Science.gov

Sample records for air control means

  1. MEANS FOR CONTROLLING REACTIONS

    DOEpatents

    Nordheim, L.W.; Wigner, E.P.

    1961-06-27

    The patented means is described for controlling a nuclear reactor which comprises a tank containing a dispersion of a thermally fissionable material in a liquid moderator and a material convertible to a thermally fissionable material in a container disposed about the tank. The control means comprises a control rod chamber, containing only a liquid moderator, disposed within the container and adjacent to the tank and a control rod designed to be inserted into the chamber.

  2. Tunable SrAl2Si2O8: Eu phosphor prepared in air via valence state-controlled means

    NASA Astrophysics Data System (ADS)

    Chen, Jian; Liu, Yangai; Liu, Haikun; Ding, Hao; Fang, Minghao; Huang, Zhaohui

    2015-04-01

    SrAl2Si2O8: xEu (x = 0.5-8%) phosphors were prepared by the high-temperature solid-state reaction in air atmosphere. The phenomenon of Eu2+/Eu3+ coexistence was observed and the color of the SrAl2Si2O8: xEu phosphor could shift from light pink to blue by controllable and reproducible means. Photoluminescence (PL), excitation (PLE) spectra, X-ray photoelectron spectroscopy (XPS), and the fluorescence decay curves were employed to detect the presence of Eu2+ and Eu3+ ions in the compound. Under ultraviolet excitation, the broad band emission peaked at 410 nm originated from the transition of 4f65d-4f7 from Eu2+ and narrow band emissions peaked at 591 nm, 614 nm, 655 nm, and 703 nm are derived from the 4f-4f transition of Eu3+ ions, although the Eu3+ precursors were employed. The reduction mechanism from Eu3+ to Eu2+ in this compound was discussed in detail and verified by photoluminescence properties through changing the addition amount of Eu, temperature rise and holding time.

  3. Control of Relative Air Humidity as a Potential Means to Improve Hygiene on Surfaces: A Preliminary Approach with Listeria monocytogenes

    PubMed Central

    Zoz, Fiona; Iaconelli, Cyril; Lang, Emilie; Iddir, Hayet; Guyot, Stéphane; Grandvalet, Cosette; Gervais, Patrick; Beney, Laurent

    2016-01-01

    Relative air humidity fluctuations could potentially affect the development and persistence of pathogenic microorganisms in their environments. This study aimed to characterize the impact of relative air humidity (RH) variations on the survival of Listeria monocytogenes, a bacterium persisting on food processing plant surfaces. To assess conditions leading to the lowest survival rate, four strains of L. monocytogenes (EGDe, CCL500, CCL128, and LO28) were exposed to different RH conditions (75%, 68%, 43% and 11%) with different drying kinetics and then rehydrated either progressively or instantaneously. The main factors that affected the survival of L. monocytogenes were RH level and rehydration kinetics. Lowest survival rates between 1% and 0.001% were obtained after 3 hours of treatment under optimal conditions (68% RH and instantaneous rehydration). The survival rate was decreased under 0.001% after prolonged exposure (16h) of cells under optimal conditions. Application of two successive dehydration and rehydration cycles led to an additional decrease in survival rate. This preliminary study, performed in model conditions with L. monocytogenes, showed that controlled ambient RH fluctuations could offer new possibilities to control foodborne pathogens in food processing environments and improve food safety. PMID:26840373

  4. AIR POLLUTION CONTROL TECHNOLOGIES

    EPA Science Inventory

    This is a chapter for John Wiley & Son's Mechanical Engineers' Handbook, and covers issues involving air pollution control. Various technologies for controlling sulfur oxides is considered including fuel desulfurization. It also considers control of nitrogen oxides including post...

  5. Control Means for Reactor

    DOEpatents

    Manley, J. H.

    1961-06-27

    An apparatus for controlling a nuclear reactor includes a tank just below the reactor, tubes extending from the tank into the reactor, and a thermally expansible liquid neutron absorbent material in the tank. The liquid in the tank is exposed to a beam of neutrons from the reactor which heats the liquid causing it to expand into the reactor when the neutron flux in the reactor rises above a predetermincd danger point. Boron triamine may be used for this purpose.

  6. Modeling monthly mean air temperature for Brazil

    NASA Astrophysics Data System (ADS)

    Alvares, Clayton Alcarde; Stape, José Luiz; Sentelhas, Paulo Cesar; de Moraes Gonçalves, José Leonardo

    2013-08-01

    Air temperature is one of the main weather variables influencing agriculture around the world. Its availability, however, is a concern, mainly in Brazil where the weather stations are more concentrated on the coastal regions of the country. Therefore, the present study had as an objective to develop models for estimating monthly and annual mean air temperature for the Brazilian territory using multiple regression and geographic information system techniques. Temperature data from 2,400 stations distributed across the Brazilian territory were used, 1,800 to develop the equations and 600 for validating them, as well as their geographical coordinates and altitude as independent variables for the models. A total of 39 models were developed, relating the dependent variables maximum, mean, and minimum air temperatures (monthly and annual) to the independent variables latitude, longitude, altitude, and their combinations. All regression models were statistically significant ( α ≤ 0.01). The monthly and annual temperature models presented determination coefficients between 0.54 and 0.96. We obtained an overall spatial correlation higher than 0.9 between the models proposed and the 16 major models already published for some Brazilian regions, considering a total of 3.67 × 108 pixels evaluated. Our national temperature models are recommended to predict air temperature in all Brazilian territories.

  7. Control means for a gas turbine engine

    NASA Technical Reports Server (NTRS)

    Beitler, R. S.; Sellers, F. J.; Bennett, G. W. (Inventor)

    1982-01-01

    A means is provided for developing a signal representative of the actual compressor casing temperature, a second signal representative of compressor inlet gas temperature, and a third signal representative of compressor speed. Another means is provided for receiving the gas temperature and compressor speed signals and developing a schedule output signal which is a representative of a reference casing temperature at which a predetermined compressor blade stabilized clearance is provided. A means is also provided for comparing the actual compressor casing temperature signal and the reference casing temperature signal and developing a clearance control system representative of the difference. The clearance control signal is coupled to a control valve which controls a flow of air to the compressor casing to control the clearance between the compressor blades and the compressor casing. The clearance control signal can be modified to accommodate transient characteristics. Other embodiments are disclosed.

  8. Control of air toxics

    SciTech Connect

    Livengood, C.D.

    1995-03-01

    For more than 10 years, Argonne National Laboratory has supported the US DOE`s Flue Gas Cleanup Program objective by developing new or improved environmental controls for industries that use fossil fuels. Argonne`s pollutant emissions research has ranged from experiments in the basic chemistry of pollution-control systems, through laboratory-scale process development and testing, to pilot-scale field tests of several technologies. The work on air toxics is currently divided into two components: Investigating measures to improve the removal of mercury in existing pollution-control systems applied to coal combustion; and, Developing sensors and control techniques for emissions found in the textile industry.

  9. 30 CFR 75.326 - Mean entry air velocity.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Mean entry air velocity. 75.326 Section 75.326... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.326 Mean entry air velocity. In exhausting face ventilation systems, the mean entry air velocity shall be at least 60 feet per...

  10. 30 CFR 75.326 - Mean entry air velocity.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Mean entry air velocity. 75.326 Section 75.326... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.326 Mean entry air velocity. In exhausting face ventilation systems, the mean entry air velocity shall be at least 60 feet per...

  11. 30 CFR 75.326 - Mean entry air velocity.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Mean entry air velocity. 75.326 Section 75.326... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.326 Mean entry air velocity. In exhausting face ventilation systems, the mean entry air velocity shall be at least 60 feet per...

  12. 30 CFR 75.326 - Mean entry air velocity.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Mean entry air velocity. 75.326 Section 75.326... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.326 Mean entry air velocity. In exhausting face ventilation systems, the mean entry air velocity shall be at least 60 feet per...

  13. Air-leakage control manual

    SciTech Connect

    Maloney, J.

    1991-05-01

    This manual is for builders and designers who are interested in building energy-efficient homes. The purpose of the manual is to provide the ``how and why`` of controlling air leakage by means of a system called the ``Simple Caulk and Seal`` (SIMPLE{center_dot}CS) system. This manual provides an overview of the purpose and contents of the manual; It discusses the forces that affect air leakage in homes and the benefits of controlling air leakage. Also discussed are two earlier approaches for controlling air leakage and the problems with these approaches. It describes the SIMPLE-{center_dot}CS system. It outlines the standard components of the building envelope that require sealing and provides guidelines for sealing them. It outlines a step-by-step procedure for analyzing and planning the sealing effort. The procedure includes (1) identifying areas to be sealed, (2) determining the most effective and convenient stage of construction in which to do the sealing, and (3) designating the appropriate crew member or trade to be responsible for the sealing.

  14. Air-Leakage Control Manual.

    SciTech Connect

    Maloney, Jim; Washington State Energy Office; United States. Bonneville Power Administration.

    1991-05-01

    This manual is for builders and designers who are interested in building energy-efficient homes. The purpose of the manual is to provide the how and why'' of controlling air leakage by means of a system called the Simple Caulk and Seal'' (SIMPLE{center dot}CS) system. This manual provides an overview of the purpose and contents of the manual; It discusses the forces that affect air leakage in homes and the benefits of controlling air leakage. Also discussed are two earlier approaches for controlling air leakage and the problems with these approaches. It describes the SIMPLE-{center dot}CS system. It outlines the standard components of the building envelope that require sealing and provides guidelines for sealing them. It outlines a step-by-step procedure for analyzing and planning the sealing effort. The procedure includes (1) identifying areas to be sealed, (2) determining the most effective and convenient stage of construction in which to do the sealing, and (3) designating the appropriate crew member or trade to be responsible for the sealing.

  15. Controlling Access to Suicide Means

    PubMed Central

    Sarchiapone, Marco; Mandelli, Laura; Iosue, Miriam; Andrisano, Costanza; Roy, Alec

    2011-01-01

    Background: Restricting access to common means of suicide, such as firearms, toxic gas, pesticides and other, has been shown to be effective in reducing rates of death in suicide. In the present review we aimed to summarize the empirical and clinical literature on controlling the access to means of suicide. Methods: This review made use of both MEDLINE, ISI Web of Science and the Cochrane library databases, identifying all English articles with the keywords “suicide means”, “suicide method”, “suicide prediction” or “suicide prevention” and other relevant keywords. Results: A number of factors may influence an individual’s decision regarding method in a suicide act, but there is substantial support that easy access influences the choice of method. In many countries, restrictions of access to common means of suicide has lead to lower overall suicide rates, particularly regarding suicide by firearms in USA, detoxification of domestic and motor vehicle gas in England and other countries, toxic pesticides in rural areas, barriers at jumping sites and hanging, by introducing “safe rooms” in prisons and hospitals. Moreover, decline in prescription of barbiturates and tricyclic antidepressants (TCAs), as well as limitation of drugs pack size for paracetamol and salicylate has reduced suicides by overdose, while increased prescription of SSRIs seems to have lowered suicidal rates. Conclusions: Restriction to means of suicide may be particularly effective in contexts where the method is popular, highly lethal, widely available, and/or not easily substituted by other similar methods. However, since there is some risk of means substitution, restriction of access should be implemented in conjunction with other suicide prevention strategies. PMID:22408588

  16. Controlling Indoor Air Pollution.

    ERIC Educational Resources Information Center

    Nero, Anthony V, Jr.

    1988-01-01

    Discusses the health risks posed by indoor air pollutants, such as airborne combustion products, toxic chemicals, and radioactivity. Questions as to how indoor air might be regulated. Calls for new approaches to environmental protection. (TW)

  17. Validation of Interannual Differences of AIRS Monthly Mean Parameters

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Iredell, Lena; Keita, Fricky; Molnar, Gyula

    2005-01-01

    Monthly mean fields of select geophysical parameters derived from analysis of AIRS/AMSU data, and their interannual differences, are shown and compared with analogous fields derived from other sources. All AIRS fields are derived using the AIRS Science Team Version 4 algorithm. Monthly mean results are shown for January 2004, as are interannual differences between January 2004 and January 2003. AIRS temperature and water vapor profile fields are compared with monthly mean collocated ECMWF 3 hour forecast and monthly mean TOVS Pathfinder Path A data. AIRS Tropospheric and Stratospheric coarse climate indicators are compared with analogous MSU products derived by Spencer and christy and found in the TOVS Pathfinder Path A data set. Total ozone is compared with results produced by TOMS. OLR is compared with OLR derived using CERES data and found in the TOVS Pathfinder Path A data set. AIRS results agree well in all cases, especially in the interannual difference sense.

  18. Air Pollution Control, Part I.

    ERIC Educational Resources Information Center

    Strauss, Werner, Ed.

    Authoritative reviews in seven areas of current importance in air pollution control are supplied in this volume, the first of a two-part set. Titles contained in this book are: "Dispersion of Pollutants Emitted into the Atmosphere,""The Formation and Control of Oxides of Nitrogen in Air Pollution,""The Control of Sulfur Emissions from Combustion…

  19. Air/fuel ratio controller

    SciTech Connect

    Schechter, M.M.; Simko, A.O.

    1980-12-23

    An internal combustion engine has a fuel injection pump and an air/fuel ratio controller. The controller has a lever that is connected to the pump lever. An aneroid moves the controller lever as a function of changes in intake manifold vacuum to maintain a constant air/fuel ratio to the mixture charge. A fuel enrichment linkage is provided that modifies the movement of the fuel flow control lever by the aneroid in response to changes in manifold gas temperature levels and exhaust gas recirculation to maintain the constant air/fuel ratio. A manual override is provided to obtain a richer air/fuel ratio for maximum acceleration.

  20. Fuel-air control device

    SciTech Connect

    Norman, J.

    1981-12-15

    The invention concerns a device for controlling the vehicles fuel-air mixture by regulating the air in the ventilation passage leading to the engine air intake from the crankcase. In a vehicle provided with a PCV valve, the device is located in the ventilation passage leading from the crankcase to the engine air intake and the device is downstream of the PCV valve. The device admits outside air to the ventilation passage to lean the gas mixture when the engine creates a vacuum less than 8 psi in the ventilation passage.

  1. System for controlling air-fuel ratio

    SciTech Connect

    Morozumi, T.

    1982-09-14

    A system for controlling the air-fuel ratio for an internal combustion engine having an induction passage, an exhaust passage , a choke valve in the induction passage, an automatic choke device comprising a positive temperature coefficient (Ptc) heater and a bimetal element connected to the choke valve, a detector for detecting the concentration of a constituent of exhaust gases passing through the exhaust passage, an electronic control circuit, an on-off type electromagnetic valve actuated by the output signal from the electronic control circuit for correcting the air-fuel ratio of the air-fuel mixture supplied by an airfuel mixture supplier, and means for actuating the on-off type electromagnetic valve at a fixed duty ratio during cold engine operation. The electronic control circuit comprises a vacuum sensor for converting the amount of the induced air to an electric quantity, an engine temperature detector for converting the engine temperature to an electric quantity, a first calculating circuit for producing a proper desired air-fuel mixture ratio signal from the output signals of the vacuum sensor and of the engine temperature detector, and a second calculation circuit for producing an actual air-fuel ratio signal from output signals of the vacuum sensor and of the ptc heater. A summing circuit for summing the proper air-fuel ratio signal and the actual air-fuel ratio signal produces a pulse duty ratio correcting signal which is applied to the electronic control circuit for correcting the fixed duty ratio.

  2. Broadcast control of air traffic

    NASA Technical Reports Server (NTRS)

    Litchford, G. B.

    1972-01-01

    The development of a system of broadcast control for improved flight safety and air traffic control is discussed. The system provides a balance of equality between improved cockpit guidance and control capability and ground control in order to provide the pilot with a greater degree of participation. The manner in which the system is operated and the equipment required for safe operation are examined.

  3. ACRYLONITRILE PLANT AIR POLLUTION CONTROL

    EPA Science Inventory

    Based on available literature, the report identifies and ranks (in terms of efficiency, cost, and energy requirements) air pollution control technologies for each of four major air pollutant emission sources in acrylonitrile plants. The sources are: (1) absorber vent gas streams,...

  4. GSOD Based Daily Global Mean Surface Temperature and Mean Sea Level Air Pressure (1982-2011)

    SciTech Connect

    Xuan Shi, Dali Wang

    2014-05-05

    This data product contains all the gridded data set at 1/4 degree resolution in ASCII format. Both mean temperature and mean sea level air pressure data are available. It also contains the GSOD data (1982-2011) from NOAA site, contains station number, location, temperature and pressures (sea level and station level). The data package also contains information related to the data processing methods

  5. Air Pollution Control, Part II.

    ERIC Educational Resources Information Center

    Strauss, Werner, Ed.

    This book contains five major articles in areas of current importance in air pollution control. They are written by authors who are actively participating in the areas on which they report. It is the aim of each article to completely cover theory, experimentation, and practice in the field discussed. The contents are as follows: Emissions,…

  6. MEANS FOR CONTROLLING A NUCLEAR REACTOR

    DOEpatents

    Wilson, V.C.; Overbeck, W.P.; Slotin, L.; Froman, D.K.

    1957-12-17

    This patent relates to nuclear reactors of the type using a solid neutron absorbing material as a means for controlling the reproduction ratio of the system and thereby the power output. Elongated rods of neutron absorbing material, such as boron steel for example, are adapted to be inserted and removed from the core of tae reactor by electronic motors and suitable drive means. The motors and drive means are controlled by means responsive to the neutron density, such as ionization chambers. The control system is designed to be responsive also to the rate of change in neutron density to automatically maintain the total power output at a substantially constant predetermined value. A safety rod means responsive to neutron density is also provided for keeping the power output below a predetermined maximum value at all times.

  7. Persistence analysis of daily mean air temperature variation in Georgia

    NASA Astrophysics Data System (ADS)

    Matcharashvili, Teimuraz; Chelidze, Tamaz; Zhukova, Natalia; Mepharidze, Ekaterine; Sborshchikov, Alexander

    2010-05-01

    Extrapolation of observed linear trends is common practice in climate change researches on different scales. In this respect it is important, that though global warming is well established, the question of persistence of trends on regional scales remain controversial. Indeed, climate change for specific region and time by definition includes more than the simple average of weather conditions. Either random events or long-term changes, or more often combinations of them, can bring about significant swings in a variety of climate indicators from one time period to the next. Therefore in order to achieve further understanding of dynamics of climate change the character of stable peculiarities of analyzed dynamics should be investigated. Analysis of the character of long range correlations in climatological time series or peculiarities of their inherent memory is motivated exactly by this goal. Such analysis carried out on a different scales may help to understand spatial and temporal features of regional climate change. In present work the problem of persistence of observed trends in air temperature time series in Georgia was investigated. Longest available mean daily temperature time series of Tbilisi (1890-2008) were analyzed. Time series on shorter time scales of five stations in the West and East Georgia also were considered as well as monthly mean temperature time series of five stations. Additionally, temporally and spatially averaged daily and monthly mean air temperature time series were analyzed. Extent of persistence in mentioned time series were evaluated using R/S analysis calculation. Detrended and Multifractal Detrended Fluctuation Analysis as well as multi scaling analysis based on CWT have been used. Our results indicate that variation of daily or monthly mean temperatures reveals clear antipersistence on whole available time scale. It seems that antipersistence on global scale is general characteristics of mean air temperature variation and is not

  8. Building pressurization control with rooftop air conditioners

    SciTech Connect

    Winter, S.

    1982-10-01

    The modulated exhaust fan appears to be the most cost effective positive means to maintain close building pressure control with rooftop air conditioning, but because building construction and applications vary, every building's pressure control needs must be analyzed. Requirements will vary from no relief to barometric dampers to return fans to modulated exhaust fans. As heating and cooling costs continue to rise and tighter building codes prevail, proper selection of building pressure control is one area that must be monitored more carefully by the HVAC system designer.

  9. CONTROL MEANS FOR A NUCLEAR REACTOR

    DOEpatents

    Teitel, R.J.

    1961-09-01

    A control means is described for a reactor which employs a liquid fuel consisting of a fissile isotope in a liquid bismuth solvent. The liquid fuel is contained in a plurality of tubular vessels. Control is effected by inserting plungers in the vessels to displace the liquid fuel and provide a critical or non- critical fuel configuration as desired.

  10. Spatial interpolation of monthly mean air temperature data for Latvia

    NASA Astrophysics Data System (ADS)

    Aniskevich, Svetlana

    2016-04-01

    Temperature data with high spatial resolution are essential for appropriate and qualitative local characteristics analysis. Nowadays the surface observation station network in Latvia consists of 22 stations recording daily air temperature, thus in order to analyze very specific and local features in the spatial distribution of temperature values in the whole Latvia, a high quality spatial interpolation method is required. Until now inverse distance weighted interpolation was used for the interpolation of air temperature data at the meteorological and climatological service of the Latvian Environment, Geology and Meteorology Centre, and no additional topographical information was taken into account. This method made it almost impossible to reasonably assess the actual temperature gradient and distribution between the observation points. During this project a new interpolation method was applied and tested, considering auxiliary explanatory parameters. In order to spatially interpolate monthly mean temperature values, kriging with external drift was used over a grid of 1 km resolution, which contains parameters such as 5 km mean elevation, continentality, distance from the Gulf of Riga and the Baltic Sea, biggest lakes and rivers, population density. As the most appropriate of these parameters, based on a complex situation analysis, mean elevation and continentality was chosen. In order to validate interpolation results, several statistical indicators of the differences between predicted values and the values actually observed were used. Overall, the introduced model visually and statistically outperforms the previous interpolation method and provides a meteorologically reasonable result, taking into account factors that influence the spatial distribution of the monthly mean temperature.

  11. Change point analysis of mean annual air temperature in Iran

    NASA Astrophysics Data System (ADS)

    Shirvani, A.

    2015-06-01

    The existence of change point in the mean of air temperature is an important indicator of climate change. In this study, Student's t parametric and Mann-Whitney nonparametric Change Point Models (CPMs) were applied to test whether a change point has occurred in the mean of annual Air Temperature Anomalies Time Series (ATATS) of 27 synoptic stations in different regions of Iran for the period 1956-2010. The Likelihood Ratio Test (LRT) was also applied to evaluate the detected change points. The ATATS of all stations except Bandar Anzali and Gorgan stations, which were serially correlated, were transformed to produce an uncorrelated pre-whitened time series as an input file for the CPMs and LRT. Both the Student's t and Mann-Whitney CPMs detected the change point in the ATATS of (a) Tehran Mehrabad, Abadan, Kermanshah, Khoramabad and Yazd in 1992, (b) Mashhad and Tabriz in 1993, (c) Bandar Anzali, Babolsar and Ramsar in 1994, (d) Kerman and Zahedan in 1996 at 5% significance level. The likelihood ratio test shows that the ATATS before and after detected change points in these 12 stations are normally distributed with different means. The Student's t and Mann-Whitney CPMs suggested different change points for individual stations in Bushehr, Bam, Shahroud, and Gorgan. However, the LRT confirmed the change points in these four stations as 1997, 1996, 1993, and 1996, respectively. No change points were detected in the remaining 11 stations.

  12. Colorado Air Quality Control Regulations and Ambient Air Quality Standards.

    ERIC Educational Resources Information Center

    Colorado State Dept. of Health, Denver. Div. of Air Pollution Control.

    Regulations and standards relative to air quality control in Colorado are defined in this publication. Presented first are definitions of terms, a statement of intent, and general provisions applicable to all emission control regulations adopted by the Colorado Air Pollution Control Commission. Following this, three regulations are enumerated: (1)…

  13. Product Guide/1972 [Air Pollution Control Association].

    ERIC Educational Resources Information Center

    Journal of the Air Pollution Control Association, 1971

    1971-01-01

    Reprinted in this pamphlet is the fifth annual directory of air pollution control products as compiled in the "Journal of the Air Pollution Control Association" for December, 1971. The 16-page guide lists manufacturers of emission control equipment and air pollution instrumentation under product classifications as derived from McGraw-Hill's "Air…

  14. Programmable control means for providing safe and controlled medication infusion

    NASA Technical Reports Server (NTRS)

    Fischell, Robert E. (Inventor)

    1988-01-01

    An implantable programmable infusion pump (IPIP) is disclosed and generally includes: a fluid reservoir filled with selected medication; a pump for causing a precise volumetric dosage of medication to be withdrawn from the reservoir and delivered to the appropriate site within the body; and, a control means for actuating the pump in a safe and programmable manner. The control means includes a microprocessor, a permanent memory containing a series of fixed software instructions, and a memory for storing prescription schedules, dosage limits and other data. The microprocessor actuates the pump in accordance with programmable prescription parameters and dosage limits stored in the memory. A communication link allows the control means to be remotely programmed. The control means incorporates a running integral dosage limit and other safety features which prevent an inadvertent or intentional medication overdose. The control means also monitors the pump and fluid handling system and provides an alert if any improper or potentially unsafe operation is detected.

  15. Mean-field sparse optimal control

    PubMed Central

    Fornasier, Massimo; Piccoli, Benedetto; Rossi, Francesco

    2014-01-01

    We introduce the rigorous limit process connecting finite dimensional sparse optimal control problems with ODE constraints, modelling parsimonious interventions on the dynamics of a moving population divided into leaders and followers, to an infinite dimensional optimal control problem with a constraint given by a system of ODE for the leaders coupled with a PDE of Vlasov-type, governing the dynamics of the probability distribution of the followers. In the classical mean-field theory, one studies the behaviour of a large number of small individuals freely interacting with each other, by simplifying the effect of all the other individuals on any given individual by a single averaged effect. In this paper, we address instead the situation where the leaders are actually influenced also by an external policy maker, and we propagate its effect for the number N of followers going to infinity. The technical derivation of the sparse mean-field optimal control is realized by the simultaneous development of the mean-field limit of the equations governing the followers dynamics together with the Γ-limit of the finite dimensional sparse optimal control problems. PMID:25288818

  16. The controller, aviation medicine and air safety.

    PubMed

    Watkin, B L

    1983-03-01

    Aviation medicine has researched many important facts on pilots, but little on direct relationships between controllers, aviation medicine and air safety. The unsuspecting flying public accepts a 'blind faith' in aircraft and pilots, unaware that aircraft are controlled within 'suspect' ATC systems. The deceptive simplicity of controlling air traffic in apparently limitless skies belies the complexity of man-machine ATC systems operated in ever-crowded airspace, sometimes with antiquated equipment and indifferent communications. The indivisible operational controller/pilot team strives to meet similar ICAO medical standards and operate within the limitations of non-standardised recorded air traffic. Despite controllers' intensive stress at air disasters and 'almost' air disasters, air traffic must continually be controlled for air safety; but, countless human lives (and insurance dollars) saved are possibly camouflaged within the smoke screen of ATC. In New Zealand aviation, the Accident Compensation Corporation is statutorily responsible for air-safety, but accident investigators need controllers' expertise. Has a climate of complacency evolved towards air safety such that New Zealand's Erebus and other air disasters could have been avoided? Controllers are that crucial link in aviation with personal medical fitness vital to the air safety of the unsuspecting flying public. Controllers' dedicated aim for complete air safety in ATC shall benefit from greater understanding within aviation medicine and in-depth medical research. PMID:6847565

  17. AIR POLLUTION CONTROL TECHNOLOGIES (CHAPTER 65)

    EPA Science Inventory

    The chapter discusses the use of technologies for reducing air pollution emissions from stationary sources, with emphasis on the control of combustion gen-erated air pollution. Major stationary sources include utility power boilers, industrial boilers and heaters, metal smelting ...

  18. Air Pollution and Control Legislation in India

    NASA Astrophysics Data System (ADS)

    P Bhave, Prashant; Kulkarni, Nikhil

    2015-09-01

    Air pollution in urban areas arises from multiple sources, which may vary with location and developmental activities. Anthropogenic activities as rampant industrialization, exploitation and over consumption of natural resources, ever growing population size are major contributors of air pollution. The presented review is an effort to discuss various aspects of air pollution and control legislation in India emphasizing on the history, present scenario, international treaties, gaps and drawbacks. The review also presents legislative controls with judicial response to certain landmark judgments related to air pollution. The down sides related to enforcement mechanism for the effective implementation of environmental laws for air pollution control have been highlighted.

  19. Cleaner Air in California May Mean Healthier Kids

    MedlinePlus

    ... all, Berhane said, the study suggests that curbing air pollution may benefit kids' respiratory health. "To parents, that ... and 2003-2012. Over that 20-year period, air pollution levels fell substantially, the study found. "Fine particle" ...

  20. NOX CONTROL BY COMBUSTION MODIFICATION (AIR POLLUTION TECHNOLOGY BRANCH, AIR POLLUTION PREVENTION AND CONTROL DIVISION, NRMRL)

    EPA Science Inventory

    NRMRL's Air Pollution Prevention and Control Division's Air Pollution Technology Branch has performed research and developed technologies for NOx reduction via combustion modification. Techniques such as low-excess air firing, staged combustion, flue gas recirculation, low NOx bu...

  1. AIR CLEANERS FOR INDOOR AIR POLLUTION CONTROL (CHAPTER 10)

    EPA Science Inventory

    The chapter describes an experimental study to evaluate performance characteristics of currently available controls for indoor air pollutants, including both particles and gases. he study evaluated the particle-size-dependent collection efficiency of seven commercially available ...

  2. Air gun wounding and current UK laws controlling air weapons.

    PubMed

    Bruce-Chwatt, Robert Michael

    2010-04-01

    Air weapons whether rifles or pistols are, potentially, lethal weapons. The UK legislation is complex and yet little known to the public. Hunting with air weapons and the laws controlling those animals that are permitted to be shot with air weapons is even more labyrinthine due to the legal power limitations on the possession of air weapons. Still relatively freely available by mail order or on the Internet, an increasing number of deaths have been reported from the misuse of air weapons or accidental discharges. Ammunition for air weapons has become increasingly sophisticated, effective and therefore increasingly dangerous if misused, though freely available being a mere projectile without a concomitant cartridge containing a propellant and an initiator. PMID:20211450

  3. System for controlling automatic transmission having communication control valve means

    SciTech Connect

    Ogasawara, T.; Arakawa, Y.; Sumiya, K.; Sakaguchi, Y.

    1987-01-06

    A system is described for hydraulically controlling an automatic transmission equipped with a gear mechanism having elements and friction engaging means therefor for attaining a shift ranges by locking and releasing at least one of the elements of the gear mechanism. It is disposed between an input shaft and an output shaft, to and from a case, by bringing the elements into and out of engagement with one of the input shaft, the output shaft, and each other. The system comprises: a first and a second friction engaging means which take part in achieving at least two speed ranges comprising a higher speed range and a lower speed range; the first friction engaging means taking part in achieving a gear train of the higher speed range between the input and output shafts, and the second friction engaging means taking part in achieving a gear train of the lower speed range; a first and a second hydraulic servo means for actuating the first and the second friction engaging means, respectively; a third hydraulic servo means which is disposed to act opposing to the second hydraulic servo means and is communicated with the first hydraulic servo means; a hydraulic pressure source for generating a hydraulic pressure; a regulator valve for regulating the hydraulic pressure from the hydraulic pressure source into a given pressure; and a first signal hydraulic pressure valve for generating a first signal pressure related with the operation conditions of an engine for driving the input shaft, the conditions including at least output of the engine.

  4. Automatic speech recognition in air traffic control

    NASA Technical Reports Server (NTRS)

    Karlsson, Joakim

    1990-01-01

    Automatic Speech Recognition (ASR) technology and its application to the Air Traffic Control system are described. The advantages of applying ASR to Air Traffic Control, as well as criteria for choosing a suitable ASR system are presented. Results from previous research and directions for future work at the Flight Transportation Laboratory are outlined.

