This protocol describes how quality control samples should be handled in the field, and was designed as a quick reference source for the field staff. The protocol describes quality control samples for air-VOCs, air-particles, water samples, house dust, soil, urine, blood, hair, a...
O'Connor, T M; Barry, P J; Jahangir, A; Finn, C; Buckley, B M; El-Gammal, A
2011-01-01
Arterial blood gases (ABGs) are often sampled incorrectly, leading to a 'mixed' or venous sample. Delays in analysis and air contamination are common. We measured the effects of these errors in patients with chronic obstructive pulmonary disease (COPD) exacerbations and controls. Arterial and venous samples were analyzed from 30 patients with COPD exacerbation and 30 controls. Venous samples were analysed immediately and arterial samples separated into non-air-contaminated and air-contaminated specimens and analysed at 0, 30, 60, 90 and 180 min. Mean venous pH was 7.371 and arterial pH was 7.407 (p < 0.0001). There was a correlation between venous and arterial pH (r = 0.5347, p < 0.0001). The regression equation to predict arterial pH was: arterial pH = 4.2289 + 0.43113 · venous pH. There were no clinically significant differences in arterial PO₂ associated with analysis delay. A statistically significant decline in pH was detected at 30 min in patients with COPD exacerbation (p = 0.0042) and 90 min in controls (p < 0.0001). A clinically significant decline in pH emerged at 73 min in patients with COPD exacerbation and 87 min in controls. Air contamination was associated with a clinically significant increase in PO₂ in all samples, including those that were immediately analyzed. Arterial and venous pH differ significantly. Venous pH cannot accurately replace arterial pH. Temporal delays in ABG analysis result in a significant decline in measured pH. ABGs should be analysed within 30 min. Air contamination leads to an immediate increase in measured PO₂, indicating that air-contaminated ABGs should be discarded. Copyright © 2010 S. Karger AG, Basel.
Diffusive sampling of a mixture of 42 volatile organic compounds (VOCs) in humidified, purified air onto the solid adsorbent Carbopack X was evaluated under controlled laboratory conditions. The evaluation included variations in sample air temperature, relative humidity, and ozon...
ERIC Educational Resources Information Center
Safara, Maryam; Ghasemi, Pejman
2017-01-01
The aim of this study was to evaluate the efficacy of yoga on spiritual intelligence in air traffic controllers in Tehran flight control center. This was a quasi-experimental research and the study population includes all air traffic controllers in Tehran flight control center. The sample consisted of 40 people of the study population that were…
An automated atmospheric sampling system operating on 747 airliners
NASA Technical Reports Server (NTRS)
Perkins, P. J.; Gustafsson, U. R. C.
1976-01-01
An air sampling system that automatically measures the temporal and spatial distribution of particulate and gaseous constituents of the atmosphere is collecting data on commercial air routes covering the world. Measurements are made in the upper troposphere and lower stratosphere (6 to 12 km) of constituents related to aircraft engine emissions and other pollutants. Aircraft operated by different airlines sample air at latitudes from the Arctic to Australia. This unique system includes specialized instrumentation, a special air inlet probe for sampling outside air, a computerized automatic control, and a data acquisition system. Air constituent and related flight data are tape recorded in flight for later computer processing on the ground.
Development and testing of a portable wind sensitive directional air sampler
NASA Technical Reports Server (NTRS)
Deyo, J.; Toma, J.; King, R. B.
1975-01-01
A portable wind sensitive directional air sampler was developed as part of an air pollution source identification system. The system is designed to identify sources of air pollution based on the directional collection of field air samples and their analysis for TSP and trace element characteristics. Sources can be identified by analyzing the data on the basis of pattern recognition concepts. The unit, designated Air Scout, receives wind direction signals from an associated wind vane. Air samples are collected on filter slides using a standard high volume air sampler drawing air through a porting arrangement which tracks the wind direction and permits collection of discrete samples. A preset timer controls the length of time each filter is in the sampling position. At the conclusion of the sampling period a new filter is automatically moved into sampling position displacing the previous filter to a storage compartment. Thus the Air Scout may be set up at a field location, loaded with up to 12 filter slides, and left to acquire air samples automatically, according to the wind, at any timer interval desired from 1 to 30 hours.
Mold contamination in a controlled hospital environment: a 3-year surveillance in southern Italy.
Caggiano, Giuseppina; Napoli, Christian; Coretti, Caterina; Lovero, Grazia; Scarafile, Giancarlo; De Giglio, Osvalda; Montagna, Maria Teresa
2014-11-15
Environmental monitoring of airborne filamentous fungi is necessary to reduce fungal concentrations in operating theaters and in controlled environments, and to prevent infections. The present study reports results of a surveillance of filamentous fungi carried out on samples from air and surfaces in operating theaters and controlled environments in an Italian university hospital. Sampling was performed between January 2010 and December 2012 in 32 operating theaters and five departments with high-risk patients. Indoor air specimens were sampled using a microbiological air sampler; Rodac contact plates were used for surface sampling. Fungal isolates were identified at the level of genera and species. Sixty-one samples (61/465; 13.1%) were positive for molds, with 18 from controlled environments (18/81; 22.2%) and 43 (43/384; 11.2%) from operating theaters. The highest air fungal load (AFL, colony-forming units per cubic meter [CFU/m(3)]) was recorded in the ophthalmology operating theater, while the pediatric onco-hematology ward had the highest AFL among the wards (47 CFU/m(3)). The most common fungi identified from culture of air specimens were Aspergillus spp. (91.8%), Penicillium spp., (6%) and Paecilomyces spp. (1.5%). During the study period, a statistically significant increase in CFU over time was recorded in air-controlled environments (p = 0.043), while the increase in AFL in operating theaters was not statistically significant (p = 0.145). Molds were found in 29.1% of samples obtained from surfaces. Aspergillus fumigatus was the most commonly isolated (68.5%). Our findings will form the basis for action aimed at improving the air and surface quality of these special wards. The lack of any genetic analysis prevented any correlation of fungal environmental contamination with onset of fungal infection, an analysis that will be undertaken in a prospective study in patients admitted to the same hospital.
40 CFR 1065.805 - Sampling system.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Sampling system. 1065.805 Section 1065.805 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS... background samples for correcting dilution air for background concentrations of alcohols and carbonyls. (c...
40 CFR 1065.805 - Sampling system.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Sampling system. 1065.805 Section 1065.805 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS... background samples for correcting dilution air for background concentrations of alcohols and carbonyls. (c...
40 CFR 1065.805 - Sampling system.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Sampling system. 1065.805 Section 1065.805 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS... background samples for correcting dilution air for background concentrations of alcohols and carbonyls. (c...
NASA Technical Reports Server (NTRS)
James, John T.
2001-01-01
The toxicological assessment of air samples returned at the end of the STS-102 (5A.1) flight to the ISS is reported. ISS air samples were taken in late February 2001 from the Service Module, FGB, and U.S. Laboratory using grab sample canisters (GSCs) and/or formaldehyde badges . A "first-entry" sample of the multipurpose logistics module (MPLM) atmosphere was taken with a GSC, and preflight and end-of-mission samples were obtained from Discovery using GSCs. Analytical methods have not changed from earlier reports, and all quality control measures were met for the data presented herein. The two general criteria used to assess air quality are the total-non-methane-volatile organic hydrocarbons (NMVOCs) and the total T-value (minus the CO2 contribution). Control of atmospheric alcohols is important to the water recovery system engineers, hence total alcohols were also assessed in each sample. Formaldehyde is quantified separately.
An investigation of the source of air Ar contamination in KAr dating
Mussett, A.E.; Brent, Dalrymple G.
1968-01-01
Precision of young KAr ages is limited by air argon contamination. A series of experiments in which the exposure of basalt and sanidine samples to air argon was controlled, shows that most of the air contamination does not arise in the laboratory. Because of this, it seems unlikely that air argon contamination can be significantly reduced by special sample handling and preparation techniques. ?? 1968.
NASA Technical Reports Server (NTRS)
James, John T.
2001-01-01
The toxicological assessment of air samples returned at the end of the STS-l04 (7 A) flight to the ISS is reported. ISS air samples were taken in June and July 2001 from the Service Module, FGB, and U.S. Laboratory using grab sample canisters (GSCs) and/or formaldehyde badges. Preflight and end-of-mission samples were obtained from Atlantis using GSCs. Solid sorbent air sampler (SSAS) samples were obtained from the ISS in April, June, and July. Analytical methods have not changed from earlier reports, and all quality control measures were met.
Remote possibly hazardous content container sampling device
Volz, David L.
1998-01-01
The present invention relates to an apparatus capable of sampling enclosed containers, where the contents of the container is unknown. The invention includes a compressed air device capable of supplying air pressure, device for controlling the amount of air pressure applied, a pneumatic valve, a sampling device having a hollow, sampling insertion needle suspended therein and device to communicate fluid flow between the container and a containment vessel, pump or direct reading instrument.
An automated atmospheric sampling system operating on 747 airliners
NASA Technical Reports Server (NTRS)
Perkins, P.; Gustafsson, U. R. C.
1975-01-01
An air sampling system that automatically measures the temporal and spatial distribution of selected particulate and gaseous constituents of the atmosphere has been installed on a number of commercial airliners and is collecting data on commercial air routes covering the world. Measurements of constituents related to aircraft engine emissions and other pollutants are made in the upper troposphere and lower stratosphere (6 to 12 km) in support of the Global Air Sampling Program (GASP). Aircraft operated by different airlines sample air at latitudes from the Arctic to Australia. This system includes specialized instrumentation for measuring carbon monoxide, ozone, water vapor, and particulates, a special air inlet probe for sampling outside air, a computerized automatic control, and a data acquisition system. Air constituents and related flight data are tape recorded in flight for later computer processing on the ground.
DOT National Transportation Integrated Search
1962-02-01
The relationships between chronological age upon entry into ATC training and school and job performance were examined in five samples of air traffic controller trainees. The data confirm conclusively the existence of an inverse relationship such that...
Air and smear sample calculational tool for Fluor Hanford Radiological control
DOE Office of Scientific and Technical Information (OSTI.GOV)
BAUMANN, B.L.
2003-07-11
A spreadsheet calculation tool was developed to automate the calculations performed for determining the concentration of airborne radioactivity and smear counting as outlined in HNF-13536, Section 5.2.7, ''Analyzing Air and Smear Samples''. This document reports on the design and testing of the calculation tool. Radiological Control Technicians (RCTs) will save time and reduce hand written and calculation errors by using an electronic form for documenting and calculating work place air samples. Current expectations are RCTs will perform an air sample and collect the filter or perform a smear for surface contamination. RCTs will then survey the filter for gross alphamore » and beta/gamma radioactivity and with the gross counts utilize either hand calculation method or a calculator to determine activity on the filter. The electronic form will allow the RCT with a few key strokes to document the individual's name, payroll, gross counts, instrument identifiers; produce an error free record. This productivity gain is realized by the enhanced ability to perform mathematical calculations electronically (reducing errors) and at the same time, documenting the air sample.« less
Eight Year Climatologies from Observational (AIRS) and Model (MERRA) Data
NASA Technical Reports Server (NTRS)
Hearty, Thomas; Savtchenko, Andrey; Won, Young-In; Theobalk, Mike; Vollmer, Bruce; Manning, Evan; Smith, Peter; Ostrenga, Dana; Leptoukh, Greg
2010-01-01
We examine climatologies derived from eight years of temperature, water vapor, cloud, and trace gas observations made by the Atmospheric Infrared Sounder (AIRS) instrument flying on the Aqua satellite and compare them to similar climatologies constructed with data from a global assimilation model, the Modern Era Retrospective-Analysis for Research and Applications (MERRA). We use the AIRS climatologies to examine anomalies and trends in the AIRS data record. Since sampling can be an issue for infrared satellites in low earth orbit, we also use the MERRA data to examine the AIRS sampling biases. By sampling the MERRA data at the AIRS space-time locations both with and without the AIRS quality control we estimate the sampling bias of the AIRS climatology and the atmospheric conditions where AIRS has a lower sampling rate. While the AIRS temperature and water vapor sampling biases are small at low latitudes, they can be more than a few degrees in temperature or 10 percent in water vapor at higher latitudes. The largest sampling biases are over desert. The AIRS and MERRA data are available from the Goddard Earth Sciences Data and Information Services Center (GES DISC). The AIRS climatologies we used are available for analysis with the GIOVANNI data exploration tool. (see, http://disc.gsfc.nasa.gov).
40 CFR 1065.545 - Verification of proportional flow control for batch sampling.
Code of Federal Regulations, 2014 CFR
2014-07-01
... control for batch sampling. 1065.545 Section 1065.545 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Performing an Emission Test Over Specified Duty Cycles § 1065.545 Verification of proportional flow control for batch sampling. For any...
Improved Sampling Method Reduces Isokinetic Sampling Errors.
ERIC Educational Resources Information Center
Karels, Gale G.
The particulate sampling system currently in use by the Bay Area Air Pollution Control District, San Francisco, California is described in this presentation for the 12th Conference on Methods in Air Pollution and Industrial Hygiene Studies, University of Southern California, April, 1971. The method represents a practical, inexpensive tool that can…
Montagna, Maria Teresa; De Giglio, Osvalda; Cristina, Maria Luisa; Napoli, Christian; Pacifico, Claudia; Agodi, Antonella; Baldovin, Tatjana; Casini, Beatrice; Coniglio, Maria Anna; D'Errico, Marcello Mario; Delia, Santi Antonino; Deriu, Maria Grazia; Guida, Marco; Laganà, Pasqualina; Liguori, Giorgio; Moro, Matteo; Mura, Ida; Pennino, Francesca; Privitera, Gaetano; Romano Spica, Vincenzo; Sembeni, Silvia; Spagnolo, Anna Maria; Tardivo, Stefano; Torre, Ida; Valeriani, Federica; Albertini, Roberto; Pasquarella, Cesira
2017-06-22
Healthcare facilities (HF) represent an at-risk environment for legionellosis transmission occurring after inhalation of contaminated aerosols. In general, the control of water is preferred to that of air because, to date, there are no standardized sampling protocols. Legionella air contamination was investigated in the bathrooms of 11 HF by active sampling (Surface Air System and Coriolis ® μ) and passive sampling using settling plates. During the 8-hour sampling, hot tap water was sampled three times. All air samples were evaluated using culture-based methods, whereas liquid samples collected using the Coriolis ® μ were also analyzed by real-time PCR. Legionella presence in the air and water was then compared by sequence-based typing (SBT) methods. Air contamination was found in four HF (36.4%) by at least one of the culturable methods. The culturable investigation by Coriolis ® μ did not yield Legionella in any enrolled HF. However, molecular investigation using Coriolis ® μ resulted in eight HF testing positive for Legionella in the air. Comparison of Legionella air and water contamination indicated that Legionella water concentration could be predictive of its presence in the air. Furthermore, a molecular study of 12 L. pneumophila strains confirmed a match between the Legionella strains from air and water samples by SBT for three out of four HF that tested positive for Legionella by at least one of the culturable methods. Overall, our study shows that Legionella air detection cannot replace water sampling because the absence of microorganisms from the air does not necessarily represent their absence from water; nevertheless, air sampling may provide useful information for risk assessment. The liquid impingement technique appears to have the greatest capacity for collecting airborne Legionella if combined with molecular investigations.
Montagna, Maria Teresa; De Giglio, Osvalda; Cristina, Maria Luisa; Napoli, Christian; Pacifico, Claudia; Agodi, Antonella; Baldovin, Tatjana; Casini, Beatrice; Coniglio, Maria Anna; D’Errico, Marcello Mario; Delia, Santi Antonino; Deriu, Maria Grazia; Guida, Marco; Laganà, Pasqualina; Liguori, Giorgio; Moro, Matteo; Mura, Ida; Pennino, Francesca; Privitera, Gaetano; Romano Spica, Vincenzo; Sembeni, Silvia; Spagnolo, Anna Maria; Tardivo, Stefano; Torre, Ida; Valeriani, Federica; Albertini, Roberto; Pasquarella, Cesira
2017-01-01
Healthcare facilities (HF) represent an at-risk environment for legionellosis transmission occurring after inhalation of contaminated aerosols. In general, the control of water is preferred to that of air because, to date, there are no standardized sampling protocols. Legionella air contamination was investigated in the bathrooms of 11 HF by active sampling (Surface Air System and Coriolis®μ) and passive sampling using settling plates. During the 8-hour sampling, hot tap water was sampled three times. All air samples were evaluated using culture-based methods, whereas liquid samples collected using the Coriolis®μ were also analyzed by real-time PCR. Legionella presence in the air and water was then compared by sequence-based typing (SBT) methods. Air contamination was found in four HF (36.4%) by at least one of the culturable methods. The culturable investigation by Coriolis®μ did not yield Legionella in any enrolled HF. However, molecular investigation using Coriolis®μ resulted in eight HF testing positive for Legionella in the air. Comparison of Legionella air and water contamination indicated that Legionella water concentration could be predictive of its presence in the air. Furthermore, a molecular study of 12 L. pneumophila strains confirmed a match between the Legionella strains from air and water samples by SBT for three out of four HF that tested positive for Legionella by at least one of the culturable methods. Overall, our study shows that Legionella air detection cannot replace water sampling because the absence of microorganisms from the air does not necessarily represent their absence from water; nevertheless, air sampling may provide useful information for risk assessment. The liquid impingement technique appears to have the greatest capacity for collecting airborne Legionella if combined with molecular investigations. PMID:28640202
Variables Related to Pre-Service Cannabis Use in a Sample of Air Force Enlistees.
ERIC Educational Resources Information Center
Mullins, Cecil J.; And Others
This report is an attempt to add to the existing information about cannabis use, its correlates, and its effects. The sample population consisted of self-admitted abusers of various drugs, identified shortly after entering the Air Force. The subjects (N=4688) were located through the Drug Control Office at Lackland Air Force Base. Variables…
Rossner, Alan; Farant, Jean-Pierre
2004-02-01
Evacuated canisters have been used for many years to collect ambient air samples for gases and vapors. Recently, significant interest has arisen in using evacuated canisters for personal breathing zone sampling as an alternative to sorbent sampling. A novel flow control device was designed and built at McGill University. The flow control device was designed to provide a very low flow rate, <0.5 mL/min, to allow a sample to be collected over an extended period of time. Previous experiments run at McGill have shown agreement between the mathematical and empirical models to predict flow rate. The flow control device combined with an evacuated canister (capillary flow control-canister) was used in a series of experiments to evaluate its performance against charcoal tubes and diffusive badges. Air samples of six volatile organic compounds were simultaneously collected in a chamber using the capillary flow control-canister, charcoal tubes, and diffusive badges. Five different concentrations of the six volatile organic compounds were evaluated. The results from the three sampling devices were compared to each other and to concentration values obtained using an online gas chromatograph (GC). Eighty-four samples of each method were collected for each of the six chemicals. Results indicate that the capillary flow control-canister device compares quite favorably to the online GC and to the charcoal tubes, p > 0.05 for most of the tests. The capillary flow control-canister was found to be more accurate for the compounds evaluated, easier to use, and easier to analyze than charcoal tubes and passive dosimeter badges.
NASA Technical Reports Server (NTRS)
James, John T.
2001-01-01
The toxicological assessment of air samples returned at the end of the STS-100 (6A) flight to the ISS is reported. ISS air samples were taken in March and April 2001 from the Service Module, FGB, and U.S. Laboratory using grab sample canisters (GSCs) and/or formaldehyde badges. An unplanned "first-entry" sample of the MPLM2 (multipurpose logistics module) atmosphere was taken with a GSC, and preflight and end-of-mission samples were obtained from Endeavour using GSCs. Analytical methods have not changed from earlier reports, and all quality control measures were met for the data presented herein. The two general criteria used to assess air quality are the total-non-methane-volatile organic hydrocarbons (NMVOCs) and the total T-value (minus the CO2 and formaldehyde contribution). Because of the Freon 218 (octafluoropropane, OFP) leak, its contribution to the NMVOC is indicated in brackets. When comparing the NMVOC values with the 25 mg/cubic m guideline, the OFP contributions should be subtracted. Control of atmospheric alcohols is important to the water recovery system engineers, hence total alcohols were also assessed in each sample.
Pacheco, J M; Brito, B; Hartwig, E; Smoliga, G R; Perez, A; Arzt, J; Rodriguez, L L
2017-04-01
Foot-and-mouth disease (FMD) is a highly contagious livestock disease of high economic impact. Early detection of FMD virus (FMDV) is fundamental for rapid outbreak control. Air sampling collection has been demonstrated as a useful technique for detection of FMDV RNA in infected animals, related to the aerogenous nature of the virus. In the current study, air from rooms housing individual (n = 17) or two groups (n = 4) of cattle experimentally infected with FDMV A24 Cruzeiro of different virulence levels was sampled to assess the feasibility of applying air sampling as a non-invasive, screening tool to identify sources of FMDV infection. Detection of FMDV RNA in air was compared with first detection of clinical signs and FMDV RNA levels in serum and oral fluid. FMDV RNA was detected in room air samples 1-3 days prior (seven animals) or on the same day (four animals) as the appearance of clinical signs in 11 of 12 individually housed cattle. Only in one case clinical signs preceded detection in air samples by one day. Overall, viral RNA in oral fluid or serum preceded detection in air samples by 1-2 days. Six individually housed animals inoculated with attenuated strains did not show clinical signs, but virus was detected in air in one of these cases 3 days prior to first detection in oral fluid. In groups of four cattle housed together, air detection always preceded appearance of clinical signs by 1-2 days and coincided more often with viral shedding in oral fluid than virus in blood. These data confirm that air sampling is an effective non-invasive screening method for detecting FMDV infection in confined to enclosed spaces (e.g. auction barns, milking parlours). This technology could be a useful tool as part of a surveillance strategy during FMD prevention, control or eradication efforts. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.
40 CFR 52.2682 - Air quality surveillance.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 5 2012-07-01 2012-07-01 false Air quality surveillance. 52.2682... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) Guam § 52.2682 Air quality... Pollution Control Standards and Regulations” (buffer zones—air quality sampling) are not in conformance with...
40 CFR 52.2682 - Air quality surveillance.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 5 2013-07-01 2013-07-01 false Air quality surveillance. 52.2682... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) Guam § 52.2682 Air quality... Pollution Control Standards and Regulations” (buffer zones—air quality sampling) are not in conformance with...
40 CFR 52.2682 - Air quality surveillance.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 5 2014-07-01 2014-07-01 false Air quality surveillance. 52.2682... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) Guam § 52.2682 Air quality... Pollution Control Standards and Regulations” (buffer zones—air quality sampling) are not in conformance with...
40 CFR 52.2682 - Air quality surveillance.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 4 2011-07-01 2011-07-01 false Air quality surveillance. 52.2682... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) Guam § 52.2682 Air quality... Pollution Control Standards and Regulations” (buffer zones—air quality sampling) are not in conformance with...
40 CFR 52.2682 - Air quality surveillance.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Air quality surveillance. 52.2682... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) Guam § 52.2682 Air quality... Pollution Control Standards and Regulations” (buffer zones—air quality sampling) are not in conformance with...
A simple novel device for air sampling by electrokinetic capture
Gordon, Julian; Gandhi, Prasanthi; Shekhawat, Gajendra; ...
2015-12-27
A variety of different sampling devices are currently available to acquire air samples for the study of the microbiome of the air. All have a degree of technical complexity that limits deployment. Here, we evaluate the use of a novel device, which has no technical complexity and is easily deployable. An air-cleaning device powered by electrokinetic propulsion has been adapted to provide a universal method for collecting samples of the aerobiome. Plasma-induced charge in aerosol particles causes propulsion to and capture on a counter-electrode. The flow of ions creates net bulk airflow, with no moving parts. A device and electrodemore » assembly have been re-designed from air-cleaning technology to provide an average air flow of 120 lpm. This compares favorably with current air sampling devices based on physical air pumping. Capture efficiency was determined by comparison with a 0.4 μm polycarbonate reference filter, using fluorescent latex particles in a controlled environment chamber. Performance was compared with the same reference filter method in field studies in three different environments. For 23 common fungal species by quantitative polymerase chain reaction (qPCR), there was 100 % sensitivity and apparent specificity of 87%, with the reference filter taken as “gold standard.” Further, bacterial analysis of 16S RNA by amplicon sequencing showed equivalent community structure captured by the electrokinetic device and the reference filter. Unlike other current air sampling methods, capture of particles is determined by charge and so is not controlled by particle mass. We analyzed particle sizes captured from air, without regard to specific analyte by atomic force microscopy: particles at least as low as 100 nM could be captured from ambient air. This work introduces a very simple plug-and-play device that can sample air at a high-volume flow rate with no moving parts and collect particles down to the sub-micron range. In conclusion, the performance of the device is substantially equivalent to capture by pumping through a filter for microbiome analysis by quantitative PCR and amplicon sequencing.« less
A simple novel device for air sampling by electrokinetic capture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gordon, Julian; Gandhi, Prasanthi; Shekhawat, Gajendra
A variety of different sampling devices are currently available to acquire air samples for the study of the microbiome of the air. All have a degree of technical complexity that limits deployment. Here, we evaluate the use of a novel device, which has no technical complexity and is easily deployable. An air-cleaning device powered by electrokinetic propulsion has been adapted to provide a universal method for collecting samples of the aerobiome. Plasma-induced charge in aerosol particles causes propulsion to and capture on a counter-electrode. The flow of ions creates net bulk airflow, with no moving parts. A device and electrodemore » assembly have been re-designed from air-cleaning technology to provide an average air flow of 120 lpm. This compares favorably with current air sampling devices based on physical air pumping. Capture efficiency was determined by comparison with a 0.4 μm polycarbonate reference filter, using fluorescent latex particles in a controlled environment chamber. Performance was compared with the same reference filter method in field studies in three different environments. For 23 common fungal species by quantitative polymerase chain reaction (qPCR), there was 100 % sensitivity and apparent specificity of 87%, with the reference filter taken as “gold standard.” Further, bacterial analysis of 16S RNA by amplicon sequencing showed equivalent community structure captured by the electrokinetic device and the reference filter. Unlike other current air sampling methods, capture of particles is determined by charge and so is not controlled by particle mass. We analyzed particle sizes captured from air, without regard to specific analyte by atomic force microscopy: particles at least as low as 100 nM could be captured from ambient air. This work introduces a very simple plug-and-play device that can sample air at a high-volume flow rate with no moving parts and collect particles down to the sub-micron range. In conclusion, the performance of the device is substantially equivalent to capture by pumping through a filter for microbiome analysis by quantitative PCR and amplicon sequencing.« less
A simple novel device for air sampling by electrokinetic capture.
Gordon, Julian; Gandhi, Prasanthi; Shekhawat, Gajendra; Frazier, Angel; Hampton-Marcell, Jarrad; Gilbert, Jack A
2015-12-27
A variety of different sampling devices are currently available to acquire air samples for the study of the microbiome of the air. All have a degree of technical complexity that limits deployment. Here, we evaluate the use of a novel device, which has no technical complexity and is easily deployable. An air-cleaning device powered by electrokinetic propulsion has been adapted to provide a universal method for collecting samples of the aerobiome. Plasma-induced charge in aerosol particles causes propulsion to and capture on a counter-electrode. The flow of ions creates net bulk airflow, with no moving parts. A device and electrode assembly have been re-designed from air-cleaning technology to provide an average air flow of 120 lpm. This compares favorably with current air sampling devices based on physical air pumping. Capture efficiency was determined by comparison with a 0.4 μm polycarbonate reference filter, using fluorescent latex particles in a controlled environment chamber. Performance was compared with the same reference filter method in field studies in three different environments. For 23 common fungal species by quantitative polymerase chain reaction (qPCR), there was 100 % sensitivity and apparent specificity of 87 %, with the reference filter taken as "gold standard." Further, bacterial analysis of 16S RNA by amplicon sequencing showed equivalent community structure captured by the electrokinetic device and the reference filter. Unlike other current air sampling methods, capture of particles is determined by charge and so is not controlled by particle mass. We analyzed particle sizes captured from air, without regard to specific analyte by atomic force microscopy: particles at least as low as 100 nM could be captured from ambient air. This work introduces a very simple plug-and-play device that can sample air at a high-volume flow rate with no moving parts and collect particles down to the sub-micron range. The performance of the device is substantially equivalent to capture by pumping through a filter for microbiome analysis by quantitative PCR and amplicon sequencing.
The effects of RF plasma ashing on zinc orthotitanate/potassium silicate thermal control coatings
NASA Technical Reports Server (NTRS)
Dever, Joyce A.; Bruckner, Eric J.
1992-01-01
Samples of YB-71, a white thermal control coating composed of zinc orthotitanate pigment in a potassium silicate binder, were exposed in air plasma and in oxygen plasma to determine optical property and surface chemistry changes. Results show that YB-71 undergoes a significant reflectance decrease upon exposure to the simulated LEO atomic oxygen environment provided by an air plasma asher. YB-71 samples exposed to the same effective fluence in oxygen plasma, or in a UV screening Faraday cage in air or oxygen, do not undergo as severe reflectance decreases as the samples exposed in the air plasma asher environment. The UV and VUV radiation present in the plasma ashers affects the YB-71 degradation. It is noted that, when using plasma ashers to determine LEO degradation, it is necessary to take into account the sensitivity of the material to the synergistic effects of atomic oxygen and accelerated UV radiation.
NASA Astrophysics Data System (ADS)
Todd, W. F.
1984-05-01
Area and breathing zone samples were analyzed for styrene (100425) at AMF Hatteras Yachts (SIC-3079), New Bern, North Carolina, in September, 1983. Control technology at the facility was inspected. Breathing zone styrene concentrations were 8 to 74 parts per million (ppm), the highest concentrations occurring in the lamination and gel coating departments. Area samples ranged from 1 to 20ppm. The OSHA standard is 100ppm. The hull lamination and assembly areas were ventilated by air make up units and exhaust blowers. Air exhausted through the lamination booths in the small parts work area was considerably less than the supply air from the make up units. The air flow in two of the three lamination booths was considered inadequate. Respirators were available if needed. Industrial hygiene sampling at the facility was supervised by the industrial hygienist.
NASA Technical Reports Server (NTRS)
Perry, J. L.; James, J. T.; Cole, H. E.; Limero, T. F.; Beck, S. W.
1997-01-01
Collection and analysis of spacecraft cabin air samples are necessary to assess the cabin air quality with respect to crew health. Both toxicology and engineering disciplines work together to achieve an acceptably clean cabin atmosphere. Toxicology is concerned with limiting the risk to crew health from chemical sources, setting exposure limits, and analyzing air samples to determine how well these limits are met. Engineering provides the means for minimizing the contribution of the various contaminant generating sources by providing active contamination control equipment on board spacecraft and adhering to a rigorous material selection and control program during the design and construction of the spacecraft. A review of the rationale and objectives for sampling spacecraft cabin atmospheres is provided. The presently-available sampling equipment and methods are reviewed along with the analytical chemistry methods employed to determine trace contaminant concentrations. These methods are compared and assessed with respect to actual cabin air quality monitoring needs. Recommendations are presented with respect to the basic sampling program necessary to ensure an acceptably clean spacecraft cabin atmosphere. Also, rationale and recommendations for expanding the scope of the basic monitoring program are discussed.
Weisel, Clifford P; Zhang, Junfeng; Turpin, Barbara J; Morandi, Maria T; Colome, Steven; Stock, Thomas H; Spektor, Dalia M; Korn, Leo; Winer, Arthur; Alimokhtari, Shahnaz; Kwon, Jaymin; Mohan, Krishnan; Harrington, Robert; Giovanetti, Robert; Cui, William; Afshar, Masoud; Maberti, Silvia; Shendell, Derek
2005-03-01
The Relationship of Indoor, Outdoor and Personal Air (RIOPA) Study was undertaken to evaluate the contribution of outdoor sources of air toxics, as defined in the 1990 Clean Air Act Amendments, to indoor concentrations and personal exposures. The concentrations of 18 volatile organic compounds (VOCs), 17 carbonyl compounds, and fine particulate matter mass (PM(2.5)) were measured using 48-h outdoor, indoor and personal air samples collected simultaneously. PM2.5 mass, as well as several component species (elemental carbon, organic carbon, polyaromatic hydrocarbons and elemental analysis) were also measured; only PM(2.5) mass is reported here. Questionnaires were administered to characterize homes, neighborhoods and personal activities that might affect exposures. The air exchange rate was also measured in each home. Homes in close proximity (<0.5 km) to sources of air toxics were preferentially (2:1) selected for sampling. Approximately 100 non-smoking households in each of Elizabeth, NJ, Houston, TX, and Los Angeles, CA were sampled (100, 105, and 105 respectively) with second visits performed at 84, 93, and 81 homes in each city, respectively. VOC samples were collected at all homes, carbonyls at 90% and PM(2.5) at 60% of the homes. Personal samples were collected from nonsmoking adults and a portion of children living in the target homes. This manuscript provides the RIOPA study design and quality control and assurance data. The results from the RIOPA study can potentially provide information on the influence of ambient sources on indoor air concentrations and exposure for many air toxics and will furnish an opportunity to evaluate exposure models for these compounds.
40 CFR 87.82 - Sampling and analytical procedures for measuring smoke exhaust emissions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Sampling and analytical procedures for measuring smoke exhaust emissions. 87.82 Section 87.82 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES...
40 CFR 87.64 - Sampling and analytical procedures for measuring gaseous exhaust emissions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Sampling and analytical procedures for measuring gaseous exhaust emissions. 87.64 Section 87.64 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES...
40 CFR 87.82 - Sampling and analytical procedures for measuring smoke exhaust emissions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Sampling and analytical procedures for measuring smoke exhaust emissions. 87.82 Section 87.82 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES...
40 CFR 87.64 - Sampling and analytical procedures for measuring gaseous exhaust emissions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Sampling and analytical procedures for measuring gaseous exhaust emissions. 87.64 Section 87.64 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES...
Identifying the effective concentration for spatial repellency of the dengue vector Aedes aegypti
2012-01-01
Background Current efforts are underway to quantify the chemical concentration in a treated air space that elicits a spatial repellent (deterrent) response in a vector population. Such information will facilitate identifying the optimum active ingredient (AI) dosage and intervention coverage important for the development of spatial repellent tools – one of several novel strategies being evaluated for vector-borne disease control. This study reports initial findings from air sampling experiments conducted under field conditions to describe the relationship between air concentrations of repellent AIs and deterrent behavior in the dengue vector, Aedes aegypti. Methods Air samples were taken inside and outdoors of experimental huts located in Pu Tuey Village, Kanchanaburi Province, Thailand in conjunction with mosquito behavioral evaluations. A mark-release-recapture study design using interception traps was used to measure deterrency of Ae. aegypti against 0.00625% metofluthrin coils and DDT-treated fabric (2g/m2) within separate experimental trials. Sentinel mosquito cohorts were positioned adjacent to air sampling locations to monitor knock down responses to AI within the treated air space. Air samples were analyzed using two techniques: the U.S. Environmental Protection Agency (USEPA) Compendium Method TO-10A and thermal desorption (TD). Results Both the USEPA TO-10A and TD air sampling methods were able to detect and quantify volatized AIs under field conditions. Air samples indicated concentrations of both repellent chemicals below thresholds required for toxic responses (mortality) in mosquitoes. These concentrations elicited up to a 58% and 70% reduction in Ae. aegypti entry (i.e., deterrency) into treated experimental huts using metofluthrin coils and DDT-treated fabric, respectively. Minimal knock down was observed in sentinel mosquito cohorts positioned adjacent to air sampling locations during both chemical evaluations. Conclusions This study is the first to describe two air sampling methodologies that are appropriate for detecting and quantifying repellent chemicals within a treated air space during mosquito behavior evaluations. Results demonstrate that the quantity of AI detected by the mosquito vector, Ae. aegypti, that elicits repellency is far lower than that needed for toxicity. These findings have important implications for evaluation and optimization of new vector control tools that function through mosquito behavior modification as opposed to mortality. PMID:23273133
Effect of Air and Vacuum Storage on the Tensile Properties of X-Ray Exposed Aluminized-FEP
NASA Technical Reports Server (NTRS)
deGroh, Kim K.; Gummow, Jonathan D.
2000-01-01
Metallized Teflon(Registered Trademark) FEP (fluorinated ethylene propylene), a common spacecraft thermal control material, from the exterior layer of the Hubble Space Telescope (HST) has become embrittled and suffers from extensive cracking. Teflon samples retrieved during Hubble servicing missions and from the Long Duration Exposure Facility (LDEF) indicate that there may be continued degradation in tensile properties over time. An investigation has been conducted to evaluate the effect of air and vacuum storage on the mechanical properties of x-ray exposed FEP. Aluminized-FEP (Al-FEP) tensile samples were irradiated with 15.3 kV Cu x-rays and stored in air or under vacuum for various time periods. Tensile data indicate that samples stored in air display larger decreases in tensile properties than for samples stored under vacuum. Air-stored samples developed a hazy appearance, which corresponded to a roughening of the aluminized surface. Optical property changes were also characterized. These findings indicate that air exposure plays a role in the degradation of irradiated FEP, therefore proper sample handling and storage is necessary with materials retrieved from space.
Study on Aerosol Penetration Through Clothing and Individual Protective Equipment
2009-05-01
8.4X10-3 mg.m-3 (2.57X105 particles per cubic meter of air) over a 30 minute period. This scenario represents a very high end threat with a large... Isokinetic air sampling was applied and the effect of aerosol losses in sampling lines and other parts of the test rig were incorporated in analysis...eliminate any “memory” effect. The aerosol sampling (airflow direction control, start of sampling) was operated manually. Isokinetic sampling conditions
Choukri, Firas; Menotti, Jean; Sarfati, Claudine; Lucet, Jean-Christophe; Nevez, Gilles; Garin, Yves J F; Derouin, Francis; Totet, Anne
2010-08-01
Airborne transmission of Pneumocystis has been demonstrated in animal models and is highly probable in humans. However, information concerning burdens of Pneumocystis jirovecii (human-derived Pneumocystis) in exhaled air from infected patients is lacking. Our objective is to evaluate P. jirovecii air diffusion in patients with Pneumocystis pneumonia. Patients admitted with Pneumocystis pneumonia were prospectively enrolled from 9 January 2008 to 21 July 2009. Air samples (1.5 m(3)) were collected on liquid medium with a commercial sampler at 1-, 3-, 5-, and 8-m distances from patients' heads. Air control samples were collected away from Pneumocystis pneumonia patient wards and outdoors. Samples were examined for P. jirovecii detection and quantification using a real-time polymerase chain reaction assay targeting the mitochondrial large subunit ribosomal RNA gene. Forty patients were diagnosed as having Pneumocystis pneumonia. Air sampling was performed in the environment for 19 of them. At a 1-m distance from patients' heads, P. jirovecii DNA was detected in 15 (79.8%) of 19 patients, with fungal burdens ranging from 7.5 X 10³ to 4.5 X 10⁶ gene copies/m(3). These levels decreased with distance from the patients (P < .002). Nevertheless, 4 (33.3%) of the 12 samples taken at 8 m, in the corridor adjacent to their room, were still positive. Forty control samples were collected and remained negative. This study provides the first quantitative data on the spread of P. jirovecii in exhaled air from infected patients. It sustains the risk of P. jirovecii direct transmission in close contact with patients with Pneumocystis pneumonia and leads the way for initiating a quantitative risk assessment for airborne transmission of P. jirovecii.
The relationships between air exposure, negative pressure, and hemolysis.
Pohlmann, Joshua R; Toomasian, John M; Hampton, Claire E; Cook, Keith E; Annich, Gail M; Bartlett, Robert H
2009-01-01
The purpose of this study was to describe the hemolytic effects of both negative pressure and an air-blood interface independently and in combination in an in vitro static blood model. Samples of fresh ovine or human blood (5 ml) were subjected to a bubbling air interface (0-100 ml/min) or negative pressure (0-600 mm Hg) separately, or in combination, for controlled periods of time and analyzed for hemolysis. Neither negative pressure nor an air interface alone increased hemolysis. However, when air and negative pressure were combined, hemolysis increased as a function of negative pressure, the air interface, and time. Moreover, when blood samples were exposed to air before initiating the test, hemolysis was four to five times greater than samples not preexposed to air. When these experiments were repeated using freshly drawn human blood, the same phenomena were observed, but the hemolysis was significantly higher than that observed in sheep blood. In this model, hemolysis is caused by combined air and negative pressure and is unrelated to either factor alone.
Model-based flow rate control for an orfice-type low-volume air sampler
USDA-ARS?s Scientific Manuscript database
The standard method of measuring air suspended particulate matter concentration per volume of air consists of continuously drawing a defined volume of air across a filter over an extended period of time, then measuring the mass of the filtered particles and dividing it by the total volume sampled ov...
40 CFR 1065.280 - Paramagnetic and magnetopneumatic O2 detection analyzers.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments O2 Measurements § 1065... diluted exhaust for batch or continuous sampling. You may use O2 measurements with intake air or fuel flow.... 15, 2011] Air-to-Fuel Ratio Measurements ...
40 CFR 1065.280 - Paramagnetic and magnetopneumatic O2 detection analyzers.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments O2 Measurements § 1065... diluted exhaust for batch or continuous sampling. You may use O2 measurements with intake air or fuel flow.... 15, 2011] Air-to-Fuel Ratio Measurements ...
Human factors in air traffic control: problems at the interfaces.
Shouksmith, George
2003-10-01
The triangular ISIS model for describing the operation of human factors in complex sociotechnical organisations or systems is applied in this research to a large international air traffic control system. A large sample of senior Air Traffic Controllers were randomly assigned to small focus discussion groups, whose task was to identify problems occurring at the interfaces of the three major human factor components: individual, system impacts, and social. From these discussions, a number of significant interface problems, which could adversely affect the functioning of the Air Traffic Control System, emerged. The majority of these occurred at the Individual-System Impact and Individual-Social interfaces and involved a perceived need for further interface centered training.
Scheduling whole-air samples above the Trade Wind Inversion from SUAS using real-time sensors
NASA Astrophysics Data System (ADS)
Freer, J. E.; Greatwood, C.; Thomas, R.; Richardson, T.; Brownlow, R.; Lowry, D.; MacKenzie, A. R.; Nisbet, E. G.
2015-12-01
Small Unmanned Air Systems (SUAS) are increasingly being used in science applications for a range of applications. Here we explore their use to schedule the sampling of air masses up to 2.5km above ground using computer controlled bespoked Octocopter platforms. Whole-air sampling is targeted above, within and below the Trade Wind Inversion (TWI). On-board sensors profiled the TWI characteristics in real time on ascent and, hence, guided the altitudes at which samples were taken on descent. The science driver for this research is investigation of the Southern Methane Anomaly and, more broadly, the hemispheric-scale transport of long-lived atmospheric tracers in the remote troposphere. Here we focus on the practical application of SUAS for this purpose. Highlighting the need for mission planning, computer control, onboard sensors and logistics in deploying such technologies for out of line-of-sight applications. We show how such a platform can be deployed successfully, resulting in some 60 sampling flights within a 10 day period. Challenges remain regarding the deployment of such platforms routinely and cost-effectively, particularly regarding training and support. We present some initial results from the methane sampling and its implication for exploring and understanding the Southern Methane Anomaly.
Breiman, R F; Cozen, W; Fields, B S; Mastro, T D; Carr, S J; Spika, J S; Mascola, L
1990-06-01
Epidemiologic studies have suggested that legionnaires' disease can be transmitted to susceptible hosts by contaminated aerosolized water from cooling towers and evaporative condensers; however, epidemic strains of Legionella have not been isolated by air sampling at such sites during epidemiologic investigations. An outbreak of legionnaires' disease occurred at a retirement hotel; Legionella pneumophila serogroup 1 was isolated from an evaporative condenser and from potable water. A case-control study showed that the only significant exposure risk was in area A. L. pneumophila serogroup 1 was isolated during air sampling near the evaporative condenser exhaust site, the air conditioning intake vent, and an air vent in area A, but not in shower stalls. Monoclonal antibody subtype patterns of L. pneumophila serogroup 1 isolates from patients matched those from the evaporative condenser but not from shower water. Air sampling and monoclonal antibody subtyping results support epidemiologic evidence that the evaporative condenser was the source of this outbreak.
NASA Technical Reports Server (NTRS)
1980-01-01
General Metal Works' Accu-Vol is a high-volume air sampling system used by many government agencies to monitor air quality for pollution control purposes. Procedure prevents possible test-invalidating contamination from materials other than particulate pollutants, caused by manual handling or penetration of windblown matter during transit, a cassette was developed in which the filter is sealed within a metal frame and protected in transit by a snap-on aluminum cover, thus handled only under clean conditions in the laboratory.
Monitoring of Microscopic Filamentous Fungi in Indoor Air of Transplant Unit.
Holý, Ondřej; Matoušková, Ivanka; Kubátová, Alena; Hamal, Petr; Svobodová, Lucie; Jurásková, Eva; Raida, Luděk
2015-12-01
The aim of the study was to control the microbial contamination of indoor air monitored monthly at the Transplant Unit of the University Hospital Olomouc from August 2010 to July 2011. The unit is equipped with a three-stage air filtration system with HEPA filters. The MAS-100 air sampler (Merck, GER) was used. Twenty locations were singled out for the purposes of collecting a total of 720 samplings of the indoor air. Swabs of the HVAC diffusers at the sampling locations were always carried out after the sampling of the indoor air. In total, 480 samples of the indoor air were taken for Sabouraud chloramphenicol agar. In 11 cases (2.29%) the cultivation verified the presence of microscopic filamentous fungi. Only two cases involved the sanitary facilities of a patient isolation box; the other positive findings were from the facilities. The most frequent established genus was Aspergillus spp. (4x), followed by Trichoderma spp. (2x) and Penicillium spp. (2x), Paecilomyces spp., Eurotium spp., and Chrysonilia spp. (1x each). In 2 cases the cultivation established sterile aerial mycelium, unfortunately no further identification was possible. A total of 726 swabs of HVAC diffusers were collected (2 positive-0.28%). The study results demonstrated the efficacy of the HVAC equipment. With the continuing increase in the number of severely immunocompromised patients, hospitals are faced with the growing problem of invasive aspergillosis and other opportunistic infections. Preventive monitoring of microbial air contaminants is of major importance for the control of invasive aspergillosis. Copyright© by the National Institute of Public Health, Prague 2015.
Legionnaires' Disease Bacteria in power plant cooling systems: downtime report. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tyndall, R.L.; Solomon, J.A.; Christensen, S.W.
1985-04-01
Legionnaires' Disease Bacteria (Legionella) are a normal part of the aquatic community that, when aerosolized, can be pathogenic to man. The downtime study was designed to determine the degree to which Legionella populations are aerosolized during cleaning and maintenance operations in a closed-cycle steam-electric power plant. Both high-volume and impinger air samples were collected prior to and during downtime operations. Emphasis was placed on sampling inside or adjacent to water boxes, condensers, and cooling towers. Control air samples were taken upwind from the plant site. Water and sludge samples were also collected at various locations. In the laboratory, the concentrationsmore » of Groups A, B, and C Legionella were determined using the direct fluorescent antibody method. All positive air samples, and other selected air samples, were injected into guinea pigs to detect infectious Legionella. Legionella could be detected in only 12 of the 126 air samples collected. These were predominantly Group A Legionella (L. pneumophila, serogroups 1 to 6). All 12 positive samples had been collected in the vicinity of water boxes, condensers, detention ponds, and cooling towers during downtime operations where aerosolization of Legionella populations would be expected. None of the air samples yielded infectious Legionella when injected into guinea pigs. Detection of Legionella in air samples taken during downtime was significantly more likely than detection during normal operating conditions (p <0.01). 13 refs., 4 figs., 10 tabs.« less
New Noble Gas Studies on Popping Rocks from the Mid-Atlantic Ridge near 14°N
NASA Astrophysics Data System (ADS)
Kurz, M. D.; Curtice, J.; Jones, M.; Péron, S.; Wanless, V. D.; Mittelstaedt, E. L.; Soule, S. A.; Klein, F.; Fornari, D. J.
2017-12-01
New Popping Rocks were recovered in situ on the Mid-Atlantic Ridge (MAR) near 13.77° N, using HOV Alvin on cruise AT33-03 in 2016 on RV Atlantis. We report new helium, neon, argon, and CO2 step-crushing measurements on a subset of the glass samples, with a focus on a new procedure to collect seafloor samples with minimal exposure to air. Glassy seafloor basalts were collected in sealed containers using the Alvin mechanical arm and transported to the surface without atmospheric exposure. On the ship, the seawater was drained, the volcanic glass was transferred to stainless steel ultra-high-vacuum containers (in an oxygen-free glove box), which were then evacuated using a turbo-molecular pump and sealed for transport under vacuum. All processing was carried out under a nitrogen atmosphere. A control sample was collected from each pillow outcrop and processed normally in air. The preliminary step-crushing measurements show that the anaerobically collected samples have systematically higher 20Ne/22Ne, 21Ne/22Ne and 40Ar/36Ar than the control samples. Helium abundances and isotopes are consistent between anaerobically collected samples and control samples. These results suggest that minimizing atmospheric exposure during sample processing can significantly reduce air contamination for heavy noble gases, providing a new option for seafloor sampling. Higher vesicle abundances appear to yield a greater difference in neon and argon isotopes between the anaerobic and control samples, suggesting that atmospheric contamination is related to vesicle abundance, possibly through micro-fractures. The new data show variability in the maximum mantle neon and argon isotopic compositions, and abundance ratios, suggesting that the samples experienced variable outgassing prior to eruption, and may represent different phases of a single eruption, or multiple eruptions.
Evaluation of a Dust Control for a Small Slab-Riding Dowel Drill for Concrete Pavement
Echt, Alan; Mead, Kenneth
2016-01-01
Purpose To assess the effectiveness of local exhaust ventilation to control respirable crystalline silica exposures to acceptable levels during concrete dowel drilling. Approach Personal breathing zone samples for respirable dust and crystalline silica were collected while laborers drilled holes 3.5 cm diameter by 36 cm deep in a concrete slab using a single-drill slab-riding dowel drill equipped with local exhaust ventilation. Data were collected on air flow, weather, and productivity. Results All respirable dust samples were below the 90 µg detection limit which, when combined with the largest sample volume, resulted in a minimum detectable concentration of 0.31 mg m−3. This occurred in a 32-min sample collected when 27 holes were drilled. Quartz was only detected in one air sample; 0.09 mg m−3 of quartz was found on an 8-min sample collected during a drill maintenance task. The minimum detectable concentration for quartz in personal air samples collected while drilling was performed was 0.02 mg m−3. The average number of holes drilled during each drilling sample was 23. Over the course of the 2-day study, air flow measured at the dust collector decreased from 2.2 to 1.7 m3 s−1. Conclusions The dust control performed well under the conditions of this test. The initial duct velocity with a clean filter was sufficient to prevent settling, but gradually fell below the recommended value to prevent dust from settling in the duct. The practice of raising the drill between each hole may have prevented the dust from settling in the duct. A slightly higher flow rate and an improved duct design would prevent settling without regard to the position of the drill. PMID:26826033
Evaluation of a Dust Control for a Small Slab-Riding Dowel Drill for Concrete Pavement.
Echt, Alan; Mead, Kenneth
2016-05-01
To assess the effectiveness of local exhaust ventilation to control respirable crystalline silica exposures to acceptable levels during concrete dowel drilling. Personal breathing zone samples for respirable dust and crystalline silica were collected while laborers drilled holes 3.5 cm diameter by 36 cm deep in a concrete slab using a single-drill slab-riding dowel drill equipped with local exhaust ventilation. Data were collected on air flow, weather, and productivity. All respirable dust samples were below the 90 µg detection limit which, when combined with the largest sample volume, resulted in a minimum detectable concentration of 0.31 mg m(-3). This occurred in a 32-min sample collected when 27 holes were drilled. Quartz was only detected in one air sample; 0.09 mg m(-3) of quartz was found on an 8-min sample collected during a drill maintenance task. The minimum detectable concentration for quartz in personal air samples collected while drilling was performed was 0.02 mg m(-3). The average number of holes drilled during each drilling sample was 23. Over the course of the 2-day study, air flow measured at the dust collector decreased from 2.2 to 1.7 m(3) s(-1). The dust control performed well under the conditions of this test. The initial duct velocity with a clean filter was sufficient to prevent settling, but gradually fell below the recommended value to prevent dust from settling in the duct. The practice of raising the drill between each hole may have prevented the dust from settling in the duct. A slightly higher flow rate and an improved duct design would prevent settling without regard to the position of the drill. Published by Oxford University Press on behalf of the British Occupational Hygiene Society 2016.
Detection of respiratory viruses on air filters from aircraft.
Korves, T M; Johnson, D; Jones, B W; Watson, J; Wolk, D M; Hwang, G M
2011-09-01
To evaluate the feasibility of identifying viruses from aircraft cabin air, we evaluated whether respiratory viruses trapped by commercial aircraft air filters can be extracted and detected using a multiplex PCR, bead-based assay. The ResPlex II assay was first tested for its ability to detect inactivated viruses applied to new filter material; all 18 applications of virus at a high concentration were detected. The ResPlex II assay was then used to test for 18 respiratory viruses on 48 used air filter samples from commercial aircraft. Three samples tested positive for viruses, and three viruses were detected: rhinovirus, influenza A and influenza B. For 33 of 48 samples, internal PCR controls performed suboptimally, suggesting sample matrix effect. In some cases, influenza and rhinovirus RNA can be detected on aircraft air filters, even more than 10 days after the filters were removed from aircraft. With protocol modifications to overcome PCR inhibition, air filter sampling and the ResPlex II assay could be used to characterize viruses in aircraft cabin air. Information about viruses in aircraft could support public health measures to reduce disease transmission within aircraft and between cities. © The MITRE corporation. Letters in Applied Microbiology © 2011 The Society for Applied Microbiology.
USDA-ARS?s Scientific Manuscript database
Foot-and-mouth disease (FMD) is a highly contagious livestock disease of high economic impact. Early detection of FMD virus (FMDV) is fundamental for rapid outbreak control. Air sampling collection has been demonstrated as a useful technique for detection of FMDV RNA in infected animals, related to ...
INDOOR AIR SAMPLING, SUB-SLAB VAPOR SAMPLING, AND SLAB AIR-PERMEABILITY TESTING AT THE RAYMARK SITE
By 2005, U.S. EPA and its state, tribal and local partners must assess, reduce, and/or control the risk to human health and the environment at more than 374,000 contaminated Superfund, RCRA, underground storage tank (UST), brownfield and oil sites. U.S. EPA is currently developi...
INDOOR AIR SAMPLING, SUB-SLAB VAPOR SAMPLING, AND SLAB AIR PERMEABILITY TESTING AT THE RAYMARK SITE
By 2005, U.S. EPA and its state, tribal and local partners must assess, reduce, and/or control the risk to human health and the environment at more than 374,000 contaminated Superfund, RCRA, underground storage tank (UST), brownfield and oil sites. U.S. EPA is currently developi...
Variability of indoor fungal microbiome of green and non-green low-income homes in Cincinnati, Ohio.
Coombs, Kanistha; Taft, Diana; Ward, Doyle V; Green, Brett J; Chew, Ginger L; Shamsaei, Behrouz; Meller, Jaroslaw; Indugula, Reshmi; Reponen, Tiina
2018-01-01
"Green" housing is designed to use low-impact materials, increase energy efficiency and improve occupant health. However, little is known about the indoor mycobiome of green homes. The current study is a subset of a multicenter study that aims to investigate the indoor environment of green homes and the respiratory health of asthmatic children. In the current study, the mycobiome in air, bed dust and floor dust was compared between green (study site) and non-green (control site), low-income homes in Cincinnati, Ohio. The samples were collected at baseline (within four months following renovation), and 12months after the baseline at the study site. Parallel sample collection was conducted in non-green control homes. Air samples were collected by PM2.5 samplers over 5-days. Bed and floor dust samples were vacuumed after the air sampling was completed. The DNA sample extracts were analyzed using ITS amplicon sequencing. Analysis indicated that there was no clear trend in the fungal communities between green and non-green homes. Instead, fungal community differences were greatest between sample types - air, bed, and floor. Microbial communities also changed substantially between sampling intervals in both green and non-green homes for all sample types, potentially indicating that there was very little stability in the mycobiomes. Research gaps remain regarding how indoor mycobiome fluctuates over time. Longer follow-up periods might elucidate the effect of green renovation on microbial load in buildings. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sullivan, T. M.; Wilke, R. J.; Roberts, T.
Atmospheric Tracer Depletion tests were conducted at the Wolf Creek Nuclear Power Plant to quantify the unfiltered in-leakage (UI) into the Control Room (CR), Control Building (CB), and Equipment Rooms (ER) at the Wolf Creek Nuclear Power Plant. Wolf Creek has two independent charcoal filter Emergency Ventilation Systems (EVS) that can be used to purify air entering the control building and control room. The Bravo System contains a filtration system in Room 1501 in the Auxiliary Building for the Control Room and another filtration system (FGK02B) on Elevation 2016 for the Control Building. The Alpha system contains a filtration systemmore » in Room 1512 in the Auxiliary Building for the Control Room and another filtration system (FGK02A) on Elevation 2016 for the Control Building. The Atmospheric Tracer Depletion (ATD) test is a technique to measure in-leakage using the concentration of perfluorocarbon compounds that have a constant atmospheric background. These levels are present in the Control Room and Control Building under normal operating conditions. When air is supplied by either of the EVS, most of the PFTS are removed by the charcoal filters. If the concentrations of the PFTs measured in protected areas are the same as the levels at the output of the EVS, the in-leakage of outside air into the protected area would be zero. If the concentration is higher in the protected area than at the output of the filter system, there is in-leakage and the in-leakage can be quantified by the difference. Sampling was performed using state-of-the-art Brookhaven Atmospheric Tracer Samplers (BATS) air sampling equipment and analysis performed on Brookhaven National Laboratory (BNL) dedicated PFT analytical systems. In the Alpha test two tracers PMCH and mcPDCH were used to determine in-leakage into the control building. The analytical system was tuned to maximize sensitivity after initial analysis of the Alpha test. The increased sensitivity permitted accurate quantification of five isomers of the PFT PDCH (mtPDCH, pcPDCH, otPDCH, mcPDCH, and ptPDCH). These isomers were quantified in the low concentration samples in the Alpha test and in all samples in the Bravo test. The best estimates of UI (Rui) for the four zones are provided in Table ES-1. For the CB, this estimate averages the four tracers at the four elevations. For the CR, this estimate uses the four sampling units located in the Control Room.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sullivan, T. M.; Wilke, R. J.; Roberts, T.
Atmospheric Tracer Depletion tests were conducted at the Wolf Creek Nuclear Power Plant to quantify the unfiltered in-leakage (UI) into the Control Room (CR), Control Building (CB), and Equipment Rooms (ER) at the Wolf Creek Nuclear Power Plant. Wolf Creek has two independent charcoal filter Emergency Ventilation Systems (EVS) that can be used to purify air entering the control building and control room. The Bravo System contains a filtration system in Room 1501 in the Auxiliary Building for the Control Room and another filtration system (FGK02B) on Elevation 2016 for the Control Building. The Alpha system contains a filtration systemmore » in Room 1512 in the Auxiliary Building for the Control Room and another filtration system (FGK02A) on Elevation 2016 for the Control Building.The Atmospheric Tracer Depletion (ATD) test is a technique to measure in-leakage using the concentration of perfluorocarbon compounds that have a constant atmospheric background. These levels are present in the Control Room and Control Building under normal operating conditions. When air is supplied by either of the EVS, most of the PFTS are removed by the charcoal filters. If the concentrations of the PFTs measured in protected areas are the same as the levels at the output of the EVS, the in-leakage of outside air into the protected area would be zero. If the concentration is higher in the protected area than at the output of the filter system, there is in-leakage and the in-leakage can be quantified by the difference.Sampling was performed using state-of-the-art Brookhaven Atmospheric Tracer Samplers (BATS) air sampling equipment and analysis performed on Brookhaven National Laboratory (BNL) dedicated PFT analytical systems. In the Alpha test two tracers PMCH and mcPDCH were used to determine in-leakage into the control building. The analytical system was tuned to maximize sensitivity after initial analysis of the Alpha test. The increased sensitivity permitted accurate quantification of five isomers of the PFT PDCH (mtPDCH, pcPDCH, otPDCH, mcPDCH, and ptPDCH). These isomers were quantified in the low concentration samples in the Alpha test and in all samples in the Bravo test.The best estimates of UI (Rui) for the four zones are provided in Table ES-1. For the CB, this estimate averages the four tracers at the four elevations. For the CR, this estimate uses the four sampling units located in the Control Room.« less
NHEXAS PHASE I MARYLAND STUDY--QA ANALYTICAL RESULTS FOR METALS IN SPIKE SAMPLES
The Metals in Spikes data set contains the analytical results of measurements of up to 4 metals in 71 control samples (spikes) from 47 households. Measurements were made in samples of indoor and outdoor air, blood, and urine. Controls were used to assess recovery of target anal...
Chuang, Hsiao-Chi; Ho, Kin-Fai; Lin, Lian-Yu; Chang, Ta-Yuan; Hong, Gui-Bing; Ma, Chi-Ming; Liu, I-Jung; Chuang, Kai-Jen
2017-09-01
The association of short-term air pollution filtration with cardiovascular health has been documented. However, the effect of long-term indoor air conditioner filtration on the association between air pollution and cardiovascular health is still unclear. We recruited 200 homemakers from Taipei and randomly assigned 100 of them to air filtration or control intervention; six home visits were conducted per year from 2013 to 2014. The participants under air filtration intervention during 2013 were reassigned to control intervention in 2014. The air pollution measurements consisted of particulate matter less than or equal to 2.5μm in diameter (PM 2.5 ) and total volatile organic compounds (VOCs); blood pressure was monitored for each participant during each visit. The following morning, blood samples were collected after air pollution monitoring. The blood samples were used to analyze biological markers, including high sensitivity-C-reactive protein (hs-CRP), 8-hydroxy-2'-deoxyguanosine (8-OHdG) and fibrinogen. Household information, including cleaning, cooking, and air conditioning, was collected by a questionnaire. Mixed-effects models were used to investigate the associations among air pollution measurements, blood pressure and biological markers. The results showed that increased levels of PM 2.5 and total VOCs were associated with increased hs-CRP, 8-OHdG and blood pressure. The health variables were higher among participants in the control intervention phase than among those in the air filtration intervention phase. We concluded that air pollution exposure was associated with systemic inflammation, oxidative stress and elevated blood pressure. The long-term filtration of air pollution with an air conditioner filter was associated with cardiovascular health of adults. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-11-01
This report is a continuation of the Installation Restoration Program site investigation report for IRP Sites No. 1, No. 2 and No. 3 at the Air National Guard, Rosyln, New York. The Sample Delivery Group (SDG) narratives and quality assurance/quality control analytical results of eighteen samples are reported.
Drop transfer between superhydrophobic wells using air logic control.
Vuong, Thach; Cheong, Brandon Huey-Ping; Huynh, So Hung; Muradoglu, Murat; Liew, Oi Wah; Ng, Tuck Wah
2015-02-21
Superhydrophobic surfaces aid biochemical analysis by limiting sample loss. A system based on wells here tolerated tilting up to 20° and allowed air logic transfer with evidence of mixing. Conditions for intact transfer on 15 to 60 μL drops using compressed air pressure operation were also mapped.
40 CFR 1065.280 - Paramagnetic and magnetopneumatic O2 detection analyzers.
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments O2 Measurements § 1065... diluted exhaust for batch or continuous sampling. You may use O2 measurements with intake air or fuel flow... 57443, Sept. 15, 2011;79 FR 23762, Apr. 28, 2014] Air-to-Fuel Ratio Measurements ...
Fitzgerald, J Edward F; Malik, Momin; Ahmed, Irfan
2012-02-01
Surgical smoke containing potentially carcinogenic and irritant chemicals is an inevitable consequence of intraoperative energized dissection. Different energized dissection methods have not been compared directly in human laparoscopic surgery or against commonly encountered pollutants. This study undertook an analysis of carcinogenic and irritant volatile hydrocarbon concentrations in electrocautery and ultrasonic scalpel plumes compared with cigarette smoke and urban city air control samples. Once ethical approval was obtained, gas samples were aspirated from the peritoneal cavity after human laparoscopic intraabdominal surgery solely using either electrocautery or ultrasonic scalpels. All were adsorbed in Tenax tubes and concentrations of carcinogenic or irritant volatile hydrocarbons measured by gas chromatography. The results were compared with cigarette smoke and urban city air control samples. The analyzing laboratory was blinded to sample origin. A total of 10 patients consented to intraoperative gas sampling in which only one method of energized dissection was used. Six carcinogenic or irritant hydrocarbons (benzene, ethylbenzene, styrene, toluene, heptene, and methylpropene) were identified in one or more samples. With the exception of styrene (P = 0.016), a nonsignificant trend toward lower hydrocarbon concentrations was observed with ultrasonic scalpel use. Ultrasonic scalpel plumes had significantly lower hydrocarbon concentrations than cigarette smoke, with the exception of methylpropene (P = 0.332). No significant difference was observed with city air. Electrocautery samples contained significantly lower hydrocarbon concentrations than cigarette smoke, with the exception of toluene (P = 0.117) and methyl propene (P = 0.914). Except for toluene (P = 0.028), city air showed no significant difference. Both electrocautery and ultrasonic dissection are associated with significantly lower concentrations of the most commonly detected carcinogenic and irritant hydrocarbons than cigarette smoke. A nonsignificant trend toward lower hydrocarbon concentrations was seen with ultrasonic scalpel dissection compared with diathermy. The contamination levels in city air were largely comparable with those seen after ultrasonic scalpel use. Although hydrocarbon concentrations are low, cumulative exposures may increase health risks. Where concerns arise, ultrasonic scalpel dissection may be preferable.
Legionnaires' disease bacteria in power plant cooling systems: downtime report. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tyndall, R.L.; Solomon, J.A.; Christensen, S.W.
