Science.gov

Sample records for air current speeds

  1. Effects of saline-water flow rate and air speed on leakage current in RTV coatings

    SciTech Connect

    Kim, S.H.; Hackam, R.

    1995-10-01

    Room temperature vulcanizing (RTV) silicone rubber is increasingly being used to coat porcelain and glass insulators in order to improve their electrical performance in the presence of pollution and moisture. A study of the dependence of leakage current, pulse current count and total charge flowing across the surface of RTV on the flow rate of the saline water and on the compressed air pressure used to create the salt-fog is reported. The fog was directed at the insulating rods either from one or two sides. The RTV was fabricated from polydimethylsiloxane polymer, a filler of alumina trihydrate (ATH), a polymerization catalyst and fumed silica reinforcer, all dispersed in 1,1,1-trichloroethane solvent. The saline water flow rate was varied in the range 0.4 to 2.0 l/min. The compressed air pressure at the input of the fog nozzles was varied from 0.20 to 0.63 MPa. The air speed at the surface of the insulating rods was found to depend linearly on the air pressure measured at the inlet to the nozzles and varied in the range 3 to 14 km/hr. The leakage current increased with increasing flow rate and increasing air speed. This is attributed to the increased loss of hydrophobicity with a larger quantity of saline fog and a larger impact velocities of fog droplets interacting with the surface of the RTV coating.

  2. Alternating-Current Equipment for the Measurement of Fluctuations of Air Speed in Turbulent Flow

    NASA Technical Reports Server (NTRS)

    Mock, W C , Jr

    1937-01-01

    Recent electrical and mechanical improvements have been made in the equipment developed at the National Bureau of Standards for measurement of fluctuations of air speed in turbulent flow. Data useful in the design of similar equipment are presented. The design of rectified alternating-current power supplies for such apparatus is treated briefly, and the effect of the power supplies on the performance of the equipment is discussed.

  3. Air speed and attitude probe

    NASA Technical Reports Server (NTRS)

    Baker, G. J.; Economu, M. A. (Inventor)

    1980-01-01

    An air speed and attitude probe characterized by a pivot shaft normally projected from a data boom and supported thereby for rotation about an axis of rotation coincident with the longitudinal axis of the shaft is described. The probe is a tubular body supported for angular displacement about the axis of rotation and has a fin mounted on the body for maintaining one end of the body in facing relation with relative wind and has a pair of transducers mounted in the body for providing intelligence indicative of total pressure and static pressure for use in determining air speed. A stack of potentiometers coupled with the shaft to provide intelligence indicative of aircraft attitude, and circuitry connecting the transducers and potentiometers to suitable telemetry circuits are described.

  4. Influence of current velocity and wind speed on air-water gas exchange in a mangrove estuary

    NASA Astrophysics Data System (ADS)

    Ho, David T.; Coffineau, Nathalie; Hickman, Benjamin; Chow, Nicholas; Koffman, Tobias; Schlosser, Peter

    2016-04-01

    Knowledge of air-water gas transfer velocities and water residence times is necessary to study the fate of mangrove derived carbon exported into surrounding estuaries and ultimately to determine carbon balances in mangrove ecosystems. For the first time, the 3He/SF6 dual tracer technique, which has been proven to be a powerful tool to determine gas transfer velocities in the ocean, is applied to Shark River, an estuary situated in the largest contiguous mangrove forest in North America. The mean gas transfer velocity was 3.3 ± 0.2 cm h-1 during the experiment, with a water residence time of 16.5 ± 2.0 days. We propose a gas exchange parameterization that takes into account the major sources of turbulence in the estuary (i.e., bottom generated shear and wind stress).

  5. Ozone - Current Air Quality Index

    MedlinePlus

    Local Air Quality Conditions Zip Code: State : My Current Location Forecast Current AQI AQI Loop More Maps AQI: Good (0 - ... September 2016, Busan, South Korea. More more announcements Air Quality Basics Air Quality Index | Ozone | Particle Pollution | Smoke ...

  6. Development of Air Speed Nozzles

    NASA Technical Reports Server (NTRS)

    Zahm, A F

    1920-01-01

    Report describes the development of a suitable speed nozzle for the first few thousand airplanes made by the United States during the recent war in Europe, and to furnish a basis for more mature instruments in the future. Requirements for the project were to provide a suitable pressure collector for aircraft speed meters and to develop a speed nozzle which would be waterproof, powerful, unaffected by slight pitch and yaw, rugged and easy to manufacture, and uniform in structure and reading, so as not to require individual calibration.

  7. Speed control with end cushion for high speed air cylinder

    DOEpatents

    Stevens, Wayne W.; Solbrig, Charles W.

    1991-01-01

    A high speed air cylinder in which the longitudinal movement of the piston within the air cylinder tube is controlled by pressurizing the air cylinder tube on the accelerating side of the piston and releasing pressure at a controlled rate on the decelerating side of the piston. The invention also includes a method for determining the pressure required on both the accelerating and decelerating sides of the piston to move the piston with a given load through a predetermined distance at the desired velocity, bringing the piston to rest safely without piston bounce at the end of its complete stroke.

  8. 26. "AIR INSTALLATIONS; EDWARDS AIR FORCE BASE, CALIFORNIA; HIGH SPEED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. "AIR INSTALLATIONS; EDWARDS AIR FORCE BASE, CALIFORNIA; HIGH SPEED TEST TRACK." Drawing No. 10-259. One inch to 400 feet plan of original 10,000-foot sled track. No date. No D.O. series number. No headings as above. - Edwards Air Force Base, South Base Sled Track, Edwards Air Force Base, North of Avenue B, between 100th & 140th Streets East, Lancaster, Los Angeles County, CA

  9. Variable current speed controller for eddy current motors

    DOEpatents

    Gerth, H.L.; Bailey, J.M.; Casstevens, J.M.; Dixon, J.H.; Griffith, B.O.; Igou, R.E.

    1982-03-12

    A speed control system for eddy current motors is provided in which the current to the motor from a constant frequency power source is varied by comparing the actual motor speed signal with a setpoint speed signal to control the motor speed according to the selected setpoint speed. A three-phase variable voltage autotransformer is provided for controlling the voltage from a three-phase power supply. A corresponding plurality of current control resistors is provided in series with each phase of the autotransformer output connected to inputs of a three-phase motor. Each resistor is connected in parallel with a set of normally closed contacts of plurality of relays which are operated by control logic. A logic circuit compares the selected speed with the actual motor speed obtained from a digital tachometer monitoring the motor spindle speed and operated the relays to add or substract resistance equally in each phase of the motor input to vary the motor current to control the motor at the selected speed.

  10. 14 CFR 25.1517 - Rough air speed, VRA.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Rough air speed, VRA. 25.1517 Section 25... Limitations § 25.1517 Rough air speed, VRA. A rough air speed, VRA, for use as the recommended turbulence... rough air encounters will not cause the overspeed warning to operate too frequently. In the absence of...

  11. Parameterization of air sea gas fluxes at extreme wind speeds

    NASA Astrophysics Data System (ADS)

    McNeil, Craig; D'Asaro, Eric

    2007-06-01

    Air-sea flux measurements of O 2 and N 2 obtained during Hurricane Frances in September 2004 [D'Asaro, E. A. and McNeil, C. L., 2006. Measurements of air-sea gas exchange at extreme wind speeds. Journal Marine Systems, this edition.] using air-deployed neutrally buoyant floats reveal the first evidence of a new regime of air-sea gas transfer occurring at wind speeds in excess of 35 m s - 1 . In this regime, plumes of bubbles 1 mm and smaller in size are transported down from near the surface of the ocean to greater depths by vertical turbulent currents with speeds up to 20-30 cm s - 1 . These bubble plumes mostly dissolve before reaching a depth of approximately 20 m as a result of hydrostatic compression. Injection of air into the ocean by this mechanism results in the invasion of gases in proportion to their tropospheric molar gas ratios, and further supersaturation of less soluble gases. A new formulation for air-sea fluxes of weakly soluble gases as a function of wind speed is proposed to extend existing formulations [Woolf, D.K, 1997. Bubbles and their role in gas exchange. In: Liss, P.S., and Duce, R.A., (Eds.), The Sea Surface and Global Change. Cambridge University Press, Cambridge, UK, pp. 173-205.] to span the entire natural range of wind speeds over the open ocean, which includes hurricanes. The new formulation has separate contributions to air-sea gas flux from: 1) non-supersaturating near-surface equilibration processes, which include direct transfer associated with the air-sea interface and ventilation associated with surface wave breaking; 2) partial dissolution of bubbles smaller than 1 mm that mix into the ocean via turbulence; and 3) complete dissolution of bubbles of up to 1 mm in size via subduction of bubble plumes. The model can be simplified by combining "surface equilibration" terms that allow exchange of gases into and out of the ocean, and "gas injection" terms that only allow gas to enter the ocean. The model was tested against the

  12. NACA Flight-Path Angle and Air-Speed Recorder

    NASA Technical Reports Server (NTRS)

    Coleman, Donald G

    1926-01-01

    A new trailing bomb-type instrument for photographically recording the flight-path angle and air speed of aircraft in unaccelerated flight is described. The instrument consists essentially of an inclinometer, air-speed meter and a film-drum case. The inclinometer carries an oil-damped pendulum which records optically the flight-path angle upon a rotating motor-driven film drum. The air-speed meter consists of a taut metal diaphragm of high natural frequency which is acted upon by the pressure difference of a Prandtl type Pitot-static tube. The inclinometer record and air-speed record are made optically on the same sensitive film. Two records taken by this instrument are shown.

  13. High speed, high current pulsed driver circuit

    DOEpatents

    Carlen, Christopher R.

    2017-03-21

    Various technologies presented herein relate to driving a LED such that the LED emits short duration pulses of light. This is accomplished by driving the LED with short duration, high amplitude current pulses. When the LED is driven by short duration, high amplitude current pulses, the LED emits light at a greater amplitude compared to when the LED is driven by continuous wave current.

  14. Pressure of air on coming to rest from various speeds

    NASA Technical Reports Server (NTRS)

    Zahm, A F

    1927-01-01

    The text gives theoretical formulas from which is computed a table for the pressure of air on coming to rest from various speeds, such as those of aircraft and propeller blades. Pressure graphs are given for speeds from 1 cm. Sec. up to those of swift projectiles.

  15. Methods for rotational speed reduction for alternating current electric motors

    NASA Astrophysics Data System (ADS)

    Kagan, A. V.; Glukhanich, D. Y.

    2017-02-01

    The analysis of rotational speed reduction methods for alternating current electric motors are given, assigned to low-speed electric drives of various power levels. The integrated classification of electric machines of well-known types is given, the rotational speed reduction method being used as the basis. The main advantages and disadvantages, defining perspectives for the application in various low-speed electric drives, are explained. The approximate bounds of engineering expediency of the applications of the motors are given for obtaining certain assessments in selection of a type of the drive motor.

  16. HIGH SPEED GC/MS FOR AIR ANALYSIS

    EPA Science Inventory

    A high speed GC/MS system consisting of a gas chromatograph equipped with a narrow bandwidth injection accessory and using a time-of-flight mass spectrometer detector has been adapted for analysis of ambient whole air samples which have been collected in passivated canisters. ...

  17. The Altitude Effect on Air Speed Indicators II

    NASA Technical Reports Server (NTRS)

    Eaton, H N; Macnair, W A

    1923-01-01

    In an investigation described in NACA Technical Report 110, it was shown that under certain conditions, particularly for the relatively low-speed flight of airships, the data obtained were not sufficiently accurate. This report describes an investigation in which the data obtained were sufficiently accurate and complete to enable the viscosity correction to be deduced quantitatively for a number of the air-speed pressure nozzles in common use. The report opens with a discussion of the theory of the performance of air-speed nozzles and of the calibration of the indicators, from which the theory of the altitude correction is developed. Then follows the determination of the performance characteristics of the nozzles and calibration constants used for the indicators. In the latter half of the report, the viscosity correction is computed for the Zahm Pitot-venturi nozzles.

  18. The influence of air friction in speed skating.

    PubMed

    van Ingen Schenau, G J

    1982-01-01

    With the use of a wind tunnel the air friction force Fw on six speed skaters of different body builds was measured. The dependence of the drag coefficient CD on air velocity v and the influence of different skating postures on drag were investigated. At an air velocity of v = 12 m/sec, an angle between upper and lower leg of 110 degrees and a horizontal trunk position, the measured air friction constant kn(=Fw/V2) of all subjects was calculated from their height l and weight m according to the formula 0.0205 l3 square root m (standard error 2%). CD and as a consequence k appeared to be strongly dependent on air velocity. Expressions to correct k for other velocities and postures were derived and substituted into a power balance by which the influence of posture, ice condition, wind and altitude on performance was predicted.

  19. Current Densities in speed analyzer with different symmetries

    SciTech Connect

    Valdeblanquez, E.

    2006-12-04

    A comparative analysis of the currents in speed analyzer of speeds is made with different symmetries. Three kinds of symmetries are considered; plane, cylindrical and spherical. The analyzers considered are formed by threes electrodes, the selector grid, the discriminator and the collector. The selector grid has a negative potential and for the coulombian effect the space charge is formed with the ionic thermal bath. Using kinetic theory a strongly non linear differential equation is obtained which is solved by numerical calculation.

  20. The mass and speed dependence of meteor air plasma temperatures

    NASA Technical Reports Server (NTRS)

    Jenniskens, Peter; Laux, Christophe O.; Wilson, Michael A.; Schaller, Emily L.

    2004-01-01

    The speed and mass dependence of meteor air plasma temperatures is perhaps the most important data needed to understand how small meteoroids chemically change the ambient atmosphere in their path and enrich the ablated meteoric organic matter with oxygen. Such chemistry can play an important role in creating prebiotic compounds. The excitation conditions in various air plasma emissions were measured from high-resolution optical spectra of Leonid storm meteors during NASA's Leonid Multi-Instrument Aircraft Campaign. This was the first time a sufficient number and range of temperature measurements were obtained to search for meteoroid mass and speed dependencies. We found slight increases in temperature with decreasing altitude, but otherwise nearly constant values for meteoroids with speeds between 35 and 72 km/s and masses between 10(-5) g and 1 g. We conclude that faster and more massive meteoroids produce a larger emission volume, but not a higher air plasma temperature. We speculate that the meteoric plasma may be in multiphase equilibrium with the ambient atmosphere, which could mean lower plasma temperatures in a CO(2)-rich early Earth atmosphere.

  1. The mass and speed dependence of meteor air plasma temperatures.

    PubMed

    Jenniskens, Peter; Laux, Christophe O; Wilson, Michael A; Schaller, Emily L

    2004-01-01

    The speed and mass dependence of meteor air plasma temperatures is perhaps the most important data needed to understand how small meteoroids chemically change the ambient atmosphere in their path and enrich the ablated meteoric organic matter with oxygen. Such chemistry can play an important role in creating prebiotic compounds. The excitation conditions in various air plasma emissions were measured from high-resolution optical spectra of Leonid storm meteors during NASA's Leonid Multi-Instrument Aircraft Campaign. This was the first time a sufficient number and range of temperature measurements were obtained to search for meteoroid mass and speed dependencies. We found slight increases in temperature with decreasing altitude, but otherwise nearly constant values for meteoroids with speeds between 35 and 72 km/s and masses between 10(-5) g and 1 g. We conclude that faster and more massive meteoroids produce a larger emission volume, but not a higher air plasma temperature. We speculate that the meteoric plasma may be in multiphase equilibrium with the ambient atmosphere, which could mean lower plasma temperatures in a CO(2)-rich early Earth atmosphere.

  2. Effect of Initial Mixture Temperature on Flame Speed of Methane-Air, Propane-Air, and Ethylene-Air Mixtures

    NASA Technical Reports Server (NTRS)

    Dugger, Gordon L

    1952-01-01

    Flame speeds based on the outer edge of the shadow cast by the laminar Bunsen cone were determined as functions of composition for methane-air mixtures at initial mixture temperatures ranging from -132 degrees to 342 degrees c and for propane-air and ethylene-air mixtures at initial mixture temperatures ranging from -73 degrees to 344 degrees c. The data showed that maximum flame speed increased with temperature at an increasing rate. The percentage change in flame speed with change in initial temperature for the three fuels followed the decreasing order, methane, propane, and ethylene. Empirical equations were determined for maximum flame speed as a function of initial temperature over the temperature range covered for each fuel. The observed effect of temperature on flame speed for each of the fuels was reasonably well predicted by either the thermal theory as presented by Semenov or the square-root law of Tanford and Pease.

  3. Dynamic measurement of the torque-speed characteristics of dental high speed air turbine handpieces.

    PubMed

    Brockhurst, P J; Shams, R

    1994-02-01

    The first requirement for adequate performance of an air turbine handpiece is sufficient power. Suppliers of such handpieces do not provide data on the power produced by their equipment. A method for determining the torque, speed and hence power during simulated operation is described. Forty-one new and used handpieces were tested. Maximum speeds up to 500,000 rpm, maximum torques up to 2.33 N.mm and maximum power up to 29.6 watt were observed. The maximum power was produced at between 49 and 79 per cent of the free-running speed. A relationship between maximum power and stall torque was noted. The maximum torque is at stall for ball-bearing units. The stall torque can be easily determined by a simple stall torque test which is described. Using this test, the performance of handpieces can be easily checked in the clinic. The one air-bearing handpiece tested performed in a manner similar to the others, except that stall occurred below 60,000 rpm.

  4. Low pressure high speed Stirling air engine. Final technical report

    SciTech Connect

    Ross, M.A.

    1980-06-16

    The purpose of this project was to design, construct and test a simple, appropriate technology low pressure, high speed, wood-fired Stirling air engine of 100 W output. The final design was a concentric piston/displacer engine of 454 in. bore and 1 in. stroke with a rhombic drive mechanism. The project engine was ultimately completed and tested, using a propane burner for all tests as a matter of convenience. The 100 W aim was exceeded, at atmospheric pressure, over a wide range of engine speed with the maximum power being 112 W at 1150 rpm. A pressure can was constructed to permit pressurization; however the grant funds were running out, and the only pressurized power test attempted was unsuccessful due to seal difficulties. This was a disappointment because numerous tests on the 4 cubic inch engine suggested power would be more than doubled with pressurization at 25 psig. A manifold was designed and constructed to permit operation of the engine over a standard No. 40 pot bellied stove. The engine was run successfully, but at reduced speed and power, over this stove. The project engine started out being rather noisy in operation, but modifications ultimately resulted in a very quiet engine. Various other difficulties and their solutions also are discussed. (LCL)

  5. Flame Speeds of Methane-Air, Propane-Air, and Ethylene-Air Mixtures at Low Initial Temperatures

    NASA Technical Reports Server (NTRS)

    Dugger, Gordon L; Heimel, Sheldon

    1952-01-01

    Flame speeds were determined for methane-air, propane-air, and ethylene-air mixtures at -73 C and for methane-air mixtures at -132 C. The data extend the curves of maximum flame speed against initial mixture temperature previously established for the range from room temperature to 344 C. Empirical equations for maximum flame speed u(cm/ sec) as a function of initial mixture temperature T(sub O) were determined to be as follows: for methane, for T(sub O) from 141 to 615 K, u = 8 + 0.000160 T(sub O)(exp 2.11); for propane, for T(sub O) from 200 to 616 K, u = 10 + 0.000342 T(sub O)(exp 2.00); for ethylene, for T(sub O) from 200 to 617 K, u = 10 + 0.00259 T(sub O)(exp 1.74). Relative flame speeds at low initial temperatures were predicted within approximately 20 percent by either the thermal theory as presented by Semenov or by the diffusion theory of Tanford and Pease. The same order was found previously for high initial temperatures. The low-temperature data were also found to extend the linear correlations between maximum flame speed and calculated equilibrium active-radical concentrations, which were established by the previously reported high-temperature data.

  6. Precision electronic speed controller for an alternating-current motor

    DOEpatents

    Bolie, V.W.

    A high precision controller for an alternating-current multi-phase electrical motor that is subject to a large inertial load. The controller was developed for controlling, in a neutron chopper system, a heavy spinning rotor that must be rotated in phase-locked synchronism with a reference pulse train that is representative of an ac power supply signal having a meandering line frequency. The controller includes a shaft revolution sensor which provides a feedback pulse train representative of the actual speed of the motor. An internal digital timing signal generator provides a reference signal which is compared with the feedback signal in a computing unit to provide a motor control signal. The motor control signal is a weighted linear sum of a speed error voltage, a phase error voltage, and a drift error voltage, each of which is computed anew with each revolution of the motor shaft. The speed error signal is generated by a novel vernier-logic circuit which is drift-free and highly sensitive to small speed changes. The phase error is also computed by digital logic, with adjustable sensitivity around a 0 mid-scale value. The drift error signal, generated by long-term counting of the phase error, is used to compensate for any slow changes in the average friction drag on the motor. An auxillary drift-byte status sensor prevents any disruptive overflow or underflow of the drift-error counter. An adjustable clocked-delay unit is inserted between the controller and the source of the reference pulse train to permit phase alignment of the rotor to any desired offset angle. The stator windings of the motor are driven by two amplifiers which are provided with input signals having the proper quadrature relationship by an exciter unit consisting of a voltage controlled oscillator, a binary counter, a pair of read-only memories, and a pair of digital-to-analog converters.

  7. High-Speed Civil Transport Will Revolutionize Air Travel

    NASA Technical Reports Server (NTRS)

    1998-01-01

    NASA is developing advanced technologies that will allow industry to build a high-speed civil transport that will revolutionize overseas air travel. The technology challenges include developing low-cost materials and structural concepts as well as supersonic engines that can meet stringent noise and emissions standards. NASA's goal is to provide enabling technologies that will reduce the travel time to the Far East by 50 percent within 25 years, and do so at today's subsonic ticket prices. This research is part of NASA's Aeronautics and Space Transportation Technology (ASTT) Enterprise's strategy to sustain U.S. leadership in aeronautics and space. The Enterprise has set bold goals that are grouped into Three Pillars: Global Civil Aviation, Revolutionary Technology Leaps and Access to Space.

  8. Precision electronic speed controller for an alternating-current

    DOEpatents

    Bolie, Victor W.

    1988-01-01

    A high precision controller for an alternating-current multi-phase electrical motor that is subject to a large inertial load. The controller was developed for and is particularly suitable for controlling, in a neutron chopper system, a heavy spinning rotor that must be rotated in phase-locked synchronism with a reference pulse train that is representative of an ac power supply signal having a meandering line frequency. The controller includes a shaft revolution sensor which provides a feedback pulse train representative of the actual speed of the motor. An internal digital timing signal generator provides a reference signal which is compared with the feedback signal in a computing unit to provide a motor control signal. In the preferred embodiment, the motor control signal is a weighted linear sum of a speed error voltage, a phase error voltage, and a drift error voltage, each of which is computed anew with each revolution of the motor shaft. The stator windings of the motor are driven by two amplifiers which are provided with input signals having the proper quadrature relationship by an exciter unit consisting of a voltage controlled oscillator, a binary counter, a pair of readonly memories, and a pair of digital-to-analog converters.

  9. The development of the dental high-speed air turbine handpiece. Part 1.

    PubMed

    Dyson, J E; Darvell, B W

    1993-02-01

    The high-speed air turbine handpiece is currently used for most dental cutting procedures and has been in widespread use for more than thirty years. Although reports of its historical background have been previously published these have not dealt with all relevant developments and some inconsistencies exist. The history of the development of turbines and their application in dental cutting systems from the late 19th century to the present day is now reviewed. An historical account of the recognition of benefits that may accrue from rotary cutting at increased speeds is given and the various attempts that have been made to design equipment capable of high speeds are discussed. Consideration is given to the development of non-rotary cutting devices, as is the failure of these adequately to replace the air turbine handpiece for routine work. It is concluded that the air turbine handpiece will continue to hold a leading position in the field for some years to come but that future improvements would be facilitated by the development of an understanding of the theoretical aspects of its behaviour.

  10. Current Aircraft Survey (Approach Speeds, Gross Weights, and Dimension).

    DTIC Science & Technology

    1980-07-01

    79.2 38.5 58,422 Ahrens 404 98 66.0 52.8 17.5 17,000 AIDC -XC-2 86 81.7 65.9 25.3 25,000 Air Metal C-ll 96 63.0 55.2 21.0 18,629 AJI Hustler 98 34.3...PZL-AN-28 85 72.2 42.6 15.1 13,450 AIDC -XC-2 86 81.7 65.9 25.3 25,000 CAC-100 86 70.0 67.3 24.9 28,900 Learfan 2100 86 39.3 38.7 11.5 7,200 Beech E...72 95.0 64.5 23.5 25,200 21 ... Appch Wing Tail Maximun Speed Span Length Height TOGW Aircraft (Knots) (Feet) (Feet) (Feet) (Lbs) AIDC -XC-2 86 81.7

  11. Air Pollution: Current and Future Challenges

    EPA Pesticide Factsheets

    Despite the dramatic progress to date, air pollution continues to threaten Americans’ health and welfare. The main obstacles are climate change, conventional air pollution, and ozone layer depletion.

  12. Comparison of rotational speeds and torque properties between air-bearing and ball-bearing air-turbine handpieces.

    PubMed

    Taira, M; Wakasa, K; Yamaki, M; Matsui, A

    1989-06-01

    We examined the effects of air pressure on the free-running speed of air-bearing and torque-type ball-bearing air-turbine handpieces. The air pressure for the former should be kept at a certain high level to maintain the stable super-thin air-bearing film and to provide the quasi-constant speed of around 420,000 to 480,000 rpm. On the other hand, the air pressure for the latter could be adjusted to provide some varieties of speeds, ranging from about 150,000 to 320,000 rpm. Subsequently, to compare torque properties and cutting effectiveness between these two handpieces, weight-load cutting tests were conducted, using a glass-ceramic workpiece and a commercial diamond point. It was confirmed that the air-bearing handpiece had the lower torque power but exhibited better cutting effectiveness, compared with its counterpart.

  13. High-speed counter-current chromatographic separation of phytosterols.

    PubMed

    Schröder, Markus; Vetter, Walter

    2011-07-01

    Phytosterols are bioactive compounds which occur in low concentrations in plant oils. Due to their beneficial effects on human health, phytosterols have already been supplemented to food. Commercial phytosterol standards show insufficient purity and/or are very expensive. In this study, we developed a high-speed counter-current chromatography (HSCCC) method for the fractionation and analysis of a commercial crude β-sitosterol standard (purity ∼60% according to supplier). Different solvent systems were tested in shake-flask experiments, and the system n-hexane/methanol/aqueous silver nitrate solution (34/24/1, v/v/v) was finally used for HSCCC fractionation. About 50 mg phytosterols was injected and distributed into 57 fractions. Selected fractions were condensed and re-injected into the HSCCC system. This measure provided pure sitostanol (>99%) and β-sitosterol (∼99%), as well as a mixture of campesterol and stigmasterol without further phytosterols. An enriched HSCCC fraction facilitated the mass spectrometric analysis of further 11 minor phytosterols (after trimethylsilylation). It was also shown that the commercial product contained about 0.3% carotinoids which eluted without delay into an early HSCCC fraction and which were separated from the phytosterols.

  14. High Speed Photography, Videography, And Photonic Instrumentation Development At The Air Force Armament Laboratory

    NASA Astrophysics Data System (ADS)

    Snyder, Donald R.; Powell, Rodney M.

    1989-02-01

    The Instrumentation Technology Branch of the Air Force Armament Laboratory is currently involved in the development of several high speed photographic, videographic, and photonic instrumentation systems to support the testing and analysis of developmental weapons and test items under dynamic conditions. These projects include development of a large format (14 inch by 17 inch) laser illuminated Cranz-Schardin shadowgraph system for materials research, development of a solid state imager based shadowgraph system for aeroballistic studies, experiments with gated imagers for a variety of test applications, and experiments with high speed video imagers and illuminators for airborne and range tracking instrumentation. An additional issue discussed is the development of a timing and annotation standard for video imaging instrumentation systems operating at higher than NTSC standard rates.

  15. Air gun wounding and current UK laws controlling air weapons.

    PubMed

    Bruce-Chwatt, Robert Michael

    2010-04-01

    Air weapons whether rifles or pistols are, potentially, lethal weapons. The UK legislation is complex and yet little known to the public. Hunting with air weapons and the laws controlling those animals that are permitted to be shot with air weapons is even more labyrinthine due to the legal power limitations on the possession of air weapons. Still relatively freely available by mail order or on the Internet, an increasing number of deaths have been reported from the misuse of air weapons or accidental discharges. Ammunition for air weapons has become increasingly sophisticated, effective and therefore increasingly dangerous if misused, though freely available being a mere projectile without a concomitant cartridge containing a propellant and an initiator.

  16. HIGH-SPEED GC/MS FOR AIR ANALYSIS

    EPA Science Inventory

    High speed or fast gas chromatography (FGC) consists of narrow bandwidth injection into a high-speed carrier gas stream passing through a short column leading to a fast detector. Many attempts have been made to demonstrate FGC, but until recently no practical method for routin...

  17. Decentralized Control of an Unidirectional Air Traffic Flow with Flight Speed Distribution

    NASA Astrophysics Data System (ADS)

    Nakamura, Yoichi; Takeichi, Noboru

    A decentralized control of an air traffic flow is discussed. This study aims to clarify a fundamental strategy for an unidirectional air traffic flow control considering the flight speed distribution. It is assumed that the decentralized control is made based on airborne surveillance systems. The separation control between aircraft is made by turning, and 4 types of route composition are compared; the optimum route only, the optimum route with permissible range, the optimum route with subroutes determined by relative speed of each aircraft, and the optimum route with subroutes defined according to the optimum speed of each aircraft. Through numerical simulations, it is clarified that the route composition with a permissible range makes the air traffic flow safer and more efficient. It is also shown that the route design with multiple subroutes corresponding to speed ranges and the aircraft control using route intent information can considerably improve the safety and workload of the air traffic flow.

  18. Design criteria for light high speed desert air cushion vehicles

    NASA Astrophysics Data System (ADS)

    Abulnaga, B. E.

    An evaluation is made of the applicability and prospective performance of ACVs in trans-Saharan cargo transport, in view of the unique characteristics of the dry sand environment. The lightweight/high-speed ACV concept envisioned is essentially ground effect aircraftlike, with conventional wheels as a low-speed backup suspension system. A propeller is used in ground effect cruise. Attention is given to the effects on vehicle stability and performance of sandy surface irregularities of the desert topography and of cross-winds from various directions relative to vehicle movement.

  19. An Inexpensive and Versatile Version of Kundt's Tube for Measuring the Speed of Sound in Air

    ERIC Educational Resources Information Center

    Papacosta, Pangratios; Linscheid, Nathan

    2016-01-01

    Experiments that measure the speed of sound in air are common in high schools and colleges. In the Kundt's tube experiment, a horizontal air column is adjusted until a resonance mode is achieved for a specific frequency of sound. When this happens, the cork dust in the tube is disturbed at the displacement antinode regions. The location of the…

  20. Air pollution is pushing wind speed into a regulator of surface solar irradiance in China

    NASA Astrophysics Data System (ADS)

    Wang, Y. W.; Yang, Y. H.; Zhou, X. Y.; Zhao, N.; Zhang, J. H.

    2014-05-01

    Analysis in 27 cities across China shows that surface solar irradiance (SSI) and wind speed track similar decadal trends in 1961-2011, suggesting wind speed as a possible regulator of SSI. This assumption is further confirmed by the continuously widening gap in annually averaged daily SSI between windy and windless clear-sky days with worsening air pollution. Wider gaps are noted for more polluted cities and seasons. The gap in SSI between windy and windless conditions could therefore serve as a good indicator for air quality. The regulatory effect of wind speed on SSI starts to be important when air pollution index exceeds the boundary of 125. A plausible mechanism of wind speed regulating SSI through interactions with aerosols is proposed. There are two cut-off points of 2.5 m s-1 and 3.5 m s-1 wind speeds. Winds <2.5 m s-1 noticeably disperse air pollutants and thereby enhance SSI. Above the 2.5 m s-1 threshold, air pollution and SSI become largely insensitive to changing wind speeds. Winds in excess of 3.5 m s-1 could enhance aerosol concentration probably by inducing dust-storms, which in turn attenuate SSI.

  1. [Air rescue: current significance and practical issues].

    PubMed

    Schellhaaß, A; Popp, E

    2014-12-01

    Germany has a nationwide and powerful helicopter emergency medical services system (HEMS), which executes primary rescue missions and interhospital transfer of intensive care patients. In recent years the range of HEMS missions has become modified due to demographic changes and structural changes in the healthcare system. Furthermore, the number of HEMS missions is steadily increasing. If reasonably used air rescue contributes to desired reductions in overall preclinical time. Moreover, it facilitates prompt transport of patients to a hospital suitable for definitive medical care and treatment can be initiated earlier which is a particular advantage for severely injured and critically ill patients. Because of complex challenges during air rescue missions the qualifications of the HEMS personnel have to be considerably higher in comparison with ground based emergency medical services.

  2. Acoustic Source Modeling for High Speed Air Jets

    NASA Technical Reports Server (NTRS)

    Goldstein, Marvin E.; Khavaran, Abbas

    2005-01-01

    The far field acoustic spectra at 90deg to the downstream axis of some typical high speed jets are calculated from two different forms of Lilley s equation combined with some recent measurements of the relevant turbulent source function. These measurements, which were limited to a single point in a low Mach number flow, were extended to other conditions with the aid of a highly developed RANS calculation. The results are compared with experimental data over a range of Mach numbers. Both forms of the analogy lead to predictions that are in excellent agreement with the experimental data at subsonic Mach numbers. The agreement is also fairly good at supersonic speeds, but the data appears to be slightly contaminated by shock-associated noise in this case.

  3. An Inexpensive and Versatile Version of Kundt's Tube for Measuring the Speed of Sound in Air

    NASA Astrophysics Data System (ADS)

    Papacosta, Pangratios; Linscheid, Nathan

    2016-01-01

    Experiments that measure the speed of sound in air are common in high schools and colleges. In the Kundt's tube experiment, a horizontal air column is adjusted until a resonance mode is achieved for a specific frequency of sound. When this happens, the cork dust in the tube is disturbed at the displacement antinode regions. The location of the displacement antinodes enables the measurement of the wavelength of the sound that is being used. This paper describes a design that uses a speaker instead of the traditional aluminum rod as the sound source. This allows the use of multiple sound frequencies that yield a much more accurate speed of sound in air.

  4. HIGH DYNAMIC-RANGE HIGH SPEED LINAC CURRENT MEASUREMENTS

    SciTech Connect

    Deibele, Craig Edmond; Curry, Douglas E; Dickson, Richard W

    2012-01-01

    It is desired to measure the linac current of a charged particle beam with a consistent accuracy over a dynamic range of over 120 dB. Conventional current transformers suffer from droop, can be susceptible to electromagnetic interference (EMI), and can be bandwidth limited. A novel detector and electronics were designed to maximize dynamic range of about 120 dB and measure rise-times on the order of 10 nanoseconds.

  5. Clarification of Current Air Program Issues

    EPA Pesticide Factsheets

    This document may be of assistance in applying the New Source Review (NSR) air permitting regulations including the Prevention of Significant Deterioration (PSD) requirements. This document is part of the NSR Policy and Guidance Database. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.

  6. Increased Speed: 3D Silicon Sensors. Fast Current Amplifiers

    SciTech Connect

    Parker, Sherwood; Kok, Angela; Kenney, Christopher; Jarron, Pierre; Hasi, Jasmine; Despeisse, Matthieu; Da Via, Cinzia; Anelli, Giovanni; /CERN

    2012-05-07

    The authors describe techniques to make fast, sub-nanosecond time resolution solid-state detector systems using sensors with 3D electrodes, current amplifiers, constant-fraction comparators or fast wave-form recorders, and some of the next steps to reach still faster results.

  7. The law relating to air currents

    NASA Technical Reports Server (NTRS)

    1921-01-01

    In the subdivided wing section profile, the diagram of the current is entirely changed and the harmful formation of eddies is avoided through premature deflection. Pressure equalization does not occur between the upper and under sides. This report presents a discussion of the various laws relating to wing design with the conclusion being that lift increases with more acute angles of attack.

  8. Air earth current measurements at Kew, London, 1909 1979

    NASA Astrophysics Data System (ADS)

    Harrison, R. G.; Ingram, W. J.

    2005-07-01

    A vertical conduction current arises from the global ionospheric potential and the integrated electrical resistance between the Earth's surface and the ionosphere. The conduction current density varies with the ionospheric potential and the vertical (columnar) resistance. At the surface, the conduction current density is known as the air-earth current. C.T.R. Wilson developed a measurement technique for the air-earth current in 1906, which was implemented by the British Meteorological Office at its Kew Observatory (51° 28'N, 0° 19'W) near London in 1909. Simultaneous measurements of air-earth current, potential gradient and positive air conductivity were made almost continuously until 1979 using the Wilson method on fine afternoons. A summary of the complete set of monthly mean measurements is presented here for the first time. The data span the nuclear weapons testing period and the UK Clean Air Act of 1956, both of which influenced the measurements obtained. Annual average values of the air earth current density at Kew are 0.97 pA·m -2 (1909-1931), 1.04 pA·m -2 (1932-1949) and 1.41 pA·m -2 (1967-1979).

  9. Improved Apparatus for the Measurement of Fluctuations of Air Speed in Turbulent Flow

    NASA Technical Reports Server (NTRS)

    Mock, W C , Jr; Dryden, H L

    1934-01-01

    This report describes recent improvements in the design of the equipment associated with the hot-wire anemometer for the measurement of fluctuating air speeds in turbulent air flow, and presents the results of some experimental investigations dealing with the response of the hot wire to speed fluctuations of various frequencies. Attempts at measuring the frequency of the fluctuations encountered in the Bureau of Standards' 54-inch wind tunnel are also reported. In addition, the difficulties encountered in the use of such apparatus and the precautions found helpful in avoiding them are discussed.

  10. Spatial scales of current speed and phytoplankton biomass fluctuations in lake tahoe.

    PubMed

    Powell, T M; Richerson, P J; Dillon, T M; Agee, B A; Dozier, B J; Godden, D A; Myrup, L O

    1975-09-26

    Spectral analysis of current speed and chlorophyll a measurements in Lake Tahoe, California and Nevada, indicates that considerably more variance exists at longer length scales in chlorophyll than in the current speeds. Increasingly, above scales of approximately 100 meters, chlorophyll does not behave as a simple passive contaminant distributed by turbulence, which indicates that biological processes contribute significantly to the observed variance at these large length scales.

  11. An Undergraduate Experiment for the Measurement of the Speed of Sound in Air: Phenomena and Discussion

    ERIC Educational Resources Information Center

    Yang, Hujiang; Zhao, Xiaohong; Wang, Xin; Xiao, Jinghua

    2012-01-01

    In this paper, we present and discuss some phenomena in an undergraduate experiment for the measurement of the speed of sound in air. A square wave distorts when connected to a piezoelectric transducer. Moreover, the amplitude of the receiving signal varies with the driving frequency. Comparing with the Gibbs phenomenon, these phenomena can be…

  12. A miniaturized piezoelectric turbine with self-regulation for increased air speed range

    SciTech Connect

    Fu, Hailing Yeatman, Eric M.

    2015-12-14

    This paper presents the design and demonstration of a piezoelectric turbine with self-regulation for increased air speed range. The turbine's transduction is achieved by magnetic “plucking” of a piezoelectric beam by the passing rotor. The increased speed range is achieved by the self-regulating mechanism which can dynamically adjust the magnetic coupling between the magnets on the turbine rotor and the piezoelectric beam using a micro-spring. The spring is controlled passively by the centrifugal force of the magnet on the rotor. This mechanism automatically changes the relative position of the magnets at different rotational speeds, making the coupling weak at low airflow speeds and strong at high speeds. Hence, the device can start up with a low airflow speed, and the output power can be ensured when the airflow speed is high. A theoretical model was established to analyse the turbine's performance, advantages, and to optimize its design parameters. A prototype was fabricated and tested in a wind tunnel. The start-up airflow speed was 2.34 m/s, showing a 30% improvement against a harvester without the mechanism.

  13. A miniaturized piezoelectric turbine with self-regulation for increased air speed range

    NASA Astrophysics Data System (ADS)

    Fu, Hailing; Yeatman, Eric M.

    2015-12-01

    This paper presents the design and demonstration of a piezoelectric turbine with self-regulation for increased air speed range. The turbine's transduction is achieved by magnetic "plucking" of a piezoelectric beam by the passing rotor. The increased speed range is achieved by the self-regulating mechanism which can dynamically adjust the magnetic coupling between the magnets on the turbine rotor and the piezoelectric beam using a micro-spring. The spring is controlled passively by the centrifugal force of the magnet on the rotor. This mechanism automatically changes the relative position of the magnets at different rotational speeds, making the coupling weak at low airflow speeds and strong at high speeds. Hence, the device can start up with a low airflow speed, and the output power can be ensured when the airflow speed is high. A theoretical model was established to analyse the turbine's performance, advantages, and to optimize its design parameters. A prototype was fabricated and tested in a wind tunnel. The start-up airflow speed was 2.34 m/s, showing a 30% improvement against a harvester without the mechanism.

  14. Thermo-economic approach for absorption air condition onboard high-speed crafts

    NASA Astrophysics Data System (ADS)

    Seddiek, Ibrahim S.; Mosleh, Mosaad; Banawan, Adel A.

    2012-12-01

    High-speed crafts suffer from losing a huge amount of their machinery energy in the form of heat loss with the exhaust gases. This will surely increase the annual operating cost of this type of ships and an adverse effect on the environment. This paper introduces a suggestion that may contribute to overcoming such problems. It presents the possibility of reusing the energy lost by the ships' exhaust gases as heating source for an absorption air condition unit onboard high-speed crafts. As a numerical example; the proposed method was investigated at a high-speed craft operating in Red Sea between Egypt and the Kingdom of Saudi Arabia. The results obtained are very satisfactory. It showed the possibility of providing the required ship's air condition cooling load during sailing and in port. Economically, this will reduce the annual ship's operating cost. Moreover, it will achieve a valuable reduction of ship's emissions.

  15. A New High Speed Induction Motor Drive based on Field Orientation and Hysteresis Current Comparison

    NASA Astrophysics Data System (ADS)

    Ogbuka, Cosmas; Nwosu, Cajethan; Agu, Marcel

    2016-09-01

    This paper presents a new high speed induction motor drive based on the core advantage of field orientation control (FOC) and hysteresis current comparison (HCC). A complete closed loop speed-controlled induction motor drive system is developed consisting of an outer speed and an inner HCC algorithm which are optimised to obtain fast and stable speed response with effective current and torque tracking, both during transient and steady states. The developed model, being speed-controlled, was examined with step and ramp speed references and excellent performances obtained under full load stress. A speed response comparison of the model with the standard AC3 (Field-Oriented Control Induction Motor Drive) of MATLAB Simpower systems shows that the model achieved a rise time of 0.0762 seconds compared to 0.2930 seconds achieved by the AC3. Also, a settle time of 0.0775 seconds was obtained with the developed model while that of the AC3 model is 0.2986 seconds confirming, therefore, the superiority of the developed model over the AC3 model which, hitherto, served as a reference standard.

  16. Some current challenges in research on air pollution and health.

    PubMed

    Samet, Jonathan M

    2014-01-01

    This commentary addresses some of the diverse questions of current interest with regard to the health effects of air pollution, including exposure-response relationships, toxicity of inhaled particles and risks to health, multipollutant mixtures, traffic-related pollution, accountability research, and issues with susceptibility and vulnerability. It considers the challenges posed to researchers as they attempt to provide useful evidence for policy-makers relevant to these issues. This commentary accompanies papers giving the results from the ESCALA project, a multi-city study in Latin America that has an overall goal of providing policy-relevant results. While progress has been made in improving air quality, driven by epidemiological evidence that air pollution is adversely affecting public health, the research questions have become more subtle and challenging as levels of air pollution dropped. More research is still needed, but also novel methods and approaches to address these new questions.

  17. Air Intakes for High Speed Vehicles (Prises d’Air pour Vehicules a Grande Vitesse)

    DTIC Science & Technology

    1991-09-01

    directly from material supplied by AGARD or the authors . Published aeptember 1991 Copyright C AGARD 1991 All Rights Reserved ISBN 92-835-0637-5 Printed by...of Air Intakes Committee C (Chairman: J. Leynaert) Air Intakes Testing Methods The chapters were written by the authors noted in parenthesis and...fuel injection and effect expansion waves and separation induced mixing as well as chemical kinetics. Reference shockwaves. The author points to good

  18. Time of flight measurement of speed of sound in air with a computer sound card

    NASA Astrophysics Data System (ADS)

    Aljalal, Abdulaziz

    2014-11-01

    A computer sound card and freely available audio editing software are used to measure accurately the speed of sound in air using the time-of-flight method. In addition to speed of sound measurement, inversion behaviour upon reflection from an open and closed end of a pipe is demonstrated. Also, it is demonstrated that the reflection at an open end of a pipe occurs slightly outside the pipe. The equipment needed is readily available to any student with access to a microphone, loudspeaker and computer.

  19. Assessment of Human Ambulatory Speed by Measuring Near-Body Air Flow

    PubMed Central

    Bonomi, Alberto G.; Salati, Stefano

    2010-01-01

    Accurate measurements of physical activity are important for the diagnosis of the exacerbation of chronic diseases. Accelerometers have been widely employed in clinical research for measuring activity intensity and investigating the association between physical activity and adverse health conditions. However, the ability of accelerometers in assessing physical activity intensity such as walking speed has been constrained by the inter-individual variability in sensor output and by the necessity of developing unobtrusive low-power monitoring systems. This paper will present a study aimed at investigating the accuracy of a wearable measuring system of near-body air flow to determine ambulatory speed in the field. PMID:22163681

  20. Measurements of vertical air currents in the atmosphere

    NASA Technical Reports Server (NTRS)

    Lange, K O

    1931-01-01

    To summarize, the experiments with balloons, sailplanes and light airplanes conducted thus far, reveal the vertical velocities of the air to be primarily dependent on the vertical temperature distribution. Stable stratifications result in up-and-down currents forced by the contour of the ground, which are readily recognized in flight and, if need be, may be avoided.

  1. High precision, fast ultrasonic thermometer based on measurement of the speed of sound in air

    NASA Astrophysics Data System (ADS)

    Huang, K. N.; Huang, C. F.; Li, Y. C.; Young, M. S.

    2002-11-01

    This study presents a microcomputer-based ultrasonic system which measures air temperature by detecting variations in the speed of sound in the air. Changes in the speed of sound are detected by phase shift variations of a 40 kHz continuous ultrasonic wave. In a test embodiment, two 40 kHz ultrasonic transducers are set face to face at a constant distance. Phase angle differences between transmitted and received signals are determined by a FPGA digital phase detector and then analyzed in an 89C51 single-chip microcomputer. Temperature is calculated and then sent to a LCD display and, optionally, to a PC. Accuracy of measurement is within 0.05 degC at an inter-transducer distance of 10 cm. Temperature variations are displayed within 10 ms. The main advantages of the proposed system are high resolution, rapid temperature measurement, noncontact measurement and easy implementation.

  2. Correlation of Flame Speed with Stretch in Turbulent Premixed Methane/Air Flames

    NASA Astrophysics Data System (ADS)

    Chen, Jacqueline H.; Im, Hong G.

    1997-11-01

    Flame speed correlation with stretch is obtained from direct numerical simulations of lean to stoichiometric methane/air flames over a broad range of Karlovitz numbers. The correlation is interpreted in terms of local tangential strain rate and curvature effects. DNS results show that there exist two distinct branches in the correlation curve depending on the sign of the displacement speed. For small Karlovitz numbers with positive displacement speed, the estimated Markstein length from the DNS results agrees well with that obtained from steady strained laminar flame calculations as well as with experimental studies. Larger values of Karlovitz numbers observed in the DNS results are found to be mainly due to the effect of strong curvatures; for those cases the correlation shows nonlinear behavior. The sensitivity of the correlation to the definition of the flame front and the statistical importance of particular branches in the correlation are also discussed.

  3. Air speeds of migrating birds observed by ornithodolite and compared with predictions from flight theory

    PubMed Central

    Pennycuick, C. J.; Åkesson, Susanne; Hedenström, Anders

    2013-01-01

    We measured the air speeds of 31 bird species, for which we had body mass and wing measurements, migrating along the east coast of Sweden in autumn, using a Vectronix Vector 21 ornithodolite and a Gill WindSonic anemometer. We expected each species’ average air speed to exceed its calculated minimum-power speed (Vmp), and to fall below its maximum-range speed (Vmr), but found some exceptions to both limits. To resolve these discrepancies, we first reduced the assumed induced power factor for all species from 1.2 to 0.9, attributing this to splayed and up-turned primary feathers, and then assigned body drag coefficients for different species down to 0.060 for small waders, and up to 0.12 for the mute swan, in the Reynolds number range 25 000–250 000. These results will be used to amend the default values in existing software that estimates fuel consumption in migration, energy heights on arrival and other aspects of flight performance, using classical aeronautical theory. The body drag coefficients are central to range calculations. Although they cannot be measured on dead bird bodies, they could be checked against wind tunnel measurements on living birds, using existing methods. PMID:23804440

  4. Air speeds of migrating birds observed by ornithodolite and compared with predictions from flight theory.

    PubMed

    Pennycuick, C J; Åkesson, Susanne; Hedenström, Anders

    2013-09-06

    We measured the air speeds of 31 bird species, for which we had body mass and wing measurements, migrating along the east coast of Sweden in autumn, using a Vectronix Vector 21 ornithodolite and a Gill WindSonic anemometer. We expected each species' average air speed to exceed its calculated minimum-power speed (Vmp), and to fall below its maximum-range speed (Vmr), but found some exceptions to both limits. To resolve these discrepancies, we first reduced the assumed induced power factor for all species from 1.2 to 0.9, attributing this to splayed and up-turned primary feathers, and then assigned body drag coefficients for different species down to 0.060 for small waders, and up to 0.12 for the mute swan, in the Reynolds number range 25 000-250 000. These results will be used to amend the default values in existing software that estimates fuel consumption in migration, energy heights on arrival and other aspects of flight performance, using classical aeronautical theory. The body drag coefficients are central to range calculations. Although they cannot be measured on dead bird bodies, they could be checked against wind tunnel measurements on living birds, using existing methods.

  5. High-speed pulse train amplification in semiconductor optical amplifiers with optimized bias current.

    PubMed

    Xia, Mingjun; Ghafouri-Shiraz, H; Hou, Lianping; Kelly, Anthony E

    2017-02-01

    In this paper, we have experimentally investigated the optimized bias current of semiconductor optical amplifiers (SOAs) to achieve high-speed input pulse train amplification with high gain and low distortion. Variations of the amplified output pulse duration with the amplifier bias currents have been analyzed and, compared to the input pulse duration, the amplified output pulse duration is broadened. As the SOA bias current decreases from the high level (larger than the saturated bias current) to the low level, the broadened pulse duration of the amplified output pulse initially decreases slowly and then rapidly. Based on the analysis, an optimized bias current of SOA for high-speed pulse train amplification is introduced. The relation between the SOA optimized bias current and the parameters of the input pulse train (pulse duration, power, and repetition rate) are experimentally studied. It is found that the larger the input pulse duration, the lower the input pulse power or a higher repetition rate can lead to a larger SOA optimized bias current, which corresponds to a larger optimized SOA gain. The effects of assist light injection and different amplifier temperatures on the SOA optimized bias current are studied and it is found that assist light injection can effectively increase the SOA optimized bias current while SOA has a lower optimized bias current at the temperature 20°C than that at other temperatures.

  6. Incorporation Of Air Into The Campanian Ignimbrite Pyroclastic Density Current

    NASA Astrophysics Data System (ADS)

    Ort, M. H.; Giordano, G.; Zanella, E.; Isaia, R.

    2015-12-01

    Knowing the temperature of emplacement of an ignimbrite can tell us how much cooling air it incorporated during eruption and transport. Currents that incorporate cool matter (air, water, cold clasts) cool more than those that do not. Lithic fragments record the maximum temperature they reached, up to their maximum unblocking temperature. Studies of large ignimbrites (e.g. Cerro Galan Ignimbrite) emplaced by dense currents show they do not cool very much, with emplacement temperatures often above 580 oC. Smaller currents, such as those from Vesuvius and Colima, lose significant heat in the eruption column, and then lose some, but less, heat as they travel laterally. The amount of atmosphere incorporated by large dilute currents is not known. The ~40 ka Campanian Ignimbrite (CI) erupted from the Campi Flegrei caldera near Naples, Italy, and extends to ~75 km from the caldera. The CI was emplaced from a density-stratified current with a dilute transport system and a denser depositional system that overtopped 1600-m-high ridges, with the depositional system re-forming on the far side. Modeling of dilute currents shows that they can pass over obstacles ~1.5 times their thickness without losing momentum, which implies the CI current was >1 km thick. Much of that dilute current was gas, but how much was atmospheric? Partial thermal demagnetization of lithic clasts allows the identification of the temperature of emplacement. We sampled lithic fragments from the CI in 13 locations from proximal to distal along several azimuths. The current passed over 30-35 km of sea to get to two sites. Partial thermal demagnetization of 10 specimens from each site show that they were heated and deposited above 580 oC, the unblocking temperature of magnetite, implying the temperature of emplacement was at or above this temperature. The CI is poor in lithic clasts (<1% in most places) and evidence of non-magmatic water in the outflow sheet is absent. We suggest the CI current was a large

  7. Development of High Speed Inverter Rotary Compressor for the Air-conditioning System

    NASA Astrophysics Data System (ADS)

    Kang, Seoung-Min; Yang, Eun-soo; Shin, Jin-Ung; Park, Joon-Hong; Lee, Se-Dong; Ha, Jong-Hun; Son, Young-Boo; Lee, Byeong-Chul

    2015-08-01

    In order to meet the various operating loads of an air-conditioning system, an inverter compressor with a wide operational range is necessary. One of the ways to achieve a wide operation range is to drive a small capacity compressor at high speed. Moreover, it is possible to maximize the efficiency in part-load operation condition close to actual operating conditions and to reduce the cost by compact design of a small capacity compressor. In addition, the shortage of maximum capacity, due to the small rated capacity, is covered through high speed operation. However, in general, if the compressor operates at high speed, problems occurs such as reduced efficiency due to friction, increased noise, increased amount of oil discharge and decreased durability of the main components. In order to solve these problems the following have been investigated: optimized dimension parameters of the compression chamber, enhanced shaft design and the structure for the reduction of oil discharge and noise at high speed operation. Finally the high speed inverter rotary compressor with high efficiency and more compact size has been developed as compared with the conventional rotary compressor.

  8. Computer modeling of the sensitivity of a laser water vapor sensor to variations in temperature and air speed

    NASA Technical Reports Server (NTRS)

    Tucker, George F.

    1994-01-01

    Currently, there is disagreement among existing methods of determining atmospheric water vapor concentration at dew-points below -40 C. A major source of error is wall effects which result from the necessity of bringing samples into the instruments. All of these instruments also have response times on the order of seconds. NASA Langley is developing a water vapor sensor which utilizes the absorption of the infrared radiation produced by a diode laser to estimate water vapor concentration. The laser beam is directed through an aircraft window to a retroreflector located on an engine. The reflected beam is detected by an infrared detector located near the laser. To maximize signal to noise, derivative signals are analyzed. By measuring the 2f/DC signal and correcting for ambient temperature, atmospheric pressure and air speed (which results in a Doppler shifting of the laser beam), the water vapor concentration can be retrieved. Since this is an in situ measurement there are no wall effects and measurements can be made at a rate of more than 20 per second. This allows small spatial variations of water vapor to be studied. In order to study the sensitivity of the instrument to variations in temperature and air speed, a computer program which generated the 2f, 3f, 4f, DC and 2f/DC signals of the instrument as a function of temperature, pressure and air speed was written. This model was used to determine the effect of errors in measurement of the temperature and air speed on the measured water vapor concentration. Future studies will quantify the effect of pressure measurement errors, which are expected to be very small. As a result of these studied, a retrieval algorithm has been formulated, and will be applied to data taken during the PEM-West atmospheric science field mission. Spectroscopic studies of the water vapor line used by the instrument will be used to refine this algorithm. To prepare for these studies, several lasers have been studied to determine their

  9. Development of high speed continuous transport critical current measurement system for long piece of HTS conductor

    NASA Astrophysics Data System (ADS)

    Kim, Seokho; Park, Minwon; Yu, In-Keun; Kim, Gyeong-Hun; Ha, Hong-Su; Sim, Kideok; Oh, Sang-Soo; Moon, Seung-Hyun

    2013-01-01

    In case of long pieces of HTS conductor, their critical current measurement is an important process for the conductor manufacturer and the customer, however, it is very time consuming process. Conventional critical current measurement is carried out by ‘four probe method’, which increase the transport current and measure the voltage between the fixed voltage taps. Therefore, it consists of conductor moving and measuring process. To speed up the measuring process, longer distance between voltage taps is required. In this case, the measured critical current is averaged and small defects, which can be very crucial for thermal stability, cannot be found. Therefore, the limitation of the voltage tap length should be carefully decided considering the cooling environment. Another non-contact or indirect method is to measure the screening effect of magnetic field and converting the field signal to the critical current, which is called as hall probe method. This process is known as a very efficient way to find local defects and estimate the distribution of the critical current, however, it contains inevitable error and noise because it should measure the small magnetic field signals. This paper describes a new critical current measurement system, which have similar hardware structure of conventional ‘four probe method’. However, it is much faster than other systems using fast feedback control of the transport current while the conductor is continuously moving with high speed. The measured results are compared with the conventional method and hall probe method.