  5. Air Pollution and Its Control, Second Edition.

    ERIC Educational Resources Information Center

    Sproull, Wayne T.

    A concise appraisal of our contemporary status and future prospects with regard to air pollution and its control are offered in this text for concerned laymen. What air pollution is, how it endangers health, the cost of controlling it, what is being done about it now, and what should be done are some of the basic questions considered. Topics cover…

  6. Topics in Air Pollution Control (SI: 428).

    ERIC Educational Resources Information Center

    Rampacek, Anne; Chaput, Linda

    This course provides information about air pollution control efforts since the passage of the Clean Air Act and places in perspective various issues that have arisen since passage of the act--significant deterioration, maintenance of standards, indirect source review, and transportation controls. Court decisions affecting these issues are cited…

  7. Career Guide for Air Pollution Control

    ERIC Educational Resources Information Center

    Baldwin, Lionel V.

    1975-01-01

    This guide to career opportunities in air pollution control includes resource information in this area and provides a listing of colleges and universities offering environmental science programs. The guide was prepared by the S-11 Education and Training Committee of the Air Pollution Control Association. (Author/BT)

  8. Air flow management in an internal combustion engine through the use of electronically controlled air jets

    SciTech Connect

    Swain, M.R.

    1988-12-27

    This patent describes a means for producing an air/fuel mixture in the valve pocket and means for directing the air/fuel mixture past the intake valve into the combustion chamber, the improvement comprising a device for generating a swirling flow of the air/fuel mixture in the combustion chamber to thereby obtain greater combustion stability. The device has a nozzle positioned within the valve pocket and directed at an acute angle toward the intake valve comprising at least one opening for receiving air, connected to a first pathway, and at least one opening for expelling air, connected, to a second pathway joined to the first pathway and extending to the expulsion opening. The device also includes a means for controlling the flow of air through the pathway and out the expulsion opening comprising: (i) a stopper having sides complementary in shape to the pair of opposed arcuate walls movable from an open position allowing air through the pathway to a closed position, wherein the sides of the stopper are in a sealed relationship with the opposed arcaute sides of the junction thereby preventing the flow of air through the second pathway and out of the expulsion opening; and (ii) an electronic computer which determines the size and duration of the pathway opening.

  9. Collegiate Aviation and FAA Air Traffic Control.

    ERIC Educational Resources Information Center

    Ruiz, Jose R.; Ruiz, Lorelei E.

    2003-01-01

    Based on a literature review this article describes the Air Traffic-Collegiate Training Initiative (AT-CTI) program, including objectives, the process by which postsecondary institutes become affiliated, advantages of affiliation, and the recruitment and employment of air traffic control graduates by the Federal Aviation Administration. (Contains…

  10. Vent means for closed air system impact-type seismic source

    SciTech Connect

    Airhart, T.P.

    1987-10-27

    This patent describes an apparatus for impacting a target comprising: (a) a hollow upstanding cylindrical housing having a closed upper end and open lower end and provided with a longitudinal bore; (b) a pressurized air supply vessel communicating with the bore through the first air passage; (c) piston means slidably interfitted with the bore for movement therein; (d) valve means for regulating air flow through the second air passage; (e) means for supporting the piston means in an upper most position in which piston means projects above and blocks the first air passage so as to isolate the air supply vessel from the bore and so as to engage the valve means in a manner to maintain the second air passage in an unblocked condition; (f) means for releasing the piston means such that the resultant gravity-induced movement is accompanied in sequence by disengagement with the valve means and unblocking of the first air passage; (g) means for returning the piston means to such upper most position.

  11. Controlling Indoor Air Pollution from Moxibustion

    PubMed Central

    Lu, Chung-Yen; Kang, Sy-Yuan; Liu, Shu-Hui; Mai, Cheng-Wei; Tseng, Chao-Heng

    2016-01-01

    Indoor air quality (IAQ) control of hospitals plays a critical role in protecting both hospital staffs and patients, particularly those who are highly susceptible to the adverse effects of indoor noxious hazards. However, moxibustion in outpatient departments (OPDs) of traditional Chinese medicine (TCM) may be a source of indoor air pollution in hospitals. Some studies have investigated indoor air pollution during moxibustion in Chinese medicine clinics (CMCs) and moxibustion rooms, demonstrating elevated air pollutants that pose a threat to the health of medical staff and patients. Our study investigated the indoor air pollutants of indoor carbon dioxide (CO2), carbon monoxide (CO), formaldehyde (HCHO), total volatile organic compounds (TVOCs), airborne particulate matter with a diameter of ≤10 µm (PM10) and ≤2.5 µm (PM2.5) during moxibustion in an acupuncture and moxibustion room of the OPD in a hospital in Taipei. To evaluate the different control strategies for indoor air pollution from moxibution, a comparison of air pollutants during moxibution among the methods of using alternative old moxa wools, local exhaust ventilation and an air cleaner was conducted. In this study, burning alternative old moxa wools for moxibustion obviously reduced all gaseous pollutants except for aerosols comparing burning fresh moxa wools. Using local exhaust ventilation reduced most of the aerosols after burning moxa. We also found that using an air cleaner was inefficient for controlling indoor air pollutants, particularly gaseous pollutants. Therefore, combining replacing alternative old moxa wools and local exhaust ventilation could be a suitable design for controlling indoor air pollution during moxibustion therapy. PMID:27331817

  12. Controlling Indoor Air Pollution from Moxibustion.

    PubMed

    Lu, Chung-Yen; Kang, Sy-Yuan; Liu, Shu-Hui; Mai, Cheng-Wei; Tseng, Chao-Heng

    2016-01-01

    Indoor air quality (IAQ) control of hospitals plays a critical role in protecting both hospital staffs and patients, particularly those who are highly susceptible to the adverse effects of indoor noxious hazards. However, moxibustion in outpatient departments (OPDs) of traditional Chinese medicine (TCM) may be a source of indoor air pollution in hospitals. Some studies have investigated indoor air pollution during moxibustion in Chinese medicine clinics (CMCs) and moxibustion rooms, demonstrating elevated air pollutants that pose a threat to the health of medical staff and patients. Our study investigated the indoor air pollutants of indoor carbon dioxide (CO₂), carbon monoxide (CO), formaldehyde (HCHO), total volatile organic compounds (TVOCs), airborne particulate matter with a diameter of ≤10 µm (PM10) and ≤2.5 µm (PM2.5) during moxibustion in an acupuncture and moxibustion room of the OPD in a hospital in Taipei. To evaluate the different control strategies for indoor air pollution from moxibution, a comparison of air pollutants during moxibution among the methods of using alternative old moxa wools, local exhaust ventilation and an air cleaner was conducted. In this study, burning alternative old moxa wools for moxibustion obviously reduced all gaseous pollutants except for aerosols comparing burning fresh moxa wools. Using local exhaust ventilation reduced most of the aerosols after burning moxa. We also found that using an air cleaner was inefficient for controlling indoor air pollutants, particularly gaseous pollutants. Therefore, combining replacing alternative old moxa wools and local exhaust ventilation could be a suitable design for controlling indoor air pollution during moxibustion therapy. PMID:27331817

  13. Control Techniques for Particulate Air Pollutants.

    ERIC Educational Resources Information Center

    National Air Pollution Control Administration (DHEW), Washington, DC.

    Included is a comprehensive review of the approaches commonly recommended for controlling the sources of particulate air pollution. Not all possible combinations of control techniques that might bring about more stringent control of each individual source are reviewed. The many agricultural, commercial, domestic, industrial, and municipal…

  14. Analysis of Controller Communication in En Route Air Traffic Control.

    ERIC Educational Resources Information Center

    Seamster, Thomas L.; And Others

    To contribute to an understanding of the elements of good air traffic controller communication with the objective of providing recommendations to improve controller communication training, two studies analyzed team communication, ground-air communication, and ground-line communication. The simulated and live traffic analyses examined established…

  15. Means of atmospheric air pollution reduction during drilling wells

    NASA Astrophysics Data System (ADS)

    Shkitsa, L.; Yatsyshyn, T.; Lyakh, M.; Sydorenko, O.

    2016-08-01

    The process of drilling oil and gas wells is the source of air pollution through drilling mud evaporation containing hazardous chemical substances. The constructive solution for cleaning device of downhole tool that contains elements covering tube and clean the surface from the mud in the process of rising from the well is offered. Inside the device is filled with magnetic fluid containing the substance neutralizing hazardous substances. The use of the equipment proposed will make it possible to avoid penetration of harmful substances into the environment and to escape the harmful effects of aggressive substances for staff health and increase rig's fire safety.

  16. AIR TOXICS CONTROL "SITUATION ROOM"

    EPA Science Inventory

    The paper describes one component of the Environmental Protection Agency's (EPA's) efforts to assist state and local environmental agencies and its own egional offices in response to their increased responsibilities for' planning, valuating, and approving control approaches for r...

  17. Transonic flow control by means of local energy deposition

    NASA Astrophysics Data System (ADS)

    Aul'Chenko, S. M.; Zamuraev, V. P.; Kalinina, A. P.

    2011-11-01

    Experimental data for the feasibility of transonic flow control by means of energy deposition are generalized. Energy supplied to the immediate vicinity of a body in stream before a compression shock is found to result in the nonlinear interaction of introduced disturbances with the shock and the surface in zones extended along the surface. A new, explosive gasdynamic mechanism behind the shift of the compression shock is discovered. It is shown that the nonlinear character of the interaction may considerably decrease the wave resistance of, e.g., transonic airfoils. It is found that energy supply from without stabilizes a transonic flow about an airfoil—the effect similar to the Khristianovich stabilization effect. The dependence of the energy deposition optimal frequency on the energy source parameters and Mach number of the incoming flow at which the resistance drops to the greatest extent is obtained. The influence of the real thermodynamic properties and viscosity of air is studied.

  18. RESEARCH AREA -- ARTIFICIAL INTELLIGENCE CONTROL (AIR POLLUTION TECHNOLOGY BRANCH, AIR POLLUTION PREVENTION AND CONTROL DIVISION, NRMRL)

    EPA Science Inventory

    The Air Pollution Technology Branch (APTB) of NRMRL's Air Pollution Prevention and Control Division in Research Triangle Park, NC, has conducted several research projects for evaluating the use of artificial intelligence (AI) to improve the control of pollution control systems an...

  19. Air-fuel ratio control system for an internal combustion engine

    SciTech Connect

    Nishimura, T.; Suzuki, M.

    1981-09-29

    The air-fuel ratio for an internal combustion engine is controlled at the three stages: (A) when the engine temperature is lower than a first predetermined value, the air-fuel ratio is controlled only by a choke valve, (B) when the engine is at a temperature of the first predetermined value to a second predetermined value, the air-fuel ratio is controlled according to the output signals of engine temperature detecting means, and (C) when the engine temperature is higher than the second predetermined value, the air-fuel ratio is controlled according to the signals from air-fuel ratio detecting means.

  20. Smart Sensors Enable Smart Air Conditioning Control

    PubMed Central

    Cheng, Chin-Chi; Lee, Dasheng

    2014-01-01

    In this study, mobile phones, wearable devices, temperature and human motion detectors are integrated as smart sensors for enabling smart air conditioning control. Smart sensors obtain feedback, especially occupants' information, from mobile phones and wearable devices placed on human body. The information can be used to adjust air conditioners in advance according to humans' intentions, in so-called intention causing control. Experimental results show that the indoor temperature can be controlled accurately with errors of less than ±0.1 °C. Rapid cool down can be achieved within 2 min to the optimized indoor capacity after occupants enter a room. It's also noted that within two-hour operation the total compressor output of the smart air conditioner is 48.4% less than that of the one using On-Off control. The smart air conditioner with wearable devices could detect the human temperature and activity during sleep to determine the sleeping state and adjusting the sleeping function flexibly. The sleeping function optimized by the smart air conditioner with wearable devices could reduce the energy consumption up to 46.9% and keep the human health. The presented smart air conditioner could provide a comfortable environment and achieve the goals of energy conservation and environmental protection. PMID:24961213

  1. Smart sensors enable smart air conditioning control.

    PubMed

    Cheng, Chin-Chi; Lee, Dasheng

    2014-01-01

    In this study, mobile phones, wearable devices, temperature and human motion detectors are integrated as smart sensors for enabling smart air conditioning control. Smart sensors obtain feedback, especially occupants' information, from mobile phones and wearable devices placed on human body. The information can be used to adjust air conditioners in advance according to humans' intentions, in so-called intention causing control. Experimental results show that the indoor temperature can be controlled accurately with errors of less than ±0.1 °C. Rapid cool down can be achieved within 2 min to the optimized indoor capacity after occupants enter a room. It's also noted that within two-hour operation the total compressor output of the smart air conditioner is 48.4% less than that of the one using On-Off control. The smart air conditioner with wearable devices could detect the human temperature and activity during sleep to determine the sleeping state and adjusting the sleeping function flexibly. The sleeping function optimized by the smart air conditioner with wearable devices could reduce the energy consumption up to 46.9% and keep the human health. The presented smart air conditioner could provide a comfortable environment and achieve the goals of energy conservation and environmental protection. PMID:24961213

  2. Propulsion Controls, 1979. [air breathing engine control

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The state of the art of multivariable engine control is examined in order to determine future needs and problem areas and to establish the appropriate roles of government, industries, and universities in addressing these problems.

  3. Research review: Indoor air quality control techniques

    SciTech Connect

    Fisk, W.J.

    1986-10-01

    Techniques for controlling the concentration of radon, formaldehyde, and combustion products in the indoor air are reviewed. The most effective techniques, which are generally based on limiting or reducing indoor pollutant source strengths, can decrease indoor pollutant concentrations by a factor of 3 to 10. Unless the initial ventilation rate is unusually low, it is difficult to reduce indoor pollutant concentrations more than approximately 50% by increasing the ventilation rate of an entire building. However, the efficiency of indoor pollutant control by ventilation can be enhanced through the use of local exhaust ventilation near concentrated sources of pollutants, by minimizing short circuiting of air from supply to exhaust when pollutant sources are dispersed and, in some situations, by promoting a displacement flow of air and pollutants toward the exhaust. Active air cleaning is also examined briefly. Filtration and electrostatic air cleaning for removal of particles from the indoor air are the most practical and effective currently available techniques of air cleaning. 49 refs., 7 figs.

  4. Controlled-Temperature Hot-Air Gun

    NASA Technical Reports Server (NTRS)

    Munoz, M. C.

    1986-01-01

    Materials that find applications in wind tunnels first tested in laboratory. Hot-Air Gun differs from commercial units in that flow rate and temperature monitored and controlled. With typical compressed-airsupply pressure of 25 to 38 psi (170 to 260 kPa), flow rate and maximum temperature are 34 stdft3/min (0.96 stdm3/min) and 1,090 degrees F (590 degrees C), respectively. Resembling elaborate but carefully regulated hot-air gun, setup used to apply blasts of air temperatures above 1,500 degrees F (815 degrees C) to test specimens.

  5. Means for controlling aerodynamically induced twist

    NASA Technical Reports Server (NTRS)

    Elber, W. (Inventor)

    1982-01-01

    A control mechanism which provides active compensation for aerodynamically induced twist deformation of high aspect ratio wings consists of a torque tube, internal to each wing and rigidly attached near the tip of each wing, which is moved by an actuator located in the aircraft fuselage. As changes in the aerodynamic loads on the wings occur the torque tube is rotated to compensate for the induced wing twist.

  6. Control of asthma triggers in indoor air with air cleaners: a modeling analysis

    PubMed Central

    Myatt, Theodore A; Minegishi, Taeko; Allen, Joseph G; MacIntosh, David L

    2008-01-01

    Background Reducing exposure to environmental agents indoors shown to increase asthma symptoms or lead to asthma exacerbations is an important component of a strategy to manage asthma for individuals. Numerous investigations have demonstrated that portable air cleaning devices can reduce concentrations of asthma triggers in indoor air; however, their benefits for breathing problems have not always been reproducible. The potential exposure benefits of whole house high efficiency in-duct air cleaners for sensitive subpopulations have yet to be evaluated. Methods We used an indoor air quality modeling system (CONTAM) developed by NIST to examine peak and time-integrated concentrations of common asthma triggers present in indoor air over a year as a function of natural ventilation, portable air cleaners, and forced air ventilation equipped with conventional and high efficiency filtration systems. Emission rates for asthma triggers were based on experimental studies published in the scientific literature. Results Forced air systems with high efficiency filtration were found to provide the best control of asthma triggers: 30–55% lower cat allergen levels, 90–99% lower risk of respiratory infection through the inhalation route of exposure, 90–98% lower environmental tobacco smoke (ETS) levels, and 50–75% lower fungal spore levels than the other ventilation/filtration systems considered. These results indicate that the use of high efficiency in-duct air cleaners provide an effective means of controlling allergen levels not only in a single room, like a portable air cleaner, but the whole house. Conclusion These findings are useful for evaluating potential benefits of high efficiency in-duct filtration systems for controlling exposure to asthma triggers indoors and for the design of trials of environmental interventions intended to evaluate their utility in practice. PMID:18684328

  7. Breakdowns in Coordination Between Air Traffic Controllers

    NASA Technical Reports Server (NTRS)

    Bearman, Chris; Orasanu, Judith; Miller, Ronald C.

    2011-01-01

    This talk outlines the complexity of coordination in air traffic control, introduces the NextGen technologies, identifies common causes for coordination breakdowns in air traffic control and examines whether these causes are likely to be reduced with the introduction of NextGen technologies. While some of the common causes of breakdowns will be reduced in a NextGen environment this conclusion should be drawn carefully given the current stage of development of the technologies and the observation that new technologies often shift problems rather than reduce them.

  8. Controlled air incinerator conceptual design study

    SciTech Connect

    Not Available

    1982-01-01

    This report presents a conceptual design study for a controlled air incinerator facility for incineration of low level combustible waste at Three Mile Island Unit 2 (TMI-2). The facility design is based on the use of a Helix Process Systems controlled air incinerator. Cost estimates and associated engineering, procurement, and construction schedules are also provided. The cost estimates and schedules are presented for two incinerator facility designs, one with provisions for waste ash solidification, the other with provisions for packaging the waste ash for transport to an undefined location.

  9. Air-fuel ratio control system for internal combustion engines capable of controlling air-fuel ratio in accordance with degree of warming-up of the engines

    SciTech Connect

    Hibino, Y.; Fukuzawa, T.

    1988-06-28

    This patent describes an air-fuel ratio control system for an internal combustion engine, the system having an automatic choke valve arranged in an intake passage of the engine, and exhaust gas sensor arranged in an exhaust passage of the engine and having an output characteristic linear with respect to the concentration of a specific component in exhaust gases from the engine, an air passage bypassing a throttle valve in the intake passage, an air-fuel ratio control valve arranged in the air passage, and disposed to be driven in response to an output from the exhaust gas sensor for controlling the air-fuel ratio of a mixture supplied to the engine, and temperature sensing means for sensing the degree of warming-up of the engine, the combination comprising; determining means for determining whether the exhaust gas has been activated; means for controlling the opening of the automatic choke valve in response to the degree of warming-up of the engine sensed by the temperature sensing means while the determining means determines that the exhaust gas sensor is inactive; means for determining the difference between a desired value of the air-fuel ratio and an actual value thereof sensed by the exhaust gas sensor, and for driving the automatic choke valve when the determined difference is larger than a predetermined value, and the air-fuel ratio control valve when the determined difference is smaller than the predetermined value, respectively, from the time the determining means determines for the first time that the exhaust gas sensor has become activated to the time the temperature sensing means detects completion of warming up of the engine; and means for driving the air-fuel ratio control valve in response to operating conditions of the engine so as to achieve a desired value of the air-fuel ratio, after the temperature sensing means detects completion of warming-up of the engine.

  10. CATS-based Air Traffic Controller Agents

    NASA Technical Reports Server (NTRS)

    Callantine, Todd J.

    2002-01-01

    This report describes intelligent agents that function as air traffic controllers. Each agent controls traffic in a single sector in real time; agents controlling traffic in adjoining sectors can coordinate to manage an arrival flow across a given meter fix. The purpose of this research is threefold. First, it seeks to study the design of agents for controlling complex systems. In particular, it investigates agent planning and reactive control functionality in a dynamic environment in which a variety perceptual and decision making skills play a central role. It examines how heuristic rules can be applied to model planning and decision making skills, rather than attempting to apply optimization methods. Thus, the research attempts to develop intelligent agents that provide an approximation of human air traffic controller behavior that, while not based on an explicit cognitive model, does produce task performance consistent with the way human air traffic controllers operate. Second, this research sought to extend previous research on using the Crew Activity Tracking System (CATS) as the basis for intelligent agents. The agents use a high-level model of air traffic controller activities to structure the control task. To execute an activity in the CATS model, according to the current task context, the agents reference a 'skill library' and 'control rules' that in turn execute the pattern recognition, planning, and decision-making required to perform the activity. Applying the skills enables the agents to modify their representation of the current control situation (i.e., the 'flick' or 'picture'). The updated representation supports the next activity in a cycle of action that, taken as a whole, simulates air traffic controller behavior. A third, practical motivation for this research is to use intelligent agents to support evaluation of new air traffic control (ATC) methods to support new Air Traffic Management (ATM) concepts. Current approaches that use large, human

  11. Air Traffic Control: Economics of Flight

    NASA Technical Reports Server (NTRS)

    Murphy, James R.

    2004-01-01

    Contents include the following: 1. Commercial flight is a partnership. Airlines. Pilots. Air traffic control. 2. Airline schedules and weather problems can cause delays at the airport. Delays are inevitable in de-regulated industry due to simple economics. 3.Delays can be mitigated. Build more runways/technology. Increase airspace supply. 4. Cost/benefit analysis determine justification.

  12. HANDBOOK: CONTROL TECHNIQUES FOR HAZARDOUS AIR POLLUTANTS

    EPA Science Inventory

    This manual is a revision of the first (1986) edition of the Handbook: Control Technologies for Hazardous Air Pollutants, which incorporated information from numerous sources into a single, self-contained reference source focusing on the design and cost of VOC and partic...

  13. PUBLICATIONS - AIR POLLUTION PREVENTION AND CONTROL TECHNOLOGY

    EPA Science Inventory

    The Air Pollution Prevention and Control Division (APPCD)publishes highly scientific and technical information developed through its four research branches. A list of key publications produced by the individual branches can be viewed by visiting the website for the respective bra...

  14. CONTROLLING AIR TOXICS: AN ADVISORY SYSTEM

    EPA Science Inventory

    The paper discusses the development and use of a computerized advisory system for the control of air toxics. The program, is written for the IBM PC using Microsoft C V3.0 compiler and Windows for Data Library V1.0 for screen and keyboard interaction. The permit reviewer inputs in...

  15. Air Pressure Controlled Mass Measurement System

    NASA Astrophysics Data System (ADS)

    Zhong, Ruilin; Wang, Jian; Cai, Changqing; Yao, Hong; Ding, Jin'an; Zhang, Yue; Wang, Xiaolei

    Mass measurement is influenced by air pressure, temperature, humidity and other facts. In order to reduce the influence, mass laboratory of National Institute of Metrology, China has developed an air pressure controlled mass measurement system. In this system, an automatic mass comparator is installed in an airtight chamber. The Chamber is equipped with a pressure controller and associate valves, thus the air pressure can be changed and stabilized to the pre-set value, the preferred pressure range is from 200 hPa to 1100 hPa. In order to keep the environment inside the chamber stable, the display and control part of the mass comparator are moved outside the chamber, and connected to the mass comparator by feed-throughs. Also a lifting device is designed for this system which can easily lift up the upper part of the chamber, thus weights can be easily put inside the mass comparator. The whole system is put on a marble platform, and the temperature and humidity of the laboratory is very stable. The temperature, humidity, and carbon dioxide content inside the chamber are measured in real time and can be used to get air density. Mass measurement cycle from 1100 hPa to 200 hPa and back to 1100 hPa shows the effective of the system.

  16. Situational Leadership in Air Traffic Control

    NASA Technical Reports Server (NTRS)

    Arvidsson, Marcus; Johansson, Curt R.; Ek, Asa; Akselsson, Roland

    2007-01-01

    In high-risk environments such as air traffic control, leadership on different levels plays a certain role in establishing, promoting, and maintaining a good safety culture. The current study aimed to investigate how leadership styles, leadership style adaptability, and over and under task leadership behavior differed across situations, operative conditions, leadership structures, and working tasks in an air traffic control setting. Study locations were two air traffic control centers in Sweden with different operational conditions and leadership structures, and an administrative air traffic management unit. Leadership was measured with a questionnaire based on Leader Effectiveness and Adaptability Description (LEAD; Blanchard, Zigarmi & Zigarmi, 2003; Hersey & Blanchard, 1988). The results showed that the situation had strong impact on the leadership in which the leadership behavior was more relationship oriented in Success and Group situations than in Hardship and Individual situations. The leadership adaptability was further superior in Success and Individual situations compared with Hardship and Group situations. Operational conditions, leadership structures and working tasks were, on the other hand, not associated with leadership behavior.

  17. Combined air and water pollution control system

    NASA Technical Reports Server (NTRS)

    Wolverton, Billy C. (Inventor); Jarrell, Lamont (Inventor)

    1990-01-01

    A bioaquatic air pollution control system for controlling both water and atmospheric pollution is disclosed. The pollution control system includes an exhaust for directing polluted gases out of a furnace and a fluid circulating system which circulates fluid, such as waste water, from a source, past the furnace where the fluid flow entrains the pollutants from the furnace. The combined fluid and pollutants are then directed through a rock/plant/microbial filtering system. A suction pump pumps the treated waste water from the filter system past the exhaust to again entrain more pollutants from the furnace where they are combined with the fluid (waste water) and directed to the filter system.

  18. 30 CFR 780.15 - Air pollution control plan.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Air pollution control plan. 780.15 Section 780....15 Air pollution control plan. (a) For all surface mining activities with projected production rates... application shall contain an air pollution control plan which includes the following: (1) An air...

  19. 30 CFR 780.15 - Air pollution control plan.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Air pollution control plan. 780.15 Section 780....15 Air pollution control plan. (a) For all surface mining activities with projected production rates... application shall contain an air pollution control plan which includes the following: (1) An air...

  20. 30 CFR 780.15 - Air pollution control plan.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Air pollution control plan. 780.15 Section 780....15 Air pollution control plan. (a) For all surface mining activities with projected production rates... application shall contain an air pollution control plan which includes the following: (1) An air...

  1. 30 CFR 780.15 - Air pollution control plan.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Air pollution control plan. 780.15 Section 780....15 Air pollution control plan. (a) For all surface mining activities with projected production rates... application shall contain an air pollution control plan which includes the following: (1) An air...

  2. 30 CFR 780.15 - Air pollution control plan.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Air pollution control plan. 780.15 Section 780....15 Air pollution control plan. (a) For all surface mining activities with projected production rates... application shall contain an air pollution control plan which includes the following: (1) An air...

  3. Sampling Biases in Datasets of Historical Mean Air Temperature over Land

    NASA Astrophysics Data System (ADS)

    Wang, K.

    2014-12-01

    Global mean surface air temperature have risen by 0.74 °C over the last 100 years. However, the definition of mean surface air temperature is still a subject of debate. The most defensible definition might be the integral of the continuous temperature measurements over a day (Td0). However, for technological and historical reasons, mean temperatures (Td1) over land have been taken to be the average of the daily maximum and minimum temperature measurements. All existing principle global temperature analyses over land are primarily based on Td1. Here, I make a first quantitative assessment of the bias in the use of Td1 to estimate trends of mean air temperature using hourly air temperature observations at 5600 globally distributed weather stations from the 1970s to 2013. I find that the use of Td1 has a negligible impact on the global mean warming rate. However, the trend of Td1 has a substantial bias at regional and local scales, with a root mean square error of over 25% at 5°×5° grids. Therefore, caution should be taken when using mean air temperature datasets based on Td1 to examine spatial patterns of global warming.

  4. INTEGRATED AIR POLLUTION CONTROL SYSTEM (IAPCS) COST MODEL (AIR POLLUTION TECHNOLOGY BRANCH, AIR POLLUTION PREVENTION AND CONTROL DIVISION, NRMRL)

    EPA Science Inventory

    The Air Pollution Technology Branch's (APPCD, NRMRL) Integrated Air Pollution Control System Cost Model is a compiled model written in FORTRAN and C language that is designed to be used on an IBM or compatible PC with 640K or lower RAM and at least 1.5 Mb of hard drive space. It ...

  5. Quantitatively Probing the Means of Controlling Nanoparticle Assembly on Surfaces

    SciTech Connect

    Patete, J.m.; Wong, S.; Peng, X.; Serafin, J.M.

    2011-05-17

    As a means of developing a simple, cost-effective, and reliable method for probing nanoparticle behavior, we have used atomic force microscopy to gain a quantitative 3D visual representation of the deposition patterns of citrate-capped Au nanoparticles on a substrate as a function of (a) sample preparation, (b) the choice of substrate, (c) the dispersion solvent, and (d) the number of loading steps. Specifically, we have found that all four parameters can be independently controlled and manipulated in order to alter the resulting pattern and quantity of as-deposited nanoparticles. From these data, the sample preparation technique appears to influence deposition patterns most broadly, and the dispersion solvent is the most convenient parameter to use in tuning the quantity of nanoparticles deposited onto the surface under spin-coating conditions. Indeed, we have quantitatively measured the effect of surface coverage for both mica and silicon substrates under preparation techniques associated with (i) evaporation under ambient air, (ii) heat treatment, and (iii) spin-coating preparation conditions. In addition, we have observed a decrease in nanoparticle adhesion to a substrate when the ethylene glycol content of the colloidal dispersion solvent is increased, which had the effect of decreasing interparticle-substrate interactions. Finally, we have shown that substrates prepared by these diverse techniques have potential applicability in surface-enhanced Raman spectroscopy.

  6. Automated Conflict Resolution For Air Traffic Control

    NASA Technical Reports Server (NTRS)

    Erzberger, Heinz

    2005-01-01

    The ability to detect and resolve conflicts automatically is considered to be an essential requirement for the next generation air traffic control system. While systems for automated conflict detection have been used operationally by controllers for more than 20 years, automated resolution systems have so far not reached the level of maturity required for operational deployment. Analytical models and algorithms for automated resolution have been traffic conditions to demonstrate that they can handle the complete spectrum of conflict situations encountered in actual operations. The resolution algorithm described in this paper was formulated to meet the performance requirements of the Automated Airspace Concept (AAC). The AAC, which was described in a recent paper [1], is a candidate for the next generation air traffic control system. The AAC's performance objectives are to increase safety and airspace capacity and to accommodate user preferences in flight operations to the greatest extent possible. In the AAC, resolution trajectories are generated by an automation system on the ground and sent to the aircraft autonomously via data link .The algorithm generating the trajectories must take into account the performance characteristics of the aircraft, the route structure of the airway system, and be capable of resolving all types of conflicts for properly equipped aircraft without requiring supervision and approval by a controller. Furthermore, the resolution trajectories should be compatible with the clearances, vectors and flight plan amendments that controllers customarily issue to pilots in resolving conflicts. The algorithm described herein, although formulated specifically to meet the needs of the AAC, provides a generic engine for resolving conflicts. Thus, it can be incorporated into any operational concept that requires a method for automated resolution, including concepts for autonomous air to air resolution.

  7. Air pollution control at a DOE facility

    SciTech Connect

    Curn, B.L.