1985-11-01
Legionnaires' disease bacteria (Legionella) are a normal part of the aquatic community that, when aerosolized, can be pathogenic to man. The downtime study was designed to determine the degree to which Legionella populations are aerosolized during cleaning and maintenance operations in a closed-cycle steam-electric power plant. Both high-volume and impinger air samples were collected prior to and during downtime operations. Emphasis was placed on sampling inside or adjacent to water boxes, condensers, and cooling towers. Control air samples were taken upwind from the plant site. Water and sludge samples were also collected at various locations. In the laboratory, the concentrationsmore » of Legionella were determined using the direct fluorescent antibody method. All positive air samples, and other selected air samples, were injected into guinea pigs to detect infectious Legionella. Legionella could be detected in only 12 of the 127 air samples collected. These were predominantly L. pneumophila, serogroups 1-6. In contrast to the air samples, most of the water and sludge samples were positive for Legionella, again predominantly L. pneumophila, serogroups 1-6. The highest Legionella concentrations were found in sludge samples associated with condenser tube cleaning. Among the water samples, the highest Legionella concentrations were found in cooling towers, immediately after the tower basins were cleaned and refilled, and in condenser tubes. Two of the three cooling tower water samples collected prior to downtime operations were infectious for guinea pigs. 16 refs., 4 figs., 11 tabs.« less
40 CFR 1065.245 - Sample flow meter for batch sampling.
Code of Federal Regulations, 2011 CFR
2011-07-01
... POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.245... difference between a diluted exhaust sample flow meter and a dilution air meter to calculate raw exhaust flow...
40 CFR 1065.245 - Sample flow meter for batch sampling.
Code of Federal Regulations, 2014 CFR
2014-07-01
... POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.245... difference between a diluted exhaust sample flow meter and a dilution air meter to calculate raw exhaust flow...
40 CFR 1065.245 - Sample flow meter for batch sampling.
Code of Federal Regulations, 2013 CFR
2013-07-01
... POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.245... difference between a diluted exhaust sample flow meter and a dilution air meter to calculate raw exhaust flow...
40 CFR 1065.245 - Sample flow meter for batch sampling.
Code of Federal Regulations, 2012 CFR
2012-07-01
... POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.245... difference between a diluted exhaust sample flow meter and a dilution air meter to calculate raw exhaust flow...
Filipiak, Wojciech; Filipiak, Anna; Ager, Clemens; Wiesenhofer, Helmut; Amann, Anton
2012-06-01
The approach for breath-VOCs' collection and preconcentration by applying needle traps was developed and optimized. The alveolar air was collected from only a few exhalations under visual control of expired CO(2) into a large gas-tight glass syringe and then warmed up to 45 °C for a short time to avoid condensation. Subsequently, a specially constructed sampling device equipped with Bronkhorst® electronic flow controllers was used for automated adsorption. This sampling device allows time-saving collection of expired/inspired air in parallel onto three different needle traps as well as improvement of sensitivity and reproducibility of NT-GC-MS analysis by collection of relatively large (up to 150 ml) volume of exhaled breath. It was shown that the collection of alveolar air derived from only a few exhalations into a large syringe followed by automated adsorption on needle traps yields better results than manual sorption by up/down cycles with a 1 ml syringe, mostly due to avoided condensation and electronically controlled stable sample flow rate. The optimal profile and composition of needle traps consists of 2 cm Carbopack X and 1 cm Carboxen 1000, allowing highly efficient VOCs' enrichment, while injection by a fast expansive flow technique requires no modifications in instrumentation and fully automated GC-MS analysis can be performed with a commercially available autosampler. This optimized analytical procedure considerably facilitates the collection and enrichment of alveolar air, and is therefore suitable for application at the bedside of critically ill patients in an intensive care unit. Due to its simplicity it can replace the time-consuming sampling of sufficient breath volume by numerous up/down cycles with a 1 ml syringe.
Brand, Willi A; Rothe, Michael; Sperlich, Peter; Strube, Martin; Wendeberg, Magnus
2016-07-15
The isotopic composition of greenhouse gases helps to constrain global budgets and to study sink and source processes. We present a new system for high-precision stable isotope measurements of carbon, hydrogen and oxygen in atmospheric methane and carbon dioxide. The design is intended for analyzing flask air samples from existing sampling programs without the need for extra sample air for methane analysis. CO2 and CH4 isotopes are measured simultaneously using two isotope ratio mass spectrometers, one for the analysis of δ(13) C and δ(18) O values and the second one for δ(2) H values. The inlet carousel delivers air from 16 sample positions (glass flasks 1-5 L and high-pressure cylinders). Three 10-port valves take aliquots from the sample stream. CH4 from 100-mL air aliquots is preconcentrated in 0.8-mL sample loops using a new cryo-trap system. A precisely calibrated working reference air is used in parallel with the sample according to the Principle of Identical Treatment. It takes about 36 hours for a fully calibrated analysis of a complete carousel including extractions of four working reference and one quality control reference air. Long-term precision values, as obtained from the quality control reference gas since 2012, account for 0.04 ‰ (δ(13) C values of CO2 ), 0.07 ‰ (δ(18) O values of CO2 ), 0.11 ‰ (δ(13) C values of CH4 ) and 1.0 ‰ (δ(2) H values of CH4 ). Within a single day, the system exhibits a typical methane δ(13) C standard deviation (1σ) of 0.06 ‰ for 10 repeated measurements. The system has been in routine operation at the MPI-BGC since 2012. Consistency of the data and compatibility with results from other laboratories at a high precision level are of utmost importance. A high sample throughput and reliability of operation are important achievements of the presented system to cope with the large number of air samples to be analyzed. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
The Relationships between Air Exposure, Negative Pressure and Hemolysis
Pohlmann, Joshua R.; Toomasian, John M.; Hampton, Claire E.; Cook, Keith E.; Annich, Gail M.; Bartlett, Robert H.
2013-01-01
The purpose of this study was to describe the hemolytic effects of both negative pressure and an air-blood interface independently and in combination in an in-vitro static blood model. Samples of fresh ovine or human blood (5 mL) were subjected to a bubbling air interface (0–100 mL/min) or negative pressure (0–600 mmHg) separately, or in combination, for controlled periods of time, and analyzed for hemolysis. Neither negative pressure nor an air interface alone increased hemolysis. However, when air and negative pressure were combined, hemolysis increased as a function of negative pressure, the air interface, and time. Moreover, when blood samples were exposed to air prior to initiating the test, hemolysis was 4–5 times greater than samples not pre-exposed to air. When these experiments were repeated using freshly drawn human blood the same phenomena were observed, but the hemolysis was significantly higher than that observed in sheep blood. In this model, hemolysis is caused by combined air and negative pressure and is unrelated to either factor alone. PMID:19730004
1988-12-01
made using a gas sampling valve. All instruments were calibrated using gravimetric standards certified to t 1-2% relative of stated value ( Air Products and Chemicals , Inc ., Allentown...cannister - 985410 7. High Purity Gas Cylinder Regulators - several sources Air Products and Chemicals , Inc . P.O. Box 1536 Washington, DC 20013 (301
Fekadu, Samuel; Getachewu, Bahilu
2015-04-01
Hospital environment represents a congenial situation where microorganisms and susceptible patients are indoors together. Thus, the objective of this study is to provide fundamental data related to the microbial quality of indoor air of Jimma University Specialized Hospital wards, to estimate the health hazard and to create standards for indoor air quality control. The microbial quality of indoor air of seven wards of Jimma University Specialized Hospital was determined. Passive air sampling technique, using open Petri-dishes containing different culture media, was employed to collect sample twice daily. The concentrations of bacteria and fungi aerosols in the indoor environment of the wards ranged between 2123 - 9733 CFU/m(3). The statistical analysis showed that the concentrations of bacteria that were measured in all studied wards were significantly different from each other (p-value=0.017), whereas the concentrations of fungi that were measured in all sampled wards were not significantly different from each other (p-value=0.850). Moreover, the concentrations of bacteria that were measured at different sampling time (morning and afternoon) were significantly different (p-value =0.001). All wards that were included in the study were heavily contaminated with bacteria and fungi. Thus, immediate interventions are needed to control those environmental factors which favor the growth and multiplication of microbes, and it is vital to control visitors and students in and out the wards. Moreover, it is advisable that strict measures be put in place to check the increasing microbial load in the hospital environment.
The interaction of culture with general job stressors in air traffic controllers.
Shouksmith, G; Taylor, J E
1997-01-01
Elements of the job of Air Traffic Controllers perceived as being stressful were rated for degree of stressfulness by a group of Singaporean controllers. The results were compared with those from earlier studies in Canada and New Zealand. It was hypothesized that the international nature of the job would be reflected in findings from all three groups of controllers. It was further hypothesized, however, that environmental and cultural factors would produce differences among the groups and that these would be greater between the Asian and the two "Western" cultures than between the two earlier samples studied. Results showed that the two Western cultures share 56% common variance in their perceptions of stressfulness, but this changes to 35% between the New Zealand and Singapore groups and only 21% between Canada and Singapore. Although comparison of the factor structure of the stress ratings of the Singapore and New Zealand samples again confirmed a general pattern of underlying stressors related to air traffic control (which fits general occupational models of stress), it also revealed culturally specific components. The nature of these suggests that they are emhedded in the context of Asian environments and cultures. The conclusion is that stress in Air Traffic Controllers is related both to generic occupation stressors and to others that are both organizationally and culturally specific.
Quantifying the size-resolved dynamics of indoor bioaerosol transport and control.
Kunkel, S A; Azimi, P; Zhao, H; Stark, B C; Stephens, B
2017-09-01
Understanding the bioaerosol dynamics of droplets and droplet nuclei emitted during respiratory activities is important for understanding how infectious diseases are transmitted and potentially controlled. To this end, we conducted experiments to quantify the size-resolved dynamics of indoor bioaerosol transport and control in an unoccupied apartment unit operating under four different HVAC particle filtration conditions. Two model organisms (Escherichia coli K12 and bacteriophage T4) were aerosolized under alternating low and high flow rates to roughly represent constant breathing and periodic coughing. Size-resolved aerosol sampling and settle plate swabbing were conducted in multiple locations. Samples were analyzed by DNA extraction and quantitative polymerase chain reaction (qPCR). DNA from both organisms was detected during all test conditions in all air samples up to 7 m away from the source, but decreased in magnitude with the distance from the source. A greater fraction of T4 DNA was recovered from the aerosol size fractions smaller than 1 μm than E. coli K12 at all air sampling locations. Higher efficiency HVAC filtration also reduced the amount of DNA recovered in air samples and on settle plates located 3-7 m from the source. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Upper-Room Ultraviolet Light and Negative Air Ionization to Prevent Tuberculosis Transmission
Escombe, A. Roderick; Moore, David A. J; Gilman, Robert H; Navincopa, Marcos; Ticona, Eduardo; Mitchell, Bailey; Noakes, Catherine; Martínez, Carlos; Sheen, Patricia; Ramirez, Rocio; Quino, Willi; Gonzalez, Armando; Friedland, Jon S; Evans, Carlton A
2009-01-01
Background Institutional tuberculosis (TB) transmission is an important public health problem highlighted by the HIV/AIDS pandemic and the emergence of multidrug- and extensively drug-resistant TB. Effective TB infection control measures are urgently needed. We evaluated the efficacy of upper-room ultraviolet (UV) lights and negative air ionization for preventing airborne TB transmission using a guinea pig air-sampling model to measure the TB infectiousness of ward air. Methods and Findings For 535 consecutive days, exhaust air from an HIV-TB ward in Lima, Perú, was passed through three guinea pig air-sampling enclosures each housing approximately 150 guinea pigs, using a 2-d cycle. On UV-off days, ward air passed in parallel through a control animal enclosure and a similar enclosure containing negative ionizers. On UV-on days, UV lights and mixing fans were turned on in the ward, and a third animal enclosure alone received ward air. TB infection in guinea pigs was defined by monthly tuberculin skin tests. All guinea pigs underwent autopsy to test for TB disease, defined by characteristic autopsy changes or by the culture of Mycobacterium tuberculosis from organs. 35% (106/304) of guinea pigs in the control group developed TB infection, and this was reduced to 14% (43/303) by ionizers, and to 9.5% (29/307) by UV lights (both p < 0.0001 compared with the control group). TB disease was confirmed in 8.6% (26/304) of control group animals, and this was reduced to 4.3% (13/303) by ionizers, and to 3.6% (11/307) by UV lights (both p < 0.03 compared with the control group). Time-to-event analysis demonstrated that TB infection was prevented by ionizers (log-rank 27; p < 0.0001) and by UV lights (log-rank 46; p < 0.0001). Time-to-event analysis also demonstrated that TB disease was prevented by ionizers (log-rank 3.7; p = 0.055) and by UV lights (log-rank 5.4; p = 0.02). An alternative analysis using an airborne infection model demonstrated that ionizers prevented 60% of TB infection and 51% of TB disease, and that UV lights prevented 70% of TB infection and 54% of TB disease. In all analysis strategies, UV lights tended to be more protective than ionizers. Conclusions Upper-room UV lights and negative air ionization each prevented most airborne TB transmission detectable by guinea pig air sampling. Provided there is adequate mixing of room air, upper-room UV light is an effective, low-cost intervention for use in TB infection control in high-risk clinical settings. PMID:19296717
40 CFR 1065.280 - Paramagnetic and magnetopneumatic O2 detection analyzers.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments O2 Measurements § 1065... diluted exhaust for batch or continuous sampling. You may use O2 measurements with intake air or fuel flow...), regardless of the uncompensated signal's bias. [73 FR 37300, June 30, 2008] Air-to-Fuel Ratio Measurements ...
Brun, C P; Miron, D; Silla, L M R; Pasqualotto, A C
2013-04-01
Invasive fungal diseases have emerged as important causes of morbidity and mortality in haematological patients. In this study air samples were collected in two haematopoietic stem cell transplantation (HSCT) units, in which distinct air-control systems were in place. In hospital 1 no high-efficiency particulate air (HEPA) filter was available whereas in hospital 2 HSCT rooms were equipped with HEPA filters, with positive air pressure in relation to the corridor. A total of 117 samples from rooms, toilets and corridors were obtained during December 2009 to January 2011, using a six-stage Andersen sampler. In both hospitals, the concentration of potentially pathogenic fungi in the air was reduced in patients' rooms compared to corridors (P < 0·0001). Despite the presence of a HEPA filter in hospital 2, rooms in both hospitals showed similar concentrations of potentially pathogenic fungi (P = 0·714). These findings may be explained by the implementation of additional protective measures in hospital 1, emphasizing the importance of such measures in protected environments.
NASA Astrophysics Data System (ADS)
Mattey, D.
2012-04-01
The concentration of CO2 in cave air is one of the main controls on the rate of degassing of dripwater and on the kinetics of calcite precipitation forming speleothem deposits. Measurements of cave air CO2reveal great complexity in the spatial distribution among interconnected cave chambers and temporal changes on synoptic to seasonal time scales. The rock of Gibraltar hosts a large number of caves distributed over a 300 meter range in altitude and monthly sampling and analysis of air and water combined with continuous logging of temperature, humidity and drip discharge rates since 2004 reveals the importance of density-driven seasonal ventilation which drives large-scale advection of CO2-rich air though the cave systems. Since 2008 we have deployed automatic CO2 monitoring systems that regularly sample cave air from up to 8 locations distributed laterally and vertically in St Michaels Cave located near the top of the rock at 275m asl and Ragged Staff Cave located in the heart of the rock near sea level. The logging system is controlled by a Campbell Scientific CR1000 programmable datalogger which controls an 8 port manifold connected to sampling lines leading to different parts of the cave over a distance of up to 250 meters. The manifold is pumped at a rate of 5l per minute drawing air through 6mm or 8mm id polythene tubing via a 1m Nafion loop to reduce humidity to local ambient conditions. The outlet of the primary pump leads to an open split which is sampled by a second low flow pump which delivers air at 100ml/minute to a Licor 820 CO2 analyser. The software selects the port to be sampled, flushes the line for 2 minutes and CO2 analysed as a set of 5 measurements averaged over 10 second intervals. The system then switches to the next port and when complete shuts down to conserve power after using 20 watts over a 30 minute period of analysis. In the absence of local mains power (eg from the show cave lighting system) two 12v car batteries will power the system for analysis at 4h intervals for about 1 month. Two logging systems sampling cave air from 13 locations over a vertical range of 275m have run continuously for up to 5 years and return a very detailed picture of cave ventilation patterns and their responses to local weather and seasonal change.
Mottier, Nicolas; Tharin, Manuel; Cluse, Camille; Crudo, Jean-René; Lueso, María Gómez; Goujon-Ginglinger, Catherine G; Jaquier, Anne; Mitova, Maya I; Rouget, Emmanuel G R; Schaller, Mathieu; Solioz, Jennifer
2016-09-01
Studies in environmentally controlled rooms have been used over the years to assess the impact of environmental tobacco smoke on indoor air quality. As new tobacco products are developed, it is important to determine their impact on air quality when used indoors. Before such an assessment can take place it is essential that the analytical methods used to assess indoor air quality are validated and shown to be fit for their intended purpose. Consequently, for this assessment, an environmentally controlled room was built and seven analytical methods, representing eighteen analytes, were validated. The validations were carried out with smoking machines using a matrix-based approach applying the accuracy profile procedure. The performances of the methods were compared for all three matrices under investigation: background air samples, the environmental aerosol of Tobacco Heating System THS 2.2, a heat-not-burn tobacco product developed by Philip Morris International, and the environmental tobacco smoke of a cigarette. The environmental aerosol generated by the THS 2.2 device did not have any appreciable impact on the performances of the methods. The comparison between the background and THS 2.2 environmental aerosol samples generated by smoking machines showed that only five compounds were higher when THS 2.2 was used in the environmentally controlled room. Regarding environmental tobacco smoke from cigarettes, the yields of all analytes were clearly above those obtained with the other two air sample types. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Gibbs, Jenna L; Yost, Michael G; Negrete, Maria; Fenske, Richard A
2017-03-01
Recent studies have highlighted the increased potency of oxygen analogs of organophosphorus pesticides. These pesticides and oxygen analogs have previously been identified in the atmosphere following spray applications in the states of California and Washington. We used two passive sampling methods to measure levels of the ollowing organophosphorus pesticides: chlorpyrifos, azinphos-methyl, and their oxygen analogs at 14 farmworker and 9 non-farmworker households in an agricultural region of central Washington State in 2011. The passive methods included polyurethane foam passive air samplers deployed outdoors and indoors and polypropylene deposition plates deployed indoors. We collected cumulative monthly samples during the pesticide application seasons and during the winter season as a control. Monthly outdoor air concentrations ranged from 9.2 to 199 ng/m 3 for chlorpyrifos, 0.03 to 20 ng/m 3 for chlorpyrifos-oxon, < LOD (limit of detection) to 7.3 ng/m 3 for azinphos-methyl, and < LOD to 0.8 ng/m 3 for azinphos-methyl-oxon. Samples from proximal households (≤ 250 m) had significantly higher outdoor air concentrations of chlorpyrifos, chlorpyrifos-oxon, and azinphos-methyl than did samples from nonproximal households ( p ≤ 0.02). Overall, indoor air concentrations were lower than outdoors. For example, all outdoor air samples for chlorpyrifos and 97% of samples for azinphos-methyl were > LOD. Indoors, only 78% of air samples for chlorpyrifos and 35% of samples for azinphos-methyl were > LOD. Samples from farmworker households had higher indoor air concentrations of both pesticides than did samples from non-farmworker households. Mean indoor and outdoor air concentration ratios for chlorpyrifos and azinphos-methyl were 0.17 and 0.44, respectively. We identified higher levels in air and on surfaces at both proximal and farmworker households. Our findings further confirm the presence of pesticides and their oxygen analogs in air and highlight their potential for infiltration of indoor living environments. Citation: Gibbs JL, Yost MG, Negrete M, Fenske RA. 2017. Passive sampling for indoor and outdoor exposures to chlorpyrifos, azinphos-methyl, and oxygen analogs in a rural agricultural community. Environ Health Perspect 125:333-341; http://dx.doi.org/10.1289/EHP425.
Radiocarbon (14C) measurements provide an estimate of the fraction of carbon in a sample that is biogenic. In September 1997 during SCOS97 a series of 3-h canister samples of ambient air were collected at the Azusa air monitoring station during morning and afternoon periods. ...
Brasel, T L; Martin, J M; Carriker, C G; Wilson, S C; Straus, D C
2005-11-01
The existence of airborne mycotoxins in mold-contaminated buildings has long been hypothesized to be a potential occupant health risk. However, little work has been done to demonstrate the presence of these compounds in such environments. The presence of airborne macrocyclic trichothecene mycotoxins in indoor environments with known Stachybotrys chartarum contamination was therefore investigated. In seven buildings, air was collected using a high-volume liquid impaction bioaerosol sampler (SpinCon PAS 450-10) under static or disturbed conditions. An additional building was sampled using an Andersen GPS-1 PUF sampler modified to separate and collect particulates smaller than conidia. Four control buildings (i.e., no detectable S. chartarum growth or history of water damage) and outdoor air were also tested. Samples were analyzed using a macrocyclic trichothecene-specific enzyme-linked immunosorbent assay (ELISA). ELISA specificity was tested using phosphate-buffered saline extracts of the fungal genera Aspergillus, Chaetomium, Cladosporium, Fusarium, Memnoniella, Penicillium, Rhizopus, and Trichoderma, five Stachybotrys strains, and the indoor air allergens Can f 1, Der p 1, and Fel d 1. For test buildings, the results showed that detectable toxin concentrations increased with the sampling time and short periods of air disturbance. Trichothecene values ranged from <10 to >1,300 pg/m3 of sampled air. The control environments demonstrated statistically significantly (P < 0.001) lower levels of airborne trichothecenes. ELISA specificity experiments demonstrated a high specificity for the trichothecene-producing strain of S. chartarum. Our data indicate that airborne macrocyclic trichothecenes can exist in Stachybotrys-contaminated buildings, and this should be taken into consideration in future indoor air quality investigations.
Quality Control for Ambient Sampling of PCDD/PCDF from Open Combustion Sources
Both long duration (> 6 h) and high temperature (up to 139o C) sampling efforts were conducted using ambient air sampling methods to determine if either high volume throughput or higher than ambient sampling temperatures resulted in loss of target polychlorinated dibenzodioxins/d...
40 CFR 1065.150 - Continuous sampling.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Continuous sampling. 1065.150 Section 1065.150 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Equipment Specifications § 1065.150 Continuous sampling. You may use continuous...
40 CFR 1065.150 - Continuous sampling.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Continuous sampling. 1065.150 Section 1065.150 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Equipment Specifications § 1065.150 Continuous sampling. You may use continuous...
40 CFR 1065.150 - Continuous sampling.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Continuous sampling. 1065.150 Section 1065.150 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Equipment Specifications § 1065.150 Continuous sampling. You may use continuous...
Presence of organophosphorus pesticide oxygen analogs in air samples
NASA Astrophysics Data System (ADS)
Armstrong, Jenna L.; Fenske, Richard A.; Yost, Michael G.; Galvin, Kit; Tchong-French, Maria; Yu, Jianbo
2013-02-01
A number of recent toxicity studies have highlighted the increased potency of oxygen analogs (oxons) of several organophosphorus (OP) pesticides. These findings were a major concern after environmental oxons were identified in environmental samples from air and surfaces following agricultural spray applications in California and Washington State. This paper reports on the validity of oxygen analog measurements in air samples for the OP pesticide, chlorpyrifos. Controlled environmental and laboratory experiments were used to examine artificial formation of chlorpyrifos-oxon using OSHA Versatile Sampling (OVS) tubes as recommended by NIOSH method 5600. Additionally, we compared expected chlorpyrifos-oxon attributable to artificial transformation to observed chlorpyrifos-oxon in field samples from a 2008 Washington State Department of Health air monitoring study using non-parametric statistical methods. The amount of artificially transformed oxon was then modeled to determine the amount of oxon present in the environment. Toxicity equivalency factors (TEFs) for chlorpyrifos-oxon were used to calculate chlorpyrifos-equivalent air concentrations. The results demonstrate that the NIOSH-recommended sampling matrix (OVS tubes with XAD-2 resin) was found to artificially transform up to 30% of chlorpyrifos to chlorpyrifos-oxon, with higher percentages at lower concentrations (<30 ng m-3) typical of ambient or residential levels. Overall, the 2008 study data had significantly greater oxon than expected by artificial transformation, but the exact amount of environmental oxon in air remains difficult to quantify with the current sampling method. Failure to conduct laboratory analysis for chlorpyrifos-oxon may result in underestimation of total pesticide concentration when using XAD-2 resin matrices for occupational or residential sampling. Alternative methods that can accurately measure both OP pesticides and their oxygen analogs should be used for air sampling, and a toxicity equivalent factor approach should be used to determine potential health risks from exposures.
Factors influencing microbial colonies in the air of operating rooms.
Fu Shaw, Ling; Chen, Ian Horng; Chen, Chii Shya; Wu, Hui Hsin; Lai, Li Shing; Chen, Yin Yin; Wang, Fu Der
2018-01-02
The operating room (OR) of the hospital is a special unit that requires a relatively clean environment. The microbial concentration of an indoor OR extrinsically influences surgical site infection rates. The aim of this study was to use active sampling methods to assess microbial colony counts in working ORs and to determine the factors affecting air contamination in a tertiary referral medical center. This study was conducted in 28 operating rooms located in a 3000-bed medical center in northern Taiwan. The microbiologic air counts were measured using an impactor air sampler from May to August 2015. Information about the procedure-related operative characteristics and surgical environment (environmental- and personnel-related factors) characteristics was collected. A total of 250 air samples were collected during surgical procedures. The overall mean number of bacterial colonies in the ORs was 78 ± 47 cfu/m 3 . The mean number of colonies was the highest for transplant surgery (123 ± 60 cfu/m 3 ), followed by pediatric surgery (115 ± 30.3 cfu/m 3 ). A total of 25 samples (10%) contained pathogens; Coagulase-negative staphylococcus (n = 12, 4.8%) was the most common pathogen. After controlling for potentially confounding factors by a multiple regression analysis, the surgical stage had the significantly highest correlation with bacterial counts (r = 0.346, p < 0.001). Otherwise, independent factors influencing bacterial counts were the type of surgery (29.85 cfu/m 3 , 95% CI 1.28-58.42, p = 0.041), site of procedure (20.19 cfu/m 3 , 95% CI 8.24-32.14, p = 0.001), number of indoor staff (4.93 cfu/m 3 , 95% CI 1.47-8.38, p = 0.005), surgical staging (36.5 cfu/m 3 , 95% CI 24.76-48.25, p < 0.001), and indoor air temperature (9.4 cfu/m 3 , 95% CI 1.61-17.18, p = 0.018). Under the well-controlled ventilation system, the mean microbial colony counts obtained by active sampling in different working ORs were low. The number of personnel and their activities critically influence the microbe concentration in the air of the OR. We suggest that ORs doing complex surgeries with more surgical personnel present should increase the frequency of air exchanges. A well-controlled ventilation system and infection control procedures related to environmental and surgical procedures are of paramount importance for reducing microbial colonies in the air.
NASA aviation safety reporting system
NASA Technical Reports Server (NTRS)
1978-01-01
The study deals with 165 inadvertent operations on or into inappropriate portions of the aircraft areas at controlled airports. Pilot-initiated and controller-initiated incursions are described and discussed. It was found that a majority of the pilot-initiated occurrences involved operation without a clearance; controller-initiated occurrences usually involved failure to maintain assured separation. The factors associated with these occurrences are analyzed. It appears that a major problem in these occurrences is inadequate coordination among the various system participants. Reasons for this, and some possible solutions to various aspects of the problem, are discussed. A sample of reports from pilots and controllers is presented. These relate to undesired occurrences in air transport, general aviation, and air traffic control operations; to ATC coordination problems; and to a recurrent problem in ASRS reports, parachuting operations. A sample of alert bulletins and responses to them is presented.
Influence of Air Humidity and Water Particles on Dust Control Using Ultrasonic Atomization
NASA Astrophysics Data System (ADS)
Okawa, Hirokazu; Nishi, Kentaro; Shindo, Dai; Kawamura, Youhei
2012-07-01
The influence of air humidity and water particles on dust control was examined using ultrasonic atomization at 2.4 MHz, an acrylic box (61 L), and four types of ore dust samples: green tuff (4 µm), green tuff (6 µm), kaolin, and silica. It was clearly demonstrated that ultrasonic atomization was effective in raising humidity rapidly. However, at high relative air humidity, the water particles remained stable in the box without changing to water vapor. Ultrasonic atomization was applied to suppress dust dispersion and 40-95% dust reduction was achieved at 83% relative air humidity. Dust dispersion was more effective with ultrasonic atomization than without.
Hammond, Duane R.; Shulman, Stanley A.; Echt, Alan S.
2016-01-01
Asphalt pavement milling machines use a rotating cutter drum to remove the deteriorated road surface for recycling. The removal of the road surface has the potential to release respirable crystalline silica, to which workers can be exposed. This paper describes an evaluation of respirable crystalline silica exposures to the operator and ground worker from two different half-lane and larger asphalt pavement milling machines that had ventilation dust controls and water-sprays designed and installed by the manufacturers. Manufacturer A completed milling for eleven days at four highway construction sites in Wisconsin, while Manufacturer B completed milling for ten days at seven highway construction sites in Indiana. To evaluate the dust controls, full-shift personal breathing zone air samples were collected from an operator and ground worker during the course of normal employee work activities of asphalt pavement milling at eleven different sites. Forty-two personal breathing zone air samples were collected over 21 days (sampling on an operator and ground worker each day). All samples were below 50 µg/m3 for respirable crystalline silica, the National Institute for Occupational Safety and Health recommended exposure limit. The geometric mean personal breathing zone air sample was 6.2 µg/m3 for the operator and 6.1 µg/m3 for the ground worker for the Manufacturer A milling machine. The geometric mean personal breathing zone air sample was 4.2 µg/m3 for the operator and 9.0 µg/m3 for the ground worker for the Manufacturer B milling machine. In addition, upper 95% confidence limits for the mean exposure for each occupation were well below 50 µg/m3 for both studies. The silica content in the bulk asphalt material being milled ranged from 7% to 23% silica for roads milled by Manufacturer A and from 5% to 12% silica for roads milled by Manufacturer B. The results indicate that engineering controls consisting of ventilation controls in combination with water-sprays are capable of controlling occupational exposures to respirable crystalline silica generated by asphalt pavement milling machines on highway construction sites. PMID:26913983
Hammond, Duane R; Shulman, Stanley A; Echt, Alan S
2016-07-01
Asphalt pavement milling machines use a rotating cutter drum to remove the deteriorated road surface for recycling. The removal of the road surface has the potential to release respirable crystalline silica, to which workers can be exposed. This article describes an evaluation of respirable crystalline silica exposures to the operator and ground worker from two different half-lane and larger asphalt pavement milling machines that had ventilation dust controls and water-sprays designed and installed by the manufacturers. Manufacturer A completed milling for 11 days at 4 highway construction sites in Wisconsin, and Manufacturer B completed milling for 10 days at 7 highway construction sites in Indiana. To evaluate the dust controls, full-shift personal breathing zone air samples were collected from an operator and ground worker during the course of normal employee work activities of asphalt pavement milling at 11 different sites. Forty-two personal breathing zone air samples were collected over 21 days (sampling on an operator and ground worker each day). All samples were below 50 µg/m(3) for respirable crystalline silica, the National Institute for Occupational Safety and Health recommended exposure limit. The geometric mean personal breathing zone air sample was 6.2 µg/m(3) for the operator and 6.1 µg/m(3) for the ground worker for the Manufacturer A milling machine. The geometric mean personal breathing zone air sample was 4.2 µg/m(3) for the operator and 9.0 µg/m(3) for the ground worker for the Manufacturer B milling machine. In addition, upper 95% confidence limits for the mean exposure for each occupation were well below 50 µg/m(3) for both studies. The silica content in the bulk asphalt material being milled ranged from 7-23% silica for roads milled by Manufacturer A and from 5-12% silica for roads milled by Manufacturer B. The results indicate that engineering controls consisting of ventilation controls in combination with water-sprays are capable of controlling occupational exposures to respirable crystalline silica generated by asphalt pavement milling machines on highway construction sites.
Near-infrared spectroscopy (NIRS) as a tool to monitor exhaust air from poultry operations.
Druckenmüller, Katharina; Günther, Klaus; Elbers, Gereon
2018-07-15
Intensive poultry operation systems emit a considerable volume of inorganic and organic matter in the surrounding environment. Monitoring cleaning properties of exhaust air cleaning systems and to detect small but significant changes in emission characteristics during a fattening cycle is important for both emission and fattening process control. In the present study, we evaluated the potential of near-infrared spectroscopy (NIRS) combined with chemometric techniques as a monitoring tool of exhaust air from poultry operation systems. To generate a high-quality data set for evaluation, the exhaust air of two poultry houses was sampled by applying state-of-the-art filter sampling protocols. The two stables were identical except for one crucial difference, the presence or absence of an exhaust air cleaning system. In total, twenty-one exhaust air samples were collected at the two sites to monitor spectral differences caused by the cleaning device, and to follow changes in exhaust air characteristics during a fattening period. The total dust load was analyzed by gravimetric determination and included as a response variable in multivariate data analysis. The filter samples were directly measured with NIR spectroscopy. Principal component analysis (PCA), linear discriminant analysis (LDA), and factor analysis (FA) were effective in classifying the NIR exhaust air spectra according to fattening day and origin. The results indicate that the dust load and the composition of exhaust air (inorganic or organic matter) substantially influence the NIR spectral patterns. In conclusion, NIR spectroscopy as a tool is a promising and very rapid way to detect differences between exhaust air samples based on still not clearly defined circumstances triggered during a fattening period and the availability of an exhaust air cleaning system. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
40 CFR 92.118 - Analyzer checks and calibrations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.118... sampling system at the sample probe or valve V2 at atmospheric pressure. Simultaneously, start the time...
NASA Technical Reports Server (NTRS)
James, John T.
2002-01-01
The toxicological assessment of grab sample canisters (GSCs) returned aboard STS-110 is reported. Analytical methods have not changed from earlier reports, and surrogate standard recoveries from the GSCs were 77-121%, with one exception. Pressure tracking indicated no leaks in the canisters. Recoveries from lab and trip controls for formaldehyde analyses ranged from 87 to 96%. The two general criteria used to assess air quality are the total-non-methane-volatile organic hydrocarbons (NMVOCs) and the total T-value (minus the CO2 and formaldehyde contributions). Because of the inertness of Freon 218 (octafluoropropane, OFP), its contribution to the NMVOC is subtracted and tabulated separately. Control of atmospheric alcohols is important to the water recovery system engineers, hence total alcohols are also shown for each sample. Because formaldehyde is quantified from sorbent badges, its concentration is listed separately. These five indices of air quality are summarized.
Napoli, Christian; Marcotrigiano, Vincenzo; Montagna, Maria Teresa
2012-08-02
Since air can play a central role as a reservoir for microorganisms, in controlled environments such as operating theatres regular microbial monitoring is useful to measure air quality and identify critical situations. The aim of this study is to assess microbial contamination levels in operating theatres using both an active and a passive sampling method and then to assess if there is a correlation between the results of the two different sampling methods. The study was performed in 32 turbulent air flow operating theatres of a University Hospital in Southern Italy. Active sampling was carried out using the Surface Air System and passive sampling with settle plates, in accordance with ISO 14698. The Total Viable Count (TVC) was evaluated at rest (in the morning before the beginning of surgical activity) and in operational (during surgery). The mean TVC at rest was 12.4 CFU/m3 and 722.5 CFU/m2/h for active and passive samplings respectively. The mean in operational TVC was 93.8 CFU/m3 (SD = 52.69; range = 22-256) and 10496.5 CFU/m2/h (SD = 7460.5; range = 1415.5-25479.7) for active and passive samplings respectively. Statistical analysis confirmed that the two methods correlate in a comparable way with the quality of air. It is possible to conclude that both methods can be used for general monitoring of air contamination, such as routine surveillance programs. However, the choice must be made between one or the other to obtain specific information.
Evaluation of different types of enamel conditioning before application of a fissure sealant.
Ciucchi, Philip; Neuhaus, Klaus W; Emerich, Marta; Peutzfeldt, Anne; Lussi, Adrian
2015-01-01
The aim of the study was to compare fissure sealant quality after mechanical conditioning of erbium-doped yttrium aluminium garnet (Er:YAG) laser or air abrasion prior to chemical conditioning of phosphoric acid etching or of a self-etch adhesive. Twenty-five permanent molars were initially divided into three groups: control group (n = 5), phosphoric acid etching; test group 1 (n = 10), air abrasion; and test group 2, (n = 10) Er:YAG laser. After mechanical conditioning, the test group teeth were sectioned buccolingually and the occlusal surface of one half tooth (equal to one sample) was acid etched, while a self-etch adhesive was applied on the other half. The fissure system of each sample was sealed, thermo-cycled and immersed in 5% methylene dye for 24 h. Each sample was sectioned buccolingually, and one slice was analysed microscopically. Using specialized software microleakage, unfilled margin, sealant failure and unfilled area proportions were calculated. A nonparametric ANOVA model was applied to compare the Er:YAG treatment with that of air abrasion and the self-etch adhesive with phosphoric acid (α = 0.05). Test groups were compared to the control group using Wilcoxon rank sum tests (α = 0.05). The control group displayed significantly lower microleakage but higher unfilled area proportions than the Er:YAG laser + self-etch adhesive group and displayed significantly higher unfilled margin and unfilled area proportions than the air-abrasion + self-etch adhesive group. There was no statistically significant difference in the quality of sealants applied in fissures treated with either Er:YAG laser or air abrasion prior to phosphoric acid etching, nor in the quality of sealants applied in fissures treated with either self-etch adhesive or phosphoric acid following Er:YAG or air-abrasion treatment.
Garrison, R A; Robertson, L D; Koehn, R D; Wynn, S R
1993-12-01
Commercial air duct sanitation services are advertised to the public as being effective in reducing indoor aeroallergen levels despite the absence of published supporting data. Eight residential heat-ventilation-air conditioning (HVAC) systems in six homes and seven HVAC systems in five homes in winter and summer, respectively, were sampled to determine fungal colony forming units (CFUs) prior to and after an HVAC sanitation procedure was performed by a local company. Two houses in which no sanitation procedure was performed served as controls in each study phase. Two sample sets were obtained at each HVAC system prior to cleaning in order to determine baseline CFU levels. The test HVAC systems were then cleaned, and the HVAC systems allowed to operate as desired by the residents. Posttreatment sampling was performed 48 hours and then weekly after cleaning for 8 weeks. The HVAC systems were analyzed by exposing sterile 2% malt extract media plates at a 90-degree angle to the air flow at the air supply and air return vents. The baseline CFUs were similar in the control and study houses. Eight weeks after sanitation, the study houses demonstrated an overall CFU reduction of 92% during winter and 84% during summer. No reduction in CFU values was observed over the 8-week study period for the houses selected as controls. Further, HVAC sanitation appeared to reduce the number of fungal colonies entering and leaving the HVAC system, suggesting that the HVAC contained a significant percentage of the total fungal load in these homes. These data suggest that HVAC sanitation may be an effective tool in reducing airborne fungal populations in residential environments.
NASA Technical Reports Server (NTRS)
Itoh, T.; Kubo, H.; Honda, H.; Tominaga, T.; Makide, Y.; Yakohata, A.; Sakai, H.
1985-01-01
Measurements of concentrations of chlorofluoromethanes (CFMs), carbon dioxide and carbon isotope ratio in stratospheric and tropospheric air by grab-sampling systems are reported. The balloon-borne grab-sampling system has been launched from Sanriku Balloon Center three times since 1981. It consists of: (1) six sampling cylinders, (2) eight motor driven values, (3) control and monitor circuits, and (4) pressurized housing. Particular consideration is paid to the problem of contamination. Strict requirements are placed on the choice of materials and components, construction methods, cleaning techniques, vacuum integrity, and sampling procedures. An aluminum pressurized housing and a 4-m long inlet line are employed to prevent the sampling air from contamination by outgassing of sampling and control devices. The sampling is performed during the descent of the system. Vertical profiles of mixing ratios of CF2Cl2, CFCl3 and CH4 are given. Mixing ratios of CF2Cl2 and CFCl3 in the stratosphere do not show the discernible effect of the increase of those in the ground level background, and decrease with altitude. Decreasing rate of CFCl3 is larger than that of CF2Cl2. CH4 mixing ratio, on the other hand, shows diffusive equilibrium, as the photodissociation cross section of CH4 is small and concentrations of OH radical and 0(sup I D) are low.
Acaroid mite allergens from the filters of air-conditioning system in China.
Li, Chao-Pin; Guo, Wei; Zhan, Xiao-Dong; Zhao, Bei-Bei; Diao, Ji-Dong; Li, Na; He, Lian-Ping
2014-01-01
Accumulation of acaroid mites in the filters of air-conditioners is harmful to human health. It is important to clarify the allergen components of mites from the filters of local air-conditioning system. The present study was to detect the allergen types in the filters of air-conditioners and assesse their allergenicity by asthmatic models. Sixty aliquots of dust samples were collected from air conditioning filters in civil houses in Wuhu area. Total protein was extracted from the dust samples using PBS and quantified by Bradford method. Allergens I and II were also detected by Western blot using primary antibody (anti-Der f1/2, Der p1/Der f2/Der p2, respectively). Ten aliquots of the positive samples were randomly selected for homogenization and sensitized the mice for developing asthmatic animal models. Total serum IgE level and IFN-γ, IL-4 and IL-5 in the bronchoalveolar lavage fluid (BALF). The allergenicity of the extraction was assessed using pathological sections developed from the mouse pulmonary tissues. The concentration of extract from the 60 samples was ranged from 4.37 μg/ml to 30.76 μg/ml. After analyzing with Western blot, 31 of 60 samples were positive for 4 allergens of acaroid mites, and yet 16 were negative. The levels of total IgE from serum IL-4 and IL-5 from the BALF in the experimental group were apparently higher than that of negative control and PBS group (P < 0.01), but there were no statistical difference compared to OVA group (P > 0.05). However,the IFN-γ level in BALF was lower compared with the negative control and PBS group (P < 0.05) but with the OVA group (P > 0.05). The pathological changes were evidently emerged in pulmonary tissues, which were similar to those of OVA group, compared with the PBS ground and negative controls. The air-conditioner filters in human dwellings of Wuhu area potentially contain the major group allergen 1 and 2 from D. farinae and D. pteronyssinus, which may be associated with seasonal prevalence of allergic disorders in this area.
Acaroid mite allergens from the filters of air-conditioning system in China
Li, Chao-Pin; Guo, Wei; Zhan, Xiao-Dong; Zhao, Bei-Bei; Diao, Ji-Dong; Li, Na; He, Lian-Ping
2014-01-01
Accumulation of acaroid mites in the filters of air-conditioners is harmful to human health. It is important to clarify the allergen components of mites from the filters of local air-conditioning system. The present study was to detect the allergen types in the filters of air-conditioners and assesse their allergenicity by asthmatic models. Sixty aliquots of dust samples were collected from air conditioning filters in civil houses in Wuhu area. Total protein was extracted from the dust samples using PBS and quantified by Bradford method. Allergens I and II were also detected by Western blot using primary antibody (anti-Der f1/2, Der p1/Der f2/Der p2, respectively). Ten aliquots of the positive samples were randomly selected for homogenization and sensitized the mice for developing asthmatic animal models. Total serum IgE level and IFN-γ, IL-4 and IL-5 in the bronchoalveolar lavage fluid (BALF). The allergenicity of the extraction was assessed using pathological sections developed from the mouse pulmonary tissues. The concentration of extract from the 60 samples was ranged from 4.37 μg/ml to 30.76 μg/ml. After analyzing with Western blot, 31 of 60 samples were positive for 4 allergens of acaroid mites, and yet 16 were negative. The levels of total IgE from serum IL-4 and IL-5 from the BALF in the experimental group were apparently higher than that of negative control and PBS group (P < 0.01), but there were no statistical difference compared to OVA group (P > 0.05). However,the IFN-γ level in BALF was lower compared with the negative control and PBS group (P < 0.05) but with the OVA group (P > 0.05). The pathological changes were evidently emerged in pulmonary tissues, which were similar to those of OVA group, compared with the PBS ground and negative controls. The air-conditioner filters in human dwellings of Wuhu area potentially contain the major group allergen 1 and 2 from D. farinae and D. pteronyssinus, which may be associated with seasonal prevalence of allergic disorders in this area. PMID:25035772
ARM Airborne Continuous carbon dioxide measurements
Biraud, Sebastien
2013-03-26
The heart of the AOS CO2 Airborne Rack Mounted Analyzer System is the AOS Manifold. The AOS Manifold is a nickel coated aluminum analyzer and gas processor designed around two identical nickel-plated gas cells, one for reference gas and one for sample gas. The sample and reference cells are uniquely designed to provide optimal flushing efficiency. These cells are situated between a black-body radiation source and a photo-diode detection system. The AOS manifold also houses flow meters, pressure sensors and control valves. The exhaust from the analyzer flows into a buffer volume which allows for precise pressure control of the analyzer. The final piece of the analyzer is the demodulator board which is used to convert the DC signal generated by the analyzer into an AC response. The resulting output from the demodulator board is an averaged count of CO2 over a specified hertz cycle reported in volts and a corresponding temperature reading. The system computer is responsible for the input of commands and therefore works to control the unit functions such as flow rate, pressure, and valve control.The remainder of the system consists of compressors, reference gases, air drier, electrical cables, and the necessary connecting plumbing to provide a dry sample air stream and reference air streams to the AOS manifold.
Reactivity of stratospheric aerosols to small amounts of ammonia in the laboratory environment
NASA Technical Reports Server (NTRS)
Hayes, D.; Snetsinger, K.; Ferry, G.; Oberbeck, V.; Farlow, N.
1980-01-01
Trace ammonia in laboratory air reacts easily with sulfuric acid aerosol samples to form crystalline ammonium sulfate. Argon atmospheres, however, protect sampling surfaces from ammonia contamination. It is found that atmospheric aerosols treated in this way contain only sulfuric acid. After an hour exposed to laboratory air, these same samples convert to ammonium sulfate. Aerosol particles have been collected, using argon control, to determine if the absence of crystalline sulfate is common. But so far there is no evidence that aerosols are neutralized by ammonia in the stratosphere.
Rossner, Alan; Farant, Jean Pierre; Simon, Philippe; Wick, David P
2002-11-15
Anthropogenic activities contribute to the release of a wide variety of volatile organic compounds (VOC) into microenvironments. Developing and implementing new air sampling technologies that allow for the characterization of exposures to VOC can be useful for evaluating environmental and health concerns arising from such occurrences. A novel air sampler based on the use of a capillary flow controller connected to evacuated canisters (300 mL, 1 and 6 L) was designed and tested. The capillary tube, used to control the flow of air, is a variation on a sharp-edge orifice flow controller. It essentially controls the velocity of the fluid (air) as a function of the properties of the fluid, tube diameter and length. A model to predict flow rate in this dynamic system was developed. The mathematical model presented here was developed using the Hagen-Poiseuille equation and the ideal gas law to predict flow into the canisters used to sample for long periods of time. The Hagen-Poiseuille equation shows the relationship between flow rate, pressure gradient, capillary resistance, fluid viscosity, capillary length and diameter. The flow rates evaluated were extremely low, ranging from 0.05 to 1 mL min(-1). The model was compared with experimental results and was shown to overestimate the flow rate. Empirical equations were developed to more accurately predict flow for the 300 mL, 1 and 6 L canisters used for sampling periods ranging from several hours to one month. The theoretical and observed flow rates for different capillary geometries were evaluated. Each capillary flow controller geometry that was tested was found to generate very reproducible results, RSD < 2%. Also, the empirical formulas developed to predict flow rate given a specified diameter and capillary length were found to predict flow rate within 6% of the experimental data. The samplers were exposed to a variety of airborne vapors that allowed for comparison of the effectiveness of capillary flow controllers to sorbent samplers and to an online gas chromatograph. The capillary flow controller was found to exceed the performance of the sorbent samplers in this comparison.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willem, Henry; Hult, Erin L.; Hotchi, Toshifumi
2013-01-01
In order to optimize strategies to remove airborne contaminants in residences, it is necessary to determine how contaminant concentrations respond to changes in the air exchange rate. The impact of air exchange rate on the indoor concentrations of 39 target volatile organic compounds (VOCs) was assessed by measuring air exchange rates and VOC concentrations at three ventilation settings in nine residences. Active sampling methods were used for VOC concentration measurements, and passive perfluorocarbon tracer gas emitters with active sampling were used to determine the overall air exchange rate corresponding to the VOC measurements at each ventilation setting. The concentration levelsmore » and emission rates of the target VOCs varied by as much as two orders of magnitude across sites. Aldehyde and terpene compounds were typically the chemical classes with highest concentrations, followed by alkanes, aromatics, and siloxanes. For each home, VOC concentrations tended to decrease as the air exchange rate was increased, however, measurement uncertainty was significant. The indoor concentration was inversely proportional to air exchange rate for most compounds. For a subset of compounds including formaldehyde, however, the indoor concentration exhibited a non-linear dependence on the timescale for air exchange« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willem, Henry; Hult, Erin L.; Hotchi, Toshifumi
2013-01-23
In order to optimize strategies to remove airborne contaminants in residences, it is necessary to determine how contaminant concentrations respond to changes in the air exchange rate. The impact of air exchange rate on the indoor concentrations of 39 target volatile organic compounds (VOCs) was assessed by measuring air exchange rates and VOC concentrations at three ventilation settings in nine residences. Active sampling methods were used for VOC concentration measurements, and passive perfluorocarbon tracer gas emitters with active sampling were used to determine the overall air exchange rate corresponding to the VOC measurements at each ventilation setting. The concentration levelsmore » and emission rates of the target VOCs varied by as much as two orders of magnitude across sites. Aldehyde and terpene compounds were typically the chemical classes with highest concentrations, followed by alkanes, aromatics, and siloxanes. For each home, VOC concentrations tended to decrease as the air exchange rate was increased, however, measurement uncertainty was significant. The indoor concentration was inversely proportional to air exchange rate for most compounds. For a subset of compounds including formaldehyde, however, the indoor concentration exhibited a non-linear dependence on the timescale for air exchange.« less
40 CFR 1065.265 - Nonmethane cutter.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Nonmethane cutter. 1065.265 Section 1065.265 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS... sample with purified air or oxygen (O2) upstream of the nonmethane cutter to optimize its performance...
40 CFR 1065.265 - Nonmethane cutter.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Nonmethane cutter. 1065.265 Section 1065.265 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS... sample with purified air or oxygen (O2) upstream of the nonmethane cutter to optimize its performance...
40 CFR 1065.265 - Nonmethane cutter.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Nonmethane cutter. 1065.265 Section 1065.265 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS... sample with purified air or oxygen (O2) upstream of the nonmethane cutter to optimize its performance...
Gibbs, Jenna L.; Yost, Michael G.; Negrete, Maria; Fenske, Richard A.
2016-01-01
Background: Recent studies have highlighted the increased potency of oxygen analogs of organophosphorus pesticides. These pesticides and oxygen analogs have previously been identified in the atmosphere following spray applications in the states of California and Washington. Objectives: We used two passive sampling methods to measure levels of the ollowing organophosphorus pesticides: chlorpyrifos, azinphos-methyl, and their oxygen analogs at 14 farmworker and 9 non-farmworker households in an agricultural region of central Washington State in 2011. Methods: The passive methods included polyurethane foam passive air samplers deployed outdoors and indoors and polypropylene deposition plates deployed indoors. We collected cumulative monthly samples during the pesticide application seasons and during the winter season as a control. Results: Monthly outdoor air concentrations ranged from 9.2 to 199 ng/m3 for chlorpyrifos, 0.03 to 20 ng/m3 for chlorpyrifos-oxon, < LOD (limit of detection) to 7.3 ng/m3 for azinphos-methyl, and < LOD to 0.8 ng/m3 for azinphos-methyl-oxon. Samples from proximal households (≤ 250 m) had significantly higher outdoor air concentrations of chlorpyrifos, chlorpyrifos-oxon, and azinphos-methyl than did samples from nonproximal households (p ≤ 0.02). Overall, indoor air concentrations were lower than outdoors. For example, all outdoor air samples for chlorpyrifos and 97% of samples for azinphos-methyl were > LOD. Indoors, only 78% of air samples for chlorpyrifos and 35% of samples for azinphos-methyl were > LOD. Samples from farmworker households had higher indoor air concentrations of both pesticides than did samples from non-farmworker households. Mean indoor and outdoor air concentration ratios for chlorpyrifos and azinphos-methyl were 0.17 and 0.44, respectively. Conclusions: We identified higher levels in air and on surfaces at both proximal and farmworker households. Our findings further confirm the presence of pesticides and their oxygen analogs in air and highlight their potential for infiltration of indoor living environments. Citation: Gibbs JL, Yost MG, Negrete M, Fenske RA. 2017. Passive sampling for indoor and outdoor exposures to chlorpyrifos, azinphos-methyl, and oxygen analogs in a rural agricultural community. Environ Health Perspect 125:333–341; http://dx.doi.org/10.1289/EHP425 PMID:27517732
Freitas, Ângela M; Portuguez, Mirna Wetters; Russomano, Thaís; Freitas, Marcos de; Silvello, Silvio Luis da Silva; Costa, Jaderson Costa da
2017-10-01
To evaluate symptoms of stress and excessive daytime sleepiness (EDS) in air traffic control (ATC) officers in Brazil. Fifty-two ATC officers participated, based at three air traffic control units, identified as A, B and C. Stress symptoms were assessed using the Lipp Inventory of Stress Symptoms for Adults, and EDS by the Epworth Sleepiness Scale. The sample mean age was 37 years, 76.9% of whom were male. Excessive daytime sleepiness was identified in 25% of the ATC officers, with 84.6% of these based at air traffic control unit A, which has greater air traffic flow, operating a 24-hour alternating work shift schedule. A total of 16% of the ATC officers had stress symptoms, and of these, 62% showed a predominance of physical symptoms. The high percentage of ATC officers with EDS identified in group A may be related to chronodisruption due to night work and alternating shifts.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Pollutants for Stationary Combustion Turbines Pt. 63, Subpt. YYYY, Table 3 Table 3 to Subpart YYYY of Part 63... points AND Method 1 or 1A of 40 CFR part 60, appendix A § 63.7(d)(1)(i) if using an air pollution control device, the sampling site must be located at the outlet of the air pollution control device. c. determine...
Baghouse filtration products (BFPs) were evaluated by the Air Pollution Control Technology (APCT) pilot of the Environmental Technology Verification (ETV) Program. The performance factor verified was the mean outlet particle concentration for the filter fabric as a function of th...
Environmental stress in the Gulf of Mexico and its potential impact on public health
Turner, J.; Walter, L.; Lathan, N.; Thorpe, D.; Ogbevoen, P.; Daye, J.; Alcorn, D.; Wilson, S.; Semien, J.; Richard, T.; Johnson, T.; McCabe, K.; Estrada, J.J.; Galvez, F.; Velasco, C.; Reiss, K.
2017-01-01
The Deepwater Horizon (DWH) oil spill in the Gulf of Mexico was the largest maritime oil spill in history resulting in the accumulation of genotoxic substances in the air, soil, and water. This has potential far-reaching health impacts on cleanup field workers and on the populations living in the contaminated coastal areas. We have employed portable airborne particulate matter samplers (SKC Biosampler Impinger) and a genetically engineered bacterial reporter system (umu-ChromoTest from EBPI) to determine levels of genotoxicity of air samples collected from highly contaminated areas of coastal Louisiana including Grand Isle, Port Fourchon, and Elmer's Island in the spring, summer and fall of 2011, 2012, 2013 and 2014. Air samples collected from a non-contaminated area, Sea Rim State Park, Texas, served as a control for background airborne genotoxic particles. In comparison to controls, air samples from the contaminated areas demonstrated highly significant increases in genotoxicity with the highest values registered during the month of July in 2011, 2013, and 2014, in all three locations. This seasonal trend was disrupted in 2012, when the highest genotoxicity values were detected in October, which correlated with hurricane Isaac landfall in late August of 2012, about five weeks before a routine collection of fall air samples. Our data demonstrate: (i) high levels of air genotoxicity in the monitored areas over last four years post DWH oil spill; (ii) airborne particulate genotoxicity peaks in summers and correlates with high temperatures and high humidity; and (iii) this seasonal trend was disrupted by the hurricane Isaac landfall, which further supports the concept of a continuous negative impact of the oil spill in this region. PMID:26745734
Environmental stress in the Gulf of Mexico and its potential impact on public health.
Singleton, B; Turner, J; Walter, L; Lathan, N; Thorpe, D; Ogbevoen, P; Daye, J; Alcorn, D; Wilson, S; Semien, J; Richard, T; Johnson, T; McCabe, K; Estrada, J J; Galvez, F; Velasco, C; Reiss, K
2016-04-01
The Deepwater Horizon (DWH) oil spill in the Gulf of Mexico was the largest maritime oil spill in history resulting in the accumulation of genotoxic substances in the air, soil, and water. This has potential far-reaching health impacts on cleanup field workers and on the populations living in the contaminated coastal areas. We have employed portable airborne particulate matter samplers (SKC Biosampler Impinger) and a genetically engineered bacterial reporter system (umu-ChromoTest from EBPI) to determine levels of genotoxicity of air samples collected from highly contaminated areas of coastal Louisiana including Grand Isle, Port Fourchon, and Elmer's Island in the spring, summer and fall of 2011, 2012, 2013 and 2014. Air samples collected from a non-contaminated area, Sea Rim State Park, Texas, served as a control for background airborne genotoxic particles. In comparison to controls, air samples from the contaminated areas demonstrated highly significant increases in genotoxicity with the highest values registered during the month of July in 2011, 2013, and 2014, in all three locations. This seasonal trend was disrupted in 2012, when the highest genotoxicity values were detected in October, which correlated with hurricane Isaac landfall in late August of 2012, about five weeks before a routine collection of fall air samples. Our data demonstrate: (i) high levels of air genotoxicity in the monitored areas over last four years post DWH oil spill; (ii) airborne particulate genotoxicity peaks in summers and correlates with high temperatures and high humidity; and (iii) this seasonal trend was disrupted by the hurricane Isaac landfall, which further supports the concept of a continuous negative impact of the oil spill in this region. Copyright © 2015 Elsevier Inc. All rights reserved.
Air sampling experiments were done in 1985, 1987, and 1993 at the human-exposure chamber facility of the U.S. EPA Health Effects Research Laboratory in Chapel Hill, NC. easurements of VOC's by GC-FID and aldehyde measurements by the DNPH silica gel cartridge method were made, com...
Microbial Groundwater Sampling Protocol for Fecal-Rich Environments
Harter, Thomas; Watanabe, Naoko; Li, Xunde; Atwill, Edward R; Samuels, William
2014-01-01
Inherently, confined animal farming operations (CAFOs) and other intense fecal-rich environments are potential sources of groundwater contamination by enteric pathogens. The ubiquity of microbial matter poses unique technical challenges in addition to economic constraints when sampling wells in such environments. In this paper, we evaluate a groundwater sampling protocol that relies on extended purging with a portable submersible stainless steel pump and Teflon® tubing as an alternative to equipment sterilization. The protocol allows for collecting a large number of samples quickly, relatively inexpensively, and under field conditions with limited access to capacity for sterilizing equipment. The protocol is tested on CAFO monitoring wells and considers three cross-contamination sources: equipment, wellbore, and ambient air. For the assessment, we use Enterococcus, a ubiquitous fecal indicator bacterium (FIB), in laboratory and field tests with spiked and blank samples, and in an extensive, multi-year field sampling campaign on 17 wells within 2 CAFOs. The assessment shows that extended purging can successfully control for equipment cross-contamination, but also controls for significant contamination of the well-head, within the well casing and within the immediate aquifer vicinity of the well-screen. Importantly, our tests further indicate that Enterococcus is frequently entrained in water samples when exposed to ambient air at a CAFO during sample collection. Wellbore and air contamination pose separate challenges in the design of groundwater monitoring strategies on CAFOs that are not addressed by equipment sterilization, but require adequate QA/QC procedures and can be addressed by the proposed sampling strategy. PMID:24903186
Innovative flow controller for time integrated passive sampling using SUMMA canisters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simon, P.; Farant, J.P.; Cole, H.
1996-12-31
To restrict the entry of gaseous contaminants inside evacuated vessels such as SUMMA canisters, mechanical flow controllers are used to collect integrated atmospheric samples. From the passive force generated by the pressure gradient, the motion of gas can be controlled to obtain a constant flow rate. Presently, devices based on the principle of critical orifices are used and they are all limited to an upper integrated sampling time. A novel flow controller which can be designed to achieve any desired sampling time when used on evacuated vessels was recently developed. It can extend the sampling time for hours, days, weeksmore » or even months for the benefits of environmental, engineering and toxicological professionals. The design of the controller is obtained from computer simulations done with an original set of equations derived from fluid mechanic and gas kinetic laws. To date, the experimental results have shown excellent agreement, with predictions obtained from the mathematical model. This new controller has already found numerous applications. Units able to deliver a constant sampling rate between vacuum and approximately -10 inches Hg during continuous long term duration have been used with SUMMA canisters of different volumes (500 ml, 1 litre and 61). Essentially, any combination of sampling time and sampler volume is possible. The innovative flow controller has contributed to an air quality assessment around a sanitary landfill (indoor/outdoor), and inside domestic wastewater and pulpmill sludge treatment facilities. It is presently being used as an alternative methodology for atmospheric sampling in the Russian orbital station Mir. This device affords true long term passive monitoring of selected gaseous air pollutants for environmental studies. 14 refs., 3 figs.« less
2012-01-01
Background Since air can play a central role as a reservoir for microorganisms, in controlled environments such as operating theatres regular microbial monitoring is useful to measure air quality and identify critical situations. The aim of this study is to assess microbial contamination levels in operating theatres using both an active and a passive sampling method and then to assess if there is a correlation between the results of the two different sampling methods. Methods The study was performed in 32 turbulent air flow operating theatres of a University Hospital in Southern Italy. Active sampling was carried out using the Surface Air System and passive sampling with settle plates, in accordance with ISO 14698. The Total Viable Count (TVC) was evaluated at rest (in the morning before the beginning of surgical activity) and in operational (during surgery). Results The mean TVC at rest was 12.4 CFU/m3 and 722.5 CFU/m2/h for active and passive samplings respectively. The mean in operational TVC was 93.8 CFU/m3 (SD = 52.69; range = 22-256) and 10496.5 CFU/m2/h (SD = 7460.5; range = 1415.5-25479.7) for active and passive samplings respectively. Statistical analysis confirmed that the two methods correlate in a comparable way with the quality of air. Conclusion It is possible to conclude that both methods can be used for general monitoring of air contamination, such as routine surveillance programs. However, the choice must be made between one or the other to obtain specific information. PMID:22853006
Evaluation of the release of dioxins and PCBs during kiln-firing of ball clay.
Broadwater, Kendra; Meeker, John D; Luksemburg, William; Maier, Martha; Garabrant, David; Demond, Avery; Franzblau, Alfred
2014-01-01
Ball clay is known to be naturally contaminated with high levels of polychlorinated di-benzo-p-dioxins (PCDDs). This study evaluated the potential for PCDD, polychlorinated dibenzofuran (PCDF) and polychlorinated biphenyl (PCB) release during the kiln firing of ball clay in an art studio. Toxic equivalence (TEQ) were calculated using World Health Organization (WHO) 2005 toxic equivalence factors (TEF) and congener concentrations. Ten bags of commercial ball clay were found to have an average TEQ of 1,370 nanograms/kilogram (ng kg(-1)) dry weight (dw), almost exclusively due to PCDDs (99.98% of TEQ). After firing, none of the 29 dioxin-like analytes was measured above the limits of detection (LOD) in the clay samples. Air samples were taken during firings using both low-flow and high-flow air samplers. Few low-flow air samples contained measurable levels of dioxin congeners above the LOD. The mean TEQ in the high volume air samples ranged from 0.07 pg m(-3) to 0.21 pg m(-3) when firing ball clay, and was 0.11 pg m(-3) when no clay was fired. These concentrations are within the range measured in typical residences and well-controlled industrial settings. The congener profiles in the high-flow air samples differed from the unfired clay; the air samples had a considerable contribution to the TEQ from PCDFs and PCBs. Given that the TEQs of all air samples were very low and the profiles differed from the unfired clay, it is likely that the PCDDs in dry ball clay were destroyed during kiln firing. These results suggest that inhalation of volatilized dioxins during kiln firing of dry ball clay is an unlikely source of exposure for vocational and art ceramicists. Copyright © 2013 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frenzel, E.; Arnold, D.; Wershofen, H.
1996-06-01
A method for determination of radionuclide concentrations in air aerosol samples collected by the high volume aerosol sampler ASS-500 was elaborated. The aerosol sampling station ASS-500 is a Stand alone, all-weather proofed instrument. It is designed for representative sampling of airborne radionuclides from ground level air at a height of about 1.5 m above ground level. The ASS-500 station enables continuous air monitoring both normal and emergency Situations. The collection of aerosols on the Petrianov FPP-15-1.5 type filter out of an air volume of about 100,000 m{sup 3} (sampling period 1 wk) or of about 250,000 m{sup 3} (sampling periodmore » 3 wk) admits accurate spectrometric low level measurements of natural and artificial radionuclides. The achieved detection limit is 0.5 {mu}Bq m{sup -3} and 0.2 {mu}Bq m{sup -3} for {sup 137}Cs, respectively. A new developed air flow Meter system allows to enhance the collected air volume to about 150,000 m{sup 3} per week and lowers the detection limit to <0.4 {mu}Bq m{sup -3} for {sup 137}Cs for weekly collected aerosol samples. In Poland the CLOR uses 9 Stations ASS-500 at different sites as atmospheric radioactivity control system. On the basis of spectrometric measurements of natural and artificial radionuclides in the collected aerosol samples at the different sites, CLOR establishes a weekly report about the radiological situation at Poland for responsible authorities. The very low achievable detection limit of the Station ASS-500 due 10 the high air flow fate and the long possible sampling period were the key argument for other government radiation protection authorities in Europe to introduce the Station ASS-500 into their low level radionuclide atmospheric monitoring programs (Austria, Belarus, France, Germany, Iceland, Spain, Switzerland, Ukraine).« less
[Air-conditioner disease. Results of an industrial medicine survey (author's transl)].
