Science.gov

Sample records for air cooled pfbc

  1. Preliminary assessment of alternative PFBC power plant systems

    NASA Astrophysics Data System (ADS)

    Wysocki, J.; Rogali, R.

    1980-07-01

    Design and economic comparisons of the following nominal 1000 MWe pressurized fluidized bed combustion (PFBC) power plants are presented for both eastern and western coal: Curtiss-Wright PFBC power plants with an air-cooled design; General Electric RFBC power plants with a steam-cooled design; and AEP/Stal-Laval PFBC power plants with a steam-cooled design. In addition, reference pulverized coal-fired (PCF) power plants are included for comparison purposes. The results of the analysis indicate: (1) the steam-cooled PFBC designs show potential savings of 10% and 11% over PCF plants for eastern and western coal, respectively, in terms of busbar power cost; (2) the air-cooled PFBC designs show potential savings of 1% and 2% over PCF plants for eastern and western coal, respectively, in terms of busbar power cost.

  2. Preliminary assessment of alternative PFBC power plant systems. Final report

    SciTech Connect

    Wysocki, J.; Rogali, R.

    1980-07-01

    This report presents the design and and economic comparisons of the following nominal 1000 MWe PFBC power plants for both eastern and western coal: Curtiss-Wright PFBC power plants with an air-cooled design; General Electric RFBC power plants with a steam-cooled design; and AEP/Stal-Laval PFBC power plants with a steam-cooled design. In addition, reference pulverized coal-fired (PCF) power plants are included for comparison purposes. The results of the analysis indicate: (1) The steam-cooled PFBC designs show potential savings of 10% and 11% over PCF plants for eastern and western coal, respectively, in terms of busbar power cost; (2) the air-cooled PFBC designs show potential savings of 1% and 2% over PCF plants for eastern and western coal, respectively, in terms of busbar power cost.

  3. A study of hazardous air pollutants at the Tidd PFBC Demonstration Plant

    SciTech Connect

    1994-10-01

    The US Department of Energy (DOE) Clean Coal Technology (CCD Program is a joint effort between government and industry to develop a new generation of coal utilization processes. In 1986, the Ohio Power Company, a subsidiary of American Electric Power (AEP), was awarded cofunding through the CCT program for the Tidd Pressure Fluidized Bed Combustor (PFBC) Demonstration Plant located in Brilliant, Ohio. The Tidd PFBC unit began operation in 1990 and was later selected as a test site for an advanced particle filtration (APF) system designed for hot gas particulate removal. The APF system was sponsored by the DOE Morgantown Energy Technology Center (METC) through their Hot Gas Cleanup Research and Development Program. A complementary goal of the DOE CCT and METC R&D programs has always been to demonstrate the environmental acceptability of these emerging technologies. The Clean Air Act Amendments of 1990 (CAAA) have focused that commitment toward evaluating the fate of hazardous air pollutants (HAPs) associated with advanced coal-based and hot gas cleanup technologies. Radian Corporation was contacted by AEP to perform this assessment of HAPs at the Tidd PFBC demonstration plant. The objective of this study is to assess the major input, process, and emission streams at Plant Tidd for the HAPs identified in Title III of the CAAA. Four flue gas stream locations were tested: ESP inlet, ESP outlet, APF inlet, and APF outlet. Other process streams sampled were raw coal, coal paste, sorbent, bed ash, cyclone ash, individual ESP hopper ash, APF ash, and service water. Samples were analyzed for trace elements, minor and major elements, anions, volatile organic compounds, dioxin/furan compounds, ammonia, cyanide, formaldehyde, and semivolatile organic compounds. The particle size distribution in the ESP inlet and outlet gas streams and collected ash from individual ESP hoppers was also determined.

  4. AIR COOLED NEUTRONIC REACTOR

    DOEpatents

    Fermi, E.; Szilard, L.

    1958-05-27

    A nuclear reactor of the air-cooled, graphite moderated type is described. The active core consists of a cubicle mass of graphite, approximately 25 feet in each dimension, having horizontal channels of square cross section extending between two of the opposite faces, a plurality of cylindrical uranium slugs disposed in end to end abutting relationship within said channels providing a space in the channels through which air may be circulated, and a cadmium control rod extending within a channel provided in the moderator. Suitable shielding is provlded around the core, as are also provided a fuel element loading and discharge means, and a means to circulate air through the coolant channels through the fuel charels to cool the reactor.

  5. TIDD PFBC Demonstration Project

    SciTech Connect

    Not Available

    1994-03-01

    In fluidized bed combustion, coal and sorbent (dolomite or limestone) are fed into a boiler in which air, entering from the bottom, maintains the bed material in a highly turbulent suspended state called fluidization. This turbulence creates good contact between the air and fuel, allowing for high combustion efficiency and excellent adsorption of sulfur dioxide (SO{sub 2}) during the combustion process. In PFBC applications, pressurized air is supplied to the combustor. Pressurizing the air concentrates a larger quantity of oxygen per unit volume. This results in a lower velocity of air through the fuel bed. The lower velocity reduces the total height required for the bed and freeboard above the bed. Also, a smaller plan area is required for the bed area as compared to an atmospheric fluidized bed. This has the advantage of requiring a much smaller pressure vessel to contain the boiler enclosure. The mean bed temperature of a pressurized fluidized bed combustor is typically maintained in the range 1540 to 1580 F. This is well below the ash fusion temperature of coal, yet above the ignition temperature of the coal. Advantages of the low bed temperature are no slag formation and a reduction of NO{sub x} emissions to less than half that of a conventional boiler. The Tidd Plant is a combined cycle pressurized fluidized bed combustion system with a topping gas cycle and a bottoming steam cycle.

  6. Conceptual design of a gas turbine for PFBC applications

    SciTech Connect

    Bannister, R.L.; McGuigan, A.W.; Risley, T.P.; Smith, O.J.

    1992-12-31

    First generation pressurized fluidized bed (PFBC) technology has potential advantages which include: lower capital cost, Unproved environmental performance, shorter lead times, higher efficiency and enhanced fuel flexibility. Coal firing with combustion turbines experiments have been conducted for over forty years. These efforts have evolved to the point where commercial demonstrations are now feasible. The PFBC is one of these technologies. It will be demonstrated as part of the Clean Coal III initiative. PFBC technology is applicable for new installations, replacement of existing equipment as well as repower and retrofit. Included with these options is the opportunity to reduce dependency on fuel oil and well as enhancing environmental performance and increasing efficiency. The turbo-machinery will require design changes to meet the requirements for PFBC application. The major change to the combustion turbine take place in the center section. This section will include provisions to supply compressed air to the PFBC as well as receive vitiated air from the PFBC. These efforts also have the objective of reducing the degree of change from a standard unit. Under a clean coal program a first generation PFBC demonstration win take place at the Des Moines Energy Center. For this demonstration it will be necessary to remove two stages from the 251B12 compressor. This will make the air supplied by the compressor suitable for the PFBC system. The results from this program will be applicable to the DMEC-1 program.

  7. Conceptual design of a gas turbine for PFBC applications

    SciTech Connect

    Bannister, R.L.; McGuigan, A.W.; Risley, T.P.; Smith, O.J.

    1992-01-01

    First generation pressurized fluidized bed (PFBC) technology has potential advantages which include: lower capital cost, Unproved environmental performance, shorter lead times, higher efficiency and enhanced fuel flexibility. Coal firing with combustion turbines experiments have been conducted for over forty years. These efforts have evolved to the point where commercial demonstrations are now feasible. The PFBC is one of these technologies. It will be demonstrated as part of the Clean Coal III initiative. PFBC technology is applicable for new installations, replacement of existing equipment as well as repower and retrofit. Included with these options is the opportunity to reduce dependency on fuel oil and well as enhancing environmental performance and increasing efficiency. The turbo-machinery will require design changes to meet the requirements for PFBC application. The major change to the combustion turbine take place in the center section. This section will include provisions to supply compressed air to the PFBC as well as receive vitiated air from the PFBC. These efforts also have the objective of reducing the degree of change from a standard unit. Under a clean coal program a first generation PFBC demonstration win take place at the Des Moines Energy Center. For this demonstration it will be necessary to remove two stages from the 251B12 compressor. This will make the air supplied by the compressor suitable for the PFBC system. The results from this program will be applicable to the DMEC-1 program.

  8. PFBC HGCU Test Facility

    SciTech Connect

    Not Available

    1993-01-01

    This is the thirteenth Technical Progress Report submitted to the Department of Energy (DOE) in connection with the cooperative agreement between the DOE and Ohio Power Company for the Tidd PFBC Hot Gas Clean Up Test Facility. This report covers the period of work completed during the Fourth Quarter of CY 1992. The following are highlights of the activities that occurred during this report period: Initial operation of the Advanced Particle Filter (APF) occurred during this quarter. The following table summarizes the operating dates and times. HGCU ash lockhopper valve plugged with ash. Primary cyclone ash pluggage. Problems with the coal water paste. Unit restarted warm 13 hours later. HGCU expansion joint No. 7 leak in internal ply of bellows. Problems encountered during these initial tests included hot spots on the APP, backup cyclone and instrumentation spools, two breakdowns of the backpulse air compressor, pluggage of the APF hopper and ash removal system, failure (breakage) of 21 filter candles, leakage of the inner ply of one (1) expansion joint bellows, and numerous other smaller problems. These operating problems are discussed in detail in a subsequent section of this report. Following shutdown and equipment inspection in December, design modifications were initiated to correct the problems noted above. The system is scheduled to resume operation in March, 1993.

  9. Natural Flow Air Cooled Photovoltaics

    NASA Astrophysics Data System (ADS)

    Tanagnostopoulos, Y.; Themelis, P.

    2010-01-01

    Our experimental study aims to investigate the improvement in the electrical performance of a photovoltaic installation on buildings through cooling of the photovoltaic panels with natural air flow. Our experimental study aims to investigate the improvement in the electrical performance of a photovoltaic installation on buildings through cooling of the photovoltaic panels with natural air flow. We performed experiments using a prototype based on three silicon photovoltaic modules placed in series to simulate a typical sloping building roof with photovoltaic installation. In this system the air flows through a channel on the rear side of PV panels. The potential for increasing the heat exchange from the photovoltaic panel to the circulating air by the addition of a thin metal sheet (TMS) in the middle of air channel or metal fins (FIN) along the air duct was examined. The operation of the device was studied with the air duct closed tightly to avoid air circulation (CLOSED) and the air duct open (REF), with the thin metal sheet (TMS) and with metal fins (FIN). In each case the experiments were performed under sunlight and the operating parameters of the experimental device determining the electrical and thermal performance of the system were observed and recorded during a whole day and for several days. We collected the data and form PV panels from the comparative diagrams of the experimental results regarding the temperature of solar cells, the electrical efficiency of the installation, the temperature of the back wall of the air duct and the temperature difference in the entrance and exit of the air duct. The comparative results from the measurements determine the improvement in electrical performance of the photovoltaic cells because of the reduction of their temperature, which is achieved by the naturally circulating air.

  10. PFBC plant operations

    SciTech Connect

    Kinsinger, F.L. )

    1992-01-01

    By operating a fluidized bed at elevated pressures, known as pressurized fluidized bed combustion (PFBC), advantages can be gained over atmospheric fluidized bed technology. Operating the process at elevated pressures allows electrical production from both the steam and the gas cycles which results in higher plant efficiencies. Additional benefits of operating at elevated pressures include the further reduction of emissions and the reduction in the physical size of the power plant. This paper describes the operation of a PFBC plant and its application at the Tidd clean coal demonstration project. Actual operating experience will be presented.

  11. PFBC Utility Demonstration Project

    SciTech Connect

    Not Available

    1992-11-01

    This report provides a summary of activities by American Electric Power Service Corporation during the first budget period of the PFBC Utility Demonstration Project. In April 1990, AEP signed a Cooperative Agreement with the US Department of Energy to repower the Philip Sporn Plant, Units 3 4 in New Haven, West Virginia, with a 330 KW PFBC plant. The purpose of the program was to demonstrate and verify PFBC in a full-scale commercial plant. The technical and cost baselines of the Cooperative Agreement were based on a preliminary engineering and design and a cost estimate developed by AEP subsequent to AEP's proposal submittal in May 1988, and prior to the signing of the Cooperative Agreement. The Statement of Work in the first budget period of the Cooperative Agreement included a task to develop a preliminary design and cost estimate for erecting a Greenfield plant and to conduct a comparison with the repowering option. The comparative assessment of the options concluded that erecting a Greenfield plant rather than repowering the existing Sporn Plant could be the technically and economically superior alternative. The Greenfield plant would have a capacity of 340 MW. The ten additional MW output is due to the ability to better match the steam cycle to the PFBC system with a new balance of plant design. In addition to this study, the conceptual design of the Sporn Repowering led to several items which warranted optimization studies with the goal to develop a more cost effective design.

  12. Air and water cooled modulator

    DOEpatents

    Birx, Daniel L.; Arnold, Phillip A.; Ball, Don G.; Cook, Edward G.

    1995-01-01

    A compact high power magnetic compression apparatus and method for delivering high voltage pulses of short duration at a high repetition rate and high peak power output which does not require the use of environmentally unacceptable fluids such as chlorofluorocarbons either as a dielectric or as a coolant, and which discharges very little waste heat into the surrounding air. A first magnetic switch has cooling channels formed therethrough to facilitate the removal of excess heat. The first magnetic switch is mounted on a printed circuit board. A pulse transformer comprised of a plurality of discrete electrically insulated and magnetically coupled units is also mounted on said printed board and is electrically coupled to the first magnetic switch. The pulse transformer also has cooling means attached thereto for removing heat from the pulse transformer. A second magnetic switch also having cooling means for removing excess heat is electrically coupled to the pulse transformer. Thus, the present invention is able to provide high voltage pulses of short duration at a high repetition rate and high peak power output without the use of environmentally unacceptable fluids and without discharging significant waste heat into the surrounding air.

  13. Air and water cooled modulator

    DOEpatents

    Birx, D.L.; Arnold, P.A.; Ball, D.G.; Cook, E.G.

    1995-09-05

    A compact high power magnetic compression apparatus and method are disclosed for delivering high voltage pulses of short duration at a high repetition rate and high peak power output which does not require the use of environmentally unacceptable fluids such as chlorofluorocarbons either as a dielectric or as a coolant, and which discharges very little waste heat into the surrounding air. A first magnetic switch has cooling channels formed therethrough to facilitate the removal of excess heat. The first magnetic switch is mounted on a printed circuit board. A pulse transformer comprised of a plurality of discrete electrically insulated and magnetically coupled units is also mounted on said printed board and is electrically coupled to the first magnetic switch. The pulse transformer also has cooling means attached thereto for removing heat from the pulse transformer. A second magnetic switch also having cooling means for removing excess heat is electrically coupled to the pulse transformer. Thus, the present invention is able to provide high voltage pulses of short duration at a high repetition rate and high peak power output without the use of environmentally unacceptable fluids and without discharging significant waste heat into the surrounding air. 9 figs.

  14. Air-cooled, hydrogen-air fuel cell

    NASA Technical Reports Server (NTRS)

    Shelekhin, Alexander B. (Inventor); Bushnell, Calvin L. (Inventor); Pien, Michael S. (Inventor)

    1999-01-01

    An air-cooled, hydrogen-air solid polymer electrolyte (SPE) fuel cell with a membrane electrode assembly operatively associated with a fluid flow plate having at least one plate cooling channel extending through the plate and at least one air distribution hole extending from a surface of the cathode flow field into the plate cooling channel.

  15. Air cooling : an experimental method of evaluating the cooling effect of air streams on air-cooled cylinders

    NASA Technical Reports Server (NTRS)

    Alcock, J F

    1927-01-01

    In this report is described an experimental method which the writer has evolved for dealing with air-cooled engines, and some of the data obtained by its means. Methods of temperature measurement and cooling are provided.

  16. Air cooled absorption chillers for solar cooling applications

    NASA Astrophysics Data System (ADS)

    Biermann, W. J.; Reimann, R. C.

    1982-03-01

    The chemical composition of a 'best' absorption refrigerant system is identified, and those properties of the system necessary to design hot water operated, air cooled chilling equipment are determined. Air cooled chillers from single family residential sizes into the commercial rooftop size range are designed and operated.

  17. PFBC dust cake studies

    SciTech Connect

    Lippert, T.E.; Newby, R.A.; Alvin, M.A.; Bachovchin, D.M.; Smeltzer, E.E.

    1994-10-01

    The Westinghouse Electric Corporation, Science and Technology Center is developing an Integrated Low Emissions Cleanup (ILEC) concept for high-temperature gas cleaning to meet environmental standards, as well as to provide economical gas turbine life. The ILEC concept simultaneously controls particulate, sulfur, alkali, and other contaminants in high-pressure fuel gases, or combustion gases, at temperatures up to about 1700 degrees Fahrenheit in advanced, coal-fired, power generation systems. The overall objective of this program is to demonstrate, at a bench scale, the conceptual, technical feasibility of the ILEC concept for multi-contaminant control, and to provide test data applicable to the design of subsequent field tests. The current program objective is to conduct ceramic barrier filter testing under simulated PFBC conditions to deal with filter cake permeability and pulse cleaning issues that have been identified in recent PFBC filter field testing.

  18. Advanced PFBC transient analysis

    SciTech Connect

    White, J.S.; Bonk, D.L.

    1997-05-01

    Transient modeling and analysis of advanced Pressurized Fluidized Bed Combustion (PFBC) systems is a research area that is currently under investigation by the US Department of Energy`s Federal Energy Technology Center (FETC). The object of the effort is to identify key operating parameters that affect plant performance and then quantify the basic response of major sub-systems to changes in operating conditions. PC-TRAX{trademark}, a commercially available dynamic software program, was chosen and applied in this modeling and analysis effort. This paper describes the development of a series of TRAX-based transient models of advanced PFBC power plants. These power plants burn coal or other suitable fuel in a PFBC, and the high temperature flue gas supports low-Btu fuel gas or natural gas combustion in a gas turbine topping combustor. When it is utilized, the low-Btu fuel gas is produced in a bubbling bed carbonizer. High temperature, high pressure combustion products exiting the topping combustor are expanded in a modified gas turbine to generate electrical power. Waste heat from the system is used to raise and superheat steam for a reheat steam turbine bottoming cycle that generates additional electrical power. Basic control/instrumentation models were developed and modeled in PC-TRAX and used to investigate off-design plant performance. System performance for various transient conditions and control philosophies was studied.

  19. Modulated gas turbine cooling air

    SciTech Connect

    Schwarz, F.M.; Candelori, D.J.; Brooke, R.D.

    1993-07-06

    In an axial flow gas turbine engine in an aircraft, the engine having an annular flow of hot working fluid passing sequentially through a first bladed rotor stage, a vaned stator assembly having a plurality of hollow vanes, and a second bladed rotor stage; a flow resistant labyrinth seal comprised of an annular seal runner sealingly secured to the first and second rotor stages and a seal shroud surrounding and secured to the seal runner, forming a labyrinth flow passage therebetween; an upstream plenum in restricted fluid communication with the annular flow upstream of the vaned stator assembly and with the labyrinth flow passage; a downstream plenum in fluid communication with the labyrinth flow passage and in restricted flow communication with the annular flow downstream of the vaned stator assembly; a compressor; a conduit network connected to deliver a cooling airflow from the compressor to the upstream plenum, and a modulatable control valve means located in the conduit network, the method of operation comprising: measuring the temperature of gas passing through the labyrinth flow passage; sensing aircraft speed and comparing the sensed speed to a preselected air craft speed range; holding the valves open any item the sensed aircraft speed is less than the preselected aircraft speed range; and modulating he quantity of the cooling airflow in response to the measurement of the temperature of the gas passing through the labyrinth flow passage to keep the temperature at a substantially constant maximum value when the sensed aircraft speed is greater than the aircraft speed range.

  20. Thermotechnical performance of an air-cooled tuyere with air cooling channels in series

    NASA Astrophysics Data System (ADS)

    Shen, Yuansheng; Zhou, Yuanyuan; Zhu, Tao; Duan, Guangbin

    2016-03-01

    To reduce the cooling air consumption for an air-cooled tuyere, an air-cooled tuyere with air cooling channels in series is developed based on several hypotheses, i.e., a transparent medium in the blast furnace, among others, and the related mathematical models are introduced and developed. Referring to the data from a BF site, the thermotechnical computation for the air-cooled tuyere was performed, and the results show that when the temperature of the inlet cooling air increases, the temperatures for the outlet cooling air, the outer surface of the tuyere, the walls of the air cooling channels and the center channel as well as the heat going into the center channel increase, but the heat absorbed by the cooling air flowing through the air cooling channels decreases. When the cooling air flow rate under the standard state increases, the physical parameters mentioned above change in an opposite directions. Compared to a water-cooled tuyere, the energy savings for an air-cooled tuyere are more than 0.23 kg/min standard coal.

  1. Performance of Air-cooled Engine Cylinders Using Blower Cooling

    NASA Technical Reports Server (NTRS)

    Schey, Oscar W; Ellerbrock, Herman H , Jr

    1936-01-01

    An investigation was made to obtain information on the minimum quantity of air and power required to cool conventional air cooled cylinders at various operating conditions when using a blower. The results of these tests show that the minimum power required for satisfactory cooling with an overall blower efficiency of 100 percent varied from 2 to 6 percent of the engine power depending on the operating conditions. The shape of the jacket had a large effect on the cylinder temperatures. Increasing the air speed over the front of the cylinder by keeping the greater part of the circumference of the cylinder covered by the jacket reduced the temperatures over the entire cylinder.

  2. Film cooling air pocket in a closed loop cooled airfoil

    DOEpatents

    Yu, Yufeng Phillip; Itzel, Gary Michael; Osgood, Sarah Jane; Bagepalli, Radhakrishna; Webbon, Waylon Willard; Burdgick, Steven Sebastian

    2002-01-01

    Turbine stator vane segments have radially inner and outer walls with vanes extending between them. The inner and outer walls are compartmentalized and have impingement plates. Steam flowing into the outer wall plenum passes through the impingement plate for impingement cooling of the outer wall upper surface. The spent impingement steam flows into cavities of the vane having inserts for impingement cooling the walls of the vane. The steam passes into the inner wall and through the impingement plate for impingement cooling of the inner wall surface and for return through return cavities having inserts for impingement cooling of the vane surfaces. To provide for air film cooing of select portions of the airfoil outer surface, at least one air pocket is defined on a wall of at least one of the cavities. Each air pocket is substantially closed with respect to the cooling medium in the cavity and cooling air pumped to the air pocket flows through outlet apertures in the wall of the airfoil to cool the same.

  3. Stirling Air Conditioner for Compact Cooling

    SciTech Connect

    2010-09-01

    BEETIT Project: Infinia is developing a compact air conditioner that uses an unconventional high efficient Stirling cycle system (vs. conventional vapor compression systems) to produce cool air that is energy efficient and does not rely on polluting refrigerants. The Stirling cycle system is a type of air conditioning system that uses a motor with a piston to remove heat to the outside atmosphere using a gas refrigerant. To date, Stirling systems have been expensive and have not had the right kind of heat exchanger to help cool air efficiently. Infinia is using chip cooling technology from the computer industry to make improvements to the heat exchanger and improve system performance. Infinia’s air conditioner uses helium gas as refrigerant, an environmentally benign gas that does not react with other chemicals and does not burn. Infinia’s improvements to the Stirling cycle system will enable the cost-effective mass production of high-efficiency air conditioners that use no polluting refrigerants.

  4. PFBC HGCU Test Facility

    SciTech Connect

    Not Available

    1992-01-01

    This is the ninth technical progress report submitted to the Department of Energy in connection with the Cooperative Agreement between DOE and Ohio Power Company for the Tidd PFBC Hot Gas Clean Up Test Facility. This report covers the period of work completed during the Fourth Quarter of CY 1991. During the reporting period, work focused on completing Task 2, Hot Gas Clean Up (HGCU) Detailed Design and Task 4, Procurement Activities to support the installation of the Westinghouse advanced particle filter (APE). The following significant events occurred during this report period: The mechanical/structural contractor (Pullman Power Products) mobilized at the Tidd site in December and began erecting steel framing for the APF. A contract modification was issued to Babcock Wilcox Co. for the supply of piping materials required for the combustor internal modifications. A contract was awarded to ANARAD, Inc. for a gas analysis system. A contract was prepared and is being processed for electrical erection.

  5. Specific filter designs for PFBC

    SciTech Connect

    Lippert, T.E.; Bruck, G.J.; Newby, R.A.; Smeltzer, E.E.

    1993-09-01

    Bubbling bed PFBC technology is currently being demonstrated at commercial scale. Economic and performance improvements in these first generation type PFBC plants can be realized with the application of hot gas particulate filters. Both the secondary cyclone(s) and stack gas ESP(s) could be eliminated saving costs and providing lower system pressure losses. The cleaner gas (basically ash free) provided with the hot gas filter, also permits a wider selection of gas turbines with potentially higher performance. For these bubbling bed PFBC applications, the hot gas filter must operate at temperatures of 1580{degree}F and system pressures of 175 psia (conditions typical of the Tidd PFBC plant). Inlet dust loadings to the filter are estimated to be about 500 to 1000 ppm with mass mean particle diameters ranging from 1.5 to 3 {mu}m. For commercial applications typical of the 70 MW{sub e} Tidd PFBC demonstration unit, the filter must treat up to 56,600 acfm of gas flow. Scaleup of this design to about 320 MW{sub e} would require filtering over 160,000 acfm gas flow. For these commercial scale systems, multiple filter vessels are required. Thus, the filter design should be modular for scaling. An alternative to the bubbling bed PFBC is the circulating bed concept. In this process the hot gas filter will in general be exposed to higher operating temperatures (1650{degree}F) and significantly higher (factor of 10 or more) particle loading.

  6. Performance of heat exchanger materials in Curtiss-Wright PFBC tests

    SciTech Connect

    Not Available

    1983-12-01

    Integration of a pressurized fluidized bed (PFB) coal combustor with a gas turbine/steam turbine combined cycle is an economic and environmentally attractive alternative to pulverized coal steam boilers and flue gas desulfurization for utility power plants burning high sulfur coal. A process by which a coal-fired, air-cooled PFBC may be integrated into a combined cycle system is presented. The process can provide a coal pile-to-busbar efficiency of approximately 40%. About one-third of the air from the gas turbine's compressor is used to fluidize the bed and support combustion, and the remaining air is indirectly heated - essentially to bed temperature - by flowing through an in-bed tubular heat exchanger. In this system, 60% of the total plant power is produced by the gas turbine and 40% is produced by the steam system.

  7. A Blast of Cool Air

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Unable to solve their engineering problem with a rotor in their Orbital Vane product, DynEco Corporation turned to Kennedy Space Center for help. KSC engineers determined that the compressor rotor was causing a large concentration of stress, which led to cracking and instant rotor failure. NASA redesigned the lubrication system, which allowed the company to move forward with its compressor that has no rubbing parts. The Orbital Vane is a refrigerant compressor suitable for mobile air conditioning and refrigeration.

  8. Liquid metal reactor air cooling baffle

    DOEpatents

    Hunsbedt, A.

    1994-08-16

    A baffle is provided between a relatively hot containment vessel and a relatively cold silo for enhancing air cooling performance. The baffle includes a perforate inner wall positionable outside the containment vessel to define an inner flow riser therebetween, and an imperforate outer wall positionable outside the inner wall to define an outer flow riser therebetween. Apertures in the inner wall allow thermal radiation to pass laterally therethrough to the outer wall, with cooling air flowing upwardly through the inner and outer risers for removing heat. 3 figs.

  9. Development of Air-cooled Engines with Blower Cooling

    NASA Technical Reports Server (NTRS)

    Lohner, Kurt

    1933-01-01

    With the aid of a heating device, the heat transfer to cylinders with conical fins of various forms is determined both for shrouded and exposed cylinders. Simultaneously the pressure drop for overcoming the resistance to the motion of air between the fins of the enclosed cylinder is measured. Thus the relations between the heat transfer and the energy required for cooling are discovered. The investigations show that the heat transfer in a conducted air flow is much greater than in a free current and that further improvement, as compared with free exposure, is possible through narrower spaces between the fins.

  10. Effects of 'Cooled' Cooling Air on Pre-Swirl Nozzle Design

    NASA Technical Reports Server (NTRS)

    Scricca, J. A.; Moore, K. D.

    2006-01-01

    It is common practice to use Pre-Swirl Nozzles to facilitate getting the turbine blade cooling air onboard the rotating disk with minimum pressure loss and reduced temperature. Higher engine OPR's and expanded aircraft operating envelopes have pushed cooling air temperatures to the limits of current disk materials and are stressing the capability to cool the blade with practical levels of cooling air flow. Providing 'Cooled' Cooling Air is one approach being considered to overcome these limitations. This presentation looks at how the introduction of 'Cooled' Cooling Air impacts the design of the Pre-Swirl Nozzles, specifically in relation to the radial location of the nozzles.

  11. Air-cooled overhead-valve engine

    SciTech Connect

    Shirai, T.

    1987-06-16

    This patent describes an air-cooled overhead-valve internal combustion engine. The engine is composed of a crankcase with a crankshaft, a cylinder block with a cylinder head and a combustion chamber mounted in the crankcase. At least a pair of intake and exhaust valves installed in intake and exhaust ports are formed in the cylinder head. A valve drive system mounted adjacent to the cylinder block drives the intake and exhaust valves through cam-driven push rods. An intake pipe is connected at one end of the intake port and at its opposite end to an air cleaner and a carburetor. An exhaust duct is connected at one end of the exhaust port. A flywheel is joined to the crankshaft at the other end of the output side end of the crankshaft and a cooling fan mounted on the flywheel. The improvements are where the cooling fan is housed, together with the crankcase and flywheel, in a fan casing having a pair of inlet and outlet openings bored in opposite walls. The inlet opening is located at the flywheel side of the crankshaft, while the outlet opening is located at the opposite side of the crankshaft from the flywheel. The cam-driven push rods are located in the crankcase on that side of the cylinder block far remote from where the intake pipe is connected to the intake port. The cooling fan is mounted in the fan casing in such a manner that the cooling air from the cooling fan is allowed to flow in a direction substantially parallel with the axis of the crankshaft, along the surface of the cylinder block and cylinder head.

  12. Transpiration cooling using air as a coolant

    SciTech Connect

    Kikkawa, Shinzo; Senda, Mamoru; Sakagushi, Katsuji; Shibutani, Hideki )

    1993-02-01

    Transpiration cooling is one of the most effective techniques for protecting a surface exposed to a high-temperature gas stream. In the present paper, the transpiration cooling effectiveness was measured under steady state. Air as a coolant was transpired from the surface of a porous plate exposed to hot gas stream, and the transpiration rate was varied in the range of 0.001 [approximately] 0.006. The transpiration cooling effectiveness was evaluated by measuring the temperature of the upper surface of the plate. Also, a theoretical study was performed and it was clarified that the effectiveness increases with increasing transpiration rate and heat-transfer coefficient of the upper surface. Further, the effectiveness was expressed as a function of the blowing parameter only. The agreement between the experimental results and theoretical ones was satisfactory.

  13. Experimental study on the evaporative cooling of an air-cooled condenser with humidifying air

    NASA Astrophysics Data System (ADS)

    Wen, Mao-Yu; Ho, Ching-Yen; Jang, Kuang-Jang; Yeh, Cheng-Hsiung

    2014-02-01

    Using six different materials to construct a water curtain, this study aims to determine the most effective spray cooling of an air cooled heat exchanger under wet conditions. The experiments were carried out at a mass flow rate of 0.005-0.01 kg/s (spraying water), an airspeed of 0.6-2.4 m/s and a run time of 0-72 h for the material degradation tests. The experimental results indicate that the cooling efficiency, the heat rejection, and the sprinkling density increase as the amount of spraying water increases, but, the air-flow of the condenser is reduced at the same time. In addition, the cooling efficiency of the pads decreases with an increase of the inlet air velocity. In terms of experimental range, the natural wood pulp fiberscan can reach 42.7-66 % for cooling efficiency and 17.17-24.48 % for increases of heat rejection. This means that the natural wood pulp fiberscan pad most effectively enhances cooling performance, followed in terms of cooling effectiveness by the special non-woven rayon pad, the woollen blanket, biochemistry cotton and kapok, non-woven cloth of rayon cotton and kapok, and white cotton pad, respectively. However, the natural wood pulp fiberscan and special non-woven rayon display a relatively greater degradation of the cooling efficiency than the other test pads used in the material degradation tests.

  14. Facial Cooling During Cold Air Exposure.

    NASA Astrophysics Data System (ADS)

    Tikuisis, Peter; Osczevski, Randall J.

    2003-07-01

    A dynamic model of facial cooling was developed in conjunction with the release of the new wind chill temperature (WCT) index, whereby the WCT provides wind chill estimates based on steady-state considerations and the dynamic model can be used to predict the rate of facial cooling and particularly the onset of freezing. In the present study, the dynamic model is applied to various combinations of air temperature and wind speed, and predictions of the resultant steady-state cheek skin temperatures are tabulated. Superimposed on these tables are times to a cheek skin temperature of 10°C, which has been reported as painful, and times to freezing. For combinations of air temperature and wind speed that result in the same final steady-state cheek temperature or the same WCT, the initial rate of change of skin temperature is higher for those combinations having higher wind speeds. This suggests that during short exposures, high winds combined with low temperatures might be perceived as more stressful than light winds with lower temperatures that result in the same "wind chill." This paper also discloses the paradox that individuals having a low cheek thermal resistance are predicted to experience a more severe WCT, but be at less risk of cooling injury than individuals with higher thermal resistances. The advantages of cooling-time predictions using the dynamic model are discussed with the recommendation/conclusion that safe exposure limits are more meaningful and less ambiguous than the reporting of the WCT.

  15. BEETIT: Building Cooling and Air Conditioning

    SciTech Connect

    2010-09-01

    BEETIT Project: The 14 projects that comprise ARPA-E’s BEETIT Project, short for “Building Energy Efficiency Through Innovative Thermodevices,” are developing new approaches and technologies for building cooling equipment and air conditioners. These projects aim to drastically improve building energy efficiency and reduce greenhouse gas emissions such as carbon dioxide (CO2) at a cost comparable to current technologies.

  16. Finger Cooling During Cold Air Exposure.

    NASA Astrophysics Data System (ADS)

    Tikuisis, Peter

    2004-05-01

    This paper presents a method for predicting the onset of finger freezing. It is an extension of a tissue-cooling model originally developed to predict the onset of cheek freezing. The extension to the finger is presented as a more conservative warning of wind chill. Indeed, guidance on the risk of finger freezing is important not only to safeguard the finger, but also because it pertains more closely to susceptible facial features, such as the nose, than if only the risk of cheek freezing was provided. The importance of blood flow to the finger and the modeling of vaso-constriction are demonstrated through cooling predictions that agree reasonably well with several reported observations. Differences in the prediction between the present physiologic-based model and the engineering model used to develop the wind chill index are also discussed. New wind chill charts are presented that tabulate the mean cooling rates and corresponding onset times to freezing of the finger for various combinations of air temperature and wind speed. Results indicate that the surface of the finger cools to its freezing point in approximately one-eighth of the time predicted for the cheek. For combinations that result in the same wind chill temperature (WCT), the rate of finger cooling is faster at the higher wind speed. This asymmetry was previously disclosed through the application of the model to cheek cooling, and it reiterates the ambiguity associated with the reporting of WCT. It is further emphasized that the reporting of onset times to freezing, or safe exposure limits, is a more logical and meaningful alternative to the WCT.

  17. 40 CFR 92.108 - Intake and cooling air measurements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Intake and cooling air measurements. 92.108 Section 92.108 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.108 Intake and cooling air measurements....

  18. Fouling of Air Cooled Condensers On the Air Side

    NASA Astrophysics Data System (ADS)

    Marie, Hazel; Matune, Nicholas

    2013-11-01

    As the electrical power demand increases and water resources become more limited, fouling on the air side of Air Cooled Condensers (ACC) is a growing concern. The objective of this study was to experimentally and computationally calculate the convection heat transfer coefficient for both a clean and fouled condenser. Bee pollen was selected as the experimental fouling particle, and engineering data for similar particles were used for the computational model. Both the experimental and computational results showing the negative impact fouling has a on the heat transfer will be presented.

  19. Market assessment of PFBC ash use

    SciTech Connect

    Bland, A. E.; Brown, T. H., Western Research Institute

    1998-01-01

    Pressurized fluidized bed combustion (PFBC) of coal is undergoing demonstration in the United States, as well as throughout the world. American Electric Power`s (AEP`s) bubbling PFBC 70 MWe Tidd demonstration program in Ohio and pilot-scale development at Foster Wheeler Energia Oy 10 MWth circulating PFBC at Karhula, Finland, have demonstrated the advantages of PFBC technology. Further technology development in the US is planned with the deployment of the technology at the MacIntosh Clean Coal project in Lakeland, Florida. Development of uses for solid wastes from PFBC coal-fired power systems is being actively pursued as part of the demonstration of PFBC technologies. Ashes collected from Foster Wheeler Energia Oy pilot circulating PFBC tests in Karhula, Finland, operating on (1) low sulfur subbituminous and (2) high sulfur bituminous coal; and ash from the AEP`s high-sulfur bituminous coal-fired bubbling PFBC in Brilliant, Ohio, were evaluated in laboratory and pilot-scale ash use testing at Western Research Institute (WRI).

  20. Influence of various operating conditions on advanced PFBC with staged combustion

    SciTech Connect

    Moersch, O.; Nagel, H.; Spliethoff, H.; Hein, K.R.G.

    1999-07-01

    The development of PFBC towards advanced or second generation PFBC focuses on an increase of temperature at the gas turbine inlet to bring forth a substantial improvement of the turbine itself and the overall system performance. Most of such advanced systems described in literature include a carbonizer for partial conversion of coal producing a low calorific pressurized syngas and a PFBC burning the remaining char. After hot gas clean-up the syngas and the O{sub 2}-rich fuel gas from the PFBC are led to the combustion chamber of the gas turbine. In the proposed staged combustion concept (PFBC-SC), which also aims at raising the temperatures at the gas turbine inlet, coal is burned substoichiometrically in a pressurized fluidized bed producing a low calorific gas. After hot gas clean-up the gas undergoes post-combustion with pressurized air and enters the gas turbine at approximately 1,450 K. The advantages of PFBC-SC over APFBC as described above are the lower investment costs and the simpler process, because no separate gasifier including hot gas cleaning device is needed. At the IVD's 50 kWth PFBC test facility, experimental investigations were done into substoichiometrical combustion with regard to composition of the produced gas, carbon-conversion and afterburner temperature. The results of the experiments which were carried out at various temperatures (1,073--1,200 K), pressures (1--13 bar), air ratios (0.5--0.9) and with different coals were compared with chemical equilibrium calculations. In contrast to the operating pressure the heating value of the syngas ({ge}CO, H{sub 2}, CH{sub 4}) could be increased significantly with increasing temperatures. Due to the better gasification behavior of subbituminous coal compared with bituminous coal almost equilibrium conditions were achieved. At high pressures and temperatures (13 bar/1,173 K) the carbon conversion rate 97.5% at all air ratios.

  1. The problem of cooling an air-cooled cylinder on an aircraft engine

    NASA Technical Reports Server (NTRS)

    Brevoort, M J; Joyner, U T

    1941-01-01

    An analysis of the cooling problem has been to show by what means the cooling of an air-cooled aircraft engine may be improved. Each means of improving cooling is analyzed on the basis of effectiveness in cooling with respect to power for cooling. The altitude problem is analyzed for both supercharged and unsupercharged engines. The case of ground cooling is also discussed. The heat-transfer process from the hot gases to the cylinder wall is discussed on the basis of the fundamentals of heat transfer and thermodynamics. Adiabatic air-temperature rise at a stagnation point in compressible flow is shown to depend only on the velocity of flow.

  2. Integrated turbine-compressor provides air flow for cooling

    NASA Technical Reports Server (NTRS)

    Ferri, A.

    1970-01-01

    Modified supersonic turbine cycle provides cooling air to surrounding structures. Simplified mechanical design assures correct balance of air flow, allows direct issue of cool air to the structure, and assists in matching turbine work output to work input required by the compressor.

  3. Startup of air-cooled condensers and dry cooling towers at low temperatures of the cooling air

    NASA Astrophysics Data System (ADS)

    Milman, O. O.; Ptakhin, A. V.; Kondratev, A. V.; Shifrin, B. A.; Yankov, G. G.

    2016-05-01

    The problems of startup and performance of air-cooled condensers (ACC) and dry cooling towers (DCT) at low cooling air temperatures are considered. Effects of the startup of the ACC at sub-zero temperatures are described. Different options of the ACC heating up are analyzed, and examples of existing technologies are presented (electric heating, heating up with hot air or steam, and internal and external heating). The use of additional heat exchanging sections, steam tracers, in the DCT design is described. The need for high power in cases of electric heating and heating up with hot air is noted. An experimental stand for research and testing of the ACC startup at low temperatures is described. The design of the three-pass ACC unit is given, and its advantages over classical single-pass design at low temperatures are listed. The formation of ice plugs inside the heat exchanging tubes during the start-up of ACC and DCT at low cooling air temperatures is analyzed. Experimental data on the effect of the steam flow rate, steam nozzle distance from the heat-exchange surface, and their orientation in space on the metal temperature were collected, and test results are analyzed. It is noted that the surface temperature at the end of the heat up is almost independent from its initial temperature. Recommendations for the safe start-up of ACCs and DCTs are given. The heating flow necessary to sufficiently heat up heat-exchange surfaces of ACCs and DCTs for the safe startup is estimated. The technology and the process of the heat up of the ACC with the heating steam external supply are described by the example of the startup of the full-scale section of the ACC at sub-zero temperatures of the cooling air, and the advantages of the proposed start-up technology are confirmed.

  4. Air film cooling in a nonadiabatic wall conical nozzle.

    NASA Technical Reports Server (NTRS)

    Boldman, D. R.; Papell, S. S.; Ehlers, R. C.

    1972-01-01

    Experimental data for an air-film cooled conical nozzle operating with a heated-air main stream and a water-cooled wall confirm the validity of Lieu's (1964) method for correlating film cooling data in the accelerated flow of a nonadiabatic-wall nozzle. The film cooling effectiveness modified for nonadiabatic walls by Lieu can be used to correlate film cooling under the condition that the main-stream to coolant velocity ratio at the slot is about 1. Such a ratio provides the optimum cooling effectiveness.

  5. Tidd PFBC demonstration project

    SciTech Connect

    Marrocco, M.

    1997-12-31

    The Tidd project was one of the first joint government-industry ventures to be approved by the US Department of Energy (DOE) in its Clean Coal Technology Program. In March 1987, DOE signed an agreement with the Ohio Power Company, a subsidiary of American Electric Power, to refurbish the then-idle Tidd plant on the banks of the Ohio River with advanced pressurized fluidized bed technology. Testing ended after 49 months of operation, 100 individual tests, and the generation of more than 500,000 megawatt-hours of electricity. The demonstration plant has met its objectives. The project showed that more than 95 percent of sulfur dioxide pollutants could be removed inside the advanced boiler using the advanced combustion technology, giving future power plants an attractive alternative to expensive, add-on scrubber technology. In addition to its sulfur removal effectiveness, the plant`s sustained periods of steady-state operation boosted its availability significantly above design projections, heightening confidence that pressurized fluidized bed technology will be a reliable, baseload technology for future power plants. The technology also controlled the release of nitrogen oxides to levels well below the allowable limits set by federal air quality standards. It also produced a dry waste product that is much easier to handle than wastes from conventional power plants and will likely have commercial value when produced by future power plants.

  6. Closed-loop air cooling system for a turbine engine

    DOEpatents

    North, William Edward

    2000-01-01

    Method and apparatus are disclosed for providing a closed-loop air cooling system for a turbine engine. The method and apparatus provide for bleeding pressurized air from a gas turbine engine compressor for use in cooling the turbine components. The compressed air is cascaded through the various stages of the turbine. At each stage a portion of the compressed air is returned to the compressor where useful work is recovered.

  7. High-Altitude Flight Cooling Investigation of a Radial Air-Cooled Engine

    NASA Technical Reports Server (NTRS)

    Manganiello, Eugene J; Valerino, Michael F; Bell, E Barton

    1947-01-01

    An investigation of the cooling of an 18-cylinder, twin-row, radial, air-cooled engine in a high-performance pursuit airplane has been conducted for variable engine and flight conditions at altitudes ranging from 5000 to 35,000 feet in order to provide a basis for predicting high-altitude cooling performance from sea-level or low altitude experimental results. The engine cooling data obtained were analyzed by the usual NACA cooling-correlation method wherein cylinder-head and cylinder-barrel temperatures are related to the pertinent engine and cooling-air variables. A theoretical analysis was made of the effect on engine cooling of the change of density of the cooling air across the engine (the compressibility effect), which becomes of increasing importance as altitude is increased. Good agreement was obtained between the results of the theoretical analysis and the experimental data.

  8. Cooling circuit for steam and air-cooled turbine nozzle stage

    DOEpatents

    Itzel, Gary Michael; Yu, Yufeng

    2002-01-01

    The turbine vane segment includes inner and outer walls with a vane extending therebetween. The vane includes leading and trailing edge cavities and intermediate cavities. An impingement plate is spaced from the outer wall to impingement-cool the outer wall. Post-impingement cooling air flows through holes in the outer wall to form a thin air-cooling film along the outer wall. Cooling air is supplied an insert sleeve with openings in the leading edge cavity for impingement-cooling the leading edge. Holes through the leading edge afford thin-film cooling about the leading edge. Cooling air is provided the trailing edge cavity and passes through holes in the side walls of the vane for thin-film cooling of the trailing edge. Steam flows through a pair of intermediate cavities for impingement-cooling of the side walls. Post-impingement steam flows to the inner wall for impingement-cooling of the inner wall and returns the post-impingement cooling steam through inserts in other intermediate cavities for impingement-cooling the side walls of the vane.

  9. Effect of Chord Size on Weight and Cooling Characteristics of Air-Cooled Turbine Blades

    NASA Technical Reports Server (NTRS)

    Esgar, Jack B; Schum, Eugene F; Curren, Arthur N

    1958-01-01

    An analysis has been made to determine the effect of chord size on the weight and cooling characteristics of shell-supported, air-cooled gas-turbine blades. In uncooled turbines with solid blades, the general practice has been to design turbines with high aspect ratio (small blade chord) to achieve substantial turbine weight reduction. With air-cooled blades, this study shows that turbine blade weight is affected to a much smaller degree by the size of the blade chord.

  10. Development of cooling strategy for an air cooled lithium-ion battery pack

    NASA Astrophysics Data System (ADS)

    Sun, Hongguang; Dixon, Regan

    2014-12-01

    This paper describes a cooling strategy development method for an air cooled battery pack with lithium-ion pouch cells used in a hybrid electric vehicle (HEV). The challenges associated with the temperature uniformity across the battery pack, the temperature uniformity within each individual lithium-ion pouch cell, and the cooling efficiency of the battery pack are addressed. Initially, a three-dimensional battery pack thermal model developed based on simplified electrode theory is correlated to physical test data. An analytical design of experiments (DOE) approach using Optimal Latin-hypercube technique is then developed by incorporating a DOE design model, the correlated battery pack thermal model, and a morphing model. Analytical DOE studies are performed to examine the effects of cooling strategies including geometries of the cooling duct, cooling channel, cooling plate, and corrugation on battery pack thermal behavior and to identify the design concept of an air cooled battery pack to maximize its durability and its driving range.

  11. Air cooled turbine component having an internal filtration system

    DOEpatents

    Beeck, Alexander R.

    2012-05-15

    A centrifugal particle separator is provided for removing particles such as microscopic dirt or dust particles from the compressed cooling air prior to reaching and cooling the turbine blades or turbine vanes of a turbine engine. The centrifugal particle separator structure has a substantially cylindrical body with an inlet arranged on a periphery of the substantially cylindrical body. Cooling air enters centrifugal particle separator through the separator inlet port having a linear velocity. When the cooling air impinges the substantially cylindrical body, the linear velocity is transformed into a rotational velocity, separating microscopic particles from the cooling air. Microscopic dust particles exit the centrifugal particle separator through a conical outlet and returned to a working medium.

  12. Correction of Temperatures of Air-Cooled Engine Cylinders for Variation in Engine and Cooling Conditions

    NASA Technical Reports Server (NTRS)

    Schey, Oscar W; Pinkel, Benjamin; Ellerbrock, Herman H , Jr

    1939-01-01

    Factors are obtained from semiempirical equations for correcting engine-cylinder temperatures for variation in important engine and cooling conditions. The variation of engine temperatures with atmospheric temperature is treated in detail, and correction factors are obtained for various flight and test conditions, such as climb at constant indicated air speed, level flight, ground running, take-off, constant speed of cooling air, and constant mass flow of cooling air. Seven conventional air-cooled engine cylinders enclosed in jackets and cooled by a blower were tested to determine the effect of cooling-air temperature and carburetor-air temperature on cylinder temperatures. The cooling air temperature was varied from approximately 80 degrees F. to 230 degrees F. and the carburetor-air temperature from approximately 40 degrees F. to 160 degrees F. Tests were made over a large range of engine speeds, brake mean effective pressures, and pressure drops across the cylinder. The correction factors obtained experimentally are compared with those obtained from the semiempirical equations and a fair agreement is noted.

  13. Closed loop air cooling system for combustion turbines

    DOEpatents

    Huber, D.J.; Briesch, M.S.

    1998-07-21

    Convective cooling of turbine hot parts using a closed loop system is disclosed. Preferably, the present invention is applied to cooling the hot parts of combustion turbine power plants, and the cooling provided permits an increase in the inlet temperature and the concomitant benefits of increased efficiency and output. In preferred embodiments, methods and apparatus are disclosed wherein air is removed from the combustion turbine compressor and delivered to passages internal to one or more of a combustor and turbine hot parts. The air cools the combustor and turbine hot parts via convection and heat is transferred through the surfaces of the combustor and turbine hot parts. 1 fig.

  14. Closed loop air cooling system for combustion turbines

    DOEpatents

    Huber, David John; Briesch, Michael Scot

    1998-01-01

    Convective cooling of turbine hot parts using a closed loop system is disclosed. Preferably, the present invention is applied to cooling the hot parts of combustion turbine power plants, and the cooling provided permits an increase in the inlet temperature and the concomitant benefits of increased efficiency and output. In preferred embodiments, methods and apparatus are disclosed wherein air is removed from the combustion turbine compressor and delivered to passages internal to one or more of a combustor and turbine hot parts. The air cools the combustor and turbine hot parts via convection and heat is transferred through the surfaces of the combustor and turbine hot parts.

  15. Cooling Characteristics of an Experimental Tail-pipe Burner with an Annular Cooling-air Passage

    NASA Technical Reports Server (NTRS)

    Kaufman, Harold R; Koffel, William K

    1952-01-01

    The effects of tail-pipe fuel-air ratio (exhaust-gas temperatures from approximately 3060 degrees to 3825 degrees R), radial distributiion of tail-pipe fuel flow, and mass flow of combustion gas and the inside wall were determined for an experimental tail-pipe burner cooled by air flowing through and insulated cooling-air to combustion gas mass flow from 0.066 to 0.192 were also determined.

  16. 14 CFR 29.1109 - Carburetor air cooling.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Carburetor air cooling. 29.1109 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Induction System § 29.1109 Carburetor air... to maintain the air temperature, at the carburetor inlet, at or below the maximum established...

  17. 14 CFR 29.1109 - Carburetor air cooling.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Carburetor air cooling. 29.1109 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Induction System § 29.1109 Carburetor air... to maintain the air temperature, at the carburetor inlet, at or below the maximum established...

  18. 14 CFR 29.1109 - Carburetor air cooling.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Carburetor air cooling. 29.1109 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Induction System § 29.1109 Carburetor air... to maintain the air temperature, at the carburetor inlet, at or below the maximum established...

  19. Passive radiative cooling below ambient air temperature under direct sunlight.

    PubMed

    Raman, Aaswath P; Anoma, Marc Abou; Zhu, Linxiao; Rephaeli, Eden; Fan, Shanhui

    2014-11-27

    Cooling is a significant end-use of energy globally and a major driver of peak electricity demand. Air conditioning, for example, accounts for nearly fifteen per cent of the primary energy used by buildings in the United States. A passive cooling strategy that cools without any electricity input could therefore have a significant impact on global energy consumption. To achieve cooling one needs to be able to reach and maintain a temperature below that of the ambient air. At night, passive cooling below ambient air temperature has been demonstrated using a technique known as radiative cooling, in which a device exposed to the sky is used to radiate heat to outer space through a transparency window in the atmosphere between 8 and 13 micrometres. Peak cooling demand, however, occurs during the daytime. Daytime radiative cooling to a temperature below ambient of a surface under direct sunlight has not been achieved because sky access during the day results in heating of the radiative cooler by the Sun. Here, we experimentally demonstrate radiative cooling to nearly 5 degrees Celsius below the ambient air temperature under direct sunlight. Using a thermal photonic approach, we introduce an integrated photonic solar reflector and thermal emitter consisting of seven layers of HfO2 and SiO2 that reflects 97 per cent of incident sunlight while emitting strongly and selectively in the atmospheric transparency window. When exposed to direct sunlight exceeding 850 watts per square metre on a rooftop, the photonic radiative cooler cools to 4.9 degrees Celsius below ambient air temperature, and has a cooling power of 40.1 watts per square metre at ambient air temperature. These results demonstrate that a tailored, photonic approach can fundamentally enable new technological possibilities for energy efficiency. Further, the cold darkness of the Universe can be used as a renewable thermodynamic resource, even during the hottest hours of the day. PMID:25428501

  20. Air-cooled CWS warm air furnace. Final report

    SciTech Connect

    Litka, A.F.; Becker, F.E.

    1995-08-01

    Thermo Power Corporation, Tecogen Division, has developed coal water slurry (CWS) combustion technologies specifically tailored to meet the space heating needs of the residential, commercial, and industrial market sectors. This furnace was extensively tested and met all the design and operating criteria of the development program, which included combustion efficiencies in excess of 99%, response to full load from a cold start in less than 5 minutes, and steady-state thermal efficiencies as high as 85%. While this furnace design is extremely versatile, versatility came at the expense of system complexity and cost. To provide a more cost effective CWS-based option for the residential market sector, Tecogen, developed a totally air-cooled CWS-fired residential warm air heating system. To minimize system cost and to take advantage of industry manufacturing practices and experience, a commercially available oil/gas solid fuel-fired central furnace, manufactured by Yukon Energy Corporation, was used as the platform for the CWS combustor and related equipment. A prototype furnace was designed, built, and tested in the laboratory to verify system integrity and operation. This unit was then shipped to the PETC to undergo demonstration operation and serve as a showcase of the CWS technology. An in-depth Owners Manual was prepared and delivered with the furnace. This Owners Manual, which is included as Appendix A of this report, includes installation instructions, operating procedures, wiring diagrams, and equipment bulletins on the major components. It also contains coal water slurry fuel specifications and typical system operating variables, including key temperatures, pressures, and flowrates.

  1. Heat-transfer processes in air-cooled engine cylinders

    NASA Technical Reports Server (NTRS)

    Pinkel, Benjamin

    1938-01-01

    From a consideration of heat-transfer theory, semi-empirical expressions are set up for the transfer of heat from the combustion gases to the cylinder of an air-cooled engine and from the cylinder to the cooling air. Simple equations for the average head and barrel temperatures as functions of the important engine and cooling variables are obtained from these expressions. The expressions involve a few empirical constants, which may be readily determined from engine tests. Numerical values for these constants were obtained from single-cylinder engine tests for cylinders of the Pratt & Whitney 1535 and 1340-h engines. The equations provide a means of calculating the effect of the various engine and cooling variables on the cylinder temperatures and also of correlating the results of engine cooling tests. An example is given of the application of the equations to the correlation of cooling-test data obtained in flight.

  2. 21 CFR 211.46 - Ventilation, air filtration, air heating and cooling.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 4 2011-04-01 2011-04-01 false Ventilation, air filtration, air heating and... Buildings and Facilities § 211.46 Ventilation, air filtration, air heating and cooling. (a) Adequate ventilation shall be provided. (b) Equipment for adequate control over air pressure, micro-organisms,...

  3. 21 CFR 211.46 - Ventilation, air filtration, air heating and cooling.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 4 2014-04-01 2014-04-01 false Ventilation, air filtration, air heating and... Buildings and Facilities § 211.46 Ventilation, air filtration, air heating and cooling. (a) Adequate ventilation shall be provided. (b) Equipment for adequate control over air pressure, micro-organisms,...

  4. 21 CFR 211.46 - Ventilation, air filtration, air heating and cooling.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 4 2012-04-01 2012-04-01 false Ventilation, air filtration, air heating and... Buildings and Facilities § 211.46 Ventilation, air filtration, air heating and cooling. (a) Adequate ventilation shall be provided. (b) Equipment for adequate control over air pressure, micro-organisms,...

  5. 21 CFR 211.46 - Ventilation, air filtration, air heating and cooling.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Ventilation, air filtration, air heating and... Buildings and Facilities § 211.46 Ventilation, air filtration, air heating and cooling. (a) Adequate ventilation shall be provided. (b) Equipment for adequate control over air pressure, micro-organisms,...

  6. Cool Colored Roofs to Save Energy and Improve Air Quality

    SciTech Connect

    Akbari, Hashem; Levinson, Ronnen; Miller, William; Berdahl, Paul

    2005-08-23

    Urban areas tend to have higher air temperatures than their rural surroundings as a result of gradual surface modifications that include replacing the natural vegetation with buildings and roads. The term ''Urban Heat Island'' describes this phenomenon. The surfaces of buildings and pavements absorb solar radiation and become extremely hot, which in turn warm the surrounding air. Cities that have been ''paved over'' do not receive the benefit of the natural cooling effect of vegetation. As the air temperature rises, so does the demand for air-conditioning (a/c). This leads to higher emissions from power plants, as well as increased smog formation as a result of warmer temperatures. In the United States, we have found that this increase in air temperature is responsible for 5-10% of urban peak electric demand for a/c use, and as much as 20% of population-weighted smog concentrations in urban areas. Simple ways to cool the cities are the use of reflective surfaces (rooftops and pavements) and planting of urban vegetation. On a large scale, the evapotranspiration from vegetation and increased reflection of incoming solar radiation by reflective surfaces will cool a community a few degrees in the summer. As an example, computer simulations for Los Angeles, CA show that resurfacing about two-third of the pavements and rooftops with reflective surfaces and planting three trees per house can cool down LA by an average of 2-3K. This reduction in air temperature will reduce urban smog exposure in the LA basin by roughly the same amount as removing the basin entire onroad vehicle exhaust. Heat island mitigation is an effective air pollution control strategy, more than paying for itself in cooling energy cost savings. We estimate that the cooling energy savings in U.S. from cool surfaces and shade trees, when fully implemented, is about $5 billion per year (about $100 per air-conditioned house).

  7. Ambient air cooling arrangement having a pre-swirler for gas turbine engine blade cooling

    DOEpatents

    Lee, Ching-Pang; Tham, Kok-Mun; Schroeder, Eric; Meeroff, Jamie; Miller, Jr., Samuel R; Marra, John J

    2015-01-06

    A gas turbine engine including: an ambient-air cooling circuit (10) having a cooling channel (26) disposed in a turbine blade (22) and in fluid communication with a source (12) of ambient air: and an pre-swirler (18), the pre-swirler having: an inner shroud (38); an outer shroud (56); and a plurality of guide vanes (42), each spanning from the inner shroud to the outer shroud. Circumferentially adjacent guide vanes (46, 48) define respective nozzles (44) there between. Forces created by a rotation of the turbine blade motivate ambient air through the cooling circuit. The pre-swirler is configured to impart swirl to ambient air drawn through the nozzles and to direct the swirled ambient air toward a base of the turbine blade. The end walls (50, 54) of the pre-swirler may be contoured.

  8. The heat transfer of cooling fins on moving air

    NASA Technical Reports Server (NTRS)

    Doetsch, Hans

    1935-01-01

    The present report is a comparison of the experimentally defined temperature and heat output of cooling fins in the air stream with theory. The agreement is close on the basis of a mean coefficient of heat transfer with respect to the total surface. A relationship is established between the mean coefficient of heat transfer, the dimensions of the fin arrangement, and the air velocity.

