CAES) projects, no gas is burned to convert the stored high-pressure air back into electricity. The result of this breakthrough is an ultra-efficient, fully shapeable, 100% renewable and carbon-free power product. The GCAES™ system can provide high quality electricity and ancillary services by effectively integrating renewables onto the grid at a cost that is competitive with gas, coal and nuclear generation.

  2. Assessing the ability of mechanistic volatilization models to simulate soil surface conditions: a study with the Volt'Air model.

    PubMed

    Garcia, L; Bedos, C; Génermont, S; Braud, I; Cellier, P

    2011-09-01

    Ammonia and pesticide volatilization in the field is a surface phenomenon involving physical and chemical processes that depend on the soil surface temperature and water content. The water transfer, heat transfer and energy budget sub models of volatilization models are adapted from the most commonly accepted formalisms and parameterizations. They are less detailed than the dedicated models describing water and heat transfers and surface status. The aim of this work was to assess the ability of one of the available mechanistic volatilization models, Volt'Air, to accurately describe the pedo-climatic conditions of a soil surface at the required time and space resolution. The assessment involves: (i) a sensitivity analysis, (ii) an evaluation of Volt'Air outputs in the light of outputs from a reference Soil-Vegetation-Atmosphere Transfer model (SiSPAT) and three experimental datasets, and (iii) the study of three tests based on modifications of SiSPAT to establish the potential impact of the simplifying assumptions used in Volt'Air. The analysis confirmed that a 5 mm surface layer was well suited, and that Volt'Air surface temperature correlated well with the experimental measurements as well as with SiSPAT outputs. In terms of liquid water transfers, Volt'Air was overall consistent with SiSPAT, with discrepancies only during major rainfall events and dry weather conditions. The tests enabled us to identify the main source of the discrepancies between Volt'Air and SiSPAT: the lack of gaseous water transfer description in Volt'Air. They also helped to explain why neither Volt'Air nor SiSPAT was able to represent lower values of surface water content: current classical water retention and hydraulic conductivity models are not yet adapted to cases of very dry conditions. Given the outcomes of this study, we discuss to what extent the volatilization models can be improved and the questions they pose for current research in water transfer modeling and parameterization.

  3. The New S-RAM Air Variable Compressor/Expander for Heat Pump and Waste Heat to Power Application

    SciTech Connect

    Dehoff, Ryan R; Jestings, Lee; Conde, Ricardo

    2016-05-23

    S-RAM Dynamics (S-RAM) has designed an innovative heat pump system targeted for commercial and industrial applications. This new heat pump system is more efficient than anything currently on the market and utilizes air as the refrigerant instead of hydrofluorocarbon (HFC) refrigerants, leading to lower operating costs, minimal environmental costs or concerns, and lower maintenance costs. The heat pumps will be manufactured in the United States. This project was aimed at determining the feasibility of utilizing additive manufacturing to make the heat exchanger device for the new heat pump system. ORNL and S-RAM Dynamics collaborated on determining the prototype performance and subsequently printing of the prototype using additive manufacturing. Complex heat exchanger designs were fabricated using the Arcam electron beam melting (EBM) powder bed technology using Ti-6Al-4V material. An ultrasonic welding system was utilized in order to remove the powder from the small openings of the heat exchanger. The majority of powder in the small chambers was removed, however, the amount of powder remaining in the heat exchanger was a function of geometry. Therefore, only certain geometries of heat exchangers could be fabricated. SRAM Dynamics evaluated a preliminary heat exchanger design. Although the results of the additive manufacturing of the heat exchanger were not optimum, a less complex geometry was demonstrated. A sleeve valve was used as a demonstration piece, as engine designs from S-RAM Dynamics require the engine to have a very high density. Preliminary designs of this geometry were successfully fabricated using the EBM technology.

  4. Numerical modeling of the thermoelectric cooler with a complementary equation for heat circulation in air gaps

    NASA Astrophysics Data System (ADS)

    Fang, En; Wu, Xiaojie; Yu, Yuesen; Xiu, Junrui

    2017-01-01

    In this paper, a numerical model is developed by combining thermodynamics with heat transfer theory. Taking inner and external multi-irreversibility into account, it is with a complementary equation for heat circulation in air gaps of a steady cooling system with commercial thermoelectric modules operating in refrigeration mode. With two modes concerned, the equation presents the heat flowing through air gaps which forms heat circulations between both sides of thermoelectric coolers (TECs). In numerical modelling, a TEC is separated as two temperature controlled constant heat flux reservoirs in a thermal resistance network. In order to obtain the parameter values, an experimental apparatus with a commercial thermoelectric cooler was built to characterize the performance of a TEC with heat source and sink assembly. At constant power dissipation, steady temperatures of heat source and both sides of the thermoelectric cooler were compared with those in a standard numerical model. The method displayed that the relationship between Φf and the ratio Φ_{c}'/Φ_{c} was linear as expected. Then, for verifying the accuracy of proposed numerical model, the data in another system were recorded. It is evident that the experimental results are in good agreement with simulation(proposed model) data at different heat transfer rates. The error is small and mainly results from the instabilities of thermal resistances with temperature change and heat flux, heat loss of the device vertical surfaces and measurements.