Molina, C; Aiache, J M; Bedu, M; Menaut, P; Wahl, D; Brestowski, J; Grall, Y
1982-07-03
The results of a survey conducted in a company employing 1850 persons working in air-conditioned premises are reported. One hundred and five persons were examined, including 790 who mostly complained of respiratory disorders and 20 controls. Regular check-ups during the last two years have failed to reveal any serious disease. The most frequent complaints were rhinitis and tracheitis, especially among female employees. No alveolitis was observed. The finding of Bacillus subtilis in samples of ambient air and air-conditioner filters in conjunction with the presence of precipitating antibodies against crude extracts from these samples, suggested that the respiratory disorders might have been due to this microorganism. A multifactorial analysis demonstrated a statistically significant correlation between clinical symptoms and immunological disorders. The air-conditioner disease, therefore, may present as a benign condition.
2015-01-01
Two independent sampling and analytical methods for ortho-phthalaldehyde (OPA) in air have been developed, evaluated and compared (1) a reagent-coated solid sorbent HPLC-UV method and (2) an impinger-fluorescence method. In the first method, air sampling is conducted at 1.0 L min−1 with a sampler containing 350 mg of silica gel coated with 1 mg of acidified 2,4-dinitrophenylhydrazine (DNPH). After sampling, excess DNPH in ethyl acetate is added to the sampler prior to storage for 68 hours. The OPA-DNPH derivative is eluted with 4.0 mL of dimethyl sulfoxide (DMSO) for measurement by HPLC with a UV detector set at 3S5 nm. The estimated detection limit is 0.016 µg per sample or 0.067 µg m−3 (0.012 ppb) for a 240 L air sample. Recoveries of vapor spikes at levels of 1.2 to 6.2 µg were 96 to 101%. Recoveries of spikes as mixtures of vapor and condensation aerosols were 97 to 100%. In the second method, air sampling is conducted at 1.0 L mm−1 with a midget impinger containing 10 mL of DMSO solution containing N-acetyl-l-cysteine and ethylenediamine. The fluorescence reading is taken 80 min after the completion of air sampling. Since the time of taking the fluorescence reading is critical, the reading is taken with a portable fluorometer. The estimated detection limit is 0.024 µg per sample or 0.1 µg m−3 (0.018 ppb) for a 240 L air sample. Recoveries of OPA vapor spikes at levels of 1.4 to 5.0 µg per sample were 97 to 105%. Recoveries of spikes as mixtures of vapors and condensation aerosols were 95 to 99%. The collection efficiency for a mixture of vapor and condensation aerosol was 99.4%. The two methods were compared side-by-side in a generation system constructed for producing controlled atmospheres of OPA vapor in air. Average air concentrations of OPA vapor found by both methods agreed within ±10%. PMID:26346658
40 CFR 65.164 - Performance test and flare compliance determination notifications and reports.
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONSOLIDATED FEDERAL AIR RULE Closed Vent Systems, Control Devices, and Routing to a Fuel Gas System or a Process § 65.164 Performance test and flare... complete test report shall include a brief process description, sampling site description, description of...
Shimose, Luis A; Masuda, Eriko; Sfeir, Maroun; Berbel Caban, Ana; Bueno, Maria X; dePascale, Dennise; Spychala, Caressa N; Cleary, Timothy; Namias, Nicholas; Kett, Daniel H; Doi, Yohei; Munoz-Price, L Silvia
2016-07-01
OBJECTIVE To concomitantly determine the differential degrees of air and environmental contamination by Acinetobacter baumannii based on anatomic source of colonization and type of ICU layout (single-occupancy vs open layout). DESIGN Longitudinal prospective surveillance study of air and environmental surfaces in patient rooms. SETTING A 1,500-bed public teaching hospital in Miami, Florida. PATIENTS Consecutive A. baumannii-colonized patients admitted to our ICUs between October 2013 and February 2014. METHODS Air and environmental surfaces of the rooms of A. baumannii-colonized patients were sampled daily for up to 10 days. Pulsed-field gel electrophoresis (PFGE) was used to type and match the matching air, environmental, and clinical A. baumannii isolates. RESULTS A total of 25 A. baumannii-colonized patients were identified during the study period; 17 were colonized in the respiratory tract and 8 were colonized in the rectum. In rooms with rectally colonized patients, 38.3% of air samples were positive for A. baumannii; in rooms of patients with respiratory colonization, 13.1% of air samples were positive (P=.0001). In rooms with rectally colonized patients, 15.5% of environmental samples were positive for A. baumannii; in rooms of patients with respiratory colonization, 9.5% of environmental samples were positive (P=.02). The rates of air contamination in the open-layout and single-occupancy ICUs were 17.9% and 21.8%, respectively (P=.5). Environmental surfaces were positive in 9.5% of instances in open-layout ICUs versus 13.4% in single-occupancy ICUs (P=.09). CONCLUSIONS Air and environmental surface contaminations were significantly greater among rectally colonized patients; however, ICU layout did not influence the rate of contamination. Infect Control Hosp Epidemiol 2016;37:777-781.
Snowpack Chemistry of Reactive Gases at Station Concordia, Antarctica
NASA Astrophysics Data System (ADS)
Helmig, Detlev; Mass, Alex; Hueber, Jacques; Fain, Xavier; Dommergue, Aurelien; Barbero, Albane; Savarino, Joel
2013-04-01
During December 2012 a new experiment for the study of snow photochemical processes and surface gas exchange was installed at Dome Concordia, Antarctica. The experiment consists of two sampling manifolds ('snow tower') which facilitate the withdrawal of interstitial firn air from four depths in the snowpack and from above the surface. One of these snow towers can be shaded for investigation of the dependency of snow chemistry on solar radiation. A nearby 12 m meteorological tower facilitates above surface turbulence and trace gas gradient measurements. Temperature profiles and UV and IR light penetration are monitored in the snowpack. Air samples are directed through sampling lines to a nearby underground laboratory that houses the experiment control system and gas monitors. The system is fully automated, sampling gases from the array of inlet ports sequentially, and is intended to be operated continuously for a full annual cycle. The computerized control system can be accessed remotely for data retrieval and quality control and for configuring experimental details. Continuous gas measurements include ozone, nitrogen oxides, methane, carbon monoxide, and gaseous elemental mercury. Whole air samples were sampled on four occasions for volatile organic compound analysis. The objective of this research is the study of the year-round snowpack gas chemistry and its dependency on snowpack and above surface physical and environmental conditions. A particular emphasis will be the investigation of the effects of increased UV radiation during the occurrence of the stratospheric ozone hole. We will present the conceptual design of the experiment and data examples from the first three months of the experiment.
Residential, personal, indoor, and outdoor sampling of particulate matter was conducted at a retirement center in the Towson area of northern Baltimore County in 1998. Concurrent sampling was conducted at a central community site. Computer-controlled scanning electron microsco...
Wei, Qiuning; Wei, Yuan; Liu, Fangfang; Ding, Yalei
2015-10-01
To investigate the method for uncertainty evaluation of determination of tin and its compounds in the air of workplace by flame atomic absorption spectrometry. The national occupational health standards, GBZ/T160.28-2004 and JJF1059-1999, were used to build a mathematical model of determination of tin and its compounds in the air of workplace and to calculate the components of uncertainty. In determination of tin and its compounds in the air of workplace using flame atomic absorption spectrometry, the uncertainty for the concentration of the standard solution, atomic absorption spectrophotometer, sample digestion, parallel determination, least square fitting of the calibration curve, and sample collection was 0.436%, 0.13%, 1.07%, 1.65%, 3.05%, and 2.89%, respectively. The combined uncertainty was 9.3%.The concentration of tin in the test sample was 0.132 mg/m³, and the expanded uncertainty for the measurement was 0.012 mg/m³ (K=2). The dominant uncertainty for determination of tin and its compounds in the air of workplace comes from least squares fitting of the calibration curve and sample collection. Quality control should be improved in the process of calibration curve fitting and sample collection.
Hammond, Duane; Garcia, Alberto; Feng, H Amy
2011-07-01
A utility-scale wind turbine blade manufacturing plant requested assistance from the National Institute for Occupational Safety and Health (NIOSH) in controlling worker exposures to styrene at a plant that produced 37 and 42 m long fiber-reinforced wind turbine blades. The plant requested NIOSH assistance because previous air sampling conducted by the company indicated concerns about peak styrene concentrations when workers entered the confined space inside of the wind turbine blade. NIOSH researchers conducted two site visits and collected personal breathing zone and area air samples while workers performed the wind turbine blade manufacturing tasks of vacuum-assisted resin transfer molding (VARTM), gelcoating, glue wiping, and installing the safety platform. All samples were collected during the course of normal employee work activities and analyzed for styrene using NIOSH Method 1501. All sampling was task based since full-shift sampling from a prior Occupational Safety and Health Administration (OSHA) compliance inspection did not show any exposures to styrene above the OSHA permissible exposure limit. During the initial NIOSH site visit, 67 personal breathing zone and 18 area air samples were collected while workers performed tasks of VARTM, gelcoating, glue wipe, and installation of a safety platform. After the initial site visit, the company made changes to the glue wipe task that eliminated the need for workers to enter the confined space inside of the wind turbine blade. During the follow-up site visit, 12 personal breathing zone and 8 area air samples were collected from workers performing the modified glue wipe task. During the initial site visit, the geometric means of the personal breathing zone styrene air samples were 1.8 p.p.m. (n = 21) for workers performing the VARTM task, 68 p.p.m. (n = 5) for workers installing a safety platform, and 340 p.p.m. (n = 14) for workers performing the glue wipe task, where n is the number of workers sampled for a given mean result. Gelcoating workers included job categories of millers, gelcoat machine operators, and gelcoaters. Geometric mean personal breathing zone styrene air samples were 150 p.p.m. (n = 6) for millers, 87 p.p.m. (n = 2) for the gelcoat machine operators, and 66 p.p.m. (n = 19) for gelcoaters. The geometric mean of the personal breathing zone styrene air samples from the glue wipe task measured during the follow-up site visit was 31 p.p.m. (n = 12). The closed molding VARTM process was very effective at controlling worker exposures to styrene. Personal breathing zone styrene air samples were reduced by an order of magnitude after changes were made to the glue wipe task. The company used chemical substitution to eliminate styrene exposure during the installation of the safety platform. Recommendations were provided to reduce styrene concentrations during gelcoating.
NIR spectroscopy as a tool for discriminating between lichens exposed to air pollution.
Casale, Monica; Bagnasco, Lucia; Giordani, Paolo; Mariotti, Mauro Giorgio; Malaspina, Paola
2015-09-01
Lichens are used as biomonitors of air pollution because they are extremely sensitive to the presence of substances that alter atmospheric composition. Fifty-one thalli of two different varieties of Pseudevernia furfuracea (var. furfuracea and var. ceratea) were collected far from local sources of air pollution. Twenty-six of these thalli were then exposed to the air for one month in the industrial port of Genoa, which has high levels of environmental pollution. The possibility of using Near-infrared spectroscopy (NIRS) for generating a 'fingerprint' of lichens was investigated. Chemometric methods were successfully applied to discriminate between samples from polluted and non-polluted areas. In particular, Principal Component Analysis (PCA) was applied as a multivariate display method on the NIR spectra to visualise the data structure. This showed that the difference between samples of different varieties was not significant in comparison to the difference between samples exposed to different levels of environmental pollution. Then Linear Discriminant Analysis (LDA) was carried out to discriminate between lichens based on their exposure to pollutants. The distinction between control samples (not exposed) and samples exposed to the air in the industrial port of Genoa was evaluated. On average, 95.2% of samples were correctly classified, 93.0% of total internal prediction (5 cross-validation groups) and 100.0% of external prediction (on the test set) was achieved. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kuehl, Richard; Banderet, Florian; Egli, Adrian; Keller, Peter M; Frei, Reno; Döbele, Thomas; Eckstein, Friedrich; Widmer, Andreas F
2018-05-28
OBJECTIVEWorldwide, Mycobacterium chimaera infections have been linked to contaminated aerosols from heater-cooler units (HCUs) during open-heart surgery. These infections have mainly been associated with the 3T HCU (LivaNova, formerly Sorin). The reasons for this and the risk of transmission from other HCUs have not been systematically assessed.DESIGNProspective observational study.SETTINGUniversity Hospital Basel, Switzerland.METHODSContinuous microbiological surveillance of 3 types of HCUs in use (3T from LivaNova/Sorin and HCU30 and HCU40 from Maquet) was initiated in June 2014, coupled with an epidemiologic workup. Monthly water and air samples were taken. Construction design was analyzed, and exhausted airflow was measured.RESULTS Mycobacterium chimaera grew in 8 of 12 water samples (66%) and 22 of 24 air samples (91%) of initial 3T HCUs in use, and in 2 of 83 water samples (2%) and 0 of 41 (0%) air samples of new replacement 3T HCUs. Moreover, 7 of 12 water samples (58%) and 0 of 4 (0%) air samples from the HCU30 were positive, and 0 of 64 (0%) water samples and 0 of 50 (0%) air samples from the HCU40 were positive. We identified 4 relevant differences in HCU design compared to the 3T: air flow direction, location of cooling ventilators, continuous cooling of the water tank at 4°C, and an electronic alarm in the HCU40 reminding the user of the next disinfection cycle.CONCLUSIONSAll infected patients were associated with a 3T HCU. The individual HCU design may explain the different risk of disseminating M. chimaera into the air of the operating room. These observations can help the construction of improved devices to ensure patient safety during cardiac surgery.Infect Control Hosp Epidemiol 2018;1-7.
A Summary of Research and Progress on Carbon Monoxide Exposure Control Solutions on Houseboats
Hall, Ronald M.; Earnest, G. Scott; Hammond, Duane R.; Dunn, Kevin H.; Garcia, Alberto
2015-01-01
Investigations of carbon monoxide (CO-related poisonings and deaths on houseboats were conducted by the Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health. These investigations measured hazardous CO concentrations on and around houseboats that utilize gasoline-powered generators. Engineering control devices were developed and tested to mitigate this deadly hazard. CO emissions were measured using various sampling techniques which included exhaust emission analyzers, detector tubes, evacuated containers (grab air samples analyzed by a gas chromatograph), and direct-reading CO monitors. CO results on houseboats equipped with gasoline-powered generators without emission controls indicated hazardous CO concentrations exceeding immediately dangerous to life and health (IDLH) levels in potentially occupied areas of the houseboat. Air sample results on houseboats that were equipped with engineering controls to remove the hazard were highly effective and reduced CO levels by over 98% in potentially occupied areas. The engineering control devices used to reduce the hazardous CO emissions from gasoline-powered generators on houseboats were extremely effective at reducing CO concentrations to safe levels in potentially occupied areas on the houseboats and are now beginning to be widely used. PMID:24568306
A summary of research and progress on carbon monoxide exposure control solutions on houseboats.
Hall, Ronald M; Earnest, G Scott; Hammond, Duane R; Dunn, Kevin H; Garcia, Alberto
2014-01-01
Investigations of carbon monoxide (CO-related poisonings and deaths on houseboats were conducted by the Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health. These investigations measured hazardous CO concentrations on and around houseboats that utilize gasoline-powered generators. Engineering control devices were developed and tested to mitigate this deadly hazard. CO emissions were measured using various sampling techniques which included exhaust emission analyzers, detector tubes, evacuated containers (grab air samples analyzed by a gas chromatograph), and direct-reading CO monitors. CO results on houseboats equipped with gasoline-powered generators without emission controls indicated hazardous CO concentrations exceeding immediately dangerous to life and health (IDLH) levels in potentially occupied areas of the houseboat. Air sample results on houseboats that were equipped with engineering controls to remove the hazard were highly effective and reduced CO levels by over 98% in potentially occupied areas. The engineering control devices used to reduce the hazardous CO emissions from gasoline-powered generators on houseboats were extremely effective at reducing CO concentrations to safe levels in potentially occupied areas on the houseboats and are now beginning to be widely used.
1997-02-01
application with a strong resemblance to a video game , concern has been raised that prior video game experience might have a moderating effect on scores. Much...such as spatial ability. The effects of computer or video game experience on work sample scores have not been systematically investigated. The purpose...of this study was to evaluate the incremental validity of prior video game experience over that of general aptitude as a predictor of work sample test
Hedmer, Maria; Ludvigsson, Linus; Isaxon, Christina; Nilsson, Patrik T; Skaug, Vidar; Bohgard, Mats; Pagels, Joakim H; Messing, Maria E; Tinnerberg, Håkan
2015-08-01
The industrial use of novel-manufactured nanomaterials such as carbon nanotubes and carbon nanodiscs is increasing globally. Occupational exposure can occur during production, downstream use, and disposal. The health effects of many nanomaterials are not yet fully characterized and to handle nano-objects, their aggregates and agglomerates >100nm (NOAA), a high degree of control measures and personal protective equipment are required. The emission of airborne NOAA during production and handling can contaminate workplace surfaces with dust, which can be resuspended resulting in secondary inhalation exposures and dermal exposures. This study surveys the presence of carbon-based nanomaterials, such as multi-walled carbon nanotubes (MWCNTs) and carbon nanodiscs, as surface contamination at a small-scale producer using a novel tape sampling method. Eighteen different surfaces at a small-scale producer were sampled with an adhesive tape sampling method. The surfaces selected were associated with the production and handling of MWCNT powder in the near-field zone. Surfaces in the far-field zone were also sampled. In addition, tape stripping of the skin was performed on one worker. The tape samples were analysed with scanning electron microscopy to detect the carbon-based NOAA. Air sampling with a personal impactor was also performed on a worker who was producing MWCNTs the same day as the tape samples were collected. MWCNTs were detected in 50% of the collected tape samples and carbon nanodiscs in 17%. MWCNTs and carbon nanodiscs were identified in all parts of the workplace, thus, increasing the risk for secondary inhalation and dermal exposure of the workers. Both airborne MWCNTs and carbon nanodiscs were detected in the personal impactor samples. The tape-strip samples from the worker showed no presence of carbon-containing nanoparticles. Tape sampling is a functional method for detecting surface contamination of carbon-based NOAA and for exposure control during production at potentially any workplace that produces or handles such manufactured nanomaterials. With the tape method, it is possible to monitor if a potential for secondary inhalation exposure or dermal exposure exists through resuspension of dust deposited on workplace surfaces. By means of air sampling, we could confirm that carbon nanodiscs were resuspended into the air at the workplace even though they were not handled during that particular work shift. MWCNTs were detected in the air samples, but can have been derived from either resuspension or from the work tasks with MWCNTs that were performed during the air sampling. Tape sampling is a complementary method to air sampling and together these two methods provide a better view of the hygienic situation in workplaces where NOAA can be emitted into work environments. © The Author 2015. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
EPA Summaries and Reports on Several State and Local PM Control Measures
A sample of existing control measures and their effectiveness, along with recommendations for improvement, can help states develop better control measures for reducing PM2.5 in order to attain 2012 PM2.5 National Ambient Air Quality Standards (NAAQS).
NASA Astrophysics Data System (ADS)
Durden, G. L.; Myers, J. O.; Towers, T. A.; Dickman, D. M.
1981-12-01
Noise from air conditioning and refrigeration condensing units is investigated. The practical aspects of attempting to implement innovative approaches are emphasized. These included: (1) sample selection, (2) noise measurement survey, (3) implementation of aggressive abatement procedures, (4) development and use of a screening graph for determining acceptability of sound rated outdoor unitary equipment, (5) incorporation of noise control considerations, (6) exploration of an operatinal curfew, and (7) development of an incentive/information program.
1988-08-01
control data (lat tarK., lab spikes, and lab duplicates) in the report , as well as field quality control data. j. For those metiods which employ gas ...FORCE BASE, TEXAS 78235-5501 NOTICE This report has been prepared for the United States Air Force by Environmental Science and Engineering , Inc. (ESE...testing, field sampling, contamination assessment report preparation, and recommendations for remedial actions. U.S. Army Toxic and Hazardous Materials
Atmospheric Carbon Dioxide Record from In Situ Measurements at Baring Head (1970 - 1993)
Manning, M. R. [National Institute of Water and Atmospheric Research, Ltd., Lower Hutt, New Zealand; Gomez, A. J. [National Institute of Water and Atmospheric Research, Ltd., Lower Hutt, New Zealand; Pohl, K. P. [National Institute of Water and Atmospheric Research, Ltd. Lower Hutt, New Zealand
1994-01-01
Determinations of atmospheric CO2 mixing ratios are made using a Siemens Ultramat-3 nondispersive infrared (NDIR) gas analyzer. The NDIR CO2 analyzer is connected via a gas manifold consisting of stainless steel tubing and computer-controlled solenoid switches to 12 gas cylinders and 2 sample air lines. The NDIR analyzer compares ambient air CO2 mixing ratios relative to known CO2 mixing ratios in tanks of compressed reference gases. The analyzer operates in a differential mode, with a "zero" reference gas of CO2 mixing ratio 20 to 30 parts per million (ppm) below ambient air CO2 levels flowing continuously through one cell of the analyzer at ~10 mL/min. When atmospheric CO2 is measured, a diaphragm pump pulls air through a sampling line at ~5 L/min. A small fraction of this (180 mL/min) is dried cryogenically to a temperature of approximately ¬70° Celsius and passed through the sample cell of the CO2 analyzer. Both the "zero" and sample gas are exhausted into the observatory building.
Pharmaceutical dust exposure at pharmacies using automatic dispensing machines: a preliminary study.
Fent, Kenneth W; Durgam, Srinivas; Mueller, Charles
2014-01-01
Automatic dispensing machines (ADMs) used in pharmacies concentrate and dispense large volumes of pharmaceuticals, including uncoated tablets that can shed dust. We evaluated 43 employees' exposures to pharmaceutical dust at three pharmacies where ADMs were used. We used an optical particle counter to identify tasks that generated pharmaceutical dust. We collected 72 inhalable dust air samples in or near the employees' breathing zones. In addition to gravimetric analysis, our contract laboratory used internal methods involving liquid chromatography to analyze these samples for active pharmaceutical ingredients (APIs) and/or lactose, an inactive filler in tablets. We had to choose samples for these additional analyses because many methods used different extraction solvents. We selected 57 samples for analysis of lactose. We used real-time particle monitoring results, observations, and information from employees on the dustiness of pharmaceuticals to select 28 samples (including 13 samples that were analyzed for lactose) for analysis of specific APIs. Pharmaceutical dust was generated during a variety of tasks like emptying and refilling of ADM canisters. Using compressed air to clean canisters and manual count machines produced the overall highest peak number concentrations (19,000-580,000 particles/L) of smallest particles (count median aerodynamic diameter ≤ 2 μm). Employees who refilled, cleaned, or repaired ADM canisters, or hand filled prescriptions were exposed to higher median air concentrations of lactose (5.0-12 μg/m(3)) than employees who did other jobs (0.04-1.3 μg/m(3)), such as administrative/office work, labeling/packaging, and verifying prescriptions. We detected 10 APIs in air, including lisinopril, a drug prescribed for high blood pressure, levothyroxine, a drug prescribed for hypothyroidism, and methotrexate, a hazardous drug prescribed for cancer and other disorders. Three air concentrations of lisinopril (1.8-2.7 μg/m(3)) exceeded the lower bound of the manufacturer's hazard control band (1-10 μg/m(3)). All other API air concentrations were below applicable occupational exposure limits. Our findings indicate that some pharmacy employees are exposed to multiple APIs and that measures are needed to control those exposures.
Atmospheric particulate measurements in Norfolk, Virginia
NASA Technical Reports Server (NTRS)
Storey, R. W., Jr.; Sentell, R. J.; Woods, D. C.; Smith, J. R.; Harris, F. S., Jr.
1975-01-01
Characterization of atmospheric particulates was conducted at a site near the center of Norfolk, Virginia. Air quality was measured in terms of atmospheric mass loading, particle size distribution, and particulate elemental composition for a period of 2 weeks. The objectives of this study were (1) to establish a mean level of air quality and deviations about this mean, (2) to ascertain diurnal changes or special events in air quality, and (3) to evaluate instrumentation and sampling schedules. Simultaneous measurements were made with the following instruments: a quartz crystal microbalance particulate monitor, a light-scattering multirange particle counter, a high-volume air sampler, and polycarbonate membrane filters. To assess the impact of meteorological conditions on air quality variations, continuous data on temperature, relative humidity, wind speed, and wind direction were recorded. Particulate elemental composition was obtained from neutron activation and scanning electron microscopy analyses of polycarbonate membrane filter samples. The measured average mass loading agrees reasonably well with the mass loadings determined by the Virginia State Air Pollution Control Board. There are consistent diurnal increases in atmospheric mass loading in the early morning and a sample time resolution of 1/2 hour seems necessary to detect most of the significant events.
Hayes, Robert B; Peña, Adan M; Goff, Thomas E
2005-08-01
This paper demonstrates the utility of a portable alpha Continuous Air Monitor (CAM) as a bench top scalar counter for multiple sample types. These include using the CAM to count fixed air sample filters and radiological smears. In counting radiological smears, the CAM is used very much like a gas flow proportional counter (GFPC), albeit with a lower efficiency. Due to the typically low background in this configuration, the minimum detectable activity for a 5-min count should be in the range of about 10 dpm which is acceptably below the 20 dpm limit for transuranic isotopes. When counting fixed air sample filters, the CAM algorithm along with other measurable characteristics can be used to identify and quantify the presence of transuranic isotopes in the samples. When the radiological control technician wants to take some credit from naturally occurring radioactive material contributions due to radon progeny producing higher energy peaks (as in the case with a fixed air sample filter), then more elaborate techniques are required. The techniques presented here will generate a decision level of about 43 dpm for such applications. The calibration for this application should alternatively be done using the default values of channels 92-126 for region of interest 1. This can be done within 10 to 15 min resulting in a method to rapidly evaluate air filters for transuranic activity. When compared to the 1-h count technique described by , the technique presented in the present work demonstrates a technique whereby more than two thirds of samples can be rapidly shown (within 10 to 15 min) to be within regulatory compliant limits. In both cases, however, spectral quality checks are required to insure sample self attenuation is not a significant bias in the activity estimates. This will allow the same level of confidence when using these techniques for activity quantification as is presently available for air monitoring activity quantification using CAMs.
Flightcrew Procedures for Controller Pilot Data Link Communications (CPDLC).
DOT National Transportation Integrated Search
2015-09-10
It is imperative that flightcrew procedures be developed and implemented to capitalize on the strengths of Controller Pilot Data Link Communications (CPDLC) while minimizing the possibility of error. This paper presents a sample of air carrier Standa...
Advisory Algorithm for Scheduling Open Sectors, Operating Positions, and Workstations
NASA Technical Reports Server (NTRS)
Bloem, Michael; Drew, Michael; Lai, Chok Fung; Bilimoria, Karl D.
2012-01-01
Air traffic controller supervisors configure available sector, operating position, and work-station resources to safely and efficiently control air traffic in a region of airspace. In this paper, an algorithm for assisting supervisors with this task is described and demonstrated on two sample problem instances. The algorithm produces configuration schedule advisories that minimize a cost. The cost is a weighted sum of two competing costs: one penalizing mismatches between configurations and predicted air traffic demand and another penalizing the effort associated with changing configurations. The problem considered by the algorithm is a shortest path problem that is solved with a dynamic programming value iteration algorithm. The cost function contains numerous parameters. Default values for most of these are suggested based on descriptions of air traffic control procedures and subject-matter expert feedback. The parameter determining the relative importance of the two competing costs is tuned by comparing historical configurations with corresponding algorithm advisories. Two sample problem instances for which appropriate configuration advisories are obvious were designed to illustrate characteristics of the algorithm. Results demonstrate how the algorithm suggests advisories that appropriately utilize changes in airspace configurations and changes in the number of operating positions allocated to each open sector. The results also demonstrate how the advisories suggest appropriate times for configuration changes.
A novel atmospheric tritium sampling system
NASA Astrophysics Data System (ADS)
Qin, Lailai; Xia, Zhenghai; Gu, Shaozhong; Zhang, Dongxun; Bao, Guangliang; Han, Xingbo; Ma, Yuhua; Deng, Ke; Liu, Jiayu; Zhang, Qin; Ma, Zhaowei; Yang, Guo; Liu, Wei; Liu, Guimin
2018-06-01
The health hazard of tritium is related to its chemical form. Sampling different chemical forms of tritium simultaneously becomes significant. Here a novel atmospheric tritium sampling system (TS-212) was developed to collect the tritiated water (HTO), tritiated hydrogen (HT) and tritiated methane (CH3T) simultaneously. It consisted of an air inlet system, three parallel connected sampling channels, a hydrogen supply module, a methane supply module and a remote control system. It worked at air flow rate of 1 L/min to 5 L/min, with temperature of catalyst furnace at 200 °C for HT sampling and 400 °C for CH3T sampling. Conversion rates of both HT and CH3T to HTO were larger than 99%. The collecting efficiency of the two-stage trap sets for HTO was larger than 96% in 12 h working-time without being blocked. Therefore, the collected efficiencies of TS-212 are larger than 95% for tritium with different chemical forms in environment. Besides, the remote control system made sampling more intelligent, reducing the operator's work intensity. Based on the performance parameters described above, the TS-212 can be used to sample atmospheric tritium in different chemical forms.
Mercury (Hg) emissions from coal utilities are difficult to control. Hg eludes capture by most air pollution control devices (APCDs). To determine the gaseous Hg species in stack gases, U.S. EPA Method 5 type sampling is used. In this type of sampling a hole is drilled into th...
Combined analysis of job and task benzene air exposures among workers at four US refinery operations
Shin, Jennifer (Mi); Unice, Ken M; Gaffney, Shannon H; Kreider, Marisa L; Gelatt, Richard H; Panko, Julie M
2016-01-01
Workplace air samples analyzed for benzene at four US refineries from 1976 to 2007 were pooled into a single dataset to characterize similarities and differences between job titles, tasks and refineries, and to provide a robust dataset for exposure reconstruction. Approximately 12,000 non-task (>180 min) personal samples associated with 50 job titles and 4000 task (<180 min) samples characterizing 24 tasks were evaluated. Personal air sample data from four individual refineries were pooled based on a number of factors including (1) the consistent sampling approach used by refinery industrial hygienists over time, (2) the use of similar exposure controls, (3) the comparability of benzene content of process streams and end products, (4) the ability to assign uniform job titles and task codes across all four refineries, and (5) our analysis of variance (ANOVA) of the distribution of benzene air concentrations for select jobs/tasks across all four refineries. The jobs and tasks most frequently sampled included those with highest potential contact with refinery product streams containing benzene, which reflected the targeted sampling approach utilized by the facility industrial hygienists. Task and non-task data were analyzed to identify and account for significant differences within job-area, task-job, and task-area categories. This analysis demonstrated that in general, areas with benzene containing process streams were associated with greater benzene air concentrations compared to areas with process streams containing little to no benzene. For several job titles and tasks analyzed, there was a statistically significant decrease in benzene air concentration after 1990. This study provides a job and task-focused analysis of occupational exposure to benzene during refinery operations, and it should be useful for reconstructing refinery workers’ exposures to benzene over the past 30 years. PMID:26862134
Burns, Amanda; Shin, Jennifer Mi; Unice, Ken M; Gaffney, Shannon H; Kreider, Marisa L; Gelatt, Richard H; Panko, Julie M
2017-03-01
Workplace air samples analyzed for benzene at four US refineries from 1976 to 2007 were pooled into a single dataset to characterize similarities and differences between job titles, tasks and refineries, and to provide a robust dataset for exposure reconstruction. Approximately 12,000 non-task (>180 min) personal samples associated with 50 job titles and 4000 task (<180 min) samples characterizing 24 tasks were evaluated. Personal air sample data from four individual refineries were pooled based on a number of factors including (1) the consistent sampling approach used by refinery industrial hygienists over time, (2) the use of similar exposure controls, (3) the comparability of benzene content of process streams and end products, (4) the ability to assign uniform job titles and task codes across all four refineries, and (5) our analysis of variance (ANOVA) of the distribution of benzene air concentrations for select jobs/tasks across all four refineries. The jobs and tasks most frequently sampled included those with highest potential contact with refinery product streams containing benzene, which reflected the targeted sampling approach utilized by the facility industrial hygienists. Task and non-task data were analyzed to identify and account for significant differences within job-area, task-job, and task-area categories. This analysis demonstrated that in general, areas with benzene containing process streams were associated with greater benzene air concentrations compared to areas with process streams containing little to no benzene. For several job titles and tasks analyzed, there was a statistically significant decrease in benzene air concentration after 1990. This study provides a job and task-focused analysis of occupational exposure to benzene during refinery operations, and it should be useful for reconstructing refinery workers' exposures to benzene over the past 30 years.
Passive sampler for formaldehyde in air using 2,4-dinitrophenylhydrazine-coated glass fiber filters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levin, J.O.; Lindahl, R.; Andersson, K.
1986-12-01
A method utilizing diffusive sampling of formaldehyde in air has been developed. A glass fiber filter, impregnated with 2,4-dinitrophenylhydrazine (DNPH) and phosphoric acid and mounted into a modified aerosol-sampling cassette, is used for sampling by controlled diffusion. The formaldehyde hydrazone formed is desorbed and determined by high-performance liquid chromatography with UV detection. The sampling rate of the sampler was determined to 61 mL/min, with a standard deviation of 5%. The sampling rate is independent of formaldehyde concentrations between 0.1 and 5 mg/m/sup 3/ and sampling times between 15 min and 8 h. The sensitivity of the diffusive method is approximatelymore » 0.005 mg/m/sup 3/ (5 ppm) in an 8-h sample, and the reproducibility is better than 3%.« less
Soyuz 22 Return Samples: Assessment of Air Quality Aboard the International Space Station
NASA Technical Reports Server (NTRS)
Jams, John T.
2010-01-01
Three mini-grab sample containers (m-GSCs) were returned aboard Soyuz 22 because of concerns that new air pollutants were present in the air and these were getting into the water recovery system. The Total Organic Carbon Analyzer had been giving increasing readings of total organic carbon (TOC) in the potable water, and it was postulated that an increased load into the system was responsible. The toxicological assessment of 3 m-GSCs from the ISS is shown in Table 1. The recoveries of the 3 standards (as listed above) from the GSCs averaged 103, 95 and 76%, respectively. Recovery from formaldehyde control badges were 90 and 91%.
Bouza, E; Peláez, T; Pérez-Molina, J; Marín, M; Alcalá, L; Padilla, B; Muñoz, P; Adán, P; Bové, B; Bueno, M J; Grande, F; Puente, D; Rodríguez, M P; Rodríguez-Créixems, M; Vigil, D; Cuevas, O
2002-12-01
The demolition of a maternity building at our institution provided us with the opportunity to study the load of filamentous fungi in the air. External (nearby streets) and internal (within the hospital buildings) air was sampled with an automatic volumetric machine (MAS-100 Air Samplair) at least daily during the week before the demolition, at 10, 30, 60, 90,120, 180, 240, 420, 540 and 660 min post-demolition, daily during the week after the demolition and weekly during weeks 2, 3 and 4 after demolition. Samples were duplicated to analyse reproducibility. Three hundred and forty samples were obtained: 115 external air, 69 'non-protected' internal air and 156 protected internal air [high efficiency particulate air (HEPA) filtered air under positive pressure]. A significant increase in the colony count of filamentous fungi occurred after the demolition. Median colony counts of external air on demolition day were significantly higher than from internal air (70.2 cfu/m(3) vs 35.8 cfu/m(3)) (P < 0.001). Mechanical demolition on day +4 also produced a significant difference between external and internal air (74.5 cfu/m(3) vs 41.7 cfu/m(3)). The counts returned to baseline levels on day +11. Most areas with a protected air supply yielded no colonies before demolition day and remained negative on demolition day. The reproducibility of the count method was good (intra-assay variance: 2.4 cfu/m(3)). No episodes of invasive filamentous mycosis were detected during the three months following the demolition. Demolition work was associated with a significant increase in the fungal colony counts of hospital external and non-protected internal air. Effective protective measures may be taken to avoid the emergence of clinical infections. Copyright 2002 The Hospital Infection Society
Moorman, William J; Reutman, Susan S; Shaw, Peter B; Blade, Leo Michael; Marlow, David; Vesper, Hubert; Clark, John C; Schrader, Steven M
2012-01-01
The aim of this study was to evaluate biomarkers of acrylamide exposure, including hemoglobin adducts and urinary metabolites in acrylamide production workers. Biomarkers are integrated measures of the internal dose, and it is total acrylamide dose from all routes and sources that may present health risks. Workers from three companies were studied. Workers potentially exposed to acrylamide monomer wore personal breathing-zone air samplers. Air samples and surface-wipe samples were collected and analyzed for acrylamide. General-area air samples were collected in chemical processing units and control rooms. Hemoglobin adducts were isolated from ethylenediamine teraacetic acid (EDTA)-whole blood, and adducts of acrylamide and glycidamide, at the N-terminal valines of hemoglobin, were cleaved from the protein chain by use of a modified Edman reaction. Full work-shift, personal breathing zone, and general-area air samples were collected and analyzed for particulate and acrylamide monomer vapor. The highest general-area concentration of acrylamide vapor was 350 μg/cm(3) in monomer production. Personal breathing zone and general-area concentrations of acrylamide vapor were found to be highest in monomer production operations, and lower levels were in the polymer production operations. Adduct levels varied widely among workers, with the highest in workers in the monomer and polymer production areas. The acrylamide adduct range was 15-1884 pmol/g; glycidamide adducts ranged from 17.8 to 1376 p/mol/g. The highest acrylamide and glycidamide adduct levels were found among monomer production process operators. The primary urinary metabolite N-acetyl-S-(2-carbamoylethyl) cysteine (NACEC) ranged from the limit of detection to 15.4 μg/ml. Correlation of workplace exposure and sentinel health effects is needed to determine and control safe levels of exposure for regulatory standards.
40 CFR 420.21 - Specialized definitions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... emission control system that utilizes filters to remove iron-bearing particles (fines) from blast furnace...-tetrachlorodibenzofuran, the minimum level is 10 pg/L per EPA Method 1613B for water and wastewater samples. (d) The term... term wet air pollution control system means an emission control system that utilizes water to clean...
Self-contained cryogenic gas sampling apparatus and method
McManus, G.J.; Motes, B.G.; Bird, S.K.; Kotter, D.K.
1996-03-26
Apparatus for obtaining a whole gas sample, is composed of: a sample vessel having an inlet for receiving a gas sample; a controllable valve mounted for controllably opening and closing the inlet; a valve control coupled to the valve for opening and closing the valve at selected times; a portable power source connected for supplying operating power to the valve control; and a cryogenic coolant in thermal communication with the vessel for cooling the interior of the vessel to cryogenic temperatures. A method is described for obtaining an air sample using the apparatus described above, by: placing the apparatus at a location at which the sample is to be obtained; operating the valve control to open the valve at a selected time and close the valve at a selected subsequent time; and between the selected times maintaining the vessel at a cryogenic temperature by heat exchange with the coolant. 3 figs.
Self-contained cryogenic gas sampling apparatus and method
McManus, Gary J.; Motes, Billy G.; Bird, Susan K.; Kotter, Dale K.
1996-01-01
Apparatus for obtaining a whole gas sample, composed of: a sample vessel having an inlet for receiving a gas sample; a controllable valve mounted for controllably opening and closing the inlet; a valve control coupled to the valve for opening and closing the valve at selected times; a portable power source connected for supplying operating power to the valve control; and a cryogenic coolant in thermal communication with the vessel for cooling the interior of the vessel to cryogenic temperatures. A method of obtaining an air sample using the apparatus described above, by: placing the apparatus at a location at which the sample is to be obtained; operating the valve control to open the valve at a selected time and close the valve at a selected subsequent time; and between the selected times maintaining the vessel at a cryogenic temperature by heat exchange with the coolant.
Williams, Megan K.; Barr, Dana B.; Camann, David E.; Cruz, Linda A.; Carlton, Elizabeth J.; Borjas, Mejico; Reyes, Andria; Evans, Dave; Kinney, Patrick L.; Whitehead, Ralph D.; Perera, Frederica P.; Matsoanne, Stephen; Whyatt, Robin M.
2006-01-01
Background We previously reported widespread insecticide exposure during pregnancy among inner-city women from New York City. Here we report on a pilot intervention using integrated pest management (IPM) to reduce pest infestations and residential insecticide exposures among pregnant New York City African-American and Latina women (25 intervention and 27 control homes). Methods The IPM consisted of professional cleaning, sealing of pest entry points, application of low-toxicity pesticides, and education. Cockroach infestation levels and 2-week integrated indoor air samples were collected at baseline and one month postintervention. The insecticides detected in the indoor air samples were also measured in maternal and umbilical cord blood collected at delivery. Results Cockroach infestations decreased significantly (p = 0.016) after the intervention among intervention cases but not control households. Among the intervention group, levels of piperonyl butoxide (a pyrethroid synergist) were significantly lower in indoor air samples after the intervention (p = 0.016). Insecticides were detected in maternal blood samples collected at delivery from controls but not from the intervention group. The difference was significant for trans-permethrin (p = 0.008) and of borderline significance (p = 0.1) for cis-permethrin and 2-isopropoxyphenol (a propoxur metabolite). Conclusion To our knowledge, this is the first study to use biologic dosimeters of prenatal pesticide exposure for assessing effectiveness of IPM. These pilot data suggest that IPM is an effective strategy for reducing pest infestation levels and the internal dose of insecticides during pregnancy. PMID:17107853
Occupational exposure to bisphenol A (BPA) in a plastic injection molding factory in Malaysia.
Kouidhi, Wided; Thannimalay, Letchumi; Soon, Chen Sau; Ali Mohd, Mustafa
2017-07-14
The purpose of this study has been to assess ambient bisphenol A (BPA) levels in workplaces and urine levels of workers and to establish a BPA database for different populations in Malaysia. Urine samples were collected from plastic factory workers and from control subjects after their shift. Air samples were collected using gas analyzers from 5 sampling positions in the injection molding unit work area and from ambient air. The level of BPA in airborne and urine samples was quantified by the gas chromatography mass spectrometry - selected ion monitoring (GCMS-SIM) analysis. Bisphenol A was detected in the median range of 8-28.3 ng/m³ and 2.4-3.59 ng/m³ for the 5 sampling points in the plastic molding factory and in the ambient air respectively. The median urinary BPA concentration was significantly higher in the workers (3.81 ng/ml) than in control subjects (0.73 ng/ml). The urinary BPA concentration was significantly associated with airborne BPA levels (ρ = 0.55, p < 0.01). Our findings provide the first evidence that workers in a molding factory in Malaysia are occupationally exposed to BPA. Int J Occup Med Environ Health 2017;30(5):743-750. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.
Effect of Trona on the leaching of trace elements from coal fly ash.
DOT National Transportation Integrated Search
2013-07-01
Fly ashes were sampled from the ESPs by on-site contractors during air emission control tests. The injection tests were short-term, : lasting approximately three hours per test condition. EPRI received three batches of samples since November 2011, re...
NASA Technical Reports Server (NTRS)
James, John T.
2003-01-01
The toxicological assessments of grab sample canisters (GSCs) returned aboard STS-l13 and Soyuz 5 are reported. Analytical methods have not changed from earlier reports. Surrogate standard recoveries from the GSCs were 79-120% except as noted in the table. One sample was returned with the valve opened. The two general criteria used to assess air quality are the total-non-methane-volatile organic hydrocarbons (NMVOCs) and the total T-value (minus the CO2 and formaldehyde contributions). Control of atmospheric alcohols is important to the water recovery system engineers, hence total alcohols (including acetone) are also shown for each sample. Octafluoropropane (OFP) has leaked from heat-exchange units in large quantities, so its concentration is tracked separately. Because formaldehyde is quantified from sorbent badges, its concentration is also listed separately. The table shows that the air quality in general was acceptable for crew respiration through the middle of December 2002. No conclusions can be made about the air quality after that date due to NASA's inability to return air samples from the ISS . Alcohols are not being controlled to the recently lowered guideline of 5 mg/m3, which was recommended to protect the water recovery systems. The airlock sample was taken during the regeneration of Met ox canisters in the adjacent Node. The trace pollutants were not increased above background; however, inspection of table 1 in the appendix shows a CO2 concentration of 17,000 mg/cu m, which is a relatively high concentration, but still below the 24-hour SMAC of23,000 mg/cu m. The control of OFP continues to be adequate at least through December 2002. Formaldehyde concentrations suggest that the high levels that were being found in the Lab atmosphere have subsided. This is probably attributable to the restoration of IMV in early February 2003 . Before the obstructing material was removed from ducts the Lab formaldehyde concentrations approached 0.06 mg/cu m, whereas after the repair the levels were near 0.04 mg/m3 . This does not mean that local sources in the Lab have been reduced, only that the excess of formaldehyde produced in the Lab is distributed into the whole volume of the ISS.
Puri, Basant K; Ross, Brian M; Treasaden, Ian H
2008-04-01
This study directly assessed whether there was a change in the level of exhaled ethane, which provides a non-invasive, quantitative, direct measure of n-3 lipid peroxidation, in the breath of patients with schizophrenia. Samples of alveolar air were obtained from 20 subjects with schizophrenia and 23 age- and sex-matched healthy control subjects. The air samples were analyzed for ethane using mass spectrometry. The mean level of ethane in the schizophrenia sample [5.15 (S.E. 0.56) ppb] was significantly higher than that of the healthy controls [2.63 (S.E. 0.31) ppb; p<0.0005]. A further sub-analysis showed that nicotine dependence was unlikely to be the cause of this difference. These results suggest that the measurement of exhaled ethane levels may offer a non-invasive direct biomarker of increased n-3 lipid peroxidation in schizophrenia.
Identification of control parameters for the sulfur gas storability with bag sampling methods
USDA-ARS?s Scientific Manuscript database
Air samples containing sulfur compounds are often collected and stored in sample bags prior to analyses. The storage stability of six gaseous sulfur compounds (H2S, CH3SH, DMS, CS2, DMDS and SO2) was compared between two different bag materials (polyvinyl fluoride (PVF) and polyester aluminum (PEA))...
Onufrienko holds a Grab Sample Container (GSC) in the SM during Expedition Four
2002-05-23
ISS004-E-12368 (23 May 2002) --- Cosmonaut Yury I. Onufrienko, Expedition Four mission commander representing Rosaviakosmos, holds a Grab Sample Container (GSC) in the Zvezda Service Module on the International Space Station (ISS). The GSC is used to take air samples in various modules as part of environmental quality control.
NASA Astrophysics Data System (ADS)
Liang, Pengfei; Zhu, Tong; Fang, Yanhua; Li, Yingruo; Han, Yiqun; Wu, Yusheng; Hu, Min; Wang, Junxia
2017-11-01
To control severe air pollution in China, comprehensive pollution control strategies have been implemented throughout the country in recent years. To evaluate the effectiveness of these strategies, the influence of meteorological conditions on levels of air pollution needs to be determined. Using the intensive air pollution control strategies implemented during the Asia-Pacific Economic Cooperation Forum in 2014 (APEC 2014) and the 2015 China Victory Day Parade (Victory Parade 2015) as examples, we estimated the role of meteorological conditions and pollution control strategies in reducing air pollution levels in Beijing. Atmospheric particulate matter of aerodynamic diameter ≤ 2.5 µm (PM2.5) samples were collected and gaseous pollutants (SO2, NO, NOx, and O3) were measured online at a site in Peking University (PKU). To determine the influence of meteorological conditions on the levels of air pollution, we first compared the air pollutant concentrations during days with stable meteorological conditions. However, there were few days with stable meteorological conditions during the Victory Parade. As such, we were unable to estimate the level of emission reduction efforts during this period. Finally, a generalized linear regression model (GLM) based only on meteorological parameters was built to predict air pollutant concentrations, which could explain more than 70 % of the variation in air pollutant concentration levels, after incorporating the nonlinear relationships between certain meteorological parameters and the concentrations of air pollutants. Evaluation of the GLM performance revealed that the GLM, even based only on meteorological parameters, could be satisfactory to estimate the contribution of meteorological conditions in reducing air pollution and, hence, the contribution of control strategies in reducing air pollution. Using the GLM, we found that the meteorological conditions and pollution control strategies contributed 30 and 28 % to the reduction of the PM2.5 concentration during APEC and 38 and 25 % during the Victory Parade, respectively, based on the assumption that the concentrations of air pollutants are only determined by meteorological conditions and emission intensities. We also estimated the contribution of meteorological conditions and control strategies in reducing the concentrations of gaseous pollutants and PM2.5 components with the GLMs, revealing the effective control of anthropogenic emissions.
NASA Technical Reports Server (NTRS)
Goldstein, H. W.; Bortner, M. H.; Grenda, R. N.; Dick, R.; Lebel, P. J.; Lamontagne, R. A.
1976-01-01
Two types of experiments were performed with a correlation interferometer on-board a Bell Jet Ranger 206 Helicopter. The first consisted of simultaneous ground- and air-truth measurements as the instrumented helicopter passed over the Cheverly site. The second consisted of several measurement flights in and around the national capital air quality control region (Washington, D.C.). The correlation interferometer data, the infrared Fourier spectrometer data, and the integrated altitude sampling data showed agreement within the errors of the individual measurements. High values for CO were found from the D.C. flight data to be reproducible and concentrated in areas of stop-and-go traffic. It is concluded, that pollutants at low altitudes are detectable from an air-borne platform by remote correlation interferometry and that the correlation interferometer measurements agree with ground- and air-truth data.
Octafluoropropane Concentration Dynamics on Board the International Space Station
NASA Technical Reports Server (NTRS)
Perry, J. L.
2003-01-01
Since activating the International Space Station s (IS9 Service Module in November 2000, archival air quality samples have shown highly variable concentrations of octafluoropropane in the cabin. This variability has been directly linked to leakage from air conditioning systems on board the Service Module, Zvezda. While octafluoro- propane is not highly toxic, it presents a significant chal- lenge to the trace contaminant control systems. A discussion of octafluoropropane concentration dynamics is presented and the ability of on board trace contami- nant control systems to effectively remove octafluoropro- pane from the cabin atmosphere is assessed. Consideration is given to operational and logistics issues that may arise from octafluoropropane and other halo- carbon challenges to the contamination control systems as well as the potential for effecting cabin air quality.
Buoyancy-corrected gravimetric analysis of lightly loaded filters.
Rasmussen, Pat E; Gardner, H David; Niu, Jianjun
2010-09-01
Numerous sources of uncertainty are associated with the gravimetric analysis of lightly loaded air filter samples (< 100 microg). The purpose of the study presented here is to investigate the effectiveness and limitations of air buoyancy corrections over experimentally adjusted conditions of temperature (21-25 degrees C) and relative humidity (RH) (16-60% RH). Conditioning (24 hr) and weighing were performed inside the Archimedes M3 environmentally controlled chamber. The measurements were performed using 20 size-fractionated samples of resuspended house dust loaded onto Teflo (PTFE) filters using a Micro-Orifice Uniform Deposit Impactor representing a wide range of mass loading (7.2-3130 microg) and cut sizes (0.056-9.9 microm). By maintaining tight controls on humidity (within 0.5% RH of control setting) throughout pre- and postweighing at each stepwise increase in RH, it was possible to quantify error due to water absorption: 45% of the total mass change due to water absorption occurred between 16 and 50% RH, and 55% occurred between 50 and 60% RH. The buoyancy corrections ranged from -3.5 to +5.8 microg in magnitude and improved relative standard deviation (RSD) from 21.3% (uncorrected) to 5.6% (corrected) for a 7.2 microg sample. It is recommended that protocols for weighing low-mass particle samples (e.g., nanoparticle samples) should include buoyancy corrections and tight temperature/humidity controls. In some cases, conditioning times longer than 24 hr may be warranted.
The Adoption of Technological Innovations by Municipal Governments.
ERIC Educational Resources Information Center
Feller, Irwin; Menzel, Donald C.
1978-01-01
Data on the adoption of 43 technological innovations in four service delivery areas were obtained from nationally representative samples of municipal governments. The service delivery areas included fire fighting, solid waste collection and disposal, traffic control, and air pollution control. (Author/RLV)
Decomposition Odour Profiling in the Air and Soil Surrounding Vertebrate Carrion
2014-01-01
Chemical profiling of decomposition odour is conducted in the environmental sciences to detect malodourous target sources in air, water or soil. More recently decomposition odour profiling has been employed in the forensic sciences to generate a profile of the volatile organic compounds (VOCs) produced by decomposed remains. The chemical profile of decomposition odour is still being debated with variations in the VOC profile attributed to the sample collection technique, method of chemical analysis, and environment in which decomposition occurred. To date, little consideration has been given to the partitioning of odour between different matrices and the impact this has on developing an accurate VOC profile. The purpose of this research was to investigate the decomposition odour profile surrounding vertebrate carrion to determine how VOCs partition between soil and air. Four pig carcasses (Sus scrofa domesticus L.) were placed on a soil surface to decompose naturally and their odour profile monitored over a period of two months. Corresponding control sites were also monitored to determine the VOC profile of the surrounding environment. Samples were collected from the soil below and the air (headspace) above the decomposed remains using sorbent tubes and analysed using gas chromatography-mass spectrometry. A total of 249 compounds were identified but only 58 compounds were common to both air and soil samples. This study has demonstrated that soil and air samples produce distinct subsets of VOCs that contribute to the overall decomposition odour. Sample collection from only one matrix will reduce the likelihood of detecting the complete spectrum of VOCs, which further confounds the issue of determining a complete and accurate decomposition odour profile. Confirmation of this profile will enhance the performance of cadaver-detection dogs that are tasked with detecting decomposition odour in both soil and air to locate victim remains. PMID:24740412
Decomposition odour profiling in the air and soil surrounding vertebrate carrion.
Forbes, Shari L; Perrault, Katelynn A
2014-01-01
Chemical profiling of decomposition odour is conducted in the environmental sciences to detect malodourous target sources in air, water or soil. More recently decomposition odour profiling has been employed in the forensic sciences to generate a profile of the volatile organic compounds (VOCs) produced by decomposed remains. The chemical profile of decomposition odour is still being debated with variations in the VOC profile attributed to the sample collection technique, method of chemical analysis, and environment in which decomposition occurred. To date, little consideration has been given to the partitioning of odour between different matrices and the impact this has on developing an accurate VOC profile. The purpose of this research was to investigate the decomposition odour profile surrounding vertebrate carrion to determine how VOCs partition between soil and air. Four pig carcasses (Sus scrofa domesticus L.) were placed on a soil surface to decompose naturally and their odour profile monitored over a period of two months. Corresponding control sites were also monitored to determine the VOC profile of the surrounding environment. Samples were collected from the soil below and the air (headspace) above the decomposed remains using sorbent tubes and analysed using gas chromatography-mass spectrometry. A total of 249 compounds were identified but only 58 compounds were common to both air and soil samples. This study has demonstrated that soil and air samples produce distinct subsets of VOCs that contribute to the overall decomposition odour. Sample collection from only one matrix will reduce the likelihood of detecting the complete spectrum of VOCs, which further confounds the issue of determining a complete and accurate decomposition odour profile. Confirmation of this profile will enhance the performance of cadaver-detection dogs that are tasked with detecting decomposition odour in both soil and air to locate victim remains.
Volkova, V N; Mukhina, L P; Chistova, Zh A; Fedorova, S G
Polyoxin B being an effective inhibitor of synthesis of chitin of the cell wall of many phytopathogenic fungi, is recommended as a fungicide for control of phytopathogenic organisms that cause damage to crop. For the determination of the exposure of employees working with pesticides there was developed the method of the measurement of concentrations of polyoxin B in air of working area, atmospheric air of populated areas and washouts from the operators ’ integuments, based on high performance liquid chromatography with ultraviolet detector (detection wavelength of270 nm), including sampling air environment in the sorption tube ORBO-44, filled with sorbent XAD-2, extraction of the sorbent with polyoxin by a mixture of carbinol-water (in a ratio of 95:5,on volume), washout from the surface of the skin with ethyl alcohol by way of washing, concentrating, quantitative chromatographic analysis. Lower limits of the quantification ofpolyoxin B in the air ofworking area - 0.2 mg/m at the aspiration of 2 dm of air, atmospheric air - 0.016 mg/m at the aspiration of 25 dm of air, in washouts from the operators’ integuments - 0.4 pg/wash, the linear range of the defined concentrations accounted for of 0.2 - 2.4 pg/cm, the total error of measurement of the concentrations of polyoxin B in air is 17%; in washouts from the operators’ integuments - 16%. The developed method was approbated for the determination of polyoxin in samples of air of working zone, atmospheric air within the sanitary gap, washouts from the operators ’ integuments and air drift samples taken under processing of roses in the hothouse and in the monitoring of the phytosanitary condition of the plants every other day after treatment.
Alcudia-León, M Carmen; Lucena, Rafael; Cárdenas, Soledad; Valcárcel, Miguel; Kabir, Abuzar; Furton, Kenneth G
2017-03-10
This article presents a novel unit that integrates for the first time air sampling and preconcentration based on the use of fabric phase sorptive extraction principles. The determination of Tuta absoluta sexual pheromone traces in environmental air has been selected as analytical problem. For this aim, a novel laboratory-built unit made up of commercial brass elements as holder of the sol-gel coated fabric extracting phase has been designed and optimized. The performance of the integrated unit was evaluated analyzing environmental air sampled in tomato crops. The unit can work under sampling and analysis mode which eliminates any need for sorptive phase manipulation prior to instrumental analysis. In the sampling mode, the unit can be connected to a sampling pump to pass the air through the sorptive phase at a controlled flow-rate. In the analysis mode, it is placed in the gas chromatograph autosampler without any instrumental modification. It also diminishes the risk of cross contamination between sampling and analysis. The performance of the new unit has been evaluated using the main components of the sexual pheromone of Tuta absoluta [(3E,8Z,11Z)-tetradecatrien-1-yl acetate and (3E,8Z)-tetradecadien-1-yl acetate] as model analytes. The limits of detection for both compounds resulted to be 1.6μg and 0.8μg, respectively, while the precision (expressed as relative standard deviation) was better than 3.7%. Finally, the unit has been deployed in the field to analyze a number of real life samples, some of them were found positive. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yang, M. M.; Meinardi, S.; Krauter, C.; Blake, D.
2008-12-01
The San Joaquin Valley Air Basin in Central California is classified by the U.S. Environmental Protection Agency (EPA) as a serious non-attainment area for health-based eight-hour federal ozone (smog) standard (1). In August 2005, the San Joaquin Valley Air Pollution Control District issued a report identifying dairies as a main source of Volatile Organic Compounds (VOCs) and fine particulate matter in the valley (2). Among these compounds, we have found that ethanol, methanol, acetone and acetaldehyde are produced in major quantities throughout the San Joaquin valley as by-products of yeast fermentation of silage and photochemical oxidation. These oxygenates, especially ethanol, play an important role in ozone (O3) formation within the valley. Three different types of sampling protocols were employed in order to determine the degree of enhancement of the four oxygenates in the valley air shed, as well as to determine their sources, emission profiles and emission rates. An assessment of the emissions of these oxygenates in the valley was achieved using data obtained on low altitude flights through the valley and from ground level samples collected thoughout the valley. The photochemical production of ozone was calculated for each of the four oxygenates and approximately one hundred other quantified VOCs. Based on the Maximum Incremental Reactivity (MIR) scale and concentrations of each oxygenate in the atmosphere, as much as 20% of O3 production in the valley is from ethanol and its photochemical by-product acetaldehyde. Our findings suggest that improvement to the valley air quality may be obtained by focusing on instituting new silage containment practices and regulations. 1. Lindberg, J. "Analysis of the San Joaquin Valley 2007 Ozone Plan." State of California Air Resources Board. Final Draft Staff Report. 5/30/2007. 2. Crow, D., executive director/APCO. "Air Pollution Control Officer's Determination of VOC Emisison Factors for Dairies." San Joaquin Valley Air Pollution Control District. Aug. 1st 2005.
NASA Astrophysics Data System (ADS)
Pervez, S.; Koshle, A.; Pervez, Y.
2010-01-01
Mercury release by coal combustion has been significantly increased in India. Mercury content in coal has been analyzed to 0.272 ppm by Central Pollution Control Board. Toxicological effects of elemental Hg (Hg0) exposure include respiratory and renal failures, cardiac arrest, and cerebral oedema, while subclinical exposure may induce kidney, behavioral, and cognitive dysfunctions. The present work is focused on dispersion pattern and inter-phase exchange phenomena of ambient mercury between air-particulate matter evaluations of alongwith dominance of various major routes of human exposure-dose response using regression analysis around an integrated steel plant in central India. Source-downwind type stratified random sampling plan using longitudinal study design has been adopted for ambient monitoring of total mercury, while representative sampling plant has been adopted for persona exposure-dose response study In space-time framework. Control sites and subjects have been chosen from uncontaminated area (100 km away from any industrial activities). 06 ambient air monitoring stations and 17 subjects from workers, non-workers but local residents' categories and from controlled sites have been chosen for the study. Samples of mercury biomarkers (blood, breast milk and urine) have also been collected from same subjects in each month during sampling period. The sampling period was March 2005 to February 2006 . Samples of 30% acidified KMnO4 for air-Hg absorption, PM10, RPM and biological samples were analyzed for total mercury by ICP-AES using standard methods. Local soils and ground water were also monitored for total mercury content during the sampling period. Results have shown that mercury concentration is very high compared to prescribed limits in all receptors. Results of exchange phenomenon have shown the higher transfer of mercury from air to particulate during combustion in steel plant environment due to presence of huge amount of iron particles, in contrast to results obtained in other industrial locations earlier. Plant workers have shown 1.5 to 2.5 times higher personal RPM-Hg levels compared to Category 2 and 20-30 times higher than Category 3. All biomarkers have shown higher Hg presence compared to prescribed standards. Regression analysis between exposure routes and bio-receptors has been investigated. Dominance status of selected routes of bio-accumulation has been varied from category to category.
NASA Astrophysics Data System (ADS)
Pervez, S.; Koshle, A.; Pervez, Y.
2010-06-01
Mercury release by coal combustion has been significantly increased in India. Mercury content in coal has been analyzed to 0.272 ppm by Central Pollution Control Board. Toxicological effects of elemental Hg (Hg0) exposure include respiratory and renal failures, cardiac arrest, and cerebral oedema, while subclinical exposure may induce kidney, behavioral, and cognitive dysfunctions. The present work is focused on dispersion pattern and inter-phase exchange phenomena of ambient mercury between air-particulate matter evaluations of alongwith dominance of various major routes of human exposure-dose response using regression analysis around an integrated steel plant in central India. Source-downwind type stratified random sampling plan using longitudinal study design has been adopted for ambient monitoring of total mercury, while representative sampling plant has been adopted for persona exposure-dose response study In space-time framework. Control sites and subjects have been chosen from uncontaminated area (100 km away from any industrial activities). 06 ambient air monitoring stations and 17 subjects from workers, non-workers but local residents' categories and from controlled sites have been chosen for the study. Samples of mercury biomarkers (blood, breast milk and urine) have also been collected from same subjects in each month during sampling period. The sampling period was March 2005 to February 2006 . Samples of 30% acidified KMnO4 for air-Hg absorption, PM10, RPM and biological samples were analyzed for total mercury by ICP-AES using standard methods. Local soils and ground water were also monitored for total mercury content during the sampling period. Results have shown that mercury concentration is very high compared to prescribed limits in all receptors. Results of exchange phenomenon have shown the higher transfer of mercury from air to particulate during combustion in steel plant environment due to presence of huge amount of iron particles, in contrast to results obtained in other industrial locations earlier. Plant workers have shown 1.5 to 2.5 times higher personal RPM-Hg levels compared to Category 2 and 20-30 times higher than Category 3. All biomarkers have shown higher Hg presence compared to prescribed standards. Regression analysis between exposure routes and bio-receptors has been investigated. Dominance status of selected routes of bio-accumulation has been varied from category to category.
Low cycle fatigue behavior of polycrystalline NiAl at 300 and 1000 K
NASA Technical Reports Server (NTRS)
Lerch, Bradley A.; Noebe, Ronald D.
1993-01-01
The low cycle fatigue behavior of polycrystalline NiAl was determined at 300 and 1000 K - temperatures below and above the brittle- to-ductile transition temperature (BDTT). Fully reversed, plastic strain-controlled fatigue tests were conducted on two differently fabricated alloy samples: hot isostatically pressed (HIP'ed) prealloyed powder and hot extruded castings. HIP'ed powder (HP) samples were tested only at 1000 K, whereas the more ductile cast-and-extruded (C+E) NiAl samples were tested at both 1000 and 300 K. Plastic strain ranges of 0.06 to 0.2 percent were used. The C+E NiAl cyclically hardened until fracture, reaching stress levels approximately 60 percent greater than the ultimate tensile strength of the alloy. Compared on a strain basis, NiAl had a much longer fatigue life than other B2 ordered compounds in which fracture initiated at processing-related defects. These defects controlled fatigue life at 300 K, with fracture occurring rapidly once a critical stress level was reached. At 1000 K, above the BDTT, both the C+E and HP samples cyclically softened during most of the fatigue tests in air and were insensitive to processing defects. The processing method did not have a major effect on fatigue life; the lives of the HP samples were about a factor of three shorter than the C+E NiAl, but this was attributed to the lower stress response of the C+E material. The C+E NiAl underwent dynamic grain growth, whereas the HP material maintained a constant grain size during testing. In both materials, fatigue life was controlled by intergranular cavitation and creep processes, which led to fatigue crack growth that was primarily intergranular in nature. Final fracture by overload was transgranular in nature. Also, HP samples tested in vacuum had a life three times longer than their counterparts tested in air and, in contrast to those tested in air, hardened continuously over half of the sample life, thereby indicating an environmentally assisted fatigue damage mechanism. The C+E samples were tested only in air. At 1000 K, NiAl exhibited a superior fatigue life when compared to most superalloys on a plastic strain basis, but was inferior to most superalloys on a stress basis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harlos, D.P.; Edgerton, E.S.