  9. Varying duty operation of air-cooled condenser units

    NASA Astrophysics Data System (ADS)

    Milman, O. O.; Kondratev, A. V.; Ptakhin, A. V.; Dunaev, S. N.; Kirjukhin, A. V.

    2016-05-01

    Results of experimental investigations of operation modes of air-cooled condensers (ACC) under design and varying duty conditions are presented. ACCs with varying cooling airflow rates under constant heat load and with constant cooling airflow under varying heat load are examined. Diagrams of heat transfer coefficients and condensation pressures on the heat load and cooling airflow are obtained. It is found that, if the relative heat load is in the range from 0.6 to 1.0 of the nominal value, the ACC heat transfer coefficient varies insignificantly, unlike that of the water-cooled surface condensers. The results of the determination of "zero points" are given, i.e., the attainable pressure in air-cooled condensing units (ACCU), if there is no heat load for several values of working water temperature at the input of water-jet ejectors and liquid ring vacuum pump. The results of the experimental determination of atmospheric air suction into the ACC vacuum system. The effect of additional air suctions in the steam pipe on ACCU characteristics is analyzed. The thermal mapping of ACC heat exchange surfaces from the cooling air inlet is carried out. The dependence of the inefficient heat exchange zone on the additional air suction into the ACC vacuum system is given. It is shown that, if there is no additional air suction into the ACC vacuum system, the inefficient heat exchange zone is not located at the bottom of the first pass tubes, and their portion adjacent to the bottom steam pipe works efficiently. Design procedures for the ACC varying duty of capacitors are presented, and their adequacy for the ACCU varying duty estimation is analyzed.

  10. PFBC Utility Demonstration Project. Annual report, 1991

    SciTech Connect

    Not Available

    1992-11-01

    This report provides a summary of activities by American Electric Power Service Corporation during the first budget period of the PFBC Utility Demonstration Project. In April 1990, AEP signed a Cooperative Agreement with the US Department of Energy to repower the Philip Sporn Plant, Units 3 & 4 in New Haven, West Virginia, with a 330 KW PFBC plant. The purpose of the program was to demonstrate and verify PFBC in a full-scale commercial plant. The technical and cost baselines of the Cooperative Agreement were based on a preliminary engineering and design and a cost estimate developed by AEP subsequent to AEP`s proposal submittal in May 1988, and prior to the signing of the Cooperative Agreement. The Statement of Work in the first budget period of the Cooperative Agreement included a task to develop a preliminary design and cost estimate for erecting a Greenfield plant and to conduct a comparison with the repowering option. The comparative assessment of the options concluded that erecting a Greenfield plant rather than repowering the existing Sporn Plant could be the technically and economically superior alternative. The Greenfield plant would have a capacity of 340 MW. The ten additional MW output is due to the ability to better match the steam cycle to the PFBC system with a new balance of plant design. In addition to this study, the conceptual design of the Sporn Repowering led to several items which warranted optimization studies with the goal to develop a more cost effective design.

  11. Turbine inter-disk cavity cooling air compressor

    DOEpatents

    Chupp, Raymond E.; Little, David A.

    1998-01-01

    The inter-disk cavity between turbine rotor disks is used to pressurize cooling air. A plurality of ridges extend radially outwardly over the face of the rotor disks. When the rotor disks are rotated, the ridges cause the inter-disk cavity to compress air coolant flowing through the inter-disk cavity en route to the rotor blades. The ridges eliminate the need for an external compressor to pressurize the air coolant.

  12. Turbine inter-disk cavity cooling air compressor

    DOEpatents

    Chupp, R.E.; Little, D.A.

    1998-01-06

    The inter-disk cavity between turbine rotor disks is used to pressurize cooling air. A plurality of ridges extend radially outwardly over the face of the rotor disks. When the rotor disks are rotated, the ridges cause the inter-disk cavity to compress air coolant flowing through the inter-disk cavity en route to the rotor blades. The ridges eliminate the need for an external compressor to pressurize the air coolant. 5 figs.

  13. Air conditioning system with supplemental ice storing and cooling capacity

    DOEpatents

    Weng, Kuo-Lianq; Weng, Kuo-Liang

    1998-01-01

    The present air conditioning system with ice storing and cooling capacity can generate and store ice in its pipe assembly or in an ice storage tank particularly equipped for the system, depending on the type of the air conditioning system. The system is characterized in particular in that ice can be produced and stored in the air conditioning system whereby the time of supplying cooled air can be effectively extended with the merit that the operation cycle of the on and off of the compressor can be prolonged, extending the operation lifespan of the compressor in one aspect. In another aspect, ice production and storage in great amount can be performed in an off-peak period of the electrical power consumption and the stored ice can be utilized in the peak period of the power consumption so as to provide supplemental cooling capacity for the compressor of the air conditioning system whereby the shift of peak and off-peak power consumption can be effected with ease. The present air conditioning system can lower the installation expense for an ice-storing air conditioning system and can also be applied to an old conventional air conditioning system.

  14. Cooling System Using Natural Circulation for Air Conditioning

    NASA Astrophysics Data System (ADS)

    Okazaki, Takashi; Seshimo, Yu

    In this paper, Cooling systems with natural circulation loop of refrigerants are reviewed. The cooling system can largely reduce energy consumption of a cooling system for the telecommunication base site. The cooling system consists of two refrigeration units; vapor compression refrigeration unit and sub-cooling unit with a natural-circulation loop. The experiments and calculations were carried out to evaluate the cycle performance of natural circulation loop with HFCs and CO2. The experimental results showed that the cooling capacity of R410A is approximately 30% larger than that of R407C at the temperature difference of 20K and the cooling capacity of CO2 was approximately 4-13% larger than that of R410A under the two-phase condition. On the other hand, the cooling capacity of CO2 was approximately 11% smaller than that of R410A under the supercritical condition. The cooling capacity took a maximum value at an amount of refrigerant and lineally increased as the temperature difference increases and the slightly increased as the height difference. The air intake temperature profile in the inlet of the heat exchangers makes the reverse circulation under the supercritical state and the driving head difference for the reverse circulation depends on the density change to temperature under the supercritical state. Also, a new fan control method to convert the reverse circulation into the normal circulation was reviewed.

  15. Requirements for high-temperature air-cooled central receivers

    SciTech Connect

    Wright, J.D.; Copeland, R.J.

    1983-12-01

    The design of solar thermal central receivers will be shaped by the end user's need for energy. This paper identifies the requirements for receivers supplying heat for industrial processes or electric power generation in the temperature range 540 to 1000/sup 0/C and evaluates the effects of the requirements on air-cooled central receivers. Potential IPH applications are identified as large baseload users that are located some distance from the receiver. In the electric power application, the receiver must supply heat to a pressurized gas power cycle. The difficulty in providing cost-effective thermal transport and thermal storage for air-cooled receivers is a critical problem.

  16. PFBC HGCU Test Facility. Second quarterly technical progress report, CY 1992

    SciTech Connect

    Not Available

    1992-07-01

    This is the eleventh technical progress report submitted to the Department of Energy (DOE) in connection with the Cooperative Agreement between DOE and Ohio Power company for the Tidd Pressurized Fluidized Bed Combustion (PFBC) Hot Gas Clean Up Test Facility. This report covers the period of work completed during the Second Quarter of CY 1992. Activities included: The Tidd combustor internals were modified to connect the hot gas system for slipstream operation; Various pre-operational activities were completed, including pneumatic leak testing of the HGCU system, operation of the closed cycle cooling water system, operation of the back pulse compressor and air preheater, and checkout of the back pulse skid. Initial operation of the system using the bypass cyclone occurred during May 21--23, 1992; On May 23, 1992, an expansion joint ruptured, forcing the unit to be shut down. The failure was later determined to be due to stress corrosion. Following the expansion joint failure, a complete engineering review of the system was undertaken and is continuing; Contract Modification No. 6 was issued to Westinghouse during this quarter. This modification is for APF surveillance testing services; A purchase order was issued to Battelle for ash sampling hardware and testing services.

  17. Cooling air recycling for gas turbine transition duct end frame and related method

    DOEpatents

    Cromer, Robert Harold; Bechtel, William Theodore; Sutcu, Maz

    2002-01-01

    A method of cooling a transition duct end frame in a gas turbine includes the steps of a) directing cooling air into the end frame from a region external of the transition duct and the impingement cooling sleeve; and b) redirecting the cooling air from the end frame into the annulus between the transition duct and the impingement cooling sleeve.

  18. Results from Grimethorpe PFBC turbine cascade tests

    SciTech Connect

    Not Available

    1986-12-01

    The test program at the Grimethorpe Pressurized Fluidized-Bed Combustion (PFBC) facility included an assessment of the potential for deposition, corrosion, and erosion of gas turbine blade materials when exposed to PFBC off gases. Flue gas from the combustor was fed through three stages of cyclones before entering the cascade. The impulse foils were approximately the size and shape of the first stage blades in the GE MS-1002 gas turbine. The cascade operated through three test series, accumulating a total of 649 hours. The conditions experienced are summarized. The paper lists the alloys tested, and discusses the efficiency of the cyclones, the particle size distribution of the dusts not removed by the cyclones, and corrosion of the turbine blades. 4 references, 1 figure, 2 tables.

  19. 14 CFR 29.1109 - Carburetor air cooling.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Carburetor air cooling. 29.1109 Section 29.1109 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Induction System § 29.1109 Carburetor...

  20. Commercial development of advanced PFBC technology

    SciTech Connect

    McClung, J.D.

    1995-12-31

    In the 1970s, the coal-fired power generation industry recognized that the declining price of electricity over the previous five decades was coming to an end. Maximum use had been made of existing cycle efficiencies and scale-up. As researchers looked for a new approach, the focus shifted from the fully developed Rankine cycle to a new array of coal-fired plants using combined-cycle technology. Now, coal-fired combined-cycle plants are being introduced that shift power production to the Brayton cycle. Integrated Gasification Combined Cycle (IGCC) and Pressurized Fluidized Bed Combustion (PFBC) are two technologies at the forefront of this approach. The PFBC approach burns coal in a fluidized bed combustor at elevated pressure. The plant generates electricity from a gas turbine (expanding the hot, pressurized products of combustion) in addition to the conventional steam (bottoming) cycle. Such a plant can achieve thermal efficiencies of about 40 percent and have a levelized busbar cost below any competing coal-based technology. In addition to the economic benefits, the {open_quotes}built-in{close_quotes} feature of environmental control (SO{sub 2} and NO{sub x}) in the combustion process eliminates the need for external gas cleanup such as scrubbers. A PFBC can burn a wider range of coals than a pulverized-coal-fired (PCF) boiler and is simpler to operate and maintain than an IGCC power plant.

  1. Energy Conservation in Air Cooled Condenser: A Case Study

    NASA Astrophysics Data System (ADS)

    Mallick, D. S.; Paul, S.

    2014-01-01

    Air cooled condensers were first introduced in the US power industry in the early 1970s, but only during the last few decades has the number of installations greatly increased, largely to mitigate the problem of available water supply. Air may be used as a cooling medium in condensers where, primarily, there is scarcity of water, or where the ambient remains significantly cold for major parts of the year. Air cooled condensers are designed considering the design ambient conditions of summer. During winter months, if the air flow rate over the heat transfer surfaces is kept constant, it leads to improved condenser vacuum, and consequently, improved heat rate. Alternatively, the fans may be run at lower speeds, by using variable frequency drives (VFD), so as to keep the condenser vacuum constant, resulting uniform heat rate. This paper compares the economics between the power saved by the use of VFD in the condenser fans, keeping constant heat rate throughout the year, vis-à-vis, the saving in fuel, effected when the fans are operated at constant speed throughout the year and thus achieving improved heat rate during colder ambient.

  2. Air Cooling for High Temperature Power Electronics (Presentation)

    SciTech Connect

    Waye, S.; Musselman, M.; King, C.

    2014-09-01

    Current emphasis on developing high-temperature power electronics, including wide-bandgap materials such as silicon carbide and gallium nitride, increases the opportunity for a completely air-cooled inverter at higher powers. This removes the liquid cooling system for the inverter, saving weight and volume on the liquid-to-air heat exchanger, coolant lines, pumps, and coolant, replacing them with just a fan and air supply ducting. We investigate the potential for an air-cooled heat exchanger from a component and systems-level approach to meet specific power and power density targets. A proposed baseline air-cooled heat exchanger design that does not meet those targets was optimized using a parametric computational fluid dynamics analysis, examining the effects of heat exchanger geometry and device location, fixing the device heat dissipation and maximum junction temperature. The CFD results were extrapolated to a full inverter, including casing, capacitor, bus bar, gate driver, and control board component weights and volumes. Surrogate ducting was tested to understand the pressure drop and subsequent system parasitic load. Geometries that met targets with acceptable loads on the system were down-selected for experimentation. Nine baseline configuration modules dissipated the target heat dissipation, but fell below specific power and power density targets. Six optimized configuration modules dissipated the target heat load, exceeding the specific power and power density targets. By maintaining the same 175 degrees C maximum junction temperature, an optimized heat exchanger design and higher device heat fluxes allowed a reduction in the number of modules required, increasing specific power and power density while still maintaining the inverter power.

  3. 21 CFR 211.46 - Ventilation, air filtration, air heating and cooling.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 4 2013-04-01 2013-04-01 false Ventilation, air filtration, air heating and cooling. 211.46 Section 211.46 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS: GENERAL CURRENT GOOD MANUFACTURING PRACTICE FOR FINISHED PHARMACEUTICALS Buildings and Facilities § 211.46...

  4. Market assessment and technical feasibility study of PFBC ash use

    SciTech Connect

    Smith, V.E.; Bland, A.E.; Brown, T.H.; Georgiou, D.N.; Wheeldon, J.

    1994-10-01

    The overall objectives of this study are to determine the market potential and the technical feasibility of using PFBC ash in high volume ash use applications. The information will be of direct use to the utility industry in assessing the economics of PFBC power generation in light of ash disposal avoidance through ash marketing. In addition, the research is expected to result in the generation of generic data on the use of PFBC ash that could lead to novel processing options and procedures. The specific objectives of the proposed research and demonstration effort are: Define resent and future market potential of PFBC ash for a range of applications (Phase I); assess the technical feasibility of PFBC ash use in construction, civil engineering and agricultural applications (Phase II); and demonstrate the most promising of the market and ash use options in full-scale field demonstrations (Phase III).

  5. Experimental and numerical study of open-air active cooling

    NASA Astrophysics Data System (ADS)

    Al-Fifi, Salman Amsari

    The topic of my thesis is Experimental and Numerical Study of Open Air Active Cooling. The present research is intended to investigate experimentally and Numerically the effectiveness of cooling large open areas like stadiums, shopping malls, national gardens, amusement parks, zoos, transportation facilities and government facilities or even in buildings outdoor gardens and patios. Our cooling systems are simple cooling fans with different diameters and a mist system. This type of cooling systems has been chosen among the others to guarantee less energy consumption, which will make it the most favorable and applicable for cooling such places mentioned above. In the experiments, the main focus is to study the temperature domain as a function of different fan diameters aerodynamically similar in different heights till we come up with an empirical relationship that can determine the temperature domain for different fan diameters and for different heights of these fans. The experimental part has two stages. The first stage is devoted to investigate the maximum range of airspeed and profile for three different fan diameters and for different heights without mist, while the second stage is devoted to investigate the maximum range of temperature and profile for the three different diameter fans and for different heights with mist. The computational study is devoted to built an experimentally verified mathematical model to be used in the design and optimization of water mist cooling systems, and to compare the mathematical results to the experimental results and to get an insight of how to apply such evaporative mist cooling for different places for different conditions. In this study, numerical solution is presented based on experimental conditions, such dry bulb temperature, wet bulb temperature, relative humidity, operating pressure and fan airspeed. In the computational study, all experimental conditions are kept the same for the three fans except the fan airspeed

  6. Emperor penguin body surfaces cool below air temperature.

    PubMed

    McCafferty, D J; Gilbert, C; Thierry, A-M; Currie, J; Le Maho, Y; Ancel, A

    2013-06-23

    Emperor penguins Aptenodytes forsteri are able to survive the harsh Antarctic climate because of specialized anatomical, physiological and behavioural adaptations for minimizing heat loss. Heat transfer theory predicts that metabolic heat loss in this species will mostly depend on radiative and convective cooling. To examine this, thermal imaging of emperor penguins was undertaken at the breeding colony of Pointe Géologie in Terre Adélie (66°40' S 140° 01' E), Antarctica in June 2008. During clear sky conditions, most outer surfaces of the body were colder than surrounding sub-zero air owing to radiative cooling. In these conditions, the feather surface will paradoxically gain heat by convection from surrounding air. However, owing to the low thermal conductivity of plumage any heat transfer to the skin surface will be negligible. Future thermal imaging studies are likely to yield further insights into the adaptations of this species to the Antarctic climate. PMID:23466479

  7. Selection and costing of heat exchangers. Air-cooled type

    NASA Astrophysics Data System (ADS)

    1994-12-01

    ESDU 94043 extends the information in ESDU 92013 which, when an air-cooled exchanger is found appropriate and is costed, provides the results for a datum design 40 ft (12.2 m) long with G-fins and 1 in (25 mm) diameter tube operating at a noise level of 85 dBa. It provides factors derived from an analysis of manufacturer's data to be applied to the cost results from ESDU 92013 to account for variations in those parameters and features. Additional guidance on the configuration and use of air-cooled exchangers is given. The data are incorporated in ESDUpac A9213 which is a Fortran program that implements the selection and costing method of ESDU 92013. It is provided on disc in the software volume compiled to run under DOS with a user-friendly interface that prompts on screen for input data.

  8. Emperor penguin body surfaces cool below air temperature

    PubMed Central

    McCafferty, D. J.; Gilbert, C.; Thierry, A.-M.; Currie, J.; Le Maho, Y.; Ancel, A.

    2013-01-01

    Emperor penguins Aptenodytes forsteri are able to survive the harsh Antarctic climate because of specialized anatomical, physiological and behavioural adaptations for minimizing heat loss. Heat transfer theory predicts that metabolic heat loss in this species will mostly depend on radiative and convective cooling. To examine this, thermal imaging of emperor penguins was undertaken at the breeding colony of Pointe Géologie in Terre Adélie (66°40′ S 140° 01′ E), Antarctica in June 2008. During clear sky conditions, most outer surfaces of the body were colder than surrounding sub-zero air owing to radiative cooling. In these conditions, the feather surface will paradoxically gain heat by convection from surrounding air. However, owing to the low thermal conductivity of plumage any heat transfer to the skin surface will be negligible. Future thermal imaging studies are likely to yield further insights into the adaptations of this species to the Antarctic climate. PMID:23466479

  9. The systems and the developmental targets for PFBC

    SciTech Connect

    Dellefield, R.J.

    1993-09-01

    First generation PFBC technology is nearing commercial deployment the ongoing demonstrations, as part of DOE`s Clean Coal Technology (CCT) Program, will enable the technology to be a low-risk, environmentally acceptable option for utilities. Further improvements in environmental and thermal performance will be required to maintain PFBC technology as a competitive option to gasification-based power systems in the 2000s. The cost of electricity, capital costs, emissions, and thermal efficiency of PFBC systems compared to alternatives are covered. The vendors of PFBC systems seem to be responding to these market requirements. Significant progress has been made to increase the efficiency of first generation PFBCs and in reducing the capital cost of first-generation PFBC systems, which should positively influence the number of total sales of new units. The potential for first-generation PFBC systems to be used to retrofit existing utility sites and add a modest increment of power is gaining wide acceptance. Further development of PFBC systems into more efficient, environmentally benign power generation options is continuing. A snapshot of the development activities planned for Advanced PFBC systems, which the DOE considers necessary to develop utility-sized plants, are discussed. The Morgantown Energy Technology Center (METC) is interested in making sure that PFBC systems continue to remain a viable system for the next century, in a climate of continuing pressure, to make power systems cleaner and more efficient. Therefore, METC is initiating an effort to investigate the technical issues associated with PFBC systems that can get to over 50 percent efficiencies and have very low emissions. The goals and development targets for this effort are discussed.

  10. The US Department of Energy PFBC perspective, 1994 update

    SciTech Connect

    Carpenter, L.K.; Dellefield, R.J.

    1994-08-01

    Significant progress in the development and commercialization of pressurized fluidized-bed combustion (PFBC) technology has occurred since the 1992 Fluidized-Bed Combustion (FBC) Conference. The US Department of Energy (DOE) has been and continues to be an active partner in most of these activities. This paper presents the 1994 status of DOE activities and a discussion of the importance DOE places on the development and commercialization of PFBC systems. Specifically, this paper discusses the status and focus of DOE activities. Currently, first-generation PFBC systems are on the brink of commercial deployment. The DOE Clean Coal Technology (CCT) Program is assisting in this process by funding demonstration programs to validate that PFBC technologies are a low-risk, environmentally-attractive, cost-competitive option for utility and industrial users. A brief discussion of the scope and the status of major demonstrations are presented. This paper also presents a snapshot of the PFBC development activities that are part of the DOE Research and Development (R&D) Program, i.e., hot gas particulate removal systems and pilot-plant facilities in support of advanced PFBC combined-cycle systems. The R&D pilot plant activities discussed include advanced component development tests at the Foster Wheeler Development Facility and the status of the fully integrated advanced PFBC being built as part of the Power Systems Development Facility (PSDF) at Wilsonville, Alabama. Finally, a brief perspective is provided as to how PFBC systems will need to further evolve in order to continue to remain viable. As we look into the next century, there will be continual pressure to make power systems cleaner and more efficient. By increasing cycle efficiencies to over 50 percent and further reducing emissions, it is possible for PFBC systems to meet these challenges. Suggested goals and development targets for advanced, super-clean PFBC systems are briefly discussed.

  11. Solar air conditioning with solid absorbents and earth cooling

    NASA Astrophysics Data System (ADS)

    Mayer, E.

    An experimental design is described for an efficient desiccant cooling system using natural cold sink to reduce the moisture content of the ambient air. Used in a warm, humid, tropical climate, the unit is shown to provide up to 0.77 ton of refrigeration under extreme conditions with an average daily coefficient of performance of 0.5. Solar heat is applied to regenerate the silica gel.

  12. PFBC design and arrangement improvements due to application of ceramic tube filters

    SciTech Connect

    Weitzel, P.S.; McDonald, D.K.

    1999-07-01

    The favorable operating performance of two large ceramic tube filters at the 71 MW{sub e} Wakamatsu PFBC unit in Japan builds confidence toward commercial application of PFBC. The Asahi Glass Company, Ltd., ceramic tube filters offer unique improvements to the process design and plant arrangement. Several components in the current + first generation PFBC plant design can be eliminated or their function can be incorporated into the function of the ceramic filter vessels leading to operational and economic advantages. The reduction of combustor vessel size, quantity of ash removal points, ash handling systems, and elimination of cyclones and cyclone ash coolers will provide significant economic and reliability improvements. The plant footprint and building volume are reduced and the access and cooling time for maintenance can be improved. Although hot gas piping protection complications and concerns must be addressed by double wall jacket systems, the majority of systems maintain the principle of cold high-pressure boundary separate from the hot temperature boundary. The impact on performance, operation and maintenance expense and cost of electricity are presented.

  13. Preliminary analysis of problem of determining experimental performance of air-cooled turbine II : methods for determining cooling-air-flow characteristics

    NASA Technical Reports Server (NTRS)

    Ellerbrock, Herman H , Jr

    1950-01-01

    In the determination of the performance of an air-cooled turbine, the cooling-air-flow characteristics between the root and the tip of the blades must be evaluated. The methods, which must be verified and the unknown functions evaluated, that are expected to permit the determination of pressure, temperature, and velocity through the blade cooling-air passages from specific investigation are presented.

  14. Passive air cooling of liquid metal-cooled reactor with double vessel leak accommodation capability

    DOEpatents

    Hunsbedt, Anstein; Boardman, Charles E.

    1995-01-01

    A passive and inherent shutdown heat removal method with a backup air flow path which allows decay heat removal following a postulated double vessel leak event in a liquid metal-cooled nuclear reactor. The improved reactor design incorporates the following features: (1) isolation capability of the reactor cavity environment in the event that simultaneous leaks develop in both the reactor and containment vessels; (2) a reactor silo liner tank which insulates the concrete silo from the leaked sodium, thereby preserving the silo's structural integrity; and (3) a second, independent air cooling flow path via tubes submerged in the leaked sodium which will maintain shutdown heat removal after the normal flow path has been isolated.

  15. Passive air cooling of liquid metal-cooled reactor with double vessel leak accommodation capability

    DOEpatents

    Hunsbedt, A.; Boardman, C.E.

    1995-04-11

    A passive and inherent shutdown heat removal method with a backup air flow path which allows decay heat removal following a postulated double vessel leak event in a liquid metal-cooled nuclear reactor is disclosed. The improved reactor design incorporates the following features: (1) isolation capability of the reactor cavity environment in the event that simultaneous leaks develop in both the reactor and containment vessels; (2) a reactor silo liner tank which insulates the concrete silo from the leaked sodium, thereby preserving the silo`s structural integrity; and (3) a second, independent air cooling flow path via tubes submerged in the leaked sodium which will maintain shutdown heat removal after the normal flow path has been isolated. 5 figures.

  16. Investigation of vessel exterior air cooling for a HLMC reactor

    SciTech Connect

    Sienicki, J. J.; Spencer, B. W.

    2000-01-13

    The Secure Transportable Autonomous Reactor (STAR) concept under development at Argonne National Laboratory provides a small (300 MWt) reactor module for steam supply that incorporates design features to attain proliferation resistance, heightened passive safety, and improved cost competitiveness through extreme simplification. Examples are the achievement of 100%+ natural circulation heat removal from the low power density/low pressure drop ultra-long lifetime core and utilization of lead-bismuth eutectic (LBE) coolant enabling elimination of main coolant pumps as well as the need for an intermediate heat transport circuit. It is required to provide a passive means of removing decay heat and effecting reactor cooldown in the event that the normal steam generator heat sink, including its normal shutdown heat removal mode, is postulated to be unavailable. In the present approach, denoted as the Reactor Exterior Cooling System (RECS), passive decay heat removal is provided by cooling the outside of the containment/guard vessel with air. RECS is similar to the Reactor Vessel Auxiliary Cooling System (RVACS) incorporated into the PRISM design. However, to enhance the heat removal, RECS incorporates fins on the containment vessel exterior to enhance heat transfer to air as well as removable steel venetian conductors that provide a conduction heat transfer path across the reactor vessel-containment vessel gap to enhance heat transfer between the vessels. The objective of the present work is to investigate the effectiveness of air cooling in removing heat from the vessel and limiting the coolant temperature increase following a sudden complete loss of the steam generator heat sink.

  17. An air-cooled pulse tube cryocooler with 50 W cooling capacity at 77 K

    NASA Astrophysics Data System (ADS)

    Hu, Jianying; Wang, Xiaotao; Zhu, Jian; Chen, Shuai; Luo, Ercang; Li, Haibin

    2014-01-01

    A pulse tube cryocooler with 50 W cooling capacity at 77 K is developed to cool superconducting devices mounted on automobiles. The envisioned cryocooler weight is less than 40 kg, and the input electric power is less than 1 kW. To achieve these requirements, the working frequency is increased to 75 Hz, and the dual-opposed pistons use gas bearings to reduce compressor weight and volume. The heat from the main heat exchanger is rejected by forced convective air instead of water. The compressor and the cold finger are carefully matched to improve the efficiency. The details of these will be presented in this paper. After some adjustment, a no load temperature for the pulse tube cryocooler of 40 K was achieved with 1 kW input electric power in surroundings at 298 K. At 77 K, the cooling capacity is 50 W. If the main heat exchanger is cooled by water at 293 K, the cooling capacity increases to 64 W, corresponding to a relative Carnot efficiency of 18%.

  18. A case study of PFBC for low rank coals

    SciTech Connect

    Jansson, S.A.

    1995-12-01

    Pressurized Fluidized Combined-Cycle (PFBC) technology allows the efficient and environmentally friendly utilization of solid fuels for power and combined heat and power generation. With current PFBC technology, thermal efficiencies near 46%, on an LHV basis and with low condenser pressures, can be reached in condensing power plants. Further efficiency improvements to 50% or more are possible. PFBC plants are characterized by high thermal efficiency, compactness, and extremely good environmental performance. The PFBC plants which are now in operation in Sweden, the U.S. and Japan burn medium-ash, bituminous coal with sulfur contents ranging from 0.7 to 4%. A sub- bituminous {open_quotes}black lignite{close_quotes} with high levels of sulfur, ash and humidity, is used as fuel in a demonstration PFBC plant in Spain. Project discussions are underway, among others in Central and Eastern Europe, for the construction of PFBC plants which will burn lignite, oil-shale and also mixtures of coal and biomass with high efficiency and extremely low emissions. This paper will provide information about the performance data for PFBC plants when operating on a range of low grade coals and other solid fuels, and will summarize other advantages of this leading new clean coal technology.

  19. Spot cooling. Part 1: Human responses to cooling with air jets

    SciTech Connect

    Melikov, A.K.; Halkjaer, L.; Arakelian, R.S.; Fanger, P.O.

    1994-12-31

    Eight standing male subjects and a thermal manikin were studied for thermal, physiological, and subjective responses to cooling with an air jet at room temperatures of 28 C, 33 C, and 38 C and a constant relative humidity of 50%. The subjects wore a standard uniform and performed light work. A vertical jet and a horizontal jet were employed The target area of the jet, i.e., the cross section of the jet where it first met the subject, had a diameter of 0.4 m and was located 0.5 m from the outlet. Experiments were performed at average temperatures at the jet target area of 20 C, 24 C, and 28 C. Each experiment lasted 190 minutes and was performed with three average velocities at the target area: 1 and 2 m/s and the preferred velocity selected by the subjects. The impact of the relative humidity of the room air, the jet`s turbulence intensity, and the use of a helmet on the physiological and subjective responses of the eight subjects was also studied The responses of the eight subjects were compared with the responses of a group of 29 subjects. The spot cooling improved the thermal conditions of the occupants. The average general thermal sensation for the eight subjects was linearly correlated to the average mean skin temperature and the average sweat rate. An average mean skin temperature of 33 C and an average sweat rate of 33 g{center_dot}h{sup {minus}1} m{sup {minus}2} were found to correspond to a neutral thermal sensation. The local thermal sensation at the neck and at the arm exposed to the cooling jet was found to be a function of the room air temperature and the local air velocity and temperature of the jet. The turbulence intensity of the cooling jet and the humidity of the room air had no impact on the subjects` physiological and subjective responses. Large individual differences were observed in the evaluation of the environment and in the air velocity preferred by the subjects.

  20. The Fluid Dynamics of Secondary Cooling Air-Mist Jets

    NASA Astrophysics Data System (ADS)

    Hernández C., I.; Acosta G., F. A.; Castillejos E., A. H.; Minchaca M., J. I.

    2008-10-01

    For the conditions of thin-slab continuous casting, air-mist secondary cooling occurs in the transition-boiling regime, possibly as a result of an enhanced intermittent contact of high- momentum water drops with the hot metallic surface. The dynamics of the intermittent contact or wetting/dewetting process should be primarily dependent on the drop size, drop impact-velocity and -angle and water-impact flux, which results from the nozzle design and the interaction of the drops with the conveying and entrained air stream. The aim of this article was to develop a model for predicting the last three parameters based on the design and operating characteristics of air-mist nozzles and on experimentally determined drop-size distributions. To do this, the Eulerian fluid-flow field of the air in three dimensions and steady state and the Lagrangian velocities and trajectories of water drops were computed by solving the turbulent Navier Stokes equation for the air coupled to the motion equation for the water drops. In setting this model, it was particularly important to specify appropriately the air-velocity profile at the nozzle orifice, as well as, the water-flux distribution, and the velocities (magnitude and angle) and exit positions of drops with the different sizes generated, hence special attention was given to these aspects. The computed drop velocities, water-impact flux distributions, and air-mist impact-pressure fields compared well with detailed laboratory measurements carried out at ambient temperature. The results indicate that under practical nozzle-operating conditions, the impinging-droplet Weber numbers are high, over most of the water footprint, suggesting that the droplets should establish an intimate contact with the solid surface. However, the associated high mean-droplet fluxes hint that this contact may be obstructed by drop interference at the surface, which would undermine the heat-extraction effectiveness of the impinging mist. The model also points

  1. A fundamentally new approach to air-cooled heat exchangers.

    SciTech Connect

    Koplow, Jeffrey P.

    2010-01-01

    We describe breakthrough results obtained in a feasibility study of a fundamentally new architecture for air-cooled heat exchangers. A longstanding but largely unrealized opportunity in energy efficiency concerns the performance of air-cooled heat exchangers used in air conditioners, heat pumps, and refrigeration equipment. In the case of residential air conditioners, for example, the typical performance of the air cooled heat exchangers used for condensers and evaporators is at best marginal from the standpoint the of achieving maximum the possible coefficient of performance (COP). If by some means it were possible to reduce the thermal resistance of these heat exchangers to a negligible level, a typical energy savings of order 30% could be immediately realized. It has long been known that a several-fold increase in heat exchanger size, in conjunction with the use of much higher volumetric flow rates, provides a straight-forward path to this goal but is not practical from the standpoint of real world applications. The tension in the market place between the need for energy efficiency and logistical considerations such as equipment size, cost and operating noise has resulted in a compromise that is far from ideal. This is the reason that a typical residential air conditioner exhibits significant sensitivity to reductions in fan speed and/or fouling of the heat exchanger surface. The prevailing wisdom is that little can be done to improve this situation; the 'fan-plus-finned-heat-sink' heat exchanger architecture used throughout the energy sector represents an extremely mature technology for which there is little opportunity for further optimization. But the fact remains that conventional fan-plus-finned-heat-sink technology simply doesn't work that well. Their primary physical limitation to performance (i.e. low thermal resistance) is the boundary layer of motionless air that adheres to and envelops all surfaces of the heat exchanger. Within this boundary layer

  2. Performance Prediction Method of CO2 Cycle for Air Cooling

    NASA Astrophysics Data System (ADS)

    Koyama, Shigeru; Xue, Jun; Kuwahara, Ken

    From the perspective of global environmental protection and energy-saving, the research and development on high-efficiency heat pump and refrigeration systems using environment-friendly refrigerants have become one of the most important issues in the air-conditioning and refrigeration sector. In the present work, a steady-state model of the CO2 transcritical cycle for air cooling, which consists of a rotary compressor, a fin-tube gas cooler,a fin-tube evaporator and an expansion valve, has been developed. The detailed model of fin-tube heat exchanger has been constructed by means of the finite volume method, in which the local heat transfer and flow characteristics are evaluated. It should be noted that the effects of the dew condensation generated on the cooling surface are considered in the evaporator model. As a calculation example, the effects of the indoor air wet-bulb temperature on the cycle performance have been examined with this developed simulator.

  3. Cyclic stress analysis of an air-cooled turbine vane

    NASA Technical Reports Server (NTRS)

    Kaufman, A.; Gauntner, D. J.; Gauntner, J. W.

    1975-01-01

    The effects of gas pressure level, coolant temperature, and coolant flow rate on the stress-strain history and life of an air-cooled vane were analyzed using measured and calculated transient metal temperatures and a turbine blade stress analysis program. Predicted failure locations were compared to results from cyclic tests in a static cascade and engine. The results indicate that a high gas pressure was detrimental, a high coolant flow rate somewhat beneficial, and a low coolant temperature the most beneficial to vane life.

  4. Analysis of spanwise temperature distribution in three types of air-cooled turbine blade

    NASA Technical Reports Server (NTRS)

    Livingood, John N B; Brown, W Byron

    1950-01-01

    Methods for computing spanwise blade-temperature distributions are derived for air-cooled hollow blades, air-cooled hollow blades with inserts, and air-cooled blades containing internal cooling fins. Individual and combined effects on spanwise blade-temperature distributions of cooling-air and radial heat conduction are determined. In general, the effects of radiation and radial heat conduction were found to be small and the omission of these variations permitted the construction of nondimensional charts for use in determining spanwise temperature distribution through air-cooled turbine blades. An approximate method for determining the allowable stress-limited blade-temperature distribution is included, with brief accounts of a method for determining the maximum allowable effective gas temperatures and the cooling-air requirements. Numerical examples that illustrate the use of the various temperature-distribution equations and of the nondimensional charts are also included.

  5. Midwest Power`s perspective of circulating PFBC

    SciTech Connect

    Licht, P.

    1994-04-01

    Midwest Power is involved with a Clean Coal III project to repower an existing facility using a circulating PFBC boiler with a high temperature high pressure gas filter system. This facility must meet least cost planning criteria as well as be a commercial power plant. This paper will address the processes involved, the technical areas of concern, and the financial feasibility of the PFBC technology.

  6. Air cooling of disk of a solid integrally cast turbine rotor for an automotive gas turbine

    NASA Technical Reports Server (NTRS)

    Gladden, H. J.

    1977-01-01

    A thermal analysis is made of surface cooling of a solid, integrally cast turbine rotor disk for an automotive gas turbine engine. Air purge and impingement cooling schemes are considered and compared with an uncooled reference case. Substantial reductions in blade temperature are predicted with each of the cooling schemes studied. It is shown that air cooling can result in a substantial gain in the stress-rupture life of the blade. Alternatively, increases in the turbine inlet temperature are possible.

  7. Turbine inter-disk cavity cooling air compressor

    DOEpatents

    Little, David Allen

    2001-01-01

    A combustion turbine may have a cooling circuit for directing a cooling medium through the combustion turbine to cool various components of the combustion turbine. This cooling circuit may include a compressor, a combustor shell and a component of the combustion turbine to be cooled. This component may be a rotating blade of the combustion turbine. A pressure changing mechanism is disposed in the combustion turbine between the component to be cooled and the combustor shell. The cooling medium preferably flows from the compressor to the combustor shell, through a cooler, the component to the cooled and the pressure changing mechanism. After flowing through the pressure changing mechanism, the cooling medium is returned to the combustor shell. The pressure changing mechanism preferably changes the pressure of the cooling medium from a pressure at which it is exhausted from the component to be cooled to approximately that of the combustor shell.

  8. Internally coated air-cooled gas turbine blading

    NASA Technical Reports Server (NTRS)

    Hsu, L.; Stevens, W. G.; Stetson, A. R.

    1979-01-01

    Ten candidate modified nickel-aluminide coatings were developed using the slip pack process. These coatings contain additives such as silicon, chromium and columbium in a nickel-aluminum coating matrix with directionally solidified MAR-M200 + Hf as the substrate alloy. Following a series of screening tests which included strain tolerance, dynamic oxidation and hot corrosion testing, the Ni-19A1-1Cb (nominal composition) coating was selected for application to the internal passages of four first-stage turbine blades. Process development results indicate that a dry pack process is suitable for internal coating application resulting in 18 percent or less reduction in air flow. Coating uniformity, based on coated air-cooled blades, was within + or - 20 percent. Test results show that the presence of additives (silicon, chromium or columbium) appeared to improve significantly the ductility of the NiA1 matrix. However, the environmental resistance of these modified nickel-aluminides were generally inferior to the simple aluminides.

  9. Tidd PFBC Demonstration Project, A DOE Assessment

    SciTech Connect

    National Energy Technology Laboratory

    2001-08-31

    The Clean Coal Technology (CCT) Demonstration Program is a government and industry co-funded technology development effort to demonstrate a new generation of innovative coal utilization processes. One goal of the program is to furnish the energy marketplace with a variety of energy efficient, environmentally superior coal-based technologies. Demonstration projects seek to establish the commercial feasibility of the most promising coal technologies that have proceeded beyond the proof-of-concept stage. This report is a post-project assessment of the DOE CCT Demonstration Program, the Tidd PFBC Demonstration Project. A major objective of the CCT Program is to provide the technical data necessary for the private sector to proceed confidently with the commercial replication of the demonstrated technologies. An essential element of meeting this goal is the dissemination of results from the demonstration projects. This post-project assessment (PPA) report is an independent DOE appraisal of the successes that the completed project had in achieving its objectives and aiding in the commercialization of the demonstrated technology. The report also provides an assessment of the expected technical, environmental, and economic performance of the commercial version of the technology, as well as an analysis of the commercial market.

  10. 16 CFR Appendix H to Part 305 - Cooling Performance and Cost for Central Air Conditioners

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 1 2011-01-01 2011-01-01 false Cooling Performance and Cost for Central Air Conditioners H Appendix H to Part 305 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC... RULEâ) Pt. 305, App. H Appendix H to Part 305—Cooling Performance and Cost for Central Air...

  11. 16 CFR Appendix H to Part 305 - Cooling Performance and Cost for Central Air Conditioners

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Cooling Performance and Cost for Central Air Conditioners H Appendix H to Part 305 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC... RULEâ) Pt. 305, App. H Appendix H to Part 305—Cooling Performance and Cost for Central Air...

  12. Filter system cost comparison for IGCC and PFBC power systems

    SciTech Connect

    Dennis, R.A.; McDaniel, H.M.; Buchanan, T.

    1995-12-01

    A cost comparison was conducted between the filter systems for two advanced coal-based power plants. The results from this study are presented. The filter system is based on a Westinghouse advanced particulate filter concept, which is designed to operate with ceramic candle filters. The Foster Wheeler second-generation 453 MWe (net) pressurized fluidized-bed combustor (PFBC) and the KRW 458 MWe (net) integrated gasification combined cycle (IGCC) power plants are used for the comparison. The comparison presents the general differences of the two power plants and the process-related filtration conditions for PFBC and IGCC systems. The results present the conceptual designs for the PFBC and IGCC filter systems as well as a cost summary comparison. The cost summary comparison includes the total plant cost, the fixed operating and maintenance cost, the variable operating and maintenance cost, and the effect on the cost of electricity (COE) for the two filter systems.

  13. Experimental feasibility study of radial injection cooling of three-pad radial air foil bearings

    NASA Astrophysics Data System (ADS)

    Shrestha, Suman K.

    Air foil bearings use ambient air as a lubricant allowing environment-friendly operation. When they are designed, installed, and operated properly, air foil bearings are very cost effective and reliable solution to oil-free turbomachinery. Because air is used as a lubricant, there are no mechanical contacts between the rotor and bearings and when the rotor is lifted off the bearing, near frictionless quiet operation is possible. However, due to the high speed operation, thermal management is one of the very important design factors to consider. Most widely accepted practice of the cooling method is axial cooling, which uses cooling air passing through heat exchange channels formed underneath the bearing pad. Advantage is no hardware modification to implement the axial cooling because elastic foundation structure of foil bearing serves as a heat exchange channels. Disadvantage is axial temperature gradient on the journal shaft and bearing. This work presents the experimental feasibility study of alternative cooling method using radial injection of cooling air directly on the rotor shaft. The injection speeds, number of nozzles, location of nozzles, total air flow rate are important factors determining the effectiveness of the radial injection cooling method. Effectiveness of the radial injection cooling was compared with traditional axial cooling method. A previously constructed test rig was modified to accommodate a new motor with higher torque and radial injection cooling. The radial injection cooling utilizes the direct air injection to the inlet region of air film from three locations at 120° from one another with each location having three axially separated holes. In axial cooling, a certain axial pressure gradient is applied across the bearing to induce axial cooling air through bump foil channels. For the comparison of the two methods, the same amount of cooling air flow rate was used for both axial cooling and radial injection. Cooling air flow rate was

  14. Internal coating of air-cooled gas turbine blades

    NASA Technical Reports Server (NTRS)

    Hsu, L. L.; Stetson, A. R.

    1980-01-01

    Four modified aluminide coatings were developed for IN-792 + Hf alloy using a powder pack method applicable to internal surfaces of air-cooled blades. The coating compositions are Ni-19Al-1Cb, Ni-19Al-3Cb, Ni-17Al-20Cr, and Ni-12Al-20Cr. Cyclic burner rig hot corrosion (900 C) and oxidation (1050 C) tests indicated that Ni-Al-Cb coatings provided better overall resistance than Ni-Al-Cr coatings. Tensile properties of Ni-19Al-1Cb and Ni-12Al-20Cr coated test bars were fully retained at room temperature and 649 C. Stress rupture results exhibited wide scatter around uncoated IN-792 baseline, especially at high stress levels. High cycle fatigue lives of Ni-19Al-1Cb and Ni-12Al-20Cr coated bars (as well as RT-22B coated IN-792) suffered approximately 30 percent decrease at 649 C. Since all test bars were fully heat treated after coating, the effects of coating/processing on IN-792 alloy were not recoverable. Internally coated Ni-19Al-1Cb, Ni-19Al-3Cb, and Ni-12Al-20Cr blades were included in 500-hour endurance engine test and the results were similar to those obtained in burner rig oxidation testing.

  15. Validation of the RVACS (Reactor Vessel Auxiliary Cooling System)/RACS (Reactor Air Cooling System) model in SASSYS-1

    SciTech Connect

    Dunn, F.E.

    1987-01-01

    The SASSYS-1 LMR systems analysis code contains a model for transient analysis of heat removal by a RVACS (Reactor Vessel Auxiliary Cooling System) or a RACS (Reactor Air Cooling System) in an LMR (Liquid Metal Reactor). This model has been validated by comparisons of model predictions with experimental data from a large scale RVACS/RACS simulation experiment performed at Argonne National Laboratory. 4 refs., 1 fig.

  16. Air Corrosivity in U.S. Outdoor-Air-Cooled Data Centers is Similar to That in Conventional Data Centers

    SciTech Connect

    Coles, Henry C.; Han, Taewon; Price, Phillip N.; Gadgil, Ashok J.; Tschudi, William F.

    2011-07-17

    There is a concern that environmental-contamination caused corrosion may negatively affect Information Technology (IT) equipment reliability. Nineteen data centers in the United States and two in India were evaluated using Corrosion Classification Coupons (CCC) to assess environmental air quality as it may relate IT equipment reliability. The data centers were of two basic types: closed and outside-air cooled. A closed data center provides cool air to the IT equipment using air conditioning in which only a small percent age of the recirculation air is make-up air continuously supplied from outside to meet human health requirements. An outside-air cooled data center uses outside air directly as the primary source for IT equipment cooling. Corrosion measuring coupons containing copper and silver metal strips were placed in both closed and outside-air cooled data centers. The coupons were placed at each data center (closed and outside-air cooled types) with the location categorized into three groups: (1) Outside - coupons sheltered, located near or at the supply air inlet, but located before any filtering, (2) Supply - starting just after initial air filtering continuing inside the plenums and ducts feeding the data center rooms, and (3) Inside located inside the data center rooms near the IT equipment. Each coupon was exposed for thirty days and then sent to a laboratory for a corrosion rate measurement analysis. The goal of this research was to investigate whether gaseous contamination is a concern for U.S. data center operators as it relates to the reliability of IT equipment. More specifically, should there be an increased concern if outside air for IT equipment cooling is used To begin to answer this question limited exploratory measurements of corrosion rates in operating data centers in various locations were undertaken. This study sought to answer the following questions: (1) What is the precision of the measurements (2) What are the approximate statistical

  17. Citywide Impacts of Cool Roof and Rooftop Solar Photovoltaic Deployment on Near-Surface Air Temperature and Cooling Energy Demand

    NASA Astrophysics Data System (ADS)

    Salamanca, F.; Georgescu, M.; Mahalov, A.; Moustaoui, M.; Martilli, A.

    2016-04-01

    Assessment of mitigation strategies that combat global warming, urban heat islands (UHIs), and urban energy demand can be crucial for urban planners and energy providers, especially for hot, semi-arid urban environments where summertime cooling demands are excessive. Within this context, summertime regional impacts of cool roof and rooftop solar photovoltaic deployment on near-surface air temperature and cooling energy demand are examined for the two major USA cities of Arizona: Phoenix and Tucson. A detailed physics-based parametrization of solar photovoltaic panels is developed and implemented in a multilayer building energy model that is fully coupled to the Weather Research and Forecasting mesoscale numerical model. We conduct a suite of sensitivity experiments (with different coverage rates of cool roof and rooftop solar photovoltaic deployment) for a 10-day clear-sky extreme heat period over the Phoenix and Tucson metropolitan areas at high spatial resolution (1-km horizontal grid spacing). Results show that deployment of cool roofs and rooftop solar photovoltaic panels reduce near-surface air temperature across the diurnal cycle and decrease daily citywide cooling energy demand. During the day, cool roofs are more effective at cooling than rooftop solar photovoltaic systems, but during the night, solar panels are more efficient at reducing the UHI effect. For the maximum coverage rate deployment, cool roofs reduced daily citywide cooling energy demand by 13-14 %, while rooftop solar photovoltaic panels by 8-11 % (without considering the additional savings derived from their electricity production). The results presented here demonstrate that deployment of both roofing technologies have multiple benefits for the urban environment, while solar photovoltaic panels add additional value because they reduce the dependence on fossil fuel consumption for electricity generation.

  18. Optimum design of bipolar plates for separate air flow cooling system of PEM fuel cells stacks

    NASA Astrophysics Data System (ADS)

    Franco, Alessandro

    2015-12-01

    The paper discusses about thermal management of PEM fuel cells. The objective is to define criteria and guidelines for the design of the air flow cooling system of fuel cells stacks for different combination of power density, bipolar plates material, air flow rate, operating temperature It is shown that the optimization of the geometry of the channel permits interesting margins for maintaining the use of separate air flow cooling systems for high power density PEM fuel cells.

  19. Comparison of effectiveness of convection-, transpiration-, and film-cooling methods with air as coolant

    NASA Technical Reports Server (NTRS)

    Eckert, E R G; Livingood, N B

    1954-01-01

    Various parts of aircraft propulsion engines that are in contact with hot gases often require cooling. Transpiration and film cooling, new methods that supposedly utilize cooling air more effectively than conventional convection cooling, have already been proposed. This report presents material necessary for a comparison of the cooling requirements of these three methods. Correlations that are regarded by the authors as the most reliable today are employed in evaluating each of the cooling processes. Calculations for the special case in which the gas velocity is constant along the cooled wall (flat plate) are presented. The calculations reveal that a comparison of the three cooling processes can be made on quite a general basis. The superiority of transpiration cooling is clearly shown for both laminar and turbulent flow. This superiority is reduced when the effects of radiation are included; for gas-turbine blades, however, there is evidence indicating that radiation may be neglected.

  20. Dynamic performance testing of prototype 3 ton air-cooled carrier absorption chiller

    SciTech Connect

    Borst, R.R.; Wood, B.D.

    1985-05-01

    The performance of a prototype 3 ton cooling capacity air-cooled lithium bromide/water absorption chiller was tested using an absorption chiller test facility which was modified to expand its testing capabilities to include air-cooled chillers in addition to water-cooled chillers. Temperatures of the three externally supplied fluid loops: hot water, chilled water, and cooling air, were varied in order to determine the effects this would have on the two principal measures of chiller performance: cooling capacity and thermal coefficient of performance (COP). A number of interrelated factors were identified as contributing to less than expected performance. For comparison, experimental correlations of other investigators for this and other similar absorption chillers are presented. These have been plotted as both contour and three-dimensional performance maps in order to more clearly show the functional dependence of the chiller performance on the fluid loop temperatures.

  1. Dynamic performance testing of prototype 3 ton air-cooled carrier absorption chiller

    NASA Astrophysics Data System (ADS)

    Borst, R. R.; Wood, B. D.

    1985-05-01

    The performance of a prototype three ton cooling capacity air-cooled lithium bromide/water absorption chiller was tested using an absorption chiller test facility which was modified to expand its testing capabilities to include air-cooled chillers in addition to water-cooled chillers. Temperatures of the three externally supplied fluid loops: hot water, chilled water, and cooling air, were varied in order to determine the effects this would have on the two principal measures of chiller performance: cooling capacity and thermal coefficient of performance (COP). A number of interrelated factors were identified as contributing to less than expected performance. For comparison, experimental correlations of other investigators for this and other similar absorption chillers are presented. These have been plotted as both contour and three-dimensional performance maps in order to more clearly show the functional dependence of the chiller performance on the fluid loop temperatures.

  2. Intercooler cooling-air weight flow and pressure drop for minimum drag loss

    NASA Technical Reports Server (NTRS)

    Reuter, J George; Valerino, Michael F

    1944-01-01

    An analysis has been made of the drag losses in airplane flight of cross-flow plate and tubular intercoolers to determine the cooling-air weight flow and pressure drop that give a minimum drag loss for any given cooling effectiveness and, thus, a maximum power-plant net gain due to charge-air cooling. The drag losses considered in this analysis are those due to (1) the extra drag imposed on the airplane by the weight of the intercooler, its duct, and its supports and (2) the drag sustained by the cooling air in flowing through the intercooler and its duct. The investigation covers a range of conditions of altitude, airspeed, lift-drag ratio, supercharger-pressure ratio, and supercharger adiabatic efficiency. The optimum values of cooling air pressure drop and weight flow ratio are tabulated. Curves are presented to illustrate the results of the analysis.

  3. Effect of Ambient Design Temperature on Air-Cooled Binary Plant Output

    SciTech Connect

    Dan Wendt; Greg Mines

    2011-10-01

    Air-cooled binary plants are designed to provide a specified level of power production at a particular air temperature. Nominally this air temperature is the annual mean or average air temperature for the plant location. This study investigates the effect that changing the design air temperature has on power generation for an air-cooled binary plant producing power from a resource with a declining production fluid temperature and fluctuating ambient temperatures. This analysis was performed for plants operating both with and without a geothermal fluid outlet temperature limit. Aspen Plus process simulation software was used to develop optimal air-cooled binary plant designs for specific ambient temperatures as well as to rate the performance of the plant designs at off-design operating conditions. Results include calculation of annual and plant lifetime power generation as well as evaluation of plant operating characteristics, such as improved power generation capabilities during summer months when electric power prices are at peak levels.

  4. 40 CFR 92.108 - Intake and cooling air measurements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... practice J244 (incorporated by reference at § 92.5) are allowed. (b) Humidity and temperature measurements. (1) Air that has had its absolute humidity altered is considered humidity-conditioned air. For this type of intake air supply, the humidity measurements must be made within the intake air supply...

  5. 40 CFR 92.108 - Intake and cooling air measurements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... recommended practice J244 (incorporated by reference at § 92.5) are allowed. (b) Humidity and temperature measurements. (1) Air that has had its absolute humidity altered is considered humidity-conditioned air. For this type of intake air supply, the humidity measurements must be made within the intake air...

  6. 40 CFR 92.108 - Intake and cooling air measurements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... recommended practice J244 (incorporated by reference at § 92.5) are allowed. (b) Humidity and temperature measurements. (1) Air that has had its absolute humidity altered is considered humidity-conditioned air. For this type of intake air supply, the humidity measurements must be made within the intake air...

  7. Cooling of Poultry Using Immersion or air chilling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During processing, poultry carcasses must be cooled to 40 F or below within 4 to 8 hours after slaughter to retard growth of pathogenic and spoilage microorganisms. In the U.S., poultry has traditionally been cooled using immersion chilling because this method is both economical and efficient; howe...

  8. Use of Air2Air Technology to Recover Fresh-Water from the Normal Evaporative Cooling Loss at Coal-Based Thermoelectric Power Plants

    SciTech Connect

    Ken Mortensen

    2009-06-30

    This program was undertaken to build and operate the first Air2Air{trademark} Water Conservation Cooling Tower at a power plant, giving a validated basis and capability for water conservation by this method. Air2Air{trademark} water conservation technology recovers a portion of the traditional cooling tower evaporate. The Condensing Module provides an air-to-air heat exchanger above the wet fill media, extracting the heat from the hot saturated moist air leaving in the cooling tower and condensing water. The rate of evaporate water recovery is typically 10%-25% annually, depending on the cooling tower location (climate).

  9. Study of Ram-air Heat Exchangers for Reducing Turbine Cooling-air Temperature of a Supersonic Aircraft Turbojet Engine

    NASA Technical Reports Server (NTRS)

    Diaguila, Anthony J; Livingood, John N B; Eckert, Ernst R G

    1956-01-01

    The sizes and weights of the cores of heat exchangers were determined analytically for possible application for reducing turbine cooling-air temperatures of an engine designed for a Mach number of 2.5 and an altitude The sizes and weights of the cores of heat exchangers were determined analytically for possible application for reducing turbine cooling-air temperatures of an engine designed for a Mach number of 2.5 and an altitude of 70,000 feet. A compressor-bleed-air weight flow of 2.7 pounds per second was assumed for the coolant; ram air was considered as the other fluid. Pressure drops and inlet states of both fluids were prescribed, and ranges of compressor-bleed-air temperature reductions and of the ratio of compressor-bleed to ram-air weight flows were considered.

  10. Preliminary investigation of cooling-air ejector performance at pressure ratios from 1 to 10

    NASA Technical Reports Server (NTRS)

    Ellis, C W; Hollister, D P; Sargent, A F , Jr

    1951-01-01

    Preliminary investigation was made of conical cooling air ejector at primary pressure ratios from 1 to 10. The cooling-air flow was maintained at zero and the resulting pressure variation in the shroud indicated pumping ability. The cooling-air flow was maintained at zero and the resulting pressure variation in the shroud indicated pumping ability. The gross thrust of the ejector and nozzle were compared. Several ratios of the spacing between the nozzle and shroud exit to the nozzle exit diameter were investigated for several shroud to nozzle exit diameter ratios. Maximum gross thrust loss occurred under conditions of zero cooling-air flow and was as much as 35 percent below nozzle jet thrust. For minimum thrust loss, ejector should be designed with as low diameter and spacing ratio as possible.

  11. 16 CFR Appendix H to Part 305 - Cooling Performance and Cost for Central Air Conditioners

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 1 2014-01-01 2014-01-01 false Cooling Performance and Cost for Central Air Conditioners H Appendix H to Part 305 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC... CONSERVATION ACT (âENERGY LABELING RULEâ) Pt. 305, App. H Appendix H to Part 305—Cooling Performance and...

  12. Dehumidifying Air for Cooling & Refrigeration: Nanotechnology Membrane-based Dehumidifier

    SciTech Connect

    2010-10-01

    Broad Funding Opportunity Announcement Project: Dais is developing a product called NanoAir which dehumidifies the air entering a building to make air conditioning more energy efficient. The system uses a polymer membrane that allows moisture but not air to pass through it. A vacuum behind the membrane pulls water vapor from the air, and a second set of membranes releases the water vapor outside. The membrane’s high selectivity translates into reduced energy consumption for dehumidification. Dais’ design goals for NanoAir are the use of proprietary materials and processes and industry-standard installation techniques. NanoAir is also complementary to many other energy saving strategies, including energy recovery.

  13. Wing-Nacelle-Propeller Tests - Comparative Tests of Liquid-Cooled and Air-Cooled Engine Nacelles

    NASA Technical Reports Server (NTRS)

    Wood, Donald H.

    1934-01-01

    This report gives the results of measurements of the lift, drag, and propeller characteristics of several wing and nacelle combinations with a tractor propeller. The nacelles were so located that the propeller was about 31% of the wing chord directly ahead of the leading edge of the wing, a position which earlier tests (NASA Report No. 415) had shown to be efficient. The nacelles were scale models of an NACA cowled nacelle for a radial air-cooled engine, a circular nacelle with the V-type engine located inside and the radiator for the cooling liquid located inside and the radiator for the type, and a nacelle shape simulating the housing which would be used for an extension shaft if the engine were located entirely within the wing. The propeller used in all cases was a 4-foot model of Navy No. 4412 adjustable metal propeller. The results of the tests indicate that, at the angles of attack corresponding to high speeds of flight, there is no marked advantage of one type of nacelle over the others as far as low drag is concerned, since the drag added by any of the nacelles in the particular location ahead of the wing is very small. The completely cowled nacelle for a radial air-cooled engine appears to have the highest drag, the liquid-cooled engine appears to have the highest drag, the liquid-cooled engine nacelle with external radiator slightly less drag. The liquid-cooled engine nacelle with radiator in the cowling hood has about half the drag of the cowled radial air-cooled engine nacelle. The extension-shaft housing shows practically no increase in drag over that of the wing alone. A large part of the drag of the liquid-cooled engine nacelle appears to be due to the external radiator. The maximum propulsive efficiency for a given propeller pitch setting is about 2% higher for the liquid-cooled engine nacelle with the radiator in the cowling hood than that for the other cowling arrangements.

  14. Air-cooled condensers eliminate plant water use

    SciTech Connect

    Wurtz, W.; Peltier, R.