  5. Heating the Solar Corona: Observations for Model Boundary Conditions

    NASA Astrophysics Data System (ADS)

    Nestlerode, C. M.; Poland, A. I.

    2005-12-01

    A prominent question in solar physics concerns the sources of coronal heating. This problem can be addressed through observations of closed magnetic loops which have high enough density to provide adequate temporal, spatial, and spectral resolution. Measurements of temperature, density, and velocity throughout the loop can be used for boundary conditions and compared with quantities for model calculations. In this paper, we present Solar Ultraviolet Measurements from Emitted Radiation (SUMER) data from the Solar and Heliospheric Observatory's (SOHO's) JOP 161 program. The SUMER instrument has high spatial and spectral resolution over several different spectral lines and therefore the data cover a large temperature range. The analyzed lines include Mg VIII, Mg IX, N III, N IV, Ne VIII, O IV, O V, S IV, S V, and S X with temperatures ranging from 60,000 K (S IV) to 0.9 MK (Mg IX). The velocity profiles are created using Gaussian fitting with wavelength calibration determined using average quiet Sun velocities from known Doppler velocity shifts. The velocity profiles show important changes in solar foot point plasma speed both spatially and temporally. This analysis builds on previous analysis of solar spectral lines observed with the SOHO Coronal Diagnostic Spectrometer (CDS); the advantage of the SUMER instrument is better resolution, both spectrally and spatially. This work was funded by NASA, Living with a Star Program.

  6. Air Pollution in Moscow Region and Kiev during Heat Wave in July-August 2010

    NASA Astrophysics Data System (ADS)

    Zvyagintsev, A. M.; Tarasova, O. A.; Belikov, I. B.; Blum, O. B.; Elansky, N. F.; Kuznetsova, I. N.; Shumsky, R. A.

    2010-12-01

    The summer of 2010 was extremely hot and dry over the European part of Russia and Ukraine. Some days the air temperature rose up to 40 degrees Celsius. An anomaly of the mesoscale atmospheric processes in the form of a blocking anticyclone in the low atmosphere caused untypical transport of air masses: south-eastern winds became dominating in the Moscow region in summer 2010 instead of north-western transport, which is usually prevailing in summer. Due to long drought and high temperatures (ca. 1 month from July 15) natural fires occurred from time to time over huge territories to the east of Moscow (from Nyzhny Novgorod to Riazan). Forest and peat fires led to unprecedented air pollution and transport of biomass burning products over long distances. The smoke plume repeatedly extended to the Moscow megapolis. Arrival of the polluted air from the burning sources nearest to Moscow was accompanied by a haze with reduced visibility down to 100-200 m, as well as by a strong smell of burning and corresponding abrupt decrease of air quality. Strong photochemical smog of the Los-Angeles type was observed some days in the Moscow megapolis. Air masses polluted with the products of natural fires traveled within the territory of central Russia without crossing its western border. They had no impact on the air quality in Kiev, where air composition was defined by local emissions and meteorological conditions. The short intervals with temperatures above 35 degrees Celsius were accompanied by change of air masses and precipitation events. This paper presents measurement of surface ozone, NOx and CO mixing ratios and PM10 in the Moscow region as well as ozone and NOx level observations in Kiev. Eight-hourly averaged surface ozone mixing ratios in Moscow exceeded 60 ppb during about 30 days. During 20 days a haze was observed in the city from time to time, and the haze was continuous for the period from 3rd to 10th of August. The most intensive smog was observed during 6-8 August

  7. Application of calcium chloride as an additive for secondary refrigerant in the air conditioning system type chiller to minimized energy consumption

    NASA Astrophysics Data System (ADS)

    Suwono, A.; Indartono, Y. S.; Irsyad, M.; Al-Afkar, I. C.