1994-12-31
The US EPA has, under the auspices of the CASTNet program (Clean Air Status and Trends Network), initiated the CASTNet Air Toxics Monitoring Program (CATMP). Volatile Organic Compounds (VOC) and carbonyls and metals are sampled for 24-hour periods on a 12-day schedule using TO-14 samplers (SUMMA canisters) and dinitrophenylhydrazine-coated (dmph) sorbent cartridges and high volume particle samplers. Sampling was begun at most sites in July of 1993. The sites are operated by state and local air pollution control programs and all analysis is performed by Environmental Science and Engineering (ESE) in Gainesville, Florida. The network currently supports 15 VOC sites,more » of which 7 also sample carbonyls. Three sites sample metals only in Pinellas County, Florida. The limits of detection of 0.05 ppb for VOCs allow routine tracking of a wide range of pollutants including several greenhouse gases, transportation pollutants and photochemically-derived compounds. The sites range from major urban areas (Chicago, St. Louis) to a rural village (Waterbury, Vermont). Results of the first three quarters of VOC and carbonyl data collection are summarized in this presentation.« less
Johyama, Y; Yokota, K; Fujiki, Y; Takeshita, T; Morimoto, K
1999-10-01
Methyltetrahydrophthalic anhydride (MTHPA) stimulates the production of specific IgE antibodies which can cause occupational allergy even at extremely low levels of exposure (15-22 micrograms/m3). Safe use in industry demands control of the levels of exposure causing allergic diseases. Thus, the air monitoring of MTHPA is very important, and sensitive methods are required to measure low air concentrations or short-time peak exposures. This paper outlines the use of silica-gel tubes for sampling airborne MTHPA vapour, followed by analysis using gas chromatography with electron-capture detection. No breakthrough was observed at 113, 217, 673 and 830 micrograms/m3 (sampling volume 30, 60, 60 and 20 l, respectively; relative humidity 40-55%). Concentrations > 1.0 microgram/m3 could be quantified at 20-min sampling with a sampling rate of 1 l/min. The present method can also be applied to measurements of exposure to hexahydrophthalic and methylhexahydrophthalic anhydride. The risk of MTHPA exposure in two condenser plants was also assessed by determining MTHPA levels in air of the workplace. In conclusion, our method was found to be reliable and sensitive, and can be applied to the evaluation of MTHPA exposure.
Potential genotoxic effects of melted snow from an urban area revealed by the Allium cepa test.
Blagojević, Jelena; Stamenković, Gorana; Vujosević, Mladen
2009-09-01
The presence of well-known atmospheric pollutants is regularly screened for in large towns but knowledge about the effects of mixtures of different pollutants and especially their genotoxic potential is largely missing. Since falling snow collects pollutants from the air, melted snow samples could be suitable for evaluating potential genotoxicity. For this purpose the Allium cepa anaphase-telophase test was used to analyse melted snow samples from Belgrade, the capital city of Serbia. Samples of snow were taken at two sites, characterized by differences in pollution intensity, in three successive years. At the more polluted site the analyses showed a very high degree of both toxicity and genotoxicity in the first year of the study corresponding to the effects of the known mutagen used as the positive control. At the other site the situation was much better but not without warning signals. The results showed that standard analyses for the presence of certain contaminants in the air do not give an accurate picture of the possible consequences of urban air pollution because the genotoxic potential remains hidden. The A. cepa test has been demonstrated to be very convenient for evaluation of air pollution through analyses of melted snow samples.
NASA Astrophysics Data System (ADS)
Bent, J. D.; Sweeney, C.; Tans, P. P.; Newberger, T.; Higgs, J. A.; Wolter, S.
2017-12-01
Accurate estimates of point source gas emissions are essential for reconciling top-down and bottom-up greenhouse gas measurements, but sampling such sources is challenging. Remote sensing methods are limited by resolution and cloud cover; aircraft methods are limited by air traffic control clearances, and the need to properly determine boundary layer height. A new sampling approach leverages the ability of unmanned aerial systems (UAS) to measure all the way to the surface near the source of emissions, improving sample resolution, and reducing the need to characterize a wide downstream swath, or measure to the full height of the planetary boundary layer (PBL). The "Active-AirCore" sampler, currently under development, will fly on a fixed wing UAS in Class G airspace, spiraling from the surface to 1200 ft AGL around point sources such as leaking oil wells to measure methane, carbon dioxide and carbon monoxide. The sampler collects a 100-meter long sample "core" of air in an 1/8" passivated stainless steel tube. This "core" is run on a high-precision instrument shortly after the UAS is recovered. Sample values are mapped to a specific geographic location by cross-referencing GPS and flow/pressure metadata, and fluxes are quantified by applying Gauss's theorem to the data, mapped onto the spatial "cylinder" circumscribed by the UAS. The AirCore-Active builds off the sampling ability and analytical approach of the related AirCore sampler, which profiles the atmosphere passively using a balloon launch platform, but will add an active pumping capability needed for near-surface horizontal sampling applications. Here, we show design elements, laboratory and field test results for methane, describe the overall goals of the mission, and discuss how the platform can be adapted, with minimal effort, to measure other gas species.
Assessment of dioxin-like activity in ambient air particulate matter using recombinant yeast assays
NASA Astrophysics Data System (ADS)
Olivares, Alba; van Drooge, Barend L.; Pérez Ballesta, Pascual; Grimalt, Joan O.; Piña, Benjamin
2011-01-01
Ectopic activation of the aryl hydrocarbon receptor (AhR), also known as dioxin-like activity, is a major component of the toxicity associated with polycyclic aromatic hydrocarbons (PAH). Filtration of ambient air particulate matter through PM 10 filters followed by chemical determination of PAH concentrations and a yeast-based bioassay (RYA) were combined to evaluate and characterize dioxin-like activity in ambient air. Samples were collected in a semirural area of Northern Italy between September 2008 and February 2009. Total PAH contents ranged between 0.3 ng m -3 and 34 ng m -3 and were in correlation with seasonal variations of meteorological conditions and combustion processes. Dioxin-like activity values in air samples showed an excellent correlation (0.71 < R2 < 0.86) with the observed PAH concentrations and the predicted toxicity equivalents for PAH. This RYA-bioassay reported in the present study provides a simple and low-cost routine control for toxic PAH emissions, even at background air concentration levels.
AirLab: a cloud-based platform to manage and share antibody-based single-cell research.
Catena, Raúl; Özcan, Alaz; Jacobs, Andrea; Chevrier, Stephane; Bodenmiller, Bernd
2016-06-29
Single-cell analysis technologies are essential tools in research and clinical diagnostics. These methods include flow cytometry, mass cytometry, and other microfluidics-based technologies. Most laboratories that employ these methods maintain large repositories of antibodies. These ever-growing collections of antibodies, their multiple conjugates, and the large amounts of data generated in assays using specific antibodies and conditions makes a dedicated software solution necessary. We have developed AirLab, a cloud-based tool with web and mobile interfaces, for the organization of these data. AirLab streamlines the processes of antibody purchase, organization, and storage, antibody panel creation, results logging, and antibody validation data sharing and distribution. Furthermore, AirLab enables inventory of other laboratory stocks, such as primers or clinical samples, through user-controlled customization. Thus, AirLab is a mobile-powered and flexible tool that harnesses the capabilities of mobile tools and cloud-based technology to facilitate inventory and sharing of antibody and sample collections and associated validation data.
Wan, Gwo-Hwa; Huang, Chung-Guei; Chung, Fen-Fang; Lin, Tzou-Yien; Tsao, Kuo-Chien; Huang, Yhu-Chering
2016-04-01
Few studies have assessed viral contamination in the rooms of hospital wards. This cross-sectional study evaluated the air and objects in patient-occupied rooms in pediatric wards for the presence of common respiratory viruses and Mycoplasma pneumoniae.Air samplers were placed at a short (60-80 cm) and long (320 cm) distance from the head of the beds of 58 pediatric patients, who were subsequently confirmed to be infected with enterovirus (n = 17), respiratory syncytial virus (RSV) (n = 13), influenza A virus (n = 13), adenovirus (n = 9), or M pneumoniae (n = 6). Swab samples were collected from the surfaces of 5 different types of objects in the patients' rooms. All air and swab samples were analyzed via real-time quantitative polymerase chain reaction assay for the presence of the above pathogens.All pathogens except enterovirus were detected in the air, on the objects, or in both locations in the patients' rooms. The detection rates of influenza A virus, adenovirus, and M pneumoniae for the long distance air sampling were 15%, 67%, and 17%, respectively. Both adenovirus and M pneumoniae were detected at very high rates, with high concentrations, on all sampled objects.The respiratory pathogens RSV, influenza A virus, adenovirus, and M pneumoniae were detected in the air and/or on the objects in the pediatric ward rooms. Appropriate infection control measures should be strictly implemented when caring for such patients.
Results from the Space Shuttle STS-95 Electronic Nose Experiment
NASA Technical Reports Server (NTRS)
Ryan, M. A.; Buehler, M. G.; Homer, M. L.; Mannatt, K. S.; Lau, B.; Jackson, S.; Zhou, H.
2000-01-01
A miniature electronic nose in which the sensing media are insulating polymers loaded with carbon black as a conductive medium has been designed and built at the Jet Propulsion Laboratory. The ENose has a volume of 1700 cc, weighs 1.4 kg including the operating computer, and uses 1.5 W average power (3 W peak power). This ENose was used in a demonstration experiment aboard STS-95 (October, 1998), in which the ENose was operated continuously for six days and recorded the sensors' response to the air in the middeck. The ENose was designed to detect ten common contaminants in space shuttle crew quarters air. The experiment was controlled by collecting air samples daily and analyzing them using standard analytical techniques after the flight. Changes in humidity were detected and quantified, neither the ENose nor the air samples detected any of the contaminants on the target list. The device is microgravity insensitive.
NASA Technical Reports Server (NTRS)
Lebel, P. J.; Lamontagne, R. A.; Goldstein, H. W.
1976-01-01
The Carbon Monoxide Pollution Experiment (COPE) and the National Capital Air Quality Control Region (NCAQCR) undertook a series of measurements of atmospheric CO and CH4 to determine the accuracy of the airborne COPE Correlation Interfer4meter. The device, a modified Michelson interferometer, measures the atmospheric column density of CO and CH4 at 2.3 microns with tropospheric measurement sensitivities of 70 and 10 PPB, respectively. Data for evaluating the remote measurements included atmospheric column density measurements at a ground truth site using a van-mounted infrared Fourier spectrometer; continuous ground level gas chromatographic measurements; and chromatographic data from atmospheric grab samples collected by aircraft and at ground locations. The instruments and sampling techniques used in the experiment are described in detail.
NASA Technical Reports Server (NTRS)
Peters, P. N.; Hester, H. B.; Bertsch, W.; Mayfield, H.; Zatko, D.
1983-01-01
An investigation involving sampling the rapidly changing environment of the Shuttle cargo bay is considered. Four time-integrated samples and one rapid acquisition sample were collected to determine the types and quantities of contaminants present during ascent and descent of the Shuttle. The sampling times for the various bottles were controlled by valves operated by the Data Acquisition and Control System (DACS) of the IECM. Many of the observed species were found to be common solvents used in cleaning surfaces. When the actual volume sampled is taken into account, the relative mass of organics sampled during descent is about 20 percent less than during ascent.
Maule, Alexis L; Proctor, Susan P; Blount, Benjamin C; Chambers, David M; McClean, Michael D
2016-01-01
This study aimed to evaluate blood volatile organic compound (VOC) levels as biomarkers of occupational jet propulsion fuel 8 (JP-8) exposure while controlling for smoking. Among 69 Air Force personnel, post-shift blood samples were analyzed for components of JP-8, including ethylbenzene, toluene, o-xylene, and m/p-xylene, and for the smoking biomarker, 2,5-dimethylfuran. JP-8 exposure was characterized based on self-report and measured work shift levels of total hydrocarbons in personal air. Multivariate regression was used to evaluate the relationship between JP-8 exposure and post-shift blood VOCs while controlling for potential confounding from smoking. Blood VOC concentrations were higher among US Air Force personnel who reported JP-8 exposure and work shift smoking. Breathing zone total hydrocarbons was a significant predictor of VOC blood levels, after controlling for smoking. These findings support the use of blood VOCs as a biomarker of occupational JP-8 exposure.
Personal exposure to JP-8 jet fuel vapors and exhaust at air force bases.
Pleil, J D; Smith, L B; Zelnick, S D
2000-03-01
JP-8 jet fuel (similar to commercial/international jet A-1 fuel) is the standard military fuel for all types of vehicles, including the U.S. Air Force aircraft inventory. As such, JP-8 presents the most common chemical exposure in the Air Force, particularly for flight and ground crew personnel during preflight operations and for maintenance personnel performing routine tasks. Personal exposure at an Air Force base occurs through occupational exposure for personnel involved with fuel and aircraft handling and/or through incidental exposure, primarily through inhalation of ambient fuel vapors. Because JP-8 is less volatile than its predecessor fuel (JP-4), contact with liquid fuel on skin and clothing may result in prolonged exposure. The slowly evaporating JP-8 fuel tends to linger on exposed personnel during their interaction with their previously unexposed colleagues. To begin to assess the relative exposures, we made ambient air measurements and used recently developed methods for collecting exhaled breath in special containers. We then analyzed for certain volatile marker compounds for JP-8, as well as for some aromatic hydrocarbons (especially benzene) that are related to long-term health risks. Ambient samples were collected by using compact, battery-operated, personal whole-air samplers that have recently been developed as commercial products; breath samples were collected using our single-breath canister method that uses 1-L canisters fitted with valves and small disposable breathing tubes. We collected breath samples from various groups of Air Force personnel and found a demonstrable JP-8 exposure for all subjects, ranging from slight elevations as compared to a control cohort to > 100 [mutilpe] the control values. This work suggests that further studies should be performed on specific issues to obtain pertinent exposure data. The data can be applied to assessments of health outcomes and to recommendations for changes in the use of personal protective equipment that optimize risk reduction without undue impact on a mission.
Fine PM measurements: personal and indoor air monitoring.
Jantunen, M; Hänninen, O; Koistinen, K; Hashim, J H
2002-12-01
This review compiles personal and indoor microenvironment particulate matter (PM) monitoring needs from recently set research objectives, most importantly the NRC published "Research Priorities for Airborne Particulate Matter (1998)". Techniques and equipment used to monitor PM personal exposures and microenvironment concentrations and the constituents of the sampled PM during the last 20 years are then reviewed. Development objectives are set and discussed for personal and microenvironment PM samplers and monitors, for filter materials, and analytical laboratory techniques for equipment calibration, filter weighing and laboratory climate control. The progress is leading towards smaller sample flows, lighter, silent, independent (battery powered) monitors with data logging capacity to store microenvironment or activity relevant sensor data, advanced flow controls and continuous recording of the concentration. The best filters are non-hygroscopic, chemically pure and inert, and physically robust against mechanical wear. Semiautomatic and primary standard equivalent positive displacement flow meters are replacing the less accurate methods in flow calibration, and also personal sampling flow rates should become mass flow controlled (with or without volumetric compensation for pressure and temperature changes). In the weighing laboratory the alternatives are climatic control (set temperature and relative humidity), and mechanically simpler thermostatic heating, air conditioning and dehumidification systems combined with numerical control of temperature, humidity and pressure effects on flow calibration and filter weighing.
Sharma, Manju; O'Connell, Susan; Garelli, Brett; Sattayatewa, Chakkrid; Moschandreas, Demetrios; Pagilla, Krishna
2012-01-01
Indoor air quality (IAQ) and odors were determined using sampling/monitoring, measurement, and modeling methods in a large dewatering building at a very large water reclamation plant. The ultimate goal was to determine control strategies to reduce the sensory impacts on the workforce and achieve odor reduction within the building. Study approaches included: (1) investigation of air mixing by using CO(2) as an indicator, (2) measurement of airflow capacity of ventilation fans, (3) measurement of odors and odorants, (4) development of statistical and IAQ models, and (5) recommendation of control strategies. The results showed that air quality in the building complies with occupational safety and health guidelines; however, nuisance odors that can increase stress and productivity loss still persist. Excess roof fan capacity induced odor dispersion to the upper levels. Lack of a local air exhaust system of sufficient capacity and optimum design was found to be the contributor to occasional less than adequate indoor air quality and odors. Overall, air ventilation rate in the building has less effect on persistence of odors in the building. Odor/odorant emission rates from centrifuge drops were approximately 100 times higher than those from the open conveyors. Based on measurements and modeling, the key control strategies recommended include increasing local air exhaust system capacity and relocation of exhaust hoods closer to the centrifuge drops.
Kuusimaki, Leea; Peltonen, Kimmo; Mutanen, Pertti; Savela, Kirsti
2003-07-01
The levels of particle and vapour phase polycyclic aromatic hydrocarbons (PAHs) derived from the diesel exhaust compounds in bus garage work were measured in winter and in summer. Five personal air samples were collected from the breathing zones of 22 garage workers every other day of consecutive weeks. Control samples (n = 22) were collected from office workers in Helsinki. Fifteen PAHs in the air samples were analysed by HPLC using a fluorescence detector. Statistically significant differences were observed between total PAH levels of the exposed workers (2241 and 1245 ng/m(3)) and the control group (254 and 275 ng/m(3)) in both winter (P < 0.001) and summer (P < 0.001). Phenanthrene, pyrene, benzo[ghi]perylene and fluoranthene were the major compounds in the particle phase, and naphthalene, phenanthrene and fluorene in the vapour phase. About 98% of PAHs measured were related to the vapour phase compounds, whereas the high molecular weight PAH compounds were detected only in the particle phase. The PAH levels in the garages were twice as high (P < 0.001) in winter as in summer. Even though the exposure levels were low in the bus garages, the low level does not allow conclusions to be drawn about the possible adverse health effects due to exposure to diesel exhaust.
Micro-controller based air pressure monitoring instrumentation system using optical fibers as sensor
NASA Astrophysics Data System (ADS)
Hazarika, D.; Pegu, D. S.
2013-03-01
This paper describes a micro-controller based instrumentation system to monitor air pressure using optical fiber sensors. The principle of macrobending is used to develop the sensor system. The instrumentation system consists of a laser source, a beam splitter, two multi mode optical fibers, two Light Dependent Resistance (LDR) based timer circuits and a AT89S8252 micro-controller. The beam splitter is used to divide the laser beam into two parts and then these two beams are launched into two multi mode fibers. One of the multi mode fibers is used as the sensor fiber and the other one is used as the reference fiber. The use of the reference fiber is to eliminate the environmental effects while measuring the air pressure magnitude. The laser beams from the sensor and reference fibers are applied to two identical LDR based timer circuits. The LDR based timer circuits are interfaced to a micro-controller through its counter pins. The micro-controller samples the frequencies of the timer circuits using its counter-0 and counter-1 and the counter values are then processed to provide the measure of air pressure magnitude.
A review of polychlorinated biphenyls (PCBs) pollution in indoor air environment.
Dai, Qizhou; Min, Xia; Weng, Mili
2016-10-01
Polychlorinated biphenyls (PCBs) were widely used in industrial production due to the unique physical and chemical properties. As a kind of persistent organic pollutants, the PCBs would lead to environment pollution and cause serious problems for human health. Thus, they have been banned since the 1980s due to the environment pollution in the past years. Indoor air is the most direct and important environment medium to human beings; thus, the PCBs pollution research in indoor air is important for the protection of human health. This paper introduces the industrial application and potential harm of PCBs, summarizes the sampling, extracting, and analytical methods of environment monitoring, and compares the indoor air levels of urban areas with those of industrial areas in different countries according to various reports. This paper can provide a basic summary for PCBs pollution control in the indoor air environment. The review of PCBs pollution in indoor air in China is still limited. In this paper, we introduce the industrial application and potential harm of PCBs, summarize the sampling, extracting, and analytical methods of environment monitoring, and compare the indoor air levels of urban areas with industrial areas in different countries according to various reports.
SNRB{trademark} air toxics monitoring. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-01-01
Babcock & Wilcox (B&W) is currently conducting a project under the DOE`s Clean Coal Technology (CCT II) Program to demonstrate its SO{sub x}NO{sub x}-Rox Box{trademark} (SNRB{trademark}) process in a 5 MWe Field Demonstration Unit at Ohio Edison`s R. E. Burger Plant near Shadyside, Ohio. The objective of the SNRB{trademark} Air Toxics Monitoring Project was to provide data on SNRB{trademark} air toxics emissions control performance to B&W and to add to the DOE/EPRI/EPA data base by quantifying the flow rates of selected hazardous substances (or air toxics) in all of the major input and output streams of the SNRB{trademark} process asmore » well as the power plant. Work under the project included the collection and analysis of representative samples of all major input and output streams of the SNRB{trademark} demonstration unit and the power plant, and the subsequent laboratory analysis of these samples to determine the partitioning of the hazardous substances between the various process streams. Material balances for selected air toxics were subsequently calculated around the SNRB{trademark} and host boiler systems, including the removal efficiencies across each of the major air pollution control devices. This report presents results of the SNRB{trademark} Air Toxics Monitoring Project. In addition to the Introduction, a brief description of the test site, including the Boiler No. 8 and the SNRB{trademark} process, is included in Section H. The concentrations of air toxic emissions are presented in Section II according to compound class. Material balances are included in Section IV for three major systems: boiler, electrostatic precipitator, and SNRB{trademark}. Emission factors and removal efficiencies are also presented according to compound class in Sections V and VI, respectively. A data evaluation is provided in Section VII.« less
Tooth Surface Comparison after Air Polishing and Rubber Cup: A Scanning Electron Microscopy Study.
Camboni, Sara; Donnet, Marcel
2016-03-01
To demonstrate, using microscopic observations, the difference between two well-known oral prophylaxis techniques: polishing paste and air polishing. The observations were performed on human enamel. Enamel samples were obtained from plaque-rich human teeth extracted for orthodontic or clinical purposes. In order to allow a reliable comparison between different applications, each enamel sample was divided into two parts: one underwent air-polishing, whereas polishing paste was applied to the other. AIR-FLOW® Master was selected together with AIR-FLOW® PLUS for the prophylaxis powder application. For the polishing-paste application, several different pastes where used, including Cleanic®, CCS®, Proxyt®, and SuperPolish. A comparative test control was also used by cleaning the enamel with sodium hypochlorite (6%). The enamel treated with AIR-FLOW PLUS showed a similar surface when compared to the control enamel; however, there was complete cleaning down to the tooth microstructure. On the other hand, use of the polishing paste resulted in an enamel surface that appeared abraded and flattened. Moreover, some of the natural irregular enamel surfaces demonstrated some filling in with debris. AIR-FLOW PLUS powder was able to more deeply clean without creating any damage to the enamel, making it suitable for regular cleaning treatments. The polishing pastes were found to abrade the enamel surface, to flatten it, and deposit debris into the microcavities. Both methods having different mechanical effects can therefore be considered as complementary, in that some patients experience a sense of "roughness" following a cleaning. A clinical recommendation for this experience would be to use the air polish first to clean the enamel surface, and follow with a little polishing paste to smooth the surface, if required.
40 CFR 63.845 - Incorporation of new source performance standards for potroom groups.
Code of Federal Regulations, 2014 CFR
2014-07-01
... the effective date of this subpart, the existing potroom group was designed to accommodate that.../ton) from sampling secondary emissions and the primary control system for potroom groups or sections... by the regulatory authority; and that the potroom group and associated air pollution control...
40 CFR 92.129 - Exhaust sample analysis.
Code of Federal Regulations, 2014 CFR
2014-07-01
... the span drift between the pre-analysis and post-analysis checks on any range used may exceed 3...) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.129 Exhaust sample... and span each range to be used on each analyzer used prior to the beginning of the test sequence. The...
NASA Technical Reports Server (NTRS)
1980-01-01
Research Ventures, Inc.'s visiplume is a portable, microprocessor-controlled air pollution monitor for measuring sulfur dioxide emissions from fossil fuel-fired power plants, and facilities that manufacture sulfuric acid. It observes smokestack plumes at a distance from the stack obviating the expense and difficulty of installing sample collectors in each stack and later analyzing the samples.
NASA Technical Reports Server (NTRS)
1972-01-01
A terminal area simulation is described which permits analysis and synthesis of current and advanced air traffic management system configurations including ground and airborne instrumentation and new and modified aircraft characteristics. Ground elements in the simulation include navigation aids, surveillance radars, communication links, air-route structuring, ATC procedures, airport geometries and runway handling constraints. Airborne elements include traffic samples with individual aircraft performance and operating characteristics and aircraft navigation equipment. The simulation also contains algorithms for conflict detection, conflict resolution, sequencing and pilot-controller data links. The simulation model is used to determine the sensitivities of terminal area traffic flow, safety and congestion to aircraft performance characteristics, avionics systems, and other ATC elements.
A study of atmospheric mixing of trace gases by aerial sampling with a multi-rotor drone
NASA Astrophysics Data System (ADS)
Chang, Chih-Chung; Chang, Chih-Yuan; Wang, Jia-Lin; Lin, Ming-Ren; Ou-Yang, Chang-Feng; Pan, Hsiang-Hsu; Chen, Yen-Chen
2018-07-01
We exploited a novel sampling vehicle, a multi-rotor drone carrying a remote-controlled whole air sampling device, to collect aerial samples with high sample integrity and preservation conditions. An array of 106 volatile organic compounds (VOCs), CO, CH4, and CO2 were analyzed and compared between the aerial samples (300-m height) and the ground-level samples in pairs to inspect for vertical mixing of the trace gases at a coastal site under three different meteorological conditions of local circulation, frontal passage, and high-pressure peripheral circulation. A rather homogeneous composition was observed for the sample pairs immediately after the frontal passage, indicating a well-mixed condition below 300 m. In contrast, inhomogeneous mixing was observed for the sample pairs under the other two conditions (local circulation and high-pressure peripheral circulation), suggesting different layers of air masses. Furthermore, information of unique source markers, composition profiles, and lifetimes of compounds were used to differentiate the origins of the air masses aloft and at the surface to substantiate the observed inhomogeneity. The study demonstrates that, with the availability of the near-surface aerial sampling coupling with in-laboratory analysis, detailed compositions of trace gases can now be readily obtained with superior data quality. Based on the distinctive chemical compositions, the sources, transport, and atmospheric mixing of the airborne pollutants in the near-surface atmosphere can be better studied and understood.
Sagi, H C; DiPasquale, Thomas; Sanders, Roy; Herscovici, Dolfi
2002-01-01
To determine if the exhaust from surgical compressed-air power tools contains bacteria and if the exhaust leads to contamination of sterile surfaces. Bacteriologic study of orthopaedic power tools. Level I trauma center operative theater. None. Part I. Exhaust from two sterile compact air drills was sampled directly at the exhaust port. Part II. Exhaust from the drills was directed at sterile agar plates from varying distances. The agar plates represented sterile surfaces within the operative field. Part III. Control cultures. A battery-powered drill was operated over open agar plates in similar fashion as the compressed-air drills. Agar plates left open in the operative theater served as controls to rule out atmospheric contamination. Random cultures were taken from agar plates, gloves, drills, and hoses. Incidence of positive cultures. In Part I, all filters from both compressed-air drill exhausts were culture negative ( = 0.008). In Part II, the incidence of positive cultures for air drills number one and number two was 73% and 82%, respectively. The most commonly encountered organisms were, coagulase-negative Staphylococcus, and Micrococcus species. All control cultures from agar plates, battery-powered drill, gloves, and hoses were negative ( < 0.01). Exhaust from compressed-air power tools in orthopaedic surgery may contribute to the dissemination of bacteria onto the surgical field. We do not recommend the use of compressed-air power tools that do not have a contained exhaust.
Method and apparatus for sampling low-yield wells
Last, George V.; Lanigan, David C.
2003-04-15
An apparatus and method for collecting a sample from a low-yield well or perched aquifer includes a pump and a controller responsive to water level sensors for filling a sample reservoir. The controller activates the pump to fill the reservoir when the water level in the well reaches a high level as indicated by the sensor. The controller deactivates the pump when the water level reaches a lower level as indicated by the sensors. The pump continuously activates and deactivates the pump until the sample reservoir is filled with a desired volume, as indicated by a reservoir sensor. At the beginning of each activation cycle, the controller optionally can select to purge an initial quantity of water prior to filling the sample reservoir. The reservoir can be substantially devoid of air and the pump is a low volumetric flow rate pump. Both the pump and the reservoir can be located either inside or outside the well.
Kim, Kyung Hwan; Kim, Sun Hwa; Jung, Young Rim; Kim, Man Goo
2008-09-12
As one of the measures to improve the environment in an automobile, malodor caused by the automobile air-conditioning system evaporator was evaluated and analyzed using laboratory-scale test cooling bench. The odor was simulated with an evaporator test cooling bench equipped with an airflow controller, air temperature and relative humidity controller. To simulate the same odor characteristics that occur from automobiles, one previously used automobile air conditioner evaporator associated with unpleasant odors was selected. The odor was evaluated by trained panels and collected with aluminum polyester bags. Collected samples were analyzed by thermal desorption into a cryotrap and subsequent gas chromatographic separation, followed by simultaneous olfactometry, flame ionization detector and identified by atomic emission detection and mass spectrometry. Compounds such as alcohols, aldehydes, and organic acids were identified as responsible odor-active compounds. Gas chromatography/flame ionization detection/olfactometry combined sensory method with instrumental analysis was very effective as an odor evaluation method in an automobile air-conditioning system evaporator.
A method to trace root-respired CO2 using a 13C label
NASA Astrophysics Data System (ADS)
Cooperdock, S.; Breecker, D.; Litvak, M. E.
2014-12-01
In order to partition total soil respiration into root respiration and decomposition under ambient conditions in desert soils, the following method was developed using 13C-labeled CO2 in a modern juniper savannah in central New Mexico. The labeled CO2 was mixed with ambient air and pumped into a small (2.5 m diameter and 1.4 m tall) juniper tree canopy . 10 L of the 13CO2 was sufficient to generate a stream of air at 20 L/min for 1 hour with a CO2 concentration of 540 ppm and a δ13C value of approximately 35,000‰. Plastic tarpaulins were used as a wind block. The 13CO2 -labeled air was applied to the canopy during peak photosynthesis between 10 and 11 am on June 30 2014 during which canopy air CO2 was elevated by approximately 10 ppm over ambient and had δ13C values ranging from 50 to 1000 ‰. Over the next three days, gas and tissue samples were collected in order to trace the 13C label through the juniper tree. Leaf and root samples collected from the labeled tree and from several control trees were loaded into exetainer vials, flushed with CO2-free air and incubated in the dark for 5 hours in order to measure the carbon isotope composition of respired CO2. Samples of soil pore space gas were collected from wells under the labeled tree and a control tree and were transported to the laboratory in He-flushed exetainer vials. The δ13C values of CO2 in the soil gas samples and in the headspace of incubation vials were measured using an isotope ratio mass spectrometer. The δ13C values of foliar respiration were significantly higher than those of the control (by 3.6‰, p < 0.01) one and two days after labeling and δ13C values of root-respired CO2 were significantly higher (by 0.7‰, p = 0.01) than those of the control three days after labeling. In addition, δ13C values of soil respired CO2, determined from measurements of soil pore space CO2 at 50 cm three days after labeling, were significantly higher (by 0.7‰, p < 0.03)) for the labeled tree than control. The difference between δ13C values of soil respired CO2 under the labeled and control trees was not large enough to partition soil respiration into its component fluxes. However, these preliminary data show the potential for this method with longer labeling times to quantify the contribution of root respiration in soils, which has implications on models for soil CO2 in present day ecosystems and the geologic record.
NASA's Aerosol Sampling Experiment Summary
NASA Technical Reports Server (NTRS)
Meyer, Marit E.
2016-01-01
In a spacecraft cabin environment, the size range of indoor aerosols is much larger and they persist longer than on Earth because they are not removed by gravitational settling. A previous aerosol experiment in 1991 documented that over 90 of the mass concentration of particles in the NASA Space Shuttle air were between 10 m and 100 m based on measurements with a multi-stage virtual impactor and a nephelometer (Liu et al. 1991). While the now-retired Space Shuttle had short duration missions (less than two weeks), the International Space Station (ISS) has been continually inhabited by astronauts for over a decade. High concentrations of inhalable particles on ISS are potentially responsible for crew complaints of respiratory and eye irritation and comments about 'dusty' air. Air filtration is the current control strategy for airborne particles on the ISS, and filtration modeling, performed for engineering and design validation of the air revitalization system in ISS, predicted that PM requirements would be met. However, aerosol monitoring has never been performed on the ISS to verify PM levels. A flight experiment is in preparation which will provide data on particulate matter in ISS ambient air. Particles will be collected with a thermophoretic sampler as well as with passive samplers which will extend the particle size range of sampling. Samples will be returned to Earth for chemical and microscopic analyses, providing the first aerosol data for ISS ambient air.
Sampling Indoor Aerosols on the International Space Station
NASA Technical Reports Server (NTRS)
Meyer, Marit E.
2016-01-01
In a spacecraft cabin environment, the size range of indoor aerosols is much larger and they persist longer than on Earth because they are not removed by gravitational settling. A previous aerosol experiment in 1991 documented that over 90 of the mass concentration of particles in the NASA Space Shuttle air were between 10 m and 100 m based on measurements with a multi-stage virtual impactor and a nephelometer (Liu et al. 1991). While the now-retired Space Shuttle had short duration missions (less than two weeks), the International Space Station (ISS) has been continually inhabited by astronauts for over a decade. High concentrations of inhalable particles on ISS are potentially responsible for crew complaints of respiratory and eye irritation and comments about 'dusty' air. Air filtration is the current control strategy for airborne particles on the ISS, and filtration modeling, performed for engineering and design validation of the air revitalization system in ISS, predicted that PM requirements would be met. However, aerosol monitoring has never been performed on the ISS to verify PM levels. A flight experiment is in preparation which will provide data on particulate matter in ISS ambient air. Particles will be collected with a thermophoretic sampler as well as with passive samplers which will extend the particle size range of sampling. Samples will be returned to Earth for chemical and microscopic analyses, providing the first aerosol data for ISS ambient air.
Kim, Sung-Han; Chang, So Young; Sung, Minki; Park, Ji Hoon; Bin Kim, Hong; Lee, Heeyoung; Choi, Jae-Phil; Choi, Won Suk; Min, Ji-Young
2016-08-01
The largest outbreak of Middle East respiratory syndrome coronavirus (MERS-CoV) outside the Middle East occurred in South Korea in 2015 and resulted in 186 laboratory-confirmed infections, including 36 (19%) deaths. Some hospitals were considered epicenters of infection and voluntarily shut down most of their operations after nearly half of all transmissions occurred in hospital settings. However, the ways that MERS-CoV is transmitted in healthcare settings are not well defined. We explored the possible contribution of contaminated hospital air and surfaces to MERS transmission by collecting air and swabbing environmental surfaces in 2 hospitals treating MERS-CoV patients. The samples were tested by viral culture with reverse transcription polymerase chain reaction (RT-PCR) and immunofluorescence assay (IFA) using MERS-CoV Spike antibody, and electron microscopy (EM). The presence of MERS-CoV was confirmed by RT-PCR of viral cultures of 4 of 7 air samples from 2 patients' rooms, 1 patient's restroom, and 1 common corridor. In addition, MERS-CoV was detected in 15 of 68 surface swabs by viral cultures. IFA on the cultures of the air and swab samples revealed the presence of MERS-CoV. EM images also revealed intact particles of MERS-CoV in viral cultures of the air and swab samples. These data provide experimental evidence for extensive viable MERS-CoV contamination of the air and surrounding materials in MERS outbreak units. Thus, our findings call for epidemiologic investigation of the possible scenarios for contact and airborne transmission, and raise concern regarding the adequacy of current infection control procedures. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Mayer, Simon; Jenner, Florian; Aeschbach, Werner
2017-04-01
Applications of inert gases in groundwater hydrology require a profound understanding of underlying biogeochemical processes. Some of these processes are, however, not well understood and therefore require further investigation. This is the first study simultaneously investigating soil air and groundwater in the context of noble gas tracer applications, accounting for seasonal effects in different climate regions. The sampled data confirm a general reliability of common assumptions proposed in the literature. In particular, a solubility-controlled description of excess air formation and of groundwater degassing can be confirmed. This study identifies certain effects which need to be taken into account to reliably evaluate noble gas patterns. First, long-term samplings suggest a permanent temperature-driven equilibration of shallow groundwater with entrapped air bubbles, even some years after recharge. Second, minor groundwater degassing is found to challenge existing excess air model approaches, depending on the amount and the fractionation of excess air. Third, soil air composition data of this study imply a potential bias of noble gas temperatures by up to about 2℃ due to microbial oxygen depletion and a reduced sum value of O2+CO2. This effect causes systematically lower noble gas temperatures in tropical groundwater samples and in shallow mid-latitude groundwater samples after strong recharge during the warm season. However, a general bias of noble gas temperatures in mid-latitudes is probably prevented by a predominant recharge during the cold season, accompanied by nearly atmospheric noble gas mixing ratios in the soil air. Findings of this study provide a remarkable contribution to the reliability of noble gas tracer applications in hydrology, in particular with regard to paleoclimate reconstructions and an understanding of subsurface gas dynamics.
Seasonal variations of PCDD/Fs congeners in air, soil and eggs from a Polish small-scale farm.
Węgiel, Malgorzata; Chrząszcz, Ryszard; Maślanka, Anna; Grochowalski, Adam
2018-05-01
The transfer of dioxin from the environment to the food is a problem in a consumers' health protection. The study aimed to determine the concentration of dioxins in free-range chicken eggs, air and soil samples, collected during 12 months on an individual small farm, located in Małopolska region, Poland. In the majority of analyzed eggs, the concentrations of dioxin exceeded several times the legal limit of 2.5 pg WHO-TEQ g-1fat. Seasonal changes in the PCDD/Fs congeners in egg, air and soil samples were studied. During the winter season, when the combustion processes of the solid fuel in domestic furnaces are intensive, the PM10 concentration in the Małopolska region exceeds the legal limit (50μg/m3) even eight times. In this period, eggs, air and soil samples showed a higher share of PCDFs with a specific contribution of 2,3,7,8-TCDF. During the summer months, in the egg, air and soil samples, the share of PCDDs is higher with dominant OCDD and 1,2,3,4,6,7,8-HpCDDs, showing the effect of other combustion processes such as grass utilization or burning plastic wastes in controlled fires. In August, the month of the highest average air temperature and lowest rainfall amount, the highest toxicity of PCDD/Fs in eggs (9.52pgWHO-TEQ g-1fat) was found. Due to the similarity of the shares of PCDD/Fs congeners in total WHO-TEQ value we can take into account the influence of toxicity of PCDD/Fs in the air and soil on the toxicity in the eggs. Copyright © 2018. Published by Elsevier Ltd.
Matuka, O; Singh, T S; Bryce, E; Yassi, A; Kgasha, O; Zungu, M; Kyaw, K; Malotle, M; Renton, K; O'Hara, L
2015-03-01
Airborne transmission of Mycobacterium tuberculosis remains an occupational health hazard, particularly in crowded and resource-limited healthcare settings. To quantify airborne M. tuberculosis in a busy outpatient clinic in Gauteng, South Africa. Stationary air samples and samples from healthcare workers (HCWs) were collected in the polyclinic and administrative block. Quantitative real-time polymerase chain reaction (PCR) was used to detect airborne M. tuberculosis. Walkthrough observations and work practices of HCWs were also recorded. In total, M. tuberculosis was detected in 11 of 49 (22.4%) samples: nine of 25 (36%) HCW samples and two of 24 (8.3%) stationary air samples. Samples from five of 10 medical officers (50%) and three of 13 nurses (23%) were positive. Repeat measurements on different days showed variable results. Most of the HCWs (87.5%) with positive results had been in contact with coughing patients and had not worn respiratory masks despite training. The use of air sampling coupled with quantitative real-time PCR is a simple and effective tool to demonstrate the risk of M. tuberculosis exposure. The findings provide an impetus for hospital management to strengthen infection prevention and control measures for tuberculosis. Copyright © 2015 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.
Airborne contaminants during controlled residential fires.
Fent, Kenneth W; Evans, Douglas E; Babik, Kelsey; Striley, Cynthia; Bertke, Stephen; Kerber, Steve; Smith, Denise; Horn, Gavin P
2018-05-01
In this study, we characterize the area and personal air concentrations of combustion byproducts produced during controlled residential fires with furnishings common in 21 st century single family structures. Area air measurements were collected from the structure during active fire and overhaul (post suppression) and on the fireground where personnel were operating without any respiratory protection. Personal air measurements were collected from firefighters assigned to fire attack, victim search, overhaul, outside ventilation, and command/pump operator positions. Two different fire attack tactics were conducted for the fires (6 interior and 6 transitional) and exposures were compared between the tactics. For each of the 12 fires, firefighters were paired up to conduct each job assignment, except for overhaul that was conducted by 4 firefighters. Sampled compounds included polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs, e.g., benzene), hydrogen cyanide (HCN), and particulate (area air sampling only). Median personal air concentrations for the attack and search firefighters were generally well above applicable short-term occupational exposure limits, with the exception of HCN measured from search firefighters. Area air concentrations of all measured compounds decreased after suppression. Personal air concentrations of total PAHs and benzene measured from some overhaul firefighters exceeded exposure limits. Median personal air concentrations of HCN (16,300 ppb) exceeded the exposure limit for outside vent firefighters, with maximum levels (72,900 ppb) higher than the immediately dangerous to life and health (IDLH) level. Median air concentrations on the fireground (including particle count) were above background levels and highest when collected downwind of the structure and when ground-level smoke was the heaviest. No statistically significant differences in personal air concentrations were found between the 2 attack tactics. The results underscore the importance of wearing self-contained breathing apparatus when conducting overhaul or outside ventilation activities. Firefighters should also try to establish command upwind of the structure fire, and if this cannot be done, respiratory protection should be considered.
Morphing Surfaces Enable Acoustophoretic Contactless Transport of Ultrahigh-Density Matter in Air
Foresti, Daniele; Sambatakakis, Giorgio; Bottan, Simone; Poulikakos, Dimos
2013-01-01
The controlled contactless transport of heavy drops and particles in air is of fundamental interest and has significant application potential. Acoustic forces do not rely on special material properties, but their utility in transporting heavy matter in air has been restricted by low power and poor controllability. Here we present a new concept of acoustophoresis, based on the morphing of a deformable reflector, which exploits the low reaction forces and low relaxation time of a liquid with enhanced surface tension through the use of thin overlaid membrane. An acoustically induced, mobile deformation (dimple) on the reflector surface enhances the acoustic field emitted by a line of discretized emitters and enables the countinuos motion of heavy levitated samples. With such interplay of emitters and reflecting soft-structure, a 5 mm steel sphere (0.5 grams) was contactlessly transported in air solely by acoustophoresis. PMID:24212104
Near-Patient Sampling to Assist Infection Control—A Case Report and Discussion
Tang, Julian W.; Hoyle, Elizabeth; Moran, Sammy; Pareek, Manish
2018-01-01
Air sampling as an aid to infection control is still in an experimental stage, as there is no consensus about which air samplers and pathogen detection methods should be used, and what thresholds of specific pathogens in specific exposed populations (staff, patients, or visitors) constitutes a true clinical risk. This case report used a button sampler, worn or held by staff or left free-standing in a fixed location, for environmental sampling around a child who was chronically infected by a respiratory adenovirus, to determine whether there was any risk of secondary adenovirus infection to the staff managing the patient. Despite multiple air samples taken on difference days, coinciding with high levels of adenovirus detectable in the child’s nasopharyngeal aspirates (NPAs), none of the air samples contained any detectable adenovirus DNA using a clinically validated diagnostic polymerase chain reaction (PCR) assay. Although highly sensitive, in-house PCR assays have been developed to detect airborne pathogen RNA/DNA, it is still unclear what level of specific pathogen RNA/DNA constitutes a true clinical risk. In this case, the absence of detectable airborne adenovirus DNA using a conventional diagnostic assay removed the requirement for staff to wear surgical masks and face visors when they entered the child’s room. No subsequent staff infections or outbreaks of adenovirus have so far been identified. PMID:29385031
AIR POLLUTION IN A CITY STREET
Waller, R. E.; Commins, B. T.; Lawther, P. J.
1965-01-01
Measurements of the concentrations of smoke, lead, and five polycyclic hydrocarbons in the air have been made in the City of London in the middle of a busy street and at two control sites. Samples were taken only throughout the daytime hours on weekdays to enable us to assess the maximum contribution made by traffic to the pollution in the street. The results showed that during these periods the air in the middle of the street contained three times as much smoke, four times as much lead, and 1·7 times as much 3:4-benzpyrene as were present in the general atmosphere of the City of London as estimated from samples taken at the control sites. One of these sites was chosen because it was only 150 feet away from the street; analyses yielded no evidence that the traffic contributed to the pollution sampled there. Sulphur dioxide concentrations were determined in the early part of the study and the results showed that traffic appeared to add little to the background level. The concentrations of lead found were below those held to be safe by many authorities. Carbon monoxide concentrations, reported in greater detail elsewhere, sometimes reached the accepted industrial maximum allowable concentration of 100 p.p.m. PMID:14278800
Zheng, Ajuan; Zhang, Lihui; Wang, Shaojin
2017-05-16
Radio frequency (RF) heating has been proposed and tested to achieve a required anti-fungal efficacy on various food samples due to its advantage of deeper penetration depth and better heating uniformity. The purpose of this study was to validate applications of RF treatments for controlling Aspergillus parasiticus in corn while maintaining product quality. A pilot-scale, 27.12MHz, 6kW RF heating system together with hot air heating was used to rapidly pasteurize 3.0kg corn samples. Results showed that the pasteurizing effect of RF heating on Aspergillus parasiticus increased with increasing heating temperature and holding time, and RF heating at 70°C holding in hot air for at least 12min resulted in 5-6 log reduction of Aspergillus parasiticus in corn samples with the moisture content of 15.0% w.b. Furthermore, thermal resistance of Aspergillus parasiticus decreased with increasing moisture content (MC) of corn samples. Quality (MC, water activity - a w , protein, starch, ash, fat, fatty acid, color, electrical conductivity and germination rate) of RF treated corn met the required quality standard used in cereal industry. Therefore, RF treatments can provide an effective and rapid heating method to control Aspergillus parasiticus and maintain acceptable corn quality. Copyright © 2017 Elsevier B.V. All rights reserved.
The Human Performance Envelope: Past Research, Present Activities and Future Directions
NASA Technical Reports Server (NTRS)
Edwards, Tamsyn
2017-01-01
Air traffic controllers (ATCOs) must maintain a consistently high level of human performance in order to maintain flight safety and efficiency. In current control environments, performance-influencing factors such as workload, fatigue and situation awareness can co-occur, and interact, to effect performance. However, multifactor influences and the association with performance are under-researched. This study utilized a high fidelity human in the loop enroute air traffic control simulation to investigate the relationship between workload, situation awareness and ATCO performance. The study aimed to replicate and extend Edwards, Sharples, Wilson and Kirwans (2012) previous study and confirm multifactor interactions with a participant sample of ex-controllers. The study also aimed to extend Edwards et als previous research by comparing multifactor relationships across 4 automation conditions. Results suggest that workload and SA may interact to produce a cumulative impact on controller performance, although the effect of the interaction on performance may be dependent on the context and amount of automation present. Findings have implications for human-automation teaming in air traffic control, and the potential prediction and support of ATCO performance.
Schindler, Birgit Karin; Weiss, Tobias; Schütze, Andre; Koslitz, Stephan; Broding, Horst Christoph; Bünger, Jürgen; Brüning, Thomas
2013-04-01
Aircraft cabin air can possibly be contaminated by tricresyl phosphates (TCP) from jet engine oils during fume events. o-TCP, a known neurotoxin, has been addressed to be an agent that might cause the symptoms reported by cabin crews after fume events. A total of 332 urine samples of pilots and cabin crew members in common passenger airplanes, who reported fume/odour during their last flight, were analysed for three isomers of tricresyl phosphate metabolites as well as dialkyl and diaryl phosphate metabolites of four flame retardants. None of the samples contained o-TCP metabolites above the limit of detection (LOD 0.5 μg/l). Only one sample contained metabolites of m- and p-tricresyl phosphates with levels near the LOD. Median metabolite levels of tributyl phosphate (TBP), tris-(2-chloroethyl) phosphate (TCEP) and triphenyl phosphate (TPP) (DBP 0.28 μg/l; BCEP 0.33 μg/l; DPP 1.1 μg/l) were found to be significantly higher than in unexposed persons from the general population. Median tris-(2-chloropropyl) phosphate (TCPP) metabolite levels were significantly not higher in air crews than in controls. Health complaints reported by air crews can hardly be addressed to o-TCP exposure in cabin air. Elevated metabolite levels for TBP, TCEP and TPP in air crews might occur due to traces of hydraulic fluid in cabin air (TBP, TPP) or due to release of commonly used flame retardants from the highly flame protected environment in the airplane. A slight occupational exposure of air crews to organophosphates was shown.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wesnor, J.D.
Since passage of the Clean Air Act, Asea Brown Boveri (ABB) has been actively developing a knowledge base on the Title 3 hazardous air pollutants, more commonly called air toxics. As ABB is a multinational company, US operating companies are able to call upon work performed by European counterparts, who have faced similar legislation several years ago. In addition to the design experience and database acquired in Europe, ABB Inc. has been pursuing several other avenues to expand its air toxics knowledge. ABB Combustion Engineering (ABB CE) is presently studying the formation of organic pollutants within the combustion furnace andmore » partitioning of trace metals among the furnace outlet streams. ABB Environmental Systems (ABBES) has reviewed available and near-term control technologies and methods. Also, both ABB CE and ABBES have conducted source sampling and analysis at commercial installations for hazardous air pollutants to determine the emission rates and removal performance of various types of equipment. Several different plants hosted these activities, allowing for variation in fuel type and composition, boiler configuration, and air pollution control equipment. This paper discusses the results of these investigations.« less
Herrington, Jason S
2013-08-20
The costly damage airborne trimethylsilanol (TMS) exacts on optics in the semiconductor industry has resulted in the demand for accurate and reliable methods for measuring TMS at trace levels (i.e., parts per trillion, volume per volume of air [ppt(v)] [~ng/m(3)]). In this study I developed a whole air canister-based approach for field sampling trimethylsilanol in air, as well as a preconcentration gas chromatography/mass spectrometry laboratory method for analysis. The results demonstrate clean canister blanks (0.06 ppt(v) [0.24 ng/m(3)], which is below the detection limit), excellent linearity (a calibration relative response factor relative standard deviation [RSD] of 9.8%) over a wide dynamic mass range (1-100 ppt(v)), recovery/accuracy of 93%, a low selected ion monitoring method detection limit of 0.12 ppt(v) (0.48 ng/m(3)), replicate precision of 6.8% RSD, and stability (84% recovery) out to four days of storage at room temperature. Samples collected at two silicon wafer fabrication facilities ranged from 10.0 to 9120 ppt(v) TMS and appear to be associated with the use of hexamethyldisilazane priming agent. This method will enable semiconductor cleanroom managers to monitor and control for trace levels of trimethylsilanol.
Determination of methyl bromide in air samples by headspace gas chromatography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woodrow, J.E.; McChesney, M.M.; Seiber, J.N.
1988-03-01
Methyl bromide is extensively used in agriculture (4 x 10/sup 6/ kg for 1985 in California alone as a fumigant to control nematodes, weeds, and fungi in soil and insect pests in harvested grains and nuts. Given its low boiling point (3.8/sup 0/C) and high vapor pressure (approx. 1400 Torr at 20/sup 0/C), methyl bromide will readily diffuse if not rigorously contained. Methods for determining methyl bromide and other halocarbons in air vary widely. A common practice is to trap the material from air on an adsorbent, such as polymeric resins, followed by thermal desorption either directly into the analyticalmore » instrumentation or after intermediary cryofocusing. While in some cases analytical detection limits were reasonable (parts per million range), many of the published methods were labor intensive and required special handling techniques that precluded high sample throughput. They describe here a method for the sampling and analysis of airborne methyl bromide that was designed to handle large numbers of samples through automating some critical steps of the analysis. The result was a method that allowed around-the-clock operation with a minimum of operator attention. Furthermore, the method was not specific to methyl bromide and could be used to determine other halocarbons in air.« less
[Evaluation of measurement uncertainty of welding fume in welding workplace of a shipyard].
Ren, Jie; Wang, Yanrang
2015-12-01
To evaluate the measurement uncertainty of welding fume in the air of the welding workplace of a shipyard, and to provide quality assurance for measurement. According to GBZ/T 192.1-2007 "Determination of dust in the air of workplace-Part 1: Total dust concentration" and JJF 1059-1999 "Evaluation and expression of measurement uncertainty", the uncertainty for determination of welding fume was evaluated and the measurement results were completely described. The concentration of welding fume was 3.3 mg/m(3), and the expanded uncertainty was 0.24 mg/m(3). The repeatability for determination of dust concentration introduced an uncertainty of 1.9%, the measurement using electronic balance introduced a standard uncertainty of 0.3%, and the measurement of sample quality introduced a standard uncertainty of 3.2%. During the determination of welding fume, the standard uncertainty introduced by the measurement of sample quality is the dominant uncertainty. In the process of sampling and measurement, quality control should be focused on the collection efficiency of dust, air humidity, sample volume, and measuring instruments.
Dobecki, Marek
2012-01-01
This paper reviews the requirements for measurement methods of chemical agents in the air at workstations. European standards, which have a status of Polish standards, comprise some requirements and information on sampling strategy, measuring techniques, type of samplers, sampling pumps and methods of occupational exposure evaluation at a given technological process. Measurement methods, including air sampling and analytical procedure in a laboratory, should be appropriately validated before intended use. In the validation process, selected methods are tested and budget of uncertainty is set up. The validation procedure that should be implemented in the laboratory together with suitable statistical tools and major components of uncertainity to be taken into consideration, were presented in this paper. Methods of quality control, including sampling and laboratory analyses were discussed. Relative expanded uncertainty for each measurement expressed as a percentage, should not exceed the limit of values set depending on the type of occupational exposure (short-term or long-term) and the magnitude of exposure to chemical agents in the work environment.
Chen, Kai; Huang, Lei; Yan, Beizhan; Li, Hongbo; Sun, Hong; Bi, Jun
2014-11-04
Children's blood lead levels and prevalence of lead poisoning in China are significantly higher than in developed countries, though a substantial decrease has been observed. Since 2011, strict lead control policies in lead-related industries have been implemented in China, but the success of these policies is unknown. In this study, we collected environmental samples, questionnaire data, and blood samples from 106 children from 1 to 14 years old, before and after implementation of lead-usage control policy in wire rope factories by local government in Zhuhang, Nantong in 2012. Results showed that, one year after the lead control, lead concentrations sharply decreased in both environmental and biological samples with a decrease of 0.43 μg/m3 (-84.3%) in ambient air samples, 0.22 mg/kg (-36.1%) in vegetable samples, 441.1 mg/kg (-43.7%) in dust samples, and 6.24 μg/dL (-51.5%) in childhood blood lead levels (BLL). This study demonstrates the success of lead control policies in promoting the prevention and control of childhood lead poisoning in Nantong, China.
Mendez, Gregory O.; Foreman, William T.; Morita, Andrew; Majewski, Michael S.
2008-01-01
In 1998, the U.S. Geological Survey, in cooperation with the Sweetwater Authority, began a study to monitor water, air, and sediment at the Sweetwater and Loveland Reservoirs in San Diego County, California. The study includes regular sampling of water and air at Sweetwater Reservoir for chemical constituents, including volatile organic compounds (VOC), polynuclear aromatic hydrocarbons (PAH), pesticides, and major and trace elements. The purpose of this study is to monitor changes in contaminant composition and concentration during the construction and operation of State Route 125. To accomplish this, the study was divided into two phases. Phase One sampling (water years 1998–2004) determined baseline conditions for the detection frequency and the concentrations of target compounds in air and water. Phase Two sampling (starting water year 2005) continues at selected monitoring sites during and after construction of State Route 125 to assess the chemical impact this roadway alignment may have on water quality in the reservoir. Water samples were collected for VOCs and pesticides at Loveland Reservoir during Phase One and will be collected during Phase Two for comparison purposes. Air samples collected to monitor changes in VOCs, PAHs, and pesticides were analyzed by adapting methods used to analyze water samples. Bed-sediment samples have been and will be collected three times during the study; at the beginning of Phase One, at the start of Phase Two, and near the end of the study. In addition to the ongoing data collection, several special studies were initiated to assess the occurrence of specific chemicals of concern, such as trace metals, anthropogenic indicator compounds, and pharmaceuticals. This report describes the study design, and the sampling and analytical methods, and presents data from water and air samples collected during the fourth and fifth years of Phase One of the study (October 2001 to September 2003). Data collected during the first three years has been previously published. Three types of quality-control samples were used in this study: blanks, spikes, and replicates. Blanks and spikes are used to estimate result bias, and replicates are used to estimate result variability. Additionally, surrogate compounds were added at the laboratory to samples of VOCs, PAHs, pesticides, anthropogenic indicator compounds, and pharmaceuticals to monitor sample-specific performance of the analytical method.
White, Victoria M; Warne, Charles D; Spittal, Matthew J; Durkin, Sarah; Purcell, Kate; Wakefield, Melanie A
2011-08-01
To assess the impact of tobacco control policies relating to youth access, clean indoor air and tobacco advertising at point-of-sale and outdoors, in addition to cigarette price and per capita tobacco control spending, on adolescent smoking prevalence. Repeated cross-sectional surveys. Logistic regression analyses examined association between policies and smoking prevalence. Australia, 1990-2005. A nationally representative sample of secondary students (aged 12-17 years) participating in a triennial survey (sample size per survey range: 20 560 to 27 480). Students' report of past-month smoking. In each jurisdiction, extent of implementation of the three policies for the year of the survey was determined. For each survey year, national per capita tobacco control spending was determined and jurisdiction-specific 12-month change in cigarette price obtained. Extent of implementation of the three policy areas varied between states and over the survey years. Multivariate analyses that adjusted for demographic factors, year and all tobacco control variables showed that 12-month cigarette price increases [odds ratio (OR): 0.98, 95% confidence interval (CI): 0.97-0.99], greater per capita tobacco control spending (OR: 0.99, 95% CI: 0.98-0.99) and stronger implementation of clean indoor air policies (OR: 0.93, 95% CI: 0.92-0.94) were associated with reduced smoking prevalence. Adult-directed, population-based tobacco control policies such as clean indoor air laws and increased prices of cigarettes, implemented as part of a well-funded comprehensive tobacco control programme are associated with lower adolescent smoking. © 2011 The Authors, Addiction © 2011 Society for the Study of Addiction.
Santos, Juliana Lane Paixão Dos; Bernardi, Angélica Olivier; Pozza Morassi, Letícia L; Silva, Beatriz S; Copetti, Marina Venturini; S Sant'Ana, Anderson
2016-09-01
This study aimed to assess the incidence, to quantify and to assess the diversity of fungi in a multigrain whole meal bread processing plant. Two hundred and eight one (n=281) samples were analyzed, including raw materials (n=120), air samples (n=136) and multigrain breads (n=25). Among the raw materials, the whole corn flour showed the highest counts of fungi (4.8logCFU/g), followed by whole-wheat flour (3.1logCFU/g). The counts of fungi in the air of processing environment were higher in post-baking steps (oven output, cooling, slicing, packaging) than in pre-baking steps (weighing and mixer) (p<0.05). Species of fungi isolated from spoiled bread samples stored at 5, 20, 25 and 30, and 40°C corresponded mostly to Penicillium paneum and Penicillium polonicum isolated from 20 and 24% of samples, respectively. These species were also isolated from raw materials (P. paneum and P. polonicum) and air collected at different processing sampling points (P. polonicum). The high counts of filamentous fungi in raw materials and air samples in processing steps such as cooling, slicing, and packaging, suggest that contamination that may occur in these steps can be critical for the shelf life of breads. The results of this study highlight that the prevention of contamination of breads by fungal spores is still a challenge for bakery industries and that other strategies such as control of germination and growth of spoilage fungi through the development of more stable formulations have to be developed. Copyright © 2016 Elsevier Ltd. All rights reserved.
Rakhmanin, Yu A; Levanchuk, A V
The paper presents the results of a study of the qualitative composition and quantity of pollutants in atmospheric air in the course of operational wear of the road surface, braking system and tire treads of automobiles. On the basis of field research in samples ofatmospheric air ofthe city of St. Petersburg there were identified compounds of heavy metals andpolycyclic aromatic hydrocarbons (PAHs). There was established the dependence of the level of air pollution on traffic flows in locations of the city. Pollutants were shown to enter the air environment mainly in the form offine dust particles. There was justified the need for the control ofproducts of wear the road traffic complex in the hygienic assessment of the quality of ambient air ofmegalopises.
Grodeska, Stephanie M; Jones, Jessica L; Arias, Covadonga R; Walton, William C
2017-08-01
The expansion of off-bottom aquaculture to the Gulf of Mexico has raised public health concerns for human health officials. High temperatures in the Gulf of Mexico are associated with high levels of Vibrio parahaemolyticus and Vibrio vulnificus. Routine desiccation practices associated with off-bottom aquaculture expose oysters to ambient air, allowing Vibrio spp. to proliferate in the closed oyster. Currently, there is limited research on the length of time needed for Vibrio spp. levels in desiccated oysters to return to background levels, defined as the levels found in oysters that remain continually submersed and not exposed to ambient air. This study determined the time needed to return V. parahaemolyticus, V. vulnificus, and Vibrio cholerae levels to background levels in oysters exposed to the following desiccation practices: 3-h freshwater dip followed by 24-h ambient air exposure, 27-h ambient air exposure, and control. All oysters were submerged at least 2 weeks prior to the beginning of each trial, with the control samples remaining submerged for the duration of each trial. Vibrio spp. levels were enumerated from samples collected on days 0, 1, 2, 3, 7, 10, and 14 after resubmersion using a three-tube most-probable-number enrichment followed by BAX PCR. V. cholerae levels were frequently (92%) below the limit of detection at all times, so they were not statistically analyzed. V. parahaemolyticus and V. vulnificus levels in the 27-h ambient air exposure and the 3-h freshwater dip followed by 24-h ambient air exposure samples were significantly elevated compared with background samples. In most cases, the Vibrio spp. levels in oysters in both desiccation treatments remained elevated compared with background levels until 2 or 3 days post-resubmersion. However, there was one trial in which the Vibrio spp. levels did not return to background levels until day 7. The results of this study provide scientific support that oyster farmers should be required to implement a minimum 7-day resubmersion regimen. This length of time allowed the Vibrio spp. levels to become not significantly different across all treatments.
Efficiency of Airborne Sample Analysis Platform (ASAP) bioaerosol sampler for pathogen detection
Sharma, Anurag; Clark, Elizabeth; McGlothlin, James D.; Mittal, Suresh K.
2015-01-01
The threat of bioterrorism and pandemics has highlighted the urgency for rapid and reliable bioaerosol detection in different environments. Safeguarding against such threats requires continuous sampling of the ambient air for pathogen detection. In this study we investigated the efficacy of the Airborne Sample Analysis Platform (ASAP) 2800 bioaerosol sampler to collect representative samples of air and identify specific viruses suspended as bioaerosols. To test this concept, we aerosolized an innocuous replication-defective bovine adenovirus serotype 3 (BAdV3) in a controlled laboratory environment. The ASAP efficiently trapped the surrogate virus at 5 × 103 plaque-forming units (p.f.u.) [2 × 105 genome copy equivalent] concentrations or more resulting in the successful detection of the virus using quantitative PCR. These results support the further development of ASAP for bioaerosol pathogen detection. PMID:26074900
Wang, Yan; Li, Jun; Cheng, Zhineng; Li, Qilu; Pan, Xiaohui; Zhang, Ruijie; Liu, Di; Luo, Chunling; Liu, Xiang; Katsoyiannis, Athanasios; Zhang, Gan
2013-03-19
Research on the environmental fate of short- and medium-chain chlorinated paraffins (SCCPs and MCCPs) in highly industrialized subtropical areas is still scarce. Air, soil, and atmospheric deposition process in the Pearl River Delta of South China were investigated, and the average SCCP and MCCP concentrations were 5.2 μg/sampler (17.69 ng/m(3)) and 4.1 μg/sampler for passive air samples, 18.3 and 59.3 ng/g for soil samples, and 5.0 and 5.3 μg/(m(2)d) for deposition samples, respectively. Influenced by primary sources and the properties of chlorinated paraffins (CPs), a gradient trend of concentrations and a fractionation of composition from more to less industrialized areas were discovered. Intense seasonal variations with high levels in summer air and winter deposition samples indicated that the air and deposition CP levels were controlled mainly by the vapor and particle phase, respectively. Complex environmental processes like volatilization and fractionation resulted in different CP profiles in different environment matrixes and sampling locations, with C(10-11) C(l6-7) and C(14) C(l6-7), C(10-12) C(l6-7) and C(14) C(l6-8), and C(11-12) C(l6-8) and C(14) C(l7-8) dominating in air, soil, and atmospheric deposition, respectively. Shorter-chain and less chlorinated congeners were enriched in air in the less industrialized areas, while longer-chain and higher chlorinated congeners were concentrated in soil in the more industrialized areas. This is suggesting that the gaseous transport of CPs is the dominant mechanism responsible for the higher concentrations of lighter and likely more mobile CPs in the rural areas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anastas, M.Y.; Caplan, P.E.; Froehlich, P.A.