  10. Investigations of an air starting motor of marine medium-speed diesel engine with numerical analyses

    NASA Astrophysics Data System (ADS)

    Lee, Yeon Won; Choi, Yoon Hwan; Doh, Deog Hee

    2010-04-01

    The marine medium-speed diesel engines are started by two methods; one is the electric motors, and the other air starting motors. Even though air starting motor is dependent of the engine types and sizes, it has been widely used in this area due to its simplicity, convenience and reliability. The purpose of this paper is to give the designing parameters in order to make a proper "Air Starting Motor" using CFD. The aerodynamic approaches were given to understand the internal flow characteristics of the air starting motor. In addition, we have carried out the investigation of effects of tip clearance. In the calculations the tip clearance of air starting motor has been varied between 0, 2.8, 4.3 and 5.7% of blade span. The results of computation are the tip clearance increased to 2.8%, the torque decreased 24%, and there was no more large changes when the clearances increased to 4.3% and 5.7%.

  11. Efficient Computation of Separation-Compliant Speed Advisories for Air Traffic Arriving in Terminal Airspace

    NASA Technical Reports Server (NTRS)

    Sadovsky, Alexander V.; Davis, Damek; Isaacson, Douglas R.

    2012-01-01

    A class of problems in air traffic management asks for a scheduling algorithm that supplies the air traffic services authority not only with a schedule of arrivals and departures, but also with speed advisories. Since advisories must be finite, a scheduling algorithm must ultimately produce a finite data set, hence must either start with a purely discrete model or involve a discretization of a continuous one. The former choice, often preferred for intuitive clarity, naturally leads to mixed-integer programs, hindering proofs of correctness and computational cost bounds (crucial for real-time operations). In this paper, a hybrid control system is used to model air traffic scheduling, capturing both the discrete and continuous aspects. This framework is applied to a class of problems, called the Fully Routed Nominal Problem. We prove a number of geometric results on feasible schedules and use these results to formulate an algorithm that attempts to compute a collective speed advisory, effectively finite, and has computational cost polynomial in the number of aircraft. This work is a first step toward optimization and models refined with more realistic detail.

  12. Correlation of flame speed with stretch in turbulent premixed methane/air flames

    SciTech Connect

    Chen, J.H.; Im, H.G.

    1998-03-01

    Direct numerical simulations of two-dimensional unsteady premixed methane/air flames are performed to determine the correlation of flame speed with stretch over a wide range of curvatures and strain rates generated by intense two-dimensional turbulence. Lean and stoichiometric premixtures are considered with a detailed C{sub 1}-mechanism for methane oxidation. The computed correlation shows the existence of two distinct stable branches. It further shows that exceedingly large negative values of stretch can be obtained solely through curvature effects which give rise to an overall nonlinear correlation of the flame speed with stretch. Over a narrower stretch range, {minus}1 {le} Ka {le} 1, which includes 90% of the sample, the correlation is approximately linear, and hence, the asymptotic theory for stretch is practically applicable. Overall, one-third of the sample has negative stretch. In this linear range, the Markstein number associated with the positive branch is determined and is consistent with values obtained from comparable steady counterflow computations. In addition to this conventional positive branch, a negative branch is identified. This negative branch occurs when a flame cusp, with a center of curvature in the burnt gases, is subjected to intense compressive strain, resulting in a negative displacement speed. Negative flame speeds are also encountered for extensive tangential strain rates exceeding a Karlovitz number of unity, a value consistent with steady counterflow computations.

  13. Physical processes driving high-speed currents in Lake Champlain bottom water

    SciTech Connect

    Saylor, J.; Miller, J. ); Manley, T.O.; Manley, P.L. . Geology Dept.)

    1993-03-01

    The authors have examined current velocity profiles obtained at two sites in Lake Champlain to delineate physical processes causing high-speed currents near the lake bottom. Acoustic Doppler Current Profilers (ADCP's) were deployed during the interval June--October, 1992 at mid-lake sites near Thompson's Point and Valcour Island. The instruments measured horizontal current velocity at 1 m intervals through the water column. The ADCP measurement range covered 74% of the water depth at the Valcour Island site and 49% at Thompson's Point site. The deepest measurement level at the Valcour Island site was 9 m above the lake floor. Two phenomena causing intense bottom currents at Valcour Island were identified in the data sets. One occurred during the relatively weak density stratification of the early summer period. It was caused by a downwelled thermocline at Valcour which was associated with impulses of northward-directed wind stress. On three occasions the wind stress was large enough to propel essentially all hypolimnion water south of Valcour Island. After these downwellings the lower layer returned as a steeply-faced internal surge with high-speed, turbulent flow at its leading edge. The second process forcing high-speed bottom currents was related to large-amplitude internal seiches that dominated Lake Champlain's main basin during September and October. Amplitudes of the seiches approached several tens of meters; their persistence suggests near-resonant wind forcing as a generating mechanism. Currents at the deepest measurement level exceeded 30 cm/s over duration's of 12 or more hours. Periods of the internal seiches were observed to vary with the intensity of stratification and with seasonal thermocline depth as predicted by first principles governing internal wave propagation.

  14. Motor current signature analysis: A potential diagnostic for air conditioners

    SciTech Connect

    Miller, W.A.; Haynes, H.D.; Griffin, F.P.; Levins, W.P.; Karnitz, M.A.

    1988-03-01

    Recent advancements in modern electronics have made it possible to collect the various ''transient noise'' signals which are present on electric power lines of motor-driven equipment while using a simple non-intrusive clamp-on inductive pickup. Electronic filters are used to analyze the noise signal with an on-the-spot, real-time analysis. An exploratory study, conducted at ORNL, examined the potential for using the motor current signature on heat pumps and air conditioners as a diagnostic tool. Preliminary results show that there is some correlation between the motor current signature and the performance of a heat pump. However, the tests and associated analysis were limited, and additional research is needed to determine the full potential of motor current signature analysis (MCSA).

  15. Cross-infection risks associated with current procedures for using high-speed dental handpieces.

    PubMed

    Lewis, D L; Boe, R K

    1992-02-01

    When a dye solution used to simulate patient material was either injected into high-speed dental handpiece (drill) waterlines or applied to the equipment externally, internal air turbine chambers became contaminated. These chambers served as a reservoir of the material, which was slowly dislodged by air expelled during subsequent handpiece operation and which was diluted by water spray used for cooling the drilling surface. Considering the fact that patient materials could reside in internal parts of the equipment that are not usually disinfected and that the material may be subsequently sprayed into cuts and abrasions in the oral cavity, the common approach to reprocessing handpieces (external wiping in combination with flushing) may pose unacceptably high risks to those individuals treated soon after infected patients. Therefore, unless reliable data on cross-infection frequencies are obtained and prove it unnecessary, heat-treating high-speed handpieces between each patient should be considered an essential component of standard procedures whenever universal precautions are practiced in dentistry.

  16. The 90 deg Acoustic Spectrum of a High Speed Air Jet

    NASA Technical Reports Server (NTRS)

    Goldstein, Marvin E.

    2004-01-01

    Tam and Auriault successfully predicted the acoustic spectrum at 90deg to the axis of a high speed air jet by using an acoustic equation derived from ad hoc kinetic theory-type arguments. The present paper shows that similar predictions can be obtained by using a rigorous acoustic analogy approach together with actual measurements of the relevant acoustic source correlations. This puts the result on a firmer basis and enables its extension to new situations and to the prediction of sound at other observation angles.

  17. Filtering and Control of High Speed Motor Current in a Flywheel Energy Storage System

    NASA Technical Reports Server (NTRS)

    Kenny, Barbara H.; Santiago, Walter

    2004-01-01

    The NASA Glenn Research Center has been developing technology to enable the use of high speed flywheel energy storage units in future spacecraft for the last several years. An integral part of the flywheel unit is the three phase motor/generator that is used to accelerate and decelerate the flywheel. The motor/generator voltage is supplied from a pulse width modulated (PWM) inverter operating from a fixed DC voltage supply. The motor current is regulated through a closed loop current control that commands the necessary voltage from the inverter to achieve the desired current. The current regulation loop is the innermost control loop of the overall flywheel system and, as a result, must be fast and accurate over the entire operating speed range (20,000 to 60,000 rpm) of the flywheel. The voltage applied to the motor is a high frequency PWM version of the DC bus voltage that results in the commanded fundamental value plus higher order harmonics. Most of the harmonic content is at the switching frequency and above. The higher order harmonics cause a rapid change in voltage to be applied to the motor that can result in large voltage stresses across the motor windings. In addition, the high frequency content in the motor causes sensor noise in the magnetic bearings that leads to disturbances for the bearing control. To alleviate these problems, a filter is used to present a more sinusoidal voltage to the motor/generator. However, the filter adds additional dynamics and phase lag to the motor system that can interfere with the performance of the current regulator. This paper will discuss the tuning methodology and results for the motor/generator current regulator and the impact of the filter on the control. Results at speeds up to 50,000 rpm are presented.

  18. On the Resistance of the Air at High Speeds and on the Automatic Rotation of Projectiles

    NASA Technical Reports Server (NTRS)

    Riabouchinski, D

    1921-01-01

    Here, the laws governing the flow of a compressible fluid through an opening in a thin wall are applied to the resistance of the air at high speeds, especially as applied to the automatic rotation of projectiles. The instability which we observe in projectiles shot into the air without being given a moment of rotation about their axis of symmetry, or without stabilizing planes, is a phenomenon of automatic rotation. It is noted that we can prevent this phenomenon of automatic rotation by bringing the center of gravity sufficiently near one end, or by fitting the projectile with stabilizing planes or a tail. The automatic rotation of projectiles is due to the suction produced by the systematic formation of vortices behind the extremity of the projectile moving with the wind.

  19. High-speed sterilization technique using dielectric barrier discharge plasmas in atmospheric humid air

    NASA Astrophysics Data System (ADS)

    Miyamae, M.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.

    2010-11-01

    The inactivation of Bacillus atrophaeus spores by a dielectric barrier discharge (DBD) plasma produced by an ac voltage application of 1 kHz in atmospheric humid air was investigated in order to develop low-temperature, low-cost and high-speed plasma sterilization technique. The biological indicators covered with a Tyvek sheet were set just outside the DBD plasma region, where the air temperature and humidity as a discharge gas were precisely controlled by an environmental test chamber. The results show that the inactivation of Bacillus atrophaeus spores was found to be dependent strongly on the humidity, and was completed within 15 min at a relative humidity of 90 % and a temperature of 30 C. The treatment time for sterilization is shorter than those of conventional sterilization methods using ethylene oxide gas and dry heat treatment. It is considered that reactive species such as hydroxyl radicals that are effective for the inactivation of Bacillus atrophaeus spores could be produced by the DBD plasma in the humid air. Repetitive micro-pulsed discharge plasmas in the humid air will be applied for the sterilization experiment to enhance the sterilization efficiency.

  20. Application of drive circuit based on L298N in direct current motor speed control system

    NASA Astrophysics Data System (ADS)

    Yin, Liuliu; Wang, Fang; Han, Sen; Li, Yuchen; Sun, Hao; Lu, Qingjie; Yang, Cheng; Wang, Quanzhao

    2016-10-01

    In the experiment of researching the nanometer laser interferometer, our design of laser interferometer circuit system is up to the wireless communication technique of the 802.15.4 IEEE standard, and we use the RF TI provided by Basic to receive the data on speed control system software. The system's hardware is connected with control module and the DC motor. However, in the experiment, we found that single chip microcomputer control module is very difficult to drive the DC motor directly. The reason is that the DC motor's starting and braking current is larger than the causing current of the single chip microcomputer control module. In order to solve this problem, we add a driving module that control board can transmit PWM wave signal through I/O port to drive the DC motor, the driving circuit board can come true the function of the DC motor's positive and reversal rotation and speed adjustment. In many various driving module, the L298N module's integrated level is higher compared with other driver module. The L298N model is easy to control, it not only can control the DC motor, but also achieve motor speed control by modulating PWM wave that the control panel output. It also has the over-current protection function, when the motor lock, the L298N model can protect circuit and motor. So we use the driver module based on L298N to drive the DC motor. It is concluded that the L298N driver circuit module plays a very important role in the process of driving the DC motor in the DC motor speed control system.

  1. A Comparative Study of Sound Speed in Air at Room Temperature between a Pressure Sensor and a Sound Sensor

    ERIC Educational Resources Information Center

    Amrani, D.

    2013-01-01

    This paper deals with the comparison of sound speed measurements in air using two types of sensor that are widely employed in physics and engineering education, namely a pressure sensor and a sound sensor. A computer-based laboratory with pressure and sound sensors was used to carry out measurements of air through a 60 ml syringe. The fast Fourier…

  2. Speed-dependent emission of air pollutants from gasoline-powered passenger cars.

    PubMed

    Jung, Sungwoon; Lee, Meehye; Kim, Jongchoon; Lyu, Youngsook; Park, Junhong

    2011-01-01

    In Korea emissions from motor vehicles are a major source of air pollution in metropolitan cities, and in Seoul a large proportion of the vehicle fleet is made up of gasoline-powered passenger cars. The carbon monoxide (CO), hydrocarbons (HC), oxides of nitrogen (NOx) and carbon dioxide (CO2) contained in the exhaust emissions from 76 gasoline-powered passenger cars equipped with three-way catalysts has been assessed by vehicle speed, vehicle mileage and model year. The results show that CO, HC, NOx and CO2 emissions remained almost unchanged at higher speeds but decreased rapidly at lower speeds. While a reduction in CO, HC and NOx emissions was noticeable in vehicles of recent manufacture and lower mileage, CO2 emissions were found to be insensitive to vehicle mileage, but strongly dependent on gross vehicle weight. Lower emissions from more recent gasoline-powered vehicles arose mainly from improvements in three-way catalytic converter technology following strengthened emission regulations. The correlation between CO2 emission and fuel consumption has been investigated with a view to establishing national CO2 emission standards for Korea.

  3. Simulations of Direct Current Glow Discharges in Supersonic Air Flow

    NASA Astrophysics Data System (ADS)

    Mahadevan, Shankar; Raja, Laxminarayan

    2008-10-01

    In recent years, there have been a significant number of computational and experimental studies investigating the application of plasma discharges as actuators for high speed flow control. The relative importance of the actuation mechanisms: volumetric heating and electrostatic forcing can be established by developing self-consistent models of the plasma and bulk supersonic flow. To simulate the plasma discharge in a supersonic air stream, a fluid model of the glow discharge is coupled with a compressible Navier-Stokes solver in a self-consistent manner. Source terms for the momentum and energy equations are calculated from the plasma model and input into the Navier-Stokes solver. In turn, the pressure, gas temperature and velocity fields from the Navier-Stokes solution are fed back into the plasma model. The results include plasma species number density contour maps in the absence and presence of Mach 3 supersonic flow, and the corresponding effect of the glow discharge on gas dynamic properties such as the gas pressure and temperature. We also examine the effect of increasing the discharge voltage on the structure of the discharge and its corresponding effect on the supersonic flow.

  4. Gestational Diabetes and Preeclampsia in Association with Air Pollution at Levels below Current Air Quality Guidelines

    PubMed Central

    Jakobsson, Kristina; Tinnerberg, Håkan; Rignell-Hydbom, Anna; Rylander, Lars

    2013-01-01

    Background: Several studies have estimated associations between air pollution and birth outcomes, but few have evaluated potential effects on pregnancy complications. Objective: We investigated whether low-level exposure to air pollution is associated with gestational diabetes and preeclampsia. Methods: High-quality registry information on 81,110 singleton pregnancy outcomes in southern Sweden during 1999–2005 was linked to individual-level exposure estimates with high spatial resolution. Modeled exposure to nitrogen oxides (NOx), expressed as mean concentrations per trimester, and proximity to roads of different traffic densities were used as proxy indicators of exposure to combustion-related air pollution. The data were analyzed by logistic regression, with and without adjusting for potential confounders. Results: The prevalence of gestational diabetes increased with each NOx quartile, with an adjusted odds ratio (OR) of 1.69 (95% CI: 1.41, 2.03) for the highest (> 22.7 µg/m3) compared with the lowest quartile (2.5–8.9 µg/m3) of exposure during the second trimester. The adjusted OR for acquiring preeclampsia after exposure during the third trimester was 1.51 (1.32, 1.73) in the highest quartile of NOx compared with the lowest. Both outcomes were associated with high traffic density, but ORs were significant for gestational diabetes only. Conclusion: NOx exposure during pregnancy was associated with gestational diabetes and preeclampsia in an area with air pollution levels below current air quality guidelines. PMID:23563048

  5. High-speed current dq PI controller for vector controlled PMSM drive.

    PubMed

    Marufuzzaman, Mohammad; Reaz, Mamun Bin Ibne; Rahman, Labonnah Farzana; Chang, Tae Gyu

    2014-01-01

    High-speed current controller for vector controlled permanent magnet synchronous motor (PMSM) is presented. The controller is developed based on modular design for faster calculation and uses fixed-point proportional-integral (PI) method for improved accuracy. Current dq controller is usually implemented in digital signal processor (DSP) based computer. However, DSP based solutions are reaching their physical limits, which are few microseconds. Besides, digital solutions suffer from high implementation cost. In this research, the overall controller is realizing in field programmable gate array (FPGA). FPGA implementation of the overall controlling algorithm will certainly trim down the execution time significantly to guarantee the steadiness of the motor. Agilent 16821A Logic Analyzer is employed to validate the result of the implemented design in FPGA. Experimental results indicate that the proposed current dq PI controller needs only 50 ns of execution time in 40 MHz clock, which is the lowest computational cycle for the era.

  6. High-Speed Current dq PI Controller for Vector Controlled PMSM Drive

    PubMed Central

    Reaz, Mamun Bin Ibne; Rahman, Labonnah Farzana; Chang, Tae Gyu

    2014-01-01

    High-speed current controller for vector controlled permanent magnet synchronous motor (PMSM) is presented. The controller is developed based on modular design for faster calculation and uses fixed-point proportional-integral (PI) method for improved accuracy. Current dq controller is usually implemented in digital signal processor (DSP) based computer. However, DSP based solutions are reaching their physical limits, which are few microseconds. Besides, digital solutions suffer from high implementation cost. In this research, the overall controller is realizing in field programmable gate array (FPGA). FPGA implementation of the overall controlling algorithm will certainly trim down the execution time significantly to guarantee the steadiness of the motor. Agilent 16821A Logic Analyzer is employed to validate the result of the implemented design in FPGA. Experimental results indicate that the proposed current dq PI controller needs only 50 ns of execution time in 40 MHz clock, which is the lowest computational cycle for the era. PMID:24574913

  7. Temperature and Transpiration Resistances of Xanthium Leaves as Affected by Air Temperature, Humidity, and Wind Speed 1

    PubMed Central

    Drake, B. G.; Raschke, K.; Salisbury, F. B.

    1970-01-01

    Transpiration and temperatures of single, attached leaves of Xanthium strumarium L. were measured in high intensity white light (1.2 calories per square centimeter per minute on a surface normal to the radiation), with abundant water supply, at wind speeds of 90, 225, and 450 centimeters per second, and during exposure to moist and dry air. Partitioning of absorbed radiation between transpiration and convection was determined, and transpiration resistances were computed. Leaf resistances decreased with increasing temperature (down to a minimum of 0.36 seconds per centimeter). Silicone rubber replicas of leaf surfaces proved that the decrease was due to increased stomatal apertures. At constant air temperature, leaf resistances were higher in dry than in moist air with the result that transpiration varied less than would have been predicted on the basis of the water-vapor pressure difference between leaf and air. The dependence of stomatal conductance on temperature and moisture content of the air caused the following effects. At air temperatures below 35 C, average leaf temperatures were above air temperature by an amount dependent on wind velocity; increasing wind diminished transpiration. At air temperatures above 35 C, leaf temperatures were below air temperatures, and increasing wind markedly increased transpiration. Leaf temperatures equaled air temperature near 35 C at all wind speeds and in moist as well as in dry air. PMID:16657458

  8. The air Earth conduction current and stratiform cloud edge charging

    NASA Astrophysics Data System (ADS)

    Nicoll, Keri; Harrison, R. Giles

    2010-05-01

    The air Earth conduction current density, Jc, flows through the fair weather regions of the atmosphere as a result of the atmospheric global electric circuit. In the presence of layer cloud, it has been assumed that the current density flows through the cloud if the cloud is of sufficient horizontal extent, such as a uniform horizon to horizon stratiform cloud. If the current flows through the cloud, electrostatics considerations resulting from the cloud-air conductivity transitions require there to be regions of unipolar charge at the upper and lower boundaries of the cloud. For symmetric upper and lower cloud edges, the charge will also be symmetric. Droplets and aerosol particles in these areas are likely to become charged, and it is known that cloud microphysical processes are sensitive to charge. Because of the radiative importance of clouds and the possibility of widespread small effects of charge on cloud processes, in-situ measurements to evaluate the existence of charge in layer clouds are desirable. A two step approach has been applied to investigate the prevalence of stratiform cloud edge charging in the atmosphere. First, the question of whether Jc flows through layer cloud has been considered by analysing surface measurements of Jc from three UK sites under different cloud conditions. Second, a balloon borne charge sensor has been specially developed to obtain high vertical resolution in-situ measurements of charge inside stratiform cloud. The sensor has frequently detected regions of charge near cloud edges, where net charges of several hundred pC m-3 are common.

  9. HF radar comparisons with moored estimates of current speed and direction: Expected differences and implications

    NASA Astrophysics Data System (ADS)

    Graber, Hans C.; Haus, Brian K.; Chapman, Rickey D.; Shay, Lynn K.

    1997-08-01

    The validation of estimates of ocean surface current speed and direction from high-frequency (HF) Doppler radars can be obtained through comparisons with measurements from moored near-surface current meters, acoustic Doppler current profilers, or drifters. Expected differences between current meter (CM) and HF radar estimates of ocean surface vector currents depend on numerous sources of errors and differences such as instrument and sensor limitations, sampling characteristics, mooring response, and geophysical variability. We classify these sources of errors and differences as being associated exclusively with the current meter, as being associated exclusively with the HF radar, or as a result of differing methodologies in which current meters and HF radars sample the spatially and temporally varying ocean surface current vector field. In this latter context we consider three geophysical processes, namely, the Stokes drift, Ekman drift, and baroclinicity, which contribute to the differences between surface and near-surface vector current measurements. The performance of the HF radar is evaluated on the basis of these expected differences. Vector currents were collected during the High Resolution Remote Sensing Experiment II off the coast of Cape Hatteras, North Carolina, in June 1993. The results of this analysis suggest that 40%-60% of the observed differences between near-surface CM and HF radar velocity measurements can be explained in terms of contributions from instrument noise, collocation and concurrence differences, and geophysical processes. The rms magnitude difference ranged from 11 to 20 cm s-1 at the four mooring sites. The average angular difference ranged between 15° and 25° of which about 10° is attributed to the directional error of the radar current vector estimates due to the alignment of the radial beams.

  10. Experimental Investigation of Micro Counter-Current Flow Using High-Speed Micro PIV

    NASA Astrophysics Data System (ADS)

    Shinohara, Kyosuke; Sugii, Yasuhiko; Aota, Arata; Hibara, Akihide; Kitamori, Takehiko; Okamoto, Koji

    2004-11-01

    Microfluidic devices have been developed for chemical analysis as micro total analysis systems (u-TAS). To utilize scale merits, continuous-flow chemical processing and micro unit operations had been proposed as microfluidic device including mixing, phase confluence, solvent extraction, and so on. Recently, as one of these integrated chemical processes, micro counter-current flow system had been developed for highly efficient solvent extraction. The system consisted of oil flow and water flow in inverse direction. Using the system, more efficient extraction of Co (II) complex than theoretical prediction was confirmed. In this paper, in order to investigate the fundamental characteristics of the micro counter-current flow, velocity fields of the micro counter-current flow were measured using high-speed micro PIV system. The system consisted of a high-speed CMOS camera with an image intensifier, an epi-fluorescent microscope with an objective lens and a color filter, and a CW laser. The velocity fields of water were visualized for a time resolution of 500 us and a spatial resolution of 2.2 x 2.2 um. Transient micro vortices at the water-butyl acetate interface were captured clearly.

  11. High-Speed Ion Flow, Substorm Current Wedge, and Multiple Pi 2 Pulsations

    DTIC Science & Technology

    2007-11-02

    5.76 65.8 22.96 -20.5 03 6. 66 23 -2 20 3 .5 .19 D.6 Figure 12. Magnetic field data measured on the ISEE 1 satellite in the GSE...ISMC-TR-99-04 AEROSPACE REPORT NO. TR-99(8570)- 3 iHigh-Speed Ion Flow, Substorm Current Wedge, land Multiple Pi 2 Pulsations >0 December 1998...and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20S03. 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 20 December 1998 3

  12. High-speed counter-current chromatographic isolation of ricinine, an insecticide from Ricinus communis.

    PubMed

    Cazal, Cristiane de Melo; Batalhão, Jaqueline Raquel; Domingues, Vanessa de Cássia; Bueno, Odair Corrêa; Filho, Edson Rodrigues; Forim, Moacir R; da Silva, Maria Fátima G Fernandes; Vieira, Paulo Cezar; Fernandes, João Batista

    2009-05-08

    The alkaloid ricinine, an insecticide for leaf-cutting ant (Atta sexdens rubropilosa), was obtained from Ricinus communis. A two-phase solvent system composed of CH(2)Cl(2)/EtOH/H(2)O (93:35:72, v/v/v) was used for high-speed counter-current chromatographic (HSCCC) isolation of ricinine in high yield and with over 96% purity, as determined by liquid and gas chromatography-mass spectrometry (LC-MS and GC-MS). Identification of ricinine was performed by comparison of (1)H NMR, (13)C NMR and LC-MS/MS data.

  13. Air Quality Study Using Satellites - Current Capability and Future Plans

    NASA Technical Reports Server (NTRS)

    Bhartia, Pawan K.; Joiner, Joanna; Gleason, James; Liu, Xiong; Torres, Omar; Krotkov, Nickolay; Ziemke, Jerry; Chandra, Sushil

    2008-01-01

    Satellite instruments have had great success in monitoring the stratospheric ozone and in understanding the processes that control its daily to decadal scale variations. This field is now reaching its zenith with a number of satellite instruments from the US, Europe and Canada capping several decades of active research in this field. The primary public policy imperative of this research was to make reliable prediction of increases in biologically active surface UV radiation due to human activity. By contrast retrieval from satellite data of atmospheric constituents and photo-chemically active radiation that affect air quality is a new and growing field that is presenting us with unique challenges in measurement and data interpretation. A key distinction compared to stratospheric sensors is the greatly enhanced role of clouds, aerosols, and surfaces (CAS) in determining the quality and quantity of useful data that is available for air quality research. In our presentation we will use data from several sensors that are currently flying on the A-train satellite constellation, including OMI, MODIS, CLOUDSAT, and CALIPSO, to highlight that CAS can have both positive and negative effects on the information content of satellite measurements. This is in sharp contrast to other fields of remote sensing where CAS are usually considered an interference except in those cases when they are the primary subject of study. Our analysis has revealed that in the reflected wavelengths one often sees much further down into the atmosphere, through most cirrus, than one does in the emitted wavelengths. The lower level clouds provide a nice background against which one can track long-range transport of trace gases and aerosols. In addition, differences in trace gas columns estimated over cloudy and adjacent clear pixels can be used to measure boundary layer trace gases. However, in order to take full advantage of these features it will be necessary to greatly advance our understanding of

  14. High-resolution daily gridded data sets of air temperature and wind speed for Europe

    NASA Astrophysics Data System (ADS)

    Brinckmann, Sven; Krähenmann, Stefan; Bissolli, Peter

    2016-10-01

    New high-resolution data sets for near-surface daily air temperature (minimum, maximum and mean) and daily mean wind speed for Europe (the CORDEX domain) are provided for the period 2001-2010 for the purpose of regional model validation in the framework of DecReg, a sub-project of the German MiKlip project, which aims to develop decadal climate predictions. The main input data sources are SYNOP observations, partly supplemented by station data from the ECA&D data set (http://www.ecad.eu). These data are quality tested to eliminate erroneous data. By spatial interpolation of these station observations, grid data in a resolution of 0.044° (≈ 5km) on a rotated grid with virtual North Pole at 39.25° N, 162° W are derived. For temperature interpolation a modified version of a regression kriging method developed by Krähenmann et al.(2011) is used. At first, predictor fields of altitude, continentality and zonal mean temperature are used for a regression applied to monthly station data. The residuals of the monthly regression and the deviations of the daily data from the monthly averages are interpolated using simple kriging in a second and third step. For wind speed a new method based on the concept used for temperature was developed, involving predictor fields of exposure, roughness length, coastal distance and ERA-Interim reanalysis wind speed at 850 hPa. Interpolation uncertainty is estimated by means of the kriging variance and regression uncertainties. Furthermore, to assess the quality of the final daily grid data, cross validation is performed. Variance explained by the regression ranges from 70 to 90 % for monthly temperature and from 50 to 60 % for monthly wind speed. The resulting RMSE for the final daily grid data amounts to 1-2 K and 1-1.5 ms-1 (depending on season and parameter) for daily temperature parameters

  15. High-resolution daily gridded datasets of air temperature and wind speed for Europe

    NASA Astrophysics Data System (ADS)

    Brinckmann, S.; Krähenmann, S.; Bissolli, P.

    2015-08-01

    New high-resolution datasets for near surface daily air temperature (minimum, maximum and mean) and daily mean wind speed for Europe (the CORDEX domain) are provided for the period 2001-2010 for the purpose of regional model validation in the framework of DecReg, a sub-project of the German MiKlip project, which aims to develop decadal climate predictions. The main input data sources are hourly SYNOP observations, partly supplemented by station data from the ECA&D dataset (http://www.ecad.eu). These data are quality tested to eliminate erroneous data and various kinds of inhomogeneities. Grids in a resolution of 0.044° (5 km) are derived by spatial interpolation of these station data into the CORDEX area. For temperature interpolation a modified version of a regression kriging method developed by Krähenmann et al. (2011) is used. At first, predictor fields of altitude, continentality and zonal mean temperature are chosen for a regression applied to monthly station data. The residuals of the monthly regression and the deviations of the daily data from the monthly averages are interpolated using simple kriging in a second and third step. For wind speed a new method based on the concept used for temperature was developed, involving predictor fields of exposure, roughness length, coastal distance and ERA Interim reanalysis wind speed at 850 hPa. Interpolation uncertainty is estimated by means of the kriging variance and regression uncertainties. Furthermore, to assess the quality of the final daily grid data, cross validation is performed. Explained variance ranges from 70 to 90 % for monthly temperature and from 50 to 60 % for monthly wind speed. The resulting RMSE for the final daily grid data amounts to 1-2 °C and 1-1.5 m s-1 (depending on season and parameter) for daily temperature parameters and daily mean wind speed, respectively. The datasets presented in this article are published at http://dx.doi.org/10.5676/DWD_CDC/DECREG0110v1.

  16. High Speed High Resolution Current Comparator and its Application to Analog to Digital Converter

    NASA Astrophysics Data System (ADS)

    Sridhar, Ranjana; Pandey, Neeta; Bhattacharyya, Asok; Bhatia, Veepsa

    2016-06-01

    This paper introduces a high speed high resolution current comparator which includes the current differencing stage and employs non linear feedback in the gain stage. The usefulness of the proposed comparator is demonstrated by implementing a 3-bit current mode flash analog-to-digital converter (ADC). Simulation program with integrated circuit emphasis (SPICE) simulations have been carried out to verify theoretical proposition and performance parameters of both comparator and ADC are obtained using TSMC 0.18 µm CMOS technology parameters. The current comparator shows a resolution of ±5 nA and a delay of 0.86 ns for current difference of ±1 µA. The impact of process variation on proposed comparator propagation delay has been studied through Monte Carlo simulation and it is found that percentage change in propagation delay in best case is 1.3 % only and in worst case is 9 % only. The ADC exhibits an offset, gain error, differential nonlinearity (DNL) and integral nonlinearity (INL) of 0.102 µA, 0.99, -0.34 LSB and 0.0267 LSB, respectively. The impact of process variation on ADC has also been studied at different process corners.

  17. A High-Speed Adaptively-Biased Current-to-Current Front-End for SSPM Arrays

    NASA Astrophysics Data System (ADS)

    Zheng, Bob; Walder, Jean-Pierre; Lippe, Henrik vonder; Moses, William; Janecek, Martin

    Solid-state photomultiplier (SSPM) arrays are an interesting technology for use in PET detector modules due to their low cost, high compactness, insensitivity to magnetic fields, and sub-nanosecond timing resolution. However, the large intrinsic capacitance of SSPM arrays results in RC time constants that can severely degrade the response time, which leads to a trade-off between array size and speed. Instead, we propose a front-end that utilizes an adaptively biased current-to-current converter that minimizes the resistance seen by the SSPM array, thus preserving the timing resolution for both large and small arrays. This enables the use of large SSPM arrays with resistive networks, which creates position information and minimizes the number of outputs for compatibility with general PET multiplexing schemes. By tuning the bias of the feedback amplifier, the chip allows for precise control of the close-loop gain, ensuring stability and fast operation from loads as small as 50pF to loads as large as 1nF. The chip has 16 input channels, and 4 outputs capable of driving 100 n loads. The power consumption is 12mW per channel and 360mW for the entire chip. The chip has been designed and fabricated in an AMS 0.35um high-voltage technology, and demonstrates a fast rise-time response and low noise performances.

  18. High-Speed Rainbow Schlieren Deflectometry Analysis of Helium Jets Flowing into Air for Microgravity Applications

    NASA Technical Reports Server (NTRS)

    Leptuch, Peter A.

    2002-01-01

    The flow phenomena of buoyant jets have been analyzed by many researchers in recent years. Few, however have studied jets in microgravity conditions, and the exact nature of the flow under these conditions has until recently been unknown. This study seeks to extend the work done by researchers at the university of Oklahoma in examining and documenting the behavior of helium jets in micro-gravity conditions. Quantitative rainbow schlieren deflectometry data have been obtained for helium jets discharging vertically into quiescent ambient air from tubes of several diameters at various flow rates using a high-speed digital camera. These data have obtained before, during and after the onset of microgravity conditions. High-speed rainbow schlieren deflectometry has been developed for this study with the installation and use of a high-speed digital camera and modifications to the optical setup. Higher temporal resolution of the transitional phase between terrestrial and micro-gravity conditions has been obtained which has reduced the averaging effect of longer exposure times used in all previous schlieren studies. Results include color schlieren images, color time-space images (temporal evolution images), frequency analyses, contour plots of hue and contour plots of helium mole fraction. The results, which focus primarily on the periods before and during the onset of microgravity conditions, show that the pulsation of the jets normally found in terrestrial gravity ("earth"-gravity) conditions cease, and the gradients in helium diminish to produce a widening of the jet in micro-gravity conditions. In addition, the results show that the disturbance propagate upstream from a downstream source.

  19. Use of nose cap and fuselage pressure orifices for determination of air data for space shuttle orbiter below supersonic speeds

    NASA Technical Reports Server (NTRS)

    Larson, T. J.; Siemers, P. M., III

    1980-01-01

    Wind tunnel pressure measurements were acquired from orifices on a 0.1 scale forebody model of the space shuttle orbiter that were arranged in a preliminary configuration of the shuttle entry air data system (SEADS). Pressures from those and auxiliary orifices were evaluated for their ability to provide air data at subsonic and transonic speeds. The orifices were on the vehicle's nose cap and on the sides of the forebody forward of the cabin. The investigation covered a Mach number range of 0.25 to 1.40 and an angle of attack range from 4 deg. to 18 deg. An air data system consisting of nose cap and forebody fuselage orifices constitutes a complete and accurate air data system at subsonic and transonic speeds. For Mach numbers less than 0.80 orifices confined to the nose cap can be used as a complete and accurate air data system. Air data systems that use only flush pressure orifices can be used to determine basic air data on other aircraft at subsonic and transonic speeds.

  20. A microprocessor-controlled fast-response speed regulator with dual mode current loop for DCM drives

    NASA Astrophysics Data System (ADS)

    Ohmae, T.; Matsuda, T.; Suzuki, T.; Azusawa, N.; Kamiyama, K.; Konishi, T.

    1980-06-01

    A new control method is described in which a microprocessor is used to regulate the speed of a dc motor driven by antiparallel-connected three-phase dual thyristor converters. A distinct feature of this speed regulating system is that speed response is improved by using a fast-response current controller for the internal loop. A fast-response current controller is obtained by employing a nonlinear compensation subloop and a proportional plus integral compensation subloop. The nonlinear compensation subloop is used to linearize the nonlinear load characteristics of the thyristor converter, which are encountered under discontinuous conduction states of current. The proportional plus integral compensation subloop reduces the deviation of detected current from the current reference. With these two current-control subloops a fast motor speed response is achieved under discontinuous as well as continuous conduction states; hence the steady-state accuracy of speed is improved. A speed regulator using a microprocessor was trial manufactured and tested with a 20-kW dc motor. It was found that an extremely fast controlled current response can be obtained even with a relatively long sampling period. Further, normal action was confirmed in four-quadrant operation.

  1. 46 CFR 35.35-45 - Auxiliary steam, air, or electric current-B/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Auxiliary steam, air, or electric current-B/ALL. 35.35... Cargo Handling § 35.35-45 Auxiliary steam, air, or electric current—B/ALL. When discharging cargo from one or more barges, the towing vessel may furnish steam, air, or electric current for pumps on...

  2. 46 CFR 35.35-45 - Auxiliary steam, air, or electric current-B/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Auxiliary steam, air, or electric current-B/ALL. 35.35... Cargo Handling § 35.35-45 Auxiliary steam, air, or electric current—B/ALL. When discharging cargo from one or more barges, the towing vessel may furnish steam, air, or electric current for pumps on...

  3. 46 CFR 35.35-45 - Auxiliary steam, air, or electric current-B/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Auxiliary steam, air, or electric current-B/ALL. 35.35... Cargo Handling § 35.35-45 Auxiliary steam, air, or electric current—B/ALL. When discharging cargo from one or more barges, the towing vessel may furnish steam, air, or electric current for pumps on...

  4. 46 CFR 35.35-45 - Auxiliary steam, air, or electric current-B/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Auxiliary steam, air, or electric current-B/ALL. 35.35... Cargo Handling § 35.35-45 Auxiliary steam, air, or electric current—B/ALL. When discharging cargo from one or more barges, the towing vessel may furnish steam, air, or electric current for pumps on...

  5. 46 CFR 35.35-45 - Auxiliary steam, air, or electric current-B/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Auxiliary steam, air, or electric current-B/ALL. 35.35... Cargo Handling § 35.35-45 Auxiliary steam, air, or electric current—B/ALL. When discharging cargo from one or more barges, the towing vessel may furnish steam, air, or electric current for pumps on...

  6. Preparative separation of grape skin polyphenols by high-speed counter-current chromatography.

    PubMed

    Luo, Lanxin; Cui, Yan; Zhang, Shuting; Li, Lingxi; Li, Yuanyuan; Zhou, Peiyu; Sun, Baoshan

    2016-12-01

    To develop an efficient method for large preparation of various individual polyphenols from white grape skins (Fernão Pires; Vitis vinifera) by preparative high-speed counter-current chromatography (HSCCC) and preparative-HPLC, an optimized preparative HSCCC condition with two-phase solvent system composed of Hex-EtOAc-H2O (1:50:50, v/v) was used to separate grape skin polyphenols into various fractions. Both the tail-head and head-tail elution modes were used with a flow rate of 3.0ml/min and a rotary speed of 950rpm. Afterwards, a preparative-HPLC separation was applied to isolate individual polyphenols in each of the fractions from HSCCC. Total of 7 fractions (Fraction A to G) were obtained from grape skin extract by HSCCC. After preparative-HPLC isolation, fifteen individual compounds were obtained, most of which presented high yields and purity (all over 90%). The HSCCC method followed with preparative-HPLC appeared to be convenient and economical, constituting an efficient strategy for the isolation of grape skin polyphenols.

  7. A novel ram-air plasma synthetic jet actuator for near space high-speed flow control

    NASA Astrophysics Data System (ADS)

    Zhou, Yan; Xia, Zhixun; Luo, Zhenbing; Wang, Lin; Deng, Xiong

    2017-04-01

    As a promising high-speed flow control technique, plasma synthetic jet actuator (PSJA) has the superiorities of requiring no moving parts or flow supplies, extremely fast response, wide frequency band and high efflux speed. However, it has limitations for application: in near space, the air in the cavity which is used to generate the puled plasma jet becomes rare, and the low refill rate often leads to insufficient recovery which limits the working frequency. In order to overcome these limitations, a novel actuator called ram-air plasma synthetic jet actuator (RPSJA) is proposed. Inspired by the ramjet, the principle of this actuator is to take advantage of the tremendous dynamic pressure of the high-speed inflow using an added ram-air inlet. Numerical investigations were conducted to demonstrate the feasibility of such an actuator. The results show that, compared with PSJA, the air in the chamber becomes denser and the refill rate is notably increased owing to the ;ram-air effect; of RPSJA. Based on the flow characteristic analysis, a revised actuator with a stepped ram-air inlet is proposed and investigated as well, and the results show that the performance is improved as the stepped height rises.

  8. Separation of two major chalcones from Angelica keiskei by high-speed counter-current chromatography.

    PubMed

    Kil, Yun-Seo; Nam, Joo-Won; Lee, Jun; Seo, Eun Kyoung

    2015-08-01

    Angelica keiskei (Shin-sun cho) is an edible higher plant with the beneficial preventive effects on cancer, hypertension, and coronary heart disease. Two bioactive chalcones of Shin-sun cho, xanthoangelol (1) and 4-hydroxyderricin (2), were separated simultaneously by using high-speed counter-current chromatography with a two-phase solvent system composed of n-hexane-EtOAc-MeOH-H2O (9:5:9:4). Only nonconsuming processes, solvent fractionations and Sephadex LH-20 column chromatography, were conducted as presteps. Xanthoangelol (1, 35.9 mg, 99.9 % purity at 254 and 365 nm) and 4-hydroxyderricin (2, 4.4 mg, 98.7 % purity at 254 nm and 98.8 % purity at 365 nm) were successfully purified from 70 mg of the processed extract from A. keiskei. The structures of two compounds were confirmed by (1)H- and (13)C-NMR analysis.

  9. Improved spiral tube assembly for high-speed counter-current chromatography

    PubMed Central

    Ito, Y.; Clary, R.; Powell, J.; Knight, M.; Finn, T. M.

    2009-01-01

    The original spiral tube support (STS) assembly is improved by changing the shape of the tubing, with 1-cm presses perpendicularly along the length. This modification interrupts the laminar flow of the mobile phase. The tubing in the 4 return grooves to the center of the rotor is flattened by a specially made pressing tool to decrease the dead volume and thus increase the column efficiency. The performance of this spiral tube assembly was tested in separations of dipeptides and proteins with suitable polar two-phase solvent systems. The results revealed that the present system yields high partition efficiency with a satisfactory level of stationary phase retention in a short elution time. The present high-speed counter-current chromatographic system will be efficiently applied to a broad spectrum of two-phase solvent systems including aqueous-aqueous polymer phase systems which are used for separation of biopolymers such as proteins and nucleic acids. . PMID:19062024

  10. Preliminary Design of the Low Speed Propulsion Air Intake of the LAPCAT-MR2 Aircraft

    NASA Astrophysics Data System (ADS)

    Meerts, C.; Steelant, J.; Hendrick, P.

    2011-08-01

    A supersonic air intake has been designed for the low speed propulsion system of the LAPCAT-MR2 aircraft. Development has been based on the XB-70 aircraft air intake which achieves extremely high performances over a wide operation range through the combined use of variable geometry and porous wall suction for boundary layer control. Design of the LAPCAT-MR2 intake has been operated through CFD simulations using DLR TAU-Code (perfect gas model - Menter SST turbulence model). First, a new boundary condition has been validated into the DLR TAU-Code (perfect gas model) for porous wall suction modelling. Standard test cases have shown surprisingly good agreement with both theoretical predictions and experimental results. Based upon this validation, XB-70 air intake performances have been assessed through CFD simulations over the subsonic, transonic and supersonic operation regions and compared to available flight data. A new simulation strategy was deployed avoiding numerical instabilities when initiating the flow in both transonic and supersonic operation modes. First, the flow must be initiated with a far field Mach number higher than the target flight Mach number. Additionally, the inlet backpressure may only be increased to its target value once the oblique shock pattern downstream the intake compression ramps is converged. Simulations using that strategy have shown excellent agreement with in-flight measurements for both total pressure recovery ratio and variable geometry schedule prediction. The demarcation between stable and unstable operation could be well reproduced. Finally, a modified version of the XB-70 air intake has been integrated in the elliptical intake on the LAPCAT vehicle. Operation of this intake in the LAPCAT-MR2 environment is under evaluation using the same simulation strategy as the one developed for the XB-70. Performances are assessed at several key operation points to assess viability of this design. This information will allow in a next

  11. Influence of travel speed on spray deposition uniformity from an air-assisted variable-rate sprayer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A newly developed LiDAR-guided air-assisted variable-rate sprayer for nursery and orchard applications was tested at various travel speeds to compare its spray deposition and coverage uniformity with constant-rate applications. Spray samplers, including nylon screens and water-sensitive papers (WSP)...

  12. Statistical Short-Range Guidance for Peak Wind Speed Forecasts at Edwards Air Force Base, CA

    NASA Technical Reports Server (NTRS)

    Dreher, Joseph; Crawford, Winifred; Lafosse, Richard; Hoeth, Brian; Burns, Kerry

    2008-01-01

    The peak winds near the surface are an important forecast element for Space Shuttle landings. As defined in the Shuttle Flight Rules (FRs), there are peak wind thresholds that cannot be exceeded in order to ensure the safety of the shuttle during landing operations. The National Weather Service Spaceflight Meteorology Group (SMG) is responsible for weather forecasts for all shuttle landings. They indicate peak winds are a challenging parameter to forecast. To alleviate the difficulty in making such wind forecasts, the Applied Meteorology Unit (AMTJ) developed a personal computer based graphical user interface (GUI) for displaying peak wind climatology and probabilities of exceeding peak-wind thresholds for the Shuttle Landing Facility (SLF) at Kennedy Space Center. However, the shuttle must land at Edwards Air Force Base (EAFB) in southern California when weather conditions at Kennedy Space Center in Florida are not acceptable, so SMG forecasters requested that a similar tool be developed for EAFB. Marshall Space Flight Center (MSFC) personnel archived and performed quality control of 2-minute average and 10-minute peak wind speeds at each tower adjacent to the main runway at EAFB from 1997- 2004. They calculated wind climatologies and probabilities of average peak wind occurrence based on the average speed. The climatologies were calculated for each tower and month, and were stratified by hour, direction, and direction/hour. For the probabilities of peak wind occurrence, MSFC calculated empirical and modeled probabilities of meeting or exceeding specific 10-minute peak wind speeds using probability density functions. The AMU obtained and reformatted the data into Microsoft Excel PivotTables, which allows users to display different values with point-click-drag techniques. The GUT was then created from the PivotTables using Visual Basic for Applications code. The GUI is run through a macro within Microsoft Excel and allows forecasters to quickly display and

  13. The influence of current speed and vegetation density on flow structure in two macrotidal eelgrass canopies

    USGS Publications Warehouse

    Lacy, Jessica R.; Wyllie-Echeverria, Sandy

    2011-01-01

    The influence of eelgrass (Zostera marina) on near-bed currents, turbulence, and drag was investigated at three sites in two eelgrass canopies of differing density and at one unvegetated site in the San Juan archipelago of Puget Sound, Washington, USA. Eelgrass blade length exceeded 1 m. Velocity profiles up to 1.5 m above the sea floor were collected over a spring-neap tidal cycle with a downward-looking pulse-coherent acoustic Doppler profiler above the canopies and two acoustic Doppler velocimeters within the canopies. The eelgrass attenuated currents by a minimum of 40%, and by more than 70% at the most densely vegetated site. Attenuation decreased with increasing current speed. The data were compared to the shear-layer model of vegetated flows and the displaced logarithmic model. Velocity profiles outside the meadows were logarithmic. Within the canopies, most profiles were consistent with the shear-layer model, with a logarithmic layer above the canopy. However, at the less-dense sites, when currents were strong, shear at the sea floor and above the canopy was significant relative to shear at the top of the canopy, and the velocity profiles more closely resembled those in a rough-wall boundary layer. Turbulence was strong at the canopy top and decreased with height. Friction velocity at the canopy top was 1.5–2 times greater than at the unvegetated, sandy site. The coefficient of drag CD on the overlying flow derived from the logarithmic velocity profile above the canopy, was 3–8 times greater than at the unvegetated site (0.01–0.023 vs. 2.9 × 10−3).

  14. Velocity and pressure distribution behind bodies in an air current

    NASA Technical Reports Server (NTRS)

    Betz, A

    1924-01-01

    The following experiments on the air flow behind bodies were made for the purpose of assisting in the explanation of the phenomena connected with air resistance. The first two series of experiments dealt with the phenomena behind a cylinder. The third series of experiments was carried out behind a streamlined strut.

  15. Statistical Short-Range Guidance for Peak Wind Speed Forecasts at Edwards Air Force Base, CA

    NASA Technical Reports Server (NTRS)

    Dreher, Joseph G.; Crawford, Winifred; Lafosse, Richard; Hoeth, Brian; Burns, Kerry

    2009-01-01

    The peak winds near the surface are an important forecast element for space shuttle landings. As defined in the Flight Rules (FR), there are peak wind thresholds that cannot be exceeded in order to ensure the safety of the shuttle during landing operations. The National Weather Service Spaceflight Meteorology Group (SMG) is responsible for weather forecasts for all shuttle landings, and is required to issue surface average and 10-minute peak wind speed forecasts. They indicate peak winds are a challenging parameter to forecast. To alleviate the difficulty in making such wind forecasts, the Applied Meteorology Unit (AMU) developed a PC-based graphical user interface (GUI) for displaying peak wind climatology and probabilities of exceeding peak wind thresholds for the Shuttle Landing Facility (SLF) at Kennedy Space Center (KSC; Lambert 2003). However, the shuttle occasionally may land at Edwards Air Force Base (EAFB) in southern California when weather conditions at KSC in Florida are not acceptable, so SMG forecasters requested a similar tool be developed for EAFB.

  16. Development of a Variable-Speed Residential Air-Source Integrated Heat Pump

    SciTech Connect

    Rice, C Keith; Shen, Bo; Munk, Jeffrey D; Ally, Moonis Raza; Baxter, Van D

    2014-01-01

    A residential air-source integrated heat pump (AS-IHP) is under development in partnership with a U.S. manufacturer. A nominal 10.6 kW (3-ton) cooling capacity variable-speed unit, the system provides both space conditioning and water heating. This multi-functional unit can provide domestic water heating (DWH) in either full condensing (FC) (dedicated water heating or simultaneous space cooling and water heating) or desuperheating (DS) operation modes. Laboratory test data were used to calibrate a vapor-compression simulation model for each mode of operation. The model was used to optimize the internal control options for efficiency while maintaining acceptable comfort conditions and refrigerant-side pressures and temperatures within allowable operating envelopes. Annual simulations were performed with the AS-IHP installed in a well-insulated house in five U.S. climate zones. The AS-IHP is predicted to use 45 to 60% less energy than a DOE minimum efficiency baseline system while meeting total annual space conditioning and water heating loads. Water heating energy use is lowered by 60 to 75% in cold to warmer climates, respectively. Plans are to field test the unit in Knoxville, TN.

  17. A uniform laminar air plasma plume with large volume excited by an alternating current voltage

    NASA Astrophysics Data System (ADS)

    Li, Xuechen; Bao, Wenting; Chu, Jingdi; Zhang, Panpan; Jia, Pengying

    2015-12-01

    Using a plasma jet composed of two needle electrodes, a laminar plasma plume with large volume is generated in air through an alternating current voltage excitation. Based on high-speed photography, a train of filaments is observed to propagate periodically away from their birth place along the gas flow. The laminar plume is in fact a temporal superposition of the arched filament train. The filament consists of a negative glow near the real time cathode, a positive column near the real time anode, and a Faraday dark space between them. It has been found that the propagation velocity of the filament increases with increasing the gas flow rate. Furthermore, the filament lifetime tends to follow a normal distribution (Gaussian distribution). The most probable lifetime decreases with increasing the gas flow rate or decreasing the averaged peak voltage. Results also indicate that the real time peak current decreases and the real time peak voltage increases with the propagation of the filament along the gas flow. The voltage-current curve indicates that, in every discharge cycle, the filament evolves from a Townsend discharge to a glow one and then the discharge quenches. Characteristic regions including a negative glow, a Faraday dark space, and a positive column can be discerned from the discharge filament. Furthermore, the plasma parameters such as the electron density, the vibrational temperature and the gas temperature are investigated based on the optical spectrum emitted from the laminar plume.

  18. Modeling the uptake of neutral organic chemicals on XAD passive air samplers under variable temperatures, external wind speeds and ambient air concentrations (PAS-SIM).

    PubMed

    Armitage, James M; Hayward, Stephen J; Wania, Frank

    2013-01-01

    The main objective of this study was to evaluate the performance and demonstrate the utility of a fugacity-based model of XAD passive air samplers (XAD-PAS) designed to simulate the uptake of neutral organic chemicals under variable temperatures, external wind speeds and ambient air concentrations. The model (PAS-SIM) simulates the transport of the chemical across the air-side boundary layer and within the sampler medium, which is segmented into a user-defined number of thin layers. Model performance was evaluated using data for polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) from a field calibration study (i.e., active and XAD-PAS data) conducted in Egbert, Ontario, Canada. With some exceptions, modeled PAS uptake curves are in good agreement with the empirical PAS data. The results are highly encouraging, given the uncertainty in the active air sampler data used as input and other uncertainties related to model parametrization (e.g., sampler-air partition coefficients, the influence of wind speed on sampling rates). The study supports the further development and evaluation of the PAS-SIM model as a diagnostic (e.g., to aid interpretation of calibration studies and monitoring data) and prognostic (e.g., to inform design of future passive air sampling campaigns) tool.

  19. NFLUX PRE: Validation of New Specific Humidity, Surface Air Temperature, and Wind Speed Algorithms for Ascending/Descending Directions and Clear or Cloudy Conditions

    DTIC Science & Technology

    2015-06-18

    Validation of New Specific Humidity, Surface Air Temperature , and Wind Speed Algorithms for Ascending/ Descending Directions and Clear or Cloudy...LIMITATION OF ABSTRACT NFLUX PRE: Validation of New Specific Humidity, Surface Air Temperature , and Wind Speed Algorithms for Ascending/Descending...satellite retrieval algorithms. In addition to data from the Special Sensor Microwave Imager/Sounder (SSMIS) and the Advanced Microwave Sounding

  20. Current developments lighter than air systems. [heavy lift airships

    NASA Technical Reports Server (NTRS)

    Mayer, N. J.

    1981-01-01

    Lighter than air aircraft (LTA) developments and research in the United States and other countries are reviewed. The emphasis in the U.S. is on VTOL airships capable of heavy lift, and on long endurance types for coastal maritime patrol. Design concepts include hybrids which combine heavier than air and LTA components and characteristics. Research programs are concentrated on aerodynamics, flight dynamics, and control of hybrid types.