    1995-11-01

    The Department of Energy (DOE) plutonium production program Produced some of the greatest scientific and engineering accomplishments of all time. It is remarkable to consider the accomplishments of the Manhattan Project. The Reactor on the Hanford Site, the first production reactor in the world, began operation only 13 months after the start of construction. The DOE nuclear production program was also instrumental in pioneering other fields such as health physics an radiation monitoring. The safety record of these installations is remarkable considering that virtually every significant accomplishment was on the technological threshold of the time. One other area that the DOE Facilities pioneered was the control of radioactive particles and gases emitted to the atmosphere. The high efficiency particulate air filter (HEPA) was a development that provided high collection efficiencies of particulates to protect workers and the public. The halogen and noble gases also were of particular concern. Radioactive iodine is captured by adsorption on activated carbon or synthetic zeolites. Besides controlling radioncuclide air pollution, DOE facilities are concerned with other criteria pollutants and hazardous air pollutant emissions. The Hanford Site encompasses all those air pollution challenges.

  8. ECONOMICS AND PERFORMANCE MODELING (AIR POLLUTION TECHNOLOGY BRANCH, AIR POLLUTION PREVENTION AND CONTROL DIVISION, NRMRL)

    EPA Science Inventory

    NRMRL's Air Pollution Prevention and Control Division's Air Pollution Technology Branch (APTB) is active in the development, refinement, and maintenance of economic and performance evaluation models that provide agency-wide support for estimating costs for air pollution preventio...

  9. Air Traffic Control Improvement Using Prioritized CSMA

    NASA Technical Reports Server (NTRS)

    Robinson, Daryl C.

    2001-01-01

    Version 7 simulations of the industry-standard network simulation software "OPNET" are presented of two applications of the Aeronautical Telecommunications Network (ATN), Controller Pilot Data Link Communications (CPDLC) and Automatic Dependent Surveillance-Broadcast mode (ADS-B), over VHF Data Link mode 2 (VDL-2). Communication is modeled for air traffic between just three cities. All aircraft are assumed to have the same equipage. The simulation involves Air Traffic Control (ATC) ground stations and 105 aircraft taking off, flying realistic free-flight trajectories, and landing in a 24-hr period. All communication is modeled as unreliable. Collision-less, prioritized carrier sense multiple access (CSMA) is successfully tested. The statistics presented include latency, queue length, and packet loss. This research may show that a communications system simpler than the currently accepted standard envisioned may not only suffice, but also surpass performance of the standard at a lower cost of deployment.

  10. AIR POLLUTION CONTROL ALTERNATIVES FOR SHALE OIL PRODUCTION OPERATIONS

    EPA Science Inventory

    The report consolidates, evaluates, and presents available air pollution emission data and air pollution control technology relevant to oil shale production, for use by project developers in preparing environmental impact statements and permit applications under Clean Air Act and...

  11. Computationally Lightweight Air-Traffic-Control Simulation

    NASA Technical Reports Server (NTRS)

    Knight, Russell

    2005-01-01

    An algorithm for computationally lightweight simulation of automated air traffic control (ATC) at a busy airport has been derived. The algorithm is expected to serve as the basis for development of software that would be incorporated into flight-simulator software, the ATC component of which is not yet capable of handling realistic airport loads. Software based on this algorithm could also be incorporated into other computer programs that simulate a variety of scenarios for purposes of training or amusement.

  12. Self-powered automatic secondary air controllers for woodstoves and small furnaces

    DOEpatents

    Siemer, Darryl D.

    1991-01-01

    A controller for automatically regulating the supply of secondary combustion air to woodstoves and small furnaces. The controller includes a movable air valve for controlling the amount of secondary air admitted into the chamber. A self powered means monitors the concentration of combustible gases and vapors and actuates the movable air valve to increase the supply of secondary air in response to increasing concentrations of the combustible gases and vapors. The self-powered means can be two fluid filled sensor bulbs, one of which has a coating of a combustion catalyst. Alternatively, the self powered means can be two metallic stripes laminated together, one of which is coated with a combustion catalyst, and when heated, causes the air valve to actuate.

  13. AIR CLEANER RESEARCH (INDOOR ENVIRONMENT MANAGEMENT BRANCH, AIR POLLUTION PREVENTION AND CONTROL DIVISION, NRMRL)

    EPA Science Inventory

    Using air cleaners to remove pollutants from indoor air is part an integrated indoor air quality strategy. Air cleaners can be used either alone or in combination with other control options when source control and improvements in ventilation are insufficient, impractical, or oth...

  14. 75 FR 18061 - Approval and Promulgation of Air Quality Implementation Plans; Texas; Control of Air Pollution...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-09

    ... Air Pollution From Motor Vehicles AGENCY: Environmental Protection Agency (EPA). ACTION: Direct final... amend 30 TAC Chapter 114, Control of Air Pollution from Motor Vehicles. These revisions consist of the... to develop air pollution regulations and control strategies to ensure that air quality meets...

  15. Failsafe device for air/fuel ratio feedback control system

    SciTech Connect

    Otsuka, K.; Hasegawa, S.; Narasaka, S.

    1983-11-15

    A fail safe device is disclosed, comprising means for detecting a failure in an air/fuel ratio feedback control system and generating a fault signal when such failure is detected, and means responsive to the fault signal to drive an actuator for driving an air/fuel ratio control valve and also responsive to a reference position signal supplied thereto during the above driving, which is generated when the actuator passes its reference position, to stop the actuator at the reference position. The actuator driving/stopping means may comprise means for repeatedly driving the actuator over a predetermined operating range inclusive of the reference position a plurality of times when it is not supplied with the reference position signal upon the actuator passing the reference position, and means for driving the actuator from its extreme operating position to a predetermined position and holding the same there when it is not supplied with the reference position signal even after a predetermined number of times of the above repeated driving of the actuator.

  16. 14 CFR 23.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Carburetor air temperature controls. 23... Powerplant Powerplant Controls and Accessories § 23.1157 Carburetor air temperature controls. There must be a separate carburetor air temperature control for each engine....

  17. 14 CFR 23.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Carburetor air temperature controls. 23... Powerplant Powerplant Controls and Accessories § 23.1157 Carburetor air temperature controls. There must be a separate carburetor air temperature control for each engine....

  18. 14 CFR 23.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Carburetor air temperature controls. 23... Powerplant Powerplant Controls and Accessories § 23.1157 Carburetor air temperature controls. There must be a separate carburetor air temperature control for each engine....

  19. 14 CFR 23.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Carburetor air temperature controls. 23... Powerplant Powerplant Controls and Accessories § 23.1157 Carburetor air temperature controls. There must be a separate carburetor air temperature control for each engine....

  20. 14 CFR 23.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Carburetor air temperature controls. 23... Powerplant Powerplant Controls and Accessories § 23.1157 Carburetor air temperature controls. There must be a separate carburetor air temperature control for each engine....

  1. Air-fuel ratio control system for an automotive engine

    SciTech Connect

    Ohishi, H.

    1988-04-19

    An air-fuel ratio control system for an automotive engine is described comprising: a first lookup table storing basic fuel injection pulse widths from which one of pulse widths is derived in accordance with engine operating conditions; a second lookup table storing maximum correcting quantities for correcting a derived basic fuel injection pulse width in order to correct deviation of air-fuel ratio due to change of a characteristic of a device used in the engine; first means for producing a necessary correcting quantity by multiplying a learning coefficient and a maximum correcting quantity derived from the second lookup table; second means for producing a desired fuel injection pulse width in accordance with the necessary correcting quantity and the derived basic fuel injection pulse width.

  2. Method and means for diesel exhaust particulate emission control

    SciTech Connect

    Ludecke, O.A.

    1983-04-19

    A method and means for controlling diesel particulate emissions involves providing an exhaust trap filter to collect exhaust particulates at a point near the engine exhaust ports and providing means to periodically vent burning combustion chamber gases to the exhaust filter to initiate combustion and incineration of the collected particulates. Various means for conducting burning mixture to ignite the particulates in the filter are disclosed.

  3. 30 CFR 784.26 - Air pollution control plan.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Air pollution control plan. 784.26 Section 784... § 784.26 Air pollution control plan. For all surface operations associated with underground mining activities, the application shall contain an air pollution control plan which includes the following: (a)...

  4. 30 CFR 784.26 - Air pollution control plan.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Air pollution control plan. 784.26 Section 784... § 784.26 Air pollution control plan. For all surface operations associated with underground mining activities, the application shall contain an air pollution control plan which includes the following: (a)...

  5. 30 CFR 784.26 - Air pollution control plan.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Air pollution control plan. 784.26 Section 784... § 784.26 Air pollution control plan. For all surface operations associated with underground mining activities, the application shall contain an air pollution control plan which includes the following: (a)...

  6. 30 CFR 784.26 - Air pollution control plan.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Air pollution control plan. 784.26 Section 784... § 784.26 Air pollution control plan. For all surface operations associated with underground mining activities, the application shall contain an air pollution control plan which includes the following: (a)...

  7. 30 CFR 784.26 - Air pollution control plan.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Air pollution control plan. 784.26 Section 784... § 784.26 Air pollution control plan. For all surface operations associated with underground mining activities, the application shall contain an air pollution control plan which includes the following: (a)...

  8. Quantifying the effects of mixing and residual circulation on trends of stratospheric mean age of air

    NASA Astrophysics Data System (ADS)

    Ploeger, Felix; Abalos, Marta; Birner, Thomas; Konopka, Paul; Legras, Bernard; Müller, Rolf; Riese, Martin

    2015-04-01

    Trends in stratospheric mean age of air are driven both by changes in the (slow, large scale) residual mean mass circulation and by changes in (fast, locally acting) eddy mixing. However, to what degree both effects affect mean age trends is an open question. Here, we present a method that allows the effects of mixing and residual circulation on trends of mean age of air to be quantified. This method is based on mean age simulations with the Lagrangian chemistry transport model CLaMS driven by ERA-Interim reanalysis, and on the mean age tracer continuity equation integrated along the residual circulation. CLaMS simulated climatological mean age in the lower stratosphere shows reliable agreement with balloon borne in-situ obsevations and with satellite observations by MIPAS (Michelson Interferometer for Passive Atmospheric Sounding). During 1990--2013, CLaMS simulated mean age decreases throughout most of the stratosphere, qualitatively consistent with results based on climate model simulations (e.g., Butchart et al., 2010). Remarkably, in the Northern hemisphere subtropics and mid-latitudes above about 24km CLaMS mean age trends are insignificant, consistent with published mean age trends from in-situ observations (Engel et al., 2009). Furthermore, during 2002--2012 CLaMS mean age changes show a clear hemispheric asymmetry in agreement with MIPAS satellite observations (Stiller et al., 2012; Ploeger et al., 2014) and HCl decadal changes (Mahieu et al., 2014). We find that changes in the transit time along the residual circulation alone cannot explain the mean age trends, and including the effect of mixing integrated along the air parcel history is essential. Therefore, differences in mean age trends between models or between models and observations are likely related to differences in the integrated effect of mixing on mean age of air. Above about 550K, trends in the integrated mixing effect appear to be likely coupled to residual circulation changes. References

  9. Electric controlled air incinerator for radioactive wastes

    SciTech Connect

    Hootman, H.E.; Warren, J.H.

    1981-04-07

    A two-stage incinerator is provided which includes a primary combustion chamber and an afterburner chamber for off-gases. The latter is formed by a plurality of vertical tubes in combination with associated manifolds which connect the tubes together to form a continuous tortuous path. Electrically-controlled heaters surround the tubes while electrically-controlled plate heaters heat the manifolds. A gravity-type ash removal system is located at the bottom of the first afterburner tube while an air mixer is disposed in that same tube just above the outlet from the primary chamber. A ram injector in combination with rotary magazine feeds waste to a horizontal tube forming the primary combustion chamber.

  10. Electric controlled air incinerator for radioactive wastes

    DOEpatents

    Warren, Jeffery H.; Hootman, Harry E.

    1981-01-01

    A two-stage incinerator is provided which includes a primary combustion chamber and an afterburner chamber for off-gases. The latter is formed by a plurality of vertical tubes in combination with associated manifolds which connect the tubes together to form a continuous tortuous path. Electrically-controlled heaters surround the tubes while electrically-controlled plate heaters heat the manifolds. A gravity-type ash removal system is located at the bottom of the first afterburner tube while an air mixer is disposed in that same tube just above the outlet from the primary chamber. A ram injector in combination with rotary magazine feeds waste to a horizontal tube forming the primary combustion chamber.

  11. INDOOR AIR QUALITY MODELING (INDOOR ENVIRONMENT MANAGEMENT BRANCH, AIR POLLUTION PREVENTION AND CONTROL DIVISION, NRMRL)

    EPA Science Inventory

    The Indoor Environment Management Branch of NRMRL's Air Pollution Prevention and Control Division in Research Triangle Park, NC, has developed an indoor air quality (IAQ) model for analyzing the impact of sources, sinks, ventilation, and air cleaners on indoor air quality. Early ...

  12. Estimation of daily mean air temperature from satellite derived radiometric data

    NASA Technical Reports Server (NTRS)

    Phinney, D.

    1976-01-01

    The Screwworm Eradication Data System (SEDS) at JSC utilizes satellite derived estimates of daily mean air temperature (DMAT) to monitor the effect of temperature on screwworm populations. The performance of the SEDS screwworm growth potential predictions depends in large part upon the accuracy of the DMAT estimates.

  13. Air-sea transfer of gas phase controlled compounds

    NASA Astrophysics Data System (ADS)

    Yang, M.; Bell, T. G.; Blomquist, B. W.; Fairall, C. W.; Brooks, I. M.; Nightingale, P. D.

    2016-05-01

    Gases in the atmosphere/ocean have solubility that spans several orders of magnitude. Resistance in the molecular sublayer on the waterside limits the air-sea exchange of sparingly soluble gases such as SF6 and CO2. In contrast, both aerodynamic and molecular diffusive resistances on the airside limit the exchange of highly soluble gases (as well as heat). Here we present direct measurements of air-sea methanol and acetone transfer from two open cruises: the Atlantic Meridional Transect in 2012 and the High Wind Gas Exchange Study in 2013. The transfer of the highly soluble methanol is essentially completely airside controlled, while the less soluble acetone is subject to both airside and waterside resistances. Both compounds were measured concurrently using a proton-transfer-reaction mass spectrometer, with their fluxes quantified by the eddy covariance method. Up to a wind speed of 15 m s-1, observed air-sea transfer velocities of these two gases are largely consistent with the expected near linear wind speed dependence. Measured acetone transfer velocity is ∼30% lower than that of methanol, which is primarily due to the lower solubility of acetone. From this difference we estimate the “zero bubble” waterside transfer velocity, which agrees fairly well with interfacial gas transfer velocities predicted by the COARE model. At wind speeds above 15 m s-1, the transfer velocities of both compounds are lower than expected in the mean. Air-sea transfer of sensible heat (also airside controlled) also appears to be reduced at wind speeds over 20 m s-1. During these conditions, large waves and abundant whitecaps generate large amounts of sea spray, which is predicted to alter heat transfer and could also affect the air-sea exchange of soluble trace gases. We make an order of magnitude estimate for the impacts of sea spray on air-sea methanol transfer.

  14. The advantages and disadvantages of centralized control of air power at operational level

    NASA Astrophysics Data System (ADS)

    Arisoy, Uǧur

    2014-05-01

    People do not want to see and hear a war. In today's world, if war is inevitable, the use of air power is seen as the preferable means of conducting operations instead of financially burdensome land battles which are more likely to cause heavy loss of life. The use of Air Power has gained importance in NATO operations in the Post-Cold War era. For example, air power has undertaken a decisive role from the beginning to the end of the operation in Libya. From this point of view, the most important issue to consider is how to direct air power more effectively at operational level. NATO's Core JFAC (Joint Force Air Command) was established in 2012 to control joint air power at operational level from a single center. US had experienced JFAC aproach in the Operation Desert Storm in 1991. UK, France, Germany, Italy and Spain are also directing their air power from their JFAC structures. Joint air power can be directed from a single center at operational level by means of JFAC. JFAC aproach provides complex planning progress of Air Power to be controled faster in a single center. An Air Power with a large number of aircrafts, long range missiles of cutting-edge technology may have difficulties in achieving results unless directed effectively. In this article, directing air power more effectively at operational level has been studied in the framework of directing air power from a single center carried out by SWOT analysis technique. "Directing Air Power at operational level from a single center similar to JFAC-like structure" is compared with "Directing Air Power at operational level from two centers similar to AC (Air Command) + CAOC (Combined Air Operations Center) structure" As a result of this study, it is assessed that directing air power at operational level from a single center would bring effectiveness to the air campaign. The study examines directing air power at operational level. Developments at political, strategic and tactical levels have been ignored.

  15. 75 FR 18142 - Approval and Promulgation of Air Quality Implementation Plans; Texas; Control of Air Pollution...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-09

    ... AGENCY 40 CFR Part 52 Approval and Promulgation of Air Quality Implementation Plans; Texas; Control of Air Pollution From Motor Vehicles AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule... Title 30 of the Texas Administrative Code (TAC), Chapter 114, Control of Air Pollution from...

  16. 5 CFR 842.207 - Air traffic controllers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 5 Administrative Personnel 2 2014-01-01 2014-01-01 false Air traffic controllers. 842.207 Section... (CONTINUED) FEDERAL EMPLOYEES RETIREMENT SYSTEM-BASIC ANNUITY Eligibility § 842.207 Air traffic controllers... misconduct, is entitled to an annuity— (1) After completing 25 years of service as an air traffic...

  17. 5 CFR 842.207 - Air traffic controllers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 5 Administrative Personnel 2 2011-01-01 2011-01-01 false Air traffic controllers. 842.207 Section... (CONTINUED) FEDERAL EMPLOYEES RETIREMENT SYSTEM-BASIC ANNUITY Eligibility § 842.207 Air traffic controllers... misconduct, is entitled to an annuity— (1) After completing 25 years of service as an air traffic...

  18. 5 CFR 842.207 - Air traffic controllers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 5 Administrative Personnel 2 2013-01-01 2013-01-01 false Air traffic controllers. 842.207 Section... (CONTINUED) FEDERAL EMPLOYEES RETIREMENT SYSTEM-BASIC ANNUITY Eligibility § 842.207 Air traffic controllers... misconduct, is entitled to an annuity— (1) After completing 25 years of service as an air traffic...

  19. 14 CFR 29.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Carburetor air temperature controls. 29.1157 Section 29.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 29.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  20. 14 CFR 25.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Carburetor air temperature controls. 25.1157 Section 25.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 25.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  1. 5 CFR 842.207 - Air traffic controllers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 5 Administrative Personnel 2 2012-01-01 2012-01-01 false Air traffic controllers. 842.207 Section... (CONTINUED) FEDERAL EMPLOYEES RETIREMENT SYSTEM-BASIC ANNUITY Eligibility § 842.207 Air traffic controllers... misconduct, is entitled to an annuity— (1) After completing 25 years of service as an air traffic...

  2. 14 CFR 25.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Carburetor air temperature controls. 25.1157 Section 25.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 25.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  3. 14 CFR 29.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Carburetor air temperature controls. 29.1157 Section 29.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 29.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  4. 14 CFR 29.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Carburetor air temperature controls. 29.1157 Section 29.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 29.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  5. 14 CFR 29.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Carburetor air temperature controls. 29.1157 Section 29.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 29.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  6. 14 CFR 25.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Carburetor air temperature controls. 25.1157 Section 25.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 25.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  7. 14 CFR 25.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Carburetor air temperature controls. 25.1157 Section 25.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 25.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  8. 14 CFR 29.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Carburetor air temperature controls. 29.1157 Section 29.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 29.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  9. 14 CFR 25.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Carburetor air temperature controls. 25.1157 Section 25.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 25.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  10. 5 CFR 842.207 - Air traffic controllers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 2 2010-01-01 2010-01-01 false Air traffic controllers. 842.207 Section... (CONTINUED) FEDERAL EMPLOYEES RETIREMENT SYSTEM-BASIC ANNUITY Eligibility § 842.207 Air traffic controllers... misconduct, is entitled to an annuity— (1) After completing 25 years of service as an air traffic...

  11. Controlling Urban Air Pollution: A Benefit-Cost Assessment.

    ERIC Educational Resources Information Center

    Krupnick, Alan J.; Portney, Paul R.

    1991-01-01

    The pros and cons of air pollution control efforts are discussed. Both national and regional air pollution control plans are described. Topics of discussion include benefit-cost analysis, air quality regulation, reducing ozone in the urban areas, the Los Angeles plan, uncertainties, and policy implications. (KR)

  12. Combustor air flow control method for fuel cell apparatus

    DOEpatents

    Clingerman, Bruce J.; Mowery, Kenneth D.; Ripley, Eugene V.

    2001-01-01

    A method for controlling the heat output of a combustor in a fuel cell apparatus to a fuel processor where the combustor has dual air inlet streams including atmospheric air and fuel cell cathode effluent containing oxygen depleted air. In all operating modes, an enthalpy balance is provided by regulating the quantity of the air flow stream to the combustor to support fuel cell processor heat requirements. A control provides a quick fast forward change in an air valve orifice cross section in response to a calculated predetermined air flow, the molar constituents of the air stream to the combustor, the pressure drop across the air valve, and a look up table of the orifice cross sectional area and valve steps. A feedback loop fine tunes any error between the measured air flow to the combustor and the predetermined air flow.

  13. AIR POLLUTION TECHNOLOGY BRANCH (AIR POLLUTION PREVENTION AND CONTROL DIVISION, NRMRL)

    EPA Science Inventory

    Fundamental and applied combustion research has been conducted by the Air Pollution Prevention and Control Division's Air Pollution Technology Branch (APTB)and its predecessors since EPA's inception. APTB has been instrumental in the development and successful application of flue...

  14. PUBLICATIONS (AIR POLLUTION TECHNOLOGY BRANCH, AIR POLLUTION PREVENTION AND CONTROL DIVISION, NRMRL)

    EPA Science Inventory

    The Air Pollution Technology Branch (APTB) of NRMRL's Air Pollution Prevention and Control Division produces and publishes highly specialized technical and scientific documents related to APTB's research. Areas of research covered include artificial intelligence, CFC destruction,...

  15. COOPERATIVE RESEARCH (AIR POLLUTION TECHNOLOGY BRANCH, AIR POLLUTION PREVENTION AND CONTROL DIVISION, NRMRL)

    EPA Science Inventory

    NRMRL's Air Pollution Prevention and Control Division's Air Pollution Technology Branch (APTB) is always interested in the potential for cooperative research if overlap occurs between the research goals of external organizations and APTB's research goals.APTB has participated i...

  16. Controlling air toxics through advanced coal preparation

    SciTech Connect

    Straszheim, W.E.; Buttermore, W.H.; Pollard, J.L.

    1995-11-01

    This project involves the assessment of advanced coal preparation methods for removing trace elements from coal to reduce the potential for air toxic emissions upon combustion. Scanning electron microscopy-based automated image analysis (SEM-AIA) and advanced washability analyses are being applied with state-of-the-art analytical procedures to predict the removal of elements of concern by advanced column flotation and to confirm the effectiveness of preparation on the quality of quantity of clean coal produced. Specific objectives are to maintain an acceptable recovery of combustible product, while improving the rejection of mineral-associated trace elements. Current work has focused on determining conditions for controlling column flotation system across its operating range and on selection and analysis of samples for determining trace element cleanability.

  17. Observed Temporal Evolution of Global Mean Age of Stratospheric Air for the 2002 to 2010 Period

    NASA Astrophysics Data System (ADS)

    Stiller, G. P.; von Clarmann, T.; Haenel, F.; Funke, B.; Glatthor, N.; Grabowski, U.; Kellmann, S.; Kiefer, M.; Linden, A.; Lossow, S.; Lopez-Puertas, M.

    2011-12-01

    According to model calculations, the meridional circulation is expected to intensify as a result of climate change, and mean age of stratospheric air is expected to decrease. However, an observational data set presented recently (Engel et al., 2009) and consisting of 27 balloon samples of the age of air tracers carbon dioxide and sulfur hexafluoride covering the years 1975 to 2005 did not confirm the model predictions. As a contribution to the ongoing discussion, an extensive observational data set, consisting of more than 1 Million SF6 vertical profiles distributed globally is presented here. It has been derived from the MIPAS instrument covering the period 2002 to 2010 and has been converted into mean age of stratospheric air by referring to a combined data set of in-situ and flask global mean tropospheric SF6 measurements provided by NOAA/ESRL. During conversion into age of air, the non-linearity of tropospheric SF6 increase has been corrected for by convolution with the age spectrum within an iterative approach. Monthly zonal means of mean age of air, binned at 10 deg latitude and 1-2 km altitude, were analyzed with respect to their temporal variation by fitting a regression model consisting of a constant and a linear increase term, 2 proxies for the QBO variation, sinusoidal terms for the seasonal and semi-annual variation and overtones for the correction of the shapes to the observed data set. The impact of subsidence of mesospheric SF6-depleted air and in-mixing into non-polar latitudes on mid-latitudinal absolute age of air and the age-of-air linear increase was assessed and found to be small. The linear increase of mean age of stratospheric air was found to be positive and partly larger than the trend derived by Engel et al. (2009) for most of the Northern mid-latitudes, the middle stratosphere in the tropics, and parts of the Southern mid-latitudes, as well as for the Southern polar upper stratosphere. Multi-year decrease of age of air was found for the

  18. AIR POLLUTION PREVENTION AND CONTROL DIVISION - HOME PAGE

    EPA Science Inventory

    The Air Pollution Prevention and Control Division (APPCD), located in Research Triangle Park, NC, is part of the National Risk Management Research Laboratory (NRMRL), which is headquartered in Cincinnati, OH. APPCD researches, develops, anddemonstrates air pollution prevention a...

  19. DETAIL, CONTROL BOOTH, RP1 TANK FARM Edwards Air Force ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL, CONTROL BOOTH, RP1 TANK FARM - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Combined Fuel Storage Tank Farm, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  20. Atlanta Air Route Traffic Control Center's involvement in aviation weather

    NASA Technical Reports Server (NTRS)

    Wood, W. D.

    1979-01-01

    The distribution of weather information throughout the Air Traffic Control System is discussed along with the development of meteorological radar, and the modifications to the Air Route Traffic Control Center radars for locating and determining the severity of storms' cells. The planned improvements in the availability of weather data to the control centers are listed.

  1. Research on Air Flow Measurement and Optimization of Control Algorithm in Air Disinfection System

    NASA Astrophysics Data System (ADS)

    Bing-jie, Li; Jia-hong, Zhao; Xu, Wang; Amuer, Mohamode; Zhi-liang, Wang

    2013-01-01

    As the air flow control system has the characteristics of delay and uncertainty, this research designed and achieved a practical air flow control system by using the hydrodynamic theory and the modern control theory. Firstly, the mathematical model of the air flow distribution of the system is analyzed from the hydrodynamics perspective. Then the model of the system is transformed into a lumped parameter state space expression by using the Galerkin method. Finally, the air flow is distributed more evenly through the estimation of the system state and optimal control. The simulation results show that this algorithm has good robustness and anti-interference ability

  2. APEX (Air Pollution Exercise) Volume 21: Legal References: Air Pollution Control Regulations.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Research Triangle Park, NC. Office of Manpower Development.

    The Legal References: Air Pollution Control Regulations Manual is the last in a set of 21 manuals (AA 001 009-001 029) used in APEX (Air Pollution Exercise), a computerized college and professional level "real world" game simulation of a community with urban and rural problems, industrial activities, and air pollution difficulties. The manual…

  3. APEX (Air Pollution Exercise) Volume 3: Air Pollution Control Officer's Manual.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Research Triangle Park, NC. Office of Manpower Development.

    The Air Pollution Control Officer's (APCO) Manual is part of a set of 21 manuals (AA 001 009-001 029) used in APEX (Air Pollution Exercise) a computerized college and professional level "real world" game simulation of a community with urban and rural problems, industrial activities, and air pollution difficulties, The first two sections, which are…

  4. Boundary Layer Control by Means of Plasma Actuators

    SciTech Connect

    Quadros, R.

    2007-09-06

    The development of controlled transition in a flat-plate boundary layer is investigated using Large Eddy Simulations (LES) with the dynamic Smagorinsky model. The analysis of flow control with the objective to optimize the effects of Tollmien-Schlichting waves on a flat plate by means of plasma actuators was studied. The plasma effect is modeled as a body force in the momentum equations. These equations are solved in a uniform grid using a 2nd-order finite difference scheme in time and space. The response of plasma actuators operating in different time-dependent conditions, produced by transient or periodic inputs at different frequencies, is also analyzed.

  5. Tools for Physiology Labs: An Inexpensive Means of Temperature Control

    PubMed Central

    Krans, Jacob L.; Hoy, Ronald R.

    2005-01-01

    We describe a simple means of modulating preparation temperature, which may be useful in undergraduate physiology laboratories. The device was developed in an effort to make teaching exercises that involve temperature modulation accessible at low cost. Although we were interested in using the device specifically with the larval fruit fly preparation, it is applicable to many preparations and temperature sensitive phenomena. Feedback driven thermoregulators offer superior precision in experiments requiring temperature control, but can be prohibitively expensive, require power supplies and circuitry, and often generate large switching transients (artifacts) during physiological recording. Moreover, many interesting exercises involving temperature control can be carried out with a slightly reduced level of temperature precision. PMID:23493108

  6. Sampling Biases in Datasets of Historical Mean Air Temperature over Land

    NASA Astrophysics Data System (ADS)

    Wang, Kaicun

    2014-04-01

    Global mean surface air temperature (Ta) has been reported to have risen by 0.74°C over the last 100 years. However, the definition of mean Ta is still a subject of debate. The most defensible definition might be the integral of the continuous temperature measurements over a day (Td0). However, for technological and historical reasons, mean Ta over land have been taken to be the average of the daily maximum and minimum temperature measurements (Td1). All existing principal global temperature analyses over land rely heavily on Td1. Here, I make a first quantitative assessment of the bias in the use of Td1 to estimate trends of mean Ta using hourly Ta observations at 5600 globally distributed weather stations from the 1970s to 2013. I find that the use of Td1 has a negligible impact on the global mean warming rate. However, the trend of Td1 has a substantial bias at regional and local scales, with a root mean square error of over 25% at 5° × 5° grids. Therefore, caution should be taken when using mean Ta datasets based on Td1 to examine high resolution details of warming trends.

  7. Sampling biases in datasets of historical mean air temperature over land.

    PubMed

    Wang, Kaicun

    2014-01-01

    Global mean surface air temperature (Ta) has been reported to have risen by 0.74°C over the last 100 years. However, the definition of mean Ta is still a subject of debate. The most defensible definition might be the integral of the continuous temperature measurements over a day (Td0). However, for technological and historical reasons, mean Ta over land have been taken to be the average of the daily maximum and minimum temperature measurements (Td1). All existing principal global temperature analyses over land rely heavily on Td1. Here, I make a first quantitative assessment of the bias in the use of Td1 to estimate trends of mean Ta using hourly Ta observations at 5600 globally distributed weather stations from the 1970s to 2013. I find that the use of Td1 has a negligible impact on the global mean warming rate. However, the trend of Td1 has a substantial bias at regional and local scales, with a root mean square error of over 25% at 5° × 5° grids. Therefore, caution should be taken when using mean Ta datasets based on Td1 to examine high resolution details of warming trends. PMID:24717688

  8. Observed temporal evolution of global mean age of stratospheric air for the 2002 to 2010 period

    NASA Astrophysics Data System (ADS)

    Stiller, G. P.; von Clarmann, T.; Haenel, F.; Funke, B.; Glatthor, N.; Grabowski, U.; Kellmann, S.; Kiefer, M.; Linden, A.; Lossow, S.; López-Puertas, M.