An on-site visit was made to the Ortho Pharmaceutical Corporation (OPC), Raritan, New Jersey to evaluate methods of controlling exposure to hazardous materials during the manufacturing of medications. OPC produced oral-contraceptive tablets containing norethindrone (NOR), mestranol, and ethynylestradiol (EE). Ventilation was an important engineering control at this site. Other engineering controls included the isolation of work procedures and automation of work practices for weighing ingredients, granulation of substances, tableting, and packaging. Area samples were taken for air monitoring of steroid concentration levels in each manufacturing area. Access to the work areas was only through the locker rooms. Samples taken inmore » the locker rooms revealed no detectable contaminant levels. Workers performing high risk activities wore air supplied vinyl suits and disposable rubber gloves. The vinyl suits had overshoes attached. For moderate risk activities the workers wore a disposable suit, rubber gloves and shoe covers. Appropriate respirators were provided. Workers in low risk activities wore disposable rubber gloves and appropriate respirators. Sampling indicated that processing workers experienced breathing-zone levels outside their vinyl suits of 16.40 and 0.36 micrograms/cubic meter of NOR and EE, respectively.« less
Soyuz 7 Return Samples: Assessment of Air Quality Aboard the International Space Station
NASA Technical Reports Server (NTRS)
James, John T.
2004-01-01
The toxicological assessments of one grab sample canister (GSC), 6 dual sorbent tubes (DSTs), and 20 formaldehyde badges returned aboard Soyuz 7 are reported. Analytical methods have not changed from earlier reports. Surrogate standard recoveries from the GSC were 84-89%. The recoveries of the less volatile surrogates from the DSTs were 87 to 112%; however, 13C-acetone was only recovered at 53-59%. Formaldehyde recoveries from 2 lab controls were 87 and 95%; trip controls were not returned to ground.
Determination of Phenols and Trimethylamine in Industrial Effluents
NASA Technical Reports Server (NTRS)
Levaggi, D. A.; Feldstein, M.
1971-01-01
For regulatory purposes to control certain odorous compounds the analysis of phenols and trimethylamines in industrial effluents is necessary. The Bay Area Air Pollution Control District laboratory has been determining these gases by gas chromatographic techniques. The procedures for sample collection, preparation for analysis and determination are described in detail. Typical data from various sources showing the effect of proposed regulations is shown. Extensive sampling and usage of these procedures has shown them to be accurate, reliable and suitable to all types of source effluents.
Liu, Xiaojun; Wu, Yanyan; Hu, Yongxin; Liu, Denglai; Zhang, Jin; Chen, Cheng; Yuan, Zhaokang; Lu, Yuanan
2016-11-01
To improve the public's awareness of urban air pollution and promote establishment of more efficient policy toward urban air pollution, we investigated the government employees' perceptions of current urban air pollution and their willingness to pay (WTP) taxes for improved quality in Nanchang, China. Stratified cluster sampling strategy was used to distribute 629 questionnaires, and 608 were completed anonymously, yielding a 96.7 % response rate. Descriptive statistics frequencies and proportions were used to summarize the sample characteristics, and logistic regression models were performed to assess the associations of perception of urban air quality and WTP versus demographic variables. We found low awareness of urban air pollution (34.5 %) as well as low WTP (44.9 %), especially among the middle aged people (age 30-39 and age 40-49). Our study shows that female employees have better awareness of urban air pollution but much less willingness to pay for air quality improvement. Majority of the government employees showed their support to the government for more effective policies toward environmental protection, indicating more enhanced public education and environmental protection campaigns to improve the public's awareness of air pollution and work with every citizen to improve air quality. This study also obtained baseline information useful to the local regional and even national government in developing nations in their attempt to control urban air pollution in future.
2014-01-01
Background Naphthalene exposures for most non-occupationally exposed individuals occur primarily indoors at home. Residential indoor sources include pest control products (specifically moth balls), incomplete combustion such as cigarette smoke, woodstoves and cooking, some consumer and building products, and emissions from gasoline sources found in attached garages. The study aim was to assess naphthalene exposure in pregnant women from Canada, using air measurements and biomarkers of exposure. Methods Pregnant women residing in Ottawa, Ontario completed personal and indoor air sampling, and questionnaires. During pregnancy, pooled urine voids were collected over two 24-hour periods on a weekday and a weekend day. At 2–3 months post-birth, they provided a spot urine sample and a breast milk sample following the 24-hour air monitoring. Urines were analyzed for 1-naphthol and 2-naphthol and breast milk for naphthalene. Simple linear regression models examined associations between known naphthalene sources, air and biomarker samples. Results Study recruitment rate was 11.2% resulting in 80 eligible women being included. Weekday and weekend samples were highly correlated for both personal (r = 0.83, p < 0.0001) and indoor air naphthalene (r = 0.91, p < 0.0001). Urine specific gravity (SG)-adjusted 2-naphthol concentrations collected on weekdays and weekends (r = 0.78, p < 0.001), and between pregnancy and postpartum samples (r = 0.54, p < 0.001) were correlated. Indoor and personal air naphthalene concentrations were significantly higher post-birth than during pregnancy (p < 0.0001 for signed rank tests); concurrent urine samples were not significantly different. Naphthalene in breast milk was associated with urinary 1-naphthol: a 10% increase in 1-naphthol was associated with a 1.6% increase in breast milk naphthalene (95% CI: 0.2%-3.1%). No significant associations were observed between naphthalene sources reported in self-administered questionnaires and the air or biomarker concentrations. Conclusions Median urinary concentrations of naphthalene metabolites tended to be similar to (1-naphthol) or lower (2-naphthol) than those reported in a Canadian survey of women of reproductive age. Only urinary 1-naphthol and naphthalene in breast milk were associated. Potential reasons for the lack of other associations include a lack of sources, varying biotransformation rates and behavioural differences over time. PMID:24767676
Demarré, L; Beeckman, D; Vanderwee, K; Defloor, T; Grypdonck, M; Verhaeghe, S
2012-04-01
The duration and the amount of pressure and shear must be reduced in order to minimize the risk of pressure ulcer development. Alternating low pressure air mattresses with multi-stage inflation and deflation cycle of the air cells have been developed to relieve pressure by sequentially inflating and deflating the air cells. Evidence about the effectiveness of this type of mattress in clinical practice is lacking. This study aimed to compare the effectiveness of an alternating low pressure air mattress that has a standard single-stage inflation and deflation cycle of the air cells with an alternating low pressure air mattress with multi-stage inflation and deflation cycle of the air cells. A randomised controlled trial was performed in a convenience sample of 25 wards in five hospitals in Belgium. In total, 610 patients were included and randomly assigned to the experimental group (n=298) or the control group (n=312). In the experimental group, patients were allocated to an alternating low pressure air mattress with multi-stage inflation and deflation cycle of the air cells. In the control group, patients were allocated to an alternating low pressure air mattress with a standard single-stage inflation and deflation cycle of the air cells. The outcome was defined as cumulative pressure ulcer incidence (Grade II-IV). An intention-to-treat analysis was performed. There was no significant difference in cumulative pressure ulcer incidence (Grade II-IV) between both groups (Exp.=5.7%, Contr.=5.8%, p=0.97). When patients developed a pressure ulcer, the median time was 5.0 days in the experimental group (IQR=3.0-8.5) and 8.0 days in the control group (IQR=3.0-8.5) (Mann-Whitney U-test=113, p=0.182). The probability to remain pressure ulcer free during the observation period in this trial did not differ significantly between the experimental group and the control group (log-rank χ(2)=0.013, df=1, p=0.911). An alternating low pressure air mattress with multi-stage inflation and deflation of the air cells does not result in a significantly lower pressure ulcer incidence compared to an alternating low pressure air mattress with a standard single-stage inflation and deflation cycle of the air cells. Both alternating mattress types are equally effective to prevent pressure ulcer development. © 2011 Elsevier Ltd. All rights reserved.
An automated system for global atmospheric sampling using B-747 airliners
NASA Technical Reports Server (NTRS)
Lew, K. Q.; Gustafsson, U. R. C.; Johnson, R. E.
1981-01-01
The global air sampling program utilizes commercial aircrafts in scheduled service to measure atmospheric constituents. A fully automated system designed for the 747 aircraft is described. Airline operational constraints and data and control subsystems are treated. The overall program management, system monitoring, and data retrieval from four aircraft in global service is described.
The purpose of this SOP is to describe the in-field use of the particulate sampling system (pumping, control unit, and size selective inlet impactors) for collecting samples of particulate matter from the air during a predetermined time period during the Arizona NHEXAS project an...
40 CFR 85.2213 - Idle test-EPA 91.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Idle test-EPA 91. 85.2213 Section 85...) CONTROL OF AIR POLLUTION FROM MOBILE SOURCES Emission Control System Performance Warranty Short Tests § 85.2213 Idle test—EPA 91. (a) General requirements—(1) Exhaust gas sampling algorithm. The analysis of...
Clark, O Grant; Morin, Brent; Zhang, Yongcheng; Sauer, Willem C; Feddes, John J R
2005-01-01
When livestock manure slurry is agitated, the sudden release of hydrogen sulfide (H(2)S) can raise concentrations to dangerous levels. Low-level air bubbling and dietary S reduction were evaluated as methods for reducing peak H(2)S emissions from swine (Sus scrofa) manure slurry samples. In a first experiment, 15-L slurry samples were stored in bench-scale digesters and continuously bubbled with air at 0 (control), 5, or 10 mL min(-1) for 28 d. The 5-L headspace of each digester was also continuously ventilated at 40 mL min(-1) and the mean H(2)S concentration in the outlet air was <10 microL L(-1). On Day 28, the slurry was agitated suddenly. The peak H(2)S concentration exceeded instrument range (>120 microL L(-1)) from the control treatment, and was 47 and 3.4 microL L(-1) for the 5 and 10 mL min(-1) treatments, respectively. In a second experiment, individually penned barrows were fed rations with dietary S concentrations of 0.34, 0.24, and 0.15% (w/w). Slurry derived from each diet was bubbled with air in bench-scale digesters, as before, at 10 mL min(-1) for 12 d and the mean H(2)S concentration in the digester outlet air was 11 microL L(-1). On Day 12, the slurry was agitated but the H(2)S emissions did not change significantly. Both low-level bubbling of air through slurry and dietary S reduction appear to be viable methods for reducing peak H(2)S emissions from swine manure slurry at a bench scale, but these approaches must be validated at larger scales.
Wheeler, Amanda J; Xu, Xiaohong; Kulka, Ryan; You, Hongyu; Wallace, Lance; Mallach, Gary; Van Ryswyk, Keith; MacNeill, Morgan; Kearney, Jill; Rasmussen, Pat E; Dabek-Zlotorzynska, Ewa; Wang, Daniel; Poon, Raymond; Williams, Ron; Stocco, Corinne; Anastassopoulos, Angelos; Miller, J David; Dales, Robert; Brook, Jeffrey R
2011-03-01
The Windsor, Ontario Exposure Assessment Study evaluated the contribution of ambient air pollutants to personal and indoor exposures of adults and asthmatic children living in Windsor, Ontario, Canada. In addition, the role of personal, indoor, and outdoor air pollution exposures upon asthmatic children's respiratory health was assessed. Several active and passive sampling methods were applied, or adapted, for personal, indoor, and outdoor residential monitoring of nitrogen dioxide, volatile organic compounds, particulate matter (PM; PM-2.5 pm [PM2.5] and < or =10 microm [PM10] in aerodynamic diameter), elemental carbon, ultrafine particles, ozone, air exchange rates, allergens in settled dust, and particulate-associated metals. Participants completed five consecutive days of monitoring during the winter and summer of 2005 and 2006. During 2006, in addition to undertaking the air pollution measurements, asthmatic children completed respiratory health measurements (including peak flow meter tests and exhaled breath condensate) and tracked respiratory symptoms in a diary. Extensive quality assurance and quality control steps were implemented, including the collocation of instruments at the National Air Pollution Surveillance site operated by Environment Canada and at the Michigan Department of Environmental Quality site in Allen Park, Detroit, MI. During field sampling, duplicate and blank samples were also completed and these data are reported. In total, 50 adults and 51 asthmatic children were recruited to participate, resulting in 922 participant days of data. When comparing the methods used in the study with standard reference methods, field blanks were low and bias was acceptable, with most methods being within 20% of reference methods. Duplicates were typically within less than 10% of each other, indicating that study results can be used with confidence. This paper covers study design, recruitment, methodology, time activity diary, surveys, and quality assurance and control results for the different methods used.
An indoor air quality study of an alligator (Alligator mississippiensis) holding facility.
Wilson, S C; Holder, H W; Martin, J M; Brasel, T L; Andriychuk, L A; Wu, C; Straus, D C; Aguilar, R
2006-06-01
An environmental microbiologic investigation was conducted in an alligator (Alligator mississippiensis) holding facility in a zoo in the southeastern U.S. The facility had housed five alligators between March 1999 and February 2005. In the exhibit, one alligator died and all experienced poor health. It was hypothesized that environmental microbial contamination was associated with these issues. Samples were collected for fungal identification and quantification, microcystin analysis, and airborne mycotoxins. Analyses of air and water were conducted and an examination of the heating, ventilation, and air-conditioning system (HVAC) for design, maintenance, and operating issues was made. Two control sites, a facility for false gharials (Tomistoma schlegelii) and an off-site alligator breeding facility, were also tested. Morbidity and mortality records were examined for all sites. Results showed that, compared to the control sites, the test alligator facility and its HVAC system were extensively contaminated with a range of fungi. Nearly all sampled surfaces featured fungal growth. There were also significantly higher counts of Penicillium/Aspergillus-like and Chrysosporium-like spores in the air (P < 0.004). The design, maintenance, and operation of the HVAC system were all inadequate, resulting in poorly conditioned and mold-contaminated air being introduced to the facility. Morbidity records revealed solitary pulmonary disorders over time in three alligators, with one dying as a result. The other two alligators suffered from general malaise and a range of nonspecific symptoms. The control facilities had no morbidity or mortality issues. In conclusion, although no causal links could be demonstrated because of the nature of the morbidity data, environmental mold contamination appeared to be associated with the history of morbidity and mortality in the alligator exhibit.
NASA Astrophysics Data System (ADS)
Tsai, Candace S.-J.; Echevarría-Vega, Manuel E.; Sotiriou, Georgios A.; Santeufemio, Christopher; Schmidt, Daniel; Demokritou, Philip; Ellenbecker, Michael
2012-05-01
Applying engineering controls to airborne engineered nanoparticles (ENPs) is critical to prevent environmental releases and worker exposure. This study evaluated the effectiveness of two air sampling and six air cleaning fabric filters at collecting ENPs using industrially relevant flame-made engineered nanoparticles generated using a versatile engineered nanomaterial generation system (VENGES), recently designed and constructed at Harvard University. VENGES has the ability to generate metal and metal oxide exposure atmospheres while controlling important particle properties such as primary particle size, aerosol size distribution, and agglomeration state. For this study, amorphous SiO2 ENPs with a 15.4 nm primary particle size were generated and diluted with HEPA-filtered air. The aerosol was passed through the filter samples at two different filtration face velocities (2.3 and 3.5 m/min). Particle concentrations as a function of particle size were measured upstream and downstream of the filters using a specially designed filter test system to evaluate filtration efficiency. Real time instruments (FMPS and APS) were used to measure particle concentration for diameters from 5 to 20,000 nm. Membrane-coated fabric filters were found to have enhanced nanoparticle collection efficiency by 20-46 % points compared to non-coated fabric and could provide collection efficiency above 95 %.
Echevarría-Vega, Manuel E.; Sotiriou, Georgios A.; Santeufemio, Christopher; Schmidt, Daniel; Demokritou, Philip; Ellenbecker, Michael
2013-01-01
Applying engineering controls to airborne engineered nanoparticles (ENPs) is critical to prevent environmental releases and worker exposure. This study evaluated the effectiveness of two air sampling and six air cleaning fabric filters at collecting ENPs using industrially relevant flame-made engineered nanoparticles generated using a versatile engineered nanomaterial generation system (VENGES), recently designed and constructed at Harvard University. VENGES has the ability to generate metal and metal oxide exposure atmospheres while controlling important particle properties such as primary particle size, aerosol size distribution, and agglomeration state. For this study, amorphous SiO2 ENPs with a 15.4 nm primary particle size were generated and diluted with HEPA-filtered air. The aerosol was passed through the filter samples at two different filtration face velocities (2.3 and 3.5 m/min). Particle concentrations as a function of particle size were measured upstream and downstream of the filters using a specially designed filter test system to evaluate filtration efficiency. Real time instruments (FMPS and APS) were used to measure particle concentration for diameters from 5 to 20,000 nm. Membrane-coated fabric filters were found to have enhanced nanoparticle collection efficiency by 20–46 % points compared to non-coated fabric and could provide collection efficiency above 95 %. PMID:23412707
Nguyen, Vivian M; Martins, Eduardo G; Robichaud, Dave; Raby, Graham D; Donaldson, Michael R; Lotto, Andrew G; Willmore, William G; Patterson, David A; Farrell, Anthony P; Hinch, Scott G; Cooke, Steven J
2014-01-01
We sought to improve the understanding of delayed mortality in migrating sockeye salmon (Oncorhynchus nerka) captured and released in freshwater fisheries. Using biotelemetry, blood physiology, and reflex assessments, we evaluated the relative roles of gill net injury and air exposure and investigated whether using a recovery box improved survival. Fish (n=238), captured by beach seine, were allocated to four treatment groups: captured only, air exposed, injured, and injured and air exposed. Only half of the fish in each group were provided with a 15-min facilitated recovery. After treatment, fish were radio-tagged and released to resume their migration. Blood status was assessed in 36 additional untagged fish sampled after the four treatments. Compared with fish sampled immediately on capture, all treatments resulted in elevated plasma lactate and cortisol concentrations. After air exposure, plasma osmolality was elevated and reflexes were significantly impaired relative to the control and injured treatments. Injured fish exhibited reduced short-term migration speed by 3.2 km/d and had a 14.5% reduced survival to subnatal watersheds compared to controls. The 15-min facilitated recovery improved reflex assessment relative to fish released immediately but did not affect survival. We suggest that in sockeye salmon migrating in cool water temperatures (∼13°-16°C), delayed mortality can result from injury and air exposure, perhaps through sublethal stress, and that injury created additive delayed mortality likely via secondary infections.
Air and water quality monitor assessment of life support subsystems
NASA Technical Reports Server (NTRS)
Whitley, Ken; Carrasquillo, Robyn L.; Holder, D.; Humphries, R.
1988-01-01
Preprotype air revitalization and water reclamation subsystems (Mole Sieve, Sabatier, Static Feed Electrolyzer, Trace Contaminant Control, and Thermoelectric Integrated Membrane Evaporative Subsystem) were operated and tested independently and in an integrated arrangement. During each test, water and/or gas samples were taken from each subsystem so that overall subsystem performance could be determined. The overall test design and objectives for both subsystem and integrated subsystem tests were limited, and no effort was made to meet water or gas specifications. The results of chemical analyses for each of the participating subsystems are presented along with other selected samples which were analyzed for physical properties and microbiologicals.
Bielawska-Drózd, Agata; Cieślik, Piotr; Wlizło-Skowronek, Bożena; Winnicka, Izabela; Kubiak, Leszek; Jaroszuk-Ściseł, Jolanta; Depczyńska, Daria; Bohacz, Justyna; Korniłłowicz-Kowalska, Teresa; Skopińska-Różewska, Ewa; Kocik, Janusz
2017-06-19
Assessment of microbial air quality and surface contamination in ambulances and administration offices as a control place without occupational exposure to biological agents; based on quantitative and qualitative analysis of bacteria, yeasts and filamentous fungi found in collected samples. The sampling was done by wet cyclone technology using the Coriolis recon apparatus, imprint and swab methods, respectively. In total, 280 samples from 28 ambulances and 10 offices in Warszawa were tested. Data was analyzed using Shapiro-Wilk normality test, Kruskal-Wallis test with α = 0.05. P value ≤ 0.05 was considered as significant. The levels of air contamination were from 0 to 2.3×101 colony-forming unit (CFU)/m3 for bacteria and for yeast and filamentous fungi were from 0 to 1.8×101 CFU/m3. The assessment of office space air samples has shown the following numbers of microorganisms: bacteria from 3.0×101 to 4.2×101 CFU/m3 and yeast and filamentous fungi from 0 to 1.9×101 CFU/m3. For surface contamination the mean bacterial count in ambulances has been between 1.0×101 and 1.3×102 CFU/25 cm2 and in offices - between 1.1×101 and 8.5×101 CFU/25 cm2. Mean fungal count has reached the level from 2.8×100 to 4.2×101 CFU/25 cm2 in ambulances and 1.3×101 to 5.8×101 CFU/25 cm2 in offices. The qualitative analysis has revealed the presence of Acinetobacter spp. (surfaces), coagulase - negative Staphylococci (air and surfaces), Aspergillus and Penicillium genera (air and surfaces). The study has revealed a satisfactory microbiological quantity of analyzed air and surface samples in both study and control environments. However, the presence of potentially pathogenic microorganisms in the air and on surfaces in ambulances may endanger the medical emergency staff and patients with infection. Disinfection and cleaning techniques therefore should be constantly developed and implemented. Int J Occup Med Environ Health 2017;30(4):617-627. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.
Beaulieu, Harry J; Beaulieu, Serrita; Brown, Chris
2008-06-01
Phenyl mercuric acetate (PMA) historically has been used as a catalyst in polyurethane systems. In the 1950s-1970s, PMA was used as a catalyst in the 3M Tartan brand polyurethane flexible floors that were installed commonly in school gymnasiums. Mercury vapor is released into air above the surface of these floors. Sampling mercury in bulk flooring material and mercury vapor in air was conducted in nine Idaho schools in the spring of 2006. These evaluations were conducted in response to concerns by school officials that the floors could contain mercury and could release the mercury vapor into the air, presenting a potential health hazard for students, staff, and visitors. Controlled abatement was conducted in one school where remodeling would impact the mercury-bearing flexible gym floors ( approximately 9,000 ft(2) total). The controlled abatement consisted of containment of the work area with negative air technology; worker protection, including mercury-specific training, use of personal protective equipment, and biological and exposure monitoring; and environmental protection, including proper disposal of mercury-bearing hazardous waste material.
Hariri, Azian; Mohamad Noor, Noraishah; Paiman, Nuur Azreen; Ahmad Zaidi, Ahmad Mujahid; Zainal Bakri, Siti Farhana
2017-09-22
Welding operations are rarely conducted in an air-conditioned room. However, a company would set its welding operations in an air-conditioned room to maintain the humidity level needed to reduce hydrogen cracks in the specimen being welded. This study intended to assess the exposure to metal elements in the welders' breathing zone and toenail samples. Heavy metal concentration was analysed using inductively coupled plasma mass spectrometry. The lung function test was also conducted and analysed using statistical approaches. Chromium and manganese concentrations in the breathing zone exceeded the permissible exposure limit stipulated by Malaysian regulations. A similar trend was obtained in the concentration of heavy metals in the breathing zone air sampling and in the welders' toenails. Although there was no statistically significant decrease in the lung function of welders, it is suggested that exposure control through engineering and administrative approaches should be considered for workplace safety and health improvement.
Ryan, Laura; O'Mara, Niall; Tansey, Sana; Slattery, Tom; Hanahoe, Belinda; Vellinga, Akke; Doyle, Maeve; Cormican, Martin
2018-05-01
Immunocompromised patients are at risk of invasive fungal infection. These high-risk patients are nursed in protective isolation to reduce the risk of nosocomial aspergillosis while in hospital-ideally in a positive pressure single room with high-efficiency particulate air filtration. However, neutral pressure rooms are a potential alternative, especially for patients requiring both protective and source isolation. This study examined mold and bacterial concentrations in air samples from positive and neutral pressure rooms to assess whether neutral pressure rooms offer a similar environment to that of positive pressure rooms in terms of mold concentrations in the air. Mold concentrations were found to be similar in the positive and neutral pressure room types examined in this study. These results add to the paucity of literature in this area. Copyright © 2018 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.
Chicken barn climate and hazardous volatile compounds control using simple linear regression and PID
NASA Astrophysics Data System (ADS)
Abdullah, A. H.; Bakar, M. A. A.; Shukor, S. A. A.; Saad, F. S. A.; Kamis, M. S.; Mustafa, M. H.; Khalid, N. S.
2016-07-01
The hazardous volatile compounds from chicken manure in chicken barn are potentially to be a health threat to the farm animals and workers. Ammonia (NH3) and hydrogen sulphide (H2S) produced in chicken barn are influenced by climate changes. The Electronic Nose (e-nose) is used for the barn's air, temperature and humidity data sampling. Simple Linear Regression is used to identify the correlation between temperature-humidity, humidity-ammonia and ammonia-hydrogen sulphide. MATLAB Simulink software was used for the sample data analysis using PID controller. Results shows that the performance of PID controller using the Ziegler-Nichols technique can improve the system controller to control climate in chicken barn.
Eom, In-Yong; Risticevic, Sanja; Pawliszyn, Janusz
2012-02-24
Air in a room infested by Cimex lectularius L. (Hemiptera: Cimicidae) was sampled simultaneously by three different sampling devices including solid phase microextraction (SPME) fiber coatings, thin film microextraction (TFME) devices, and needle trap devices (NTDs) and then analyzed by gas chromatography-mass spectrometry (GC-MS). The main focus of this study was to fully characterize indoor air by identifying compounds extracted by three different microextraction formats and, therefore, perform both the device comparison and more complete characterization of C. lectularius pheromone. The NTD technique was capable of extracting both (E)-2-hexenal and (E)-2-octenal, which were previously identified as alarm pheromones of bedbugs, and superior NTD recoveries for these two components allowed reliable identification based on mass spectral library searching and linear temperature programmed retention index (LTPRI) technique. While the use of DVB/CAR/PDMS SPME fiber coatings provided complementary sample fingerprinting and profiling results, TFME sampling devices provided discriminative extraction coverage toward highly volatile analytes. In addition to two alarm pheromones, relative abundances of all other analytes were recorded for all three devices and aligned across all examined samples, namely, highly infested area, less infested area, and control samples which were characterized by different bedbug populations. The results presented in the current study illustrate comprehensive characterization of infested indoor air samples through the use of three different non-invasive SPME formats and identification of novel components comprising C. lectularius pheromone, therefore, promising future alternatives for use of potential synthetic pheromones for detection of infestations. Copyright © 2011 Elsevier B.V. All rights reserved.
Jia, Guogang; Belli, Maria; Sansone, Umberto; Rosamilia, Silvia; Gaudino, Stefania
2005-09-01
During the Balkan conflicts, in 1995 and 1999, depleted uranium (DU) rounds were employed and were left in the battlefield. Health concern is related to the risk arising from contamination of the environment with DU penetrators and dust. In order to evaluate the impact of DU on the environment and population in Serbia and Montenegro, radiological surveys of DU in water, air and biological samples were carried out over the period 27 October-5 November 2001. The uranium isotopic concentrations in biological samples collected in Serbia and Montenegro, mainly lichens and barks, were found to be in the range of 0.67-704 Bqkg(-1) for (238)U, 0.48-93.9 Bqkg(-1) for (234)U and 0.02-12.2 Bqkg(-1) for (235)U, showing uranium levels to be higher than in the samples collected at the control sites. Moreover, (236)U was detectable in some of the samples. The isotopic ratios of (234)U/(238)U showed DU to be detectable in many biological samples at all examined sites, especially in Montenegro, indicating widespread ground-surface DU contamination, albeit at very low level. The uranium isotopic concentrations in air obtained from the air filter samples collected in Serbia and Montenegro were found to be in the range of 1.99-42.1 microBqm(-3) for (238)U, 0.96-38.0 microBqm(-3) for (234)U, and 0.05-1.83 microBqm(-3) for (235)U, being in the typical range of natural uranium values. Thus said, most of the air samples are DU positive, this fact agreeing well with the widespread DU contamination detected in the biological samples. The uranium concentrations in water samples collected in Serbia and Montenegro were found to be in the range of 0.40-21.9 mBql(-1) for (238)U, 0.27-28.1 mBql(-1) for (234)U, and 0.01-0.88 mBql(-1) for (235)U, these values being much lower than those in mineral water found in central Italy and below the WHO guideline for drinking water. From a radiotoxicological point of view, at this moment there is no significant radiological risk related to these investigated sites in terms of possible DU contamination of water, air and/or plants.
Radiation Induced Degradation of the White Thermal Control Paints Z-93 and Z-93P
NASA Technical Reports Server (NTRS)
Edwards, D. L.; Zwiener, J. M.; Wertz, G. E.; Vaughn, J. A.; Kamenetzky, R. R.; Finckenor, M. M.; Meshishnek, M. J.
1996-01-01
This paper details a comparison analysis of the zinc oxide pigmented white thermal control paints Z-93 and Z-93P. Both paints were simultaneously exposed to combined space environmental effects and analyzed using an in-vacuo reflectance technique. The dose applied to the paints was approximately equivalent to 5 years in a geosynchronous orbit. This comparison analysis showed that Z-93P is an acceptable substitute for Z-93. Irradiated samples of Z-93 and Z-93P were subjected to additional exposures of ultraviolet (UV) radiation and analyzed using the in-vacuo reflectance technique to investigate UV activated reflectance recovery. Both samples showed minimal UV activated reflectance recovery after an additional 190 equivalent sun hour (ESH) exposure. Reflectance response utilizing nitrogen as a repressurizing gas instead of air was also investigated. This investigation found the rates of reflectance recovery when repressurized with nitrogen are slower than when repressurized with air.
Radiation Induced Degradation of White Thermal Control Paint
NASA Technical Reports Server (NTRS)
Edwards, D. L.; Zwiener, J. M.; Wertz, G. E.; Vaughn, Jason A.; Kamenetzky, Rachel R.; Finckenor, M. M.; Meshishnek, M. J.
1999-01-01
This paper details a comparison analysis of the zinc-oxide pigmented white thermal control paints Z-93 and Z-93P. Both paints were simultaneously exposed to combined space environmental effects and analyzed using an in-vacuo reflectance technique. The dose applied to the paints was approximately equivalent to 5 yr in a geosynchronous orbit. This comparison analysis showed that Z-93P is an acceptable substitute for Z-93. Irradiated samples of Z-93 and Z-93P were subjected to additional exposures of ultraviolet (UV) radiation and analyzed using the in-vacuo reflectance technique to investigate UV activated reflectance recovery. Both samples showed minimal UV activated reflectance recovery after an additional 190 equivalent Sun hour (ESH) exposure. Reflectance response utilizing nitrogen as a repressurizing gas instead of air was also investigated. This investigation found the rates of reflectance recovery when repressurized with nitrogen are slower than when repressurized with air.
Microbiological contamination of compressed air used in dentistry: an investigation.
Conte, M; Lynch, R M; Robson, M G
2001-11-01
The purpose of this preliminary investigation was twofold: 1) to examine the possibility of cross-contamination between a dental-evacuation system and the compressed air used in dental operatories and 2) to capture and identify the most common microflora in the compressed-air supply. The investigation used swab, water, and air sampling that was designed to track microorganisms from the evacuation system, through the air of the mechanical room, into the compressed-air system, and back to the patient. Samples taken in the vacuum system, the air space in the mechanical room, and the compressed-air storage tank had significantly higher total concentrations of bacteria than the outside air sampled. Samples of the compressed air returning to the operatory were found to match the outside air sample in total bacteria. It was concluded that the air dryer may have played a significant role in the elimination of microorganisms from the dental compressed-air supply.
NASA Astrophysics Data System (ADS)
Blake, D. R.; Yang, M.; Meinardi, S.; Krauter, C.; Rowland, F. S.
2009-05-01
The San Joaquin Valley Air Pollution Control District of California issued a report identifying dairies as a main source of Volatile Organic Compounds (VOCs). A dairy study funded by the California Air Resources Board commenced shortly after the report was issued. Our University of California Irvine group teamed with California State University Fresno to determine the major sources of VOCs from various dairy operations and from a variety of dairy types. This study identified ethanol and methanol as two gases produced in major quantities throughout the dairies in the San Joaquin valley as by-products of yeast fermentation of silage. Three different types of sampling protocols were employed in order to determine the degree of enhancement of the target oxygenates in the valley air shed. Their sources, emission profiles, and emission rates were determined from whole air samples collected at various locations at the six dairies studied. An assessment of the impact of dairy emissions in the valley was achieved by using data obtained on low altitude NASA DC-8 flights through the valley, and from ground level samples collected though out the valley in a grid like design. Our data suggest that a significant amount of O3 production in the valley may come from methanol, ethanol, and acetaldehyde (a photochemical by-product ethanol oxidation). Our findings indicate that improvement to valley air quality may be obtained by focusing on instituting new silage containment practices and regulations.
Trasande, Leonardo; Wong, Kendrew; Roy, Angkana; Savitz, David A.; Thurston, George
2015-01-01
The impact of air pollution on fetal growth remains controversial, in part, because studies have been limited to sub-regions of the United States with limited variability. No study has examined air pollution impacts on neonatal health care utilization. We performed descriptive, univariate and multivariable analyses on administrative hospital record data from 222,359 births in the 2000, 2003 and 2006 Kids Inpatient Database linked to air pollution data drawn from the US Environmental Protection Agency’s Aerometric Information Retrieval System. In this study, air pollution exposure during the birth month was estimated based on birth hospital address. Although air pollutants were not individually associated with mean birth weight, a three-pollutant model controlling for hospital characteristics, demographics, and birth month identified 9.3% and 7.2% increases in odds of low birth weight and very low birth weight for each µg/m3 increase in PM2.5 (both P<0.0001). PM2.5 and NO2 were associated with −3.0% odds/p.p.m. and +2.5% odds/p.p.b. of preterm birth, respectively (both P<0.0001). A four-pollutant multivariable model indicated a 0.05 days/p.p.m. NO2 decrease in length of the birth hospitalization (P=0.0061) and a 0.13 days increase/p.p.m. CO (P=0.0416). A $1166 increase in per child costs was estimated for the birth hospitalization per p.p.m. CO (P=0.0002) and $964 per unit increase in O3 (P=0.0448). A reduction from the 75th to the 25th percentile in the highest CO quartile for births predicts annual savings of $134.7 million in direct health care costs. In a national, predominantly urban, sample, air pollutant exposures during the month of birth are associated with increased low birth weight and neonatal health care utilization. Further study of this database, with enhanced control for confounding, improved exposure assessment, examination of exposures across multiple time windows in pregnancy, and in the entire national sample, is supported by these initial investigations. PMID:23340702
Personal exposure to JP-8 jet fuel vapors and exhaust at air force bases.
Pleil, J D; Smith, L B; Zelnick, S D
2000-01-01
JP-8 jet fuel (similar to commercial/international jet A-1 fuel) is the standard military fuel for all types of vehicles, including the U.S. Air Force aircraft inventory. As such, JP-8 presents the most common chemical exposure in the Air Force, particularly for flight and ground crew personnel during preflight operations and for maintenance personnel performing routine tasks. Personal exposure at an Air Force base occurs through occupational exposure for personnel involved with fuel and aircraft handling and/or through incidental exposure, primarily through inhalation of ambient fuel vapors. Because JP-8 is less volatile than its predecessor fuel (JP-4), contact with liquid fuel on skin and clothing may result in prolonged exposure. The slowly evaporating JP-8 fuel tends to linger on exposed personnel during their interaction with their previously unexposed colleagues. To begin to assess the relative exposures, we made ambient air measurements and used recently developed methods for collecting exhaled breath in special containers. We then analyzed for certain volatile marker compounds for JP-8, as well as for some aromatic hydrocarbons (especially benzene) that are related to long-term health risks. Ambient samples were collected by using compact, battery-operated, personal whole-air samplers that have recently been developed as commercial products; breath samples were collected using our single-breath canister method that uses 1-L canisters fitted with valves and small disposable breathing tubes. We collected breath samples from various groups of Air Force personnel and found a demonstrable JP-8 exposure for all subjects, ranging from slight elevations as compared to a control cohort to > 100 [mutilpe] the control values. This work suggests that further studies should be performed on specific issues to obtain pertinent exposure data. The data can be applied to assessments of health outcomes and to recommendations for changes in the use of personal protective equipment that optimize risk reduction without undue impact on a mission. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:10706522
Zhang, Gang; Wang, Ning; Ai, Jian-Chao; Zhang, Lei; Yang, Jing; Liu, Zi-Qi
2013-02-01
Jiapigou gold mine, located in the upper Songhua River, was once the largest mine in China due to gold output, where gold extraction with algamation was widely applied to extract gold resulting in severe mercury pollution to ambient environmental medium. In order to study the characteristics of mercury exchange flux between soil (snow) and atmosphere under the snow retention and snow melting control, sampling sites were selected in equal distances along the slope which is situated in the typical hill-valley terrain unit. Mercury exchange flux between soil (snow) and atmosphere was determined with the method of dynamic flux chamber and in all sampling sites the atmosphere concentration from 0 to 150 cm near to the earth in the vertical direction was measured. Furthermore, the impact factors including synchronous meteorology, the surface characteristics under the snow retention and snow melting control and the mercury concentration in vertical direction were also investigated. The results are as follows: During the period of snow retention and melting the air mercury tends to gather towards valley bottom along the slope and an obvious deposit tendency process was found from air to the earth's surface under the control of thermal inversion due to the underlying surface of cold source (snow surface). However, during the period of snow melting, mercury exchange flux between the soil and atmosphere on the surface of the earth with the snow being melted demonstrates alternative deposit and release processes. As for the earth with snow covered, the deposit level of mercury exchange flux between soil and atmosphere is lower than that during the period of snow retention. The relationship between mercury exchange flux and impact factors shows that in snow retention there is a remarkable negative linear correlation between mercury exchange flux and air mercury concentration as well as between the former and the air temperature. In addition, in snow melting mercury exchange flux is remarkably negatively linearly correlated to air mercury concentration and positively linearly correlated to air temperature. Furthermore, there is a general positive linear correlation between mercury exchange flux and soil temperature on the surface of earth after snow melting.
Using Moss to Detect Fine-Scaled Deposition of Heavy Metals in Urban Environments
NASA Astrophysics Data System (ADS)
Jovan, S.; Donovan, G.; Demetrios, G.; Monleon, V. J.; Amacher, M. C.
2017-12-01
Mosses are commonly used as bio-indicators of heavy metal deposition to forests. Their application in urban airsheds is relatively rare. Our objective was to develop fine-scaled, city-wide maps for heavy metals in Portland, Oregon, to identify pollution "hotspots" and serve as a screening tool for more effective placement of air quality monitoring instruments. In 2013 we measured twenty-two elements in epiphytic moss sampled on a 1km x1km sampling grid (n = 346). We detected large hotspots of cadmium and arsenic in two neighborhoods associated with stained glass manufacturers. Air instruments deployed by local regulators measured cadmium concentrations 49 times and arsenic levels 155 times the state health benchmarks. Moss maps also detected a large nickel hotspot in a neighborhood near a forge where air instruments later measured concentrations 4 times the health benchmark. In response, the facilities implemented new pollution controls, air quality improved in all three affected neighborhoods, revision of regulations for stained glass furnace emissions are underway, and Oregon's governor launched an initiative to develop health-based (vs technology-based) regulations for air toxics in the state. The moss maps also indicated a couple dozen smaller hotspots of heavy metals, including lead, chromium, and cobalt, in Portland neighborhoods. Ongoing follow-up work includes: 1) use of moss sampling by local regulators to investigate source and extent of the smaller hotspots, 2) use of lead isotopes to determine origins of higher lead levels observed in moss collected from the inner city, and 3) co-location of air instruments and moss sampling to determine accuracy, timeframe represented, and seasonality of heavy metals in moss.
Diagnosing AIRS Sampling with CloudSat Cloud Classes
NASA Technical Reports Server (NTRS)
Fetzer, Eric; Yue, Qing; Guillaume, Alexandre; Kahn, Brian
2011-01-01
AIRS yield and sampling vary with cloud state. Careful utilization of collocated multiple satellite sensors is necessary. Profile differences between AIRS and ECMWF model analyses indicate that AIRS has high sampling and excellent accuracy for certain meteorological conditions. Cloud-dependent sampling biases may have large impact on AIRS L2 and L3 data in climate research. MBL clouds / lower tropospheric stability relationship is one example. AIRS and CloudSat reveal a reasonable climatology in the MBL cloud regime despite limited sampling in stratocumulus. Thermodynamic parameters such as EIS derived from AIRS data map these cloud conditions successfully. We are working on characterizing AIRS scenes with mixed cloud types.
NASA Astrophysics Data System (ADS)
Curcoll, Roger; Recolons, Montserrat; Font, Anna; Agraz, Laura; Parga, Elena; Bacardit, Montse; Camarero, Lluís.; Pueyo, Salva; Rodó, Xavier; Morguí, Josep Anton
2010-05-01
Since April 2009, air samples are being taken bi-weekly at 10 GMT in the plain of the Estany Llong at 2100 masl. Estany Llong air sampling site (ELL, 42°34'29''N 0°57'17''E) is a remote site situated in the SW principal valley of the Parc Nacional d'Aigüestortes i Estany de Sant Maurici. New Flask-sampling equipment for Remote Mountain Sites was developed by the Institut Català de Ciències del Clima (IC3) to allow flask sampling in extreme weather conditions and carrying the sampling equipment for more than 10 km without damaging flasks. Dry Air analysis for CO2 are done at the Laboratory of IC3 using two coupled modified IRGA Licor-7000, where both pressure and flow are externally controlled. Far away from populated areas, ELL site acts as a remote site, but it is also responding to discrete events as snow melting, summer cattle breeding on pastures and trekking frequentation. Series of CO2 obtained are included as part of Long Term Ecological Research (LTER) at the Parc Nacional d'Aigüestortes i Estany de Sant Maurici. In the long term, these measurements show the mountain ecosystems contribution and geomorphologic influence on the CO2 budget of the air masses crossing a mountain range.
Burning characteristics and fiber retention of graphite/resin matrix composites
NASA Technical Reports Server (NTRS)
Bowles, K. J.
1980-01-01
Graphite fiber reinforced resin matrix composites were subjected to controlled burning conditions to determine their burning characteristics and fiber retention properties. Small samples were burned with a natural gas fired torch to study the effects of fiber orientation and structural flaws such as holes and slits that were machined into the laminates. Larger laminate samples were burned in a modified heat release rate calorimeter. Unidirectional epoxy/graphite and polyimide/graphite composites and boron powder filled samples of each of the two composite systems were burn tested. The composites were exposed to a thermal radiation of 5.3 Btu/sq ft-sec in air. Samples of each of the unfilled composite were decomposed anaerobically in the calorimeter. Weight loss data were recorded for burning and decomposition times up to thirty-five minutes. The effects of fiber orientation, flaws, and boron filler additives to the resins were evaluated. A high char forming polyimide resin was no more effective in retaining graphite fibers than a low char forming epoxy resin when burned in air. Boron powder additions to both the polyimide and the epoxy resins stabilized the chars and effectively controlled the fiber release.
Palynological Investigation of Mummified Human Remains.
Reinhard, Karl J; Amaral, Marina Milanello do; Wall, Nicole
2018-01-01
Pollen analysis was applied to a mummified homicide victim in Nebraska, U.S.A., to determine the location of death. A control sample showed the normal ambient pollen in the garage crime scene. Ambient windborne types, common in the air of the region, dominated the control. Internal samples were analyzed from the sacrum, intestine, and diaphragm. Microfossils were recovered from the rehydrated intestine lumen. The intestinal sample was dominated by Brassica (broccoli). The sacrum sample was high in dietary types but with a showing of ambient types. The pollen from the diaphragm was dominated by ambient pollen similar to the control samples. The discovery of diverse pollen spectra from within a single mummy was unexpected. They show that ingested and inhaled pollen mixed in the corpse. The data linked the decedent to a specific crime scene in her Nebraska home in the southern tier of eastern counties on the border with Kansas. © 2017 American Academy of Forensic Sciences.
Söderström, Hanna S; Bergqvist, Per-Anders
2004-09-15
Semipermeable membrane devices (SPMDs) are passive samplers used to measure the vapor phase of organic pollutants in air. This study tested whether extremely high wind-speeds during a 21-day sampling increased the sampling rates of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs), and whether the release of performance reference compounds (PRCs) was related to the uptakes at different wind-speeds. Five samplers were deployed in an indoor, unheated, and dark wind tunnel with different wind-speeds at each site (6-50 m s(-1)). In addition, one sampler was deployed outside the wind tunnel and one outside the building. To test whether a sampler, designed to reduce the wind-speeds, decreased the uptake and release rates, each sampler in the wind tunnel included two SPMDs positioned inside a protective device and one unprotected SPMD outside the device. The highest amounts of PAHs and PCBs were found in the SPMDs exposed to the assumed highest wind-speeds. Thus, the SPMD sampling rates increased with increasing wind-speeds, indicating that the uptake was largely controlled by the boundary layer at the membrane-air interface. The coefficient of variance (introduced by the 21-day sampling and the chemical analysis) for the air concentrations of three PAHs and three PCBs, calculated using the PRC data, was 28-46%. Thus, the PRCs had a high ability to predict site effects of wind and assess the actual sampling situation. Comparison between protected and unprotected SPMDs showed that the sampler design reduced the wind-speed inside the devices and thereby the uptake and release rates.
Selenium Speciation and Management in Wet FGD Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Searcy, K; Richardson, M; Blythe, G
2012-02-29
This report discusses results from bench- and pilot-scale simulation tests conducted to determine the factors that impact selenium speciation and phase partitioning in wet FGD systems. The selenium chemistry in wet FGD systems is highly complex and not completely understood, thus extrapolation and scale-up of these results may be uncertain. Control of operating parameters and application of scrubber additives have successfully demonstrated the avoidance or decrease of selenite oxidation at the bench and pilot scale. Ongoing efforts to improve sample handling methods for selenium speciation measurements are also discussed. Bench-scale scrubber tests explored the impacts of oxidation air rate, tracemore » metals, scrubber additives, and natural limestone on selenium speciation in synthetic and field-generated full-scale FGD liquors. The presence and concentration of redox-active chemical species as well as the oxidation air rate contribute to the oxidation-reduction potential (ORP) conditions in FGD scrubbers. Selenite oxidation to the undesirable selenate form increases with increasing ORP conditions, and decreases with decreasing ORP conditions. Solid-phase manganese [Mn(IV)] appeared to be the significant metal impacting the oxidation of selenite to selenate. Scrubber additives were tested for their ability to inhibit selenite oxidation. Although dibasic acid and other scrubber additives showed promise in early clear liquor (sodium based and without calcium solids) bench-scale tests, these additives did not show strong inhibition of selenite oxidation in tests with higher manganese concentrations and with slurries from full-scale wet FGD systems. In bench-tests with field liquors, addition of ferric chloride at a 250:1 iron-to-selenium mass ratio sorbed all incoming selenite to the solid phase, although addition of ferric salts had no impact on native selenate that already existed in the field slurry liquor sample. As ORP increases, selenite may oxidize to selenate more rapidly than it sorbs to ferric solids. Though it was not possible to demonstrate a decrease in selenium concentrations to levels below the project'ale testing were evident at the pilot scale. Specifically, reducing oxidation air rate and ORP tends to either retain selenium as selenite in the liquor or shift selenium phase partitioning to the solid phase. Oxidation air flow rate control may be one option for managing selenium behavior in FGD scrubbers. Units that cycle load widely may find it more difficult to impact ORP conditions with oxidation air flow rate control alone. Because decreasing oxidation air rates to the reaction tank showed that all new selenium reported to the solids, the addition of ferric chloride to the pilot scrubber could not show further improvements in selenium behavior. Ferric chloride addition did shift mercury to the slurry solids, specifically to the fine particles. Several competing pathways may govern the reporting of selenium to the slurry solids: co-precipitation with gypsum into the bulk solids and sorption or co-precipitation with iron into the fine particles. Simultaneous measurement of selenium and mercury behavior suggests a holistic management strategy is best to optimize the fate of both of these elements in FGD waters. Work conducted under this project evaluated sample handling and analytical methods for selenium speciation in FGD waters. Three analytical techniques and several preservation methods were employed. Measurements of selenium speciation over time indicated that for accurate selenium speciation, it is best to conduct measurements on unpreserved, filtered samples as soon after sampling as possible. The capital and operating costs for two selenium management strategies were considered: ferric chloride addition and oxidation air flow rate control. For ferric chloride addition, as might be expected the reagent makeup costs dominate the overall costs, and range from 0.22 to 0.29 mills/kWh. For oxidation air flow rate control, a cursory comparison of capital costs and turndown capabilities for multi-stage and single-stage centrifugal blowers and several flow control methods was completed. For greenfield systems, changing the selection of blower type and flow control method may have payback periods of 4 to 5 years or more if based on energy savings alone. However, the benefits to managing redox chemistry in the scrubber could far outweigh the savings in electricity costs under some circumstances.« less
Biobriefcase aerosol collector
Bell, Perry M [Tracy, CA; Christian, Allen T [Madison, WI; Bailey, Christopher G [Pleasanton, CA; Willis, Ladona [Manteca, CA; Masquelier, Donald A [Tracy, CA; Nasarabadi, Shanavaz L [Livermore, CA
2009-09-22
A system for sampling air and collecting particles entrained in the air that potentially include bioagents. The system comprises providing a receiving surface, directing a liquid to the receiving surface and producing a liquid surface. Collecting samples of the air and directing the samples of air so that the samples of air with particles entrained in the air impact the liquid surface. The particles potentially including bioagents become captured in the liquid. The air with particles entrained in the air impacts the liquid surface with sufficient velocity to entrain the particles into the liquid but cause minor turbulence. The liquid surface has a surface tension and the collector samples the air and directs the air to the liquid surface so that the air with particles entrained in the air impacts the liquid surface with sufficient velocity to entrain the particles into the liquid, but cause minor turbulence on the surface resulting in insignificant evaporation of the liquid.
[Confrontation of knowledge on alcohol concentration in blood and in exhaled air].
Bauer, Miroslav; Bauerová, Jiřina; Šikuta, Ján; Šidlo, Jozef
2015-01-01
The authors of the paper give a brief historical overview of the development of experimental alcohology in the former Czechoslovakia. Enhanced attention is paid to tests of work quality control of toxicological laboratories. Information on results of control tests of blood samples using the method of gas chromatography in Slovakia and within a world-wide study "Eurotox 1990" is presented. There are pointed out the pitfalls related to objective evaluation of the analysis results interpreting alcohol concentration in biological materials and the associated need to eliminate a negative influence of the human factor. The authors recommend performing analyses of alcohol in biological materials only at accredited workplaces and in the case of samples storage to secure a mandatory inhibition of phosphorylation process. There are analysed the reasons of numerical differences of analyses while taking evidence of alcohol in blood and in exhaled air. The authors confirm analysis accuracy using the method of gas chromatography along with breath analysers of exhaled air. They highlight the need for making the analysis results more objective also through confrontation with the results of clinical examination and with examined circumstances. The authors suggest a method of elimination of the human factor, the most frequently responsible for inaccuracy, to a tolerable level (safety factor) and the need of sample analysis by two methods independent of each other or the need of analysis of two biological materials.
40 CFR 1065.130 - Engine exhaust.
Code of Federal Regulations, 2014 CFR
2014-07-01
....130 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS... demonstrate compliance with the applicable standards. We recommend performing a chemical balance of fuel... before sampling. Extend the crankcase exhaust tube into the free stream of exhaust to avoid boundary...
40 CFR 1065.130 - Engine exhaust.
Code of Federal Regulations, 2013 CFR
2013-07-01
....130 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS... ability to demonstrate compliance with the applicable standards. We recommend performing a chemical... before sampling. Extend the crankcase exhaust tube into the free stream of exhaust to avoid boundary...
40 CFR 1065.130 - Engine exhaust.
Code of Federal Regulations, 2012 CFR
2012-07-01
....130 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS... ability to demonstrate compliance with the applicable standards. We recommend performing a chemical... before sampling. Extend the crankcase exhaust tube into the free stream of exhaust to avoid boundary...
40 CFR 1065.130 - Engine exhaust.
Code of Federal Regulations, 2011 CFR
2011-07-01
....130 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS... ability to demonstrate compliance with the applicable standards. We recommend performing a chemical... before sampling. Extend the crankcase exhaust tube into the free stream of exhaust to avoid boundary...
Reduction of VSC and salivary bacteria by a multibenefit mouthrinse.
Boyd, T; Vazquez, J; Williams, M
2008-03-01
To evaluate the effectiveness of a multibenefit mouthrinse containing 0.05% cetylpyridinium chloride (CPC) and 0.025% sodium fluoride in reducing volatile sulfur compound (VSC) levels and total cultivable salivary bacteria, at both 4 h and overnight. In vitro analysis of efficacy was performed using saliva-coated hydroxyapatite disc substrates first treated with the mouthrinse, then exposed to whole human saliva, followed by overnight incubation in air-tight vials. Headspace VSC was quantified by gas chromatography (GC). A clinical evaluation was conducted with 14 subjects using a crossover design. After a seven-day washout period, baseline clinical measurement of VSC was performed by GC analysis of mouth air sampled in the morning prior to eating, drinking or performing any oral hygiene. A 10 mL saline rinse was used to sample and enumerate cultivable salivary bacterial levels via serial dilution and plating. Subjects were instructed to use the treatment rinse twice daily in combination with a controlled brushing regimen. After one week the subjects returned in the morning prior to eating, drinking or performing oral hygiene to provide samples of overnight mouth air and salivary bacteria. The subjects were then immediately rinsed with the test product, and provided additional mouth air and saliva rinse samples 4 h later. A multibenefit rinse containing 0.05% CPC and 0.025% sodium fluoride was found to reduce VSC in vitro by 52%. The rinse also demonstrated a significant clinical reduction in breath VSC (p < 0.05) of 55.8% at 4 h and 23.4% overnight relative to baseline VSC levels. At both time points, the multibenefit rinse was more effective than the control; this difference was statistically significant at the overnight time point (p < 0.05). Total cultivable salivary bacteria levels were also reduced significantly (p < 0.05) at 4 h and overnight by this mouthrinse compared to baseline levels and the control. A multibenefit mouthrinse was shown to reduce in vitro VSC levels via headspace analysis and clinically at the 4 h and overnight time points. A significant reduction in total cultivable salivary bacteria was also observed at all time points, supporting the VSC data.
NASA Technical Reports Server (NTRS)
James, John T.
2007-01-01
The toxicological assessments of 2 grab sample canisters (GSCs) and one pair of formaldehyde badges from the Shuttle are reported. Analytical methods have not changed from earlier reports. The recoveries of the 3 surrogates (C-13-acetone, fluorobenzene, and chlorobenzene) from the 2 GSCs averaged 120, 117, and 122 %, respectively. Three formaldehyde controls averaged 98% recovery. The Shuttle atmosphere was acceptable for human respiration. The toxicological assessment of 8 GSCs and 6 pairs of formaldehyde badges from the ISS is shown. The recoveries of the 3 standards (as listed above) from the GSCs averaged 99, 99 and 99%, respectively. Three formaldehyde control badges averaged 98% recovery. Based on these limited samples, the ISS atmosphere is acceptable for human respiration. The alcohol levels were well controlled throughout the period of sampling.
SpaceX Dragon Air Circulation System
NASA Technical Reports Server (NTRS)
Hernandez, Brenda; Piatrovich, Siarhei; Prina, Mauro
2011-01-01
The Dragon capsule is a reusable vehicle being developed by Space Exploration Technologies (SpaceX) that will provide commercial cargo transportation to the International Space Station (ISS). Dragon is designed to be a habitable module while it is berthed to ISS. As such, the Dragon Environmental Control System (ECS) consists of pressure control and pressure equalization, air sampling, fire detection, illumination, and an air circulation system. The air circulation system prevents pockets of stagnant air in Dragon that can be hazardous to the ISS crew. In addition, through the inter-module duct, the air circulation system provides fresh air from ISS into Dragon. To utilize the maximum volume of Dragon for cargo packaging, the Dragon ECS air circulation system is designed around cargo rack optimization. At the same time, the air circulation system is designed to meet the National Aeronautics Space Administration (NASA) inter-module and intra-module ventilation requirements and acoustic requirements. A flight like configuration of the Dragon capsule including the air circulation system was recently assembled for testing to assess the design for inter-module and intra-module ventilation and acoustics. The testing included the Dragon capsule, and flight configuration in the pressure section with cargo racks, lockers, all of the air circulation components, and acoustic treatment. The air circulation test was also used to verify the Computational Fluid Dynamics (CFD) model of the Dragon capsule. The CFD model included the same Dragon internal geometry that was assembled for the test. This paper will describe the Dragon air circulation system design which has been verified by testing the system and with CFD analysis.
SNIFFER: An aerial platform for the plume phase of a nuclear emergency
NASA Astrophysics Data System (ADS)
Castelluccio, D. M.; Cisbani, E.; Frullani, S.
2012-04-01
When a nuclear or radiological accident results in a release of a radioactive plume, AGS (Aerial Gamma Spectrometry) systems used in many countries, equipped with passive detectors, can help in giving quantitative assessment on the radiological situation (land surface contamination level) only when the air contamination due to the passage of the travelling plume has become negligible. To overcome this limitation, the Italian Institute of Health has developed and implemented a multi purpose air sampling system based on a fixed wing aircraft, for time-effective, large areas radiological surveillance (to face radiological emergency and to support homeland security). A fixed wing aircraft (Sky Arrow 650) with the front part of the fuselage properly adapted to house the detection equipment has been equipped with a compact air sampling line where the isokinetic sampling is dynamically maintained. Aerosol is collected on a Teflon® filter positioned along the line and hosted on a rotating 4-filters disk. A complex of detectors allows radionuclide identification in the collected aerosol samples. A correlated analysis of these two detectors data allows a quantitative measurement of air as well as ground surface concentration of gamma emitting radioisotopes. Environmental sensors and a GPS receiver support the characterization of the sampling conditions and the temporal and geolocation of the acquired data. Acquisition and control system based on compact electronics and real time software that operate the sampling line actuators, guarantee the dynamical isokinetic condition, and acquire the detectors and sensor data. The system is also equipped with other sampling lines to provide information on the concentration of other chemical pollutants. Operative flights have been carried out in the last years, and performances and results are presented.
Meli, Athinoula; Hancock, Vicky; Doughty, Heidi; Smedley, Steve; Cardigan, Rebecca; Wiltshire, Michael
2018-02-01
Maritime medical capability may be compromised by blood resupply. Air-dropped red blood cells (RBCs) is a possible mitigation factor. This study set out to evaluate RBC storage variables after a simulated parachute air drop into the sea, as limited data exist. The air load construction for the air drop of blood was subject to static drop assessment to simulate a worst-case parachute drop scenario. One control and two test Golden Hour shipping containers were each packaged with 10 RBC units. The control box was not dropped; Test Boxes 1 and 2 were further reinforced with waterproof boxes and underwent a simulated air drop on Day 7 or Day 8 postdonation, respectively. One day after the drop and once a week thereafter until Day 43 of storage, RBCs from each box were sampled and tested for full blood counts, hemolysis, adenosine triphosphate, 2,3-diphosphoglycerate, pH, extracellular potassium, glucose, lactate, deformability, and RBC microvesicles. The packaging configuration completed the air drop with no water ingress or physical damage. All units met UK specifications for volume, hemoglobin, and hemolysis. There were no significant differences for any of the variables studied between RBCs in the control box compared to RBCs in Test Boxes 1 and 2 combined over storage. The test proved that the packaging solution and the impact of a maritime air drop as performed in this study, on Day 7 or Day 8 postdonation, did not affect the in vitro quality of RBCs in SAGM over storage for 35 days. © 2017 AABB.
NASA Aviation Safety Reporting System
NASA Technical Reports Server (NTRS)
1980-01-01
Problems in briefing of relief by air traffic controllers are discussed, including problems that arise when duty positions are changed by controllers. Altimeter reading and setting errors as factors in aviation safety are discussed, including problems associated with altitude-including instruments. A sample of reports from pilots and controllers is included, covering the topics of ATIS broadcasts an clearance readback problems. A selection of Alert Bulletins, with their responses, is included.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swarin, S.J.; Loo, J.F.; Chladek, E.
1992-01-01
Analytical methods for determining individual aldehyde, ketone, and alcohol emissions from gasoline-, methanol-, and variable-fueled vehicles are described. These methods were used in the Auto/Oil Air Quality Improvement Research Program to provide emission data for comparison of individual reformulated fuels, individual vehicles, and for air modeling studies. The emission samples are collected in impingers which contain either 2,4-dinitrophenylhydrazine solution for the aldehydes and ketones or deionized water for the alcohols. Subsequent analyses by liquid chromatography for the aldehydes and ketones and gas chromatography for the alcohols utilized auto injectors and computerized data systems which permit high sample throughput with minimalmore » operator intervention. The quality control procedures developed and interlaboratory comparisons conducted as part of the program are also described. (Copyright (c) 1992 Society of Automotive Engineers, Inc.)« less
Garcia, Ediberto; Newfang, Daniel; Coyle, Jayme P; Blake, Charles L; Spencer, John W; Burrelli, Leonard G; Johnson, Giffe T; Harbison, Raymond D
2018-07-01
Three independently conducted asbestos exposure evaluations were conducted using wire gauze pads similar to standard practice in the laboratory setting. All testing occurred in a controlled atmosphere inside an enclosed chamber simulating a laboratory setting. Separate teams consisting of a laboratory technician, or technician and assistant simulated common tasks involving wire gauze pads, including heating and direct wire gauze manipulation. Area and personal air samples were collected and evaluated for asbestos consistent with the National Institute of Occupational Safety Health method 7400 and 7402, and the Asbestos Hazard Emergency Response Act (AHERA) method. Bulk gauze pad samples were analyzed by Polarized Light Microscopy and Transmission Electron Microscopy to determine asbestos content. Among air samples, chrysotile asbestos was the only fiber found in the first and third experiments, and tremolite asbestos for the second experiment. None of the air samples contained asbestos in concentrations above the current permissible regulatory levels promulgated by OSHA. These findings indicate that the level of asbestos exposure when working with wire gauze pads in the laboratory setting is much lower than levels associated with asbestosis or asbestos-related lung cancer and mesothelioma. Copyright © 2018. Published by Elsevier Inc.
Net, Sopheak; Delmont, Anne; Sempéré, Richard; Paluselli, Andrea; Ouddane, Baghdad
2015-05-15
Because of their widespread application, phthalates or phthalic acid esters (PAEs) are ubiquitous in the environment. Their presence has attracted considerable attention due to their potential impacts on ecosystem functioning and on public health, so their quantification has become a necessity. Various extraction procedures as well as gas/liquid chromatography and mass spectrometry detection techniques are found as suitable for reliable detection of such compounds. However, PAEs are ubiquitous in the laboratory environment including ambient air, reagents, sampling equipment, and various analytical devices, that induces difficult analysis of real samples with a low PAE background. Therefore, accurate PAE analysis in environmental matrices is a challenging task. This paper reviews the extensive literature data on the techniques for PAE quantification in natural media. Sampling, sample extraction/pretreatment and detection for quantifying PAEs in different environmental matrices (air, water, sludge, sediment and soil) have been reviewed and compared. The concept of "green analytical chemistry" for PAE determination is also discussed. Moreover useful information about the material preparation and the procedures of quality control and quality assurance are presented to overcome the problem of sample contamination and these encountered due to matrix effects in order to avoid overestimating PAE concentrations in the environment. Copyright © 2015 Elsevier B.V. All rights reserved.
Fire safety experiments on MIR Orbital Station
NASA Technical Reports Server (NTRS)
Egorov, S. D.; Belayev, A. YU.; Klimin, L. P.; Voiteshonok, V. S.; Ivanov, A. V.; Semenov, A. V.; Zaitsev, E. N.; Balashov, E. V.; Andreeva, T. V.
1995-01-01
The process of heterogeneous combustion of most materials under zero-g without forced motion of air is practically impossible. However, ventilation is required to support astronauts' life and cool equipment. The presence of ventilation flows in station compartments at accidental ignition can cause a fire. An additional, but exceedingly important parameter of the fire risk of solid materials under zero-g is the minimum air gas velocity at which the extinction of materials occurs. Therefore, the conception of fire safety can be based on temporarily lowering the intensity of ventilation and even turning it off. The information on the limiting conditions of combustion under natural conditions is needed from both scientific and practical points of view. It will enable us to judge the reliability of results of ground-based investigations and develop a conception of fire safety of inhabited sealed compartments of space stations to by provided be means of nontraditional and highly-effective methods without both employing large quantities of fire-extinguishing compounds and hard restrictions on use of polymers. In this connection, an experimental installation was created to study the process of heterogeneous combustion of solid non-metals and to determine the conditions of its extinction under microgravity. This installation was delivered to the orbital station 'Mir' and the cosmonauts Viktorenko and Kondakova performed initial experiments on it in late 1994. The experimental installation consists of a combustion chamber with an electrical systems for ignition of samples, a device for cleaning air from combustion products, an air suction unit, air pipes and a control panel. The whole experiment is controlled by telemetry and recorded with two video cameras located at two different places. Besides the picture, parameters are recorded to determine the velocity of the air flow incoming to the samples, the time points of switching on/off the devices, etc. The combustion chamber temperature is also controlled. The main objectives of experiments of this series were as follows: (1) verification of the reliability of the installation in orbital flight; (2) verification of the experimental procedure; and (3) investigation of combustion of two types of materials under microgravity at various velocities of the incoming air flow.
Adaptive Sampling for Urban Air Quality through Participatory Sensing
Zeng, Yuanyuan; Xiang, Kai
2017-01-01
Air pollution is one of the major problems of the modern world. The popularization and powerful functions of smartphone applications enable people to participate in urban sensing to better know about the air problems surrounding them. Data sampling is one of the most important problems that affect the sensing performance. In this paper, we propose an Adaptive Sampling Scheme for Urban Air Quality (AS-air) through participatory sensing. Firstly, we propose to find the pattern rules of air quality according to the historical data contributed by participants based on Apriori algorithm. Based on it, we predict the on-line air quality and use it to accelerate the learning process to choose and adapt the sampling parameter based on Q-learning. The evaluation results show that AS-air provides an energy-efficient sampling strategy, which is adaptive toward the varied outside air environment with good sampling efficiency. PMID:29099766
Element concentrations on Hypogymnia physodes after three years of transplanting along Lake Michigan
Bennett, J.P.; Dibben, M.J.; Lyman, K.J.