    2008-09-15

    River or ocean water has been the mainstay for condensing turbine exhaust steam since the first steam turbine began generating electricity. A primary challenge facing today's plant developers, especially in drought-prone regions, is incorporating processes that reduce plant water use and consumption. One solution is to shed the conventional mindset that once-through cooling is the only option and adopt dry cooling technologies that reduce plant water use from a flood to a few sips. A case study at the Astoria Energy plant, New York City is described. 14 figs.

  15. Conceptual design and optimization of a 1-1/2 generation PFBC plant task 14. Topical report

    SciTech Connect

    White, J.S.; Witman, P.M.; Harbaugh, L.; Rubow, L.N.; Horazak, D.A.

    1994-12-01

    The economics and performance of advanced pressurized fluidized bed (PFBC) cycles developed for utility applications during the last 10 years (especially the 2nd-Generation PFBC cycle) are projected to be favorable compared to conventional pulverized coal power plants. However, the improved economics of 2nd-Generation PFBC cycles are accompanied by the perception of increased technological risk related to the pressurized carbonizer and its associated gas cleanup systems. A PFBC cycle that removed the uncertainties of the carbonizer while retaining the high efficiency and low cost of a 2nd-Generation PFBC cycle could improve the prospects for early commercialization and pave the way for the introduction of the complete 2nd-Generation PFBC cycle at some later date. One such arrangement is a PFBC cycle with natural gas topping combustion, referred to as the 1.5-Generation PFBC cycle. This cycle combines the advantages of the 2nd-Generation PFBC plant with the reduced risk associated with a gas turbine burning natural gas, and can potentially be part of a phased approach leading to the commercialization of utility 2nd-Generation PFBC cycles. The 1.5-Generation PFBC may also introduce other advantages over the more complicated 2nd-Generation PFBC system. This report describes the technical and economic evaluation of 1.5-Generation PFBC cycles for utility or industrial power generation.

  16. Design considerations and experimental observations for the TAMU air-cooled reactor cavity cooling system for the VHTR

    SciTech Connect

    Sulaiman, S. A. Dominguez-Ontiveros, E. E. Alhashimi, T. Budd, J. L. Matos, M. D. Hassan, Y. A.

    2015-04-29

    The Reactor Cavity Cooling System (RCCS) is a promising passive decay heat removal system for the Very High Temperature Reactor (VHTR) to ensure reliability of the transfer of the core residual and decay heat to the environment under all off-normal circumstances. A small scale experimental test facility was constructed at Texas A and M University (TAMU) to study pertinent multifaceted thermal hydraulic phenomena in the air-cooled reactor cavity cooling system (RCCS) design based on the General Atomics (GA) concept for the Modular High Temperature Gas-Cooled Reactor (MHTGR). The TAMU Air-Cooled Experimental Test Facility is ⅛ scale from the proposed GA-MHTGR design. Groundwork for experimental investigations focusing into the complex turbulence mixing flow behavior inside the upper plenum is currently underway. The following paper illustrates some of the chief design considerations used in construction of the experimental test facility, complete with an outline of the planned instrumentation and data acquisition methods. Computational Fluid Dynamics (CFD) simulations were carried out to furnish some insights on the overall behavior of the air flow in the system. CFD simulations assisted the placement of the flow measurement sensors location. Preliminary experimental observations of experiments at 120oC inlet temperature suggested the presence of flow reversal for cases involving single active riser at both 5 m/s and 2.25 m/s, respectively and four active risers at 2.25 m/s. Flow reversal may lead to thermal stratification inside the upper plenum by means of steady state temperature measurements. A Particle Image Velocimetry (PIV) experiment was carried out to furnish some insight on flow patterns and directions.

  17. Design considerations and experimental observations for the TAMU air-cooled reactor cavity cooling system for the VHTR

    NASA Astrophysics Data System (ADS)

    Sulaiman, S. A.; Dominguez-Ontiveros, E. E.; Alhashimi, T.; Budd, J. L.; Matos, M. D.; Hassan, Y. A.

    2015-04-01

    The Reactor Cavity Cooling System (RCCS) is a promising passive decay heat removal system for the Very High Temperature Reactor (VHTR) to ensure reliability of the transfer of the core residual and decay heat to the environment under all off-normal circumstances. A small scale experimental test facility was constructed at Texas A&M University (TAMU) to study pertinent multifaceted thermal hydraulic phenomena in the air-cooled reactor cavity cooling system (RCCS) design based on the General Atomics (GA) concept for the Modular High Temperature Gas-Cooled Reactor (MHTGR). The TAMU Air-Cooled Experimental Test Facility is ⅛ scale from the proposed GA-MHTGR design. Groundwork for experimental investigations focusing into the complex turbulence mixing flow behavior inside the upper plenum is currently underway. The following paper illustrates some of the chief design considerations used in construction of the experimental test facility, complete with an outline of the planned instrumentation and data acquisition methods. Computational Fluid Dynamics (CFD) simulations were carried out to furnish some insights on the overall behavior of the air flow in the system. CFD simulations assisted the placement of the flow measurement sensors location. Preliminary experimental observations of experiments at 120oC inlet temperature suggested the presence of flow reversal for cases involving single active riser at both 5 m/s and 2.25 m/s, respectively and four active risers at 2.25 m/s. Flow reversal may lead to thermal stratification inside the upper plenum by means of steady state temperature measurements. A Particle Image Velocimetry (PIV) experiment was carried out to furnish some insight on flow patterns and directions.

  18. Evaluation of Hybrid Air-Cooled Flash/Binary Power Cycle

    SciTech Connect

    Greg Mines

    2005-10-01

    Geothermal binary power plants reject a significant portion of the heat removed from the geothermal fluid. Because of the relatively low temperature of the heat source (geothermal fluid), the performance of these plants is quite sensitive to the sink temperature to which heat is rejected. This is particularly true of air-cooled binary plants. Recent efforts by the geothermal industry have examined the potential to evaporatively cool the air entering the air-cooled condensers during the hotter portions of a summer day. While the work has shown the benefit of this concept, air-cooled binary plants are typically located in regions that lack an adequate supply of clean water for use in this evaporative cooling. In the work presented, this water issue is addressed by pre-flashing the geothermal fluid to produce a clean condensate that can be utilized during the hotter portions of the year to evaporatively cool the air. This study examines both the impact of this pre-flash on the performance of the binary plant, and the increase in power output due to the ability to incorporate an evaporative component to the heat rejection process.

  19. Experimental study on corrugated cross-flow air-cooled plate heat exchangers

    SciTech Connect

    Kim, Minsung; Baik, Young-Jin; Park, Seong-Ryong; Ra, Ho-Sang; Lim, Hyug

    2010-11-15

    Experimental study on cross-flow air-cooled plate heat exchangers (PHEs) was performed. The two prototype PHEs were manufactured in a stack of single-wave plates and double-wave plates in parallel. Cooling air flows through the PHEs in a crosswise direction against internal cooling water. The heat exchanger aims to substitute open-loop cooling towers with closed-loop water circulation, which guarantees cleanliness and compactness. In this study, the prototype PHEs were tested in a laboratory scale experiments. From the tests, double-wave PHE shows approximately 50% enhanced heat transfer performance compared to single-wave PHE. However, double-wave PHE costs 30% additional pressure drop. For commercialization, a wide channel design for air flow would be essential for reliable performance. (author)

  20. Improvement to Air2Air Technology to Reduce Fresh-Water Evaporative Cooling Loss at Coal-Based Thermoelectric Power Plants

    SciTech Connect

    Ken Mortensen

    2011-12-31

    This program was undertaken to enhance the manufacturability, constructability, and cost of the Air2Air{TM} Water Conservation and Plume Abatement Cooling Tower, giving a validated cost basis and capability. Air2Air{TM} water conservation technology recovers a portion of the traditional cooling tower evaporate. The Condensing Module provides an air-to-air heat exchanger above the wet fill media, extracting the heat from the hot saturated moist air leaving in the cooling tower and condensing water. The rate of evaporate water recovery is typically 10% - 25% annually, depending on the cooling tower location (climate). This program improved the efficiency and cost of the Air2Air{TM} Water Conservation Cooling Tower capability, and led to the first commercial sale of the product, as described.

  1. 40 CFR 92.108 - Intake and cooling air measurements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... during the test. Overall measurement accuracy must be ±2 percent of full-scale value of the measurement... full-scale value. The Administrator must be advised of the method used prior to testing. (2... measurements. (1) Air that has had its absolute humidity altered is considered humidity-conditioned air....

  2. METAL FILTERS FOR PRESSURIZED FLUID BED COMBUSTION (PFBC) APPLICATIONS

    SciTech Connect

    M.A. Alvin

    2004-01-02

    Advanced coal and biomass-based gas turbine power generation technologies (IGCC, PFBC, PCFBC, and Hipps) are currently under development and demonstration. Efforts at the Siemens Westinghouse Power Corporation (SWPC) have been focused on the development and demonstration of hot gas filter systems as an enabling technology for power generation. As part of the demonstration effort, SWPC has been actively involved in the development of advanced filter materials and component configuration, has participated in numerous surveillance programs characterizing the material properties and microstructure of field-tested filter elements, and has undertaken extended, accelerated filter life testing programs. This report reviews SWPC's material and component assessment efforts, identifying the performance, stability, and life of porous commercial metal, advanced alloy, and intermetallic filters under simulated, pressurized fluidized-bed combustion (PFBC) conditions.

  3. Correlation of Cooling Data from an Air-Cooled Cylinder and Several Multicylinder Engines

    NASA Technical Reports Server (NTRS)

    Pinkel, Benjamin; Ellerbrock, Herman H , Jr

    1940-01-01

    The theory of engine-cylinder cooling developed in a previous report was further substantiated by data obtained on a cylinder from a Wright r-1820-g engine. Equations are presented for the average head and barrel temperatures of this cylinder as functions of the engine and the cooling conditions. These equations are utilized to calculate the variation in cylinder temperature with altitude for level flight and climb. A method is presented for correlating average head and barrel temperatures and temperatures at individual points on the head and the barrel obtained on the test stand and in flight. The method is applied to the correlation and the comparison of data obtained on a number of service engines. Data are presented showing the variation of cylinder temperature with time when the power and the cooling pressure drop are suddenly changed.

  4. Improving hot gas filtration behavior in PFBC power plants

    SciTech Connect

    Romeo, L.M.; Gil, A.; Cortes, C.

    1999-07-01

    According to a previous paper, a laboratory-scale cold flow model of the hot gas filtration system in Escatron PFBC power plant has been built. The main objectives were to establish the validity of the scaling laws for cyclone separator systems (cyclone and dipleg) and to perform detailed room temperature studies in a rapid and cost effective manner. In Escatron PFBC power plant, the hot gas filtration equipment is a two-stage process performed in nine streams between the fluidized bed and the gas turbine. Due to the unsteadiness in the dipleg and the suction nozzle, and the effect of sintered deposit, the cyclone performance is modified. The performances of cyclone separator system and suction nozzle diplegs are scarcely reported in the open literature. This paper presents the results of a detailed research in which some important conclusions of well known studies about cyclones are verified. Also remarkable is the increase in cyclone efficiency and decrease in pressure drop when the solid load to the cyclone is increased. The possibility to check the fouling by means of pressure drop has not been previously addressed. Finally, the influences of gas input velocity to the cyclone, the transport gas to the ash conveying lines, the solid load and the cyclone fouling have been analyzed. This study has allowed characterizing the performance of the full-scale ash removal system, establishing safe limits of operation and testing design improvements as the two suction nozzle dipleg, pointing out important conclusions for the filtration process in PFBC power plants.

  5. Tidd PFBC Demonstration Project: Public final design report

    SciTech Connect

    Not Available

    1992-10-01

    This Public Final Design Report describes the 70 MW(e) Tidd PFBC Demonstration Plant under construction in Brilliant, Ohio. This project is receiving cost-sharing from the US Department of Energy (DOE), and is being administered by the Morgantown Energy Technology Center in accordance with DOE Cooperative Agreement No. DE-FC21-87 MC24132.000. The project is also receiving costsharing from the State of Ohio. This award is being administered by the Ohio Coal Development Office. The Tidd PFBC Demonstration Project is the first utility-scale demonstration project in the US. Its objective is to demonstrate that the Pressurized Fluidized Bed Combustion (PFBC) combined-cycle technology is an economic, reliable, and environmentally superior alternative to conventional technology in using high-sulfur coal to generate electricity. Detailed design of the plant began in May 1987, leading to the start of construction in April 1988. First coal fire occurred in November 1990, and the three-year test program began in February 1991.

  6. Nano-textured copper oxide nanofibers for efficient air cooling

    NASA Astrophysics Data System (ADS)

    An, Seongpil; Jo, Hong Seok; Al-Deyab, Salem S.; Yarin, Alexander L.; Yoon, Sam S.

    2016-02-01

    Ever decreasing of microelectronics devices is challenged by overheating and demands an increase in heat removal rate. Herein, we fabricated highly efficient heat-removal coatings comprised of copper oxide-plated polymer nanofiber layers (thorny devil nanofibers) with high surface-to-volume ratio, which facilitate heat removal from the underlying hot surfaces. The electroplating time and voltage were optimized to form fiber layers with maximal heat removal rate. The copper oxide nanofibers with the thorny devil morphology yielded a superior cooling rate compared to the pure copper nanofibers with the smooth surface morphology. This superior cooling performance is attributed to the enhanced surface area of the thorny devil nanofibers. These nanofibers were characterized with scanning electron microscopy, X-ray diffraction, atomic force microscopy, and a thermographic camera.

  7. Ultra fast cooling of hot steel plate by air atomized spray with salt solution

    NASA Astrophysics Data System (ADS)

    Mohapatra, Soumya S.; Ravikumar, Satya V.; Jha, Jay M.; Singh, Akhilendra K.; Bhattacharya, Chandrima; Pal, Surjya K.; Chakraborty, Sudipto

    2014-05-01

    In the present study, the applicability of air atomized spray with the salt added water has been studied for ultra fast cooling (UFC) of a 6 mm thick AISI-304 hot steel plate. The investigation includes the effect of salt (NaCl and MgSO4) concentration and spray mass flux on the cooling rate. The initial temperature of the steel plate before the commencement of cooling is kept at 900 °C or above, which is usually observed as the "finish rolling temperature" in the hot strip mill of a steel plant. The heat transfer analysis shows that air atomized spray with the MgSO4 salt produces 1.5 times higher cooling rate than atomized spray with the pure water, whereas air atomized spray with NaCl produces only 1.2 times higher cooling rate. In transition boiling regime, the salt deposition occurs which causes enhancement in heat transfer rate by conduction. Moreover, surface tension is the governing parameter behind the vapour film instability and this length scale increases with increase in surface tension of coolant. Overall, the achieved cooling rates produced by both types of salt added air atomized spray are found to be in the UFC regime.

  8. Performance and economic enhancement of cogeneration gas turbines through compressor inlet air cooling

    NASA Astrophysics Data System (ADS)

    Delucia, M.; Bronconi, R.; Carnevale, E.

    1994-04-01

    Gas turbine air cooling systems serve to raise performance to peak power levels during the hot months when high atmospheric temperatures cause reductions in net power output. This work describes the technical and economic advantages of providing a compressor inlet air cooling system to increase the gas turbine's power rating and reduce its heat rate. The pros and cons of state-of-the-art cooling technologies, i.e., absorption and compression refrigeration, with and without thermal energy storage, were examined in order to select the most suitable cooling solution. Heavy-duty gas turbine cogeneration systems with and without absorption units were modeled, as well as various industrial sectors, i.e., paper and pulp, pharmaceuticals, food processing, textiles, tanning, and building materials. The ambient temperature variations were modeled so the effects of climate could be accounted for in the simulation. The results validated the advantages of gas turbine cogeneration with absorption air cooling as compared to other systems without air cooling.

  9. Effects of building-roof cooling on flow and air temperature in urban street canyons

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Jin; Pardyjak, Eric; Kim, Do-Yong; Han, Kyoung-Soo; Kwon, Byung-Hyuk

    2014-05-01

    The effects of building-roof cooling on flow and air temperature in 3D urban street canyons are numerically investigated using a computational fluid dynamics (CFD) model. The aspect ratios of the building and street canyon considered are unity. For investigating the building-roof cooling effects, the building-roof temperatures are systematically changed. The traditional flow pattern including a portal vortex appears in the spanwise canyon. Compared with the case of the control run, there are minimal differences in flow pattern in the cases in which maximum building-roof cooling is considered. However, as the building roof becomes cooler, the mean kinetic energy increases and the air temperature decreases in the spanwise canyon. Building-roof cooling suppresses the upward and inward motions above the building roof, resultantly increasing the horizontal velocity near the roof level. The increase in wind velocity above the roof level intensifies the secondarily driven vortex circulation as well as the inward (outward) motion into (out of) the spanwise canyon. Finally, building-roof cooling reduces the air temperature in the spanwise canyon, supplying much relatively cool air from the streamwise canyon into the spanwise canyon.

  10. Performance of Introducing Outdoor Cold Air for Cooling a Plant Production System with Artificial Light

    PubMed Central

    Wang, Jun; Tong, Yuxin; Yang, Qichang; Xin, Min

    2016-01-01

    The commercial use of a plant production system with artificial light (PPAL) is limited by its high initial construction and operation costs. The electric-energy consumed by heat pumps, applied mainly for cooling, accounts for 15–35% of the total electric-energy used in a PPAL. To reduce the electric-energy consumption, an air exchanger with low capacity (180 W) was used for cooling by introducing outdoor cold air. In this experiment, the indoor air temperature in two PPALs (floor area: 6.2 m2 each) was maintained at 25 and 20°C during photoperiod and dark period, respectively, for lettuce production. A null CO2 balance enrichment method was used in both PPALs. In one PPAL (PPALe), an air exchanger (air flow rate: 250 m3·h−1) was used along with a heat pump (cooling capacity: 3.2 kW) to maintain the indoor air temperature at the set-point. The other PPAL (PPALc) with only a heat pump (cooling capacity: 3.2 kW) was used for reference. Effects of introducing outdoor cold air on energy use efficiency, coefficient of performance (COP), electric-energy consumption for cooling and growth of lettuce were investigated. The results show that: when the air temperature difference between indoor and outdoor ranged from 20.2 to 30.0°C: (1) the average energy use efficiency of the air exchanger was 2.8 and 3.4 times greater than the COP of the heat pumps in the PPALe and PPALc, respectively; (2) hourly electric-energy consumption for cooling in the PPALe reduced by 15.8–73.7% compared with that in the PPALc; (3) daily supply of CO2 in the PPALe reduced from 0.15 to 0.04 kg compared with that in the PPALc with the outdoor air temperature ranging from −5.6 to 2.7°C; (4) no significant difference in lettuce growth was observed in both PPALs. The results indicate that using air exchanger to introduce outdoor cold air should be considered as an effective way to reduce electric-energy consumption for cooling with little effects on plant growth in a PPAL. PMID:27066012

  11. Performance of Introducing Outdoor Cold Air for Cooling a Plant Production System with Artificial Light.

    PubMed

    Wang, Jun; Tong, Yuxin; Yang, Qichang; Xin, Min

    2016-01-01

    The commercial use of a plant production system with artificial light (PPAL) is limited by its high initial construction and operation costs. The electric-energy consumed by heat pumps, applied mainly for cooling, accounts for 15-35% of the total electric-energy used in a PPAL. To reduce the electric-energy consumption, an air exchanger with low capacity (180 W) was used for cooling by introducing outdoor cold air. In this experiment, the indoor air temperature in two PPALs (floor area: 6.2 m(2) each) was maintained at 25 and 20°C during photoperiod and dark period, respectively, for lettuce production. A null CO2 balance enrichment method was used in both PPALs. In one PPAL (PPALe), an air exchanger (air flow rate: 250 m(3)·h(-1)) was used along with a heat pump (cooling capacity: 3.2 kW) to maintain the indoor air temperature at the set-point. The other PPAL (PPALc) with only a heat pump (cooling capacity: 3.2 kW) was used for reference. Effects of introducing outdoor cold air on energy use efficiency, coefficient of performance (COP), electric-energy consumption for cooling and growth of lettuce were investigated. The results show that: when the air temperature difference between indoor and outdoor ranged from 20.2 to 30.0°C: (1) the average energy use efficiency of the air exchanger was 2.8 and 3.4 times greater than the COP of the heat pumps in the PPALe and PPALc, respectively; (2) hourly electric-energy consumption for cooling in the PPALe reduced by 15.8-73.7% compared with that in the PPALc; (3) daily supply of CO2 in the PPALe reduced from 0.15 to 0.04 kg compared with that in the PPALc with the outdoor air temperature ranging from -5.6 to 2.7°C; (4) no significant difference in lettuce growth was observed in both PPALs. The results indicate that using air exchanger to introduce outdoor cold air should be considered as an effective way to reduce electric-energy consumption for cooling with little effects on plant growth in a PPAL. PMID:27066012

  12. Cold air performance of a 12.766-centimeter-tip-diameter axial-flow cooled turbine. 2: Effect of air ejection on turbine performance

    NASA Technical Reports Server (NTRS)

    Haas, J. E.; Kofskey, M. G.

    1977-01-01

    An air cooled version of a single-stage, axial-flow turbine was investigated to determine aerodynamic performance with and without air ejection from the stator and rotor blades surfaces to simulate the effect of cooling air discharge. Air ejection rate was varied from 0 to 10 percent of turbine mass flow for both the stator and the rotor. A primary-to-air ejection temperature ratio of about 1 was maintained.

  13. Air Conditioning with Magnetic Refrigeration : An Efficient, Green Compact Cooling System Using Magnetic Refrigeration

    SciTech Connect

    2010-09-01

    BEETIT Project: Astronautics is developing an air conditioning system that relies on magnetic fields. Typical air conditioners use vapor compression to cool air. Vapor compression uses a liquid refrigerant to circulate within the air conditioner, absorb the heat, and pump the heat out into the external environment. Astronautics’ design uses a novel property of certain materials, called “magnetocaloric materials”, to achieve the same result as liquid refrigerants. These magnetocaloric materials essentially heat up when placed within a magnetic field and cool down when removed, effectively pumping heat out from a cooler to warmer environment. In addition, magnetic refrigeration uses no ozone-depleting gases and is safer to use than conventional air conditioners which are prone to leaks.

  14. Burner rig study of variables involved in hole plugging of air cooled turbine engine vanes

    NASA Technical Reports Server (NTRS)

    Deadmore, D. L.; Lowell, C. E.

    1983-01-01

    The effects of combustion gas composition, flame temperatures, and cooling air mass flow on the plugging of film cooling holes by a Ca-Fe-P-containing deposit were investigated. The testing was performed on film-cooled vanes exposed to the combustion gases of an atmospheric Mach 0.3 burner rig. The extent of plugging was determined by measurement of the open hole area at the conclusion of the tests as well as continuous monitoring of some of the tests using stop-action photography. In general, as the P content increased, plugging rates also increased. The plugging was reduced by increasing flame temperature and cooling air mass flow rates. At times up to approximately 2 hours little plugging was observed. This apparent incubation period was followed by rapid plugging, reaching in several hours a maximum closure whose value depended on the conditions of the test.

  15. The energy saving potential of precooling incoming outdoor air by indirect evaporative cooling

    SciTech Connect

    Chen, P.; Qin, H.; Huang, Y.J.; Wu, H.; Blumstein, C.

    1992-09-01

    This paper investigates the energy saving potentials of using indirect evaporative coolers to precool incoming outdoor air as the first stage of a standard cooling system. For dry and moderately humid locations, either exhaust room air or outdoor air can be used as the secondary air to the indirect evaporative precooler with similar energy savings. Under these conditions, the use of outdoor air is recommended due to the simplicity in installing the duct system. For humid locations, the use of exhaust room air is recommended because the precooling capacity and energy savings will be greatly increased. For locations with short cooling seasons, the use of indirect evaporative coolers for precooling may not be worthwhile. The paper also gives some simplified indices for easily predicting the precooling capacity, energy savings and water consumption of an indirect evaporative precooler. These indices can be used for cooling systems with continuous operation, but further work is needed to determine whether the same indices are also suitable for cooling systems with intermittent operations.

  16. Composite casting/bonding construction of an air-cooled, high temperature radial turbine wheel

    NASA Technical Reports Server (NTRS)

    Hammer, A. N.; Aigret, G.; Rodgers, C.; Metcalfe, A. G.

    1983-01-01

    A composite casting/bonding technique has been developed for the fabrication of a unique air-cooled, high temperature radial inflow turbine wheel design applicable to auxilliary power units with small rotor diameters and blade entry heights. The 'split blade' manufacturing procedure employed is an alternative to complex internal ceramic coring. Attention is given to both aerothermodynamic and structural design, of which the latter made advantageous use of the exploration of alternative cooling passage configurations through CAD/CAM system software modification.

  17. Correlation of the Characteristics of Single-Cylinder and Flight Engines in Tests of High-Performance Fuels in an Air-Cooled Engine I : Cooling Characteristics

    NASA Technical Reports Server (NTRS)

    Wilson, Robert W.; Richard, Paul H.; Brown, Kenneth D.

    1945-01-01

    Variable charge-air flow, cooling-air pressure drop, and fuel-air ration investigations were conducted to determine the cooling characteristics of a full-scale air-cooled single cylinder on a CUE setup. The data are compared with similar data that were available for the same model multicylinder engine tested in flight in a four-engine airplane. The cylinder-head cooling correlations were the same for both the single-cylinder and the flight engine. The cooling correlations for the barrels differed slightly in that the barrel of the single-cylinder engine runs cooler than the barrel of te flight engine for the same head temperatures and engine conditions.

  18. Air-Cooled Design of a Temperature-Swing Adsorption Compressor for Closed-Loop Air Revitalization Systems

    NASA Technical Reports Server (NTRS)

    Mulloth, Lila M.; Affleck, Dave L.; Rosen, Micha; LeVan, M. Douglas; Wang, Yuan; Cavalcante, Celio L.

    2004-01-01

    The air revitalization system of the International Space Station (ISS) operates in an open loop mode and relies on the resupply of oxygen and other consumables from earth for the life support of astronauts. A compressor is required for delivering the carbon dioxide from a removal assembly to a reduction unit to recover oxygen and thereby closing the air-loop. We have a developed a temperature-swing adsorption compressor (TSAC) for performing these tasks that is energy efficient, quiet, and has no rapidly moving parts. This paper discusses the mechanical design and the results of thermal model validation tests of a TSAC that uses air as the cooling medium.

  19. Second generation PFBC systems research and development: Phase 2, Topping combustor testing at UTSI

    SciTech Connect

    Johanson, N.R.; Foote, J.P.

    1992-12-01

    This report describes a second generation pressurized fluidized bed combustion (PFBC) power plant. The topping combustor testing is briefly described. The topping combustor burns low BTU gas produced from substoichiometric combustion of coal in a pressurized carbonizer. Char produced is burned in a PFBC.

  20. Benefits of compressor inlet air cooling for gas turbine cogeneration plants

    SciTech Connect

    De Lucia, M.; Lanfranchi, C.; Boggio, V.

    1996-07-01

    Compressor inlet air cooling is an effective method for enhancing the performance of gas turbine plants. This paper presents a comparative analysis of different solutions for cooling the compressor inlet air for the LM6000 gas turbine in a cogeneration plant operated in base load. Absorption and evaporative cooling systems are considered and their performance and economic benefits compared for the dry low-NO{sub x} LM6000 version. Reference is made to two sites in Northern and Southern Italy, whose climate data series for modeling the variations in ambient temperature during the single day were used to account for the effects of climate in the simulation. The results confirmed the advantages of inlet air cooling systems. In particular, evaporative cooling proved to be cost effective, though capable of supplying only moderate cooling, while absorption systems have a higher cost but are also more versatile and powerful in base-load operation. An integration of the two systems proved to be able to give both maximum performance enhancement and net economic benefit.

  1. Effects of respirator ambient air cooling on thermophysiological responses and comfort sensations.

    PubMed

    Caretti, David M; Barker, Daniel J

    2014-01-01

    This investigation assessed the thermophysiological and subjective impacts of different respirator ambient air cooling options while wearing chemical and biological personal protective equipment in a warm environment (32.7 ± 0.4°C, 49.6 ± 6.5% RH). Ten volunteers participated in 90-min heat exposure trials with and without respirator (Control) wear and performed computer-generated tasks while seated. Ambient air cooling was provided to respirators modified to blow air to the forehead (FHC) or to the forehead and the breathing zone (BZC) of a full-facepiece air-purifying respirator using a low-flow (45 L·min(-1)) mini-blower. An unmodified respirator (APR) trial was also completed. The highest body temperatures (TTY) and least favorable comfort ratings were observed for the APR condition. With ambient cooling over the last 60 min of heat exposure, TTY averaged 37.4 ± 0.6°C for Control, 38.0 ± 0.4°C for APR, 37.8 ± 0.5°C for FHC, and 37.6 ± 0.7°C for BZC conditions independent of time. Both the FHC and BZC ambient air cooling conditions reduced facial skin temperatures, reduced the rise in body temperatures, and led to more favorable subjective comfort and thermal sensation ratings over time compared to the APR condition; however statistical differences among conditions were inconsistent. Independent of exposure time, average breathing apparatus comfort scores with BZC (7.2 ± 2.5) were significantly different from both Control (8.9 ± 1.4) and APR (6.5 ± 2.2) conditions when ambient cooling was activated. These findings suggest that low-flow ambient air cooling of the face under low work rate conditions and mild hyperthermia may be a practical method to minimize the thermophysiological strain and reduce perceived respirator discomfort. PMID:24730706

  2. Mathematical equations for heat conduction in the fins of air-cooled engines

    NASA Technical Reports Server (NTRS)

    Harper, R R; Brown, W B

    1923-01-01

    The problem considered in this report is that of reducing actual geometrical area of fin-cooling surface, which is, of course, not uniform in temperature, to equivalent cooling area at one definite temperature, namely, that prevailing on the cylinder wall at the point of attachment of the fin. This makes it possible to treat all the cooling surface as if it were part of the cylinder wall and 100 per cent effective. The quantities involved in the equations are the geometrical dimensions of the fin, thermal conductivity of the material composing it, and the coefficient of surface heat dissipation between the fin and the air streams.

  3. Optimum dry-cooling sub-systems for a solar air conditioner

    NASA Technical Reports Server (NTRS)

    Chen, J. L. S.; Namkoong, D.

    1978-01-01

    Dry-cooling sub-systems for residential solar powered Rankine compression air conditioners were economically optimized and compared with the cost of a wet cooling tower. Results in terms of yearly incremental busbar cost due to the use of dry-cooling were presented for Philadelphia and Miami. With input data corresponding to local weather, energy rate and capital costs, condenser surface designs and performance, the computerized optimization program yields design specifications of the sub-system which has the lowest annual incremental cost.

  4. Hypothetical air ingress scenarios in advanced modular high temperature gas cooled reactors

    SciTech Connect

    Kroeger, P.G.

    1988-01-01

    Considering an extremely hypothetical scenario of complete cross duct failure and unlimited air supply into the reactor vessel of a modular high temperature gas cooled ractor, it is found that the potential air inflow remains limited due to the high friction pressure drop through the active core. All incoming air will be oxidized to CO and some local external burning would be temporarily possible in such a scenario. The accident would have to continue with unlimited air supply for hundreds of hours before the core structural integrity would be jeopardized.

  5. Three-dimensional freezing of flowing water in a tube cooled by air flow

    NASA Astrophysics Data System (ADS)

    Sugawara, M.; Komatsu, Y.; Beer, H.

    2015-05-01

    The 3-D freezing of flowing water in a copper tube cooled by air flow is investigated by means of a numerical analysis. The air flows normal to the tube axis. Several parameters as inlet water mean velocity w m , inlet water temperature T iℓ t , air flow temperature T a and air flow velocity u a are selected in the calculations to adapt it to a winter season actually encountered. The numerical results present the development of the ice layer mean thickness and its 3-D morphologies as well as the critical ice layer thickness in the tube choked by the ice layer.

  6. Computation of flow and heat transfer in rotating cavities with peripheral flow of cooling air.

    PubMed

    Kiliç, M

    2001-05-01

    Numerical solutions of the Navier-Stokes equations have been used to model the flow and the heat transfer that occurs in the internal cooling-air systems of gas turbines. Computations are performed to study the effect of gap ratio, Reynolds number and the mass flow rate on the flow and the heat transfer structure inside isothermal and heated rotating cavities with peripheral flow of cooling air. Computations are compared with some of the recent experimental work on flow and heat transfer in rotating-cavities. The agreement between the computed and the available experimental data is reasonably good. PMID:11460668

  7. Fluidized bed heat exchanger with water cooled air distributor and dust hopper

    DOEpatents

    Jukkola, Walfred W.; Leon, Albert M.; Van Dyk, Jr., Garritt C.; McCoy, Daniel E.; Fisher, Barry L.; Saiers, Timothy L.; Karstetter, Marlin E.

    1981-11-24

    A fluidized bed heat exchanger is provided in which air is passed through a bed of particulate material containing fuel. A steam-water natural circulation system is provided for heat exchange and the housing of the heat exchanger has a water-wall type construction. Vertical in-bed heat exchange tubes are provided and the air distributor is water-cooled. A water-cooled dust hopper is provided in the housing to collect particulates from the combustion gases and separate the combustion zone from a volume within said housing in which convection heat exchange tubes are provided to extract heat from the exiting combustion gases.

  8. Preliminary design package for residential heating/cooling system: Rankine air conditioner redesign

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A summary of the preliminary redesign and development of a marketable single family heating and cooling system is presented. The interim design and schedule status of the residential (3-ton) redesign, problem areas and solutions, and the definition of plans for future design and development activities were discussed. The proposed system for a single-family residential heating and cooling system is a single-loop, solar-assisted, hydronic-to-warm-air heating subsystem with solar-assisted domestic water heating and a Rankine-driven expansion air-conditioning subsystem.

  9. Prediction of Air Mixing From High Sidewall Diffusers in Cooling Mode: Preprint

    SciTech Connect

    Ridouane, E. H.; Gawlik, K.

    2011-02-01

    Computational fluid dynamics modeling was used to evaluate the performance of high sidewall air supply in cooling mode. The research focused on the design, placement, and operation of air supply diffusers located high on a sidewall and return grilles located near the floor on the same sidewall. Parameters of the study are the supply velocity, supply temperature, diffuser dimensions and room dimensions. Thermal loads characteristic of high performance homes were applied at the walls and room temperature was controlled via a thermostat. The results are intended to provide information to guide the selection of high sidewall supply diffusers to provide proper room mixing for cooling of high performance homes.

  10. Effect of Water Spray Evaporative Cooling at the Inlet of Regeneration Air Stream on the Performance of an Adsorption Desiccant Cooling Process

    NASA Astrophysics Data System (ADS)

    Ando, Kosuke; Kodama, Akio; Hirose, Tsutomu; Goto, Motonobu; Okano, Hiroshi

    This paper shows an influence of evaporative cooler at the inlet of regeneration air stream of an adsorptive desiccant cooling process on the cooling/dehumidifying performance. This evaporative cooling was expected to cause humidity increase in regeneration air reducing the dehumidifying performance of the honeycomb absorber, while the evaporative cooling plays an important role to produce a lower temperature in supply air. Two different airs to be used for the regeneration of the desiccant wheel were considered. One was fresh outside air (OA mode) and the other was air ventilated from the room (RA mode). Experimental results showed that the amount of dehumidified water obtained at the process without water spray evaporative cooler was actually larger than that of process with water spray evaporative cooler. This behavior was mainly due to increase of humidity or relative humidity in the regeneration air as expected. However, temperature of supply air produced by the process with the evaporator was rather lower than that of the other because of the cooled return air, resulting higher CE value. Regarding the operating mode, the evaporative cooler at the OA-mode was no longer useful at higher ambient humidity because of the difficulty of the evaporation of the water in such high humidity. It was also found that its dehumidifying performance was remarkably decreased at higher ambient humidity and lower regeneration temperature since the effective adsorption capacity at the resulting high relative humidity of the regeneration air decreased.

  11. Analysis of Coolant-flow Requirements for an Improved, Internal-strut-supported, Air-cooled Turbine-rotor Blade

    NASA Technical Reports Server (NTRS)

    Schramm, Wilson B; Nachtigall, Alfred J

    1952-01-01

    An analytical evaluation of a new typ An analytical evaluation of a new type of air-cooled turbine-rotor-blade design, based on the principle of submerging the load-carrying element in cooling air within a thin high-temperature sheel, indicates that this principle of blade design permits the load carrying element to be operated at considerably lower temperature than that of the enveloping shell. Comparison with an air-cooled shell-supported air-cooled blade has greater potentiality to withstand increased stresses that can be anticipated in future engines.

  12. Development of New Air-Cooled Heat Pump Chiller 'Compact Cube'

    NASA Astrophysics Data System (ADS)

    Ookoshi, Yasushi; Ito, Takuya; Yamaguchi, Hiroshi; Kato, Yohei; Ochiai, Yasutaka; Tanaka, Kosuke; Uji, Yoshihiro; Nakayama, Hiroshi

    Further improvement of the performance is requested to air-cooled heat pump chiller from the viewpoint of the global warming prevention. Smaller unit is needed to facilitate the renewal from absorption chiller to air-cooled heat pump chiller. To meet such needs, we developed compact new air-cooled heat pump chiller with high efficiency, 'Compact cube'. The developed machine is side-flow type with U-shaped fin and tube heat exchangers. With this structure, the uniform air velocity, high packed density of the heat exchangers, and the unit miniaturization have been implemented. The refrigeration cycle with two-evaporating temperature has also been implemented. The cooling COP of this cycle is 2% higher compared with conventional one-evaporating temperature cycle because of the rise of average evaporating temperature. In a new model, a new control system, which controls both capacity of compressors and air flow rate corresponding to heat load, has been implemented. As a result, the developed machine achieved IPLV(Integrated Part load Value) to 6.2(MCHV-P1800AE) which is 29% better than the conventional unit.

  13. Drag and Cooling with Various Forms of Cowling for a "Whirlwind" Radial Air-Cooled Engine I

    NASA Technical Reports Server (NTRS)

    Weick, Fred E

    1930-01-01

    This report presents the results of an investigation undertaken in the 20-foot Propeller Research Tunnel at Langley Field on the cowling of radial air-cooled engines. A portion of the investigation has been completed, in which several forms and degrees of cowling were tested on Wright "Whirlwind" J-5 engine mounted in the nose of a cabin fuselage. The cowlings varied from the one extreme of an entirely exposed engine to the other in which the engine was entirely inclosed. Cooling tests were made and each cowling modified, if necessary, until the engine cooled approximately as satisfactorily as when it was entirely exposed. Drag tests were then made with each form of cowling, and the effect of the cowling on the propulsive efficiency determined with a metal propeller. The propulsive efficiency was found to be practically the same with all forms of cowling. The drag of the cabin fuselage with uncowled engine was found to be more than three times as great as the drag of the fuselage with engine removed and nose rounded. The conventional forms of cowling, in which at least the tops of the cylinder heads and valve gear are exposed, reduce the drag somewhat, but the cowling entirely covering the engine reduces it 2.6 times as much as the best conventional one. The decrease in drag due to the use of spinners proved to be almost negligible. The use of the cowling completely covering the engine seems entirely practical as regards both cooling and maintenance under service conditions. It must be carefully designed, however, to cool properly. With cabin fuselages its use should result in a substantial increase in high speed over that obtained with present forms of cowling on engines similar in contour to the J-5. (author)

  14. PFBC HGCU Test facility. Technical progress report, Fourth quarter, CY 1994

    SciTech Connect

    1995-01-01

    During this quarter, the Tidd Hot Gas Clean Up System completed a 691-hour test run which began during the third quarter. Table 1 summarizes all test runs since initial operation. Following this test run the system was shut down and the filter opened for inspection and recandling. The system remained out of service during the remainder of the quarter. In addition to monitoring and evaluating the performance of the HGCU system during testing, engineering effort was devoted to posttest inspection of the APF (Advanced Particle Filter) and evaluation of the effects of totally spoiling the primary cyclone. In addition, the authors worked with Westinghouse in the selection of replacement candles that were installed during the fourth quarter. During the unit outage this quarter, the primary cyclone upstream of the APF was modified to force all of the ash to pass through the cyclone and enter the APF without using spoiling air. Appendices to this report describe the dust shroud support strap design; an analysis of the effect of support-transferred vibrations on the failure of ceramic candle filters; the Tidd APF operation; the Tidd APF boroscope inspection; a general inspection of Tidd filter internals; tally of Tidd filters; ash formations in the W-APF-October 1994 post-test inspection; characterization of the as-manufactured and PFBC-exposed 3M CVI-SiC composite filter matrix; strength characterization of the first and second generation candle filters after 1,705 hours of PFBC operation at Tidd; and filters used in the December 1994 recandling effort at Tidd.

  15. Huffing air conditioner fluid: a cool way to die?

    PubMed

    Phatak, Darshan R; Walterscheid, Jeffrey

    2012-03-01

    "Huffing," the form of substance abuse involving inhalants, is growing in popularity because of the ease and availability of chemical inhalants in many household products. The purpose in huffing is to achieve euphoria when the chemicals in question interact with the central nervous system in combination with oxygen displacement. The abuser is lulled into a false sense of safety despite the well-documented potential for lethal cardiac arrhythmia and the effects of chronic inhalant abuse, including multisystem organ failure, and brain damage. Huffing air conditioner fluid is a growing problem given the accessibility to outdoor units and their fluid components, such as difluorochloromethane(chlorodifluoromethane, Freon), and we have classified multiple cases of accidental death due to the toxicity of difluorochloromethane. Given the ubiquity of these devices and the vast lack of gating or security devices, they make an inviting target for inhalant abusers. Acute huffing fatalities have distinct findings that are present at the scene, given the position of the decedent and proximity to the air conditioner unit. The purpose of the autopsy in these cases is to exclude other potential causes of death and to procure specimens for toxicological analysis. PMID:22442834

  16. CFD analyses of natural circulation in the air-cooled reactor cavity cooling system

    SciTech Connect

    Hu, R.; Pointer, W. D.

    2013-07-01

    The Natural Convection Shutdown Heat Removal Test Facility (NSTF) is currently being built at Argonne National Laboratory, to evaluate the feasibility of the passive Reactor Cavity Cooling System (RCCS) for Next Generation Nuclear Plant (NGNP). CFD simulations have been applied to evaluate the NSTF and NGNP RCCS designs. However, previous simulations found that convergence was very difficult to achieve in simulating the complex natural circulation. To resolve the convergence issue and increase the confidence of the CFD simulation results, additional CFD simulations were conducted using a more detailed mesh and a different solution scheme. It is found that, with the use of coupled flow and coupled energy models, the convergence can be greatly improved. Furthermore, the effects of convection in the cavity and the effects of the uncertainty in solid surface emissivity are also investigated. (authors)

  17. Commercial second-generation PFBC plant transient model: Task 15

    SciTech Connect

    White, J.S.; Getty, R.T.; Torpey, M.R.

    1995-04-01

    The advanced pressurized fluidized bed combustor (APFBC) power plant combines an efficient gas-fired combined cycle, a low-emission PFB combustor, and a coal pyrolysis unit (carbonizer) that converts coal, America`s most plentiful fuel, into the gas turbine fuel. From an operation standpoint, the APFBC plant is similar to an integrated gasification combined cycle (IGCC) plant, except that the PFBC and fluid bed heat exchanger (FBHE) allow a considerable fraction of coal energy to be shunted around the gas turbine and sent directly to the steam turbine. By contrast, the fuel energy in IGCC plants and most other combined cycles is primarily delivered to the gas turbine and then to the steam turbine. Another characteristic of the APFBC plant is the interaction among three large thermal inertias--carbonizer, PFBC, and FBHE--that presents unique operational challenges for modeling and operation of this type of plant. This report describes the operating characteristics and dynamic responses of the APFBC plant and discusses the advantages and shortcomings of several alternative control strategies for the plant. In particular, interactions between PFBC, FBHE, and steam bottoming cycle are analyzed and the effect of their interactions on plant operation is discussed. The technical approach used in the study is described in Section 2. The dynamic model is introduced in Section 3 and described is detail in the appendices. Steady-state calibration and transient simulations are presented in Sections 4 and 5. The development of the operating philosophy is discussed in Section 6. Potential design changes to the dynamic model and trial control schemes are listed in Sections 7 and 8. Conclusions derived from the study are presented in Section 9.

  18. Chemistry, mineralogy, and artifical weathering of PFBC by-products

    SciTech Connect

    Fowler, R.K.; Soto, U.I.; Bigham, J.M.

    1995-11-01

    Chemical and mineralogical analyses were performed on spent bed residues and cyclone ashes acquired from the TIDD pressurized fluidized bed combustion (PFBC) demonstration plant operated by American Electric Power in Brilliant, OH. The cyclone ashes were composed of fly ash, dolomite, anhydrite, periclase, and calcite in decreasing order of abundance. By comparison, bed residues contained less dolomite and fly ash but more anhydrite, calcite and periclase. All samples were highly alkaline with paste pH values ranging from 9.9 to 12.3. The major element chemistry of the by-products was dominated by Ca, Mg, S, Fe, Al and Si. All materials met the criteria for ceiling concentrations of Cd, Cr, Cu, Pb, Mo, Ni, Se and Zn as defined for land application of sewage sludges. Arsenic exceeded the ceiling level in one of six samples. An artificial weathering study was conducted to evaluate the impact of PFBC by-products on water quality in mined land reclamation. The study was performed using two mine spoils (pH 3.8 and 5.6) mixed with cyclone ash at rates of 0, 10, 20 and 40 wt % by-product. The composition of leachates from the mixtures was mostly a function of rate of by-product application and equilibration time. In general, the addition of PFBC by-product increased pH, conductivity, and the concentrations of dissolved Ca, K, Mg, Mo, Na, S, and Sr whereas the concentrations of Al, Fe, and Mn decreased. Six metals (Ag, As, Ba, Cd, Cr, and Pb) regulated by the Resource Conservation Recovery Act were below concentration levels defined for drinking water standards. No significant alteration of native spoil minerals was observed over the course of the study; however, hydration/precipitation reactions resulted in the rapid formation of gypsum. No evidence of ettringite crystallization was available after 132 days of periodic leaching.

  19. Design data brochure for the Owens-Illinois Sunpak (TM) air-cooled solar collector

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Information necessary to evaluate the design and installation of the Owens-Illinois Sunpak TM Air-Cooled Solar Collector is presented. Information includes collector features, fluid flow, thermal performance, installation and system tips. The collector utilizes a highly selective wavelength coating in combination with vacuum insulation, which virtually eliminates conduction and convention losses.

  20. PBF Reactor Building (PER620) basement. Camera facing north. Cooling air ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Reactor Building (PER-620) basement. Camera facing north. Cooling air compressor for control rods; inner cooler and after cooler; associated piping. Photographer: John Capek. Date: August 21, 1970. INEEL negative no. 70-3493 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  1. Why Do Objects Cool More Rapidly in Water than in Still Air?

    ERIC Educational Resources Information Center

    Bohren, Craig F.

    2011-01-01

    An Internet search for why objects, especially humans, cool more rapidly in water than in air, both at the same temperature, and by how much, yields off-the-cuff answers unsupported by experiment or analysis. To answer these questions in depth requires a smattering of engineering heat transfer, including radiative transfer, and the different…

  2. Comparison of immersed liquid and air cooling of NASA's Airborne Information Management System

    NASA Technical Reports Server (NTRS)

    Hoadley, A. W.; Porter, A. J.

    1992-01-01

    The Airborne Information Management System (AIMS) is currently under development at NASA Dryden Flight Research Facility. The AIMS is designed as a modular system utilizing surface mounted integrated circuits in a high-density configuration. To maintain the temperature of the integrated circuits within manufacturer's specifications, the modules are to be filled with Fluorinert FC-72. Unlike ground based liquid cooled computers, the extreme range of the ambient pressures experienced by the AIMS requires the FC-72 be contained in a closed system. This forces the latent heat absorbed during the boiling to be released during the condensation that must take within the closed module system. Natural convection and/or pumping carries the heat to the outer surface of the AIMS module where the heat transfers to the ambient air. This paper will present an evaluation of the relative effectiveness of immersed liquid cooling and air cooling of the Airborne Information Management System.

  3. Summary of research and development effort on air and water cooling of gas turbine blades

    SciTech Connect

    Fraas, A.P.

    1980-03-01

    The review on air- and water-cooled gas turbines from the 1904 Lemale-Armengaud water-cooled gas turbine, the 1948 to 1952 NACA work, and the program at GE indicates that the potential of air cooling has been largely exploited in reaching temperatures of 1100/sup 0/C (approx. 2000/sup 0/F) in utility service and that further increases in turbine inlet temperature may be obtained with water cooling. The local heat flux in the first-stage turbine rotor with water cooling is very high, yielding high-temperature gradients and severe thermal stresses. Analyses and tests indicate that by employing a blade with an outer cladding of an approx. 1-mm-thick oxidation-resistant high-nickel alloy, a sublayer of a high-thermal-conductivity, high-strength, copper alloy containing closely spaced cooling passages approx. 2 mm in ID to minimize thermal gradients, and a central high-strength alloy structural spar, it appears possible to operate a water-cooled gas turbine with an inlet gas temperature of 1370/sup 0/C. The cooling-water passages must be lined with an iron-chrome-nickel alloy must be bent 90/sup 0/ to extend in a neatly spaced array through the platform at the base of the blade. The complex geometry of the blade design presents truly formidable fabrication problems. The water flow rate to each of many thousands of coolant passages must be metered and held to within rather close limits because the heat flux is so high that a local flow interruption of only a few seconds would lead to a serious failure.Heat losses to the cooling water will run approx. 10% of the heat from the fuel. By recoverying this waste heat for feedwater heating in a command cycle, these heat losses will give a degradation in the power plant output of approx. 5% relative to what might be obtained if no cooling were required. However, the associated power loss is less than half that to be expected with an elegant air cooling system.

  4. Flow measurement in base cooling air passages of a rotating turbine blade

    NASA Technical Reports Server (NTRS)

    Liebert, C. H.; Pollack, F. G.

    1974-01-01

    The operational performance is decribed of a shaft-mounted system for measuring the air mass flow rate in the base cooling passages of a rotating turbine blade. Shaft speeds of 0 to 9000 rpm, air mass flow rates of 0.0035 to 0.039 kg/sec (0.0077 to 0.085 lbm/sec), and blade air temperatures of 300 to 385 K (80 to 233 F) were measured. Comparisons of individual rotating blade flows and corresponding stationary supply orifice flows agreed to within 10 percent.

  5. Observations of Cooling Summer Daytime Temperatures (1948-2005) in Growing Urban Coastal California Air Basins

    NASA Astrophysics Data System (ADS)

    Bornstein, R.; Lebassi, B.; Gonzalez, J.

    2008-12-01

    The study evaluated long-term (1948-2005) air temperatures in California (CA) during summer (June- August). The aggregate CA results showed asymmetric warming, as daily minimum temperatures increased faster than daily maximum temperatures. The spatial distributions of daily maximum temperatures in the heavily urbanized South Coast and San Francisco Bay Area air basins, however, exhibited a complex pattern, with cooling at low-elevation (mainly urban) coastal-areas and warming at (mainly rural) inland areas. Previous studies have suggested that cooling summer max temperatures in CA were due to increased irrigation, coastal upwelling, or cloud cover. The current hypothesis, however, is that this temperature pattern arises from a 'reverse-reaction' to greenhouse gas (GHG) induced global-warming. In this hypothesis, the global warming of inland areas resulted in an increased (cooling) sea breeze activity in coastal areas. The coastal cooling thus resulted as urban heat island (UHI) warming was weaker than the reverse-reaction cooling; if there was no UHI effect, then the cooling would be even stronger. The cooling or warming trends at several pairs of nearby urban and non- urban sites were compared in an effort to separate out the urban heat island (UHI) and global warming components of the trend. Average temperatures from global circulation models show warming that decreases from inland areas of California to its coastal areas. Such large scale models, however, cannot resolve these smaller scale topographic and coastal effects. Meso-scale modeling on a 4 km grid is thus being carried out to evaluate the contributions from GHG global-warming and land-use changes, including UHI development, to the observed trends. Significant societal impacts may result from this observed reverse-reaction to GHG- warming; possible beneficial effects include decreased maximum: O3 levels, human thermal-stress, and per- capita energy requirements for cooling.

  6. Rating procedure for mixed-air-source unitary air conditioners and heat pumps operating in the cooling mode

    SciTech Connect

    Domanski, P.A.

    1986-02-01

    A procedure is presented for rating split, residential air conditioners and heat pumps operating in the cooling mode that are made up of an evaporator unit combined with a condensing unit that has been rated under current procedures in conjunction with a different evaporator unit. The procedure allows calculation of capacity at the 95/sup 0/ F rating point and seasonal energy efficiency ratio, SEER, without performing laboratory tests of the complete system.

  7. Summary report on effects at temperature, humidity, and fuel-air ratio on two air-cooled light aircraft engines

    NASA Technical Reports Server (NTRS)

    Kempke, E. E., Jr.

    1976-01-01

    Five different engine models were tested to experimentally characterize emissions and to determine the effects of variation in fuel-air ratio and spark timing on emissions levels and other operating characteristics such as cooling, misfiring, roughness, power acceleration, etc. The results are given of two NASA reports covering the Avco Lycoming 0-320-D engine testing and the recently obtained results on the Teledyne Continental TSIO-360-C engine.

  8. Analysis of several methods of pumping cooling air for turbojet engine afterburners

    NASA Technical Reports Server (NTRS)

    Samuels, John C; Yanowitz, Herbert

    1953-01-01

    Several methods of pumping air to an annular cooling passage surrounding a typical axial-flow turbojet-engine afterburner were evaluated and compared on the basis of thrust and specific fuel consumption of the systems. Each system was analyzed over a range of afterburner-wall temperatures, flight Mach numbers, and exhaust-gas temperatures at sea level and 35,000 feet. Ram pressure recovery, boundary-layer pressure recovery, and the engine-jet actuated ejector appear to be satisfactory systems at high Mach numbers. Cooling with compressor-exit air bleed was found to be unsatisfactory,but the use of compressor-exit bleed air as the primary fluid in a high-performance ejector was satisfactory. The use of an auxiliary compressor driven from the engine shaft increased the thrust and decreased the specific fuel consumption of the engine for many of the conditions investigated.

  9. PFBC perspectives at the Power Systems Development Facility

    SciTech Connect

    Moore, D.L.; Vimalchand, P.; Haq, Z.U.; McClung, J.D.; Quandt, M.T.

    1994-06-01

    The use of coal for power generation has come under increasing environmental scrutiny over the past five years. Advances in coal-based power generation technology will develop systems that have high efficiency, environmental superiority and lower cost of electricity compared to current coal-based technology. Advanced pressurized-fluidized-bed combustion (APFBC) is one `of the promising emerging power generation technologies striving to achieve these goals. One method of improving the efficiency and lowering the capital cost further for advanced power plants utilizing coal is by employing hot gas cleanup. Although hot gas cleanup has the potential for improving the viability of coal-based power generation, the removal of hot particulates from the gas stream has proven to be a challenging task. The demonstration of APFBC technology and the particulate control devices (PCDs) under realistic conditions for advanced power generation remain important areas for development. The Power Systems Development Facility (PSDF) is being designed to be a flexible facility that will address the development of the PCDs and an advanced second-generation PFBC technology. With the progress made in the last decade, the basic concepts of PFBC technology can be achieved through a number of different flowsheets and reactor configurations. The choices made in developing the flowsheets and the choices made in designing the equipment in order to improve the reliability of operation may well dictate, along with the actual data from operation, the process efficiencies and the capital costs that can be achieved.

  10. Evaluation and quantification of the impact of cooling tower emissions on indoor air quality

    SciTech Connect

    Vanderheyden, M.D.; Schuyler, G.D.

    1994-12-31

    Assessment of the potential impact of outdoor pollutant sources on indoor air quality through the reentrainment of pollutants vis-a-vis air-handling units, doorways, and windows has mainly focused on the evaluation of fume hood, boiler, diesel generator, and vehicular pollutant emissions. In recent years, however, gaseous and waterborne pollutants emitted from cooling towers have become an increasing source of concern. Chemicals such as biocides and corrosion and scale inhibitors are used to reduce and/or eliminate algae blooms, decrease bacterial and fungal growth, and reduce the corrosion of equipment. When added to the water used in cooling towers, these chemicals are emitted in both the gaseous phase and as pollutants dissolved in or suspended in water droplets. A qualitative evaluation of exhaust dispersion and droplet deposition rates associated with cooling towers is necessary when conducting an overall review of the environmental impact on indoor air quality. This paper identifies source emission rates to be used in assessing emissions of chemical additives in cooling towers, presents provisional design criteria for evaluating the impact of the chemical additives, and evaluates alternative methodologies for quantifying impact concentrations. These alternative assessment methodologies include numerical models, physical wind tunnel simulations, and computational fluid dynamics (CFD) simulations. Parameters used in comparing the methodologies include relative accuracy (order of magnitude) and modeling and simulation limitations.

  11. Review and status of heat-transfer technology for internal passages of air-cooled turbine blades

    NASA Technical Reports Server (NTRS)

    Yeh, F. C.; Stepka, F. S.

    1984-01-01

    Selected literature on heat-transfer and pressure losses for airflow through passages for several cooling methods generally applicable to gas turbine blades is reviewed. Some useful correlating equations are highlighted. The status of turbine-blade internal air-cooling technology for both nonrotating and rotating blades is discussed and the areas where further research is needed are indicated. The cooling methods considered include convection cooling in passages, impingement cooling at the leading edge and at the midchord, and convection cooling in passages, augmented by pin fins and the use of roughened internal walls.

  12. Thermal characteristics of air flow cooling in the lithium ion batteries experimental chamber

    SciTech Connect

    Lukhanin A.; Rohatgi U.; Belyaev, A.; Fedorchenko, D.; Khazhmuradov, M.; Lukhanin, O; Rudychev, I.

    2012-07-08

    A battery pack prototype has been designed and built to evaluate various air cooling concepts for the thermal management of Li-ion batteries. The heat generation from the Li-Ion batteries was simulated with electrical heat generation devices with the same dimensions as the Li-Ion battery (200 mm x 150 mm x 12 mm). Each battery simulator generates up to 15W of heat. There are 20 temperature probes placed uniformly on the surface of the battery simulator, which can measure temperatures in the range from -40 C to +120 C. The prototype for the pack has up to 100 battery simulators and temperature probes are recorder using a PC based DAQ system. We can measure the average surface temperature of the simulator, temperature distribution on each surface and temperature distributions in the pack. The pack which holds the battery simulators is built as a crate, with adjustable gap (varies from 2mm to 5mm) between the simulators for air flow channel studies. The total system flow rate and the inlet flow temperature are controlled during the test. The cooling channel with various heat transfer enhancing devices can be installed between the simulators to investigate the cooling performance. The prototype was designed to configure the number of cooling channels from one to hundred Li-ion battery simulators. The pack is thermally isolated which prevents heat transfer from the pack to the surroundings. The flow device can provide the air flow rate in the gap of up to 5m/s velocity and air temperature in the range from -30 C to +50 C. Test results are compared with computational modeling of the test configurations. The present test set up will be used for future tests for developing and validating new cooling concepts such as surface conditions or heat pipes.

  13. Why Do Objects Cool More Rapidly in Water Than in Still Air?

    NASA Astrophysics Data System (ADS)

    Bohren, Craig F.

    2011-12-01

    An Internet search for why objects, especially humans, cool more rapidly in water than in air, both at the same temperature, and by how much, yields off-the-cuff answers unsupported by experiment or analysis. To answer these questions in depth requires a smattering of engineering heat transfer, including radiative transfer, and the different thermophysical properties of the two fluids. The correct ratio for humans is closer to 2 than to 10, and if this were not so, swimming in cool water could be fatal.

  14. Proceedings of the coal-fired power systems 94: Advances in IGCC and PFBC review meeting. Volume 2

    SciTech Connect

    McDaniel, H.M.; Staubly, R.K.; Venkataraman, V.K.