  1. Air sea gas exchange at extreme wind speeds measured by autonomous oceanographic floats

    NASA Astrophysics Data System (ADS)

    D'Asaro, Eric; McNeil, Craig

    2007-06-01

    closer to that of air rather than that appropriate for Schmidt number scaling; by O 2 increases at about 10-m depth along the water trajectories accompanied by a reduction in void fraction as measured by conductivity; and from the profile of FCO( z), which peaks near 10 m instead of at the surface. At the highest winds O 2 and N 2 are injected into the ocean by bubbles dissolving at depth. This, plus entrainment of gas-rich water from below, supersaturates the mixed layer causing gas to flux out of the near-surface ocean. A net influx of gas results from the balance of these two competing processes. At lower speeds, the total gas fluxes, FBO, FBN and FCO(0), are out of the ocean and downgradient.

  2. Air sea gas exchange at extreme wind speeds measured by autonomous oceanographic floats

    NASA Astrophysics Data System (ADS)

    D'Asaro, Eric; McNeil, Craig

    2008-11-01

    closer to that of air rather than that appropriate for Schmidt number scaling; by O 2 increases at about 10-m depth along the water trajectories accompanied by a reduction in void fraction as measured by conductivity; and from the profile of FCO( z), which peaks near 10 m instead of at the surface. At the highest winds O 2 and N 2 are injected into the ocean by bubbles dissolving at depth. This, plus entrainment of gas-rich water from below, supersaturates the mixed layer causing gas to flux out of the near-surface ocean. A net influx of gas results from the balance of these two competing processes. At lower speeds, the total gas fluxes, FBO, FBN and FCO(0), are out of the ocean and downgradient.

  3. Improved spiral tube assembly for high-speed counter-current chromatography.

    PubMed

    Ito, Y; Clary, R; Powell, J; Knight, M; Finn, T M

    2009-05-08

    The original spiral tube support (STS) assembly is improved by changing the shape of the tubing, with 1-cm presses perpendicularly along the length. This modification interrupts the laminar flow of the mobile phase. The tubing in the four return grooves to the center of the rotor is flattened by a specially made pressing tool to increase the number of spiral layers and decrease the dead space volume, thus increasing the column efficiency. The performance of this spiral tube assembly was tested in separations of dipeptides and proteins with suitable polar two-phase solvent systems. The results revealed that the present system yields high partition efficiency with a satisfactory level of stationary phase retention in a short elution time. The present high-speed counter-current chromatographic (HSCCC) system will be efficiently applied to a broad spectrum of two-phase solvent systems including aqueous-aqueous polymer phase systems (TPAS) which are used for separation of biopolymers such as proteins and nucleic acids.

  4. Purification of betulinic acid from Eugenia florida (Myrtaceae) by high-speed counter-current chromatography.

    PubMed

    Frighetto, Nelson; Welendorf, Rodolfo Max; Pereira da Silva, Ana Maria; Nakamura, Marcos Jun; Siani, Antonio Carlos

    2005-01-01

    A high yield of betulinic acid (up to 17% from the ethanolic extract) was found in the leaves of Eugenia florida collected in south-eastern Brazil, making this species a potential commercial source of the title compound. Extracts of E. florida were subjected to solvent partition, and rapid high-speed counter-current chromatography (HSCCC) was applied to the semi-crude extracts to afford betulinic acid in high purity. The mobile and stationary phases were derived from the two-phase solvent system composed of n-hexane-ethyl acetate-methanol-water (10:5:2.5:1). The developing solvent system (stationary and mobile phases) for optimum HSCCC separation was chosen by dissolving the fraction to be chromatographed in the proposed solvent mixture and determining the amount of betulinic acid in each phase by densitometric TLC. Purified betulinic acid was characterized by 13C-NMR, GC-MS and co-injection of its methyl ester with standards in GC-FID. The HSCCC technique is commonly employed to isolate triterpene glycosides, but is applied in this study to an aglycone.

  5. Current air quality analytics and monitoring: a review.

    PubMed

    Marć, Mariusz; Tobiszewski, Marek; Zabiegała, Bożena; de la Guardia, Miguel; Namieśnik, Jacek

    2015-01-01

    This review summarizes the different tools and concepts that are commonly applied in air quality monitoring. The monitoring of atmosphere is extremely important as the air quality is an important problem for large communities. Main requirements for analytical devices used for monitoring include a long period of autonomic operation and portability. These instruments, however, are often characterized by poor analytical performance. Monitoring networks are the most common tools used for monitoring, so large-scale monitoring programmes are summarized here. Biomonitoring, as a cheap and convenient alternative to traditional sample collection, is becoming more and more popular, although its main drawback is the lack of standard procedures. Telemonitoring is another approach to air monitoring, which offers some interesting opportunities, such as ease of coverage of large or remote areas, constituting a complementary approach to traditional strategies; however, it requires huge costs.

  6. Differences in regional air trapping in current smokers with normal spirometry.

    PubMed

    Karimi, Reza; Tornling, Göran; Forsslund, Helena; Mikko, Mikael; Wheelock, Åsa M; Nyrén, Sven; Sköld, C Magnus

    2017-01-01

    We investigated regional air trapping on computed tomography in current smokers with normal spirometry. It was hypothesised that presence of regional air trapping may indicate a specific manifestation of smoking-related changes.40 current smokers, 40 patients with chronic obstructive pulmonary disease (COPD), and 40 healthy never- smokers underwent computed tomography scans. Regional air trapping was assessed on end-expiratory scans and emphysema, micronodules and bronchial wall thickening on inspiratory scans. The ratio of expiratory and inspiratory mean lung attenuation (E/I) was calculated as a measure of static (fixed) air trapping.Regional air trapping was present in 63% of current smokers, in 45% of never smokers and in 8% of COPD patients (p<0.001). Current smokers with and without regional air trapping had E/I ratio of 0.81 and 0.91, respectively (p<0.001). Forced expiratory volume in 1 s (FEV1) was significantly higher and emphysema less frequent in current smokers with regional air trapping.Current smokers with regional air trapping had higher FEV1 and less emphysema on computed tomography. In contrast, current smokers without regional air trapping resembled COPD. Our results highlight heterogeneity among smokers with normal spirometry and may contribute to early detection of smoking related structural changes in the lungs.

  7. A new car-following model with consideration of the velocity difference between the current speed and the historical speed of the leading car

    NASA Astrophysics Data System (ADS)

    Liu, Fangxun; Cheng, Rongjun; Ge, Hongxia; Yu, Chenyan

    2016-12-01

    In this study, a new car-following model is proposed based on taking the effect of the leading vehicle's velocity difference between the current speed and the historical speed into account. The model's linear stability condition is obtained via the linear stability theory. The time-dependent Ginzburg-Landau (TDGL) equation and the modified Korteweg-de Vries (mKdV) equation are deduced through the nonlinear analysis. The kink-antikink soliton can interpret the traffic jams near the critical point. In addition, the connection between the TDGL and the mKdV equations is also given. Numerical simulation shows that the new model can improve the stability of traffic flow, which is consistent with the theoretical analysis correspondingly.

  8. Study on the stability of waterpower-speed control system for hydropower station with air cushion surge chamber

    NASA Astrophysics Data System (ADS)

    Guo, W. C.; Yang, J. D.; Chen, J. P.; Teng, Y.

    2014-03-01

    According to the fact that the effects of penstock, unit and governor on stability of water level fluctuation for hydropower station with air cushion surge chamber are neglected in previous researches, in this paper, Thoma assumption is broken through, the complete mathematical model of waterpower-speed control system for hydropower station with air cushion surge chamber is established, and the comprehensive transfer function and linear homogeneous differential equation that characterize the dynamic characteristics of system are derived. The stability domain that characterizes the good or bad of stability quantitatively is drawn by using the stability conditions. The effects of the fluid inertia in water diversion system, the air cushion surge chamber parameters, hydraulic turbine characteristics, generator characteristics, and regulation modes of governor on the stability of waterpower-speed control system are analyzed through stability domain. The main conclusions are as follows: The fluid inertia in water diversion system and hydraulic turbine characteristics have unfavorable effects on the system while generator characteristics have favorable effect. The stability keeps getting better with the increase of chamber height and basal area and the decrease of air pressure and air polytropic exponent. The stability of power regulation mode is obviously better than that of frequency regulation mode.

  9. Optical Measurement of the Speed of Sound in Air Over the Temperature Range 300-650 K

    NASA Technical Reports Server (NTRS)

    Hart, Roger C.; Balla, R. Jeffrey; Herring, G. C.

    2000-01-01

    Using laser-induced thermal acoustics (LITA), the speed of sound in room air (1 atm) is measured over the temperature range 300-650 K. Since the LITA apparatus maintains a fixed sound wavelength as temperature is varied, this temperature range simultaneously corresponds to a sound frequency range of 10-15 MHz. The data are compared to a published model and typically agree within 0.1%-0.4% at each of 21 temperatures.

  10. A pilot study of measurement of the frequency of sounds emitted by high-speed dental air turbines.

    PubMed

    Altinöz, H C; Gökbudak, R; Bayraktar, A; Belli, S

    2001-09-01

    Since the development and use of the high-speed dental air turbine some 45 years ago, concern has been expressed in the literature about a possible cause and effect relationship between use of the drill and hearing loss in dentists. The hearing threshold in humans varies with the frequency of sound. It is well known that dentists experience gradual hearing loss during their working life. The aim of this study was to measure the frequency of sounds emitted by high-speed dental air turbines under different working conditions. Five high-speed dental air turbines were used (2 x Trend TC-80 BC W&H Dentalwerk, Austria, 2 x Black Pearl Eco Bien-air, Switzerland, 1 x Trend TC-80 BC W&H Dentalwerk, Austria. Each turbine was tested under 8 different working conditions: under free working conditions the turbines were tested without burs, with fissure burs, with flare burs, with round burs and with inverted cone burs; under operation they were tested with fissure burs by application to a 3 x 3 x 10 mm amalgam block surface, a 3 x 3 x 10 mm composite block surface, and the occlusal surface of an extracted molar tooth. Forty sound recordings were made in total using a computer with a microphone (Shure 16 LC) located 30 cm away from the samples, at 10-s intervals using a mixer. Frequency analysis was done by a Cool Edit Pro 1.2 computer program. Data were analyzed by multi-variate analysis with the S.P.S.S 9.05 software program. The average measurement was 6860 Hz. According to the statistical analysis there was no significant difference in the frequencies recorded under different working conditions. There was also no significant difference among the different high-speed dental air turbines at alpha = 0,05, P > alpha /2 levels. These results indicate that under any working conditions, high-speed dental air turbines emit frequencies which can cause hearing loss.

  11. Measurement of direct current electric fields and plasma flow speeds in Jupiter's magnetosphere

    NASA Technical Reports Server (NTRS)

    Kellogg, Paul J.; Goetz, K.; Howard, R. L.; Monson, S. J.; Balogh, A.; Forsyth, R. J.

    1993-01-01

    During the encounter of Ulysses with Jupiter, we have measured two components of the dc electric field and deduced from them the flow speed in the Io toms, as well as the presence of a polar cap region end what we interpret as a cleft region. Within the toms the flow speed is approximately equal to the speed of a plasma corotating with Jupiter but has significant deviations. The dominant deviations have an apparent period of the order of Jupiter's rotation period, but this might be a latitudinal effect. Other important periods are about 40 min and less than 25 min.

  12. Influence of channel base current and varying return stroke speed on the calculated fields of three important return stroke models

    NASA Technical Reports Server (NTRS)

    Thottappillil, Rajeev; Uman, Martin A.; Diendorfer, Gerhard

    1991-01-01

    Compared here are the calculated fields of the Traveling Current Source (TCS), Modified Transmission Line (MTL), and the Diendorfer-Uman (DU) models with a channel base current assumed in Nucci et al. on the one hand and with the channel base current assumed in Diendorfer and Uman on the other hand. The characteristics of the field wave shapes are shown to be very sensitive to the channel base current, especially the field zero crossing at 100 km for the TCS and DU models, and the magnetic hump after the initial peak at close range for the TCS models. Also, the DU model is theoretically extended to include any arbitrarily varying return stroke speed with height. A brief discussion is presented on the effects of an exponentially decreasing speed with height on the calculated fields for the TCS, MTL, and DU models.

  13. CFD Analysis of a Penta-hulled, Air-Entrapment, High-Speed Planning Vessel

    DTIC Science & Technology

    2008-03-01

    f. Hydrofoils ................................................................................10 4. Analytic Hierarchy Process...ruled out as a possibility. f. Hydrofoils The main advantage to a hydrofoil hull shape is the high speeds created during non displacement mode. The...internal arrangement space. However, the vulnerability of the foils during high speed caused us to rule out the hydrofoil during the initial study. 4

  14. Carbon isotope evidence for the latitudinal distribution and wind speed dependence of the air-sea gas transfer velocity

    NASA Astrophysics Data System (ADS)

    Krakauer, Nir Y.; Randerson, James T.; Primeau, François W.; Gruber, Nicolas; Menemenlis, Dimitris

    2006-11-01

    The air-sea gas transfer velocity is an important determinant of the exchange of gases, including CO2, between the atmosphere and ocean, but the magnitude of the transfer velocity and what factors control it remains poorly known. Here, we use oceanic and atmospheric observations of 14C and 13C to constrain the global mean gas transfer velocity as well as the exponent of its wind speed dependence, utilizing the distinct signatures left by the air-sea exchange of 14CO2 and 13CO2. While the atmosphere and ocean inventories of 14CO2 and 13CO2 constrain the mean gas transfer velocity, the latitudinal pattern in the atmospheric and oceanic 14C and 13C distributions contain information about the wind speed dependence. We computed the uptake of bomb 14C by the ocean for different transfer velocity patterns using pulse response functions from an ocean general circulation model, and evaluated the match between the predicted bomb 14C concentrations and observationally based estimates for the 1970s-1990s. Using a wind speed climatology based on satellite measurements, we solved either for the best-fit global relationship between gas exchange and mean wind speed or for the mean gas transfer velocity over each of 11 ocean regions. We also compared the predicted consequences of different gas exchange relationships on the rate of change and interhemisphere gradient of 14C in atmospheric CO2 with tree-ring and atmospheric measurements. Our results suggest that globally, the dependence of the air-sea gas transfer velocity on wind speed is close to linear, with an exponent of 0.5 +/- 0.4, and that the global mean gas transfer velocity at a Schmidt number of 660 is 20 +/- 3 cm/hr, similar to the results of previous analyses. We find that the air-sea flux of 13C estimated from atmosphere and ocean observations also suggests a lower than quadratic dependence of gas exchange on wind speed.

  15. Cargo Logistics Airlift Systems Study (CLASS). Volume 1: Analysis of current air cargo system

    NASA Technical Reports Server (NTRS)

    Burby, R. J.; Kuhlman, W. H.

    1978-01-01

    The material presented in this volume is classified into the following sections; (1) analysis of current routes; (2) air eligibility criteria; (3) current direct support infrastructure; (4) comparative mode analysis; (5) political and economic factors; and (6) future potential market areas. An effort was made to keep the observations and findings relating to the current systems as objective as possible in order not to bias the analysis of future air cargo operations reported in Volume 3 of the CLASS final report.

  16. Simulation of effects of direction and air flow speed on temperature distribution in the room covered by various roof materials

    NASA Astrophysics Data System (ADS)

    Sukanto, H.; Budiana, E. P.; Putra, B. H. H.

    2016-03-01

    The objective of this research is to get a comparison of the distribution of the room temperature by using three materials, namely plastic-rubber composite, clay, and asbestos. The simulation used Ansys Fluent to get the temperature distribution. There were two conditions in this simulations, first the air passing beside the room and second the air passing in front of the room. Each condition will be varied with the air speed of 1 m/s, 2 m/s, 3 m/s, 4 m/s, 5 m/s for each material used. There are three heat transfers in this simulation, namely radiation, convection, and conduction. Based on the ANSI/ ASHRAE Standard 55-2004, the results of the simulation showed that the best temperature distribution was the roof of plastic-rubber composites.

  17. Computational Simulation of High-Speed Projectiles in Air, Water, and Sand

    DTIC Science & Technology

    2007-12-03

    swimmer systems. The water entry phase of flight is interesting and challenging due to projectile transitioning from flight in air to supercavitating...lethality and cavity generation concerns, with minimizing drag in air being a tertiary consideration. The overall goal of the presented work is to develop...compacted at the nose of the projectile to a voidage of around 0.825 in both cases, and a large cavity filled with air is formed as the granular

  18. Thermal analysis and temperature characteristics of a braking resistor for high-speed trains for changes in the braking current

    NASA Astrophysics Data System (ADS)

    Lee, Dae-Dong; Kang, Hyun-Il; Shim, Jae-Myung

    2015-09-01

    Electric brake systems are used in high-speed trains to brake trains by converting the kinetic energy of a railway vehicle to electric energy. The electric brake system consists of a regenerative braking system and a dynamic braking system. When the electric energy generated during the dynamic braking process is changed to heat through the braking resistor, the braking resistor can overheat; thus, failures can occur to the motor block. In this paper, a braking resistor for a high-speed train was used to perform thermal analyses and tests, and the results were analyzed. The analyzed data were used to estimate the dependence of the brake currents and the temperature rises on speed changes up to 300 km/h, at which a test could not be performed.

  19. A testing machine for dental air-turbine handpiece characteristics: free-running speed, stall torque, bearing resistance.

    PubMed

    Darvell, Brain W; Dyson, J E

    2005-01-01

    The measurement of performance characteristics of dental air turbine handpieces is of interest with respect to product comparisons, standards specifications and monitoring of bearing longevity in clinical service. Previously, however, bulky and expensive laboratory equipment was required. A portable test machine is described for determining three key characteristics of dental air-turbine handpieces: free-running speed, stall torque and bearing resistance. It relies on a special circuit design for performing a hardware integration of a force signal with respect to rotational position, independent of the rate at which the turbine is allowed to turn during both stall torque and bearing resistance measurements. Free-running speed without the introduction of any imbalance can be readily monitored. From the essential linear relationship between torque and speed, dynamic torque and, hence, power, can then be calculated. In order for these measurements to be performed routinely with the necessary precision of location on the test stage, a detailed procedure for ensuring proper gripping of the handpiece is described. The machine may be used to verify performance claims, standard compliance checks should this be established as appropriate, monitor deterioration with time and usage in the clinical environment and for laboratory investigation of design development.

  20. Air lock mechanism speeds specimen testing in high-temperature vacuum furnaces

    NASA Technical Reports Server (NTRS)

    Whitehead, C.

    1971-01-01

    Mechanism, made of 347 stainless steel, is attached to furnace port by bolted flange. Unit incorporates quick opening, high vacuum valve and associated fittings which provide connections to air lock evacuation and to inert gas supply for quenching specimen after it is withdrawn from furnace into air lock.

  1. [Purification of ovalbumin from hen egg white by high-speed counter-current aqueous two-phase chromatography].

    PubMed

    Zhi, Wen-Bo; Deng, Qiu-Yun; Song, Jiang-Nan; Ouyang, Fan

    2005-01-01

    High-speed counte-recurrent chromatography (HSCCC) is a continuous liquid-liquid partition chromatography without solid matrix, which has the significant features of high resolution and high recovery. The separation of bio-macromolecule in aqueous two-phase systems (ATPs) with HSCCC is still under research, and the establishment of high-speed counter-current aqueous two-phase chromatography (HSCCC-ATP) relies on the improvement of equipment structure and optimization of operation parameters. By using a multi-column high-speed counter-current chromatograph, the separation of protein mixture and the purification of ovalbumin from hen egg white were studied. The effects of pH and PEG concentration on the partition coefficients of proteins were tested in PEG1000-phosphate ATPs, and distinct differences among partition coefficients of proteins were found at pH 9.2 and 15.0% (W/W) PEG concentration in said system. The separation of protein mixture, consisting of cytochrome C, lysozyme and myoglobin was successfully performed in 15.0% (W/W) PEG1000-17.0% (W/W) potassium phosphate ATPs at pH 9.2 with high-speed counter-current chromatograph at rotation speed of 850r/min and flow rate of 0.8mL/min, using upper phase as stationary phase. pH and PEG concentration also had distinct effects on the partition coefficients of the major protein components in hen egg white, including ovaltransferrin, ovalbumin and lysozyme. The optimal pH value and PEG concentration for the purification of ovalbumin by HSCCC-ATP were found to be 9.2 and 16.0% (W/W) respectively. Ovalbumin was successfully purified to homogeneity from the hen egg white sample in 16.0% (W/W) PEG1000-17.0% (W/W) potassium phosphate ATPs at pH 9.2 with high-speed counter-current chromatograph at rotation speed of 850r/min and flow rate of 1.8mL/min, using upper phase as stationary phase. The purification recovery of ovalbumin was around 95%.

  2. Exploring Faraday's Law of Electrolysis Using Zinc-Air Batteries with Current Regulative Diodes

    ERIC Educational Resources Information Center

    Kamata, Masahiro; Paku, Miei

    2007-01-01

    Current regulative diodes (CRDs) are applied to develop new educational experiments on Faraday's law by using a zinc-air battery (PR2330) and a resistor to discharge it. The results concluded that the combination of zinc-air batteries and the CRD array is simpler, less expensive, and quantitative and gives accurate data.

  3. Unmanned air vehicle flow separation control using dielectric barrier discharge plasma at high wind speed

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Huang, Yong; Wang, WanBo; Wang, XunNian; Li, HuaXing

    2014-06-01

    The present paper described an experimental investigation of separation control of an Unmanned Aerial Vehicle (UAV) at high wind speeds. The plasma actuator was based on Dielectric Barrier Discharge (DBD) and operated in a steady manner. The flow over a wing of UAV was performed with smoke flow visualization in the ϕ0.75 m low speed wind tunnel to reveal the flow structure over the wing so that the locations of plasma actuators could be optimized. A full model of the UAV was experimentally investigated in the ϕ3.2 m low speed wind tunnel using a six-component internal strain gauge balance. The effects of the key parameters, including the locations of the plasma actuators, the applied voltage amplitude and the operating frequency, were obtained. The whole test model was made of aluminium and acted as a cathode of the actuator. The results showed that the plasma acting on the surface of UAV could obviously suppress the boundary layer separation and reduce the model vibration at the high wind speeds. It was found that the maximum lift coefficient of the UAV was increased by 2.5% and the lift/drag ratio was increased by about 80% at the wind speed of 100 m/s. The control mechanism of the plasma actuator at the test configuration was also analyzed.

  4. AIR QUALITY MODELING OF HAZARDOUS POLLUTANTS: CURRENT STATUS AND FUTURE DIRECTIONS

    EPA Science Inventory

    The paper presents a review of current air toxics modeling applications and discusses possible advanced approaches. Many applications require the ability to predict hot spots from industrial sources or large roadways that are needed for community health and Environmental Justice...

  5. Observation of Transient Overcritical Currents in YBCO Thin Films using High-Speed Magneto-Optical Imaging and Dynamic Current Mapping.

    PubMed

    Wells, Frederick S; Pan, Alexey V; Golovchanskiy, Igor A; Fedoseev, Sergey A; Rozenfeld, Anatoly

    2017-01-09

    The dynamics of transient current distributions in superconducting YBa2Cu3O7-δ thin films were investigated during and immediately following an external field ramp, using high-speed (real-time) Magneto-Optical Imaging and calculation of dynamic current profiles. A number of qualitatively unique and previously unobserved features are seen in this novel analysis of the evolution of supercurrent during penetration. As magnetic field ramps up from zero, the dynamic current profile is characterized by strong peaks, the magnitude of which exceed the conventional critical current density (as determined from static current profiles). These peaks develop close to the sample edges, initially resembling screening currents but quickly growing in intensity as the external field increases. A discontinuity in field and current behaviour is newly observed, indicating a novel transition from increasing peak current toward relaxation behaviour. After this transition, the current peaks move toward the centre of the sample while reducing in intensity as magnetic vortices penetrate inward. This motion slows exponentially with time, with the current distribution in the long-time limit reducing to the expected Kim-model profile.

  6. Observation of Transient Overcritical Currents in YBCO Thin Films using High-Speed Magneto-Optical Imaging and Dynamic Current Mapping

    PubMed Central

    Wells, Frederick S.; Pan, Alexey V.; Golovchanskiy, Igor A.; Fedoseev, Sergey A.; Rozenfeld, Anatoly

    2017-01-01

    The dynamics of transient current distributions in superconducting YBa2Cu3O7−δ thin films were investigated during and immediately following an external field ramp, using high-speed (real-time) Magneto-Optical Imaging and calculation of dynamic current profiles. A number of qualitatively unique and previously unobserved features are seen in this novel analysis of the evolution of supercurrent during penetration. As magnetic field ramps up from zero, the dynamic current profile is characterized by strong peaks, the magnitude of which exceed the conventional critical current density (as determined from static current profiles). These peaks develop close to the sample edges, initially resembling screening currents but quickly growing in intensity as the external field increases. A discontinuity in field and current behaviour is newly observed, indicating a novel transition from increasing peak current toward relaxation behaviour. After this transition, the current peaks move toward the centre of the sample while reducing in intensity as magnetic vortices penetrate inward. This motion slows exponentially with time, with the current distribution in the long-time limit reducing to the expected Kim-model profile. PMID:28067331

  7. Observation of Transient Overcritical Currents in YBCO Thin Films using High-Speed Magneto-Optical Imaging and Dynamic Current Mapping

    NASA Astrophysics Data System (ADS)

    Wells, Frederick S.; Pan, Alexey V.; Golovchanskiy, Igor A.; Fedoseev, Sergey A.; Rozenfeld, Anatoly

    2017-01-01

    The dynamics of transient current distributions in superconducting YBa2Cu3O7‑δ thin films were investigated during and immediately following an external field ramp, using high-speed (real-time) Magneto-Optical Imaging and calculation of dynamic current profiles. A number of qualitatively unique and previously unobserved features are seen in this novel analysis of the evolution of supercurrent during penetration. As magnetic field ramps up from zero, the dynamic current profile is characterized by strong peaks, the magnitude of which exceed the conventional critical current density (as determined from static current profiles). These peaks develop close to the sample edges, initially resembling screening currents but quickly growing in intensity as the external field increases. A discontinuity in field and current behaviour is newly observed, indicating a novel transition from increasing peak current toward relaxation behaviour. After this transition, the current peaks move toward the centre of the sample while reducing in intensity as magnetic vortices penetrate inward. This motion slows exponentially with time, with the current distribution in the long-time limit reducing to the expected Kim-model profile.

  8. Does Current Suppression of Enemy Air Defenses Doctrine Support Air Maneuver

    DTIC Science & Technology

    1994-06-03

    Blowpipe, or Stinger missiles. Hybrid SHORAD systems, such as the 2S6M " Tunguska " and the Avenger system, combine both guns and short-range SAMs on the...Archie, Flak, AAA. and SAM, (Maxwell Air Force Base, AL: Air University Press, 1988), 115. 4Monch Publishing Group, ŖS6M Tunguska : The world’s first gun...NVA offensive. Events would prove that this timetable was too ambitious for the ARVN. Intelliaence At the start of the battle, the NVA in Laos

  9. High speed cinematography of the initial break-point of latex condoms during the air burst test.

    PubMed

    Stube, R; Voeller, B; Davidhazy, A

    1990-06-01

    High speed cinematography of latex condoms inflated to burst under standard (ISO) conditions reveals that rupture of the condom typically is initiated at a small focal point on the shank of the condom and then rapidly propagates throughout the condom's surface, often ending with partial or full severance of the condom at its point of attachment to the air burst instrument. This sequence of events is the reverse of that sometimes hypothesized to occur, where initiation of burst was considered to begin at the attachment point and to constitute a testing method artifact. This hypothesis of breakage at the attachment point, if true, would diminish the value of the air burst test as a standard for assessing manufacturing quality control as well as for condom strength measurements and comparisons.

  10. Current and Future Developments in Air Traffic Control

    NASA Technical Reports Server (NTRS)

    Jackson, Joseph; Green, Steven M.

    1999-01-01

    Current and future energy demands, end uses, and cost used to characterize typical applications services in the industrial sector of the United States are examined. A review and evaluation of existing industrial energy data bases was undertaken to assess their potential for supporting SERI research market suitability analysis; (2) market development; (3) end use matching; (4) industrial application studies; and (5) identification of cost and performance goals for solar systems and typical information requirements for industrial energy end use. The focus was on fuels and electric energy used for heat and power purchased by the manufacturing subsector and listed by 2, 3, and 4 digit SIC, primary fuel. The effects of federal and state industrial energy conservation programs on future industrial sector demands were assessed.

  11. [Separation of proteins in aqueous two-phase systems with high-speed counter-current chromatography].

    PubMed

    Zhi, Wenbo; Deng, Qiuyun; Song, Jiangnan; Gu, Ming; Ouyang, Fan

    2005-01-01

    High-speed counter-current chromatography (HSCCC) is a continuous liquid-liquid partition chromatography, with remarkable advantages of high separation efficiency and no adsorption or denaturation by solid phase. The retention of stationary phase and the separation of proteins in polyethylene glycol 1000 (PEG1000)-phosphate aqueous two-phase system (ATPs) were studied with a multi-column high speed-counter-current chromatograph. The flow direction and speed of the mobile phase, and the rotation direction and speed of the apparatus showed different effects on the retention of the stationary phase, which reached the maximum at 33.3% with a flow rate of 0.6 mL/min and a rotation speed of 900 r/min in 14.0% PEG1000-16.0% phosphate ATPs. Distinct differences in partition coefficients among cytochrome C, lysozyme and hemoglobin were found at pH 9.2 and these three proteins were successfully separated in 14.0% PEG1000-16.0% phosphate ATPs at pH 9.2 by HSCCC with the apparatus rotating at 850 r/min and the mobile phase flow rate of 1.0 mL/min. The major protein components in hen egg white, including ovaltransferrin, ovalbumin and lysozyme also show distinct differences of partition coefficients in PEG1000-phosphate ATPs at pH 9.2. Ovalbumin and lysozyme were successfully purified to homogeneity and ovaltransferrin to ca 60% purity from the hen egg white sample with yields over 90% in 15.0% PEG1000-17.0% phosphate ATPs at pH 9.2 with the apparatus rotating at 850 r/min and mobile phase flow rate of 1.0 mL/min.

  12. Cost characteristics of tilt-rotor, conventional air and high speed rail short-haul intercity passenger service

    NASA Technical Reports Server (NTRS)

    Schoendorfer, David L.; Morlok, Edward K.

    1985-01-01

    The cost analysis done to support an assessment of the potential for a small tilt-rotor aircraft to operate in short-haul intercity passenger service is described in detail. Anticipated costs of tilt-rotor air service were compared to the costs of two alternatives: conventional air and high speed rail (HSR). Costs were developed for corridor service, varying key market characteristics including distance, passenger volumes, and minimum frequency standards. The resulting cost vs output information can then be used to compare modal costs for essentially identical service quality and passenger volume or for different service levels and volumes for each mode, as appropriate. Extensive sensitivity analyses are performed. The cost-output features of these technologies are compared. Tilt-rotor is very attractive compared to HSR in terms of costs over the entire range of volume. It also has costs not dramatically different from conventional air, but tilt-rotor costs are generally higher. Thus some of its other advantages, such as the VTOL capability, must offset the cost disadvantage for it to be a preferred or competitive mode in any given market. These issues are addressed in the companion report which considers strategies for tilt-rotor development in commercial air service.

  13. The selection of convertible engines with current gas generator technology for high speed rotorcraft

    NASA Technical Reports Server (NTRS)

    Eisenberg, Joseph D.

    1990-01-01

    NASA-Lewis has sponsored two studies to determine the most promising convertible engine concepts for high speed rotorcraft. These studies projected year 2000 convertible technology limited to present gas generator technology. Propulsion systems for utilization on aircraft needing thrust only during cruise and those aircraft needing both power and thrust at cruise were investigated. Mission calculations for the two contractors involved were based upon the fold tilt rotor concept. Analysis and comparison of the General Electric concepts (geared UDF, clutched fan, and VIGV fan), and the Allison Gas Turbine concepts (clutched fan, VIGV fan, variable pitch fan, single rotation tractor propfan, and counter rotation tractor propfan) are presented.

  14. The selection of convertible engines with current gas generator technology for high speed rotorcraft

    NASA Technical Reports Server (NTRS)

    Eisenberg, Joseph D.

    1990-01-01

    NASA-Lewis sponsored two studies to determine the most promising convertible engine concepts for high speed rotorcraft. These studies projected year 2000 convertible technology limited to present gas generator technology. Propulsion systems for utilization on aircraft needing thrust only during cruise and those aircraft needing both power and thrust at cruise were investigated. Mission calculations for the two contractors involved were based upon the fold tilt rotor concept. Analysis and comparison of the General Electric concepts (geared UDF, clutched fan, and Variable Inlet Guide Vane (VIGV) fan), and the Allison Gas Turbine concepts (clutched fan, VIGV fan, variable pitch fan, single rotation tractor propfan, and counter rotation tractor propfan) are presented.

  15. Is the Current Royal Australian Air Force an Air Force of Strategic Influence?

    DTIC Science & Technology

    2015-02-17

    28. http://www.defence.gov.au/whitepaper2013/docs/WP_2013_web.pdf (accessed 03 Feb 2015). The Modern Air Force Transition from old to new ...benefit from the advantages arising from the Australia- New Zealand -United States (ANZUS) alliance, and the Australia-United States Defence Trade...States. 32 Five Power Defence Arrangements comprised of Australia, Malaysia, New Zealand , Singapore and the United Kingdom. be interoperable with

  16. Response of flame thickness and propagation speed under intense turbulence in spatially developing lean premixed methane–air jet flames

    DOE PAGES

    Sankaran, Ramanan; Hawkes, Evatt R.; Yoo, Chun Sang; ...

    2015-06-22

    Direct numerical simulations of three-dimensional spatially-developing turbulent Bunsen flames were performed at three different turbulence intensities. We performed these simulations using a reduced methane–air chemical mechanism which was specifically tailored for the lean premixed conditions simulated here. A planar-jet turbulent Bunsen flame configuration was used in which turbulent preheated methane–air mixture at 0.7 equivalence ratio issued through a central jet and was surrounded by a hot laminar coflow of burned products. The turbulence characteristics at the jet inflow were selected such that combustion occured in the thin reaction zones (TRZ) regime. At the lowest turbulence intensity, the conditions fall onmore » the boundary between the TRZ regime and the corrugated flamelet regime, and progressively moved further into the TRZ regime by increasing the turbulent intensity. The data from the three simulations was analyzed to understand the effect of turbulent stirring on the flame structure and thickness. Furthermore, statistical analysis of the data showed that the thermal preheat layer of the flame was thickened due to the action of turbulence, but the reaction zone was not significantly affected. A global and local analysis of the burning velocity of the flame was performed to compare the different flames. Detailed statistical averages of the flame speed were also obtained to study the spatial dependence of displacement speed and its correlation to strain rate and curvature.« less

  17. Response of flame thickness and propagation speed under intense turbulence in spatially developing lean premixed methane–air jet flames

    SciTech Connect

    Sankaran, Ramanan; Hawkes, Evatt R.; Yoo, Chun Sang; Chen, Jacqueline H.

    2015-06-22

    Direct numerical simulations of three-dimensional spatially-developing turbulent Bunsen flames were performed at three different turbulence intensities. We performed these simulations using a reduced methane–air chemical mechanism which was specifically tailored for the lean premixed conditions simulated here. A planar-jet turbulent Bunsen flame configuration was used in which turbulent preheated methane–air mixture at 0.7 equivalence ratio issued through a central jet and was surrounded by a hot laminar coflow of burned products. The turbulence characteristics at the jet inflow were selected such that combustion occured in the thin reaction zones (TRZ) regime. At the lowest turbulence intensity, the conditions fall on the boundary between the TRZ regime and the corrugated flamelet regime, and progressively moved further into the TRZ regime by increasing the turbulent intensity. The data from the three simulations was analyzed to understand the effect of turbulent stirring on the flame structure and thickness. Furthermore, statistical analysis of the data showed that the thermal preheat layer of the flame was thickened due to the action of turbulence, but the reaction zone was not significantly affected. A global and local analysis of the burning velocity of the flame was performed to compare the different flames. Detailed statistical averages of the flame speed were also obtained to study the spatial dependence of displacement speed and its correlation to strain rate and curvature.

  18. Determination of torque speed current characteristics of a brushless DC motor by utilizing back-EMF of non-energized phase

    NASA Astrophysics Data System (ADS)

    Jang, G. H.; Yeom, J. H.; Kim, M. G.

    2007-03-01

    This paper presents a method to determine the torque constant and the torque-speed-current characteristics of a brushless DC (BLDC) motor by utilizing back-EMF variation of nonenergized phase. It also develops a BLDC motor controller with a digital signal processor (DSP) to monitor its current, voltage and speed in real time. Torque-speed-current characteristics of a BLDC motor are determined by using the proposed method and the developed controller. They are compared with the torque-speed-current characteristics measured by dynamometer experimentally. This research shows that the proposed method is an effective method to determine the torque constant and the torque-speed-current characteristics of the BLDC motor without using dynamometer.

  19. High-speed OH-PLIF imaging of deflagration-to-detonation transition in H2-air mixtures

    NASA Astrophysics Data System (ADS)

    Boeck, Lorenz R.; Mével, Rémy; Fiala, Thomas; Hasslberger, Josef; Sattelmayer, Thomas

    2016-06-01

    Planar laser-induced fluorescence (PLIF) is considered a standard experimental technique in combustion diagnostics. However, it has only been occasionally applied to explosion experiments with fast combustion regimes. It has been shown that single-shot OH-PLIF with high pulse energies yields clear fluorescence images of fast deflagrations and also detonations. This paper presents the first application of high-speed OH-PLIF at 20 kHz repetition rate to a deflagration-to-detonation transition experiment. Hydrogen-air mixtures at initial atmospheric pressure and ambient temperature are investigated. Satisfactory results are obtained for flame speeds up to about 500 m/s. Flame instabilities and turbulence-flame interactions are observed. Two factors limit the applicability of HS OH-PLIF toward higher flame speeds: excessive flame luminescence masking the HS OH-PLIF signal and strong absorption of laser light by the flame. The variation in OH-PLIF signal-to-background ratio across a DDT process is studied using a 1D laminar premixed flame simulation extended by spectroscopic models.

  20. Maglev vehicles and superconductor technology: Integration of high-speed ground transportation into the air travel system

    SciTech Connect

    Johnson, L.R.; Rote, D.M.; Hull, J.R.; Coffey, H.T.; Daley, J.G.; Giese, R.F.

    1989-04-01

    This study was undertaken to (1) evaluate the potential contribution of high-temperature superconductors (HTSCs) to the technical and economic feasibility of magnetically levitated (maglev) vehicles, (2) determine the status of maglev transportation research in the United States and abroad, (3) identify the likelihood of a significant transportation market for high-speed maglev vehicles, and (4) provide a preliminary assessment of the potential energy and economic benefits of maglev systems. HTSCs should be considered as an enhancing, rather than an enabling, development for maglev transportation because they should improve reliability and reduce energy and maintenance costs. Superconducting maglev transportation technologies were developed in the United States in the late 1960s and early 1970s. Federal support was withdrawn in 1975, but major maglev transportation programs were continued in Japan and West Germany, where full-scale prototypes now carry passengers at speeds of 250 mi/h in demonstration runs. Maglev systems are generally viewed as very-high-speed train systems, but this study shows that the potential market for maglev technology as a train system, e.g., from one downtown to another, is limited. Rather, aircraft and maglev vehicles should be seen as complementing rather than competing transportation systems. If maglev systems were integrated into major hub airport operations, they could become economical in many relatively high-density US corridors. Air traffic congestion and associated noise and pollutant emissions around airports would also be reduced. 68 refs., 26 figs., 16 tabs.

  1. Pneumomediastinum secondary to use of a high speed air turbine drill during a dental extraction.

    PubMed Central

    Torres-Melero, J.; Arias-Diaz, J.; Balibrea, J. L.

    1996-01-01

    Pneumomediastinum and subcutaneous emphysema of the neck and thorax can occur exceptionally following a dental procedure. A case is described of acute subcutaneous emphysema of the lateral region of the neck and thorax associated with pneumomediastinum during a dental extraction with an air and water cooled turbine burn drill. PMID:8779147

  2. Walkie-Talkie Measurements for the Speed of Radio Waves in Air

    ERIC Educational Resources Information Center

    Dombi, Andra; Tunyagi, Arthur; Neda, Zoltan

    2013-01-01

    A handheld emitter-receiver device suitable for the direct estimation of the velocity of radio waves in air is presented. The velocity of radio waves is measured using the direct time-of-flight method, without the need for any tedious and precise settings. The results for two measurement series are reported. Both sets of results give an estimate…

  3. Pneumomediastinum secondary to use of a high speed air turbine drill during a dental extraction.

    PubMed

    Torres-Melero, J; Arias-Diaz, J; Balibrea, J L

    1996-03-01

    Pneumomediastinum and subcutaneous emphysema of the neck and thorax can occur exceptionally following a dental procedure. A case is described of acute subcutaneous emphysema of the lateral region of the neck and thorax associated with pneumomediastinum during a dental extraction with an air and water cooled turbine burn drill.

  4. TH-A-207B-01: Basics and Current Implementations of Ultrasound Imaging of Shear Wave Speed and Elasticity.

    PubMed

    Chen, S

    2016-06-01

    Imaging of tissue elastic properties is a relatively new and powerful approach to one of the oldest and most important diagnostic tools. Imaging of shear wave speed with ultrasound is has been added to most high-end ultrasound systems. Understanding this exciting imaging mode aiding its most effective use in medicine can be a rewarding effort for medical physicists and other medical imaging and treatment professionals. Assuring consistent, quantitative measurements across the many ultrasound systems in a typical imaging department will constitute a major step toward realizing the great potential of this technique and other quantitative imaging. This session will target these two goals with two presentations. A. Basics and Current Implementations of Ultrasound Imaging of Shear Wave Speed and Elasticity - Shigao Chen, Ph.D. Learning objectives-To understand: 1.

  5. Circadian variation of motor current observed in fixed rotation speed continuous-flow left ventricular assist device support.

    PubMed

    Suzuki, Kenji; Nishinaka, Tomohiro; Miyamoto, Takuma; Ichihara, Yuki; Yamazaki, Kenji

    2014-06-01

    The algorithm for the physiological control provided by left ventricular assist devices (LVADs) has been controversial. In particular, little is known about the physiological control algorithm (such as for achieving physiological circadian rhythms) in continuous-flow LVADs. To investigate the existence of circadian variation, we retrospectively evaluated the LVAD flow-correlated motor current of patients supported by continuous-flow LVADs. The motor current and the pump speed were collected from the external controller every 10 min after device implantation, and the data were divided for every 30-day period, which began on midnight on the first post-operative day. The subjects were 18 patients (mean age 37.7, mean body surface area 1.71 m(2) at the time of operation) with dilated cardiomyopathy or dilated phase of hypertrophic cardiomyopathy. As of August 1, 2013, the patients' median support duration was 889 days. The mean calculated dominant period of motor current variation was 24.0 h and the mean amplitude was 11.7 mA for the entire duration. The amplitude of the motor current circadian variation tended to be increased until around the fifth month. The motor current had a tendency to be relatively low during the night time and high during the day time. A significant difference was found between the night-time and day-time mean motor current for the entire duration (p < 0.05). In conclusion, the circadian variation of the motor current could be observed over long term in patients with fixed rotation speed continuous-flow LVAD support.

  6. Galactic cosmic ray currents and magnetic field irregularity degree in high-speed solar wind streams

    NASA Technical Reports Server (NTRS)

    Kuzmin, A. I.; Samsonov, I. S.; Samsonova, Z. N.

    1985-01-01

    Currents of galactic cosmic rays (GCR) obtained by global survey method are analyzed. The cases of almost total disappearance of GCR currents are compared with the results of direct measurements of the solar wind parameters. The conclusion is made on a restricted application of the convective-diffusive mechanism of the GCR modulation by the solar wind during the occurrence of stationary and regular magnetic fields in the interplanetary medium.

  7. Position-and Velocity- Sensorless Control of Cylindrical Brushless DC Motors Driven by Sinusoidal Current at Low Speed Using Eddy Current

    NASA Astrophysics Data System (ADS)

    Takashima, Hiroshi; Tomita, Mutuwo; Chen, Zhiqian; Satoh, Mitsuhiko; Doki, Shinji; Okuma, Shigeru

    This paper proposes to paste non-magnetic materials on the rotor surface of a cylindrical brushless DC motor and to use the model including the extended e.m.f. for sensorless control. In the proposed method, the inductance changes depending on the rotor position because of eddy currents, which flow on the non-magnetic material at high frequency. The rotor position can be estimated at standstill and at low speeds. The simulation results show that the proposed method is very useful.

  8. The Measurement of Fluctuations of Air Speed by the Hot-Wire Anemometer

    NASA Technical Reports Server (NTRS)

    Dryden, H L; Kuethe, A M

    1930-01-01

    The hot-wire anemometer suggests itself as a promising method for measuring the fluctuating air velocities found in turbulent flow. The only obstacle is the presence of a lag due to the limited energy input which makes even a fairly small wire incapable of following rapid fluctuations with accuracy. This paper gives the theory of the lag and describes an experimental arrangement for compensating for the lag for frequencies up to 100 or more per second when the amplitude of the fluctuation is not too great. An experimental test of the accuracy of compensation and some results obtained with the apparatus in a wind-tunnel air stream are described. While the apparatus is very bulky in its present form, it is believed possible to develop a more portable arrangement. (author)

  9. Fiber optic sensors for measuring angular position and rotational speed. [air breathing engines

    NASA Technical Reports Server (NTRS)

    Baumbick, R. J.

    1980-01-01

    Two optical sensors, a 360 deg rotary encoder and a tachometer, were built for operation with the light source and detectors located remotely from the sensors. The source and detectors were coupled to the passive sensing heads through 3.65 meter fiber optic cables. The rotary encoder and tachometer were subjected to limited environmental testing. They were installed on an air breathing engine during recent altitude tests. Over 100 hours of engine operation were accumulated without any failure of either device.

  10. Force versus current and air gap calibration of a double acting magnetic thrust bearing

    SciTech Connect

    Baun, D.O.; Fittro, R.L.; Maslen, E.H.

    1995-12-31

    Force versus current and air gap measurements were obtained for a double acting thrust bearing. Static force measurements were made for various air gap settings and bearing current combinations. The resulting data was reduced and an optimized expression representing the force versus current and air gap relationship of the bearing was found. In addition, a theoretical force model was developed using simple magnetic circuit theory and magnetic properties obtained from standard magnetic material tests. The theoretical and the experimentally derived force models were compared. Hysteresis tests were conducted with the thrust disk in the centered position for various current perturbation amplitudes about the design bias current. Hysteresis effects were shown to cause a difference between the measured force as the current was increasing as compared to when the current was decreasing. A second order polynomial expression was developed to express the coercive force as a function of the perturbation current amplitude. The bearing frequency response was examined by injecting sinusoidal currents of varying frequencies into the bearing. A maximum actuator bandwidth of approximately 700 Hz was determined. Above 700 Hz the bearing frequency response could not be distinguished from the test fixture frequency response.

  11. Responses of atmospheric electric field and air-earth current to variations of conductivity profiles

    NASA Astrophysics Data System (ADS)

    Makino, M.; Ogawa, T.

    1984-05-01

    A global circuit model is constructed to study responses of air-earth current and electric field to a variation of atmospheric electrical conductivity profile. The model includes the orography and the global distribution of thunderstorm generators. The conductivity varies with latitude and exponentially with altitude. The thunderstorm cloud is assumed to be a current generator with a positive source at the top and a negative one at the bottom. The UT diurnal variations of the global current and the ionospheric potential are evaluated considering the local-time dependence of thunderstorm activity. The global distribution of the electric field and the air-earth current are affected by the orography and latitudinal effects. Assuming a variation of conductivity profile, responses of atmospheric electrical parameters are investigated. The nonuniform decrement of the conductivity with altitude increases both the electric field and the air-earth current. The result suggests a possibility that the increment of the electric field and the air-earth current after a solar flare may be caused by this scheme, due to Forbush decrease.

  12. Preparative separation of flavonoid glycosides in leaves extract of Ampelopsis grossedentata using high-speed counter-current chromatography.

    PubMed

    Du, Qizhen; Chen, Ping; Jerz, Gerold; Winterhalter, Peter

    2004-06-18

    Preparative separation of flavonoid glycosides in leaves extract of Ampelopsis grossedentata was conducted using high-speed counter-current chromatograph (HSCCC) with a solvent system composed of n-hexane-ethyl acetate-methanol-water (1:6:1.5:7.5, v/v). In a single operation, 28 mg of 5,7-dihydroxy-3',4'-trihydroxyflavone-3-O-6''-rhamnose and 18 mg of 5,7-dihydroxy-3',4'-dihydroxyflavone-3-O-6''-rhamnose was obtained from 150 mg of the extract. The chemical structure of the two compounds was elucidated by electrospray ionization (EIS) MS and NMR.

  13. Preparative isolation and purification of harpagoside from Scrophularia ningpoensis hemsley by high-speed counter-current chromatography.

    PubMed

    Tong, Shengqiang; Yan, Jizhong; Lou, Jianzhong

    2006-01-01

    The bioactive component harpagoside was successfully separated from the crude extract of Scrophularia ningpoensis Hemsley by one-step purification using high-speed counter-current chromatography (HSCCC). A two-phase solvent system containing n-butanol:ethyl acetate:water (1:9:10) was selected following consideration of the partition coefficient of the target compound. A 276 mg quantity of the crude extract was loaded onto a 250 mL HSCCC column and yielded 11 mg harpagoside at over 97% purity. The chemical structure of harpagoside was determined by HPLC-ESI/MS and 1H-NMR.

  14. Isolation of xanthyletin, an inhibitor of ants' symbiotic fungus, by high-speed counter-current chromatography.

    PubMed

    Cazal, Cristiane de Melo; Domingues, Vanessa de Cássia; Batalhão, Jaqueline Raquel; Bueno, Odair Corrêa; Filho, Edson Rodrigues; da Silva, Maria Fátima G Fernandes; Vieira, Paulo Cezar; Fernandes, João Batista

    2009-05-08

    Xanthyletin, an inhibitor of symbiotic fungus (Leucoagaricus gongylophorus) of leaf-cutting ant (Atta sexdens rubropilosa), as well as suberosin, seselin and xanthoxyletin were isolated from Citrus sinensis grafted on Citrus limonia. A two-phase solvent system composed of hexane/ethanol/acetonitrile/water (10:8:1:1, v/v) was used for the high-speed counter-current chromatographic isolation of xanthyletin with high yield and over 99% purity as determined by liquid and gas chromatography with mass spectrometry detection. Identifications were performed by UV spectra, IR spectra, (1)H NMR and (13)C NMR.

  15. Measurement of atmospheric air-earth current density from a tropical station using improvised Wilson's plate antenna

    NASA Astrophysics Data System (ADS)

    Anil Kumar, C. P.; Panneerselvam, C.; Nair, K. U.; Jeeva, K.; Selvaraj, C.; Johnson Jeyakumar, H.; Gurubaran, S.

    2009-07-01

    We have developed an experimental set-up to measure the atmospheric air-earth current (conduction current). Data obtained with the continuous measurements of Wilson's plate are used to study of air-earth current density, with the aim of gaining an understanding of the experimental set-up's response to different meteorological conditions, including fair-weather days. This paper is a part of the on-going Global Electric Circuit (GEC) studies from Tirunelveli (8.7°N, 77.8°E), a measurement site in the tropical and southern tip of the Indian peninsula. Attempts have been made in past few years to obtain the global signature in this region with this sensor, but on most of the occasions it has been impossible to obtain the global signature during fair-weather days. The data used for February-April, 2007 have the well-defined nature of this global signature, which is in agreement with the well-established classical Carnegie curve of GEC. This paper also deals with very important observations made at sunrise and during those hours when fog existed. It is noted that the resistivity of the atmosphere increased significantly with the onset of fog and later decreased as the fog disappeared, based on the measured value of conduction current density when compared with the electric field measured by horizontal passive wire antenna. Also, during fair-weather conditions, conduction current and electric field variations are similar because the conductivity during this period is more or less constant at this site. Observations made during different meteorological conditions, such as different wind speeds, humidities, and temperatures, are also discussed.

  16. Turbulent Mixing and Combustion for High-Speed Air-Breathing Propulsion Application

    DTIC Science & Technology

    2007-08-12

    AIR-BREATHING PROPULSION APPLICATIONS P . E. Dimotakis, Principal Investigator John K. Northrop Professor ofAeronautics and Professor of Applied Physics...performance of the device is the overall pressure coefficient, C = 2(pe- p )/(pU12), where pe and pi are the exit and inlet pressures, respectively. In...1 . O. 1 o-o p ) Fig. 6 Instantaneous passive scalar isosurfaces for a M, 0.5 top stream. 7 Fig. 7 Computed pressure coefficient on the top (solid line

  17. Transport, deposition, and liftoff in laboratory density currents composed of hot particles in air

    NASA Astrophysics Data System (ADS)

    Andrews, B. J.; Manga, M.

    2010-12-01

    Understanding the dynamics of transport, deposition, and air entrainment in pyroclastic density currents (PDCs) is required for accurate predictions of future current behaviors and interpretations of ancient deposits, but directly observing the interiors of natural PDCs is effectively impossible. We model PDCs with scaled, hot, particle-laden density currents generated in a 6 m long, 0.6 m wide, 1.8 m tall air-filled tank. Comparison of relevant scaling between our experiments and natural PDCs indicates that we are accurately capturing much of the dynamics of dilute PDCs: * Reynolds numbers of our experiments are lower than natural currents, 10^3 compared to 10^6, but still fully turbulent; * Densimetric and Thermal Richardson numbers are of O(1) in both natural and modeled currents; * Stokes and settling numbers for particles in the experiments fall within the expected range for natural PDCs. Conditions within the tank are monitored with temperature and humidity probes. Experiments are illuminated with sheet lighting, and recorded with high-definition video cameras. In general, currents have average velocities of 10-20 cm/s, initial thicknesses of 10-20 cm (although thickness greatly increases as currents entrain and expand air), and run out or lift off distances of 3-5 m. Large Kelvin-Helmholtz type eddies usually form along the top of the current immediately behind the head; these vortices are similar in size to the total current thickness. In currents that lift off, the distal current end typically retreats with time. Preliminary results suggest that lift off distance decreases with increasing thermal Richardson number. Analysis of turbulent structures indicates that the current heads are dominated by large coherent structures with length scales, L, comparable to the current thickness. Within 5-10 L of the current fronts, sequences of similar large eddies often occur. At greater distances behind the current fronts, turbulent structures become smaller and less

  18. Preparative isolation and purification of xanthohumol from hops (Humulus lupulus L.) by high-speed counter-current chromatography.

    PubMed

    Chen, Qi-He; Fu, Ming-Liang; Chen, Miao-Miao; Liu, Jing; Liu, Xiao-Jie; He, Guo-Qing; Pu, Shou-Cheng

    2012-05-01

    Xanthohumol (XN) and related prenylflavonoids are the main bioactive components of hops (Humulus lupulus L.). The current work is to investigate the use of high-speed counter-current chromatography (HSCCC) in search for high isolation of xanthohumol from hops. A solvent system consisted of n-hexane-ethyl acetate-methanol-water at a volume ratio of 5:5:4:3 was employed. The results demonstrated that the constructed method could be well applied for the isolation of xanthohumol from hops extract. After HSCCC isolation procedure, the purity of xanthohumol was over 95% assayed by HPLC and the yield of extraction was 93.60%. The chemical structure identification of xanthohumol was carried out by UV, (1)H NMR and (13)C NMR. The present results demonstrated that xanthohumol could be efficiently obtained using a single HSCCC step from H. lupulus L. extract.