    2015-09-01

    One way to resolve the energy problem is to increase the efficiency of energy use. Air conditioning system is one of the equipment that needs to be considered, because it is the biggest energy user in commercial building sector. Research currently developing is the use of phase change materials (PCM) as thermal energy storage (TES) in the air conditioning system to reduce energy consumption. Salt hydrates have been great potential to be developed because they have been high latent heat and thermal conductivity. This study has used a salt hydrate from calcium chloride to be tested in air conditioning systems type chiller. Thermal characteristics were examined using temperature history (T-history) test and differential scanning calorimetry (DSC). The test results showed that the thermal characteristics of the salt hydrate has been a high latent heat and in accordance with the evaporator temperature. The use of salt hydrates in air conditioning system type chiller can reduce energy consumption by 51.5%.

  8. On the impact of entrapped air in infiltration under ponding conditions: Part a: Preferential air flow path effects on infiltration

    NASA Astrophysics Data System (ADS)

    Weisbord, N.; Mizrahi, G.; Furman, A.

    2015-12-01

    Entrapped air effects on infiltration under ponding conditions could be important for massive infiltration of managed aquifer recharge or soil aquifer treatment. Earlier studies found that under ponding conditions air could reduce infiltration by 70-90%. Most studies have dealt with entrapped air effects when soil surface topography is flat. The objective of this study is to investigate the effects of: (1) irregular surface topography on preferential air flow path development; (2) preferential air flow path on infiltration; and (3) hydraulic head on infiltration when air is trapped. Column experiments were used to investigate these particular effects. A 140 cm deep and 30 cm wide column packed with silica sand was used under two boundary conditions: in the first, air can only escape vertically upward through the soil surface; in the second, air is free to escape. The surface was flooded with 13 liters of water, with ponding depth decreasing with time. Two soil surface conditions were tested: flat surface and irregular. It was found that in irregular surfaces, stable air flow through preferential paths was developed in the high altitude zones. Flat surface topography caused unstable air flow through random paths. Comparison between irregular and flat surface topography showed that the entrapped air pressure was lower and the infiltration rate was about 40% higher in the irregular surface topography than in the flat surface topography. No difference of infiltration rate between flat and irregular surface topography was observed when air was free to escape along the infiltration path. It was also found that at the first stage of infiltration, higher hydraulic heads caused higher entrapped air pressures and lower infiltration rates. In contrast, higher hydraulic head results in higher infiltration rate, when air was free to escape. Our results suggest that during ponding conditions: (1) preferential air flow paths develop at high surface zones of irregular topography

  9. The impact of the weather conditions on the cooling performance of the heat pump driven by an internal natural gas combustion engine

    NASA Astrophysics Data System (ADS)

    Janovcová, Martina; Jandačka, Jozef; Malcho, Milan

    2015-05-01

    Market with sources of heat and cold offers unlimited choice of different power these devices, design technology, efficiency and price categories. New progressive technologies are constantly discovering, about which is still little information, which include heat pumps powered by a combustion engine running on natural gas. A few pieces of these installations are in Slovakia, but no studies about their work and effectiveness under real conditions. This article deals with experimental measurements of gas heat pump efficiency in cooling mode. Since the gas heat pump works only in system air - water, air is the primary low - energy source, it is necessary to monitor the impact of the climate conditions for the gas heat pump performance.

  10. Comparative study of denaturation of whey protein isolate (WPI) in convective air drying and isothermal heat treatment processes.

    PubMed

    Haque, M Amdadul; Aldred, Peter; Chen, Jie; Barrow, Colin J; Adhikari, Benu

    2013-11-15

    The extent and nature of denaturation of whey protein isolate (WPI) in convective air drying environments was measured and analysed using single droplet drying. A custom-built, single droplet drying instrument was used for this purpose. Single droplets having 5±0.1μl volume (initial droplet diameter 1.5±0.1mm) containing 10% (w/v) WPI were dried at air temperatures of 45, 65 and 80°C for 600s at constant air velocity of 0.5m/s. The extent and nature of denaturation of WPI in isothermal heat treatment processes was measured at 65 and 80°C for 600s and compared with those obtained from convective air drying. The extent of denaturation of WPI in a high hydrostatic pressure environment (600MPa for 600s) was also determined. The results showed that at the end of 600s of convective drying at 65°C the denaturation of WPI was 68.3%, while it was only 10.8% during isothermal heat treatment at the same medium temperature. When the medium temperature was maintained at 80°C, the denaturation loss of WPI was 90.0% and 68.7% during isothermal heat treatment and convective drying, respectively. The bovine serum albumin (BSA) fraction of WPI was found to be more stable in the convective drying conditions than β-lactoglobulin and α-lactalbumin, especially at longer drying times. The extent of denaturation of WPI in convective air drying (65 and 80°C) and isotheral heat treatment (80°C) for 600s was found to be higher than its denaturation in a high hydrostatic pressure environment at ambient temperature (600MPa for 600s).