    1994-06-01

    The Coal-Fired Power Systems 94 -- Advances in IGCC and PFBC Review Meeting was held June 21--23, 1994, at the Morgantown Energy Center (METC) in Morgantown, West Virginia. This Meeting was sponsored and hosted by METC, the Office of Fossil Energy, and the US Department of Energy (DOE). METC annually sponsors this conference for energy executives, engineers, scientists, and other interested parties to review the results of research and development projects; to discuss the status of advanced coal-fired power systems and future plans with the industrial contractors; and to discuss cooperative industrial-government research opportunities with METC`s in-house engineers and scientists. Presentations included industrial contractor and METC in-house technology developments related to the production of power via coal-fired Integrated Gasification Combined Cycle (IGCC) and Pressurized Fluidized Bed Combustion (PFBC) systems, the summary status of clean coal technologies, and developments and advancements in advanced technology subsystems, such as hot gas cleanup. A keynote speaker and other representatives from the electric power industry also gave their assessment of advanced power systems. This meeting contained 11 formal sessions and one poster session, and included 52 presentations and 24 poster presentations. Volume II contains papers presented at the following sessions: filter technology issues; hazardous air pollutants; sorbents and solid wastes; and membranes. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  15. Experimental investigation of thermal comfort and air quality in an automobile cabin during the cooling period

    NASA Astrophysics Data System (ADS)

    Kilic, M.; Akyol, S. M.

    2012-08-01

    The air quality and thermal comfort strongly influenced by the heat and mass transfer take place together in an automobile cabin. In this study, it is aimed to investigate and assess the effects of air intake settings (recirculation and fresh air) on the thermal comfort, air quality satisfaction and energy usage during the cooling period of an automobile cabin. For this purpose, measurements (temperature, air velocity, CO2) were performed at various locations inside the cabin. Furthermore, whole body and local responses of the human subjects were noted while skin temperatures were measured. A mathematical model was arranged in order to estimate CO2 concentration and energy usage inside the vehicle cabin and verified with experimental data. It is shown that CO2 level inside of the cabin can be greater than the threshold value recommended for the driving safety if two and more occupants exist in the car. It is also shown that an advanced climate control system may satisfy the requirements for the air quality and thermal comfort as well as to reduce the energy usage for the cooling of a vehicle cabin.

  16. Properties of the Carrol system and a machine design for solar-powered, air cooled, absorption space cooling

    NASA Astrophysics Data System (ADS)

    1981-05-01

    The name Carrol was selected as a convenient shorthand designation for a prime candidate chemical system comprising ethylene glycol-lithium bromide as an absorbent mixture with water as a refrigerant. The instrumentation, methods of handling data and numerical results from a systematic determination of Carrol property data required to design an air cooled absorption machine based on this chemical system are described. These data include saturation temperature, relative enthalpy, density, specific heat capacity, thermal conductivity, viscosity and absorber film heat transfer coefficient as functions of solution temperature and Carrol concentration over applicable ranges. For each of the major components of the absorption chiller, i.e., generator, chiller, absorber, condenser, heat exchanger, purge and controls, the report contains an assembly drawing and the principal operating characteristics of that component.

  17. Effects of different dentin thicknesses and air cooling on pulpal temperature rise during laser welding.

    PubMed

    Secilmis, Asli; Bulbul, Mehmet; Sari, Tugrul; Usumez, Aslihan

    2013-01-01

    The neodymium/yttrium-aluminum-garnet (Nd/YAG) laser has been suggested to repair broken prostheses in the mouth. This study investigated the effects of different dentin thicknesses and air cooling on pulpal temperature rise during laser welding. Three intact human maxillary molars were prepared for full-veneer crown. For each tooth, dentin thicknesses in mesiobuccal cusp was 2, 3, or 4 mm. Twenty dies were duplicated from each of the prepared teeth. For metal copings with 0.5-mm thickness, wax patterns were prepared with dip wax technique directly onto each of dies. All patterns were sprued and invested. The castings were made using a nickel-chromium alloy (Nicromed Premium, Neodontics). A hole with 0.5-mm diameter was prepared on the mesiobuccal cusp of each crown. The Nd/YAG laser (9.85 W; 1 Hz repetition rate; fluence, 1.230 J/cm(2); Fidelis Plus 3, Fotona) was used for welding with or without air cooling (n = 10). The temperature rise was measured in pulpal chamber with a J-type thermocouple wire that was connected to a data logger. Differences between start and highest temperature reading were taken, and temperature rise values were compared using two-way analysis of variance and Tukey's honestly significant difference tests (α = .05). Pulpal temperature rise varied significantly depending on the dentin thickness and air cooling (p < 0.05). The non-air cooling group induced significantly the highest temperature increases. There were no significant differences between 2- and 3-mm dentin thicknesses groups (p > 0.05); however, pulpal temperature rise was the lowest for 4-mm dentin thickness group (p < 0.05). The highest values of thermal increase were found in the pulp chamber (6.8°C) when no air cooling was used in 2-mm dentin thickness group. Laser welding on base metal castings with Nd/YAG laser can be applied with air cooling to avoid temperature rises known to adversely affect pulpal health when dentin thickness is 2 or 3 mm. PMID:22562450

  18. Drag and Cooling with Various Forms of Cowling for a "Whirlwind" Radial Air-cooled Engine II

    NASA Technical Reports Server (NTRS)

    Weick, Fred E

    1930-01-01

    This report gives the results of the second portion of an investigation in the twenty-foot Propeller Research Tunnel of the National Advisory Committee for Aeronautics, on the cowling and cooling of a "Whirlwind" J-5 radial air-cooled engine. The first portion pertains to tests with a cabin fuselage. This report covers tests with several forms of cowling, including conventional types, individual fairings behind the cylinders, individual hoods over the over the cylinders, and the new N. A. C. A. complete cowling, all on an open cockpit fuselage. Drag tests were also made with a conventional engine nacelle, and with a nacelle having the new complete cowling. In the second part of the investigation the results found in the first part were substantiated. It was also found that the reduction in drag with the complete cowling over that with conventional cowling is greater with the smaller bodies than with the cabin fuselage; in fact, the gain in the case of the completely cowled nacelle is over twice that with the cabin fuselage. The individual fairings and hoods did not prove effective in reducing the drag. The results of flight tests on AT-5A airplane has been analyzed and found to agree very well with the results of the wind tunnel tests. (author)

  19. Thermal design study of an air-cooled plug-nozzle system for a supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Clark, J. S.; Lieberman, A.

    1972-01-01

    A heat-transfer design analysis has been made of an air-cooled plug-nozzle system for a supersonic-cruise aircraft engine. The proposed 10deg half-angle conical plug is sting supported from the turbine frame. Plug cooling is accomplished by convection and film cooling. The flight profile studied includes maximum afterburning from takeoff to Mach 2.7 and supersonic cruise at Mach 2.7 with a low afterburner setting. The calculations indicate that, for maximum afterburning, about 2 percent of the engine primary flow, removed after the second stage of the nine-stage compressor, will adequately cool the plug and sting support. Ram air may be used for cooling during supersonic-cruise operations, however. Therefore, the cycle efficiency penalty paid for air cooling the plug and sting support should be low.

  20. Laser-induced cooling of a Yb:YAG crystal in air at atmospheric pressure.

    PubMed

    Soares de Lima Filho, Elton; Nemova, Galina; Loranger, Sébastien; Kashyap, Raman

    2013-10-21

    We report for the first time the experimental demonstration of optical cooling of a bulk crystal at atmospheric pressure. The use of a fiber Bragg grating (FBG) sensor to measure laser-induced cooling in real time is also demonstrated for the first time. A temperature drop of 8.8 K from the chamber temperature was observed in a Yb:YAG crystal in air when pumped with 4.2 W at 1029 nm. A background absorption of 2.9 × 10⁻⁴ cm⁻¹ was estimated with a pump wavelength at 1550 nm. Simulations predict further cooling if the pump power is optimized for the sample's dimensions. PMID:24150315

  1. The design of an air-cooled metallic high temperature radial turbine

    NASA Technical Reports Server (NTRS)

    Snyder, Philip H.; Roelke, Richard J.

    1988-01-01

    Recent trends in small advanced gas turbine engines call for higher turbine inlet temperatures. Advances in radial turbine technology have opened the way for a cooled metallic radial turbine capable of withstanding turbine inlet temperatures of 2500 F while meeting the challenge of high efficiency in this small flow size range. In response to this need, a small air-cooled radial turbine has been designed utilizing internal blade coolant passages. The coolant flow passage design is uniquely tailored to simultaneously meet rotor cooling needs and rotor fabrication constraints. The rotor flow-path design seeks to realize improved aerodynamic blade loading characteristics and high efficiency while satisfying rotor life requirements. An up-scaled version of the final engine rotor is currently under fabrication and, after instrumentation, will be tested in the warm turbine test facility at the NASA Lewis Research Center.

  2. JT8D revised high-pressure turbine cooling and other outer air seal program

    NASA Technical Reports Server (NTRS)

    Gaffin, W. O.

    1979-01-01

    The JT8D high pressure turbine was revised to reduce leakage between the blade tip shrouds and the outer air seal, and engine testing was performed to determine the effect on performance. The addition of a second knife-edge on the blade tip shroud, the extension of the honeycomb seal land to cover the added knife-edge and an existing spoiler on the shroud, and a material substitution in the seal support ring to improve thermal growth characteristics are included. A relocation of the blade cooling air discharge to insure adequate cooling flow is required. Significant specific fuel consumption and exhaust gas temperature improvements were demonstrated with the revised turbine in sea level and simulated altitude engine tests. Inspection of the revised seal hardware after these tests showed no unusual wear or degradation.

  3. Heat transfer optimization for air-mist cooling between a stack of parallel plates

    NASA Astrophysics Data System (ADS)

    Issa, Roy J.

    2010-06-01

    A theoretical model is developed to predict the upper limit heat transfer between a stack of parallel plates subject to multiphase cooling by air-mist flow. The model predicts the optimal separation distance between the plates based on the development of the boundary layers for small and large separation distances, and for dilute mist conditions. Simulation results show the optimal separation distance to be strongly dependent on the liquid-to-air mass flow rate loading ratio, and reach a limit for a critical loading. For these dilute spray conditions, complete evaporation of the droplets takes place. Simulation results also show the optimal separation distance decreases with the increase in the mist flow rate. The proposed theoretical model shall lead to a better understanding of the design of fins spacing in heat exchangers where multiphase spray cooling is used.

  4. Tidd PFBC Demonstration Project. Final report, March 1, 1994--March 30, 1995

    SciTech Connect

    Bauer, D.A.; Hoffman, J.D.; Marrocco, M.; Mudd, M.J.; Reinhart, W.P.; Stogran, H.K.

    1995-08-01

    The Tidd Pressurized Fluidized Bed Combustion (PFBC) Demonstration Plant was the first utility-scale pressurized fluidized bed combustor to operate in combined-cycle mode in the US. The 45-year old pulverized coal plant was repowered with PFBC components in order to demonstrate that PFBC combined-cycle technology is an economic, reliable, and environmentally superior alternative to conventional technology in using high-sulfur coal to generate electricity. The three-year demonstration period started on February 28, 1991 and terminated on February 28, 1994. The fourth year of testing started on March 1, 1994 and terminated on March 30, 1995. This report reviews the experience of the 70-MW(e), Tidd PFBC Demonstration Plant during the fourth year of operation.

  5. Liming efficacy and transport in soil of a dry PFBC by-product

    SciTech Connect

    Dick, W.A.

    1995-12-01

    The by-products of pressurized fluidized-bed combustion (PFBC) systems are mixtures of coal ash, anhydrite (CaSO{sub 4}), and unspent alkaline sorbent. Because PFBC by-products are alkaline and contain large concentrations of readily soluble bases (Ca and in some cases Mg) and other essential plant nutrients such as S and K, they have potential use as soil amendments, especially in acidic soils. PFBC by-products (particularly those with large Mg contents) may cause excessively high soluble salt concentrations when applied to soil. This could be detrimental to plant growth and might also impact the release of trace elements from the coal ash component of the by-product. In field experiments on three acidic soils, the liming effectiveness of a PFBC by-product, its effects on corn and alfalfa growth, and its impacts on crop, soil, and water quality were investigated.

  6. Mesoscale climatic simulation of surface air temperature cooling by highly reflective greenhouses in SE Spain.

    PubMed

    Campra, Pablo; Millstein, Dev

    2013-01-01

    A long-term local cooling trend in surface air temperature has been monitored at the largest concentration of reflective greenhouses in the world, at the Province of Almeria, SE Spain, associated with a dramatic increase in surface albedo in the area. The availability of reliable long-term climatic field data at this site offers a unique opportunity to test the skill of mesoscale meteorological models describing and predicting the impacts of land use change on local climate. Using the Weather Research and Forecast (WRF) mesoscale model, we have run a sensitivity experiment to simulate the impact of the observed surface albedo change on monthly and annual surface air temperatures. The model output showed a mean annual cooling of 0.25 °C associated with a 0.09 albedo increase, and a reduction of 22.8 W m(-2) of net incoming solar radiation at surface. Mean reduction of summer daily maximum temperatures was 0.49 °C, with the largest single-day decrease equal to 1.3 °C. WRF output was evaluated and compared with observations. A mean annual warm bias (MBE) of 0.42 °C was estimated. High correlation coefficients (R(2) > 0.9) were found between modeled and observed values. This study has particular interest in the assessment of the potential for urban temperature cooling by cool roofs deployment projects, as well as in the evaluation of mesoscale climatic models performance. PMID:24074145

  7. Hydrolyzed Portland cement clinker and air-cooled blast furnace slag SO{sub 2} sorbents

    SciTech Connect

    Hays, M.D.; Kenney, M.E.

    1999-07-01

    The preparation, morphologies, densities, mean particle sizes, surface areas, compositions, SO{sub 2}-uptakes, calcium utilizations and 100% SO{sub 2} capture times of SO{sub 2} flue gas sorbents derived by the hydrolysis of cement clinker and of air-cooled blast furnace slag are described and discussed. The hydrolyzed clinker sorbent is highly effective. While it is less effective, the slag sorbent, because it is so much cheaper, is the more attractive of the two.

  8. The Drag of a J-5 Radial Air-Cooled Engine

    NASA Technical Reports Server (NTRS)

    Weick, Fred E

    1928-01-01

    This note describes tests of the drag due to a Wright "Whirlwind" (J-5) radial air-cooled engine mounted on a cabin type airplane. The tests were made in the 20-foot Propeller Research Tunnel of the National Advisory Committee for Aeronautics. The drag was obtained with three different types of exhaust stacks: Short individual stacks, a circular cross section collector ring, and a streamline cross section collector ring.

  9. Organometallic Polymer Coatings for Geothermal-Fluid-Sprayed Air-Cooled Condensers: Preprint

    SciTech Connect

    Gawlik, K.; Sugama, T.; Jung, D.

    2002-08-01

    Researchers are developing polymer-based coating systems to reduce scaling and corrosion of air-cooled condensers that use a geothermal fluid spray for heat transfer augmentation. These coating systems act as barriers to corrosion to protect aluminum fins and steel tubing; they are formulated to resist the strong attachment of scale. Field tests have been done to determine the corrosion and scaling issues related to brine spraying and a promising organometallic polymer has been evaluated in salt spray tests.

  10. Initial operation of the Tidd PFBC hot gas clean up filter

    SciTech Connect

    Mudd, M.J.; Hoffman, J.D.

    1993-09-01

    The objective of this program is to evaluate the design and obtain operating experience for up to two Advanced Particle Filter (APF) systems through long-term testing on a slipstream at Ohio Power Company`s Tidd PFBC Demonstration Plant. Performance and reliability of commercial-scale filter modules will be monitored to aid in an assessment of the readiness and economic viability of this technology for commercial PFBC applications.

  11. Vehicle cabin cooling system for capturing and exhausting heated boundary layer air from inner surfaces of solar heated windows

    DOEpatents

    Farrington, Robert B.; Anderson, Ren

    2001-01-01

    The cabin cooling system includes a cooling duct positioned proximate and above upper edges of one or more windows of a vehicle to exhaust hot air as the air is heated by inner surfaces of the windows and forms thin boundary layers of heated air adjacent the heated windows. The cabin cooling system includes at least one fan to draw the hot air into the cooling duct at a flow rate that captures the hot air in the boundary layer without capturing a significant portion of the cooler cabin interior air and to discharge the hot air at a point outside the vehicle cabin, such as the vehicle trunk. In a preferred embodiment, the cooling duct has a cross-sectional area that gradually increases from a distal point to a proximal point to the fan inlet to develop a substantially uniform pressure drop along the length of the cooling duct. Correspondingly, this cross-sectional configuration develops a uniform suction pressure and uniform flow rate at the upper edge of the window to capture the hot air in the boundary layer adjacent each window.

  12. Simulations of sizing and comfort improvements for residential forced-air heating and cooling systems

    SciTech Connect

    Walker, I.S.; Degenetais, G.; Siegel, J.A.

    2002-05-01

    In many parts of North America residential HVAC systems are installed outside conditioned space. This leads to significant energy losses and poor occupant comfort due to conduction and air leakage losses from the air distribution ducts. In addition, cooling equipment performance is sensitive to air flow and refrigerant charge that have been found to be far from manufacturers specifications in most systems. The simulation techniques discussed in this report were developed in an effort to provide guidance on the savings potentials and comfort gains that can be achieved by improving ducts (sealing air leaks) and equipment (correct air-flow and refrigerant charge). The simulations include the complex air flow and thermal interactions between duct systems, their surroundings and the conditioned space. They also include cooling equipment response to air flow and refrigerant charge effects. Another key aspect of the simulations is that they are dynamic to account for cyclic losses from the HVAC system and the effect of cycle length on energy and comfort performance. To field test the effect of changes to residential HVAC systems requires extensive measurements to be made for several months for each condition tested. This level of testing is often impractical due to cost and time limitations. Therefore the Energy Performance of Buildings Group at LBNL developed a computer simulation tool that models residential HVAC system performance. This simulation tool has been used to answer questions about equipment downsizing, duct improvements, control strategies and climate variation so that recommendations can be made for changes in residential construction and HVAC installation techniques that would save energy, reduce peak demand and result in more comfortable homes. Although this study focuses on California climates, the simulation tool could easily be applied to other climates. This report summarizes the simulation tool and discusses the significant developments that allow

  13. Flame burn protection: assessment of a new, air-cooled fireproof garment.

    PubMed

    Eldad, Arieh; Salmon, Ashi Y; Breiterman, Semion; Chaouat, Malka; BenBassat, Hannah

    2003-08-01

    A new, air-cooled fireproof garment for tank crewmen was assessed regarding its efficacy for burn protection. A pig model was developed with a flame infliction instrument specially designed for this experiment. This pneumatic tool can initiate eight simultaneous flame injuries where the distance of skin from burn source and exposure time are adjustable. In the study, 1,000 degrees C, 5-second exposure flame burns were inflicted upon anesthetized pigs. Full-thickness injuries were caused to exposed animals or to animals that were protected by the single layer of old type Nomex protective garments. On day 21, the original burn size diminished to 42.3% +/- 6.3% and 41.2% +/- 7.9%, respectively. When the animals were dressed with the new type of air-cooled Nomex, only small and superficial burns could be detected when the air compressor was operating, and moderate burns were demonstrated when the compressor was not working. On day 21, postburn original burn size was diminished to 1.9% +/- 1.9% and to 17% +/- 6.5%, respectively. Quantitative burn wound histology followed the same trends with almost normal skin architecture after 7 days in the air-inflated new garments, moderate pathology, and an advanced wound healing process in the affected area when the compressor was not working and severe damage with only initial wound healing in the exposed skin or the areas that were protected by old type, single-layered fireproof garments. This new type of air-cooled fireproof garment was significantly better than the old garment under the experiment condition and seems to be very promising in burn prevention among tank crewmen. PMID:12943032

  14. Experimental study of condensate subcooling with the use of a model of an air-cooled condenser

    NASA Astrophysics Data System (ADS)

    Sukhanov, V. A.; Bezukhov, A. P.; Bogov, I. A.; Dontsov, N. Y.; Volkovitsky, I. D.; Tolmachev, V. V.

    2016-01-01

    Water-supply deficit is now felt in many regions of the world. This hampers the construction of new steam-turbine and combined steam-and-gas thermal power plants. The use of dry cooling systems and, specifically, steam-turbine air-cooled condensers (ACCs) expands the choice of sites for the construction of such power plants. The significance of condensate subcooling Δ t as a parameter that negatively affects the engineering and economic performance of steam-turbine plants is thereby increased. The operation and design factors that influence the condensate subcooling in ACCs are revealed, and the research objective is, thus, formulated properly. The indicated research was conducted through physical modeling with the use of the Steam-Turbine Air-Cooled Condenser Unit specialized, multipurpose, laboratory bench. The design and the combined schematic and measurement diagram of this test bench are discussed. The experimental results are presented in the form of graphic dependences of the condensate subcooling value on cooling ratio m and relative weight content ɛ' of air in steam at the ACC inlet at different temperatures of cooling air t ca ' . The typical ranges of condensate subcooling variation (4 ≤ Δ t ≤ 6°C, 2 ≤ Δ t ≤ 4°C, and 0 ≤ Δ t ≤ 2°C) are identified based on the results of analysis of the attained Δ t levels in the ACC and numerous Δ t reduction estimates. The corresponding ranges of cooling ratio variation at different temperatures of cooling air at the ACC inlet are specified. The guidelines for choosing the adjusted ranges of cooling ratio variation with account of the results of experimental studies of the dependences of the absolute pressure of the steam-air mixture in the top header of the ACC and the heat flux density on the cooling ratio at different temperatures of cooling air at the ACC inlet are given.

  15. Dynamic models of heating and cooling coils with one-dimensional air distribution

    NASA Astrophysics Data System (ADS)

    Wang, Zijie; Krauss, G.

    1993-06-01

    This paper presents the simulation models of the plate-fin, air-to-water (or water vapour) heat exchangers used as air-heating or air-cooling and dehumidifying coils in the HVAC (Heating, Ventilation and Air-Conditioning) systems. The thermal models are used to calculate the heat exchange between distributing air and coil pipes and outlet temperatures of air and heat or chilled fluid. The aerodynamic models are used to account for the pressure drop of the air crossing the coil tubes. They can also be used to optimize the structures of such coils. The models are based on principal laws of heat and mass conservation and fluid mechanics. They are transparent and easy to use. In our work, a coil is considered as an assembly of numbers of basic elements in which all the state variables are unique. Therefore we can conveniently simulate the coils with different structures and different geometric parameters. Two modular programs TRNSYS (Transient System Simulation) and ESACAP are utilized as supporting softwares which make the programming and simulation greatly simplified. The coil elements and a real coil were simulated. The results were compared with the data offered by the manufacturer (company SOFICA) and also with those obtained using critical methods such as NTU method, etc. and good agreement is attained.

  16. Studies on coal devolatilization and char reactivity under PFBC conditions

    SciTech Connect

    Not Available

    1990-12-01

    A fundamental combustion study was performed at Babcock and Wilcox's Alliance Research Center to characterize the combustion properties of Pittsburgh No. 8 and Texas lignite coals under conditions simulating pressurized fluidized-bed combustion (PFBC) using a bench-scale reactor. Over 400 combustion tests were performed at temperatures ranging from 1425{degree} to 1,725{degree}F, a maximum pressure of 280 psig, maximum superficial gas velocities of approximately 5 ft/sec to 20 ft/sec, and several oxygen concentrations using six coal particle sizes. A database of combustion profiles at PFBC conditions was obtained. A fundamental model of the chemical kinetics of the coal combustion at elevated pressures was developed based on this database. The kinetic models were used to derive the rate constants and activation energies of coal combustion for the two coals. For coal devolatilization, the effects of each test variable on the rate of reaction, the volatile yield, and the reaction order were evaluated. The apparent orders of coal devolatilization for Pittsburgh No. 8 and Texas lignite coals were determined to be less than one and vary with coal properties and test conditions. For char oxidation, the rates were reported as apparent kinetic rates and were derived based on the information which was obtained at the early stage of char oxidation. The kinetic rate constant of Pittsburgh No. 8 coal was found to be insensitive to the tested particle sizes. Increasing temperature, pressure, and superficial gas velocity increased the kinetic rate constant. The kinetic rate constant of Texas lignite coal was found to be approximately 2.5 times that of Pittsburgh No. 8 coal. The kinetic data obtained from this study in the low-temperature range was comparable to those reported by others in the literature. 40 refs., 37 figs., 15 tabs.

  17. An experimental investigation of the aerodynamics and cooling of a horizontally-opposed air-cooled aircraft engine installation

    NASA Technical Reports Server (NTRS)

    Miley, S. J.; Cross, E. J., Jr.; Owens, J. K.; Lawrence, D. L.

    1981-01-01

    A flight-test based research program was performed to investigate the aerodynamics and cooling of a horizontally-opposed engine installation. Specific areas investigated were the internal aerodynamics and cooling mechanics of the installation, inlet aerodynamics, and exit aerodynamics. The applicable theory and current state of the art are discussed for each area. Flight-test and ground-test techniques for the development of the cooling installation and the solution of cooling problems are presented. The results show that much of the internal aerodynamics and cooling technology developed for radial engines are applicable to horizontally opposed engines. Correlation is established between engine manufacturer's cooling design data and flight measurements of the particular installation. Also, a flight-test method for the development of cooling requirements in terms of easily measurable parameters is presented. The impact of inlet and exit design on cooling and cooling drag is shown to be of major significance.

  18. Evaluation of malodor for automobile air conditioner evaporator by using laboratory-scale test cooling bench.

    PubMed

    Kim, Kyung Hwan; Kim, Sun Hwa; Jung, Young Rim; Kim, Man Goo

    2008-09-12

    As one of the measures to improve the environment in an automobile, malodor caused by the automobile air-conditioning system evaporator was evaluated and analyzed using laboratory-scale test cooling bench. The odor was simulated with an evaporator test cooling bench equipped with an airflow controller, air temperature and relative humidity controller. To simulate the same odor characteristics that occur from automobiles, one previously used automobile air conditioner evaporator associated with unpleasant odors was selected. The odor was evaluated by trained panels and collected with aluminum polyester bags. Collected samples were analyzed by thermal desorption into a cryotrap and subsequent gas chromatographic separation, followed by simultaneous olfactometry, flame ionization detector and identified by atomic emission detection and mass spectrometry. Compounds such as alcohols, aldehydes, and organic acids were identified as responsible odor-active compounds. Gas chromatography/flame ionization detection/olfactometry combined sensory method with instrumental analysis was very effective as an odor evaluation method in an automobile air-conditioning system evaporator. PMID:18701113

  19. Cooling channels design analysis with chaotic laminar trajectory for closed cathode air-cooled PEM fuel cells using non-reacting numerical approach

    NASA Astrophysics Data System (ADS)

    N, W. Mohamed W. A.

    2015-09-01

    The thermal management of Polymer Electrolyte Membrane (PEM) fuel cells contributes directly to the overall power output of the system. For a closed cathode PEM fuel cell design, the use of air as a cooling agent is a non-conventional method due to the large heat load involved, but it offers a great advantage for minimizing the system size. Geometrical aspects of the cooling channels have been identified as the basic parameter for improved cooling performance. Numerical investigation using STAR-CCM computational fluid dynamics platform was applied for non-reacting cooling effectiveness study of various channel geometries for fuel cell application. The aspect ratio of channels and the flow trajectory are the parametric variations. A single cooling plate domain was selected with an applied heat flux of 2400 W/m2 while the cooling air are simulated at Reynolds number of 400 that corresponds to normal air flow velocities using standard 6W fans. Three channel designs of similar number of channels (20 channels) are presented here to analyze the effects of having chaotic laminar flow trajectory compared to the usual straight path trajectory. The total heat transfer between the cooling channel walls and coolant were translated into temperature distribution, maximum temperature gradient, average plate temperature and overall cooling effectiveness analyses. The numerical analysis shows that the chaotic flow promotes a 5% to 10% improvement in cooling effectiveness, depending on the single-axis or multi-axis flow paths applied. Plate temperature uniformity is also more realizable using the chaotic flow designs.

  20. Computer model for air-cooled refrigerant condensers with specified refrigerant circuiting

    SciTech Connect

    Ellison, R.D.; Creswick, F.A.; Fischer, S.K.; Jackson, W.L.

    1981-01-01

    A computer model for an air-cooled refrigerant condensor is presented; the model is intended for use in detailed design analyses or in simulation of the performance of existing heat exchangers that have complex refrigerant circuiting or unusual air-side geometries. The model relies on a tube-by-tube computational approach calculating the thermal and fluid-flow performance of each tube in the heat exchanger individually, using local temperatures and heat transfer coefficients. The refrigerant circuiting must be specified; the joining or branching of parallel circuits is accommodated using appropriate mixing expressions. Air-side heat exchange correlations may be specified so that various surface geometries can be investigated. Results of the analyses of two condensers are compared to experiment.

  1. Development of a small air-cooled ``midnight sun'' thermophotovoltaic electric generator

    NASA Astrophysics Data System (ADS)

    Fraas, Lewis M.; Xiang, Huang Han; Hui, She; Ferguson, Luke; Samaras, John; Ballantyne, Russ; Seal, Michael; West, Ed

    1996-02-01

    A natural gas fired thermophotovoltaic generator using infrared-sensitive GaSb cells and a silicon carbide emitter is described. The emitter is designed to operate at 1400 °C. Twelve GaSb receivers surround the emitter. Each receiver contains a string of series connected cells. Special infrared filters are bonded to each cell. These filters transmit short wavelength useful IR to the cells while reflecting longer wavelength IR back to the emitter. Combustion air is supplied to the burner through a counterflow heat exchanger where the air is preheated by the exhaust from the burner. The unit is air cooled and designed to produce approximately 100 Watts of electric power.

  2. Performance evaluation of radiant cooling system integrated with air system under different operational strategies

    SciTech Connect

    Khan, Yasin; Khare, Vaibhav Rai; Mathur, Jyotirmay; Bhandari, Mahabir

    2015-06-01

    The paper describes a parametric study developed to estimate the energy savings potential of a radiant cooling system installed in a commercial building in India. The study is based on numerical modeling of a radiant cooling system installed in an Information Technology (IT) office building sited in the composite climate of Hyderabad. To evaluate thermal performance and energy consumption, simulations were carried out using the ANSYS FLUENT and EnergyPlus softwares, respectively. The building model was calibrated using the measured data for the installed radiant system. Then this calibrated model was used to simulate the energy consumption of a building using a conventional all-air system to determine the proportional energy savings. For proper handling of the latent load, a dedicated outside air system (DOAS) was used as an alternative to Fan Coil Unit (FCU). A comparison of energy consumption calculated that the radiant system was 17.5 % more efficient than a conventional all-air system and that a 30% savings was achieved by using a DOAS system compared with a conventional system. Computational Fluid Dynamics (CFD) simulation was performed to evaluate indoor air quality and thermal comfort. It was found that a radiant system offers more uniform temperatures, as well as a better mean air temperature range, than a conventional system. To further enhance the energy savings in the radiant system, different operational strategies were analyzed based on thermal analysis using EnergyPlus. The energy savings achieved in this parametric run were more than 10% compared with a conventional all-air system.

  3. Performance evaluation of radiant cooling system integrated with air system under different operational strategies

    DOE PAGESBeta

    Khan, Yasin; Khare, Vaibhav Rai; Mathur, Jyotirmay; Bhandari, Mahabir

    2015-03-26

    The paper describes a parametric study developed to estimate the energy savings potential of a radiant cooling system installed in a commercial building in India. The study is based on numerical modeling of a radiant cooling system installed in an Information Technology (IT) office building sited in the composite climate of Hyderabad. To evaluate thermal performance and energy consumption, simulations were carried out using the ANSYS FLUENT and EnergyPlus softwares, respectively. The building model was calibrated using the measured data for the installed radiant system. Then this calibrated model was used to simulate the energy consumption of a building usingmore » a conventional all-air system to determine the proportional energy savings. For proper handling of the latent load, a dedicated outside air system (DOAS) was used as an alternative to Fan Coil Unit (FCU). A comparison of energy consumption calculated that the radiant system was 17.5 % more efficient than a conventional all-air system and that a 30% savings was achieved by using a DOAS system compared with a conventional system. Computational Fluid Dynamics (CFD) simulation was performed to evaluate indoor air quality and thermal comfort. It was found that a radiant system offers more uniform temperatures, as well as a better mean air temperature range, than a conventional system. To further enhance the energy savings in the radiant system, different operational strategies were analyzed based on thermal analysis using EnergyPlus. Lastly, the energy savings achieved in this parametric run were more than 10% compared with a conventional all-air system.« less

  4. Performance evaluation of radiant cooling system integrated with air system under different operational strategies

    SciTech Connect

    Khan, Yasin; Khare, Vaibhav Rai; Mathur, Jyotirmay; Bhandari, Mahabir

    2015-03-26

    The paper describes a parametric study developed to estimate the energy savings potential of a radiant cooling system installed in a commercial building in India. The study is based on numerical modeling of a radiant cooling system installed in an Information Technology (IT) office building sited in the composite climate of Hyderabad. To evaluate thermal performance and energy consumption, simulations were carried out using the ANSYS FLUENT and EnergyPlus softwares, respectively. The building model was calibrated using the measured data for the installed radiant system. Then this calibrated model was used to simulate the energy consumption of a building using a conventional all-air system to determine the proportional energy savings. For proper handling of the latent load, a dedicated outside air system (DOAS) was used as an alternative to Fan Coil Unit (FCU). A comparison of energy consumption calculated that the radiant system was 17.5 % more efficient than a conventional all-air system and that a 30% savings was achieved by using a DOAS system compared with a conventional system. Computational Fluid Dynamics (CFD) simulation was performed to evaluate indoor air quality and thermal comfort. It was found that a radiant system offers more uniform temperatures, as well as a better mean air temperature range, than a conventional system. To further enhance the energy savings in the radiant system, different operational strategies were analyzed based on thermal analysis using EnergyPlus. Lastly, the energy savings achieved in this parametric run were more than 10% compared with a conventional all-air system.

  5. Performance evaluation on an air-cooled heat exchanger for alumina nanofluid under laminar flow

    PubMed Central

    2011-01-01

    This study analyzes the characteristics of alumina (Al2O3)/water nanofluid to determine the feasibility of its application in an air-cooled heat exchanger for heat dissipation for PEMFC or electronic chip cooling. The experimental sample was Al2O3/water nanofluid produced by the direct synthesis method at three different concentrations (0.5, 1.0, and 1.5 wt.%). The experiments in this study measured the thermal conductivity and viscosity of nanofluid with weight fractions and sample temperatures (20-60°C), and then used the nanofluid in an actual air-cooled heat exchanger to assess its heat exchange capacity and pressure drop under laminar flow. Experimental results show that the nanofluid has a higher heat exchange capacity than water, and a higher concentration of nanoparticles provides an even better ratio of the heat exchange. The maximum enhanced ratio of heat exchange and pressure drop for all the experimental parameters in this study was about 39% and 5.6%, respectively. In addition to nanoparticle concentration, the temperature and mass flow rates of the working fluid can affect the enhanced ratio of heat exchange and pressure drop of nanofluid. The cross-section aspect ratio of tube in the heat exchanger is another important factor to be taken into consideration. PMID:21827644

  6. Performance evaluation on an air-cooled heat exchanger for alumina nanofluid under laminar flow.

    PubMed

    Teng, Tun-Ping; Hung, Yi-Hsuan; Teng, Tun-Chien; Chen, Jyun-Hong

    2011-01-01

    This study analyzes the characteristics of alumina (Al2O3)/water nanofluid to determine the feasibility of its application in an air-cooled heat exchanger for heat dissipation for PEMFC or electronic chip cooling. The experimental sample was Al2O3/water nanofluid produced by the direct synthesis method at three different concentrations (0.5, 1.0, and 1.5 wt.%). The experiments in this study measured the thermal conductivity and viscosity of nanofluid with weight fractions and sample temperatures (20-60°C), and then used the nanofluid in an actual air-cooled heat exchanger to assess its heat exchange capacity and pressure drop under laminar flow. Experimental results show that the nanofluid has a higher heat exchange capacity than water, and a higher concentration of nanoparticles provides an even better ratio of the heat exchange. The maximum enhanced ratio of heat exchange and pressure drop for all the experimental parameters in this study was about 39% and 5.6%, respectively. In addition to nanoparticle concentration, the temperature and mass flow rates of the working fluid can affect the enhanced ratio of heat exchange and pressure drop of nanofluid. The cross-section aspect ratio of tube in the heat exchanger is another important factor to be taken into consideration. PMID:21827644

  7. Tidd PFBC Demonstration Project: Quarterly report, April 1--June 30, 1993

    SciTech Connect

    Not Available

    1993-07-01

    This is the 25th Technical Progress Report submitted to the Department of Energy in connection with the cooperative agreement between the DOE and the Ohio Power Company for the Tidd PFBC Demonstration Plant. This report covers the period from April 1, 1993 to June 30, 1993. Major activities during this period involve: (1) The unit has been out of service since early February due to the failure of the gas turbine. The gas turbine was repaired during this quarter and unit was started on June 29, 1993. (2) The unit was operated for a total of 32 hours (including gas turbine air prewarming). There were three gas turbine starts, two bed preheater starts, and one operating period with coal fire. The peak gross output of 13 MWH was achieved for the period of 2200 to 2300 hours on June 30, 1993. (3) During the quarter, total gross generation was 75 MWH, and coal consumption was 107 tons. (4) New individual ash lines from cyclones to the economizer were installed. (5) New sparge ducts were installed along with sparge duct end fluidization piping and valves. (6) Expansion joint heaters and insulation for hot gas clean-up system were installed. Major items planned for the next period include: installation of SO{sub 2} analyzer equipment, and continuation with the operation and testing of the unit after all the current GT problems are resolved.

  8. Tidd PFBC Demonstration Project fourth quarterly technical progress report, CY 1992

    SciTech Connect

    Not Available

    1993-01-01

    This is the 23rd technical progress report submitted to the Department of Energy in connection with the cooperative agreement between the DOE and the Ohio Power Company for the Tidd PFBC Demonstration Plant. This report covers the period from October 1, 1992 to December 31, 1992. Major activities during this period involve: (1) The unit was operated for a total of 714 hours (including gas turbine air prewarming). There were seven gas turbine starts, seven bed preheater starts, and seven operating periods with coal fire. The peak gross output of 64 MWH was achieved for the period of 1000 to 1100 hours on November 23, 1992. The longest coal fire was 285 hours beginning at 1211 hours on November 25, 1992. (2) Total gross generation was 24,643, and coal consumption was 11,900 tons. (3) The hot gas clean up system was commissioned. (4) Active end fluidization system to address sparge duct cracking and deformation problem was jointly initiated by ABB carbon, B&W and AEPSC. (5) All testing continued using Plum Run dolomite. This approach was taken as a conservative means to avoid sintering and unit trips which were encountered during the previous two start-ups in September using limestone and (6) monitoring of solid, liquid and gaseous waste streams, as detailed in the operations phase monitoring requirements in the EMP, were performed.

  9. PFBC HGCU Test Facility. Fourth quarterly technical progress report, CY 1992

    SciTech Connect

    Not Available

    1993-01-01

    This is the thirteenth Technical Progress Report submitted to the Department of Energy (DOE) in connection with the cooperative agreement between the DOE and Ohio Power Company for the Tidd PFBC Hot Gas Clean Up Test Facility. This report covers the period of work completed during the Fourth Quarter of CY 1992. The following are highlights of the activities that occurred during this report period: Initial operation of the Advanced Particle Filter (APF) occurred during this quarter. The following table summarizes the operating dates and times. HGCU ash lockhopper valve plugged with ash. Primary cyclone ash pluggage. Problems with the coal water paste. Unit restarted warm 13 hours later. HGCU expansion joint No. 7 leak in internal ply of bellows. Problems encountered during these initial tests included hot spots on the APP, backup cyclone and instrumentation spools, two breakdowns of the backpulse air compressor, pluggage of the APF hopper and ash removal system, failure (breakage) of 21 filter candles, leakage of the inner ply of one (1) expansion joint bellows, and numerous other smaller problems. These operating problems are discussed in detail in a subsequent section of this report. Following shutdown and equipment inspection in December, design modifications were initiated to correct the problems noted above. The system is scheduled to resume operation in March, 1993.

  10. Heat transfer technology for internal passages of air-cooled blades for heavy-duty gas turbines.

    PubMed

    Weigand, B; Semmler, K; von Wolfersdorf, J

    2001-05-01

    The present review paper, although far from being complete, aims to give an overview about the present state of the art in the field of heat transfer technology for internal cooling of gas turbine blades. After showing some typical modern cooled blades, the different methods to enhance heat transfer in the internal passages of air-cooled blades are discussed. The complicated flows occurring in bends are described in detail, because of their increasing importance for modern cooling designs. A short review about testing of cooling design elements is given, showing the interaction of the different cooling features as well. The special focus of the present review has been put on the cooling of blades for heavy-duty gas turbines, which show several differences compared to aero-engine blades. PMID:11460627

  11. Rapid PCR amplification using a microfluidic device with integrated microwave heating and air impingement cooling.

    PubMed

    Shaw, Kirsty J; Docker, Peter T; Yelland, John V; Dyer, Charlotte E; Greenman, John; Greenway, Gillian M; Haswell, Stephen J

    2010-07-01

    A microwave heating system is described for performing polymerase chain reaction (PCR) in a microfluidic device. The heating system, in combination with air impingement cooling, provided rapid thermal cycling with heating and cooling rates of up to 65 degrees C s(-1) and minimal over- or under-shoot (+/-0.1 degrees C) when reaching target temperatures. In addition, once the required temperature was reached it could be maintained with an accuracy of +/-0.1 degrees C. To demonstrate the functionality of the system, PCR was successfully performed for the amplification of the Amelogenin locus using heating rates and quantities an order of magnitude faster and smaller than current commercial instruments. PMID:20414500

  12. Reduction in air emissions attainable through implementation of district heating and cooling

    SciTech Connect

    Bloomquist, R.G.

    1996-12-31

    District heating and cooling (DHC) can provide multiple opportunities to reduce air emissions associated with space conditioning and electricity generation, which contribute 30% to 50% of all such emissions. When DHC is combined with cogeneration (CHP), maximum reductions in sulfur oxides (SO{sub x}), nitrogen oxides (NO{sub x}), carbon dioxide (CO{sub 2}), particulates, and ozone-depleting chlorofluorocarbon (CFC) refrigerants can most effectively be achieved. Although significant improvements in air quality have been documented in Europe and Scandinavia due to DHC and CHP implementation, accurately predicting such improvements has been difficult. Without acceptable quantification methods, regulatory bodies are reluctant to grant air emissions credits, and local community leaders are unwilling to invest in DHC and CHP as preferred methods of providing energy or strategies for air quality improvement. The recent development and release of a number of computer models designed specifically to provide quantification of air emissions that can result from DHC and CHP implementation should help provide local, state, and national policymakers with information vital to increasing support and investment in DHC development.

  13. Process study and exergy analysis of a novel air separation process cooled by LNG cold energy

    NASA Astrophysics Data System (ADS)

    Xu, Wendong; Duan, Jiao; Mao, Wenjun

    2014-02-01

    In order to resolve the problems of the current air separation process such as the complex process, cumbersome operation and high operating costs, a novel air separation process cooled by LNG cold energy is proposed in this paper, which is based on high-efficiency heat exchanger network and chemical packing separation technology. The operating temperature range of LNG cold energy is widened from 133K-203K to 113K-283K by high-efficiency heat exchanger network and air separation pressure is declined from 0.5MPa to about 0.35MPa due to packing separation technology, thereby greatly improve the energy efficiency. Both the traditional and novel air separation processes are simulated with air handling capacity of 20t·h-1. Comparing with the traditional process, the LNG consumption is reduced by 44.2%, power consumption decrease is 211.5 kWh per hour, which means the annual benefit will be up to 1.218 million CNY. And the exergy efficiency is also improved by 42.5%.

  14. Engine investigation of an air-cooled turbine rotor blade incorporating impingement-cooled leading edge, chordwise passages, and a slotted trailing edge

    NASA Technical Reports Server (NTRS)

    Dengler, R. P.; Yeh, F. C.; Gauntner, J. W.; Fallon, G. E.

    1972-01-01

    Experimental temperatures are presented for an air-cooled turbine rotor blade tested in an engine. The data were obtained for turbine stator inlet temperatures from 2000 to 2500 F and for turbine-inlet gas pressures from 32 to 46 psia. Average and local blade heat-transfer data are correlated. Potential allowable increases in gas temperature are also discussed.

  15. PFBC HGCU test facility technical progress report. First Quarter, CY 1994

    SciTech Connect

    Not Available

    1994-04-01

    This is the eighteenth Technical Progress Report submitted in connection with the cooperative agreement between the DOE and Ohio Power Company for the Tidd PFBC Hot Gas Clean Up Test Facility. During this quarter, the Tidd Hot Gas Clean Up System operated for 835 hours during six separate test runs. The system was starting into a seventh run at the end of the quarter. Highlights of this period are summarized below: the longest run during the quarter was approximately 333 hours; filter pressure drop was stable during all test runs this quarter using spoiling air to the primary cyclone upstream of the Advanced Particle Filter (APF); the tempering air system was commissioned this quarter which enabled the unit to operate at full load conditions while limiting the gas temperature in the APF to 1,400 F; during a portion of the one run, the tempering air was removed and the filter operated without problems up to 1,450 F; ash sampling was performed by Battelle personnel upstream and downstream of the APF and ash loading and particle size distribution data were obtained, a summary report is included; a hot area on the APF head was successfully repaired in service; a hot spot on the top of an expansion joint was successfully repaired by drilling holes from the inside of the pipe and pumping in refractory insulation; a corrosion inspection program for the HGCU system was issued giving recommendations for points to inspect; filter internal inspections following test runs 13 and 17 revealed a light coating (up to 1/4 inch thick) of residual ash on the candles and some ash bridging between the dust sheds and inner rows of candles. Data from these inspections are included with this report.

  16. Characterization of Francisella species isolated from the cooling water of an air conditioning system.

    PubMed

    Gu, Quan; Li, Xunde; Qu, Pinghua; Hou, Shuiping; Li, Juntao; Atwill, Edward R; Chen, Shouyi

    2015-01-01

    Strains of Francisella spp. were isolated from cooling water from an air conditioning system in Guangzhou, China. These strains are Gram negative, coccobacilli, non-motile, oxidase negative, catalase negative, esterase and lipid esterase positive. In addition, these bacteria grow on cysteine-supplemented media at 20 °C to 40 °C with an optimal growth temperature of 30 °C. Analysis of 16S rRNA gene sequences revealed that these strains belong to the genus Francisella. Biochemical tests and phylogenetic and BLAST analyses of 16S rRNA, rpoB and sdhA genes indicated that one strain was very similar to Francisella philomiragia and that the other strains were identical or highly similar to the Francisella guangzhouensis sp. nov. strain 08HL01032 we previously described. Biochemical and molecular characteristics of these strains demonstrated that multiple Francisella species exist in air conditioning systems. PMID:26413079

  17. Technical and economic assessment of fluidized-bed-augmented compressed-air energy-storage system: system load following capability

    SciTech Connect

    Lessard, R.D.; Blecher, W.A.; Merrick, D.

    1981-09-01

    The load-following capability of fluidized bed combustion-augmented compressed air energy storage systems was evaluated. The results are presented in two parts. The first part is an Executive Summary which provides a concise overview of all major elements of the study including the conclusions, and, second, a detailed technical report describing the part-load and load following capability of both the pressurized fluid bed combustor and the entire pressurized fluid bed combustor/compressed air energy storage system. The specific tasks in this investigation were to: define the steady-state, part-load operation of the CAES open-bed PFBC; estimate the steady-state, part-load performance of the PFBC/CAES system and evaluate any possible operational constraints; simulate the performance of the PFBC/CAES system during transient operation and assess the load following capability of the system; and establish a start-up procedure for the open-bed PFBC and evaluate the impact of this procedure. The conclusions are encouraging and indicate that the open-bed PFBC/CAES power plant should provide good part-load and transient performance, and should have no major equipment-related constraints, specifically, no major problems associated with the performance or design of either the open-end PFBC or the PFBC/CAES power plant in steady-state, part-load operation are envisioned. The open-bed PFBC/CAES power plant would have a load following capability which would be responsive to electric utility requirements for a peak-load power plant. The open-bed PFBC could be brought to full operating conditions within 15 min after routine shutdown, by employing a hot-start mode of operation. The PFBC/CAES system would be capable of rapid changes in output power (12% of design load per minute) over a wide output power range (25% to 100% of design output). (LCL)

  18. Experimental study of an air-cooled thermal management system for high capacity lithium-titanate batteries

    NASA Astrophysics Data System (ADS)

    Giuliano, Michael R.; Prasad, Ajay K.; Advani, Suresh G.

    2012-10-01

    Lithium-titanate batteries have become an attractive option for battery electric vehicles and hybrid electric vehicles. In order to maintain safe operating temperatures, these batteries must be actively cooled during operation. Liquid-cooled systems typically employed for this purpose are inefficient due to the parasitic power consumed by the on-board chiller unit and the coolant pump. A more efficient option would be to circulate ambient air through the battery bank and directly reject the heat to the ambient. We designed and fabricated such an air-cooled thermal management system employing metal-foam based heat exchanger plates for sufficient heat removal capacity. Experiments were conducted with Altairnano's 50 Ah cells over a range of charge-discharge cycle currents at two air flow rates. It was found that an airflow of 1100 mls-1 per cell restricts the temperature rise of the coolant air to less than 10 °C over ambient even for 200 A charge-discharge cycles. Furthermore, it was shown that the power required to drive the air through the heat exchanger was less than a conventional liquid-cooled thermal management system. The results indicate that air-cooled systems can be an effective and efficient method for the thermal management of automotive battery packs.

  19. The performance of a mobile air conditioning system with a water cooled condenser

    NASA Astrophysics Data System (ADS)

    Di Battista, Davide; Cipollone, Roberto

    2015-11-01

    Vehicle technological evolution lived, in recent years, a strong acceleration due to the increased awareness of environmental issues related to pollutants and climate altering emissions. This resulted in a series of international regulations on automotive sector which put technical challenges that must consider the engine and the vehicle as a global system, in order to improve the overall efficiency of the system. The air conditioning system of the cabin, for instance, is the one of the most important auxiliaries in a vehicle and requires significant powers. Its performances can be significantly improved if it is integrated within the engine cooling circuit, eventually modified with more temperature levels. In this paper, the Authors present a mathematical model of the A/C system, starting from its single components: compressors, condenser, flush valve and evaporator and a comparison between different refrigerant fluid. In particular, it is introduced the opportunity to have an A/C condenser cooled by a water circuit instead of the external air linked to the vehicle speed, as in the actual traditional configuration. The A/C condenser, in fact, could be housed on a low temperature water circuit, reducing the condensing temperature of the refrigeration cycle with a considerable efficiency increase.

  20. Influence mechanism on flow and heat transfer characteristics for air-cooled steam condenser cells

    NASA Astrophysics Data System (ADS)

    He, Wei Feng; Dai, Yi Ping; Li, Mao Qing; Ma, Qing Zhong

    2012-09-01

    Air-cooled steam condensers (ACSCs) have been extensively utilized to reject waste heat in power industry to save water resources. However, ACSC performance is so sensitive to ambient wind that almost all the air-cooled power plants in China are less efficient compared to design conditions. It is shown from previous research that the influence of ambient wind on the cell performance differs from its location in the condenser. As a result, a numerical model including two identical ACSC cells are established, and the different influence on the performance of the cells is demonstrated and analyzed through the computational fluid dynamics method. Despite the great influence from the wind speeds, similar cell performance is obtained for the two cells under both windless and wind speed conditions when the wind parallels to the steam duct. Fan volumetric effectiveness which characterizes the fan performance, as well as the exchanger heat transfer rate, drops obviously with the increasing wind speed, and performance difference between the exchanger pair in the same A-frame also rises continuously. Furthermore, different flow and heat transfer characteristics of the windward and leeward cell are obtained at different wind angles, and ambient wind enhances the performance of the leeward cell, while that of the windward one changes little.

  1. Cool Roofs in Guangzhou, China: Outdoor Air Temperature Reductions during Heat Waves and Typical Summer Conditions.

    PubMed

    Cao, Meichun; Rosado, Pablo; Lin, Zhaohui; Levinson, Ronnen; Millstein, Dev

    2015-12-15

    In this paper, we simulate temperature reductions during heat-wave events and during typical summer conditions from the installation of highly reflective "cool" roofs in the Chinese megacity of Guangzhou. We simulate temperature reductions during six of the strongest historical heat-wave events over the past decade, finding average urban midday temperature reductions of 1.2 °C. In comparison, we simulate 25 typical summer weeks between 2004 and 2008, finding average urban midday temperature reductions of 0.8 °C, indicating that air temperature sensitivity to urban albedo in Guangzhou varies with meteorological conditions. We find that roughly three-fourths of the variance in air temperature reductions across all episodes can be accounted for by a linear regression, including only three basic properties related to the meteorological conditions: mean daytime temperature, humidity, and ventilation to the greater Guangzhou urban area. While these results highlight the potential for cool roofs to mitigate peak temperatures during heat waves, the temperature reductions reported here are based on the upper bound case, which increases albedos of all roofs (but does not modify road albedo or wall albedo). PMID:26523605

  2. STUDY ON AIR INGRESS MITIGATION METHODS IN THE VERY HIGH TEMPERATURE GAS COOLED REACTOR (VHTR)

    SciTech Connect

    Chang H. Oh

    2011-03-01

    An air-ingress accident followed by a pipe break is considered as a critical event for a very high temperature gas-cooled reactor (VHTR). Following helium depressurization, it is anticipated that unless countermeasures are taken, air will enter the core through the break leading to oxidation of the in-core graphite structure. Thus, without mitigation features, this accident might lead to severe exothermic chemical reactions of graphite and oxygen. Under extreme circumstances, a loss of core structural integrity may occur along with excessive release of radiological inventory. Idaho National Laboratory under the auspices of the U.S. Department of Energy is performing research and development (R&D) that focuses on key phenomena important during challenging scenarios that may occur in the VHTR. Phenomena Identification and Ranking Table (PIRT) studies to date have identified the air ingress event, following on the heels of a VHTR depressurization, as very important (Oh et al. 2006, Schultz et al. 2006). Consequently, the development of advanced air ingress-related models and verification and validation (V&V) requirements are part of the experimental validation plan. This paper discusses about various air-ingress mitigation concepts applicable for the VHTRs. The study begins with identifying important factors (or phenomena) associated with the air-ingress accident by using a root-cause analysis. By preventing main causes of the important events identified in the root-cause diagram, the basic air-ingress mitigation ideas can be conceptually derived. The main concepts include (1) preventing structural degradation of graphite supporters; (2) preventing local stress concentration in the supporter; (3) preventing graphite oxidation; (4) preventing air ingress; (5) preventing density gradient driven flow; (4) preventing fluid density gradient; (5) preventing fluid temperature gradient; (6) preventing high temperature. Based on the basic concepts listed above, various air

  3. Experimental evaluation of dry/wet air-cooled heat exchangers. Progress report

    SciTech Connect

    Hauser, S.G.; Gruel, R.L.; Huenefeld, J.C.; Eschbach, E.J.; Johnson, B.M.; Kreid, D.K.

    1982-08-01

    The ultimate goal of this project was to contribute to the development of improved cooling facilities for power plants. Specifically, the objective during FY-81 was to experimentally determine the thermal performance and operating characteristics of an air-cooled heat exchanger surface manufactured by the Unifin Company. The performance of the spiral-wound finned tube surface (Unifin) was compared with two inherently different platefin surfaces (one developed by the Trane Co. and the other developed by the HOETERV Institute) which were previously tested as a part of the same continuing program. Under dry operation the heat transfer per unit frontal area per unit inlet temperature difference (ITD) of the Unifin surface was 10% to 20% below that of the other two surfaces at low fan power levels. At high fan power levels, the performances of the Unifin and Trane surfaces were essentially the same, and 25% higher than the HOETERV surface. The design of the Unifin surface caused a significantly larger air-side pressure drop through the heat exchanger both in dry and deluge operation. Generally higher overall heat transfer coefficients were calculated for the Unifin surface under deluged operation. They ranged from 2.0 to 3.5 Btu/hr-ft/sup 2/-/sup 0/F as compared to less than 2.0 Btu hr-ft/sup 2/-/sup 0/F for the Trane and HOETERV surfaces under similar conditions. The heat transfer enhancement due to the evaporative cooling effect was also measureably higher with the Unifin surface as compared to the Trane surface. This can be primarily attributed to the better wetting characteristics of the Unifin surface. If the thermal performance of the surfaces are compared at equal face velocities, the Unifin surface is as much as 35% better. This method of comparison accounts for the wetting characteristics while neglecting the effect of pressure drop. Alternatively the surfaces when compared at equal pressure drop essentially the same thermal performance.

  4. Tidd PFBC Demonstration Project. Quarterly report, January--March 1994

    SciTech Connect

    Not Available

    1994-04-01

    This is the 28th Technical Progress Report submitted to the Department of Energy in connection with the Cooperative Agreement between the DOE and the Ohio Power Company for the Tidd PFBC Demonstration Plant. This report covers the period of January 1, 1994 to March 31, 1994. Major activities during this period include: (1) The unit operated for 850 hours on coal, bringing the grand total for coal fire through the end of the quarter to 6318 hours. (2) The unit availability for the first quarter was 40.1%. (3) There were twelve gas turbine starts, eight bed preheater starts, and six operating periods on coal. (4) During this quarter, total gross generation was 40,721 MWH, the peak unit output for one hour was 62 MWH, and the coal consumption was 19,370 tons. (5) Three performance tests were conducted during this quarter; and (6) the plant was able to remain in service during the sub-zero weather in January, providing power to the critically short grid.

  5. Numerical simulation of heat transfer performance of an air-cooled steam condenser in a thermal power plant

    NASA Astrophysics Data System (ADS)

    Gao, Xiufeng; Zhang, Chengwei; Wei, Jinjia; Yu, Bo

    2009-09-01

    Numerical simulation of the thermal-flow characteristics and heat transfer performance is made of an air-cooled steam condenser (ACSC) in a thermal power plant by considering the effects of ambient wind speed and direction, air-cooled platform height, location of the main factory building and terrain condition. A simplified physical model of the ACSC combined with the measured data as input parameters is used in the simulation. The wind speed effects on the heat transfer performance and the corresponding steam turbine back pressure for different heights of the air-cooled platform are obtained. It is found that the turbine back pressure (absolute pressure) increases with the increase of wind speed and the decrease of platform height. This is because wind can not only reduce the flowrate in the axial fans, especially at the periphery of the air-cooled platform, due to cross-flow effects, but also cause an air temperature increase at the fan inlet due to hot air recirculation, resulting in the deterioration of the heat transfer performance. The hot air recirculation is found to be the dominant factor because the main factory building is situated on the windward side of the ACSC.

  6. Performance comparison between transpiration air cooled turbine 3000 F (1649 C) stator vanes and solid uncooled vanes

    NASA Astrophysics Data System (ADS)

    Manning, G. B.; Moskowitz, S.; Cole, R.

    1984-06-01

    Testing was conducted to compare the aerodynamic performance of a turbine vane using transpiration air-cooling capable of operation at 3000 F (1649 C) gas temperature with a vane of identical profile with no cooling provisions to determine the effect of cooling on vane kinetic energy efficiency and loss coefficient. The test configuration was a 10-vane section of full scale first stagae turbien stator annulus designed for 1.6 pressure ratio, cooling air flow equal to 6.1 percent of primary flow, 3000 F (1649 C) turbine inlet temperature and primary-to-coolant temperature ratio of 2.7. To enable comparison with other investigations, tests were conducted at three pressure ratios from 1.4 to 1.6, three coolant flows from 75 to 120 percent of design, and three primary-to-coolant temperature ratios from 2.70 to 1.15. Efficiency, loss coefficent and flow capacity test results were in good agreement with predicted values for both the transpiration air cooled and uncooled vanes. The testing demonstrated that it is necessary to conduct test evaluations of transpiration air-cooled components at or near design coolant-to-gas stream temperature ratio in order to achieve correct results.