  19. Effects of water-current speed on hematological, biochemical and immune parameters in juvenile tinfoil barb, Barbonymus schwanenfeldii (Bleeker, 1854)

    NASA Astrophysics Data System (ADS)

    Zhu, Zhiming; Song, Bolan; Lin, Xiaotao; Xu, Zhongneng

    2016-01-01

    This study examines the effect of water-current speed on hematological, biochemical and immune parameters in juvenile tinfoil barb ( Barbonymus schwanenfeldii). Blood samples were taken on days 1, 23 and 45 from control fish and from two training groups maintained at current speeds of 0.06 bl/s (body length per second), 0.66 bl/s, and 1.92 bl/s, respectively. Significantly increased red-blood-cell counts and hematocrit were observed in the post-training groups on days 23 and 45. Significantly increased hemoglobin concentrations were also observed in the 1.92 bl/s group on days 23 and 45. In contrast, values of mean corpuscular volume were significantly lower in the 1.92 bl/s group than in the other groups on day 45. Nitroblue-tetrazolium-positive cells and lysozyme and superoxidase dismutase activities in the plasma increased significantly with increasing training intensity on days 23 and 45. Antibacterial activities were significantly increased in the trained groups compared with the control group on day 23; significantly elevated alkaline phosphatase activity was observed in the 1.92 bl/s groups on day 45. Therefore, training intensities of 0.66 and 1.92 bl/s enhanced the blood oxygen-carrying capability and plasma immune parameters of juvenile tinfoil barbs.

  20. Isolation and purification of arctigenin from Fructus Arctii by enzymatic hydrolysis combined with high-speed counter-current chromatography.

    PubMed

    Liu, Feng; Xi, Xingjun; Wang, Mei; Fan, Li; Geng, Yanling; Wang, Xiao

    2014-02-01

    Enzymatic hydrolysis pretreatment combined with high-speed counter-current chromatography for the transformation and isolation of arctigenin from Fructus Arctii was successfully developed. In the first step, the extract solution of Fructus Arctii was enzymatic hydrolyzed by β-glucosidase. The optimal hydrolysis conditions were 40°C, pH 5.0, 24 h of hydrolysis time, and 1.25 mg/mL β-glucosidase concentration. Under these conditions, the content of arctigenin was transformed from 2.60 to 12.59 mg/g. In the second step, arctigenin in the hydrolysis products was separated and purified by high-speed counter-current chromatography with a two-phase solvent system composed of petroleum ether/ethyl acetate/methanol/water (10:25:15:20, v/v), and the fraction was analyzed by HPLC, ESI-MS, and (1)H NMR spectroscopy. Finally, 102 mg of arctigenin with a purity of 98.9% was obtained in a one-step separation from 200 mg of hydrolyzed sample.

  1. Preparative isolation and purification of antioxidative diarylheptanoid derivatives from Alnus japonica by high-speed counter-current chromatography.

    PubMed

    Lim, Soon Sung; Lee, Min Young; Ahn, Hong Ryul; Choi, Soon Jung; Lee, Jae-Yong; Jung, Sang Hoon

    2011-12-01

    This study employed the online HPLC-2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS)(+) bioassay to rapidly determine the antioxidant compounds occurring in the crude extract of Alnus japonica. The negative peaks of the ABTS(+) radical scavenging detection system, which indicated the presence of antioxidant activity, were monitored by measuring the decrease in absorbance at 734 nm. The ABTS(+)-based antioxidant activity profile showed that three negative peaks exhibited antioxidant activity. High-speed counter-current chromatography (HSCCC) was used for preparative scale separation of the three active peaks from the extract. The purity of the isolated compounds was analyzed by HPLC and their structures were identified by (1)H- and (13)C-nuclear magnetic resonance spectrometry (NMR), heteronuclear multiple bond correlation (HMBC), and heteronuclear single quantum correlation (HSQC). Two solvent systems composed of n-hexane/ethylacetate/methanol/water (4:6:4:6, v/v) and of ethyl acetate/methanol/water (1:0.1:1, v/v) were performed in high-speed counter-current chromatography. Consequently, a total of 527 mg of hirsutanonol 5-O-β-D-glucopyranoside, 80.04 mg of 3-deoxohirsutenonol 5-O-β-D-glucopyranoside, and 91.0 mg of hirsutenone were obtained with purity of 94.7, 90.5, and 98.6%, respectively.

  2. Are Current Law Enforcement Strategies Associated with a Lower Risk of Repeat Speeding Citations and Crash Involvement? A Longitudinal Study of Speeding Maryland Drivers

    PubMed Central

    Amr, Sania; Braver, Elisa R.; Langenberg, Patricia; Zhan, Min; Smith, Gordon S.; Dischinger, Patricia C.

    2013-01-01

    PURPOSE To determine whether traffic court appearances and different court verdicts were associated with risk of subsequent speeding citations and crashes. METHODS A cohort of 29,754 Maryland drivers ticketed for speeding who either went to court or paid fines by mail in May/June 2003 was followed for 3 years. Drivers appearing in court were categorized by verdicts: 1) not guilty, 2) suspension of prosecution/no prosecution (STET/NP), 3) case dismissed, 4) probation before judgment and fines (PBJ), or 5) fines and demerit points. Cox proportional hazard models were used to estimate adjusted hazard ratios (AHR). RESULTS Court appearances were associated with lower risk of subsequent speeding citations (AHR = 0.92; 95% CI: 0.88-0.96), but higher risk of crashes (AHR=1.25; 95% CI: 1.16-1.35). PBJ was associated with significantly lower repeat speeding tickets (AHR = 0.83; 95% CI = 0.75-0.91) and a non-significant decrease in crashes (AHR = 0.87; 95% CI 0.75-1.02). Both repeat speeding tickets and subsequent crashes were significantly lower in the STET/NP group. CONCLUSIONS PBJ and STET/NP may reduce speeding and crashes, but neither verdict eliminated excess crash risk among drivers who choose court appearances. Randomized controlled evaluations of speeding countermeasures are needed to inform traffic safety policies. PMID:21684176

  3. High-speed measurement of an air transect's temperature shift heated by laser beam

    NASA Astrophysics Data System (ADS)

    Li, WenYu; Jiang, ZongFu; Xi, Fengjie; Li, Qiang; Xie, Wenke

    2005-02-01

    Laser beam heat the air on the optic path, Beam-deflection optical tomography is a non-intrusive method to measure the 2-dimension temperature distribution in the transect. By means of linear Hartmann Sensor at the rate of 27kHz, the optic path was heated by a 2.7μm HF laser, continuous and high time resolution gradients of optic phase were obtained. the result of analysing and calculation showed the temperament shift in the heated beam path was not higher than 50K when the HF laser power was 9W. The experiment showed that it is a practical non-intrusive temperature shift measurement method for a small area aero-optical medium.

  4. Aircraft Speed Instruments

    NASA Technical Reports Server (NTRS)

    Beij, K Hilding

    1933-01-01

    This report presents a concise survey of the measurement of air speed and ground speed on board aircraft. Special attention is paid to the pitot-static air-speed meter which is the standard in the United States for airplanes. Air-speed meters of the rotating vane type are also discussed in considerable detail on account of their value as flight test instruments and as service instruments for airships. Methods of ground-speed measurement are treated briefly, with reference to the more important instruments. A bibliography on air-speed measurement concludes the report.

  5. Regulation of stroke pattern and swim speed across a range of current velocities: diving by common eiders wintering in polynyas in the Canadian Arctic.

    PubMed

    Heath, Joel P; Gilchrist, H Grant; Ydenberg, Ronald C

    2006-10-01

    Swim speed during diving has important energetic consequences. Not only do costs increase as drag rises non-linearly with increasing speed, but speed also affects travel time to foraging patches and therefore time and energy budgets over the entire dive cycle. However, diving behaviour has rarely been considered in relation to current velocity. Strong tidal currents around the Belcher Islands, Nunavut, Canada, produce polynyas, persistent areas of open water in the sea ice which are important habitats for wildlife wintering in Hudson Bay. Some populations of common eiders Somateria mollissima sedentaria remain in polynyas through the winter where they dive to forage on benthic invertebrates. Strong tidal currents keep polynyas from freezing, but current velocity can exceed 1.5 m s(-1) and could influence time and energy costs of diving and foraging. Polynyas therefore provide naturally occurring flume tanks allowing investigation of diving strategies of free ranging birds in relation to current velocity. We used a custom designed sub-sea ice camera to non-invasively investigate over 150 dives to a depth of 11.3 m by a population of approximately 100 common eiders at Ulutsatuq polynya during February and March of 2002 and 2003. Current speed during recorded dives ranged from 0 to 1 m s(-1). As currents increased, vertical descent speed of eiders decreased, while descent duration and the number of wing strokes and foot strokes during descent to the bottom increased. However, nearly simultaneous strokes of wings and feet, and swim speed relative to the moving water, were maintained within a narrow range (2.28+/-0.23 Hz; 1.25+/-0.14 m s(-1), respectively). This close regulation of swim speed over a range in current speed of 1.0 m s(-1) might correspond to efficient muscle contraction rates, and probably reduces work rates by avoiding rapidly increasing drag at greater speeds; however, it also increases travel time to benthic foraging patches. Despite regulation of

  6. What's All the Talc About? Air Entrainment in Dilute Pyroclastic Density Currents

    NASA Astrophysics Data System (ADS)

    Marshall, B. J.; Andrews, B. J.; Fauria, K.

    2015-12-01

    A quantitative understanding of air entrainment is critical to predicting the behaviors of dilute Pyroclastic Density Currents (PDCs), including runout distance, liftoff, and mass fractionation into co-PDC plumes. We performed experiments in an 8.5x6x2.6 meter tank using 20 micron talc powder over a range of conditions to describe air entrainment as a function of temperature, duration and mass flux. The experiments are reproducible and are scaled with respect to the densimetric and thermal Richardson numbers (Ri and RiT), Froude number, thermal to kinetic energy density ratio (TEb/KE), Stokes number, and Settling number, such that they are dynamically similar to natural dilute PDCs. Experiments are illuminated with a swept laser sheet and imaged at 1000 Hz to create 3D reconstructions of the currents, with ~1-2 cm resolution, at up to 1.5 Hz. An array of 30 high-frequency thermocouples record the precise temperature in the currents at 3 Hz. Bulk entrainment rates are calculated based on measured current volumes, surface areas, temperatures and velocities. Entrainment rates vary from ~0-0.9 and do not show simple variation with TEb/KE, Ri, or RiT. Entrainment does, however, increase with decreasing eruption duration and increasing mass flux. Our results suggest that current heads entrain air more efficiently than current bodies (>0.5 compared to ~0.1). Because shorter duration currents have proportionally larger heads, their bulk entrainment rates are controlled by those heads, whereas longer duration currents are dominated by their bodies. Our experiments demonstrate that air entrainment, which exerts a fundamental control on PDC runout and liftoff, varies spatially and temporally within PDCs.

  7. Advanced variable speed air source integrated heat pump (AS-IHP) development - CRADA final report

    SciTech Connect

    Baxter, Van D.; Rice, C. Keith; Munk, Jeffrey D.; Ally, Moonis Raza; Shen, Bo

    2015-09-30

    Between August 2011 and September 2015, Oak Ridge National Laboratory (ORNL) and Nordyne, LLC (now Nortek Global HVAC LLC, NGHVAC) engaged in a Cooperative Research and Development Agreement (CRADA) to develop an air-source integrated heat pump (AS-IHP) system for the US residential market. Two generations of laboratory prototype systems were designed, fabricated, and lab-tested during 2011-2013. Performance maps for the system were developed using the latest research version of the DOE/ORNL Heat Pump Design Model, or HPDM, (Rice 1991; Rice and Jackson 2005; Shen et al 2012) as calibrated against the lab test data. These maps were the input to the TRNSYS (SOLAR Energy Laboratory, et al, 2010) system to predict annual performance relative to a baseline suite of equipment meeting minimum efficiency standards in effect in 2006 (combination of 13 SEER air-source heat pump (ASHP) and resistance water heater with Energy Factor (EF) of 0.9). Predicted total annual energy savings, while providing space conditioning and water heating for a tight, well insulated 2600 ft2 (242 m2) house at 5 U.S. locations, ranged from 46 to 61%, averaging 52%, relative to the baseline system (lowest savings at the cold-climate Chicago location). Predicted energy use for water heating was reduced 62 to 76% relative to resistance WH. Based on these lab prototype test and analyses results a field test prototype was designed and fabricated by NGHVAC. The unit was installed in a 2400 ft2 (223 m2) research house in Knoxville, TN and field tested from May 2014 to April 2015. Based on the demonstrated field performance of the AS-IHP prototype and estimated performance of a baseline system operating under the same loads and weather conditions, it was estimated that the prototype would achieve ~40% energy savings relative to the minimum efficiency suite. The estimated WH savings were >60% and SC mode savings were >50%. But estimated SH savings were only about 20%. It is believed that had the test

  8. On the opposing roles of air temperature and wind speed variability in flux estimation from remotely sensed land surface states

    NASA Astrophysics Data System (ADS)

    Bertoldi, G.; Albertson, J. D.; Kustas, W. P.; Li, F.; Anderson, M. C.

    2007-10-01

    In semi-arid regions the evapotranspiration rates depend on both the spatial distribution of the vegetation and the soil moisture, for a given radiation regime. Remote sensing can provide high resolution spatially distributed estimation (o ˜ 10-100 m) of land surface states. However, data on the near surface air properties are not readily available at the same resolution and are often taken as spatially uniform over a greater region. Concern for how this scale mismatch might lead to erroneous flux estimations motivates this effort. This paper examines the relative roles of variability in the two dominant atmospheric states, wind speed and air temperature, on the variability of the surface fluxes. The study is conducted with a Large Eddy Simulation (LES) model of the Atmospheric Boundary Layer (ABL), where the boundary conditions are given by a surface energy balance model based on remotely sensed land surface data. Simulations have been performed for the late morning hours of two clear-sky summer days during the SGP97 experiment with different wetness conditions over an area characterized by a high contrast in surface temperature, canopy cover, and roughness between vegetated and dry bare soil areas. Spatial variability in canopy density effects both the air temperature Ta, through the energy partitioning, and the wind speed U, via the roughness, leading to local variations at 5 m above the ground of the order of 1 K and 1 m/s, respectively. Simulations show that the Ta variability tends to decrease the sensible heat flux H (- 30 W/m2) over bare soil areas and to increase it (+30 W/m2) over dense vegetation, thus reducing the total variability of the surface fluxes relative to those that would be estimated for spatially constant Ta, as observed in previous studies. The variability in U tends to increase H over bare soil (+50 W/m2), while having negligible effects over the vegetation, thus increasing the spatial variance of surface fluxes. However, when considered

  9. High Efficiency Variable Speed Versatile Power Air Conditioning System for Military Vehicles

    DTIC Science & Technology

    2013-08-01

    from Amp draw from four (4) 12V -DC Group-31 batteries . All temperature, Wattmeter, Voltage meter, and Current sensors were calibrated before the...Schultz Lead Engineer TARDEC Warren, MI ABSTRACT Based on the foundation of thermal management system developed by Rocky Research and working ...TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Rocky Research,1598 Foothill Drive,Boulder City,NV,89005 8

  10. High speed on-chip current measurement using a low-Q tunable LC resonator

    NASA Astrophysics Data System (ADS)

    Campbell, Brooks; Chen, Z.; Chiaro, B.; Dunsworth, A.; Neill, C.; O'Malley, P. J. J.; Quintana, C.; Vainsencher, A.; Wenner, J.; Barends, R.; Chen, Y.; Fowler, A.; Jeffrey, E.; Kelly, J.; Lucero, E.; Megrant, A.; Mutus, J.; Neeley, M.; Roushan, P.; Sank, D.; White, T. C.; Martinis, John M.

    Superconducting quantum computing technology requires precise high frequency analog waveforms to perform single and multi-qubit gates. Due to signal path irregularities, gates are tuned-up by perturbing the drive signal until qubit state populations indicate the desired gate function. A more direct approach is to measure the effect of circuit imperfections by sampling control waveforms directly, as seen by the qubits. We proceed by measuring the resonant frequency shift of a capacitively shunted SQUID and converting the control waveform to DC flux applied to the SQUID. By measuring the reflected phase of a CW tone applied to this resonant circuit while applying the resonance-shifting flux pulse, we are able to reconstruct the current waveform of the input pulse at the SQUID loop. This device's geometry is the same as the z-control lines used in qubit experiments to control the qubit frequency. I will present this method of on-chip waveform sampling for superconducting circuits in addition to proof of concept data. This technique opens the door for improved gate bring up and a deeper understanding of qubit control as well as the circuit parasitics that deform these waveforms.

  11. Time-Resolved Optical Measurements of Fuel-Air Mixedness in Windowless High Speed Research Combustors

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet

    1998-01-01

    Fuel distribution measurements in gas turbine combustors are needed from both pollution and fuel-efficiency standpoints. In addition to providing valuable data for performance testing and engine development, measurements of fuel distributions uniquely complement predictive numerical simulations. Although equally important as spatial distribution, the temporal distribution of the fuel is an often overlooked aspect of combustor design and development. This is due partly to the difficulties in applying time-resolved diagnostic techniques to the high-pressure, high-temperature environments inside gas turbine engines. Time-resolved measurements of the fuel-to-air ratio (F/A) can give researchers critical insights into combustor dynamics and acoustics. Beginning in early 1998, a windowless technique that uses fiber-optic, line-of-sight, infrared laser light absorption to measure the time-resolved fluctuations of the F/A (refs. 1 and 2) will be used within the premixer section of a lean-premixed, prevaporized (LPP) combustor in NASA Lewis Research Center's CE-5 facility. The fiber-optic F/A sensor will permit optical access while eliminating the need for film-cooled windows, which perturb the flow. More importantly, the real-time data from the fiber-optic F/A sensor will provide unique information for the active feedback control of combustor dynamics. This will be a prototype for an airborne sensor control system.

  12. Validation Test Report for NFLUX PRE: Validation of Specific Humidity, Surface Air Temperature, and Wind Speed Precision and Accuracy for Assimilation into Global and Regional Models

    DTIC Science & Technology

    2014-04-02

    Test Report for NFLUX PRE: Validation of Specific Humidity, Surface Air Temperature, and Wind Speed Precision and Accuracy for Assimilation into...THIS PAGE 18. NUMBER OF PAGES 17. LIMITATION OF ABSTRACT Validation Test Report for NFLUX PRE: Validation of Specific Humidity, Surface Air...The regional algorithm products overlay the existing global product estimate. The location of the observations is tested to see if it falls within one

  13. The dynamics of the HSCT environment. [air pollution from High Speed Civil Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Douglass, Anne R.; Rood, Richard B.

    1991-01-01

    Assessments of the impact of aircraft engine exhausts on stratospheric ozone levels are currently limited to 2D zonally-averaged models which, while completely representing chemistry, involve high parameterization of transport processes. Prospective 3D models under development by NASA-Goddard will use winds from a data-assimilation procedure; the upper troposphere/lower stratosphere behavior of one such model has been verified by direct comparison of model simulations with satellite, balloon, and sonde measurements. Attention is presently given to the stratosphere/troposphere exchange and nonzonal distribution of aircraft engine exhaust.

  14. Keep calm and carry on: improved frustration tolerance and processing speed by transcranial direct current stimulation (tDCS).

    PubMed

    Plewnia, Christian; Schroeder, Philipp A; Kunze, Roland; Faehling, Florian; Wolkenstein, Larissa

    2015-01-01

    Cognitive control (CC) of attention is a major prerequisite for effective information processing. Emotional distractors can bias and impair goal-directed deployment of attentional resources. Frustration-induced negative affect and cognition can act as internal distractors with negative impact on task performance. Consolidation of CC may thus support task-oriented behavior under challenging conditions. Recently, transcranial direct current stimulation (tDCS) has been put forward as an effective tool to modulate CC. Particularly, anodal, activity enhancing tDCS to the left dorsolateral prefrontal cortex (dlPFC) can increase insufficient CC in depression as indicated by a reduction of attentional biases induced by emotionally salient stimuli. With this study, we provide first evidence that, compared to sham stimulation, tDCS to the left dlPFC enhances processing speed measured by an adaptive version of the Paced Auditory Serial Addition Task (PASAT) that is typically thwarted by frustration. Notably, despite an even larger amount of error-related negative feedback, the task-induced upset was suppressed in the group receiving anodal tDCS. Moreover, inhibition of task-related negative affect was correlated with performance gains, suggesting a close link between enhanced processing speed and consolidation of CC by tDCS. Together, these data provide first evidence that activity enhancing anodal tDCS to the left dlPFC can support focused cognitive processing particularly when challenged by frustration-induced negative affect.

  15. Current-voltage characteristics of dc corona discharges in air between coaxial cylinders

    SciTech Connect

    Zheng, Yuesheng; Zhang, Bo He, Jinliang

    2015-02-15

    This paper presents the experimental measurement and numerical analysis of the current-voltage characteristics of dc corona discharges in air between coaxial cylinders. The current-voltage characteristics for both positive and negative corona discharges were measured within a specially designed corona cage. Then the measured results were fitted by different empirical formulae and analyzed by the fluid model. The current-voltage characteristics between coaxial cylinders can be expressed as I = C(U − U{sub 0}){sup m}, where m is within the range 1.5–2.0, which is similar to the point-plane electrode system. The ionization region has no significant effect on the current-voltage characteristic under a low corona current, while it will affect the distribution for the negative corona under a high corona current. The surface onset fields and ion mobilities were emphatically discussed.

  16. Current-voltage characteristics of dc corona discharges in air between coaxial cylinders

    NASA Astrophysics Data System (ADS)

    Zheng, Yuesheng; Zhang, Bo; He, Jinliang

    2015-02-01

    This paper presents the experimental measurement and numerical analysis of the current-voltage characteristics of dc corona discharges in air between coaxial cylinders. The current-voltage characteristics for both positive and negative corona discharges were measured within a specially designed corona cage. Then the measured results were fitted by different empirical formulae and analyzed by the fluid model. The current-voltage characteristics between coaxial cylinders can be expressed as I = C(U - U0)m, where m is within the range 1.5-2.0, which is similar to the point-plane electrode system. The ionization region has no significant effect on the current-voltage characteristic under a low corona current, while it will affect the distribution for the negative corona under a high corona current. The surface onset fields and ion mobilities were emphatically discussed.

  17. Simultaneous preparation of naturally abundant and rare catechins by tannase-mediated biotransformation combining high speed counter current chromatography.

    PubMed

    Xia, Guobin; Hong, Shan; Liu, Songbai

    2014-05-15

    Simultaneous preparation of naturally rare catechins, EGC and EC, has been realized by tannase-mediated biotransformation combining high speed counter current chromatography. In addition, simultaneous preparation of the four catechins, EGCG, ECG, EGC, and EC in green tea extract has also been achieved by HSCCC under the normal phase and the reversed phase modes. The identity of the catechins was determined by HPLC-DAD-ESI-MS and quantification of the catechins was performed by HPLC-DAD. In a typical HSCCC separation, 27.2 mg 98.8% EGCG, 14.1 mg 94.7% EGC, and 9.3 mg 97.5% EC were obtained. This new method is efficient, time-saving and valuable for biological studies.

  18. Separation and purification of astaxanthin from Phaffia rhodozyma by preparative high-speed counter-current chromatography.

    PubMed

    Du, Xiping; Dong, Congcong; Wang, Kai; Jiang, Zedong; Chen, Yanhong; Yang, Yuanfan; Chen, Feng; Ni, Hui

    2016-09-01

    An effective high-speed counter-current chromatography (HSCCC) method was established for the preparative isolation and purification of astaxanthin from Phaffia rhodozyma. With a two-phase solvent system composed of n-hexane-acetone-ethanol-water (1:1:1:1, v/v/v/v), 100mg crude extract of P. rhodozyma was separated to yield 20.6mg of astaxanthin at 92.0% purity. By further one step silica gel column chromatography, the purity reached 99.0%. The chemical structure of astaxanthin was confirmed by thin layer chromatography (TLC), UV spectroscopy scanning, high performance liquid chromatography with a ZORBAX SB-C18 column and a Waters Nova-pak C18 column, and ESI/MS/MS.

  19. Isolation and purification of orientin and vitexin from Trollius chinensis Bunge by high-speed counter-current chromatography.

    PubMed

    Yu, Xiao-Xue; Huang, Jie-Yun; Xu, Dan; Xie, Zhi-Yong; Xie, Zhi-Sheng; Xu, Xin-Jun

    2014-01-01

    Orientin and vitexin are the two main bioactive compounds in Trollius chinensis Bunge. In this study, a rapid method was established for the isolation and purification of orientin and vitexin from T. chinensis Bunge using high-speed counter-current chromatography in one step, with a solvent system of ethyl acetate-ethanol-water (4:1:5, v/v/v). A total of 9.8 mg orientin and 2.1 mg vitexin were obtained from 100 mg of the ethyl acetate extract, with purities of 99.2% and 96.0%, respectively. Their structures were identified by UV, MS and NMR. The method was efficient and convenient, which could be used for the preparative separation of orientin and vitexin from T. chinensis Bunge.

  20. Isolation and purification of oridonin from the whole plant of Isodon rubescens by high-speed counter-current chromatography.

    PubMed

    He, Fa; Bai, Yuhua; Wang, Jing; Wei, Jing; Yu, Chunyue; Li, Sen; Yang, Weili; Han, Chenghua

    2011-09-14

    Semi-preparative high-speed counter-current chromatography (HSCCC) was successfully used for isolation and purification of oridonin from Isodon rubescens by using a two-phase-solvent system composed of n-hexane-ethyl acetate-methanol-water (2.8:5:2.8:5, v/v/v/v). The targeted compound isolated, collected and purified by HSCCC was analyzed by high performance liquid chromatography (HPLC). A total of 40.6 mg of oridonin with the purity of 73.5% was obtained in less than 100 min from 100 mg of crude Isodon rubescens extract. The chemical structure of the compound was identified by IR, 1H-NMR and 13C-NMR.

  1. Preparative isolation and purification of three sesquiterpenoid lactones from Eupatorium lindleyanum DC. by high-speed counter-current chromatography.

    PubMed

    Yan, Guilong; Ji, Lilian; Luo, Yuming; Hu, Yonghong

    2012-07-27

    A high-speed counter-current chromatography (HSCCC) method was established for the preparative separation of three sesquiterpenoid lactones from Eupatorium lindleyanum DC. The two-phase solvent system composed of n-hexane-ethyl acetate-methanol-water (1:4:2:3, v/v/v/v) was selected. From 540 mg of the n-butanol fraction of Eupatorium lindleyanum DC., 10.8 mg of 3β-hydroxy-8β-[4'-hydroxytigloyloxy]-costunolide, 17.9 mg of eupalinolide A and 19.3 mg of eupalinolide B were obtained in a one-step HSCCC separation, with purities of 91.8%, 97.9% and 97.1%, respectively, as determined by HPLC. Their structures were further identified by ESI-MS and ¹H-NMR.

  2. High speed, intermediate resolution, large area laser beam induced current imaging and laser scribing system for photovoltaic devices and modules.

    PubMed

    Phillips, Adam B; Song, Zhaoning; DeWitt, Jonathan L; Stone, Jon M; Krantz, Patrick W; Royston, John M; Zeller, Ryan M; Mapes, Meghan R; Roland, Paul J; Dorogi, Mark D; Zafar, Syed; Faykosh, Gary T; Ellingson, Randy J; Heben, Michael J

    2016-09-01

    We have developed a laser beam induced current imaging tool for photovoltaic devices and modules that utilizes diode pumped Q-switched lasers. Power densities on the order of one sun (100 mW/cm(2)) can be produced in a ∼40 μm spot size by operating the lasers at low diode current and high repetition rate. Using galvanostatically controlled mirrors in an overhead configuration and high speed data acquisition, large areas can be scanned in short times. As the beam is rastered, focus is maintained on a flat plane with an electronically controlled lens that is positioned in a coordinated fashion with the movements of the mirrors. The system can also be used in a scribing mode by increasing the diode current and decreasing the repetition rate. In either mode, the instrument can accommodate samples ranging in size from laboratory scale (few cm(2)) to full modules (1 m(2)). Customized LabVIEW programs were developed to control the components and acquire, display, and manipulate the data in imaging mode.

  3. High speed, intermediate resolution, large area laser beam induced current imaging and laser scribing system for photovoltaic devices and modules

    NASA Astrophysics Data System (ADS)

    Phillips, Adam B.; Song, Zhaoning; DeWitt, Jonathan L.; Stone, Jon M.; Krantz, Patrick W.; Royston, John M.; Zeller, Ryan M.; Mapes, Meghan R.; Roland, Paul J.; Dorogi, Mark D.; Zafar, Syed; Faykosh, Gary T.; Ellingson, Randy J.; Heben, Michael J.

    2016-09-01

    We have developed a laser beam induced current imaging tool for photovoltaic devices and modules that utilizes diode pumped Q-switched lasers. Power densities on the order of one sun (100 mW/cm2) can be produced in a ˜40 μm spot size by operating the lasers at low diode current and high repetition rate. Using galvanostatically controlled mirrors in an overhead configuration and high speed data acquisition, large areas can be scanned in short times. As the beam is rastered, focus is maintained on a flat plane with an electronically controlled lens that is positioned in a coordinated fashion with the movements of the mirrors. The system can also be used in a scribing mode by increasing the diode current and decreasing the repetition rate. In either mode, the instrument can accommodate samples ranging in size from laboratory scale (few cm2) to full modules (1 m2). Customized LabVIEW programs were developed to control the components and acquire, display, and manipulate the data in imaging mode.

  4. Single-session transcranial direct current stimulation induces enduring enhancement of visual processing speed in patients with major depression.

    PubMed

    Gögler, Nadine; Willacker, Lina; Funk, Johanna; Strube, Wolfgang; Langgartner, Simon; Napiórkowski, Natan; Hasan, Alkomiet; Finke, Kathrin

    2016-12-30

    Attentional deficits are considered key cognitive symptoms in major depressive disorder (MDD) arising from abnormal activation patterns within dorsolateral prefrontal cortex (dlPFC) alertness networks. Altering these activity patterns with transcranial direct current stimulation (tDCS) might thus ameliorate alertness-dependent cognitive deficits in MDD patients. In a double-blind, randomized, sham-controlled study, we investigated the effect of a single session of anodal tDCS (2 mA) applied to the left dlPFC on different parameters of visual attention based on Bundesen's theory of visual attention (Psychol Rev 97(4):523-547, 1990) in a group of 20 patients with MDD and a control group of 20 healthy participants. The parametric attention assessment took place before, immediately after and 24 h after tDCS intervention. It revealed a selective impairment in visual processing speed as a primary functional deficit in MDD at baseline assessment. Furthermore, a significant stimulation condition × time point interaction showed that verum tDCS over the left dlPFC resulted in a processing speed enhancement 24 h post-stimulation in MDD patients. In healthy control participants, we did not find similar tDCS-induced effects. Our results suggest that even a single session of tDCS over the dlPFC can induce enduring neurocognitive benefits that indicate an amelioration of cortical under-arousal in MDD patients in a time frame beyond that of immediate, excitability increases that are directly induced by the current.

  5. Monopolar electromyographic signals recorded by a current amplifier in air and under water without insulation.

    PubMed

    Whitting, John W; von Tscharner, Vinzenz

    2014-12-01

    It was recently proposed that one could use signal current instead of voltage to collect surface electromyography (EMG). With EMG-current, the electrodes remain at the ground potential, thereby eliminating lateral currents. The purpose of this study was to determine whether EMG-currents can be recorded in Tap and Salt water, as well as in air, without electrically shielding the electrodes. It was hypothesized that signals would display consistent information between experimental conditions regarding muscle responses to changes in contraction effort. EMG-currents were recorded from the flexor digitorum muscles as participant's squeezed a pre-inflated blood pressure cuff bladder in each experimental condition at standardized efforts. EMG-current measurements performed underwater showed no loss of signal amplitude when compared to measurements made in air, although some differences in amplitude and spectral components were observed between conditions. However, signal amplitudes and frequencies displayed consistent behavior across contraction effort levels, irrespective of the experimental condition. This new method demonstrates that information regarding muscle activity is comparable between wet and dry conditions when using EMG-current. Considering the difficulties imposed by the need to waterproof traditional bipolar EMG electrodes when underwater, this new methodology is tremendously promising for assessments of muscular function in aquatic environments.

  6. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  7. Sensitivity of Global Sea-Air CO2 Flux to Gas Transfer Algorithms, Climatological Wind Speeds, and Variability of Sea Surface Temperature and Salinity

    NASA Technical Reports Server (NTRS)

    McClain, Charles R.; Signorini, Sergio

    2002-01-01

    Sensitivity analyses of sea-air CO2 flux to gas transfer algorithms, climatological wind speeds, sea surface temperatures (SST) and salinity (SSS) were conducted for the global oceans and selected regional domains. Large uncertainties in the global sea-air flux estimates are identified due to different gas transfer algorithms, global climatological wind speeds, and seasonal SST and SSS data. The global sea-air flux ranges from -0.57 to -2.27 Gt/yr, depending on the combination of gas transfer algorithms and global climatological wind speeds used. Different combinations of SST and SSS global fields resulted in changes as large as 35% on the oceans global sea-air flux. An error as small as plus or minus 0.2 in SSS translates into a plus or minus 43% deviation on the mean global CO2 flux. This result emphasizes the need for highly accurate satellite SSS observations for the development of remote sensing sea-air flux algorithms.

  8. Air-Sea and Lateral Exchange Processes in East Indian Coastal Current off Sri Lanka

    DTIC Science & Technology

    2015-09-30

    of which have a bearing on local air-sea fluxes. The project seeks to collect hydrographic data sets in the international waters (R/V Roger Revelle...and in Sri Lankan coastal waters (R/V Samuddrika). The measurements include thermohaline stratification, currents and the kinetic energy...conducted CTD and ADCP measurements in the southern BoB onboard R/V Roger Revelle and in Sri Lanka coastal waters using R/V Samuddrika. The data analysis

  9. In vitro study of anti-suck-back ability by themselves on new high-speed air turbine handpieces.

    PubMed

    Ozawa, Toshiko; Nakano, Masako; Arai, Takashi

    2010-11-01

    The anti-suck-back ability of five new high-speed air turbine handpiece models was evaluated in this study. First, suck-back pressure with water displacement within a glass tube was measured. Next, under three different conditions, how many on-off times it takes before fluorescent stains became visible on a piece of gauze at the exhaust vent was counted and the presence of fluorescent stains on the exhaust vents itself was examined. As a result, the water height for each part of one handpiece, the TWINPOWER TURBINE PAR-4HX-O, was below 0 mm. Except for under full emersion, this model, the TWINPOWER TURBINE PAR-4HX-O, did not have any visible fluorescence penetration to the exhaust vent even after 500 on-off switches under fume/mist conditions. Conversely, the other handpieces (Ti-Max X700L, T1 CONTROL, SYNEA TA-98CLED, GENTLE silence LUX 8000B) showed suck-back. In conclusion, the first mentioned new turbine handpiece, the TWINPOWER TURBINE PAR-4HX-O, had a possibility of no suck-back by itself. However, full immersion of the whole head of the handpiece which is not completely sealed must be avoided to prevent liquid intake.

  10. A fully-coupled implicit method for thermo-chemical nonequilibrium air at sub-orbital flight speeds

    NASA Technical Reports Server (NTRS)

    Park, Chul; Yoon, Seokkwan

    1989-01-01

    A CFD technique is described in which the finite-rate chemistry in thermal and chemical nonequilibrium air is fully and implicitly coupled with the fluid motion. Developed for use in the suborbital hypersonic flight speed range, the method accounts for nonequilibrium vibrational and electronic excitation and dissociation, but not ionization. The steady-state solution to the resulting system of equations is obtained by using a lower-upper factorization and symmetric Gauss-Seidel sweeping technique through Newton iteration. Inversion of the left-hand-side matrices is replaced by scalar multiplications through the use of the diagonal dominance algorithm. The code, named CENS2H (Compressible-Euler-Navier-Stokes Two-Dimensional Hypersonic), is fully vectorized and requires about 8.8 x 10 to the -5th sec per node point per iteration using a Cray X-MP computer. Converged solutions are obtained after about 2400 iterations. Sample calculations are made for a circular cylinder and a 10 percent airfoil at 5 deg angle of attack. The calculated cylinder flow field agrees with that obtained experimentally. The code predicts a 10 percent change in lift, drag, and pitching moment for the airfoil due to the thermochemical phenomena.

  11. [Application of spiral disk column in high-speed counter-current chromatography for peptide and protein separation].

    PubMed

    Hu, Guanghui; Cao, Xueli

    2009-04-01

    In order to improve the stationary phase retention of polar solvent systems and aqueous two-phase systems (ATPSs), we designed a multiple spiral disk assembly for type-J high-speed counter-current chromatography (HSCCC). The stationary phase retention was studied under different elution modes by using two solvent systems that contained 1-butanol-acetic acid-water (4:1:5, V/V/V) and polyethylene glycol (PEG) 1000-K2HPO4-water (12.5:12.5:75, W/W/W). The best retention was obtained in L-I-T, U-O-H, L-I-H three modes by pumping lower mobile phase from inner terminal (I) to outer terminal (O), and upper mobile phase from outer terminal (O) to inner terminal (I) at a relatively high flow rate. Meanwhile, the relationship between retention percentage of the stationary phase (Sf) and various parameters such as flow-rate (F), rotation speed (w) and column temperature (T) was also studied. Sf increased with the increase of w and decreased with the increase of F. Regression analysis showed a linear relationship between Sf and F1/2/w. The influence of T on Sf was not obvious between 20 degrees C and 40 degrees C, lower temperature than 20 degrees C was not suitable for viscous ATPSs. Acceptable resolutions were achieved when it was applied for the separation of dipeptides including Leu-Tyr and Val-Tyr by using 1-butanol-acetic acid-water (4:1:5, V/V/V) solvent system. The proteins including cytochrome C and myoglobin, lysozyme and myoglobin, and fresh chicken egg-white proteins were well separated by 12.5% PEG1000-12.5% K2HPO4-75% water (pH 9.0) and 16% PEG 1000-12.5% K2HPO4-71.5% water (pH 8.0) system.

  12. Air Entrainment and Thermal Evolution of Pyroclastic Density Currents at Tungurahua, Ecuador

    NASA Astrophysics Data System (ADS)

    Benage, M. C.; Dufek, J.; Mothes, P. A.

    2015-12-01

    The entrainment of air into pyroclastic density currents (PDCs) impacts the thermal profile and evolution of the current. However, the associated hazards and opaqueness of PDCs make it difficult to discern internal dynamics and entrainment through direct observations. In this work, we use a three-dimensional multiphase Eulerian-Eulerian-Lagrangian (EEL) model, deposit descriptions, and pyroclast field data, such as paleomagnetic and rind thickness, to study the entrainment efficiency and thus the thermal history of PDCs down the Juive Grande quebrada during the August 16-17th 2006 eruption of Tungurahua volcano. We conclude that 1) the efficient entrainment of ambient air cools the nose and upper portion of the PDCs by 30-60% of the original temperature, 2) PDCs with an initial temperature of 727 °C are on average more efficient at entraining ambient air than PDCs with an initial temperature of 327 °C, 3) the channelized PDCs develop a particle concentration gradient with a concentrated bed load region and suspended load region that leads to a large vertical temperature gradient, and 4) observations and pyroclast temperatures and textures suggest that the PDCs had temperatures greater than 327 °C in the bed load region while the upper, exterior portion of the currents cooled down to temperatures less than 100 °C. By combining field data and numerical models, the structure and dynamics of a PDC can be deduced for these relatively common small volume PDCs.

  13. Bird flight and airplane flight. [instruments to measure air currents and flight characteristics

    NASA Technical Reports Server (NTRS)

    Magnan, A.

    1980-01-01

    Research was based on a series of mechanical, electrical, and cinematographic instruments developed to measure various features of air current behavior as well as bird and airplane flight. Investigation of rising obstruction and thermal currents led to a theory of bird flight, especially of the gliding and soaring types. It was shown how a knowledge of bird flight can be applied to glider and ultimately motorized aircraft construction. The instruments and methods used in studying stress in airplanes and in comparing the lift to drag ratios of airplanes and birds are described.

  14. Measuring of high current channel parameters in high pressure gas by combined using of magnetic probe and high speed streak photography

    NASA Astrophysics Data System (ADS)

    Bogomaz, A. A.; Pinchuk, M. E.; Budin, A. V.; Leks, A. G.; Leont'ev, V. V.; Pozubenkov, A. A.; Kurakina, N. K.

    2016-11-01

    Experimental results for discharge in hydrogen with current amplitude up to 1 MA, current rise rate of ∼ 1010 A/s, and at initial pressure up to 30 MPa are presented. A series of channel contractions was observed at a current rise stage. Estimation of plasma channel parameters was made for equilibrium state at the channel diameter oscillations. The speed of the discharge channel contraction was determined by the specially developed magnetic- probe technique. Comparison of these magnetic probe measurements with high-speed optical photostreaks was carried out.

  15. Significance of High-Speed Air Temperature Measurements in the Sampling Cell of a Closed-Path Gas Analyzer with a Short Tube

    NASA Astrophysics Data System (ADS)

    Kathilankal, James; Fratini, Gerardo; Burba, George

    2015-04-01

    Eddy covariance gas analyzers measure gas content in a known volume, thus essentially measuring gas density. The fundamental flux equation, however, is based on the dry mole fraction. The relationship between dry mole fraction and density is regulated by the ideal gas law describing the processes of temperature- and pressure-related expansions and contractions, and by the law of partial pressures, describing the process of dilution. As a result, this relationship depends on water vapor content, temperature and pressure of the air sample. If the instrument is able to output precise high-speed dry mole fraction, the flux processing is significantly simplified and WPL density terms accounting for the air density fluctuations are no longer required. This should also lead to the reduction in uncertainties associated with the density terms resulting from the eddy covariance measurements of sensible and latent heat fluxes used in these terms. In this framework, three main measurement approaches may be considered: Open-path approach Outputting correct high-speed dry mole fraction from the open-path instrument is difficult because of complexities with maintaining reliable fast temperature measurements integrated over the entire measuring path, and also because of extraordinary challenges with accurate measurements of fast pressure in the open air flow. Classical long-tube closed-path approach For instruments utilizing traditional long-tube closed-path design, with tube length 1000 or more times the tube diameter, the fast dry mole fraction can be used successfully when instantaneous fluctuations in the air temperature of the sampled air are effectively dampened to negligible levels, instantaneous pressure fluctuations are regulated or negligible, and water vapor is measured simultaneously with gas or the air sample is dried. Short-tube closed-path approach, the enclosed design For instruments with a short-tube enclosed design, most - but not all - of the temperature

  16. Understanding exposure from natural gas drilling puts current air standards to the test.

    PubMed

    Brown, David; Weinberger, Beth; Lewis, Celia; Bonaparte, Heather

    2014-01-01

    Case study descriptions of acute onset of respiratory, neurologic, dermal, vascular, abdominal, and gastrointestinal sequelae near natural gas facilities contrast with a subset of emissions research, which suggests that there is limited risk posed by unconventional natural gas development (UNGD). An inspection of the pathophysiological effects of acute toxic actions reveals that current environmental monitoring protocols are incompatible with the goal of protecting the health of those living and working near UNGD activities. The intensity, frequency, and duration of exposures to toxic materials in air and water determine the health risks to individuals within a population. Currently, human health risks near UNGD sites are derived from average population risks without adequate attention to the processes of toxicity to the body. The objective of this paper is to illustrate that current methods of collecting emissions data, as well as the analyses of these data, are not sufficient for accurately assessing risks to individuals or protecting the health of those near UNGD sites. Focusing on air pollution impacts, we examined data from public sources and from the published literature. We compared the methods commonly used to evaluate health safety near UNGD sites with the information that would be reasonably needed to determine plausible outcomes of actual exposures. Such outcomes must be based on the pathophysiological effects of the agents present and the susceptibility of residents near these sites. Our study has several findings. First, current protocols used for assessing compliance with ambient air standards do not adequately determine the intensity, frequency or durations of the actual human exposures to the mixtures of toxic materials released regularly at UNGD sites. Second, the typically used periodic 24-h average measures can underestimate actual exposures by an order of magnitude. Third, reference standards are set in a form that inaccurately determines health

  17. Purification of two triterpenoids from Schisandra chinensis by macroporous resin combined with high-speed counter-current chromatography.

    PubMed

    Zhu, Lijie; Li, Bin; Liu, Xiuying; Meng, Xianjun

    2014-10-01

    A method for preparative purification of corosolic acid and nigranoic acid from Schisandra chinensis (SC) was established using a combination of macroporous absorption resin column separation and high-speed counter-current chromatography (HSCCC). The crude extracts obtained from SC using 70% ethanol were separated on a macroporous resin column and then eluted with a graded ethanol series. The 70% ethanol fraction was used as the sample for separation of the two triterpenoids by HSCCC. The two-phase solvent system used for HSCCC separation was chloroform-n-butanol-methanol-water (10:0.5:7:4, v/v/v/v). The upper phase was used as the stationary phase of HSCCC. Corosolic acid (16.4 mg) of 96.3% purity and nigranoic acid (9.5 mg) of 98.9% purity were obtained in a one-step HSCCC separation from 100 mg of the sample. The structures of corosolic acid and nigranoic acid were identified by (1)H-nuclear magnetic resonance (NMR) and (13)C-NMR.

  18. Purification of coenzyme Q10 from fermentation extract: high-speed counter-current chromatography versus silica gel column chromatography.

    PubMed

    Cao, Xue-Li; Xu, Ya-Tao; Zhang, Guang-Ming; Xie, Sheng-Meng; Dong, Ying-Mao; Ito, Yoichiro

    2006-09-15

    High-speed counter-current chromatography (HSCCC) is applied to the purification of coenzyme Q(10) (CoQ(10)) for the first time. CoQ(10) was obtained from a fermentation broth extract. A non-aqueous two-phase solvent system composed of heptane-acetonitrile-dichloromethane (12:7:3.5, v/v/v) was selected by analytical HSCCC and used for purification of CoQ(10) from 500 mg of the crude extract. The separation yielded 130 mg of CoQ(10) at an HPLC purity of over 99%. The overall results of the present studies show the advantages of HSCCC over an alternative of silica gel chromatography followed by recrystallization. These advantages extend to higher purity (97.8% versus 93.3%), recovery (88% versus 74.3%) and yield (26.4% versus 23.4%). An effort to avoid the toxic, expensive solvent CH(2)Cl(2) was unsuccessful, but at least its percentage is low in the solvent system.

  19. Preparative isolation and purification of coumarins from Peucedanum praeruptorum Dunn by high-speed counter-current chromatography.

    PubMed

    Liu, Renmin; Feng, Lei; Sun, Ailing; Kong, Lingyi

    2004-11-19

    A preparative high-speed counter-current chromatography (HSCCC) method for isolation and purification of coumarins from Peucedanum praeruptorum Dunn (Baihuaqianhu in Chinese) was successfully established by using light petroleum-ethyl acetate-methanol-water as the two-phase solvent system in gradient elution mode. The upper phase of light petroleum-ethyl acetate-methanol-water (5:5:5:5, v/v) was used as the stationary phase of HSCCC. The mobile phase used in HSCCC was the lower phase of light petroleum-ethyl acetate-methanol-water (5:5:5:5, v/v) and light petroleum-ethyl acetate-methanol-water (5:5:6.5:3.5, v/v) that was changed in gradient. Four kinds of coumarins and another unknown compound were obtained and yielded 5.3 mg of qianhucoumarin D, 7.7 mg of Pd-Ib, 35.8 mg of (+)-praeruptorin A, 31.9 mg of (+)-praeruptorin B and 6.4 mg of unknown compound with the purity of 98.6%, 92.8%, 99.5%, 99.4% and 99.8% in one-step separation, respectively. The structures of the coumarins were identified by 1H NMR and 13C NMR.

  20. Separation of phenolic acids and flavonoids from Trollius chinensis Bunge by high speed counter-current chromatography.

    PubMed

    Qin, Yanhua; Liang, Yizeng; Ren, Dabing; Qiu, Ximin; Li, Xi

    2015-09-15

    In this work, eleven compounds were successfully separated from Trollius chinensis Bunge by using a two-step high-speed counter-current chromatography (HSCCC) method. NRTL-SAC (nonrandom two-liquid segment activity coefficient) method, a newly developed solvent system selection strategy, was applied to screening the suitable biphasic liquid systems. Hexane/ethyl acetate/ethanol/water (3:7:3:7, v/v) solvent system was used in the first step, while the hexane/ethyl acetate/methanol/water (1:2:1:2, 1:4:1:4, 1:9:1:9, v/v) systems were employed in the second step. The chemical structures of the separated compounds were identified by UV, high resolution ESI-MS and MS/MS data. The separated compounds are 3,4-dihydroxyphenylethanol (1), vanillic acid (2), orientin (3), vitexin (4), veratric acid (5), 2″-O-(3‴, 4‴-dimethoxybenzoyl) orientin (6), 2″-O-feruloylorientin (7), 2″-O-feruloylvitexin (8), 2″-O-(2‴-methylbutyryl) vitexin (9), 2″-O-(2‴-methylbutyryl) isoswertiajaponin (10), 2″-O-(2‴-methylbutyryl) isoswertisin (11). The results demonstrate that HSCCC is a powerful tool for the separation of compounds from extremely complex samples.

  1. Extraction and preparative purification of tanshinones from Salvia miltiorrhiza Bunge by high-speed counter-current chromatography.

    PubMed

    Sun, Ailing; Zhang, Yongqing; Li, Aifeng; Meng, Zhaoling; Liu, Renmin

    2011-07-01

    A method for extraction and preparative separation of tanshinones from Salvia miltiorrhiza Bunge was successfully established in this paper. Tanshinones from Salvia miltiorrhiza Bunge were extracted using ethyl acetate as the extractant under reflux. The extracts were then purified by high speed counter-current chromatography (HSCCC) with light petroleum-ethyl acetate-methanol-water (6:4:6.5:3.5, v/v) as the two phase solvent system. The upper phase was used as the stationary phase and the lower phase as the mobile phase. 8.2mg of dihydrotanshinone I, 5.8 mg of 1,2,15,16-tetrahydrotanshiquinone, 26.3mg of cryptotanshinone, 16.2mg of tanshinone I, 25.6 mg of neo-przewaquinone A, 68.8 mg of tanshinone IIA and 9.3mg of miltirone were obtained from 400mg of extracts from Salvia miltiorrhiza Bunge in one-step HSCCC separation, with the purity of 97. 6%, 95.1%, 99.0%, 99.1%, 93.2%, 99.3% and 98.7%, respectively, as determined by HPLC area normalization method. Their chemical structures were identified by ¹H NMR.

  2. Power applications of high-temperature superconductivity: Variable speed motors, current switches, and energy storage for end use

    SciTech Connect

    Hawsey, R.A.; Banerjee, B.B.; Grant, P.M.

    1996-08-01

    The objective of this project is to conduct joint research and development activities related to certain electric power applications of high-temperature superconductivity (HTS). The new superconductors may allow development of an energy-efficient switch to control current to variable speed motors, superconducting magnetic energy storage (SMES) systems, and other power conversion equipment. Motor types that were considered include induction, permanent magnet, and superconducting ac motors. Because it is impractical to experimentally alter certain key design elements in radial-gap motors, experiments were conducted on an axial field superconducting motor prototype using 4 NbTi magnets. Superconducting magnetic energy storage technology with 0.25--5 kWh stored energy was studied as a viable solution to short duration voltage sag problems on the customer side of the electric meter. The technical performance characteristics of the device wee assembled, along with competing technologies such as active power line conditioners with storage, battery-based uninterruptible power supplies, and supercapacitors, and the market potential for SMES was defined. Four reports were prepared summarizing the results of the project.

  3. Isolation of secondary metabolites from Hortia oreadica (Rutaceae) leaves through high-speed counter-current chromatography.

    PubMed

    Severino, Vanessa Gisele Pasqualotto; Cazal, Cristiane de Melo; Forim, Moacir Rossi; da Silva, Maria Fátima das Graças Fernandes; Rodrigues-Filho, Edson; Fernandes, João Batista; Vieira, Paulo Cezar

    2009-05-08

    High-speed counter-current chromatography (HSCCC) with a two-phase solvent system (hexane-ethanol-acetonitrile-water 10:8:1:1, v/v) was applied to examine the leaves of Hortia oreadica, which afforded the known limonoid guyanin (1), the alkaloids rutaecarpin (2) and dictamnine (6), the dihydrocinnamic acid derivatives methyl 5,7-dimethoxy-2,2-dimethyl-2H-1-benzopyran-6-propanoate (3), 5,8-dimethoxy-2,2-dimethyl-2H-1-benzopyran-6-propanoic acid (4), together with the new E-3,4-dimethoxy-alpha(3-hydroxy-4-carbomethoxyphenyl)cinnamic acid (5). The recovery of compounds 1-6 was determined by comparison with LC-atmospheric pressure chemical ionization MS/MS data: 66.2%, 93.1%, 102.5%, 101.2%, 99.0% and 84.9%, respectively. Compound 3 showed IC(50) of 23.6microM against Plasmodium falciparum and 15.6microM against Trypanosoma brucei rhodesienses and was not toxic to KB cells (IC(50)>100microM).

  4. Preparative purification of five bioactive components from Agrimonia pilosa Ledeb by high-speed counter-current chromatography.

    PubMed

    Wang, Yan; Liu, Mozhen; Zheng, Lingli; Yin, Lianhong; Xu, Lina; Qi, Yan; Ma, Xiaochi; Liu, Kexin; Peng, Jinyong

    2012-08-01

    High-speed counter-current chromatography (HSCCC) coupled with ultraviolet (UV) detection or evaporative light-scattering detection was successfully applied for preparative separation of five bioactive compounds from Agrimonia pilosa Ledeb. In preliminary process, D101 macroporous resin was used to separate the crude extract of the plant and four fractions (20, 40, 50, and 60% aqueous ethanol elutions) were produced. Then, these fractions were directly subjected to HSCCC purification. Five chemicals including taxifolin-3-glucoside (6.4 mg), quercetin-3-rhamnoside (13.0 mg), tiliroside (14.7 mg), agrimonolide (21.4 mg), and tormentic acid (29.8 mg) with the purities of 94.24, 95.37, 97.42, 95.29, and 96.34% were separated from each 200 mg prepared fraction. The purities were analyzed by high-performance liquid chromatography, and the chemical structures of the products were identified by UV detection, mass spectrometry, nuclear magnetic resonance, and the standards. This paper used a simple method to separate five bioactive compounds from A. pilosa Ledeb, and it could provide a new idea for the purification of bioactive compounds from other medicinal plants.

  5. Isolation and purification of prenylated phenolics from Amorpha fruticosa by high-speed counter-current chromatography.

    PubMed

    Chen, Chu; Wu, Yan; Chen, Yang; Du, Leilei

    2015-08-01

    Prenylated phenolics such as amorfrutins are recently identified potent anti-inflammatory and antidiabetic natural products. In this work, high-speed counter-current chromatography was investigated for the isolation and purification of prenylated phenolics from the fruits of Amorpha fruticosa by using a two-phase solvent system composed of n-hexane/ethanol/water (5:4:1, v/v). As a result, 14.2 mg of 5,7-dihydroxy-8-geranylflavanone, 10.7 mg of amorfrutin A and 17.4 mg of amorfrutin B were obtained from 200 mg of n-hexane-soluble crude extract in one step within 250 min. The purities of 5,7-dihydroxy-8-geranylflavanone, amorfrutins A and B were 95.2, 96.7 and 97.1%, respectively, as determined by ultra high performance liquid chromatography. The structural identification was performed by mass spectrometry and (1) H and (13) C NMR spectroscopy. The results indicated that the established method is an efficient and convenient way to purified prenylated phenolics from A. fruticosa extract.

  6. Separation and purification of glucosinolates from crude plant homogenates by high-speed counter-current chromatography.

    PubMed

    Fahey, Jed W; Wade, Kristina L; Stephenson, Katherine K; Chou, F Edward

    2003-05-09

    Glucosinolates are anionic, hydrophilic plant secondary metabolites which are of particular interest due to their role in the prevention of cancer and other chronic and degenerative diseases. The separation and purification of glucosinolates from a variety of plant sources (e.g. seeds of broccoli, arugula and the horseradish tree), was achieved using high-speed counter-current chromatography (HSCCC). A high-salt, highly polar system containing 1-propanol-acetonitrile-saturated aqueous ammonium sulfate-water (1:0.5:1.2:1), was run on a semi-preparative scale and then transferred directly to preparative scale. Up to 7 g of a concentrated methanolic syrup containing about 10% glucosinolates was loaded on an 850-ml HSCCC column, and good separation and recovery were demonstrated for 4-methylsulfinylbutyl, 3-methylsulfinylpropyl, 4-methylthiobutyl, 2-propenyl and 4-(rhamnopyranosyloxy)benzyl glucosinolates. Multiple injections (5 to 6 times) were performed with well-preserved liquid stationary phase under centrifugal force. Pooled sequential runs with broccoli seed extract yielded about 20 g of its predominant glucosinolate, glucoraphanin, which was produced at > 95% purity and reduced to powdered form.