1996-01-01
Improvements in air quality in air polluted areas are often followed by recolonization of habitats by sensitive lichens that had died out when air quality was worse. To test the hypothesis that air quality at Indiana Dunes National Lakeshore has improved such that lichens could recolonize the area, samples of a species that once grew in the park, Hypogymnia physodes, were transplanted from Door County, Wisconsin to the park and three other sites along the western shore of Lake Michigan, including one at the site of origin as a control. The lichens were sampled for 3 years and tissue concentrations of 20 chemical elements were measured. There were no significant differences between concentrations over the 3 year study duration at the control site in Door County, suggesting that transplanting itself had no impacts on tissue concentrations. All but two elements increased in concentration from north to south with the greatest increases occurring in the third year of the study. Lichens at Indiana Dunes at the end of the study had suffered severe mortality. Chromium increased the most from north to south but concentrations were not higher than maxima observed in other studies. Arsenic and sulfur, however, exceeded known toxic thresholds or maxima observed in other studies on this species. Four hypotheses are presented to explain the toxicity of elements to this species.
NASA Astrophysics Data System (ADS)
Desyana, R. D.; Sulistyantara, B.; Nasrullah, N.; Fatimah, I. S.
2017-03-01
Transportation is one significant factor which contributes to urban air pollution. One of the pollutants emitted from transportation which affect human’s health is NO2. Plants, especially trees, have high potential in reducing air pollutants from transportation through diffusion, absorbtion, adsorption and deposition. Purpose of this study was to analyze the effectiveness of several tree canopy types on roadside green belt in influencing distribution of NO2 gas emitted from transportation. The study conducted in three plots of tree canopy in Jagorawi Highway: Bungur (Lagerstroemia speciosa), Gmelina (Gmelina arborea) and Tanjung (Mimusops elengi). The tree canopy ability in absorbing pollutant is derived by comparing air quality on vegetated area with ambience air quality at control area (open field). Air sampling was conducted to measure NO2 concentration at elevation 1.5m, 5m and 10m at distance 0m, 10m and 30m, using Air Sampler Impinger. Concentration of NO2 was analyzed with Griess-Saltzman method. From this research, the result of ANOVA showed that tree plot (vegetated area) affected significantly to NO2 concentration. However the effect of distance from road and elevation was not significant. Among the plots, the highest NO2 concentration was found on Control plot (area without tree canopy), while the lowest NO2 concentration was found in Tanjung plot. Tanjung plot with round shape and high density canopy performed better in reducing NO2 than Bungur plot with round shape and medium density canopy, regardless the sampling elevation and distance. Gmelina plot performed the best in reducing horizontal distribution of NO2 concentration at elevation 1.5 and 5m, but the result at elevation 10m was not significant.
Su, Yushan; Hung, Hayley; Stern, Gary; Sverko, Ed; Lao, Randy; Barresi, Enzo; Rosenberg, Bruno; Fellin, Phil; Li, Henrik; Xiao, Hang
2011-11-01
Initiated in 1992, air monitoring of organic pollutants in the Canadian Arctic provided spatial and temporal trends in support of Canada's participation in the Stockholm Convention of Persistent Organic Pollutants. The specific analytical laboratory charged with this task was changed in 2002 while field sampling protocols remained unchanged. Three rounds of intensive comparison studies were conducted in 2004, 2005, and 2008 to assess data comparability between the two laboratories. Analysis was compared for organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) in standards, blind samples of mixed standards and extracts of real air samples. Good measurement accuracy was achieved for both laboratories when standards were analyzed. Variation of measurement accuracy over time was found for some OCPs and PCBs in standards on a random and non-systematic manner. Relatively low accuracy in analyzing blind samples was likely related to the process of sample purification. Inter-laboratory measurement differences for standards (<30%) and samples (<70%) were generally less than or comparable to those reported in a previous inter-laboratory study with 21 participating laboratories. Regression analysis showed inconsistent data comparability between the two laboratories during the initial stages of the study. These inter-laboratory differences can complicate abilities to discern long-term trends of pollutants in a given sampling site. It is advisable to maintain long-term measurements with minimal changes in sample analysis.
Emissions of polycyclic aromatic hydrocarbons from batch hot mix asphalt plants.
Lee, Wen-Jhy; Chao, Wen-Hui; Shih, Minliang; Tsai, Cheng-Hsien; Chen, Thomas Jeng-Ho; Tsai, Perng-Jy
2004-10-15
This study was set out to assess the characteristics of polycyclic aromatic hydrocarbon (PAH) emissions from batch hot mix asphalt (HMA) plants and PAH removal efficiencies associated with their installed air pollution control devices. Field samplings were conducted on six randomly selected batch HMA plants. For each selected plant, stack flue gas samples were collected from both stacks of the batch mixer (n = 5) and the preheating boiler (n = 5), respectively. PAH samples were also collected from the field to assess PAHs that were directly emitted from the discharging chute (n = 3). To assess PAH removal efficiencies of the installed air pollution control devices, PAH contents in both cyclone fly ash (n=3) and bag filter fly ash (n = 3) were analyzed. Results show that the total PAH concentration (mean; RSD) in the stack flue gas of the batch mixer (354 microg/Nm3; 78.5%) was higher than that emitted from the discharging chute (107 microg/Nm3; 70.1%) and that in the stack flue gas of the preheating boiler (83.7 microg/Nm3; 77.6%). But the total BaPeq concentration of that emitted from the discharging chute (0.950 microg/Nm3; 84.4%) was higher than contained in the stack flue gas of the batch mixer (0.629 microg/Nm3; 86.8%) and the stack flue gas of the preheating boiler (= 0.112 microg/Nm3; 80.3%). The mean total PAH emission factor for all selected batch mix plants (= 139 mg/ton x product) was much higher than that reported by U.S. EPA for the drum mix asphalt plant (range = 11.8-79.0 mg/ton x product). We found the overall removal efficiency of the installed air pollution control devices (i.e., cyclone + bag filter) on total PAHs and total BaPeq were 22.1% and 93.7%, respectively. This implies that the installed air pollution control devices, although they have a very limited effect on the removal of total PAHs, do significantly reduce the carcinogenic potencies associated with PAH emissions from batch HMA plants.
MO-D-213-07: RadShield: Semi- Automated Calculation of Air Kerma Rate and Barrier Thickness
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeLorenzo, M; Wu, D; Rutel, I
2015-06-15
Purpose: To develop the first Java-based semi-automated calculation program intended to aid professional radiation shielding design. Air-kerma rate and barrier thickness calculations are performed by implementing NCRP Report 147 formalism into a Graphical User Interface (GUI). The ultimate aim of this newly created software package is to reduce errors and improve radiographic and fluoroscopic room designs over manual approaches. Methods: Floor plans are first imported as images into the RadShield software program. These plans serve as templates for drawing barriers, occupied regions and x-ray tube locations. We have implemented sub-GUIs that allow the specification in regions and equipment for occupancymore » factors, design goals, number of patients, primary beam directions, source-to-patient distances and workload distributions. Once the user enters the above parameters, the program automatically calculates air-kerma rate at sampled points beyond all barriers. For each sample point, a corresponding minimum barrier thickness is calculated to meet the design goal. RadShield allows control over preshielding, sample point location and material types. Results: A functional GUI package was developed and tested. Examination of sample walls and source distributions yields a maximum percent difference of less than 0.1% between hand-calculated air-kerma rates and RadShield. Conclusion: The initial results demonstrated that RadShield calculates air-kerma rates and required barrier thicknesses with reliable accuracy and can be used to make radiation shielding design more efficient and accurate. This newly developed approach differs from conventional calculation methods in that it finds air-kerma rates and thickness requirements for many points outside the barriers, stores the information and selects the largest value needed to comply with NCRP Report 147 design goals. Floor plans, parameters, designs and reports can be saved and accessed later for modification and recalculation. We have confirmed that this software accurately calculates air-kerma rates and required barrier thicknesses for diagnostic radiography and fluoroscopic rooms.« less
High carbon monoxide levels measured in enclosed skating rinks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spengler, J.D.; Stone, K.R.; Lilley, F.W.
Carbon monoxide (CO) levels were measured in enclosed skating rinks in the Boston area. The 1 hr National Ambient Air Quality Standard of 35 ppm was exceeded in 82% of the sampled hours. In a separate study, alveolar breath samples were taken of 12 Harvard hockey players, indicating a fivefold increase in carboxyhemoglobin levels after 93 min of exercise in air with a relatively low 25 ppm CO concentration. This paper demonstrates that exercising athletes are incurring physiologically dangerous levels of carboxyhemoglobin when performing in legal ambient air concentrations of CO-25 ppm, and concentrations of the poisonous gas in manymore » indoor skating rinks regularly exceed the national ambient standards by as much as 300%. It is suggested that the Clean Air Act should be amended to include indoor public exposure to at least the criteria pollutants of carbon monoxide, sulfur dioxide, nitrogen dioxide, and suspended particulates. The U.S. Environmental Protection Agency should require revisions in State Implementation Plans to ensure state responsibility for public air pollution exposures indoors. Finally, it is suggested that rink maintenance machinery be redesigned to reduce noxious output by shifting to electrical motors, by upgrading pollution control equipment, or by routine use of ventilation equipment.« less
Key issues in controlling air pollutants in Dhaka, Bangladesh
NASA Astrophysics Data System (ADS)
Begum, Bilkis A.; Biswas, Swapan K.; Hopke, Philip K.
2011-12-01
Particulate matter (PM) sampling for both coarse and fine fractions was conducted in a semi-residential site (AECD) in Dhaka from February 2005 to December 2006. The samples were analyzed for mass, black carbon (BC), and elemental compositions. The resulting data set were analyzed for sources by Positive Matrix Factorization (EPA-PMF). From previous studies, it is found that, the air quality became worse in the dry winter period compared to the rainy season because of higher particulate matter concentration in the ambient air. Therefore, seasonal source contributions were determined from seasonally segregated data using EPA-PMF modeling so that further policy interventions can be undertaken to improve air quality. From the source apportionment results, it is observed that vehicular emissions and emission from brick kiln are the major contributors to air pollution in Dhaka especially in the dry seasons, while contribution from emissions from metal smelters increases during rainy seasons. The Government of Bangladesh is considering different interventions to reduce the emissions from those sources by adopting conversion of diesel/petrol vehicles to CNG, increasing traffic speed in the city and by introducing green technologies for brick production. However, in order to reduce the transboundary effect it is necessary to take action regionally.
Open-air sprays for capturing and controlling airborne float coal dust on longwall faces
Beck, T.W.; Seaman, C.E.; Shahan, M.R.; Mischler, S.E.
2018-01-01
Float dust deposits in coal mine return airways pose a risk in the event of a methane ignition. Controlling airborne dust prior to deposition in the return would make current rock dusting practices more effective and reduce the risk of coal-dust-fueled explosions. The goal of this U.S. National Institute for Occupational Safety and Health study is to determine the potential of open-air water sprays to reduce concentrations of airborne float coal dust, smaller than 75 µm in diameter, in longwall face airstreams. This study evaluated unconfined water sprays in a featureless tunnel ventilated at a typical longwall face velocity of 3.6 m/s (700 fpm). Experiments were conducted for two nozzle orientations and two water pressures for hollow cone, full cone, flat fan, air atomizing and hydraulic atomizing spray nozzles. Gravimetric samples show that airborne float dust removal efficiencies averaged 19.6 percent for all sprays under all conditions. The results indicate that the preferred spray nozzle should be operated at high fluid pressures to produce smaller droplets and move more air. These findings agree with past respirable dust control research, providing guidance on spray selection and spray array design in ongoing efforts to control airborne float dust over the entire longwall ventilated opening. PMID:29348700
Open-air sprays for capturing and controlling airborne float coal dust on longwall faces.
Beck, T W; Seaman, C E; Shahan, M R; Mischler, S E
2018-01-01
Float dust deposits in coal mine return airways pose a risk in the event of a methane ignition. Controlling airborne dust prior to deposition in the return would make current rock dusting practices more effective and reduce the risk of coal-dust-fueled explosions. The goal of this U.S. National Institute for Occupational Safety and Health study is to determine the potential of open-air water sprays to reduce concentrations of airborne float coal dust, smaller than 75 µm in diameter, in longwall face airstreams. This study evaluated unconfined water sprays in a featureless tunnel ventilated at a typical longwall face velocity of 3.6 m/s (700 fpm). Experiments were conducted for two nozzle orientations and two water pressures for hollow cone, full cone, flat fan, air atomizing and hydraulic atomizing spray nozzles. Gravimetric samples show that airborne float dust removal efficiencies averaged 19.6 percent for all sprays under all conditions. The results indicate that the preferred spray nozzle should be operated at high fluid pressures to produce smaller droplets and move more air. These findings agree with past respirable dust control research, providing guidance on spray selection and spray array design in ongoing efforts to control airborne float dust over the entire longwall ventilated opening.
Design and performance of a dynaniic gas flux chamber.
Reichman, Rivka; Rolston, Dennis E
2002-01-01
Chambers are commonly used to measure the emission of many trace gases and chemicals from soil. An aerodynamic (flow through) chamber was designed and fabricated to accurately measure the surface flux of trace gases. Flow through the chamber was controlled with a small vacuum at the outlet. Due to the design using fans, a partition plate, and aerodynamic ends, air is forced to sweep parallel and uniform over the entire soil surface. A fraction of the air flowing inside the chamber is sampled in the outlet. The air velocity inside the chamber is controlled by fan speed and outlet suction flow rate. The chamber design resulted in a uniform distribution of air velocity at the soil surface. Steady state flux was attained within 5 min when the outlet air suction rate was 20 L/min or higher. For expected flux rates, the presence of the chamber did not affect the measured fluxes at outlet suction rates of around 20 L/min, except that the chamber caused some cooling of the surface in field experiments. Sensitive measurements of the pressure deficit across the soil layer in conjunction with measured fluxes in the source box and chamber outlet show that the outflow rate must be controlled carefully to minimize errors in the flux measurements. Both over- and underestimation of the fluxes are possible if the outlet flow rate is not controlled carefully. For this design, the chamber accurately measured steady flux at outlet air suction rates of approximately 20 L/min when the pressure deficit within the chamber with respect to the ambient atmosphere ranged between 0.46 and 0.79 Pa.
Gas-Surface Interactions in Cryogenic Whole Air Sampling.
1981-05-01
analysis using electron paramagnetic resonance (EPR) for the cryofrost in the solid phase, and gas chromatography for samples desorbed to the gas...e.g. cryogenic-fraction (used on occasion), and/or controlled vaporization, followed by analysis using NO xchemiluminescence, gas chromatography , and...CS202 closed cycle cryogenic refrigerator, which employs helium as the working fluid . This refrigerator is comprised of two basic sections - an
Guidance for the Development of Air Force Storm Water Sampling Programs
1993-09-01
38 Storm Water Quality Monitoring ................. 39 Determining Flow Rate ....................... 42 Weirs and Flumes... water quality monitoring it is not possible to analyze the entire nmoff from a drainage basin. The objective of water quality sampling is to collect a...development of storm water pollution prevention plans. Best management practices can also be developed to control the pollution sources identified. In storm
[Value of specific 16S rDNA fragment of algae in diagnosis of drowning: an experiment with rabbits].
Li, Peng; Xu, Qu-Yi; Chen, Ling; Liu, Chao; Zhao, Jian; Wang, Yu-Zhong; Yu, Zheng-Liang; Hu, Sun-Lin; Wang, Hui-Jun
2015-08-01
To establish a method for amplifying specific 16S rDNA fragment of algae related with drowning and test its value in drowning diagnosis. Thirty-five rabbits were randomly divided into 3 the drowning group (n=15), postmortem water immersion group (n=15, subjected to air embolism before seawater immersion), and control group(n=5, with air embolism only). Twenty samples of the liver tissues from human corpses found in water were also used, including 14 diatom-positive and 6 diatom-negative samples identified by microwave digestion-vacuum filtration-automated scanning electron microscopy (MD-VF-Auto SEM). Seven known species of algae served as the control algae (Melosira sp, Nitzschia sp, Synedra sp, Navicula sp, Microcystis sp, Cyclotella meneghiniana, and Chlorella sp). The total DNA was extracted from the tissues and algae to amplify the specific fragment of algae followed by 8% polyacrylamide gelelectrophoresis and sliver-staining. In the drowning group, algae was detected in the lungs (100%), liver (86%), and kidney (86%); algae was detected in the lungs in 2 rabbits in the postmortem group (13%) and none in the control group. The positivity rates of algae were significantly higher in the drowning group than in the postmortem group (P<0.05). Of the 20 tissue samples from human corps found in water, 15 were found positive for algae, including sample that had been identified as diatom-negative by MD-VF-Auto SEM. All the 7 control algae samples yielded positive results in PCR. The PCR-based method has a high sensitivity in algae detection for drowning diagnosis and allows simultaneous detection of multiple algae species related with drowning.
NASA Technical Reports Server (NTRS)
James, John T.
2003-01-01
The toxicological assessments of grab sample canisters (GSCs) and 2 solid sorbent air samplers (SSASs) returned aboard STS-111 are reported. Analytical methods have not changed from earlier reports. Surrogate standard recoveries from the GSCs were 86-106% and 62% to 136 % from the SSASs; 2 tubes with low surrogate recoveries were not reported. Pressure tracking indicated no leaks in the canisters during analysis. Recoveries from lab and trip controls for formaldehyde analyses ranged from 87 to 96%. The two general criteria used to assess air quality are the total-non-methane-volatile organic hydrocarbons (NMVOCs) and the total T-value (minus the CO2 and formaldehyde contributions). Because of the inertness of Freon 218 (octafluoropropane, OFP), Its contribution to the NMVOC is subtracted and tabulated separately. Control of atmospheric alcohols is important to the water recovery system engineers, hence total alcohols (including acetone) are also shown for each sample. Because formaldehyde is quantified from sorbent badges, its concentration is listed separately. The table shows that the air quality in general was acceptable for crew respiration; however, certain values shown in bold require further explanation. The 1.05 T value on 2/28/02 was caused by an unusually high measurement ofhexamethylcyc1otrisiloxane (T value = 0.50), which is not a concern. The MPLM T value of 1.42 and the alcohol level of 7.5 mg/cu m were due to an overall polluted atmosphere, which was expected at first entry. The major T-value component was carbon monoxide at a contribution of 0.44 units. Since the crew was only exposed momentarily to the polluted atmosphere, no health effects are expected. The formaldehyde value of 0.060 mg/cu m found in the Lab sample from 3/27/02 is cause for concern because the Lab consistently shows higher concentrations of formaldehyde than the SM and occasionally the concentrations are above the acceptable guideline. Levels of OFP have remained low, suggesting that no further leaks of the SM air conditioner have occurred.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burnett, M.L.W.; Neal, D.; Uchtman, R.
1997-12-31
Approximately 108 of the Hazardous Air Pollutants (HAPs) specified in the 1990 Clean Air Act Amendments are classified as volatile organic compounds (VOCs). Of the 108 VOCs, nearly 35% are oxygenated or polar compounds. While more than one sample introduction technique exists for the analysis of these air toxics, SUMMA{reg_sign} canister sampling is suitable for the most complete range of analytes. A broad concentration range of polar and non-polar species can be analyzed from canisters. A new canister autosampler, the Tekmar AUTOCan{trademark} Elite autosampler, has been developed which incorporates the autosampler and concentrator into a single unit. Analysis of polarmore » and non-polar VOCs has been performed. This paper demonstrates adherence to the technical acceptance objectives outlined in the TO-15 methodology including initial calibration, daily calibration, blank analysis, method detection limits and laboratory control samples. The analytical system consists of a Tekmar AUTOCan{trademark} Elite autosampler interfaced to a Hewlett Packard{reg_sign} 5890/5972 MSD.« less
Predictive Techniques for Spacecraft Cabin Air Quality Control
NASA Technical Reports Server (NTRS)
Perry, J. L.; Cromes, Scott D. (Technical Monitor)
2001-01-01
As assembly of the International Space Station (ISS) proceeds, predictive techniques are used to determine the best approach for handling a variety of cabin air quality challenges. These techniques use equipment offgassing data collected from each ISS module before flight to characterize the trace chemical contaminant load. Combined with crew metabolic loads, these data serve as input to a predictive model for assessing the capability of the onboard atmosphere revitalization systems to handle the overall trace contaminant load as station assembly progresses. The techniques for predicting in-flight air quality are summarized along with results from early ISS mission analyses. Results from groundbased analyses of in-flight air quality samples are compared to the predictions to demonstrate the technique's relative conservatism.
Laws, M. Barton; Yeh, Yating; Reisner, Ellin; Stone, Kevin; Wang, Tina; Brugge, Doug
2015-01-01
Objectives Studies in the U.S. have found that white men are less concerned about pollution than are women or people of other ethnicity. These studies have not assessed respondents’ proximity to localized sources of pollution. Our objective was to assess lay perceptions of risk from air pollution in an ethnically diverse sample in which proximity to a major perceptible source of pollution is known. Methods Cross sectional interview study of combined area probability and convenience sample of individuals 40 and older in the Boston area, selected according to proximity to high traffic controlled access highways. Results Of 697 respondents 46% were white, 37% Asian (mostly Chinese), 6.3% African-American, 6.3% Latino, and 7.6% other ethnicity. While white respondents, and particularly white men, were less concerned about air pollution than others, this effect disappeared when controlling for distance from the highway. White men were slightly less supportive than others of government policy to control pollution Conclusions The “white male” effect may in part be accounted for by the greater likelihood of minority respondents to live near perceptible localized sources of pollution. PMID:25822317
Computer Vision for Artificially Intelligent Robotic Systems
NASA Astrophysics Data System (ADS)
Ma, Chialo; Ma, Yung-Lung
1987-04-01
In this paper An Acoustic Imaging Recognition System (AIRS) will be introduced which is installed on an Intelligent Robotic System and can recognize different type of Hand tools' by Dynamic pattern recognition. The dynamic pattern recognition is approached by look up table method in this case, the method can save a lot of calculation time and it is practicable. The Acoustic Imaging Recognition System (AIRS) is consist of four parts -- position control unit, pulse-echo signal processing unit, pattern recognition unit and main control unit. The position control of AIRS can rotate an angle of ±5 degree Horizental and Vertical seperately, the purpose of rotation is to find the maximum reflection intensity area, from the distance, angles and intensity of the target we can decide the characteristic of this target, of course all the decision is target, of course all the decision is processed bye the main control unit. In Pulse-Echo Signal Process Unit, we ultilize the correlation method, to overcome the limitation of short burst of ultrasonic, because the Correlation system can transmit large time bandwidth signals and obtain their resolution and increased intensity through pulse compression in the correlation receiver. The output of correlator is sampled and transfer into digital data by u law coding method, and this data together with delay time T, angle information OH, eV will be sent into main control unit for further analysis. The recognition process in this paper, we use dynamic look up table method, in this method at first we shall set up serval recognition pattern table and then the new pattern scanned by Transducer array will be devided into serval stages and compare with the sampling table. The comparison is implemented by dynamic programing and Markovian process. All the hardware control signals, such as optimum delay time for correlator receiver, horizental and vertical rotation angle for transducer plate, are controlled by the Main Control Unit, the Main Control Unit also handles the pattern recognition process. The distance from the target to the transducer plate is limitted by the power and beam angle of transducer elements, in this AIRS Model, we use a narrow beam transducer and it's input voltage is 50V p-p. A RobOt equipped with AIRS can not only measure the distance from the target but also recognize a three dimensional image of target from the image lab of Robot memory. Indexitems, Accoustic System, Supersonic transducer, Dynamic programming, Look-up-table, Image process, pattern Recognition, Quad Tree, Quadappoach.
NASA Astrophysics Data System (ADS)
Ma, Yung-Lung; Ma, Chialo
1987-03-01
In this paper An Acoustic Imaging Recognition System (AIRS) will be introduced which is installed on an Intelligent Robotic System and can recognize different type of Hand tools' by Dynamic pattern recognition. The dynamic pattern recognition is approached by look up table method in this case, the method can save a lot of calculation time and it is practicable. The Acoustic Imaging Recognition System (AIRS) is consist of four parts _ position control unit, pulse-echo signal processing unit, pattern recognition unit and main control unit. The position control of AIRS can rotate an angle of ±5 degree Horizental and Vertical seperately, the purpose of rotation is to find the maximum reflection intensity area, from the distance, angles and intensity of the target we can decide the characteristic of this target, of course all the decision is target, of course all the decision is processed by the main control unit. In Pulse-Echo Signal Process Unit, we utilize the correlation method, to overcome the limitation of short burst of ultrasonic, because the Correlation system can transmit large time bandwidth signals and obtain their resolution and increased intensity through pulse compression in the correlation receiver. The output of correlator is sampled and transfer into digital data by p law coding method, and this data together with delay time T, angle information eH, eV will be sent into main control unit for further analysis. The recognition process in this paper, we use dynamic look up table method, in this method at first we shall set up serval recognition pattern table and then the new pattern scanned by Transducer array will be devided into serval stages and compare with the sampling table. The comparison is implemented by dynamic programing and Markovian process. All the hardware control signals, such as optimum delay time for correlator receiver, horizental and vertical rotation angle for transducer plate, are controlled by the Main Control Unit, the Main Control Unit also handles the pattern recognition process. The distance from the target to the transducer plate is limitted by the power and beam angle of transducer elements, in this AIRS Models, we use a narrow beam transducer and it's input voltage is 50V p-p. A Robot equipped with AIRS can not only measure the distance from the target but also recognize a three dimensional image of target from the image lab of Robot memory. Indexitems, Accoustic System, Supersonic transducer, Dynamic programming, Look-up-table, Image process, pattern Recognition, Quad Tree, Quadappoach.
Air contamination for predicting wound contamination in clean surgery: A large multicenter study.
Birgand, Gabriel; Toupet, Gaëlle; Rukly, Stephane; Antoniotti, Gilles; Deschamps, Marie-Noelle; Lepelletier, Didier; Pornet, Carole; Stern, Jean Baptiste; Vandamme, Yves-Marie; van der Mee-Marquet, Nathalie; Timsit, Jean-François; Lucet, Jean-Christophe
2015-05-01
The best method to quantify air contamination in the operating room (OR) is debated, and studies in the field are controversial. We assessed the correlation between 2 types of air sampling and wound contaminations before closing and the factors affecting air contamination. This multicenter observational study included 13 ORs of cardiac and orthopedic surgery in 10 health care facilities. For each surgical procedure, 3 microbiologic air counts, 3 particles counts of 0.3, 0.5, and 5 μm particles, and 1 bacteriologic sample of the wound before skin closure were performed. We collected data on surgical procedures and environmental characteristics. Of 180 particle counts during 60 procedures, the median log10 of 0.3, 0.5, and 5 μm particles was 7 (interquartile range [IQR], 6.2-7.9), 6.1 (IQR, 5.4-7), and 4.6 (IQR, 0-5.2), respectively. Of 180 air samples, 50 (28%) were sterile, 90 (50%) had 1-10 colony forming units (CFU)/m(3) and 40 (22%) >10 CFU/m(3). In orthopedic and cardiac surgery, wound cultures at closure were sterile for 24 and 9 patients, 10 and 11 had 1-10 CFU/100 cm(2), and 0 and 6 had >10 CFU/100 cm(2), respectively (P < .01). Particle sizes and a turbulent ventilation system were associated with an increased number of air microbial counts (P < .001), but they were not associated with wound contamination (P = .22). This study suggests that particle counting is a good surrogate of airborne microbiologic contamination in the OR. Copyright © 2015 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Tsarkov, Dmitriy; Mardanov, Robert; Markin, Andrey; Moukhamedieva, Lana
Investigation of intermediary metabolites, produced in cells, in expired air of healthy man is directed on determination of molecular markers which are reflecting normal physiological pro-cesses in an organism, as well as on determination and validation of biomarkers for objective screening and non-invasive prenosological diagnostics of disorders in metabolic processes caused by negative effect of live environment. Investigation of influence of long-term isolation in her-metical confined environment on composition of healthy human expired air was made during experiment with 105 days isolation in condition of controlled environment and standard food ra-tion. Expired air samples were analyzed on gas chromatograph associated with the quadrupole mass spectrometer. The investigation results show that at rest hydroxy ketones, mostly 1-hydroxy-prorapanone-2 (acetol), aldehydes (decenal, benzaldehyde), acetophenone, phenol and fatty acids were determined. After physical performance (oxidative stress) the content of ke-tones (heptanone-2, heptanone-3), phenol, determined aldehydes (decenal, octadecenal) and acetol in expired air of volunteers decreased. It can be concerned with prevailing of alternative -methylglyoxalic metabolic pathway and caused by oxidative stress. Analysis of expired air samples taken on 30, 60 and 90 day of isolation showed that in conditions of long-term iso-lation concentration of heptanone-2, heptanone-3, 2,3-butadione, acetol, furanones, aldehydes (decenal, benzaldehyde) and acetophenone is increasing while concentration of phenol and fatty acids is decreasing as compared to samples taken before isolation. It was shown that dynamics of concentration of saturated hydrocarbons in expired air can be informative marker for estima-tion of organism response to oxidative stress, while the level of acetol can be used as indicator of man's training status, validity of exercise load and as a marker of hypoxic state.
Andersson, Annette Erichsen; Bergh, Ingrid; Karlsson, Jón; Eriksson, Bengt I; Nilsson, Kerstin
2012-10-01
Understanding the protective potential of operating room (OR) ventilation under different conditions is crucial to optimizing the surgical environment. This study investigated the air quality, expressed as colony-forming units (CFU)/m(3), during orthopedic trauma surgery in a displacement-ventilated OR; explored how traffic flow and the number of persons present in the OR affects the air contamination rate in the vicinity of surgical wounds; and identified reasons for door openings in the OR. Data collection, consisting of active air sampling and observations, was performed during 30 orthopedic procedures. In 52 of the 91 air samples collected (57%), the CFU/m(3) values exceeded the recommended level of <10 CFU/m(3). In addition, the data showed a strongly positive correlation between the total CFU/m(3) per operation and total traffic flow per operation (r = 0.74; P = .001; n = 24), after controlling for duration of surgery. A weaker, yet still positive correlation between CFU/m(3) and the number of persons present in the OR (r = 0.22; P = .04; n = 82) was also found. Traffic flow, number of persons present, and duration of surgery explained 68% of the variance in total CFU/m(3) (P = .001). Traffic flow has a strong negative impact on the OR environment. The results of this study support interventions aimed at preventing surgical site infections by reducing traffic flow in the OR. Copyright © 2012 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.
1980-11-01
hours, then overnight in a refrigerator or cold room at 40C. Fol- lowing clot retraction , the serum may be decanted and spun, or the whole sample spun...Drogram. The SIMP programme may involve one or all of the following: collection of post nasal swabs, blood sera samples, air samples and surface samples...outlined in para 16. 16. Culturing of Swabs Swabs shall be placed on Columbia Blood Agar (4 or 5% sheep RBC’s) supplemented with IsoVitalex (Baltimore
Firn-air Properties and Influences at the West Antarctic Ice Sheet Divide
NASA Astrophysics Data System (ADS)
Battle, M. O.; Severinghaus, J. P.; Montzka, S. A.; Sofen, E. D.; Tans, P. P.
2007-12-01
In December 2005, we collected samples of firn air from a pair of dedicated boreholes drilled at the West Antarctic Ice Sheet Divide (WAIS-D), immediately adjacent to the WAIS-D deep ice coring effort currently underway at 79° 28'S, 112° 7'W at an elevation of ~1800m. The site is characterized by moderate temperatures (annual mean of -31°C) and moderate accumulation (24 cm/yr ice-equivalent). These samples were analyzed for a wide variety of atmospheric species by laboratories at the Scripps Institution of Oceanography, NOAA-ESRL, University of Colorado/INSTAAR, UC Irvine and Penn. State University. In this presentation, we focus on general properties of the firn air at this site and the influences on its composition, as inferred from concentration data for CO2, CH4, and a range of halogenated species, as well as the stable isotope ratios of N2 and several noble gases. Preliminary analyses indicate the presence of a shallow convective zone (a few meters or less), a diffusive region extending down to roughly 65m and a lock-in zone from 65m to the firn-ice transition at 76.5m. There is also evidence of a thermally-driven seasonal cycle in composition in the upper 25m of the firn. Modeling studies indicate that the accumulation rate at this site is low enough that the downward advection of air accompanying firn compression has a very small influence on the firn air profile. Air at the bottom of the diffusive column has a CO2-based age of 10-15 years (depending on the definition of "mean age"), while the air at the firn-ice transition is ~38 years old. Concentrations of halogenated species in the samples collected imply atmospheric histories that are generally consistent with those derived from direct atmospheric measurements and from firn air collected at other sites. Additional properties of the air, and their controlling processes will also be presented.
Mastromatteo, Marianna; Danza, Alessandra; Conte, Amalia; Muratore, Giuseppe; Del Nobile, Matteo Alessandro
2010-12-15
In this work the influence of different packaging strategies on the shelf life of ready to use peeled shrimps was investigated. First, the effectiveness of the coating (Coat) and the active coating loaded with different concentrations of thymol (Coat-500, Coat-1000, and Coat-1500) on the quality loss of the investigated food product packaged in air was addressed; afterwards, the thymol concentration that had shown the best performance was used in combination with MAP (5% O(2); 95% CO(2)). Microbial cell load of main spoilage microorganisms, pH and sensorial quality were monitored during the refrigerated storage. Results of the first step suggested that the sole coating did not affect the microbial growth. A slight antimicrobial effect was obtained when the coating was loaded with thymol and a concentration dependence was also observed. Moreover, the active coating was effective in minimizing the sensory quality loss of the investigated product, it was particularly true at the lowest thymol concentration. In the second step, the thymol concentration (1000 ppm) that showed the strike balance between microbial and sensorial quality was chosen in combination with MAP. As expected, MAP significantly affected the growth of the mesophilic bacteria. In particular, a cell load reduction of about 2 log cycle for the samples under MAP respect to that in air was obtained. Moreover, the MAP packaging inhibited the growth of the Pseudomonas spp. and hydrogen sulphide-producing bacteria. The MAP alone was not able to improve the shelf life of the uncoated samples. In fact, no significant difference between the control samples packaged in air and MAP was observed. Whilst, the use of coating under MAP condition prolonged the shelf life of about 6 days with respect to the same samples packaged in air. Moreover, when the MAP was used in combination with thymol, a further shelf life prolongation with respect to the samples packaged in air was observed. In particular, a shelf life of about 14 days for the active coating under MAP compared to the same samples in air (5 days) was obtained. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Shi, Shuai; Guo, Dan; Luo, Jianbin
2017-10-01
Active quality factor (Q) exhibits many promising properties in dynamic atomic force microscopy. Energy dissipation and image contrasts are investigated in the non-contact amplitude modulation atomic force microscopy (AM-AFM) with an active Q-control circuit in the ambient air environment. Dissipated power and virial were calculated to compare the highly nonlinear interaction of tip-sample and image contrasts with different Q gain values. Greater free amplitudes and lower effective Q values show better contrasts for the same setpoint ratio. Active quality factor also can be employed to change tip-sample interaction force in non-contact regime. It is meaningful that non-destructive and better contrast images can be realized in non-contact AM-AFM by applying an active Q-control to the dynamic system.
Air pollution, inflammation and preterm birth in Mexico City: study design and methods.
O'Neill, Marie S; Osornio-Vargas, Alvaro; Buxton, Miatta A; Sánchez, Brisa N; Rojas-Bracho, Leonora; Castillo-Castrejon, Marisol; Mordhukovich, Irina B; Brown, Daniel G; Vadillo-Ortega, Felipe
2013-03-15
Preterm birth is one of the leading causes of perinatal mortality and is associated with long-term adverse health consequences for surviving infants. Preterm birth rates are rising worldwide, and no effective means for prevention currently exists. Air pollution exposure may be a significant cause of prematurity, but many published studies lack the individual, clinical data needed to elucidate possible biological mechanisms mediating these epidemiological associations. This paper presents the design of a prospective study now underway to evaluate those mechanisms in a cohort of pregnant women residing in Mexico City. We address how air quality may act together with other factors to induce systemic inflammation and influence the duration of pregnancy. Data collection includes: biomarkers relevant to inflammation in cervico-vaginal exudate and peripheral blood, along with full clinical information, pro-inflammatory cytokine gene polymorphisms and air pollution data to evaluate spatial and temporal variability in air pollution exposure. Samples are collected on a monthly basis and participants are followed for the duration of pregnancy. The data will be used to evaluate whether ambient air pollution is associated with preterm birth, controlling for other risk factors. We will evaluate which time windows during pregnancy are most influential in the air pollution and preterm birth association. In addition, the epidemiological study will be complemented with a parallel toxicology invitro study, in which monocytic cells will be exposed to air particle samples to evaluate the expression of biomarkers of inflammation. Copyright © 2012 Elsevier B.V. All rights reserved.
Air pollution, inflammation and preterm birth in Mexico City: Study design and methods
O’Neill, Marie S.; Osornio-Vargas, Alvaro; Buxton, Miatta A.; Sanchez, Brisa N.; Rojas-Bracho, Leonora; Castillo-Castrejon, Marisol; Mordhukovich, Irina B.; Brown, Daniel G.; Vadillo-Ortega, Felipe
2012-01-01
Preterm birth is one of the leading causes of perinatal mortality and is associated with long-term adverse health consequences for surviving infants. Preterm birth rates are rising worldwide, and no effective means for prevention currently exists. Air pollution exposure may be a significant cause of prematurity, but many published studies lack the individual, clinical data needed to elucidate possible biological mechanisms mediating these epidemiological associations. This paper presents the design of a prospective study now underway to evaluate those mechanisms in a cohort of pregnant women residing in Mexico City. We address how air quality may act together with other factors to induce systemic inflammation and influence the duration of pregnancy. Data collection includes: biomarkers relevant to inflammation in cervico-vaginal exudate and peripheral blood, along with full clinical information, pro-inflammatory cytokine gene polymorphisms and air pollution data to evaluate spatial and temporal variability in air pollution exposure. Samples are collected on a monthly basis and participants are followed for the duration of pregnancy. The data will be used to evaluate whether ambient air pollution is associated with preterm birth, controlling for other risk factors. We will evaluate which time windows during pregnancy are most influential in the air pollution and preterm birth association. In addition, the epidemiological study will be complemented with a parallel toxicology invitro study, in which monocytic cells will be exposed to air particle samples to evaluate the expression of biomarkers of inflammation. PMID:23177781
NASA Astrophysics Data System (ADS)
Looms, M. C.; Jensen, K. H.; Wildenschild, D.; Christensen, B. S.; Gudbjerg, J.
2003-12-01
Both dynamic (one-step) and semi-static (syringe pump) outflow experiments were carried out in the lab to test whether the resulting retention characteristics differed according to experiment type. Three sands of varying uniformity and coarseness were packed in a cylindrical sample holder. Compressed air was used to control the air phase pressure, while water was allowed to drain at atmospheric pressure from the outlet at the bottom of the sample. During the outflow experiments the capillary pressure was measured within the sample holder using a tensiometer connected to a pressure transducer. A medical CT-scanner was used to visualize and quantify the outflow patterns within the sand matrix during selected outflow experiments. Positive vertical shifts in capillary pressure during dynamic experiments were found in all three sand types at saturations close to porosity. The size and shape of the shifts corresponded with the dynamic effects found in previous work on the topic. Furthermore, the shifts were slightly greater in the coarsest and most uniform sand type. Numerical simulations of the one-step experiments using HYDRUS1D and T2VOC showed, however, that one of the basic assumptions when calculating the capillary pressure was most likely violated. The air phase could not be considered to be continuous at all times, and assuming this to be the case would result in positive shifts of the retention curves when running T2VOC. The results of using the CT-scanner showed the importance of achieving a homogeneous packing, since the investigated sand packing turned out to have an area at the edge of the sample holder with a higher porosity. This caused the edge to control the initial drainage. Therefore, the data collected at high saturations could not be expected to adequately describe the hydraulic properties of the inner sand. We also found that the time at which the inner sand commenced drainage coincided with a jump in capillary pressure for the resulting measured retention curve.
Earnest, G Scott; Ewers, Lynda M; Ruder, Avima M; Petersen, Martin R; Kovein, Ronald J
2002-02-01
Real-time monitoring was used to evaluate the ability of engineering control devices retrofitted on two existing dry-cleaning machines to reduce worker exposures to perchloroethylene. In one dry-cleaning shop, a refrigerated condenser was installed on a machine that had a water-cooled condenser to reduce the air temperature, improve vapor recovery, and lower exposures. In a second shop, a carbon adsorber was retrofitted on a machine to adsorb residual perchloroethylene not collected by the existing refrigerated condenser to improve vapor recovery and reduce exposures. Both controls were successful at reducing the perchloroethylene exposures of the dry-cleaning machine operator. Real-time monitoring was performed to evaluate how the engineering controls affected exposures during loading and unloading the dry-cleaning machine, a task generally considered to account for the highest exposures. The real-time monitoring showed that dramatic reductions occurred in exposures during loading and unloading of the dry-cleaning machine due to the engineering controls. Peak operator exposures during loading and unloading were reduced by 60 percent in the shop that had a refrigerated condenser installed on the dry-cleaning machine and 92 percent in the shop that had a carbon adsorber installed. Although loading and unloading exposures were dramatically reduced, drops in full-shift time-weighted average (TWA) exposures were less dramatic. TWA exposures to perchloroethylene, as measured by conventional air sampling, showed smaller reductions in operator exposures of 28 percent or less. Differences between exposure results from real-time and conventional air sampling very likely resulted from other uncontrolled sources of exposure, differences in shop general ventilation before and after the control was installed, relatively small sample sizes, and experimental variability inherent in field research. Although there were some difficulties and complications with installation and maintenance of the engineering controls, this study showed that retrofitting engineering controls may be a feasible option for some dry-cleaning shop owners to reduce worker exposures to perchloroethylene. By installing retrofit controls, a dry-cleaning facility can reduce exposures, in some cases dramatically, and bring operators into compliance with the Occupational Safety and Health Administration (OSHA) peak exposure limit of 300 ppm. Retrofit engineering controls are also likely to enable many dry-cleaning workers to lower their overall personal TWA exposures to perchloroethylene.
Jary, Hannah; Mallewa, Jane; Nyirenda, Mulinda; Faragher, Brian; Heyderman, Robert; Peterson, Ingrid; Gordon, Stephen; Mortimer, Kevin
2015-08-20
Pneumonia is the 2nd leading cause of years of life lost worldwide and is a common cause of adult admissions to hospital in sub-Saharan Africa. Risk factors for adult pneumonia are well characterised in developed countries, but are less well described in sub-Saharan Africa where HIV is a major contributing factor. Exposure to indoor and outdoor air pollution is high, and tobacco smoking prevalence is increasing in sub-Saharan Africa, yet the contribution of these factors to the burden of chronic respiratory diseases in sub-Saharan Africa remains poorly understood. Furthermore, the extent to which the presence of chronic respiratory diseases and exposure to air pollution contribute to the burden of pneumonia is not known. The Acute Infection of the Respiratory Tract Study (The AIR Study) is a case-control study to identify preventable risk factors for adult pneumonia in the city of Blantyre, Malawi. Cases will be adults admitted with pneumonia, recruited from Queen Elizabeth Central Hospital, the largest teaching hospital in Malawi. Controls will be adults without pneumonia, recruited from the community. The AIR Study will recruit subjects and analyse data within strata defined by positive and negative HIV infection status. All participants will undergo thorough assessment for a range of potential preventable risk factors, with an emphasis on exposure to air pollution and the presence of chronic respiratory diseases. This will include collection of questionnaire data, clinical samples (blood, urine, sputum and breath samples), lung function data and air pollution monitoring in their home. Multivariate analysis will be used to identify the important risk factors contributing to the pneumonia burden in this setting. Identification of preventable risk factors will justify research into the effectiveness of targeted interventions to address this burden in the future. The AIR Study is the first study of radiologically confirmed pneumonia in which air pollution exposure measurements have been undertaken in this setting, and will contribute important new information about exposure to air pollution in urban SSA. Through identification of preventable risk factors, the AIR Study aims to facilitate future research and implementation of targeted interventions to reduce the high burden of pneumonia in SSA.
Noble Gas signatures of Enhanced Oil Recovery
NASA Astrophysics Data System (ADS)
Barry, P. H.; Kulongoski, J. T.; Tyne, R. L.; Hillegonds, D.; Byrne, D. J.; Landon, M. K.; Ballentine, C. J.
2017-12-01
Noble gases are powerful tracers of fluids from various oil and gas production activities in hydrocarbon reservoirs and nearby groundwater. Non-radiogenic noble gases are introduced into undisturbed oil and natural gas reservoirs through exchange with formation waters [1-3]. Reservoirs with extensive hydraulic fracturing, injection for enhanced oil recovery (EOR), and/or waste disposal also show evidence for a component of noble gases introduced from air [4]. Isotopic and elemental ratios of noble gases can be used to 1) assess the migration history of the injected and formation fluids, and 2) determine the extent of exchange between multiphase fluids in different reservoirs. We present noble gas isotope and abundance data from casing, separator and injectate gases of the Lost Hills and Fruitvale oil fields in the San Joaquin basin, California. Samples were collected as part of the California State Water Resource Control Board's Oil and Gas Regional Groundwater Monitoring Program. Lost Hills (n=7) and Fruitvale (n=2) gases are geochemically distinct and duplicate samples are highly reproducible. Lost Hills casing gas samples were collected from areas where EOR and hydraulic fracturing has occurred in the past several years, and from areas where EOR is absent. The Fruitvale samples were collected from a re-injection port. All samples are radiogenic in their He isotopes, typical of a crustal environment, and show enrichments in heavy noble gases, resulting from preferential adsorption on sediments. Fruitvale samples reflect air-like surface conditions, with higher air-derived noble gas concentrations. Lost Hills gases show a gradation from pristine crustal signatures - indicative of closed-system exchange with formation fluids - to strongly air-contaminated signatures in the EOR region. Pristine samples can be used to determine the extent of hydrocarbon exchange with fluids, whereas samples with excess air can be used to quantify the extent of EOR. Determining noble gas baseline values for pristine vs. recently modified (EOR, hydraulic fracturing) zones will be critical for interpreting the origin of any fugitive gases identified in nearby aquifers. [1] Ballentine et al., (1996) GCA, 60, 831-849 [2] Barry et al., (2016) GCA, 194, 291-309. [3] Barry et al., (2017) Geology, 45, 9. Darrah et al., (2014) PNAS 111, 39.
Viral Penetration of High Efficiency Particulate Air (HEPA) Filters (PREPRINT)
2009-09-01
US Plastics, Lima , 155 Ohio). Each path runs through a test article and thence through one AGI-30 all-glass 156 impinger (Chemglass, Vineland, N.J...rotameter (Blue–White 400, Huntington Beach , California, or PMR1-159 101346, Cole–Parmer, Vernon Hills, Illinois). At the end of the sampling path...fibrous Filters." J. Air Pollution Control Assoc. 30 [4]: 501 377–381. 502 Leenders, G.J.M, A.C. Bolle, and J. Stadhouders. 1984. “A Study of the
FIELD EXPERIENCE IN SAMPLING HAZARDOUS WASTE INCINERATORS
This paper is for presentation at the 77th annual meeting of the Air Pollution Control Association, June 24-29, 1984. The paper contains much useful, pragmatic information gained through numerous hazardous waste incinerator trial burn-type investigations performed for EPA by the ...
Toxicological Risks During Human Space Exploration
NASA Technical Reports Server (NTRS)
James, John T.; Limero, T. F.; Lam, C. W.; Billica, Roger (Technical Monitor)
2000-01-01
The goal of toxicological risk assessment of human space flight is to identify and quantify significant risks to astronaut health from air pollution inside the vehicle or habitat, and to develop a strategy for control of those risks. The approach to completing a toxicological risk assessment involves data and experience on the frequency and severity of toxicological incidents that have occurred during space flight. Control of these incidents depends on being able to understand their cause from in-flight and ground-based analysis of air samples, crew reports of air quality, and known failures in containment of toxic chemicals. Toxicological risk assessment in exploration missions must be based on an evaluation of the unique toxic hazards presented by the habitat location. For example, lunar and Martian dust must be toxicologically evaluated to determine the appropriate control measures for exploration missions. Experience with near-earth flights has shown that the toxic products from fires present the highest risk to crew health from air pollution. Systems and payload leaks also present a significant hazard. The health risk from toxicity associated with materials offgassing or accumulation of human metabolites is generally well controlled. Early tests of lunar and Martian dust simulants have shown that each posses the potential to cause fibrosis in the lung in a murine model. Toxicological risks from air pollutants in space habitats originate from many sources. A number of risks have been identified through near-earth operations; however, the evaluation of additional new risks present during exploration missions will be a challenge.
NASA Technical Reports Server (NTRS)
Slivon, L. E.; Hernon-Kenny, L. A.; Katona, V. R.; Dejarme, L. E.
1995-01-01
This report describes analytical methods and results obtained from chemical analysis of 31 charcoal samples in five sets. Each set was obtained from a single scrubber used to filter ambient air on board a Spacelab mission. Analysis of the charcoal samples was conducted by thermal desorption followed by gas chromatography/mass spectrometry (GC/MS). All samples were analyzed using identical methods. The method used for these analyses was able to detect compounds independent of their polarity or volatility. In addition to the charcoal samples, analyses of three Environmental Control and Life Support System (ECLSS) water samples were conducted specifically for trimethylamine.
Shepherd, Daniel; Dirks, Kim; Welch, David; McBride, David; Landon, Jason
2016-08-06
Air pollution originating from road traffic is a known risk factor of respiratory and cardiovascular disease (both in terms of chronic and acute effects). While adverse effects on cardiovascular health have also been linked with noise (after controlling for air pollution), noise exposure has been commonly linked to sleep impairment and negative emotional reactions. Health is multi-faceted, both conceptually and operationally; Health-Related Quality of Life (HRQOL) is one of many measures capable of probing health. In this study, we examine pre-collected data from postal surveys probing HRQOL obtained from a variety of urban, suburban, and rural contexts across the North Island of New Zealand. Analyses focus on the covariance between air pollution annoyance and noise annoyances, and their independent and combined effects on HRQOL. Results indicate that the highest ratings of air pollution annoyance and noise annoyances were for residents living close to the motorway, while the lowest were for rural residents. Most of the city samples indicated no significant difference between air pollution- and noise-annoyance ratings, and of all of the correlations between air pollution- and noise-annoyance, the highest were found in the city samples. These findings suggest that annoyance is driven by exposure to environmental factors and not personality characteristics. Analysis of HRQOL indicated that air pollution annoyance predicts greater variability in the physical HRQOL domain while noise annoyance predicts greater variability in the psychological, social and environmental domains. The lack of an interaction effect between air pollution annoyance and noise annoyance suggests that air pollution and noise impact on health independently. These results echo those obtained from objective measures of health and suggest that mitigation of traffic effects should address both air and noise pollution.
Shepherd, Daniel; Dirks, Kim; Welch, David; McBride, David; Landon, Jason
2016-01-01
Air pollution originating from road traffic is a known risk factor of respiratory and cardiovascular disease (both in terms of chronic and acute effects). While adverse effects on cardiovascular health have also been linked with noise (after controlling for air pollution), noise exposure has been commonly linked to sleep impairment and negative emotional reactions. Health is multi-faceted, both conceptually and operationally; Health-Related Quality of Life (HRQOL) is one of many measures capable of probing health. In this study, we examine pre-collected data from postal surveys probing HRQOL obtained from a variety of urban, suburban, and rural contexts across the North Island of New Zealand. Analyses focus on the covariance between air pollution annoyance and noise annoyances, and their independent and combined effects on HRQOL. Results indicate that the highest ratings of air pollution annoyance and noise annoyances were for residents living close to the motorway, while the lowest were for rural residents. Most of the city samples indicated no significant difference between air pollution- and noise-annoyance ratings, and of all of the correlations between air pollution- and noise-annoyance, the highest were found in the city samples. These findings suggest that annoyance is driven by exposure to environmental factors and not personality characteristics. Analysis of HRQOL indicated that air pollution annoyance predicts greater variability in the physical HRQOL domain while noise annoyance predicts greater variability in the psychological, social and environmental domains. The lack of an interaction effect between air pollution annoyance and noise annoyance suggests that air pollution and noise impact on health independently. These results echo those obtained from objective measures of health and suggest that mitigation of traffic effects should address both air and noise pollution. PMID:27509512
Air bubbles and hemolysis of blood samples during transport by pneumatic tube systems.
Mullins, Garrett R; Bruns, David E
2017-10-01
Transport of blood samples through pneumatic tube systems (PTSs) generates air bubbles in transported blood samples and, with increasing duration of transport, the appearance of hemolysis. We investigated the role of air-bubble formation in PTS-induced hemolysis. Air was introduced into blood samples for 0, 1, 3 or 5min to form air bubbles. Hemolysis in the blood was assessed by (H)-index, lactate dehydrogenase (LD) and potassium in plasma. In an effort to prevent PTS-induced hemolysis, blood sample tubes were completely filled, to prevent air bubble formation, and compared with partially filled samples after PTS transport. We also compared hemolysis in anticoagulated vs clotted blood subjected to PTS transport. As with transport through PTSs, the duration of air bubble formation in blood by a gentle stream of air predicted the extent of hemolysis as measured by H-index (p<0.01), LD (p<0.01), and potassium (p<0.02) in plasma. Removing air space in a blood sample prevented bubble formation and fully protected the blood from PTS-induced hemolysis (p<0.02 vs conventionally filled collection tube). Clotted blood developed less foaming during PTS transport and was partially protected from hemolysis vs anticoagulated blood as indicated by lower LD (p<0.03) in serum than in plasma after PTS sample transport. Prevention of air bubble formation in blood samples during PTS transport protects samples from hemolysis. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Melymuk, Lisa; Bohlin-Nizzetto, Pernilla; Prokeš, Roman; Kukučka, Petr; Přibylová, Petra; Vojta, Šimon; Kohoutek, Jiří; Lammel, Gerhard; Klánová, Jana
2017-10-01
Degradation of semivolatile organic compounds (SVOCs) occurs naturally in ambient air due to reactions with reactive trace gases (e.g., ozone, NOx). During air sampling there is also the possibility for degradation of SVOCs within the air sampler, leading to underestimates of ambient air concentrations. We investigated the possibility of this sampling artifact in commonly used active and passive air samplers for seven classes of SVOCs, including persistent organic pollutants (POPs) typically covered by air monitoring programs, as well as SVOCs of emerging concern. Two active air samplers were used, one equipped with an ozone denuder and one without, to compare relative differences in mass of collected compounds. Two sets of passive samplers were also deployed to determine the influence of degradation during longer deployment times in passive sampling. In active air samplers, comparison of the two sampling configurations suggested degradation of particle-bound polycyclic aromatic hydrocarbons (PAHs), with concentrations up to 2× higher in the denuder-equipped sampler, while halogenated POPs did not have clear evidence of degradation. In contrast, more polar, reactive compounds (e.g., organophosphate esters and current use pesticides) had evidence of losses in the sampler with denuder. This may be caused by the denuder itself, suggesting sampling bias for these compounds can be created when typical air sampling apparatuses are adapted to limit degradation. Passive air samplers recorded up to 4× higher concentrations when deployed for shorter consecutive sampling periods, suggesting that within-sampler degradation may also be relevant in passive air monitoring programs.
Su, Jason G; Meng, Ying-Ying; Pickett, Melissa; Seto, Edmund; Ritz, Beate; Jerrett, Michael
2016-08-16
Few studies have assessed the impact of regulatory actions on air quality improvement through a comprehensive monitoring effort. In this study, we designed saturation sampling of nitrogen oxides (NOX) for the counties of Los Angeles and Alameda (San Francisco Bay) before (2003-2007) and after (2008-2013) implementation of goods movement actions in California. We further separated the research regions into three location categories, including goods movement corridors (GMCs), nongoods movement corridors (NGMCs), and control areas (CTRLs). Linear mixed models were developed to identify whether reductions in NOX were greater in GMCs than in other areas, after controlling for potential confounding, including weather conditions (e.g., wind speed and temperature) and season of sampling. We also considered factors that might confound the relationship, including traffic and cargo volumes that may have changed due to economic downturn impacts. Compared to the pre-policy period, we found reductions of average pollutant concentrations for nitrogen dioxide (NO2) and NOX in GMCs of 6.4 and 21.7 ppb. The reductions were smaller in NGMCs (5.9 and 16.3 ppb, respectively) and in CTRLs (4.6 and 12.1 ppb, respectively). After controlling for potential confounding from weather conditions, season of sampling, and the economic downturn in 2008, the linear mixed models demonstrated that reductions in NO2 and NOX were significantly greater in GMCs compared to reductions observed in CTRLs; there were no statistically significant differences between NGMCs and CTRLs. These results indicate that policies regulating goods movement are achieving the desired outcome of improving air quality for the state, particularly in goods movement corridors where most disadvantaged communities live.
NASA Astrophysics Data System (ADS)
Ghanbarian, Davoud; Baraani Dastjerdi, Mojtaba; Torki-Harchegani, Mehdi
2016-05-01
An accurate understanding of moisture transfer parameters, including moisture diffusivity and moisture transfer coefficient, is essential for efficient mass transfer analysis and to design new dryers or improve existing drying equipments. The main objective of the present study was to carry out an experimental and theoretical investigation of mushroom slices drying and determine the mass transfer characteristics of the samples dried under different conditions. The mushroom slices with two thicknesses of 3 and 5 mm were dried at air temperatures of 40, 50 and 60 °C and air flow rates of 1 and 1.5 m s-1. The Dincer and Dost model was used to determine the moisture transfer parameters and predict the drying curves. It was observed that the entire drying process took place in the falling drying rate period. The obtained lag factor and Biot number indicated that the moisture transfer in the samples was controlled by both internal and external resistance. The effective moisture diffusivity and the moisture transfer coefficient increased with increasing air temperature, air flow rate and samples thickness and varied in the ranges of 6.5175 × 10-10 to 1.6726 × 10-9 m2 s-1 and 2.7715 × 10-7 to 3.5512 × 10-7 m s-1, respectively. The validation of the Dincer and Dost model indicated a good capability of the model to describe the drying curves of the mushroom slices.
Preservation of fresh meat with active and modified atmosphere packaging conditions.
Skandamis, Panagiotis N; Nychas, George-John E
2002-11-15
The sensory, microbiological and physicochemical attributes of fresh meat stored at 5 and 15 degrees C were affected by the combined effect of volatile compounds of oregano essential oil and modified atmosphere packaging conditions (40% CO2/30% N2/30% O2, 100% CO2, 80% CO2/20% air, vacuum pack and air). It was found that the extension of shelf life of meat samples depended on the packaging conditions and augmented in the order: air < vacuum pack < 40% CO2/30% N2/30% O2 < 80% CO2/ 20% air < 100% CO2. Longer shelf life was observed in samples supplemented with the volatile compounds of oregano essential oil and stored under the same packaging conditions mentioned above. The extension of shelf life may be due to the synergistic effect of volatile compounds of oregano essential oil and the modified atmosphere packaging used on the microbiological and physicochemical characteristics of meat. Indeed, both these hurdles can prolong and delay microbial growth or suppress the final counts of the spoilage microorganisms in comparison with the 'control' samples. The effect of essential oil volatile compounds was even more pronounced on the physicochemical changes of meat samples caused by microbial association. Oregano essential oil delayed glucose and lactate consumption, both indicators of meat spoilage aerobically as well as under 40% CO2/30% N2/30% O2, and 100% CO2. Finally, changes in other metabolites such as formic acid were also observed.
Diffusive sampling of 1,3-butadiene for 24 hours onto the graphitic adsorbent Carbopack X contained in a stainless steel tube badge (6.3 mm OD, 5 mm ID, and 90 mm in length) with analysis by thermal desorption/GC/MS has been evaluated in controlled tests. A test matrix of 42 tr...
NASA Astrophysics Data System (ADS)
Sk, Md. Basiruddin; Ghosh, A.; Rarhi, N.; Balamuralikrishnan, R.; Chakrabarti, D.
2017-07-01
In order to achieve the desired mechanical properties [YS > 390 MPa, total elongation >16 pct and Charpy impact toughness of 78 J at 213 K (-60 °C)] for naval application, samples from a low-carbon microalloyed steel have been subjected to different austenitization (1223 K to 1523 K) (950 °C to 1250 °C) and cooling treatments (furnace, air, or water cooling). The as-rolled steel and the sample air cooled from 1223 K (950 °C) could only achieve the required tensile properties, while the sample furnace cooled from 1223 K (950 °C) showed the best Charpy impact properties. Water quenching from 1223 K (950 °C) certainly contributed to the strength but affected the impact toughness. Overall, predominantly ferrite matrix with fine effective grain size and intense gamma-fiber texture was found to be beneficial for impact toughness as well as impact transition behavior. Small size and fraction of precipitates (like TiN, Nb, and V carbonitrides) eliminated the possibility of particle-controlled crack propagation and grain size-controlled crack propagation led to cleavage fracture. A simplified analytical approach has been used to explain the difference in impact transition behavior of the investigated samples.
Atmospheric transportation of marihuana pollen from North Africa to the Southwest of Europe
NASA Astrophysics Data System (ADS)
Cabezudo, Baltasar; Recio, Marta; Sánchez-Laulhé, JoséMaŕia; Trigo, María Del Mar; Toro, Francisco Javier; Polvorinos, Fausto
As a result of aerobiological samples taken on the Costa del Sol (S. Spain), Cannabis sativa L. (marihuana) pollen was detected from May to September 1991-1996, always sporadically and usually during the afternoons. Sampling was by two volumetric spore traps set up in Malaga and Estepona, two coastal towns approximately 90 km apart. A study of the days when this pollen was recorded points to the movement of air masses from North Africa to southern Spain. Furthermore, the isentropic air trajectories calculated for these days reinforce the possibility of the pollen originating in marihuana plantations in northern Morocco (Rif). This study demonstrates the application of aerobiology to the control of the source, quantity and phenology of the crop.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cobb, G.P.; Braman, R.S.; Gilbert, R.A.
Atmospheric organics were sampled and analyzed by using the carbon hollow tube-gas chromatography method. Chromatograms from spice mixtures, cigarettes, and ambient air were analyzed. Principal factor analysis of row order chromatographic data produces factors which are eigenchromatograms of the components in the samples. Component sources are identified from the eigenchromatograms in all experiments and the individual eigenchromatogram corresponding to a particular source is determined in most cases. Organic sources in ambient air and in cigaretts are identified with 87% certainty. Analysis of clove cigarettes allows the determination of the relative amount of clove in different cigarettes. A new nondestructive qualitymore » control method using the hollow tube-gas chromatography analysis is discussed.« less
Baghouse filtration products (BFPs) were evaluated by the Air Pollution Control Technology (APCT) pilot of the Environmental Technology Verification (ETV) Program. The performance factor verified was the mean outlet particle concentration for the filter fabric as a function of th...
Baghouse filtration products (BFPs) were evaluated by the Air Pollution Control Technology (APCT) pilot of the Environmental Technology Verification (ETV) Program. The performance factor verified was the mean outlet particle concentration for the filter fabric as a function of th...
Environment and health: Probes and sensors for environment digital control
NASA Astrophysics Data System (ADS)
Schettini, Chiara
2014-05-01
The idea of studying the environment using New Technologies (NT) came from a MIUR (Ministry of Education of the Italian Government) notice that allocated funds for the realization of innovative school science projects. The "Environment and Health" project uses probes and sensors for digital control of environment (water, air and soil). The working group was composed of 4 Science teachers from 'Liceo Statale G. Mazzini ', under the coordination of teacher Chiara Schettini. The Didactic Section of Naples City of Sciences helped the teachers in developing the project and it organized a refresher course for them on the utilization of digital control sensors. The project connects Environment and Technology because the study of the natural aspects and the analysis of the chemical-physical parameters give students and teachers skills for studying the environment based on the utilization of NT in computing data elaboration. During the practical project, samples of air, water and soil are gathered in different contexts. Sample analysis was done in the school's scientific laboratory with digitally controlled sensors. The data are elaborated with specific software and the results have been written in a booklet and in a computing database. During the first year, the project involved 6 school classes (age of the students 14—15 years), under the coordination of Science teachers. The project aims are: 1) making students more aware about environmental matters 2) achieving basic skills for evaluating air, water and soil quality. 3) achieving strong skills for the utilization of digitally controlled sensors. 4) achieving computing skills for elaborating and presenting data. The project aims to develop a large environmental conscience and the need of a ' good ' environment for defending our health. Moreover it would increase the importance of NT as an instrument of knowledge.
Synthetic Reference Materials Based on Polymer Films for the Control of Welding Fumes Composition
NASA Astrophysics Data System (ADS)
Kuznetsova, O. V.; Kuznetsova, A. N.; Begunova, L. A.
2017-04-01
Analysis of the current hygienic situation in the welding production showed that the intensification of welding processes involves the deterioration of air quality, which negatively affects the welders health. Welders are exposed to a variety of metal fumes, including manganese that may elevate the risk for neurological diseases. The control of metals concentration in the air of the working area is difficult due to the lack of reference materials. The creation of reference materials of welding fumes composition is a challenge due to chemical characteristics of their physical properties. Synthetic samples in a form of the polymer film containing powder particles of welding fumes were create. Studies on the selection of the polymer were done. Experiments proved that the qualitative materials of synthetic welding fumes are obtained by using polyvinyl alcohol. The metals concentration in the samples was determined by X-ray fluorescence analysis. The obtained data demonstrates indirectly the uniform distribution of welding fumes powder particles on the polymer film.