  11. Measured Impact on Space Conditioning Energy Use in a Residence Due to Operating a Heat Pump Water Heater inside the Conditioned Space

    SciTech Connect

    Munk, Jeffrey D; Ally, Moonis Raza; Baxter, Van D

    2012-01-01

    The impact on space conditioning energy use due to operating a heat pump water heater (HPWH) inside the conditioned space is analyzed based on 2010-2011 data from a research house with simulated occupancy and hot water use controls. The 2700 ft2 (345 m2) house is located in Oak Ridge, TN (mixed-humid climate) and is equipped with a 50 gallon (189 l) HPWH that provided approximately 55 gallons/d (208 l/d) of hot water at 120 F (46 C) to the house during the test period. The HPWH has been operated every other week from December 2010 through November 2011 in two modes; a heat pump only mode, and a standard mode that utilizes 15355 Btu/hr (4500 W) resistance heating elements. The energy consumption of the air-source heat pump (ASHP) that provides space conditioning for the house is compared for the two HPWH operating modes with weather effects taken into account. Impacts during the heating and cooling seasons are compared.

  12. Liquid Desiccant in Air Conditioners: Nano-Engineered Porous Hollow Fiber Membrane-Based Air Conditioning System

    SciTech Connect

    2010-09-02

    BEETIT Project: UTRC is developing an air conditioning system that is optimized for use in warm and humid climates. UTRC’s air conditioning system integrates a liquid drying agent or desiccant and a traditional vapor compression system found in 90% of air conditioners. The drying agent reduces the humidity in the air before it is cooled, using less energy. The technology uses a membrane as a barrier between the air and the liquid salt stream allowing only water vapor to pass through and not the salt molecules. This solves an inherent problem with traditional liquid desiccant systems—carryover of the liquid drying agent into the conditioned air stream—which eliminates corrosion and health issues

  13. Rapid PCR amplification using a microfluidic device with integrated microwave heating and air impingement cooling.

    PubMed

    Shaw, Kirsty J; Docker, Peter T; Yelland, John V; Dyer, Charlotte E; Greenman, John; Greenway, Gillian M; Haswell, Stephen J

    2010-07-07

    A microwave heating system is described for performing polymerase chain reaction (PCR) in a microfluidic device. The heating system, in combination with air impingement cooling, provided rapid thermal cycling with heating and cooling rates of up to 65 degrees C s(-1) and minimal over- or under-shoot (+/-0.1 degrees C) when reaching target temperatures. In addition, once the required temperature was reached it could be maintained with an accuracy of +/-0.1 degrees C. To demonstrate the functionality of the system, PCR was successfully performed for the amplification of the Amelogenin locus using heating rates and quantities an order of magnitude faster and smaller than current commercial instruments.

  14. Experimental study of laminar flow forced-convection heat transfer in air flowing through offset plates heated by radiation heat flux

    SciTech Connect

    Ali, A.H.H.; Kishinami, Koki; Hanaoka, Yutaka; Suzuki, Jun

    1998-04-01

    An experimental study of the steady state laminar flow forced-convection heat transfer of air flowing through offset plates located between two parallel plates and heated by radiation heat flux was carried out. The ranges of parameters tested were incident radiation heat fluxes of 500, 700, and 1,000 W/m{sup 2}. With Re ranging from 650 to 2,560, the inlet air bulk temperatures changed from 18.2 to 70 C and the tilting angle of the unit with the horizontal ranged from 0 to 90{degree} respectively. The results show that the rate of the increase in the local Nusselt number was observed to be proportional with Re up to 1,900, while it became less sensitive over Re range of 1,900--2,500. Also, in this range of Re, with the inlet air temperature of 20 C, the angle of inclination of the unit has no effect on the local Nusselt number. Increasing the incident radiation heat flux in the case of higher values of Re leads to a slight decrease in the value of the local Nusselt number. The effect of the inlet air bulk temperature on the forced-convection heat transfer coefficient shows, in the case of the horizontal position, an increase in the inlet air bulk temperature leads to slight decreases in the value of the average Nusselt number, while it leads to significant decreases in the value of the average Nusselt number as the tilting angle increases up to the vertical position. This effect is clearer in the case of Re = 650 rather than Re = 2,550. This work has application to solar collectors.

  15. Analytic and experimental evaluation of flowing air test conditions for selected metallics in a shuttle TPS application

    NASA Technical Reports Server (NTRS)

    Schaefer, J. W.; Tong, H.; Clark, K. J.; Suchsland, K. E.; Neuner, G. J.