    2012-04-01

    An extensive observational data set from MIPAS measurements, consisting of more than one million SF6 vertical profiles distributed globally has been condensed into monthly zonal means of mean age of air for the period September 2002 to January 2010, binned at 10° latitude and 1-2 km altitude. The data were analysed with respect to their temporal variation by fitting a regression model consisting of: a constant and a linear increase term, 2 proxies for the QBO variation, sinusoidal terms for the seasonal and semi-annual variation and overtones for the correction of the shapes to the observed data set. The impact of subsidence of mesospheric SF6-depleted air and in-mixing into non-polar latitudes on mid-latitudinal age of air and its linear increase was assessed and found to be small. The linear increase of mean age of stratospheric air was found to be positive and partly larger than the trend derived by Engel et al. (2009) for most of the Northern mid-latitudes, the middle stratosphere in the tropics, and parts of the Southern mid-latitudes, as well as for the Southern polar upper stratosphere. Multi-year decrease of age of air was found for the lowermost and the upper stratospheric tropics, for parts of Southern mid-latitudes, and for the Northern polar regions. Analyses of the amplitudes and phases of the seasonal variation shed light on the coupling between different stratospheric regions. In particular, the Northern mid-latitude stratosphere is well coupled to the tropics, while the Northern lowermost mid-latitudinal stratosphere is decoupled, confirming the separation of the shallow branch of the Brewer-Dobson circulation from the deep branch. We suggest an overall increased tropical upwelling, together with a weakening of mixing barriers, especially in the Northern hemisphere, as possible explanations for the observed patterns. Reference: Engel, A., Möbius, T., Bönisch, H., Schmidt, U., Heinz, R., Levin, I., Atlas, E., Aoki, S., Nakazawa, T., Sugawara, S

  9. Controlling Air Pollution; A Primer on Stationary Source Control Techniques.

    ERIC Educational Resources Information Center

    Corman, Rena

    This companion document to "Air Pollution Primer" is written for the nonexpert in air pollution; however, it does assume a familiarity with air pollution problems. This work is oriented toward providing the reader with knowledge about current and proposed air quality legislation and knowledge about available technology to meet these standards for…

  10. Mist control at a machining center, Part 2: Mist control following installation of air cleaners.

    PubMed

    Yacher, J M; Heitbrink, W A; Burroughs, G E

    2000-01-01

    At a machining center used to produce transaxle and transmission parts, aerosol instrumentation was used to quantitatively evaluate size-dependent mist generation of a synthetic metalworking fluid (MWF) consisting primarily of water and triethanolamine (TEA). This information was used to select an air cleaner for controlling the mist. During most machining operations, the MWF was flooded over the part. These machining operations were performed in a nearly complete enclosure that was exhausted to an air cleaner consisting of three sections: a fall-out chamber, a trifilter section to capture metal chips and mist, and a 1.13 m3/sec (2400 ft3/min) blower. The partnering company requested that National Institute for Occupational Safety and Health (NIOSH) researchers perform an evaluation of the effectiveness of a commercially available air cleaner. After NIOSH researchers characterized mist generation at the machining centers and found that performance of a test air cleaner appeared to be suitable, the company installed more than 25 air cleaners on different machining centers in this plant and enclosed the corresponding fluid filtration unit. The facility also has implemented a maintenance program for the air cleaners that involves regularly scheduled filter changes; performance is ensured by monitoring static pressure. A NIOSH-conducted air sampling evaluation showed that area TEA concentrations were reduced from a geometric mean of 0.25 to 0.03 mg/m3. Personal total particulate concentrations were reduced from a geometric mean of 0.22 to 0.06 mg/m3. These results show the effectiveness of this combination of enclosure, ventilation, and filtration to greatly reduce the exposure to MWF mist generated in modern machining centers. PMID:10782201

  11. ENVIRONMENTAL POLLUTION CONTROL PULP AND PAPER INDUSTRY. PART I. AIR

    EPA Science Inventory

    This publication, directed towards the process and design engineer, describes types, quantities, and sources of emissions, presents the latest control device alternatives, and estimates costs for implementing the air pollution control systems. Emphasis is placed on explanation of...

  12. CONTROL BUILDING, WEST FRONT SHOWING ENTRANCE Edwards Air Force ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONTROL BUILDING, WEST FRONT SHOWING ENTRANCE - Edwards Air Force Base, X-15 Engine Test Complex, Firing Control Building, Rogers Dry Lake, east of runway between North Base & South Base, Boron, Kern County, CA

  13. Efficient Conversation: The Talk between Pilots and Air Traffic Controllers.

    ERIC Educational Resources Information Center

    Simmons, James L.

    Two-way radio communications between air traffic controllers using radar on the ground to give airplane pilots instructions are of interest within the developing framework of the sociology of language. The main purpose of air traffic control language is efficient communication to promote flight safety. This study describes the standardized format…

  14. CONTROLLING AIR TOXICS (CAT), VERSION 1.0. TUTORIAL MANUAL

    EPA Science Inventory

    The manual gives instructions for using Controlling Air Toxics (CAT). The primary objective of this interactive and user-friendly software package is to assist in the review of air emission permit applications. The engineering software is based on the EPA document, Control Techno...

  15. Combustion engine. [for air pollution control

    NASA Technical Reports Server (NTRS)

    Houseman, J. (Inventor)

    1977-01-01

    An arrangement for an internal combustion engine is provided in which one or more of the cylinders of the engine are used for generating hydrogen rich gases from hydrocarbon fuels, which gases are then mixed with air and injected into the remaining cylinders to be used as fuel. When heavy load conditions are encountered, hydrocarbon fuel may be mixed with the hydrogen rich gases and air and the mixture is then injected into the remaining cylinders as fuel.

  16. Localization of an air target by means of GNSS-based multistatic radar

    NASA Astrophysics Data System (ADS)

    Akhmedov, Daulet Sh.; Raskaliyev, Almat S.

    2016-08-01

    The possibility of utilizing transmitters of opportunity for target detection, tracking and positioning is of great interest to the radar community. In particular the optional use of Global Navigation Satellite System (GNSS) has lately triggered scientific research that has purpose to take advantage of this source of signal generation for passive radar. Number of studies have been conducted previously on development of GNSS-based bistatic and multistatic radars for detection and range estimation to the object located in the close atmosphere. To further enrich research in this area, we present a novel method for coordinate determination of the air target by means of the GNSS-based multistatic radar.

  17. 47 CFR 87.395 - Plan for the Security Control of Air Traffic and Air Navigation Aids (Short Title: SCATANA).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... and Air Navigation Aids (Short Title: SCATANA). 87.395 Section 87.395 Telecommunication FEDERAL... Communications § 87.395 Plan for the Security Control of Air Traffic and Air Navigation Aids (Short Title: SCATANA). (a) The Plan for the Security Control of Air Traffic and Air Navigation Aids (SCATANA)...

  18. 47 CFR 87.395 - Plan for the Security Control of Air Traffic and Air Navigation Aids (Short Title: SCATANA).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... and Air Navigation Aids (Short Title: SCATANA). 87.395 Section 87.395 Telecommunication FEDERAL... Communications § 87.395 Plan for the Security Control of Air Traffic and Air Navigation Aids (Short Title: SCATANA). (a) The Plan for the Security Control of Air Traffic and Air Navigation Aids (SCATANA)...

  19. 47 CFR 87.395 - Plan for the Security Control of Air Traffic and Air Navigation Aids (Short Title: SCATANA).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... and Air Navigation Aids (Short Title: SCATANA). 87.395 Section 87.395 Telecommunication FEDERAL... Communications § 87.395 Plan for the Security Control of Air Traffic and Air Navigation Aids (Short Title: SCATANA). (a) The Plan for the Security Control of Air Traffic and Air Navigation Aids (SCATANA)...

  20. 47 CFR 87.395 - Plan for the Security Control of Air Traffic and Air Navigation Aids (Short Title: SCATANA).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... and Air Navigation Aids (Short Title: SCATANA). 87.395 Section 87.395 Telecommunication FEDERAL... Communications § 87.395 Plan for the Security Control of Air Traffic and Air Navigation Aids (Short Title: SCATANA). (a) The Plan for the Security Control of Air Traffic and Air Navigation Aids (SCATANA)...

  1. 47 CFR 87.395 - Plan for the Security Control of Air Traffic and Air Navigation Aids (Short Title: SCATANA).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... and Air Navigation Aids (Short Title: SCATANA). 87.395 Section 87.395 Telecommunication FEDERAL... Communications § 87.395 Plan for the Security Control of Air Traffic and Air Navigation Aids (Short Title: SCATANA). (a) The Plan for the Security Control of Air Traffic and Air Navigation Aids (SCATANA)...

  2. Factors controlling inter- and intramodel variability in global mean OH

    NASA Astrophysics Data System (ADS)

    Murray, L. T.; Fiore, A. M.; Shindell, D. T.

    2013-12-01

    Recent ensemble simulations of the 16 models of the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) show that there are large differences between models in global mean OH and its temporal evolution, even with the use of identical anthropogenic emission inventories. We find global mean OH in each individual ACCMIP model to linearly respond to convolved changes in tropospheric ozone photolysis frequencies, water vapor concentrations, and the ratio of reactive nitrogen to reactive carbon emissions. However, the ensemble members show a spread in both the slope and offset of these individual linear relationships. We present a series of sensitivity simulations using the GEOS-Chem chemical transport model driven by MERRA reanalysis fields and the ACCMIP/MACCity (Monitoring Atmospheric Composition & Climate/City Zen) emissions for 1980-2010 to diagnose potential factors that may be driving differences between the different ACCMIP models. We examine in particular the role of different gas-phase and heterogeneous chemical mechanisms, the spatial and temporal distribution of mean emissions, and the implementation of natural emissions (e.g., lightning, biogenic). Determining the key factors leading to the model differences in OH is a critical step to guide future efforts for identifying observation-based constraints for processes controlling OH variability.

  3. Air pollution control in an age of prevention

    SciTech Connect

    Smith, J.C.

    1996-01-01

    In the case of air pollution control technology, the case for pollution prevention is frequently cast as a case against pollution control technology. The errors in this argument are that pollution control technology is always the more expensive compliance option and that pollution prevention techniques exist to solve all or most of US air quality problems. A true market-based clean air policy would not contain these assumptions, would set a goal and appoint the market as the arbiter of final compliance decisions. This article discusses the market-based option and the balance needed between pollution prevention and pollution control technologies.

  4. Achieving indoor air quality through contaminant control

    SciTech Connect

    Katzel, J.

    1995-07-10

    Federal laws outlining industry`s responsibilities in creating a healthy, hazard-free workspace are well known. OSHA`s laws on interior air pollution establish threshold limit values (TLVs) and permissible exposure limits (PELs) for more than 500 potentially hazardous substances found in manufacturing operations. Until now, OSHA has promulgated regulations only for the manufacturing environment. However, its recently-proposed indoor air quality (IAQ) ruling, if implemented, will apply to all workspaces. It regulates IAQ, including environmental tobacco smoke, and requires employers to write and implement IAQ compliance plans.

  5. Mean deviation coupling synchronous control for multiple motors via second-order adaptive sliding mode control.

    PubMed

    Li, Lebao; Sun, Lingling; Zhang, Shengzhou

    2016-05-01

    A new mean deviation coupling synchronization control strategy is developed for multiple motor control systems, which can guarantee the synchronization performance of multiple motor control systems and reduce complexity of the control structure with the increasing number of motors. The mean deviation coupling synchronization control architecture combining second-order adaptive sliding mode control (SOASMC) approach is proposed, which can improve synchronization control precision of multiple motor control systems and make speed tracking errors, mean speed errors of each motor and speed synchronization errors converge to zero rapidly. The proposed control scheme is robustness to parameter variations and random external disturbances and can alleviate the chattering phenomena. Moreover, an adaptive law is employed to estimate the unknown bound of uncertainty, which is obtained in the sense of Lyapunov stability theorem to minimize the control effort. Performance comparisons with master-slave control, relative coupling control, ring coupling control, conventional PI control and SMC are investigated on a four-motor synchronization control system. Extensive comparative results are given to shown the good performance of the proposed control scheme. PMID:26899554

  6. Meaning

    NASA Astrophysics Data System (ADS)

    Harteveld, Casper

    The second world to be considered concerns Meaning. In contrast to Reality and Play, this world relates to the people, disciplines, and domains that are focused on creating a certain value. For example, if this value is about providing students knowledge about physics, it involves teachers, the learning sciences, and the domains education and physics. This level goes into the aspects and criteria that designers need to take into account from this perspective. The first aspect seems obvious when we talk of “games with a serious purpose.” They have a purpose and this needs to be elaborated on, for example in terms of what “learning objectives” it attempts to achieve. The subsequent aspect is not about what is being pursued but how. To attain a value, designers have to think about a strategy that they employ. In my case this concerned looking at the learning paradigms that have come into existence in the past century and see what they have to tell us about learning. This way, their principles can be translated into a game environment. This translation involves making the strategy concrete. Or, in other words, operationalizing the plan. This is the third aspect. In this level, I will further specifically explain how I derived requirements from each of the learning paradigms, like reflection and exploration, and how they can possibly be related to games. The fourth and final aspect is the context in which the game is going to be used. It matters who uses the game and when, where, and how the game is going to be used. When designers have looked at these aspects, they have developed a “value proposal” and the worth of it may be judged by criteria, like motivation, relevance, and transfer. But before I get to this, I first go into how we human beings are meaning creators and what role assumptions, knowledge, and ambiguity have in this. I will illustrate this with some silly jokes about doctors and Mickey Mouse, and with an illusion.

  7. Terminal area air traffic control simulation

    NASA Technical Reports Server (NTRS)

    1977-01-01

    To study the impact of advanced aeronautical technologies on operations to and from terminal airports, a computer model of air traffic movements was developed. The advantages of fast-time simulation are discussed, and the arrival scheduling and flight simulation are described. A New York area study, user's guide, and programmer's guide are included.

  8. Control of Air Leakage in Buildings.

    ERIC Educational Resources Information Center

    Wilson, A. Grant

    This discussion of air leakage emphasizes cause and provides suggestions for elimination of undesirable effects. Cause parameters described are--(1) pressure differential, (2) building shape, (3) temperature differential, (4) opening sizes, (5) mechanical system pressures, and (6) climatic factors. Effects discussed are--(1) increased mechanical…

  9. Acoustic excitation: A promising new means of controlling shear layers

    NASA Technical Reports Server (NTRS)

    Stone, J. R.; Mckinzie, D. J., Jr.

    1984-01-01

    Techniques have long been sought for the controlled modification of turbulent shear layers, such as in jets, wakes, boundary layers, and separated flows. Relatively recently published results of laboratory experiments have established that coherent structures exist within turbulent flows. These results indicate that even apparently chaotic flow fields can contain deterministic, nonrandom elements. Even more recently published results show that deliberate acoustic excitation of these coherent structures has a significant effect on the mixing characteristics of shear layers. Therefore, we have initiated a research effort to develop both an understanding of the interaction mechanisms and the ability to use it to favorably modify various shear layers. Acoustic excitation circumvents the need for pumping significant flow rates, as required by suction or blowing. Control of flows by intentional excitation of natural flow instabilities involves new and largely unexplored phenomena and offers considerable potential for improving component performance. Nonintrusive techniques for flow field control may permit much more efficient, flexible propulsion systems and aircraft designs, including means of stall avoidance and recovery. The techniques developed may also find application in many other areas where mixing is important, such as reactors, continuous lasers, rocket engines, and fluidic devices. It is the objective of this paper to examine some potential applications of the acoustic excitation technique to various shear layer flows of practical aerospace systems.

  10. Auction Mechanism to Allocate Air Traffic Control Slots

    NASA Technical Reports Server (NTRS)

    Raffarin, Marianne

    2003-01-01

    This article deals with an auction mechanism for airspace slots, as a means of solving the European airspace congestion problem. A disequilibrium, between Air Traffic Control (ATC) services supply and ATC services demand are at the origin of almost one fourth of delays in the air transport industry in Europe. In order to tackle this congestion problem, we suggest modifying both pricing and allocation of ATC services, by setting up an auction mechanism. Objects of the auction will be the right for airlines to cross a part of the airspace, and then to benefit from ATC services over a period corresponding to the necessary time for the crossing. Allocation and payment rules have to be defined according to the objectives of this auction. The auctioneer is the public authority in charge of ATC services, whose aim is to obtain an efficient allocation. Therefore, the social value will be maximized. Another objective is to internalize congestion costs. To that end, we apply the principle of Clarke-Groves mechanism auction: each winner has to pay the externalities imposed on other bidders. The complex context of ATC leads to a specific design for this auction.

  11. Radiant energy receiver having improved coolant flow control means

    DOEpatents

    Hinterberger, H.

    1980-10-29

    An improved coolant flow control for use in radiant energy receivers of the type having parallel flow paths is disclosed. A coolant performs as a temperature dependent valve means, increasing flow in the warmer flow paths of the receiver, and impeding flow in the cooler paths of the receiver. The coolant has a negative temperature coefficient of viscosity which is high enough such that only an insignificant flow through the receiver is experienced at the minimum operating temperature of the receiver, and such that a maximum flow is experienced at the maximum operating temperature of the receiver. The valving is accomplished by changes in viscosity of the coolant in response to the coolant being heated and cooled. No remotely operated valves, comparators or the like are needed.

  12. ORIMULSION(R) RESEARCH STUDY (AIR POLLUTION TECHNOLOGY BRANCH, AIR POLLUTION PREVENTION AND CONTROL DIVISION, NRMRL)

    EPA Science Inventory

    In response to a 1998 Congressional request, the Air Pollution Technology Branch (APTB) of NRMRL's Air Pollution Prevention and Control Division began research as part of a study to evaluate the environmental impacts of Orimulsion(R). Orimulsion(R)is a fossil fuel composed of 70%...

  13. RESEARCH AREA -- CHLOROFLUOROCARBON (CFC) DESTRUCTION (AIR POLLUTION TECHNOLOGY BRANCH, AIR POLLUTION PREVENTION AND CONTROL DIVISION, NRMRL)

    EPA Science Inventory

    Six thermal oxidation (incineration) processes were approved by the Montreal Protocol for the disposal of CFCs and other ozone depleting substances. The Air Pollution Technology Branch of NRMRL's Air Pollution Prevention and Control Division in Research Triangle Park, NC, has eva...

  14. Innovative Air Conditioning and Climate Control

    NASA Technical Reports Server (NTRS)

    Graf, John

    2015-01-01

    NASA needed to develop a desiccant wheel based humidity removal system to enable the long term testing of the Orion CO2 scrubber on the International Space Station. In the course of developing that system, we learned three things that are relevant to energy efficient air conditioning of office towers. NASA developed a conceptual design for a humidity removal system for an office tower environment. We are looking for interested partners to prototype and field test this concept.

  15. INSECTICIDE CONCENTRATIONS IN AIR AFTER APPLICATION OF PEST CONTROL STRIPS

    EPA Science Inventory

    Contamination of air in homes due to spraying of pesticides is of concern to the public. A pest control strip which kills creeping and crawling insects by contact is one method of reducing the amount of insecticide in the air. Several different insecticides are now available in t...

  16. Air-fuel ratio control in a gasoline engine

    NASA Astrophysics Data System (ADS)

    Lauber, J.; Guerra, T. M.; Dambrine, M.

    2011-02-01

    The aim of this article is to design an air-fuel ratio control law for a gasoline IC engine. The air-fuel ratio is measured by a lambda sensor in the exhaust manifold. As a consequence, a variable transport delay arises in the model considered. A non-linear control approach based on a Takagi-Sugeno's model of the system is used. Then, two structures of control law are compared based on parallel distributed compensation control laws, which take into account the variable time delay. Finally, some simulations are given to show the efficiency of the developed control law.

  17. Analysis of the interactions between pentacene film and air molecules by means of Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    De Angelis, F.; Das, G.; Di Fabrizio, E.

    2008-09-01

    We report on the interactions between spin-coated pentacene films and molecules present in air (nitrogen, oxygen, and moisture) studied by means of micro-Raman spectroscopy. We found that while oxygen does not interact with pentacene, water molecules diffuse in the film proportionally to the relative humidity of the ambient, giving rise to an interaction that affects pentacene's optical properties. These findings are fully reversible when dry ambient is restored, and they could be ascribed to the formation of a reversible water-pentacene complex theoretically calculated. This interaction affects a specific pentacene vibration mode that could lead to reversible formation of electron traps involved in the degradation of the electrical performance of pentacene.

  18. Quality control of AIRS total column ozone data within tropical cyclones

    NASA Astrophysics Data System (ADS)

    Liu, Yin; Zou, Xiaolei

    2016-06-01

    The Atmospheric Infrared Sounder (AIRS) provides infrared radiance observations twice daily, which can be used to retrieve total column ozone with high spatial resolution. However, it was found that almost all of the ozone data within typhoons and hurricanes were flagged to be of bad quality by the AIRS original quality control (QC) scheme. This determination was based on the ratio of total precipitable water (TPW) error divided by TPW value, where TPW was an AIRS retrieval product. It was found that the difficulty in finding total column ozone data that could pass AIRS QC was related to the low TPWemployed in the AIRS QC algorithm. In this paper, a new two-step QC scheme for AIRS total column ozone is developed. A new ratio is defined which replaces the AIRS TPW with the zonal mean TPW retrieved from the Advanced Microwave Sounding Unit. The first QC step is to remove outliers when the new ratio exceeds 33%. Linear regression models between total column ozone and mean potential vorticity are subsequently developed with daily updates, which are required for future applications of the proposed total ozone QC algorithm to vortex initialization and assimilation of AIRS data. In the second QC step, observations that significantly deviate from the models are further removed using a biweighting algorithm. Numerical results for two typhoon cases and two hurricane cases show that a large amount of good quality AIRS total ozone data is kept within Tropical Cyclones after implementing the proposed QC algorithm.

  19. Mercury vapor control by means of corona discharge

    SciTech Connect

    Helfritch, D.; Harmon, G.; Feldman, P.

    1996-12-31

    The work reported here describes the construction and performance of a novel corona discharge flue gas reactor designed to oxidize mercury vapor, allowing the mercuric oxide to be subsequently captured in a downstream particulate control device. A corona discharge in flue gas produces oxidizing radicals, such as OH and atomic oxygen, which can then react with elemental mercury. Optimum performance demands that the corona discharge, and hence the oxidizing radicals, be uniformly distributed within the flow volume of the reactor. When a uniform volume distribution of electrons is achieved, then uniform exposure and treatment of the gas is assured, and maximum energy efficiency can be obtained. By means of a laboratory based, pilot scale system, it is shown that the spatially distributed corona discharge produced by the corona reactor operating at low power level and short residence time yields a high level of mercury vapor oxidation. The mercuric oxide, in the form of solid particles, can then be removed by a conventional electrostatic precipitator or fabric filter. It is also shown that low temperature, high humidity conditions enhance mercury oxidation. For an application to solid waste incineration, this suggests the placement of the reactor downstream of the spray dryer and upstream of the fabric filter. Economic analysis indicates that this method of mercury vapor control is very competitive with adsorption by activated carbon. For example, if mercury control regulations are promulgated for coal burning power plants, the corona discharge technology could potentially save the US utility industry and electricity consumers up to 250 million dollars per year. 10 refs., 6 figs., 2 tabs.

  20. Lightweight simulation of air traffic control using simple temporal networks

    NASA Technical Reports Server (NTRS)

    Knight, Russell

    2005-01-01

    We provide a formulation of the air traffic control problem and a solver for this problem that makes use of temporal constraint networks and simple geometric reasoning. We provide results showing that this approach is practical for realistic simulated problems.

  1. VERIFICATION TESTING OF AIR POLLUTION CONTROL TECHNOLOGY QUALITY MANAGEMENT PLAN

    EPA Science Inventory

    This document is the basis for quality assurance for the Air Pollution Control Technology Verification Center (APCT Center) operated under the U.S. Environmental Protection Agency (EPA). It describes the policies, organizational structure, responsibilities, procedures, and qualit...

  2. 7. Northeast view interior, air traffic control and landing system ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Northeast view interior, air traffic control and landing system room 25 - Selfridge Field, Building No. 1050, Northwest corner of Doolittle Avenue & D Street; Harrison Township, Mount Clemens, Macomb County, MI

  3. 76 FR 39357 - Revisions to the California State Implementation Plan, Imperial County Air Pollution Control...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-06

    ... Pollution Control District, Kern County Air Pollution Control District, and Ventura County Air Pollution... proposing to approve revisions to the Imperial County Air Pollution Control District (ICAPCD), Kern County Air Pollution Control District (KCAPCD), and Ventura County Air Pollution Control District...

  4. Speed control with end cushion for high speed air cylinder

    DOEpatents

    Stevens, Wayne W.; Solbrig, Charles W.

    1991-01-01

    A high speed air cylinder in which the longitudinal movement of the piston within the air cylinder tube is controlled by pressurizing the air cylinder tube on the accelerating side of the piston and releasing pressure at a controlled rate on the decelerating side of the piston. The invention also includes a method for determining the pressure required on both the accelerating and decelerating sides of the piston to move the piston with a given load through a predetermined distance at the desired velocity, bringing the piston to rest safely without piston bounce at the end of its complete stroke.

  5. CONTROL OF AIR EMISSIONS FROM SUPERFUND SITES

    EPA Science Inventory

    This handbook is an easy-to-use tool for decision makers to evaluate emission control devices for use with Superfund remediation actions. t will assist in the selection of cost-effective control options. t is intended for use by engineers and scientists involved in preparing reme...

  6. Variability of stratospheric mean age of air linked to residual circulation and eddy mixing

    NASA Astrophysics Data System (ADS)

    Ploeger, Felix; Riese, Martin; Konopka, Paul; Müller, Rolf; Stiller, Gabi

    2014-05-01

    We analyze the effects of the stratospheric residual circulation and eddy mixing on the variability of mean age of air (AoA) within the framework of the isentropic zonal mean continuity equation. The AoA for the period 2002-2012 has been simulated with the Lagrangian chemistry transport model CLaMS driven by ERA-Interim winds and diabatic heating rates. We find that throughout the stratosphere the effects of the residual circulation and of eddy mixing on AoA are opposite and cancel to a large degree, with the net AoA changes resulting from this delicate balance. Mixing increases AoA equatorwards of about 40 degrees by mixing in aged mid-latitude air, whereas it decreases AoA at higher latitudes. Throughout the tropical stratosphere and in the polar upper stratosphere AoA variability is dominated by the residual circulation. In the subtropics and mid-latitudes AoA variability is dominated mainly by eddy mixing and AoA is not a unique proxy for varibility in the residual circulation. The simulated AoA change during the last decade shows a nonuniform pattern, with a significant AoA increase in the northern hemisphere consistent with recent satellite observations by MIPAS, and decreasing AoA in the lowest stratosphere. Interpreting these AoA changes requires careful consideration of both changes in the residual circulation and changes in eddy mixing. The AoA decrease in the lowest stratosphere results from a strengthening residual circulation, related to an accelerating shallow residual circulation branch. Above about 450K simulated AoA evolves differently than below, with a clear increase in the northern subtropics and mid-latitudes and a decrease in the southern hemisphere. This AoA change pattern during the last decade appears to be related to a southward shift of the subtropical mixing barriers, in good agreement with recent analysis of MIPAS mean age and tracer data.

  7. Controlling Gaussian and mean curvatures at microscale by sublimation and condensation of smectic liquid crystals

    NASA Astrophysics Data System (ADS)

    Kim, Dae Seok; Cha, Yun Jeong; Kim, Mun Ho; Lavrentovich, Oleg D.; Yoon, Dong Ki

    2016-01-01

    Soft materials with layered structure such as membranes, block copolymers and smectics exhibit intriguing morphologies with nontrivial curvatures. Here, we report restructuring the Gaussian and mean curvatures of smectic A films with free surface in the process of sintering, that is, reshaping at elevated temperatures. The pattern of alternating patches of negative, zero and positive mean curvature of the air-smectic interface has a profound effect on the rate of sublimation. As a result of sublimation, condensation and restructuring, initially equilibrium smectic films with negative and zero Gaussian curvature are transformed into structures with pronounced positive Gaussian curvature of layers packing, which are rare in the samples obtained by cooling from the isotropic melt. The observed relationship between the curvatures, bulk elastic behaviour and interfacial geometries in sintering of smectic liquid crystals might pave the way for new approaches to control soft morphologies at micron and submicron scales.

  8. Achieving Acceptable Air Quality: Some Reflections on Controlling Vehicle Emissions

    NASA Astrophysics Data System (ADS)

    Calvert, J. G.; Heywood, J. B.; Sawyer, R. F.; Seinfeld, J. H.

    1993-07-01

    Motor vehicle emissions have been and are being controlled in an effort to abate urban air pollution. This article addresses the question: Will the vehicle exhaust emission control and fuel requirements in the 1990 Clean Air Act Amendments and the California Air Resources Board regulations on vehicles and fuels have a significant impact? The effective control of in-use vehicle emissions is the key to a solution to the motor vehicle part of the urban air pollution problem for the next decade or so. It is not necessary, except perhaps in Southern California, to implement extremely low new car emission standards before the end of the 20th century. Some of the proposed gasoline volatility and composition changes in reformulated gasoline will produce significant reductions in vehicle emissions (for example, reduced vapor pressure, sulfur, and light olefin and improved high end volatility), whereas others (such as substantial oxygenate addition and aromatics reduction) will not.

  9. Air traffic control by distributed management in a MLS environment

    NASA Technical Reports Server (NTRS)

    Kreifeldt, J. G.; Parkin, L.; Hart, S.

    1977-01-01

    The microwave landing system (MLS) is a technically feasible means for increasing runway capacity since it could support curved approaches to a short final. The shorter the final segment of the approach, the wider the variety of speed mixes possible so that theoretically, capacity would ultimately be limited by runway occupance time only. An experiment contrasted air traffic control in a MLS environment under a centralized form of management and under distributed management which was supported by a traffic situation display in each of the 3 piloted simulators. Objective flight data, verbal communication and subjective responses were recorded on 18 trial runs lasting about 20 minutes each. The results were in general agreement with previous distributed management research. In particular, distributed management permitted a smaller spread of intercrossing times and both pilots and controllers perceived distributed management as the more 'ideal' system in this task. It is concluded from this and previous research that distributed management offers a viable alternative to centralized management with definite potential for dealing with dense traffic in a safe, orderly and expeditious manner.

  10. Assessing changes in stratospheric mean age of air and fractional release using historical trace gas observations

    NASA Astrophysics Data System (ADS)

    Laube, Johannes; Bönisch, Harald; Engel, Andreas; Röckmann, Thomas; Sturges, William

    2014-05-01

    Large-scale stratospheric transport is pre-dominantly governed by the Brewer-Dobson circulation. Due to climatic change a long-term acceleration of this residual stratospheric circulation has been proposed (e.g. Austin et al.,2006). Observational evidence has revealed indications for temporary changes (e.g. Bönisch et al., 2011) but a confirmation of a significant long-term trend is missing so far (e.g. Engel et al., 2009). A different aspect is a possible long-term change in the break-down of chemically important species such as chlorofluorocarbons as proposed by Butchart et al. 2001. Recent studies show significant differences adding up to more than 20 % in the chlorine released from such compounds (Newman et al., 2007; Laube et al., 2013). We here use a data set of three long-lived trace gases, namely SF6, CF2Cl2, and N2O, as measured in whole-air samples collected during balloon and aircraft flights between 1975 and 2011, to assess changes in stratospheric transport and chemistry. For this purpose we utilise the mean stratospheric transit times (or mean ages of air) in combination with a measure of the chemical decomposition (i.e. fractional release factors). We also evaluate the influence of different trend correction methods on these quantities and explore their variability with latitude, altitude, and season. References Austin, J. & Li, F.: On the relationship between the strength of the Brewer-Dobson circulation and the age of stratospheric air, Geophys. Res. Lett., 33, L17807, 2006. Bönisch, H., Engel, A., Birner, Th., Hoor, P., Tarasick, D. W., and Ray, E. A.: On the structural changes in the Brewer-Dobson circulation after 2000, Atmos. Chem. Phys., 11, 3937-3948, 2011. Butchart, N. & Scaife, A. A. Removal of chlorofluorocarbons by increased mass exchange between the stratosphere and troposphere in a changing climate. Nature, 410, 799-802, 2001. Engel, A., Möbius, T., Bönisch, H., Schmidt, U., Heinz, R., Levin, I., Atlas, E., Aoki, S., Nakazawa, T

  11. Effect of airstream velocity on mean drop diameters of water sprays produced by pressure and air atomizing nozzles

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.