Monteverde, Malena; Cipponeri, Marcos; Angelaccio, Carlos; Gianuzzi, Leda
2013-04-01
The aim of this study is to analyze the origin and quality of water used for consumption in a sample of households in Matanza-Riachuelo river basin area in Greater Buenos Aires, Argentina. The results of drinking water by source indicated that 9% of water samples from the public water system, 45% of bottled water samples and 80% of well water samples were not safe for drinking due to excess content of coliforms, Escherichia coli or nitrates. Individuals living in households where well water is the main source of drinking water have a 55% higher chance of suffering a water-borne disease; in the cases of diarrheas, the probability is 87% higher and in the case of dermatitis, 160% higher. The water for human consumption in this region should be provided by centralized sources that assure control over the quality of the water.
NASA Astrophysics Data System (ADS)
Cui, Mangwei; Kang, Litao; Shi, Mingjie; Xie, Lingli; Wang, Xiaomin; Zhao, Zhe; Yun, Shan; Liang, Wei
2017-09-01
Amorphous MnO2/C composite is prepared by a facile redox reaction between potassium permanganate (KMnO4) and commercial black pen ink. Afterwards, two different drying processes, air drying or freeze drying, are employed to adjust the agglomeration state of particles in samples and explore its influence on capacitive performance. Experimental results indicate that the air-dried sample demonstrates much better cycling stability than the freeze-dried one (capacity retention at 5000 cycles: 70.9 vs. 60.7%), probably because of the relatively strong agglomeration between particles in this sample. Nevertheless, strong agglomeration seems to deteriorate the specific capacitance (from 492 down to 440.5 F/g at 1 A/g) due to the decrease of porosity and specific surface area. This study suggests that agglomeration of primary particles plays an important role to balance the specific capacitance and cycling stability for electrode materials.
The Microbial Degradation of TCE (Trichloroethylene).
1987-04-01
enrichment studies . All the sample flasks , including the controls, contained 14C in the 14C02 trap. The 14C measured in the control flask 14C02...layer compared to the controls. These data again suggested that TCE was being biologically modified. Those flasks flushed with air gave the first hard...only slightly soluble in water. All culture flasks were incubated at 250C for a minimum of a week. Results in the carbon and nitrogen source studies are
Air bags and passenger fatality according to passenger age and restraint use.
Cummings, Peter; Koepsell, Thomas D; Rivara, Frederick P; McKnight, Barbara; Mack, Christopher
2002-09-01
Some children have been killed by air bags, leading to advice that young children should not sit in front of an active air bag. We conducted a case-control study to estimate the association of passenger air bag presence with death, according to passenger age and seat belt use. We used data from crashes on U.S. public roads in 1992 through 1998. Cases (N = 20,987) were front seat passengers who died, and controls (N = 69,277) were a sample of survivors. Among restrained passengers, the adjusted relative risk of death for those with a passenger air bag was 0.79 (95% confidence interval [CI] = 0.66-0.94); for children 12 years or younger, the adjusted relative risk was 1.04 (0.65-1.67) [corrected], and for adults 20 years or older it was 0.75 (0.62-0.91) [corrected]. Among unrestrained passengers, the adjusted relative risk was 1.03 (CI = 0.81-1.30); for children 12 years or younger the adjusted relative risk was 1.37 (0.84-2.21) [corrected], and for adults 20 years or older it was 0.96 (0.75-1.24). Passenger air bags may be a hazard to unrestrained children and of little benefit to unrestrained adults. Our results support the advice that children younger than 13 years should not sit in front of an active air bag.
Rule, Ana M; Evans, Sean L; Silbergeld, Ellen K
2008-01-01
Use of antimicrobial feed additives in food animal production is associated with selection for drug resistance in bacterial pathogens, which can then be released into the environment through occupational exposures, high volume ventilation of animal houses, and land application of animal wastes. We tested the hypothesis that current methods of transporting food animals from farms to slaughterhouses may result in pathogen releases and potential exposures of persons in vehicles traveling on the same road. Air and surface samples were taken from cars driving behind poultry trucks for 17 miles. Air conditioners and fans were turned off and windows fully opened. Background and blank samples were used for quality control. Samples were analyzed for susceptible and drug-resistant strains. Results indicate an increase in the number of total aerobic bacteria including both susceptible and drug-resistant enterococci isolated from air and surface samples, and suggest that food animal transport in open crates introduces a novel route of exposure to harmful microorganisms and may disseminate these pathogens into the general environment. These findings support the need for further exposure characterization, and attention to improving methods of food animal transport, especially in highly trafficked regions of high density farming such as the Delmarva Peninsula.
Characterization and control of odorous gases at a landfill site: a case study in Hangzhou, China.
Ying, Ding; Chuanyu, Cai; Bin, Hu; Yueen, Xu; Xuejuan, Zheng; Yingxu, Chen; Weixiang, Wu
2012-02-01
Municipal solid waste (MSW) landfills are one of the major sources of offensive odors potentially creating annoyance in adjacent communities. At the end of May 2007, an odor pollution incident occurred at the Tianziling landfill site, Hangzhou, China, where the residents lodged complaints about the intense odor from the landfill, which drew a significant attention from the government. In this study, ambient air monitoring was conducted at the Tianziling landfill site. The main odor composition of the gas samples collected on June 1st 2007 and the reduction of various odorous gases from the samples collected on June 1st 2009 due to the applied odor control techniques were determined using gas chromatography-mass spectrometry (GC-MS). In addition, variations of primary odorous gaseous (NH(3) and H(2)S) concentrations at different locations in the landfill site from July 2007 to June 2009 were also investigated by using classical spectrophotometric methods. Results showed that a total of 68 volatile compounds were identified among which H(2)S (56.58-579.84 μg/m(3)) and NH(3) (520-4460 μg/m(3)) were the notable odor components contributing to 4.47-10.92% and 83.91-93.94% of total concentrations, respectively. Similar spatial and temporal shifts of H(2)S and NH(3) concentrations were observed and were significantly affected by environmental factors including temperature, air pressure and wind direction. Odor pollution was worse when high temperature, high humidity, low air pressure, and southeast, northeast or east wind appeared. Moreover, the environmental sampling points of the dumping area and the leachate treatment plant were found to be the main odor sources at the Tianziling landfill site. The odor control technologies used in this project had a good mitigating effect on the primary odorous compounds. This study provides long-term valuable information concerning the characteristics and control of odors at landfill sites in a long run. Copyright © 2011 Elsevier Ltd. All rights reserved.
Controlling allergens in animal rooms by using curtains.
Krohn, Thomas C; Itter, Gabi; Fosse, Richard; Hansen, Axel K
2006-05-01
The reduction and control of allergens in the animal facility is important for staff working with laboratory animals. This study was designed to evaluate the efficiency of perforated Makrolon curtains in front of racks as a method to reduce the amount of allergen in the animal room. The experimental situation we studied provides some information regarding allergen disposition in animal rooms but is clearly artificial and does not reflect a typical, 'real-world' environment in terms of preventing exposure of workers to allergens. Plastic curtains with holes were placed in front of racks, and a corridor between the racks and a curtain was present. The room was ventilated with air, which was blown into the room through the middle of the corridor, flowing downstream and passing through the holes in the curtain. This set-up resulted in air flow from the corridor through the curtain. Air samples were collected from sites in the corridor and behind the curtain. The samples were analyzed for the allergen Mus m1, and the amount of allergen was calculated. The results show air flow from the aisle through the holes in the curtains and through the racks behind the curtains, and this flow keeps allergen behind the curtains and prevents its spread from the cages into the aisle. The present study shows that the use of curtains in front of the cage racks is an efficient way to prevent spread of allergens from rodent cages to the entire animal room.
NASA Technical Reports Server (NTRS)
James, John T.
2004-01-01
The toxicological assessments of SSAS and FMK analytical results are reported. Analytical methods have not changed from earlier reports. Surrogate standard recoveries from the SSAS tubes were 66-76% for 13C-acetone, 85-96% for fluorobenzene, and 73-89% for chlorobenzene. Post-flight flows were far below pre-flight flows and an investigation of the problem revealed that the reduced flow was caused by a leak at the interface of the pump inlet tube and the pump head. This resulted in degradation of pump efficiency. Further investigation showed that the problem occurred before the SSAS was operated on orbit and that use of the post-flight flows yielded consistent and useful results. Recoveries from formaldehyde control badges were 86 to 104%. The two general criteria used to assess air quality are the total-non-methane-volatile organic hydrocarbons (NMVOCs) and the total T-value (minus the CO2 and formaldehyde contributions). The T values will not be reported for these data due to the flow anomaly. Control of atmospheric alcohols is important to the water recovery system engineers, hence total alcohols (including acetone) are also shown for each sample. Octafluoropropane (OFP) is not efficiently trapped by the sorbents used in the SSAS. Because formaldehyde is quantified from sorbent badges, its concentration is also listed separately. These five indices of air quality are summarized.
Exhaled breath and oral cavity VOCs as potential biomarkers in oral cancer patients.
Bouza, M; Gonzalez-Soto, J; Pereiro, R; de Vicente, J C; Sanz-Medel, A
2017-03-01
Corporal mechanisms attributed to cancer, such as oxidative stress or the action of cytochrome P450 enzymes, seem to be responsible for the generation of a variety of volatile organic compounds (VOCs) that could be used as non-invasive diagnosis biomarkers. The present work presents an attempt to use VOCs from exhaled breath and oral cavity air as biomarkers for oral squamous cell carcinoma (OSCC) patients. A total of 52 breath samples were collected (in 3 L Tedlar bags) from 26 OSCC patients and 26 cancer-free controls. The samples were analyzed using solid-phase microextraction followed by gas chromatography-mass spectrometry detection. Different statistical strategies (e.g., Icoshift, SIMCA, LDA, etc) were used to classify the analytical data. Results revealed that compounds such as undecane, dodecane, decanal, benzaldehyde, 3,7-dimethyl undecane, 4,5-dimethyl nonane, 1-octene, and hexadecane had relevance as possible biomarkers for OSCC. LDA classification with these compounds showed well-defined clusters for patients and controls (non-smokers and smokers). In addition to breath analysis, preliminary studies were carried out to evaluate the possibility of lesion-surrounded air (analyzed OSCC tumors are in the oral cavity) as a source of biomarkers. The oral cavity location of the squamous cell carcinoma tumors constitutes an opportunity to non-invasively collect the air surrounding the lesion. Small quantities (20 ml) of air collected in the oral cavity were analyzed using the above methodology. Results showed that aldehydes present in the oral cavity might constitute potential OSCC biomarkers.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 8 2011-07-01 2011-07-01 false Air sampling. 61.34 Section 61.34... sampling. (a) Stationary sources subject to § 61.32(b) shall locate air sampling sites in accordance with a... concentrations calculated within 30 days after filters are collected. Records of concentrations at all sampling...
NHEXAS PHASE I ARIZONA STUDY--METALS IN AIR ANALYTICAL RESULTS
The Metals in Air data set contains analytical results for measurements of up to 11 metals in 369 air samples over 175 households. Samples were taken by pumping standardized air volumes through filters at indoor and outdoor sites around each household being sampled. The primary...
Design and Applications of a Climatic Chamber for in-situ Neutron Imaging Experiments
NASA Astrophysics Data System (ADS)
Mannes, David; Schmid, Florian; Wehmann, Timon; Lehmann, Eberhard
Due to the high sensitivity for hydrogen, the detection and quantification of moisture and moisture transport processes are some of the key topics in neutron imaging. Especially when dealing with hygroscopic material, such as wood and other porous media, it is crucial for quantitative analyses to know and control the ambient conditions of the sample precisely. In this work, a neutron transparent climatic chamber is presented, which was designed and built for the imaging facilities at the Paul Scherrer Institut (PSI), Villigen (CH). The air-conditioned measuring system consists of the actual sample chamber and a moisture generator providing air with adjustable temperature and relative humidity (%RH) (up to a dew point temperature of 70 °C). The two components are connected with a flexible tube, which features insulation, a heating system and temperature sensors to prevent condensation within the tube. The sample chamber itself is equipped with neutron transparent windows, insulating double walls with three feed-through openings for the rotation stage, sensors for humidity and temperature. Thermoelectric modules allow to control the chamber temperature in the range of -20 °C to 100 °C. The chamber allows to control the climatic conditions either in a static mode (stable temperature and %RH) or in dynamic mode (humidity or temperature cycles). The envisaged areas of application are neutron radiography and tomography investigations of dynamic processes in building materials (e.g. wood, concrete), food science and any other application necessitating the control of the climatic conditions.
Beamer, P.I.; Sugeng, A. J.; Kelly, M.D.; Lothrop, N.; Klimecki, W.; Wilkinson, S.T.; Loh, M.
2014-01-01
Mine tailings are a source of metal exposures in many rural communities. Multiple air samples are necessary to assess the extent of exposures and factors contributing to these exposures. However, air sampling equipment is costly and requires trained personnel to obtain measurements, limiting the number of samples that can be collected. Simple, low-cost methods are needed to allow for increased sample collection. The objective of our study was to assess if dust fall filters can serve as passive air samplers and be used to characterize potential exposures in a community near contaminated mine tailings. We placed filters in cylinders, concurrently with active indoor air samplers, in 10 occupied homes. We calculated an estimated flow rate by dividing the mass on each dust fall filter by the bulk air concentration and the sampling duration. The mean estimated flow rate for dust fall filters was significantly different during sampling periods with precipitation. The estimated flow rate was used to estimate metal concentration in the air of these homes, as well as in 31 additional homes in another rural community impacted by contaminated mine tailings. The estimated air concentrations had a significant linear association with the measured air concentrations for beryllium, manganese and arsenic (p<0.05), whose primary source in indoor air is resuspended soil from outdoors. In the second rural community, our estimated metal concentrations in air were comparable to active air sampling measurements taken previously. This passive air sampler is a simple low-cost method to assess potential exposures near contaminated mining sites. PMID:24469149
Nuckols, John R; Ashley, David L; Lyu, Christopher; Gordon, Sydney M; Hinckley, Alison F; Singer, Philip
2005-07-01
Individual exposure to trihalomethanes (THMs) in tap water can occur through ingestion, inhalation, or dermal exposure. Studies indicate that activities associated with inhaled or dermal exposure routes result in a greater increase in blood THM concentration than does ingestion. We measured blood and exhaled air concentrations of THM as biomarkers of exposure to participants conducting 14 common household water use activities, including ingestion of hot and cold tap water beverages, showering, clothes washing, hand washing, bathing, dish washing, and indirect shower exposure. We conducted our study at a single residence in each of two water utility service areas, one with relatively high and the other low total THM in the residence tap water. To maintain a consistent exposure environment for seven participants, we controlled water use activities, exposure time, air exchange, water flow and temperature, and nonstudy THM sources to the indoor air. We collected reference samples for water supply and air (pre-water use activity), as well as tap water and ambient air samples. We collected blood samples before and after each activity and exhaled breath samples at baseline and post-activity. All hot water use activities yielded a 2-fold increase in blood or breath THM concentrations for at least one individual. The greatest observed increase in blood and exhaled breath THM concentration in any participant was due to showering (direct and indirect), bathing, and hand dishwashing. Average increase in blood THM concentration ranged from 57 to 358 pg/mL due to these activities. More research is needed to determine whether acute and frequent exposures to THM at these concentrations have public health implications. Further research is also needed in designing epidemiologic studies that minimize data collection burden yet maximize accuracy in classification of dermal and inhalation THM exposure during hot water use activities.
Nuckols, John R.; Ashley, David L.; Lyu, Christopher; Gordon, Sydney M.; Hinckley, Alison F.; Singer, Philip
2005-01-01
Individual exposure to trihalomethanes (THMs) in tap water can occur through ingestion, inhalation, or dermal exposure. Studies indicate that activities associated with inhaled or dermal exposure routes result in a greater increase in blood THM concentration than does ingestion. We measured blood and exhaled air concentrations of THM as biomarkers of exposure to participants conducting 14 common household water use activities, including ingestion of hot and cold tap water beverages, showering, clothes washing, hand washing, bathing, dish washing, and indirect shower exposure. We conducted our study at a single residence in each of two water utility service areas, one with relatively high and the other low total THM in the residence tap water. To maintain a consistent exposure environment for seven participants, we controlled water use activities, exposure time, air exchange, water flow and temperature, and nonstudy THM sources to the indoor air. We collected reference samples for water supply and air (pre–water use activity), as well as tap water and ambient air samples. We collected blood samples before and after each activity and exhaled breath samples at baseline and postactivity. All hot water use activities yielded a 2-fold increase in blood or breath THM concentrations for at least one individual. The greatest observed increase in blood and exhaled breath THM concentration in any participant was due to showering (direct and indirect), bathing, and hand dishwashing. Average increase in blood THM concentration ranged from 57 to 358 pg/mL due to these activities. More research is needed to determine whether acute and frequent exposures to THM at these concentrations have public health implications. Further research is also needed in designing epidemiologic studies that minimize data collection burden yet maximize accuracy in classification of dermal and inhalation THM exposure during hot water use activities. PMID:16002374
Filter for on-line air monitor unaffected by radon progeny and method of using same
Phillips, Terrance D.; Edwards, Howard D.
1999-01-01
An apparatus for testing air having contaminants and radon progeny therein. The apparatus includes a sampling box having an inlet for receiving the air and an outlet for discharging the air. The sampling box includes a filter made of a plate of sintered stainless steel. The filter traps the contaminants, yet allows at least a portion of the radon progeny to pass therethrough. A method of testing air having contaminants and radon progeny therein. The method includes providing a testing apparatus that has a sampling box with an inlet for receiving the air and an outlet for discharging the air, and has a sintered stainless steel filter disposed within said sampling box; drawing air from a source into the sampling box using a vacuum pump; passing the air through the filter; monitoring the contaminants trapped by the filter; and providing an alarm when a selected level of contaminants is reached. The filter traps the contaminants, yet allows at least a portion of the radon progeny to pass therethrough.
Corzo, Cesar A; Culhane, Marie; Dee, Scott; Morrison, Robert B; Torremorell, Montserrat
2013-01-01
Airborne transmission of influenza A virus (IAV) in swine is speculated to be an important route of virus dissemination, but data are scarce. This study attempted to detect and quantify airborne IAV by virus isolation and RRT-PCR in air samples collected under field conditions. This was accomplished by collecting air samples from four acutely infected pig farms and locating air samplers inside the barns, at the external exhaust fans and downwind from the farms at distances up to 2.1 km. IAV was detected in air samples collected in 3 out of 4 farms included in the study. Isolation of IAV was possible from air samples collected inside the barn at two of the farms and in one farm from the exhausted air. Between 13% and 100% of samples collected inside the barns tested RRT-PCR positive with an average viral load of 3.20E+05 IAV RNA copies/m³ of air. Percentage of exhaust positive air samples also ranged between 13% and 100% with an average viral load of 1.79E+04 RNA copies/m³ of air. Influenza virus RNA was detected in air samples collected between 1.5 and 2.1 Km away from the farms with viral levels significantly lower at 4.65E+03 RNA copies/m³. H1N1, H1N2 and H3N2 subtypes were detected in the air samples and the hemagglutinin gene sequences identified in the swine samples matched those in aerosols providing evidence that the viruses detected in the aerosols originated from the pigs in the farms under study. Overall our results indicate that pigs can be a source of IAV infectious aerosols and that these aerosols can be exhausted from pig barns and be transported downwind. The results from this study provide evidence of the risk of aerosol transmission in pigs under field conditions.
Corzo, Cesar A.; Culhane, Marie; Dee, Scott; Morrison, Robert B.; Torremorell, Montserrat
2013-01-01
Airborne transmission of influenza A virus (IAV) in swine is speculated to be an important route of virus dissemination, but data are scarce. This study attempted to detect and quantify airborne IAV by virus isolation and RRT-PCR in air samples collected under field conditions. This was accomplished by collecting air samples from four acutely infected pig farms and locating air samplers inside the barns, at the external exhaust fans and downwind from the farms at distances up to 2.1 km. IAV was detected in air samples collected in 3 out of 4 farms included in the study. Isolation of IAV was possible from air samples collected inside the barn at two of the farms and in one farm from the exhausted air. Between 13% and 100% of samples collected inside the barns tested RRT-PCR positive with an average viral load of 3.20E+05 IAV RNA copies/m3 of air. Percentage of exhaust positive air samples also ranged between 13% and 100% with an average viral load of 1.79E+04 RNA copies/m3 of air. Influenza virus RNA was detected in air samples collected between 1.5 and 2.1 Km away from the farms with viral levels significantly lower at 4.65E+03 RNA copies/m3. H1N1, H1N2 and H3N2 subtypes were detected in the air samples and the hemagglutinin gene sequences identified in the swine samples matched those in aerosols providing evidence that the viruses detected in the aerosols originated from the pigs in the farms under study. Overall our results indicate that pigs can be a source of IAV infectious aerosols and that these aerosols can be exhausted from pig barns and be transported downwind. The results from this study provide evidence of the risk of aerosol transmission in pigs under field conditions. PMID:23951164
U.S.-MEXICO BORDER PROGRAM ARIZONA BORDER STUDY--METALS IN AIR ANALYTICAL RESULTS
The Metals in Air data set contains analytical results for measurements of up to 11 metals in 344 air samples over 86 households. Samples were taken by pumping standardized air volumes through filters at indoor and outdoor sites around each household being sampled. The primary ...
Comparison and harmonization of measuring methods for air contaminants in the working environment.
Leichnitz, K
1998-09-01
The objective of this work was to demonstrate that the measurement of air contaminants in the workplace requires a special approach. Decisive in carrying out the measuring task is the quality of the sampling strategy, including selection of the appropriate measuring method. Methods developed at a national level may be more suitable for this purpose than methods described in international standards. Measurements of air contaminants in the workplace should always be the basis for the prevention and control of occupational hazards. Such measurements, therefore, are also an essential element of risk assessment. Industrial processes and chemical agents are myriad. Each manufacturing stage may apply different conditions (e.g., batch production or continuous process, temperature, pressure) and agents (e.g. a wide variety of chemical substances): In each of these stages, different job functions may be necessary and may be subject to different exposure conditions. Distance from emission sources and physical parameters, such as rates of release, air current, meteorological variations, also have a profound influence. The measuring task in the workplace is quite different in comparison to many others (e.g., blood or soil sample analysis). Firstly, the selection of sampling time and sampling location are crucial steps in air analysis. Transportation and storage of the samples, may however, also influence measuring results; interlaboratory tests show the existing problems. Generally, in analytics, the substance to be determined remains "well covered" in its matrix during sampling, transportation and storage. In air analysis, however, the contaminant is usually "torn" from its surrounding matrix (the air) and "forced" into the sorbent, where it finds a completely new environment; reactions yielding artefacts may take place. Several international organizations have issued guidelines and standards on measuring methods for air contaminants in the working environment, such as the World Health Organization (WHO), the International Union of Pure and Applied Chemistry (IUPAC), and the International Organization for Standardization (ISO). Most of these international documents are substance-related and mainly cover the analytical steps, which constitute only part of the whole measuring process. The approach of the Commission of the European Union is useful in solving the task of air testing in the workplace. This body has issued an EU Directive which includes general requirements for measuring methods. In the Directive it is also stated that persons who carry out measurements must possess the necessary expertise. The Directive, in addition, refers to the European Committee for Standardization (CEN), and that to general requirements for measuring procedures. The advantage of the EU/CEN approach is its aspect of general requirements. This allows the development of new or improved methods without any restricting effect on existing substance-related standards.
Baghouse filtration products (BFPs) were evaluated by the Air Pollution Control Technology (APCT) pilot of the Environmental Technology Verification (ETV) Program. The performance factor verified was the mean outlet particle concentration for the filter fabric as a function of th...
Baghouse filtration products (BFPs) were evaluated by the Air Pollution Control Technology (APCT) pilot of the Environmental Technology Verification (ETV) Program. The performance factor verified was the mean outlet particle concentration for the filter fabric as a function of th...
Attitudes and motivational factors in terminal area air traffic control work.
DOT National Transportation Integrated Search
1971-07-01
A sample of 614 journeymen terminal ATCSs at 17 high-density IFR airports, and 514 ATC trainees were administered a questionnaire which asked them to list what they liked best and what they liked least about ATC work in general; in addition, ATCSs ma...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Overview. 1066.601 Section 1066.601 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS VEHICLE-TESTING..., such as multiple weighing of a PM filter or multiple readings from a bag sample. You may not use test...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Overview. 1066.601 Section 1066.601 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS VEHICLE-TESTING..., such as multiple weighing of a PM filter or multiple readings from a bag sample. You may not use test...
Barreiros, Gloria; Akiti, Tiyomi; Magalhães, Ana Cristina Gouveia; Nouér, Simone A; Nucci, Marcio
2015-12-01
Building renovations increase the concentration of Aspergillus conidia in the air. In 2010, one wing of the hospital building was imploded due to structural problems. To evaluate the impact of building implosion on the concentration of fungi in the air, the demolition was performed in two phases: mechanical demolition of 30 m of the building, followed by implosion of the wing. Patients at high risk for aspergillosis were placed in protected wards. Air sampling was performed during mechanical demolition, on the day of implosion and after implosion. Total and specific fungal concentrations were compared in the different areas and periods of sampling, using the anova test. The incidence of IA in the year before and after implosion was calculated. The mean concentration of Aspergillus increased during mechanical demolition and on the day of implosion. However, in the most protected areas, there was no significant difference in the concentration of fungi. The incidence of invasive aspergillosis (cases per 1000 admissions) was 0.9 in the 12 months before, 0.4 during, and 0.5 in the 12 months after mechanical demolition (P > 0.05). Continuous monitoring of the quality of air and effective infection control measures are important to minimize the impact of building demolition. © 2015 Blackwell Verlag GmbH.
Garron, Christine; Knopper, Loren D; Ernst, William R; Mineau, Pierre
2012-02-01
Chlorothalonil, a broad-spectrum nonsystemic foliar fungicide, is one of the most extensively used pesticide active ingredients on Prince Edward Island, Canada, for blight control on potatoes. In ambient air-sampling programs conducted in 1998 and 1999 and from 2002 to 2004, chlorothalonil was measured in 97% of air samples collected. It is known to produce severe eye and skin irritation, is cytogenic and is considered a possible human carcinogen by the United States Environmental Protection Agency and the International Agency for Research on Cancer. Inhalation studies that quantify chlorothalonil subchronic effects (e.g., genotoxicity) are lacking. The purpose of this study was to assess the possible genotoxic potential of chlorothalonil under field conditions by using the alkaline comet assay to assess DNA damage in CD-1 mice. Mice were selected as a surrogate species for wild small mammals (e.g., meadow voles, deer mice) known to inhabit areas adjacent to potato fields. Mice were placed at three locations downwind of a chlorothalonil application (0, 30, and 100 m) and at one up-wind control location at least 30 m from the field. Downwind mice were exposed to drift throughout the spray period (approximately 30 min) and for an additional hour after spraying. Air samples were collected during the spray trials (before, during, and after spraying) using high-volume polyurethane foam and PM(2.5) air samplers. Pesticide deposits were measured using 20 × 25 cm glass-fibre filters. After exposure, blood was collected from each mouse, and DNA strand breaks in white blood cells measured using comet assay. Results suggest that metrics of DNA damage [tail length (TL), percent DNA in tail] were not significantly related to total air chlorothalonil concentration from the three spray trials (r (2) = 0.000, P = 0.907 for TL; r (2) = 0.001, P = 0.874 for percent DNA). In addition, no significant difference in DNA damage was observed between exposed (at 0 m) and control animals (P = 0.357 for TL; P = 0.958 for percent DNA). Based on these results it can be concluded that wild small mammals living beside fields sprayed with chlorothalonil are at no greater risk of exposure-related DNA damage than conspecifics from unexposed areas.
Performance of the University of Denver Low Turbulence, Airborne Aerosol Inlet in ACE-Asia
NASA Astrophysics Data System (ADS)
Lafleur, B.; Wilson, J. C.; Seebaugh, W. R.; Gesler, D.; Hilbert, H.; Mullen, J.; Reeves, J. M.
2002-12-01
The University of Denver Low Turbulence Inlet (DULTI) was flown on the NCAR C-130 in ACE-Asia. This inlet delivered large sample flows at velocities of a few meters per second at the exit of the inlet. This flow was slowed from the true air speed of the aircraft (100 to 150 m/s) to a few meters per second in a short diffuser with porous walls. The flow in the diffusing section was laminar. The automatic control system kept the inlet operating at near isokinetic intake velocities and in laminar flow for nearly all the flight time. The DULTI permits super micron particles to be sampled and delivered with high efficiency to the interior of the aircraft where they can be measured or collected. Because most of the air entering the inlet is removed through the porous medium, the sample flow experiences inertial enhancements. Because these enhancements occur in laminar flow, they are calculable using FLUENT. Enhancement factors are defined as the ratio of the number of particles of a given size per unit mass of air in the sample to the number of particles of that size per unit mass of air in the ambient. Experimenters divide measured mixing ratios of the aerosol by the enhancement factor to get the ambient mixing ratio of the particles. The diffuser used in ACE-Asia differed from that used in PELTI (2000), TexAQS2000 (2000) and ITCT (2002). In this poster, the flow parameters measured in the inlet in flight are compared with those calculated from FLUENT. And enhancement factors are presented for flight conditions. The enhancement factors are found to depend upon the Stokes number of particles in the entrance to the inlet and the ratio of the mass flow rate of air removed by suction to the mass flow rate delivered as sample.
Kim, S A; Baek, J H; Lee, S J; Choi, S Y; Hur, W; Lee, S Y
2009-01-01
To prevent the shrinkage of aloe vera slices during air drying, a method utilizing a shrink-proof layer was developed. The sample was configured of whole leaf aloe slices, where 1 side or both sides were covered with filter papers as shrink-proof layers. After air drying by varying the air temperature and the slice thickness, the drying characteristics, as well as several quality factors of the dried aloe vera leaf slices, were analyzed. In the simulation of the drying curves, the modified Page model showed the best fitness, representing a diffusion-controlled drying mechanism. Nonetheless, there was a trace of a constant-rate drying period in the samples dried by the method. Shrinkage was greatly reduced, and the rehydration ratios increased by approximately 50%. Scanning electron microscopic analysis revealed that the surface structure of original fibrous form was well sustained. FT-IR characteristics showed that the dried samples could sustain aloe polysaccharide acetylation. Furthermore, the functional properties of the dried slices including water holding capacity, swelling, and fat absorption capability were improved, and polysaccharide retention levels increased by 20% to 30%. Therefore, we concluded that application of shrink-proof layers on aloe slices provides a novel way to overcome the shrinkage problems commonly found in air drying, thereby improving their functional properties with less cost. Practical Application: This research article demonstrates a novel air drying method using shrink-proof layers to prevent the shrinkage of aloe slices. We analyzed extensively the characteristics of shrinkage mechanism and physical properties of aloe flesh gels in this drying system. We concluded that this method can be a beneficial means to retain the functional properties of dried aloe, and a potential alternative to freeze drying, which is still costly.
On evaluating compliance with air pollution levels not to be exceeded more than once per year
NASA Technical Reports Server (NTRS)
Neustadter, H. E.; Sidik, S. M.
1974-01-01
The adequacy is considered of currently practiced monitoring and data reduction techniques for assessing compliance with 24-hour Air Quality Standards (AQS) not to be exceeded more than once per year. The present situation for suspended particulates is discussed. The following conclusions are reached: (1) For typical less than daily sampling (i.e., 60 to 120 24-hour samples per year) the deviation from independence of the data set should not be substantial. (2) The interchange of exponentiation and expectation operations in the EPA data reduction model, underestimates the second highest level by about 4 to 8 percent for typical sigma values. (3) Estimates of the second highest pollution level have associated with them a large statistical variability arising from the finite size of the sample. The 0.95 confidence interval ranges from + or - 40 percent for 120 samples per year to + or - 84 percent for 30 samples per year. (4) The design value suggested by EPA for abatement and/or control planning purposes typically gives a margin of safety of 60 to 120 percent.
The purpose of this SOP is to describe the procedures for pre-cleaning filters and polyurethane foam (PUF) plug prior to air sampling with these media. The sampling media are used for sampling indoor air, outdoor air, and personal air. This procedure was followed to ensure consi...
NASA Technical Reports Server (NTRS)
Leibecki, H. F.; King, R. B.; Fordyce, J. S.
1974-01-01
The City of Cleveland Division of Air Pollution Control and NASA jointly investigated the chemical and physical characteristics of the suspended particulate matter in Cleveland, and as part of the program, measurements of the particle size distribution of ambient air samples at five urban locations during August and September 1972 were made using high-volume cascade impactions. The distributions were evaluated for lognormality, and the mass median diameters were compared between locations and as a function of resultant wind direction. Junge-type distributions were consistent with dirty continental aerosols. About two-thirds of the suspended particulate matter observed in Cleveland is less than 7 microns in diameter.
Measurements of Volatile Organic Compounds in Beijing, China, in August 2005
NASA Astrophysics Data System (ADS)
Kuster, W. C.; Shao, M.; Goldan, P. D.; Liu, Y.; Li, X.; Roberts, J. M.; Zhang, J.; Bin, W.; Degouw, J.
2005-12-01
The emissions of trace gases and aerosol in Mega-cities and the subsequent photochemical processing are of great current interest in developing pollution control strategies but there is still a significant lack of data from many large urban centers. From August 1 through August 27, 2005, a measurement campaign was carried out on the Peking University campus in Beijing, China. This period included extended episodes with high temperatures, high humidity and extremely poor air quality as well as episodes with cooler, clear dry air. As part of this campaign, a wide range of VOCs and oxygenated VOCs were measured by an online GC-MS system. Results of those measurements, as well as comparisons with ambient air grab samples analyzed by the Peking University canister-sampling program, will be presented. Hydrocarbon emission profiles will be compared with those from an average city in the U.S. In addition we will look at the formation of secondary species such as oxygenated VOCs and peroxyacyl nitrates.
Erichsen Andersson, Annette; Petzold, Max; Bergh, Ingrid; Karlsson, Jón; Eriksson, Bengt I; Nilsson, Kerstin
2014-06-01
The importance of laminar airflow systems in operating rooms as protection from surgical site infections has been questioned. The aim of our study was to explore the differences in air contamination rates between displacement ventilation and laminar airflow systems during planned and acute orthopedic implant surgery. A second aim was to compare the influence of the number of people present, the reasons for traffic flow, and the door-opening rates between the 2 systems. Active air sampling and observations were made during 63 orthopedic implant operations. The laminar airflow system resulted in a reduction of 89% in colony forming units in comparison with the displacement system (P < .001). The air samples taken in the preparation rooms showed high levels of bacterial growth (≈ 40 CFU/m(3)). Our study shows that laminar airflow-ventilated operating rooms offer high-quality air during surgery, with very low levels of colony forming units close to the surgical wound. The continuous maintenance of laminar air flow and other technical systems are crucial, because minor failures in complex systems like those in operating rooms can result in a detrimental effect on air quality and jeopardize the safety of patients. The technical ventilation solutions are important, but they do not guarantee clean air, because many other factors, such as the organization of the work and staff behavior, influence air cleanliness. Copyright © 2014 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.
Extraction of Thermal Performance Values from Samples in the Lunar Dust Adhesion Bell Jar
NASA Technical Reports Server (NTRS)
Gaier, James R.; Siamidis, John; Larkin, Elizabeth M. G.
2008-01-01
A simulation chamber has been developed to test the performance of thermal control surfaces under dusty lunar conditions. The lunar dust adhesion bell jar (LDAB) is a diffusion pumped vacuum chamber (10(exp -8) Torr) built to test material samples less than about 7 cm in diameter. The LDAB has the following lunar dust simulant processing capabilities: heating and cooling while stirring in order to degas and remove adsorbed water; RF air-plasma for activating the dust and for organic contaminant removal; RF H/He-plasma to simulate solar wind; dust sieving system for controlling particle sizes; and a controlled means of introducing the activated dust to the samples under study. The LDAB is also fitted with an in situ Xe arc lamp solar simulator, and a cold box that can reach 30 K. Samples of thermal control surfaces (2.5 cm diameter) are introduced into the chamber for calorimetric evaluation using thermocouple instrumentation. The object of this paper is to present a thermal model of the samples under test conditions and to outline the procedure to extract the absorptance, emittance, and thermal efficiency from the pristine and sub-monolayer dust covered samples.
Extraction of Thermal Performance Values from Samples in the Lunar Dust Adhesion Bell Jar
NASA Technical Reports Server (NTRS)
Gaier, James R.; Siamidis, John; Larkin, Elizabeth M.G.
2008-01-01
A simulation chamber has been developed to test the performance of thermal control surfaces under dusty lunar conditions. The lunar dust adhesion bell jar (LDAB) is a diffusion pumped vacuum chamber (10-8 Torr) built to test material samples less than about 7 cm in diameter. The LDAB has the following lunar dust stimulant processing capabilities: heating and cooling while stirring in order to degas and remove absorbed water; RF air-plasma for activating the dust and for organic contaminant removal; RF H/He-plasma to simulate solar wind; dust sieving system for controlling particle sizes; and a controlled means of introducing the activated dust to the samples under study. The LDAB is also fitted with an in situ Xe arc lamp solar simulator, and a cold box that can reach 30 K. Samples of thermal control surfaces (2.5 cm diameter) are introduced into the chamber for calorimetric evaluation using thermocouple instrumentation. The object of this paper is to present a thermal model of the samples under test conditions, and to outline the procedure to extract the absorptance, emittance, and thermal efficiency from the pristine and sub-monolayer dust covered samples
Extraction of Thermal Performance Values from Samples in the Lunar Dust Adhesion Bell Jar
NASA Technical Reports Server (NTRS)
Gaier, James R.; Siamidis, John; Larkin, Elizabeth M. G.
2010-01-01
A simulation chamber has been developed to test the performance of thermal control surfaces under dusty lunar conditions. The lunar dust adhesion bell jar (LDAB) is a diffusion pumped vacuum chamber (10(exp -8) Torr) built to test material samples less than about 7 cm in diameter. The LDAB has the following lunar dust simulant processing capabilities: heating and cooling while stirring in order to degas and remove adsorbed water; RF air-plasma for activating the dust and for organic contaminant removal; RF H/He-plasma to simulate solar wind; dust sieving system for controlling particle sizes; and a controlled means of introducing the activated dust to the samples under study. The LDAB is also fitted with an in situ Xe arc lamp solar simulator, and a cold box that can reach 30 K. Samples of thermal control surfaces (2.5 cm diameter) are introduced into the chamber for calorimetric evaluation using thermocouple instrumentation. The object of this paper is to present a thermal model of the samples under test conditions and to outline the procedure to extract the absorptance, emittance, and thermal efficiency from the pristine and sub-monolayer dust covered samples.
NASA Technical Reports Server (NTRS)
James, John T.
2007-01-01
The toxicological assessments of 2 grab sample canisters (GSCs) and one pair of formaldehyde badges from the Shuttle are reported. Analytical methods have not changed from earlier reports. The recoveries of the 3 surrogates (C-13-acetone, fluorobenzene, and chlorobenzene) from the 2 GSCs averaged 109, 95, and 97%, respectively. Three formaldehyde controls averaged 93% recovery. The Shuttle atmosphere was acceptable for human respiration.
HIGH VOLUME INJECTION FOR GCMS ANALYSIS OF PARTICULATE ORGANIC SPECIES IN AMBIENT AIR
Detection of organic species in ambient particulate matter typically requires large air sample volumes, frequently achieved by grouping samples into monthly composites. Decreasing the volume of air sample required would allow shorter collection times and more convenient sample c...
NASA Astrophysics Data System (ADS)
Saia, S. M.; Locke, N. A.; Regan, J. M.; Carrick, H. J.; Buda, A. R.; Walter, M. T.
2014-12-01
Advances in molecular microbiology techniques (e.g. epi-fluorescent microscopy and PCR) are making it easier to study the influence of specific microorganisms on nutrient transport. Polyphosphate accumulating organisms (PAOs) are commonly used in wastewater treatment plants to remove excess phosphorus (P) from effluent water. PAOs have also been identified in natural settings but their ecological function is not well known. In this study, we tested the hypothesis that PAOs in natural environments would release and accumulate P during anaerobic and aerobic conditions, respectively. We placed stream biofilms in sealed, covered tubs and subjected them to alternating air (aerobic conditions) and N2 gas (anaerobic condition) bubbling for 12 hours each. Four treatments investigated the influence of changing dissolved oxygen on micribially-controlled P cycling: (1) biofilms bubbled continuously with air, (2) biofilms bubbled alternatively with air and N2, (3) biocide treated biofilms bubbled continuously with air, and (4) biocide treated biofilms bubbled alternatively with air and N2. Treatments 3 and 4 serve as abiotic controls to treatments 1 and 2. We analyzed samples every 12 hours for soluble reactive P (SRP), temperature, dissolved oxygen, and pH. We also used fluorescent microscopy (i.e. DAPI staining) and PCR to verify the presence of PAOs in the stream biofilms. SRP results over the course of the experiment support our hypothesis that anaerobic and aerobic stream conditions may impact PAO mediated P release and uptake, respectively in natural environments. The results of these experiments draw attention to the importance of microbiological controls on P mobility in freshwater ecosystems.
Buttner, M P; Stetzenbach, L D
1993-01-01
Aerobiological monitoring was conducted in an experimental room to aid in the development of standardized sampling protocols for airborne microorganisms in the indoor environment. The objectives of this research were to evaluate the relative efficiencies of selected sampling methods for the retrieval of airborne fungal spores and to determine the effect of human activity on air sampling. Dry aerosols containing known concentrations of Penicillium chrysogenum spores were generated, and air samples were taken by using Andersen six-stage, Surface Air System, Burkard, and depositional samplers. The Andersen and Burkard samplers retrieved the highest numbers of spores compared with the measurement standard, an aerodynamic particle sizer located inside the room. Data from paired samplers demonstrated that the Andersen sampler had the highest levels of sensitivity and repeatability. With a carpet as the source of P. chrysogenum spores, the effects of human activity (walking or vacuuming near the sampling site) on air sampling were also examined. Air samples were taken under undisturbed conditions and after human activity in the room. Human activity resulted in retrieval of significantly higher concentrations of airborne spores. Surface sampling of the carpet revealed moderate to heavy contamination despite relatively low airborne counts. Therefore, in certain situations, air sampling without concomitant surface sampling may not adequately reflect the level of microbial contamination in indoor environments. PMID:8439150
Marcos, Begonya; Aymerich, Teresa; Monfort, Josep M; Garriga, Margarita
2007-11-30
The antimicrobial effect against L. monocytogenes of biodegradable films (alginate, zein and polyvinyl alcohol) containing enterocins was investigated. Survival of the pathogen was studied by means of challenge tests performed at 6 degrees C during 8 and 29 days, for air-packed and vacuum-packed sliced cooked ham, respectively. Air packaging was tested with two concentrations of enterocins (200 and 2000 AU/cm2). Control air-packed cooked ham showed an increase of L. monocytogenes from 10(4) to 10(7) CFU/g after 8 days. By contrast, packaging with antimicrobial films effectively slowed down the pathogen's growth, leading to final counts lower than in control lots. Air-packaging with alginate films containing 2000 AU/cm2 of enterocins effectively controlled L. monocytogenes for 8 days. An increase of only 1 log unit was observed in zein and polyvinyl alcohol lots at the same enterocin concentration. Vacuum packaging with films containing enterocins (2000 AU/cm2) also delayed the growth of the pathogen. No increase from inoculated levels was observed during 15 days in antimicrobial alginate films. After 29 days of storage, the lowest counts were obtained in samples packed with zein and alginate films containing enterocins, as well as with zein control films. The most effective treatment for controlling L. monocytogenes during 6 degrees C storage was vacuum-packaging of sliced cooked ham with alginate films containing 2000 AU/cm2 of enterocins. From the results obtained it can concluded that antimicrobial packaging can improve the safety of sliced cooked ham by delaying and reducing the growth of L. monocytogenes.
Carter Carburetor Weekly Air Monitoring & Sampling Report - March 7, 2013 - March 13, 2016
Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati
Exposure to ambient air pollutants and spontaneous abortion.
Moridi, Maryam; Ziaei, Saeideh; Kazemnejad, Anoshirvan
2014-03-01
This study aimed to evaluate the correlation between ambient concentrations of air pollutants and first-trimester spontaneous abortion. This was a retrospective case–control study, which was conducted on 296 women from June 2010 to February 2011 in Tehran, Iran. Cases were 148 women who experienced a spontaneous abortion before 14 weeks of gestation while the controls were 148 pregnant women after 14 weeks of gestation and groups were matched on sociodemographics and obstetrics characteristics. The samples were recruited randomly from 10 hospitals. In total, pollutants concentrations were collected at 29 stations hourly throughout the study area. We estimated the mean exposure for each participant and investigated the association between spontaneous abortion and ambient pollutants. Findings demonstrated that the average of ambient air pollutants in the cases was significantly higher than in the controls (P < 0.05). The odd ratios of abortion in the areas with higher concentrations of CO, NO₂, O₃ and PM₁₀ were 1.98, 0.96, 0.94 and 1.01, respectively (P < 0.05). Also, the model showed that there was no significant association between prenatal exposures to SO₂ and abortion (P > 0.05). Our findings suggest that pregnant women exposed to ambient air pollutants may be at increased risk of spontaneous abortion. Confirmation by further research is needed.
Air sampling workshop: October 24-25, 1978
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1979-06-01
A two-day workshop was held in October 1978 on air sampling strategies for the occupational environment. Strategies comprise the elements of implementing an air sampling program including deciding on the extent of sampling, selecting appropriate types of measurement, placing sampling instruments properly, and interpreting sample results correctly. All of these elements are vital in the reliable assessment of occupational exposures yet their coverage in the industrial hygiene literature is meager. Although keyed to a few introductory topics, the agenda was sufficiently informal to accommodate extemporaneous discussion on any subject related to sampling strategies. Questions raised during the workshop mirror themore » status of air sampling strategy as much as the factual information that was presented. It may be concluded from the discussion and questions that air sampling strategy is an elementary state and urgently needs concerted attention from the industrial hygiene profession.« less
NASA Technical Reports Server (NTRS)
Fetzer, Eric J.; Lambrigtsen, Bjorn H.; Eldering, Annmarie; Aumann, Hartmut H.; Chahine, Moustafa T.
2006-01-01
We examine differences in total precipitable water vapor (PWV) from the Atmospheric Infrared Sounder (AIRS) and the Advanced Microwave Scanning Radiometer (AMSR-E) experiments sharing the Aqua spacecraft platform. Both systems provide estimates of PWV over water surfaces. We compare AIRS and AMSR-E PWV to constrain AIRS retrieval uncertainties as functions of AIRS retrieved infrared cloud fraction. PWV differences between the two instruments vary only weakly with infrared cloud fraction up to about 70%. Maps of AIRS-AMSR-E PWV differences vary with location and season. Observational biases, when both instruments observe identical scenes, are generally less than 5%. Exceptions are in cold air outbreaks where AIRS is biased moist by 10-20% or 10-60% (depending on retrieval processing) and at high latitudes in winter where AIRS is dry by 5-10%. Sampling biases, from different sampling characteristics of AIRS and AMSR-E, vary in sign and magnitude. AIRS sampling is dry by up to 30% in most high-latitude regions but moist by 5-15% in subtropical stratus cloud belts. Over the northwest Pacific, AIRS samples conditions more moist than AMSR-E by a much as 60%. We hypothesize that both wet and dry sampling biases are due to the effects of clouds on the AIRS retrieval methodology. The sign and magnitude of these biases depend upon the types of cloud present and on the relationship between clouds and PWV. These results for PWV imply that climatologies of height-resolved water vapor from AIRS must take into consideration local meteorological processes affecting AIRS sampling.
40 CFR 86.537-90 - Dynamometer test runs.
Code of Federal Regulations, 2014 CFR
2014-07-01
... “transient” formaldehyde exhaust sample, the “transient” dilution air sample bag, the “transient” methanol... start “transient” exhaust and dilution air bag samples to the analytical system and process the samples... Section 86.537-90 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS...
40 CFR 86.537-90 - Dynamometer test runs.
Code of Federal Regulations, 2012 CFR
2012-07-01
... “transient” formaldehyde exhaust sample, the “transient” dilution air sample bag, the “transient” methanol... start “transient” exhaust and dilution air bag samples to the analytical system and process the samples... Section 86.537-90 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS...
40 CFR 86.537-90 - Dynamometer test runs.
Code of Federal Regulations, 2013 CFR
2013-07-01
... “transient” formaldehyde exhaust sample, the “transient” dilution air sample bag, the “transient” methanol... start “transient” exhaust and dilution air bag samples to the analytical system and process the samples... Section 86.537-90 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS...
1991-02-01
analysis of water, soil, and/or sediment samples, are required. Careful documentation and quality control procedures in accordance with CERCLA/SARA...I III-1 I I Northern Piedmont * AI Southern Piedmont a’.3 Cahaba Valley... ...... Coosa ValleyI Fall Line Hills Aluvial Plain Black Prairie3 Cu enu e...no surface outlet; (b) A drainage basin or river basin; (c) A low area in the Earth’s crust, of tectonic origin, in which sediments have accumulated
NASA Technical Reports Server (NTRS)
Roberts, B. C.; Carrasquillo, R. L.; Dubiel, M. Y.; Ogle, K. Y.; Perry, J. L.; Whitley, K. M.
1990-01-01
A description of the phase 3 simplified integrated test (SIT) conducted at the Marshall Space Flight Center (MSFC) Core Module Integration Facility (CMIF) in 1989 is presented. This was the first test in the phase 3 series integrated environmental control and life support systems (ECLSS) tests. The basic goal of the SIT was to achieve full integration of the baseline air revitalization (AR) subsystems for Space Station Freedom. Included is a description of the SIT configuration, a performance analysis of each subsystem, results from air and water sampling, and a discussion of lessons learned from the test. Also included is a full description of the preprototype ECLSS hardware used in the test.
40 CFR 92.133 - Required information.
Code of Federal Regulations, 2010 CFR
2010-07-01
... stabilized pre-test weight and post-test weight of each particulate sample and back-up filter or pair of...) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.133 Required information. (a) The required test data shall be grouped into the following two general categories: (1) Pre...
40 CFR 92.133 - Required information.
Code of Federal Regulations, 2014 CFR
2014-07-01
... stabilized pre-test weight and post-test weight of each particulate sample and back-up filter or pair of...) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.133 Required information. (a) The required test data shall be grouped into the following two general categories: (1) Pre...
40 CFR 92.133 - Required information.
Code of Federal Regulations, 2012 CFR
2012-07-01
... stabilized pre-test weight and post-test weight of each particulate sample and back-up filter or pair of...) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.133 Required information. (a) The required test data shall be grouped into the following two general categories: (1) Pre...
40 CFR 92.133 - Required information.
Code of Federal Regulations, 2011 CFR
2011-07-01
... stabilized pre-test weight and post-test weight of each particulate sample and back-up filter or pair of...) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.133 Required information. (a) The required test data shall be grouped into the following two general categories: (1) Pre...
40 CFR 92.133 - Required information.
Code of Federal Regulations, 2013 CFR
2013-07-01
... stabilized pre-test weight and post-test weight of each particulate sample and back-up filter or pair of...) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.133 Required information. (a) The required test data shall be grouped into the following two general categories: (1) Pre...
40 CFR Table 1 to Subpart Bbbbb of... - Requirements for Performance Tests
Code of Federal Regulations, 2010 CFR
2010-07-01
... CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Semiconductor... necessary. 2. Process vent stream a. Measure organic and inorganic HAP concentration (two method option) i... simultaneous sampling at inlet and outlet of control device and analyze for same organic and inorganic HAP at...
40 CFR Table 1 to Subpart Bbbbb of... - Requirements for Performance Tests
Code of Federal Regulations, 2011 CFR
2011-07-01
... CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Semiconductor... necessary. 2. Process vent stream a. Measure organic and inorganic HAP concentration (two method option) i... simultaneous sampling at inlet and outlet of control device and analyze for same organic and inorganic HAP at...
USDA-ARS?s Scientific Manuscript database
Electronic nose sensors are designed to detect differences in complex air sample matrices. For example, they have been used in the food industry to monitor process performance and quality control. However, no information is available on the application of sensor arrays to monitor process performanc...
Baghouse filtration products (BFPs) were evaluated by the Air Pollution Control Technology (APCT) Verification Center. The performance factor verified was the mean outlet particle concentration for the filter fabric as a function of the size of those particles equal to and smalle...
Baghouse filtration products (BFPs) were evaluated by the Air Pollution Control Technology (APCT) Verification Center. The performance factor verified was the mean outlet particle concentration for the filter fabric as a function of the size of those particles equal to and smalle...
Baghouse filtration products (BFPs) were evaluated by the Air Pollution Control Technology (APCT) pilot of the Environmental Technology Verification (ETV) Program. The performance factor verified was the mean outlet particle concentration for the filter fabric as a function of th...
Baghouse filtration products (BFPs) were evaluated by the Air Pollution Control Technology (APCT) Verification Center. The performance factor verified was the mean outlet particle concentration for the filter fabric as a function of the size of those particles equal to and smalle...
Baghouse filtration products (BFPs) were evaluated by the Air Pollution Control Technology (APCT) pilot of the Environmental Technology Verification (ETV) Program. The performance factor verified was the mean outlet particle concentration for the filter fabric as a function of th...
Baghouse filtration products (BFPs) were evaluated by the Air Pollution Control Technology (APCT) Verification Center. The performance factor verified was the mean outlet particle concentration for the filter fabric as a function of the size for particles equal to or smaller than...
Baghouse filtration products (BFPs) were evaluated by the Air Pollution Control Technology (APCT) Verification Center. The performance factor verified was the mean outlet particle concentration for the filter fabric as a function of the size of those particles equal to and smalle...
Baghouse filtration products (BFPs) were evaluated by the Air Pollution Control Technology (APCT) pilot of the Environmental Technology Verification (ETV) Program. The performance factor verified was the mean outlet particle concentration for the filter fabric as a function of th...
Baghouse filtration products (BFPs) were evaluated by the Air Pollution Control Technology (APCT) Verification Center. The performance factor verified was the mean outlet particle concentration for the filter fabric as a function of the size for particles equal to or smaller than...
40 CFR 86.1863-07 - Optional chassis certification for diesel vehicles.
Code of Federal Regulations, 2014 CFR
2014-07-01
... be tested using the test fuels, sampling systems, or analytical systems specified for diesel engines... diesel vehicles. 86.1863-07 Section 86.1863-07 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES...
Pollution Analyzing and Monitoring Instruments.
ERIC Educational Resources Information Center
1972
Compiled in this book is basic, technical information useful in a systems approach to pollution control. Descriptions and specifications are given of what is available in ready made, on-the-line commercial equipment for sampling, monitoring, measuring and continuously analyzing the multitudinous types of pollutants found in the air, water, soil,…
Smoke particulate matter from conifers subjected to controlled burning, both under smoldering and flaming conditions, was sampled by high volume air filtration on precleaned quartz fiber filters. The filtered particles were extracted with dichloromethane and the crude extracts...
Smoke particulate matter from deciduous trees (angiosperms) subjected to controlled burning, both under smoldering and flaming conditions, was sampled by high volume air filtration on precleaned quartz fiber filters. The filtered particles were extracted with dichloromethane a...
40 CFR Appendix 1 to Subpart A of... - Static Sheen Test
Code of Federal Regulations, 2010 CFR
2010-07-01
... drilling fluids, drill cuttings, produced sand, and well treatment, completion and workover fluids. “Free... drill cuttings or produced sand are introduced into ambient seawater in a container having an air-to... specified. 6. Quality Control Procedures None currently specified. 7. Sample Collection and Handling 7...
40 CFR 90.423 - Exhaust gas analytical system; CVS grab sample.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19... detector (HFID) for the measurement of hydrocarbons, non-dispersive infrared analyzers (NDIR) for the... converted to nitric oxide before analysis. Other types of analyzers may be used if shown to yield equivalent...
40 CFR 90.423 - Exhaust gas analytical system; CVS grab sample.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19... detector (HFID) for the measurement of hydrocarbons, non-dispersive infrared analyzers (NDIR) for the... converted to nitric oxide before analysis. Other types of analyzers may be used if shown to yield equivalent...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 9 2012-07-01 2012-07-01 false Air sampling. 61.34 Section 61.34 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Beryllium § 61.34 Air...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 9 2013-07-01 2013-07-01 false Air sampling. 61.34 Section 61.34 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Beryllium § 61.34 Air...
Carter Carburetor Weekly Air Monitoring & Sampling Report - November 30, 2015 – December 6, 2015
Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati
Carter Carburetor Weekly Air Monitoring & Sampling Report - October 26, 2015 – November 1, 2015
Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati
Carter Carburetor Weekly Air Monitoring & Sampling Report - February 15, 2016 – February 21, 2016
Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati
Carter Carburetor Weekly Air Monitoring & Sampling Report - October 12, 2015 – October 18, 2015
Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati
Carter Carburetor Weekly Air Monitoring & Sampling Report - November 23, 2015 – November 29, 2015
Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati
Carter Carburetor Weekly Air Monitoring & Sampling Report - October 5, 2015 – October 11, 2015
Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati
Carter Carburetor Weekly Air Monitoring & Sampling Report - February 1, 2016 – February 7, 2016
Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati
Carter Carburetor Weekly Air Monitoring & Sampling Report - September 28, 2015 – October 4, 2015
Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati
Carter Carburetor Weekly Air Monitoring & Sampling Report - November 16, 2015 – November 22, 2015
Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati
Carter Carburetor Weekly Air Monitoring & Sampling Report - November 9, 2015 – November 15, 2015
Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati
Carter Carburetor Weekly Air Monitoring & Sampling Report - October 19, 2015 – October 25, 2015
Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati
Carter Carburetor Weekly Air Monitoring & Sampling Report - November 2, 2015 – November 8, 2015
Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati
Emerging developments in the standardized chemical characterization of indoor air quality.
Nehr, Sascha; Hösen, Elisabeth; Tanabe, Shin-Ichi
2017-01-01
Despite the fact that the special characteristics of indoor air pollution make closed environments quite different from outdoor environments, the conceptual ideas for assessing air quality indoors and outdoors are similar. Therefore, the elaboration of International Standards for air quality characterization in view of controlling indoor air quality should resort to this common basis. In this short review we describe the possibilities of standardization of tools dedicated to indoor air quality characterization with a focus on the tools permitting to study the indoor air chemistry. The link between indoor exposure and health as well as the critical processes driving the indoor air quality are introduced. Available International Standards for the assessment of indoor air quality are depicted. The standards comprise requirements for the sampling on site, the analytical procedures, and the determination of material emissions. To date, these standardized procedures assure that indoor air, settled dust and material samples are analyzed in a comparable manner. However, existing International Standards exclusively specify conventional, event-driven target-screening using discontinuous measurement methods for long-lived pollutants. Therefore, this review draws a parallel between physico-chemical processes in indoor and outdoor environments. The achievements in atmospheric sciences also improve our understanding of indoor environments. The community of atmospheric scientists can be both ideal and supporter for researchers in the area of indoor air quality characterization. This short review concludes with propositions for future standardization activities for the chemical characterization of indoor air quality. Future standardization efforts should focus on: (i) the elaboration of standardized measurement methods and measurement strategies for online monitoring of long-lived and short-lived pollutants, (ii) the assessment of the potential and the limitations of non-target screening, (iii) the paradigm shift from event-driven investigations to systematic approaches to characterize indoor environments, and (iv) the development of tools for policy implementation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-06
... the California State Implementation Plan, Imperial County Air Pollution Control District, Kern County Air Pollution Control District, and Ventura County Air Pollution Control District AGENCY... the Imperial County Air Pollution Control District (ICAPCD), Kern County Air Pollution Control...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plemons, R.E.; Hopwood, W.H. Jr.; Hamilton, J.H.
For a number of years the Oak Ridge Y-12 Plant Laboratory has been analyzing coal predominately for the utilities department of the Y-12 Plant. All laboratory procedures, except a Leco sulfur method which used the Leco Instruction Manual as a reference, were written based on the ASTM coal analyses. Sulfur is analyzed at the present time by two methods, gravimetric and Leco. The laboratory has two major endeavors for monitoring the quality of its coal analyses. (1) A control program by the Plant Statistical Quality Control Department. Quality Control submits one sample for every nine samples submitted by the utilitiesmore » departments and the laboratory analyzes a control sample along with the utilities samples. (2) An exchange program with the DOE Coal Analysis Laboratory in Bruceton, Pennsylvania. The Y-12 Laboratory submits to the DOE Coal Laboratory, on even numbered months, a sample that Y-12 has analyzed. The DOE Coal Laboratory submits, on odd numbered months, one of their analyzed samples to the Y-12 Plant Laboratory to be analyzed. The results of these control and exchange programs are monitored not only by laboratory personnel, but also by Statistical Quality Control personnel who provide statistical evaluations. After analysis and reporting of results, all utilities samples are retained by the laboratory until the coal contracts have been settled. The utilities departments have responsibility for the initiation and preparation of the coal samples. The samples normally received by the laboratory have been ground to 4-mesh, reduced to 0.5-gallon quantities, and sealed in air-tight containers. Sample identification numbers and a Request for Analysis are generated by the utilities departments.« less
30 CFR 90.205 - Approved sampling devices; operation; air flowrate.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Approved sampling devices; operation; air... LABOR COAL MINE SAFETY AND HEALTH MANDATORY HEALTH STANDARDS-COAL MINERS WHO HAVE EVIDENCE OF THE DEVELOPMENT OF PNEUMOCONIOSIS Sampling Procedures § 90.205 Approved sampling devices; operation; air flowrate...
NASA Astrophysics Data System (ADS)
Mølgaard, Lasse L.; Buus, Ole T.; Larsen, Jan; Babamoradi, Hamid; Thygesen, Ida L.; Laustsen, Milan; Munk, Jens Kristian; Dossi, Eleftheria; O'Keeffe, Caroline; Lässig, Lina; Tatlow, Sol; Sandström, Lars; Jakobsen, Mogens H.
2017-05-01
We present a data-driven machine learning approach to detect drug- and explosives-precursors using colorimetric sensor technology for air-sampling. The sensing technology has been developed in the context of the CRIM-TRACK project. At present a fully- integrated portable prototype for air sampling with disposable sensing chips and automated data acquisition has been developed. The prototype allows for fast, user-friendly sampling, which has made it possible to produce large datasets of colorimetric data for different target analytes in laboratory and simulated real-world application scenarios. To make use of the highly multi-variate data produced from the colorimetric chip a number of machine learning techniques are employed to provide reliable classification of target analytes from confounders found in the air streams. We demonstrate that a data-driven machine learning method using dimensionality reduction in combination with a probabilistic classifier makes it possible to produce informative features and a high detection rate of analytes. Furthermore, the probabilistic machine learning approach provides a means of automatically identifying unreliable measurements that could produce false predictions. The robustness of the colorimetric sensor has been evaluated in a series of experiments focusing on the amphetamine pre-cursor phenylacetone as well as the improvised explosives pre-cursor hydrogen peroxide. The analysis demonstrates that the system is able to detect analytes in clean air and mixed with substances that occur naturally in real-world sampling scenarios. The technology under development in CRIM-TRACK has the potential as an effective tool to control trafficking of illegal drugs, explosive detection, or in other law enforcement applications.
Analysis of EPA and DOE WIPP Air Sampling Data
During the April 2014 EPA visit to WIPP, EPA co-located four ambient air samplers with existing Department of Energy (DOE) ambient air samplers to independently corroborate DOE's reported air sampling results.
Creamer, E; Shore, A C; Deasy, E C; Galvin, S; Dolan, A; Walley, N; McHugh, S; Fitzgerald-Hughes, D; Sullivan, D J; Cunney, R; Coleman, D C; Humphreys, H
2014-03-01
Meticillin-resistant Staphylococcus aureus (MRSA) can be recovered from hospital air and from environmental surfaces. This poses a potential risk of transmission to patients. To investigate associations between MRSA isolates recovered from air and environmental surfaces with those from patients when undertaking extensive patient and environmental sampling. This was a prospective observational study of patients and their environment in eight wards of a 700-bed tertiary care hospital during 2010 and 2011. Sampling of patients, air and surfaces was carried out on all ward bays, with more extended environmental sampling in ward high-dependency bays and at particular times of the day. The genetic relatedness of isolates was determined by DNA microarray profiling and spa typing. MRSA was recovered from 30/706 (4.3%) patients and from 19/132 (14.4%) air samples. On 9/132 (6.8%) occasions both patient and air samples yielded MRSA. In 32 high-dependency bays, MRSA was recovered from 12/161 (7.4%) patients, 8/32 (25%) air samples, and 21/644 (3.3%) environmental surface samples. On 10/132 (7.6%) occasions, MRSA was isolated from air in the absence of MRSA-positive patients. Patient demographic data combined with spa typing and DNA microarray profiling revealed four likely transmission clusters, where patient and environmental isolates were deemed to be very closely related. Air sampling yielded MRSA on frequent occasions, especially in high-dependency bays. Environmental and air sampling combined with patient demographic data, spa typing and DNA microarray profiling indicated the presence of clusters that were not otherwise apparent. Copyright © 2014 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.
Health effects from indoor air pollution: case studies.
White, L E; Clarkson, J R; Chang, S N
1987-01-01
In recent years there has been a growing awareness of the health effects associated with the presence of contaminants in indoor air. Numerous agents can accumulate in public buildings, homes and automobiles as a result of ongoing activities that normally occur in these closed spaces. Ventilation is a major factor in the control of indoor air pollutants since proper movement of air can prevent or minimize the build up of compounds in buildings. The recent emphasis on energy conservation has lead to measures which economize on energy for heating and air conditioning, but which also trap pollutants within a building. Three cases of indoor air pollution were investigated. A typical investigation of indoor air pollutant problems includes the following: interviews with building occupants; history of the building with regard to maintenance, pesticide treatment, etc.; a survey of the building and ventilation; and when warranted, sampling and analysis of air. Each case presented is unique in that atypical situations caused agents to accumulate in a building or section of a building. The indoor air problems in these cases were solved by identifying and removing the source of the offending agent and/or improving the ventilation in the building.