  7. Conjugate heat transfer investigation on the cooling performance of air cooled turbine blade with thermal barrier coating

    NASA Astrophysics Data System (ADS)

    Ji, Yongbin; Ma, Chao; Ge, Bing; Zang, Shusheng

    2016-08-01

    A hot wind tunnel of annular cascade test rig is established for measuring temperature distribution on a real gas turbine blade surface with infrared camera. Besides, conjugate heat transfer numerical simulation is performed to obtain cooling efficiency distribution on both blade substrate surface and coating surface for comparison. The effect of thermal barrier coating on the overall cooling performance for blades is compared under varied mass flow rate of coolant, and spatial difference is also discussed. Results indicate that the cooling efficiency in the leading edge and trailing edge areas of the blade is the lowest. The cooling performance is not only influenced by the internal cooling structures layout inside the blade but also by the flow condition of the mainstream in the external cascade path. Thermal barrier effects of the coating vary at different regions of the blade surface, where higher internal cooling performance exists, more effective the thermal barrier will be, which means the thermal protection effect of coatings is remarkable in these regions. At the designed mass flow ratio condition, the cooling efficiency on the pressure side varies by 0.13 for the coating surface and substrate surface, while this value is 0.09 on the suction side.

  8. Hot gas cleanup and gas turbine aspects of an advanced PFBC power plant

    SciTech Connect

    Robertson, A. ); Newby, R.A.; Alvin, M.A.; Bachovchin, D.M.; Bruck, G.J.; Smeltzer, E.E. . Science and Technology Center)

    1992-01-01

    The overall objective of the second-generation PFBC development program is to advance this concept to a commercial status. Three major objectives of the current Phase 2 program activities are to: Separately test key components of the second-generation PFBC power plant at sub-scale to ascertain their performance characteristics, Revise the commercial plant performance and economic predictions where necessary, Prepare for a 1.6 MWe equivalent Phase 3 integrated subsystem test of the key components. The key components of the plant, with respect to development risk, are the carbonizer, the circulating PFBC unit, the ceramic barrier filter, and the topping combustor. This paper reports on the development and testing of one key component -- the ceramic barrier filter for the carbonizer fuel gas. The objective of the Phase 2 carbonizer ceramic barrier filter testing has been to confirm filter performance and operability in the carbonizer fuel gas environment.

  9. Cooling rates of living and killed chicken and quail eggs in air and in helium-oxygen gas mixture.

    PubMed

    Tazawa, H; Turner, J S; Paganelli, C V

    1988-01-01

    1. In a helium atmosphere, heat is dissipated from a surface 3.5 times faster than it is in air. Eggs in a helium-oxygen atmosphere cool only 1.4 times faster than they cool in air. This signifies that internal resistance to heat flow is a significant factor in the cooling rates of eggs. 2. Heat flow occurs inside an egg in two ways: by conduction through the tissues and in flowing blood. Killing an embryo stops the latter, but not the former. Eggs cool more slowly after they have been killed, signifying that blood flow can be an important component in an egg's internal flows of heat. 3. Blood flow should be a relatively more important component of heat flow in large eggs than in small eggs. The difference in conductance between living and killed eggs is larger in 60 g chicken eggs than it is in 10 g quail eggs. PMID:2900113

  10. Performance of PRD-66 hot gas candle filters in the AEP/TIDD PFBC facility

    SciTech Connect

    Chambers, J.A.

    1996-12-31

    The performance of PRD-66 hot gas filters in American Electric Power`s TIDD PFBC facility is described. PRD-66 hot gas filters are made of an all-oxide composition with a unique layered microstructure which lends corrosion resistance, high temperature stability and excellent resistance to thermal shock damage. The development of the PRD-66 material into a hot gas candle filter is recounted. Testing which guided filter development prior to exposure in the AEP/TIDD PFBC system is discussed. Future plans for testing in coal combustion and other industrial applications are described.

  11. Optimization research on the structure of horizontally-arranged indirect air-cooling tower under strong wind condition

    NASA Astrophysics Data System (ADS)

    Chen, Guoyong; Gu, Hongfang; Wang, Haijun; Qin, Yongbo

    2013-07-01

    Strong wind has a significant impact on the heat radiation of the air-cooling system. In this research, a numerical calculation model of 2×1000MW horizontally arranged air-cooling tower is established to simulate the flow distribution and heat exchanging capability of three different structures-horizontally-arranged indirect air-cooling tower, tower with guide wall outside, and tower with a cross wall inside-under high-speed wind and extreme-speed wind conditions. The result reveals that the structure with the guide wall outside the tower only works under strong wind condition while the structure with cross wall inside shows the anti-wind capability under both high-speed wind and extreme-speed wind conditions.

  12. Thermal and flow analysis of a convection air-cooled ceramic coated porous metal concept for turbine vanes

    NASA Technical Reports Server (NTRS)

    Stepka, F. S.

    1981-01-01

    The heat transfer and pressure drop through turbine vanes made of a sintered, porous metal coated with a thin layer of ceramic and convection cooled by spanwise flow of cooling air were analyzed. The analysis was made to determine the feasibility of using this concept for cooling very small turbines, primarily for short duration applications such as in missile engines. The analysis was made for gas conditions of approximately 10 and 40 atm and 1644 K and with turbine vanes made of felt type porous metals with relative densities from 0.2 to 0.6 and ceramic coating thicknesses of 0.076 to 0.254 mm.

  13. Thermal characteristics of air-water spray impingement cooling of hot metallic surface under controlled parametric conditions

    NASA Astrophysics Data System (ADS)

    Nayak, Santosh Kumar; Mishra, Purna Chandra

    2016-06-01

    Experimental results on the thermal characteristics of air-water spray impingement cooling of hot metallic surface are presented and discussed in this paper. The controlling input parameters investigated were the combined air and water pressures, plate thickness, water flow rate, nozzle height from the target surface and initial temperature of the hot surface. The effects of these input parameters on the important thermal characteristics such as heat transfer rate, heat transfer coefficient and wetting front movement were measured and examined. Hot flat plate samples of mild steel with dimension 120 mm in length, 120 mm breadth and thickness of 4 mm, 6 mm, and 8 mm respectively were tested. The air assisted water spray was found to be an effective cooling media and method to achieve very high heat transfer rate from the surface. Higher heat transfer rate and heat transfer coefficients were obtained for the lesser i.e, 4 mm thick plates. Increase in the nozzle height reduced the heat transfer efficiency of spray cooling. At an inlet water pressure of 4 bar and air pressure of 3 bar, maximum cooling rates 670°C/s and average cooling rate of 305.23°C/s were achieved for a temperature of 850°C of the steel plate.

  14. Effects of a ceramic coating on metal temperatures of an air-cooled turbine vane

    NASA Astrophysics Data System (ADS)

    Gladden, H. J.; Liebert, C. H.

    1980-02-01

    The metal temperatures of air cooled turbine vanes both uncoated and coated with the NASA thermal barrier system were studied experimentally. Current and advanced gas turbine engine conditions were simulated at reduced temperatures and pressures. Airfoil metal temperatures were significantly reduced, both locally and on the average, by use of the the coating. However, at low gas Reynolds number, the ceramic coating tripped a laminar boundary layer on the suction surface, and the resulting higher heat flux increased the metal temperatures. Simulated coating loss was also investigated and shown to increase local metal temperatures. However, the metal temperatures in the leading edge region remained below those of the uncoated vane tested at similar conditions. Metal temperatures in the trailing edge region exceeded those of the uncoated vane.

  15. Contingency power for a small turboshaft engine by using water injection into turbine cooling air

    NASA Technical Reports Server (NTRS)

    Biesiadny, Thomas J.; Klann, Gary A.

    1992-01-01

    Because of one-engine-inoperative (OEI) requirements, together with hot-gas reingestion and hot-day, high-altitude take-off situations, power augmentation for multiengine rotorcraft has always been of critical interest. However, power augmentation by using overtemperature at the turbine inlet will shorten turbine life unless a method of limiting thermal and mechanical stress is found. A possible solution involves allowing the turbine inlet temperature to rise to augment power while injecting water into the turbine cooling air to limit hot-section metal temperatures. An experimental water injection device was installed in an engine and successfully tested. Although concern for unprotected subcomponents in the engine hot section prevented demonstration of the technique's maximum potential, it was still possible to demonstrate increases in power while maintaining nearly constant turbine rotor blade temperature.

  16. Contingency power for small turboshaft engines using water injection into turbine cooling air

    NASA Technical Reports Server (NTRS)

    Biesiadny, Thomas J.; Berger, Brett; Klann, Gary A.; Clark, David A.

    1987-01-01

    Because of one engine inoperative requirements, together with hot-gas reingestion and hot day, high altitude takeoff situations, power augmentation for multiengine rotorcraft has always been of critical interest. However, power augmentation using overtemperature at the turbine inlet will shorten turbine life unless a method of limiting thermal and mechanical stresses is found. A possible solution involves allowing the turbine inlet temperature to rise to augment power while injecting water into the turbine cooling air to limit hot-section metal temperatures. An experimental water injection device was installed in an engine and successfully tested. Although concern for unprotected subcomponents in the engine hot section prevented demonstration of the technique's maximum potential, it was still possible to demonstrate increases in power while maintaining nearly constant turbine rotor blade temperature.

  17. Structural Design and Preliminary Evaluation of a Lightweight, Brazed, Air-Cooled Turbine Rotor Assembly

    NASA Technical Reports Server (NTRS)

    Meyer, Andre J., Jr.; Morgan, William C.

    1958-01-01

    A lightweight turbine rotor assembly was devised, and components were evaluated in a full-scale jet engine. Thin sheet-metal airfoils were brazed to radial fingers that were an integral part of a number of thin disks composing the turbine rotor. Passages were provided between the disks and in the blades for air cooling. The computed weight of the assembly was 50 percent less than that of a similar turbine of normal construction used in a conventional turbojet engine. Two configurations of sheet-metal test blades simulating the manner of attachment were fabricated and tested in a turbojet engine at rated speed and temperature. After 8-1/2 hours of operation pieces broke loose from the tip sections of the better blades. Severe cracking produced by vibration was determined as the cause of failure. Several methods of overcoming the vibration problem are suggested.

  18. Thermal analysis and design of air cooled electronic circuit boards using a desktop computer

    NASA Astrophysics Data System (ADS)

    Foltz, R. A.

    1980-06-01

    A thermal design procedure for air cooled electronic circuit boards has been developed for the Hewlett-Packard Model 9845 desktop computer. The system of interactive programs, called THERMELEX, performs thermal analysis of printed circuit boards to predict either junction temperatures for given power dissipation levels or the maximum power levels for given junction temperature limits. The system includes the following features: totally interactive with all input in question and answer format; simple data verification and correction capabilities; ability to store and retrieve circuit board descriptive data totally under program control; and wide variety of output formats including tabular and graphical. By using internal selection of heat transfer correlations, the THERMELEX system depends only on input of physical parameters for thermal predictions.

  19. Air-Cooled Heat Exchanger for High-Temperature Power Electronics: Preprint

    SciTech Connect

    Waye, S. K.; Lustbader, J.; Musselman, M.; King, C.

    2015-05-06

    This work demonstrates a direct air-cooled heat exchanger strategy for high-temperature power electronic devices with an application specific to automotive traction drive inverters. We present experimental heat dissipation and system pressure curves versus flow rate for baseline and optimized sub-module assemblies containing two ceramic resistance heaters that provide device heat fluxes. The maximum allowable junction temperature was set to 175 deg.C. Results were extrapolated to the inverter scale and combined with balance-of-inverter components to estimate inverter power density and specific power. The results exceeded the goal of 12 kW/L and 12 kW/kg for power density and specific power, respectively.

  20. Effects of a ceramic coating on metal temperatures of an air-cooled turbine vane

    NASA Technical Reports Server (NTRS)

    Gladden, H. J.; Liebert, C. H.

    1980-01-01

    The metal temperatures of air cooled turbine vanes both uncoated and coated with the NASA thermal barrier system were studied experimentally. Current and advanced gas turbine engine conditions were simulated at reduced temperatures and pressures. Airfoil metal temperatures were significantly reduced, both locally and on the average, by use of the the coating. However, at low gas Reynolds number, the ceramic coating tripped a laminar boundary layer on the suction surface, and the resulting higher heat flux increased the metal temperatures. Simulated coating loss was also investigated and shown to increase local metal temperatures. However, the metal temperatures in the leading edge region remained below those of the uncoated vane tested at similar conditions. Metal temperatures in the trailing edge region exceeded those of the uncoated vane.

  1. Experimental Investigation of Air-Cooled Turbine Blades in Turbojet Engine. 7: Rotor-Blade Fabrication Procedures

    NASA Technical Reports Server (NTRS)

    Long, Roger A.; Esgar, Jack B.

    1951-01-01

    An experimental investigation was conducted to determine the cooling effectiveness of a wide variety of air-cooled turbine-blade configurations. The blades, which were tested in the turbine of a - commercial turbojet engine that was modified for this investigation by replacing two of the original blades with air-cooled blades located diametrically opposite each other, are untwisted, have no aerodynamic taper, and have essentially the same external profile. The cooling-passage configuration is different for each blade, however. The fabrication procedures were varied and often unique. The blades were fabricated using methods most suitable for obtaining a small number of blades for use in the cooling investigations and therefore not all the fabrication procedures would be directly applicable to production processes, although some of the ideas and steps might be useful. Blade shells were obtained by both casting and forming. The cast shells were either welded to the blade base or cast integrally with the base. The formed shells were attached to the base by a brazing and two welding methods. Additional surface area was supplied in the coolant passages by the addition of fins or tubes that were S-brazed. to the shell. A number of blades with special leading- and trailing-edge designs that provided added cooling to these areas were fabricated. The cooling effectiveness and purposes of the various blade configurations are discussed briefly.

  2. Prediction of transient temperatures for an air-cooled rotating disc

    NASA Astrophysics Data System (ADS)

    Long, C. A.; Owen, J. M.

    1985-09-01

    The numerical solution of Fourier's conduction equation is used to compute the transient temperature distribution in a rotating disc. The convective boundary conditions for the disc surfaces are based on simple formulae obtained from the solutions of the boundary-layer equations, and the computed surface temperatures are compared with measurements made on a rotating-disc rig. Free-disc tests, at rotational Reynolds numbers up to Re sub phi = 2.5 x 10(6), are used to provide a datum from which to judge the numerical method. Although the numerical solution tends to overestimate the cooling rate of the heated free disc at high Reynolds numbers, the agreement between computed and measured temperatures is considered reasonable. Rotating-cavity tests, in which a heated disc is cooled by a radial outflow of air, are used to examine the suitability of the simple convective boundary conditions. As the computed temperatures show reasonable agreement with the measured values, it is suggested that the proposed formulae for convection in a rotating cavity might be useful for design purposes.

  3. Preliminary Aging Assessment of Nuclear Air-Treatment and Cooling System Fans

    SciTech Connect

    Winegardner,, W. K.

    1995-07-01

    A preliminary aging assessment of the fans used in nuclear air treatment and cooling systems was performed by the Pacific Northwest Laboratory as part of the U.S. Nuclear Regulatory Commission's Nuclear Plant Aging Research Program. Details from guides and standards for the design, testing, and installation of fans; results of failure surveys; and information concerning stressors, related aging mechanisms, and inspection, surveillance, and monitoring methods (ISMM) were compiled. Failure surveys suggest that about half of the failures reported for fans are primarily associated with aging. Aging mechanisms associated with the various fan components and resulting from mechanical, thermal, and environmental stressors include wear, fatigue, corrosion, and erosion of metals and the deterioration of belts and lubricants. A bearing is the component most frequently linked to fan failure. The assessment also suggests that ISMM that will detect irregularities arising from improper lubrication, cooling, alignment, and balance of the various components should aid in counteracting many of the aging effects that could impair fan performance. An expanded program, to define and evaluate the adequacy of current ISMM and maintenance practices and to include a documented Phase I aging assessment, is recommended.

  4. The induction of water to the inlet air as a means of internal cooling in aircraft-engine cylinders

    NASA Technical Reports Server (NTRS)

    Rothrock, Addison M; Krsek, Alois, Jr; Jones, Anthony W

    1943-01-01

    Report presents the results of investigations conducted on a full-scale air-cooled aircraft-engine cylinder of 202-cubic inch displacement to determine the effects of internal cooling by water induction on the maximum permissible power and output of an internal-combustion engine. For a range of fuel-air and water-fuel ratios, the engine inlet pressure was increased until knock was detected aurally, the power was then decreased 7 percent holding the ratios constant. The data indicated that water was a very effective internal coolant, permitting large increases in engine power as limited by either knock or by cylinder temperatures.

  5. The Pressure Available for Ground Cooling in Front of the Cowling of Air-cooled Airplane Engines

    NASA Technical Reports Server (NTRS)

    Stickle, George W; Joyner, Upshur T

    1938-01-01

    A study was made of the factors affecting the pressure available for ground cooling in front of a cowling. Most of the results presented were obtained with a set-up that was about one-third full scale. A number of isolated tests on four full-scale airplanes were made to determine the general applicability of the model results. The full-scale tests indicated that the model results may be applied qualitatively to full-scale design and quantitatively as a first approximation of the front pressure available for ground cooling.

  6. Forecasting Cool Season Daily Peak Winds at Kennedy Space Center and Cape Canaveral Air Force Station

    NASA Technical Reports Server (NTRS)

    Barrett, Joe, III; Short, David; Roeder, William

    2008-01-01

    The expected peak wind speed for the day is an important element in the daily 24-Hour and Weekly Planning Forecasts issued by the 45th Weather Squadron (45 WS) for planning operations at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS). The morning outlook for peak speeds also begins the warning decision process for gusts ^ 35 kt, ^ 50 kt, and ^ 60 kt from the surface to 300 ft. The 45 WS forecasters have indicated that peak wind speeds are a challenging parameter to forecast during the cool season (October-April). The 45 WS requested that the Applied Meteorology Unit (AMU) develop a tool to help them forecast the speed and timing of the daily peak and average wind, from the surface to 300 ft on KSC/CCAFS during the cool season. The tool must only use data available by 1200 UTC to support the issue time of the Planning Forecasts. Based on observations from the KSC/CCAFS wind tower network, surface observations from the Shuttle Landing Facility (SLF), and CCAFS upper-air soundings from the cool season months of October 2002 to February 2007, the AMU created multiple linear regression equations to predict the timing and speed of the daily peak wind speed, as well as the background average wind speed. Several possible predictors were evaluated, including persistence, the temperature inversion depth, strength, and wind speed at the top of the inversion, wind gust factor (ratio of peak wind speed to average wind speed), synoptic weather pattern, occurrence of precipitation at the SLF, and strongest wind in the lowest 3000 ft, 4000 ft, or 5000 ft. Six synoptic patterns were identified: 1) surface high near or over FL, 2) surface high north or east of FL, 3) surface high south or west of FL, 4) surface front approaching FL, 5) surface front across central FL, and 6) surface front across south FL. The following six predictors were selected: 1) inversion depth, 2) inversion strength, 3) wind gust factor, 4) synoptic weather pattern, 5) occurrence of

  7. Emissions of an AVCO Lycoming 0-320-DIAD air cooled light aircraft engine as a function of fuel-air ratio, timing, and air temperature and humidity

    NASA Technical Reports Server (NTRS)

    Meng, P. R.; Skorobatckyi, M.; Cosgrove, D. V.; Kempke, E. E., Jr.

    1976-01-01

    A carbureted aircraft engine was operated over a range of test conditions to establish the exhaust levels over the EPA seven-mode emissions cycle. Baseline (full rich production limit) exhaust emissions at an induction air temperature of 59 F and near zero relative humidity were 90 percent of the EPA standard for HC, 35 percent for NOx, and 161 percent for CO. Changes in ignition timing around the standard 25 deg BTDC from 30 deg BTDC to 20 deg BTDC had little effect on the exhaust emissions. Retarding the timing to 15 deg BTDC increased both the HC and CO emissions and decreased NOx emissions. HC and CO emissions decreased as the carburetor was leaned out, while NOx emissions increased. The EPA emission standards were marginally achieved at two leanout conditions. Variations in the quantity of cooling air flow over the engine had no effect on exhaust emissions. Temperature-humidity effects at the higher values of air temperature and relative humidity tested indicated that the HC and CO emissions increased significantly, while the NOx emissions decreased.

  8. The impact of humidity on evaporative cooling in small desert birds exposed to high air temperatures.

    PubMed

    Gerson, Alexander R; Smith, Eric Krabbe; Smit, Ben; McKechnie, Andrew E; Wolf, Blair O

    2014-01-01

    Environmental temperatures that exceed body temperature (Tb) force endothermic animals to rely solely on evaporative cooling to dissipate heat. However, evaporative heat dissipation can be drastically reduced by environmental humidity, imposing a thermoregulatory challenge. The goal of this study was to investigate the effects of humidity on the thermoregulation of desert birds and to compare the sensitivity of cutaneous and respiratory evaporation to reduced vapor density gradients. Rates of evaporative water loss, metabolic rate, and Tb were measured in birds exposed to humidities ranging from ∼2 to 30 g H2O m(-3) (0%-100% relative humidity at 30°C) at air temperatures between 44° and 56°C. In sociable weavers, a species that dissipates heat primarily through panting, rates of evaporative water loss were inhibited by as much as 36% by high humidity at 48°C, and these birds showed a high degree of hyperthermia. At lower temperatures (40°-44°C), evaporative water loss was largely unaffected by humidity in this species. In Namaqua doves, which primarily use cutaneous evaporation, increasing humidity reduced rates of evaporative water loss, but overall rates of water loss were lower than those observed in sociable weavers. Our data suggest that cutaneous evaporation is more efficient than panting, requiring less water to maintain Tb at a given temperature, but panting appears less sensitive to humidity over the air temperature range investigated here. PMID:25461643

  9. The potential for reducing urban air temperatures and energy consumption through vegetative cooling

    SciTech Connect

    Kurn, D.M.; Bretz, S.E.; Huang, B.; Akbari, H.

    1994-05-01

    A network of 23 weather stations was used to detect existing oases in Southern California. Four stations, separated from one another by 15--25 miles (24--40 km), were closely examined. Data were strongly affected by the distance of the stations from the Pacific Ocean. This and other city-scale effects made the network inadequate for detection of urban oases. We also conducted traverse measurements of temperature and humidity in the Whittier Narrows Recreation Area in Los Angeles County on September 8--10, 1993. Near-surface air temperatures over vegetated areas were 1--2{degrees}C lower than background air temperatures. We estimate that vegetation may lower urban temperatures by 1{degrees}C, while the establishment of vegetative canopies may lower local temperatures by an additional 2{degrees}C. An increase in vegetation in residential neighborhoods may reduce peak loads in the Los Angeles area by 0.3 GW, and reduce energy consumption by 0.2 BkWh/year, saving $20 million annually. Large additional savings would result from regional cooling.

  10. Air Ingress Analyses on a High Temperature Gas-Cooled Reactor

    SciTech Connect

    Oh, Chang H; Moore, Richard Leroy; Merrill, Brad Johnson; Petti, David Andrew

    2001-11-01

    A primary-pipe break accident is one of the design-basis accidents of a high-temperature gas-cooled reactor (HTGR). When this accident occurs, air is anticipated to enter the reactor core from the break and oxidize the in-core graphite structure in the modular pebble bed reactor (MPBR). This paper presents the results of the graphite oxidation model developed as part of the Idaho National Engineering and Environmental Laboratory's Direct Research and Development effort. Although gas reactors have been tried in the past with limited success, the innovations of modularity and integrated state-ofart control systems coupled with improved fuel design and a pebble bed core make this design potentially very attractive from an economic and technical perspective. A schematic diagram on a reference design of the MPBR has been established on a major component level (INEEL & MIT, 1999). Steady-state and transient thermal hydraulics models will be produced with key parameters established for these conditions at all major components. Development of an integrated plant model to allow for transient analysis on a more sophisticated level is now being developed. In this paper, preliminary results of the hypothetical air ingress are presented. A graphite oxidation model was developed to determine temperature and the control mechanism in the spherical graphite geometry.

  11. A Preliminary Investigation of Supercharging an Air-Cooled Engine in Flight

    NASA Technical Reports Server (NTRS)

    Ware, Marsden; Schey, Oscar W

    1929-01-01

    This report presents the results of preliminary tests made on the effects of supercharging an air-cooled engine under airplane flight conditions. Service training airplanes were used in the investigation equipped with production types of Wright J engines. A N.A.C.A. Roots type supercharger was driven from the rear of the engine. In addition to measuring those quantities that would enable the determination of the climb performance, measurements were made of the cylinder-head temperatures and the carburetor pressures and temperatures. The supercharging equipment was not removed from the airplane when making flights without supercharging, but a by-pass valve, which controlled the amount of supercharging by returning to the atmosphere the surplus air delivered by the supercharger, was left full open. With the supercharger so geared that ground-level pressure could be maintained to 18,500 feet, it was found that the absolute ceiling was increased from 19,400 to 32,600 feet, that the time to climb to 16,00 feet was decreased from 32 to 16 minutes, and that this amount of supercharging apparently did not injure the engine. (author)

  12. Protected air-cooled condenser for the Clinch River Breeder Reactor Plant

    SciTech Connect

    Louison, R.; Boardman, C.E.

    1981-05-29

    The long term residual heat removal for the Clinch River Breeder Reactor Plant (CRBRP) is accomplished through the use of three protected air-cooled condensers (PACC's) each rated at 15M/sub t/ following a normal or emergency shutdown of the reactor. Steam is condensed by forcing air over the finned and coiled condenser tubes located above the steam drums. The steam flow is by natural convection. It is drawn to the PACC tube bundle for the steam drum by the lower pressure region in the tube bundle created from the condensing action. The concept of the tube bundle employs a unique patented configuration which has been commercially available through CONSECO Inc. of Medfore, Wisconsin. The concept provides semi-parallel flow that minimizes subcooling and reduces steam/condensate flow instabilities that have been observed on other similar heat transfer equipment such as moisture separator reheaters (MSRS). The improved flow stability will reduce temperature cycling and associated mechanical fatigue. The PACC is being designed to operate during and following the design basis earthquake, depressurization from the design basis tornado and is housed in protective building enclosure which is also designed to withstand the above mentioned events.

  13. CERAMIC FILTER TESTS AT THE EPA/EXXON PFBC (PRESSURIZED FLUIDIZED BED COAL COMBUSTION) MINIPLANT

    EPA Science Inventory

    The paper describes the performance of the Acurex ceramic bag filter operating at temperatures up to 880C and pressures up to 930 kPa on particulate-laden flue gas from a pressurized fluidized-bed coal combustion (PFBC) unit on a slipstream of gas taken after the second stage cyc...

  14. Velocity measurements in PFBC cyclone separator systems dip legs with thermal anemometry

    SciTech Connect

    Romeo, L.M.; Velilla, J.

    1999-07-01

    In order to improve the operational behavior (efficiency and stability) of the cyclone separator system in Escatron PFBC power plant, a laboratory-scale cold model has been built. Scaling laws have been applied to simulate the hydrodynamics and performance of the systems, in order to obtain valuable and relevant results for commercial PFBC technology. It has been demonstrated that the filtration effect of the cyclones in a PFBC power plant is extended down to the dipleg. Previous studies in a laboratory-scale cold model have pointed out the importance of the vortex inside the dipleg and its influence in the separation efficiency. It is due to the fact that the cyclone effect is still active in the dipleg. These studies are based in pressure drop dipleg measurements. Thermal anemometry has been used to measure the gas velocity and turbulence of several installations. In this case it has been used in order to check the vortex activity in the upper section of the dipleg of a cyclone separator system for a PFBC power plant. This paper deals with the results and conclusions of the research about the velocity field inside the dipleg. The possibility of improving cyclone efficiency by means of extending the vortex, the study of the variables affecting the vortex (and also the cyclone efficiency) and the establishment of a flow-pattern in the dipleg are the main objectives of the research and the paper.

  15. Operation results of the first commercial PFBC plant with high temperature ceramic filters

    SciTech Connect

    Kaneko, S.; Suga, N.

    1998-07-01

    Trial operation is now successfully underway at Tomato-Atsuma Unit No. 3 of Hokkaido Electric Power Co. (HEPCO) in Japan. This newly built 85 MWe unit is an innovative PFBC plant, which is the first commercial PFBC in Japan, and equipped with full capacity ceramic filters operated at 850 C. The high temperature ceramic filter effectively removes dusts in the hot gas and the dust loading at gas turbine inlet is much less than that of two-stage cyclones, minimizing the cost and time of gas turbine maintenance. The PFBC plant is composed of a pressurized fluidized-bed boiler, cyclones, ceramic filters, a gas turbine, a steam turbine, etc. and all of the equipment were manufactured and supplied by Mitsubishi Heavy Industries, Ltd. (MHI). Joint R and D program between HEPCO and MHI started 7 years ago, based on their own private funding and without any financial supports from public sectors, studying the optimum design of the first commercial PFBC aiming at environmental and economical advantages. And now fruitful results have been achieved. The commercial operation will start in March 1998 or earlier. Several troubles had been experienced during initial trial operation stage including pressure drop increase in ceramic filters. All these problems were solved one by one by the joint efforts of HEPCO and MHO. Load rejection tests, load swing tests, and automatic power control tests were successfully done in the spring of 1997. And tests with various kinds of coals are scheduled before the commercial operation.

  16. Brain Cooling With Ventilation of Cold Air Over Respiratory Tract in Newborn Piglets: An Experimental and Numerical Study

    PubMed Central

    Bakhsheshi, Mohammad Fazel; Moradi, Hadi Vafadar; Stewart, Errol E.; Keenliside, Lynn; Lee, Ting-Yim

    2015-01-01

    We investigate thermal effects of pulmonary cooling which was induced by cold air through an endotracheal tube via a ventilator on newborn piglets. A mathematical model was initially employed to compare the thermal impact of two different gas mixtures, O2-medical air (1:2) and O2-Xe (1:2), across the respiratory tract and within the brain. Following mathematical simulations, we examined the theoretical predictions with O2-medical air condition on nine anesthetized piglets which were randomized to two treatment groups: 1) control group (\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$n = 4$ \\end{document}) and 2) pulmonary cooling group (\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$n = 5$ \\end{document}). Numerical and experimental results using O2-medical air mixture show that brain temperature fell from 38.5 °C and 38.3 °C ± 0.3 °C to 35.7 °C ± 0.9 °C and 36.5 °C ± 0.6 °C during 3 h cooling which corresponded to a mean cooling rate of 0.9 °C/h ± 0.2 °C/h and 0.6 °C/h ± 0.1 °C/h, respectively. According to the numerical results, decreasing the metabolic rate and increasing air velocity are helpful to maximize the cooling effect. We demonstrated that pulmonary cooling by cooling of inhalation gases immediately before they enter the trachea can slowly reduce brain and core body temperature of newborn piglets. Numerical simulations show no significant differences between two different inhaled conditions, i.e., O2-medical air (1:2) and O2-Xe (1:2) with respect to cooling rate. PMID:27170888

  17. Effects of air velocity on laying hen production from 24 to 27 weeks under simulated evaporatively cooled conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thermal conditions play a major role in production efficiency in commercial poultry production. Mitigation of thermal stress can improve productivity, but must be achieved economically. Weather and system design can limit effectiveness of evaporative cooling and increased air movement has been sho...

  18. Preliminary analysis of problem of determining experimental performance of air-cooled turbine III : methods for determining power and efficiency

    NASA Technical Reports Server (NTRS)

    Ellerbrock, Herman H , Jr; Ziemer, Robert R

    1950-01-01

    Suggested formula are given for determining air-cooled turbine-performance characteristics, such as power and efficiency, as functions of certain parameters. These functions, generally being unknown, are determined from experimental data obtained from specific investigations. Special plotting methods for isolating the effect of each parameter are outlined.

  19. Durability of zirconia thermal-barrier ceramic coatings on air-cooled turbine blades in cyclic jet engine operation

    NASA Technical Reports Server (NTRS)

    Liebert, C. H.; Jacobs, R. E.; Stecura, S.; Morse, C. R.

    1976-01-01

    Thermal barrier ceramic coatings of stabilized zirconia over a bond coat of Ni Cr Al Y were tested for durability on air cooled turbine rotor blades in a research turbojet engine. Zirconia stabilized with either yttria, magnesia, or calcia was investigated. On the basis of durability and processing cost, the yttria stabilized zirconia was considered the best of the three coatings investigated.

  20. Interim Report: Air-Cooled Condensers for Next Generation Geothermal Power Plants Improved Binary Cycle Performance

    SciTech Connect

    Daniel S. Wendt; Greg L. Mines

    2010-09-01

    As geothermal resources that are more expensive to develop are utilized for power generation, there will be increased incentive to use more efficient power plants. This is expected to be the case with Enhanced Geothermal System (EGS) resources. These resources will likely require wells drilled to depths greater than encountered with hydrothermal resources, and will have the added costs for stimulation to create the subsurface reservoir. It is postulated that plants generating power from these resources will likely utilize the binary cycle technology where heat is rejected sensibly to the ambient. The consumptive use of a portion of the produced geothermal fluid for evaporative heat rejection in the conventional flash-steam conversion cycle is likely to preclude its use with EGS resources. This will be especially true in those areas where there is a high demand for finite supplies of water. Though they have no consumptive use of water, using air-cooling systems for heat rejection has disadvantages. These systems have higher capital costs, reduced power output (heat is rejected at the higher dry-bulb temperature), increased parasitics (fan power), and greater variability in power generation on both a diurnal and annual basis (larger variation in the dry-bulb temperature). This is an interim report for the task ‘Air-Cooled Condensers in Next- Generation Conversion Systems’. The work performed was specifically aimed at a plant that uses commercially available binary cycle technologies with an EGS resource. Concepts were evaluated that have the potential to increase performance, lower cost, or mitigate the adverse effects of off-design operation. The impact on both cost and performance were determined for the concepts considered, and the scenarios identified where a particular concept is best suited. Most, but not all, of the concepts evaluated are associated with the rejection of heat. This report specifically addresses three of the concepts evaluated: the use of

  1. Effects of Tube Diameter and Tubeside Fin Geometry on the Heat Transfer Performance of Air-Cooled Condensers

    NASA Astrophysics Data System (ADS)

    Wang, H. S.; Honda, Hiroshi

    A theoretical study has been made on the effects of tube diameter and tubeside fin geometry on the heat transfer performance of air-cooled condensers. Extensive numerical calculations of overall heat transfer from refrigerant R410A flowing inside a horizontal microfin tube to ambient air were conducted for a typical operating condition of the air-cooled condenser. The tubeside heat transfer coefficient was calculated by applying a modified stratified flow model developed by Wang et al.8). The numerical results show that the effects of tube diameter, fin height, fin number and helix angle of groove are significant, whereas those of the width of flat portion at the fin tip, the radius of round corner at the fin tip and the fin half tip angle are small.

  2. Impacts of cool cities on air quality: A preliminary modeling assessment for Nashville TN, Dallas TX and Atlanta GA

    SciTech Connect

    Taha, Haider

    1998-06-15

    Previous atmospheric modeling efforts that concentrated on the Los Angeles Basin suggested beneficial and significant air quality impacts from cool cities strategies. This paper discusses an extension of similar modeling efforts to three regions, Atlanta GA, Dallas - Ft. Worth TX, and Nashville TN, that experience smog and air quality problems. According to the older ozone air quality standard (120 ppb), these regions were classified as serious, moderate, and marginal, respectively, but may be out of compliance with respect to the newer, 80-ppb/8-hours standard. Results from this exploratory modeling work suggest a range of possible impacts on meteorological and air quality conditions. For example, peak ozone concentrations during each region's respective episode could be decreased by 1-6 ppb (conservative and optimistic scenarios, respectively) in Nashville, 5-15 ppb in Dallas - Fort Worth, and 5-12 ppb in Atlanta following implementation of cool cities. The reductions are generally smaller than those obtained from simulating the Los Angeles Basin but are still significant. In all regions, the simulations suggest, the net, domain-wide effects of cool cities are reductions in ozone mass and improvements in air quality. In Atlanta, Nashville, and Dallas, urban areas benefiting from reduced smog reach up to 8460, 7350, and 12870 km{sup 2} in area, respectively. Results presented in this paper should be taken as exploratory and preliminary. These will most likely change during a more comprehensive modeling study to be started soon with the support of the US Environmental Protection Agency. The main purpose of the present project was to obtain the initial data (emission inventories) for these regions, simulate meteorological conditions, and perform preliminary sensitivity analysis. In the future, additional regions will be simulated to assess the potential of cool cities in improving urban air quality.

  3. Legionella detection and subgrouping in water air-conditioning cooling tower systems in Kuwait.

    PubMed

    Al-Matawah, Qadreyah; Al-Zenki, Sameer; Al-Azmi, Ahmad; Al-Waalan, Tahani; Al-Salameen, Fadila; Hejji, Ahmad Ben

    2015-07-01

    The main aim of the study was to test for the presence of Legionnaires' disease-causing microorganisms in air-conditioned buildings in Kuwait using molecular technologies. For this purpose, 547 samples were collected from 38 cooling towers for the analysis of Legionella pneumophila. These samples included those from water (n = 178), air (n = 231), and swabs (n = 138). Out of the 547 samples, 226 (41%) samples were presumptive positive for L. pneumophila, with L. pneumophila viable counts in the positive water samples ranging from 1 to 88 CFU/ml. Of the Legionella culture-positive samples, 204 isolates were examined by latex agglutination. These isolates were predominately identified as L. pneumophila serogroup (sg) 2-14. Using the Dresden panel of monoclonal antibodies, 74 representatives isolates were further serogrouped. Results showed that 51% of the isolates belonged to serogroup 7 followed by 1 (18%) and 3 (18%). Serogroups 4 (4%) and 10 (7%) were isolated at a lower frequency, and two isolates could not be assigned to a serogroup. These results indicate the wide prevalence of L. pneumophila serogroup 7 as the predominant serogroup at the selected sampling sites. Furthermore, the 74 L. pneumophila (sg1 = 13; sg3 = 13; sg4 = 3; sg7 = 38; sg10 = 5; sgX = 2) isolates were genotyped using the seven gene protocol sequence-based typing (SBT) scheme developed by the European Working Group for Legionella Infections (EWGLI). The results show that Legionella isolates were discriminated into nine distinct sequence typing (ST) profiles, five of which were new to the SBT database of EWGLI. Additionally, all of the ST1 serogroup 1 isolates were of the OLDA/Oxford subgroup. These baseline data will form the basis for the development of a Legionella environmental surveillance program and used for future epidemiological investigations. PMID:25701245

  4. Enhancement and performance evaluation for heat transfer of air cooling zone for reduction system of sponge titanium

    NASA Astrophysics Data System (ADS)

    Wang, Wenhao; Wu, Fuzhong; Jin, Huixin

    2016-05-01

    Since the magnesiothermic reduction employed in current sponge titanium is a highly exothermic reaction, the TiCl4 feed rate is carried out slowly to keep a suitable temperature in reduction reactor, which accounts for an extremely low level of productivity and energy efficiency. In order to shorten the production cycle and improve the energy efficiency, an enhancing scheme is proposed to enhance the heat transfer of air cooling zone for reduction system. The air cooling zone and enhancing scheme are firstly introduced. And then, the heat transfer characteristics of cooling zone are obtained by theoretical analysis and experimental date without enhancing scheme. Finally, the enhancement is analyzed and evaluated. The results show that the fitting results of heat transfer coefficients can be used to evaluate the heat transfer enhancement of cooling zone. Heat sources temperatures have a limited decreasing, heat transfer rate increases obviously with the enhanced cooling, and the TiCl4 feed rate can be increased significantly by 9.61 %. And the measured and calculated results are good enough to meet the design requirements.

  5. Simplified universal method for determining electrolyte temperatures in a capillary electrophoresis instrument with forced-air cooling.

    PubMed

    Patel, Kevin H; Evenhuis, Christopher J; Cherney, Leonid T; Krylov, Sergey N

    2012-03-01

    Temperature increase due to resistive electrical heating is an inherent limitation of capillary electrophoresis (CE). Active cooling systems are used to decrease the temperature of the capillary, but their capacity is limited; and in addition, they leave "hot spots" at the detection interface and at the capillary ends. Until recently, the matter was complicated by the lack of a fast and generic method for temperature determination in efficiently and inefficiently cooled regions of the capillary. Our group recently introduced such a method, termed "Universal Method for determining Electrolyte Temperatures" (UMET). UMET is a probe-less approach that requires only measuring current versus voltage for different voltages and processing the data using an iterative algorithm. Here, we apply UMET to develop a Simplified Universal Method of Temperature Determination (SUMET) for a CE instrument with a forced-air cooling system using an Agilent 7100 CE instrument (Agilent Technologies, Saint Laurent, Quebec, Canada) as an example. We collected a wide set of empirical voltage-current data for a variety of buffers and capillary diameters. We further constructed empirical equations for temperature calculation in efficiently and inefficiently cooled parts of the capillary that require only the data from a single 1-min voltage-current measurement. The equations are specific for the Agilent 7100 CE instrument (Agilent Technologies) but can be applied to all kinds of capillaries and buffers. Similar SUMET approaches can be developed for other CE instruments with forced-air cooling using our approach. PMID:22528428

  6. Water-Air Spray Cooling of Extruded Profiles: Process Integrated Heat Treatment of the Alloy EN AW-6082

    NASA Astrophysics Data System (ADS)

    Nowak, M.; Golovko, O.; Nürnberger, F.; Frolov, I.; Schaper, M.

    2013-09-01

    Quenching by spray cooling in the press line is a promising way to harden Al-Mg-Si alloys with regard to reducing profile distortion. For alloys such as EN AW-6082, high cooling rates are required. A device for spray cooling by means of water and compressed air was integrated into a 10 MN horizontal, hydraulic, short-stroke extrusion press. Various spray parameters were investigated. By using 32 water-air nozzles having a total water deposition rate of about 15 L/min and extruding with a profile velocity of 2.5 m/min, high mechanical properties were imparted to 30 mm diameter extruded rods. This arrangement ensures the extruded alloy is cooled to almost room temperature. Comparable properties can be achieved by water quenching, although the water consumption will be tenfold higher. The distribution of water deposition density on the profiles' surfaces was determined. It was shown that an adjustment of the water-air pressure ratio allows the final temperature of the profiles to be controlled over a wide range. Minimization of temperature gradients in the cross section of complex profiles allows profile distortions to be reduced.

  7. Enhanced cooling in mono-crystalline ultra-thin silicon by embedded micro-air channels

    NASA Astrophysics Data System (ADS)

    Ghoneim, Mohamed T.; Fahad, Hossain M.; Hussain, Aftab M.; Rojas, Jhonathan P.; Torres Sevilla, Galo A.; Alfaraj, Nasir; Lizardo, Ernesto B.; Hussain, Muhammad M.

    2015-12-01

    In today's digital world, complementary metal oxide semiconductor (CMOS) technology enabled scaling of bulk mono-crystalline silicon (100) based electronics has resulted in their higher performance but with increased dynamic and off-state power consumption. Such trade-off has caused excessive heat generation which eventually drains the charge of battery in portable devices. The traditional solution utilizing off-chip fans and heat sinks used for heat management make the whole system bulky and less mobile. Here we show, an enhanced cooling phenomenon in ultra-thin (>10 μm) mono-crystalline (100) silicon (detached from bulk substrate) by utilizing deterministic pattern of porous network of vertical "through silicon" micro-air channels that offer remarkable heat and weight management for ultra-mobile electronics, in a cost effective way with 20× reduction in substrate weight and a 12% lower maximum temperature at sustained loads. We also show the effectiveness of this event in functional MOS field effect transistors (MOSFETs) with high-κ/metal gate stacks.

  8. A novel trapezoid fin pattern applicable for air-cooled heat sink

    NASA Astrophysics Data System (ADS)

    Chen, Chien-Hung; Wang, Chi-Chuan

    2015-11-01

    The present study proposed a novel step or trapezoid surface design applicable to air-cooled heat sink under cross flow condition. A total of five heat sinks were made and tested, and the corresponding fin patterns are (a) plate fin; (b) step fin (step 1/3, 3 steps); (c) 2-step fin (step 1/2, 2 steps); (d) trapezoid fin (trap 1/3, cutting 1/3 length from the rear end) and (e) trapezoid fin (trap 1/2, cutting 1/2 length from the rear end). The design is based on the heat transfer augmentation via (1) longer perimeter of entrance region and (2) larger effective temperature difference at the rear part of the heat sink. From the test results, it is found that either step or trapezoid design can provide a higher heat transfer conductance and a lower pressure drop at a specified frontal velocity. The effective conductance of trap 1/3 design exceeds that of plate surface by approximately 38 % at a frontal velocity of 5 m s-1 while retains a lower pressure drop of 20 % with its surface area being reduced by 20.6 %. For comparisons exploiting the overall thermal resistance versus pumping power, the resultant thermal resistance of the proposed trapezoid design 1/3, still reveals a 10 % lower thermal resistance than the plate fin surface at a specified pumping power.

  9. Experimental Heat Transfer and Bulk Air Temperature Measurements for a Multipass Internal Cooling Model with Ribs and Bleed

    NASA Technical Reports Server (NTRS)

    Thurman, Douglas; Poinsatte, Philip

    2001-01-01

    An experimental study was made to obtain heat transfer and air temperature data for a simple three-leg serpentine test section that simulates a turbine blade internal cooling passage with trip strips and bleed holes. The objectives were to investigate the interaction of ribs and various bleed conditions on internal cooling and to gain a better understanding of bulk air temperature in an internal passage. Steady-state heat transfer measurements were obtained using a transient technique with thermochromic liquid crystals. Trip strips were attached to one wall of the test section and were located either between or near the bleed holes. The bleed holes, used for film cooling, were metered to simulate the effect of external pressure on the turbine blade. Heat transfer enhancement was found to be greater for ribs near bleed holes compared to ribs between holes, and both configurations were affected slightly by bleed rates upstream. Air temperature measurements were taken at discrete locations along one leg of the model. Average bulk air temperatures were found to remain fairly constant along one leg of the model.

  10. Experimental Heat Transfer and Bulk Air Temperature Measurements for a Multipass Internal Cooling Model with Ribs and Bleed

    NASA Technical Reports Server (NTRS)

    Thurman, Douglas; Poinsatte, Philip

    2000-01-01

    An experimental study was made to obtain heat transfer and air temperature data for a simple 3-leg serpentine test section that simulates a turbine blade internal cooling passage with trip strips and bleed holes. The objectives were to investigate the interaction of ribs and various bleed conditions on internal cooling and to gain a better understanding of bulk air temperature in an internal passage. Steady state heat transfer measurements were obtained using a transient technique with thermochromic liquid crystals. Trip strips were attached to one wall of the test section and were located either between or near the bleed holes. The bleed holes, used for film cooling, were metered to simulate the effect of external pressure on the turbine blade. Heat transfer enhancement was found to be greater for ribs near bleed holes compared to ribs between holes, and both configurations were affected slightly by bleed rates upstream. Air temperature measurements were taken at discreet locations along one leg of the model. Average bulk air temperatures were found to remain fairly constant along one leg of the model.

  11. Cold-air annular-cascade investigation of aerodynamic performance of cooled turbine vanes. 2: Trailing-edge ejection, film cooling, and transpiration cooling

    NASA Technical Reports Server (NTRS)

    Goldman, L. J.; Mclallin, K. L.

    1975-01-01

    The aerodynamic performance of four different cooled vane configurations was experimentally determined in a full-annular cascade at a primary- to coolant-total-temperature ratio of 1.0. The vanes were tested over a range of coolant flow rates and pressure ratios. Overall vane efficiencies were obtained and compared, where possible, with the results obtained in a four-vane, annular-sector cascade. The vane efficiency and exit flow conditions as functions of radial position were also determined and compared with solid (uncooled) vane results.

  12. Electrically heated, air-cooled thermal modulator and at-column heating for comprehensive two-dimensional gas chromatography.

    PubMed

    Libardoni, Mark; Waite, J Hunter; Sacks, Richard

    2005-05-01

    An instrument for comprehensive two-dimensional gas chromatography (GCxGC) is described using an electrically heated and air-cooled thermal modulator requiring no cryogenic materials or compressed gas for modulator operation. In addition, at-column heating is used to eliminate the need for a convection oven and to greatly reduce the power requirements for column heating. The single-stage modulator is heated by current pulses from a dc power supply and cooled by a conventional two-stage refrigeration unit. The refrigeration unit, together with a heat exchanger and a recirculating pump, cools the modulator to about -30 degrees C. The modulator tube is silica-lined stainless steel with an internal film of dimethylpolysiloxane. The modulator tube is 0.18 mm i.d. x 8 cm in length. The modulator produces an injection plug width as small as 15 ms. PMID:15859594

  13. Report on Preliminary Engineering Study for Installation of an Air Cooled Steam Condenser at Brawley Geothermal Plant, Unit No. 1

    SciTech Connect

    1982-03-01

    The Brawley Geothermal Project comprises a single 10 MW nominal geothermal steam turbine-generator unit which has been constructed and operated by the Southern California Edison Company (SCE). Geothermal steam for the unit is supplied through contract by Union Oil Company which requires the return of all condensate. Irrigation District (IID) purchases the electric power generated and provides irrigation water for cooling tower make-up to the plant for the first-five years of operation, commencing mid-1980. Because of the unavailability of irrigation water from IID in the future, SCE is investigating the application and installation of air cooled heat exchangers in conjunction with the existing wet (evaporative) cooling tower with make-up based on use of 180 gpm (nominal) of the geothermal condensate which may be made available by the steam supplier.

  14. An investigation of ingress for an 'air-cooled' shrouded rotating disk system with radial-clearance seals

    NASA Astrophysics Data System (ADS)

    Phadke, U. P.; Owen, J. M.

    1982-04-01

    The quest for improved performance has led to great interest in the study of disk sealing and cooling air systems of gas turbines. The disk cooling air must not only remove the heat conducted in the disk from the blades but must also prevent the ingress of hot gas into the cavity between the disk and the stator. The present investigation is concerned with the study of several different rotor-stator seals with radial clearances between cylindrical shrouds on both the rotor and the stator. The tests were conducted in the absence of an external axial flow, which occurs in an actual gas turbine. Flow visualization and pressure measurements were used to study the performance of the radial-clearance seals.

  15. Nonequilibrium Sulfur Capture and Retention in an Air cooled Slagging Coal Combustion.

    SciTech Connect

    Zauderer, B.

    1997-04-14

    Calcium oxide sorbents injected in a slagging combustor react with the sulfur released during coal combustion to form sulfur bearing particles, some of which are deposited on the liquid slag layer on the combustor wall. Since the solubility of sulfur in liquid slag is low, the slag must be drained from the combustor to limit sulfur re-evolution into the gas phase. The objective of this 24 month project is to perform a series of 16 one day tests to determine the factors that control the retention of the sulfur in the slag that is drained from the combustor. The last of the 16 tests planned for this project was completed in the present reporting period. This was the first test in this project that validated one of the primary hypothesis of this project, namely to retain substantial quantities of sulfur in slag requires high slag mass flow rate. Previous attempts to achieve high sulfur retention with artificial slag met limited success. In this, the 16th test, a high, 37%, ash Indian coal was injected into Coal Tech`s 20 MMBtu/hr air cooled, slagging combustor with gypsum, CaSO{sub 4} (2H{sub 2}O). The slag analysis showed that 20% of the sulfur in the gypsum remained in the slag. This is double the highest sulfur concentration in slag measured in numerous test operations with this combustor. While the test results to date have met the objectives of this project, further high slag mass flow rate tests are planned with the Indian coal to optimize sulfur retention in slag.

  16. NONEQUILIBRIUM SULFUR CAPTURE & RETENTION IN AN AIR COOLED SLAGGING COAL COMBUSTOR

    SciTech Connect

    Bert Zauderer

    2003-04-21

    Calcium oxide injected in a slagging combustor reacts with the sulfur from coal combustion to form sulfur-bearing particles. The reacted particles impact and melt in the liquid slag layer on the combustor wall by the centrifugal force of the swirling combustion gases. Due to the low solubility of sulfur in slag, it must be rapidly drained from the combustor to limit sulfur gas re-evolution. Prior analyses and laboratory scale data indicated that for Coal Tech's 20 MMBtu/hour, air-cooled, slagging coal combustor slag mass flow rates in excess of 400 lb/hr should limit sulfur re-evolution. The objective of this 42-month project was to validate this sulfur-in-slag model in a group of combustor tests. A total of 36 days of testing on the combustor were completed during the period of performance of this project. This was more that double the 16 test days that were required in the original work statement. The extra tests were made possible by cost saving innovations that were made in the operation of the combustor test facility and in additional investment of Coal Tech resources in the test effort. The original project plan called for two groups of tests. The first group of tests involved the injection of calcium sulfate particles in the form of gypsum or plaster of Paris with the coal into the 20 MMBtu/hour-combustor. The second group of tests consisted of the entire two-step process, in which lime or limestone is co-injected with coal and reacts with the sulfur gas released during combustion to form calcium sulfate particles that impact and dissolve in the slag layer. Since this sulfur capture process has been validated in numerous prior tests in this combustor, the primary effort in the present project was on achieving the high slag flow rates needed to retain the sulfur in the slag.

  17. IGCC and PFBC By-Products: Generation, Characteristics, and Management Practices

    SciTech Connect

    Pflughoeft-Hassett, D.F.

    1997-09-01

    The following report is a compilation of data on by-products/wastes from clean coal technologies, specifically integrated gasification combined cycle (IGCC) and pressurized fluidized-bed combustion (PFBC). DOE had two objectives in providing this information to EPA: (1) to familiarize EPA with the DOE CCT program, CCT by-products, and the associated efforts by DOE contractors in the area of CCT by-product management and (2) to provide information that will facilitate EPA's effort by complementing similar reports from industry groups, including CIBO (Council of Industrial Boiler Owners) and EEI USWAG (Edison Electric Institute Utility Solid Waste Activities Group). The EERC cooperated and coordinated with DOE CCT contractors and industry groups to provide the most accurate and complete data on IGCC and PFBC by-products, although these technologies are only now being demonstrated on the commercial scale through the DOE CCT program.

  18. Characterization of hot-gas filter ash under PFBC operating conditions

    SciTech Connect

    Henderson, A.K.; Swanson, M.L.; Hurley, J.P.; Watne, T.M.

    1998-01-01

    The objective of this program was to perform bench scale dynamic tests of ash formation and long-term ash cake formation in pressurized fluidized bed combustion (PFBC) systems to help in the development of methods to predict possible filter bridging problems and suggest possible strategies for mitigating these problems. During the program, four ash formation tests using a washed coal from the Consol Enlow Fork mine, with two size distributions of Plum Run dolomite at two different temperatures, were completed under conditions simulating the operation of the American Electric Power (AEP) Tidd PFBC. In addition, the same test matrix, plus two tests using no sorbent, was completed with the Belle Ayr Powder River Basin sub-bituminous coal, which will be used at the Southern Company Services (SCS) Wilsonville, Alabama, power systems development facility (PSDF).

  19. Characterization of hot-gas filter ash under PFBC operating conditions

    SciTech Connect

    Henderson, A.K.; Swanson, M.L.; Hurley, J.P.; Watne, E.M.

    1997-12-31

    The objective of this program was to perform bench-scale dynamic tests of ash formation and long-term ash cake formation in pressurized fluidized-bed combustion (PFBC) systems to help in the development of methods to predict possible filter bridging problems and suggest possible strategies for mitigating these problems. During the program, four ash formation tests using a washed coal from the Consol Enlow Fork mine, with two size distributions of Plum Run dolomite at two different temperatures, were completed under conditions simulating the operation of the American Electric Power (AEP) Tidd PFBC. In addition, the same test matrix, plus two tests using no sorbent, was completed with the Belle Ayr Powder River Basin subbituminous coal, which will be used at the Southern Company Services (SCS) Wilsonville, Alabama, power systems development facility (PSDF).

  20. Experimental und numerical investigations on cooling efficiency of Air-Mist nozzles on steel during continuous casting

    NASA Astrophysics Data System (ADS)

    Arth, G.; Taferner, M.; Bernhard, C.; Michelic, S.

    2016-07-01

    Cooling strategies in continuous casting of steel can vary from rapid cooling to slow cooling, mainly controlled by adjusting the amount of water sprayed onto the surface of the product. Inadequate adjustment however can lead to local surface undercooling or reheating, leading to surface and inner defects. This paper focuses on cooling efficiency of Air-Mist nozzles on casted steel and the experimental and numerical prediction of surface temperature distributions over the product width. The first part explains the determination of heat transfer coefficients (HTC) on laboratory scale, using a so called nozzle measuring stand (NMS). Based on measured water distributions and determined HTC's for air-mist nozzles using the NMS, surface temperatures are calculated by a transient 2D-model on a simple steel plate, explained in the second part of this paper. Simulations are carried out varying water impact density and spray water distribution, consequently influencing the local HTC distribution over the plate width. Furthermore, these results will be interpreted with regard to their consequence for surface and internal quality of the cast product. The results reveal the difficulty of correct adjustment of the amount of sprayed water, concurrent influencing water distribution and thus changing HTC distribution and surface temperature.

  1. Safety analysis of the waterwall in one PFBC boiler by dynamic model.

    PubMed

    Jinrong, Zhu; Mingyao, Zhang

    2003-10-01

    With the help of a dynamic mathematical model, the differential pressure across the waterwall in a PFBC (pressurized fluidized bed combustion) boiler is analyzed under abnormal conditions. The simulation tests have shown that the differential pressure will exceed design specification when the bursting diaphragm at the outlet pipe of the freeboard is ruptured and its capacity is larger than 50% of the flue gas flow rate of the boiler. PMID:14582889

  2. Altitude Cooling Investigation of the R-2800-21 Engine in the P-47G Airplane. IV - Engine Cooling-Air Pressure Distribution

    NASA Technical Reports Server (NTRS)

    Kaufman, Samuel J.; Staudt, Robert C.; Valerino, Michael F.

    1947-01-01

    A study of the data obtained in a flight investigation of an R-2800-21 engine in a P-47G airplane was made to determine the effect of the flight variables on the engine cooling-air pressure distribution. The investigation consisted of level flights at altitudes from 5000 to 35,000 feet for the normal range of engine and airplane operation. The data showed that the average engine front pressures ranged from 0.73 to 0.82 of the impact pressure (velocity head). The average engine rear pressures ranged from 0.50 to 0.55 of the impact pressure for closed cowl flaps and from 0.10 to 0.20 for full-open cowl flaps. In general, the highest front pressures were obtained at the bottom of the engine. The rear pressures for the rear-row cylinders were .lower and the pressure drops correspondingly higher than for the front-row cylinders. The rear-pressure distribution was materially affected by cowl-flap position in that the differences between the rear pressures of the front-row and rear-row cylinders markedly increased as the cowl flaps were opened. For full-open cowl flaps, the pressure drops across the rear-row cylinders were in the order of 0.2 of the impact pressure greater than across the front-row cylinders. Propeller speed and altitude had little effect on the -coolingair pressure distribution, Increase in angle of inclination of the thrust axis decreased the front ?pressures for the cylinders at the top of the engine and increased them for the cylinders at the bottom of the engine. As more auxiliary air was taken from the engine cowling, the front pressures and, to a lesser extent, the rear pressures for the cylinders at the bottom of the engine decreased. No correlation existed between the cooling-air pressure-drop distribution and the cylinder-temperature distribution.

  3. Heat transfer performance comparison of steam and air in gas turbine cooling channels with different rib angles

    NASA Astrophysics Data System (ADS)

    Shi, Xiaojun; Gao, Jianmin; Xu, Liang; Li, Fajin

    2013-11-01

    Using steam as working fluid to replace compressed air is a promising cooling technology for internal cooling passages of blades and vanes. The local heat transfer characteristics and the thermal performance of steam flow in wide aspect ratio channels ( W/ H = 2) with different angled ribs on two opposite walls have been experimentally investigated in this paper. The averaged Nusselt number ratios and the friction factor ratios of steam and air in four ribbed channels were also measured under the same test conditions for comparison. The Reynolds number range is 6,000-70,000. The rib angles are 90°, 60°, 45°, and 30°, respectively. The rib height to hydraulic diameter ratio is 0.047. The pitch-to-rib height ratio is 10. The results show that the Nusselt number ratios of steam are 1.19-1.32 times greater than those of air over the range of Reynolds numbers studied. For wide aspect ratio channels using steam as the coolant, the 60° angled ribs has the best heat transfer performance and is recommended for cooling design.