  7. Impacts of current and projected oil palm plantation expansion on air quality over Southeast Asia

    NASA Astrophysics Data System (ADS)

    Silva, Sam J.; Heald, Colette L.; Geddes, Jeffrey A.; Austin, Kemen G.; Kasibhatla, Prasad S.; Marlier, Miriam E.

    2016-08-01

    Over recent decades oil palm plantations have rapidly expanded across Southeast Asia (SEA). According to the United Nations, oil palm production in SEA increased by a factor of 3 from 1995 to 2010. We investigate the impacts of current (2010) and near-term future (2020) projected oil palm expansion in SEA on surface-atmosphere exchange and the resulting air quality in the region. For this purpose, we use satellite data, high-resolution land maps, and the chemical transport model GEOS-Chem. Relative to a no oil palm plantation scenario (˜ 1990), overall simulated isoprene emissions in the region increased by 13 % due to oil palm plantations in 2010 and a further 11 % in the near-term future. In addition, the expansion of palm plantations leads to local increases in ozone deposition velocities of up to 20 %. The net result of these changes is that oil palm expansion in SEA increases surface O3 by up to 3.5 ppbv over dense urban regions, and in the near-term future could rise more than 4.5 ppbv above baseline levels. Biogenic secondary organic aerosol loadings also increase by up to 1 µg m-3 due to oil palm expansion, and could increase by a further 2.5 µg m-3 in the near-term future. Our analysis indicates that while the impact of recent oil palm expansion on air quality in the region has been significant, the retrieval error and sensitivity of the current constellation of satellite measurements limit our ability to observe these impacts from space. Oil palm expansion is likely to continue to degrade air quality in the region in the coming decade and hinder efforts to achieve air quality regulations in major urban areas such as Kuala Lumpur and Singapore.

  8. Review of Singapore's air quality and greenhouse gas emissions: current situation and opportunities.

    PubMed

    Velasco, Erik; Roth, Matthias

    2012-06-01

    Singapore has many environmental accomplishments to its credit. Accessible data on air quality indicates that all criteria pollutants satisfy both U.S. Environmental Protection Agency (EPA) and World Health Organization (WHO) air quality standards and guidelines, respectively. The exception is PM2.5 (particles with an aerodynamic diameter < or = 2.5 microm), which is not currently considered a criteria pollutant in Singapore but may potentially be the major local air pollution problem and cause for health concern. Levels of other airborne pollutants as well as their physical and chemical processes associated with local formation, transformation, dispersion, and deposition are not known. According to available emission inventories, Singapore contribution to the total atmospheric pollution and carbon budget at the regional and global scales is small. Emissions per unit gross domestic product (GDP) are low compared with other countries, although Singapore's per-capita GDP and per-capita emissions are among the highest in the world. Some information is available on health effects, but the impacts on the ecosystem and the complex interactions of air pollution and climate change at a regional level are also unknown. This article reviews existing available information on atmospheric pollution and greenhouse gas emissions and proposes a multipollutant approach to greenhouse gas mitigation and local air quality. Singapore, by reducing its per-capita emissions, increasing the availability of information (e.g., through regularly publishing hourly and/or daily PM2.5 concentrations) and developing a research agenda in this area, would likely be seen to be a model of a high-density, livable, and sustainable city in Southeast Asia and other tropical regions worldwide.

  9. High-speed counter-current chromatography in separation of betacyanins from flowers of red Gomphrena globosa L. cultivars.

    PubMed

    Spórna-Kucab, Aneta; Hołda, Ewelina; Wybraniec, Sławomir

    2016-10-15

    Antioxidant and possible chemopreventive properties of betacyanins, natural plant pigments, contribute to a growing interest in their chemistry and separation. Mixtures of betacyanins from fresh red Gomphrena globosa L. cultivar flowers were separated in three highly polar solvent systems by high-speed counter-current chromatography (HSCCC) for a direct comparison of their separation effectiveness. Three samples of crude extract (600mg) were run on semi-preparative scale in solvent system (NH4)2SO4soln - EtOH (2.0:1.0, v/v) (system I) and the modified systems: EtOH - ACN - 1-PrOH - (NH4)2SO4satd.soln - H2O (0.5:0.5:0.5:1.2:1.0, v/v/v/v/v) (system II) and EtOH - ACN - (NH4)2SO4satd.soln - H2O (1.0:0.5:1.2:1.0, v/v/v/v) (system III). The systems were used in the head-to-tail (system I) or tail-to-head (systems II and III) mode. The flow rate of the mobile phase was 2.0ml/min and the column rotation speed was 860rpm. The retention of the stationary phase was 52.0% (system I), 80.2% (systems II) and 82.0% (system III). The betacyanins in the crude extract as well as HSCCC fractions were analyzed by LC-MS/MS. System I was applied for the first time in HSCCC for the separation of betacyanins and was quite effective in separation of amaranthine and 17-decarboxy-amaranthine (αI=1.19) and very effective for 17-decarboxy-amaranthine and betanin (αI=2.20). Modification of system I with acetonitrile (system III) as well as acetonitrile and propanol (system II) increased their separation effectiveness. Systems II-III enable complete separation of 17-decarboxy-amaranthine (KD(II)=2.94,KD(III)=2.42) and betanin (KD(II)=2.46,KD(III)=1.10) as well as betanin and gomphrenin I (KD(II)=1.62, KD(III)=0.74). In addition, separation of amaranthine and 17-decarboxy-amaranthine is the most effective in system II, therefore, this system proved to be the most suitable for the separation of all polar betacyanins.

  10. Learning Styles of Pilots Currently Qualified in United States Air Force Aircraft

    NASA Technical Reports Server (NTRS)

    Kanske, Craig A.

    2001-01-01

    Kolb's Learning Style Inventory was used to identify the predominant learning styles of pilots currently qualified in United States Air Force aircraft. The results indicate that these pilots show a significant preference for facts and things over people and feelings. By understanding the preferred learning styles of the target population, course material can be developed that take advantage of the strengths of these learning styles. This information can be especially useful in the future design of cockpit resource management training. The training program can be developed to demonstrate both that there are different learning styles and that it is possible to take advantage of the relative strengths of each of these learning styles.

  11. Some features of horizontally oriented low-current electric arc in air

    SciTech Connect

    Tazmeev, Kh. K.; Tazmeev, B. Kh.

    2016-01-15

    The properties of an electric arc operating in open air at currents of lower than 1 A were studied experimentally. The rod cathode was oriented horizontally. Cylindrical rods and plane plates either installed strictly vertically in front of the cathode end or tilted at a certain angle served as the anode. It is shown that, with such an electrode configuration, it is possible to form a discharge channel much longer than the electrode gap length. Regimes of regular oscillations are revealed, and conditions for their appearance are established. The electric field strength in the arc column and the electron temperature near the anode are calculated.

  12. Validation Test Report for NFLUX PRE: Validation of Specific Humidity, Surface Air Temperature, and Wind Speed Precision and Accuracy for Assimilation into Global and Regional Models

    DTIC Science & Technology

    2013-12-17

    NRL/MR/7320--14-9523 Validation Test Report for NFLUX PRE: Validation of Specific Humidity, Surface Air Temperature, and Wind Speed...REPORT DATE 17 DEC 2013 2. REPORT TYPE 3. DATES COVERED 00-00-2013 to 00-00-2013 4. TITLE AND SUBTITLE Validation Test Report for NFLUX PRE...products overlay the existing global product estimate. The location of the observations is tested to see if it falls within one of the regional areas

  13. A study of aerosol entrapment and the influence of wind speed, chamber design and foam density on polyurethane foam passive air samplers used for persistent organic pollutants.

    PubMed

    Chaemfa, Chakra; Wild, Edward; Davison, Brian; Barber, Jonathan L; Jones, Kevin C

    2009-06-01

    Polyurethane foam disks are a cheap and versatile tool for sampling persistent organic pollutants (POPs) from the air in ambient, occupational and indoor settings. This study provides important background information on the ways in which the performance of these commonly used passive air samplers may be influenced by the key environmental variables of wind speed and aerosol entrapment. Studies were performed in the field, a wind tunnel and with microscopy techniques, to investigate deployment conditions and foam density influence on gas phase sampling rates (not obtained in this study) and aerosol trapping. The study showed: wind speed inside the sampler is greater on the upper side of the sampling disk than the lower side and tethered samplers have higher wind speeds across the upper and lower surfaces of the foam disk at a wind speed > or = 4 m/s; particles are trapped on the foam surface and within the body of the foam disk; fine (<1 um) particles can form clusters of larger size inside the foam matrix. Whilst primarily designed to sample gas phase POPs, entrapment of particles ensures some 'sampling' of particle bound POPs species, such as higher molecular weight PAHs and PCDD/Fs. Further work is required to investigate how quantitative such entrapment or 'sampling' is under different ambient conditions, and with different aerosol sizes and types.

  14. Material Properties Governing Co-Current Flame Spread: The Effect of Air Entrainment

    NASA Technical Reports Server (NTRS)

    Coutin, Mickael; Rangwala, Ali S.; Torero, Jose L.; Buckley, Steven G.

    2003-01-01

    A study on the effects of lateral air entrainment on an upward spreading flame has been conducted. The fuel is a flat PMMA plate of constant length and thickness but variable width. Video images and surface temperatures have allowed establishing the progression of the pyrolyis front and on the flame stand-off distance. These measurements have been incorporated into a theoretical formulation to establish characteristic mass transfer numbers ("B" numbers). The mass transfer number is deemed as a material related parameter that could be used to assess the potential of a material to sustain co-current flame spread. The experimental results show that the theoretical formulation fails to describe heat exchange between the flame and the surface. The discrepancies seem to be associated to lateral air entrainment that lifts the flame off the surface and leads to an over estimation of the local mass transfer number. Particle Image Velocimetry (PIV) measurements are in the process of being acquired. These measurements are intended to provide insight on the effect of air entrainment on the flame stand-off distance. A brief description of the methodology to be followed is presented here.

  15. Separation of betalains from berries of Phytolacca americana by ion-pair high-speed counter-current chromatography.

    PubMed

    Jerz, Gerold; Skotzki, Tanja; Fiege, Kathrin; Winterhalter, Peter; Wybraniec, Sławomir

    2008-05-09

    The first preparative fractionation of betalain pigments by means of ion-pair high-speed counter-current chromatography (IP-HSCCC) from berry extracts of Phytolacca americana (Phytolaccaceae) is presented. A novel HSCCC solvent system consisting of 1-butanol-acetonitrile-water (5:1:6, v/v/v) was applied using ion-pair forming trifluoroacetic acid at low concentration (0.7%, v/v). Affinity of polar betacyanins and betaxanthins to the organic stationary phase of the biphasic HSCCC solvent mixture was considerably improved. Partitioning coefficient values and influence of increasing trifluoroacetic acid additions to the biphasic solvent mixture were measured for all identified betacyanins and betaxanthins. Gentle separation by IP-HSCCC of the injected pigment extract (900 mg) yielded sufficient amounts of the principal pigments 15S-betanin/15R-isobetanin. The pure epimers separated by C18-HPLC were immediately studied by one- and two-dimensional NMR. In the recovered fractions, minor concentrated betacyanins and betaxanthins were significantly enriched by IP-HSCCC and were detected for the first time in the extracts of P. americana. IP-HSCCC and C18-HPLC were shown to be complementary techniques in the isolation procedure of recovering minor concentrated, highly polar and chemically instable betacyanins and betaxanthin from complex plant matrices. Altogether, identification of 17 betalains was achieved by HPLC-diode array detection-electrospray ionization MS/MS in the HSCCC fractions with their respective isomers, also resulting in the tentative elucidation of betacyanins with novel salicylic acid substitution pattern in the berry extracts of P. americana.

  16. Preparative Separation of Main Ustilaginoidins from Rice False Smut Balls by High-Speed Counter-Current Chromatography

    PubMed Central

    Sun, Weibo; Dong, Xuejiao; Xu, Dan; Meng, Jiajia; Fu, Xiaoxiang; Wang, Xiaohan; Lai, Daowan; Zhou, Ligang; Liu, Yang

    2016-01-01

    Ustilaginoidins are bis-naphtho-γ-pyrone mycotoxins isolated from the rice false smut balls (FSBs) infected by the pathogen Villosiclava virens in rice spikelets on panicles. In order to obtain large amounts of pure ustilaginoidins to further evaluate their biological activities and functions, phytotoxicity on rice, security to human and animals as well as to accelerate their applications as pharmaceuticals, preparative high-speed counter-current chromatography (HSCCC) was successfully applied to the isolation and purification of seven bis-naphtho-γ-pyrone mycotoxins, namely ustilaginoidins A (1), G (2), B (3), H (4), I (5), C (6), and J (7) from the ethyl acetate crude extract of rice FSBs. Both 1 and 2 were prepared by HSCCC from the low-polarity fraction of the crude extract using the two-phase solvent system composed of n-hexane-ethyl acetate-methanol-water at the volume ratio of 6.5:3.5:5.0:5.0. Similarly, 3, 4 and 5 were prepared from the medium-polarity fraction using the system at the volume ratio of 4.0:5.0:5.0:6.0, and 6 and 7 were prepared from the higher-polarity fraction using the system at volume ratio of 3.0:5.0:4.0:6.7. A total of 6.2 mg of 1, 5.1 mg of 2, 3.9 mg of 3, 1.2 mg of 4, 5.7 mg of 5, 3.5 mg of 6, and 6.1 mg of 7 with purities of 88%, 82%, 91%, 80%, 92%, 81% and 83%, respectively, were yielded from total 62 mg fraction samples in three independent HSCCC runs. The structures of the purified ustilaginoidins were characterized by means of physicochemical and spectrometric analysis. PMID:26771638

  17. 75 FR 63192 - Intent To Request Renewal From OMB of One Current Public Collection of Information: Air Cargo...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-14

    ... SECURITY Transportation Security Administration Intent To Request Renewal From OMB of One Current Public Collection of Information: Air Cargo Security Requirements AGENCY: Transportation Security Administration, DHS. ACTION: 60-day notice. SUMMARY: The Transportation Security Administration (TSA) invites...

  18. Analysis of the Magneto-Hydrodynamic (MHD) Energy Bypass Engine for High-Speed Air-Breathing Propulsion

    NASA Technical Reports Server (NTRS)

    Riggins, David W.

    2002-01-01

    The performance of the MHD energy bypass air-breathing engine for high-speed propulsion is analyzed in this investigation. This engine is a specific type of the general class of inverse cycle engines. In this paper, the general relationship between engine performance (specific impulse and specific thrust) and the overall total pressure ratio through an engine (from inlet plane to exit plane) is first developed and illustrated. Engines with large total pressure decreases, regardless of cause or source, are seen to have exponentially decreasing performance. The ideal inverse cycle engine (of which the MHD engine is a sub-set) is then demonstrated to have a significant total pressure decrease across the engine; this total pressure decrease is cycle-driven, degrades rapidly with energy bypass ratio, and is independent of any irreversibility. The ideal MHD engine (inverse cycle engine with no irreversibility other than that inherent in the MHD work interaction processes) is next examined and is seen to have an additional large total pressure decrease due to MHD-generated irreversibility in the decelerator and the accelerator. This irreversibility mainly occurs in the deceleration process. Both inherent total pressure losses (inverse cycle and MHD irreversibility) result in a significant narrowing of the performance capability of the MHD bypass engine. The fundamental characteristics of MHD flow acceleration and flow deceleration from the standpoint of irreversibility and second-law constraints are next examined in order to clarify issues regarding flow losses and parameter selection in the MM modules. Severe constraints are seen to exist in the decelerator in terms of allowable deceleration Mach numbers and volumetric (length) required for meaningful energy bypass (work interaction). Considerable difficulties are also encountered and discussed due to thermal/work choking phenomena associated with the deceleration process. Lastly, full engine simulations utilizing inlet

  19. Simultaneous particle image velocimetry and chemiluminescence visualization of millisecond-pulsed current-voltage-induced perturbations of a premixed propane/air flame

    NASA Astrophysics Data System (ADS)

    Schmidt, Jacob; Kostka, Stanislav; Lynch, Amy; Ganguly, Biswa

    2011-09-01

    The effects of millisecond-wide, pulsed current-voltage-induced behavior in premixed laminar flames have been investigated through the simultaneous collection of particle image velocimetry (PIV) and chemiluminescence data with particular attention paid to the onset mechanisms. Disturbances caused by applied voltages of 2 kV over a 30-mm gap to a downward propagating, atmospheric pressure, premixed propane/air flame with a flow speed near 2 m/s and an equivalence ratio of 1.06 are investigated. The combined PIV and chemiluminescence-based experimental data show the observed disturbance originates only in or near the cathode fall region very close to the burner base. The data also suggest that the coupling mechanism responsible for the flame disturbance behavior is fluidic in nature, developing from the radial positive chemi-ion distribution and an ion-drift current-induced net body force that acts along the annular space discharge distribution in the reaction zone in or near the cathode fall. This net body force causes a reduction in flow speed above these near cathodic regions causing the base of the flame to laterally spread. Also, this effect seems to produce a velocity gradient leading to the transition of a laminar flame to turbulent combustion for higher applied current-voltage conditions as shown in previous work (Marcum and Ganguly in Combust Flame 143:27-36, 2005; Schmidt and Ganguly in 48th AIAA aerospace sciences meeting. Orlando, 2010).

  20. Isolation of all-trans lycopene by high-speed counter-current chromatography using a temperature-controlled solvent system.

    PubMed

    Baldermann, Susanne; Ropeter, Katharina; Köhler, Nils; Fleischmann, Peter

    2008-05-23

    The effect of solvent system, partition coefficient, retention of stationary phase, column, revolution speed, and flow rate of mobile phase are well known parameters to effect HSCCC (high-speed counter-current chromatography) separations. Temperature effects on chromatographic techniques like HPLC and GC are well studied, but the influence of temperature on CCC solvent systems is hardly investigated. This paper presents the influence of temperature on several key parameters (partition coefficient, settling time, volume ratios) in the hydrophobic HSCCC solvent system hexane:dichloromethane:acetonitrile (30:11:18, v/v/v) used for the isolation of lycopene from tomato paste at 10, 15, 20 and 25 degrees C.

  1. A Brief Study of the Speed Reduction of Overtaking Airplanes by Means of Air Brakes, Special Report

    NASA Technical Reports Server (NTRS)

    Pearson, H. A.; Amderspm. R. F.

    1942-01-01

    As an aid to airplane designers interested in providing pursuit airplanes with decelerating devices intended to increase the firing time when overtaking another airplane, formulas are given relating the pertinent distances and speeds in horizontal flight to the drag increase required. Charts are given for a representative parasite-drag coefficient from which the drag increase, the time gained, and the closing distance may be found. The charts are made up for three values of the ratio of the final speed of the pursuing airplane to the speed of the pursued airplane and for several values of the ratio of the speed of the pursued airplane to the initial speed of the pursuing airplane. Charts are also given indicating the drag increases obtainable with double split flaps and with conventional propellers. The use of the charts is illustrated by an example in which it is indicated that either double split flaps or, under certain ideal conditions, reversible propellers should provide the speed reductions required.

  2. Impact of cercal air currents on singing motor pattern generation in the cricket (Gryllus bimaculatus DeGeer).

    PubMed

    Jacob, Pedro F; Hedwig, Berthold

    2015-11-01

    The cercal system of crickets detects low-frequency air currents produced by approaching predators and self-generated air currents during singing, which may provide sensory feedback to the singing motor network. We analyzed the effect of cercal stimulation on singing motor pattern generation to reveal the response of a singing interneuron to predator-like signals and to elucidate the possible role of self-generated air currents during singing. In fictive singing males, we recorded an interneuron of the singing network while applying air currents to the cerci; additionally, we analyzed the effect of abolishing the cercal system in freely singing males. In fictively singing crickets, the effect of short air stimuli is either to terminate prematurely or to lengthen the interchirp interval, depending on their phase in the chirp cycle. Within our stimulation paradigm, air stimuli of different velocities and durations always elicited an inhibitory postsynaptic potential in the singing interneuron. Current injection in the singing interneuron elicited singing motor activity, even during the air current-evoked inhibitory input from the cercal pathway. The disruptive effects of air stimuli on the fictive singing pattern and the inhibitory response of the singing interneuron point toward the cercal system being involved in initiating avoidance responses in singing crickets, according to the established role of cerci in a predator escape pathway. After abolishing the activity of the cercal system, the timing of natural singing activity was not significantly altered. Our study provides no evidence that self-generated cercal sensory activity has a feedback function for singing motor pattern generation.

  3. Impact of cercal air currents on singing motor pattern generation in the cricket (Gryllus bimaculatus DeGeer)

    PubMed Central

    2015-01-01

    The cercal system of crickets detects low-frequency air currents produced by approaching predators and self-generated air currents during singing, which may provide sensory feedback to the singing motor network. We analyzed the effect of cercal stimulation on singing motor pattern generation to reveal the response of a singing interneuron to predator-like signals and to elucidate the possible role of self-generated air currents during singing. In fictive singing males, we recorded an interneuron of the singing network while applying air currents to the cerci; additionally, we analyzed the effect of abolishing the cercal system in freely singing males. In fictively singing crickets, the effect of short air stimuli is either to terminate prematurely or to lengthen the interchirp interval, depending on their phase in the chirp cycle. Within our stimulation paradigm, air stimuli of different velocities and durations always elicited an inhibitory postsynaptic potential in the singing interneuron. Current injection in the singing interneuron elicited singing motor activity, even during the air current-evoked inhibitory input from the cercal pathway. The disruptive effects of air stimuli on the fictive singing pattern and the inhibitory response of the singing interneuron point toward the cercal system being involved in initiating avoidance responses in singing crickets, according to the established role of cerci in a predator escape pathway. After abolishing the activity of the cercal system, the timing of natural singing activity was not significantly altered. Our study provides no evidence that self-generated cercal sensory activity has a feedback function for singing motor pattern generation. PMID:26334014

  4. Speed limits of aircraft

    NASA Technical Reports Server (NTRS)

    Everling, E

    1923-01-01

    This paper is restricted to the question of attainable speed limits and attacks the problem from different angles. Theoretical limits due to air resistance are presented along with design factors which may affect speed such as wing loads, wing areas, wing section shifting, landing speeds, drag-lift ratios, and power coefficients.

  5. A simple tool for tubing modification to improve spiral high-speed counter-current chromatography for protein purification

    PubMed Central

    Ito, Yoichiro; Ma, Xiaofeng; Clary, Robert

    2016-01-01

    A simple tool is introduced which can modify the shape of tubing to enhance the partition efficiency in high-speed countercurrent chromatography. It consists of a pair of interlocking identical gears, each coaxially holding a pressing wheel to intermittently compress plastic tubing in 0 – 10 mm length at every 1 cm interval. The performance of the processed tubing is examined in protein separation with 1.6 mm ID PTFE tubing intermittently pressed in 3 mm and 10 mm width both at 10 mm intervals at various flow rates and revolution speeds. A series of experiments was performed with a polymer phase system composed of polyethylene glycol and dibasic potassium phosphate each at 12.5% (w/w) in deionized water using three protein samples. Overall results clearly demonstrate that the compressed tubing can yield substantially higher peak resolution than the non-processed tubing. The simple tubing modifier is very useful for separation of proteins with high-speed countercurrent chromatography. PMID:27818942

  6. A simple tool for tubing modification to improve spiral high-speed counter-current chromatography for protein purification.

    PubMed

    Ito, Yoichiro; Ma, Xiaofeng; Clary, Robert

    2016-01-01

    A simple tool is introduced which can modify the shape of tubing to enhance the partition efficiency in high-speed countercurrent chromatography. It consists of a pair of interlocking identical gears, each coaxially holding a pressing wheel to intermittently compress plastic tubing in 0 - 10 mm length at every 1 cm interval. The performance of the processed tubing is examined in protein separation with 1.6 mm ID PTFE tubing intermittently pressed in 3 mm and 10 mm width both at 10 mm intervals at various flow rates and revolution speeds. A series of experiments was performed with a polymer phase system composed of polyethylene glycol and dibasic potassium phosphate each at 12.5% (w/w) in deionized water using three protein samples. Overall results clearly demonstrate that the compressed tubing can yield substantially higher peak resolution than the non-processed tubing. The simple tubing modifier is very useful for separation of proteins with high-speed countercurrent chromatography.

  7. Isolation of the new minor constituents dihydropyranochromone and furanocoumarin from fruits of Peucedanum alsaticum L. by high-speed counter-current chromatography.

    PubMed

    Skalicka-Woźniak, Krystyna; Mroczek, Tomasz; Garrard, Ian; Głowniak, Kazimierz

    2009-07-24

    A preparative high-speed counter-current chromatography (HSCCC) method was successfully used for isolation of two new minor compounds--alsaticol and alsaticocoumarin A. A two-phase solvent system composed of n-hexane-ethyl acetate-methanol-water (1:1:1:1) was developed. Compounds were obtained from the dichloromethane extract of Peucedanum alsaticum fruits and their identification was performed with NMR and MS methods. Optimized HSCCC offers a rapid method of obtaining new natural compounds.

  8. Combinative application of pH-zone-refining and conventional high-speed counter-current chromatography for preparative separation of caged polyprenylated xanthones from gamboge.

    PubMed

    Xu, Min; Fu, Wenwei; Zhang, Baojun; Tan, Hongsheng; Xiu, Yanfeng; Xu, Hongxi

    2016-02-01

    An efficient method for the preparative separation of four structurally similar caged xanthones from the crude extracts of gamboge was established, which involves the combination of pH-zone-refining counter-current chromatography and conventional high-speed counter-current chromatography for the first time. pH-zone-refining counter-current chromatography was performed with the solvent system composed of n-hexane/ethyl acetate/methanol/water (7:3:8:2, v/v/v/v), where 0.1% trifluoroacetic acid was added to the upper organic stationary phase as a retainer and 0.03% triethylamine was added to the aqueous mobile phase as an eluter. From 3.157 g of the crude extract, 1.134 g of gambogic acid, 180.5 mg of gambogenic acid and 572.9 mg of a mixture of two other caged polyprenylated xanthones were obtained. The mixture was further separated by conventional high-speed counter-current chromatography with a solvent system composed of n-hexane/ethyl acetate/methanol/water (5:5:10:5, v/v/v/v) and n-hexane/methyl tert-butyl ether/acetonitrile/water (8:2:6:4,v/v/v/v), yielding 11.6 mg of isogambogenic acid and 10.4 mg of β-morellic acid from 218.0 mg of the mixture, respectively. The purities of all four of the compounds were over 95%, as determined by high-performance liquid chromatography, and the chemical structures of the four compounds were confirmed by electrospray ionization mass spectrometry and NMR spectroscopy. The combinative application of pH-zone-refining counter-current chromatography and conventional high-speed counter-current chromatography shows great advantages in isolating and enriching the caged polyprenylated xanthones.

  9. Utilization of a hardware-in-the-loop-system for controlling the speed of an eddy current brake

    NASA Astrophysics Data System (ADS)

    Kramer, V.; Mishra, R.; Brauneis, P.; Schmidt, K.

    2012-05-01

    Rapid prototyping with a hardware-in-the-loop (HiL) system significantly reduces the development time for controller-type testing and is widely used in various fields of engineering. In this discussion, a controller is developed for a speed control application utilizing a magnetic brake. A mathematical model is presented first that has been implemented in Matlab/ Simulink. The controller development steps are described that will form the basis of a control system for a wind turbine. A test is carried out that simulates the wind turbine inertial load.

  10. Comparative histopathological analysis of human pulps after class I cavity preparation with a high-speed air-turbine handpiece or Er:YAG laser

    NASA Astrophysics Data System (ADS)

    Kina, J. F.; Benitez, P. C.; Lizarelli, R. F. Z.; Bagnato, V. S.; Martinez, T. C.; Oliveira, C. F.; Hebling, J.; Costa, C. A. S.

    2008-12-01

    The purpose of this study was to comparatively evaluate the response of human pulps after cavity preparation with different devices. Deep class I cavities were prepared in sound mandibular premolars using either a high-speed air-turbine handpiece (Group 1) or an Er:YAG laser (Group 2). Following total acid etching and the application of an adhesive system, all cavities were restored with composite resin. Fifteen days after the clinical procedure, the teeth were extracted and processed for analysis under optical microscopy. In Group 1 in which the average for the remaining dentin thickness (RDT) between the cavity floor and the coronal pulp was 909.5 μm, a discrete inflammatory response occurred in only one specimen with an RDT of 214 μm. However, tissue disorganization occurred in most specimens. In Group 2 (average RDT = 935.2 μm), the discrete inflammatory pulp response was observed in only one specimen (average RDT = 413 μm). It may be concluded that the high-speed air-turbine handpiece caused greater structural alterations in the pulp, although without inducing inflammatory processes.

  11. Growth and characterization of high current density, high-speed InAs/AlSb resonant tunneling diodes

    NASA Technical Reports Server (NTRS)

    Soderstrom, J. R.; Brown, E. R.; Parker, C. D.; Mahoney, L. J.; Yao, J. Y.

    1991-01-01

    InAs/AlSb double-barrier resonant tunneling diodes with peak current densities up to 370,000 A/sq cm and high peak-to-valley current ratios of 3.2 at room temperature have been fabricated. The peak current density is well-explained by a stationary-state transport model with the two-band envelope function approximation. The valley current density predicted by this model is less than the experimental value by a factor that is typical of the discrepancy found in other double-barrier structures. It is concluded that threading dislocations are largely inactive in the resonant tunneling process.

  12. Observed air-sea interactions in tropical cyclone Isaac over Loop Current mesoscale eddy features

    NASA Astrophysics Data System (ADS)

    Jaimes, Benjamin; Shay, Lynn K.; Brewster, Jodi K.

    2016-12-01

    Air-sea interactions during the intensification of tropical storm Isaac (2012) into a hurricane, over warm oceanic mesoscale eddy features, are investigated using airborne oceanographic and atmospheric profilers. Understanding these complex interactions is critical to correctly evaluating and predicting storm effects on marine and coastal facilities in the Gulf of Mexico, wind-driven mixing and transport of suspended matter throughout the water column, and oceanic feedbacks on storm intensity. Isaac strengthened as it moved over a Loop Current warm-core eddy (WCE) where sea surface warming (positive feedback mechanism) of ∼0.5 °C was measured over a 12-h interval. Enhanced bulk enthalpy fluxes were estimated during this intensification stage due to an increase in moisture disequilibrium between the ocean and atmosphere. These results support the hypothesis that enhanced buoyant forcing from the ocean is an important intensification mechanism in tropical cyclones over warm oceanic mesoscale eddy features. Larger values in equivalent potential temperature (θE = 365   ∘K) were measured inside the hurricane boundary layer (HBL) over the WCE, where the vertical shear in horizontal currents (δV) remained stable and the ensuing cooling vertical mixing was negligible; smaller values in θE (355   ∘K) were measured over an oceanic frontal cyclone, where vertical mixing and upper-ocean cooling were more intense due to instability development in δV . Thus, correctly representing oceanic mesoscale eddy features in coupled numerical models is important to accurately reproduce oceanic responses to tropical cyclone forcing, as well as the contrasting thermodynamic forcing of the HBL that often causes storm intensity fluctuations over these warm oceanic regimes.

  13. Occurrence of currently used pesticides in ambient air of Centre Region (France)

    NASA Astrophysics Data System (ADS)

    Coscollà, Clara; Colin, Patrice; Yahyaoui, Abderrazak; Petrique, Olivier; Yusà, Vicent; Mellouki, Abdelwahid; Pastor, Agustin

    2010-10-01

    Ambient air samples were collected, from 2006 to 2008 at three rural and two urban sites in Centre Region (France) and analyzed for 56 currently used pesticides (CUPs), of which 41 were detected. The four CUPs most frequently detected were the herbicides trifluralin, acetochlor and pendimethalin and the fungicide chlorothalonil, which were found with frequencies ranging between 52 and 78%, and with average concentrations of 1.93, 1.32, 1.84 and 12.15 ng m -3, respectively. Among the detected pesticides, concentrations of eight fungicides (spiroxamine, fenpropimorph, cyprodinil, tolyfluanid, epoxiconazole, vinchlozolin, fluazinam, fludioxinil), two insecticides (propargite, ethoprophos), and one herbicide (oxyfluorfen) are, to our knowledge, reported for the first time in the literature. The majority of the CUPs showed a seasonal trend, with most of the detections and the highest concentrations occurring during the spring and early summer. The most important pesticides detected were related to arable crops and fruit orchards, the main cultures in this region, highlighting the fact that the main sources come from local applications. Minor differences were found in the profiles of pesticides within rural areas and between rural and urban areas.

  14. Particle size distributions of currently used pesticides in ambient air of an agricultural Mediterranean area

    NASA Astrophysics Data System (ADS)

    Coscollà, Clara; Muñoz, Amalia; Borrás, Esther; Vera, Teresa; Ródenas, Milagros; Yusà, Vicent

    2014-10-01

    This work presents first data on the particle size distribution of 16 pesticides currently used in Mediterranean agriculture in the atmosphere. Particulate matter air samples were collected using a cascade impactor distributed into four size fractions in a rural site of Valencia Region, during July to September in 2012 and from May to July in 2013. A total of 16 pesticides were detected, including six fungicides, seven insecticides and three herbicides. The total concentrations in the particulate phase (TSP: Total Suspended Particulate) ranged from 3.5 to 383.1 pg m-3. Most of the pesticides (such as carbendazim, tebuconazole, chlorpyrifos-ethyl and chlorpyrifos-methyl) were accumulated in the ultrafine-fine (<1 μm) and coarse (2.5-10 μm) particle size fractions. Others like omethoate, dimethoate and malathion were presented only in the ultrafine-fine size fraction (<1 μm). Finally, diuron, diphenylamine and terbuthylazine-desethyl-2-OH also show a bimodal distribution but mainly in the coarse size fractions.

  15. On the Opposing Roles of Air Temperature and Wind Speed Variability in Flux Estimation over Partially Vegetated Landscapes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In semi-arid regions the evapotranspiration rates depend on both the spatial distribution of the vegetation and the soil moisture, for a given radiation regime. Remote sensing can provide high resolution spatially distributed estimation of land surface states. However, data on the near surface air p...

  16. Parasitic effects of air-gap through-silicon vias in high-speed three-dimensional integrated circuits

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoxian; Zhu, Zhangming; Yang, Yintang; Ding, Ruixue; Li, Yuejin

    2016-11-01

    In this paper, ground-signal-ground type through-silicon vias (TSVs) exploiting air gaps as insulation layers are designed, analyzed and simulated for applications in millimeter wave. The compact wideband equivalent-circuit model and passive elements (RLGC) parameters based on the physical parameters are presented with the frequency up to 100 GHz. The parasitic capacitance of TSVs can be approximated as the dielectric capacitance of air gaps when the thickness of air gaps is greater than 0.75 μm. Therefore, the applied voltage of TSVs only needs to achieve the flatband voltage, and there is no need to indicate the threshold voltage. This is due to the small permittivity of air gaps. The proposed model shows good agreement with the simulation results of ADS and Ansoft’s HFSS over a wide frequency range. Project supported by the National Basic Research Program of China (Grant No. 2014CB339900) and the National Natural Science Foundation of China (Grant Nos. 61376039, 61334003, 61574104, and 61474088).

  17. Unusual features of negative leaders' development in natural lightning, according to simultaneous records of current, electric field, luminosity, and high-speed video

    NASA Astrophysics Data System (ADS)

    Guimaraes, Miguel; Arcanjo, Marcelo; Murta Vale, Maria Helena; Visacro, Silverio

    2017-02-01

    The development of downward and upward leaders that formed two negative cloud-to-ground return strokes in natural lightning, spaced only about 200 µs apart and terminating on ground only a few hundred meters away, was monitored at Morro do Cachimbo Station, Brazil. The simultaneous records of current, close electric field, relative luminosity, and corresponding high-speed video frames (sampling rate of 20,000 frames per second) reveal that the initiation of the first return stroke interfered in the development of the second negative leader, leading it to an apparent continuous development before the attachment, without stepping, and at a regular two-dimensional speed. Based on the experimental data, the formation processes of the two return strokes are discussed, and plausible interpretations for their development are provided.

  18. Influence of air pressure on the detailed characteristics of corona current pulse due to positive corona discharge

    NASA Astrophysics Data System (ADS)

    Li, Xuebao; Cui, Xiang; Lu, Tiebing; Li, Dayong; Chen, Bo; Fu, Yuke

    2016-12-01

    Air pressure is one of the main factors affecting the corona discharge and influence of air pressure should be carefully investigated. In order to obtain the influence of air pressure on the detailed characteristics of corona current pulse, such as pulse amplitude, rise time, pulse width, duration time, and pulse repetition frequency, a systematic investigation is carried out though a coaxial conductor-cylinder electrode structure with a corona point on the conductor. The electrodes are put into a pressure chamber for adjusting the air pressure. The results show that pulse amplitude increases with the increase of air pressure, while rise time, pulse width, duration time, and pulse repetition frequency decrease significantly at the same ratio between applied voltage and onset voltage (U/U0). Empirical formulas for the pulse amplitude, rise time, pulse width, and duration time varying with air pressure are first established. On the basis of the development of positive corona discharge, the influence of air pressure on the typical time intervals and experimental results are qualitatively explained.

  19. Atmospheric concentrations of current-use pesticides across south-central Ontario using monthly-resolved passive air samplers

    NASA Astrophysics Data System (ADS)

    Gouin, T.; Shoeib, M.; Harner, T.

    In this study passive air samplers (PAS) were deployed on a monthly basis at a number of sites along a south-north transect, extending 700 km north from Toronto, Ontario, characterizing an urban-agricultural-forested gradient, to investigate the spatial and temporal trends of current-use pesticides (CUPs), between spring 2003 and spring 2004. The most frequently detected CUPs were chlorpyrifos, dacthal, trifluralin, and α-endosulfan. Highest air concentrations of chlorpyrifos were observed in May, whereas α-endosulfan and dacthal peaked in July and August, reflecting differences in usage patterns. At the agricultural site, representing the source region of CUPs, chlorpyrifos air concentrations (pg m -3) varied from 2700 to 3.2 and α-endulsulfan from 1600 to 19. The most frequently detected legacy pesticides were the hexachlorocylcohexanes (α-HCH and γ-HCH). For the forested sites, located on the Precambrian Shield, a region with limited agricultural activity, seasonal differences were less pronounced and air concentrations were observed to be much lower. For instance, air concentrations (pg m -3) of chlorpyrifos and α-endosulfan ranged from 7.6 to 0.3 and 50 to 2.0, respectively. By combining PAS data with trajectory air shed maps it is demonstrated that potential source-receptor relationships can be assessed. Air shed maps produced in this study indicate a potential of increased deposition of CUPs to Lake Erie and Lake Ontario.

  20. A ballistic investigation of the aerodynamic characteristics of a blunt vehicle at hypersonic speeds in carbon dioxide and air

    NASA Technical Reports Server (NTRS)

    Packard, James D.; Griffith, Wayland C.; Yates, Leslie A.; Strawa, Anthony W.

    1992-01-01

    Missions to Mars require the successful development of aerobraking technology, and therefore a blunt cone representative of aerobrake shapes is investigated. Ballistic tests of the Pioneer Venus configuration are conducted in carbon dioxide and air at Mach numbers from 7 to 20 and Reynolds numbers from 0.1 x 10 exp 5 to 4 x 10 exp 6. Experimental results show that for defined conditions aerodynamic research can be conducted in air rather than carbon dioxide, providing savings in time and money. In addition, the results offer a prediction of flight aerodynamics during entry into the Martian atmosphere. Also discussed is a comparison of results from two data-reduction techniques showing that a five-degree-of-freedom routine employing weighted least-squares with differential corrections analyzes ballistic data more accurately.

  1. Toward a US National Air Quality Forecast Capability: Current and Planned Capabilities

    EPA Science Inventory

    As mandated by Congress, NOAA is establishing a US national air quality forecast capability. This capability is being built with EPA, to provide air quality forecast information with enough accuracy and lead-time so that people can take actions to limit harmful effects of poor a...

  2. Current State of the Evidence: Air Pollution Impacts on Human Health

    EPA Science Inventory

    Epidemiologic studies have demonstrated a consistent association between ambient levels of air pollution and adverse human health effects, including mortality and morbidity. Many of these studies have relied on the US Air Quality System (AQS) for exposure assessment. The AQS is a...

  3. Impact of fuel quality regulation and speed reductions on shipping emissions: implications for climate and air quality.

    PubMed

    Lack, Daniel A; Cappa, Christopher D; Langridge, Justin; Bahreini, Roya; Buffaloe, Gina; Brock, Charles; Cerully, Kate; Coffman, Derek; Hayden, Katherine; Holloway, John; Lerner, Brian; Massoli, Paola; Li, Shao-Meng; McLaren, Robert; Middlebrook, Ann M; Moore, Richard; Nenes, Athanasios; Nuaaman, Ibraheem; Onasch, Timothy B; Peischl, Jeff; Perring, Anne; Quinn, Patricia K; Ryerson, Tom; Schwartz, Joshua P; Spackman, Ryan; Wofsy, Steven C; Worsnop, Doug; Xiang, Bin; Williams, Eric

    2011-10-15

    Atmospheric emissions of gas and particulate matter from a large ocean-going container vessel were sampled as it slowed and switched from high-sulfur to low-sulfur fuel as it transited into regulated coastal waters of California. Reduction in emission factors (EFs) of sulfur dioxide (SO₂), particulate matter, particulate sulfate and cloud condensation nuclei were substantial (≥ 90%). EFs for particulate organic matter decreased by 70%. Black carbon (BC) EFs were reduced by 41%. When the measured emission reductions, brought about by compliance with the California fuel quality regulation and participation in the vessel speed reduction (VSR) program, are placed in a broader context, warming from reductions in the indirect effect of SO₄ would dominate any radiative changes due to the emissions changes. Within regulated waters absolute emission reductions exceed 88% for almost all measured gas and particle phase species. The analysis presented provides direct estimations of the emissions reductions that can be realized by California fuel quality regulation and VSR program, in addition to providing new information relevant to potential health and climate impact of reduced fuel sulfur content, fuel quality and vessel speed reductions.

  4. An improved design of spiral tube assembly for separation of proteins by high-speed counter-current chromatography.

    PubMed

    Dasarathy, Dhweeja; Ito, Yoichiro

    2015-10-30

    A new spiral tube assembly was designed to improve the column capacity and partition efficiency for protein separation. This spiral tube assembly has greater column capacity than the original tubing because of an increase in radial grooves from 4 to 12 to accommodate more spiral layers and 12 narrow spots instead of 4 in each circular loop to interrupt the laminar flow that causes sample band broadening. Standard PTFE tubing (1.6mm ID) and the modified flat-twisted tubing were used as the separation column. The performances of both assemblies were compared for separating three stable test proteins including cytochrome c, myoglobin, and lysozyme using a two phase aqueous-aqueous solvent system composed of polyethylene glycol 1000 (12.5% w/w) and dibasic potassium phosphate (12.5% w/w). All samples were run at 1, 2, 3, and 5mL/min at both 800rpm and 1000rpm. The separation of these three protein samples produced high stationary phase retentions at 1, 2, and 3mL/min, yet separated efficiently at 5mL/min in 40min. After comparing the separation efficiency in terms of the peak resolutions, theoretical plate numbers, and separation times, it was determined that the flat-twisted tubing was more effective in separating these protein samples. In order to validate the efficacy of this novel assembly, a mixture of five protein samples (cytochrome c, myoglobin, ovalbumin, lysozyme, and hemoglobin) were separated, under the optimal conditions established with these three protein samples, at 1mL/min with a revolution speed of 1000rpm. There were high stationary phase retentions of around 60%, with effective separations, demonstrating the efficiency of the flat-twisted spiral tube assembly. The separation time of 6h was a limitation but can potentially be shortened by improving the strength of the column that will permit an increase in revolution speed and flow rate. This novel spiral separation column will allow rapid and efficient separation of mixtures with high yield of the

  5. Dynamic pH junction high-speed counter-current chromatography coupled with microwave-assisted extraction for online separation and purification of alkaloids from Stephania cepharantha.

    PubMed

    Yuan, Zhiquan; Xiao, Xiaohua; Li, Gongke

    2013-11-22

    A simple and efficient dynamic pH junction high-speed counter-current chromatography method was developed and further applied to the online extraction, separation and purification of alkaloids from Stephania cepharantha by coupling with microwave-assisted extraction. Mineral acid and organic base were added into the mobile phase and the sample solution, respectively, leading to the formation of a dynamic pH junction in the column and causing focus of alkaloids. Selective focus of analytes can be achieved on the basis of velocity changes of the pH junction through appropriate selection of solvent systems and optimization of additive concentrations. The extract can be directly introduced into the HSCCC for the online extraction, separation and purification of alkaloids from S. cepharantha. Continuous separation can be easily achieved with the same solvent system. Under the optimum conditions, 6.0 g original sample was extracted with 60 mL of the upper phase of hexane-ethyl acetate-methanol-water (1:1:1:1, v/v/v/v) containing 10% triethylamine under 50 °C and 400 W irradiation power for 10 min, the extracts were directly separated and purified by high-speed counter-current chromatography. A total of 5.7 mg sinomenine, 8.3mg 6,7-di-O-acetylsinococuline, 17.9 mg berbamine, 12.7 mg isotetrandrine and 14.6 mg cepharanthine were obtained with purities of 96.7%, 93.7%, 98.7%, 97.3% and 99.3%, respectively. The online method provides good selectivity to ionizable compounds and improves the separation and purification efficiency of the high-speed counter-current chromatography technique. It has good potential for separation and purification of effective compounds from natural products.

  6. The global impact of ozone on agricultural crop yields under current and future air quality legislation

    NASA Astrophysics Data System (ADS)

    Van Dingenen, Rita; Dentener, Frank J.; Raes, Frank; Krol, Maarten C.; Emberson, Lisa; Cofala, Janusz

    In this paper we evaluate the global impact of surface ozone on four types of agricultural crop. The study is based on modelled global hourly ozone fields for the year 2000 and 2030, using the global 1°×1° 2-way nested atmospheric chemical transport model (TM5). Projections for the year 2030 are based on the relatively optimistic "current legislation (CLE) scenario", i.e. assuming that currently approved air quality legislation will be fully implemented by the year 2030, without a further development of new abatement policies. For both runs, the relative yield loss due to ozone damage is evaluated based on two different indices (accumulated concentration above a 40 ppbV threshold and seasonal mean daytime ozone concentration respectively) on a global, regional and national scale. The cumulative metric appears to be far less robust than the seasonal mean, while the seasonal mean shows satisfactory agreement with measurements in Europe, the US, China and Southern India and South-East Asia. Present day global relative yield losses are estimated to range between 7% and 12% for wheat, between 6% and 16% for soybean, between 3% and 4% for rice, and between 3% and 5% for maize (range resulting from different metrics used). Taking into account possible biases in our assessment, introduced through the global application of "western" crop exposure-response functions, and through model performance in reproducing ozone-exposure metrics, our estimates may be considered as being conservative. Under the 2030 CLE scenario, the global situation is expected to deteriorate mainly for wheat (additional 2-6% loss globally) and rice (additional 1-2% loss globally). India, for which no mitigation measures have been assumed by 2030, accounts for 50% of these global increase in crop yield loss. On a regional-scale, significant reductions in crop losses by CLE-2030 are only predicted in Europe (soybean) and China (wheat). Translating these assumed yield losses into total global economic

  7. Application of a Vanishing, Quasi-Sigma, Vertical Coordinate for Simulation of High-Speed, Deep Currents over the Sigsbee Escarpment in the Gulf of Mexico

    DTIC Science & Technology

    2009-03-01

    escarpment north of roughly 26.8°N and east of 90.5°W drops from around 1400 m to a depth of about 2200 m. To the south of 26.4°N and west of...a conver- gence of isobaths to the west of the Mississippi Fan region. 2.2. Historical observations of deep currents in the Gulf of Mexico Before...occasionally approaching 1 m s ’. The speeds at the other mooring located 6 km to the west along the slope were approximately half of those at the

  8. Determination of the Effect of Current and Travel Speed of Gas Metal-Arc Welding on the Mechanical Properties of A36, A516, and A514 Steels

    DTIC Science & Technology

    1980-05-01

    Identify by block number) steel welded joints gas metal-arc welding 70. AWTRr A ass is ,eYe slob If neoemy Md identify by block numfber) This study was...impact properties of butt joint welds produced by fully automatic gas metal-arc weld - ing (GMAW) in carbon steel (A36), pressure-vessel steel (A5 16), and...with American Society for CURRENT AND TRAVEL SPEED OF GAS Testing and Materials [ASTM] A201 mild steel up to METAL-ARC WELDING ON THE MECHAN- 2 in. (51

  9. Rapid doubling of the critical current of YBa2Cu3O7-δ coated conductors for viable high-speed industrial processing

    DOE PAGES

    Leroux, M.; Kihlstrom, K. J.; Holleis, S.; ...

    2015-11-09

    Here, we demonstrate that 3.5-MeV oxygen irradiation can markedly enhance the in-field critical current of commercial second generation superconducting tapes with an exposure time of just 1 s per 0.8 cm2. Furthermore we demonstrate how speed is now at the level required for an industrial reel-to-reel post-processing. The irradiation is made on production line samples through the protective silver coating and does not require any modification of the growth process. From TEM imaging, we identify small clusters as the main source of increased vortex pinning.

  10. Effects of atmospheric air plasma treatment of graphite and carbon felt electrodes on the anodic current from Shewanella attached cells.

    PubMed

    Epifanio, Monica; Inguva, Saikumar; Kitching, Michael; Mosnier, Jean-Paul; Marsili, Enrico

    2015-12-01

    The attachment of electrochemically active microorganisms (EAM) on an electrode is determined by both the chemistry and topography of the electrode surface. Pre-treatment of the electrode surface by atmospheric air plasma introduces hydrophilic functional groups, thereby increasing cell attachment and electroactivity in short-term experiments. In this study, we use graphite and carbon felt electrodes to grow the model EAM Shewanella loihica PV-4 at oxidative potential (0.2 V vs. Ag/AgCl). Cell attachment and electroactivity are measured through electrodynamic methods. Atmospheric air plasma pre-treatment increases cell attachment and current output at graphite electrodes by 25%, while it improves the electroactivity of the carbon felt electrodes by 450%. Air plasma pre-treatment decreased the coulombic efficiency on both carbon felt and graphite electrodes by 60% and 80%, respectively. Microbially produced flavins adsorb preferentially at the graphite electrode, and air plasma pre-treatment results in lower flavin adsorption at both graphite and carbon felt electrodes. Results show that air plasma pre-treatment is a feasible option to increase current output in bioelectrochemical systems.

  11. Isolation of chavibetol from essential oil of Pimenta pseudocaryophyllus leaf by high-speed counter-current chromatography.

    PubMed

    dos Santos, Bruna C B; da Silva, Júlio César T; Guerrero, Palimécio G; Leitão, Gilda G; Barata, Lauro E S

    2009-05-08

    Counter-current chromatography (CCC) was used to isolate chavibetol from the essential oil of leaves of Pimenta pseudocaryophyllus (Gomes) Landrum. Chavibetol was obtained in high purity (98%) and mass recovery (94.4%). Methyleugenol was also isolated. The CCC biphasic solvent system used was composed of hexane:n-butanol:methanol:water (12:4:4:3, v/v/v/v).

  12. Exposure information in environmental health research: Current opportunities and future directions for particulate matter, ozone, and toxic air pollutants

    SciTech Connect

    McKone, Thomas E.; Ryan, P. Barry; Ozkaynak, Haluk

    2007-02-01

    Understanding and quantifying outdoor and indoor sources of human exposure are essential but often not adequately addressed in health-effects studies for air pollution. Air pollution epidemiology, risk assessment, health tracking and accountability assessments are examples of health-effects studies that require but often lack adequate exposure information. Recent advances in exposure modeling along with better information on time-activity and exposure factors data provide us with unique opportunities to improve the assignment of exposures for both future and ongoing studies linking air pollution to health impacts. In September 2006, scientists from the US Environmental Protection Agency (EPA) and the Centers for Disease Control and Prevention (CDC) along with scientists from the academic community and state health departments convened a symposium on air pollution exposure and health in order to identify, evaluate, and improve current approaches for linking air pollution exposures to disease. This manuscript presents the key issues, challenges and recommendations identified by the exposure working group, who used cases studies of particulate matter, ozone, and toxic air pollutant exposure to evaluate health-effects for air pollution. One of the over-arching lessons of this workshop is that obtaining better exposure information for these different health-effects studies requires both goal-setting for what is needed and mapping out the transition pathway from current capabilities to meeting these goals. Meeting our long-term goals requires definition of incremental steps that provide useful information for the interim and move us toward our long-term goals. Another over-arching theme among the three different pollutants and the different health study approaches is the need for integration among alternate exposure assessment approaches. For example, different groups may advocate exposure indicators, biomonitoring, mapping methods (GIS), modeling, environmental media

  13. Exposure information in environmental health research: current opportunities and future directions for particulate matter, ozone, and toxic air pollutants.

    PubMed

    McKone, Thomas E; Ryan, P Barry; Ozkaynak, Halûk

    2009-01-01

    Understanding and quantifying outdoor and indoor sources of human exposure are essential but often not adequately addressed in health effect studies for air pollution. Air pollution epidemiology, risk assessment, health tracking, and accountability assessments are examples of health effect studies that require but often lack adequate exposure information. Recent advances in exposure modeling along with better information on time-activity and exposure factor data provide us with unique opportunities to improve the assignment of exposures for both future and ongoing studies linking air pollution to health impacts. In September 2006, scientists from the US Environmental Protection Agency and the Centers for Disease Control and Prevention along with scientists from the academic community and state health departments convened a symposium on air pollution exposure and health to identify, evaluate, and improve current approaches for linking air pollution exposures to disease. This manuscript presents the key issues, challenges, and recommendations identified by the exposure working group, who used case studies of particulate matter, ozone, and toxic air-pollutant exposure to evaluate health effects for air pollution. One of the overarching lessons of this workshop is that obtaining better exposure information for these different health effect studies requires both goal setting for what is needed and mapping out the transition pathway from current capabilities for meeting these goals. Meeting our long-term goals requires definition of incremental steps that provide useful information for the interim and move us toward our long-term goals. Another overarching theme among the three different pollutants and the different health study approaches is the need for integration among alternate exposure-assessment approaches. For example, different groups may advocate exposure indicators, biomonitoring, mapping methods (GIS), modeling, environmental media monitoring, and/or personal

  14. Sensitivity of Bottom Topography on the Dynamics and Sound Speed Structure in the Northern Canary Current System

    DTIC Science & Technology

    2006-12-01

    46 Figure 4. NCCS wind stress vector in Pascals calculated from annual climatological ECMWF winds (From: Trenberth et al., 1990...equatorward off the west coasts of the Iberian Peninsula (IP) and Morocco, the NCCS contains classical features of an eastern boundary current ( EBC ...The EBC thermocline is typically shallow (ណ m depth) and the region has high biological production due to vast regional upwelling (Parrish et al

  15. Integrating Sensor Monitoring Technology into the Current Air Pollution Regulatory Support Paradigm: Practical Considerations

    EPA Science Inventory

    The US Environmental Protection Agency (EPA) along with state, local, and tribal governments operate Federal Reference Method (FRM) and Federal Equivalent Method (FEM) instruments to assess compliance with US air pollution standards designed to protect human and ecosystem health....