    1977-01-01

    A scanning radiometer was used to determine the effect of airstream velocity on the mean drop diameter of water sprays produced by pressure atomizing and air atomizing fuel nozzles used in previous combustion studies. Increasing airstream velocity from 23 to 53.4 meters per second reduced the Sauter mean diameter by approximately 50 percent with both types of fuel nozzles. The use of a sonic cup attached to the tip of an air assist nozzle reduced the Sauter mean diameter by approximately 40 percent. Test conditions included airstream velocities of 23 to 53.4 meters per second at 293 K and atmospheric pressure.

  12. 40 CFR 81.77 - Puerto Rico Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 18 2013-07-01 2013-07-01 false Puerto Rico Air Quality Control Region... PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.77 Puerto Rico Air Quality Control Region. The Puerto Rico Air Quality Control...

  13. 40 CFR 81.77 - Puerto Rico Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 18 2012-07-01 2012-07-01 false Puerto Rico Air Quality Control Region... PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.77 Puerto Rico Air Quality Control Region. The Puerto Rico Air Quality Control...

  14. 76 FR 39303 - Revisions to the California State Implementation Plan, Imperial County Air Pollution Control...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-06

    ... Pollution Control District, Kern County Air Pollution Control District, and Ventura County Air Pollution... taking direct final action to approve revisions to the Imperial County Air Pollution Control District (ICAPCD), Kern County Air Pollution Control District (KCAPCD), and Ventura County Air Pollution...

  15. 40 CFR 81.77 - Puerto Rico Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 17 2011-07-01 2011-07-01 false Puerto Rico Air Quality Control Region... PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.77 Puerto Rico Air Quality Control Region. The Puerto Rico Air Quality Control...

  16. Training augmentation device for the Air Force satellite Control Network

    NASA Technical Reports Server (NTRS)

    Shoates, Keith B.

    1993-01-01

    From the 1960's and into the early 1980's satellite operations and control were conducted by Air Force Systems Command (AFSC), now Air Force Materiel Command (AFMC), out of the Satellite Control Facility at Onizuka AFB, CA. AFSC was responsible for acquiring satellite command and control systems and conducting routine satellite operations. The daily operations, consisting of satellite health and status contacts and station keeping activities, were performed for AFSC by a Mission Control Team (MCT) staffed by civilian contractors who were responsible for providing their own technically 'qualified' personnel as satellite operators. An MCT consists of five positions: mission planner, ground controller, planner analyst, orbit analyst, and ranger controller. Most of the training consisted of On-the-Job-Training (OJT) with junior personnel apprenticed to senior personnel until they could demonstrate job proficiency. With most of the satellite operators having 15 to 25 years of experience, there was minimal risk to the mission. In the mid 1980's Air Force Space Command (AFSPACOM) assumed operational responsibility for a newly established control node at Falcon AFB (FAFB) in CO. The satellites and ground system program offices (SPO's) are organized under AFSC's Space and Missiles Systems Center (SMC) to function as a systems engineering and acquisition agency for AFSPACECOM. The collection of the satellite control nodes, ground tracking stations, computer processing equipment, and connecting communications links is referred to as the Air Force Satellite Control Network (AFSCN).

  17. Control Technologies for Room Air-conditioner and Packaged Air-conditioner

    NASA Astrophysics Data System (ADS)

    Ito, Nobuhisa

    Trends of control technologies about air-conditioning machineries, especially room or packaged air conditioners, are presented in this paper. Multiple air conditioning systems for office buildings are mainly described as one application of the refrigeration cycle control technologies including sensors for thermal comfort and heating/ cooling loads are also described as one of the system control technologies. Inverter systems and related technologies for driving variable speed compressors are described in both case of including induction motors and brushless DC motors. Technologies for more accurate control to meet various kind of regulations such as ozone layer destruction, energy saving and global warming, and for eliminating harmonic distortion of power source current, as a typical EMC problem, will be urgently desired.

  18. Voice data entry in air traffic control

    NASA Technical Reports Server (NTRS)

    Connolly, Donald W.

    1977-01-01

    Several of the keyboard data languages were tabulated and analyzed. The key language chosen as a test vehicle was that used by the nonradar or flight data controllers. This application was undertaken to minimize effort in a cost efficient way and with less research and development.

  19. Drying oven with heat reclamation and air pollution control system

    SciTech Connect

    Jamaluddin, A.A.

    1980-12-23

    A system of drying ovens is disclosed with associated means for heat reclamation and air pollution control. The ovens are primarily for drying or baking paint or other coatings on pipes or the like where the emissions are primarily hydrocarbons. In this system of ovens, hydrocarbon fumes are concentrated at the ends of the oven. Solvent laden fumes are, therefore, collected where the concentration is the highest. The exhaust from the oven is located at the central portion and leads to a combustion/incineration chamber where it is exhausted to atmosphere after incineration and a major part of the heat is recovered and recirculated to the oven. In a sequence of ovens, the exhaust from one oven is circulated to the next at a high linear velocity, but low volume (At 25% lel) and heated to a high temperature (1400/sup 0/F.) by in-line incineration of the fumes. The low volume, high velocity, high temperature gasses are mixed with a high volume, low velocity, low temperature exhaust collected from the end of that oven. This incineration and mixing and recirculation of gasses is repeated in each succeeding oven and no gasses are exhausted to atmosphere until the last oven. In the last oven, in sequence, a burner is provided to incinerate fumes recirculated at one end of the oven and the exhaust goes to atmosphere through an incinerator/heat exchanger where the reclaimed heat is supplied to outside air being fed to support combustion in the incinerator at one end of the last oven.

  20. Anxiety, locus of control and appraisal of air pollution

    SciTech Connect

    Navarro, P.L.; Simpson-Housley, P.; de Man, A.F.

    1987-06-01

    100 residents of Santiago de Chile took part in a study of the relationship among locus of control, trait-anxiety, and perception of air pollution. Concern over the problem of atmospheric pollution and number of antipollution measures taken was related to trait-anxiety. Locus of control was associated with variation in awareness of pollution hazard.

  1. Cognitive Task Analysis of Prioritization in Air Traffic Control.

    ERIC Educational Resources Information Center

    Redding, Richard E.; And Others

    A cognitive task analysis was performed to analyze the key cognitive components of the en route air traffic controllers' jobs. The goals were to ascertain expert mental models and decision-making strategies and to identify important differences in controller knowledge, skills, and mental models as a function of expertise. Four groups of…

  2. Indoor air quality & airborne disease control in healthcare facilities

    SciTech Connect

    Turner, S.

    1997-06-01

    This article is concerned with indoor air quality (IAQ) in the context of healthcare facilities. It defines what is meant by IAQ, lists health outcomes of poor IAQ, addresses specific healthcare IAQ issues, discusses solutions by means of HVAC systems, and covers relevant regulations and standards.

  3. AIR STRIPPERS AND THEIR EMISSIONS CONTROL AT SUPERFUND SITES

    EPA Science Inventory

    Air stripping, a traditional means of making slightly contaminated ground-water potable, is being applied increasingly to more severe groundwater pollution at remedial action sites. Concentrations of volatile and semivolatile compounds at such sites may reach hundreds of parts pe...

  4. Optimal Control of Hybrid Systems in Air Traffic Applications

    NASA Astrophysics Data System (ADS)

    Kamgarpour, Maryam

    Growing concerns over the scalability of air traffic operations, air transportation fuel emissions and prices, as well as the advent of communication and sensing technologies motivate improvements to the air traffic management system. To address such improvements, in this thesis a hybrid dynamical model as an abstraction of the air traffic system is considered. Wind and hazardous weather impacts are included using a stochastic model. This thesis focuses on the design of algorithms for verification and control of hybrid and stochastic dynamical systems and the application of these algorithms to air traffic management problems. In the deterministic setting, a numerically efficient algorithm for optimal control of hybrid systems is proposed based on extensions of classical optimal control techniques. This algorithm is applied to optimize the trajectory of an Airbus 320 aircraft in the presence of wind and storms. In the stochastic setting, the verification problem of reaching a target set while avoiding obstacles (reach-avoid) is formulated as a two-player game to account for external agents' influence on system dynamics. The solution approach is applied to air traffic conflict prediction in the presence of stochastic wind. Due to the uncertainty in forecasts of the hazardous weather, and hence the unsafe regions of airspace for aircraft flight, the reach-avoid framework is extended to account for stochastic target and safe sets. This methodology is used to maximize the probability of the safety of aircraft paths through hazardous weather. Finally, the problem of modeling and optimization of arrival air traffic and runway configuration in dense airspace subject to stochastic weather data is addressed. This problem is formulated as a hybrid optimal control problem and is solved with a hierarchical approach that decouples safety and performance. As illustrated with this problem, the large scale of air traffic operations motivates future work on the efficient

  5. 21. Interior view of citric acid air pollution control room ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. Interior view of citric acid air pollution control room (also known as scrubber room) in Components Test Laboratory (T-27), looking southeast. Photograph shows upgraded instrumentation, piping, tanks, and technological modifications installed in 1997-99 to accommodate component testing requirements for the Atlas V missile. - Air Force Plant PJKS, Systems Integration Laboratory, Components Test Laboratory, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  6. 40 CFR 81.164 - San Diego Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air... Air Quality Control Region (California) consists of the territorial area encompassed by the boundaries of the following jurisdictions or described area (including the territorial area of...

  7. 40 CFR 81.141 - Berkshire Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air... Air Quality Control Region (Massachusetts) consists of the territorial area encompassed by the boundaries of the following jurisdictions or described area (including the territorial area of...

  8. 40 CFR 81.88 - Billings Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air...: Region II. 481.169Helena Intrastate Air Quality Control Region: Region IV. 481.170Miles City...

  9. 40 CFR 81.88 - Billings Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air...: Region II. 481.169Helena Intrastate Air Quality Control Region: Region IV. 481.170Miles City...

  10. 40 CFR 81.88 - Billings Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air...: Region II. 481.169Helena Intrastate Air Quality Control Region: Region IV. 481.170Miles City...

  11. 40 CFR 81.88 - Billings Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air...: Region II. 481.169Helena Intrastate Air Quality Control Region: Region IV. 481.170Miles City...

  12. Supporting Air-Conditioning Controller Design Using Evolutionary Computation

    NASA Astrophysics Data System (ADS)

    Kojima, Kazuyuki; Watanuki, Keiichi

    In recent years, as part of the remarkable development of electronic techniques, electronic control has been applied to various systems. Many sensors and actuators have been implemented into those systems, and energy efficiency and performance have been greatly improved. However, these systems have been complicated, and much time has been required to develop system controllers. In this paper, a method of automatic controller design for those systems is described. In order to automate the design of an electronic controller, an evolutionary hardware is applied. First, the framework for applying the genetic algorithm to the automation of controller design is described. In particular, the coding of a chromosome is shown in detail. Then, how to make a fitness function is represented, with an air conditioner as an example, and the controller of the air conditioner is developed automatically using our proposed framework. Finally, an evolutionary simulation is performed to confirm our framework.

  13. An error-resistant linguistic protocol for air traffic control

    NASA Technical Reports Server (NTRS)

    Cushing, Steven

    1989-01-01

    The research results described here are intended to enhance the effectiveness of the DATALINK interface that is scheduled by the Federal Aviation Administration (FAA) to be deployed during the 1990's to improve the safety of various aspects of aviation. While voice has a natural appeal as the preferred means of communication both among humans themselves and between humans and machines as the form of communication that people find most convenient, the complexity and flexibility of natural language are problematic, because of the confusions and misunderstandings that can arise as a result of ambiguity, unclear reference, intonation peculiarities, implicit inference, and presupposition. The DATALINK interface will avoid many of these problems by replacing voice with vision and speech with written instructions. This report describes results achieved to date on an on-going research effort to refine the protocol of the DATALINK system so as to avoid many of the linguistic problems that still remain in the visual mode. In particular, a working prototype DATALINK simulator system has been developed consisting of an unambiguous, context-free grammar and parser, based on the current air-traffic-control language and incorporated into a visual display involving simulated touch-screen buttons and three levels of menu screens. The system is written in the C programming language and runs on the Macintosh II computer. After reviewing work already done on the project, new tasks for further development are described.

  14. 40 CFR 81.30 - Southeastern Wisconsin Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.30 Southeastern Wisconsin Intrastate Air Quality Control Region. The Metropolitan Milwaukee Intrastate Air Quality Control Region (Wisconsin) has been renamed the...

  15. 40 CFR 81.24 - Niagara Frontier Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.24 Niagara Frontier Intrastate Air Quality Control Region. The Niagara Frontier Intrastate Air Quality Control Region (New York) consists of the territorial...

  16. 40 CFR 81.34 - Metropolitan Dayton Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.34 Metropolitan Dayton Intrastate Air Quality Control Region. The Metropolitan Dayton Intrastate Air Quality Control Region consists of the territorial area encompassed by...

  17. 40 CFR 81.16 - Metropolitan Denver Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.16 Metropolitan Denver Intrastate Air Quality Control Region. The Metropolitan Denver Intrastate Air Quality Control Region (Colorado) consists of the territorial...

  18. 40 CFR 81.41 - Metropolitan Birmingham Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.41 Metropolitan Birmingham Intrastate Air Quality Control Region. The Metropolitan Birmingham Intrastate Air Quality Control Region (Alabama) has been revised to consist of...

  19. 40 CFR 81.62 - Northeast Mississippi Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.62 Northeast Mississippi Intrastate Air Quality Control Region. The Alabama-Mississippi-Tennessee Interstate Air Quality Control Region has been renamed the...

  20. 40 CFR 81.20 - Metropolitan Cincinnati Interstate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.20 Metropolitan Cincinnati Interstate Air Quality Control Region. The Metropolitan Cincinnati Interstate Air Quality Control Region (Ohio-Kentucky-Indiana) is revised to consist...

  1. 40 CFR 81.45 - Metropolitan Atlanta Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.45 Metropolitan Atlanta Intrastate Air Quality Control Region. The Metropolitan Atlanta Intrastate Air Quality Control Region (Georgia) has been revised to consist of...

  2. 40 CFR 81.23 - Southwest Pennsylvania Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.23 Southwest Pennsylvania Intrastate Air Quality Control Region. The Southwest Pennsylvania Intrastate Air Quality Control Region is redesignated to consist of the...

  3. 40 CFR 81.48 - Champlain Valley Interstate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.48 Champlain Valley Interstate Air Quality Control Region. The Champlain Valley Interstate Air Quality Control Region (Vermont-New York) has been revised to consist of...

  4. 40 CFR 81.14 - Metropolitan Chicago Interstate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.14 Metropolitan Chicago Interstate Air Quality Control Region. The Metropolitan Chicago Interstate Air Quality Control Region (Illinois-Indiana) is revised to consist of...

  5. 40 CFR 81.49 - Southeast Florida Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.49 Southeast Florida Intrastate Air Quality Control Region. The Southeast Florida Intrastate Air Quality Control Region is redesignated to consist of the territorial...

  6. 40 CFR 81.75 - Metropolitan Charlotte Interstate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.75 Metropolitan Charlotte Interstate Air Quality Control Region. The Metropolitan Charlotte Interstate Air Quality Control Region (North Carolina-South Carolina) has been...

  7. 40 CFR 81.44 - Metropolitan Memphis Interstate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.44 Metropolitan Memphis Interstate Air Quality Control Region. The Metropolitan Memphis Interstate Air Quality Control Region (Arkansas-Mississippi-Tennessee) consists of...

  8. 40 CFR 81.43 - Metropolitan Toledo Interstate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.43 Metropolitan Toledo Interstate Air Quality Control Region. The Metropolitan Toledo Interstate Air Quality Control Region (Ohio-Michigan) consists of the territorial...

  9. 40 CFR 81.20 - Metropolitan Cincinnati Interstate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.20 Metropolitan Cincinnati Interstate Air Quality Control Region. The Metropolitan Cincinnati Interstate Air Quality Control Region (Ohio-Kentucky-Indiana) is revised to consist...

  10. 40 CFR 81.75 - Metropolitan Charlotte Interstate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.75 Metropolitan Charlotte Interstate Air Quality Control Region. The Metropolitan Charlotte Interstate Air Quality Control Region (North Carolina-South Carolina) has been...

  11. 40 CFR 81.48 - Champlain Valley Interstate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.48 Champlain Valley Interstate Air Quality Control Region. The Champlain Valley Interstate Air Quality Control Region (Vermont-New York) has been revised to consist of...

  12. 40 CFR 81.49 - Southeast Florida Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.49 Southeast Florida Intrastate Air Quality Control Region. The Southeast Florida Intrastate Air Quality Control Region is redesignated to consist of the territorial...

  13. 40 CFR 81.14 - Metropolitan Chicago Interstate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.14 Metropolitan Chicago Interstate Air Quality Control Region. The Metropolitan Chicago Interstate Air Quality Control Region (Illinois-Indiana) is revised to consist of...

  14. 40 CFR 81.75 - Metropolitan Charlotte Interstate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.75 Metropolitan Charlotte Interstate Air Quality Control Region. The Metropolitan Charlotte Interstate Air Quality Control Region (North Carolina-South Carolina) has been...

  15. 40 CFR 81.62 - Northeast Mississippi Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.62 Northeast Mississippi Intrastate Air Quality Control Region. The Alabama-Mississippi-Tennessee Interstate Air Quality Control Region has been renamed the...

  16. 40 CFR 81.43 - Metropolitan Toledo Interstate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.43 Metropolitan Toledo Interstate Air Quality Control Region. The Metropolitan Toledo Interstate Air Quality Control Region (Ohio-Michigan) consists of the territorial...

  17. 40 CFR 81.44 - Metropolitan Memphis Interstate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.44 Metropolitan Memphis Interstate Air Quality Control Region. The Metropolitan Memphis Interstate Air Quality Control Region (Arkansas-Mississippi-Tennessee) consists of...

  18. 40 CFR 81.34 - Metropolitan Dayton Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.34 Metropolitan Dayton Intrastate Air Quality Control Region. The Metropolitan Dayton Intrastate Air Quality Control Region consists of the territorial area encompassed by...

  19. 40 CFR 81.62 - Northeast Mississippi Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.62 Northeast Mississippi Intrastate Air Quality Control Region. The Alabama-Mississippi-Tennessee Interstate Air Quality Control Region has been renamed the...

  20. 40 CFR 81.45 - Metropolitan Atlanta Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.45 Metropolitan Atlanta Intrastate Air Quality Control Region. The Metropolitan Atlanta Intrastate Air Quality Control Region (Georgia) has been revised to consist of...

  1. 40 CFR 81.24 - Niagara Frontier Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.24 Niagara Frontier Intrastate Air Quality Control Region. The Niagara Frontier Intrastate Air Quality Control Region (New York) consists of the territorial...

  2. 40 CFR 81.76 - State of Hawaii Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 18 2012-07-01 2012-07-01 false State of Hawaii Air Quality Control... PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.76 State of Hawaii Air Quality Control Region. The State of Hawaii Air...

  3. 40 CFR 81.76 - State of Hawaii Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 18 2013-07-01 2013-07-01 false State of Hawaii Air Quality Control... PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.76 State of Hawaii Air Quality Control Region. The State of Hawaii Air...

  4. 40 CFR 81.20 - Metropolitan Cincinnati Interstate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.20 Metropolitan Cincinnati Interstate Air Quality Control Region. The Metropolitan Cincinnati Interstate Air Quality Control Region (Ohio-Kentucky-Indiana) is revised to consist...

  5. 40 CFR 81.41 - Metropolitan Birmingham Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.41 Metropolitan Birmingham Intrastate Air Quality Control Region. The Metropolitan Birmingham Intrastate Air Quality Control Region (Alabama) has been revised to consist of...

  6. 40 CFR 81.16 - Metropolitan Denver Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.16 Metropolitan Denver Intrastate Air Quality Control Region. The Metropolitan Denver Intrastate Air Quality Control Region (Colorado) consists of the territorial...

  7. 40 CFR 81.30 - Southeastern Wisconsin Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.30 Southeastern Wisconsin Intrastate Air Quality Control Region. The Metropolitan Milwaukee Intrastate Air Quality Control Region (Wisconsin) has been renamed the...

  8. 40 CFR 81.24 - Niagara Frontier Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.24 Niagara Frontier Intrastate Air Quality Control Region. The Niagara Frontier Intrastate Air Quality Control Region (New York) consists of the territorial...

  9. 40 CFR 81.44 - Metropolitan Memphis Interstate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.44 Metropolitan Memphis Interstate Air Quality Control Region. The Metropolitan Memphis Interstate Air Quality Control Region (Arkansas-Mississippi-Tennessee) consists of...

  10. 40 CFR 81.34 - Metropolitan Dayton Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.34 Metropolitan Dayton Intrastate Air Quality Control Region. The Metropolitan Dayton Intrastate Air Quality Control Region consists of the territorial area encompassed by...

  11. 40 CFR 81.16 - Metropolitan Denver Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.16 Metropolitan Denver Intrastate Air Quality Control Region. The Metropolitan Denver Intrastate Air Quality Control Region (Colorado) consists of the territorial...

  12. 40 CFR 81.45 - Metropolitan Atlanta Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.45 Metropolitan Atlanta Intrastate Air Quality Control Region. The Metropolitan Atlanta Intrastate Air Quality Control Region (Georgia) has been revised to consist of...

  13. 40 CFR 81.49 - Southeast Florida Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.49 Southeast Florida Intrastate Air Quality Control Region. The Southeast Florida Intrastate Air Quality Control Region is redesignated to consist of the territorial...

  14. 40 CFR 81.43 - Metropolitan Toledo Interstate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.43 Metropolitan Toledo Interstate Air Quality Control Region. The Metropolitan Toledo Interstate Air Quality Control Region (Ohio-Michigan) consists of the territorial...

  15. 40 CFR 81.41 - Metropolitan Birmingham Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.41 Metropolitan Birmingham Intrastate Air Quality Control Region. The Metropolitan Birmingham Intrastate Air Quality Control Region (Alabama) has been revised to consist of...

  16. 40 CFR 81.23 - Southwest Pennsylvania Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.23 Southwest Pennsylvania Intrastate Air Quality Control Region. The Southwest Pennsylvania Intrastate Air Quality Control Region is redesignated to consist of the...

  17. 40 CFR 81.48 - Champlain Valley Interstate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.48 Champlain Valley Interstate Air Quality Control Region. The Champlain Valley Interstate Air Quality Control Region (Vermont-New York) has been revised to consist of...

  18. 40 CFR 81.30 - Southeastern Wisconsin Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.30 Southeastern Wisconsin Intrastate Air Quality Control Region. The Metropolitan Milwaukee Intrastate Air Quality Control Region (Wisconsin) has been renamed the...

  19. 40 CFR 81.23 - Southwest Pennsylvania Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.23 Southwest Pennsylvania Intrastate Air Quality Control Region. The Southwest Pennsylvania Intrastate Air Quality Control Region is redesignated to consist of the...

  20. 40 CFR 81.76 - State of Hawaii Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 17 2011-07-01 2011-07-01 false State of Hawaii Air Quality Control... PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.76 State of Hawaii Air Quality Control Region. The State of Hawaii Air...

  1. 40 CFR 81.76 - State of Hawaii Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false State of Hawaii Air Quality Control... PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.76 State of Hawaii Air Quality Control Region. The State of Hawaii Air...

  2. The use of speech technology in air traffic control simulators

    NASA Astrophysics Data System (ADS)

    Harrison, J. A.; Hobbs, G. R.; Howes, J. R.; Cope, N.

    The advantages of applying speech technology to air traffic control (ATC) simulators are discussed with emphasis placed on the simulation of the pilot end of the pilot-controller dialog. Speech I/O in an ATC simulator is described as well as technology capability, and research on an electronic blip driver. It is found that the system is easier to use and performs better for less experienced controllers.

  3. Surveying air traffic control specialist perception of scheduling regulations

    NASA Astrophysics Data System (ADS)

    Thompson, Darrius E.

    While there have been several studies conducted on air traffic controller fatigue, there is a lack of research on the subject since the scheduling policy changes that took place in 2012. The effectiveness of these changes has yet to be measured. The goal of this study was to investigate air traffic control specialist views towards the number of hours scheduled between shifts, changes in perception since 2012 regulation changes, and external factors that impact fatigue. A total of 54 FAA air traffic control specialist completed an online questionnaire. The results from the survey showed that the majority of respondents felt the 2012 regulation changes were not sufficient to address fatigue issues, and work with some amount sleep deprivation. The factors that appeared to have the most significant effect on fatigue included facility level, age group, availability of recuperative breaks, and children under 18 in the home.

  4. An engineering approach to controlling indoor air quality.

    PubMed Central

    Woods, J E

    1991-01-01

    Evidence is accumulating that indicates air quality problems in residential and commercial buildings are nearly always associated with inadequacies in building design and methods of operation. Thus, the very systems depended on to control the indoor environment can become indirect sources of contamination if diligence is not exercised at each stage of a building's life: a) planning and design, b) construction and commissioning, c) operation, and d) demolition or renovation. In this paper, an engineering perspective is presented in which the existing building stock is characterized in terms of its environmental performance. Preliminary data indicate that 20 to 30% of the existing buildings have sufficient problems to manifest as sick-building syndrome or building-related illness, while another 10 to 20% may have undetected problems. Thus, only about 50 to 70% of the existing buildings qualify as healthy buildings. Two methods and three mechanisms of control are described to achieve "acceptable" indoor air quality: source control and exposure control. If sources cannot be removed, some level of occupant exposure will result. To control exposures with acceptable values, the primary sensory receptors of the occupants (i.e., thermal, ocular, auditory, and olfactory) cannot be excessively stimulated. The three exposure control mechanisms are conduction, radiation, and convection. To achieve acceptable occupant responses, it is often practical to integrate the mechanisms of radiation and convection in heating, ventilating, and air conditioning systems that are designed to provide acceptable thermal, acoustic, and air quality conditions within occupied spaces.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1821369

  5. Yaw rate control of an air bearing vehicle

    NASA Technical Reports Server (NTRS)

    Walcott, Bruce L.

    1989-01-01

    The results of a 6 week project which focused on the problem of controlling the yaw (rotational) rate the air bearing vehicle used on NASA's flat floor facility are summarized. Contained within is a listing of the equipment available for task completion and an evaluation of the suitability of this equipment. The identification (modeling) process of the air bearing vehicle is detailed as well as the subsequent closed-loop control strategy. The effectiveness of the solution is discussed and further recommendations are included.

  6. Seasonal mean temperature changes control future heat waves

    NASA Astrophysics Data System (ADS)

    Argüeso, Daniel; Di Luca, Alejandro; Perkins-Kirkpatrick, Sarah E.; Evans, Jason P.

    2016-07-01

    Increased temperature will result in longer, more frequent, and more intense heat waves. Changes in temperature variability have been deemed necessary to account for future heat wave characteristics. However, this has been quantified only in Europe and North America, while the rest of the globe remains unexplored. Using late century global climate projections, we show that annual mean temperature increases is the key factor defining heat wave changes in most regions. We find that commonly studied areas are an exception rather than the standard and the mean climate change signal generally outweighs any influence from variability changes. More importantly, differences in warming across seasons are responsible for most of the heat wave changes and their consideration relegates the contribution of variability to a marginal role. This reveals that accurately capturing mean seasonal changes is crucial to estimate future heat waves and reframes our interpretation of future temperature extremes.

  7. Measurement of Temporal Awareness in Air Traffic Control

    NASA Technical Reports Server (NTRS)

    Rantanen, E.M.

    2009-01-01

    Temporal awareness, or level 3 situation awareness, is critical to successful control of air traffic, yet the construct remains ill-defined and difficult to measure. This research sought evidence for air traffic controllers awareness of temporal characteristics of their tasks in data from a high-fidelity system evaluation simulation. Five teams of controllers worked on four scenarios with different traffic load. Several temporal parameters were defined for each task controllers performed during a simulation run and their actions on the tasks were timed relative to them. Controllers showed a strong tendency to prioritize tasks according to a first come, first served principle. This trend persisted as task load increased. Also evident was awareness of the urgency of tasks, as tasks with impending closing of a window of opportunity were performed before tasks that had longer time available before closing of the window.

  8. Air- coupled ultrasonic testing of CFRP rods by means of guided waves

    NASA Astrophysics Data System (ADS)

    Kažys, Rymantas; Raišutis, Renaldas; Žukauskas, Egidijus; Mažeika, Liudas; Vladišauskas, Alfonsas

    2010-01-01

    One of the most important parts of the gliders is a lightweight longeron reinforcement made of carbon fibre reinforced plastics (CFRP) rods. These small diameter (a few millimetres) rods during manufacturing are glued together in epoxy filled matrix in order to build the arbitrary spar profile. However, the defects presenting in the rods such as brake of fibres, lack of bonding, reduction of density affect essentially the strength of the construction and are very complicated in repairing. Therefore, appropriate non-destructive testing techniques of carbon fibber rods should be applied before gluing them together. The objective of the presented work was development of NDT technique of CFRP rods used for aerospace applications, which is based on air- coupled excitation/reception of guided waves. The regularities of ultrasonic guided waves propagating in both circular and rectangular cross-section CFRP rods immersed into water were investigated and it was shown that the guided waves propagating along sample of the rod create leaky waves which are radiated into a surrounding medium. The ultrasonic receiver scanned over the rod enables to pick-up the leaky waves and to determine the non-uniformities of propagation caused by the defects. Theoretical investigations were carried out by means of numerical simulations based on a 2D and 3D finite differences method. By modelling and experimental investigations it was demonstrated that presence of any type of the defect disturbs the leaky wave and enables to detect them. So, the spatial position of defects can be determined also. It was shown that such important defects as a disbond of the plies essentially reduce or even completely suppress the leaky wave, so they can be detected quit easily.

  9. Quantum control by means of hamiltonian structure manipulation.

    PubMed

    Donovan, A; Beltrani, V; Rabitz, H

    2011-04-28

    A traditional quantum optimal control experiment begins with a specific physical system and seeks an optimal time-dependent field to steer the evolution towards a target observable value. In a more general framework, the Hamiltonian structure may also be manipulated when the material or molecular 'stockroom' is accessible as a part of the controls. The current work takes a step in this direction by considering the converse of the normal perspective to now start with a specific fixed field and employ the system's time-independent Hamiltonian structure as the control to identify an optimal form. The Hamiltonian structure control variables are taken as the system energies and transition dipole matrix elements. An analysis is presented of the Hamiltonian structure control landscape, defined by the observable as a function of the Hamiltonian structure. A proof of system controllability is provided, showing the existence of a Hamiltonian structure that yields an arbitrary unitary transformation when working with virtually any field. The landscape analysis shows that there are no suboptimal traps (i.e., local extrema) for controllable quantum systems when unconstrained structural controls are utilized to optimize a state-to-state transition probability. This analysis is corroborated by numerical simulations on model multilevel systems. The search effort to reach the top of the Hamiltonian structure landscape is found to be nearly invariant to system dimension. A control mechanism analysis is performed, showing a wide variety of behavior for different systems at the top of the Hamiltonian structure landscape. It is also shown that reducing the number of available Hamiltonian structure controls, thus constraining the system, does not always prevent reaching the landscape top. The results from this work lay a foundation for considering the laboratory implementation of optimal Hamiltonian structure manipulation for seeking the best control performance, especially with limited

  10. Air-Sea Interaction Measurements from the Controlled Towed Vehicle

    NASA Astrophysics Data System (ADS)

    Khelif, D.; Bluth, R. T.; Jonsson, H.; Barge, J.