  4. 3-Dimensional numerical study of cooling performance of a heat sink with air-water flow through mini-channel

    NASA Astrophysics Data System (ADS)

    Majumder, Sambit; Majumder, Abhik; Bhaumik, Swapan

    2016-07-01

    The present microelectronics market demands devices with high power dissipation capabilities having enhanced cooling per unit area. The drive for miniaturizing the devices to even micro level dimensions is shooting up the applied heat flux on such devices, resulting in complexity in heat transfer and cooling management. In this paper, a method of CPU processor cooling is introduced where active and passive cooling techniques are incorporated simultaneously. A heat sink consisting of fins is designed, where water flows internally through the mini-channel fins and air flows externally. Three dimensional numerical simulations are performed for large set of Reynolds number in laminar region using finite volume method for both developing flows. The dimensions of mini-channel fins are varied for several aspect ratios such as 1, 1.33, 2 and 4. Constant temperature (T) boundary condition is applied at heat sink base. Channel fluid temperature, pressure drop are analyzed to obtain best cooling option in the present study. It has been observed that as the aspect ratio of the channel decreases Nusselt number decreases while pressure drop increases. However, Nusselt number increases with increase in Reynolds number.

  5. Preliminary evaluation of FIBROSIC{trademark} candle filter for particulate control in PFBC

    SciTech Connect

    Lee, S.H.D.; Eggersedt, P.; Zievers, J.F.; Honea, F.I.

    1994-07-01

    The FIBROSIC{trademark} candle filter is made by vacuum-forming a select blend of aluminosilicate fibers with silica and alumina binders and is potentially useful as a hot-gas cleanup device for particulate control in pressurized fluidized-bed combustion (PFBC). It has the advantages of lighter weight, lower cost, and lower tendency for thermal shock breakage over the more widely studied SiC candle filter. Both filter types were tested with Illinois No. 6 high-sulfur coal in a laboratory-scale PFBC/alkali sorber facility for (1) particulate collection efficiency, (2) permeability characteristics, and (3) physical and mechanical strength and integrity. Tests were conducted at 800--825{degrees}C and a system pressure of 9.2 atm. Filter face velocities were 5.1 and 10.2 cm/s (10 and 20 ft/min) during test periods of 8 and 9.5 h for SiC and FIBROSIC{trademark} candle filters, respectively. The filters were periodically cleaned by a reverse jet pulse of N{sub 2} gas. Both filter types achieved particulate collection efficiencies >99.9% and exhibited comparable permeability characteristics. Although the FIBROSIC{trademark} candle filter has inherently lower bursting strength than the SiC, its physical and mechanical strengths were demonstrated to be sufficient to maintain the integrity of the filter element under PFBC conditions.

  6. AEP`s program for enhanced environmental performance of PFBC plants

    SciTech Connect

    Hafer, D.R.; Bauer, D.A.

    1993-09-01

    While Tidd has achieved many of its original performance and test objectives, current emission standards and the projected performance of competing technologies have caused a reassessment of the goals of AEP`s PFBC program, particularly with regard to sulfur removal and sorbent utilization. The original goal of 90 percent sulfur removal at a Ca/S molar ratio of 1.6 (using Plum Run dolomite) has now been revised to 95 percent removal at a ratio of less than 1.8. While 95 percent sulfur capture is within the capability of today`s PFBC units, the desired Ca/S molar ratio is not presently possible. Therefore, the test program has been redirected to attain this goal. The remainder of the three-year demonstration period will focus on achieving better sorbent utilization, conducting feedstock testing, and performing process evaluations. In addition, a significant part of the remaining test effort at Tidd will focus on establishing and validating the design basis for future commercial PFBC plants. Items being considered to improve sorbent utilization include better sorbent distribution in the bed, optimization of sorbent sizing, ash recycling or recirculation, and selection of sorbent.

  7. Developing technologies for high volume land application uses of pressurized fluidized-bed combustion (PFBC) ash

    SciTech Connect

    Beeghly, J.H.; Dick, W.A.; Wolfe, W.E.

    1995-12-31

    Dry alkaline flue gas desulfurization (FGD) by-products, including Tidd PFBC bed and cyclone ash are being evaluated for beneficial uses via land application for agriculture, mine spoil reclamation, soil stabilization, and road embankment construction in a 5 year, $4.4 million research program based in Ohio. The beneficial use for agriculture and mine reclamation as a soil amendment material is primarily due to its high acid neutralizing capacity and gypsum content. Concentrations of leachate RCRA heavy metals approached primary drinking water quality standards and are well within the criteria for classification as non-toxic fly ash according to Ohio EPA policy. Characterization tests of compressive strength, permeability, and compressibility indicate the by-products are practical materials for use in high volume engineered fills or embankments, base courses, and for soil reinforcement. Large field demonstrations of technical, economic, and environmental feasibility have been completed using Tidd PFBC ash: (1) to reclaim abandoned coal mineland spoil, (2) as an agricultural lime substitute, (3) in stabilized base construction for a cattle feedlot, and (4) for reconstruction of two state highway embankments. An important factor to understand the behavior of this Tidd PFBC residue is that dolomite was the sorbent.

  8. Water cooling system for an air-breathing hypersonic test vehicle

    NASA Technical Reports Server (NTRS)

    Petley, Dennis H.; Dziedzic, William M.

    1993-01-01

    This study provides concepts for hypersonic experimental scramjet test vehicles which have low cost and low risk. Cryogenic hydrogen is used as the fuel and coolant. Secondary water cooling systems were designed. Three concepts are shown: an all hydrogen cooling system, a secondary open loop water cooled system, and a secondary closed loop water cooled system. The open loop concept uses high pressure helium (15,000 psi) to drive water through the cooling system while maintaining the pressure in the water tank. The water flows through the turbine side of the turbopump to pump hydrogen fuel. The water is then allowed to vent. In the closed loop concept high pressure, room temperature, compressed liquid water is circulated. In flight water pressure is limited to 6000 psi by venting some of the water. Water is circulated through cooling channels via an ejector which uses high pressure gas to drive a water jet. The cooling systems are presented along with finite difference steady-state and transient analysis results. The results from this study indicate that water used as a secondary coolant can be designed to increase experimental test time, produce minimum venting of fluid and reduce overall development cost.

  9. Hybrid radiator cooling system

    DOEpatents

    France, David M.; Smith, David S.; Yu, Wenhua; Routbort, Jules L.

    2016-03-15

    A method and hybrid radiator-cooling apparatus for implementing enhanced radiator-cooling are provided. The hybrid radiator-cooling apparatus includes an air-side finned surface for air cooling; an elongated vertically extending surface extending outwardly from the air-side finned surface on a downstream air-side of the hybrid radiator; and a water supply for selectively providing evaporative cooling with water flow by gravity on the elongated vertically extending surface.

  10. Cooling of daytime temperatures in coastal California air basins during 1969-2005: Monthly and extreme value trends

    NASA Astrophysics Data System (ADS)

    Gonzalez, J.; Bornstein, R. D.; Charland, A.; Gonzalez, J.

    2009-12-01

    Analysis of long-term (1969-2005) air temperatures in California (CA) during summer (June-August) previously showed an aggregate CA asymmetric warming, as daily minimum temperatures increased faster than daily maximum values Tmax. The spatial distributions of daily Tmax temperatures in the heavily urbanized South Coast and San Francisco Bay Area air basins were more complex pattern, with cooling at low-elevation coastal-areas and warming at inland areas. Our hypothesis was that this temperature pattern arose from a “reverse-reaction” to greenhouse gas induced global-warming, in that the global warming of inland areas resulted in an increased (cooling) sea breeze activity in coastal areas. These results appeared in the July 2009 issue of the J. of Climate. Extension of this analysis over the entire year now shows that the cooling trend in average Tmax values occurred during most months, with warming trends only during winter months. The largest rate of cooling, however, occurred in June (-0.95 K/decade), indicating that an earlier initiation of sea breeze activity may be the most important cooling factor, relative to increases in its intensity, duration, and/or penetration. Possible beneficial effects of the cooling were discussed (e.g., decreased maximum O3 and human thermal-stress levels), but as these impact would occur during periods of maximum Tmax values, the previous analysis was thus expanded to includes trends in the frequency of high Tmax values, i.e., 85, 90, 95, and 100oF. Results showed that all of these frequencies were decreasing, with rates decreasing with Tmax value (from -0.27 to -0.04 days/year, respectively). While this result is expected, as the frequency of occurrence decreases with Tmax value (from about 50 to about 3 per year, respectively), the percent decrease in frequency showed the opposite results, i.e., it was largest with the highest Tmax value (from -0.57 to -1.57 %/year, respectively). In addition, the rate of decrease of annual

  11. A fitting formula for radiative cooling based on non-local thermodynamic equilibrium population from weakly-ionized air plasma

    NASA Astrophysics Data System (ADS)

    Ogino, Yousuke; Nagano, Atsushi; Ishihara, Tomoaki; Ohnishi, Naofumi

    2013-08-01

    A fitting formula for radiative cooling with collisional-radiative population for air plasma flowfield has been developed. Population number densities are calculated from rate equations in order to evaluate the effects of nonequilibrium atomic and molecular processes. Many elementary processes are integrated to be applied to optically-thin plasmas in the number density range of 1012/cm3 <= N <= 1019/cm3 and the temperature range of 300 K <= T <= 40,000 K. Our results of the total radiative emissivity calculated from the collisional-radiative population are fitted in terms of temperature and total number density. To validate the analytic fitting formula, numerical simulation of a laser-induced blast wave propagation with the nonequilibrium radiative cooling is conducted and successfully reproduces the shock and plasma wave front time history observed by experiments. In addition, from the comparison between numerical simulations with the radiation cooling effect based on the fitting formula and those with a gray gas radiation model that assumes local thermodynamic equilibrium, we find that the displacement of the plasma front is slightly different due to the deviation of population probabilities. By using the fitting formula, we can easily and more accurately evaluate the radiative cooling effect without solving detailed collisional-radiative rate equations.

  12. Improved Performance of an Air Cooled Condenser (ACC) Using SPX Wind Guide Technology at Coal-Based Thermoelectric Power Plants

    SciTech Connect

    Ken Mortensen

    2010-12-31

    This project added a new airflow enhancement technology to an existing ACC cooling process at a selected coal power plant. Airflow parameters and efficiency improvement for the main plant cooling process using the applied technology were determined and compared with the capabilities of existing systems. The project required significant planning and pre-test execution in order to reach the required Air Cooled Condenser system configuration for evaluation. A host Power Plant ACC system had to be identified, agreement finalized, and addition of the SPX ACC Wind Guide Technology completed on that site. Design of the modification, along with procurement, fabrication, instrumentation, and installation of the new airflow enhancement technology were executed. Baseline and post-modification cooling system data was collected and evaluated. The improvement of ACC thermal performance after SPX wind guide installation was clear. Testing of the improvement indicates there is a 5% improvement in heat transfer coefficient in high wind conditions and 1% improvement at low wind speed. The benefit increased with increasing wind speed. This project was completed on schedule and within budget.

  13. System performance characteristics of a helical rotary screw air-cooled chiller operating over a range of refrigerant charge conditions

    SciTech Connect

    Bailey, M.B.

    1998-12-31

    This paper presents a study involving the operation of a 70-ton helical rotary, dual-circuit, air-cooled chiller while three independent variables are experimentally altered. The independent variables included in the study are refrigerant charge level within the chiller plant, outdoor air temperature, and percentage nominal chiller load. This paper examines the effects of the three independent variables on superheat and subcooling temperatures, chiller kW per ton, chilled water set-point temperature control, and compressor suction and discharge pressures. After analyzing the significance of refrigerant charge, outdoor air temperature, and percentage nominal chiller load on the operation of a chiller plant the consequences of refrigerant undercharge or overcharge are fully investigated and documented. All experimental testing was conducted in a full-scale heating, ventilation, and air-conditioning (HVAC) laboratory using a realistic load profile and actual outdoor air temperature conditions. Experimental testing began with an evacuation, recycle, and recharge of R-22 from both circuits of the chiller. The charge tests included holding the refrigerant charge in circuit No. 2 constant at the manufacturer`s recommended level. The notation adopted for the manufacturer`s recommended charge or nominal charge level was 0% charge. Circuit No. 1`s refrigerant charge was varied from {minus}60% to +15% of nominal charge in 5% increments.

  14. Hot Gas Particulate Cleaning Technology Applied for PFBC/IGFC -The Ceramic Tube Filter (CTF) and Metal Filter-

    SciTech Connect

    Sasatsu, H; Misawa, N; Kobori, K; Iritani, J

    2002-09-18

    Coal is a fossil fuel abundant and widespread all over world. It is a vital resource for energy security, because the supply is stable. However, its CO2 emission per unit calorific value is greater than that of other fossil fuels. It is necessary to develop more efficient coal utilization technologies to expand the coal utilization that meets the social demand for better environment. The Pressurized Fluidized Bed Combustion (PFBC) combined cycle has become a subject of world attention in terms of better plant operation, improved plant efficiency, lower flue gas emission and fuel flexibility. The gas turbine, one of the most important components in the PFBC, is eager for a hot gas (approximately 650-850C) cleaning system in order to eliminate the severe erosion problem with the less thermal loss. The cyclone is most popular system for a hot gas cleaning, however, the severe damage for gas turbine blades by highly concentrated fine fly ash from PFBC boiler is reported.

  15. Method and apparatus for enhancing reactor air-cooling system performance

    DOEpatents

    Hunsbedt, Anstein

    1996-01-01

    An enhanced decay heat removal system for removing heat from the inert gas-filled gap space between the reactor vessel and the containment vessel of a liquid metal-cooled nuclear reactor. Multiple cooling ducts in flow communication with the inert gas-filled gap space are incorporated to provide multiple flow paths for the inert gas to circulate to heat exchangers which remove heat from the inert gas, thereby introducing natural convection flows in the inert gas. The inert gas in turn absorbs heat directly from the reactor vessel by natural convection heat transfer.

  16. Method and apparatus for enhancing reactor air-cooling system performance

    DOEpatents

    Hunsbedt, A.

    1996-03-12

    An enhanced decay heat removal system is disclosed for removing heat from the inert gas-filled gap space between the reactor vessel and the containment vessel of a liquid metal-cooled nuclear reactor. Multiple cooling ducts in flow communication with the inert gas-filled gap space are incorporated to provide multiple flow paths for the inert gas to circulate to heat exchangers which remove heat from the inert gas, thereby introducing natural convection flows in the inert gas. The inert gas in turn absorbs heat directly from the reactor vessel by natural convection heat transfer. 6 figs.

  17. Development of Cowling for Long-nose Air-cooled Engine in the NACA Full-scale Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Guryansky, Eugene R.; Silverstein, Abe

    1941-01-01

    An investigation of cowlings for long-nose radial engines was made on the Curtiss XP-42 fighter in the NACA full-scale wind tunnel. The unsatisfactory aerodynamic characteristics of all the cowlings with scoop inlets tested led to the development of the annular high-velocity inlet cowlings. Tests showed that ratio of cooling-air velocity at cowling inlet to stream velocity should not be less than 0.5 for this type of cowling and that critical compressibility speed can be extended to more than 500 mph at 20,000 ft altitude.

  18. Cold-flow performance of several variations of a ram-air-cooled plug nozzle for supersonic-cruise aircraft

    NASA Technical Reports Server (NTRS)

    Harrington, D. E.; Nosek, S. M.; Straight, D. M.

    1974-01-01

    Experimental data were obtained with a 21.59 cm (8.5 in.) diameter cold-flow model in a static altitude facility to determine the thrust and pumping characteristics of several variations of a ram-air-cooled plug nozzle. Tests were conducted over a range of nozzle pressure ratios simulating supersonic cruise and takeoff conditions. Primary throat area was also varied to simulate afterburner on and off. Effect of plug size, outer shroud length, primary nozzle geometry, and varying amounts of secondary flow were investigated. At a supersonic cruise pressure ratio of 27, nozzle efficiencies were 99.7 percent for the best configurations.

  19. Air-liquid solar collector for solar heating, combined heating and cooling, and hot water subsystems

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A collection of quarterly reports consisting of the installation and layout design of the air collector system for commercial applications, completion of the preliminary design review, detailed design efforts, and preparation of the verification test plan are given. Performance specifications and performance testing of a prototype model of a two manifold, 144 tube air collector array is presented.

  20. Modeling, numerical simulation and experimental verification of the unsteady cooling of a solid body in quiescent ambient air

    NASA Astrophysics Data System (ADS)

    Campo, Antonio; Salazar, Abraham; Rebollo, Daniel

    The scope of the present article is two-fold. Firstly, to conduct an experiment to provide the temperature-time history of the cooling of a hot ball bearing in quiescent ambient air. Secondly, to predict the temporal variation of the bearing under the hypothesis of natural convection, radiation or natural convection coexists with radiation for a non-vanishing total hemispherical emissivity of the surface of the bearing. Numerical solutions of the three governing nonlinear lumped heat equations were carried out with a Runge-Kutta-Fehlberg (RKF45) algorithm accounting for automatic step size control. The experimental data was obtained with chrome steel ball bearings of diameter 0.953 cm (7/16 in) heated in an electric oven to a pre-set temperature. The heated bearing was exposed later to ambient air at atmospheric temperature and pressure.

  1. Integrated Testing of a 4-Bed Molecular Sieve, Air-Cooled Temperature Swing Adsorption Compressor, and Sabatier Engineering Development Unit

    NASA Technical Reports Server (NTRS)

    Knox, James C.; Miller, Lee; Campbell, Melissa; Mulloth, Lila; Varghese, Mini

    2006-01-01

    Accumulation and subsequent compression of carbon dioxide that is removed from the space cabin are two important processes involved in a closed-loop air revitalization scheme of the International Space Station (ISS). The 4-Bed Molecular Sieve (4BMS) of ISS currently operates in an open loop mode without a compressor. The Sabatier Engineering Development Unit (EDU) processes waste CO2 to provide water to the crew. This paper reports the integrated 4BMS, air-cooled Temperature Swing Adsorption Compressor (TSAC), and Sabatier EDU testing. The TSAC prototype was developed at NASA Ames Research Center (ARC). The 4BMS was modified to a functionally flight-like condition at NASA Marshall Space Flight Center (MSFC). Testing was conducted at MSFC. The paper provides details of the TSAC operation at various CO2 loadings and corresponding performance of the 4BMS and Sabatier.

  2. A method for measuring cooling air flow in base coolant passages of rotating turbine blades

    NASA Technical Reports Server (NTRS)

    Liebert, C. H.; Pollack, F. G.

    1975-01-01

    Method accurately determines actual coolant mass flow rate in cooling passages of rotating turbine blades. Total and static pressures are measured in blade base coolant passages. Mass flow rates are calculated from these measurements of pressure, measured temperature and known area.

  3. Performance and evaluation of gas engine driven rooftop air conditioning equipment at the Willow Grove (PA) Naval Air Station. Interim report, 1992 cooling season

    SciTech Connect

    Armstrong, P.R.; Conover, D.R.

    1993-05-01

    In a field evaluation conducted for the US Department of Energy (DOE) Office of Federal Energy Management Program (FEMP), the Pacific Northwest Laboratory (PNL) examined the performance of a new US energy-related technology under the FEMP Test Bed Demonstration Program. The technology was a 15-ton natural gas engine driven roof top air conditioning unit. Two such units were installed on a naval retail building to provide space conditioning to the building. Under the Test Bed Demonstration Program, private and public sector interests are focused to support the installation and evaluation of new US technologies in the federal sector. Participating in this effort under a Cooperative Research and Development Agreement (CRADA) with DOE were the American Gas Cooling Center, Philadelphia Electric Company, Thermo King Corporation, and the US Naval Air Station at Willow Grove, Pennsylvania. Equipment operating and service data as well as building interior and exterior conditions were secured for the 1992 cooling season. Based on a computer assessment of the building using standard weather data, a comparison was made with the energy and operating costs associated with the previous space conditioning system. Based on performance during the 1992 cooling season and adjusted to a normal weather year, the technology will save the site $6,000/yr in purchased energy costs. An additional $9,000 in savings due to electricity demand ratchet charge reductions will also be realized. Detailed information on the technology, the installation, and the results of the technology test are provided to illustrate the advantages to the federal sector of using this technology. A history of the CRADA development process is also reported.

  4. Effect of Gas/Steam Turbine Inlet Temperatures on Combined Cycle Having Air Transpiration Cooled Gas Turbine

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Singh, O.

    2012-10-01

    Worldwide efforts are being made for further improving the gas/steam combined cycle performance by having better blade cooling technology in topping cycle and enhanced heat recovery in bottoming cycle. The scope of improvement is possible through turbines having higher turbine inlet temperatures (TITs) of both gas turbine and steam turbine. Literature review shows that a combined cycle with transpiration cooled gas turbine has not been analyzed with varying gas/steam TITs. In view of above the present study has been undertaken for thermodynamic study of gas/steam combined cycle with respect to variation in TIT in both topping and bottoming cycles, for air transpiration cooled gas turbine. The performance of combined cycle with dual pressure heat recovery steam generator has been evaluated for different cycle pressure ratios (CPRs) varying from 11 to 23 and the selection diagrams presented for TIT varying from 1,600 to 1,900 K. Both the cycle efficiency and specific work increase with TIT for each pressure ratio. For each TIT there exists an optimum pressure ratio for cycle efficiency and specific work. For the CPR of 23 the best cycle performance is seen at a TIT of 1,900 K for maximum steam temperature of 570 °C, which gives the cycle efficiency of 60.9 % with net specific work of 909 kJ/kg.

  5. Prediction of thermal behaviors of an air-cooled lithium-ion battery system for hybrid electric vehicles

    NASA Astrophysics Data System (ADS)

    Choi, Yong Seok; Kang, Dal Mo

    2014-12-01

    Thermal management has been one of the major issues in developing a lithium-ion (Li-ion) hybrid electric vehicle (HEV) battery system since the Li-ion battery is vulnerable to excessive heat load under abnormal or severe operational conditions. In this work, in order to design a suitable thermal management system, a simple modeling methodology describing thermal behavior of an air-cooled Li-ion battery system was proposed from vehicle components designer's point of view. A proposed mathematical model was constructed based on the battery's electrical and mechanical properties. Also, validation test results for the Li-ion battery system were presented. A pulse current duty and an adjusted US06 current cycle for a two-mode HEV system were used to validate the accuracy of the model prediction. Results showed that the present model can give good estimations for simulating convective heat transfer cooling during battery operation. The developed thermal model is useful in structuring the flow system and determining the appropriate cooling capacity for a specified design prerequisite of the battery system.

  6. Technical and economic assessment of the use of ammonia expanders for energy recovery in air-cooled power plants

    NASA Astrophysics Data System (ADS)

    Hauser, S. G.; Hane, G. J.; Johnson, B. M.

    1982-07-01

    Binary cycle power plants have been the subject of much discussion among engineers and scientists for nearly 100 years. Current economic and environmental concerns have stimulated new interest and research. Ammonia has been recommended by other studies as the leading contender for use as simply the heat rejection medium in an air-cooled power plant. This study investigates the technical feasibility and economic potential of including an expander in the heat rejection system of an air-cooled power plant. The expander would be used during certain parts of the year to increase the total output of the power plant. Five different plant locations (Miami, San Francisco, Bakersfield, Chicago, Anchorage) were investigated to show the effect which climate has on the economic potential of this ammonia bottoming cycle. The study shows that the expected energy costs for the bottoming cycle only will be less than 50 mills/kWh for any of the five plant locations. This cost assumes that an ammonia phase-change heat rejection system is already a part of the existing plant.

  7. Modeling 2 m air temperatures over mountain glaciers: Exploring the influence of katabatic cooling and external warming

    NASA Astrophysics Data System (ADS)

    Ayala, A.; Pellicciotti, F.; Shea, J. M.

    2015-04-01

    Air temperature is one of the most relevant input variables for snow and ice melt calculations. However, local meteorological conditions, complex topography, and logistical concerns in glacierized regions make the measuring and modeling of air temperature a difficult task. In this study, we investigate the spatial distribution of 2 m air temperature over mountain glaciers and propose a modification to an existing model to improve its representation. Spatially distributed meteorological data from Haut Glacier d'Arolla (Switzerland), Place (Canada), and Juncal Norte (Chile) Glaciers are used to examine approximate flow line temperatures during their respective ablation seasons. During warm conditions (off-glacier temperatures well above 0°C), observed air temperatures in the upper reaches of Place Glacier and Haut Glacier d'Arolla decrease down glacier along the approximate flow line. At Juncal Norte and Haut Glacier d'Arolla, an increase in air temperature is observed over the glacier tongue. While the temperature behavior over the upper part can be explained by the cooling effect of the glacier surface, the temperature increase over the glacier tongue may be caused by several processes induced by the surrounding warm atmosphere. In order to capture the latter effect, we add an additional term to the Greuell and Böhm (GB) thermodynamic glacier wind model. For high off-glacier temperatures, the modified GB model reduces root-mean-square error up to 32% and provides a new approach for distributing air temperature over mountain glaciers as a function of off-glacier temperatures and approximate glacier flow lines.

  8. Evaporatively cooled chiller for solar air conditioning systems design and field test

    NASA Astrophysics Data System (ADS)

    Merrick, R. H.; Murray, J. G.

    1984-06-01

    Design changes to improve reliability, part load performance, and manufacturability characteristics of the chiller are focused upon. Low heat flux was achieved by large transfer area allows scale formation without being a thermal barrier: 80 mils = 1 deg. The scaling rate is minimized by keeping surface temperatures below 100 F and a generous water recirculation flow rate. By integrating the cooling tower function into the chiller itself parasitic power consumption was reduced 35%. This system also provided the winter freeze protection without the specific manual shut down procedures required by separate water cooled units and their towers. The severe reduction in cumulative coefficient of performance (COP) due to cycling conditions has been substantially reduced using the spin down control scheme. The major disappointment was the failure to develop a satisfactory inexpensive protective coating. Hot dip galvanizing was demonstrated to be effective but costly, partially due to transportation expense.

  9. Development of gas-pressure bonding process for air-cooled turbine blades

    NASA Technical Reports Server (NTRS)

    Meiners, K. E.

    1972-01-01

    An investigation was conducted on the application of gas-pressure bonding to the joining of components for convectively cooled turbine blades and vanes. A processing procedure was established for joining the fins of Udimet 700 and TD NiCr sheet metal airfoil shells to cast B1900 struts without the use of internal support tooling. Alternative methods employing support tooling were investigated. Testing procedures were developed and employed to determine shear strengths and internal burst pressures of flat and cylindrical bonded finned shell configurations at room temperature and 1750 F. Strength values were determined parallel and transverse to the cooling fin direction. The effect of thermal cycles from 1750 F to room temperature on strength was also investigated.

  10. Heat Transfer and Observation of Droplet-Surface Interactions During Air-Mist Cooling at CSP Secondary System Temperatures

    NASA Astrophysics Data System (ADS)

    Huerta L., Mario E.; Mejía G., M. Esther; Castillejos E., A. Humberto

    2016-04-01

    Air-mists are key elements in the secondary cooling of modern thin steel slab continuous casters. The selection of water, W, and air, A, flow rates, and pressures in pneumatic nozzles open up a wide spectrum of cooling possibilities by their influence on droplet diameter, d, droplet velocity, v, and water impact flux, w. Nonetheless, due to the harsh environment resulting from the high temperatures and dense mists involved, there is very little information about the correlation between heat flux extracted, - q, and mist characteristics, and none about the dynamics of drop-wall interactions. For obtaining both kinds of information, this work combines a steady-state heat flux measuring method with a visualization technique based on a high-speed camera and a laser illumination system. For wall temperatures, T w, between ~723 K and ~1453 K (~450 °C and ~1180 °C), which correspond to film boiling regime, it was confirmed that - q increases with increase in v, w, and T w and with decrease in d. It should be noticed, however, that the increase in w generally decreases the spray cooling effectiveness because striking drops do not evaporate efficiently due to the interference by liquid remains from previous drops. Visualization of the events happening close to the surface also reveals that the contact time of the liquid with the surface is very brief and that rebounding, splashing, sliding, and levitation of drops lead to ineffective contact with the surface. At the center of the mist footprint, where drops impinge nearly normal to the surface those with enough momentum establish intimate contact with it before forming a vapor layer that pushes away the remaining liquid. Also, some drops are observed sliding upon the surface or levitating close to it; these are drops with low momentum which are influenced by the deflecting air stream. At footprint positions where oblique impingement occurs, frequently drops are spotted sliding or levitating and liquid films flowing in

  11. Effect of Air Cooling of Turbine Disk on Power and Efficiency of Turbine from Turbo Engineering Corporation TT13-18 Turbosupercharger.

    NASA Technical Reports Server (NTRS)

    Berkey, William E.

    1949-01-01

    An investigation was conducted to determine the effect of turbine-disk cooling with air on the efficiency and the power output of the radial-flow turbine from the Turbo Engineering Corporation TT13-18 turbosupercharger. The turbine was operated at a constant range of ratios of turbine-inlet total pressure to turbine-outlet static pressure of 1,5 and 2.0, turbine-inlet total pressure of 30 inches mercury absolute, turbine-inlet total temperature of 12000 to 20000 R, and rotor speeds of 6000 to 22,000 rpm, Over the normal operating range of the turbine, varying the corrected cooling-air weight flow from approximately 0,30 to 0.75 pound per second produced no measurable effect on the corrected turbine shaft horsepower or the turbine shaft adiabatic efficiency. Varying the turbine-inlet total temperature from 12000 to 20000 R caused no measurable change in the corrected cooling-air weight flow. Calculations indicated that the cooling-air pumping power in the disk passages was small and was within the limits of the accuracy of the power measurements. For high turbine power output, the power loss to the compressor for compressing the cooling air was approximately 3 percent of the total turbine shaft horsepower.

  12. Physical and Mathematical Modeling of Thin Steel Slab Continuous Casting Secondary Cooling Zone Air-Mist Impingement

    NASA Astrophysics Data System (ADS)

    de León B., Melecio; Castillejos E., A. Humberto

    2015-10-01

    This study is an attempt to unveil the fluid dynamic phenomena occurring during interaction of air-mists with the surface of the steel strand during its pass through the continuous casting secondary cooling system. Air-mists generated under conditions of practical interest are studied while impacting on a vertical wall at room temperature. Experimentally a spatial multiple-counting technique based on capturing instantaneous double-exposure shadowgraphs is used to visualize the internal structure of mists at distances between 0 and 4 mm from the wall. Analysis of single exposure images allows determination of size distributions of primary (impinging) and secondary (ejecting) drops and of fluctuating thickness of water films formed on the wall surface. Besides, examination of image pairs enables measurement of velocity and trajectory angles of both kinds of drops. These results aided in the formulation and validation of a transient, turbulent, 3D, multiphase fluid dynamic model for simulating impinging air-mists. The model is based on KIVA-3V and for simulating the airborne mist region it solves the continuity equations—mass, momentum, turbulence quantities—for the air coupled with the equation of motion for drops sampled randomly from distributions assumed to govern their size and volume flux at the nozzle orifice. While for the impingement region submodels are established to estimate the results of drop/wall interaction, i.e., the dynamics of secondary drops and water films formed by the impingement of primary drops. The model forecasts reasonably well the random distributions of diameters, velocities, trajectory angles, and Weber numbers of both kind of drops moving near the wall. Additionally, it predicts well the average thickness of the water film and the important effect that air nozzle pressure has on the normal impinging velocity of drops; high pressures result in large drop velocities favoring intimate contact with the surface.

  13. Size and Velocity Characteristics of Droplets Generated by Thin Steel Slab Continuous Casting Secondary Cooling Air-Mist Nozzles

    NASA Astrophysics Data System (ADS)

    Minchaca M, J. I.; Castillejos E, A. H.; Acosta G, F. A.

    2011-06-01

    Direct spray impingement of high temperature surfaces, 1473 K to 973 K (1200 °C to 700 °C), plays a critical role in the secondary cooling of continuously cast thin steel slabs. It is known that the spray parameters affecting the local heat flux are the water impact flux w as well as the droplet velocity and size. However, few works have been done to characterize the last two parameters in the case of dense mists ( i.e., mists with w in the range of 2 to 90 L/m2s). This makes it difficult to rationalize how the nozzle type and its operating conditions must be selected to control the cooling process. In the present study, particle/droplet image analysis was used to determine the droplet size and velocity distributions simultaneously at various locations along the major axis of the mist cross section at a distance where the steel strand would stand. The measurements were carried out at room temperature for two standard commercial air-assisted nozzles of fan-discharge type operating over a broad range of conditions of practical interest. To achieve statistically meaningful samples, at least 6000 drops were analyzed at each location. Measuring the droplet size revealed that the number and volume frequency distributions were fitted satisfactorily by the respective log-normal and Nukiyama-Tanasawa distributions. The correlation of the parameters of the distribution functions with the water- and air-nozzle pressures allowed for reasonable estimation of the mean values of the size of the droplets generated. The ensemble of measurements across the mist axis showed that the relationship between the droplet velocity and the diameter exhibited a weak positive correlation. Additionally, increasing the water flow rate at constant air pressure caused a decrease in the proportion of the water volume made of finer droplets, whereas the volume proportion of faster droplets augmented until the water flow reached a certain value, after which it decreased. Diminishing the air

  14. Thermal management improvement of an air-cooled high-power lithium-ion battery by embedding metal foam

    NASA Astrophysics Data System (ADS)

    Mohammadian, Shahabeddin K.; Rassoulinejad-Mousavi, Seyed Moein; Zhang, Yuwen

    2015-11-01

    Effect of embedding aluminum porous metal foam inside the flow channels of an air-cooled Li-ion battery module was studied to improve its thermal management. Four different cases of metal foam insert were examined using three-dimensional transient numerical simulations. The effects of permeability and porosity of the porous medium as well as state of charge were investigated on the standard deviation of the temperature field and maximum temperature inside the battery in all four cases. Compared to the case of no porous insert, embedding aluminum metal foam in the air flow channel significantly improved the thermal management of Li-ion battery cell. The results also indicated that, decreasing the porosity of the porous structure decreases both standard deviation of the temperature field and maximum temperature inside the battery. Moreover, increasing the permeability of the metal foam drops the maximum temperature inside the battery while decreasing this property leads to improving the temperature uniformity. Our results suggested that, among the all studied cases, desirable temperature uniformity and maximum temperature were achieved when two-third and the entire air flow channel is filled with aluminum metal foam, respectively.

  15. Thermal-Hydraulic Analysis of an Experimental Reactor Cavity Cooling System with Air. Part I: Experiments; Part II: Separate Effects Tests and Modeling

    SciTech Connect

    Corradin, Michael; Anderson, M.; Muci, M.; Hassan, Yassin; Dominguez, A.; Tokuhiro, Akira; Hamman, K.

    2014-10-15

    This experimental study investigates the thermal hydraulic behavior and the heat removal performance for a scaled Reactor Cavity Cooling System (RCCS) with air. A quarter-scale RCCS facility was designed and built based on a full-scale General Atomics (GA) RCCS design concept for the Modular High Temperature Gas Reactor (MHTGR). The GA RCCS is a passive cooling system that draws in air to use as the cooling fluid to remove heat radiated from the reactor pressure vessel to the air-cooled riser tubes and discharged the heated air into the atmosphere. Scaling laws were used to preserve key aspects and to maintain similarity. The scaled air RCCS facility at UW-Madison is a quarter-scale reduced length experiment housing six riser ducts that represent a 9.5° sector slice of the full-scale GA air RCCS concept. Radiant heaters were used to simulate the heat radiation from the reactor pressure vessel. The maximum power that can be achieved with the radiant heaters is 40 kW with a peak heat flux of 25 kW per meter squared. The quarter-scale RCCS was run under different heat loading cases and operated successfully. Instabilities were observed in some experiments in which one of the two exhaust ducts experienced a flow reversal for a period of time. The data and analysis presented show that the RCCS has promising potential to be a decay heat removal system during an accident scenario.

  16. Preliminary design review package on air flat plate collector for solar heating and cooling system

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Guidelines to be used in the development and fabrication of a prototype air flat plate collector subsystem containing 320 square feet (10-4 ft x 8 ft panels) of collector area are presented. Topics discussed include: (1) verification plan; (2) thermal analysis; (3) safety hazard analysis; (4) drawing list; (5) special handling, installation and maintenance tools; (6) structural analysis; and (7) selected drawings.

  17. Cooling of Gas Turbines I - Effects of Addition of Fins to Blade Tips and Rotor, Admission of Cooling Air Through Part of Nozzles, and Change in Thermal Conductivity of Turbine Components

    NASA Technical Reports Server (NTRS)

    Brown, Byron

    1947-01-01

    An analysis was developed for calculating the radial temperature distribution in a gas turbine with only the temperatures of the gas and the cooling air and the surface heat-transfer coefficient known. This analysis was applied to determine the temperatures of a complete wheel of a conventional single-stage impulse exhaust-gas turbine. The temperatures were first calculated for the case of the turbine operating at design conditions of speed, gas flow, etc. and with only the customary cooling arising from exposure of the outer blade flange and one face of the rotor to the air. Calculations were next made for the case of fins applied to the outer blade flange and the rotor. Finally the effects of using part of the nozzles (from 0 to 40 percent) for supplying cooling air and the effects of varying the metal thermal conductivity from 12 to 260 Btu per hour per foot per degree Farenheit on the wheel temperatures were determined. The gas temperatures at the nozzle box used in the calculations ranged from 1600F to 2000F. The results showed that if more than a few hundred degrees of cooling of turbine blades are required other means than indirect cooling with fins on the rotor and outer blade flange would be necessary. The amount of cooling indicated for the type of finning used could produce some improvement in efficiency and a large increase in durability of the wheel. The results also showed that if a large difference is to exist between the effective temperature of the exhaust gas and that of the blade material, as must be the case with present turbine materials and the high exhaust-gas temperatures desired (2000F and above), two alternatives are suggested: (a) If metal with a thermal conductivity comparable with copper is used, then the blade temperature can be reduced by strong cooling at both the blade tip and root. The center of the blade will be less than 2000F hotter than the ends; (b) With low conductivity materials some method of direct cooling other than

  18. A fixed granular-bed sorber for measurement and control of alkali vapors in PFBC (pressurized fluidized-bed combustion)

    SciTech Connect

    Lee, S.H.D.; Swift, W.M.

    1990-01-01

    Alkali vapors (Na and K) in the hot flue gas from the pressurized fluidized-bed combustion (PFBC) of coal could cause corrosion problems with the gas turbine blades. In a laboratory-scale PFBC test with Beulah lignite, a fixed granular bed of activated bauxite sorbent was used to demonstrate its capability for measuring and controlling alkali vapors in the PFBC flue gas. The Beulah lignite was combusted in a bed of Tymochtee dolomite at bed temperatures ranging from 850 to 875{degrees}C and a system pressure of 9.2 atm absolute. The time-averaged concentration of sodium vapor in the PFBC flue gas was determined from the analysis of two identical beds of activated bauxite and found to be 1.42 and 1.50 ppmW. The potassium vapor concentration was determined to be 0.10 ppmW. The sodium material balance showed that only 0.24% of the total sodium in the lignite was released as vapor species in the PFBC flue gas. This results in an average of 1.56 ppmW alkali vapors in the PFBC flue gas. This average is more than 1.5 orders of magnitude greater than the currently suggested alkali specification limit of 0.024 ppm for an industrial gas turbine. The adsorption data obtained with the activated bauxite beds were also analyzed mathematically by use of a LUB (length of unused bed)/equilibrium section concept. Analytical results showed that the length of the bed, L{sub o} in centimeters, relates to the break through time, {theta}{sub b} in hours, for the alkali vapor to break through the bed as follows: L{sub o} = 33.02 + 1.99 {theta}{sub b}. This formula provides useful information for the engineering design of fixed-bed activated bauxite sorbers for the measurement and control of alkali vapors in PFBC flue gas. 26 refs., 4 figs., 4 tabs.

  19. Air-Cooled Stack Freeze Tolerance Freeze Failure Modes and Freeze Tolerance Strategies for GenDriveTM Material Handling Application Systems and Stacks Final Scientific Report

    SciTech Connect

    Hancock, David, W.

    2012-02-14

    Air-cooled stack technology offers the potential for a simpler system architecture (versus liquid-cooled) for applications below 4 kilowatts. The combined cooling and cathode air allows for a reduction in part count and hence a lower cost solution. However, efficient heat rejection challenges escalate as power and ambient temperature increase. For applications in ambient temperatures below freezing, the air-cooled approach has additional challenges associated with not overcooling the fuel cell stack. The focus of this project was freeze tolerance while maintaining all other stack and system requirements. Through this project, Plug Power advanced the state of the art in technology for air-cooled PEM fuel cell stacks and related GenDrive material handling application fuel cell systems. This was accomplished through a collaborative work plan to improve freeze tolerance and mitigate freeze-thaw effect failure modes within innovative material handling equipment fuel cell systems designed for use in freezer forklift applications. Freeze tolerance remains an area where additional research and understanding can help fuel cells to become commercially viable. This project evaluated both stack level and system level solutions to improve fuel cell stack freeze tolerance. At this time, the most cost effective solutions are at the system level. The freeze mitigation strategies developed over the course of this project could be used to drive fuel cell commercialization. The fuel cell system studied in this project was Plug Power's commercially available GenDrive platform providing battery replacement for equipment in the material handling industry. The fuel cell stacks were Ballard's commercially available FCvelocity 9SSL (9SSL) liquid-cooled PEM fuel cell stack and FCvelocity 1020ACS (Mk1020) air-cooled PEM fuel cell stack.

  20. Active (air-cooled) vs. passive (phase change material) thermal management of high power lithium-ion packs: Limitation of temperature rise and uniformity of temperature distribution

    NASA Astrophysics Data System (ADS)

    Sabbah, Rami; Kizilel, R.; Selman, J. R.; Al-Hallaj, S.

    The effectiveness of passive cooling by phase change materials (PCM) is compared with that of active (forced air) cooling. Numerical simulations were performed at different discharge rates, operating temperatures and ambient temperatures of a compact Li-ion battery pack suitable for plug-in hybrid electric vehicle (PHEV) propulsion. The results were also compared with experimental results. The PCM cooling mode uses a micro-composite graphite-PCM matrix surrounding the array of cells, while the active cooling mode uses air blown through the gaps between the cells in the same array. The results show that at stressful conditions, i.e. at high discharge rates and at high operating or ambient temperatures (for example 40-45 °C), air-cooling is not a proper thermal management system to keep the temperature of the cell in the desirable operating range without expending significant fan power. On the other hand, the passive cooling system is able to meet the operating range requirements under these same stressful conditions without the need for additional fan power.

  1. Optimisation of air cooled, open-cathode fuel cells: Current of lowest resistance and electro-thermal performance mapping

    NASA Astrophysics Data System (ADS)

    Meyer, Quentin; Ronaszegi, Krisztian; Pei-June, Gan; Curnick, Oliver; Ashton, Sean; Reisch, Tobias; Adcock, Paul; Shearing, Paul R.; Brett, Daniel J. L.

    2015-09-01

    Selecting the ideal operating point for a fuel cell depends on the application and consequent trade-off between efficiency, power density and various operating considerations. A systematic methodology for determining the optimal operating point for fuel cells is lacking; there is also the need for a single-value metric to describe and compare fuel cell performance. This work shows how the 'current of lowest resistance' can be accurately measured using electrochemical impedance spectroscopy and used as a useful metric of fuel cell performance. This, along with other measures, is then used to generate an 'electro-thermal performance map' of fuel cell operation. A commercial air-cooled open-cathode fuel cell is used to demonstrate how the approach can be used; in this case leading to the identification of the optimum operating temperature of ∼45 °C.

  2. Measured and calculated wall temperatures on air-cooled turbine vanes with boundary layer transition

    NASA Astrophysics Data System (ADS)

    Liebert, C. H.; Gaugler, R. E.; Gladden, H. J.

    1982-11-01

    Convection cooled turbine vane metal wall temperatures experimentally obtained in a hot cascade for one vane design were compared with wall temperatures calculated with TACT1 and STAN5 computer codes which incorporated various models for predicting laminar-to-turbulent boundary layer transition. Favorable comparisons on both vane surface were obtained at high Reynolds number with only one of these transition models. When other models were used, temperature differences between calculated and experimental data obtained at the high Reynolds number were as much as 14 percent in the separation bubble region of the pressure surface. On the suction surface and at lower Reynolds number, predictions and data unsatisfactorily differed by as much as 22 percent. Temperature differences of this magnitude can represent orders of magnitude error in blade life prediction.

  3. Comparison of cooling criteria with a cryogen spray and water/air spray

    NASA Astrophysics Data System (ADS)

    Exley, Jonathan; Dickinson, Mark R.; King, Terence A.; Charlton, Andrew; Falder, Sian; Kenealy, John

    1999-06-01

    Skin cooling using a cryogen spray (tetrafluoroethane) has been shown to dramatically reduce the skin surface temperature whilst predictions show that the underlying dermal tissue is unaffected. This technique is repeated with a chilled water spray, along with a continuous airflow to enhance evaporation. Radiometric skin surface temperature measurements are recorded during trials utilizing this technique and the results are compared with theoretical predictions in order to determine the mechanism by which the heat is removed from the skin. The optimum spray conditions are achieved when the water is chilled to around 2 degrees Celsius with a continuous airflow of 50 liters/minute. Under these conditions skin surface temperature reduction is about 8 degrees Celsius - 10 degrees Celsius. The measured radiometric skin surface temperature change indicates that the mechanism by which this process removes heat from the skin is predominantly evaporation. Predictions of skin temperature change with varying skin depth indicate that the optimum spray time is around 100 ms.

  4. Distortion Behavior of a Heavy Hydro Turbine Blade Casting During Forced Air Cooling in Normalizing Treatment Process

    NASA Astrophysics Data System (ADS)

    Yu, Hai-Liang; Kang, Jin-Wu; Wang, Tian-Jiao; Ma, Ji-Yu; Hu, Yong-Yi; Huang, Tian-You; Wang, Shi-Bin; Wu, Ying; Zhang, Cheng-Chun; Dai, Yan-Tao; Li, Peng

    2012-01-01

    Distortion behavior of blade castings in heat treatment process determines their geometrical accuracy, and improper control of it may result in additional repair, shape righting, or even rejection. This article presents a novel approach for discovering the distortion behavior of heavy blade castings during heat treatment process in production. Real-time measurements of distortion and temperature field of a heavy hydro turbine blade casting weighted 17 ton during forced air cooling in normalizing treatment process were carried out by using deformation measurement instruments and an infrared thermal imaging camera. The distortion processes of the typical locations of blade and the temperature field of the blade were obtained. One corner on the blade outlet edge side exhibits variation of distortion with two peaks and a valley. The range reaches 97 mm and the final distortion value is 76 mm. The maximum temperature difference on blade surface reaches 460 °C after 80 min of cooling. Influences of thermal stress and phase transformation stress on the distortion of the blade were elucidated and discussed. The results are of great significance for the understanding and control of the distortion behavior of hydro turbine blades in heat treatment.

  5. Rotational coherent anti-stokes Raman spectroscopy measurements in a rotating cavity with axial throughflow of cooling air: oxygen concentration measurements.

    PubMed

    Black, J D; Long, C A

    1992-07-20

    In a rotating cavity rig, which models cooling air flow in the spaces between disks of a gas turbine compressor, the buildup of oxygen concentration after the cooling gas was changed from nitrogen to air was monitored using rotational coherent anti-Stokes Raman spectroscopy (CARS). From this information an estimate of the fraction of the throughflow entering the rotating cavity was obtained. This demonstrates that rotational CARS can be applied as a nonintrusive concentration-measurement technique in a rotating engineering test rig. PMID:20725415

  6. Improving the energy efficiency of refrigeration plants by decreasing the temperature difference in air-cooled condensers

    NASA Astrophysics Data System (ADS)

    Shishov, V. V.; Talyzin, M. S.

    2015-09-01

    The electric energy consumption efficiency is estimated in comparing the real refrigeration machine cycle with the theoretical inverse Carnot cycle. The potential for saving electricity in using aircooled condensers with different values of temperature difference is shown. A procedure for calculating a refrigerating system with the evaporation temperature equal to -10°C, which corresponds at this temperature level to the thermal load of a standard supermarket, is described. The calculation was carried out taking into account the annual profile of temperatures in the indicated locality and based on the possibility of adjusting the condenser capacity for maintaining constant condensation temperature. The payback period in case of using condensers with different values of temperature difference is calculated; for example, in using condensers with a temperature difference of less than 15 K, the payback period will be less than one year. Decreasing the temperature difference results, on one hand, in a larger annual consumption of electric energy by the condenser fans, and on the other hand, it results in a lower condensation pressure, which leads to a smaller annual consumption of energy by the compressor unit. As a result, the total amount of energy consumed by the refrigeration system decreases so that despite a higher cost of condensers designed to operate at lower values of temperature difference, it becomes possible to achieve the above-mentioned payback period. Additionally, the payback period in case of using an air-cooled microchannel aluminum condenser was calculated: in case of using such a condenser with a temperature difference of 8 K instead of the condenser with the temperature difference equal to 15 K, the payback period will be less than half a year. Recommendations for designing new refrigeration systems equipped with air-cooled condensers are given.

  7. Magnetically Diffused Radial Electric-Arc Air Heater Employing Water-Cooled Copper Electrodes

    NASA Technical Reports Server (NTRS)

    Mayo, R. F.; Davis, D. D., Jr.

    1962-01-01

    A magnetically rotated electric-arc air heater has been developed that is novel in that an intense magnetic field of the order of 10,000 to 25,000 gauss is employed. This field is supplied by a coil that is connected in series with the arc. Experimentation with this heater has shown that the presence of an intense magnetic field transverse to the arc results in diffusion of the arc and that the arc has a positive effective resistance. With the field coil in series with the arc, highly stable arc operation is obtained from a battery power supply. External ballast is not required to stabilize the arc when it is operating at maximum power level. The electrode erosion rate is so low that the airstream contamination is no more than 0.07 percent and may be substantially less.

  8. Measurement and prediction of heat transfer from compressor discs with a radial inflow of cooling air

    NASA Astrophysics Data System (ADS)

    Farthing, P. R.; Long, C. A.; Rogers, R. H.

    1991-06-01

    An internal theory is used to model the flow, and predict heat transfer rates, for corotating compressor disks with a superposed radial inflow of air. Measurements of heat transfer are also made, both in an experimental rig and in an engine. The flow structure comprises source and sink regions, Ekman-type layers and an inviscid central core. Entrainment occurs in the source region, the fluid being distributed into the two nonentraining Ekman-type layers. Fluid leaves the cavity via the sink region. The integral model is validated against the experimental data, although there are some uncertainties in modeling the exact thermal conditions of the experiment. The magnitude of the Nusselt numbers is affected by the rotational Reynolds number and dimensionless flowrate; the maximum value of Nu is found to occur near the edge of the source region. The heat transfer measurements using the engine data show acceptable agreement with theory and experiment.

  9. PFBC HGCU Test Facility. Technical progress report: Third Quarter, CY 1993

    SciTech Connect

    Not Available

    1993-10-01

    This is the sixteenth Technical Progress Report submitted to the Department of Energy (DOE) in connection with the cooperative agreement between the DOE and Ohio Power Company for the Tidd PFBC (pressurized fluidized-bed combustion) Hot Gas Clean Up Test Facility (HGCU). This report covers the period of work completed during the Third Quarter of CY 1993. During this quarter, the Advanced Particle Filter (APF) was operated for a total of 1295 hours. This represents 58% availability during July, August, September, and including June 30 of the previous quarter. The operating dates and times since initial operation are summarized. The APF operating temperatures and differential pressures are provided. Details of the APF runs during this quarter are included in this report.

  10. PFBC HGCU Test Facility. Fourth quarterly technical progress report, CY 1991

    SciTech Connect

    Not Available

    1992-01-01

    This is the ninth technical progress report submitted to the Department of Energy in connection with the Cooperative Agreement between DOE and Ohio Power Company for the Tidd PFBC Hot Gas Clean Up Test Facility. This report covers the period of work completed during the Fourth Quarter of CY 1991. During the reporting period, work focused on completing Task 2, Hot Gas Clean Up (HGCU) Detailed Design and Task 4, Procurement Activities to support the installation of the Westinghouse advanced particle filter (APE). The following significant events occurred during this report period: The mechanical/structural contractor (Pullman Power Products) mobilized at the Tidd site in December and began erecting steel framing for the APF. A contract modification was issued to Babcock & Wilcox Co. for the supply of piping materials required for the combustor internal modifications. A contract was awarded to ANARAD, Inc. for a gas analysis system. A contract was prepared and is being processed for electrical erection.

  11. Land application uses of pressurized fluidized-bed combustion (PFBC) ash

    SciTech Connect

    Dick, W.A.; Wolfe, W.

    1993-06-01

    Dry alkaline flue gas desulfurization by-products (dry lime and limestone FGD scrubber ashes) including the American Electric Power (AEP) Tidd PFBC bed and cyclone ash, are being evaluated for beneficial uses via land application for agriculture, mine reclamation, and soil stabilization in a 5 year study that began December, 1990. A 1989 Battelle Memorial Institute report had recommended that the highest priority in stimulating reuse of FGD by-products was the sponsoring of in-field research of coal combustion products generated from high sulfur midwestern coals to (a) better understand and quantify the leach rate, fate and transport of sulfates and trace metals and (b) demonstrate the level of protection necessary to build public acceptance of land-based reuses.

  12. Internal-liquid-film-cooling Experiments with Air-stream Temperatures to 2000 Degrees F. in 2- and 4-inch-diameter Horizontal Tubes

    NASA Technical Reports Server (NTRS)

    Kinney, George R; Abramson, Andrew E; Sloop, John L

    1952-01-01

    Report presents the results of an investigation conducted to determine the effectiveness of liquid-cooling films on the inner surfaces of tubes containing flowing hot air. Experiments were made in 2- and 4-inch-diameter straight metal tubes with air flows at temperatures from 600 degrees to 2000 degrees F. and diameter Reynolds numbers from 2.2 to 14 x 10(5). The film coolant, water, was injected around the circumference at a single axial position on the tubes at flow rates from 0.02 to .24 pound per second per foot of tube circumference (0.8 to 12 percent of the air flow). Liquid-coolant films were established and maintained around and along the tube wall in concurrent flow with the hot air. The results indicated that, in order to film cool a given surface area with as little coolant flow as possible, it may be necessary to limit the flow of coolant introduced at a single axial position and to introduce it at several axial positions. The flow rate of inert coolant required to maintain liquid-film cooling over a given area of tube surface can be estimated when the gas-flow conditions are known by means of a generalized plot of the film-cooling data.

  13. PFBC freeboard firing under part load conditions development of a CFD based design tool

    SciTech Connect

    Edens, T.; Werther, J.; Hartge, E.U.; Jansson, S.A.; Bergqvist, S.

    1999-07-01

    ABB is currently building a second generation Pressurized Fluidized Bed Combined-Cycle (PFBC) plant in Cottbus, Germany. It will generate heat and electricity for the city of Cottbus, burning locally mined brown coal. In this plant, which is based on ABB's P200 PFBC module, a freeboard firing system operated with light oil will for the first time ever be used to maintain a high inlet temperature to the GT35P machine also at part load. This promotes oxidation of CO and makes selective non-catalytic NO{sub x} reduction effective also in this load range. In the present work a modeling tool is being developed in support of the design of the freeboard firing system and to help evaluate the performance of this system during operation. Another purpose of this tool is to check the sensitivity of the temperature distribution in the freeboard against a maldistribution of the fuel. For these purposes a model based on the full set of mass, momentum and energy balances was established. A commercially available computational fluid dynamics (CFD) program package was used to implement and solve the model. For the solution a stepwise approach has been chosen: in a first step the penetration of the oil jet into the freeboard, its dispersion, gasification and combustion has been modeled for a single jet. For these calculations a locally very fine grid was used. In a second step the freeboard with multiple oil jets will be described. In this latter step it will be necessary to reduce the spatial resolution significantly due to the limitation of computational resources. In the present paper the approach will be described in detail and some first computational results concerning the combustion of an oil spray will be presented.

  14. Ambient air cooling for concealed soft body armor in a hot environment.

    PubMed

    Ryan, Greg A; Bishop, Stacy H; Herron, Robert L; Katica, Charles P; Elbon, Bre'anna L; Bosak, Andrew M; Bishop, Phillip

    2014-01-01

    Concealed soft body armor inhibits convective and evaporative heat loss and increases heat storage, especially in hot environments. One option to potentially mitigate heat storage is to promote airflow under the soft body armor. The purpose of this study was to evaluate the effect of ambient air induction (∼100 liters per minute) on heat strain while wearing concealed soft body armor in a hot environment (wet bulb globe temperature = 30°C). A counter-balanced, repeated measures protocol was performed with nine healthy male volunteers. Participants were fitted with either a traditional or modified Level II concealed soft body armor. Participants performed cycles of 12 min of walking (1.25 liters per minute) and 3 min of arm curls (0.6 liters per minute) for a total of 60 min. Two-way repeated measures ANOVA was used to assess the mean differences in physiological measures (rectal temperature, heart rate, micro-environment [temperature and relative humidity]). Post hoc Bonferroni analysis and paired samples t-tests (alpha = 0.01) were conducted on omnibus significant findings. Perceptual measures (perceived exertion, thermal comfort) were analyzed using Wilcoxon Signed Ranks Tests. Modification led to an improvement in perceived exertion at 45 min (MOD: 10 ± 1; CON: 11 ± 2; p ≤ 0.001) and 60 min (MOD: 10 ± 2; CON: 12 ± 2; p ≤ 0.001) and a reduction in micro-environment temperature in MOD (1.0 ± 0.2°C, p = 0.03) compared to CON. Modification did not attenuate change in rectal temperature or heart rate (p < 0.01) during 60-min work bout. Change in rectal temperature approached significance between MOD and CON at the end of the work bout (MOD: 0.4 ± 0.2°C; CON: 0.7 ± 0.3°C; p = 0.048). The slope of rectal temperature was significantly greater (p = 0.04) under CON compared to MOD. These data suggest that air induction may provide small benefits while wearing concealed soft body armor, though improvements are needed to lessen physiological strain

  15. Air cooling of a vented enclosure by combined conduction, natural convection and radiation

    SciTech Connect

    Yu, E.; Joshi, Y.K.

    1996-12-31

    A three-dimensional investigation of combined conduction, natural convection and radiation in vented enclosures is carried out. A discrete flush type heat source mounted on a vertical substrate is used to simulate an electronic component. A uniform volumetric generation rate is assumed within the heat source. Combined natural convection in the air, conduction in the heat source, the substrate and the enclosure walls, and surface radiation are solved for Rayleigh numbers at 2.6 {times} 10{sup 6} and 2.0 {times} 10{sup 7}. Radiation is incorporated based on the radiosity/irradiation approach. The resulting flow and temperature patterns are discussed, focusing on radiation and three-dimensional effects. The relative contributions of natural convection and radiation are investigated for different emissivities of internal surface of the substrate. Heat transfer rates from the substrate and other internal walls are presented to illustrate conjugate heat transfer due to combined modes. The numerical solutions are found in reasonably good agreement with the data.

  16. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  17. A simple theoretical model of heat and moisture transport in multi-layer garments in cool ambient air.

    PubMed

    Wissler, Eugene H; Havenith, George

    2009-03-01

    Overall resistances for heat and vapor transport in a multilayer garment depend on the properties of individual layers and the thickness of any air space between layers. Under uncomplicated, steady-state conditions, thermal and mass fluxes are uniform within the garment, and the rate of transport is simply computed as the overall temperature or water concentration difference divided by the appropriate resistance. However, that simple computation is not valid under cool ambient conditions when the vapor permeability of the garment is low, and condensation occurs within the garment. Several recent studies have measured heat and vapor transport when condensation occurs within the garment (Richards et al. in Report on Project ThermProject, Contract No. G6RD-CT-2002-00846, 2002; Havenith et al. in J Appl Physiol 104:142-149, 2008). In addition to measuring cooling rates for ensembles when the skin was either wet or dry, both studies employed a flat-plate apparatus to measure resistances of individual layers. Those data provide information required to define the properties of an ensemble in terms of its individual layers. We have extended the work of previous investigators by developing a rather simple technique for analyzing heat and water vapor transport when condensation occurs within a garment. Computed results agree well with experimental results reported by Richards et al. (Report on Project ThermProject, Contract No. G6RD-CT-2002-00846, 2002) and Havenith et al. (J Appl Physiol 104:142-149, 2008). We discuss application of the method to human subjects for whom the rate of sweat secretion, instead of the partial pressure of water on the skin, is specified. Analysis of a more complicated five-layer system studied by Yoo and Kim (Text Res J 78:189-197, 2008) required an iterative computation based on principles defined in this paper. PMID:19125281

  18. Experimental and numerical investigations on slot air jet impingement cooling of a heated cylindrical concave surface

    NASA Astrophysics Data System (ADS)

    Nouri-Bidgoli, H.; Ashjaee, M.; Yousefi, T.