  16. The Air Force’s Individual Mobilization Augmentee Program: Is the Current Organizational Structure Viable?

    DTIC Science & Technology

    2012-10-01

    Lt Gen George E. Stratemeyer, commander of Air Defense Command, assigned reservists to key command positions for training as understudies and...Management, 10 December 2001, http://www .e-publishing.af.mil/shared/ media /epubs/AFI36-2629.pdf; and Readiness Management Group, Readiness Management Group...Individual Reserve Guide [Robins AFB, GA: Air Force Reserve Command, March 2008], http://www.afrc.af.mil/shared/ media /document /AFD-080408-050.pdf

  17. The relationship between the microwave radar cross section and both wind speed and stress: Model function studies using Frontal Air-Sea Interaction Experiment data

    NASA Technical Reports Server (NTRS)

    Weissman, David E.; Davidson, Kenneth L.; Brown, Robert A.; Friehe, Carl A.; Li, Fuk

    1994-01-01

    The Frontal Air-Sea Interaction Experiment (FASINEX) provided a unique data set with coincident airborne scatterometer measurements of the ocean surface radar cross section (RCS)(at Ku band) and near-surface wind and wind stress. These data have been analyzed to study new model functions which relate wind speed and surface friction velocity (square root of the kinematic wind stress) to the radar cross section and to better understand the processes in the boundary layer that have a strong influence on the radar backscatter. Studies of data from FASINEX indicate that the RCS has a different relation to the friction velocity than to the wind speed. The difference between the RCS models using these two variables depends on the polarization and the incidence angle. The radar data have been acquired from the Jet Propulsion Laboratory airborne scatterometer. These data span 10 different flight days. Stress measurements were inferred from shipboard instruments and from aircraft flying at low altitudes, closely following the scatterometer. Wide ranges of radar incidence angles and environmental conditions needed to fully develop algorithms are available from this experiment.

  18. An application of high-speed counter-current chromatography coupled with electrospray ionization mass spectrometry for separation and online identification of coumarins from Peucedanum praeruptorum Dunn.

    PubMed

    Hou, Zhiguo; Xu, Deran; Yao, Shun; Luo, Jianguang; Kong, Lingyi

    2009-08-15

    A new and systematic application for separation and online identification of coumarins from Peucedanum praeruptorum Dunn by preparative high-speed counter-current chromatography coupled with electrospray ionization multi-stage mass spectrometry (prep-HSCCC/ESI-MS(n)) was established. The procedure of separation was guided by the chromatogram of ion current. The structures of acquisitions were deduced by MS information. The hyphenation between prep-HSCCC/ESI-MS(n) was designed to keep the split ratio from 1:20 to 1:200 exactly. Seven compounds were obtained and two new compounds were detected. It was proved that prep-HSCCC/ESI-MS(n) was an effective method for sensitive detection, rapid identification and separation of natural products.

  19. Stack optimization of oxide-based RRAM for fast write speed (<1 μs) at low operating current (<10 μA)

    NASA Astrophysics Data System (ADS)

    Chen, C. Y.; Goux, L.; Fantini, A.; Degraeve, R.; Redolfi, A.; Groeseneken, G.; Jurczak, M.

    2016-11-01

    In this paper we engineer a TiN ⧹ Al2O3 ⧹ (Hf,Al)O2 ⧹ Ta2O5 ⧹ Hf Oxide Resistive Random Access Memory (OxRRAM) device for fast switching at low operation current without sacrificing the retention and endurance properties. The integrated 40 nm × 40 nm cell switches at 10 μA using write pulses shorter than 100 ns (resp. 1 μs) for Reset (resp. Set) and with amplitude <2 V. Using these conditions in a specially developed verify algorithm, a resistive window of 10× is reliably obtained, decreasing the write speed by more than 1 decade compared to state-of-the-art OxRRAM stacks at same current level.

  20. Combined application of macroporous resin and high speed counter-current chromatography for preparative separation of three flavonoid triglycosides from the leaves of Actinidia valvata Dunn.

    PubMed

    Qu, Liping; Xin, Hailiang; Su, Yonghua; Zheng, Guoyin; Ling, Changquan

    2012-04-01

    In this paper, the combined techniques of macroporous resin column chromatography and high speed counter-current chromatography were applied for preparative separation of flavonoid triglycosides from the leaves of Actinidia valvata Dunn, a famous Chinese medicinal herb. Twelve kinds of macroporous resins were investigated by adsorption and desorption tests. HPD-300 resin showed the maximum effectiveness and thus was selected for the first cleaning-up, in which 20% ethanol was used to remove the undesired constituents and 60% ethanol to elute the targets. The crude extract was then purified by high speed counter-current chromatography with the solvent system composed of ethyl acetate-n-butanol-water (2:1:3 and 4:1:5, v/v). Three flavonoid triglycosides, namely, kaempferol 3-O-α-L-rhamnopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→6)-β-D-galactopyranoside, kaempferol 3-O-α-L-rhamnopyranosyl-(1→3)-(4-O-acetyl-α-L-rhamnopyranosyl)-(1→6)-β-D-galactopyranoside and kaempferol 3-O-α-L-rhamnopyranosyl-(1→3)-(2,4-di-O-acetyl-α-L-rhamnopyranosyl)-(1→6)-β-D-galactopyranoside, were obtained. The purities of the separated compounds were all over 95% as determined by HPLC area normalization method. Their chemical structures were confirmed by UV, MS, NMR, and the standards.

  1. Three-phase solvent systems for the comprehensive separation of a wide variety of compounds from Dicranostigma leptopodum by high-speed counter-current chromatography.

    PubMed

    Liu, Yanjuan; Chen, Xiaofen; Liu, JunXi; Di, Duolong

    2015-06-01

    A three-phase solvent system was efficiently applied for high-speed counter-current chromatography to separate secondary metabolites with a wide range of hydrophobicity in Dicranostigma leptopodum. The three-phase solvent system of n-hexane/methyl tert-butyl ether/acetonitrile/0.5% triethylamine (2:2:3:2, v/v/v/v) was selected for high-speed counter-current chromatography separation. The separation was initiated by filling the column with a mixture of intermediate phase and lower phase as a stationary phase followed by elution with upper phase to separate the hydrophobic compounds. Then the mobile phase was switched to the intermediate phase to elute the moderately hydrophobic compounds, and finally the polar compounds still retained in the column were fractionated by eluting the column with the lower phase. In this research, 12 peaks were eluted out in one-step operation within 110 min, among them, eight compounds with acceptable purity were obtained and identified. The purities of β-sitosterol, protopine, allocryptopine, isocorydione, isocorydine, coptisine, berberrubine, and berberine were 94.7, 96.5, 97.9, 86.6, 98.9, 97.6, 95.7, and 92.8%, respectively.

  2. Separation and purification of four flavonol diglucosides from the flower of Meconopsis integrifolia by high-speed counter-current chromatography.

    PubMed

    Huang, Yanfei; Han, Yatao; Chen, Keli; Huang, Bisheng; Liu, Yuan

    2015-12-01

    Flavonoids are the main components of Meconopsis integrifolia (Maxim.) Franch, which is a traditional Tibetan medicine. However, traditional chromatography separation requires a large quantity of raw M. integrifolia and is very time consuming. Herein, we applied high-speed counter-current chromatography in the separation and purification of flavonoids from the ethanol extracts of M. integrifolia flower. Ethyl acetate/n-butanol/water (2:3:5, v/v/v) was selected as the optimum solvent system to purify the four components, namely quercetin-3-O-β-d-glucopyrannosy-(1→6)-β-d-glucopyranoside (compound 1, 60 mg), quercetin 3-O-[2'''-O-acetyl-β-d-glucopyranosyl-(1→6)-β-d-glucopyranoside (compound 2, 40 mg), quercetin 3-O-[3'''-O-acetyl-β-d-glucopyranosyl-(1→6)-β-d-glucopyranoside (compound 3, 11 mg), and quercetin 3-O-[6'''-O-acetyl-β-d-glucopyranosyl-(1→6)-β-d-glucopyranoside (compound 4, 16 mg). Among the four compounds, 3 and 4 were new acetylated flavonol diglucosides. After the high-speed counter-current chromatography separation, the purities of the four flavonol diglucosides were 98, 95, 90, and 92%, respectively. The structures of these compounds were identified by mass spectrometry and NMR spectroscopy.

  3. Bioassay-guided isolation of an active compound with protein tyrosine phosphatase 1B inhibitory activity from Sargassum fusiforme by high-speed counter-current chromatography.

    PubMed

    Wang, Miao; Gu, Dongyu; Guo, Xinfeng; Li, Haoquan; Wang, Yi; Guo, Hong; Yang, Yi; Tian, Jing

    2016-11-01

    A rapid and efficient method using high-speed counter-current chromatography was established for the bioassay-guided separation of an active compound with protein tyrosine phosphatase 1B inhibitory activity from Sargassum fusiforme. Under the bioassay guidance, the ethyl acetate extract with the best IC50 value of 0.37 ± 0.07 μg/mL exhibited a potential protein tyrosine phosphatase 1B inhibitory activity, which was further separated by high-speed counter-current chromatography. The separation was performed with a two-phase solvent system composed of n-hexane/methanol/water (5:4:1, v/v). As a result, dibutyl phthalate (19.7 mg) with the purity of 95.3% was obtained from 200 mg of the ethyl acetate extract. Its IC50 was 14.05 ± 0.06 μM, which was further explained by molecular docking. The result of molecular docking showed that dibutyl phthalate enfolded in the catalytic site of protein tyrosine phosphatase 1B. The main force between dibutyl phthalate and protein tyrosine phosphatase 1B was the hydrogen bond interaction with Gln266. In addition, hydrogen bond, van der Waals force and hydrophobic interaction with the amino acids (Ala217, Ile219, and Gly220) were also responsible for the stable protein-ligand complex.

  4. Preparative separation of bioactive compounds from essential oil of Flaveria bidentis (L.) Kuntze using steam distillation extraction and one step high-speed counter-current chromatography.

    PubMed

    Wei, Yun; Du, Jilin; Lu, Yuanyuan

    2012-10-01

    In order to utilize and control the invasive weed, bioactive compounds from essential oil of Flaveria bidentis (L.) Kuntze were studied. Steam distillation extraction and one step high-speed counter-current chromatography were applied to separate and purify the caryophyllene oxide, 7,11-dimethyl-3-methylene-1,6,10-dodecatriene, and caryophyllene from essential oil of Flaveria bidentis (L.) Kuntze. The two-phase solvent system containing n-hexane/acetonitrile/ethanol (5:4:3, v/v/v) was selected for the one step separation mode according to the partition coefficient values (K) of the target compounds and the separation factor (α). The purity of each isolated fraction after a single high-speed counter-current chromatography run was determined by high performance liquid chromatography. A 3.2 mg of caryophyllene oxide at a purity of 92.6%, 10.4 mg of 7,11-dimethyl-3-methylene-1,6,10-dodecatriene at a purity of 99.1% and 5.7 mg of caryophyllene at a purity of 98.8% were obtained from 200 mg essential oil of Flaveria bidentis (L.) Kuntze. The chemical structures of these components were identified by GC-MS, (1) H-NMR, and (13) C-NMR.

  5. Review of current and anticipated regulations on air protection in the Czech Republic

    SciTech Connect

    Jilek, P.; Novotny, V.

    1995-12-01

    Environmental issues, especially the solution of the air pollution problem, have taken on great significance in the Czech Republic (which was a part of the Czech and Slovak Federal Republic until the end of 1992) since the 1989 {open_quotes}Velvet{close_quotes} Revolution. The former CSFR Federal Committee for the Environment and both the Republic Ministries started immediately with creating new environmental legislation, which is the main governmental tool for protecting the environment in the newly developing democracy state system with a market oriented economy. The inspiration for that activity was found in legislation of developed countries - member states of the European Union, and in German environmental law in particular. This paper surveys the major laws and regulations that gradually came into force in the Czech Republic since 1990. The provisions of the primary significance are the Act No.309/1991 S.B., dated July 9, 1991, on the protection of the air against pollutants - The Clean Air Act, the Act No.218/1992 S.B., dated April 27, 1992, which changes and supplements the Act No.309 - The Clean Air Act, the Measure of the Federal Committee for the Environment of October 1, 1991 to the Clean Air Act, and its amended wordings of June 23, 1992, 84/1991 S.B., and 84/1992 S.B., the Act No.389/1991 S.B., dated September 10, 1991 on the state administration of air protection and charges for the pollution of air, and several regulations based on the Act No.389/1991 S.B., issued in the period 1992 -1993.

  6. The Role of Range and Speed in the 21st Century: Transforming Air Power through Technology. A Systems Study

    DTIC Science & Technology

    2006-07-01

    costs and sortie costs. Fig. 1: Historical evolution of cost structure. The implication of these findings is that long aircraft range is currently...Jaber AB Kuwait Taszar Hungary Ali Al Salem AB Kuwait All Al Salem AB Kuwait Aviano AB Italy Masirah AB Oman Manas Kyrgyzstan Moron AB Spain Seeb lAP

  7. Current status of the development of the refuelable aluminum-air battery

    NASA Astrophysics Data System (ADS)

    Cooper, J. F.; Kraftick, K. A.; McKinley, B. J.

    1983-05-01

    The technical status of a refuelable aluminum air battery using flowing caustic aluminate electrolyte at 50 to 700 C is reviewed. Four distinct designs for rapidly refuelable cells were evaluated in single or multicell modules on an engineering scale (167 to 1000 cm(2)/cell). Consideration is given to cells of the wedge configuration, which allow partial recharge, high anode utilization, and rapid refueling. Kinetic models developed for aluminum trihydroxide precipitation are used to predict the behavior of integrated cell/crystallizer systems. Drive cycle life and polarization data are reviewed for air electrodes under simulated vehicle operating conditions. Problems in the development of cost effective anode alloys are described. These results are interpreted from the perspective of the potential of an aluminum air battery to provide an electric vehicle with the range, acceleration and rapid refueling capabilities of common automobiles.

  8. Cost-Benefit of Improving the Efficiency of Room Air Conditioners (Inverter and Fixed Speed) in India

    SciTech Connect

    Shah, Nihar; Abhyankar, Nikit; Park, Won Young; Phadke, Amol; Diddi, Saurabh; Ahuja, Deepanshu; Mukherjee, P. K.; Walia, Archana

    2016-06-30

    Improving efficiency of air conditioners (ACs) typically involves improving the efficiency of various components such as compressors, heat exchangers, expansion valves, refrigerant and fans. We estimate the incremental cost of improving the efficiency of room ACs based on the cost of improving the efficiency of its key components. Further, we estimate the retail price increase required to cover the cost of efficiency improvement, compare it with electricity bill savings, and calculate the payback period for consumers to recover the additional price of a more efficient AC. We assess several efficiency levels, two of which are summarized below in the report. The finding that significant efficiency improvement is cost effective from a consumer perspective is robust over a wide range of assumptions. If we assume a 50% higher incremental price compared to our baseline estimate, the payback period for the efficiency level of 3.5 ISEER is 1.1 years. Given the findings of this study, establishing more stringent minimum efficiency performance criteria (one star level) should be evaluated rigorously considering significant benefits to consumers, energy security and environment.

  9. Behavioral effects of transcranial pulsed current stimulation (tPCS): Speed-accuracy tradeoff in attention switching task.

    PubMed

    Morales-Quezada, Leon; Leite, Jorge; Carvalho, Sandra; Castillo-Saavedra, Laura; Cosmo, Camila; Fregni, Felipe

    2016-08-01

    Transcranial pulsed current stimulation (tPCS) has been shown to increase inter-hemispheric coherence of brain oscillatory activity, mainly in fronto-temporal regions, leading to enhancement of functional connectivity across neural networks. The question is whether tPCS can modulate behavior significantly. Our aim was to identify the effects of tPCS on paired associative learning task (PALT) and attention switching task (AST), and to further categorize physiological autonomic responses by heart rate variability and electrodermal activity measurements before and after task performance. Thirty healthy volunteers were randomized to receive a single session of sham or active 2mA tPCS stimulation with a random frequency between 1 and 5Hz. We show that active tPCS significantly improved response time in the AST compared to sham stimulation, so that subjects who received active tPCS significantly exhibit decreased switching cost between repeat and switch trials. No differences were found in response accuracy on AST and PALT. No significant changes were observed in physiological parameters. Based on our results, we suggest that tPCS has a more pronounced effect on tasks that require the increase of functional connectivity across pre-existent neural circuitry, rather than on tasks that require the development of new learning circuits or the creation of new connections.

  10. Determining a free flight performance surface by mathematical optimization techniques utilizing an air speed indicator, MEMS inertial sensors and a variomete

    NASA Astrophysics Data System (ADS)

    Teskey, Wesley J. E.; Chow, Jacky C. K.

    2010-09-01

    Paragliding is unpowered flight in which pilots rely on their ability to navigate rising currents of air to remain airborne. Paraglider flight performance is an important measure of the capabilities of a particular design of a canopy. Most often, the performance characteristics of a canopy are measured as horizontal velocity vs. vertical velocity for steady state flight in still air. The performance curve created using this approach neglects to take into account the effect which turning has on flight. In contrast, the performance surface created from the research carried out in this paper demonstrates the effect of turning on canopy flight; such a representation of performance is novel to the authors' knowledge. To produce this surface, a flight was conducted in which a paraglider's performance was measured for various steady state velocities and turning rates; the data were then analyzed utilizing mathematical optimization after appropriate calibration corrections were applied.

  11. The Importance of Exposure in Addressing Current and Emerging Air Quality Issues

    EPA Science Inventory

    The air quality issues that we face today and will face in the future are becoming increasingly more complex and require an improved understanding of human exposure to be effectively addressed. The objectives of this paper are (1) to discuss how concepts of human exposure and ex...

  12. Selected current-use and historic-use pesticides in air and seawater of the Bohai and Yellow Seas, China

    NASA Astrophysics Data System (ADS)

    Zhong, Guangcai; Tang, Jianhui; Xie, Zhiyong; Möller, Axel; Zhao, Zhen; Sturm, Renate; Chen, Yingjun; Tian, Chongguo; Pan, Xiaohui; Qin, Wei; Zhang, Gan; Ebinghaus, Ralf

    2014-01-01

    Consumption of pesticides in China has increased rapidly in recent years; however, occurrence and fate of current-use pesticides (CUPs) in China coastal waters are poorly understood. Globally banned pesticides, so-called historic-use pesticides (HUPs), are still commonly observed in the environment. In this work, air and surface seawater samples taken from the Bohai and Yellow Seas in May 2012 were analyzed for CUPs including trifluralin, quintozene, chlorothalonil, dicofol, chlorpyrifos, and dacthal, as well as HUPs (hexachlorobenzene (HCB), hexachlorocyclohexanes (HCHs), and endosulfan). CUP profile in both air and seawater samples generally reflected their consumption patterns in China. HUPs in the air and seawater samples were in comparable levels as those of CUPs with high concentrations. α-Endosulfan, dicofol, and chlorothalonil showed strong net deposition likely resulting from their intensive use in recent years, while CUPs with low consumption amount (quintozene and dacthal) were close to equilibrium at most samplings sites. Another CUP with high usage amout (i.e., chlorpyrifos) underwent volatilization possibly due to its longer half-life in seawater than that in air. α-HCH and γ-HCH were close to equilibrium in the Bohai Sea, but mainly underwent net deposition in the Yellow Sea. The net deposition of α-HCH could be attributed to polluted air pulses from the East China identified by air mass back trajectories. β-HCH showed net volatilization in the Bohai Sea, which was driven by its relative enrichment in seawater. HCB either slightly favored net volatilization or was close to equilibrium in the Bohai and Yellow Seas.

  13. The induction of an ATP-sensitive K(+) current in cardiac myocytes of air- and water-breathing vertebrates.

    PubMed

    Paajanen, Vesa; Vornanen, Matti

    2002-09-01

    Opening of ATP-sensitive potassium channels (K(ATP)) is an effective cardioprotective mechanism in mammals. The amplitude of the ATP-sensitive K(+) current (I(K,ATP)) and the opening sensitivity of K(ATP) channels are, however, poorly known in ectotherms. As O(2)-sensing mechanisms and reactions to O(2) deficiency differ in aquatic and terrestrial animals, we hypothesised that the response of K(ATP) channels to metabolic inhibition would be different between air- and water-breathers. We therefore compared I(K,ATP) in ventricular myocytes of an anoxia-sensitive (Oncorhynchus mykiss) and an anoxia-tolerant fish (Carassius carassius), two amphibians (Xenopus laevis and Rana temporaria) and a terrestrial reptile (Lacerta vivipara) using the whole-cell patch-clamp method. I(K,ATP) was induced by preventing mitochondrial and/or glycolytic ATP production and perfusing myocytes with an ATP-free pipette solution. All species had a glibenclamide-sensitive I(K,ATP), but the current amplitude was much greater in air-breathers than in water-breathers. Furthermore, the I(K,ATP) in air-breathers was more sensitive to intracellular ATP depletion than in water-breathing animals. These findings indicate that I(K,ATP) is larger and more easily induced in air- than water-breathers. In all ectotherms, the first response to complete metabolic inhibition was the induction of a large inward current, the amplitude of which exceeded that of I(K,ATP). Thus, the protective effect of the I(K,ATP) may be physiologically significant only during partial metabolic blockade.

  14. Preparative Separation of N-Feruloyl Serotonin and N-(p-Coumaroyl) Serotonin from Safflower Seed Meal Using High-Speed Counter-Current Chromatography.

    PubMed

    Zhang, Qiulong; Hu, Na; Li, Wencong; Ding, Chenxi; Ma, Tao; Bai, Bo; Wang, Honglun; Suo, Yourui; Wang, Xiaoyan; Ding, Chenxu

    2015-09-01

    High-speed counter-current chromatography (HSCCC) was successfully applied for the preparative separation and purification of N-feruloyl serotonin (NF) and N-(p-coumaroyl) serotonin (NP) from safflower seed meal. After the measurement of partition coefficient of the two target compounds in the two-phase solvent systems, the HSCCC was performed well with a two-phase solvent system composed of CHCl3-methanol-0.1 M HCl at a volume ratio of 1 : 1 : 1, v/v. The upper phase was used as stationary phase and the lower phase was used as mobile phase. Under the optimized condition, 7.5 mg NF and 6.9 mg NP were separated from 40 mg crude sample with the purity of 98.8 and 97.3%, respectively. The structures of the isolated compounds were identified by (1)H NMR and (13)C NMR.

  15. Isolation and purification of three flavonoid glycosides from the leaves of Nelumbo nucifera (Lotus) by high-speed counter-current chromatography.

    PubMed

    Deng, Shengguo; Deng, Zeyuan; Fan, Yawei; Peng, You; Li, Jing; Xiong, Dongmei; Liu, Rong

    2009-08-15

    Semi-preparative high-speed counter-current chromatography (HSCCC) was successfully used for isolation and purification of flavonoid glycosides from the leaves of Nelumbo nucifera (Lotus) by using a two-phase-solvent system composed of n-hexane-ethyl acetate-methanol-water (1:5:1:5, v/v/v/v). The targeted compounds isolated, collected and purified by HSCCC were analyzed by high performance liquid chromatography (HPLC). A total of 4.6 mg of isoquercitrin, 9.1 mg of hyperoside and 3.0 mg of astragalin with the purity of 95.8%, 97.5% and 98.3%, respectively, were obtained in one-step separation and less than 6 h from 80 mg of crude extract from the leaves of N. nucifera. The chemical structures of all the three compounds were identified by MS, (1)H NMR, (13)C NMR. Astragalin was obtained from N. nucifera for the first time.

  16. Separation of five flavonoids from tartary buckwheat (Fagopyrum tataricum (L.) Gaertn) grains via off-line two dimensional high-speed counter-current chromatography.

    PubMed

    Jiang, Shujing; Liu, Qi; Xie, Yixi; Zeng, Hualiang; Zhang, Li; Jiang, Xinyu; Chen, Xiaoqing

    2015-11-01

    An off-line two dimensional (2D) high-speed counter-current chromatography (HSCCC) strategy was successfully used for preparative separation of five flavonoids from tartary buckwheat (Fagopyrum tataricum (L.) Gaertn) grains with different solvent systems for the first time in this paper. n-Hexane-ethyl acetate-methanol-water 3:5:3:5 (v/v) was selected as the first dimension solvent system to purify quercetin (4) and kaempferol (5). The second dimension solvent system, ethyl acetate-n-butanol-water 7:3:10 (v/v), was used to isolate quercetin 3-O-rutinoside-3'-O-β-glucopyranoside (1), rutin (2) and kaempferol 3-rutinoside (3). The purities of these compounds were all above 96.0% and their structures were identified through UV, MS and (1)H NMR. The results indicated that the off-line 2D HSCCC is an efficient technique to isolate flavonoids compounds from grains.

  17. Purification of six lignans from the stems of Schisandra chinensis by using high-speed counter-current chromatography combined with preparative high-performance liquid chromatography.

    PubMed

    Zhu, Lijie; Li, Bin; Liu, Xiuying; Huang, Guohui; Meng, Xianjun

    2015-11-01

    A method for the preparative purification of lignans from Schisandra chinensis was established using a combination of high-speed counter-current chromatography (HSCCC) and preparative high-performance liquid chromatography (HPLC). The crude extracts obtained from S. chinensis by using 70% ethanol were separated on a macroporous resin column and then eluted with a graded ethanol series. A two-phase solvent system consisting of n-hexane-ethyl acetate-methanol-water (1:1:1:1, v/v) was used for HSCCC, and a mobile phase of acetonitrile-water (50:50, v/v) was used for preparative HPLC. The results obtained using HSCCC were compared with those obtained using preparative HPLC, and their advantages were further integrated to improve the separation efficiency. Six known lignans were identified by electrospray ionisation mass spectrometry and (1)H nuclear magnetic resonance (NMR) and (13)C NMR analyses; the purities of all the compounds were more than 91%.

  18. Preparative isolation and purification of rupestonic acid from the Chinese medicinal plant Artemisia rupestris L. by high-speed counter-current chromatography.

    PubMed

    Ma, Yanming; Aisha, Haji Akber; Liao, Lixin; Aibai, Sirafil; Zhang, Tianyou; Ito, Yoichiro

    2005-05-27

    Rupestonic acid was purified for the first time by high-speed counter-current chromatography from a dichloromethane extract of the traditional Chinese medicinal plant Artemisia rupestris L. The separation was performed in two steps with a two-phase solvent system composed of n-hexane-ethyl acetate-methanol-water (6:4:3.5:6.5, v/v) with 0.5% acetic acid in stationary-phase. From 200 mg of the crude extract, 27.9 mg of rupestonic acid was obtained at over 98% purity as determined by HPLC analysis, and its chemical structure was confirmed by MS, 1H and 13C nuclear magnetic resonance.

  19. Preparative isolation and purification of harpagoside and angroside C from the root of Scrophularia ningpoensis Hemsley by high-speed counter-current chromatography.

    PubMed

    Tian, Jinfeng; Ye, Xiaoli; Shang, Yuanhong; Deng, Yafei; He, Kai; Li, Xuegang

    2012-10-01

    In this study, the bioactive component harpagoside and angroside C in the root of Scrophularia ningpoensis Hemsley was simultaneously separated by high-speed counter-current chromatography (HSCCC). A two-phase solvent system containing chloroform/n-butanol/methanol/water (4:1:3:2, v/v/v/v) was selected following consideration of the partition coefficient of the target compound. The crude extract (200 mg) was loaded onto a 280-mL HSCCC column and yielded 22 mg harpagoside and 31 mg angroside C with the purity of higher than 98 and 98.5%, respectively. It is feasible to isolate active compounds harpagoside and angroside C from S. ningpoensis using HSCCC.

  20. Preparative isolation and purification of macrolactin antibiotics from marine bacterium Bacillus amyloliquefaciens using high-speed counter-current chromatography in stepwise elution mode.

    PubMed

    He, Shan; Wang, Hongqiang; Yan, Xiaojun; Zhu, Peng; Chen, Juanjuan; Yang, Rui

    2013-01-11

    Preparative high-speed counter-current chromatography (HSCCC) was successfully applied to the isolation and purification of two macrolactin antibiotics from marine bacterium Bacillus amyloliquefaciens for the first time using stepwise elution with a pair of two-phase solvent systems composed of n-hexane-ethyl acetate-methanol-water at (1:4:1:4, v/v) and (3:4:3:4, v/v). The preparative HSCCC separation was performed on 300 mg of crude sample yielding macrolactin B (22.7 mg) and macrolactin A (40.4 mg) in a one-step separation, with purities over 95% as determined by HPLC. The structures of these compounds were identified by MS, (1)H NMR and (13)C NMR. Our results demonstrated that HSCCC was an efficient technique to separate marine antibiotics, which provide an approach to solve the problem of their sample availability for drug development.

  1. The Current Practices in Injury Prevention and Safety Helmet Use in an Air Force Medical Center

    DTIC Science & Technology

    2000-05-01

    Clinic at Malcom Grow Medical Center, Andrews Air Force Base, Maryland. Preventive counseling Preventing the occurrence of both mental and physical ...of their care. The primary care provider assumes ongoing responsibility for health maintenance and therapy for illness, including consultation with...PA) or a Medical Doctor (M.D.). Doctor of Osteopathy (D.O.), or Registered Nurse (R.N.). Safety helmet For the purpose of this study, the safety

  2. Evaluating Air Force Civil Engineer’s Current Automated Information Systems

    DTIC Science & Technology

    2002-03-26

    and less expensive and started showing up in everyday locations, such as 6 businesses. The growing use of computers started the demand for computer...Installation Data Warehouse (IDW) program to “stockpile” the Air Force’s data. Data warehousing is the “practice of taking data (e.g., cleaning them up ...represent the type of brake pads. Alternatively, bottom- up development may be used in which the needs of the users drive the database structure (32:44

  3. Low dark current and high speed ZnO metal–semiconductor–metal photodetector on SiO{sub 2}/Si substrate

    SciTech Connect

    Çalışkan, Deniz; Bütün, Bayram; Çakır, M. Cihan; Özcan, Şadan; Özbay, Ekmel

    2014-10-20

    ZnO thin films are deposited by radio-frequency magnetron sputtering on thermally grown SiO{sub 2} on Si substrates. Pt/Au contacts are fabricated by standard photolithography and lift-off in order to form a metal-semiconductor-metal (MSM) photodetector. The dark current of the photodetector is measured as 1 pA at 100 V bias, corresponding to 100 pA/cm{sup 2} current density. Spectral photoresponse measurement showed the usual spectral behavior and 0.35 A/W responsivity at a 100 V bias. The rise and fall times for the photocurrent are measured as 22 ps and 8 ns, respectively, which are the lowest values to date. Scanning electron microscope image shows high aspect ratio and dense grains indicating high surface area. Low dark current density and high speed response are attributed to high number of recombination centers due to film morphology, deducing from photoluminescence measurements. These results show that as deposited ZnO thin film MSM photodetectors can be used for the applications needed for low light level detection and fast operation.

  4. Inactivation of Staphylococcus aureus and Enterococcus faecalis by a direct-current, cold atmospheric-pressure air plasma microjet☆

    PubMed Central

    Tian, Ye; Sun, Peng; Wu, Haiyan; Bai, Na; Wang, Ruixue; Zhu, Weidong; Zhang, Jue; Liu, Fuxiang

    2010-01-01

    Objective A direct-current, cold atmospheric-pressure air plasma microjet (PMJ) was performed to inactivate Staphylococcus aureus (S. aureus) and Enterococcus faecalis (E. faecalis) in air. The process of sterilization and morphology of bacteria was observed. We wish to know the possible inactivation mechanisms of PMJ and explore a potential application in dental and other temperature sensitive treatment. Methods In this study, we employed a direct current, atmospheric pressure, cold air PMJ to inactivate bacterias. Scanning electron microscopy was employed to evaluate the morphology of S. aureus and showed rupture of cell walls after the plasma treatment and Optical emission spectrum (OES) were used to understand the possible inactivation mechanisms of PMJ. Results The inactivation rates could reach 100% in 5 min. When the distance between the exit nozzle of the PMJ device and Petri dish was extended from 1 cm to 3 cm, effective inactivation was also observed with a similar inactivation curve. Conclusion The inactivation of bacteria is attributed to the abundant reactive oxygen and nitrogen species, as well as ultroviolet radiation in the plasma. Different life spans and defensibilities of these killing agents may hold the key to understanding the different inactivation curves at different treatment distances. PMID:23554639

  5. Suppression of high-speed C{sub 2}H{sub 4}/air flames with C{sub 1}-halocarbons

    SciTech Connect

    Gmurczyk, G.; Grosshandler, W.

    1994-12-31

    Experimental investigation of the effect of the presence of five C{sub 1}-halocarbons (CF{sub 4}, CHF{sub 3}, CF{sub 3}I, CHF{sub 2}Cl, and CF{sub 3}Br) on the suppression of premixed high-speed turbulent flames and quasi detonations have been carried out in a 7.5-m long, 50-mm diameter tube. Lean and stoichiometric C{sub 2}H{sub 4}/air mixtures in the absence of any halocarbon, initially at 100 kPa and 295 K, constitute the reference states. A primary objective of the work has been to determine the relative suppression efficiencies of different agents under highly dynamic situations, without the undue influence of either the ignition event or the mixing of the agent into the flame front. This was accomplished by generating a highly turbulent flame/quasi detonation in the driver section, which contained no suppressant, followed by measurements of the velocity and pressure ratio as the wave front entered the test section of the tube, which contained suppressant premixed with the same fuel/air combination. A turbulence generator in the form of a spiral obstruction was used in the tube to broaden the gas-dynamic condition attainable by the flame. Flame and shock wave velocities up to 1300 m/s, pressure ratios across the shock fronts over 26:1, and shock wave/flame spacings of the order of 10 cm were measured with piezoelectric pressure transducers and fast photodiodes. The experimental facility was successfully employed to clearly discriminate among the dynamic characteristics of the five compounds, revealing behavior distinct from what was observed in companion studies using atmospheric nonpremixed flames. The suppression process is strongly influenced by the concentration of an agent, the structure and composition of an agent molecule, and the composition of the combustible mixture itself.

  6. Characteristics of a Direct Current-driven plasma jet operated in open air

    SciTech Connect

    Li, Xuechen; Bao, Wenting; Di, Cong; Jia, Pengying

    2013-09-30

    A DC-driven plasma jet has been developed to generate a diffuse plasma plume by blowing argon into the ambient air. The plasma plume, showing a cup shape with a diameter of several centimeters at a higher voltage, is a pulsed discharge despite a DC voltage is applied. The pulse frequency is investigated as a function of the voltage under different gap widths and gas flow rates. Results show that plasma bullets propagate from the hollow needle to the plate electrode by spatially resolved measurement. A supposition about non-electroneutral trail of the streamer is proposed to interpret these experimental phenomena.

  7. Current legal framework and practical aspects of oxygen therapy during air travel.

    PubMed

    Cascante-Rodrigo, Jose Antonio; Iridoy-Zulet, Amaia Atenea; Alfonso-Imízcoz, María

    2015-01-01

    It is unusual for pulmonologists to be familiar with the European and US regulations governing the administration of oxygen during air travel and each airline's policy in this respect. This lack of knowledge is in large part due to the scarcity of articles addressing this matter in specialized journals and the noticeably limited information provided by airlines on their websites. In this article we examine the regulations, the policies of some airlines and practical aspects that must be taken into account, so that the questions of a patient who may need to use oxygen during a flight may be answered satisfactorily.

  8. Characteristics of a Direct Current-driven plasma jet operated in open air

    NASA Astrophysics Data System (ADS)

    Li, Xuechen; Di, Cong; Jia, Pengying; Bao, Wenting

    2013-09-01

    A DC-driven plasma jet has been developed to generate a diffuse plasma plume by blowing argon into the ambient air. The plasma plume, showing a cup shape with a diameter of several centimeters at a higher voltage, is a pulsed discharge despite a DC voltage is applied. The pulse frequency is investigated as a function of the voltage under different gap widths and gas flow rates. Results show that plasma bullets propagate from the hollow needle to the plate electrode by spatially resolved measurement. A supposition about non-electroneutral trail of the streamer is proposed to interpret these experimental phenomena.

  9. Chemical Transport and Reduced-Form Models for Assessing Air Quality Impacts of Current and Future Energy Scenarios

    NASA Astrophysics Data System (ADS)

    Adams, P. J.

    2015-12-01

    Though essential for informed decision-making, it is challenging to estimate the air quality and public health impacts associated with current and future energy generation scenarios because the analysis must address the complicated atmospheric processes that air pollutants undergo: emissions, dispersion, chemistry, and removal. Employing a chemical transport model (CTM) is the most rigorous way to address these atmospheric processes. However, CTMs are expensive from a computational standpoint and, therefore, beyond the reach of policy analysis for many types of problems. On the other hand, previously available reduced-form models used for policy analysis fall short of the rigor of CTMs and may lead to biased results. To address this gap, we developed the Estimating Air pollution Social Impacts Using Regression (EASIUR) method, which builds parameterizations that predict per-tonne social costs and intake fractions for pollutants emitted from any location in the United States. Derived from a large database of tagged CTM simulations, the EASIUR method predicts social costs almost indistinguishable from a full CTM but with negligible computational requirements. We found that the average mortality-related social costs from inorganic PM2.5 and its precursors in the United States are 150,000-180,000/t EC, 21,000-34,000/t SO2, 4,200-15,000/t NOx, and 29,000-85,000/t NH3. This talk will demonstrate examples of using both CTMs and reduced-form models for assessing air quality impacts associated with current energy production activities as well as a future deployment of carbon capture and sequestration.

  10. Influence of ambient humidity on the current delivered by air-vented ionization chambers revisited

    NASA Astrophysics Data System (ADS)

    Poirier, Aurélie; Douysset, Guilhem

    2006-10-01

    The influence of ambient humidity on the current delivered by a vented ionization chamber has been re-investigated. A Nucletron 077.091 well-type chamber together with a 192Ir HDR brachytherapy source was enclosed in a climatic test chamber and the current was recorded for various humidity values. Great care has been taken for the design of the experimental setup in order to obtain reliable measurements of currents and humidity values inside the chamber active volume. A ±0.35% linear variation of the measured currents has been observed over a common range of humidities. This result is larger than the expected variation. No formal explanation of such a discrepancy has been found yet, however the present results could lead to a set of recommendations.

  11. Air temperature, wind speed, and wind direction in the National Petroleum Reserve—Alaska and the Arctic National Wildlife Refuge, 1998–2011

    USGS Publications Warehouse

    Urban, Frank E.; Clow, Gary D.

    2013-01-01

    This report provides air temperature, wind speed, and wind direction data collected on Federal lands in Arctic Alaska over the period August 1998 to July 2011 by the U.S. Department of the Interior's climate monitoring array, part of the Global Terrestrial Network for Permafrost. In addition to presenting data, this report also describes monitoring, data collection, and quality control methodology. This array of 16 monitoring stations spans 68.5°N to 70.5°N and 142.5°W to 161°W, an area of roughly 150,000 square kilometers. Climate summaries are presented along with provisional quality-controlled data. Data collection is ongoing and includes several additional climate variables to be released in subsequent reports, including ground temperature and soil moisture, snow depth, rainfall, up- and downwelling shortwave radiation, and atmospheric pressure. These data were collected by the U.S. Geological Survey in close collaboration with the Bureau of Land Management and the U.S. Fish and Wildlife Service.

  12. Influence of air pressure, humidity, solar radiation, temperature, and wind speed on ambulatory visits due to chronic obstructive pulmonary disease in Bavaria, Germany

    NASA Astrophysics Data System (ADS)

    Ferrari, Uta; Exner, Teresa; Wanka, Eva R.; Bergemann, Christoph; Meyer-Arnek, Julian; Hildenbrand, Beate; Tufman, Amanda; Heumann, Christian; Huber, Rudolf M.; Bittner, Michael; Fischer, Rainald

    2012-01-01

    Chronic obstructive pulmonary disease (COPD) is one of the most important causes of morbidity and mortality in the world. The disease is often aggravated by periods of increased symptoms requiring medical attention. Among the possible triggers for these exacerbations, meteorological factors are under consideration. The objective of this study was to assess the influence of various meteorological factors on the health status of patients with COPD. For this purpose, the daily number of ambulatory care visits due to COPD was analysed in Bavaria, Germany, for the years 2006 and 2007. The meteorological factors were provided by the model at the European Centre for Medium Range Weather Forecast (ECMWF). For the multivariate analysis, a generalised linear model was used. In Bavaria, an increase of 1% of daily consultations (about 103 visits per day) was found to be associated with a change of 0.72 K temperature, 209.55 of log air surface pressure in Pa, and a decrease of 1% of daily consultations with 1,453,763 Ws m2 of solar radiation. There also seem to be regional differences between north and south Bavaria; for instance, the effect of wind speed and specific humidity with a lag of 1 day were only significant in the north. This study could contribute to a tool for the prevention of exacerbations. It also serves as a model for the further evaluation of the impact of meteorological factors on health, and could easily be applied to other diseases or other regions.

  13. Influence of air pressure, humidity, solar radiation, temperature, and wind speed on ambulatory visits due to chronic obstructive pulmonary disease in Bavaria, Germany.

    PubMed

    Ferrari, Uta; Exner, Teresa; Wanka, Eva R; Bergemann, Christoph; Meyer-Arnek, Julian; Hildenbrand, Beate; Tufman, Amanda; Heumann, Christian; Huber, Rudolf M; Bittner, Michael; Fischer, Rainald

    2012-01-01

    Chronic obstructive pulmonary disease (COPD) is one of the most important causes of morbidity and mortality in the world. The disease is often aggravated by periods of increased symptoms requiring medical attention. Among the possible triggers for these exacerbations, meteorological factors are under consideration. The objective of this study was to assess the influence of various meteorological factors on the health status of patients with COPD. For this purpose, the daily number of ambulatory care visits due to COPD was analysed in Bavaria, Germany, for the years 2006 and 2007. The meteorological factors were provided by the model at the European Centre for Medium Range Weather Forecast (ECMWF). For the multivariate analysis, a generalised linear model was used. In Bavaria, an increase of 1% of daily consultations (about 103 visits per day) was found to be associated with a change of 0.72 K temperature, 209.55 of log air surface pressure in Pa, and a decrease of 1% of daily consultations with 1,453,763 Ws m(2) of solar radiation. There also seem to be regional differences between north and south Bavaria; for instance, the effect of wind speed and specific humidity with a lag of 1 day were only significant in the north. This study could contribute to a tool for the prevention of exacerbations. It also serves as a model for the further evaluation of the impact of meteorological factors on health, and could easily be applied to other diseases or other regions.

  14. Application of the ultrasonic technique and high-speed filming for the study of the structure of air-water bubbly flows

    SciTech Connect

    Carvalho, R.D.M.; Venturini, O.J.; Tanahashi, E.I.; Neves, F. Jr.; Franca, F.A.

    2009-10-15

    Multiphase flows are very common in industry, oftentimes involving very harsh environments and fluids. Accordingly, there is a need to determine the dispersed phase holdup using noninvasive fast responding techniques; besides, knowledge of the flow structure is essential for the assessment of the transport processes involved. The ultrasonic technique fulfills these requirements and could have the capability to provide the information required. In this paper, the potential of the ultrasonic technique for application to two-phase flows was investigated by checking acoustic attenuation data against experimental data on the void fraction and flow topology of vertical, upward, air-water bubbly flows in the zero to 15% void fraction range. The ultrasonic apparatus consisted of one emitter/receiver transducer and three other receivers at different positions along the pipe circumference; simultaneous high-speed motion pictures of the flow patterns were made at 250 and 1000 fps. The attenuation data for all sensors exhibited a systematic interrelated behavior with void fraction, thereby testifying to the capability of the ultrasonic technique to measure the dispersed phase holdup. From the motion pictures, basic gas phase structures and different flows patterns were identified that corroborated several features of the acoustic attenuation data. Finally, the acoustic wave transit time was also investigated as a function of void fraction. (author)

  15. Note: Measurement of extreme-short current pulse duration of runaway electron beam in atmospheric pressure air

    SciTech Connect

    Tarasenko, V. F.; Rybka, D. V.; Burachenko, A. G.; Lomaev, M. I.; Balzovsky, E. V.

    2012-08-15

    This note reports the time-amplitude characteristic of the supershort avalanche electron beam with up to 20 ps time resolution. For the first time it is shown that the electron beam downstream of small-diameter diaphragms in atmospheric pressure air has a complex structure which depends on the interelectrode gap width and cathode design. With a spherical cathode and collimator the minimum duration at half maximum of the supershort avalanche electron beam current pulse was shown to be {approx}25 ps. The minimum duration at half maximum of one peak in the pulses with two peaks can reach {approx}25 ps too.

  16. Note: measurement of extreme-short current pulse duration of runaway electron beam in atmospheric pressure air.

    PubMed

    Tarasenko, V F; Rybka, D V; Burachenko, A G; Lomaev, M I; Balzovsky, E V

    2012-08-01

    This note reports the time-amplitude characteristic of the supershort avalanche electron beam with up to 20 ps time resolution. For the first time it is shown that the electron beam downstream of small-diameter diaphragms in atmospheric pressure air has a complex structure which depends on the interelectrode gap width and cathode design. With a spherical cathode and collimator the minimum duration at half maximum of the supershort avalanche electron beam current pulse was shown to be ~25 ps. The minimum duration at half maximum of one peak in the pulses with two peaks can reach ~25 ps too.

  17. A new method for infrared imaging of air currents in and around critical hazard fume hoods

    SciTech Connect

    Mulac, W.A.; McCreary, J.R. ); Schmalz, H. Thermal Surveys, Inc., Rockford, IL )

    1992-01-01

    A real time method of measuring and recording the efficacy of vapor containment in and around critical hazard fume hoods is being developed. An infrared camera whose response is restricted to a spectral range that overlaps a strong absorption band in a non-toxic gas is used to render real-time video images of the presence and flow of the gas. The gas, nitrous oxide, is ejected in a continuous stream in and around fume hoods that are to be certified capable of containing hazardous fumes. The principle advantage is that various scenarios of air flow displacement in and outside the hood can be easily investigated; the principle limitation is the necessity of high tracer gas concentration to obtain strong visualizations. We hope that this technique can be found to be an effective and safe method to test hoods in locations that were built before present regulations were promulgated.

  18. A new method for infrared imaging of air currents in and around critical hazard fume hoods

    SciTech Connect

    Mulac, W.A.; McCreary, J.R.; Schmalz, H. |

    1992-11-01

    A real time method of measuring and recording the efficacy of vapor containment in and around critical hazard fume hoods is being developed. An infrared camera whose response is restricted to a spectral range that overlaps a strong absorption band in a non-toxic gas is used to render real-time video images of the presence and flow of the gas. The gas, nitrous oxide, is ejected in a continuous stream in and around fume hoods that are to be certified capable of containing hazardous fumes. The principle advantage is that various scenarios of air flow displacement in and outside the hood can be easily investigated; the principle limitation is the necessity of high tracer gas concentration to obtain strong visualizations. We hope that this technique can be found to be an effective and safe method to test hoods in locations that were built before present regulations were promulgated.

  19. A new method for infrared imaging of air currents in and around critical hazard fume hoods

    SciTech Connect

    Mulac, W.A.; McCreary, J.R.; Schmalz, H.

    1994-03-01

    Active, safe real-time method of measuring and recording the efficacy of vapor containment in and around critical hazard fume hoods has been developed. An infrared camera whose response is restricted to a spectral range that overlaps a strong absorption band in a nontoxic gas is used to render real-time video images of the presence and flow of the gas. The gas, nitrous oxide, is ejected in a continuous stream in and around fume hoods that are to be certified capable of containing hazardous fumes. The principal advantage is that various scenarios of air flow displacement in and outside the hood can be easily investigated; the principal limitation is the necessity of high tracer gas concentration to obtain strong visualizations.

  20. High Speed Solid State Circuit Breaker

    NASA Technical Reports Server (NTRS)

    Podlesak, Thomas F.

    1993-01-01

    The U.S. Army Research Laboratory, Fort Monmouth, NJ, has developed and is installing two 3.3 MW high speed solid state circuit breakers at the Army's Pulse Power Center. These circuit breakers will interrupt 4160V three phase power mains in no more than 300 microseconds, two orders of magnitude faster than conventional mechanical contact type circuit breakers. These circuit breakers utilize Gate Turnoff Thyristors (GTO's) and are currently utility type devices using air cooling in an air conditioned enclosure. Future refinements include liquid cooling, either water or two phase organic coolant, and more advanced semiconductors. Each of these refinements promises a more compact, more reliable unit.

  1. Air pollution control residues from waste incineration: Current UK situation and assessment of alternative technologies

    SciTech Connect

    Amutha Rani, D.; Boccaccini, A.R.; Deegan, D.; Cheeseman, C.R.

    2008-11-15

    Current disposal options for APC residues in the UK and alternative treatment technologies developed world-wide have been reviewed. APC residues are currently landfilled in the UK where they undergo in situ solidification, although the future acceptability of this option is uncertain because the EU waste acceptance criteria (WAC) introduce strict limits on leaching that are difficult to achieve. Other APC residue treatment processes have been developed which are reported to reduce leaching to below relevant regulatory limits. The Ferrox process, the VKI process, the WES-PHix process, stabilisation/solidification using cementitious binders and a range of thermal treatment processes are reviewed. Thermal treatment technologies convert APC residues combined with other wastes into inert glass or glass-ceramics that encapsulate heavy metals. The waste management industry will inevitably use the cheapest available option for treating APC residues and strict interpretation and enforcement of waste legislation is required if new, potentially more sustainable technologies are to become commercially viable.

  2. Air Transport Pilot Supply and Demand: Current State and Effects of Recent Legislation

    DTIC Science & Technology

    2015-01-01

    if a “perfect storm ” of current policy, demographics, and incentives will cause a pilot shortage. The policy section refers to the new first...larger than the 4000-4500 anticipated ATP 31 attrition rates. There is a strong correlation between ATP hiring rates and new ATP certifications...There also is a strong correlation between new commercial pilot certifications among young pilots and new ATP certifications. Thus, as more ATPs are

  3. Offline coupling of high-speed counter-current chromatography and gas chromatography/mass spectrometry generates a two-dimensional plot of toxaphene components.

    PubMed

    Kapp, Thomas; Vetter, Walter

    2009-11-20

    High-speed counter-current chromatography (HSCCC), a separation technique based solely on the partitioning of solutes between two immiscible liquid phases, was applied for the fractionation of technical toxaphene, an organochlorine pesticide which consists of a complex mixture of structurally closely related compounds. A solvent system (n-hexane/methanol/water 34:24:1, v/v/v) was developed which allowed to separate compounds of technical toxaphene (CTTs) with excellent retention of the stationary phase (S(f) = 88%). Subsequent analysis of all HSCCC fractions by gas chromatography coupled to electron-capture negative ion mass spectrometry (GC/ECNI-MS) provided a wealth of information regarding separation characteristics of HSCCC and the composition of technical toxaphene. The visualization of the large amount of data obtained from the offline two-dimensional HSCCC-GC/ECNI-MS experiment was facilitated by the creation of a two-dimensional (2D) contour plot. The contour plot not only provided an excellent overview of the HSCCC separation progress, it also illustrated the differences in selectivity between HSCCC and GC. The results of this proof-of-concept study showed that the 2D chromatographic approach involving HSCCC facilitated the separation of CTTs that coelute in unidimensional GC. Furthermore, the creation of 2D contour plots may provide a useful means of enhancing data visualization for other offline two-dimensional separations.

  4. Separation of polyphenols from leaves of Malus hupehensis (Pamp.) Rehder by off-line two-dimensional High Speed Counter-Current Chromatography combined with recycling elution mode.

    PubMed

    Liu, Qi; Zeng, Hualiang; Jiang, Shujing; Zhang, Li; Yang, Fuzhu; Chen, Xiaoqing; Yang, Hua

    2015-11-01

    In this study, off-line two-dimensional High Speed Counter-Current Chromatography (2D HSCCC) strategy combined with recycling elution mode was developed to isolate compounds from the ethyl acetate extract of a common green tea--leaves of Malus hupehensis (Pamp.) Rehder. In the orthogonal separation system, a conventional HSCCC was employed for the first dimension and two recycling HSCCCs were used for the second in parallel. Using a solvent system consisting of n-hexane-ethyl acetate-methanol-water (1:4:0.6:4.4, v/v) in the first and second dimension, four compounds including 3-hydroxy-phlorizin (1), phloretin (2), avicularin (3) and kaempferol 3-O-β-D-glucoside (4) were obtained. The purities of these four compounds were all over 95.0% as determined by HPLC. And their structures were all identified through UV, MS and (1)H NMR. It has been demonstrated that the combination of off-line 2D HSCCC with recycling elution mode is an efficient technique to isolate compounds with similar polarities in natural products.

  5. Application of high-speed counter-current chromatography for isolation of triterpenes from Schisandra Chinensis (Turcz.) Baill and induction apoptosis mechanism of HSC-T6.

    PubMed

    Li, Bin; Meng, Xianjun; Zhu, Lijie; Jiao, Xinyao; Zhang, Jiachen

    2014-01-01

    Triterpenes have shown many beneficial activities in researches, but their separation and preparation usually require multiple methods. Following an initial cleaning-up step on the AB-8 macroporous resin, a preparative high-speed counter-current chromatography (HSCCC) with a two-phase solvent system comprising chloroform-n-butyl alcohol-methanol-water (10:1:7:4, v/v/v/v) was used to isolate and separate triterpenes from caculis of Schisandra Chinensis (Turcz.) baill. A total of 89 mg corosolic acid with purities of 98.5% were obtained from 400 mg crude extract in one-step elution and less than 4 h, and the structure identification was performed by UV, IR, MS, 1H NMR and 13C NMR. The inhibition on liver fibrosis activities of the triterpenes against HSC-T6 in vitro were studied by cell culture methods. The results showed that the corosolic acid have better inhibitory effects on HSC-T6 cells with the IC50 value of 5~25 μg/mL and the study also indicated that corosolic acid might be a potential Chinese medical component to inhibit liver fibrosis.

  6. Isolation and purification of coumarin compounds from the root of Peucedanum decursivum (Miq.) Maxim by high-speed counter-current chromatography.

    PubMed

    Liu, Renmin; Sun, Qinghua; Shi, Yunrong; Kong, Lingyi

    2005-05-27

    A preparative high-speed counter-current chromatography (HSCCC) method for isolation and purification of coumarin compounds from the Chinese medicinal plant Peucedanum decursivum (Miq.) Maxim (Zihuaqianhu in Chinese) was successfully established by using light petroleum-ethyl acetate-methanol-water (5:5:7:4, v/v) as the two-phase solvent system. The upper phase of light petroleum-ethyl acetate-methanol-water (5:5:7:4, v/v) was used as the stationary phase of HSCCC. Nodakenetin (2.8 mg), 6.1 mg of Pd-C-IV, 7.3 mg of Pd-D-V, 4.7 mg of ostruthin, 7.8 mg of decursidin and 11.2 mg of decursitin C with the purity of 88.3%, 98.0%, 94.2%, 97.1%, 97.8% and 98.4%, respectively, were separated successfully in one-step separation from 150 mg of crude sample from P. decursivum (Miq.) Maxim. After purified by HSCCC again with light petroleum-ethyl acetate-methanol-water (5:5:4:5, v/v) as the two-phase solvent system, the purity of (I) can reach 99.4%. The structures of all the compounds were identified by 1H NMR and 13C NMR.

  7. Application of high-speed counter-current chromatography as a new pretreatment method for analysis of polycyclic aromatic hydrocarbons in environmental water samples

    PubMed Central

    Cao, Xueli; Yang, Chunlei; Pei, Hairun; Li, Xinghong; Xu, Xiaobai; Ito, Yoichiro

    2011-01-01

    High-speed counter-current chromatography (HSCCC) was investigated as a new sample pretreatment method for the analysis of trace polycyclic aromatic hydrocarbons (PAHs) in water environmental samples. The experiment was performed with a nonaqueous binary two-phase solvent system composed of heptane-acetonitrile. The HSCCC column was first entirely filled with the upper stationary phase of the and a large volume of water sample was pumped into the column while the CCC column was rotated at 1600 rpm. Finally, the trace amount of PAHs extracted and enriched in the stationary phase were eluted out by the lower mobile phase. and analyzed by gas chromatography-flame ionization detector (GC-FID) or gas chromatography-mass spectrometry (GC-MS) after concentration. The enrichment and cleanup of PAHs can be fulfilled online by this methodwithhigh recoveries (84.1%–103.2%) and good reproducibility (RSDs 4.9–12.2%) for 16 EPA PAHs under the optimized HSCCC pretreatment conditions. This method has been successfully applied to determine PAHs in lake waterwhere 8 PAHs were detected in the concentration of 40.9–89.9 ng/L. The present method is extremely suitable in the preparation of large volume of environmental water sample for the determination of a trace amount of organic pollutants including PAHs as studied in this paper. PMID:22282420

  8. Isolation of bioactive components from Flaveria bidentis (L.) Kuntze using high-speed counter-current chromatography and time-controlled collection method.