    2014-12-01

    The Controlled Towed Vehicle (CTV) uses improved towed drone technology to actively maintain via a radar altimeter and controllable wing a user-set height that can be as low as the canonical reference height of 10 m above the sea surface. After take-off, the drone is released from the tow aircraft on a ~700-m stainless steel cable. We have instrumented the 0.23 m diameter and 2.13 m long drone with high fidelity instruments to measure the means and turbulent fluctuations of 3-D wind vector, temperature, humidity, pressure, CO2 and IR sea surface temperature. Data are recorded internally at 40 Hz and simultaneously transmitted to the tow aircraft via dedicated wireless Ethernet link. The CTV accommodates 40 kg of instrument payload and provides it with 250 W of continuous power through a ram air propeller-driven generator. Therefore its endurance is only limited by that of the tow aircraft.We will discuss the CTV development, the engineering challenges and solutions that have been successfully implemented to overcome them. We present results from recent flights as low as 9 m over the coastal ocean and comparisons of profiles and turbulent fluxes from the CTV and the tow aircraft. Manned aircraft operation at low-level boundary-layer flights is very limited. Dropsondes and UAS (Unmanned Aerial Systems) and UAS are alternates for measurements near the ocean surface. However, dropsondes have limited sensor capability and do not measure fluxes, and most present UAS vehicles do not have the payload and power capacity nor the low-flying ability in high winds over the oceans. The CTV therefore, fills a needed gap between the dropsondes, in situ aircraft, and UAS. The payload, capacity and power of the CTV makes it suitable for a variety of atmospheric research measurements. Other sensors to measure aerosol, chemistry, radiation, etc., could be readily accommodated in the CTV.

  11. Transforming the NAS: The Next Generation Air Traffic Control System

    NASA Technical Reports Server (NTRS)

    Erzberger, Heinz

    2004-01-01

    The next-generation air traffic control system must be designed to safely and efficiently accommodate the large growth of traffic expected in the near future. It should be sufficiently scalable to contend with the factor of 2 or more increase in demand expected by the year 2020. Analysis has shown that the current method of controlling air traffic cannot be scaled up to provide such levels of capacity. Therefore, to achieve a large increase in capacity while also giving pilots increased freedom to optimize their flight trajectories requires a fundamental change in the way air traffic is controlled. The key to achieving a factor of 2 or more increase in airspace capacity is to automate separation monitoring and control and to use an air-ground data link to send trajectories and clearances directly between ground-based and airborne systems. In addition to increasing capacity and offering greater flexibility in the selection of trajectories, this approach also has the potential to increase safety by reducing controller and pilot errors that occur in routine monitoring and voice communication tasks.

  12. Team Electronic Gameplay Combining Different Means of Control

    NASA Technical Reports Server (NTRS)

    Pope, Alan T. (Inventor); Palsson, Olafur S. (Inventor)

    2014-01-01

    Disclosed are methods and apparatuses provided for modifying the effect of an operator controlled input device on an interactive device to encourage the self-regulation of at least one physiological activity by a person different than the operator. The interactive device comprises a display area which depicts images and apparatus for receiving at least one input from the operator controlled input device to thus permit the operator to control and interact with at least some of the depicted images. One effect modification comprises measurement of the physiological activity of a person different from the operator, while modifying the ability of the operator to control and interact with at least some of the depicted images by modifying the input from the operator controlled input device in response to changes in the measured physiological signal.

  13. COMMUNICATING RISK INFORMATION TO STATE AND LOCAL AIR POLLUTION CONTROL AGENCIES VIA U.S. EPA'S AIR RISK INFORMATION SUPPORT CENTER (AIR RISC)

    EPA Science Inventory

    The Air Risk Information Support Center (Air RISC) has been organized by U.S. EPA's offices of Air Quality Planning and Standards and Health and Environmental Assessment. The center has been developed in cooperation with the State and Territorial air Pollution Control Program Adm...

  14. Controlled Exposures to Air Pollutants and Risk of Cardiac Arrhythmia

    PubMed Central

    Watts, Simon J.; Hunter, Amanda J.; Shah, Anoop S.V.; Bosson, Jenny A.; Unosson, Jon; Barath, Stefan; Lundbäck, Magnus; Cassee, Flemming R.; Donaldson, Ken; Sandström, Thomas; Blomberg, Anders; Newby, David E.; Mills, Nicholas L.

    2014-01-01

    Background: Epidemiological studies have reported associations between air pollution exposure and increases in cardiovascular morbidity and mortality. Exposure to air pollutants can influence cardiac autonomic tone and reduce heart rate variability, and may increase the risk of cardiac arrhythmias, particularly in susceptible patient groups. Objectives: We investigated the incidence of cardiac arrhythmias during and after controlled exposure to air pollutants in healthy volunteers and patients with coronary heart disease. Methods: We analyzed data from 13 double-blind randomized crossover studies including 282 participants (140 healthy volunteers and 142 patients with stable coronary heart disease) from whom continuous electrocardiograms were available. The incidence of cardiac arrhythmias was recorded for each exposure and study population. Results: There were no increases in any cardiac arrhythmia during or after exposure to dilute diesel exhaust, wood smoke, ozone, concentrated ambient particles, engineered carbon nanoparticles, or high ambient levels of air pollution in either healthy volunteers or patients with coronary heart disease. Conclusions: Acute controlled exposure to air pollutants did not increase the short-term risk of arrhythmia in participants. Research employing these techniques remains crucial in identifying the important pathophysiological pathways involved in the adverse effects of air pollution, and is vital to inform environmental and public health policy decisions. Citation: Langrish JP, Watts SJ, Hunter AJ, Shah AS, Bosson JA, Unosson J, Barath S, Lundbäck M, Cassee FR, Donaldson K, Sandström T, Blomberg A, Newby DE, Mills NL. 2014. Controlled exposures to air pollutants and risk of cardiac arrhythmia. Environ Health Perspect 122:747–753; http://dx.doi.org/10.1289/ehp.1307337 PMID:24667535

  15. 78 FR 51184 - Air Pollution Control: Proposed Actions on Clean Air Act Section 105 Grant to the Lane Regional...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-20

    ... AGENCY Air Pollution Control: Proposed Actions on Clean Air Act Section 105 Grant to the Lane Regional... air pollution control programs will be less than its expenditures were for such programs during the... programs were cut by 31% each while land quality program funds were cut by 44%. ODEQ then reduced...

  16. RESEARCH AREA -- MUNICIPAL WASTE COMBUSTION (AIR POLLUTION TECHNOLOGY BRANCH, AIR POLLUTION PREVENTION AND CONTROL DIVISION, NRMRL)

    EPA Science Inventory

    The municipal waste combustion (MWC) program supports the development of revised rules for air pollutant emissions from the MWC source category. Basic research is performed on MWC pollutant formation and control mechanisms for acid gas, trace organic, and trace metal emissions. T...

  17. POINTS-OF-CONTACT (AIR POLLUTION TECHNOLOGY BRANCH, AIR POLLUTION PREVENTION AND CONTROL DIVISION, NRMRL)

    EPA Science Inventory

    The Air Pollution Technology Branch's (APTB) Point-of-Contact page lists APTB research areas along with the name, telephone number, and e-mail address for each responsible person. APTB's research areas include NOx Control, Hazardous Waste Incineration, Municipal Waste Combustion,...

  18. 40 CFR 81.29 - Metropolitan Indianapolis Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Air Quality Control Region. 81.29 Section 81.29 Protection of Environment ENVIRONMENTAL PROTECTION... Designation of Air Quality Control Regions § 81.29 Metropolitan Indianapolis Intrastate Air Quality Control Region. The Metropolitan Indianapolis Intrastate Air Quality Control Region consists of the...

  19. 40 CFR 81.29 - Metropolitan Indianapolis Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Air Quality Control Region. 81.29 Section 81.29 Protection of Environment ENVIRONMENTAL PROTECTION... Designation of Air Quality Control Regions § 81.29 Metropolitan Indianapolis Intrastate Air Quality Control Region. The Metropolitan Indianapolis Intrastate Air Quality Control Region consists of the...

  20. 40 CFR 81.36 - Maricopa Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Quality Control Regions § 81.36 Maricopa Intrastate Air Quality Control Region. The Phoenix-Tucson Intrastate Air Quality Control Region has been renamed the Maricopa Intrastate Air Quality Control Region... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Maricopa Intrastate Air...

  1. 40 CFR 81.36 - Maricopa Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Quality Control Regions § 81.36 Maricopa Intrastate Air Quality Control Region. The Phoenix-Tucson Intrastate Air Quality Control Region has been renamed the Maricopa Intrastate Air Quality Control Region... 40 Protection of Environment 17 2011-07-01 2011-07-01 false Maricopa Intrastate Air...

  2. Air strippers and their emissions control at Superfund sites. Technical report, February-April 1987

    SciTech Connect

    Blaney, B.L.; Branscome, M.

    1988-08-01

    Air stripping, a traditional means of making slightly contaminated ground water potable, is being applied increasingly to more-severe groundwater pollution at remedial action sites. Concentrations of volatile and semivolatile compounds at such sites may reach hundreds of parts per million. As a result, several changes have resulted in air-stripping technology. New air stripping technologies are being employed to achieve very high (>99% removal of volatile compounds and to increase the removal of semivolatiles. New stripper designs are being investigated for compactness and mobility. In addition, emissions controls are being added because air-pollution impacts are larger. The paper discusses these trends and provides examples from ground-water cleanup at remedial-action sites in the United States.

  3. Simulating Human Cognition in the Domain of Air Traffic Control

    NASA Technical Reports Server (NTRS)

    Freed, Michael; Johnston, James C.; Null, Cynthia H. (Technical Monitor)

    1995-01-01

    Experiments intended to assess performance in human-machine interactions are often prohibitively expensive, unethical or otherwise impractical to run. Approximations of experimental results can be obtained, in principle, by simulating the behavior of subjects using computer models of human mental behavior. Computer simulation technology has been developed for this purpose. Our goal is to produce a cognitive model suitable to guide the simulation machinery and enable it to closely approximate a human subject's performance in experimental conditions. The described model is designed to simulate a variety of cognitive behaviors involved in routine air traffic control. As the model is elaborated, our ability to predict the effects of novel circumstances on controller error rates and other performance characteristics should increase. This will enable the system to project the impact of proposed changes to air traffic control procedures and equipment on controller performance.

  4. Planes, Politics and Oral Proficiency: Testing International Air Traffic Controllers

    ERIC Educational Resources Information Center

    Moder, Carol Lynn; Halleck, Gene B.

    2009-01-01

    This study investigates the variation in oral proficiency demonstrated by 14 Air Traffic Controllers across two types of testing tasks: work-related radio telephony-based tasks and non-specific English tasks on aviation topics. Their performance was compared statistically in terms of level ratings on the International Civil Aviation Organization…

  5. Trainer Interventions as Instructional Strategies in Air Traffic Control Training

    ERIC Educational Resources Information Center

    Koskela, Inka; Palukka, Hannele

    2011-01-01

    Purpose: This paper aims to identify methods of guidance and supervision used in air traffic control training. It also aims to show how these methods facilitate trainee participation in core work activities. Design/methodology/approach: The paper applies the tools of conversation analysis and ethnomethodology to explore the ways in which trainers…

  6. The fate of mercury collected from air pollution control devices

    EPA Science Inventory

    The mercury that enters a coal-fired power plant, originates from the coal that is burned, and leaves through the output streams that include stack emissions and air pollution control (APC) residues (either in solid or liquid form). This article describes recent fmdings on the fa...

  7. Initial Air Traffic Control Training at Tartu Aviation College.

    ERIC Educational Resources Information Center

    Kulbas, Tanel

    1997-01-01

    Development of an air traffic control (ATC) training course at Tartu Aviation College in Estonia had to start at ground zero, creating new rules and regulations for ATC, writing special study materials, building simulators, and finding enough applicants with sufficient English skills. (SK)

  8. ENVIRONMENTAL TECHNOLOGY VERIFICATION FOR AIR POLLUTION CONTROL TECHNOLOGIES

    EPA Science Inventory

    The report describes the activities and progress of the pilot Air Pollution Control Technologies (APCT) portion of the Environmental Technology Verification (ETV) Program during the period from 09/15/97 to 09/15/02. The objective of the ETV Program is to verify the performance of...

  9. Experimental Air Pressure Tank Systems for Process Control Education

    ERIC Educational Resources Information Center

    Long, Christopher E.; Holland, Charles E.; Gatzke, Edward P.

    2006-01-01

    In process control education, particularly in the field of chemical engineering, there is an inherent need for industrially relevant hands-on apparatuses that enable one to bridge the gap between the theoretical content of coursework and real-world applications. At the University of South Carolina, two experimental air-pressure tank systems have…

  10. The Sources of Air Pollution and Their Control.

    ERIC Educational Resources Information Center

    National Air Pollution Control Administration (DHEW), Arlington, VA.

    The problems of air pollution and its control are discussed. Major consideration is given the sources of pollution - motor vehicles, industry, power plants, space heating, and refuse disposal. Annual emission levels of five principle pollutants - carbon monoxide, sulfur dioxide, nitrogen oxides, hydrocarbons, and particulate matter - are listed…

  11. A Course in English for Air Traffic Controllers.

    ERIC Educational Resources Information Center

    McCann, Paul; Thompson, Lesley

    A description is provided of a course, developed by the British Council in Madrid, Spain, to improve the English language training for trainee air traffic services personnel as a result of an increased demand for trained controllers over the next few years. The course aims to teach students in the areas of standard radiotelephony, non-routine…

  12. HAZARDOUS/TOXIC AIR POLLUTANT CONTROL TECHNOLOGY: A LITERATURE REVIEW

    EPA Science Inventory

    The report summarizes literature on hazardous/toxic air pollutant (HAP) sources and control techniques employed in their reduction and/or destruction. The information was abstracted from an extensive computerized and manual literature search and data base development study. The p...

  13. ADVANCED SORBENTS FOR CONTROL OF MULTIPLE AIR POLLUTANTS

    EPA Science Inventory

    EPA's Clean Air Interstate Rule (CAIR)and Utility MACT rulemaking are focusing on future reductions of NOX, SO2, and mercury emissions from power plants. Multipollutant sorbents could provide a cost-effective approach to control these emissions. This research will develop, charac...

  14. Second Careers: The Air Traffic Controller Experience and Beyond.

    ERIC Educational Resources Information Center

    Batten, Michael D.

    1978-01-01

    Second careers are examined from an organizational viewpoint, and new directions for education-work policy, suggested by a unique second career program of the Federal Aviation Administration for air traffic controllers, are explored. Focus is on age, organizational and training factors, and community involvement. (Author/JMD)

  15. The Controlled-Air Incinerator at Los Alamos

    SciTech Connect

    Newmyer, J.N.

    1994-04-01

    The Controlled-Air Incinerator (CAI) at Los Alamos is being modified and upgraded to begin routine operations treating low-level mixed waste (LLMW), radioactively contaminated polychlorinated biphenyl (PCB) wastes, low-level liquid wastes, and possibly transuranic (TRU) wastes. This paper describes those modifications. Routine waste operations should begin in late FY95.

  16. CONTROLLED AIR INCINERATION OF PENTACHLOROPHENOL-TREATED WOOD

    EPA Science Inventory

    This research was initiated to determine the operating conditions necessary to effect complete thermal destruction (greater than 99.99%) of pentachlorophenol (PCP)-treated wood in a controlled air incinerator (CAI) and to provide a basis for evaluating the applicability of other ...

  17. APPCD - INTEGRATED AIR POLLUTION CONTROL SYSTEM (IAPCS)COST MODEL

    EPA Science Inventory

    The Integrated Air Pollution Control System (IAPCS)Cost Model is a compiled model written in FORTRAN and C language which is designed to be used on an IBM or compatible PC with 640K or lower RAM and at least 1.5 Mb of hard drive space. It was developed over the past several years...

  18. Feedback linearization for control of air breathing engines

    NASA Technical Reports Server (NTRS)

    Phillips, Stephen; Mattern, Duane

    1991-01-01

    The method of feedback linearization for control of the nonlinear nozzle and compressor components of an air breathing engine is presented. This method overcomes the need for a large number of scheduling variables and operating points to accurately model highly nonlinear plants. Feedback linearization also results in linear closed loop system performance simplifying subsequent control design. Feedback linearization is used for the nonlinear partial engine model and performance is verified through simulation.

  19. Modeling Validation and Control Analysis for Controlled Temperature and Humidity of Air Conditioning System

    PubMed Central

    Lee, Jing-Nang; Lin, Tsung-Min

    2014-01-01

    This study constructs an energy based model of thermal system for controlled temperature and humidity air conditioning system, and introduces the influence of the mass flow rate, heater and humidifier for proposed control criteria to achieve the controlled temperature and humidity of air conditioning system. Then, the reliability of proposed thermal system model is established by both MATLAB dynamic simulation and the literature validation. Finally, the PID control strategy is applied for controlling the air mass flow rate, humidifying capacity, and heating, capacity. The simulation results show that the temperature and humidity are stable at 541 sec, the disturbance of temperature is only 0.14°C, 0006 kgw/kgda in steady-state error of humidity ratio, and the error rate is only 7.5%. The results prove that the proposed system is an effective controlled temperature and humidity of an air conditioning system. PMID:25250390

  20. Learning styles: The learning methods of air traffic control students

    NASA Astrophysics Data System (ADS)

    Jackson, Dontae L.

    In the world of aviation, air traffic controllers are an integral part in the overall level of safety that is provided. With a number of controllers reaching retirement age, the Air Traffic Collegiate Training Initiative (AT-CTI) was created to provide a stronger candidate pool. However, AT-CTI Instructors have found that a number of AT-CTI students are unable to memorize types of aircraft effectively. This study focused on the basic learning styles (auditory, visual, and kinesthetic) of students and created a teaching method to try to increase memorization in AT-CTI students. The participants were asked to take a questionnaire to determine their learning style. Upon knowing their learning styles, participants attended two classroom sessions. The participants were given a presentation in the first class, and divided into a control and experimental group for the second class. The control group was given the same presentation from the first classroom session while the experimental group had a group discussion and utilized Middle Tennessee State University's Air Traffic Control simulator to learn the aircraft types. Participants took a quiz and filled out a survey, which tested the new teaching method. An appropriate statistical analysis was applied to determine if there was a significant difference between the control and experimental groups. The results showed that even though the participants felt that the method increased their learning, there was no significant difference between the two groups.

  1. Supporting the Future Air Traffic Control Projection Process

    NASA Technical Reports Server (NTRS)

    Davison, Hayley J.; Hansman, R. John, Jr.

    2002-01-01

    In air traffic control, projecting what the air traffic situation will be over the next 30 seconds to 30 minutes is a key process in identifying conflicts that may arise so that evasive action can be taken upon discovery of these conflicts. A series of field visits in the Boston and New York terminal radar approach control (TRACON) facilities and in the oceanic air traffic control facilities in New York and Reykjavik, Iceland were conducted to investigate the projection process in two different ATC domains. The results from the site visits suggest that two types of projection are currently used in ATC tasks, depending on the type of separation minima and/or traffic restriction and information display used by the controller. As technologies improve and procedures change, care should be taken by designers to support projection through displays, automation, and procedures. It is critical to prevent time/space mismatches between interfaces and restrictions. Existing structure in traffic dynamics could be utilized to provide controllers with useful behavioral models on which to build projections. Subtle structure that the controllers are unable to internalize could be incorporated into an ATC projection aid.

  2. Control of Computer Room Air Conditioning using IT Equipment Sensors

    SciTech Connect

    Bell, Geoffrey C.; Storey, Bill; Patterson, Michael K.

    2009-09-30

    The goal of this demonstration was to show how sensors in IT equipment could be accessed and used to directly control computer room air conditioning. The data provided from the sensors is available on the IT network and the challenge for this project was to connect this information to the computer room air handler's control system. A control strategy was developed to enable separate control of the chilled water flow and the fans in the computer room air handlers. By using these existing sensors in the IT equipment, an additional control system is eliminated (or could be redundant) and optimal cooling can be provided saving significant energy. Using onboard server temperature sensors will yield significant energy reductions in data centers. Intel hosted the demonstration in its Santa Clara, CA data center. Intel collaborated with IBM, HP, Emerson, Wunderlich-Malec Engineers, FieldServer Technologies, and LBNL to install the necessary components and develop the new control scheme. LBNL also validated the results of the demonstration.

  3. 40 CFR 81.51 - Portland Interstate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 18 2014-07-01 2014-07-01 false Portland Interstate Air Quality...) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.51 Portland Interstate Air Quality Control Region. The Portland...

  4. 40 CFR 81.52 - Wasatch Front Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 18 2014-07-01 2014-07-01 false Wasatch Front Intrastate Air Quality...) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.52 Wasatch Front Intrastate Air Quality Control Region. The Wasatch...

  5. 40 CFR 81.36 - Maricopa Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 18 2014-07-01 2014-07-01 false Maricopa Intrastate Air Quality...) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.36 Maricopa Intrastate Air Quality Control Region. The...

  6. 40 CFR 81.42 - Chattanooga Interstate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 18 2014-07-01 2014-07-01 false Chattanooga Interstate Air Quality...) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.42 Chattanooga Interstate Air Quality Control Region. The...

  7. 40 CFR 81.54 - Cook Inlet Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 18 2014-07-01 2014-07-01 false Cook Inlet Intrastate Air Quality...) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.54 Cook Inlet Intrastate Air Quality Control Region. The Cook...

  8. 40 CFR 81.17 - Metropolitan Los Angeles Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 18 2014-07-01 2014-07-01 false Metropolitan Los Angeles Air Quality...) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.17 Metropolitan Los Angeles Air Quality Control Region. The Metropolitan...

  9. 40 CFR 81.35 - Louisville Interstate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 18 2014-07-01 2014-07-01 false Louisville Interstate Air Quality...) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.35 Louisville Interstate Air Quality Control Region. The...

  10. 40 CFR 81.29 - Metropolitan Indianapolis Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Air Quality Control Region. 81.29 Section 81.29 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.29 Metropolitan Indianapolis Intrastate Air Quality...

  11. 40 CFR 81.29 - Metropolitan Indianapolis Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Air Quality Control Region. 81.29 Section 81.29 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.29 Metropolitan Indianapolis Intrastate Air Quality...

  12. 40 CFR 81.51 - Portland Interstate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 18 2013-07-01 2013-07-01 false Portland Interstate Air Quality...) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.51 Portland Interstate Air Quality Control Region. The Portland...

  13. 40 CFR 81.42 - Chattanooga Interstate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 18 2012-07-01 2012-07-01 false Chattanooga Interstate Air Quality...) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.42 Chattanooga Interstate Air Quality Control Region. The...

  14. 40 CFR 81.54 - Cook Inlet Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 18 2013-07-01 2013-07-01 false Cook Inlet Intrastate Air Quality...) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.54 Cook Inlet Intrastate Air Quality Control Region. The Cook...

  15. 40 CFR 81.36 - Maricopa Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 18 2013-07-01 2013-07-01 false Maricopa Intrastate Air Quality...) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.36 Maricopa Intrastate Air Quality Control Region. The...

  16. 40 CFR 81.42 - Chattanooga Interstate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 18 2013-07-01 2013-07-01 false Chattanooga Interstate Air Quality...) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.42 Chattanooga Interstate Air Quality Control Region. The...

  17. 40 CFR 81.35 - Louisville Interstate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 18 2013-07-01 2013-07-01 false Louisville Interstate Air Quality...) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.35 Louisville Interstate Air Quality Control Region. The...

  18. 40 CFR 81.29 - Metropolitan Indianapolis Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Air Quality Control Region. 81.29 Section 81.29 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.29 Metropolitan Indianapolis Intrastate Air Quality...

  19. 40 CFR 81.52 - Wasatch Front Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 18 2013-07-01 2013-07-01 false Wasatch Front Intrastate Air Quality...) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.52 Wasatch Front Intrastate Air Quality Control Region. The Wasatch...

  20. 40 CFR 81.35 - Louisville Interstate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 18 2012-07-01 2012-07-01 false Louisville Interstate Air Quality...) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.35 Louisville Interstate Air Quality Control Region. The...

  1. 40 CFR 81.17 - Metropolitan Los Angeles Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 18 2012-07-01 2012-07-01 false Metropolitan Los Angeles Air Quality...) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.17 Metropolitan Los Angeles Air Quality Control Region. The Metropolitan...

  2. 40 CFR 81.52 - Wasatch Front Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 18 2012-07-01 2012-07-01 false Wasatch Front Intrastate Air Quality...) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.52 Wasatch Front Intrastate Air Quality Control Region. The Wasatch...

  3. 40 CFR 81.54 - Cook Inlet Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 18 2012-07-01 2012-07-01 false Cook Inlet Intrastate Air Quality...) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.54 Cook Inlet Intrastate Air Quality Control Region. The Cook...

  4. 40 CFR 81.17 - Metropolitan Los Angeles Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 18 2013-07-01 2013-07-01 false Metropolitan Los Angeles Air Quality...) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.17 Metropolitan Los Angeles Air Quality Control Region. The Metropolitan...

  5. 40 CFR 81.80 - Las Vegas Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 18 2012-07-01 2012-07-01 false Las Vegas Intrastate Air Quality...) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.80 Las Vegas Intrastate Air Quality Control Region. The Las Vegas...

  6. 40 CFR 81.36 - Maricopa Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 18 2012-07-01 2012-07-01 false Maricopa Intrastate Air Quality...) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.36 Maricopa Intrastate Air Quality Control Region. The...

  7. 40 CFR 81.230 - Allegheny Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Allegheny Intrastate Air Quality...) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.230 Allegheny Intrastate Air Quality Control Region. The Allegheny...

  8. 40 CFR 81.86 - Metropolitan Sioux City Interstate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 17 2011-07-01 2011-07-01 false Metropolitan Sioux City Interstate Air... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.86 Metropolitan Sioux City Interstate Air Quality Control Region....

  9. 40 CFR 81.214 - Black Hills-Rapid City Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 18 2014-07-01 2014-07-01 false Black Hills-Rapid City Intrastate Air... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.214 Black Hills-Rapid City Intrastate Air Quality Control Region....

  10. 40 CFR 81.86 - Metropolitan Sioux City Interstate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 18 2014-07-01 2014-07-01 false Metropolitan Sioux City Interstate Air... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.86 Metropolitan Sioux City Interstate Air Quality Control Region....

  11. 40 CFR 81.86 - Metropolitan Sioux City Interstate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 18 2013-07-01 2013-07-01 false Metropolitan Sioux City Interstate Air... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.86 Metropolitan Sioux City Interstate Air Quality Control Region....

  12. 40 CFR 81.170 - Miles City Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 18 2014-07-01 2014-07-01 false Miles City Intrastate Air Quality...) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.170 Miles City Intrastate Air Quality Control Region. The Miles...

  13. 40 CFR 81.170 - Miles City Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 18 2013-07-01 2013-07-01 false Miles City Intrastate Air Quality...) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.170 Miles City Intrastate Air Quality Control Region. The Miles...

  14. 40 CFR 81.214 - Black Hills-Rapid City Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 17 2011-07-01 2011-07-01 false Black Hills-Rapid City Intrastate Air... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.214 Black Hills-Rapid City Intrastate Air Quality Control Region....

  15. 40 CFR 81.214 - Black Hills-Rapid City Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Black Hills-Rapid City Intrastate Air... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.214 Black Hills-Rapid City Intrastate Air Quality Control Region....

  16. 40 CFR 81.170 - Miles City Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 17 2011-07-01 2011-07-01 false Miles City Intrastate Air Quality...) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.170 Miles City Intrastate Air Quality Control Region. The Miles...

  17. 40 CFR 81.86 - Metropolitan Sioux City Interstate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Metropolitan Sioux City Interstate Air... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.86 Metropolitan Sioux City Interstate Air Quality Control Region....

  18. 40 CFR 81.170 - Miles City Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Miles City Intrastate Air Quality...) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.170 Miles City Intrastate Air Quality Control Region. The Miles...

  19. Mean Ages of Stratospheric Air Derived From in Situ Observations of CO2, CH4, and N2O

    NASA Technical Reports Server (NTRS)

    Andrews, A. E.; Boering, K. A.; Daube, B. C.; Wofsy, S. C.; Loewenstein, M.; Jost, H.; Podolske, J. R.; Webster, C. R.; Herman, R. L.; Scott, D. C.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Accurate mean ages for stratospheric air have been derived from a spatially and temporally comprehensive set of in situ observations of CO2, CH4, and N2O obtained from 1992 to 1998 from the NASA ER-2 aircraft and balloon flights. Errors associated with the tropospheric CO2 seasonal cycle and interannual variations in the CO2 growth rate are less than 0.5 year throughout the stratosphere and less than 0.3 year for air older than 2 years (N2O less than 275 ppbv), indicating that the age spectra are broad enough to attenuate these influences over the time period covered by these observations. The distribution of mean age with latitude and altitude provides detailed, quantitative information about the general circulation of the stratosphere. At 20 km, sharp meridional gradients in the mean age are observed across the subtropics. Between 20 and 30 km, the average difference in mean age between the tropics and midlatitudes is approximately 2 years, with slightly smaller differences at higher and lower altitudes. The mean age in the midlatitude middle stratosphere (approx. 25-32 km) is relatively constant with respect to altitude at 5 plus or minus 0.5 years. Comparison with earlier balloon observations of CO2 dating back to the 1970s indicates that the mean age of air in this region has remained within 11 year of its current value over the last 25 years. A climatology of mean age is derived from the observed compact relationship between mean age and N2O. These characteristics of the distribution of mean age in the stratosphere will serve as critically needed diagnostics for models of stratospheric transport.

  20. The Impact of Dry Midlevel Air on Hurricane Intensity in Idealized Simulations with No Mean Flow

    NASA Technical Reports Server (NTRS)

    Braun, Scott A.; Sippel, Jason A.; Nolan, David S.

    2012-01-01

    This study examines the potential negative influences of dry midlevel air on the development of tropical cyclones (specifically, its role in enhancing cold downdraft activity and suppressing storm development). The Weather Research and Forecasting model is used to construct two sets of idealized simulations of hurricane development in environments with different configurations of dry air. The first set of simulations begins with dry air located north of the vortex center by distances ranging from 0 to 270 km, whereas the second set of simulations begins with dry air completely surrounding the vortex, but with moist envelopes in the vortex core ranging in size from 0 to 150 km in radius. No impact of the dry air is seen for dry layers located more than 270 km north of the initial vortex center (approximately 3 times the initial radius of maximum wind). When the dry air is initially closer to the vortex center, it suppresses convective development where it entrains into the storm circulation, leading to increasingly asymmetric convection and slower storm development. The presence of dry air throughout the domain, including the vortex center, substantially slows storm development. However, the presence of a moist envelope around the vortex center eliminates the deleterious impact on storm intensity. Instead, storm size is significantly reduced. The simulations suggest that dry air slows intensification only when it is located very close to the vortex core at early times. When it does slow storm development, it does so primarily by inducing outward- moving convective asymmetries that temporarily shift latent heating radially outward away from the high-vorticity inner core.