    2014-04-01

    Experimental and numerical studies have been carried out for slot air jet impingement on a heated concave surface of a partially opened-top horizontal cylinder of length L = 20 cm. The slot jet is situated at the symmetry line of the partially opened-top cylinder along the gravity vector and impinges to the bottom of the cylinder which is designated as θ = 0°. The width of the opening at the top of the horizontal cylinder is W = 3 cm which corresponds to a circumferential angle Δθ = 50.8°. The experiments are performed by a Mach-Zehnder interferometer which enables to measure the local convection heat transfer coefficient. Also, a finite volume method based on the SIMPLE algorithm and non-orthogonal grid discretization scheme is used to solve the continuity, momentum, and energy equations. The Poisson equations are solved for (x, y) to find the grid points which are distributed in a non-uniform manner with higher concentration close to the solid regions. The effects of jet Reynolds number ( Re j) in the range from 190 to 1,600 and the ratio of spacing between nozzle and cylinder surface to the jet width from H = 1.5 to H = 10.7 on the local and average Nusselt numbers are examined. It is observed that maximum Nusselt number occurs at the stagnation point at (θ = 0°) and the local heat transfer coefficient decreases on the circumferential surface of the cylinder with increase of θ as a result of thermal boundary layer thickness growth. Also results show that the local and average heat transfer coefficients are raised by increasing the jet Reynolds number and by decreasing the nozzle-to-surface spacing.

  19. Turbomachine rotor with improved cooling

    DOEpatents

    Hultgren, K.G.; McLaurin, L.D.; Bertsch, O.L.; Lowe, P.E.

    1998-05-26

    A gas turbine rotor has an essentially closed loop cooling air scheme in which cooling air drawn from the compressor discharge air that is supplied to the combustion chamber is further compressed, cooled, and then directed to the aft end of the turbine rotor. Downstream seal rings attached to the downstream face of each rotor disc direct the cooling air over the downstream disc face, thereby cooling it, and then to cooling air passages formed in the rotating blades. Upstream seal rings attached to the upstream face of each disc direct the heated cooling air away from the blade root while keeping the disc thermally isolated from the heated cooling air. From each upstream seal ring, the heated cooling air flows through passages in the upstream discs and is then combined and returned to the combustion chamber from which it was drawn. 5 figs.

  20. Turbomachine rotor with improved cooling

    DOEpatents

    Hultgren, Kent Goran; McLaurin, Leroy Dixon; Bertsch, Oran Leroy; Lowe, Perry Eugene

    1998-01-01

    A gas turbine rotor has an essentially closed loop cooling air scheme in which cooling air drawn from the compressor discharge air that is supplied to the combustion chamber is further compressed, cooled, and then directed to the aft end of the turbine rotor. Downstream seal rings attached to the downstream face of each rotor disc direct the cooling air over the downstream disc face, thereby cooling it, and then to cooling air passages formed in the rotating blades. Upstream seal rings attached to the upstream face of each disc direct the heated cooling air away from the blade root while keeping the disc thermally isolated from the heated cooling air. From each upstream seal ring, the heated cooling air flows through passages in the upstream discs and is then combined and returned to the combustion chamber from which it was drawn.

  1. Improving Vortex Generators to Enhance the Performance of Air-Cooled Condensers in a Geothermal Power Plant

    SciTech Connect

    Manohar S. Sohal

    2005-09-01

    This report summarizes work at the Idaho National Laboratory to develop strategies to enhance air-side heat transfer in geothermal air-cooled condensers such that it should not significantly increase pressure drop and parasitic fan pumping power. The work was sponsored by the U.S. Department of Energy, NEDO (New Energy and Industrial Technology Development Organization) of Japan, Yokohama National University, and the Indian Institute of Technology, Kanpur, India. A combined experimental and numerical investigation was performed to investigate heat transfer enhancement techniques that may be applicable to largescale air-cooled condensers such as those used in geothermal power applications. A transient heat transfer visualization and measurement technique was employed in order to obtain detailed distributions of local heat transfer coefficients on model fin surfaces. Pressure drop measurements were obtained for a variety of tube and winglet configurations using a single-channel flow apparatus that included four tube rows in a staggered array. Heat transfer and pressure drop measurements were also acquired in a separate multiple-tube row apparatus in the Single Blow Test Facility. In addition, a numerical modeling technique was developed to predict local and average heat transfer for these low-Reynolds number flows, with and without winglets. Representative experimental and numerical results were obtained that reveal quantitative details of local finsurface heat transfer in the vicinity of a circular tube with a single delta winglet pair downstream of the cylinder. Heat transfer and pressure-drop results were obtained for flow Reynolds numbers based on channel height and mean flow velocity ranging from 700 to 6500. The winglets were of triangular (delta) shape with a 1:2 or 1:3 height/length aspect ratio and a height equal to 90% of the channel height. Overall mean fin-surface heat transfer results indicate a significant level of heat transfer enhancement (in terms of

  2. A fractal time thermal model for predicting the surface temperature of air-cooled cylindrical Li-ion cells based on experimental measurements

    NASA Astrophysics Data System (ADS)

    Reyes-Marambio, Jorge; Moser, Francisco; Gana, Felipe; Severino, Bernardo; Calderón-Muñoz, Williams R.; Palma-Behnke, Rodrigo; Estevez, Pablo A.; Orchard, Marcos; Cortés, Marcelo

    2016-02-01

    This paper presents a experimentally-validated fractal time thermal model to describe the discharge and cooling down processes of air-cooled cylindrical Lithium-ion cells. Three cases were studied, a spatially isolated single cell under natural convection and two spatial configurations of modules with forced air cooling: staggered and aligned arrays with 30 and 25 cells respectively. Surface temperature measurements for discharge processes were obtained in a single cell at 1 C, 2 C and 3 C discharge rates, and in the two arrays at 1 C discharge rate. In the modules, surface temperature measurements were obtained for selected cells at specific inlet cooling air speeds. The fractal time energy equation captures the anomalous temperature relaxation and describes the cell surface temperature using a stretched exponential model. Stretched exponential temperature models of cell surface temperature show a better agreement with experimental measurements than pure exponential temperature models. Cells closer to the horizontal side walls have a better heat dissipation than the cells along the centerline of the module. The high prediction capabilities of the fractal time energy equation are useful in new design approaches of thermal control strategies of modules and packs, and to develop more efficient signal-correction algorithms in multipoint temperature measurement technologies in Li-ion batteries.

  3. Proceedings of the coal-fired power systems 94: Advances in IGCC and PFBC review meeting. Volume 1

    SciTech Connect

    McDaniel, H.M.; Staubly, R.K.; Venkataraman, V.K.

    1994-06-01

    The Coal-Fired Power Systems 94 -- Advances in IGCC and PFBC Review Meeting was held June 21--23, 1994, at the Morgantown Energy Center (METC) in Morgantown, West Virginia. This Meeting was sponsored and hosted by METC, the Office of Fossil Energy, and the US Department of Energy (DOE). METC annually sponsors this conference for energy executives, engineers, scientists, and other interested parties to review the results of research and development projects; to discuss the status of advanced coal-fired power systems and future plans with the industrial contractors; and to discuss cooperative industrial-government research opportunities with METC`s in-house engineers and scientists. Presentations included industrial contractor and METC in-house technology developments related to the production of power via coal-fired Integrated Gasification Combined Cycle (IGCC) and Pressurized Fluidized Bed Combustion (PFBC) systems, the summary status of clean coal technologies, and developments and advancements in advanced technology subsystems, such as hot gas cleanup. A keynote speaker and other representatives from the electric power industry also gave their assessment of advanced power systems. This meeting contained 11 formal sessions and one poster session, and included 52 presentations and 24 poster presentations. Volume I contains papers presented at the following sessions: opening commentaries; changes in the market and technology drivers; advanced IGCC systems; advanced PFBC systems; advanced filter systems; desulfurization system; turbine systems; and poster session. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  4. Developing technologies for high-volume land application uses of pressurized fluidized-bed combustion (PFBC) ash

    SciTech Connect

    Beeghly, J.H.; Dick, W.A.; Wolfe, W.

    1995-04-01

    Dry alkaline flue gas desulfurization (FGD) by-products, including Tidd PFBC bed and cyclone ash are being evaluated for beneficial uses via land application for agriculture, mine spoil reclamation, soil stabilization, and road embankment construction in a 5 year, $4.4 million research program based in Ohio. The beneficial use for agriculture and mine reclamation as a soil amendment material is primarily due to its high acid neutralizing capacity and gypsum content. Concentrations of leachate RCRA heavy metals approached primary drinking water quality standards and are well within the criteria for classification as non-toxic fly ash according to Ohio EPA policy. Characterization tests of compressive strength, permeability, and compressibility indicate the by-products are practical materials for use in high volume engineered fills or embankments, base courses, and for soil reinforcement. Large field demonstrations of technical, economic, and environmental feasibility have been completed using Tidd PFBC ash (1) to reclaim abandoned coal mineland spoil, (2) as an agricultural lime substitute, (3) in stabilized base construction for a cattle feedlot, and (4) for reconstruction of two state highway embankments. An important factor to understand the behavior of this Tidd PFBC residue is that dolomite was the sorbent.

  5. Liquid cooled garments

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Liquid cooled garments employed in several applications in which severe heat is encountered are discussed. In particular, the use of the garments to replace air line cooling units in a variety of industrial processing situations is discussed.

  6. Cooling apparatus for water-cooled engines

    SciTech Connect

    Fujikawa, T.; Tamba, S.

    1986-05-20

    A cooling apparatus is described for a water-cooled internal combustion engine including a shaft that rotates when the engine is running, the apparatus comprising a centrifugal fan adapted to be connected to and rotated by the shaft, the fan having an intake air port and a discharge air opening, a rotary screen adapted to be operatively connected to and rotated by the shaft, the screen being disposed in the intake air port, a cooling radiator, a spiral-shaped duct connecting the radiator with the discharge air opening, and separating means on the duct, the separating means comprising an opening formed in the outer wall of the duct.

  7. Hydronic rooftop cooling systems

    DOEpatents

    Bourne, Richard C.; Lee, Brian Eric; Berman, Mark J.

    2008-01-29

    A roof top cooling unit has an evaporative cooling section that includes at least one evaporative module that pre-cools ventilation air and water; a condenser; a water reservoir and pump that captures and re-circulates water within the evaporative modules; a fan that exhausts air from the building and the evaporative modules and systems that refill and drain the water reservoir. The cooling unit also has a refrigerant section that includes a compressor, an expansion device, evaporator and condenser heat exchangers, and connecting refrigerant piping. Supply air components include a blower, an air filter, a cooling and/or heating coil to condition air for supply to the building, and optional dampers that, in designs that supply less than 100% outdoor air to the building, control the mixture of return and ventilation air.

  8. Passive containment cooling system

    DOEpatents

    Conway, Lawrence E.; Stewart, William A.

    1991-01-01

    A containment cooling system utilizes a naturally induced air flow and a gravity flow of water over the containment shell which encloses a reactor core to cool reactor core decay heat in two stages. When core decay heat is greatest, the water and air flow combine to provide adequate evaporative cooling as heat from within the containment is transferred to the water flowing over the same. The water is heated by heat transfer and then evaporated and removed by the air flow. After an initial period of about three to four days when core decay heat is greatest, air flow alone is sufficient to cool the containment.

  9. Investigations of Air-Cooled Turbine Rotors for Turbojet Engines. 1: Experimental Disk Temperature Distribution in Modified J33 Split-Disk Rotor at Speeds up to 6000 RPM

    NASA Technical Reports Server (NTRS)

    Schramm, Wilson B.; Ziemer, Robert R.

    1952-01-01

    An experimental investigation is being conducted at the Lewis laboratory to establish general principles for the design of noncritical turbine rotor configurations. This investigation includes evaluation of cooling effectiveness, structural stability, cooling-air flow distribution characteristics, and methods of supplying cooling air to the turbine rotor blades. Prior to design of a noncritical rotor, a standard turbine rotor of a commerical turbojet engine was split in the plane of rotation and machined to provide a passage for distributing cooling air to the base of each blade. The rotor was fitted with nontwisted, hollow, aircooled blades containing nine tubes in the coolant passage. In the investigation reported herein, the modified turbine rotor operated successfully up to speeds of 6000 rpm with ratios of cooling-air to combustion-gas flow as low as 0.02. The disk temperatures observed at these conditions were below 450 0 F when cooling air at 100 F was used from the laboratory air system. The calculated disk temperatures based on the correlation method presented for rated engine conditions were well below 1000 F at a cooling-air flow ratio of 0.02, which is considered adequate for a noncritical rotor. An appreciable difference in temperature level existed between the forward and rear disks. This temperature difference probably introduced undesirable disk stress distributions as a result of the relative elongations of the two disks. This investigation was terminated at 6000 rpm so that slight changes in the engine configuration could be made to relieve this condition.

  10. Comparison of Cryotop and micro volume air cooling methods for cryopreservation of bovine matured oocytes and blastocysts

    PubMed Central

    PUNYAWAI, Kanchana; ANAKKUL, Nitira; SRIRATTANA, Kanokwan; AIKAWA, Yoshio; SANGSRITAVONG, Siwat; NAGAI, Takashi; IMAI, Kei; PARNPAI, Rangsun

    2015-01-01

    This study was designed to compare the efficiency of the Cryotop method and that of two methods that employ a micro volume air cooling (MVAC) device by analyzing the survival and development of bovine oocytes and blastocysts vitrified using each method. In experiment I, in vitro-matured (IVM) oocytes were vitrified using an MVAC device without direct contact with liquid nitrogen (LN2; MVAC group) or directly plunged into LN2 (MVAC in LN2 group). A third group of IVM oocytes was vitrified using a Cryotop device (Cryotop group). After warming, vitrified oocytes were fertilized in vitro. There were no significant differences in cleavage and blastocyst formation rates among the three vitrified groups, with the rates ranging from 53.1% to 56.6% and 20.0% to 25.5%, respectively; however, the rates were significantly lower (P < 0.05) than those of the fresh control group (89.3% and 43.3%, respectively) and the solution control group (87.3% and 42.0%, respectively). In experiment II, in vitro-produced (IVP) expanded blastocysts were vitrified using the MVAC, MVAC in LN2 and Cryotop methods, warmed and cultured for survival analysis and then compared with the solution control group. The rate of development of vitrified-warmed expanded blastocysts to the hatched blastocyst stage after 24 h of culture was lower in the MVAC in LN2 group than in the solution control group; however, after 48–72 h of culture, the rates did not significantly differ between the groups. These results indicate that the MVAC method without direct LN2 contact is as effective as the standard Cryotop method for vitrification of bovine IVM oocytes and IVP expanded blastocysts. PMID:26119929

  11. Nonequilibrium sulfur capture and retention in an air cooled slagging coal combustor. Quarterly technical progress report, 1996

    SciTech Connect

    Zauderer, B.

    1996-11-01

    The objective of this 24 month project is to determine the degree of sulfur retention in slag in a full scale cyclone coal combustor with sulfur capture by calcium oxide sorbent injection into the combustor. This sulfur capture process consists of two steps: Capture of sulfur with calcined calcium oxide followed by impact of the reacted sulfur-calcium particles on the liquid slag lining the combustor. The sulfur bearing slag must be removed within several minutes from the combustor to prevent re-evolution of the sulfur from the slag. To accomplish this requires slag mass flow rates in the range of several 100 lb/hr. To study this two step process in the combustor, two groups of tests are being implemented. In the first group, calcium sulfate in the form of gypsum, or plaster of Paris, was injected in the combustor to determine sulfur evolution from slag. In the second group, the entire process is tested with limestone and/or calcium hydrate injected into the combustor. This entire effort consists of a series of up to 16 parametric tests in a 20 MMtu/hr slagging, air cooled, cyclone combustor. During the present quarterly reporting period ending September 30,1996, three tests in this project were implemented, bringing the total tests to 5. In addition, a total of 10 test days were completed during this quarter on the parallel project that utilizes the same 20 MMtu/hr combustor. The results of that project, especially those related to improved slagging performance, have a direct bearing on this project in assuring proper operation at the high slag flow rates that may be necessary to achieve high sulfur retention in slag.

  12. Preliminary analysis of problem of determining experimental performance of air-cooled turbine I : methods for determining heat-transfer characteristics

    NASA Technical Reports Server (NTRS)

    Ellerbrock, Herman H , Jr; Ziemer, Robert R

    1950-01-01

    In determining the experimental performance of an air-cooled turbine, the heat-transfer characteristics must be evaluated. The suggested formulas that are required to determine these characteristics are presented. The formulas have a form in which dependent parameters are expressed as unknown functions of independent parameters. Methods of experimenting to determine these functions are suggested. In some cases general heat-transfer discussions that lead to the suggested forms of the formulas are given.

  13. Comparison of Calculated and Experimental Temperatures and Coolant Pressure Losses for a Cascade of Small Air-Cooled Turbine Rotor Blades

    NASA Technical Reports Server (NTRS)

    Stepka, Francis S

    1958-01-01

    Average spanwise blade temperatures and cooling-air pressure losses through a small (1.4-in, span, 0.7-in, chord) air-cooled turbine blade were calculated and are compared with experimental nonrotating cascade data. Two methods of calculating the blade spanwise metal temperature distributions are presented. The method which considered the effect of the length-to-diameter ratio of the coolant passage on the blade-to-coolant heat-transfer coefficient and assumed constant coolant properties based on the coolant bulk temperature gave the best agreement with experimental data. The agreement obtained was within 3 percent at the midspan and tip regions of the blade. At the root region of the blade, the agreement was within 3 percent for coolant flows within the turbulent flow regime and within 10 percent for coolant flows in the laminar regime. The calculated and measured cooling-air pressure losses through the blade agreed within 5 percent. Calculated spanwise blade temperatures for assumed turboprop engine operating conditions of 2000 F turbine-inlet gas temperature and flight conditions of 300 knots at a 30,000-foot altitude agreed well with those obtained by the extrapolation of correlated experimental data of a static cascade investigation of these blades.

  14. Land application uses of pressurized fluidized-bed combustion (PFBC) ash

    SciTech Connect

    Beeghly, J.H.; Dick, W.A.; Wolfe, W.

    1993-09-01

    Dry alkaline flue gas desulfurization by-products (dry lime and limestone FGD scrubber ashes) including the American Electric Power (AEP) Tidd PFBC bed and cyclone ash, are being evaluated for beneficial uses via land application for agriculture, mine reclamation, and soil stabilization in a 5 year study that began December, 1990. A 1989 Battelle Memorial Institute report had recommended that the highest priority in stimulating reuse of FGD by-products was the sponsoring of in-field research of coal combustion products generated from high sulfur midwestern coals to (a) better understand and quantify the leach rate, fate and transport of sulfates and trace metals and (b) demonstrate the level of protection necessary to build public acceptance of land-based reuses (1). The specific objectives of the demonstration project are as follows: To characterize the material generated from dry FGD processes; to demonstrate the utilization of dry FGD by-products as an soil amendment material on agricultural lands and on abandoned and active surface coal mines in Ohio; to demonstrate the use of dry FGD by-product as an engineering material for soil stabilization; to determine the quantities of dry FGD material than can be utilized in each of these applications; to determine the environmental and economic impact of utilizing the material.

  15. PFBC HGCU Test Facility. Technical progress report No. 24, Third quarter, CY 1995

    SciTech Connect

    1995-10-01

    This is the twenty-fourth and final Technical Progress Report submitted to the Department of Energy (DOE) in connection with the cooperative agreement between the DOE and Ohio Power Company for the Tidd PFBC Hot Gas Clean Up Test Facility. This report covers the work completed during the Third Quarter of CY 1995. All activity this quarter was directed toward the completion of the program final report. A draft copy of the final report was forwarded to DOE during this quarter, and DOE submitted their comments on the report to AEPSC. DOE requested that Westinghouse write an appendix to the report covering the performance of the fail-safe regenerator devices during Tad operation, and Westinghouse subsequently prepared the appendix. Additional DOE comments were incorporated into the report, and it will be issued in camera-ready form by the end of October, 1995, which is the program end date. Appendix 1 presents the results of filter candle posttest examination by Westinghouse performed on selected filter candles following final shutdown of the system.

  16. Combined current and temperature mapping in an air-cooled, open-cathode polymer electrolyte fuel cell under steady-state and dynamic conditions

    NASA Astrophysics Data System (ADS)

    Meyer, Q.; Ronaszegi, K.; Robinson, J. B.; Noorkami, M.; Curnick, O.; Ashton, S.; Danelyan, A.; Reisch, T.; Adcock, P.; Kraume, R.; Shearing, P. R.; Brett, D. J. L.

    2015-11-01

    In situ diagnostic techniques provide a means of understanding the internal workings of fuel cells so that improved designs and operating regimes can be identified. Here, for the first time, a combined current density and temperature distributed measurement system is used to generate an electro-thermal performance map of an air-cooled, air-breathing polymer electrolyte fuel cell stack operating in an air/hydrogen cross-flow configuration. Analysis is performed in low- and high-current regimes and a complex relationship between localised current density, temperature and reactant supply is identified that describes the way in which the system enters limiting performance conditions. Spatiotemporal analysis was carried out to characterise transient operations in dead-ended anode/purge mode which revealed extensive current density and temperature gradients.

  17. Effect of cooling-hole geometry on aerodynamic performance of a film-cooled turbine vane tested with cold air in a two-dimensional cascade

    NASA Technical Reports Server (NTRS)

    Kline, J. F.; Stabe, R. G.; Moffitt, T. P.

    1978-01-01

    The effect of the orientation and cooling-hole size on turbine-vane aerodynamic losses was evaluated. The contribution of individual vane regions to the overall effect was also investigated. Test configurations were based upon a representative configuration having 45 spanwise rows of holes spaced about the entire vane profile. Nominal hole diameters of 0.0254 and 0.0356 cm and nominal hole orientations of 35 deg, 45 deg, and 55 deg from the local vane surface and 0 deg, 45 deg, and 90 deg from the main-stream flow direction were investigated. Flow conditions and aerodynamic losses were determined by vane-exit surveys of total pressure, static pressure, and flow angle.

  18. Testing of candidate materials for their resistance to alkali-vapor adsorption in PFBC and gasification environments. Final report

    SciTech Connect

    Lee, S.H.D.; Natesan, K.; Swift, W.M.

    1995-08-01

    Laboratory-scale studies were performed to identify metallic material(s) having no, or limited, affinity for alkali vapors in an environment of either the off-gas from pressurized fluidized-bed combustion (PFBC) or the fuel gas from coal gasification. Such materials would be potential candidates for use as components in advanced coal-utilization systems. The following materials were tested for adsorption of NaCl vapor at 870--875 C and atmospheric pressure in a simulated PFBC off-gas (oxidizing) doped with 80 ppmW NaCl vapor: iron-based Type 304 stainless steel (304 SS), nickel-based Hastelloy C-276 and Hastelloy X alloys, cobalt-based Haynes No. 188 alloy, noble-metal-coated 304 SS, aluminized 304 SS, and ZrO{sub 2}-coated 304 SS. The Haynes No. 188 alloy and the aluminized 304 SS were also tested for their NaCl-vapor adsorption in a simulated gasification fuel gas (reducing) under the same test conditions as in the PFBC off-gas test. After 100 h of testing, the specimens were analyzed with a SEM equipped with an energy dispersive X-ray analyzer, and by an AES. The aluminized 304 SS had the least tendency to adsorb NaCl vapor, as well as an excellent resistance to corrosion as a result of the formation of a protective layer of Al{sub 2}O{sub 3} on its surface. In the reducing environment, however, the aluminized 304 SS was badly corroded by H{sub 2}S attack. The Haynes No. 188 showed virtually no NaCl-vapor adsorption and only limited H{sub 2}S attack. The authors recommend further long-term parametric studies to quantitate alkali-vapor adsorption as a function of operating variables for (1) the aluminized 304 SS in the PFBC off-gas environment and (2) the Haynes No. 188 in the gasification fuel gas environment.

  19. Development and Evaluation of an Externally Air-Cooled Low-Flow torch and the Attenuation of Space Charge and Matrix Effects in Inductively Coupled Plasma Mass Spectrometry

    SciTech Connect

    Praphairaksit, N.

    2000-09-12

    An externally air-cooled low-flow torch has been constructed and successfully demonstrated for applications in inductively coupled plasma mass spectrometry (ICP-MS). The torch is cooled by pressurized air flowing at {approximately}70 L/min through a quartz air jacket onto the exterior of the outer tube. The outer gas flow rate and operating RF forward power are reduced considerably. Although plasmas can be sustained at the operating power as low as 400 W with a 2 L/min of outer gas flow, somewhat higher power and outer gas flows are advisable. A stable and analytical useful plasma can be obtained at 850 W with an outer gas flow rate of {approximately}4 L/min. Under these conditions, the air-cooled plasma produces comparable sensitivities, doubly charged ion ratios, matrix effects and other analytical merits as those produced by a conventional torch while using significantly less argon and power requirements. Metal oxide ion ratios are slightly higher with the air-cooled plasma but can be mitigated by reducing the aerosol gas flow rate slightly with only minor sacrifice in analyte sensitivity. A methodology to alleviate the space charge and matrix effects in ICP-MS has been developed. A supplemental electron source adapted from a conventional electron impact ionizer is added to the base of the skimmer. Electrons supplied from this source downstream of the skimmer with suitable amount and energy can neutralize the positive ions in the beam extracted from the plasma and diminish the space charge repulsion between them. As a result, the overall ion transmission efficiency and consequent analyte ion sensitivities are significantly improved while other important analytical aspects, such as metal oxide ion ratio, doubly charged ion ratio and background ions remain relatively unchanged with the operation of this electron source. This technique not only improves the ion transmission efficiency but also minimizes the matrix effects drastically. The matrix-induced suppression

  20. Thermodynamic study of air-cycle and mercury-vapor-cycle systems for refrigerating cooling air for turbines or other components

    NASA Technical Reports Server (NTRS)

    Nachtigall, Alfred J; Freche, John C; Esgar, Jack B

    1956-01-01

    An analysis of air refrigeration systems indicated that air cycles are generally less satisfactory than simple heat exchangers unless high component efficiencies and high values of heat-exchanger effectiveness can be obtained. A system employing a mercury-vapor cycle appears to be feasible for refrigerating air that must enter the system at temperature levels of approximately 1500 degrees R, and this cycle is more efficient than the air cycle. Weight of the systems was not considered. The analysis of the systems is presented in a generalized dimensionless form.

  1. Dry/wet performance of a plate-fin air cooled heat exchanger with continuous corrugated fins

    NASA Astrophysics Data System (ADS)

    Hauser, S. G.; Kreid, D. K.; Johnson, B. M.

    1982-04-01

    Work to determine experimentally the performance and operating characteristics of a plate-fin heat exchanger during dry/wet of deluge operation is discussed, as well as the development of the deluge heat/mass transfer model. The work supports the improvement of power plant cooling systems that conserve fresh water in an environmentally and economically viable manner. The experiments identified important trade-offs concerning deluge cooling; these are discussed. The earlier deluge model was refined and extended to the simultaneous calculation of heat transfer and evaporation from wetted surfaces. Experiments showed the model to be an excellent predictor of heat exchanger performance during deluge operation.

  2. Energy and economic assessment of desiccant cooling systems coupled with single glazed air and hybrid PV/thermal solar collectors for applications in hot and humid climate

    SciTech Connect

    Beccali, Marco; Finocchiaro, Pietro; Nocke, Bettina

    2009-10-15

    This paper presents a detailed analysis of the energy and economic performance of desiccant cooling systems (DEC) equipped with both single glazed standard air and hybrid photovoltaic/thermal (PV/t) collectors for applications in hot and humid climates. The use of 'solar cogeneration' by means of PV/t hybrid collectors enables the simultaneous production of electricity and heat, which can be directly used by desiccant air handling units, thereby making it possible to achieve very energy savings. The present work shows the results of detailed simulations conducted for a set of desiccant cooling systems operating without any heat storage. System performance was investigated through hourly simulations for different systems and load combinations. Three configurations of DEC systems were considered: standard DEC, DEC with an integrated heat pump and DEC with an enthalpy wheel. Two kinds of building occupations were considered: office and lecture room. Moreover, three configurations of solar-assisted air handling units (AHU) equipped with desiccant wheels were considered and compared with standard AHUs, focusing on achievable primary energy savings. The relationship between the solar collector's area and the specific primary energy consumption for different system configurations and building occupation patterns is described. For both occupation patterns, sensitivity analysis on system performance was performed for different solar collector areas. Also, this work presents an economic assessment of the systems. The cost of conserved energy and the payback time were calculated, with and without public incentives for solar cooling systems. It is worth noting that the use of photovoltaics, and thus the exploitation of related available incentives in many European countries, could positively influence the spread of solar air cooling technologies (SAC). An outcome of this work is that SAC systems equipped with PV/t collectors are shown to have better performance in terms of

  3. Effect of Water-Alcohol Injection and Maximum Economy Spark Advance on Knock-Limited Performance and Fuel Economy of a Large Air-Cooled Cylinder

    NASA Technical Reports Server (NTRS)

    Heinicke, Orville H.; Vandeman, Jack E.

    1945-01-01

    An investigation was conducted to determine the effect of a coolant solution of 25 percent ethyl alcohol, 25 percent methyl alcohol, and 50 percent water by volume and maximum-economy spark advance on knock-limited performance and fuel economy of a large air-cooled cylinder. The knock-limited performance of the cylinder at engine speeds of 2100 and 2500 rpm was determined for coolant-fuel ratios of 0.0, 0.2, and 0.4. The effect of water-alcohol injection on fuel economy was determined in constant charge-air flow tests. The tests were conducted at a spark advance of 20 deg B.T.C. and maximum-economy spark advance.

  4. Design Report for the ½ Scale Air-Cooled RCCS Tests in the Natural convection Shutdown heat removal Test Facility (NSTF)

    SciTech Connect

    Lisowski, D. D.; Farmer, M. T.; Lomperski, S.; Kilsdonk, D. J.; Bremer, N.; Aeschlimann, R. W.

    2014-06-01

    The Natural convection Shutdown heat removal Test Facility (NSTF) is a large scale thermal hydraulics test facility that has been built at Argonne National Laboratory (ANL). The facility was constructed in order to carry out highly instrumented experiments that can be used to validate the performance of passive safety systems for advanced reactor designs. The facility has principally been designed for testing of Reactor Cavity Cooling System (RCCS) concepts that rely on natural convection cooling for either air or water-based systems. Standing 25-m in height, the facility is able to supply up to 220 kW at 21 kW/m2 to accurately simulate the heat fluxes at the walls of a reactor pressure vessel. A suite of nearly 400 data acquisition channels, including a sophisticated fiber optic system for high density temperature measurements, guides test operations and provides data to support scaling analysis and modeling efforts. Measurements of system mass flow rate, air and surface temperatures, heat flux, humidity, and pressure differentials, among others; are part of this total generated data set. The following report provides an introduction to the top level-objectives of the program related to passively safe decay heat removal, a detailed description of the engineering specifications, design features, and dimensions of the test facility at Argonne. Specifications of the sensors and their placement on the test facility will be provided, along with a complete channel listing of the data acquisition system.

  5. Performance Evaluation of a 4.5 kW (1.3 Refrigeration Tons) Air-Cooled Lithium Bromide/Water Solar Powered (Hot-Water-Fired) Absorption Unit

    SciTech Connect

    Zaltash, Abdolreza; Petrov, Andrei Y; Linkous, Randall Lee; Vineyard, Edward Allan

    2007-01-01

    During the summer months, air-conditioning (cooling) is the single largest use of electricity in both residential and commercial buildings with the major impact on peak electric demand. Improved air-conditioning technology has by far the greatest potential impact on the electric industry compared to any other technology that uses electricity. Thermally activated absorption air-conditioning (absorption chillers) can provide overall peak load reduction and electric grid relief for summer peak demand. This innovative absorption technology is based on integrated rotating heat exchangers to enhance heat and mass transfer resulting in a potential reduction of size, cost, and weight of the "next generation" absorption units. Rotartica Absorption Chiller (RAC) is a 4.5 kW (1.3 refrigeration tons or RT) air-cooled lithium bromide (LiBr)/water unit powered by hot water generated using the solar energy and/or waste heat. Typically LiBr/water absorption chillers are water-cooled units which use a cooling tower to reject heat. Cooling towers require a large amount of space, increase start-up and maintenance costs. However, RAC is an air-cooled absorption chiller (no cooling tower). The purpose of this evaluation is to verify RAC performance by comparing the Coefficient of Performance (COP or ratio of cooling capacity to energy input) and the cooling capacity results with those of the manufacturer. The performance of the RAC was tested at Oak Ridge National Laboratory (ORNL) in a controlled environment at various hot and chilled water flow rates, air handler flow rates, and ambient temperatures. Temperature probes, mass flow meters, rotational speed measuring device, pressure transducers, and a web camera mounted inside the unit were used to monitor the RAC via a web control-based data acquisition system using Automated Logic Controller (ALC). Results showed a COP and cooling capacity of approximately 0.58 and 3.7 kW respectively at 35 C (95 F) design condition for ambient

  6. Tool for Forecasting Cool-Season Peak Winds Across Kennedy Space Center and Cape Canaveral Air Force Station

    NASA Technical Reports Server (NTRS)

    Barrett, Joe H., III; Roeder, William P.

    2010-01-01

    The expected peak wind speed for the day is an important element in the daily morning forecast for ground and space launch operations at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS). The 45th Weather Squadron (45 WS) must issue forecast advisories for KSC/CCAFS when they expect peak gusts for >= 25, >= 35, and >= 50 kt thresholds at any level from the surface to 300 ft. In Phase I of this task, the 45 WS tasked the Applied Meteorology Unit (AMU) to develop a cool-season (October - April) tool to help forecast the non-convective peak wind from the surface to 300 ft at KSC/CCAFS. During the warm season, these wind speeds are rarely exceeded except during convective winds or under the influence of tropical cyclones, for which other techniques are already in use. The tool used single and multiple linear regression equations to predict the peak wind from the morning sounding. The forecaster manually entered several observed sounding parameters into a Microsoft Excel graphical user interface (GUI), and then the tool displayed the forecast peak wind speed, average wind speed at the time of the peak wind, the timing of the peak wind and the probability the peak wind will meet or exceed 35, 50 and 60 kt. The 45 WS customers later dropped the requirement for >= 60 kt wind warnings. During Phase II of this task, the AMU expanded the period of record (POR) by six years to increase the number of observations used to create the forecast equations. A large number of possible predictors were evaluated from archived soundings, including inversion depth and strength, low-level wind shear, mixing height, temperature lapse rate and winds from the surface to 3000 ft. Each day in the POR was stratified in a number of ways, such as by low-level wind direction, synoptic weather pattern, precipitation and Bulk Richardson number. The most accurate Phase II equations were then selected for an independent verification. The Phase I and II forecast methods were

  7. Dry/wet performance of a plate-fin air-cooled heat exchanger with continuous corrugated fins

    SciTech Connect

    Hauser, S.G.; Kreid, D.K.; Johnson, B.M.

    1981-01-01

    The performance and operating characteristics of a plate-fin heat exchanger in dry/wet or deluge operations was experimentally determined. Development of the deluge heat/mass transfer model continued. The experiments were conducted in a specially-designed wind tunnel at the PNL. Air that was first heated and humidified to specified conditions was circulated at a controlled rate through a 2 ft x 6 ft heat exchanger module. The heat exchanger used in the tests was a wavy surface, plate fin on tube configuration. Hot water was circulated through the tubes at high flow rates to maintain an essentially isothermal condition on the tube side. Deionized water sprayed on the top of the vertically oriented plate fins was collected at the bottom of the core and recirculated. Instrumentation was provided for measurement of flow rates and thermodynamic conditions in the air, in the core circulation water, and in the deluge water. Measurements of the air side pressure drop and heat rejection rate were made as a function of air flow rate, air inlet temperature and humidity, deluge water flow rate, and the core inclination from the vertical. An overall heat transfer coefficient and an effective deluge film convective coefficient was determined. The deluge model, for predicting heat transfer from a wet finned heat exchanger was further developed and refined, and a major extension of the model was formulated that permits simultaneous calculation of both the heat transfer and evaporation rates from the wetted surface. The experiments showed an increase in the heat rejection rate due to wetting, accompanied by a proportional increase in the air side pressure drop. For operation at the same air side pressure drop, the enhancement ratio Q/sub w//Q/sub d/ varied between 2 and 5 for the conditions tested. Thus, the potential enhancement of heat transfer due to wetting can be substantial.

  8. Membrane Dehumidifier: High-Efficiency, On-Line Membrane Air Dehumidifier Enabling Sensible Cooling for Warm and Humid Climates

    SciTech Connect

    2010-09-01

    BEETIT Project: ADMA Products is developing a foil-like membrane for air conditioners that efficiently removes moisture from humid air. ADMA Products’s metal foil-like membrane consists of a paper thin, porous metal sheet coated with a layer of water-loving molecules. This new membrane allows water vapor to permeate across the membrane at high fluxes and at the same time, blocks air penetration efficiently resulting in high selectivity. The high selectivity of the membrane translates to less energy use, while the high permeation fluxes result in a more compact device. The new materials and the flat foil-like nature of the membrane facilitate the mass production of a low-coast compact dehumidification device

  9. Computing Cooling Flows in Turbines

    NASA Technical Reports Server (NTRS)

    Gauntner, J.

    1986-01-01

    Algorithm developed for calculating both quantity of compressor bleed flow required to cool turbine and resulting decrease in efficiency due to cooling air injected into gas stream. Program intended for use with axial-flow, air-breathing, jet-propulsion engines with variety of airfoil-cooling configurations. Algorithm results compared extremely well with figures given by major engine manufacturers for given bulk-metal temperatures and cooling configurations. Program written in FORTRAN IV for batch execution.

  10. The impact of different cooling strategies on urban air temperatures: the cases of Campinas, Brazil and Mendoza, Argentina

    NASA Astrophysics Data System (ADS)

    Alchapar, Noelia Liliana; Cotrim Pezzuto, Claudia; Correa, Erica Norma; Chebel Labaki, Lucila

    2016-07-01

    This paper describes different ways of reducing urban air temperature and their results in two cities: Campinas, Brazil—a warm temperate climate with a dry winter and hot summer (Cwa), and Mendoza, Argentina—a desert climate with cold steppe (BWk). A high-resolution microclimate modeling system—ENVI-met 3.1—was used to evaluate the thermal performance of an urban canyon in each city. A total of 18 scenarios were simulated including changes in the surface albedo, vegetation percentage, and the H/W aspect ratio of the urban canyons. These results revealed the same trend in behavior for each of the combinations of strategies evaluated in both cities. Nevertheless, these strategies produce a greater temperature reduction in the warm temperate climate (Cwa). Increasing the vegetation percentage reduces air temperatures and mean radiant temperatures in all scenarios. In addition, there is a greater decrease of urban temperature with the vegetation increase when the H/W aspect ratio is lower. Also, applying low albedo on vertical surfaces and high albedo on horizontal surfaces is successful in reducing air temperatures without raising the mean radiant temperature. The best combination of strategies—60 % of vegetation, low albedos on walls and high albedos on pavements and roofs, and 1.5 H/W—could reduce air temperatures up to 6.4 °C in Campinas and 3.5 °C in Mendoza.

  11. Evaporative cooling enhanced cold storage system

    DOEpatents

    Carr, Peter

    1991-01-01

    The invention provides an evaporatively enhanced cold storage system wherein a warm air stream is cooled and the cooled air stream is thereafter passed into contact with a cold storage unit. Moisture is added to the cooled air stream prior to or during contact of the cooled air stream with the cold storage unit to effect enhanced cooling of the cold storage unit due to evaporation of all or a portion of the added moisture. Preferably at least a portion of the added moisture comprises water condensed during the cooling of the warm air stream.

  12. Evaporative cooling enhanced cold storage system

    DOEpatents

    Carr, P.

    1991-10-15

    The invention provides an evaporatively enhanced cold storage system wherein a warm air stream is cooled and the cooled air stream is thereafter passed into contact with a cold storage unit. Moisture is added to the cooled air stream prior to or during contact of the cooled air stream with the cold storage unit to effect enhanced cooling of the cold storage unit due to evaporation of all or a portion of the added moisture. Preferably at least a portion of the added moisture comprises water condensed during the cooling of the warm air stream. 3 figures.

  13. 46 CFR 119.420 - Engine cooling.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... the engine. (b) A propulsion or auxiliary diesel engine may be air cooled or employ an air cooled... 46 Shipping 4 2011-10-01 2011-10-01 false Engine cooling. 119.420 Section 119.420 Shipping COAST... Machinery Requirements § 119.420 Engine cooling. (a) Except as otherwise provided in paragraph (b) of...

  14. 46 CFR 119.420 - Engine cooling.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... the engine. (b) A propulsion or auxiliary diesel engine may be air cooled or employ an air cooled... 46 Shipping 4 2012-10-01 2012-10-01 false Engine cooling. 119.420 Section 119.420 Shipping COAST... Machinery Requirements § 119.420 Engine cooling. (a) Except as otherwise provided in paragraph (b) of...

  15. 46 CFR 119.420 - Engine cooling.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... the engine. (b) A propulsion or auxiliary diesel engine may be air cooled or employ an air cooled... 46 Shipping 4 2014-10-01 2014-10-01 false Engine cooling. 119.420 Section 119.420 Shipping COAST... Machinery Requirements § 119.420 Engine cooling. (a) Except as otherwise provided in paragraph (b) of...

  16. 46 CFR 119.420 - Engine cooling.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... the engine. (b) A propulsion or auxiliary diesel engine may be air cooled or employ an air cooled... 46 Shipping 4 2010-10-01 2010-10-01 false Engine cooling. 119.420 Section 119.420 Shipping COAST... Machinery Requirements § 119.420 Engine cooling. (a) Except as otherwise provided in paragraph (b) of...

  17. 46 CFR 119.420 - Engine cooling.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... the engine. (b) A propulsion or auxiliary diesel engine may be air cooled or employ an air cooled... 46 Shipping 4 2013-10-01 2013-10-01 false Engine cooling. 119.420 Section 119.420 Shipping COAST... Machinery Requirements § 119.420 Engine cooling. (a) Except as otherwise provided in paragraph (b) of...

  18. Cooled snubber structure for turbine blades

    DOEpatents

    Mayer, Clinton A; Campbell, Christian X; Whalley, Andrew; Marra, John J

    2014-04-01

    A turbine blade assembly in a turbine engine. The turbine blade assembly includes a turbine blade and a first snubber structure. The turbine blade includes an internal cooling passage containing cooling air. The first snubber structure extends outwardly from a sidewall of the turbine blade and includes a hollow interior portion that receives cooling air from the internal cooling passage of the turbine blade.

  19. Importance of combining convection with film cooling.

    NASA Technical Reports Server (NTRS)

    Colladay, R. S.

    1972-01-01

    The interaction of film and convection cooling and its effect on wall cooling efficiency is investigated analytically for two cooling schemes for advanced gas turbine applications. The two schemes are full coverage- and counterflow-film cooling. In full coverage film cooling, the cooling air issues from a large number of small discrete holes in the surface. Counterflow film cooling is a film-convection scheme with film injection from a slot geometry. The results indicate that it is beneficial to utilize as much of the cooling air heat sink as possible for convection cooling prior to ejecting it as a film.

  20. Importance of combining convection with film cooling

    NASA Technical Reports Server (NTRS)

    Colladay, R. S.

    1971-01-01

    The interaction of film and convection cooling and its effect on wall cooling efficiency is investigated analytically for two cooling schemes for advanced gas turbine applications. The two schemes are full coverage- and counterflow-film cooling. In full coverage film cooling, the cooling air issues from a large number of small discrete holes in the surface. Counterflow film cooling is a film-convection scheme with film injection from a slot geometry. The results indicate that it is beneficial to utilize as much of the cooling air heat sink as possible for convection cooling prior to ejecting it as a film.

  1. Performance and evaluation of gas-engine-driven split-system cooling equipment at the Willow Grove Naval Air Station

    SciTech Connect

    Armstrong, P.R.; Schmelzer, J.R.

    1997-01-01

    DOE`s Federal Energy Management Program supports efforts to reduce energy use and associated expenditures within the federal sector; one such effort, the New Technology Demonstration Program (NTDP)(formerly the Test Bed Demonstration program), seeks to evaluate new energy saving US technologies and secure their more timely adoption by the federal government. This report describes the field evaluation conducted to examine the performance of a 15-ton natural-gas-engine- driven, split-system, air-conditioning unit. The unit was installed at a multiple-use building at Willow Grove Naval Air Station, a regular and reserve training facility north of Philadelphia, and its performance was monitored under the NTDP.

  2. DOAS, Radiant Cooling Revisited

    SciTech Connect

    Hastbacka, Mildred; Dieckmann, John; Bouza, Antonio

    2012-12-01

    The article discusses dedicated outdoor air systems (DOAS) and radiant cooling technologies. Both of these topics were covered in previous ASHRAE Journal columns. This article reviews the technologies and their increasing acceptance. The two steps that ASHRAE is taking to disseminate DOAS information to the design community, available energy savings and the market potential of radiant cooling systems are addressed as well.

  3. Nonequilibrium sulfur capture and retention in an air cooled slagging coal combustor. Third quarterly technical progress report, April 1--June 30, 1996

    SciTech Connect

    Zauderer, B.

    1996-09-01

    The primary project objective is to determine the degree of sulfur retention in slag in a full scale cyclone coal combustor. This non-equilibrium process is a key step in the capture and retention of sulfur released during coal combustion by the interaction with calcium based sorbent particles. By encapsulating the sulfur bearing calcium particles in slag, the need for landfilling of this waste is eliminated. This objective will be implemented through a series of up to 20 one day tests carried out in a 20 MMBtu/hr air cooled, slagging combustor-boiler installation located in Philadelphia, PA. The project will consist of two tasks. Task 1 consists of the experiments conducted in the 20 MMBtu/hr combustor, and task 2 will consist of analysis of this data. All the operating procedures for this effort have been developed in the 7 years of operation of this combustor.

  4. Ground Tests of a Radial Air-Cooled Engine to Correct a Poor Circumferential Pressure-Recovery Distribution

    NASA Technical Reports Server (NTRS)

    Gallagher, James J.

    1948-01-01

    This report presents the results of the tests of a power-plant installation to improve the circumferential pressure-recovery distribution at the face of the engine. An underslung "C" cowling was tested with two propellers with full cuffs and with a modification to one set of cuffs. Little improvement was obtained because the base sections of the cuffs were stalled. A set of guide vanes boosted the over-all pressures and helped the pressure recoveries for a few of the cylinders. Making the underslung cowling into a symmetrical "C" cowling evened the pressure distribution; however, no increases in front pressures were obtained. The pressures at the top cylinders remained low and the high pressures at the bottom cylinders were reduced. At higher powers and engine speeds, the symmetrical cowling appeared best from the standpoint of over-all cooling characteristics.

  5. Method for Calculation of Laminar Heat Transfer in Air Flow Around Cylinders of Arbitrary Cross Section (including Large Temperature Differences and Transpiration Cooling)

    NASA Technical Reports Server (NTRS)

    Eckert, E R; Livingood, John N B

    1953-01-01

    The solution of heat-transfer problems has become vital for many aeronautical applications. The shapes of objects to be cooled can often be approximated by cylinders of various cross sections with flow normal to the axis as, for instance heat transfer on gas-turbine blades and on air foils heated for deicing purposes. A laminar region always exists near the stagnation point of such objects. A method previously presented by E. R. G. Eckert permits the calculation of local heat transfer around the periphery of cylinders of arbitrary cross section in the laminar region for flow of a fluid with constant property values with an accuracy sufficient for engineering purposes. The method is based on exact solutions of the boundary-layer equations for incompressible wedge-type flow and on the postulate that at any point on the cylinder the boundary-layer growth is the same as that on a wedge with comparable flow conditions. This method is extended herein to take into account the influence of large temperature differences between the cylinder wall and the flow as well as the influence of transpiration cooling when the same medium as the outside flow is used as coolant.

  6. Hybrid Wet/Dry Cooling for Power Plants (Presentation)

    SciTech Connect

    Kutscher, C.; Buys, A.; Gladden, C.

    2006-02-01

    This presentation includes an overview of cooling options, an analysis of evaporative enhancement of air-cooled geothermal power plants, field measurements at a geothermal plant, a preliminary analysis of trough plant, and improvements to air-cooled condensers.

  7. Research on cooling effectiveness in stepped slot film cooling vane

    NASA Astrophysics Data System (ADS)

    Li, Yulong; Wu, Hong; Zhou, Feng; Rong, Chengjun

    2016-06-01

    As one of the most important developments in air cooling technology for hot parts of the aero-engine, film cooling technology has been widely used. Film cooling hole structure exists mainly in areas that have high temperature, uneven cooling effectiveness issues when in actual use. The first stage turbine vanes of the aero-engine consume the largest portion of cooling air, thereby the research on reducing the amount of cooling air has the greatest potential. A new stepped slot film cooling vane with a high cooling effectiveness and a high cooling uniformity was researched initially. Through numerical methods, the affecting factors of the cooling effectiveness of a vane with the stepped slot film cooling structure were researched. This paper focuses on the cooling effectiveness and the pressure loss in different blowing ratio conditions, then the most reasonable and scientific structure parameter can be obtained by analyzing the results. The results show that 1.0 mm is the optimum slot width and 10.0 is the most reasonable blowing ratio. Under this condition, the vane achieved the best cooling result and the highest cooling effectiveness, and also retained a low pressure loss.

  8. Deep mine cooling system

    SciTech Connect

    Conan, J.

    1984-11-06

    A deep mine cooling system comprising a compressor supplied with air and rotatively driven by a motor and an expansion turbine supplied with compressed air from said compressor and driving an actuating unit, wherein the compressed air, after leaving the compressor but prior to reaching the expansion turbine, passes through a steam generator whose output provides the energy required to operate an absorption refrigeration machine used to cool utility water for mining, said compressed air on leaving the steam generator going to a first heat exchanger in which it yields calories to a water circuit comprising a second heat exchanger, said second heat exchanger giving off the calories absorbed by the water in the first heat exchanger to the air fed by the second heat exchanger to a drying cell that is regenerated by said air from the second heat exchanger, said drying cell being part of a set of two cells working in alternation, the other cell in the set receiving the compressed air from the first heat exchanger, such that the compressed air is fed to said expansion turbine after leaving said drying unit, and wherein the air exhausted from said expansion turbine is sent to a third heat exchanger after which it is distributed according to the needs of the mine, said third exchanger being traversed by the water collected in the mine, cooled in said exchanger and circulated upon leaving said exchanger to meet the cool water requirements of the mine.

  9. Tool for Forecasting Cool-Season Peak Winds Across Kennedy Space Center and Cape Canaveral Air Force Station (CCAFS)

    NASA Technical Reports Server (NTRS)

    Barrett, Joe H., III; Roeder, William P.

    2010-01-01

    Peak wind speed is important element in 24-Hour and Weekly Planning Forecasts issued by 45th Weather Squadron (45 WS). Forecasts issued for planning operations at KSC/CCAFS. 45 WS wind advisories issued for wind gusts greater than or equal to 25 kt. 35 kt and 50 kt from surface to 300 ft. AMU developed cool-season (Oct - Apr) tool to help 45 WS forecast: daily peak wind speed, 5-minute average speed at time of peak wind, and probability peak speed greater than or equal to 25 kt, 35 kt, 50 kt. AMU tool also forecasts daily average wind speed from 30 ft to 60 ft. Phase I and II tools delivered as a Microsoft Excel graphical user interface (GUI). Phase II tool also delivered as Meteorological Interactive Data Display System (MIDDS) GUI. Phase I and II forecast methods were compared to climatology, 45 WS wind advisories and North American Mesoscale model (MesoNAM) forecasts in a verification data set.

  10. An air-cooled Litz wire coil for measuring the high frequency hysteresis loops of magnetic samples--a useful setup for magnetic hyperthermia applications.

    PubMed

    Connord, V; Mehdaoui, B; Tan, R P; Carrey, J; Respaud, M

    2014-09-01

    A setup for measuring the high-frequency hysteresis loops of magnetic samples is described. An alternating magnetic field in the range 6-100 kHz with amplitude up to 80 mT is produced by a Litz wire coil. The latter is air-cooled using a forced-air approach so no water flow is required to run the setup. High-frequency hysteresis loops are measured using a system of pick-up coils and numerical integration of signals. Reproducible measurements are obtained in the frequency range of 6-56 kHz. Measurement examples on ferrite cylinders and on iron oxide nanoparticle ferrofluids are shown. Comparison with other measurement methods of the hysteresis loop area (complex susceptibility, quasi-static hysteresis loops, and calorific measurements) is provided and shows the coherency of the results obtained with this setup. This setup is well adapted to the magnetic characterization of colloidal solutions of magnetic nanoparticles for magnetic hyperthermia applications. PMID:25273736

  11. An air-cooled Litz wire coil for measuring the high frequency hysteresis loops of magnetic samples—A useful setup for magnetic hyperthermia applications

    NASA Astrophysics Data System (ADS)

    Connord, V.; Mehdaoui, B.; Tan, R. P.; Carrey, J.; Respaud, M.

    2014-09-01

    A setup for measuring the high-frequency hysteresis loops of magnetic samples is described. An alternating magnetic field in the range 6-100 kHz with amplitude up to 80 mT is produced by a Litz wire coil. The latter is air-cooled using a forced-air approach so no water flow is required to run the setup. High-frequency hysteresis loops are measured using a system of pick-up coils and numerical integration of signals. Reproducible measurements are obtained in the frequency range of 6-56 kHz. Measurement examples on ferrite cylinders and on iron oxide nanoparticle ferrofluids are shown. Comparison with other measurement methods of the hysteresis loop area (complex susceptibility, quasi-static hysteresis loops, and calorific measurements) is provided and shows the coherency of the results obtained with this setup. This setup is well adapted to the magnetic characterization of colloidal solutions of magnetic nanoparticles for magnetic hyperthermia applications.

  12. Second-generation PFBC systems research and development, Phase 2 topping combustor development

    SciTech Connect

    Domeracki, W.F.; Dowdy, T.E.; Bachovchin, D.; Foote, J.; Pillsbury, P.W.; Bouvier, B.U.; Muller, K.F.

    1993-09-01

    The use of a Circulating Pressurized Fluidized Bed Combustor (CPFBC) as the primary combustion system for a combustion turbine requires transporting compressor air to the CPFBC and vitiated air/fuel gas back to the turbine. In addition, the topping combustion system must be located in the returning vitiated airflow path. The conventional fuel system and turbine center section require major changes for the applications. The combustion zone of the Westinghouse 501F turbine currently in production cannot contain the topping combustion system within the main structural pressure shell. Although the pressure casing can be enlarged both radially and longitudinally to accommodate the topping combustor system, the integrity and rigidity of the main shell would be significantly affected and, it could introduce rotor dynamics problems and preclude shipping the unit assembled. The currently favored configuration, which utilizes two topping combustor assemblies, one on each side of the unit, is shown in Figure 1. Half of the vitiated air from the CPFBC enters each of the internal plenum chambers in which the topping combustors are mounted. Fuel gas enters the assembly via the fuel nozzles at the head end of the combustor. Combustion occurs, and the products of combustion are ducted into the main shell for distribution to the first-stage turbine vanes. Compressor discharge air leaves the main shell, flowing around the annular duct into adjacent combustion shells. The air flows around the vitiated air plenums and leaves each combustion assembly via nozzles and is ducted to the CPFBC and carbonizer.

  13. Comparison of Predicted and Experimental Heat-Transfer and Pressure-Drop Results for an Air-Cooled Plug Nozzle and Supporting Struts

    NASA Technical Reports Server (NTRS)

    Graber, E. J., Jr.; Clark, J. S.

    1972-01-01

    A calculational procedure is presented to analyze the heat-transfer and fluid-flow characteristics of a convectively air -cooled plug-nozzle operating on an afterburning turbojet engine. Anderson's method was used to predict hot-gas static pressures in the supersonic stream with fully expanded flow (high nozzle-pressure ratios); the results were excellent. For low nozzle-pressure ratios, the flow was assumed to expand one-dimensionally and isentropically to the plug back pressure. Wall temperatures predicted using this latter pressure distribution agreed well with the wall temperatures predicted using the measured hot-gas pressures (maximum deviation was about 30 K (54 deg R)). Either an in tegral boundary-layer technique or a simple pipe-flow equation may be used to calculate convective heat transfer from the hot gas to the wall. The simple pipeflow equation results in the prediction of slightly higher wall temperatures than does the integral technique. Experimental wall temperatures were generally in good agreement with the two predicted wall temperature distributions. Excellent agreement was noted b etween measured and predicted coolant static-pressure distributions. The plug-coolant temperature rise was generally overpredicted by about 22.2 K (40 deg R); possible explanations are offered. Although an an alysis of the struts, which support the plug, was purposely kept simple, reasonable results were obtained. Potential flow over an ellipse was used to calculate hot-gas static pressure; the results were satisfactory.

  14. Turbine airfoil with ambient cooling system

    DOEpatents

    Campbell, Jr, Christian X.; Marra, John J.; Marsh, Jan H.

    2016-06-07

    A turbine airfoil usable in a turbine engine and having at least one ambient air cooling system is disclosed. At least a portion of the cooling system may include one or more cooling channels configured to receive ambient air at about atmospheric pressure. The ambient air cooling system may have a tip static pressure to ambient pressure ratio of at least 0.5, and in at least one embodiment, may include a tip static pressure to ambient pressure ratio of between about 0.5 and about 3.0. The cooling system may also be configured such that an under root slot chamber in the root is large to minimize supply air velocity. One or more cooling channels of the ambient air cooling system may terminate at an outlet at the tip such that the outlet is aligned with inner surfaces forming the at least one cooling channel in the airfoil to facilitate high mass flow.

  15. 24 CFR 3280.714 - Appliances, cooling.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Systems § 3280.714 Appliances, cooling. (a) Every air conditioning unit or a combination air conditioning... Standard 210/240-89 Unitary Air-Conditioning and Air-Source Heat Pump Equipment, shall show energy... requirements of the ARI Standard 210/240-89 Unitary Air Conditioning and Air Source Unitary Heat Pump...

  16. Personal cooling apparatus and method

    DOEpatents

    Siman-Tov, Moshe; Crabtree, Jerry Allen

    2001-01-01

    A portable lightweight cooling apparatus for cooling a human body is disclosed, having a channeled sheet which absorbs sweat and/or evaporative liquid, a layer of highly conductive fibers adjacent the channeled sheet; and, an air-moving device for moving air through the channeled sheet, wherein the layer of fibers redistributes heat uniformly across the object being cooled, while the air moving within the channeled sheet evaporates sweat and/or other evaporative liquid, absorbs evaporated moisture and the uniformly distributed heat generated by the human body, and discharges them into the environment. Also disclosed is a method for removing heat generated by the human body, comprising the steps of providing a garment to be placed in thermal communication with the body; placing a layer of highly conductive fibers within the garment adjacent the body for uniformly distributing the heat generated by the body; attaching an air-moving device in communication with the garment for forcing air into the garment; removably positioning an exchangeable heat sink in communication with the air-moving device for cooling the air prior to the air entering the garment; and, equipping the garment with a channeled sheet in communication with the air-moving device so that air can be directed into the channeled sheet and adjacent the layer of fibers to expell heat and moisture from the body by the air being directed out of the channeled sheet and into the environment. The cooling system may be configured to operate in both sealed and unsealed garments.

  17. Stochastic Cooling

    SciTech Connect

    Blaskiewicz, M.

    2011-01-01

    Stochastic Cooling was invented by Simon van der Meer and was demonstrated at the CERN ISR and ICE (Initial Cooling Experiment). Operational systems were developed at Fermilab and CERN. A complete theory of cooling of unbunched beams was developed, and was applied at CERN and Fermilab. Several new and existing rings employ coasting beam cooling. Bunched beam cooling was demonstrated in ICE and has been observed in several rings designed for coasting beam cooling. High energy bunched beams have proven more difficult. Signal suppression was achieved in the Tevatron, though operational cooling was not pursued at Fermilab. Longitudinal cooling was achieved in the RHIC collider. More recently a vertical cooling system in RHIC cooled both transverse dimensions via betatron coupling.