    PubMed

    Wei, Yun; Zhang, Kai; Yin, Li; Du, Jilin; Zhang, Guoliang

    2012-04-01

    Semipreparative high-speed counter-current chromatography (HSCCC) by time-controlled collection method was successfully applied for isolation and purification of α-terthienyl, 5-(3-buten-1-ynyl)-2,2'-bithienyl, and 5-(3-penten-1-ynyl)-2,2'-bithienyl from Flaveria bidentis (L.) Kuntze for the first time. The two-phase solvent system composed of n-hexane and acetonitrile at the volume ratio of 1:1 (v/v) was used for the semipreparative HSCCC. The 5.2 mg α-terthienyl, 2.2 mg 5-(3-buten-1-ynyl)-2,2'-bithienyl, and 4.3 mg 5-(3-penten-1-ynyl)-2,2'-bithienyl with the purity of 99.9, 90.2, and 92.1% were produced from 265.6 mg crude extract, respectively, and 5-(3-penten-1-ynyl)-2,2'-bithienyl was first isolated from Flaveria bidentis (L.) Kuntze. The structures of the separated compounds were identified by electrospray-ionization mass spectrometry and proton and carbon nuclear magnetic resonance ((1)H- and (13)C-NMR).

  9. [Isolation and preparation of an imidazole alkaloid from radix radix of Aconitum pendulum Busch by semi-preparative high-speed counter-current chromatography].

    PubMed

    Liu, Yongling; Chen, Tao; Chen, Chen; Zou, Denglang; Li, Yulin

    2014-05-01

    Aconitum pendulum Busch is rich C19 diterpenoid alkaloids, but there is no report of imidazole alkaloid in Aconitum pendulum Busch. In this study, an imidazole alkaloid named 1H-imidazole-2-carboxylic acid, butyl ester (ICABE) was successfully separated from Aconitum pendulum Busch with semi-preparative high-speed counter-current chromatography (HSCCC). The partition coefficient was measured by HPLC to select the solvent systems for ICABE separation by HSCCC. The separation was performed with a two-phase solvent system composed of n-hexane-chloroform-ethanol-water (10:1 : 13:2, v/v/v/v). The upper phase was used as the stationary phase and the lower phase as the mobile phase. It was operated at a flow rate of 1.8 mL/min. The apparatus was rotated at 850 r/min, and the detection wavelength was set at 230 nm. Under the selected conditions, a high efficiency separation of HSCCC was achieved, and 7.5 mg of ICABE was obtained from 100 mg of the crude sample of Aconitum pendulum in one-step separation within 350 min. The HPLC analysis showed that the purity of the compound was over 98%. The chemical structure was confirmed by UV, 1H-NMR and 13C-NMR. The established method is simple, highly efficient and suitable for large scale separation of ICABE from radix of Aconitum pendulum Busch.

  10. Bioassay-guided preparative separation of angiotensin-converting enzyme inhibitory C-flavone glycosides from Desmodium styracifolium by recycling complexation high-speed counter-current chromatography.

    PubMed

    Zhang, Ying-Qi; Luo, Jian-Guang; Han, Chao; Xu, Jin-Fang; Kong, Ling-Yi

    2015-01-01

    A new strategy of the convergence of high-speed counter-current chromatography (HSCCC) and bioactive assay technique was developed for rapidly screening and separating the angiotensin-converting enzyme (ACE) inhibitors from the aerial parts of Desmodium styracifolium. Bioactivity-guided fractionation of the crude extract was first established to target the bioactive fractions based on HSCCC coupled with in vitro ACE inhibitory assay. Subsequently, the bioactive fractions were further separated by the recycling complexation HSCCC respectively, using 0.10 mol/L copper sulfate in the lower phase of two-phase solvent system composed of n-butanol/water (1:1, v/v). Five C-glycosylflavones, vicenin 2 (1), carlinoside (2), vicenin 1 (3), schaftoside (4) and vicenin 3 (5), were successfully obtained. Their chemical structures were identified using ESI-MS and NMR. All the isolates showed in vitro ACE inhibitory activity with the IC50 values between 33.62 and 58.37 μM. The results demonstrated that the established method was proposed as an excellent strategy to systematically screen and purify active compounds from traditional Chinese medicines.

  11. Preparative isolation and purification of lignans from Justicia procumbens using high-speed counter-current chromatography in stepwise elution mode.

    PubMed

    Zhou, Peijuan; Luo, Qijun; Ding, Lijian; Fang, Fang; Yuan, Ye; Chen, Juanjuan; Zhang, Jinrong; Jin, Haixiao; He, Shan

    2015-04-20

    Lignans, which are recognized as main constituents in Justicia procumbens, have attracted considerable attention due to their pharmacological activities, including antitumor, anti-hepatitic, cytotoxic, anti-microbial, and anti-virus properties. Preparative high-speed counter-current chromatography (HSCCC) was successfully applied to the isolation and purification of four lignans (justicidin B (1), justicidin A (2), 6'-hydroxyjusticidin C (3) and lignan J1 (4)) from J. procumbens using stepwise elution with a pair of two-phase solvent systems composed of n-hexane-ethyl acetate-methanol-water at (1.3:1:1.3:1, v/v) and (2.5:1:2.5:1, v/v). The preparative HSCCC separation was performed on 300 mg of crude sample yielding compounds 1 (19.7 mg), 2 (9.86 mg), 3 (11.26 mg), and 4 (2.54 mg) in a one-step separation, with purities over 95% as determined by HPLC. The structures of these compounds were identified by MS, 1H-NMR and 13C-NMR. This is the first report on the application of HSCCC to the efficient separation of lignans from J. procumbens.

  12. Separation and purification of neohesperidin from the albedo of Citrus reticulata cv. Suavissima by combination of macroporous resin and high-speed counter-current chromatography.

    PubMed

    Zhang, Jiukai; Zhu, Xiaoyan; Luo, Fenglei; Sun, Chongde; Huang, Jianzhen; Li, Xian; Chen, Kunsong

    2012-01-01

    In this article, a simple and efficient protocol for rapid preparation and separation of neohesperidin from the albedo of Citrus reticulata cv. Suavissima was established by the combination of macroporous resin column chromatography and high-speed counter-current chromatography (HSCCC). Six types of resin were investigated by adsorption and desorption tests, and D101 macroporous resin was selected for the first cleaning-up procedure, in which 55% aqueous ethanol was used to elute neohesperidin. After treatment with D101 resin, the neohesperidin purity increased 11.83-fold from 4.92% in the crude extract to 58.22% in the resin-refined sample, with a recovery of 68.97%. The resin-refined sample was directly subjected to HSCCC purification with a two-phase solvent system composed of ethyl acetate-n-butanol-water (4:1:5, v/v), and 23.6 mg neohesperidin with 97.47% purity was obtained from 60 mg sample in only one run. The recovery of neohesperidin in HSCCC separation procedure was 65.85%. The chemical structure of the purified neohesperidin was identified by both HPLC and LC-MS. The established purification process will be helpful for further characterization and utilization of Citrus neohesperidin.

  13. [Isolation and purification of solanesol from potato leaves by high-speed counter-current chromatography and identification by atmospheric pressure chemical ionization mass spectrometry].

    PubMed

    Hu, Jiangyong; Liang, Yong; Xie, Ya; Huang, Zhaofeng; Zhong, Hanzuo

    2007-07-01

    Preparative high-speed counter-current chromatography (HSCCC) was used for the isolation and purification of solanesol from potato leaves. Experimental conditions of the extraction of solanesol from potato leaves have been optimized. An ultrafine extraction method was applied in this study. The efficiency using an ultrafine extraction was found to be improved in the investigation, the yields of solanesol by different extraction methods were 0.083% by ultrafine extraction and 0.050% by ultrasonic extraction. Using n-hexane-methanol (10:7, v/v) as the two-phase solvent system, preparative HSCCC was successfully performed with the yield of 5 mg solanesol at 98.7% of purity from 60 mg of crude extract in the one-step separation. The mobile phase was the lower phase and operated at a flow rate of 1.5 mL/min, while the apparatus rotated at 800 r/min. The solanesol was identified by the atmospheric pressure chemical ionization mass spectrometry (APCI-MS). The ionization and cleavage mechanisms of solanesol in APCI-MS and APCI-MS/MS are discussed.

  14. Preparative isolation and purification of urolithins from the intestinal metabolites of pomegranate ellagitannins by high-speed counter-current chromatography.

    PubMed

    Zhao, Wenhua; Wang, Yuji; Hao, Weijia; Yang, Hua; Song, Xueying; Zhao, Ming; Peng, Shiqi

    2015-05-15

    Urolithins were separated from the intestinal metabolites of pomegranate ellagitannins by high-speed counter current chromatography in two steps using two solvent systems composed of n-hexane-ethyl acetate-methanol-acetic acid-water (2.5:2:0.25:5, v/v/v/v/v) and n-hexane-ethyl acetate-methanol-acetic acid-water (2.5:0. 8:0.25:5, v/v/v/v/v) for the first time. Each injection of 100mg extract yielded 21mg of pure urolithin A and 10mg of pure urolithin B. High-performance liquid chromatography analyses revealed that the purity of urolithin A and urolihtin B was over 98.5%. The structures of urolithin A and urolitihn B were identified by high resolution-MS, NMR and single crystal x-ray analysis. Urolithins reduced the oxidative stress status in colon cancer by decreasing the intracellular ROS and malondialdehyde levels, and increasing SOD activity in H2O2 treated Caco-2 cells.

  15. Effects of ambient air temperature, humidity, and wind speed on seminal traits in Braford and Nellore bulls at the Brazilian Pantanal

    NASA Astrophysics Data System (ADS)

    Menegassi, Silvio Renato Oliveira; Pereira, Gabriel Ribas; Bremm, Carolina; Koetz, Celso; Lopes, Flávio Guiselli; Fiorentini, Eduardo Custódio; McManus, Concepta; Dias, Eduardo Antunes; da Rocha, Marcela Kuczynski; Lopes, Rubia Branco; Barcellos, Júlio Otávio Jardim

    2016-11-01

    The aim of this study was to evaluate the bioclimatic thermal stress assessed by Equivalent Temperature Index (ETI) and Temperature Humidity Index (THI) on Braford and Nellore bulls sperm quality during the reproductive seasons at the tropical region in the Brazilian Pantanal. We used 20 bulls aged approximately 24 months at the beginning of the study. Five ejaculates per animal were collected using an electroejaculator. Temperature, air humidity, and wind speed data were collected every hour from the automatic weather station at the National Institute of Meteorology. Infrared thermography images data were collected to assess the testicular temperature gradient in each animal. Data were analyzed with ANOVA using MIXED procedure of SAS and means were compared using Tukey's HSD test. The THI and ETI at 12 days (epididymal transit) were higher in January (89.7 and 28.5, respectively) and February (90.0 and 29.0, respectively) compared to other months ( P < 0.01). Total seminal defects differ only in Bradford bulls between the months of November and February. Nellore bulls had lower major defects (MaD) and total defects (TD) compared to Braford. Nellore bulls showed correlation between minor defects (MiD) and THI for 30 days (0.90) and 18 days (0.88; P < 0.05). Braford bulls showed correlation for MaD (0.89) in ETI for 12 days ( P < 0.05). Infrared thermography showed no difference between animals. Reproductive response to environmental changes is a consequence of Nellore and Braford adaptation to climate stress conditions. Both THI and ETI environmental indexes can be used to evaluate the morphological changes in the seminal parameters in Nellore or Braford bulls; however, more experiments should be performed focusing on larger sample numbers and also in reproductive assessment during the consecutive years to assess fertility potential.

  16. On the physical processes ruling an atmospheric pressure air glow discharge operating in an intermediate current regime

    SciTech Connect

    Prevosto, L. Mancinelli, B.; Chamorro, J. C.; Cejas, E.; Kelly, H.

    2015-02-15

    Low-frequency (100 Hz), intermediate-current (50 to 200 mA) glow discharges were experimentally investigated in atmospheric pressure air between blunt copper electrodes. Voltage–current characteristics and images of the discharge for different inter-electrode distances are reported. A cathode-fall voltage close to 360 V and a current density at the cathode surface of about 11 A/cm{sup 2}, both independent of the discharge current, were found. The visible emissive structure of the discharge resembles to that of a typical low-pressure glow, thus suggesting a glow-like electric field distribution in the discharge. A kinetic model for the discharge ionization processes is also presented with the aim of identifying the main physical processes ruling the discharge behavior. The numerical results indicate the presence of a non-equilibrium plasma with rather high gas temperature (above 4000 K) leading to the production of components such as NO, O, and N which are usually absent in low-current glows. Hence, the ionization by electron-impact is replaced by associative ionization, which is independent of the reduced electric field. This leads to a negative current-voltage characteristic curve, in spite of the glow-like features of the discharge. On the other hand, several estimations show that the discharge seems to be stabilized by heat conduction; being thermally stable due to its reduced size. All the quoted results indicate that although this discharge regime might be considered to be close to an arc, it is still a glow discharge as demonstrated by its overall properties, supported also by the presence of thermal non-equilibrium.

  17. Unrealistically pristine air in the Arctic produced by current global scale models

    PubMed Central

    Sato, Yousuke; Miura, Hiroaki; Yashiro, Hisashi; Goto, Daisuke; Takemura, Toshihiko; Tomita, Hirofumi; Nakajima, Teruyuki

    2016-01-01

    Black carbon aerosol (BCA) in the Arctic has profound impacts on the global climate system through radiation processes. Despite its enormous impacts, current global scale models, powerful tools for estimating overall impact, tend to underestimate the levels of BCA in the Arctic over several seasons. Using a global aerosol transport simulation with a horizontal grid resolution of 3.5 km, we determined that a higher resolution significantly reduced the underestimation of BCA levels in the Arctic, mainly due to an enhancement of the representation of low-pressure and frontal systems. The BCA mass loading in the Arctic simulated with 3.5-km grid resolution was 4.2-times larger than that simulated with coarse (56-km) grid resolution. Our results also indicated that grid convergence had not occurred on both the contrast between the cloud/cloud free areas and the poleward BCA mass flux, despite the use of the 3.5-km grid resolution. These results suggest that a global aerosol transport simulation using kilometre-order or finer grid resolution is required for more accurate estimation of the distribution of pollutants in the Arctic. PMID:27222352

  18. Ozone generation by negative direct current corona discharges in dry air fed coaxial wire-cylinder reactors

    NASA Astrophysics Data System (ADS)

    Yehia, Ashraf; Mizuno, Akira

    2013-05-01

    An analytical study was made in this paper for calculating the ozone generation by negative dc corona discharges. The corona discharges were formed in a coaxial wire-cylinder reactor. The reactor was fed by dry air flowing with constant rates at atmospheric pressure and room temperature, and stressed by a negative dc voltage. The current-voltage characteristics of the negative dc corona discharges formed inside the reactor were measured in parallel with concentration of the generated ozone under different operating conditions. An empirical equation was derived from the experimental results for calculating the ozone concentration generated inside the reactor. The results, that have been recalculated by using the derived equation, have agreed with the experimental results over the whole range of the investigated parameters, except in the saturation range for the ozone concentration. Therefore, the derived equation represents a suitable criterion for expecting the ozone concentration generated by negative dc corona discharges in dry air fed coaxial wire-cylinder reactors under any operating conditions in range of the investigated parameters.

  19. Anomalous diurnal variation of atmospheric potential gradient and air-Earth current density observed at Maitri, Antarctica

    NASA Astrophysics Data System (ADS)

    Jeeva, K.; Gurubaran, S.; Williams, E. R.; Kamra, A. K.; Sinha, A. K.; Guha, A.; Selvaraj, C.; Nair, K. U.; Dhar, Ajay

    2016-11-01

    The scope of this paper is to explore the mechanisms operating over Maitri (70.76°S, 11.74°E, 117 m above mean sea level), a coastal Antarctic station, that produce an anomalous fair-weather diurnal pattern of the atmospheric electric potential gradient (PG) and air-Earth current density (AEC). The anomaly in the diurnal variations of AEC and the PG is displaying an ostensible minimum at 10 UT and a diminished response to the thunderstorm over the African continent in the 14-16 UT time frame. The data sets (2005-2014, except 2012) of the PG, and to some extent, AEC, from Maitri, are used to explore this anomaly. It follows that the fair-weather electrical phenomena over Maitri can be ascribed to global electrified convection on the one hand and to regional phenomena like convection due to the replacement of warm air by katabatic winds on the other hand. The katabatic winds originate on the polar plateau and blow from 130° at Maitri which are likely to transport various elements from the mountain slopes, and space charge from the polar plateau is expected to produce various disturbances in the PG and AEC monitored over the coastal Antarctica. This mechanism may be responsible for peaks in the early UT hours and also for the anomalous behavior of atmospheric electrical parameters observed at Maitri. Maitri data are compared with that of Carnegie cruise and Vostok to explain the source of anomaly.

  20. Ozone generation by negative direct current corona discharges in dry air fed coaxial wire-cylinder reactors

    SciTech Connect

    Yehia, Ashraf; Mizuno, Akira

    2013-05-14

    An analytical study was made in this paper for calculating the ozone generation by negative dc corona discharges. The corona discharges were formed in a coaxial wire-cylinder reactor. The reactor was fed by dry air flowing with constant rates at atmospheric pressure and room temperature, and stressed by a negative dc voltage. The current-voltage characteristics of the negative dc corona discharges formed inside the reactor were measured in parallel with concentration of the generated ozone under different operating conditions. An empirical equation was derived from the experimental results for calculating the ozone concentration generated inside the reactor. The results, that have been recalculated by using the derived equation, have agreed with the experimental results over the whole range of the investigated parameters, except in the saturation range for the ozone concentration. Therefore, the derived equation represents a suitable criterion for expecting the ozone concentration generated by negative dc corona discharges in dry air fed coaxial wire-cylinder reactors under any operating conditions in range of the investigated parameters.

  1. Dynamics of the microstructure of current channels and the generation of high-energy electrons in nanosecond discharges in air

    SciTech Connect

    Karelin, V. I.; Trenkin, A. A. Fedoseev, I. G.

    2015-12-15

    The results of the three-dimensional numerical simulation of the dynamics of the microstructure of high-voltage nanosecond discharges in air at atmospheric pressure are presented. It is established that the fast (at a time of ≈10 ns) broadening and significant decrease in the gas concentration in the microchannels occur as a result of the ohmic heating of microchannels with the diameter of 1–30 μm. It was shown that the broadening of microchannels in a nanosecond diffusive discharge provides an increase in the ratio of the electric field strength to the gas concentration in microchannels to values sufficient for the generation highenergy electron beams and X-ray bremsstrahlung in them. Features of the dynamics of the system of microchannels and its effect on the efficiency of the generation of high-energy electrons in discharges developing in the microstructuring regime of the current channels are considered.

  2. A review of the current geographic distribution of and debate surrounding electronic cigarette clean air regulations in the United States.

    PubMed

    Kadowaki, Joy; Vuolo, Mike; Kelly, Brian C

    2015-01-01

    In this article, we present the results of a systematic review of state, county, and municipal restrictions on the use of electronic cigarettes (e-cigarettes) in public spaces within the United States, alongside an overview of the current legal landscape. The lack of federal guidance leaves lower-level jurisdictions to debate the merits of restrictions on use in public spaces without sufficient scientific research. As we show through a geographic assessment of restrictions, this has resulted in an inconsistent patchwork of e-cigarette use bans across the United States of varying degrees of coverage. Bans have emerged over time in a manner that suggests a "bottom up" diffusion of e-cigarette clean air policies. Ultimately, the lack of clinical and scientific knowledge on the risks and potential harm reduction benefits has led to precautionary policymaking, which often lacks grounding in empirical evidence and results in spatially uneven diffusion of policy.

  3. A Review of the Current Geographic Distribution of and Debate Surrounding Electronic Cigarette Clean Air Regulations in the United States

    PubMed Central

    Kadowaki, Joy; Vuolo, Mike; Kelly, Brian C.

    2014-01-01

    In this article, we present the results of a systematic review of state, county, and municipal restrictions on the use of electronic cigarettes (e-cigarettes) in public spaces within the United States, alongside an overview of the current legal landscape. The lack of federal guidance leaves lower-level jurisdictions to debate the merits of restrictions on use in public spaces without sufficient scientific research. As we show through a geographic assessment of restrictions, this has resulted in an inconsistent patchwork of e-cigarette use bans across the United States of varying degrees of coverage. Bans have emerged over time in a manner that suggests a “bottom up” diffusion of e-cigarette clean air policies. Ultimately, the lack of clinical and scientific knowledge on the risks and potential harm reduction benefits has led to precautionary policymaking, which often lacks grounding in empirical evidence and results in spatially uneven diffusion of policy. PMID:25463920

  4. Performance comparison of three types of high-speed counter-current chromatographs for the separation of components of hydrophilic and hydrophobic color additives.

    PubMed

    Weisz, Adrian; Ito, Yoichiro

    2011-09-09

    The performance of three types of high-speed counter-current chromatography (HSCCC) instruments was assessed for their use in separating components in hydrophilic and hydrophobic dye mixtures. The HSCCC instruments compared were: (i) a J-type coil planet centrifuge (CPC) system with a conventional multilayer-coil column, (ii) a J-type CPC system with a spiral-tube assembly-coil column, and (iii) a cross-axis CPC system with a multilayer-coil column. The hydrophilic dye mixture consisted of a sample of FD&C Blue No. 2 that contained mainly two isomeric components, 5,5'- and 5,7'-disulfonated indigo, in the ratio of ∼7:1. The hydrophobic dye mixture consisted of a sample of D&C Red No. 17 (mainly Sudan III) and Sudan II in the ratio of ∼4:1. The two-phase solvent systems used for these separations were 1-butanol/1.3M HCl and hexane/acetonitrile. Each of the three instruments was used in two experiments for the hydrophilic dye mixture and two for the hydrophobic dye mixture, for a total of 12 experiments. In one set of experiments, the lower phase was used as the mobile phase, and in the second set of experiments, the upper phase was used as the mobile phase. The results suggest that: (a) use of a J-type instrument with either a multilayer-coil column or a spiral-tube assembly column, applying the lower phase as the mobile phase, is preferable for separating the hydrophilic components of FD&C Blue No. 2; and (b) use of a J-type instrument with multilayer-coil column, while applying either the upper phase or the lower phase as the mobile phase, is preferable for separating the hydrophobic dye mixture of D&C Red No. 17 and Sudan II.

  5. Alternating isocratic and step gradient elution high-speed counter-current chromatography for the isolation of minor phenolics from Ormocarpum kirkii bark.

    PubMed

    Kamto, Eutrophe Le Doux; Carvalho, Tatiane S C; Mbing, Joséphine Ngo; Matene, Marie C N; Pegnyemb, Dieudonné E; Leitão, Gilda G

    2017-01-13

    A total of 14 compounds were isolated from the ethanol bark extract of O. kirkii S. Moore (Fabaceae) by alternating isocratic and step gradient elution high-speed counter-current chromatography (HSCCC) methods, using several solvent systems with reference to the polarity of compounds being purified. The extract was successively fractionated with generic solvent systems including n-hexane-ethanol-water (4:2:2) and ethyl acetate-water (1:1). Resulting fractions were further purified using the following preparative gradient elution consisting of ethyl acetate-n-butanol-water (X:Y:10), (X:Y=9:1 (I); 8:2 (II); 7:3 (III); 6:4 (IV); 5:5 (V); 4:6 (VI) 3:7 (VII) and n-hexane- ethyl acetate-methanol-water (1:X:1:1), X=1, 2, 2.5, 3 solvent systems. Two flavone glycosides, apigenin-6-C-β-d-glucopyranosyl-4'-O-[β-d-glucopyranosyl-(1→5)]-β-d-apiofuranoside (1) and apigenin-6-C-β-d-glucopyranosyl-4'-O-β-d-apiofuranoside (2), and one biflavanone diglycoside 7,7″-di-O-β-d-glucosylliquiritigeninyl-(I-3,II-3)-naringenin (4) were isolated as new compounds along with other 11 known ones. The structures of the isolated compounds were identified by HPLC-UV, ESI-MS, 1D and 2D NMR and comparison with literature data. Thus, over common traditional chromatographic methods, the present study shows that HSCCC is a useful and fast method for natural product research with no losses and lower solvent use.

  6. [Preparative isolation and purification of five non-volatile compounds from Fructus caryophylli and Flos caryophylli by high-speed counter-current chromatography].

    PubMed

    Gao, Lu; Yu, Bo; Yang, Hong

    2011-11-01

    A high-speed counter-current chromatographic (HSCCC) method was successfully developed for the isolation of three non-volatile compounds from Fructus Caryophylli and two chromone compounds from Flos Caryophylli. The optimum separation solution systems included system A (n-hexane-ethyl acetate-methanol-water (5:8:6: 13, v/v/v/v) and system B (n-hexane-ethyl acetate-methanol-water (5: 8: 9: 10, v/v/v/v). The upper phase of the system A was used as the stationary phase, and the lower phases of the systems A and B as the mobile phases were operated at a flow of 1.2 mL/min, while the apparatus rotated at 880 r/min. The 12.3 mg of ellagic acid, 9.6 mg of rhamnetin, 17.2 mg of quercetin were successfully purified from 70 mg of the crude extract of Fructus Caryophylli by a two-step separation. In the same way, 10.2 mg of 5,7-dimethoxy-2-methylchromone, 8.6 mg of 5,7-dimethoxy-2,6-dimethyl-chromone were purified from 50 mg of the crude extract of Flos Caryophylli. The purities of the compounds were all over 96% as determined by high performance liquid chromatography (HPLC). The five compounds were indentified by mass spectrometry (MS), 1H-nuclear magnetic resonance (NMR) and 13C-NMR. The results indicate that HSCCC is a powerful technique for the purification of non-volatile compounds from different parts of Eugenia caryophylla Thunb.

  7. Impacts of household coal and biomass combustion on indoor and ambient air quality in China: Current status and implication.

    PubMed

    Li, Qing; Jiang, Jingkun; Wang, Shuxiao; Rumchev, Krassi; Mead-Hunter, Ryan; Morawska, Lidia; Hao, Jiming

    2017-01-15

    This review briefly introduces current status of indoor and ambient air pollution originating from household coal and biomass combustion in mainland China. Owing to low combustion efficiency, emissions of CO, PM2.5, black carbon (BC), and polycyclic aromatic hydrocarbons have significant adverse consequences for indoor and ambient air qualities, resulting in relative contributions of more than one-third in all anthropogenic emissions. Their contributions are higher in less economically developed regions, such as Guizhou (61% PM2.5, 80% BC), than that in more developed regions, such as Shanghai (4% PM2.5, 17% BC). Chimneys can reduce ~80% indoor PM2.5 level when burning dirty solid fuels, such as plant materials. Due to spending more time near stoves, housewives suffer much more (~2 times) PM2.5 than the adult men, especially in winter in northern China (~4 times). Improvement of stove combustion/thermal efficiencies and solid fuel quality are the two essential methods to reduce pollutant emissions. PM2.5 and BC emission factors (EFs) have been identified to increase with volatile matter content in traditional stove combustion. EFs of dirty fuels are two orders higher than that of clean ones. Switching to clean ones, such as semi-coke briquette, was identified to be a feasible path for reducing >90% PM2.5 and BC emissions. Otherwise, improvement of thermal and combustion efficiencies by using under-fire technology can reduce ~50% CO2, 87% NH3, and 80% PM2.5 and BC emissions regardless of volatile matter content in solid fuel. However, there are still some knowledge gaps, such as, inventory for the temporal impact of household combustion on air quality, statistic data for deployed clean solid fuels and advanced stoves, and the effect of socioeconomic development. Additionally, further technology research for reducing air pollution emissions is urgently needed, especially low cost and clean stove when burning any type of solid fuel. Furthermore, emission

  8. [Current status of air pollution in Sao Paulo, Brazil: effects and problems associated with the introduction of ethanol-fueled motor vehicles].

    PubMed

    Kabuto, M; Tsugane, S; Hamada, G S

    1990-05-01

    Recently suggestions have been advanced that alternative fuels including ethanol, methanol or methane instead of so called "fossil fuels" may help improve the current conditions of air pollution. According to results of general survey in Sao Paulo, since their introduction in 1978, ethanol-fueled cars have increased their share to almost 50% of all light vehicles in 1983. The current status of air pollution in Sao Paulo metropolitan area (SPMA) is described in relation to the use of such alternative fuel. The average concentrations in air of SO2 and lead have been decreasing drastically during the period of 1982-88, whereas non-methane hydrocarbon, NO2 and O3 levels have been increasing to attain the worst levels in the world as indicated in Fig. 2. The use of ethanol-fuel, which contains less sulphate and lead, is thought to have contributed more or less to the above reductions of SO2 and lead in the air. However, the pollutants that have increased may derive mainly from diesel and gasoline exhausts of heavy vehicles. The general state of air pollutions appears not to have been improved, suggesting the difficulty in resolving air pollution issues. On the other hand, a current problem specific to ethanol-fuel is the aldehydes or other carcinogenic components in exhaust. Peak formaldehyde concentration, for example, have been reported to have reached 159 ppb in SPMA, which may be one of the highest levels shown in ambient air.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Combined current and temperature mapping in an air-cooled, open-cathode polymer electrolyte fuel cell under steady-state and dynamic conditions

    NASA Astrophysics Data System (ADS)

    Meyer, Q.; Ronaszegi, K.; Robinson, J. B.; Noorkami, M.; Curnick, O.; Ashton, S.; Danelyan, A.; Reisch, T.; Adcock, P.; Kraume, R.; Shearing, P. R.; Brett, D. J. L.

    2015-11-01

    In situ diagnostic techniques provide a means of understanding the internal workings of fuel cells so that improved designs and operating regimes can be identified. Here, for the first time, a combined current density and temperature distributed measurement system is used to generate an electro-thermal performance map of an air-cooled, air-breathing polymer electrolyte fuel cell stack operating in an air/hydrogen cross-flow configuration. Analysis is performed in low- and high-current regimes and a complex relationship between localised current density, temperature and reactant supply is identified that describes the way in which the system enters limiting performance conditions. Spatiotemporal analysis was carried out to characterise transient operations in dead-ended anode/purge mode which revealed extensive current density and temperature gradients.

  10. Investigation of unsaponifiable matter of plant oils and isolation of eight phytosterols by means of high-speed counter-current chromatography.

    PubMed

    Schröder, Markus; Vetter, Walter

    2012-05-11

    Phytosterols are minor components of plant oils. Due to their beneficial effect on human serum cholesterol level, new products supplemented with phytosterols have been marketed. Commercial phytosterol standards are frequently of insufficient purity, very expensive, only available in (semi-) synthetic form or not available at all. For this reason we aimed to explore the unsaponifiable matter of three plant oils (rapeseed oil, linseed oil and olive oil) in order to study their compositions and to purify several phytosterols. We fractionated ∼ 100 mg of the unsaponifiable matter of the plant oils with high-speed counter-current chromatography (HSCCC) by the combination of an enrichment step and a purification step. In the first part (enrichment step) composition of phytosterols, alkanes, fatty alcohols from 14:0 to 30:0 including isomers, 15-nonacosanone and other ketones as well as further minor compounds in the different fractions was studied by GC/MS. By means of the solvent system n-hexane/methanol/aqueous silver nitrate solution (34/24/1, v/v/v) in normal phase mode (tail-to-head) β-sitosterol could be isolated (6.4 mg, purity ≥ 99%) and several phytosterols (e.g. citrostadienol, cycloeucalenol and erythrodiol) could be enriched. Moreover, the fast eluting hydrocarbons squalene and nonacosane as well as the later eluting phytol (pure, 7 mg) and geranyl geraniol could also be efficiently enriched. Suited HSCCC fractions from the three plant oils were merged and re-injected into the HSCCC system (purification step). The HSCCC purification step provided 6.9 mg campesterol (≥ 99%), 2.9 mg brassicasterol (≥ 99%), 0.3mg Δ5-avenasterol (≥ 90%), 9.5mg cycloartenol (≥ 90%), 3.7 mg 24-methylene-cycloartanol (≥ 99%), and ∼ 1mg of an unknown compound (∼ 80%) isolated from rapeseed and linseed oil. Furthermore, the combined HSCCC enrichment and purification of a hydrogenated sterol standard provided two pure phytostanols (campestanol ≥ 99% and sitostanol

  11. Preparative separation of two subsidiary colors of FD&C Yellow No. 5 (Tartrazine) using spiral high-speed counter-current chromatography.

    PubMed

    Weisz, Adrian; Ridge, Clark D; Roque, Jose A; Mazzola, Eugene P; Ito, Yoichiro

    2014-05-23

    Specifications in the U.S. Code of Federal Regulations for the color additive FD&C Yellow No. 5 (Color Index No. 19140) limit the level of the tetrasodium salt of 4-[(4',5-disulfo[1,1'-biphenyl]-2-yl)hydrazono]-4,5-dihydro-5-oxo-1-(4-sulfophenyl)-1H-pyrazole-3-carboxylic acid and that of the trisodium salt of 4,4'-[4,5-dihydro-5-oxo-4-[(4-sulfophenyl)hydrazono]-1H-pyrazol-1,3-diyl]bis[benzenesulfonic acid], which are subsidiary colors abbreviated as Pk5 and Pk7, respectively. Small amounts of Pk5 and Pk7 are needed by the U.S. Food and Drug Administration for confirmatory analyses and for development of analytical methods. The present study describes the use of spiral high-speed counter-current chromatography (HSCCC) to separate the closely related minor components Pk5 and Pk7 from a sample of FD&C Yellow No. 5 containing ∼3.5% Pk5 and ∼0.7% Pk7. The separations were performed with highly polar organic/high-ionic strength aqueous two-phase solvent systems that were chosen by applying the recently introduced method known as graphic optimization of partition coefficients (Zeng et al., 2013). Multiple ∼1.0g portions of FD&C Yellow No. 5 (totaling 6.4g dye) were separated, using the upper phase of the solvent system 1-butanol/abs. ethanol/saturated ammonium sulfate/water, 1.7:0.3:1:1, v/v/v/v, as the mobile phase. After removing the ammonium sulfate from the HSCCC-collected fractions, these separations resulted in an enriched dye mixture (∼160mg) of which Pk5 represented ∼46% and Pk7, ∼21%. Separation of the enriched mixture, this time using the lower phase of that solvent system as the mobile phase, resulted in ∼61mg of Pk5 collected in fractions whose purity ranged from 88.0% to 92.7%. Pk7 (20.7mg, ∼83% purity) was recovered from the upper phase of the column contents. Application of this procedure also resulted in purifying the major component of FD&C Yellow No. 5 to >99% purity. The separated compounds were characterized by high-resolution mass

  12. The separation of flavonoids from Pongamia pinnata using combination columns in high-speed counter-current chromatography with a three-phase solvent system.

    PubMed

    Yin, Hao; Zhang, Si; Long, Lijuan; Yin, Hang; Tian, Xinpeng; Luo, Xiongming; Nan, Haihan; He, Sha

    2013-11-08

    The mangrove plant Pongamia pinnata (Leguminosae) is well known as a plant pesticide. Previous studies have indicated that the flavonoids are responsible of the biological activities of the plant. A new high-speed counter-current chromatography (HSCCC) method for the separation of three flavonoids, karanjin (1), pinnatin (2), and pongaflavone (3), from P. pinnata was developed in the present study. The lower and intermediate phase (LP and IP) of a new three-phase solvent system, n-hexane-acetonitrile-dichloromethane-water, at a volume ratio of 5:5:1:5, were used as the stationary phases, while the upper phase (UP) was used as the mobile phase, and the volume ratio between the stationary phases in the CCC column could be tuned by varying the initial pumped volume ratio of the stationary phases. The CCC columns containing all three phases of the solvent system were considered combination columns. According to the theories of combination column, it is possible to optimize the retention time of the target compounds by varying the volume ratio of the stationary phases in the HSCCC combination columns, as well as the suitable volume ratios of the stationary phases for the separation of the target compounds were predicted from the partition coefficients of the compounds in the three-phase solvent system. Then, three HSCCC separations using the combination columns with initial pumped LP:IP volume ratios of 1:0, 0.9:0.1, and 0.7:0.3 were performed separately based on the prediction. Three target compounds were prepared with high purity when the initial pumped volume ratio of the stationary phases was 0.9:0.1. The baseline separation of compounds 2 and 3 was achieved on the combination column with an initial pumped volume ratio of 0.7:0.3. Furthermore, the three experiments clearly demonstrated that the retentions and resolutions of the target compounds increased with an increasing volume ratio of IP, which is consistent with the prediction for the retention times for the

  13. Statistical Short-Range Guidance for Peak Wind Speed Forecasts on Kennedy Space Center/Cape Canaveral Air Force Station: Phase I Results

    NASA Technical Reports Server (NTRS)

    Lambert, Winifred C.; Merceret, Francis J. (Technical Monitor)

    2002-01-01

    This report describes the results of the ANU's (Applied Meteorology Unit) Short-Range Statistical Forecasting task for peak winds. The peak wind speeds are an important forecast element for the Space Shuttle and Expendable Launch Vehicle programs. The Keith Weather Squadron and the Spaceflight Meteorology Group indicate that peak winds are challenging to forecast. The Applied Meteorology Unit was tasked to develop tools that aid in short-range forecasts of peak winds at tower sites of operational interest. A 7 year record of wind tower data was used in the analysis. Hourly and directional climatologies by tower and month were developed to determine the seasonal behavior of the average and peak winds. In all climatologies, the average and peak wind speeds were highly variable in time. This indicated that the development of a peak wind forecasting tool would be difficult. Probability density functions (PDF) of peak wind speed were calculated to determine the distribution of peak speed with average speed. These provide forecasters with a means of determining the probability of meeting or exceeding a certain peak wind given an observed or forecast average speed. The climatologies and PDFs provide tools with which to make peak wind forecasts that are critical to safe operations.

  14. An experimental wind-tunnel investigation of a ram-air-spoiler roll-control device on a forward-control missile at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Blair, A. B., Jr.

    1978-01-01

    A parametric experimental wind-tunnel investigation was made at supersonic Mach numbers to provide design data on a ram-air-spoiler roll-control device that is to be used on forward-control cruciform missile configurations. The results indicate that the ram-air-spoiler tail fin is an effective roll-control device and that roll control is generally constant with vehicle attitude and Mach number unless direct canard and/or forebody shock impingement occurs. The addition of the ram-air-spoiler tail fins resulted in only small changes in aerodynamic-center location. For the ram-air-spoiler configuration tested, there are large axial force coefficient effects associated with the increased fin thickness and ram-air momentum loss.

  15. Non-Chemical Stressors and Cumulative Risk Assessment: An Overview of Current Initiatives and Potential Air Pollutant Interactions

    PubMed Central

    Lewis, Ari S.; Sax, Sonja N.; Wason, Susan C.; Campleman, Sharan L.

    2011-01-01

    Regulatory agencies are under increased pressure to consider broader public health concerns that extend to multiple pollutant exposures, multiple exposure pathways, and vulnerable populations. Specifically, cumulative risk assessment initiatives have stressed the importance of considering both chemical and non-chemical stressors, such as socioeconomic status (SES) and related psychosocial stress, in evaluating health risks. The integration of non-chemical stressors into a cumulative risk assessment framework has been largely driven by evidence of health disparities across different segments of society that may also bear a disproportionate risk from chemical exposures. This review will discuss current efforts to advance the field of cumulative risk assessment, highlighting some of the major challenges, discussed within the construct of the traditional risk assessment paradigm. Additionally, we present a summary of studies of potential interactions between social stressors and air pollutants on health as an example of current research that supports the incorporation of non-chemical stressors into risk assessment. The results from these studies, while suggestive of possible interactions, are mixed and hindered by inconsistent application of social stress indicators. Overall, while there have been significant advances, further developments across all of the risk assessment stages (i.e., hazard identification, exposure assessment, dose-response, and risk characterization) are necessary to provide a scientific basis for regulatory actions and effective community interventions, particularly when considering non-chemical stressors. A better understanding of the biological underpinnings of social stress on disease and implications for chemical-based dose-response relationships is needed. Furthermore, when considering non-chemical stressors, an appropriate metric, or series of metrics, for risk characterization is also needed. Cumulative risk assessment research will benefit

  16. Non-chemical stressors and cumulative risk assessment: an overview of current initiatives and potential air pollutant interactions.

    PubMed

    Lewis, Ari S; Sax, Sonja N; Wason, Susan C; Campleman, Sharan L

    2011-06-01

    Regulatory agencies are under increased pressure to consider broader public health concerns that extend to multiple pollutant exposures, multiple exposure pathways, and vulnerable populations. Specifically, cumulative risk assessment initiatives have stressed the importance of considering both chemical and non-chemical stressors, such as socioeconomic status (SES) and related psychosocial stress, in evaluating health risks. The integration of non-chemical stressors into a cumulative risk assessment framework has been largely driven by evidence of health disparities across different segments of society that may also bear a disproportionate risk from chemical exposures. This review will discuss current efforts to advance the field of cumulative risk assessment, highlighting some of the major challenges, discussed within the construct of the traditional risk assessment paradigm. Additionally, we present a summary of studies of potential interactions between social stressors and air pollutants on health as an example of current research that supports the incorporation of non-chemical stressors into risk assessment. The results from these studies, while suggestive of possible interactions, are mixed and hindered by inconsistent application of social stress indicators. Overall, while there have been significant advances, further developments across all of the risk assessment stages (i.e., hazard identification, exposure assessment, dose-response, and risk characterization) are necessary to provide a scientific basis for regulatory actions and effective community interventions, particularly when considering non-chemical stressors. A better understanding of the biological underpinnings of social stress on disease and implications for chemical-based dose-response relationships is needed. Furthermore, when considering non-chemical stressors, an appropriate metric, or series of metrics, for risk characterization is also needed. Cumulative risk assessment research will benefit

  17. Characterization of argon direct-current glow discharge with a longitudinal electric field applied at ambient air

    PubMed Central

    Jiang, Weiman; Tang, Jie; Wang, Yishan; Zhao, Wei; Duan, Yixiang

    2014-01-01

    A direct-current-driven plasma jet is developed by applying a longitudinal electric field on the flowing argon at ambient air. This plasma shows a torch shape with its cross-section increased from the anode to the cathode. Comparison with its counterparts indicates that the gas flow plays a key role in variation of the plasma structure and contributes much to enlarging the plasma volume. It is also found that the circular hollow metal base promotes generation of plasma with a high-power volume density in a limited space. The optical emission spectroscopy (OES) diagnosis indicates that the plasma comprises many reactive species, such as OH, O, excited N2, and Ar metastables. Examination of the rotational and vibrational temperature indicates that the plasma is under nonequilibrium condition and the excited species OH(A 2Σ+), O(5P), and N2(C 3Πu) are partly generated by energy transfer from argon metastables. The spatially resolved OES of plasma reveals that the negative glow, Faraday dark space, and positive column are distributed across the gas gap. The absence of the anode glow is attributed to the fact that many electrons in the vicinity of the anode follow ions into the positive column due to the ambipolar diffusion in the flowing gas. PMID:25205176

  18. Air Pollution Exposure and Physical Activity in China: Current Knowledge, Public Health Implications, and Future Research Needs

    PubMed Central

    Lü, Jiaojiao; Liang, Leichao; Feng, Yi; Li, Rena; Liu, Yu

    2015-01-01

    Deteriorating air quality in China has created global public health concerns in regard to health and health-related behaviors. Although emerging environmental regulations address ambient air pollution in China, the level of enforcement and long-term impact of these measures remain unknown. Exposure to air pollution has been shown to lead to multiple adverse health outcomes, including increased rates of heart disease and mortality. However, a lesser-known but increasingly significant concern is the relationship between air pollution and its effects on outdoor exercise. This is especially important in China, which has a culturally rooted lifestyle that encourages participation in outdoor physical activity. This article evaluates the intersection of air pollution and outdoor exercise and provides a discussion of issues related to its public health impact in China, where efforts to promote a healthy lifestyle may be adversely affected by the ambient air pollution that has accompanied rapid economic development and urbanization. PMID:26610539

  19. Air Pollution Exposure and Physical Activity in China: Current Knowledge, Public Health Implications, and Future Research Needs.

    PubMed

    Lü, Jiaojiao; Liang, Leichao; Feng, Yi; Li, Rena; Liu, Yu

    2015-11-20

    Deteriorating air quality in China has created global public health concerns in regard to health and health-related behaviors. Although emerging environmental regulations address ambient air pollution in China, the level of enforcement and long-term impact of these measures remain unknown. Exposure to air pollution has been shown to lead to multiple adverse health outcomes, including increased rates of heart disease and mortality. However, a lesser-known but increasingly significant concern is the relationship between air pollution and its effects on outdoor exercise. This is especially important in China, which has a culturally rooted lifestyle that encourages participation in outdoor physical activity. This article evaluates the intersection of air pollution and outdoor exercise and provides a discussion of issues related to its public health impact in China, where efforts to promote a healthy lifestyle may be adversely affected by the ambient air pollution that has accompanied rapid economic development and urbanization.

  20. A clean air continuous flow propulsion facility

    NASA Technical Reports Server (NTRS)

    Krauss, R. H.; Mcdaniel, J. C., Jr.

    1992-01-01

    Consideration is given to a contaminant-free, high enthalpy, continuous flow facility designed to obtain detailed code validation measurements of high speed combustion. The facility encompasses uncontaminated air temperature control to within 5 K, fuel temperature control to 2 K, a ceramic flow straightener, drying of inlet air, and steady state continuous operation. The air heating method provides potential for independent control of contaminant level by injection, mixing, and heating upstream. Particular attention is given to extension of current capability of 1250 K total air temperature, which simulates Scramjet enthalpy at Mach 5.

  1. Air-sea Energy Transfer at Mesoscale in a Coupled High-resolution Model: Impact of Resolution and Current Feedback

    NASA Astrophysics Data System (ADS)

    Jullien, S.; Colas, F.; Masson, S. G.; Oerder, V.; Echevin, V.; Samson, G.; Crétat, J.; Berthet, S.; Hourdin, C.

    2015-12-01

    Winds are usually considered to force the ocean but recent studies suggested that oceanic mesoscale activity, characterized by eddies, filaments and fronts, could also affect the wind field. These structures feature abrupt changes in sea surface temperature (SST), surface pressure and surface currents that could impact the atmosphere by enhancing/reducing air-sea fluxes, accelerating/decelerating winds, modifying the wind-pressure balance… At this time, the detailed processes associated to such coupling, its intensity and significance remain a matter of research. Here, a state-of-the-art WRF-OASIS-NEMO coupled model is set up over a wide tropical channel (45°S-45°N) at various resolutions: 3/4°, 1/4° and 1/12° in both the ocean and the atmosphere. Several experiments are conducted in forced, partially or fully coupled modes, to highlight the effect of resolution and the role of SST vs. current feedback to energy injection into the ocean and the atmosphere. In strong mesoscale activity regions, a negative wind power input from the atmosphere to the ocean is seen at scales ranging from 100km to more than 1000km. Nonexistent at 3/4°, this negative forcing, acting against oceanic mesoscale activity, is almost twice more important at 1/12° than at 1/4°. In addition, partially coupled simulations, i.e. without current feedback, show that the impact of thermal coupling on this process is very limited. Energy injection to the marine atmospheric boundary layer also features imprints from oceanic mesoscale. Energy injection by scales shorter than 300km represents up to 20% of the total. Finally we show that increasing oceanic resolution, and therefore mesoscale activity, is necessary to resolve the full wind stress spectrum and has an upscaling effect by enhancing atmospheric mesoscale, which is larger scale than in the ocean. Using 1/4°oceanic resolution instead of 1/12° leads to a 50% loss of energy in the atmospheric mesoscale.

  2. Assessing levels and seasonal variations of current-use pesticides (CUPs) in the Tuscan atmosphere, Italy, using polyurethane foam disks (PUF) passive air samplers.

    PubMed

    Estellano, Victor H; Pozo, Karla; Efstathiou, Christos; Pozo, Katerine; Corsolini, Simonetta; Focardi, Silvano

    2015-10-01

    Polyurethane foam disks (PUF) passive air samplers (PAS) were deployed over 4 sampling periods of 3-5-months (≥ 1 year) at ten urban and rural locations throughout the Tuscany Region. The purpose was to assess the occurrence and seasonal variations of ten current-use pesticides (CUPs). PUF disk extracts were analyzed using GC-MS. The organophosphates insecticides; chlorpyrifos (3-580 pg m(-3)) and chlorpyrifos-methyl (below detection limit - to 570 pg m(-3)) presented the highest levels in air, and showed seasonal fluctuation coinciding with the growing seasons. The relative proportion urban/(urban + rural) ranged from 0.4 to 0.7 showing no differences between urban and rural concentrations. Air back trajectories analysis showed air masses passing over agricultural fields and potentially enhancing the drift of pesticides into the urban sites. This study represents the first information regarding CUPs in the atmosphere of Tuscany region using PAS-PUF disk.

  3. Calculating Speed of Sound

    NASA Astrophysics Data System (ADS)

    Bhatnagar, Shalabh

    2017-01-01

    Sound is an emerging source of renewable energy but it has some limitations. The main limitation is, the amount of energy that can be extracted from sound is very less and that is because of the velocity of the sound. The velocity of sound changes as per medium. If we could increase the velocity of the sound in a medium we would be probably able to extract more amount of energy from sound and will be able to transfer it at a higher rate. To increase the velocity of sound we should know the speed of sound. If we go by the theory of classic mechanics speed is the distance travelled by a particle divided by time whereas velocity is the displacement of particle divided by time. The speed of sound in dry air at 20 °C (68 °F) is considered to be 343.2 meters per second and it won't be wrong in saying that 342.2 meters is the velocity of sound not the speed as it's the displacement of the sound not the total distance sound wave covered. Sound travels in the form of mechanical wave, so while calculating the speed of sound the whole path of wave should be considered not just the distance traveled by sound. In this paper I would like to focus on calculating the actual speed of sound wave which can help us to extract more energy and make sound travel with faster velocity.

  4. Isokinetic air sampler

    DOEpatents

    Sehmel, George A.

    1979-01-01

    An isokinetic air sampler includes a filter, a holder for the filter, an air pump for drawing air through the filter at a fixed, predetermined rate, an inlet assembly for the sampler having an inlet opening therein of a size such that isokinetic air sampling is obtained at a particular wind speed, a closure for the inlet opening and means for simultaneously opening the closure and turning on the air pump when the wind speed is such that isokinetic air sampling is obtained. A system incorporating a plurality of such samplers provided with air pumps set to draw air through the filter at the same fixed, predetermined rate and having different inlet opening sizes for use at different wind speeds is included within the ambit of the present invention as is a method of sampling air to measure airborne concentrations of particulate pollutants as a function of wind speed.

  5. Separation of three phenolic high-molecular-weight compounds from the crude extract of Terminalia Chebula Retz. by ultrasound-assisted extraction and high-speed counter-current chromatography.

    PubMed

    Zou, Deng-lang; Chen, Tao; Li, Hong-mei; Chen, Chen; Zhao, Jing-yang; Li, Yu-lin

    2016-04-01

    This study presents an efficient strategy for separation of three phenolic compounds with high molecular weight from the crude extract of Terminalia chebula Retz. by ultrasound-assisted extraction and high-speed counter-current chromatography. The ultrasound-assisted extraction conditions were optimized by response surface methodology and the results showed the target compounds could be well enriched under the optimized extraction conditions. Then the crude extract was directly separated by high-speed counter-current chromatography without any pretreatment using n-hexane/ethyl acetate/methanol/water (1:7:0.5:3, v/v/v/v) as the solvent system. In 180 min, 13 mg of A, 18 mg of B, and 9 mg of C were obtained from 200 mg of crude sample. Their structures were identified as Chebulagic acid (A, 954 Da), Chebulinic acid (B, 956 Da), and Ellagic acid (C) by (1) H NMR spectroscopy.

  6. Application of an efficient strategy based on liquid-liquid extraction, high-speed counter-current chromatography, and preparative HPLC for the rapid enrichment, separation, and purification of four anthraquinones from Rheum tanguticum.

    PubMed

    Chen, Tao; Liu, Yongling; Zou, Denglang; Chen, Chen; You, Jinmao; Zhou, Guoying; Sun, Jing; Li, Yulin

    2014-01-01

    This study presents an efficient strategy based on liquid-liquid extraction, high-speed counter-current chromatography, and preparative HPLC for the rapid enrichment, separation, and purification of four anthraquinones from Rheum tanguticum. A new solvent system composed of petroleum ether/ethyl acetate/water (4:2:1, v/v/v) was developed for the liquid-liquid extraction of the crude extract from R. tanguticum. As a result, emodin, aloe-emodin, physcion, and chrysophanol were greatly enriched in the organic layer. In addition, an efficient method was successfully established to separate and purify the above anthraquinones by high-speed counter-current chromatography and preparative HPLC. This study supplies a new alternative method for the rapid enrichment, separation, and purification of emodin, aloe-emodin, physcione, and chrysophanol.

  7. Separation of five compounds from leaves of Andrographis paniculata (Burm. f.) Nees by off-line two-dimensional high-speed counter-current chromatography combined with gradient and recycling elution.

    PubMed

    Zhang, Li; Liu, Qi; Yu, Jingang; Zeng, Hualiang; Jiang, Shujing; Chen, Xiaoqing

    2015-05-01

    An off-line two-dimensional high-speed counter-current chromatography method combined with gradient and recycling elution mode was established to isolate terpenoids and flavones from the leaves of Andrographis paniculata (Burm. f.) Nees. By using the solvent systems composed of n-hexane/ethyl acetate/methanol/water with different volume ratios, five compounds including roseooside, 5,4'-dihydroxyflavonoid-7-O-β-d-pyranglucuronatebutylester, 7,8-dimethoxy-2'-hydroxy-5-O-β-d-glucopyranosyloxyflavon, 14-deoxyandrographiside, and andrographolide were successfully isolated. Purities of these isolated compounds were all over 95% as determined by high-performance liquid chromatography. Their structures were identified by UV, mass spectrometry, and (1) H NMR spectroscopy. It has been demonstrated that the combination of off-line two-dimensional high-speed counter-current chromatography with different elution modes is an efficient technique to isolate compounds from complex natural product extracts.

  8. Comparison of Predictive Modeling Methods of Aircraft Landing Speed

    NASA Technical Reports Server (NTRS)

    Diallo, Ousmane H.

    2012-01-01

    Expected increases in air traffic demand have stimulated the development of air traffic control tools intended to assist the air traffic controller in accurately and precisely spacing aircraft landing at congested airports. Such tools will require an accurate landing-speed prediction to increase throughput while decreasing necessary controller interventions for avoiding separation violations. There are many practical challenges to developing an accurate landing-speed model that has acceptable prediction errors. This paper discusses the development of a near-term implementation, using readily available information, to estimate/model final approach speed from the top of the descent phase of flight to the landing runway. As a first approach, all variables found to contribute directly to the landing-speed prediction model are used to build a multi-regression technique of the response surface equation (RSE). Data obtained from operations of a major airlines for a passenger transport aircraft type to the Dallas/Fort Worth International Airport are used to predict the landing speed. The approach was promising because it decreased the standard deviation of the landing-speed error prediction by at least 18% from the standard deviation of the baseline error, depending on the gust condition at the airport. However, when the number of variables is reduced to the most likely obtainable at other major airports, the RSE model shows little improvement over the existing methods. Consequently, a neural network that relies on a nonlinear regression technique is utilized as an alternative modeling approach. For the reduced number of variables cases, the standard deviation of the neural network models errors represent over 5% reduction compared to the RSE model errors, and at least 10% reduction over the baseline predicted landing-speed error standard deviation. Overall, the constructed models predict the landing-speed more accurately and precisely than the current state-of-the-art.

  9. Current Applications of OMI Tropospheric NO2 Data for Air Quality and a Look to the Future

    NASA Technical Reports Server (NTRS)

    Pickering, Kenneth E.; Bucsela, E.; Allen, D.; Prados, A.; Gleason, J.; Kondragunta, S.