  1. Multiple Unmanned Air Vehicles Control Using Neurobiologically Inspired Algorithms

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Wang, Li

    In order to develop and evaluate future Unmanned Air Vehicles for the hazardous environmental monitoring, the comprehensive simulation test and analysis of new advanced concepts is imperative. This paper details an on-going proof of concept focused on development of a neurobiologically-inspired system for the high level control of a Air Vehicle team. This study, entitled Neurobiologically Enabled Autonomous Vehicle Operations, will evaluate initial System-Under-Test concept data by selecting well defined tasks, and evaluating performance based on assignment effectiveness, cooperation, and adaptability of the system. The system will be tested thoroughly in simulation, and if mature, will be implemented in hardware.

  2. CONTROL OF AIR EMISSIONS FROM HAZARDOUS WASTE COMBUSTION SOURCES: FIELD EVALUATIONS OF PILOT-SCALE AIR POLLUTION CONTROL DEVICES

    EPA Science Inventory

    Pilot scale air pollution control devices supplied by Hydro-Sonic Systems, ETS, Inc., and Vulcan Engineering Company were installed at the ENSCO, Inc. Incinerator in El Dorado, Arkansas, in the spring of 1984. Each of these units treated an uncontrolled slipstream of the incinera...

  3. COST ANALYSIS OF INDOOR AIR CONTROL TECHNIQUES (INDOOR ENVIRONMENT MANAGEMENT BRANCH, AIR POLLUTION PREVENTION AND CONTROL DIVISION, NRMRL)

    EPA Science Inventory

    Several studies have been completed addressing the costs and the cost-effectiveness of alternative indoor air quality (IAQ) control measures.A simplified methodology has been defined that can be used by IAQ diagnosticians, architects/engineers, building owners/operators, and th...

  4. 77 FR 43141 - Air Carrier Hazardous Materials Passenger Notification Requirements: Acceptable Means of Compliance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-23

    ...: Acceptable Means of Compliance AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of public... Notification Requirements and Acceptable Means of Compliance with 49 CFR 175.25. The public meeting, to be held... to submit comments and participate in discussions concerning the acceptability of various means...

  5. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  6. Control of Respirable Particles in Indoor Air with Portable AirCleaners

    SciTech Connect

    Offermann, F.J.; Sextro, R.G.; Fisk, W.J.; Grimsrud, D.T.; Nazaroff, W.W.; Nero, A.V.; Revzan, K.L.; Yater, J.

    1984-10-01

    Eleven portable air cleaning devices have been evaluated for control of indoor concentrations of respirable particles using in situ chamber decay tests. Following injection of cigarette smoke in a room-size chamber, decay rates for particle concentrations were obtained for total number concentration and for number concentration by particle size with and without air cleaner operation. The size distribution of the tobacco smoke particles was log normal with a count median diameter of 0.15 {micro}m and a geometric standard deviation of 2.0. Without air cleaner operation, the natural mass-averaged surface deposition rate of particles was observed to be 0.1 h{sup -1}. Air cleaning rates for particles were found to be negligible for several small panel-filter devices, a residential-sized ion-generator, and a pair of mixing fans. Electrostatic precipitators and extended surface filters removed particles at substantial rates, and a HEPA-type filter was the most efficient air cleaner studied.

  7. 40 CFR 81.79 - Northeastern Oklahoma Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 17 2011-07-01 2011-07-01 false Northeastern Oklahoma Intrastate Air... Air Quality Control Regions § 81.79 Northeastern Oklahoma Intrastate Air Quality Control Region. The Metropolitan Tulsa Intrastate Air Quality Control Region has been renamed the Northeastern Oklahoma...

  8. 40 CFR 81.123 - Southeastern Oklahoma Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 18 2014-07-01 2014-07-01 false Southeastern Oklahoma Intrastate Air... Air Quality Control Regions § 81.123 Southeastern Oklahoma Intrastate Air Quality Control Region. The Southeastern Oklahoma Intrastate Air Quality Control Region consists of the territorial area encompassed by...

  9. 40 CFR 81.47 - Central Oklahoma Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 17 2011-07-01 2011-07-01 false Central Oklahoma Intrastate Air... Air Quality Control Regions § 81.47 Central Oklahoma Intrastate Air Quality Control Region. The Metropolitan Oklahoma Intrastate Air Quality Control Region has been renamed the Central Oklahoma...

  10. 40 CFR 81.124 - North Central Oklahoma Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 18 2013-07-01 2013-07-01 false North Central Oklahoma Intrastate Air... Air Quality Control Regions § 81.124 North Central Oklahoma Intrastate Air Quality Control Region. The North Central Oklahoma Intrastate Air Quality Control Region consists of the territorial...

  11. 40 CFR 81.123 - Southeastern Oklahoma Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 18 2013-07-01 2013-07-01 false Southeastern Oklahoma Intrastate Air... Air Quality Control Regions § 81.123 Southeastern Oklahoma Intrastate Air Quality Control Region. The Southeastern Oklahoma Intrastate Air Quality Control Region consists of the territorial area encompassed by...

  12. 40 CFR 81.123 - Southeastern Oklahoma Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Southeastern Oklahoma Intrastate Air... Air Quality Control Regions § 81.123 Southeastern Oklahoma Intrastate Air Quality Control Region. The Southeastern Oklahoma Intrastate Air Quality Control Region consists of the territorial area encompassed by...

  13. 40 CFR 81.47 - Central Oklahoma Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 18 2013-07-01 2013-07-01 false Central Oklahoma Intrastate Air... Air Quality Control Regions § 81.47 Central Oklahoma Intrastate Air Quality Control Region. The Metropolitan Oklahoma Intrastate Air Quality Control Region has been renamed the Central Oklahoma...

  14. 40 CFR 81.124 - North Central Oklahoma Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false North Central Oklahoma Intrastate Air... Air Quality Control Regions § 81.124 North Central Oklahoma Intrastate Air Quality Control Region. The North Central Oklahoma Intrastate Air Quality Control Region consists of the territorial...

  15. 40 CFR 81.125 - Southwestern Oklahoma Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 18 2012-07-01 2012-07-01 false Southwestern Oklahoma Intrastate Air... Air Quality Control Regions § 81.125 Southwestern Oklahoma Intrastate Air Quality Control Region. The Southwestern Oklahoma Intrastate Air Quality Control Region consists of the territorial area encompassed by...

  16. 40 CFR 81.124 - North Central Oklahoma Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 17 2011-07-01 2011-07-01 false North Central Oklahoma Intrastate Air... Air Quality Control Regions § 81.124 North Central Oklahoma Intrastate Air Quality Control Region. The North Central Oklahoma Intrastate Air Quality Control Region consists of the territorial...

  17. 40 CFR 81.126 - Northwestern Oklahoma Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Northwestern Oklahoma Intrastate Air... Air Quality Control Regions § 81.126 Northwestern Oklahoma Intrastate Air Quality Control Region. The Northwestern Oklahoma Intrastate Air Quality Control Region consists of the territorial area encompassed by...

  18. 40 CFR 81.125 - Southwestern Oklahoma Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 18 2013-07-01 2013-07-01 false Southwestern Oklahoma Intrastate Air... Air Quality Control Regions § 81.125 Southwestern Oklahoma Intrastate Air Quality Control Region. The Southwestern Oklahoma Intrastate Air Quality Control Region consists of the territorial area encompassed by...

  19. 40 CFR 81.125 - Southwestern Oklahoma Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 17 2011-07-01 2011-07-01 false Southwestern Oklahoma Intrastate Air... Air Quality Control Regions § 81.125 Southwestern Oklahoma Intrastate Air Quality Control Region. The Southwestern Oklahoma Intrastate Air Quality Control Region consists of the territorial area encompassed by...

  20. 40 CFR 81.126 - Northwestern Oklahoma Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 17 2011-07-01 2011-07-01 false Northwestern Oklahoma Intrastate Air... Air Quality Control Regions § 81.126 Northwestern Oklahoma Intrastate Air Quality Control Region. The Northwestern Oklahoma Intrastate Air Quality Control Region consists of the territorial area encompassed by...

  1. 40 CFR 81.47 - Central Oklahoma Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 18 2012-07-01 2012-07-01 false Central Oklahoma Intrastate Air... Air Quality Control Regions § 81.47 Central Oklahoma Intrastate Air Quality Control Region. The Metropolitan Oklahoma Intrastate Air Quality Control Region has been renamed the Central Oklahoma...

  2. 40 CFR 81.47 - Central Oklahoma Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Central Oklahoma Intrastate Air... Air Quality Control Regions § 81.47 Central Oklahoma Intrastate Air Quality Control Region. The Metropolitan Oklahoma Intrastate Air Quality Control Region has been renamed the Central Oklahoma...

  3. 40 CFR 81.126 - Northwestern Oklahoma Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 18 2012-07-01 2012-07-01 false Northwestern Oklahoma Intrastate Air... Air Quality Control Regions § 81.126 Northwestern Oklahoma Intrastate Air Quality Control Region. The Northwestern Oklahoma Intrastate Air Quality Control Region consists of the territorial area encompassed by...

  4. 40 CFR 81.123 - Southeastern Oklahoma Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 18 2012-07-01 2012-07-01 false Southeastern Oklahoma Intrastate Air... Air Quality Control Regions § 81.123 Southeastern Oklahoma Intrastate Air Quality Control Region. The Southeastern Oklahoma Intrastate Air Quality Control Region consists of the territorial area encompassed by...

  5. 40 CFR 81.79 - Northeastern Oklahoma Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 18 2012-07-01 2012-07-01 false Northeastern Oklahoma Intrastate Air... Air Quality Control Regions § 81.79 Northeastern Oklahoma Intrastate Air Quality Control Region. The Metropolitan Tulsa Intrastate Air Quality Control Region has been renamed the Northeastern Oklahoma...

  6. 40 CFR 81.79 - Northeastern Oklahoma Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 18 2014-07-01 2014-07-01 false Northeastern Oklahoma Intrastate Air... Air Quality Control Regions § 81.79 Northeastern Oklahoma Intrastate Air Quality Control Region. The Metropolitan Tulsa Intrastate Air Quality Control Region has been renamed the Northeastern Oklahoma...

  7. 40 CFR 81.47 - Central Oklahoma Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 18 2014-07-01 2014-07-01 false Central Oklahoma Intrastate Air... Air Quality Control Regions § 81.47 Central Oklahoma Intrastate Air Quality Control Region. The Metropolitan Oklahoma Intrastate Air Quality Control Region has been renamed the Central Oklahoma...

  8. 40 CFR 81.79 - Northeastern Oklahoma Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 18 2013-07-01 2013-07-01 false Northeastern Oklahoma Intrastate Air... Air Quality Control Regions § 81.79 Northeastern Oklahoma Intrastate Air Quality Control Region. The Metropolitan Tulsa Intrastate Air Quality Control Region has been renamed the Northeastern Oklahoma...

  9. 40 CFR 81.126 - Northwestern Oklahoma Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 18 2013-07-01 2013-07-01 false Northwestern Oklahoma Intrastate Air... Air Quality Control Regions § 81.126 Northwestern Oklahoma Intrastate Air Quality Control Region. The Northwestern Oklahoma Intrastate Air Quality Control Region consists of the territorial area encompassed by...

  10. 40 CFR 81.125 - Southwestern Oklahoma Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 18 2014-07-01 2014-07-01 false Southwestern Oklahoma Intrastate Air... Air Quality Control Regions § 81.125 Southwestern Oklahoma Intrastate Air Quality Control Region. The Southwestern Oklahoma Intrastate Air Quality Control Region consists of the territorial area encompassed by...

  11. 40 CFR 81.79 - Northeastern Oklahoma Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Northeastern Oklahoma Intrastate Air... Air Quality Control Regions § 81.79 Northeastern Oklahoma Intrastate Air Quality Control Region. The Metropolitan Tulsa Intrastate Air Quality Control Region has been renamed the Northeastern Oklahoma...

  12. 40 CFR 81.126 - Northwestern Oklahoma Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 18 2014-07-01 2014-07-01 false Northwestern Oklahoma Intrastate Air... Air Quality Control Regions § 81.126 Northwestern Oklahoma Intrastate Air Quality Control Region. The Northwestern Oklahoma Intrastate Air Quality Control Region consists of the territorial area encompassed by...

  13. 40 CFR 81.123 - Southeastern Oklahoma Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 17 2011-07-01 2011-07-01 false Southeastern Oklahoma Intrastate Air... Air Quality Control Regions § 81.123 Southeastern Oklahoma Intrastate Air Quality Control Region. The Southeastern Oklahoma Intrastate Air Quality Control Region consists of the territorial area encompassed by...

  14. 40 CFR 81.125 - Southwestern Oklahoma Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Southwestern Oklahoma Intrastate Air... Air Quality Control Regions § 81.125 Southwestern Oklahoma Intrastate Air Quality Control Region. The Southwestern Oklahoma Intrastate Air Quality Control Region consists of the territorial area encompassed by...

  15. 40 CFR 81.124 - North Central Oklahoma Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 18 2014-07-01 2014-07-01 false North Central Oklahoma Intrastate Air... Air Quality Control Regions § 81.124 North Central Oklahoma Intrastate Air Quality Control Region. The North Central Oklahoma Intrastate Air Quality Control Region consists of the territorial...

  16. 40 CFR 81.124 - North Central Oklahoma Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 18 2012-07-01 2012-07-01 false North Central Oklahoma Intrastate Air... Air Quality Control Regions § 81.124 North Central Oklahoma Intrastate Air Quality Control Region. The North Central Oklahoma Intrastate Air Quality Control Region consists of the territorial...

  17. 40 CFR 81.160 - North Central Coast Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 17 2011-07-01 2011-07-01 false North Central Coast Intrastate Air... Air Quality Control Regions § 81.160 North Central Coast Intrastate Air Quality Control Region. The North Central Coast Intrastate Air Quality Control Region (California) consists of the territorial...

  18. 40 CFR 81.166 - South Central Coast Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 17 2011-07-01 2011-07-01 false South Central Coast Intrastate Air... Air Quality Control Regions § 81.166 South Central Coast Intrastate Air Quality Control Region. The South Central Coast Intrastate Air Quality Control Region (California) consists of the territorial...

  19. 40 CFR 81.128 - Genesee-Finger Lakes Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 18 2012-07-01 2012-07-01 false Genesee-Finger Lakes Intrastate Air... Air Quality Control Regions § 81.128 Genesee-Finger Lakes Intrastate Air Quality Control Region. The Genesee-Finger Lakes Intrastate Air Quality Control Region (New York) consists of the territorial...

  20. 40 CFR 81.128 - Genesee-Finger Lakes Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 18 2014-07-01 2014-07-01 false Genesee-Finger Lakes Intrastate Air... Air Quality Control Regions § 81.128 Genesee-Finger Lakes Intrastate Air Quality Control Region. The Genesee-Finger Lakes Intrastate Air Quality Control Region (New York) consists of the territorial...

  1. 40 CFR 81.128 - Genesee-Finger Lakes Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Genesee-Finger Lakes Intrastate Air... Air Quality Control Regions § 81.128 Genesee-Finger Lakes Intrastate Air Quality Control Region. The Genesee-Finger Lakes Intrastate Air Quality Control Region (New York) consists of the territorial...

  2. 40 CFR 81.128 - Genesee-Finger Lakes Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 18 2013-07-01 2013-07-01 false Genesee-Finger Lakes Intrastate Air... Air Quality Control Regions § 81.128 Genesee-Finger Lakes Intrastate Air Quality Control Region. The Genesee-Finger Lakes Intrastate Air Quality Control Region (New York) consists of the territorial...

  3. 40 CFR 81.128 - Genesee-Finger Lakes Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 17 2011-07-01 2011-07-01 false Genesee-Finger Lakes Intrastate Air... Air Quality Control Regions § 81.128 Genesee-Finger Lakes Intrastate Air Quality Control Region. The Genesee-Finger Lakes Intrastate Air Quality Control Region (New York) consists of the territorial...

  4. 40 CFR 81.159 - Great Basin Valley Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Great Basin Valley Intrastate Air... Air Quality Control Regions § 81.159 Great Basin Valley Intrastate Air Quality Control Region. The Great Basin Valley Intrastate Air Quality Control Region (California) consists of the territorial...

  5. 40 CFR 81.242 - Pecos-Permian Basin Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Pecos-Permian Basin Intrastate Air... Air Quality Control Regions § 81.242 Pecos-Permian Basin Intrastate Air Quality Control Region. The Pecos-Permian Basin Intrastate Air Quality Control Region (New Mexico) consists of the territorial...

  6. 40 CFR 81.238 - Southwest Georgia Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 18 2012-07-01 2012-07-01 false Southwest Georgia Intrastate Air... Air Quality Control Regions § 81.238 Southwest Georgia Intrastate Air Quality Control Region. The Southwest Georgia Intrastate Air Quality Control Region consists of the territorial area encompassed by...

  7. 40 CFR 81.238 - Southwest Georgia Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Southwest Georgia Intrastate Air... Air Quality Control Regions § 81.238 Southwest Georgia Intrastate Air Quality Control Region. The Southwest Georgia Intrastate Air Quality Control Region consists of the territorial area encompassed by...

  8. 40 CFR 81.238 - Southwest Georgia Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 17 2011-07-01 2011-07-01 false Southwest Georgia Intrastate Air... Air Quality Control Regions § 81.238 Southwest Georgia Intrastate Air Quality Control Region. The Southwest Georgia Intrastate Air Quality Control Region consists of the territorial area encompassed by...

  9. 40 CFR 81.238 - Southwest Georgia Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 18 2013-07-01 2013-07-01 false Southwest Georgia Intrastate Air... Air Quality Control Regions § 81.238 Southwest Georgia Intrastate Air Quality Control Region. The Southwest Georgia Intrastate Air Quality Control Region consists of the territorial area encompassed by...

  10. 40 CFR 81.238 - Southwest Georgia Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 18 2014-07-01 2014-07-01 false Southwest Georgia Intrastate Air... Air Quality Control Regions § 81.238 Southwest Georgia Intrastate Air Quality Control Region. The Southwest Georgia Intrastate Air Quality Control Region consists of the territorial area encompassed by...

  11. 40 CFR 81.231 - Central West Virginia Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 18 2012-07-01 2012-07-01 false Central West Virginia Intrastate Air... Air Quality Control Regions § 81.231 Central West Virginia Intrastate Air Quality Control Region. The Central West Virginia Intrastate Air Quality Control Region consists of the territorial area...

  12. 40 CFR 81.231 - Central West Virginia Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Central West Virginia Intrastate Air... Air Quality Control Regions § 81.231 Central West Virginia Intrastate Air Quality Control Region. The Central West Virginia Intrastate Air Quality Control Region consists of the territorial area...

  13. 40 CFR 81.231 - Central West Virginia Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 18 2014-07-01 2014-07-01 false Central West Virginia Intrastate Air... Air Quality Control Regions § 81.231 Central West Virginia Intrastate Air Quality Control Region. The Central West Virginia Intrastate Air Quality Control Region consists of the territorial area...

  14. 40 CFR 81.235 - Southern West Virginia Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 18 2014-07-01 2014-07-01 false Southern West Virginia Intrastate Air... Air Quality Control Regions § 81.235 Southern West Virginia Intrastate Air Quality Control Region. The Southern West Virginia Intrastate Air Quality Control Region consists of the territorial area...

  15. 40 CFR 81.231 - Central West Virginia Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 18 2013-07-01 2013-07-01 false Central West Virginia Intrastate Air... Air Quality Control Regions § 81.231 Central West Virginia Intrastate Air Quality Control Region. The Central West Virginia Intrastate Air Quality Control Region consists of the territorial area...

  16. 40 CFR 81.235 - Southern West Virginia Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 18 2012-07-01 2012-07-01 false Southern West Virginia Intrastate Air... Air Quality Control Regions § 81.235 Southern West Virginia Intrastate Air Quality Control Region. The Southern West Virginia Intrastate Air Quality Control Region consists of the territorial area...

  17. 40 CFR 81.231 - Central West Virginia Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 17 2011-07-01 2011-07-01 false Central West Virginia Intrastate Air... Air Quality Control Regions § 81.231 Central West Virginia Intrastate Air Quality Control Region. The Central West Virginia Intrastate Air Quality Control Region consists of the territorial area...

  18. 40 CFR 81.235 - Southern West Virginia Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 18 2013-07-01 2013-07-01 false Southern West Virginia Intrastate Air... Air Quality Control Regions § 81.235 Southern West Virginia Intrastate Air Quality Control Region. The Southern West Virginia Intrastate Air Quality Control Region consists of the territorial area...

  19. 40 CFR 81.235 - Southern West Virginia Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 17 2011-07-01 2011-07-01 false Southern West Virginia Intrastate Air... Air Quality Control Regions § 81.235 Southern West Virginia Intrastate Air Quality Control Region. The Southern West Virginia Intrastate Air Quality Control Region consists of the territorial area...

  20. 40 CFR 81.235 - Southern West Virginia Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Southern West Virginia Intrastate Air... Air Quality Control Regions § 81.235 Southern West Virginia Intrastate Air Quality Control Region. The Southern West Virginia Intrastate Air Quality Control Region consists of the territorial area...

  1. 40 CFR 81.251 - Northeast Kansas Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Northeast Kansas Intrastate Air... Air Quality Control Regions § 81.251 Northeast Kansas Intrastate Air Quality Control Region. The Northeast Kansas Intrastate Air Quality Control Region consists of the territorial area encompassed by...

  2. 40 CFR 81.254 - Southeast Kansas Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Southeast Kansas Intrastate Air... Air Quality Control Regions § 81.254 Southeast Kansas Intrastate Air Quality Control Region. The Southeast Kansas Intrastate Air Quality Control Region consists of the territorial area encompassed by...

  3. 40 CFR 81.250 - North Central Kansas Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false North Central Kansas Intrastate Air... Air Quality Control Regions § 81.250 North Central Kansas Intrastate Air Quality Control Region. The North Central Kansas Intrastate Air Quality Control Region consists of the territorial area...

  4. 40 CFR 81.255 - Southwest Kansas Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Southwest Kansas Intrastate Air... Air Quality Control Regions § 81.255 Southwest Kansas Intrastate Air Quality Control Region. The Southwest Kansas Intrastate Air Quality Control Region consists of the territorial area encompassed by...

  5. 40 CFR 81.147 - Eastern Mountain Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Eastern Mountain Intrastate Air... Air Quality Control Regions § 81.147 Eastern Mountain Intrastate Air Quality Control Region. The Eastern Mountain Intrastate Air Quality Control Region (North Carolina) consists of the territorial...

  6. 40 CFR 81.153 - Western Mountain Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 18 2012-07-01 2012-07-01 false Western Mountain Intrastate Air... Air Quality Control Regions § 81.153 Western Mountain Intrastate Air Quality Control Region. The Western Mountain Intrastate Air Quality Control Region (North Carolina) consists of the territorial...

  7. 40 CFR 81.147 - Eastern Mountain Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 18 2014-07-01 2014-07-01 false Eastern Mountain Intrastate Air... Air Quality Control Regions § 81.147 Eastern Mountain Intrastate Air Quality Control Region. The Eastern Mountain Intrastate Air Quality Control Region (North Carolina) consists of the territorial...

  8. 40 CFR 81.147 - Eastern Mountain Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 18 2013-07-01 2013-07-01 false Eastern Mountain Intrastate Air... Air Quality Control Regions § 81.147 Eastern Mountain Intrastate Air Quality Control Region. The Eastern Mountain Intrastate Air Quality Control Region (North Carolina) consists of the territorial...

  9. 40 CFR 81.147 - Eastern Mountain Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 17 2011-07-01 2011-07-01 false Eastern Mountain Intrastate Air... Air Quality Control Regions § 81.147 Eastern Mountain Intrastate Air Quality Control Region. The Eastern Mountain Intrastate Air Quality Control Region (North Carolina) consists of the territorial...

  10. 40 CFR 81.153 - Western Mountain Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 18 2013-07-01 2013-07-01 false Western Mountain Intrastate Air... Air Quality Control Regions § 81.153 Western Mountain Intrastate Air Quality Control Region. The Western Mountain Intrastate Air Quality Control Region (North Carolina) consists of the territorial...

  11. 40 CFR 81.153 - Western Mountain Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 18 2014-07-01 2014-07-01 false Western Mountain Intrastate Air... Air Quality Control Regions § 81.153 Western Mountain Intrastate Air Quality Control Region. The Western Mountain Intrastate Air Quality Control Region (North Carolina) consists of the territorial...

  12. 40 CFR 81.153 - Western Mountain Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Western Mountain Intrastate Air... Air Quality Control Regions § 81.153 Western Mountain Intrastate Air Quality Control Region. The Western Mountain Intrastate Air Quality Control Region (North Carolina) consists of the territorial...

  13. 40 CFR 81.153 - Western Mountain Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 17 2011-07-01 2011-07-01 false Western Mountain Intrastate Air... Air Quality Control Regions § 81.153 Western Mountain Intrastate Air Quality Control Region. The Western Mountain Intrastate Air Quality Control Region (North Carolina) consists of the territorial...

  14. 40 CFR 81.147 - Eastern Mountain Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 18 2012-07-01 2012-07-01 false Eastern Mountain Intrastate Air... Air Quality Control Regions § 81.147 Eastern Mountain Intrastate Air Quality Control Region. The Eastern Mountain Intrastate Air Quality Control Region (North Carolina) consists of the territorial...

  15. 76 FR 5319 - Revisions to the California State Implementation Plan, Santa Barbara Air Pollution Control...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-31

    ... AGENCY 40 CFR Part 52 Revisions to the California State Implementation Plan, Santa Barbara Air Pollution Control District, Placer County Air Pollution Control District, Antelope Valley Air Quality Management District, and Ventura County Air Pollution Control District AGENCY: Environmental Protection Agency...

  16. 76 FR 30025 - Revisions to the California State Implementation Plan, Placer County Air Pollution Control...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-24

    ... AGENCY 40 CFR Part 52 Revisions to the California State Implementation Plan, Placer County Air Pollution Control District and Ventura County Air Pollution Control District AGENCY: Environmental Protection Agency... the Placer County Air Pollution Control District (PCAPCD) and Ventura County Air Pollution...

  17. 76 FR 5277 - Revisions to the California State Implementation Plan, Santa Barbara Air Pollution Control...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-31

    ... AGENCY 40 CFR Part 52 Revisions to the California State Implementation Plan, Santa Barbara Air Pollution Control District, Antelope Valley Air Quality Management District, Ventura County Air Pollution Control District and Placer County Air Pollution Control District AGENCY: Environmental Protection Agency...

  18. 40 CFR 81.242 - Pecos-Permian Basin Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 17 2011-07-01 2011-07-01 false Pecos-Permian Basin Intrastate Air... Air Quality Control Regions § 81.242 Pecos-Permian Basin Intrastate Air Quality Control Region. The Pecos-Permian Basin Intrastate Air Quality Control Region (New Mexico) consists of the territorial...

  19. 40 CFR 81.159 - Great Basin Valley Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 17 2011-07-01 2011-07-01 false Great Basin Valley Intrastate Air... Air Quality Control Regions § 81.159 Great Basin Valley Intrastate Air Quality Control Region. The Great Basin Valley Intrastate Air Quality Control Region (California) consists of the territorial...

  20. 40 CFR 81.59 - Cumberland-Keyser Interstate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 18 2012-07-01 2012-07-01 false Cumberland-Keyser Interstate Air... Air Quality Control Regions § 81.59 Cumberland-Keyser Interstate Air Quality Control Region. The Cumberland-Keyser Interstate Air Quality Control Region (Maryland-West Virginia) has been revised to...

  1. 40 CFR 81.59 - Cumberland-Keyser Interstate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Cumberland-Keyser Interstate Air... Air Quality Control Regions § 81.59 Cumberland-Keyser Interstate Air Quality Control Region. The Cumberland-Keyser Interstate Air Quality Control Region (Maryland-West Virginia) has been revised to...

  2. 40 CFR 81.59 - Cumberland-Keyser Interstate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 18 2014-07-01 2014-07-01 false Cumberland-Keyser Interstate Air... Air Quality Control Regions § 81.59 Cumberland-Keyser Interstate Air Quality Control Region. The Cumberland-Keyser Interstate Air Quality Control Region (Maryland-West Virginia) has been revised to...

  3. 40 CFR 81.59 - Cumberland-Keyser Interstate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 17 2011-07-01 2011-07-01 false Cumberland-Keyser Interstate Air... Air Quality Control Regions § 81.59 Cumberland-Keyser Interstate Air Quality Control Region. The Cumberland-Keyser Interstate Air Quality Control Region (Maryland-West Virginia) has been revised to...

  4. 40 CFR 81.59 - Cumberland-Keyser Interstate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 18 2013-07-01 2013-07-01 false Cumberland-Keyser Interstate Air... Air Quality Control Regions § 81.59 Cumberland-Keyser Interstate Air Quality Control Region. The Cumberland-Keyser Interstate Air Quality Control Region (Maryland-West Virginia) has been revised to...

  5. 40 CFR 81.127 - Central New York Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Central New York Intrastate Air... Air Quality Control Regions § 81.127 Central New York Intrastate Air Quality Control Region. The Central New York Intrastate Air Quality Control Region consists of the territorial area encompassed by...

  6. 40 CFR 81.127 - Central New York Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 17 2011-07-01 2011-07-01 false Central New York Intrastate Air... Air Quality Control Regions § 81.127 Central New York Intrastate Air Quality Control Region. The Central New York Intrastate Air Quality Control Region consists of the territorial area encompassed by...

  7. 40 CFR 81.167 - Southeast Desert Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 18 2014-07-01 2014-07-01 false Southeast Desert Intrastate Air... Air Quality Control Regions § 81.167 Southeast Desert Intrastate Air Quality Control Region. The Southeast Desert Intrastate Air Quality Control Region (California) consists of the territorial...

  8. 40 CFR 81.167 - Southeast Desert Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 17 2011-07-01 2011-07-01 false Southeast Desert Intrastate Air... Air Quality Control Regions § 81.167 Southeast Desert Intrastate Air Quality Control Region. The Southeast Desert Intrastate Air Quality Control Region (California) consists of the territorial...

  9. 40 CFR 81.167 - Southeast Desert Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 18 2013-07-01 2013-07-01 false Southeast Desert Intrastate Air... Air Quality Control Regions § 81.167 Southeast Desert Intrastate Air Quality Control Region. The Southeast Desert Intrastate Air Quality Control Region (California) consists of the territorial...

  10. 40 CFR 81.167 - Southeast Desert Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Southeast Desert Intrastate Air... Air Quality Control Regions § 81.167 Southeast Desert Intrastate Air Quality Control Region. The Southeast Desert Intrastate Air Quality Control Region (California) consists of the territorial...

  11. 40 CFR 81.167 - Southeast Desert Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 18 2012-07-01 2012-07-01 false Southeast Desert Intrastate Air... Air Quality Control Regions § 81.167 Southeast Desert Intrastate Air Quality Control Region. The Southeast Desert Intrastate Air Quality Control Region (California) consists of the territorial...

  12. 40 CFR 81.243 - Central Minnesota Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 18 2014-07-01 2014-07-01 false Central Minnesota Intrastate Air... Air Quality Control Regions § 81.243 Central Minnesota Intrastate Air Quality Control Region. The Central Minnesota Intrastate Air Quality Control Region consists of the territorial area encompassed...

  13. 40 CFR 81.243 - Central Minnesota Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Central Minnesota Intrastate Air... Air Quality Control Regions § 81.243 Central Minnesota Intrastate Air Quality Control Region. The Central Minnesota Intrastate Air Quality Control Region consists of the territorial area encompassed...

  14. 40 CFR 81.243 - Central Minnesota Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 17 2011-07-01 2011-07-01 false Central Minnesota Intrastate Air... Air Quality Control Regions § 81.243 Central Minnesota Intrastate Air Quality Control Region. The Central Minnesota Intrastate Air Quality Control Region consists of the territorial area encompassed...