    1975-01-01

    A detailed experimental and analytical evaluation was performed to define the response of TD nickel chromium alloy (20 percent chromium) and coated columbium (R512E on CB-752 and VH-109 on WC129Y) to shuttle orbiter reentry heating. Flight conditions important to the response of these thermal protection system (TPS) materials were calculated, and test conditions appropriate to simulation of these flight conditions in flowing air ground test facilities were defined. The response characteristics of these metallics were then evaluated for the flight and representative ground test conditions by analytical techniques employing appropriate thermochemical and thermal response computer codes and by experimental techniques employing an arc heater flowing air test facility and flat face stagnation point and wedge test models. These results were analyzed to define the ground test requirements to obtain valid TPS response characteristics for application to flight. For both material types in the range of conditions appropriate to the shuttle application, the surface thermochemical response resulted in a small rate of change of mass and a negligible energy contribution. The thermal response in terms of surface temperature was controlled by the net heat flux to the surface; this net flux was influenced significantly by the surface catalycity and surface emissivity. The surface catalycity must be accounted for in defining simulation test conditions so that proper heat flux levels to, and therefore surface temperatures of, the test samples are achieved.

  16. [Verification of exhaled air temperature and heat flux in respiratory diseases as useful biomarker].

    PubMed

    Ito, Wataru; Chihara, Junichi

    2008-12-01

    Asthma, chronic obstructive pulmonary disease, and diffuse panbronchiolitis are syndromes associated with chronic airway inflammation. In the conventional definition of inflammation, local pyrexia at the site of inflammation should be observed. However, there are very few reports that have evaluated the "heat" in inflammatory respiratory diseases. We considered that the evaluation of allergic airway inflammation such as asthma might be possible by measuring the exhaled air temperature, and devised an original device that stabilizes the flow rate, which is a very important factor for the direct measurement of heat. Moreover, an expiratory heat flux meter, which can detect a change in air temperature more precisely and immediately, was also incorporated into our original device. As a result, we succeeded in the measurement and evaluation of the heat flux and air temperature in healthy subjects and asthmatic patients, and, further, the air temperature was straightforwardly evaluated by a portable spirometer including a temperature sensor. These findings suggest that the heat flux and temperature of exhaled air can be used to objectively monitor airway inflammation noninvasively, and assist in the diagnosis/monitoring of inflammatory respiratory diseases, including asthma.

  17. Air pollution and heat exposure study in the workplace in a glass manufacturing unit in India.

    PubMed

    Bhanarkar, A D; Srivastava, A; Joseph, A E; Kumar, Rakesh

    2005-10-01

    Air pollution in the workplace environment due to industrial operation have been found to cause serious occupational health hazard. Similarly, heat stress is still most neglected occupational hazard in the tropical and subtropical countries like India. The hot climate augments the heat exposure close to sources like furnaces. In this study an attempt is made to assess air pollution and heat exposure levels to workers in the workplace environment in glass manufacturing unit located in the State of Gujarat, India. Samples for workplace air quality were collected for SPM, SO(2), NO(2) and CO(2) at eight locations. Results of workplace air quality showed 8-hourly average concentrations of SPM: 165-9118 microg/m(3), SO(2): 6-9 microg/m(3) and NO(2): 5-42 microg/m(3), which were below the threshold limit values of workplace environment. The level of CO(2) in workplace air of the plant was found to be in the range 827-2886 microg/m(3), which was below TLV but much higher than the normal concentration for CO(2) in the air (585 mg/m(3)). Indoor heat exposure was studied near the furnace and at various locations in an industrial complex for glass manufacturing. The heat exposure parameters including the air temperature, the wet bulb temperature, and the globe parameters were measured. The Wet Bulb Globe Temperature (WBGT), an indicator of heat, exceeded ACGIH TLVs limits most of the time at all the locations in workplace areas. The recommended duration of work and rest have also been estimated.

  18. 40 CFR 86.166-12 - Method for calculating emissions due to air conditioning leakage.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... to air conditioning leakage. 86.166-12 Section 86.166-12 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY... for calculating emissions due to air conditioning leakage. This section describes procedures used...

  19. 32 CFR 809a.9 - Conditions for use of Air Force resources.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 6 2012-07-01 2012-07-01 false Conditions for use of Air Force resources. 809a.9 Section 809a.9 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE... Disturbance Intervention and Disaster Assistance § 809a.9 Conditions for use of Air Force resources. This...

  20. 32 CFR 809a.9 - Conditions for use of Air Force resources.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 6 2014-07-01 2014-07-01 false Conditions for use of Air Force resources. 809a.9 Section 809a.9 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE... Disturbance Intervention and Disaster Assistance § 809a.9 Conditions for use of Air Force resources. This...