  18. Personal cooling air filtering device

    DOEpatents

    Klett, James [Knoxville, TN; Conway, Bret [Denver, NC

    2002-08-13

    A temperature modification system for modifying the temperature of fluids includes at least one thermally conductive carbon foam element, the carbon foam element having at least one flow channel for the passage of fluids. At least one temperature modification device is provided, the temperature modification device thermally connected to the carbon foam element and adapted to modify the temperature of the carbon foam to modify the temperature of fluids flowing through the flow channels. Thermoelectric and/or thermoionic elements can preferably be used as the temperature modification device. A method for the reversible temperature modification of fluids includes the steps of providing a temperature modification system including at least one thermally conductive carbon foam element having flow channels and at least one temperature modification device, and flowing a fluid through the flow channels.

  19. The relationship between oxygen consumption rate and viability of in vivo-derived pig embryos vitrified by the micro volume air cooling method.

    PubMed

    Sakagami, N; Nishida, K; Misumi, K; Hirayama, Y; Yamashita, S; Hoshi, H; Misawa, H; Akiyama, K; Suzuki, C; Yoshioka, K

    2016-01-01

    The aim of this study was to assess the viability of vitrified-warmed in vivo-derived pig embryos after measuring the oxygen consumption rate. Six days after artificial insemination, blastocysts were collected from gilts and vitrified by the micro volume air cooling method. The oxygen consumption rate was measured in 60 vitrified-warmed embryos, which were then cultured for 48h to assess the viability. The survival (re-expansion) rate of embryos after warming was 85.0%. The average oxygen consumption rate of embryos immediately after warming was greater in embryos which could re-expand during subsequent culture (F=0.75±0.04) than that in those which failed to re-expand (F=0.33±0.05). Moreover, the oxygen consumption rate of vitrified-warmed embryos was greater in the hatched (F=0.88±0.06) than that in the not-hatched group (F=0.53±0.04). When the oxygen consumption rate of the vitrified-warmed embryos and the numbers of viable and dead cells in embryos were determined, there was a positive correlation between the oxygen consumption rate and the number of live cells (P<0.01, r=0.538). A total of 29 vitrified embryos after warming and measuring the oxygen consumption rate were surgically transferred into uterine horns of two recipients. Both of the recipients become pregnant and farrowed 12 healthy piglets. These results demonstrate that the oxygen consumption rate of vitrified-warmed pig embryos can be related to the number of live cells and that the measurement of oxygen consumption of embryos after cryopreservation may be useful for estimating embryo survivability. PMID:26642748

  20. 40 CFR 89.327 - Charge cooling.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Charge cooling. 89.327 Section 89.327....327 Charge cooling. For engines with an air-to-air intercooler (or any other low temperature charge... and the temperature of the charge air shall be monitored and recorded....

  1. 40 CFR 89.327 - Charge cooling.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Charge cooling. 89.327 Section 89.327....327 Charge cooling. For engines with an air-to-air intercooler (or any other low temperature charge... and the temperature of the charge air shall be monitored and recorded....

  2. NightCool: A Nocturnal Radiation Cooling Concept

    SciTech Connect

    Parker, Danny S.; Sherwin, John R.; Hermelink, Andreas H.

    2008-08-26

    This report describes an experimental evaluation that was conducted on a night sky cooling system designed to substantially reduce space cooling needs in homes in North American climates. The system uses a sealed attic covered by a highly conductive metal roof (a roof integrated radiator) which is selectively linked by air flow to the main zone with the attic zone to provide cooling - largely during nighttime hours.

  3. Light shield and cooling apparatus. [high intensity ultraviolet lamp

    NASA Technical Reports Server (NTRS)

    Meador, T. G., Jr. (Inventor)

    1974-01-01

    A light shield and cooling apparatus was developed for a high intensity ultraviolet lamp including water and high pressure air for cooling and additional apparatus for shielding the light and suppressing the high pressure air noise.

  4. Guide to Cool Roofs

    SciTech Connect

    2011-02-01

    Traditional dark-colored roofing materials absorb sunlight, making them warm in the sun and increasing the need for air conditioning. White or special "cool color" roofs absorb less sunlight, stay cooler in the sun and transmit less heat into the building.

  5. Compressor ported shroud for foil bearing cooling

    DOEpatents

    Elpern, David G.; McCabe, Niall; Gee, Mark

    2011-08-02

    A compressor ported shroud takes compressed air from the shroud of the compressor before it is completely compressed and delivers it to foil bearings. The compressed air has a lower pressure and temperature than compressed outlet air. The lower temperature of the air means that less air needs to be bled off from the compressor to cool the foil bearings. This increases the overall system efficiency due to the reduced mass flow requirements of the lower temperature air. By taking the air at a lower pressure, less work is lost compressing the bearing cooling air.

  6. Liquid cooling of aircraft engines

    NASA Technical Reports Server (NTRS)

    Weidinger, Hanns

    1931-01-01

    This report presents a method for solving the problem of liquid cooling at high temperatures, which is an intermediate method between water and air cooling, by experiments on a test-stand and on an airplane. A utilizable cooling medium was found in ethylene glycol, which has only one disadvantage, namely, that of combustibility. The danger, however is very slight. It has one decided advantage, that it simultaneously serves as protection against freezing.

  7. Additional cooling and heating load improvements in seasonal performance modeling of room and central air conditioners and heat pumps. Topical report, Subtask 3. 2

    SciTech Connect

    Not Available

    1980-04-09

    The study focuses on improving the load modeling technique of Seasonal Performance Model (SPM) in order to estimate a more realistic load for seasonal analysis calculations on an hourly basis. A computer simulation program, Seasonal Performance Model Load (SPMLD), was used to calculate the cooling and heating loads for a typical residence in Caribou, Maine; Columbia, Missouri; and Fort Worth, Texas. The derivation of the SPMLD is described and changes made to improve cooling and heating load estimates are identified. (MCW)

  8. AIR CLEANING FOR ACCEPTABLE INDOOR AIR QUALITY

    EPA Science Inventory

    The paper discusses air cleaning for acceptable indoor air quality. ir cleaning has performed an important role in heating, ventilation, and air-conditioning systems for many years. raditionally, general ventilation air-filtration equipment has been used to protect cooling coils ...

  9. Cooling wall

    SciTech Connect

    Nosenko, V.I.

    1995-07-01

    Protecting the shells of blast furnaces is being resolved by installing cast iron cooling plates. The cooling plates become non-operational in three to five years. The problem is that defects occur in manufacturing the cooling plates. With increased volume and intensity of work placed on blast furnaces, heat on the cast iron cooling plates reduces their reliability that limits the interim repair period of blast furnaces. Scientists and engineers from the Ukraine studied this problem for several years, developing a new method of cooling the blast furnace shaft called the cooling wall. Traditional cast iron plates were replaced by a screen of steel tubes, with the area between the tubes filled with fireproof concrete. Before placing the newly developed furnace shaft into operation, considerable work was completed such as theoretical calculations, design, research of temperature fields and tension. Continual testing over many years confirms the value of this research in operating blast furnaces. The cooling wall works with water cooling as well as vapor cooling and is operating in 14 blast furnaces in the Ukraine and two in Russia, and has operated for as long as 14 years.

  10. Serial cooling of a combustor for a gas turbine engine

    DOEpatents

    Abreu, Mario E.; Kielczyk, Janusz J.

    2001-01-01

    A combustor for a gas turbine engine uses compressed air to cool a combustor liner and uses at least a portion of the same compressed air for combustion air. A flow diverting mechanism regulates compressed air flow entering a combustion air plenum feeding combustion air to a plurality of fuel nozzles. The flow diverting mechanism adjusts combustion air according to engine loading.

  11. Investigations of Air-cooled Turbine Rotors for Turbojet Engines II : Mechanical Design, Stress Analysis, and Burst Test of Modified J33 Split-disk Rotor / Richard H. Kemp and Merland L. Moseson

    NASA Technical Reports Server (NTRS)

    Kemp, Richard H; Moseson, Merland L

    1952-01-01

    A full-scale J33 air-cooled split turbine rotor was designed and spin-pit tested to destruction. Stress analysis and spin-pit results indicated that the rotor in a J33 turbojet engine, however, showed that the rear disk of the rotor operated at temperatures substantially higher than the forward disk. An extension of the stress analysis to include the temperature difference between the two disks indicated that engine modifications are required to permit operation of the two disks at more nearly the same temperature level.

  12. Cool Shelter

    ERIC Educational Resources Information Center

    Praeger, Charles E.

    2005-01-01

    Amid climbing energy costs and tightening budgets, administrators at school districts, colleges and universities are looking for all avenues of potential savings while promoting sustainable communities. Cool metal roofing can save schools money and promote sustainable design at the same time. Cool metal roofing keeps the sun's heat from collecting…

  13. How Cool Is Your Roof?

    ERIC Educational Resources Information Center

    Fickes, Michael

    2001-01-01

    Explains a concept called cool roof that is used to reduce electricity costs for air conditioning, and also reduce the price of air conditioning units. Discusses the light reflecting capabilities of metal roofing as well as coatings that can stop leaks. (GR)

  14. Cooled blades of gas turbines /Thermal design and profiling/

    NASA Astrophysics Data System (ADS)

    Kopelev, S. Z.

    The efficiency of the air-cooling of gas turbine blades is analyzed, and various approaches to the design of air-cooled gas turbine blades are discussed. In particular, attention is given to the analysis of heat transfer in blades with an internal deflector, blades with radial air flow, and blades with convective-barrier cooling. Methods for calculating the temperature of blades with transverse flow of the cooling air are discussed, as are methods for calculating losses in an air-cooled turbine.

  15. THE ROLE OF AQUEOUS THIN FILM EVAPORATIVE COOLING ON RATES OF ELEMENTAL MERCURY AIR-WATER EXCHANGE UNDER TEMPERATURE DISEQUILIBRIUM CONDITIONS

    EPA Science Inventory

    The technical conununity has only recently addressed the role of atmospheric temperature variations on rates of air-water vapor phase toxicant exchange. The technical literature has documented that: 1) day time rates of elemental mercury vapor phase air-water exchange can exceed ...

  16. Microscale technology electronics cooling overview

    NASA Astrophysics Data System (ADS)

    Golliher, Eric L.

    2002-01-01

    NASA requirements and subsequent technology solutions for high heat flux electronics are generally different that those for the terrestrial applications. Unlike terrestrial operations. NASA spacecraft have limited opportunities for air cooling, for example, and must rely on less efficient thermal radiation to reject heat to space. The terrestrial commercial electronics industry, as well as other Government agencies, is investing in advanced technologies for electronics cooling at the microscale. This paper gives a brief summary of metrics used in high heat flux electronics cooling, the difference between solutions developed for terrestrial requirements and those for space, and a short description of challenges as well as possible solutions for space-based high heat flux electronics cooling. The argument is made that high heat flux electronics cooling is indeed a core technology required by NASA, since the thermal and other environmental requirements are unique to NASA space missions and are not addressed by current terrestrial electronics cooling technology development projects. .

  17. Solar Assisted Adsorptive Desiccant Cooling System

    NASA Astrophysics Data System (ADS)

    Ohkura, Masashi; Kodama, Akio

    Solar assisted desiccant coo1ing process is an effective means to reduce a latent heat load of the ventilation air. This paper describes the influences of ambient humidity and sensible heat factor (SHF) of the indoor room on the performance and scale of the desiccant cooling system. Two process configurations termed “ambient air mode” and “mixed air mode” were assumed. At “ambient air mode”, only ambient air is dehumidified and cooled in the desiccant process. The dehumidified air stream is mixed with return air and further cooled in the cooling coil. At “mixed air mode”, ambient air is mixed with return air and this mixed air stream is dehumidified in the desiccant process and cooled at the cooling coil. At “ambient air mode”, ambient air humidity had a significant impact on required amount of dehumidification since humid ambient air entered the desiccant process directly. In this case, higher temperature level and quantity, which is impossible to be supplied from commonly commercialized flat panel solar collectors, was required. At “mixed air mode”, the influence of increase of ambient humidity was not significant since humidity of the air entering the desiccant process became low by mixing with return air. At this mode, it was expected that 70°C of the circulating water and 37m2 of surface area of solar collector could produce a sufficient dehumidifying performance even in high latent heat condition. The contributing ratio of the desiccant wheel was also estimated. The ratio increased in higher latent heat condition due to increase of required amount of dehumidification. The contributing ratio of the thermal wheel became lower due to increase of saturated air temperature in the evaporative cooler.

  18. Cooled railplug

    DOEpatents

    Weldon, William F.

    1996-01-01

    The railplug is a plasma ignitor capable of injecting a high energy plasma jet into a combustion chamber of an internal combustion engine or continuous combustion system. An improved railplug is provided which has dual coaxial chambers (either internal or external to the center electrode) that provide for forced convective cooling of the electrodes using the normal pressure changes occurring in an internal combustion engine. This convective cooling reduces the temperature of the hot spot associated with the plasma initiation point, particularly in coaxial railplug configurations, and extends the useful life of the railplug. The convective cooling technique may also be employed in a railplug having parallel dual rails using dual, coaxial chambers.

  19. Cooling Floor AC Systems

    NASA Astrophysics Data System (ADS)

    Jun, Lu; Hao, Ding; Hong, Zhang; Ce, Gao Dian

    The present HVAC equipments for the residential buildings in the Hot-summer-and-Cold-winter climate region are still at a high energy consuming level. So that the high efficiency HVAC system is an urgently need for achieving the preset government energy saving goal. With its advantage of highly sanitary, highly comfortable and uniform of temperature field, the hot-water resource floor radiation heating system has been widely accepted. This paper has put forward a new way in air-conditioning, which combines the fresh-air supply unit and such floor radiation system for the dehumidification and cooling in summer or heating in winter. By analyze its advantages and limitations, we found that this so called Cooling/ Heating Floor AC System can improve the IAQ of residential building while keep high efficiency quality. We also recommend a methodology for the HVAC system designing, which will ensure the reduction of energy cost of users.

  20. METHODOLOGIES FOR ESTIMATING AIR EMISSIONS FROM THREE NON-TRADITIONAL SOURCE CATEGORIES: OIL SPILLS, PETROLEUM VESSEL LOADING & UNLOADING, AND COOLING TOWERS

    EPA Science Inventory

    The report discusses part of EPA's program to identify and characterize emissions sources not currently accounted for by either the existing Aerometric Information Retrieval System (AIRS) or State Implementation Plan (sip) area source methodologies and to develop appropriate emis...

  1. Cooled thin metal liner

    NASA Technical Reports Server (NTRS)

    Liang, George P. (Inventor)

    1995-01-01

    A first metal sheet (34) has openings (46) in registration with depressions (40) in a second contacting metal sheet (36). Each depression has a downstream wall (42) at an angle of 24.degree. from the plane of the sheets. A metering hole (56) in the depression amidst cooling air in a direction to first impinge against an overlaying portion (48) of the first plate, before it diffuses along the downstream wall.

  2. Cooling your home naturally

    SciTech Connect

    1994-10-01

    This fact sheet describes some alternatives to air conditioning which are common sense suggestions and low-cost retrofit options to cool a house. It first describes how to reflect heat away from roofs, walls, and windows. Blocking heat by using insulation or shading are described. The publication then discusses removing built-up heat, reducing heat-generating sources, and saving energy by selecting energy efficient retrofit appliances. A resource list is provided for further information.

  3. Cold-air annular-cascade investigation of aerodynamic performance of core-engine-cooled turbine vanes. 1: Solid-vane performance and facility description

    NASA Technical Reports Server (NTRS)

    Goldman, L. J.; Mclallin, K. L.

    1975-01-01

    The aerodynamic performance of a solid (uncooled) version of a core engine cooled stator vane was experimentally determined in a full-annular cascade, where three-dimensional effects could be obtained. The solid vane, which serves as a basis for comparison with subsequent cooled tests, was tested over a range of aftermixed critical velocity ratios of 0.57 to 0.90. Overall vane aftermixed efficiencies were obtained over this critical velocity ratio range and compared with results from a two-dimensional cascade. The variation in vane efficiency and aftermixed flow conditions with circumferential and radial position were obtained and compared with design values. Vane surface static-pressure distributions were also measured and compared with theoretical results.

  4. Cool School.

    ERIC Educational Resources Information Center

    Stephens, Suzanne

    1980-01-01

    The design for Floyd Elementary School in Miami (Florida) seeks to harness solar energy to provide at least 70 percent of the annual energy for cooling needs and 90 percent for hot water. (Author/MLF)

  5. Cold-air performance of a 12.766-centimeter-tip-diameter axial-flow cooled turbine. 1: Design and performance of a solid blade configuration

    NASA Technical Reports Server (NTRS)

    Haas, J. E.; Kofskey, M. G.

    1975-01-01

    A solid blade version of a single-stage, axial-flow turbine was investigated to determine its performance over a range of speeds from 0 to 105 percent of equivalent design speed and over a range of total to static pressure ratios from 1.62 to 5.07. The results of this investigation will be used as a baseline for comparison with those obtained from a cooled version of this turbine.

  6. PFBC system modularity

    SciTech Connect

    Kinsinger, F.L. . Fossil Power Generation Div.)

    1990-01-01

    In 1989 a factory-assembled 70 MWe boiler was transported 750 miles to its final location at a plant site in Ohio. The boiler, its gas clean-up system, and top- support steel were contained within a pressure vessel and shipped as one unit by barge. Components of that assembly originated at various places throughout the eastern United States. In this paper, the relationship between the logistics of moving those various components and their design and fabrication is described.

  7. Industrial stator vane with sequential impingement cooling inserts

    DOEpatents

    Jones, Russell B; Fedock, John A; Goebel, Gloria E; Krueger, Judson J; Rawlings, Christopher K; Memmen, Robert L

    2013-08-06

    A turbine stator vane for an industrial engine, the vane having two impingement cooling inserts that produce a series of impingement cooling from the pressure side to the suction side of the vane walls. Each insert includes a spar with a row of alternating impingement cooling channels and return air channels extending in a radial direction. Impingement cooling plates cover the two sides of the insert and having rows of impingement cooling holes aligned with the impingement cooling channels and return air openings aligned with the return air channel.

  8. Cool Flame Quenching

    NASA Technical Reports Server (NTRS)

    Pearlman, Howard; Chapek, Richard

    2001-01-01

    Cool flame quenching distances are generally presumed to be larger than those associated with hot flames, because the quenching distance scales with the inverse of the flame propagation speed, and cool flame propagation speeds are often times slower than those associated with hot flames. To date, this presumption has never been put to a rigorous test, because unstirred, non-isothermal cool flame studies on Earth are complicated by natural convection. Moreover, the critical Peclet number (Pe) for quenching of cool flames has never been established and may not be the same as that associated with wall quenching due to conduction heat loss in hot flames, Pe approx. = 40-60. The objectives of this ground-based study are to: (1) better understand the role of conduction heat loss and species diffusion on cool flame quenching (i.e., Lewis number effects), (2) determine cool flame quenching distances (i.e, critical Peclet number, Pe) for different experimental parameters and vessel surface pretreatments, and (3) understand the mechanisms that govern the quenching distances in premixtures that support cool flames as well as hot flames induced by spark-ignition. Objective (3) poses a unique fire safety hazard if conditions exist where cool flame quenching distances are smaller than those associated with hot flames. For example, a significant, yet unexplored risk, can occur if a multi-stage ignition (a cool flame that transitions to a hot flame) occurs in a vessel size that is smaller than that associated with the hot quenching distance. To accomplish the above objectives, a variety of hydrocarbon-air mixtures will be tested in a static reactor at elevated temperature in the laboratory (1g). In addition, reactions with chemical induction times that are sufficiently short will be tested aboard NASA's KC-135 microgravity (mu-g) aircraft. The mu-g results will be compared to a numerical model that includes species diffusion, heat conduction, and a skeletal kinetic mechanism

  9. Vortex-augmented cooling tower - windmill combination

    DOEpatents

    McAllister, J.E. Jr.

    1982-09-02

    A cooling tower for cooling large quantities of effluent water from a production facility by utilizing natural wind forces includes the use of a series of helically directed air inlet passages extending outwardly from the base of the tower to introduce air from any direction in a swirling vortical pattern while the force of the draft created in the tower makes it possible to place conventional power generating windmills in the air passage to provide power as a by-product.

  10. Floating Loop System For Cooling Integrated Motors And Inverters Using Hot Liquid Refrigerant

    DOEpatents

    Hsu, John S [Oak Ridge, TN; Ayers, Curtis W [Kingston, TN; Coomer, Chester [Knoxville, TN; Marlino, Laura D [Oak Ridge, TN

    2006-02-07

    A floating loop vehicle component cooling and air-conditioning system having at least one compressor for compressing cool vapor refrigerant into hot vapor refrigerant; at least one condenser for condensing the hot vapor refrigerant into hot liquid refrigerant by exchanging heat with outdoor air; at least one floating loop component cooling device for evaporating the hot liquid refrigerant into hot vapor refrigerant; at least one expansion device for expanding the hot liquid refrigerant into cool liquid refrigerant; at least one air conditioning evaporator for evaporating the cool liquid refrigerant into cool vapor refrigerant by exchanging heat with indoor air; and piping for interconnecting components of the cooling and air conditioning system.

  11. 40 CFR 1065.122 - Engine cooling and lubrication.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....122 Section 1065.122 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Equipment Specifications § 1065.122 Engine cooling and lubrication. (a) Engine cooling. Cool the engine during testing so its intake-air, oil, coolant, block,...

  12. 40 CFR 1065.122 - Engine cooling and lubrication.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....122 Section 1065.122 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Equipment Specifications § 1065.122 Engine cooling and lubrication. (a) Engine cooling. Cool the engine during testing so its intake-air, oil, coolant, block,...

  13. 40 CFR 1065.122 - Engine cooling and lubrication.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ....122 Section 1065.122 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Equipment Specifications § 1065.122 Engine cooling and lubrication. (a) Engine cooling. Cool the engine during testing so its intake-air, oil, coolant, block,...

  14. 40 CFR 1065.122 - Engine cooling and lubrication.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....122 Section 1065.122 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Equipment Specifications § 1065.122 Engine cooling and lubrication. (a) Engine cooling. Cool the engine during testing so its intake-air, oil, coolant, block,...

  15. 40 CFR 1065.122 - Engine cooling and lubrication.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....122 Section 1065.122 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Equipment Specifications § 1065.122 Engine cooling and lubrication. (a) Engine cooling. Cool the engine during testing so its intake-air, oil, coolant, block,...

  16. Cooling Shelf For Electronic Equipment

    NASA Technical Reports Server (NTRS)

    Tanzer, Herbert J.

    1989-01-01

    Heat-pipe action cools and maintains electronics at nearly constant temperature. System designed to control temperatures of spacecraft shelves or baseplates by combining honeycomb sandwich panel with reservoir of noncondensable gas and processing resulting device as variable-conductance heat pipe. Device provides flat surface for mounting heat-dissipating electronics that is effectively cooled and maintained at nearly constant temperature. Potentially useful in freeze drying, refrigeration, and air conditioning.

  17. Cooling of dried coal

    SciTech Connect

    Siddoway, M.A.

    1988-06-14

    This patent describes a process for noncombustibly drying particulate coal comprising: separating the coal into two wet coal streams; passing one wet coal system into a dryer to form a bed; heating air in a furnace; admitting the heated air to the dryer to fluidize the bed; withdrawing dryer exhaust gas; passing the exhaust gas through a cyclone and withdrawing coal fines from the cyclone; withdrawing a hot, dry coal stream from the dryer; blending the drier hot dry coal stream with the cyclone coal fines; withdrawing cyclone exhaust gas; wet scrubbing the cyclone exhaust gas to form a coal fines slurry and scrubber exhaust gas; passing the coal fines slurry to a sedimentation pool; blending the second wet coal stream with the drier hot dry coal stream and the cyclone coal fines; passing the latter blended stream to a cooler to form a bed; fluidizing the latter bed with ambient air; withdrawing cooler exhaust gas and passing the gas to a cyclone; passing exhaust gas from the latter cyclone to a baghouse and collecting coal fines therein; passing the latter coal fines to the furnace as fuel for heating the air; and withdrawing cooled coal from the cooler and blending the cooled coal with coal fines from the latter cyclone.

  18. Cooled railplug

    DOEpatents

    Weldon, W.F.

    1996-05-07

    The railplug is a plasma ignitor capable of injecting a high energy plasma jet into a combustion chamber of an internal combustion engine or continuous combustion system. An improved railplug is provided which has dual coaxial chambers (either internal or external to the center electrode) that provide for forced convective cooling of the electrodes using the normal pressure changes occurring in an internal combustion engine. This convective cooling reduces the temperature of the hot spot associated with the plasma initiation point, particularly in coaxial railplug configurations, and extends the useful life of the railplug. The convective cooling technique may also be employed in a railplug having parallel dual rails using dual, coaxial chambers. 10 figs.

  19. Cooling Vest

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Because quadriplegics are unable to perspire below the level of spinal injury, they cannot tolerate heat stress. A cooling vest developed by Ames Research Center and Upjohn Company allows them to participate in outdoor activities. The vest is an adaptation of Ames technology for thermal control garments used to remove excess body heat of astronauts. The vest consists of a series of corrugated channels through which cooled water circulates. Its two outer layers are urethane coated nylon, and there is an inner layer which incorporates the corrugated channels. It can be worn as a backpack or affixed to a wheelchair. The unit includes a rechargeable battery, mini-pump, two quart reservoir and heat sink to cool the water.

  20. "Hot" for Warm Water Cooling

    SciTech Connect

    IBM Corporation; Energy Efficient HPC Working Group; Hewlett Packard Corporation; SGI; Cray Inc.; Intel Corporation; U.S. Army Engineer Research Development Center; Coles, Henry; Ellsworth, Michael; Martinez, David J.; Bailey, Anna-Maria; Banisadr, Farhad; Bates, Natalie; Coghlan, Susan; Cowley, David E.; Dube, Nicholas; Fields, Parks; Greenberg, Steve; Iyengar, Madhusudan; Kulesza, Peter R.; Loncaric, Josip; McCann, Tim; Pautsch, Greg; Patterson, Michael K.; Rivera, Richard G.; Rottman, Greg K.; Sartor, Dale; Tschudi, William; Vinson, Wade; Wescott, Ralph

    2011-08-26

    Liquid cooling is key to reducing energy consumption for this generation of supercomputers and remains on the roadmap for the foreseeable future. This is because the heat capacity of liquids is orders of magnitude larger than that of air and once heat has been transferred to a liquid, it can be removed from the datacenter efficiently. The transition from air to liquid cooling is an inflection point providing an opportunity to work collectively to set guidelines for facilitating the energy efficiency of liquid-cooled High Performance Computing (HPC) facilities and systems. The vision is to use non-compressor-based cooling, to facilitate heat re-use, and thereby build solutions that are more energy-efficient, less carbon intensive and more cost effective than their air-cooled predecessors. The Energy Efficient HPC Working Group is developing guidelines for warmer liquid-cooling temperatures in order to standardize facility and HPC equipment, and provide more opportunity for reuse of waste heat. This report describes the development of those guidelines.

  1. Stochastic cooling

    SciTech Connect

    Bisognano, J.; Leemann, C.

    1982-03-01

    Stochastic cooling is the damping of betatron oscillations and momentum spread of a particle beam by a feedback system. In its simplest form, a pickup electrode detects the transverse positions or momenta of particles in a storage ring, and the signal produced is amplified and applied downstream to a kicker. The time delay of the cable and electronics is designed to match the transit time of particles along the arc of the storage ring between the pickup and kicker so that an individual particle receives the amplified version of the signal it produced at the pick-up. If there were only a single particle in the ring, it is obvious that betatron oscillations and momentum offset could be damped. However, in addition to its own signal, a particle receives signals from other beam particles. In the limit of an infinite number of particles, no damping could be achieved; we have Liouville's theorem with constant density of the phase space fluid. For a finite, albeit large number of particles, there remains a residue of the single particle damping which is of practical use in accumulating low phase space density beams of particles such as antiprotons. It was the realization of this fact that led to the invention of stochastic cooling by S. van der Meer in 1968. Since its conception, stochastic cooling has been the subject of much theoretical and experimental work. The earliest experiments were performed at the ISR in 1974, with the subsequent ICE studies firmly establishing the stochastic cooling technique. This work directly led to the design and construction of the Antiproton Accumulator at CERN and the beginnings of p anti p colliding beam physics at the SPS. Experiments in stochastic cooling have been performed at Fermilab in collaboration with LBL, and a design is currently under development for a anti p accumulator for the Tevatron.

  2. Methods of beam cooling

    SciTech Connect

    Sessler, A.M.

    1996-02-01

    Diverse methods which are available for particle beam cooling are reviewed. They consist of some highly developed techniques such as radiation damping, electron cooling, stochastic cooling and the more recently developed, laser cooling. Methods which have been theoretically developed, but not yet achieved experimentally, are also reviewed. They consist of ionization cooling, laser cooling in three dimensions and stimulated radiation cooling.

  3. Cool Sportswear

    NASA Technical Reports Server (NTRS)

    1982-01-01

    New athletic wear design based on the circulating liquid cooling system used in the astronaut's space suits, allows athletes to perform more strenuous activity without becoming overheated. Techni-Clothes gear incorporates packets containing a heat-absorbing gel that slips into an insulated pocket of the athletic garment and is positioned near parts of the body where heat transfer is most efficient. A gel packet is good for about one hour. Easily replaced from a supply of spares in an insulated container worn on the belt. The products, targeted primarily for runners and joggers and any other athlete whose performance may be affected by hot weather, include cooling headbands, wrist bands and running shorts with gel-pack pockets.

  4. Ventilating Air-Conditioner

    NASA Technical Reports Server (NTRS)

    Dinh, Khanh

    1994-01-01

    Air-conditioner provides ventilation designed to be used alone or incorporated into cooling or heating system operates efficiently only by recirculating stale air within building. Energy needed to operate overall ventilating cooling or heating system slightly greater than operating nonventilating cooling or heating system. Helps to preserve energy efficiency while satisfying need for increased forced ventilation to prevent accumulation of undesired gases like radon and formaldehyde. Provides fresh treated air to variety of confined spaces: hospital surgeries, laboratories, clean rooms, and printing shops and other places where solvents used. In mobile homes and portable classrooms, eliminates irritant chemicals exuded by carpets, panels, and other materials, ensuring healthy indoor environment for occupants.

  5. Flight and Test-stand Investigation of High-performance Fuels in Modified Double-row Radial Air-cooled Engines III: Knock-limited Performance of 33-R as Compared with a Triptane Blend and 28-R in Flight

    NASA Technical Reports Server (NTRS)

    Blackman, Calvin C.; White, H. Jack

    1945-01-01

    A comparison has been made in flight of the antiknock characteristics of 33-R fuel with that of 28-R and a triptane blent. The knock-limited performance of the three fuels - 33-R, a blend of 80 percent 28-R plus 20 percent triptane (leaded to 4.5 ml TEL/gal), and 28-R - was investigated in two modified 14-cylinder double-row radial air-cooled engines. Tests were conducted on the engines as installed in the left inboard nacelle of an airplane. A carburetor-air temperature of approximately 85 deg F was maintained. The conditions covered at an engine speed of 2250 rpm were high and low blower ratios and spark advances of 25 deg and 32 deg B.T.C. For an engine speed of 1800 rpm only the high-blower condition was investigated for both 25 deg and 32 deg spark advances. For the conditions investigated the difference between 33-R and the triptane blend was found to be slight; the performance of 33-R fuel, however, was slightly higher than that of the triptane blend in the lean region. The knock-limited power obtained with the 33-R fuel was from 14 to 28 percent higher than that of the 28-R fuel for the entire range of test conditions; the greatest improvement was shown in the lean region.

  6. Solar-powered cooling system

    DOEpatents

    Farmer, Joseph C

    2013-12-24

    A solar-powered adsorption-desorption refrigeration and air conditioning system uses nanostructural materials made of high specific surface area adsorption aerogel as the adsorptive media. Refrigerant molecules are adsorbed on the high surface area of the nanostructural material. A circulation system circulates refrigerant from the nanostructural material to a cooling unit.

  7. Air-cooling mathematical analysis as inferred from the air-temperature observation during the 1st total occultation of the Sun of the 21st century at Lusaka, Zambia

    NASA Astrophysics Data System (ADS)

    Peñaloza-Murillo, Marcos A.; Pasachoff, Jay M.

    2015-04-01

    We analyze mathematically air temperature measurements made near the ground by the Williams College expedition to observe the first total occultation of the Sun [TOS (commonly known as a total solar eclipse)] of the 21st century in Lusaka, Zambia, in the afternoon of June 21, 2001. To do so, we have revisited some earlier and contemporary methods to test their usefulness for this analysis. Two of these methods, based on a radiative scheme for solar radiation modeling and that has been originally applied to a morning occultation, have successfully been combined to obtain the delay function for an afternoon occultation, via derivation of the so-called instantaneous temperature profiles. For this purpose, we have followed the suggestion given by the third of these previously applied methods to calculate this function, although by itself it failed to do so at least for this occultation. The analysis has taken into account the limb-darkening, occultation and obscuration functions. The delay function obtained describes quite fairly the lag between the solar radiation variation and the delayed air temperature measured. Also, in this investigation, a statistical study has been carried out to get information on the convection activity produced during this event. For that purpose, the fluctuations generated by turbulence has been studied by analyzing variance and residuals. The results, indicating an irreversible steady decrease of this activity, are consistent with those published by other studies. Finally, the air temperature drop due to this event is well estimated by applying the empirical scheme given by the fourth of the previously applied methods, based on the daily temperature amplitude and the standardized middle time of the occultation. It is demonstrated then that by using a simple set of air temperature measurements obtained during solar occultations, along with some supplementary data, a simple mathematical analysis can be achieved by applying of the four

  8. Liquid metal cooled nuclear reactor plant system

    DOEpatents

    Hunsbedt, Anstein; Boardman, Charles E.

    1993-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting for fuel decay during reactor shutdown, or heat produced during a mishap. The reactor system is enhanced with sealing means for excluding external air from contact with the liquid metal coolant leaking from the reactor vessel during an accident. The invention also includes a silo structure which resists attack by leaking liquid metal coolant, and an added unique cooling means.

  9. Thermoelectrically cooled water trap

    DOEpatents

    Micheels, Ronald H.

    2006-02-21

    A water trap system based on a thermoelectric cooling device is employed to remove a major fraction of the water from air samples, prior to analysis of these samples for chemical composition, by a variety of analytical techniques where water vapor interferes with the measurement process. These analytical techniques include infrared spectroscopy, mass spectrometry, ion mobility spectrometry and gas chromatography. The thermoelectric system for trapping water present in air samples can substantially improve detection sensitivity in these analytical techniques when it is necessary to measure trace analytes with concentrations in the ppm (parts per million) or ppb (parts per billion) partial pressure range. The thermoelectric trap design is compact and amenable to use in a portable gas monitoring instrumentation.

  10. REACTOR COOLING

    DOEpatents

    Quackenbush, C.F.

    1959-09-29

    A nuclear reactor with provisions for selectively cooling the fuel elements is described. The reactor has a plurality of tubes extending throughout. Cylindrical fuel elements are disposed within the tubes and the coolant flows through the tubes and around the fuel elements. The fuel elements within the central portion of the reactor are provided with roughened surfaces of material. The fuel elements in the end portions of the tubes within the reactor are provlded with low conduction jackets and the fuel elements in the region between the central portion and the end portions are provided with smooth surfaces of high heat conduction material.

  11. Hydronic radiant cooling: Overview and preliminary performance assessment

    SciTech Connect

    Feustel, H.E.

    1993-05-01

    A significant amount of electrical energy used to cool non-residential buildings is drawn by the fans used to transport the cool air through the thermal distribution system. Hydronic systems reduce the amount of air transported through the building by separating ventilation and thermal conditioning. Due to the physical properties of water, hydronic distribution systems can transport a given amount of thermal energy using less than 5% of the otherwise necessary fan energy. This savings alone significantly reduces the energy consumption and especially the peak power requirement This survey clearly shows advantages for radiant cooling in combination with hydronic thermal distribution systems in comparison with the All-Air Systems commonly used in California. The report describes a literature survey on the system's development, thermal comfort issues, and cooling performance. The cooling power potential and the cooling power requirement are investigated for several California climates. Peak-power requirement is compared for hydronic radiant cooling and conventional All-Air-Systems.

  12. Seminar 14 - Desiccant Enhanced Air Conditioning: Desiccant Enhanced Evaporative Air Conditioning (Presentation)

    SciTech Connect

    Kozubal, E.

    2013-02-01

    This presentation explains how liquid desiccant based coupled with an indirect evaporative cooler can efficiently produce cool, dry air, and how a liquid desiccant membrane air conditioner can efficiently provide cooling and dehumidification without the carryover problems of previous generations of liquid desiccant systems. It provides an overview to a liquid desiccant DX air conditioner that can efficiently provide cooling and dehumidification to high latent loads without the need for reheat, explains how liquid desiccant cooling and dehumidification systems can outperform vapor compression based air conditioning systems in hot and humid climates, explains how liquid desiccant cooling and dehumidification systems work, and describes a refrigerant free liquid desiccant based cooling system.

  13. Analytical investigation of chord size and cooling methods on turbine blade cooling requirements. Book 1: Sections 1 through 8 and appendixes A through I

    NASA Technical Reports Server (NTRS)

    Faulkner, F. E.

    1971-01-01

    A study was conducted to determine the effect of chord size on air cooled turbine blades. In the preliminary design phase, eight turbine blade cooling configurations in 0.75-in., 1.0-in., and 1.5-in. chord sizes were analyzed to determine the maximum turbine inlet temperature capabilities. A pin fin convection cooled configuration and a film-impingement cooled configuration were selected for a final design analysis in which the maximum turbine inlet temperature was determined as a function of the cooling air inlet temperature and the turbine inlet total pressure for each of the three chord sizes. The cooling air flow requirements were also determined for a varying cooling air inlet temperature with a constant turbine inlet temperature. It was determined that allowable turbine inlet temperature increases with increasing chord for the convection cooled and transpiration cooled designs, however, the film-convection cooled designs did not have a significant change in turbine inlet temperature with chord.

  14. Cab Heating and Cooling

    SciTech Connect

    Damman, Dennis

    2005-10-31

    Schneider National, Inc., SNI, has concluded the Cab Heating and Cooling evaluation of onboard, engine off idling solutions. During the evaluation period three technologies were tested, a Webasto Airtronic diesel fired heater for cold weather operation, and two different approaches to cab cooling in warm weather, a Webasto Parking Cooler, phase change storage system and a Bergstrom Nite System, a 12 volt electrical air conditioning approach to cooling. Diesel fired cab heaters were concluded to provide adequate heat in winter environments down to 10 F. With a targeted idle reduction of 17%, the payback period is under 2 years. The Webasto Parking Cooler demonstrated the viability of this type of technology, but required significant driver involvement to achieve maximum performance. Drivers rated the technology as ''acceptable'', however, in individual discussions it became apparent they were not satisfied with the system limitations in hot weather, (over 85 F). The Bergstrom Nite system was recognized as an improvement by drivers and required less direct driver input to operate. While slightly improved over the Parking Cooler, the hot temperature limitations were only slightly better. Neither the Parking Cooler or the Nite System showed any payback potential at the targeted 17% idle reduction. Fleets who are starting at a higher idle baseline may have a more favorable payback.

  15. An experimental investigation of a gas turbine disk cooling system

    NASA Astrophysics Data System (ADS)

    Kobayashi, N.; Matsumato, M.; Shizuya, M.

    1983-03-01

    The results of an experimental study of the cooling of a model disk similar to an engine disk are compared with the results obtained by three-dimensional finite difference computation, and it is reconfirmed that the determination of cooling air temperature is one of the most important data for predicting the disk temperature. The minimum cooling air flow rate necessary to prevent ingress of external hot gas is determined by the fluctuation of cooling air temperature inside the wheel space with the external axial hot gas flow for values of the rotational Reynolds number of 0-6.5 million. The effect of rotational speed on the minimum cooling air flow rate is found to be negligible, and it is shown that the determination of the ingress of hot gas using the pressure difference criterion underestimates the minimum cooling air flow rate.

  16. Blower Cooling of Finned Cylinders

    NASA Technical Reports Server (NTRS)

    Schey, Oscar W; Ellerbrock, Herman H , Jr

    1937-01-01

    Several electrically heated finned steel cylinders enclosed in jackets were cooled by air from a blower. The effect of the air conditions and fin dimensions on the average surface heat-transfer coefficient q and the power required to force the air around the cylinders were determined. Tests were conducted at air velocities between the fins from 10 to 130 miles per hour and at specific weights of the air varying from 0.046 to 0.074 pound per cubic foot. The fin dimensions of the cylinders covered a range in pitches from 0.057 to 0.25 inch average fin thicknesses from 0.035 to 0.04 inch, and fin widths from 0.67 to 1.22 inches.

  17. Radiant vessel auxiliary cooling system

    DOEpatents

    Germer, John H.

    1987-01-01

    In a modular liquid-metal pool breeder reactor, a radiant vessel auxiliary cooling system is disclosed for removing the residual heat resulting from the shutdown of a reactor by a completely passive heat transfer system. A shell surrounds the reactor and containment vessel, separated from the containment vessel by an air passage. Natural circulation of air is provided by air vents at the lower and upper ends of the shell. Longitudinal, radial and inwardly extending fins extend from the shell into the air passage. The fins are heated by radiation from the containment vessel and convect the heat to the circulating air. Residual heat from the primary reactor vessel is transmitted from the reactor vessel through an inert gas plenum to a guard or containment vessel designed to contain any leaking coolant. The containment vessel is conventional and is surrounded by the shell.

  18. Sequential cooling insert for turbine stator vane

    SciTech Connect

    Jones, Russel B; Krueger, Judson J; Plank, William L

    2014-11-04

    A sequential impingement cooling insert for a turbine stator vane that forms a double impingement for the pressure and suction sides of the vane or a triple impingement. The insert is formed from a sheet metal formed in a zigzag shape that forms a series of alternating impingement cooling channels with return air channels, where pressure side and suction side impingement cooling plates are secured over the zigzag shaped main piece. Another embodiment includes the insert formed from one or two blocks of material in which the impingement channels and return air channels are machined into each block.

  19. Sequential cooling insert for turbine stator vane

    SciTech Connect

    Jones, Russell B; Krueger, Judson J; Plank, William L

    2014-04-01

    A sequential impingement cooling insert for a turbine stator vane that forms a double impingement for the pressure and suction sides of the vane or a triple impingement. The insert is formed from a sheet metal formed in a zigzag shape that forms a series of alternating impingement cooling channels with return air channels, where pressure side and suction side impingement cooling plates are secured over the zigzag shaped main piece. Another embodiment includes the insert formed from one or two blocks of material in which the impingement channels and return air channels are machined into each block.

  20. Passive Cooling of Body Armor

    NASA Astrophysics Data System (ADS)

    Holtz, Ronald; Matic, Peter; Mott, David

    2013-03-01

    Warfighter performance can be adversely affected by heat load and weight of equipment. Current tactical vest designs are good insulators and lack ventilation, thus do not provide effective management of metabolic heat generated. NRL has undertaken a systematic study of tactical vest thermal management, leading to physics-based strategies that provide improved cooling without undesirable consequences such as added weight, added electrical power requirements, or compromised protection. The approach is based on evaporative cooling of sweat produced by the wearer of the vest, in an air flow provided by ambient wind or ambulatory motion of the wearer. Using an approach including thermodynamic analysis, computational fluid dynamics modeling, air flow measurements of model ventilated vest architectures, and studies of the influence of fabric aerodynamic drag characteristics, materials and geometry were identified that optimize passive cooling of tactical vests. Specific architectural features of the vest design allow for optimal ventilation patterns, and selection of fabrics for vest construction optimize evaporation rates while reducing air flow resistance. Cooling rates consistent with the theoretical and modeling predictions were verified experimentally for 3D mockups.

  1. Solar technology assessment project. Volume 4: Solar air conditioning: Active, hybrid and passive

    NASA Astrophysics Data System (ADS)

    Yellott, J. I.

    1981-04-01

    The status of absorption cycle solar air conditioning and the Rankine cycle solar cooling system is reviewed. Vapor jet ejector chillers, solar pond based cooling, and photovoltaic compression air conditioning are also briefly discussed. Hybrid solar cooling by direct and indirect evaporative cooling, and dehumidification by desiccation are described and discussed. Passive solar cooling by convective and radiative processes, evaporative cooling by passive processes, and cooling with roof ponds and movable insulation are reviewed. Federal and state involvement in solar cooling is discussed.

  2. Air Conditioner/Dehumidifier

    NASA Technical Reports Server (NTRS)

    1986-01-01

    An ordinary air conditioner in a very humid environment must overcool the room air, then reheat it. Mr. Dinh, a former STAC associate, devised a heat pipe based humidifier under a NASA Contract. The system used heat pipes to precool the air; the air conditioner's cooling coil removes heat and humidity, then the heat pipes restore the overcooled air to a comfortable temperature. The heat pipes use no energy, and typical savings are from 15-20%. The Dinh Company also manufactures a "Z" coil, a retrofit cooling coil which may be installed on an existing heater/air conditioner. It will also provide free hot water. The company has also developed a photovoltaic air conditioner and solar powered water pump.

  3. National Gas Cool Times, September/October 2000.

    ERIC Educational Resources Information Center

    Natural Gas Cool Times, 2000

    2000-01-01

    Several articles are presented covering the development and use of gas/electric cooling solutions for public schools and colleges. Articles address financing issues; indoor air quality (IAQ) problems and solutions; and the analysis of heating, ventilation, and air conditioning systems. Three examples of how schools solved their cooling problems…

  4. Cooled highly twisted airfoil for a gas turbine engine

    SciTech Connect

    Kildea, R.J.

    1988-04-19

    This patent describes a cooled highly twisted airfoil for use in a gas turbine engine. The airfoil has a first cooling air cavity adjacent a leading edge of the airfoil, and a second cooling air cavity, separated from the first cavity by a wall. The second cavity provides cooling air to the first cavity by means of cooling holes provided in the wall. The improvement is characterized by: the wall comprising an integrally formed, continuous warped wall, defined as a surface of revolution about an axis, the axis determined such that the axis intersects the plane of a section close to a desired centerline of a series of impingement holes aligned in opposition to the leading edge, whereby cooling air is directed relatively precisely to the leading edge of the highly twisted airfoil through the impingement holes.

  5. Megastructures: Heating/cooling/saving energy

    SciTech Connect

    Stein, H.L.

    1982-11-01

    Examined are methods to reduce the energy costs of modifying outdoor air brought into an office building's HVAC system. Minimizing the amount of outdoor air brought into the building or, as an alternative, using an economizer cycle is discussed. Cautions that care must be taken when specifying a VAV (variable air-volume) system to ensure that adequate airflow, air changes and fresh air are supplied at low-load conditions. Describes water-to-water heat pumps that can reject heat from the building's interior to a cooling tower, use it to help warm domestic water, or transfer it to perimeter circuits when it is needed. Suggests that high heat-load office equipment (e.g. computers) should have their own separate cooling systems. Gives the Tower of the Dubai International Trade Center (Arabian Gulf) as an example of air conditioning systems.

  6. Coolerado Cooler Helps to Save Cooling Energy and Dollars: New Cooling Technology Targets Peak Load Reduction

    SciTech Connect

    Robichaud, R.

    2007-06-01

    This document is about a new evaporative cooling technology that can deliver cooler supply air temperatures than either direct or indirect evaporative cooling systems, without increasing humidity. The Coolerado Cooler technology can help Federal agencies reach the energy-use reduction goals of EPAct 2005, particularly in the western United States.

  7. Engine cooling fan and fan shrouding arrangement

    SciTech Connect

    Longhouse, R.E.; Vona, N.

    1987-08-11

    This patent describes a vehicle engine cooling fan and shrouding assembly for forcing cooling air through a radiator in which engine coolant is circulated comprising support means adjacent to the radiator, a fan shroud and mounting shell operatively secured to the support means adjacent to the radiator. The shell has a peripheral forwardly extending wall portion to provide an intake for air flowing through the radiator. The shell further has a generally cylindrical and rearwardly extending portion to provide a reduced dimensioned air ejector for the shell, spoke means extending inwardly from the air ejector, a fan drive motor supported by the spoke means extending axially into the shell, the motor having a rotatable output shaft extending outwardly therefrom toward the radiator and having a terminal end portion, and engine cooling fan operatively driven by the drive motor and rotatably mounted in the shell.

  8. Film cooling on the pressure surface of a turbine vane

    NASA Technical Reports Server (NTRS)

    Gauntner, J. W.; Gladden, H. J.

    1977-01-01

    Film-cooling-air ejection from the pressure surface of a turbine vane was investigated, and experimental data are presented. This investigation was conducted in a four-vane cascade on a J75-size turbine vane that had a double row of staggered holes in line with the primary flow and located downstream of the leading edge region. The results showed that: (1) the average effectiveness of film-convection cooling was higher than that of either film cooling or convection cooling separately; (2) the addition of small quantities of film-cooling air always increased the cooling effectiveness relative to the zero-injection case; however, (3) the injected film must exceed a certain threshold value to obtain a beneficial effect of film cooling relative to convection cooling alone.

  9. Vehicle hydraulic cooling fan system

    SciTech Connect

    Nilson, C.A.

    1993-06-08

    A hydraulic cooling system for vehicles having an internal combustion engine cooled by a radiator and a coolant is described, comprising, in combination, a shroud adapted to be mounted adjacent the radiator having a wall forming an air passage and defining a first port disposed adjacent the radiator and a second port spaced from the first port, a fan located within the second port, a hydraulic fan motor operatively connected to the fan, a hydraulic pump operatively connected to the engine for producing a pressurized hydraulic fluid flow, a hydraulic circuit interconnecting the pump to the fan motor, the circuit including a control valve, a hydraulic fluid reservoir and a heat exchanger, the heat exchanger being mounted within the shroud air passage.

  10. Information technology equipment cooling method

    DOEpatents

    Schultz, Mark D.

    2015-10-20

    According to one embodiment, a system for removing heat from a rack of information technology equipment may include a sidecar indoor air to liquid heat exchanger that cools air utilized by the rack of information technology equipment to cool the rack of information technology equipment. The system may also include a liquid to liquid heat exchanger and an outdoor heat exchanger. The system may further include configurable pathways to connect and control fluid flow through the sidecar heat exchanger, the liquid to liquid heat exchanger, the rack of information technology equipment, and the outdoor heat exchanger based upon ambient temperature and/or ambient humidity to remove heat generated by the rack of information technology equipment.

  11. Structural cooling fluid tube for supporting a turbine component and supplying cooling fluid to transition section

    SciTech Connect

    Charron, Richard; Pierce, Daniel

    2015-08-11

    A shaft cover support for a gas turbine engine is disclosed. The shaft cover support not only provides enhanced support to a shaft cover of the gas turbine engine, but also includes a cooling fluid chamber for passing fluids from a rotor air cooling supply conduit to an inner ring cooling manifold. Furthermore, the shaft cover support may include a cooling shield supply extending from the cooling fluid chamber between the radially outward inlet and the radially inward outlet on the radially extending region and in fluid communication with the cooling fluid chamber for providing cooling fluids to a transition section. The shaft cover support may also provide additional stiffness and reduce interference of the flow from the compressor. In addition, the shaft cover support accommodates a transition section extending between compressor and turbine sections of the gas turbine engine.

  12. Information technology equipment cooling system

    DOEpatents

    Schultz, Mark D.

    2014-06-10

    According to one embodiment, a system for removing heat from a rack of information technology equipment may include a sidecar indoor air to liquid heat exchanger that cools warm air generated by the rack of information technology equipment. The system may also include a liquid to liquid heat exchanger and an outdoor heat exchanger. The system may further include configurable pathways to connect and control fluid flow through the sidecar heat exchanger, the liquid to liquid heat exchanger, the rack of information technology equipment, and the outdoor heat exchanger based upon ambient temperature and/or ambient humidity to remove heat from the rack of information technology equipment.

  13. Air heating system

    DOEpatents

    Primeau, John J.

    1983-03-01

    A self-starting, fuel-fired, air heating system including a vapor generator, a turbine, and a condenser connected in a closed circuit such that the vapor output from the vapor generator is conducted to the turbine and then to the condenser where it is condensed for return to the vapor generator. The turbine drives an air blower which passes air over the condenser for cooling the condenser. Also, a condensate pump is driven by the turbine. The disclosure is particularly concerned with the provision of heat exchanger and circuitry for cooling the condensed fluid output from the pump prior to its return to the vapor generator.

  14. Solar Assisted Adsorptive Desiccant Cooling System

    NASA Astrophysics Data System (ADS)

    Ohkura, Masashi; Kodama, Akio

    Desiccant cooling processes can supply dry air by using lower temperature heat energy such as waste heat or solar heat. Especially, solar heat is useful heat source for the desiccant cooling since solar heat in summer tends to be surplus. This paper discusses the hourly cooling performance of the solar assisted desiccant cooling system, which consists of a desiccant wheel, a thermal wheel, two evaporative coolers, a cooling coil and flat plate solar water heater, assuming that the cooling system is applied to an office room of 250m3 in volume. The estimation indicated that the surface area needed to satisfy the dehumidifying performance in a sunny day was at least 30m2. Furthermore, surface area of 40m2 or larger provided a surplus dehumidifying performance causing a sensible cooling effect in evaporative cooler. Surface area of 30 m2 did not satisfy the dehumidifying performance required for high humidity condition, over 18.0g/kg(DA). The cooling demand of the cooling coil increased in such humidity condition due to the decrease in the sensible cooling effect of evaporative cooler. Auxiliary heater was required in a cloudy day since the temperature of water supplied from solar water heater of 40m2 did not reach sufficient level.

  15. 2004 Savannah River Cooling Tower Collection (U)

    SciTech Connect

    Garrett, Alfred; Parker, Matthew J.; Villa-Aleman, E.

    2005-05-01

    The Savannah River National Laboratory (SRNL) collected ground truth in and around the Savannah River Site (SRS) F-Area cooling tower during the spring and summer of 2004. The ground truth data consisted of air temperatures and humidity inside and around the cooling tower, wind speed and direction, cooling water temperatures entering; inside adn leaving the cooling tower, cooling tower fan exhaust velocities and thermal images taken from helicopters. The F-Area cooling tower had six cells, some of which were operated with fans off during long periods of the collection. The operating status (fan on or off) for each of the six cells was derived from operations logbooks and added to the collection database. SRNL collected the F-Area cooling tower data to produce a database suitable for validation of a cooling tower model used by one of SRNL's customer agencies. SRNL considers the data to be accurate enough for use in a model validation effort. Also, the thermal images of the cooling tower decks and throats combined with the temperature measurements inside the tower provide valuable information about the appearance of cooling towers as a function of fan operating status and time of day.

  16. Cooling performance of solar cell-driven, thermoelectric cooling prototype headgear

    SciTech Connect

    Hara, T.; Obora, H.; Sato, S.

    1998-07-01

    Cooling performance of solar cell driven, thermoelectric cooling prototype headgear was examined experimentally. Three types of prototype headgear were made and examined. They were cooled by thermoelectric elements and driven by solar cells. The authors are always able to be cooled anytime and anywhere inside the house in hot season. However, they were not able to be cooled when they worked outside the house. Especially, a personal air-conditioning system is required for the people working outside. Some cooling caps with an electric fan driven by solar cells can be often seen now. However, the fan only blows hot air to the face. They cannot cool down the face below the ambient temperature. The authors tried to cool down the face to the lower temperature below the ambient by a refrigeration system. A thermoelectric element was set at the front of a headgear such as baseball cap or straw hat to cool a forehead. Some pieces of solar cells were mounted on the top and the brim of the headgear to work the thermoelectric element. Hot side of thermoelectric element was cooled by a plate fin an electric fan. The electric fan was also driven by a solar cell. Two types of baseball caps with solar cells and a thermoelectric element and a type of straw hat with them were made and tested. Solar cells were connected to optimize the electric power for the thermoelectric element. An electric fan and its power input were selected to cool maximum the thermoelectric element. Cooling performance and thermal comfort of the headgear were examined by testers in case of sitting, walking and bicycling. The temperature difference between ambient and cooling temperature was required only about 4 degree Celsius. Required power by solar cells was up to about 1.5 watt for a personal cooling.

  17. Cooling electronic equipment at simulated high altitude in hypobaric chambers

    NASA Astrophysics Data System (ADS)

    Devine, James A.

    1987-08-01

    An air cooling system has been designed to minimize electronic equipment failures during simulated exposures to 9,000 meters (29,000 ft) in hypobaric chambers. Air density, critical to convective heat transfer during electronic equipment operations, diminishes rapidly below 830 grams cubic meter (16,000 ft, 5,000 meters) resulting in equipment failures. Forced convection, using fans, can be effective up to 6,000meters but extensive equipment failures occur at higher altitudes. A newly designed cooling system incorporates a micrometer-like air flow control nozzle that directs compressed air onto the subject area. The design also accelerates surrounding air molecules to create a highly amplified flow by adding the entrained ambient air to the compressed air. Air flows may be directed on heat exchangers, power supplies, through ventilation ports, ports, to assist fan units, and for general in-cabinet cooling.

  18. RCCS Experiments and Validation for High Temperature Gas-Cooled Reactor

    SciTech Connect

    Chang Oh; Cliff Davis; Goon C. Park

    2007-09-01

    A reactor cavity cooling system (RCCS), an air-cooled helical coil RCCS unit immersed in the water pool, was proposed to overcome the disadvantages of the weak cooling ability of air-cooled RCCS and the complex structure of water-cooled RCCS for the high temperature gas-cooled reactor (HTGR). An experimental apparatus was constructed to investigate the various heat transfer phenomena in the water pool type RCCS, such as the natural convection of air inside the cavity, radiation in the cavity, the natural convection of water in the water pool and the forced convection of air in the cooling pipe. The RCCS experimental results were compared with published correlations. The CFX code was validated using data from the air-cooled portion of the RCCS. The RELAP5 code was validated using measured temperatures from the reactor vessel and cavity walls.

  19. Turbine stator vane segment having internal cooling circuits

    DOEpatents

    Jones, Raymond Joseph; Burns, James Lee; Bojappa, Parvangada Ganapathy; Jones, Schotsch Margaret

    2003-01-01

    A turbine stator vane includes outer and inner walls each having outer and inner chambers and a vane extending between the outer and inner walls. The vane includes first, second, third, fourth and fifth cavities for flowing a cooling medium. The cooling medium enters the outer chamber of the outer wall, flows through an impingement plate for impingement cooling of the outer band wall defining in part the hot gas path and through openings in the first, second and fourth cavities for flow radially inwardly, cooling the vane. The spent cooling medium flows into the inner wall and inner chamber for flow through an impingement plate radially outwardly to cool the inner wall. The spent cooling medium flows through the third cavity for egress from the turbine vane segment from the outer wall. The first, second or third cavities contain inserts having impingement openings for impingement cooling of the vane walls. The fifth cavity provides air cooling for the trailing edge.

  20. Cooling system with automated seasonal freeze protection

    DOEpatents

    Campbell, Levi A.; Chu, Richard C.; David, Milnes P.; Ellsworth, Jr., Michael J.; Iyengar, Madhusudan K.; Simons, Robert E.; Singh, Prabjit; Zhang, Jing

    2016-05-24

    An automated multi-fluid cooling system and method are provided for cooling an electronic component(s). The cooling system includes a coolant loop, a coolant tank, multiple valves, and a controller. The coolant loop is at least partially exposed to outdoor ambient air temperature(s) during normal operation, and the coolant tank includes first and second reservoirs containing first and second fluids, respectively. The first fluid freezes at a lower temperature than the second, the second fluid has superior cooling properties compared with the first, and the two fluids are soluble. The multiple valves are controllable to selectively couple the first or second fluid into the coolant in the coolant loop, wherein the coolant includes at least the second fluid. The controller automatically controls the valves to vary first fluid concentration level in the coolant loop based on historical, current, or anticipated outdoor air ambient temperature(s) for a time of year.