  15. 40 CFR 81.243 - Central Minnesota Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 18 2013-07-01 2013-07-01 false Central Minnesota Intrastate Air... Air Quality Control Regions § 81.243 Central Minnesota Intrastate Air Quality Control Region. The Central Minnesota Intrastate Air Quality Control Region consists of the territorial area encompassed...

  16. 40 CFR 81.243 - Central Minnesota Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 18 2012-07-01 2012-07-01 false Central Minnesota Intrastate Air... Air Quality Control Regions § 81.243 Central Minnesota Intrastate Air Quality Control Region. The Central Minnesota Intrastate Air Quality Control Region consists of the territorial area encompassed...

  17. 40 CFR 81.63 - Metropolitan Fort Smith Interstate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 17 2011-07-01 2011-07-01 false Metropolitan Fort Smith Interstate Air... Air Quality Control Regions § 81.63 Metropolitan Fort Smith Interstate Air Quality Control Region. The Metropolitan Fort Smith Interstate Air Quality Control Region (Arkansas-Oklahoma) has been revised to...

  18. 40 CFR 81.63 - Metropolitan Fort Smith Interstate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Metropolitan Fort Smith Interstate Air... Air Quality Control Regions § 81.63 Metropolitan Fort Smith Interstate Air Quality Control Region. The Metropolitan Fort Smith Interstate Air Quality Control Region (Arkansas-Oklahoma) has been revised to...

  19. 40 CFR 81.63 - Metropolitan Fort Smith Interstate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 18 2013-07-01 2013-07-01 false Metropolitan Fort Smith Interstate Air... Air Quality Control Regions § 81.63 Metropolitan Fort Smith Interstate Air Quality Control Region. The Metropolitan Fort Smith Interstate Air Quality Control Region (Arkansas-Oklahoma) has been revised to...

  20. 40 CFR 81.63 - Metropolitan Fort Smith Interstate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 18 2014-07-01 2014-07-01 false Metropolitan Fort Smith Interstate Air... Air Quality Control Regions § 81.63 Metropolitan Fort Smith Interstate Air Quality Control Region. The Metropolitan Fort Smith Interstate Air Quality Control Region (Arkansas-Oklahoma) has been revised to...

  1. 40 CFR 81.63 - Metropolitan Fort Smith Interstate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 18 2012-07-01 2012-07-01 false Metropolitan Fort Smith Interstate Air... Air Quality Control Regions § 81.63 Metropolitan Fort Smith Interstate Air Quality Control Region. The Metropolitan Fort Smith Interstate Air Quality Control Region (Arkansas-Oklahoma) has been revised to...

  2. 40 CFR 81.174 - Pawnee Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 18 2013-07-01 2013-07-01 false Pawnee Intrastate Air Quality Control Region. 81.174 Section 81.174 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Control Regions § 81.174 Pawnee Intrastate Air Quality Control Region. The Pawnee Intrastate Air...

  3. 40 CFR 81.174 - Pawnee Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 18 2012-07-01 2012-07-01 false Pawnee Intrastate Air Quality Control Region. 81.174 Section 81.174 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Control Regions § 81.174 Pawnee Intrastate Air Quality Control Region. The Pawnee Intrastate Air...

  4. 40 CFR 81.174 - Pawnee Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 18 2014-07-01 2014-07-01 false Pawnee Intrastate Air Quality Control Region. 81.174 Section 81.174 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Control Regions § 81.174 Pawnee Intrastate Air Quality Control Region. The Pawnee Intrastate Air...

  5. 40 CFR 81.174 - Pawnee Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 17 2011-07-01 2011-07-01 false Pawnee Intrastate Air Quality Control Region. 81.174 Section 81.174 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Control Regions § 81.174 Pawnee Intrastate Air Quality Control Region. The Pawnee Intrastate Air...

  6. 40 CFR 81.174 - Pawnee Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Pawnee Intrastate Air Quality Control Region. 81.174 Section 81.174 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Control Regions § 81.174 Pawnee Intrastate Air Quality Control Region. The Pawnee Intrastate Air...

  7. 40 CFR 81.122 - Mississippi Delta Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 18 2014-07-01 2014-07-01 false Mississippi Delta Intrastate Air... Air Quality Control Regions § 81.122 Mississippi Delta Intrastate Air Quality Control Region. The Mississippi Delta Intrastate Air Quality Control Region consists of the territorial area encompassed by...

  8. 40 CFR 81.122 - Mississippi Delta Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 18 2012-07-01 2012-07-01 false Mississippi Delta Intrastate Air... Air Quality Control Regions § 81.122 Mississippi Delta Intrastate Air Quality Control Region. The Mississippi Delta Intrastate Air Quality Control Region consists of the territorial area encompassed by...

  9. 40 CFR 81.122 - Mississippi Delta Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 17 2011-07-01 2011-07-01 false Mississippi Delta Intrastate Air... Air Quality Control Regions § 81.122 Mississippi Delta Intrastate Air Quality Control Region. The Mississippi Delta Intrastate Air Quality Control Region consists of the territorial area encompassed by...

  10. 40 CFR 81.122 - Mississippi Delta Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 18 2013-07-01 2013-07-01 false Mississippi Delta Intrastate Air... Air Quality Control Regions § 81.122 Mississippi Delta Intrastate Air Quality Control Region. The Mississippi Delta Intrastate Air Quality Control Region consists of the territorial area encompassed by...

  11. 40 CFR 81.122 - Mississippi Delta Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Mississippi Delta Intrastate Air... Air Quality Control Regions § 81.122 Mississippi Delta Intrastate Air Quality Control Region. The Mississippi Delta Intrastate Air Quality Control Region consists of the territorial area encompassed by...

  12. 40 CFR 81.120 - Middle Tennessee Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 17 2011-07-01 2011-07-01 false Middle Tennessee Intrastate Air... Air Quality Control Regions § 81.120 Middle Tennessee Intrastate Air Quality Control Region. The Middle Tennessee Intrastate Air Quality Control Region consists of the territorial area encompassed...

  13. 40 CFR 81.120 - Middle Tennessee Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 18 2014-07-01 2014-07-01 false Middle Tennessee Intrastate Air... Air Quality Control Regions § 81.120 Middle Tennessee Intrastate Air Quality Control Region. The Middle Tennessee Intrastate Air Quality Control Region consists of the territorial area encompassed...

  14. 40 CFR 81.120 - Middle Tennessee Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 18 2012-07-01 2012-07-01 false Middle Tennessee Intrastate Air... Air Quality Control Regions § 81.120 Middle Tennessee Intrastate Air Quality Control Region. The Middle Tennessee Intrastate Air Quality Control Region consists of the territorial area encompassed...

  15. E-Alerts: Environmental pollution and control (air pollution and control). E-mail newsletter

    SciTech Connect

    1999-04-01

    Topics of discussion include the following: Air pollution from flue gases, exhaust gases, odors, dust, smog, microorganisms, etc.; Control techniques and equipment; Sampling and analytical techniques, and equipment; Waste gas recovery; Biological and ecological effects; Air pollution chemistry; Acid precipitation; Atmospheric motion; Laws, legislation, and regulations; Public administration; Economics; Land use.

  16. VERSATILE PC-BASED DATA ACQUISITION AND CONTROL SYSTEM: AUTOMATION OF EPA'S AIR TOXICS CONTROL LABORATORY

    EPA Science Inventory

    The paper discusses the decision making process which resulted in the selection and configuration of the hardware and software for the Air Toxics Control Laboratory (ATCL) designed and built at EPA's Air and Energy Engineering Research Laboratory, in response to the need for the ...

  17. BIOCONTAMINANT CONTROL (INDOOR ENVIRONMENT MANAGEMENT BRANCH, AIR POLLUTION PREVENTION AND CONTROL DIVISION, NRMRL)

    EPA Science Inventory

    The strategy of NRMRL's Indoor Environment Management Branch in Research Triangle Park, NC, is to work cooperatively with experts to enhance the scientific understanding of indoor air biocontaminants and to develop prevention and control techniques for mitigation of indoor air po...

  18. Extravehicular Activity/Air Traffic Control (EVA/ATC) test report. [communication links to the astronaut

    NASA Technical Reports Server (NTRS)

    Tomaro, D. J.

    1982-01-01

    During extravehicular activity (EVA), communications between the EVA astronaut and the space shuttle orbiter are maintained by means of transceiver installed in the environmental support system backpack. Onboard the orbiter, a transceiver line replaceable unit and its associated equipment performs the task of providing a communications link to the astronaut in the extravehicular activity/air traffic control (EVA/ATC) mode. Results of the acceptance tests that performed on the system designed and fabricated for EVA/ATC testing are discussed.

  19. 40 CFR 81.112 - Charleston Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Quality Control Regions § 81.112 Charleston Intrastate Air Quality Control Region. The Charleston Intrastate Air Quality Control Region (South Carolina) consists of the territorial area encompassed by the... Quality Control Region: Region 1. 81.107Greenwood Intrastate Air Quality Control Region: Region 2....

  20. 40 CFR 81.112 - Charleston Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Quality Control Regions § 81.112 Charleston Intrastate Air Quality Control Region. The Charleston Intrastate Air Quality Control Region (South Carolina) consists of the territorial area encompassed by the... Quality Control Region: Region 1. 81.107Greenwood Intrastate Air Quality Control Region: Region 2....

  1. Free flight: air traffic control evolution or revolution

    NASA Astrophysics Data System (ADS)

    Grundmann, Karl

    1996-05-01

    The Federal Aviation Administration (FAA) and industry are moving towards a more flexible, user oriented air traffic control system. The question is: does this point to a natural evolution or revolution in the world of the air traffic controllers? The National Airspace System is by all accounts the safest in the world. How will we sustain this record of performance with increased flexibility and user involvement? How will controllers and pilots react to a new more dynamic paradigm? Is the current state of automation, modeling, and analysis what is needed to make Free Flight a reality? How will the FAA insure that all human factors questions are answered before implementation? How will we quantify the impact of unanswered questions and their influence on safety? These, and many more questions need to be answered to ensure that the benefits promised by Free Flight are realized by all parties. The National Air Traffic Controllers Association supports the new concept. Yet, we are seriously concerned about the actual implementation of Free Flight's various components.

  2. Control room envelope unfiltered air inleakage test protocols

    SciTech Connect

    Lagus, P.L.; Grot, R.A.

    1997-08-01

    In 1983, the Advisory Committee on Reactor Safeguards (ACRS) recommended that the US NRC develop a control room HVAC performance testing protocol. To date no such protocol has been forthcoming. Beginning in mid-1994, an effort was funded by NRC under a Small Business Innovation Research (SBIR) grant to develop several simplified test protocols based on the principles of tracer gas testing in order to measure the total unfiltered inleakage entering a CRE during emergency mode operation of the control room ventilation system. These would allow accurate assessment of unfiltered air inleakage as required in SRP 6.4. The continuing lack of a standard protocol is unfortunate since one of the significant parameters required to calculate operator dose is the amount of unfiltered air inleakage into the control room. Often it is assumed that, if the Control Room Envelope (CRE) is maintained at +1/8 in. w.g. differential pressure relative to the surroundings, no significant unfiltered inleakage can occur it is further assumed that inleakage due to door openings is the only source of unfiltered air. 23 refs., 13 figs., 2 tabs.

  3. A Vision of the Future Air Traffic Control System

    NASA Technical Reports Server (NTRS)

    Erzberger, Heinz

    2000-01-01

    The air transportation system is on the verge of gridlock, with delays and cancelled flights this summer reaching all time highs. As demand for air transportation continues to increase, the capacity needed to accommodate the growth in traffic is falling farther and farther behind. Moreover, it has become increasingly apparent that the present system cannot be scaled up to provide the capacity increases needed to meet demand over the next 25 years. NASA, working with the Federal Aviation Administration and industry, is pursuing a major research program to develop air traffic management technologies that have the ultimate goal of doubling capacity while increasing safety and efficiency. This seminar will describe how the current system operates, what its limitations are and why a revolutionary "shift in paradigm" is needed to overcome fundamental limitations in capacity and safety. For the near term, NASA has developed a portfolio of software tools for air traffic controllers, called the Center-TRACON Automation System (CTAS), that provides modest gains in capacity and efficiency while staying within the current paradigm. The outline of a concept for the long term, with a deployment date of 2015 at the earliest, has recently been formulated and presented by NASA to a select group of industry and government stakeholders. Automated decision making software, combined with an Internet in the sky that enables sharing of information and distributes control between the cockpit and the ground, is key to this concept. However, its most revolutionary feature is a fundamental change in the roles and responsibilities assigned to air traffic controllers.

  4. [Dose output at an image intensifier with peak value- or mean value-control].

    PubMed

    Bronder, T

    1985-01-01

    X-ray fluoroscopy equipment with automatic brightness control works either on the principle of peak value control or mean value control. The different modes of operation of both control types have the consequence that different dose rate values are regulated if a homogeneous phantom is used. The controlled value using peak value control lies a factor of 1.4 higher than by mean value control. A theoretical consideration about the effect of different dose rate contrast distributions at the image intensifier with regard to the peak and mean values of both types of brightness control results in conditions, which an inhomogeneous phantom must satisfy to yield the same mean dose rate in both cases. By means of an inhomogeneous phantom construction in accordance with these conditions it is possible to compare the dose rate and also image quality parameters of different X-ray units with different types of brightness control. PMID:3969693

  5. Metal-air cells comprising collapsible foam members and means for minimizing internal pressure buildup

    NASA Technical Reports Server (NTRS)

    Woodruff, Glenn (Inventor); Putt, Ronald A. (Inventor)

    1994-01-01

    This invention provides a prismatic zinc-air cell including, in general, a prismatic container having therein an air cathode, a separator and a zinc anode. The container has one or more oxygen access openings, and the air cathode is disposed in the container in gaseous communication with the oxygen access openings so as to allow access of oxygen to the cathode. The separator has a first side in electrolytic communication with the air cathode and a second side in electrolytic communication with the zinc anode. The separator isolates the cathode and the zinc anode from direct electrical contact and allows passage of electrolyte therebetween. An expansion chamber adjacent to the zinc anode is provided which accommodates expansion of the zinc anode during discharge of the cell. A suitable collapsible foam member generally occupies the expansion space, providing sufficient resistance tending to oppose movement of the zinc anode away from the separator while collapsing upon expansion of the zinc anode during discharge of the cell. One or more vent openings disposed in the container are in gaseous communication with the expansion space, functioning to satisfactorily minimize the pressure buildup within the container by venting gasses expelled as the foam collapses during cell discharge.

  6. On the meaning of meaning when being mean: commentary on Berkowitz's "on the consideration of automatic as well as controlled psychological processes in aggression".

    PubMed

    Dodge, Kenneth A

    2008-01-01

    Berkowitz (this issue) makes a cogent case for his cognitive neo-associationist (CNA) model that some aggressive behaviors occur automatically, emotionally, and through conditioned association with other stimuli. He also proposes that they can occur without "processing," that is, without meaning. He contrasts his position with that of social information processing (SIP) models, which he casts as positing only controlled processing mechanisms for aggressive behavior. However, both CNA and SIP models posit automatic as well as controlled processes in aggressive behavior. Most aggressive behaviors occur through automatic processes, which are nonetheless rule governed. SIP models differ from the CNA model in asserting the essential role of meaning (often through nonconscious, automatic, and emotional processes) in mediating the link between a stimulus and an angry aggressive behavioral response. PMID:18203196

  7. Air Route Traffic Control Center. Controller Over-The-Shoulder Training Review: Instruction Manual.

    ERIC Educational Resources Information Center

    Federal Aviation Administration (DOT), Washington, DC.

    The instruction manual provides 12 step-by-step instructions for air traffic control supervisors in conducting over-the-shoulder training observations of enroute center controllers. Since the primary purpose of the review is to quickly identify training needs and requirements, the control responsibilities are approached from a deficiency…

  8. The meaning of air quality and flue gas emission standards for public acceptance of new thermal power plants.

    PubMed

    Barbalić, N; Marijan, G; Marić, M

    2000-06-01

    For the time being only 30-40% of the electric energy supply in Croatia comes from burning fossil fuel. New capacities of 800-1400 MW for the next decade will have to rely on the exclusive use of fossil fuels in thermal power plants (TPP). Public opinion will probably have a decisive influence on the issuing of construction permissions. The potential adverse effects on air seem to be the main argument against construction of TPPs. The priority is therefore to unambiguously state what air quality is warranted in the influenced area for the whole operation period of a TPP. It is important that the public should understand the real meaning of current air quality standards and emission limits. The only known way to do it today is through comparison with the corresponding standards and limits accepted worldwide. This paper discusses some important aspects of such comparison. PMID:11103526

  9. Controller evaluation of initial data link en route air traffic control services: Mini study 3

    NASA Astrophysics Data System (ADS)

    Marek, Hank; Shochet, Ephraim; Darby, Evan; Buck, Frank; Sweeney, David; Cratch, Preston

    1991-06-01

    The results of Mini Study 3 conducted November 5-9, 1990 are presented. This Mini Study was conducted at the Federal Aviation Administration (FAA) Technical Center utilizing the Washington Air Route Traffic Control Center (ARTCC) airspace in the Data Link test bed. Initial Data Link en route services were evaluated in order to identify service delivery methods which optimize the human computer interface. Controllers from the Air Traffic Data Link Validation Team participated in this study.

  10. [The meaning of fertility control in an integrated world].

    PubMed

    Benagiano, G; Testa, G; Cocuzzi, L

    2004-06-01

    Modern contraception was born out of the momentum of the demographic explosion that characterised the 20th century; today the phenomenon has acquired complexity because it is interconnected with population aging which is already very evident in the industrialised West, but is about to explode in the developing world too. Modern contraception played a decisive role in slowing down demographic growth which is now at a point below replacement level in numerous industrialised countries, including Italy. A phenomenon that has, unfortunately, often accompanied family planning education campaigns has been that of coercion: in the most highly populated countries and thus in those countries most exposed to the severe consequences of ultra-rapid increases in the population, governments and particularly zealous public servants have often resorted to more or less forced sterilisation and even abortion in order to achieve their targets. All of this ended in 1994 when the Cairo International Conference for Cooperation and Development recognised and sanctioned the new integrated concept of Reproductive Health. This new concept mandates that family planning and modern contraception must be integrated with all other interventions aimed at creating a state of psychophysical wellbeing in everything that concerns reproduction. Today then it is absolutely impossible to speak of "family planning", "fertility control" or "contraception" in isolated fashion; it is necessary to insert interventions in these fields into the global context of all other interventions in matters of reproduction. Finally, it should be recalled that in the 2nd half of the 20th century, after hundreds of thousands of years, homo sapiens performed at least 2 revolutions: the contraceptive revolution, which permitted sexuality without reproduction, and the reproductive revolution, which permitted reproduction without sexuality. Given the speed of these changes it should not surprise that they were received with

  11. Improved global prediction of 300 nautical mile mean free air anomalies

    NASA Technical Reports Server (NTRS)

    Cruz, J. Y.

    1982-01-01

    Current procedures used for the global prediction of 300nm mean anomalies starting from known values of 1 deg by 1 deg mean anomalies yield unreasonable prediction results when applied to 300nm blocks which have a rapidly varying gravity anomaly field and which contain relatively few observed 60nm blocks. Improvement of overall 300nm anomaly prediction is first achieved by using area-weighted as opposed to unweighted averaging of the 25 generated 60nm mean anomalies inside the 300nm block. Then, improvement of prediction over rough 300nm blocks is realized through the use of fully known 1 deg by 1 deg mean elevations, taking advantage of the correlation that locally exists between 60nm mean anomalies and 60nm mean elevations inside the 300nm block. An improved prediction model which adapts itself to the roughness of the local anomaly field is found to be the model of Least Squares Collocation with systematic parameters, the systematic parameter being the slope b which is a type of Bouguer slope expressing the correlation that locally exists between 60nm mean anomalies and 60nm mean elevations.

  12. Air toxics being measured more accurately, controlled more effectively

    SciTech Connect

    1995-04-01

    In response to the directives of the Clean Air Act Amendments, Argonne National Laboratory is developing new or improved pollutant control technologies for industries that burn fossil fuels. This research continues Argonne`s traditional support for the US DOE Flue Gas Cleanup Program. Research is underway to measure process emissions and identify new and improved control measures. Argonne`s emission control research has ranged from experiments in the basic chemistry of pollution-control systems, through laboratory-scale process development and testing to pilot-scale field tests of several technologies. Whenever appropriate, the work has emphasized integrated or combined control systems as the best approach to technologies that offer low cost and good operating characteristics.

  13. Air-Traffic Controllers Evaluate The Descent Advisor

    NASA Technical Reports Server (NTRS)

    Tobias, Leonard; Volckers, Uwe; Erzberger, Heinz

    1992-01-01

    Report describes study of Descent Advisor algorithm: software automation aid intended to assist air-traffic controllers in spacing traffic and meeting specified times or arrival. Based partly on mathematical models of weather conditions and performances of aircraft, it generates suggested clearances, including top-of-descent points and speed-profile data to attain objectives. Study focused on operational characteristics with specific attention to how it can be used for prediction, spacing, and metering.

  14. Hematological and immunological effects of stress of air traffic controllers in northeastern Brazil

    PubMed Central

    Ribas, Valdenilson Ribeiro; Martins, Hugo André de Lima; Viana, Marcelo Tavares; Fraga, Simone do Nascimento; Carneiro, Severino Marcos de Oliveira; Galvão, Bruno Henrique Andrade; Bezerra, Alice Andrade; de Castro, Célia Maria Machado Barbosa; Sougey, Everton Botelho; de Castro, Raul Manhães

    2011-01-01

    Background Several studies have shown that stress and emotional reactions can affect immune responses in animals and humans. Objective The aim of this study was to evaluate hematological and immunological effects of stress on air traffic controllers. Methods Thirty air traffic controllers and 15 aeronautical information service operators were evaluated. The groups were divided as information service operators with 10 years or more of experience (AIS≥10) and with less than 10 years in the profession (AIS<10) and air traffic controllers with 10 years or more of experience (ATCo≥10) and with less than 10 years in the profession (ATCo<10). Blood samples were drawn at 8:00 a.m. and 2:00 p.m. The paired t-test was used to compare monocyte and nitric oxide concentrations and ANOVA was used for the other parameters. Results The ATCo≥10 group presented a significantly lower phagocytosis rate of monocytes at 2:00 p.m. compared to 8:00 a.m. Moreover, the ATCo≥10 group presented lower hemoglobin, mean corpuscular hemoglobin concentration, platelet and leukocyte levels, and increased cortisol concentrations at 8:00 a.m. compared to the other groups. Additionally, this group had lower phagocytosis rate of monocytes, and hemoglobin, platelet, leukocyte, basophils and nitric oxide levels at 2:00 p.m. compared to the other groups. Conclusion Stress seems to greatly affect immune responses of air traffic controllers with more than ten years of experience. PMID:23049295

  15. Air traffic control surveillance accuracy and update rate study

    NASA Technical Reports Server (NTRS)

    Craigie, J. H.; Morrison, D. D.; Zipper, I.

    1973-01-01

    The results of an air traffic control surveillance accuracy and update rate study are presented. The objective of the study was to establish quantitative relationships between the surveillance accuracies, update rates, and the communication load associated with the tactical control of aircraft for conflict resolution. The relationships are established for typical types of aircraft, phases of flight, and types of airspace. Specific cases are analyzed to determine the surveillance accuracies and update rates required to prevent two aircraft from approaching each other too closely.

  16. Air and water pollution control: a benefit-cost assessment

    SciTech Connect

    Freeman, A.M. III

    1982-01-01

    Freeman attempts to assess the net benefits associated with environmental programs dealing with air and water quality. He concludes that stationary controls have been justified, but that mobile sources and water controls, as presently designed and implemented, have had costs greater than benefits to society. The reviewer notes that the book is more than just a compendium of mechanistic, technical detail; there is rather, far more general information on how economists view environmental problems than suggested by the title. An example is the discussions of the various approaches to valuing environmental benefits.

  17. Air pollution control and heat recovery system for industrial ovens

    SciTech Connect

    Jamaluddin, A.A.

    1980-12-30

    A system of air pollution control and heat recovery is provided for an arrangement of industrial ovens, especially for drum manufacture. A plurality of paint bake ovens of various capacities, lengths and heat input are provided for multi-stage processing in the manufacture of drums and lids therefor. A supply of high temperature water is provided for multi-stage cleaning and rinsing in the manufacturing operation. The combined exhaust from the oven is preheated in a heat exchanger and then all of the combustible components are burnt off by passing through the flames of an incinerator grid burner. The effluent from the burner first passes through the heat exchanger to preheat said oven exhaust gases and then through hot water coils to provide all of the necessary hot water for the system. High pressure hot water (275/sup 0/) is provided in this heat exchange operation. The hot gasses from the last heat exchanger, completely free of combustible contaminates, are mixed with fresh air to supply hot air for the dryers used in the process. There is a substantially complete recovery of heat and the gasses discharged to atmosphere meet air quality standards.

  18. 40 CFR 81.77 - Puerto Rico Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Puerto Rico Air Quality Control Region... Control Regions § 81.77 Puerto Rico Air Quality Control Region. The Puerto Rico Air Quality Control Region... delimited): The entire Commonwealth of Puerto Rico: Puerto Rico and surrounding islands, Vieques...

  19. 76 FR 30080 - Revisions to the California State Implementation Plan, Placer County Air Pollution Control...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-24

    ... AGENCY 40 CFR Part 52 Revisions to the California State Implementation Plan, Placer County Air Pollution Control District and Ventura County Air Pollution Control District AGENCY: Environmental Protection Agency... Pollution Control District (PCAPCD) and Ventura County Air Pollution Control District (VCAPCD) portion...

  20. 40 CFR 81.97 - Southwest Florida Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Quality Control Region. 81.97 Section 81.97 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.97 Southwest Florida Intrastate Air Quality Control Region. The Southwest Florida Intrastate Air Quality Control Region consists of the territorial area encompassed by...

  1. 40 CFR 81.30 - Southeastern Wisconsin Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Quality Control Region. 81.30 Section 81.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.30 Southeastern Wisconsin Intrastate Air Quality Control Region. The Metropolitan Milwaukee Intrastate Air Quality Control Region (Wisconsin) has been renamed the...

  2. 40 CFR 81.44 - Metropolitan Memphis Interstate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Quality Control Region. 81.44 Section 81.44 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.44 Metropolitan Memphis Interstate Air Quality Control Region. The Metropolitan Memphis Interstate Air Quality Control Region (Arkansas-Mississippi-Tennessee) consists of...

  3. 40 CFR 81.41 - Metropolitan Birmingham Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Quality Control Region. 81.41 Section 81.41 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.41 Metropolitan Birmingham Intrastate Air Quality Control Region. The Metropolitan Birmingham Intrastate Air Quality Control Region (Alabama) has been revised to consist of...

  4. 40 CFR 81.120 - Middle Tennessee Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Quality Control Region. 81.120 Section 81.120 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.120 Middle Tennessee Intrastate Air Quality Control Region. The Middle Tennessee Intrastate Air Quality Control Region consists of the territorial area encompassed...

  5. 40 CFR 81.24 - Niagara Frontier Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Quality Control Region. 81.24 Section 81.24 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.24 Niagara Frontier Intrastate Air Quality Control Region. The Niagara Frontier Intrastate Air Quality Control Region (New York) consists of the territorial...

  6. 40 CFR 81.16 - Metropolitan Denver Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Quality Control Region. 81.16 Section 81.16 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.16 Metropolitan Denver Intrastate Air Quality Control Region. The Metropolitan Denver Intrastate Air Quality Control Region (Colorado) consists of the territorial...

  7. 40 CFR 81.23 - Southwest Pennsylvania Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Quality Control Region. 81.23 Section 81.23 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.23 Southwest Pennsylvania Intrastate Air Quality Control Region. The Southwest Pennsylvania Intrastate Air Quality Control Region is redesignated to consist of the...

  8. 40 CFR 81.20 - Metropolitan Cincinnati Interstate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Quality Control Region. 81.20 Section 81.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.20 Metropolitan Cincinnati Interstate Air Quality Control Region. The Metropolitan Cincinnati Interstate Air Quality Control Region (Ohio-Kentucky-Indiana) is revised to consist...

  9. 40 CFR 81.89 - Metropolitan Cheyenne Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Quality Control Region. 81.89 Section 81.89 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.89 Metropolitan Cheyenne Intrastate Air Quality Control Region. The Metropolitan Cheyenne Intrastate Air Quality Control Region (Wyoming) consists of the territorial...

  10. 40 CFR 81.48 - Champlain Valley Interstate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Quality Control Region. 81.48 Section 81.48 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.48 Champlain Valley Interstate Air Quality Control Region. The Champlain Valley Interstate Air Quality Control Region (Vermont-New York) has been revised to consist of...

  11. 40 CFR 81.62 - Northeast Mississippi Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Quality Control Region. 81.62 Section 81.62 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.62 Northeast Mississippi Intrastate Air Quality Control Region. The Alabama-Mississippi-Tennessee Interstate Air Quality Control Region has been renamed the...

  12. 40 CFR 81.43 - Metropolitan Toledo Interstate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Quality Control Region. 81.43 Section 81.43 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.43 Metropolitan Toledo Interstate Air Quality Control Region. The Metropolitan Toledo Interstate Air Quality Control Region (Ohio-Michigan) consists of the territorial...

  13. 40 CFR 81.98 - Burlington-Keokuk Interstate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Quality Control Region. 81.98 Section 81.98 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.98 Burlington-Keokuk Interstate Air Quality Control Region. The Burlington-Keokuk Interstate Air Quality Control Region (Illinois-Iowa) is revised to consist of...

  14. 40 CFR 81.116 - Northern Missouri Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Quality Control Region. 81.116 Section 81.116 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.116 Northern Missouri Intrastate Air Quality Control Region. The Northern Missouri Intrastate Air Quality Control Region consists of the territorial area encompassed by...

  15. 40 CFR 81.75 - Metropolitan Charlotte Interstate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Quality Control Region. 81.75 Section 81.75 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.75 Metropolitan Charlotte Interstate Air Quality Control Region. The Metropolitan Charlotte Interstate Air Quality Control Region (North Carolina-South Carolina) has been...

  16. 40 CFR 81.43 - Metropolitan Toledo Interstate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Quality Control Region. 81.43 Section 81.43 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.43 Metropolitan Toledo Interstate Air Quality Control Region. The Metropolitan Toledo Interstate Air Quality Control Region (Ohio-Michigan) consists of the territorial...

  17. 40 CFR 81.34 - Metropolitan Dayton Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Quality Control Region. 81.34 Section 81.34 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.34 Metropolitan Dayton Intrastate Air Quality Control Region. The Metropolitan Dayton Intrastate Air Quality Control Region consists of the territorial area encompassed by...

  18. 40 CFR 81.87 - Metropolitan Boise Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Quality Control Region. 81.87 Section 81.87 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.87 Metropolitan Boise Intrastate Air Quality Control Region. The Metropolitan Boise Intrastate Air Quality Control Region (Idaho) consists of the territorial area...

  19. 40 CFR 81.16 - Metropolitan Denver Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Quality Control Region. 81.16 Section 81.16 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.16 Metropolitan Denver Intrastate Air Quality Control Region. The Metropolitan Denver Intrastate Air Quality Control Region (Colorado) consists of the territorial...

  20. 40 CFR 81.75 - Metropolitan Charlotte Interstate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Quality Control Region. 81.75 Section 81.75 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.75 Metropolitan Charlotte Interstate Air Quality Control Region. The Metropolitan Charlotte Interstate Air Quality Control Region (North Carolina-South Carolina) has been...