Braun, Christopher L.; Wilson, Jennifer T.
2010-01-01
Meandering Road Creek is an intermittent stream and tributary to Lake Worth, a reservoir on the West Fork Trinity River on the western edge of Fort Worth, Texas. U.S. Air Force Plant 4 (AFP4) is on the eastern shore of Woods Inlet, an arm of Lake Worth. Meandering Road Creek gains inflow from several stormwater outfalls as it flows across AFP4. Several studies have characterized polychlorinated biphenyls (PCBs) in the water and sediments of Lake Worth and Meandering Road Creek; sources of PCBs are believed to originate primarily from AFP4. Two previous U.S. Geological Survey (USGS) reports documented elevated PCB concentrations in surficial sediment samples from Woods Inlet relative to concentrations in surficial sediment samples from other parts of Lake Worth. The second of these two previous reports also identified some of the sources of PCBs to Lake Worth. These reports were followed by a third USGS report that documented the extent of PCB contamination in Meandering Road Creek and Woods Inlet and identified runoff from outfalls 4 and 5 at AFP4 as prominent sources of these PCBs. This report describes the results of a fourth study by the USGS, in cooperation with the Lockheed Martin Corporation, to investigate PCBs in suspended-sediment samples in storm runoff from outfalls 4 and 5 at AFP4 following the implementation of engineering controls designed to potentially alleviate PCB contamination in the drainage areas of these outfalls. Suspended-sediment samples collected from outfalls 4 and 5 during storms on March 2 and November 10, 2008, were analyzed for selected PCBs. Sums of concentrations of 18 reported PCB congeners (Sigma PCBc) in suspended-sediment samples collected before and after implementation of engineering controls are compared. At both outfalls, the Sigma PCBc before engineering controls was higher than the Sigma PCBc after engineering controls. The Sigma PCBc in suspended-sediment samples collected at AFP4 before and after implementation of engineering controls also is compared to the threshold effect concentration (TEC), the concentration below which adverse effects to benthic biota rarely occur. Sigma PCBc exceeded the TEC for 75 percent of the samples collected at outfall 4 and 67 percent of the samples collected at outfall 5 before the implementation of engineering controls. Sigma PCBc did not exceed the TEC in samples collected at either outfall 4 or outfall 5 after the implementation of engineering controls. The relative prominence of 10 selected PCB congeners was evaluated by graphical analysis of ratios of individual concentrations of the 10 PCB congeners to the sum of these PCB congeners. An overall decrease in concentrations of PCB congeners at outfalls 4 and 5 after implementation of engineering controls, as well as a shift in prominence from lighter, less chlorinated congeners to a heavier, more chlorinated congener might have resulted from the implementation of engineering controls. Because of the small number of samples collected and lack of runoff and precipitation data to evaluate comparability of sampling conditions before and after implementation of engineering controls, all conclusions are preliminary.
NASA Astrophysics Data System (ADS)
Pudasainee, Deepak; Kim, Jeong-Hun; Seo, Yong-Chil
2009-12-01
Regulatory control of mercury emission from anthropogenic sources has become a global concern in the recent past. Coal-fired power plants are one of the largest sources of anthropogenic mercury emission into the atmosphere. This paper summarizes the current reducing trend of mercury emission as co-beneficial effect by more stringent regulation changes to control primary air pollutants with introducing test results from the commercial coal-fired facilities and suggesting a guideline for future regulatory development in Korea. On average, mercury emission concentrations ranged 16.3-2.7 μg Sm -3, 2.4-1.1 μg Sm -3, 3.1-0.7 μg Sm -3 from anthracite coal-fired power plants equipped with electrostatic precipitator (ESP), bituminous coal-fired power plants with ESP + flue gas desulphurization (FGD) and bituminous coal-fired power plants with selective catalytic reactor (SCR) + cold side (CS) - ESP + wet FGD, respectively. Among the existing air pollution control devices, the best configuration for mercury removal in coal-fired power plants was SCR + CS - ESP + wet FGD, which were installed due to the stringent regulation changes to control primary air pollutants emission such as SO 2, NOx and dust. It was estimated that uncontrolled and controlled mercury emission from coal-fired power plants as 10.3 ton yr -1 and 3.2 ton yr -1 respectively. After the installation of ESP, FGD and SCR system, following the enforcement of the stringent regulation, 7.1 ton yr -1 of mercury emission has been reduced (nearly 69%) from coal-fired power plants as a co-benefit control. Based on the overall study, a sample guideline including emission limits were suggested which will be applied to develop a countermeasure for controlling mercury emission from coal-fired power plants.
Zacharski, Krzysztof A; Southern, Mark; Ryan, Alan; Adley, Catherine C
2018-07-01
Microbiological hazards can occur when foodstuffs come into contact with contaminated surfaces or infectious agents dispersed by air currents in the manufacturing environment. An environmental monitoring program (EMP) is a critical aspect of sustainable and safe food manufacturing used to evaluate the effectiveness of the microbial controls in place. An effective EMP should be based on risk analysis, taking into account previous sampling history to determine the selection of the sampling points, the scope of the test, and the frequency of analysis. This study involved evaluation of the environmental monitoring regime and microbiological status of a medium-sized dairy plant manufacturing food ingredients, e.g., proteins, milk powders, and dairy fats. The data specific to microbial tests ( n = 3,468), recorded across 124 fixed sampling locations over a 2-year period (2014 to 2015) from air ( n = 1,787) and surfaces ( n = 1,681) were analyzed. The aim of this study was to highlight the strengths and weaknesses of the EMP in a select dairy processing plant. The results of this study outline the selection of sampling locations, the scope of the test, and the frequency of analysis. An analysis of variance revealed subsections of the manufacturing areas with high risk factors, especially the packaging subsection specified for bulk packaging, the atomizer, and the fluidized bed. The temporal and spatial analysis showed the potential to reduce or relocate the monitoring effort, most notably related to total coliforms and Staphylococcus aureus, across the dairy plant due to homogeneity across the sampling subsections with little or no deviations. The results suggest a need to reevaluate the current EMP and the corrective action plan, especially with regard to detection of pathogens. Recommendations for optimization of the EMP are presented to assist the dairy industry with reviewing and revising the control measures and hazard assessment with regard to existing contamination issues.
Luksamijarulkul, Pipat; Sundhiyodhin, Viboonsri; Luksamijarulkul, Soavalug; Kaewboonchoo, Orawan
2004-06-01
The air quality in mass transport buses, especially air-conditioned buses may affect bus drivers who work full time. Bus numbers 16, 63, 67 and 166 of the Seventh Bus Zone of Bangkok Mass Transit Authority were randomly selected to investigate for microbial air quality. Nine air-conditioned buses and 2-4 open-air buses for each number of the bus (36 air-conditioned buses and 12 open-air buses) were included. Five points of in-bus air samples in each studied bus were collected by using the Millipore A ir Tester Totally, 180 and 60 air samples collected from air-conditioned buses and open-air buses were cultured for bacterial and fungal counts. The bus drivers who drove the studied buses were interviewed towards histories of work-related illness while working. The results revealed that the mean +/- SD of bacterial counts in the studied open-air buses ranged from 358.50 +/- 146.66 CFU/m3 to 506 +/- 137.62 CFU/m3; bus number 16 had the highest level. As well as the mean +/- SD of fungal counts which ranged from 93.33 +/- 44.83 CFU/m3 to 302 +/- 294.65 CFU/m3; bus number 166 had the highest level. Whereas, the mean +/- SD of bacterial counts in the studied air-conditioned buses ranged from 115.24 +/- 136.01 CFU/m3 to 244.69 +/- 234.85 CFU/m3; bus numbers 16 and 67 had the highest level. As well as the mean +/- SD of fungal counts which rangedfrom 18.84 +/- 39.42 CFU/m3 to 96.13 +/- 234.76 CFU/m3; bus number 166 had the highest level. When 180 and 60 studied air samples were analyzed in detail, it was found that 33.33% of the air samples from open-air buses and 6.11% of air samples from air-conditioned buses had a high level of bacterial counts (> 500 CFU/m3) while 6.67% of air samples from open-air buses and 2.78% of air samples from air-conditioned buses had a high level of fungal counts (> 500 CFU/m3). Data from the history of work-related illnesses among the studied bus drivers showed that 91.67% of open-air bus drivers and 57.28% of air-conditioned bus drivers had symptoms of work-related illnesses, p = 0.0185.
Biomarkers of oxidative stress in electroplating workers exposed to hexavalent chromium.
Pan, Chih-Hong; Jeng, Hueiwang Anna; Lai, Ching-Huang
2018-01-01
This study evaluates levels of biomarkers of oxidative DNA damage and lipid peroxidation in 105 male workers at 16 electroplating companies who had been exposed to hexavalent chromium (Cr(VI)). The study participants were 230 non-smoking male workers, comprising 105 electroplating workers who had been exposed to chromium and 125 control subjects who performed office tasks. Personal air samples, spot urine samples, hair samples, fingernail samples and questionnaires were used to quantify exposure to Cr(VI), oxidative DNA damage, lipid peroxidation, and environmental pollutants. Both the geometric mean personal concentrations of Cr(VI) of the Cr-exposed workers and the total Cr concentrations in the air to which they were exposed significantly exceeded those for the control subjects. The geometric mean concentrations of Cr in urine, hair and fingernails, and the urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG), and malondialdehyde (MDA) levels in the Cr(VI) exposed workers exceeded those in the control subjects. Daily cumulative Cr(VI) exposure and urinary Cr were significantly correlated with urinary 8-OHdG levels following adjustments for covariates. A ten-fold increase in urinary Cr level was associated with a 1.73-fold increase in urinary 8-OHdG level. Daily cumulative Cr(VI) exposure and urinary Cr level were significantly correlated with urinary MDA level following adjustments for covariates. A ten-fold increase in urinary Cr was associated with a 1.45-fold increase in urinary MDA. Exposure to Cr(VI) increased oxidative DNA injury and the oxidative deterioration of lipids in electroplating workers.
[Aspergillus species in hospital environments with pediatric patients in critical condition].
Fernández, Mariana; Cattana, María; Rojas, Florencia; Sosa, María de Los Ángeles; Aguirre, Clarisa; Vergara, Marta; Giusiano, Gustavo
2014-01-01
Aspergillus is a group of opportunistic fungi that cause infections, with high morbimortality in immunosuppressed patients. Aspergillus fumigatus is the most frequent species in these infections, although the incidence of other species has increased in the last few years. To evaluate the air fungal load and the diversity of Aspergillus species in hospitals with pediatric patients in critical condition. The Intensive Care Unit and Burns Unit of a pediatric hospital were sampled every 15 days during the autumn and spring seasons. The air samples were collected with SAS Super 100(®) and the surface samples were collected by swab method. The UFC/m(3) counts found exceeded the acceptable levels. The UFC/m(3) and the diversity of Aspergillus species found in the Intensive Care Unit were higher than those found in the Burns Unit. The fungal load and the diversity of species within the units were higher than those in control environments. The use of both methods -SAS and swab- allowed the detection of a higher diversity of species, with 96 strains of Aspergillus being isolated and 12 species identified. The outstanding findings were Aspergillus sydowii, Aspergillus niger, Aspergillus flavus, Aspergillus terreus and Aspergillus parasiticus, due to their high frequency. Aspergillus fumigatus, considered unacceptable in indoor environments, was isolated in both units. Aspergillus was present with high frequency in these units. Several species are of interest in public health for being potential pathogenic agents. Air control and monitoring are essential in the prevention of these infections. Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.
Air pollution sources and childhood asthma attacks in Catano, Puerto Rico.
Loyo-Berríos, Nilsa I; Irizarry, Rafael; Hennessey, Joseph G; Tao, Xuguang Grant; Matanoski, Genevieve
2007-04-15
Asthma prevalence in the Cataño Air Basin of Puerto Rico is 27% for children aged 13-14 years and 45% for children aged 5-6 years. There is concern that these rates are related to air pollution. The authors conducted a nested case-control study to evaluate whether proximity to air pollution point sources was associated with increased risk of asthma attacks. For 1997-2001, 1,382 asthma-related medical visits (International Classification of Diseases, Ninth Revision, codes 493 and 493.9) in children under 17 were identified through health insurance claims. Controls were children with no asthma attacks who were randomly selected from enrollees in two health insurance companies by incidence density sampling (1:5) and matched to cases on gender, age, insurance company, and event date. The distance from a point source to the subject's residence area represented a surrogate exposure measurement. Odds ratios for a 1-km decrease in distance were obtained by conditional logistic regression. Risk of asthma attack was associated with residing near a grain mill (odds ratio (OR) = 1.35), petroleum refinery (OR = 1.44), asphalt plant (OR = 1.23), or power plant (OR = 1.28) (all p's < 0.05). Residence near major air emissions sources (>100 tons/year) increased asthma attack risk by 108% (p < 0.05). These results showed that proximity to some air pollution sources is associated with increased risks of asthma attacks.
Atomic force microscopy imaging of macromolecular complexes.
Santos, Sergio; Billingsley, Daniel; Thomson, Neil
2013-01-01
This chapter reviews amplitude modulation (AM) AFM in air and its applications to high-resolution imaging and interpretation of macromolecular complexes. We discuss single DNA molecular imaging and DNA-protein interactions, such as those with topoisomerases and RNA polymerase. We show how relative humidity can have a major influence on resolution and contrast and how it can also affect conformational switching of supercoiled DNA. Four regimes of AFM tip-sample interaction in air are defined and described, and relate to water perturbation and/or intermittent mechanical contact of the tip with either the molecular sample or the surface. Precise control and understanding of the AFM operational parameters is shown to allow the user to switch between these different regimes: an interpretation of the origins of topographical contrast is given for each regime. Perpetual water contact is shown to lead to a high-resolution mode of operation, which we term SASS (small amplitude small set-point) imaging, and which maximizes resolution while greatly decreasing tip and sample wear and any noise due to perturbation of the surface water. Thus, this chapter provides sufficient information to reliably control the AFM in the AM AFM mode of operation in order to image both heterogeneous samples and single macromolecules including complexes, with high resolution and with reproducibility. A brief introduction to AFM, its versatility and applications to biology is also given while providing references to key work and general reviews in the field.
Hayes, Robert
2004-10-01
In most nuclear facilities, fixed air samplers and sometimes portable air samplers are used where some probability of a release exists but is not expected, and so the added expense and effort of using a continuous air monitor is not deemed justified. When a release is suspected, naturally occurring radioactive material buildup on the filter typically prevents any quantitative measurements within the first day or so. Likewise, outdoor air measurements suffer from the same limitations (such as those taken during the Los Alamos fires) and so any rapid quantifiable measurements of fixed air sampler/portable air sampler filters which are technically defendable (even though conservative) are of use. The technique presented here is only intended for use in routine health physics survey applications and does not presently appear to be appropriate for sub pico Curie activity determinations. This study evaluates the utility of using a portable continuous air monitor as an alpha spectrometer to make transuranic activity determinations of samples using both the built in algorithm for air monitoring and a simple region of interest analysis. All samples evaluated were from air sample filters taken using a portable air sampler. Samples were taken over many months to quantify effects from natural variation in radon progeny activity distributions.
Metcalf, J S; Meriluoto, J A O; Codd, G A
2006-05-25
Cyanotoxins are now recognised by international and national health and environment agencies as significant health hazards. These toxins, and the cells which produce them, are also vulnerable to exploitation for illegitimate purposes. Cyanotoxins are increasingly being subjected to national and international guidelines and regulations governing their production, storage, packaging and transportation. In all of these respects, cyanotoxins are coming under the types of controls imposed on a wide range of chemicals and other biotoxins of microbial, plant and animal origin. These controls apply whether cyanotoxins are supplied on a commercial basis, or stored and transported in non-commercial research collaborations and programmes. Included are requirements concerning the transportation of these toxins as documented by the United Nations, the International Air Transport Association (IATA) and national government regulations. The transportation regulations for "dangerous goods", which by definition include cyanotoxins, cover air mail, air freight, and goods checked in and carried on flights. Substances include those of determined toxicity and others of suspected or undetermined toxicity, covering purified cyanotoxins, cyanotoxin-producing laboratory strains and environmental samples of cyanobacteria. Implications of the regulations for the packaging and air-transport of dangerous goods, as they apply to cyanotoxins and toxigenic cyanobacteria, are discussed.
A flow boiling microchannel thermosyphon for fuel cell thermal management
NASA Astrophysics Data System (ADS)
Garrity, Patrick Thomas
To provide a high power density thermal management system for proton exchange membrane (PEM) fuel cell applications, a passively driven thermal management system was assembled to operate in a closed loop two-phase thermosyphon. The system has two major components; a microchannel evaporator plate and a condenser. The microchannel evaporator plate was fabricated with 56 square channels that have a 1 mm x 1 mm cross section and are 115 mm long. Experiments were conducted with a liquid cooled condenser with heat flux as the control variable. Measurements of mass flow rate, temperature field, and pressure drop have been made for the thermosyphon loop. A model is developed to predict the system characteristics such as the temperature and pressure fields, flow rate, flow regime, heat transfer coefficient, and maximum heat flux. When the system is subjected to a heat load that exceeds the maximum heat flux, an unstable flow regime is observed that causes flow reversal and eventual dryout near the evaporator plate wall. This undesirable phenomenon is modeled based on a quasi-steady state assumption, and the model is capable of predicting the heat flux at the onset of instability for quasi-steady two-phase flow. Another focus of this work is the performance of the condenser portion of the loop, which will be air cooled in practice. The aim is to reduce air side thermal resistance and increase the condenser performance, which is accomplished with extended surfaces. A testing facility is assembled to observe the air side heat transfer performance of three aluminum foam samples and three modified carbon foam samples, used as extended surfaces. The aluminum foam samples have a bulk density of 216 kilograms per cubic meter with pore sizes of 0.5, 1, and 2 mm. The modified carbon foam samples have bulk densities of 284, 317, and 400 kilograms per cubic meter and machined flow passages of 3.2 mm. in diameter. Each sample is observed under forced convection with air velocity as the control variable. Thermocouples and pressure taps are distributed axially along the test section and measurements of pressure and temperature are recorded for air velocities ranging from 1-6 meters per second. Using the Darcy-Forcheimer equation, the porosity is determined for each sample. The volumetric heat transfer coefficient is extracted by means of solving the coupled energy equations of both the solid and fluid respectively. Nusselt number is correlated with Reynolds number. The optimal foam configuration is explored based on a Coefficient of Performance, (COP), Compactness Factor (CF) and Power Density (PD). The COP is the ratio of total heat removed to electrical heat consumption of the blower, CF is the total heat removed per unit volume, and PD is the total heat removed per unit mass. These performance parameters are computed for a hypothetical heat exchanger using each foam sample at various fluid velocities. They are also compared against those for the hypothetical heat exchanger fitted with conventional louvered fins. Given a proper weighting function based on the importance of CF, COP, and PD in the condenser design, an optimal configuration for an air cooled condenser can be obtained for various operating conditions.
[Legionella spp. contamination in indoor air: preliminary results of an Italian multicenter study].
Montagna, Maria Teresa; De Giglio, Osvalda; Napoli, Christian; Cannova, Lucia; Cristina, Maria Luisa; Deriu, Maria Grazia; Delia, Santi Antonino; Giuliano, Ada; Guida, Marco; Laganà, Pasqualina; Liguori, Giorgio; Mura, Ida; Pennino, Francesca; Rossini, Angelo; Tardivo, Stefano; Torre, Ida; Torregrossa, Maria Valeria; Villafrate, Maria Rosaria; Albertini, Roberto; Pasquarella, Cesira
2014-01-01
To propose a standardized protocol for the evaluation of Legionella contamination in air. A bathroom having a Legionella contamination in water >1,000 cfu/l was selected in 10 different healthcare facilities. Air contamination was assessed by active (Surface Air System, SAS) and passive (Index of Microbial Air, IMA) sampling for 8 hours, about 1 m away from the floor and 50 cm from the tap water. Two hundred liters of air were sampled by SAS every 12 min, after flushing water for 2 min. The IMA value was calculated as the mean value of colony forming units/16 plates exposed during sampling (2 plates/hour). Water contamination was evaluated at T0, after 4 and 8 hours, according to the standard methods. Air contamination by Legionella was found in three healthcare facilities (one with active and two with passive sampling), showing a concomitant tap water contamination (median=40,000; range 1,100-43,000 cfu/l). The remaining seven hospitals isolated Legionella spp. exclusively from water samples (median=8,000; range 1,200-70,000 cfu/l). Our data suggest that environmental Legionella contamination cannot be assessed only through the air sampling, even in the presence of an important water contamination.
Quétel, Christophe R; Zampella, Mariavittoria; Brown, Richard J C; Ent, Hugo; Horvat, Milena; Paredes, Eduardo; Tunc, Murat
2014-08-05
Data most commonly used at present to calibrate measurements of mercury vapor concentrations in air come from a relationship known as the "Dumarey equation". It uses a fitting relationship to experimental results obtained nearly 30 years ago. The way these results relate to the international system of units (SI) is not known. This has caused difficulties for the specification and enforcement of limit values for mercury concentrations in air and in emissions to air as part of national or international legislation. Furthermore, there is a significant discrepancy (around 7% at room temperature) between the Dumarey data and data calculated from results of mercury vapor pressure measurements in the presence of only liquid mercury. As an attempt to solve some of these problems, a new measurement procedure is described for SI traceable results of gaseous Hg concentrations at saturation in milliliter samples of air. The aim was to propose a scheme as immune as possible to analytical biases. It was based on isotope dilution (ID) in the liquid phase with the (202)Hg enriched certified reference material ERM-AE640 and measurements of the mercury isotope ratios in ID blends, subsequent to a cold vapor generation step, by inductively coupled plasma mass spectrometry. The process developed involved a combination of interconnected valves and syringes operated by computer controlled pumps and ensured continuity under closed circuit conditions from the air sampling stage onward. Quantitative trapping of the gaseous mercury in the liquid phase was achieved with 11.5 μM KMnO4 in 2% HNO3. Mass concentrations at saturation found from five measurements under room temperature conditions were significantly higher (5.8% on average) than data calculated from the Dumarey equation, but in agreement (-1.2% lower on average) with data based on mercury vapor pressure measurement results. Relative expanded combined uncertainties were estimated following a model based approach. They ranged from 2.2% to 2.8% (k = 2). The volume of air samples was traceable to the kilogram via weighing of water for the calibration of the sampling syringe. Procedural blanks represented on average less than 0.1% of the mass of Hg present in 7.4 cm(3) of air, and correcting for these blanks was not an important source of uncertainty.
Identifying occupational and nonoccupational exposure to mercury in dental personnel.
Shirkhanloo, Hamid; Fallah Mehrjerdi, Mohammad Ali; Hassani, Hamid
2017-03-04
The objective of this study was to investigate the occupational and nonoccupational exposure to mercury (Hg) vapor in dental personnel by examining the relationships between blood mercury, urine mercury, and their ratio with air mercury. The method was performed on 50 occupational exposed and 50 unexposed controls (25 men and 25 women). The mercury concentrations in air and human biological samples were determined based on the National Institute for Occupational Safety and Health (NIOSH) method and standard method (SM) by a new mode of liquid-phase microextraction, respectively. The mean mercury concentrations in urine (μg Hg 0 /g creatinine) and blood were significantly higher than control group, respectively (19.41 ± 5.18 vs 2.15 ± 0.07 μg/g and 16.40 ± 4.97 vs 2.50 ± 0.02 μg/L) (p <.001). The relationships between mercury concentration in blood/urine ratio (r = .380) with dental office air are new indicators for assessing occupational exposure in dental personnel.
Single-layer model to predict the source/sink behavior of diffusion-controlled building materials.
Kumar, Deept; Little, John C
2003-09-01
Building materials may act as both sources of and sinks forvolatile organic compounds (VOCs) in indoor air. A strategy to characterize the rate of absorption and desorption of VOCs by diffusion-controlled building materials is validated. A previously developed model that predicts mass transfer between a flat slab of material and the well-mixed air within a chamber or room is extended. The generalized model allows a nonuniform initial material-phase concentration and a transient influent gas-phase concentration to be simultaneously considered. An analytical solution to the more general model is developed. Experimental data are obtained by placing samples of vinyl flooring inside a small stainless steel chamber and exposing them to absorption/desorption cycles of n-dodecane and phenol. Measured values for the material-air partition coefficient and the material-phase diffusion coefficient were obtained previously in a series of completely independent experiments. The a priori model predictions are in close agreement with the observed experimental data.
Spyratos, Dionisios; Sioutas, Constantinos; Tsiotsios, Anastasios; Haidich, Anna-Bettina; Chloros, Diamantis; Triantafyllou, Georgios; Sichletidis, Lazaros
2015-01-01
The aim was to investigate respiratory symptoms, lung function and nasal airflow development among a cohort of children who were exposed to particulate air pollution. We used questionnaires, spirometry and rhinomanometry, while central-monitored PM10 concentrations were used for exposure assessment. We initially examined 1046 children (10-12 year old) in the heavily polluted town of Ptolemaida, Greece, and 379 children in the cleaner town of Grevena (control group). We re-evaluated 312 of the former and 119 of the latter after 19 years. PM10 concentrations were above permissible levels in Ptolemaida during all study period. At both visits, nasal flow was significantly lower in the study sample. At the follow-up visit, 34.3% had severe nasal obstruction (< 500 ml/s) and 38.5% reported chronic nasal symptoms. Spirometric parameters did not differ compared to the control group. Particulate air pollution had significant and negative effects on nasal but not on lung function development.
Project management plan for asbestos control at Randolph Air Force Base
DOE Office of Scientific and Technical Information (OSTI.GOV)
Broers, G.J.
1988-02-01
The United States Air Force Air Training Command (ATC) Headquarters requested assistance from the Idaho National Engineering Laboratory (INEL) in February, 1987 to develop processes and procedures and provide program management to minimize and control asbestos hazard at its thirteen bases. This effort was requested by the ATC to comply with Executive Order 12088 under which the USAF is directed to meet all applicable federal, state, and local environmental regulations. In response to that request the efforts identified within this document provide the ATC with a thorough base-wide Asbestos Survey Report, an Asbestos Management Plan and an Operations and Maintenancemore » Plan for Randolph AFB which, when implemented, will comply with current and anticipated federal laws and provide the base with accurate information needed for long range asbestos management. The other twelve bases will be surveyed and sampled in the four years to follow with appropriate asbestos management plans developed for each. 6 figs.« less
Hu, Shih-Cheng; Shiue, Angus; Tu, Jin-Xin; Liu, Han-Yang; Chiu, Rong-Ben
2015-12-01
For class II, type A2 biological safety cabinets (BSC), NSF/ANSI Standard 49 should be conformed in cabinet airflow velocity derivation, particle contamination, and aerodynamic flow properties. However, there exists a potential problem. It has been built that the cabinet air flow stabilize is influenced by the quantity of downflow of air and the height above the cabinet exhaust opening. Three air downflow quantities were compared as an operating apparatus was placed from 20 to 40 cm above the bench of the cabinet. The results show that the BSC air downflow velocity is a function of increased sampling height, displaying that containment is improvingly permitted over product protection as the sampling height decreases. This study investigated the concentration gradient of particles at various heights and downflow air quantity from the bench of the BSC. Experiment results indicate that performance near the bench was better than in the rest of the BSC. In terms of height, the best cleanliness was measured at a height of 10 cm over the bench; it reduced actually with add in height. The empirical curves accommodate, founded on the concentration gradient of particle created was elaborated for evaluating the particle concentration at different heights and downflow air quantity from the source of the bench of the BSC. The particle image velocimetry system applied for BSC airflow research to fix amount of airflow patterns and air distribution measurement and results of measurements show how obstructions can greatly influence the airflow and contaminant transportation in a BSC.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-06
... the California State Implementation Plan, Imperial County Air Pollution Control District, Kern County Air Pollution Control District, and Ventura County Air Pollution Control District AGENCY... approve revisions to the Imperial County Air Pollution Control District (ICAPCD), Kern County Air...
Woolfenden, Elizabeth
2010-04-16
Sorbent tubes/traps are widely used in combination with gas chromatographic (GC) analytical methods to monitor the vapour-phase fraction of organic compounds in air. Target compounds range in volatility from acetylene and freons to phthalates and PCBs and include apolar, polar and reactive species. Airborne vapour concentrations will vary depending on the nature of the location, nearby pollution sources, weather conditions, etc. Levels can range from low percent concentrations in stack and vent emissions to low part per trillion (ppt) levels in ultra-clean outdoor locations. Hundreds, even thousands of different compounds may be present in any given atmosphere. GC is commonly used in combination with mass spectrometry (MS) detection especially for environmental monitoring or for screening uncharacterised workplace atmospheres. Given the complexity and variability of organic vapours in air, no one sampling approach suits every monitoring scenario. A variety of different sampling strategies and sorbent media have been developed to address specific applications. Key sorbent-based examples include: active (pumped) sampling onto tubes packed with one or more sorbents held at ambient temperature; diffusive (passive) sampling onto sorbent tubes/cartridges; on-line sampling of air/gas streams into cooled sorbent traps; and transfer of air samples from containers (canisters, Tedlar) bags, etc.) into cooled sorbent focusing traps. Whichever sampling approach is selected, subsequent analysis almost always involves either solvent extraction or thermal desorption (TD) prior to GC(/MS) analysis. The overall performance of the air monitoring method will depend heavily on appropriate selection of key sampling and analytical parameters. This comprehensive review of air monitoring using sorbent tubes/traps is divided into 2 parts. (1) Sorbent-based air sampling option. (2) Sorbent selection and other aspects of optimizing sorbent-based air monitoring methods. The paper presents current state-of-the-art and recent developments in relevant areas such as sorbent research, sampler design, enhanced approaches to analytical quality assurance and on-tube derivatisation. Copyright 2009 Elsevier B.V. All rights reserved.
Molecular detection of airborne Coccidioides in Tucson, Arizona
Chow, Nancy A.; Griffin, Dale W.; Barker, Bridget M.; Loparev, Vladimir N.; Litvintseva, Anastasia P.
2016-01-01
Environmental surveillance of the soil-dwelling fungus Coccidioides is essential for the prevention of Valley fever, a disease primarily caused by inhalation of the arthroconidia. Methods for collecting and detectingCoccidioides in soil samples are currently in use by several laboratories; however, a method utilizing current air sampling technologies has not been formally demonstrated for the capture of airborne arthroconidia. In this study, we collected air/dust samples at two sites (Site A and Site B) in the endemic region of Tucson, Arizona, and tested a variety of air samplers and membrane matrices. We then employed a single-tube nested qPCR assay for molecular detection. At both sites, numerous soil samples (n = 10 at Site A and n = 24 at Site B) were collected and Coccidioides was detected in two samples (20%) at Site A and in eight samples (33%) at Site B. Of the 25 air/dust samples collected at both sites using five different air sampling methods, we detected Coccidioides in three samples from site B. All three samples were collected using a high-volume sampler with glass-fiber filters. In this report, we describe these methods and propose the use of these air sampling and molecular detection strategies for environmental surveillance of Coccidioides.
Ackelsberg, Joel; Leykam, Frederic M; Hazi, Yair; Madsen, Larry C; West, Todd H; Faltesek, Anthony; Henderson, Gavin D; Henderson, Christopher L; Leighton, Terrance
2011-09-01
Native air sampling (NAS) is distinguished from dedicated air sampling (DAS) devices (eg, BioWatch) that are deployed to detect aerosol disseminations of biological threat agents. NAS uses filter samples from heating, ventilation, and air conditioning (HVAC) systems in commercial properties for environmental sampling after DAS detection of biological threat agent incidents. It represents an untapped, scientifically sound, efficient, widely distributed, and comparably inexpensive resource for postevent environmental sampling. Calculations predict that postevent NAS would be more efficient than environmental surface sampling by orders of magnitude. HVAC filter samples could be collected from pre-identified surrounding NAS facilities to corroborate the DAS alarm and delineate the path taken by the bioaerosol plume. The New York City (NYC) Native Air Sampling Pilot Project explored whether native air sampling would be acceptable to private sector stakeholders and could be implemented successfully in NYC. Building trade associations facilitated outreach to and discussions with property owners and managers, who expedited contact with building managers of candidate NAS properties that they managed or owned. Nominal NAS building requirements were determined; procedures to identify and evaluate candidate NAS facilities were developed; data collection tools and other resources were designed and used to expedite candidate NAS building selection and evaluation in Manhattan; and exemplar environmental sampling playbooks for emergency responders were completed. In this sample, modern buildings with single or few corporate tenants were the best NAS candidate facilities. The Pilot Project successfully demonstrated that in one urban setting a native air sampling strategy could be implemented with effective public-private collaboration.
SRS environmental air surveillance program 1954-2015: General trends
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abbott, K.; Jannik, T.
The radiological monitoring program at SRS was established under the DuPont Company in June 1951 and was used as a measurement of the effectiveness of plant controls and as an authoritative record of environmental conditions surrounding the plant. It also served as a method of demonstrating compliance with applicable federal regulations and guidance. This document serves as a general summary of changes made specifically to the environmental air monitoring program since its inception, and a discussion of the general trends seen in the air monitoring program at SRS from 1954 to 2015. Initially, the environmental air surveillance program focused notmore » only on releases from SRS but also on fallout from various weapons testing performed through the end of 1978. Flypaper was used to measure the amount of fallout in the atmosphere during this period, and was present at each of the 10 monitoring stations. By 1959, all site stacks were included in the air monitoring program to determine their contribution to the airborne radioactivity onsite, and the number of air surveillance samplers rose to 18. This trend of an increased number of sampling locations continued to a peak of 35 sampling locations before shifting to a downward trend in the mid-1990s. In 1962, 4 outer-range samplers were placed in Savannah and Macon, GA, and in Greenville and Columbia, SC. Until 1976, air samplers were simply placed around the perimeter of the various operation locations (after 1959, this included stacks to determine their contribution to the airborne radioactivity), with the intent of creating as representative a distribution as possible of the air surrounding operations.« less
Vincent, R; Poirot, P; Subra, I; Rieger, B; Cicolella, A
1994-01-01
The exposure of workers to methylene chloride and phenol in an aeronautical workshop was measured during stripping of paint from a Boeing B 747. Methylene chloride exposure was measured during two work days by personal air sampling, while area sampling was used for phenol. During paint stripping operations, methylene chloride air concentrations ranged from 299.2 mg/m3 (83.1 ppm) to 1888.9 mg/m3 (524.7 ppm). The exposures to methylene chloride calculated for an 8-h work day ranged from 86 mg/m3 (23.9 ppm) to 1239.5 mg/m3 (344.3 ppm). In another aeronautical workshop, exposure to organic solvents, especially ethylene glycol monoethylether acetate (EGEEA), was controlled during the painting of an Airbus A 320. The external exposure to solvents and EGEEA was measured by means of individual air sampling. The estimation of internal exposure to EGEEA was made by measuring its urinary metabolite, ethoxyacetic acid (EAA). Both measurements were made during the course of 3 days. The biological samples were taken pre- and post-shift. During painting operations, methyl ethyl ketone, ethyl acetate, n-butyl alcohol, methyl isobutyl ketone, toluene, n-butyl acetate, ethylbenzene, xylenes and EGEEA were detected in working atmospheres. For these solvents, air concentrations ranged from 0.1 ppm to 69.1 ppm. EGEEA concentrations ranged from 29.2 mg/m3 (5.4 ppm) to 150.1 mg/m3 (27.8 ppm). For biological samples, the average concentrations of EAA were 108.4 mg/g creatinine in pre-shift and 139.4 mg/g creatinine in post-shift samples. Despite the fact that workers wore protective respiratory equipment during paint spraying operations, EEA urinary concentrations are high and suggest that percutaneous uptake is the main route of exposure for EGEEA.(ABSTRACT TRUNCATED AT 250 WORDS)
In-vehicle VOCs composition of unconditioned, newly produced cars.
Brodzik, Krzysztof; Faber, Joanna; Łomankiewicz, Damian; Gołda-Kopek, Anna
2014-05-01
The in-vehicle volatile organic compounds (VOCs) concentrations gains the attention of both car producers and users. In the present study, an attempt was made to determine if analysis of air samples collected from an unconditioned car cabin can be used as a quality control measure. The VOCs composition of in-vehicle air was analyzed by means of active sampling on Carbograph 1TD and Tenax TA sorbents, followed by thermal desorption and simultaneous analysis on flame ionization and mass detector (TD-GC/FID-MS). Nine newly produced cars of the same brand and model were chosen for this study. Within these, four of the vehicles were equipped with identical interior materials and five others differed in terms of upholstery and the presence of a sunroof; one car was convertible. The sampling event took place outside of the car assembly plant and the cars tested left the assembly line no later than 24 hr before the sampling took place. More than 250 compounds were present in the samples collected; the identification of more than 160 was confirmed by comparative mass spectra analysis and 80 were confirmed by both comparison with single/multiple compounds standards and mass spectra analysis. In general, aliphatic hydrocarbons represented more than 60% of the total VOCs (TVOC) determined. Depending on the vehicle, the concentration of aromatic hydrocarbons varied from 12% to 27% of total VOCs. The very short period between car production and sampling of the in-vehicle air permits the assumption that the entire TVOC originates from off-gassing of interior materials. The results of this study expand the knowledge of in-vehicle pollution by presenting information about car cabin air quality immediately after car production. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
Tobin, John
1989-01-01
A sampling apparatus is provided which comprises a sampler for sampling air in the breathing zone of a wearer of the apparatus and a support for the sampler preferably in the form of a pair of eyeglasses. The sampler comprises a sampling assembly supported on the frame of the eyeglasses and including a pair of sample transport tubes which are suspended, in use, centrally of the frame so as to be disposed on opposite sides of the nose of the wearer and which each include an inlet therein that, in use, is disposed adjacent to a respective nostril of the nose of the wearer. A filter holder connected to sample transport tubes supports a removable filter for filtering out particulate material in the air sampled by the apparatus. The sample apparatus is connected to a pump for drawing air into the apparatus through the tube inlets so that the air passes through the filter.
Fungi and bacteria in mould-damaged and non-damaged office environments in a subarctic climate
NASA Astrophysics Data System (ADS)
Salonen, Heidi; Lappalainen, Sanna; Lindroos, Outi; Harju, Riitta; Reijula, Kari
The fungi and bacterial levels of the indoor air environments of 77 office buildings were measured in winter and a comparison was made between the buildings with microbe sources in their structures and those without such sources. Penicillium, yeasts, Cladosporium and non-sporing isolates were the commonest fungi detected in the indoor air and in settled dust, in both the mould-damaged and control buildings. Aspergillus ochraceus, Aspergillus glaucus and Stachybotrys chartarium were found only in environmental samples from the mould-damaged buildings. Some other fungi, with growth requiring of water activity, aw, above 0.85, occurred in both the reference and mould-damaged buildings, but such fungi were commoner in the latter type of buildings. The airborne concentrations of Penicillium, Aspergillus versicolor and yeasts were the best indicators of mould damage in the buildings studied. Penicillium species and A. versicolor were also the most abundant fungi in the material samples. This study showed that the fungi concentrations were very low (2-45 cfu m -3 90% of the concentrations being <15 cfu m -3) in the indoor air of the normal office buildings. Although the concentration range of airborne fungi was wider for the mould-damaged buildings (2-2470 cfu m -3), only about 20% of the samples exceeded 100 cfu m -3. The concentrations of airborne bacteria ranged from 12 to 540 cfu m -3 in the control buildings and from 14 to 1550 cfu m -3 in the mould-damaged buildings. A statistical analysis of the results indicated that bacteria levels are generally <600 cfu m -3 in office buildings in winter and fungi levels are <50 cfu m -3. These normal levels are applicable to subarctic climates for urban, modern office buildings when measurements are made using a six-stage impactor. These levels should not be used in evaluations of health risks, but elevated levels may indicate the presence of abnormal microbe sources in indoor air and a need for additional environmental investigations.
Abou-Donia, Mohamed B; Abou-Donia, Martha M; ElMasry, Eman M; Monro, Jean A; Mulder, Michel F A
2013-01-01
This descriptive study reports the results of assays performed to detect circulating autoantibodies in a panel of 7 proteins associated with the nervous system (NS) in sera of 12 healthy controls and a group of 34 flight crew members including both pilots and attendants who experienced adverse effects after exposure to air emissions sourced to the ventilation system in their aircrafts and subsequently sought medical attention. The proteins selected represent various types of proteins present in nerve cells that are affected by neuronal degeneration. In the sera samples from flight crew members and healthy controls, immunoglobin (IgG) was measured using Western blotting against neurofilament triplet proteins (NFP), tubulin, microtubule-associated tau proteins (tau), microtubule-associated protein-2 (MAP-2), myelin basic protein (MBP), glial fibrillary acidic protein (GFAP), and glial S100B protein. Significant elevation in levels of circulating IgG-class autoantibodies in flight crew members was found. A symptom-free pilot was sampled before symptoms and then again afterward. This pilot developed clinical problems after flying for 45 h in 10 d. Significant increases in autoantibodies were noted to most of the tested proteins in the serum of this pilot after exposure to air emissions. The levels of autoantibodies rose with worsening of his condition compared to the serum sample collected prior to exposure. After cessation of flying for a year, this pilot's clinical condition improved, and eventually he recovered and his serum autoantibodies against nervous system proteins decreased. The case study with this pilot demonstrates a temporal relationship between exposure to air emissions, clinical condition, and level of serum autoantibodies to nervous system-specific proteins. Overall, these results suggest the possible development of neuronal injury and gliosis in flight crew members anecdotally exposed to cabin air emissions containing organophosphates. Thus, increased circulating serum autoantibodies resulting from neuronal damage may be used as biomarkers for chemical-induced CNS injury.
Schmidlin, Patrick R; Fujioka-Kobayashi, Masako; Mueller, Heinz-Dieter; Sculean, Anton; Lussi, Adrian; Miron, Richard J
2017-06-01
The aim of this study is to examine morphological changes of dentin surfaces following air polishing or amino acid buffered hypochlorite solution application and to assess their influence on periodontal ligament (PDL) cell survival, attachment, and spreading to dentin discs in vitro. Bovine dentin discs were treated with either (i) Classic, (ii) Plus, or (iii) Perio powder (EMS). Furthermore, Perisolv® a hypochlorite solution buffered with various amino acids was investigated. Untreated dentin discs served as controls. Morphological changes to dentin discs were assessed using scanning electron microscopy (SEM). Human PDL cells were seeded onto the respectively treated discs, and samples were then investigated for PDL cell survival, attachment, and spreading using a live/dead assay, adhesion assay, and SEM imaging, respectively. Both control and Perisolv®-rinsed dentin discs demonstrated smooth surfaces at low and high magnifications. The Classic powders demonstrated the thickest coating followed by the Powder Plus. The Perio powder demonstrated marked alterations of dentin discs by revealing the potential to open dentinal tubules even before rinsing. Seeding of PDL cells demonstrated an almost 100 % survival rate on all samples demonstrating very high biocompatibility for all materials. Significantly higher PDL cell numbers were observed on samples treated with the Perio powder and the Perisolv® solution (approximately 40 % more cells; p < 0.05). SEM imaging revealed the potential for PDL cells to attach and spread on all surfaces. The results from the present study demonstrate that cell survival and spreading of PDL cells on root surfaces is possible following either air polishing or application with Perisolv®. Future in vitro and animal testing is necessary to further characterize the beneficial effects of either system in a clinical setting. The use of air polishing or application with Perisolv amino acid buffered hypochlorite solution was effective in treating root surfaces and allowed for near 100 % PDL cell survival, attachment, and spreading onto all root surfaces.
40 CFR 86.605-88 - Maintenance of records; submittal of information.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., pressure increase across the pump, and the temperature set point of the temperature control system. (2... samples are being collected. (3) Humidity of dilution air. (4) Manufacturer, model, type and serial number..., ambient temperature and humidity. (2) Data and time of day. (ii) In lieu of recording test equipment...
40 CFR 86.605-88 - Maintenance of records; submittal of information.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., pressure increase across the pump, and the temperature set point of the temperature control system. (2... samples are being collected. (3) Humidity of dilution air. (4) Manufacturer, model, type and serial number..., ambient temperature and humidity. (2) Data and time of day. (ii) In lieu of recording test equipment...
40 CFR 86.605-88 - Maintenance of records; submittal of information.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., pressure increase across the pump, and the temperature set point of the temperature control system. (2... samples are being collected. (3) Humidity of dilution air. (4) Manufacturer, model, type and serial number..., ambient temperature and humidity. (2) Data and time of day. (ii) In lieu of recording test equipment...
Variable Temperature Equipment for a Commercial Magnetic Susceptibility Balance
ERIC Educational Resources Information Center
Lotz, Albert
2008-01-01
Variable temperature equipment for the magnetic susceptibility balance MSB-MK1 of Sherwood Scientific, Ltd., is described. The sample temperature is controlled with streaming air heated by water in a heat exchanger. Whereas the balance as sold commercially can be used only for room temperature measurements, the setup we designed extends the…
Effect of shrinkage on isothermal drying behavior of 2-phase olive mill waste
USDA-ARS?s Scientific Manuscript database
The objective of this study was to determine the drying behavior of 2-phase olive mill waste (2POMW) under isothermal microwave-convection drying conditions. 2POMW samples were dried in a thin layer in a variable-power pilot microwave oven with impinging air, using a feedback controller to maintain...
The effect of sample height on spray coverage in mature pecan trees
USDA-ARS?s Scientific Manuscript database
Pecan scab (caused by Fusicladium effusum) is the most damaging disease of pecan in the southeastern US. Large air-blast sprayers for orchards are used to apply fungicide to control the disease, but little quantitative information exists on the spray coverage achieved in the canopy of these trees. I...
The Czech Hydrometeorological Institute (CHMI) in collaboration with the U.S. Environmental Protection Agency conducted a multi-pollutant source apportionment study in 2012 to quantify the impact of regional as well as local sources on air quality in the Ostrava metropolitan area...
40 CFR 92.129 - Exhaust sample analysis.
Code of Federal Regulations, 2012 CFR
2012-07-01
... the span drift between the pre-analysis and post-analysis checks on any range used may exceed 3... (CONTINUED) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.129 Exhaust... and span each range to be used on each analyzer used prior to the beginning of the test sequence. The...
40 CFR 92.129 - Exhaust sample analysis.
Code of Federal Regulations, 2013 CFR
2013-07-01
... the span drift between the pre-analysis and post-analysis checks on any range used may exceed 3... (CONTINUED) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.129 Exhaust... and span each range to be used on each analyzer used prior to the beginning of the test sequence. The...
40 CFR 92.129 - Exhaust sample analysis.
Code of Federal Regulations, 2011 CFR
2011-07-01
... the span drift between the pre-analysis and post-analysis checks on any range used may exceed 3... (CONTINUED) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.129 Exhaust... and span each range to be used on each analyzer used prior to the beginning of the test sequence. The...
40 CFR 92.129 - Exhaust sample analysis.
Code of Federal Regulations, 2010 CFR
2010-07-01
... the span drift between the pre-analysis and post-analysis checks on any range used may exceed 3... (CONTINUED) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.129 Exhaust... and span each range to be used on each analyzer used prior to the beginning of the test sequence. The...
Control technology for Richard Klinger, Inc. , Sidney, Ohio. Indepth survey report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heitbrink, W.A.
1984-06-25
Environmental and breathing zone samples were analyzed for asbestos (1332214) at Richard Klinger Incorporated (SIC-3069), Sidney, Ohio in August 1983 as part of an in depth study of dust control during bag opening, dumping, and disposal. Asbestos control technology was inspected. Control of asbestos at the facility was achieved by using an automatic cleaner to clean spills and routinely remove settled and spilled asbestos from the floor. During periods of peak exposure, workers wore NIOSH approved respirators and disposable coveralls. Air sampling was used to identify any asbestos control problems. Closed bales of asbestos were torn. The author concludes thatmore » operation of the bag slitter does not increase asbestos concentrations. Closed bales of asbestos may be an emission source. Improving the quality of the wrapping around the bales and handling techniques during shipment are recommended.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maddalena, Randy; Parra, Amanda; Russell, Marion
Diffusive or passive sampling methods using commercially filled axial-sampling thermal desorption tubes are widely used for measuring volatile organic compounds (VOCs) in air. The passive sampling method provides a robust, cost effective way to measure air quality with time-averaged concentrations spanning up to a week or more. Sampling rates for VOCs can be calculated using tube geometry and Fick’s Law for ideal diffusion behavior or measured experimentally. There is evidence that uptake rates deviate from ideal and may not be constant over time. Therefore, experimentally measured sampling rates are preferred. In this project, a calibration chamber with a continuous stirredmore » tank reactor design and constant VOC source was combined with active sampling to generate a controlled dynamic calibration environment for passive samplers. The chamber air was augmented with a continuous source of 45 VOCs ranging from pentane to diethyl phthalate representing a variety of chemical classes and physiochemical properties. Both passive and active samples were collected on commercially filled Tenax TA thermal desorption tubes over an 11-day period and used to calculate passive sampling rates. A second experiment was designed to determine the impact of ozone on passive sampling by using the calibration chamber to passively load five terpenes on a set of Tenax tubes and then exposing the tubes to different ozone environments with and without ozone scrubbers attached to the tube inlet. During the sampling rate experiment, the measured diffusive uptake was constant for up to seven days for most of the VOCs tested but deviated from linearity for some of the more volatile compounds between seven and eleven days. In the ozone experiment, both exposed and unexposed tubes showed a similar decline in terpene mass over time indicating back diffusion when uncapped tubes were transferred to a clean environment but there was no indication of significant loss by ozone reaction.« less
Sautour, Marc; Dalle, Frédéric; Olivieri, Claire; L'ollivier, Coralie; Enderlin, Emilie; Salome, Elsa; Chovelon, Isabelle; Vagner, Odile; Sixt, Nathalie; Fricker-Pap, Véronique; Aho, Serge; Fontaneau, Olivier; Cachia, Claire; Bonnin, Alain
2009-04-01
Invasive filamentous fungi infections resulting from inhalation of mold conidia pose a major threat in immunocompromised patients. The diagnosis is based on direct smears, cultural symptoms, and culturing fungi. Airborne conidia present in the laboratory environment may cause contamination of cultures, resulting in false-positive diagnosis. Baseline values of fungal contamination in a clinical mycology laboratory have not been determined to date. A 1-year prospective survey of air and surface contamination was conducted in a clinical mycology laboratory during a period when large construction projects were being conducted in the hospital. Air was sampled with a portable air system impactor, and surfaces were sampled with contact Sabouraud agar plates. The collected data allowed the elaboration of Shewhart graphic charts. Mean fungal loads ranged from 2.27 to 4.36 colony forming units (cfu)/m(3) in air and from 0.61 to 1.69 cfu/plate on surfaces. Strict control procedures may limit the level of fungal contamination in a clinical mycology laboratory even in the context of large construction projects at the hospital site. Our data and the resulting Shewhart graphic charts provide baseline values to use when monitoring for inappropriate variations of the fungal contamination in a mycology laboratory as part of a quality assurance program. This is critical to the appropriate management of the fungal risk in hematology, cancer and transplantation patients.
Sequential air sampler system : its use by the Virginia Department of Highways & Transportation.
DOT National Transportation Integrated Search
1975-01-01
The Department of Highways & Transportation needs an economical and efficient air quality sampling system for meeting requirements on air monitoring for proposed projects located In critical areas. Two sequential air sampling systems, the ERAI and th...
2010-03-16
Exceeded at ERP Soil and Groundwater Sites 86 A-2a. Identification of IRIS Chemicals of Interest on the ATSDR CERCLA Priority List of Hazardous...the Number (Bold Font) of Air Force ERP Samples in Which They Were Detected 317 A-4d. Air Force ERP Soil Samples: IRIS Chemicals of Interest...Ranked by the Number (Bold Font) of Air Force ERP Soil Samples in Which They Were Detected 333 A-4e. Air Force ERP Groundwater Samples: IRIS Chemicals of
40 CFR 81.77 - Puerto Rico Air Quality Control Region.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 17 2011-07-01 2011-07-01 false Puerto Rico Air Quality Control Region... PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.77 Puerto Rico Air Quality Control Region. The Puerto Rico Air Quality Control Region...
40 CFR 81.77 - Puerto Rico Air Quality Control Region.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 18 2012-07-01 2012-07-01 false Puerto Rico Air Quality Control Region... PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.77 Puerto Rico Air Quality Control Region. The Puerto Rico Air Quality Control Region...
40 CFR 81.77 - Puerto Rico Air Quality Control Region.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 18 2013-07-01 2013-07-01 false Puerto Rico Air Quality Control Region... PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.77 Puerto Rico Air Quality Control Region. The Puerto Rico Air Quality Control Region...
40 CFR 81.77 - Puerto Rico Air Quality Control Region.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Puerto Rico Air Quality Control Region... PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.77 Puerto Rico Air Quality Control Region. The Puerto Rico Air Quality Control Region...
Indoor air quality in green vs conventional multifamily low-income housing.
Colton, Meryl D; MacNaughton, Piers; Vallarino, Jose; Kane, John; Bennett-Fripp, Mae; Spengler, John D; Adamkiewicz, Gary
2014-07-15
Indoor air quality is an important predictor of health, especially in low-income populations. It is unclear how recent trends in "green" building affect the indoor exposure profile. In two successive years, we conducted environmental sampling, home inspections, and health questionnaires with families in green and conventional (control) apartments in two public housing developments. A subset of participants was followed as they moved from conventional to green or conventional to conventional housing. We measured particulate matter less than 2.5 μm aerodynamic diameter (PM2.5), formaldehyde, nitrogen dioxide (NO2), nicotine, carbon dioxide (CO2), and air exchange rate (AER) over a seven-day sampling period coincident with survey administration. In multivariate models, we observed 57%, 65%, and 93% lower concentrations of PM2.5, NO2, and nicotine (respectively) in green vs control homes (p=0.032, p<0.001, p=0.003, respectively), as well as fewer reports of mold, pests, inadequate ventilation, and stuffiness. Differences in formaldehyde and CO2 were not statistically significant. AER was marginally lower in green buildings (p=0.109). Participants in green homes experienced 47% fewer sick building syndrome symptoms (p<0.010). We observed significant decreases in multiple indoor exposures and improved health outcomes among participants who moved into green housing, suggesting multilevel housing interventions have the potential to improve long-term resident health.
NASA Technical Reports Server (NTRS)
Green, Robert D.; Agui, Juan H.; Vijayakumar, R.; Berger, Gordon M.; Perry, Jay L.
2017-01-01
The air quality control equipment aboard the International Space Station (ISS) and future deep space exploration vehicles provide the vital function of maintaining a clean cabin environment for the crew and the hardware. This becomes a serious challenge in pressurized space compartments since no outside air ventilation is possible, and a larger particulate load is imposed on the filtration system due to lack of sedimentation. The ISS Environmental Control and Life Support (ECLS) system architecture in the U.S. Segment uses a distributed particulate filtration approach consisting of traditional High-Efficiency Particulate Air (HEPA) filters deployed at multiple locations in each U.S. Seg-ment module; these filters are referred to as Bacterial Filter Elements, or BFEs. In our previous work, we presented results of efficiency and pressure drop measurements for a sample set of two returned BFEs with a service life of 2.5 years. In this follow-on work, we present similar efficiency, pressure drop, and leak tests results for a larger sample set of six returned BFEs. The results of this work can aid the ISS Program in managing BFE logistics inventory through the stations planned lifetime as well as provide insight for managing filter element logistics for future exploration missions. These results also can provide meaningful guidance for particulate filter designs under consideration for future deep space exploration missions.
Filter Efficiency and Pressure Testing of Returned ISS Bacterial Filter Elements (BFEs)
NASA Technical Reports Server (NTRS)
Green, Robert D.; Agui, Juan H.; Berger, Gordon M.; Vijayakumar, R.; Perry, Jay L.
2017-01-01
The air quality control equipment aboard the International Space Station (ISS) and future deep space exploration vehicles provide the vital function of maintaining a clean cabin environment for the crew and the hardware. This becomes a serious challenge in pressurized space compartments since no outside air ventilation is possible, and a larger particulate load is imposed on the filtration system due to lack of sedimentation. The ISS Environmental Control and Life Support (ECLS) system architecture in the U.S. Segment uses a distributed particulate filtration approach consisting of traditional High-Efficiency Particulate Air (HEPA) filters deployed at multiple locations in each U.S. Seg-ment module; these filters are referred to as Bacterial Filter Elements, or BFEs. In our previous work, we presented results of efficiency and pressure drop measurements for a sample set of two returned BFEs with a service life of 2.5 years. In this follow-on work, we present similar efficiency, pressure drop, and leak tests results for a larger sample set of six returned BFEs. The results of this work can aid the ISS Program in managing BFE logistics inventory through the stations planned lifetime as well as provide insight for managing filter element logistics for future exploration missions. These results also can provide meaningful guidance for particulate filter designs under consideration for future deep space exploration missions.
Effect of Long-Term 1093 K Exposure to Air or Vacuum on the Structure of Several Wrought Superalloys
NASA Technical Reports Server (NTRS)
Whittenberger, J. D.
1993-01-01
Long-term 1093 K heat treatments of three commercial superalloy sheet materials were undertaken in air -IAI and vacuum. With either exposure, significant precipitation of second phases occurred in the Co-base Haynes(R) Alloy 188 (HA 188) and the Ni-base Haynes(R) Alloy 230 (HA 230); however, much less precipitation was found in the exposed Ni-base alloy Inconel(R) 617 (IN 617). Although some grain growth occurred in HA 198, no changes in the grain size of either HA 230 or IN 617 were observed after 22,500 h at temperature. Oxidation during air heat treatments led to weight gain due to the formation of chromia + spinel scales and surface-connected grain boundary pits/oxides in all three superalloys. Both the weight gain and depth of intergranular attack were dependent on the square root of time, which is indicative of diffusion-controlled phenomena. Because many alloy samples had neighbors in close proximity, most vacuum heat treated specimens did not suffer significant loss of volatile elements. However, some exposed samples were subjected to unrestricted vacuum heat treatments, allowing estimates of volatilization to be made. Based on the data for HA 188, the weight loss during 1093 K vacuum exposure was diffusion controlled once the inhibiting effects of surface films on the as-received alloys were broken down.
Seasonal variability and degradation investigation of iodocarbons in a coastal fjord
NASA Astrophysics Data System (ADS)
Shi, Qiang; Wallace, Douglas
2016-04-01
Methyl iodide (CH3I) is considered an important carrier of iodine atoms from sea to air. The importance of other volatile iodinated compounds, such as very short-lived iodocarbons (e.g. CH2ClI, CH2I2), has also been demonstrated [McFiggans, 2005; O'Dowd and Hoffmann, 2005; Carpenter et al., 2013]. The production pathways of iodocarbons, and controls on their sea-to-air flux can be investigated by in-situ studies (e.g. surface layer mass balance from time-series studies) and by incubation experiments. Shi et al., [2014] reported previously unrecognised large, night-time losses of CH3I observed during incubation experiments with coastal waters. These losses were significant for controlling the sea-to-air flux but are not yet understood. As part of a study to further investigate sources and sinks of CH3I and other iodocarbons in coastal waters, samples have been analysed weekly since April 2015 at 4 depths (5 to 60 m) in the Bedford Basin, Halifax, Canada. The time-series study was part of a broader study that included measurement of other, potentially related parameters (temperature, salinity, Chlorophyll a etc.). A set of repeated degradation experiments was conducted, in the context of this time-series, including incubations within a solar simulator using 13C labelled CH3I. Results of the time-series sampling and incubation experiments will be presented.
Effect of Long-Term 1093 K Exposure to Air or Vacuum on the Structure of Several Wrought Superalloys
NASA Astrophysics Data System (ADS)
Whittenberger, J. D.
1993-10-01
Long-term 1093 K heat treatments of three commercial superalloy sheet materials were undertaken in air and vacuum. With either exposure, significant precipitation of second phases occurred in the Co-base Haynes® Alloy 188 (HA 188) and the Ni-base Haynes® Alloy 230 (HA 230); however, much less precipitation was found in the exposed Ni-base alloy Inconel® 617 (IN 617). Although some grain growth occurred in HA 188, no changes in the grain size of either HA 230 or IN 617 were observed after 22,500 h at temperature. Oxidation during air heat treatments led to weight gain due to the formation of chromia + spinel scales and surface-connected grain boundary pits/oxides in all three superalloys. Both the weight gain and depth of intergranular attack were dependent on the square root of time, which is indicative of diffusion-controlled phenomena. Because many alloy samples had neighbors in close proximity, dmost vacuum heat treated specimens did not suffer significant loss of volatile elements. However, some exposed samples were subjected to unrestricted vacuum heat treatments, allowing estimates of volatilization to be made. Based on the data for HA 188, the weight loss during 1093 K vacuum exposure was diffusion controlled once the inhibiting effects of surface films on the as-received alloys were broken down.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tyndall, R.L.
1983-07-01
Air was sampled at the point of discharge and at short distances downwind and upwind from industrial and power-plant cooling towers. Both high-volume electrostatic and impinger type samplers were used. Concentrates of the air samples were analyzed for Legionnaires' Disease Bacteria (LDB). In some cases, the samples were also tested for the presence of free-living amoebae. The concentrations of LDB in the air samples were well below the minimal infectious dose for guinea pigs and precluded testing of the samples for infectious LDB. Results of LDB analysis were related to the meteorological conditions at the time of sampling. Generally, themore » concentrations of LDB in the air at the discharge of the cooling towers were 1 x 10/sup -6/ to 1 x 10/sup -7/ of that found in comparable volumes of tower basin water. During periods of high humidity and wind speed, LDB was detected in a few downwind samples and one upwind sample. One site with extensive construction and excavation activity had higher LDB concentrations in air samples relative to other sites. Nonpathogenic Naegleria were present in one of two air samples taken in the mist at the base of a natural-draft cooling tower.« less
Killingley, Benjamin; Greatorex, Jane; Digard, Paul; Wise, Helen; Garcia, Fayna; Varsani, Harsha; Cauchemez, Simon; Enstone, Joanne E; Hayward, Andrew; Curran, Martin D; Read, Robert C; Lim, Wei S; Nicholson, Karl G; Nguyen-Van-Tam, Jonathan S
2016-01-01
In a multi-center, prospective, observational study over two influenza seasons, we sought to quantify and correlate the amount of virus recovered from the nares of infected subjects with that recovered from their immediate environment in community and hospital settings. We recorded the symptoms of adults and children with A(H1N1)pdm09 infection, took nasal swabs, and sampled touched surfaces and room air. Forty-two infected subjects were followed up. The mean duration of virus shedding was 6.2 days by PCR (Polymerase Chain Reaction) and 4.2 days by culture. Surface swabs were collected from 39 settings; 16 (41%) subject locations were contaminated with virus. Overall, 33 of the 671 (4.9%) surface swabs were PCR positive for influenza, of which two (0.3%) yielded viable virus. On illness Day 3, subjects yielding positive surface samples had significantly higher nasal viral loads (geometric mean ratio 25.7; 95% CI 1.75, 376.0, p=0.021) and a positive correlation (r=0.47, p=0.006) was observed between subject nasal viral loads and viral loads recovered from the surfaces around them. Room air was sampled in the vicinity of 12 subjects, and PCR positive samples were obtained for five (42%) samples. Influenza virus shed by infected subjects did not detectably contaminate the vast majority of surfaces sampled. We question the relative importance of the indirect contact transmission of influenza via surfaces, though our data support the existence of super-spreaders via this route. The air sampling results add to the accumulating evidence that supports the potential for droplet nuclei (aerosol) transmission of influenza. Copyright © 2015 King Saud Bin Abdulaziz University for Health Sciences. Published by Elsevier Ltd. All rights reserved.
Microbiology and Crew Medical Events on the International Space Station
NASA Technical Reports Server (NTRS)
Oubre, Cherie M.; Charvat, Jacqueline M.; Kadwa, Biniafer; Taiym, Wafa; Ott, C. Mark; Pierson, Duane; Baalen, Mary Van
2014-01-01
The closed environment of the International Space Station (ISS) creates an ideal environment for microbial growth. Previous studies have identified the ubiquitous nature of microorganisms throughout the space station environment. To ensure safety of the crew, microbial monitoring of air and surface within ISS began in December 2000 and continues to be monitored on a quarterly basis. Water monitoring began in 2009 when the potable water dispenser was installed on ISS. However, it is unknown if high microbial counts are associated with inflight medical events. The microbial counts are determined for the air, surface, and water samples collected during flight operations and samples are returned to the Microbiology laboratory at the Johnson Space Center for identification. Instances of microbial counts above the established microbial limit requirements were noted and compared inflight medical events (any non-injury event such as illness, rashes, etc.) that were reported during the same calendar-quarter. Data were analyzed using repeated measures logistic regression for the forty-one US astronauts flew on ISS between 2000 and 2012. In that time frame, instances of microbial counts being above established limits were found for 10 times for air samples, 22 times for surface samples and twice for water. Seventy-eight inflight medical events were reported among the astronauts. A three times greater risk of a medical event was found when microbial samples were found to be high (OR = 3.01; p =.007). Engineering controls, crew training, and strict microbial limits have been established to mitigate the crew medical events and environmental risks. Due to the timing issues of sampling and the samples return to earth, identification of particular microorganisms causing a particular inflight medical event is difficult. Further analyses are underway.
Miller, J D; Haisley, P D; Reinhardt, J H
2000-09-01
We studied the extent and nature of fungal colonization of building materials in 58 naturally ventilated apartments that had suffered various kinds of water damage in relation to air sampling done before the physical inspections. The results of air samples from each apartment were compared by rank order of species with pooled data from outdoor air. Approximately 90% of the apartments that had significant amounts of fungi in wall cavities were identified by air sampling. There was no difference in the average fungal colony forming unit values per m3 between the 15 apartments with the most fungal contamination and the 15 with the least. In contrast, the prevalence of samples with fungal species significantly different than the pooled outdoor air between the more contaminated versus the less contaminated apartments was approximately 10-fold. We provide information on methods to document fungal contamination in buildings.