    2010-01-01

    Ozone Monitoring Instrument (OMI) Tropospheric NO2 products are being used to enhance the ability to monitor changes in NO2 air quality, update emission inventories, and evaluate regional air quality models. Trends in tropospheric column NO2 have been examined over the eastern United States in relation to emissions changes mandated by regulatory actions. Decreases of 20 to 40 percent over the period 2005 to 2008 were noted, largely in response to major emission reductions at power plants. The OMI data have been used to identify regions in which the opposite trend has been found. We have also used OMI NO2 in efforts to improve emission inventories for NOx emissions from soil. Lightning NOx emissions have been added to CMAQ, the US Environmental Protection Agency's regional air quality model. Evaluation of the resulting NO2 columns in the model is being conducted using the OMI NO2 observations. Community Multiscale Air Quality (CMAQ) together with the OMI NO2 data comprise a valuable tool for monitoring and predicting air quality. Looking to the future, we expect that the combination of Global Ozone Monitoring Experiment-2 (GOME-2) (morning) and OMI (afternoon) data sets obtained through use of the same retrieval algorithms will substantially increase the possibility of successful integration of satellite information into regional air quality forecast models. Farther down the road, we anticipate the Geostationary Coastal and Air Pollution Events (GEO-CAPE) platform to supply data possibly on an hourly basis, allowing much more comprehensive analysis of air quality from space.

  10. The impact of shipping emissions on air pollution in the greater North Sea region - Part 1: Current emissions and concentrations

    NASA Astrophysics Data System (ADS)

    Aulinger, A.; Matthias, V.; Zeretzke, M.; Bieser, J.; Quante, M.; Backes, A.

    2016-01-01

    The North Sea is one of the areas with the highest ship traffic densities worldwide. At any time, about 3000 ships are sailing its waterways. Previous scientific publications have shown that ships contribute significantly to atmospheric concentrations of NOx, particulate matter and ozone. Especially in the case of particulate matter and ozone, this influence can even be seen in regions far away from the main shipping routes. In order to quantify the effects of North Sea shipping on air quality in its bordering states, it is essential to determine the emissions from shipping as accurately as possible. Within Interreg IVb project Clean North Sea Shipping (CNSS), a bottom-up approach was developed and used to thoroughly compile such an emission inventory for 2011 that served as the base year for the current emission situation. The innovative aspect of this approach was to use load-dependent functions to calculate emissions from the ships' current activities instead of averaged emission factors for the entire range of the engine loads. These functions were applied to ship activities that were derived from hourly records of Automatic Identification System signals together with a database containing the engine characteristics of the vessels that traveled the North Sea in 2011. The emission model yielded ship emissions among others of NOx and SO2 at high temporal and spatial resolution that were subsequently used in a chemistry transport model in order to simulate the impact of the emissions on pollutant concentration levels. The total emissions of nitrogen reached 540 Gg and those of sulfur oxides 123 Gg within the North Sea - including the adjacent western part of the Baltic Sea until 5° W. This was about twice as much of those of a medium-sized industrialized European state like the Netherlands. The relative contribution of ships to, for example, NO2 concentration levels ashore close to the sea can reach up to 25 % in summer and 15 % in winter. Some hundred kilometers

  11. The impact of shipping emissions on air pollution in the Greater North Sea region - Part 1: Current emissions and concentrations

    NASA Astrophysics Data System (ADS)

    Aulinger, A.; Matthias, V.; Zeretzke, M.; Bieser, J.; Quante, M.; Backes, A.

    2015-04-01

    The North Sea is one of the areas with the highest ship traffic densities worldwide. At any time, about 3000 ships are sailing its waterways. Previous scientific publications have shown that ships contribute significantly to atmospheric concentrations of NOx, particulate matter and ozone. Especially in the case of particulate matter and ozone this influence can even be seen in regions far away from the main shipping routes. In order to quantify the effects of North Sea shipping on air quality in its bordering states, it is essential to determine the emissions from shipping as accurately as possible. Within the Interreg IVb project Clean North Sea Shipping (CNSS) a bottom-up approach was developed and used to thoroughly compile such an emission inventory for 2011 that served as the base year for the current emission situation. The innovative aspect of this approach was to use load dependent functions to calculate emissions from the ships' current activities instead of averaged emission factors for the entire range of the engine loads. These functions were applied to ship activities that were derived from hourly records of Automatic Identification System signals together with a data base containing the engine characteristics of the vessels that traveled the North Sea in 2011. The emission model yielded ship emissions among others of NOx and SO2 in high temporal and spatial resolution that were subsequently used in a chemistry transport model in order to simulate the impact of the emissions on pollutant concentration levels. The total emissions of nitrogen reached 540 Gg and of sulfur oxides 123 Gg within the North Sea, which was about twice as much of those of a medium-sized industrialized European state like the Netherlands. The relative contribution of ships to, for example, NO2 concentration levels ashore close to the sea can reach up to 25% in summer and 15% in winter. Some hundred kilometers away from the sea the contribution was about 6% in summer and 4% in

  12. Ground-Based Experiment of Current Collection to Bare Tether in High-Speed and High-Density Plasma Generated by Hall Thrusters

    SciTech Connect

    Kohori, Tatsuya; Ikeda, Tomoyuki; Shimizu, Masaharu; Takagi, Hiroki; Yamada, Minetsugu; Tahara, Hirokazu

    2008-12-31

    Bare-tether systems are one of the greatest-efficiency electrodynamic tethered systems. The system with an uninsulated portion of the metallic tether itself to collect electrons from the space plasma is operated as a thruster or a power generator on a satellite. Ground-based experiments were carried out to understand phenomena of electron collection by a bare tether in space. Metallic tether samples were exposed to a simulating Low-Earth-Orbit plasma flow as varying tether sample diameter and length, and plasma velocity. A magnetic field was also applied. The normalized collection current increased with normalized tether sample potential. The tether sample diameter did not influence the normalized collection current characteristics although an increase in tether sample length decreased the normalized collection current in this experiment. The collection current characteristics were independent of plasma velocity under meso-thermal conditions. The existence of magnetic field raised the collection current because of the three-dimensional current collection effect at the edge of a tether sample under the magnetic field. Although the existence of magnetic field may raise the collection current, the effect will be small with a long tether. Accordingly, the dependence of tether diameter and length, plasma velocity and magnetic field on collection current characteristics of a bare tether in space might be small. The collection current may not exceed the OML current.

  13. Pulse Detonation Engines for High Speed Flight

    NASA Technical Reports Server (NTRS)

    Povinelli, Louis A.

    2002-01-01

    Revolutionary concepts in propulsion are required in order to achieve high-speed cruise capability in the atmosphere and for low cost reliable systems for earth to orbit missions. One of the advanced concepts under study is the air-breathing pulse detonation engine. Additional work remains in order to establish the role and performance of a PDE in flight applications, either as a stand-alone device or as part of a combined cycle system. In this paper, we shall offer a few remarks on some of these remaining issues, i.e., combined cycle systems, nozzles and exhaust systems and thrust per unit frontal area limitations. Currently, an intensive experimental and numerical effort is underway in order to quantify the propulsion performance characteristics of this device. In this paper, we shall highlight our recent efforts to elucidate the propulsion potential of pulse detonation engines and their possible application to high-speed or hypersonic systems.

  14. An Analysis of Current Attitudes of Company Grade and Field Grade Air Force Officers Regarding Air Force Officer Professional Development Initiatives

    DTIC Science & Technology

    1989-09-01

    officer. Captains John J. Beishke Jr. and James R. Lipsey researched the career backgrounds of Ai Force generals and colonels passed over for promotion and...experience than colonels who had been passed over for promotion (Beishke and Lipsey , 1977:4,84). This thesis, because of its careeristic approach to rank...and James R. Lipsey . Career Progression ,:o General Officer in the United States Air Force. MS Thesis, AFIT/LSSR 4-77B. School of Systems and

  15. Photosynthesis, transpiration and water use efficiencies of a plant canopy and plant leaves under restricted air current conditions

    NASA Astrophysics Data System (ADS)

    Kitaya, Yoshiaki; Shibuya, Toshio; Tsuruyama, Joshin

    A fundamental study was conducted to obtain the knowledge for culturing plants and exchanging gases with plants under restricted air circulation conditions in space agriculture. The effects of air velocities less than 1.3 m s-1 on net photosynthetic rates (Pn), transpiration rates (Tr) and Pn/Tr, water use efficiencies (WUE), of a canopy of cucumber seedlings and of single leaves of cucumber, sweet potato and barley were assessed with assimilation chamber methods in ground based experiments. The cucumber seedling canopy, which had a LAI of 1.4 and height of 0.1 m, was set in a wind tunnel installed in a plant canopy assimilation chamber. Each of the attached single leaves was set in a leaf assimilation chamber. The Pn and Tr of the plant canopy increased to 1.2 and 2.8 times, respectively, and WUE decreased to 0.4 times with increasing the air velocity from 0.02 to 1.3 m s-1. The Pn and Tr of the single leaves of all the species increased by 1.3-1.7 and 1.9-2.2 times, respectively, and WUE decreased to 0.6-0.8 times as the air velocity increased from 0.05 to 0.8 m s-1. The effect of air velocity was more significant on Tr than on Pn and thus WUE decreased with increasing air velocity in both the plant canopy and the individual leaves. The leaf boundary layer resistance was approximately proportional to the minus 1/3 power of the air velocity. Stomatal resistance was almost constant during the experiment. The CO2 concentrations in the sub-stomatal cavity in leaves of cucumber, sweet potato and barley, respectively, were 43, 31 and 58 mmol mol-1 lower at the air velocity of 0.05 m s-1 than at the air velocity of 0.8 m s-1, while the water vapor pressure in the sub-stomatal cavity was constant. We concluded that the change in the CO2 concentration in the sub-stomatal cavity was a cause of the different effect of the air velocity on Pn and Tr, and thus on WUE. The phenomenon will be more remarkable under restricted air convection conditions at lower gravity in space.

  16. Indoor climate and air quality . Review of current and future topics in the field of ISB study group 10

    NASA Astrophysics Data System (ADS)

    Höppe, P.; Martinac, Ivo

    In industrialized countries about 90% of the time is spent indoors. The ambient parameters affecting indoor thermal comfort are air temperature and humidity, air velocity, and radiant heat exchange within an enclosure. In assessing the thermal environment, one needs to consider all ambient parameters, the insulating properties of the occupants' clothing, and the activity level of the occupants by means of heat balance models of the human body. Apart from thermal parameters, air quality (measured and perceived) is also of importance for well-being and health in indoor environments. Pollutant levels are influenced by both outdoor concentrations and by indoor emissions. Indoor levels can thus be lower (e.g. in the case of ozone and SO2) or higher (e.g. for CO2 and formaldehyde) than outdoor levels. Emissions from cooking play an important role, especially in developing countries. The humidity of the ambient air has a wide range of effects on the energy and water balance of the body as well as on elasticity, air quality perception, build-up of electrostatic charge and the formation or mould. However, its effect on the indoor climate is often overestimated. While air-handling systems are commonly used for achieving comfortable indoor climates, their use has also been linked to a variety of problems, some of which have received attention within the context of ''sick building syndrome''.

  17. The effect of helium impurity addition on current sheath speed in argon-operated plasma focus using a tridimensional magnetic probe

    NASA Astrophysics Data System (ADS)

    Panahi, N.; Mohammadi, M. A.; Hedyeh, S.; Rawat, R. S.; Rawat

    2013-10-01

    Using the tridimensional magnetic probe, the current sheath velocity at 0.25 Torr is studied in Sahand, a Filippov-type plasma focus facility. The current sheath velocity in argon-filled plasma focus with different percentages of helium impurity at different operating voltages was studied. The highest average current sheath velocity of 12.26 +/- 1.51 cm μs-1 at the top of the anode in the axial phase was achieved at 17 kV. Minimum average current sheath velocity is 5.24 +/- 1.18 cm μs-1 at 12 kV with 80% argon + 20% helium as a working gas. The full width at half-maximum of peaks of the magnetic probe was found to be inversely related to the current sheath velocity, i.e. smaller at higher voltages for different impurity and decreased with increasing of impurity.

  18. Cooling of Air-cooled Engines by Forced Circulation of Air

    NASA Technical Reports Server (NTRS)

    1926-01-01

    This report presents the results of experiments on aerodynamic fuselages in which an air current is forced into the nose of the fuselage by the action of several fans revolving with the propeller. The air is then guided by special deflectors which cause it to flow along the exhaust pipes and cylinders and then, after having been utilized, pass out through annular ports. This system of cooling worked perfectly at all speeds.

  19. Occurrence and seasonal distribution of polycyclic aromatic hydrocarbons and legacy and current-use pesticides in air from a Mediterranean coastal lagoon (Mar Menor, SE Spain).

    PubMed

    Carratalá, A; Moreno-González, R; León, V M

    2017-01-01

    The occurrence and seasonal distribution of polycyclic aromatic hydrocarbons (PAHs) and legacy and current-use pesticides (CUPs) in air were characterized around the Mar Menor lagoon using both active and passive sampling devices. The seasonal distribution of these pollutants was determined at 6 points using passive samplers. Passive sampler sampling rates were estimated for all detected analytes using an active sampler, considering preferentially winter data, due to probable losses in active sampling during summer (high temperatures and solar irradiation). The presence of 28 compounds (14 CUPs, 11 PAHs and 3 organochlorinated pesticides) were detected in air by polyurethane passive sampling. The most commonly detected contaminants (>95% of samples) in air were chlorpyrifos, chlorpyrifos-methyl and phenanthrene. The maximum concentrations corresponded to phenanthrene (6000 pg m(-3)) and chlorpyrifos (4900 pg m(-3)). The distribution of contaminants was spatially and seasonally heterogeneous. The highest concentrations of PAHs were found close to the airport, while the highest concentrations of pesticides were found in the influence area of agricultural fields (western stations). PAH and herbicide concentrations were higher in winter than in the other seasons, although some insecticides such as chlorpyrifos were more abundant in autumn. The presence of PAHs and legacy and current-use pesticides in air confirmed their transference potential to marine coastal areas such as the Mar Menor lagoon.

  20. Method and device for optimizing the air-fuel mixture burn rate of internal combustion engines during low speed, light and heavy load operating conditions

    SciTech Connect

    Burandt, C.O.

    1990-10-09

    This patent describes a method for optimizing low speed light load and low speed heavy load operating conditions in an internal combustion engine. The engine has a camshaft, a crankshaft, at least one intake valve and at least one piston, and is capable of providing for small valve events, and the engine providing for earlier than normal intake valve closings the method comprises: sensing the load demand on the engine, regulating the phasing of the operation of the camshaft of the engine with the operation of the crankshaft of the engine in response to the sensed load demand by advancing the operation of camshaft relative to the operation of the crankshaft when a heavy load demand is sensed and by retarding the operation of the camshaft relative to the operation of the crankshaft when alight load demand is sensed, and sensing detonation in the engine and regulating the phasing operation of the camshaft relative to the operation of the crankshaft by advancing the operation of the camshaft relative to the crankshaft when detonation is sensed.

  1. Fourth Order Nonlinear Evolution Equation For Interfacial Gravity Waves In The Presence Of Air Flowing Over Water And A Basic Current Shear

    NASA Astrophysics Data System (ADS)

    Majumder, D. P.; Dhar, A. K.

    2015-08-01

    A fourth order nonlinear evolution equation, which is a good starting point for the study of nonlinear water waves as first pointed out by Dysthe (1979) is derived for gravity waves propagating at the interface of two superposed fluids of infinite depth in the presence of air flowing over water and a basic current shear. A stability analysis is then made for a uniform Stokes gravity wave train. Graphs are plotted for the maximum growth rate of instability and for wave number at marginal stability against wave steepness for different values of air flow velocity and basic current shears. Significant deviations are noticed from the results obtained from the third order evolution equation, which is the nonlinear Schrödinger equation.

  2. Implementation of Temperature Sequential Controller on Variable Speed Drive

    NASA Astrophysics Data System (ADS)

    Cheong, Z. X.; Barsoum, N. N.

    2008-10-01

    There are many pump and motor installations with quite extensive speed variation, such as Sago conveyor, heating, ventilation and air conditioning (HVAC) and water pumping system. A common solution for these applications is to run several fixed speed motors in parallel, with flow control accomplish by turning the motors on and off. This type of control method causes high in-rush current, and adds a risk of damage caused by pressure transients. This paper explains the design and implementation of a temperature speed control system for use in industrial and commercial sectors. Advanced temperature speed control can be achieved by using ABB ACS800 variable speed drive-direct torque sequential control macro, programmable logic controller and temperature transmitter. The principle of direct torque sequential control macro (DTC-SC) is based on the control of torque and flux utilizing the stator flux field orientation over seven preset constant speed. As a result of continuous comparison of ambient temperature to the references temperatures; electromagnetic torque response is particularly fast to the motor state and it is able maintain constant speeds. Experimental tests have been carried out by using ABB ACS800-U1-0003-2, to validate the effectiveness and dynamic respond of ABB ACS800 against temperature variation, loads, and mechanical shocks.

  3. Current research in NRMRL on the mitigation of near-road air pollution by vegetative and structural barriers

    EPA Science Inventory

    Numerous research studies published in scientific literature have shown that people living, working, and going to school near large roads experience increased adverse health effects. In addition, studies show that air pollution is worse in close proximity to major roadways (e.g....

  4. 77 FR 11145 - Intent to Request Renewal From OMB of One Current Public Collection of Information: Air Cargo...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-24

    ... threat assessments (STA), known shipper data via the Known Shipper Management System (KSMS), Air Cargo Data Management System (ACDMS), Cargo Reporting Tool for cargo screening reporting, and evidence of..., abstracted below that we will submit to the Office of Management and Budget (OMB) for renewal in...

  5. Exposure Information in Environmental Health Research: Current Opportunities and Future Directions for Particulate Matter, Ozone, and Toxic Air Pollutants

    EPA Science Inventory

    In September 2006, scientists from the US Environmental Protection Agency (EPA) and the Centers for Disease Control and Prevention (CDC) along with scientists from the academic community and state health departments convened a symposium on air pollution exposure and health in ord...

  6. The effects of engine speed and injection characteristics on the flow field and fuel/air mixing in motored two-stroke diesel engines

    NASA Technical Reports Server (NTRS)

    Nguyen, H. L.; Carpenter, M. H.; Ramos, J. I.

    1987-01-01

    A numerical analysis is presented on the effects of the engine speed, injection angle, droplet distribution function, and spray cone angle on the flow field, spray penetration and vaporization, and turbulence in a turbocharged motored two-stroke diesel engine. The results indicate that the spray penetration and vaporization, velocity, and turbulence kinetic energy increase with the intake swirl angle. Good spray penetration, vaporization, and mixing can be achieved by injecting droplets of diameters between 50 and 100 microns along a 120-deg cone at about 315 deg before top-dead-center for an intake swirl angle of 30 deg. The spray penetration and vaporization were found to be insensitive to the turbulence levels within the cylinder. The results have also indicated that squish is necessary in order to increase the fuel vaporization rate and mixing.

  7. Rapid doubling of the critical current of YBa2Cu3O7-δ coated conductors for viable high-speed industrial processing

    SciTech Connect

    Leroux, M.; Kihlstrom, K. J.; Holleis, S.; Rupich, M. W.; Sathyamurthy, S.; Fleshler, S.; Sheng, H. P.; Miller, D. J.; Eley, S.; Civale, L.; Kayani, A.; Niraula, P. M.; Welp, U.; Kwok, W. -K.

    2015-11-09

    Here, we demonstrate that 3.5-MeV oxygen irradiation can markedly enhance the in-field critical current of commercial second generation superconducting tapes with an exposure time of just 1 s per 0.8 cm2. Furthermore we demonstrate how speed is now at the level required for an industrial reel-to-reel post-processing. The irradiation is made on production line samples through the protective silver coating and does not require any modification of the growth process. From TEM imaging, we identify small clusters as the main source of increased vortex pinning.

  8. Rapid doubling of the critical current of YBa{sub 2}Cu{sub 3}O{sub 7−δ} coated conductors for viable high-speed industrial processing

    SciTech Connect

    Leroux, M.; Welp, U.; Kwok, W.-K.; Kihlstrom, K. J.; Holleis, S.; Rupich, M. W.; Sathyamurthy, S.; Fleshler, S.; Sheng, H. P.; Miller, D. J.; Eley, S.; Civale, L.; Kayani, A.; Niraula, P. M.

    2015-11-09

    We demonstrate that 3.5-MeV oxygen irradiation can markedly enhance the in-field critical current of commercial second generation superconducting tapes with an exposure time of just 1 s per 0.8 cm{sup 2}. The speed demonstrated here is now at the level required for an industrial reel-to-reel post-processing. The irradiation is made on production line samples through the protective silver coating and does not require any modification of the growth process. From TEM imaging, we identify small clusters as the main source of increased vortex pinning.

  9. Rapid doubling of the critical current of Yba{sub 2}Cu{sub 3}O{sub 7-{delta}} coated conductor for viable high-speed industrial processing.

    SciTech Connect

    Leroux, M.; Kihlstrom, K. J.; Holleis, S.; Rupich, M. W.; Sathyamurthy, S.; Fleshler, S.; Sheng, H. P.; Miller, D. J.; Eley, S.; Civale, L.; Kayani, A.; Niraula, P. M.; Welp, U.; Kwok, W. -K.

    2015-11-09

    We demonstrate that 3.5-MeV oxygen irradiation can markedly enhance the in-field critical current of commercial 2nd generation superconducting tapes with an exposure time of just one second per 0.8 cm2. The speed demonstrated here is now at the level required for an industrial reel-to-reel post-processing. The irradiation is made on production line samples through the protective silver coating and does not require any modification of the growth process. From TEM imaging, we identify small clusters as the main source of increased vortex pinning.

  10. Evaluation of the internal and external biofidelity of current rear impact ATDs to response targets developed from moderate-speed rear impacts of PMHS.

    PubMed

    Moorhouse, Kevin; Donnelly, Bruce; Kang, Yun-Seok; Bolte, John H; Herriott, Rodney

    2012-10-01

    The goal of this study is to evaluate both the internal and external biofidelity of existing rear impact anthropomorphic test devices (BioRID II, RID3D, Hybrid III 50th) in two moderate-speed rear impact sled test conditions (8.5g, 17 km/h; 10.5g, 24 km/h) by quantitatively comparing the ATD responses to biomechanical response targets developed from PMHS testing in a corresponding study. The ATDs and PMHS were tested in an experimental seat system that is capable of simulating the dynamic seat back rotation response of production seats. The experimental seat contains a total of fourteen load cells installed such that external loads from the ATDs and PMHS can be measured to evaluate external biofidelity. The PMHS were instrumented to correspond to the instrumentation contained in the ATDs so that direct comparison between ATDs and PMHS could be made to evaluate internal biofidelity. The NHTSA Biofidelity Ranking system was used to quantitatively evaluate the biofidelity of the ATDs and an additional tool was introduced and utilized which allows for the biofidelity score to be partitioned into components of amplitude, phase, and shape. For internal biofidelity, the BioRID II and RID3D were more biofidelic than the Hybrid III in the 17 km/h test, and the BioRID II was most biofidelic in the 24 km/h test. For external biofidelity, the BioRID II was most biofidelic in the 17 km/h test, while both the BioRID II and the RID3D were more biofidelic than the Hybrid III in the 24 km/h test. Overall, the BioRID II demonstrated the best biofidelity in both the 17 km/h and 24 km/h tests.

  11. The Arteries of Global Trade: Industrial Restructuring and Technological Change in the Transatlantic Air Cargo Industry

    ERIC Educational Resources Information Center

    Schwarz, Guido

    2010-01-01

    Air cargo enjoys a special importance: together with maritime transport it is the backbone of global trade and is indispensable for contemporary globalization. Air transport is the only mode that combines worldwide reach with high speed. Nonetheless there is a dearth of geographic research that analyzes the current restructuring affecting the air…

  12. Impact of aviation emissions on UTLS and air quality in current and future climate - GEM-AC model simulations

    NASA Astrophysics Data System (ADS)

    Kaminski, J. W.

    2015-12-01

    The objective of this study is to investigate the potential impacts of aviation emissions on the upper troposphere and lower stratosphere (UTLS) and surface air quality. The tool that was used in our study is the GEM-AC (Global Environmental Multiscale with Atmospheric Chemistry) chemical weather model where air quality, free tropospheric and stratospheric chemistry processes are on-line and interactive in a weather forecast model of Environment Canada. In vertical, the model domain is defined on 70 hybrid levels from the surface to ~60km. The gas-phase chemistry includes a comprehensive set of reactions for Ox, NOx, HOx, CO, CH4, NMVOCs, halocarbons, ClOx and BrO. Also, the model can address aerosol microphysics and gas-aerosol partitioning. Aircraft emissions are provided by the AEDT 2006 database developed by the Federal Aviation Administration. Results from model simulations on a global variable grid with 1 degree uniform resolution in the northern hemisphere will be presented.

  13. High speed holographic cine-recorder

    NASA Astrophysics Data System (ADS)

    Snyder, Donald; Watts, David; Gordon, Joseph; Lysogorski, Charles; Powers, Aaron; Perry, John; Chenette, Eugene; Hudson, Roger; Young, Raymond

    2005-08-01

    Air Force Research Laboratory and North Dancer Labs researchers have completed the initial development and transition to operational use of a high-speed holographic movie system. This paper documents the first fully operational use of a novel and unique experimental capability for high-speed holographic movies and high-speed cinema interferometry. In this paper we document the initial experiments that were performed with the High Speed Holographic Recorder (HSHR) at the Munitions Directorate, Air Force Research Laboratory Site at Eglin, AFB, Florida. These experiments were performed to assess the possibilities for high-speed cine-laser holography combined with high-speed videography to document the formation and propagation of plumes of materials created by impact of high-speed projectiles. This paper details the development of the experimental procedures and initial results of this new tool. After successful integration and testing the system was delivered to Arnold Engineering Development Center.

  14. Aerodynamic characteristics of a series of twin-inlet air-breathing missile configurations. 2: Two-dimensional inlets at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Hayes, C.

    1983-01-01

    A series of air-breathing missile configurations was investigated to provide a data base for the design of such missiles. The model could be configured with either twin axisymmetric or two dimensional inlets. Three circumferential inlet locations were investigated: 90 deg, 115 deg, and 135 deg from the top center. Two vertical wing locations, as well as wingless configurations, were used. Three tail configurations were formed by locating the tail surfaces either on the inlet fairings or on fairings on the body. The surfaces were used to provide pitch control. Two dimensional inlets with extended compression surfaces, used to improve the angle-of-attack performance of the inlets for wingless configurations, were also investigated. The two dimensional inlet configurations are covered.

  15. Air-Breathing Rocket Engines

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This photograph depicts an air-breathing rocket engine prototype in the test bay at the General Applied Science Lab facility in Ronkonkoma, New York. Air-breathing engines, known as rocket based, combined-cycle engines, get their initial take-off power from specially designed rockets, called air-augmented rockets, that boost performance about 15 percent over conventional rockets. When the vehicle's velocity reaches twice the speed of sound, the rockets are turned off and the engine relies totally on oxygen in the atmosphere to burn hydrogen fuel, as opposed to a rocket that must carry its own oxygen, thus reducing weight and flight costs. Once the vehicle has accelerated to about 10 times the speed of sound, the engine converts to a conventional rocket-powered system to propel the craft into orbit or sustain it to suborbital flight speed. NASA's Advanced Space Transportation Program at Marshall Space Flight Center, along with several industry partners and collegiate forces, is developing this technology to make space transportation affordable for everyone from business travelers to tourists. The goal is to reduce launch costs from today's price tag of $10,000 per pound to only hundreds of dollars per pound. NASA's series of hypersonic flight demonstrators currently include three air-breathing vehicles: the X-43A, X-43B and X-43C.

  16. Circuit Regulates Speed Of dc Motor

    NASA Technical Reports Server (NTRS)

    Weaver, Charles; Padden, Robin; Brown, Floyd A., Jr.

    1990-01-01

    Driving circuit regulates speed of small dc permanent-magnet motor in tape recorder. Two nested feedback loops maintain speed within 1 percent of constant value. Inner loop provides coarse regulation, while outer loop removes most of variation in speed that remains in the presence of regulation by the inner loop. Compares speed of motor with commanded speed and adjusts current supplied to motor accordingly.

  17. High-Speed Schlieren Movies of Decelerators at Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    1960-01-01

    High-Speed Schlieren Movies of Decelerators at Supersonic Speeds. Tests were conducted on several types of porous parachutes, a paraglider, and a simulated retrorocket. Mach numbers ranged from 1.8-3.0, porosity from 20-80 percent, and camera speeds from 1680-3000 feet per second (fps) in trials with porous parachutes. Trials of reefed parachutes were conducted at Mach number 2.0 and reefing of 12-33 percent at camera speeds of 600 fps. A flexible parachute with an inflatable ring in the periphery of the canopy was tested at Reynolds number 750,000 per foot, Mach number 2.85, porosity of 28 percent, and camera speed of 36oo fps. A vortex-ring parachute was tested at Mach number 2.2 and camera speed of 3000 fps. The paraglider, with a sweepback of 45 degrees at an angle of attack of 45 degrees was tested at Mach number 2.65, drag coefficient of 0.200, and lift coefficient of 0.278 at a camera speed of 600 fps. A cold air jet exhausting upstream from the center of a bluff body was used to simulate a retrorocket. The free-stream Mach number was 2.0, free-stream dynamic pressure was 620 lb/sq ft, jet-exit static pressure ratio was 10.9, and camera speed was 600 fps. [Entire movie available on DVD from CASI as Doc ID 20070030973. Contact help@sti.nasa.gov

  18. Injection, atomization, ignition and combustion of liquid fuels in high-speed air streams. Annual scientific report 1 December 81-31 December 82

    SciTech Connect

    Schetz, J.A.

    1983-01-01

    A simulation approach to studying hot flow subsonic cross-stream fuel injection problems in a less complex and costly cold flow facility was developed. A typical ramjet combustion chamber fuel injection problem was posed where ambient temperature fuel (Kerosene) is injected into a hot airstream. This case was transformed through two new similarity parameters involving injection and freestream properties to a simulated case where a chilled injectant is injected into an ambient temperature airstream. Experiments for the simulated case using chilled Freon-12 injected into the Va. Tech 23 x 23 cm. blow-down wind tunnel at a freestream Mach number of 0.44 were run. The freestream stagnation pressure and temperature were held at 2.5 atm. and 300 degrees K respectively. Results showed a clear picture of the mechanisms of jet decomposition in the presence of rapid vaporization. Immediately after injection a vapor cloud was formed in the jet plume, which dissipated downstream leaving droplets on the order of 8 to 10 microns in diameter for the conditions examined. This represents a substantial reduction compared to baseline tests run at the same conditions with water which had little vaporization. The desirability of using slurry fuels for aerospace application has long been recognized, but the problems of slurry combustion have delayed their use. The present work is an experimental and numerical investigation into the break-up and droplet formation of laminar slurry jets issuing into quiescent air.

  19. Increasing the critical speed of wetting failure through meniscus confinement

    NASA Astrophysics Data System (ADS)

    Vandre, Eric; Kumar, Satish; Carvalho, Marcio

    2010-11-01

    Dynamic wetting is a crucial step of fluid-fluid displacement along a solid surface, such as the deposition of a coating liquid onto a moving substrate. At some critical process speed wetting fails and the displaced phase (e.g. air) is entrained within the displacing phase. Improving upon current industrial production speeds requires a better understanding of how system parameters influence wetting failure. Confinement of the wetting meniscus is one such parameter commonly found in high-speed coating methods, though its influence remains unclear. In this study, we explore the effects of confinement on wetting failure with a laboratory-scale plunge-coating system. Our experimental apparatus consists of a steel roll that plunges into a bath of glycerol. Confinement is imposed by bringing a coating die near the wetting line, and liquid is injected through the die to compensate for liquid being dragged away with the roll. Flow visualization is used to record the critical roll speed at which wetting failure occurs. The data show a clear increase in the critical speed with increasing confinement. A model based on the lubrication approximation does a remarkable job in accurately predicting the increase in the critical speed relative to the unconfined value.

  20. [Polychlorinated biphenyls (PCB) in caulking compounds of buildings--assessment of current status in Berlin and new indoor air sources].

    PubMed

    Fromme, H; Baldauf, A M; Klautke, O; Piloty, M; Bohrer, L

    1996-12-01

    Since 1990 in Berlin the building blueprints and potaining documents for public utility buildings, in particular schools and child-care centres, have been serutinised and/or buildings have been visited for the possibility of the presence of elastic sealants containing PCB. Pursuant to this, samples of the sealing material of suspected buildings were examined and air in the rooms was measured. Results of measurements (n = 410) in community rooms of schools and child-care centres were an average value of 114 ng/m3 (maximum 7.360 ng/m3) and a geometrical mean of 155 ng/m3. For measurements in schools (n = 308), the geometrical mean was 229 ng/m3, whereas in child-care centres (n = 102) it was 48 ng/m3. Within the framework of the procedural method described above regarding the investigation of suspected buildings, about 15% of the school buildings and 3% of the child-care centres had indoor air values of over 300 ng/m3 (value indicating need for taking precautions) and 5% of the school buildings had more than 3.000 ng/m3 (the value warranting an intervention, according to the now defunct Federal Health Office). No values over 3.000 ng/m3 have been measured up to now in the community rooms of child-care centres. The investigations carried out throughout the Berlin Borough of Tiergarten of all school and child-care centre buildings yielded the results that about 13% of the schools and about 4% of the child-care centres had rooms with air values above 300 ng/m3. Only one school (4%), but none of the child-care centres investigated had values of more than 3.000 ng/m3. We are of the opinion that this proves the need for the creation of an on-target survey of the concrete pollution situation and short-term adoption of exposure-reducing measures or renovations. In any case the exposure of children to this toxicologically suspect substance by this additional way of pollution must be kept as low as possible. In addition to the description of a recently concluded PCB renovation

  1. Design Optimization and the Limits of Steady-State Heating Efficiency for Conventional Single-Speed Air-Source Heat Pumps

    SciTech Connect

    Rice, C.K.

    2001-06-06

    The ORNL Heat Pump Model and an optimizing program were used to explore the limits of steady-state heating efficiency for conventional air-source heat pumps. The method used allows for the simultaneous optimization of ten selected design variables, taking proper account of their interactions, while constraining other parameters to chosen limits or fixed values. Designs were optimized for a fixed heating capacity, but the results may be scaled to other capacities. Substantial performance improvement is predicted compared to today's state of the art heat pump. With increased component efficiencies that are expected in the near future and with modest increases in heat exchanger area, a 28% increase in heating efficiency is predicted; for long-term improvements with considerably larger heat exchangers, a 56% increase is possible. The improved efficiencies are accompanied by substantial reductions in the requirements for compressor and motor size. The predicted performance improvements are attributed not only to improved components and larger heat exchangers but also to the use of an optimizing design procedure. Deviations from the optimized design may be necessary to make use of available component sizes and to maintain good cooling-mode performance while improving the heating efficiency. Sensitivity plots (i.e., COP as a function of one or more design parameters) were developed to explore design flexibilities and to evaluate their consequences. The performance of the optimized designs was compared to that of modified ideal cycles to assess the factors that limit further improvement. It is hoped that the design methods developed will be useful to designers in the heat pump industry.

  2. Application of centrifugal precipitation chromatography and high-speed counter-current chromatography equipped with a spiral tubing support rotor for the isolation and partial characterization of carotenoid cleavage-like enzymes in Enteromorpha compressa (L.) Nees.

    PubMed

    Baldermann, Susanne; Mulyadi, Andriati N; Yang, Ziyin; Murata, Ariaka; Fleischmann, Peter; Winterhalter, Peter; Knight, Martha; Finn, Thomas M; Watanabe, Naoharu

    2011-10-01

    Centrifugal precipitation chromatography and a high-speed counter-current chromatography system equipped with a spiral tubing support rotor (spHSCCC) were successfully applied for the identification and isolation of carotenoid cleavage-like enzymes from Enteromorpha compressa (L.) Nees. This is the first study separating active enzymes from a complex natural matrix by spHSCCC. The target enzymes were identified after fractionation of the proteins in an acetone Tris-buffer gradient by centrifugal precipitation chromatography. Also, an aqueous two-phase solvent system consisting of PEG 1000 and mono- and dibasic potassium phosphate was used for the isolation of the enzymes by spHSCCC. The purified fractions contained two proteins of 65 and 72 kDa, respectively. The enzymes could cleave β-carotene and β-apo-8'-carotenal to produce β-ionone.

  3. Development of a High Speed Crowbar for LANSCE

    NASA Astrophysics Data System (ADS)

    Friedrichs, C.; Lyles, J.; Doub, J. M.

    1997-05-01

    Each of the four 200 Mhz Final Power Amplifiers (FPAs) in the LANSCE proton linac has its own capacitor bank and crowbar. The dissipation in the 10 ohm crowbar limiting resistor is 67 kW, and oil cooling is used. Our stated upgrade goal was to substantially reduce the limiting resistor dissipation and eliminate the oil cooling. Early tests showed that the fault energy quickly rose to unacceptable levels as the current limiting resistance was reduced. FPA arcs are normally quenched by interrupting the FPA modulator current, and the crowbar waits 10 microseconds for this to occur. The successful upgrade strategy was to replace the 10 ohm resistor with a 3 ohm air cooled resistor and to add a high speed crowbar circuit which operates only if there are simultaneous arcs in the FPA and its modulator. This paper describes the high speed circuit and its interface with the existing crowbar. Test results are also given.

  4. Response of biological production and air-sea CO2 fluxes to upwelling intensification in the California and Canary Current Systems

    NASA Astrophysics Data System (ADS)

    Lachkar, Zouhair; Gruber, Nicolas

    2013-01-01

    Upwelling-favorable winds have increased in most Eastern Boundary Upwelling Systems (EBUS) in the last decades, and it is likely that they increase further in response to global climate change. Here, we explore the response of biological production and air-sea CO2 fluxes to upwelling intensification in two of the four major EBUS, namely the California Current System (California CS) and Canary Current System (Canary CS). To this end, we use eddy-resolving regional ocean models on the basis of the Regional Oceanic Modeling System (ROMS) to which we have coupled a NPZD-type ecosystem model and a biogeochemistry module describing the carbon cycle and subject these model configurations to an idealized increase in the wind stress. We find that a doubling of the wind-stress doubles net primary production (NPP) in the southern California CS and central and northern Canary CS, while it leads to an increase of less than 50% in the central and northern California CS as well as in the southern Canary CS. This differential response is a result of i) different nutrient limitation states with higher sensitivity to upwelling intensification in regions where nutrient limitation is stronger and ii) more efficient nutrient assimilation by biology in the Canary CS relative to the California CS because of a faster nutrient-replete growth rate and longer nearshore water residence times. In the regions where production increases commensurably with upwelling intensification, the enhanced net biological uptake of CO2 compensates the increase in upwelling driven CO2 outgassing, resulting in only a small change in the biological pump efficiency and hence in a small sensitivity of air-sea CO2 fluxes to upwelling intensification. In contrast, in the central California CS as well as in the southern Canary CS around Cape Blanc, the reduced biological efficiency enhances the CO2 outgassing and leads to a substantial sensitivity of the air-sea CO2 fluxes to upwelling intensification.

  5. A Study of Air Flow in an Engine Cylinder

    NASA Technical Reports Server (NTRS)

    Lee, Dana W

    1939-01-01

    A 4-stroke-cycle test engine was equipped with a glass cylinder and the air movements within it were studied while the engine was being motored. Different types of air flow were produced by using shrouded intake valves in various arrangements and by altering the shape of the intake-air passage in the cylinder head. The air movements were made visible by mixing feathers with the entering air, and high-speed motion pictures were taken of them so that the air currents might be studied in detail and their velocities measured. Motion pictures were also taken of gasoline sprays injected into the cylinder on the intake stroke. The photographs showed that: a wide variety of induced air movements could be created in the cylinder; the movements always persisted throughout the compression stroke; and the only type of movement that persisted until the end of the cycle was rotation about the cylinder axis.

  6. Systems and methods for vehicle speed management

    DOEpatents

    Sujan, Vivek Anand; Vajapeyazula, Phani; Follen, Kenneth; Wu, An; Forst, Howard Robert

    2016-03-01

    Controlling a speed of a vehicle based on at least a portion of a route grade and a route distance divided into a plurality of route sections, each including at least one of a section grade and section length. Controlling the speed of the vehicle is further based on determining a cruise control speed mode for the vehicle for each of the plurality of route sections and determining a speed reference command of the vehicle based on at least one of the cruise control speed mode, the section length, the section grade, and a current speed.

  7. High-Speed Schlieren Movies of Decelerators at Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    1960-01-01

    Tests were conducted on several types of porous parachutes, a paraglider, and a simulated retrorocket. Mach numbers ranged from 1.8-3.0, porosity from 20-80 percent, and camera speeds from 1680-3000 feet per second (fps) in trials with porous parachutes. Trials of reefed parachutes were conducted at Mach number 2.0 and reefing of 12-33 percent at camera speeds of 600 fps. A flexible parachute with an inflatable ring in the periphery of the canopy was tested at Reynolds number 750,000 per foot, Mach number 2.85, porosity of 28 percent, and camera speed of 36oo fps. A vortex-ring parachute was tested at Mach number 2.2 and camera speed of 3000 fps. The paraglider, with a sweepback of 45 degrees at an angle of attack of 45 degrees was tested at Mach number 2.65, drag coefficient of 0.200, and lift coefficient of 0.278 at a camera speed of 600 fps. A cold air jet exhausting upstream from the center of a bluff body was used to simulate a retrorocket. The free-stream Mach number was 2.0, free-stream dynamic pressure was 620 lb/sq ft, jet-exit static pressure ratio was 10.9, and camera speed was 600 fps.

  8. Very high-speed digital holography

    NASA Astrophysics Data System (ADS)

    Pérez López, Carlos; Mendoza Santoyo, Fernando; Rodríguez Vera, Ramón; Moreno, David; Barrientos, Bernardino

    2006-08-01

    It is reported for the first time the use of a high speed camera in digital holography with an out of plane sensitivity. The camera takes the image plane holograms of a cw laser illuminated rectangular framed polyester material at a rate of 5000 per second, that is a spacing of 200 microseconds between holograms, and 512 by 500 pixels at 10 bit resolution. The freely standing object has a random movement due to non controlled environmental air currents. As is usual with this technique each digital hologram is Fourier processed in order to obtain upon comparison with a consecutive digital hologram the phase map of the displacement. High quality results showing the amplitude and direction of the random movement are presented.

  9. Very high speed cw digital holographic interferometry

    NASA Astrophysics Data System (ADS)

    Pérez-López, Carlos; de La Torre-Ibarra, Manuel H.; Mendoza Santoyo, Fernando

    2006-10-01

    It is reported for the first time the use of a very high speed camera in digital holographic interferometry with an out of plane sensitivity setup. The image plane holograms of a spherical latex balloon illuminated by a cw laser were acquired at a rate of 4000 frames per second, representing a time spacing between holograms of 250 microseconds, for 512 × 512 pixels at 8 bits resolution. Two types of tests were accomplished for a proof of principle of the technique, one with no constrains on the object which meant random movements due to non controlled environmental air currents, and the other with specific controlled conditions on the object. Results presented correspond to a random sample of sequential digital holograms, chosen from a 1 second exposure, individually Fourier processed in order to perform the usual comparison by subtraction between consecutive pairs thus obtaining the phase map of the object out of plane displacement, shown as a movie.

  10. Speed adaptation as Kalman filtering.

    PubMed

    Barraza, Jose F; Grzywacz, Norberto M

    2008-10-01

    If the purpose of adaptation is to fit sensory systems to different environments, it may implement an optimization of the system. What the optimum is depends on the statistics of these environments. Therefore, the system should update its parameters as the environment changes. A Kalman-filtering strategy performs such an update optimally by combining current estimations of the environment with those from the past. We investigate whether the visual system uses such a strategy for speed adaptation. We performed a matching-speed experiment to evaluate the time course of adaptation to an abrupt velocity change. Experimental results are in agreement with Kalman-modeling predictions for speed adaptation. When subjects adapt to a low speed and it suddenly increases, the time course of adaptation presents two phases, namely, a rapid decrease of perceived speed followed by a slower phase. In contrast, when speed changes from fast to slow, adaptation presents a single phase. In the Kalman-model simulations, this asymmetry is due to the prevalence of low speeds in natural images. However, this asymmetry disappears both experimentally and in simulations when the adapting stimulus is noisy. In both transitions, adaptation now occurs in a single phase. Finally, the model also predicts the change in sensitivity to speed discrimination produced by the adaptation.

  11. A comparison of the imaging characteristics of the new Kodak Hyper Speed G film with the current T-MAT G/RA film and the CR 9000 system.

    PubMed

    Monnin, P; Gutierrez, D; Bulling, S; Lepori, D; Verdun, F R

    2005-10-07

    Three standard radiation qualities (RQA 3, RQA 5 and RQA 9) and two screens, Kodak Lanex Regular and Insight Skeletal, were used to compare the imaging performance and dose requirements of the new Kodak Hyper Speed G and the current Kodak T-MAT G/RA medical x-ray films. The noise equivalent quanta (NEQ) and detective quantum efficiencies (DQE) of the four screen-film combinations were measured at three gross optical densities and compared with the characteristics for the Kodak CR 9000 system with GP (general purpose) and HR (high resolution) phosphor plates. The new Hyper Speed G film has double the intrinsic sensitivity of the T-MAT G/RA film and a higher contrast in the high optical density range for comparable exposure latitude. By providing both high sensitivity and high spatial resolution, the new film significantly improves the compromise between dose and image quality. As expected, the new film has a higher noise level and a lower signal-to-noise ratio than the standard film, although in the high frequency range this is compensated for by a better resolution, giving better DQE results--especially at high optical density. Both screen-film systems outperform the phosphor plates in terms of MTF and DQE for standard imaging conditions (Regular screen at RQA 5 and RQA 9 beam qualities). At low energy (RQA 3), the CR system has a comparable low-frequency DQE to screen-film systems when used with a fine screen at low and middle optical densities, and a superior low-frequency DQE at high optical density.

  12. Local Air Quality Conditions and Forecasts

    MedlinePlus

    Local Air Quality Conditions Zip Code: State : My Current Location Map Center Forecast AQI Current AQI Current Ozone Current PM ... Ozone Loop PM Loop AQI: Good (0 - 50) Air quality is considered satisfactory, and air pollution poses little ...

  13. Experiments on high speed ejectors

    NASA Technical Reports Server (NTRS)

    Wu, J. J.

    1986-01-01

    Experimental studies were conducted to investigate the flow and the performance of thrust augmenting ejectors for flight Mach numbers in the range of 0.5 to 0.8, primary air stagnation pressures up to 107 psig (738 kPa), and primary air stagnation temperatures up to 1250 F (677 C). The experiment verified the existence of the second solution ejector flow, where the flow after complete mixing is supersonic. Thrust augmentation in excess of 1.2 was demonstrated for both hot and cold primary jets. The experimental ejector performed better than the corresponding theoretical optimal first solution ejector, where the mixed flow is subsonic. Further studies are required to realize the full potential of the second solution ejector. The research program was started by the Flight Dynamics Research Corporation (FDRC) to investigate the characteristic of a high speed ejector which augments thrust of a jet at high flight speeds.

  14. Review of Test Procedure for Determining HSPFs of Residential Variable-Speed Heat Pumps

    SciTech Connect

    Rice, C. Keith; Munk, Jeffrey D.; Shrestha, Som S.

    2015-08-01

    This report reviews the suitability of the existing Heating Seasonal Performance Factor (HSPF) ratings and testing requirements for the current generation of variable-speed (VS) air-source heat pumps. Recent field test results indicate larger discrepancies between rated HSPF and field-observed HSPF for VS models than for single-speed models in the same houses. These findings suggest that the heating season test and ratings procedure should be revisited for VS heat pumps. The ratings and testing procedures are described in ANSI/AHRI 210/240 (2008) for single-speed, two-capacity, and variable-speed units. Analysis of manufacturer and independent test performance data on VS units reveals why the current VS testing/ratings procedure results in overly optimistic HSPF ratings for some VS units relative to other types of heat pumps. This is due to a combination of extrapolation of low speed test data beyond the originally anticipated ambient temperature operating range and the constraints of unit controls, which prevent low speed operation over the range of ambient temperatures assumed in the procedure for low speed. As a result, the HSPFs of such units are being overpredicted relative to those for single- and two-capacity designs. This overprediction has been found to be significantly reduced by use in the HSPF ratings procedure of an alternative higher-load heating load line, described in a companion report (Rice et al., 2015).

  15. Harnessing the damping properties of materials for high-speed atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Adams, Jonathan D.; Erickson, Blake W.; Grossenbacher, Jonas; Brugger, Juergen; Nievergelt, Adrian; Fantner, Georg E.

    2016-02-01

    The success of high-speed atomic force microscopy in imaging molecular motors, enzymes and microbes in liquid environments suggests that the technique could be of significant value in a variety of areas of nanotechnology. However, the majority of atomic force microscopy experiments are performed in air, and the tapping-mode detection speed of current high-speed cantilevers is an order of magnitude lower in air than in liquids. Traditional approaches to increasing the imaging rate of atomic force microscopy have involved reducing the size of the cantilever, but further reductions in size will require a fundamental change in the detection method of the microscope. Here, we show that high-speed imaging in air can instead be achieved by changing the cantilever material. We use cantilevers fabricated from polymers, which can mimic the high damping environment of liquids. With this approach, SU-8 polymer cantilevers are developed that have an imaging-in-air detection bandwidth that is 19 times faster than those of conventional cantilevers of similar size, resonance frequency and spring constant.

  16. ISOTHERMAL AIR INGRESS VALIDATION EXPERIMENTS

    SciTech Connect

    Chang H Oh; Eung S Kim

    2011-09-01

    Idaho National Laboratory carried out air ingress experiments as part of validating computational fluid dynamics (CFD) calculations. An isothermal test loop was designed and set to understand the stratified-flow phenomenon, which is important as the initial air flow into the lower plenum of the very high temperature gas cooled reactor (VHTR) when a large break loss-of-coolant accident occurs. The unique flow characteristics were focused on the VHTR air-ingress accident, in particular, the flow visualization of the stratified flow in the inlet pipe to the vessel lower plenum of the General Atomic’s Gas Turbine-Modular Helium Reactor (GT-MHR). Brine and sucrose were used as heavy fluids, and water was used to represent a light fluid, which mimics a counter current flow due to the density difference between the stimulant fluids. The density ratios were changed between 0.87 and 0.98. This experiment clearly showed that a stratified flow between simulant fluids was established even for very small density differences. The CFD calculations were compared with experimental data. A grid sensitivity study on CFD models was also performed using the Richardson extrapolation and the grid convergence index method for the numerical accuracy of CFD calculations . As a result, the calculated current speed showed very good agreement with the experimental data, indicating that the current CFD methods are suitable for predicting density gradient stratified flow phenomena in the air-ingress accident.

  17. Proposed modification to the inhalable aerosol convention applicable to realistic workplace wind speeds.

    PubMed

    Sleeth, Darrah K; Vincent, James H

    2011-06-01

    The current convention for sampling inhalable aerosols was based on several mannequin studies performed in wind tunnels at wind speeds between 0.5 and 4 m s(-1). In reality, as we now know, the wind speed in most modern indoor working environments is generally at or below ∼0.2 m s(-1). Inhalability studies performed in calm air aerosol chambers have shown that human aspiration efficiency at essentially zero wind speed is not consistent with the existing inhalable aerosol convention, calling into question the universal applicability of the current standard. More recently, experiments were carried out in a new hybrid wind tunnel-calm air chamber at more representative workplace wind speeds, between ∼0.1 and 0.5 m s(-1), to fill in this knowledge gap. Comparing these new data to both the existing inhalable aerosol convention and a recently proposed alternative for low wind movement suggests that, while the existing inhalable aerosol convention remains appropriate for wind speeds above ∼0.2 m s(-1), the modified version is more appropriate for the range below ∼0.2 m s(-1).

  18. Speed limits, enforcement, and health consequences.

    PubMed

    Elvik, Rune

    2012-04-01

    This review summarizes current knowledge regarding the effects of speed limit enforcement on public health. Speed limits are commonly used around the world to regulate the maximum speed at which motor vehicles can be operated on public roads. Speed limits are statutory, and violations of them are normally sanctioned by means of fixed penalties (traffic tickets) or, in the event of serious violations, suspension of the driver's license and imposition of prison sentences. Speed limit violations are widespread in all countries for which statistics can be found. Speeding contributes more to the risk of traffic injury than do other risk factors for which estimates of population-attributable risk are available. Traffic speed strongly influences impact speed in crashes and therefore has major implications for public health.

  19. Separation and preparation of 6-gingerol from molecular distillation residue of Yunnan ginger rhizomes by high-speed counter-current chromatography and the antioxidant activity of ginger oils in vitro.

    PubMed

    Gan, Zhilin; Liang, Zheng; Chen, Xiaosong; Wen, Xin; Wang, Yuxiao; Li, Mo; Ni, Yuanying

    2016-02-01

    Molecular distillation residue (MD-R) from ginger had the most total phenol content of 247.6mg gallic acid equivalents per gram (GAE/g) among the ginger oils. High-speed counter-current chromatography (HSCCC) technique in semi-preparative scale was successfully performed in separation and purification of 6-gingerol from MD-R by using a two-phase solvent system composed of n-hexane-ethyl acetate-methanol-water (10:2:5:7, v/v/v/v). The target compound was isolated, collected, purified by HSCCC in the head-tail mode, and then analyzed by HPLC. A total of 90.38±0.53mg 6-gingerol was obtained from 600mg MD-R, with purity of 99.6%. In addition, the structural identification of 6-gingerol was performed by EI/MS, (1)H NMR and (13)C NMR. Moreover, the orders of antioxidant activity were vitamin E (VE)>supercritical fluid extraction oleoresin (SFE-O)=MD-R=6-gingerol>molecular distillation essential oil (MD-EO) and butylated hydroxytoluene (BHT)=VE>6-gingerol>MD-R=SFE-O>MD-EO, respectively in 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) scavenging and β-Carotene bleaching.

  20. Development of a high speed counter-current chromatography system with Cu(II)-chiral ionic liquid complexes and hydroxypropyl-β-cyclodextrin as dual chiral selectors for enantioseparation of naringenin.

    PubMed

    Wang, Shanshan; Han, Chao; Wang, Sisi; Bai, Lijuan; Li, Shanshan; Luo, Jianguang; Kong, Lingyi

    2016-11-04

    Cu(II) complexed amino acid ionic liquid, Cu(II)-[1-butyl-3-methylimidazolium][L-Pro] (Cu(II)-[BMIm][L-Pro]), was successfully adopted as chiral ligand to improve the enantioseparation efficiency in high speed counter-current chromatography (HSCCC). For the enantioseparation of intractable naringenin (NRG) racemic mixtures, Cu(II)-[BMIm][L-Pro] coupled with hydroxypropyl-β-cyclodextrin (HP-β-CD) was successfully applied as dual chiral selectors in HSCCC. The influence of important parameters, including the concentration of the chiral selectors, the pH value, and the temperature were investigated. Under optimal conditions, 4.5mg of (+)-NRG and 4.1mg of (-)-NRG were successfully separated from 10mg NRG racemic mixtures with the purity of 98%. The chiral recognition mechanism of dual chiral selectors was illuminated by the UV-vis and NMR spectra, suggesting that the enantioseparation was upon the difference of the thermodynamic stability of the quaternary complexes of Cu(II), [BMIm][L-Pro], HP-β-CD, and NRG. The results illustrated that the developed HSCCC system, based on the synergistic mechanism of Cu(II)-[BMIm][L-Pro] and HP-β-CD, exhibited better performance on enantioseparation and had great application potential in preparative chiral separation of natural products.

  1. Extraction and Separation of Vitisin D, Ampelopsin B and cis-Vitisin A from Iris lactea Pall. var. chinensis (Fisch.) Koidz by Alkaline Extraction-Acid Precipitation and High-Speed Counter-Current Chromatography.

    PubMed

    Lv, Huanhuan; Zhou, Wenna; Wang, Xiaoyan; Wang, Zhenhua; Suo, Yourui; Wang, Honglun

    2016-01-01

    Naturally occurring oligostilbenes are receiving more attention because they exhibit several beneficial effects for health, including hepatoprotective, antitumor, anti-adipogenic, antioxidant, antiaging, anti-inflammatory, anti-microbial, antiviral, immunosuppressive and neuroprotective activities. Thus, they could be of some potentially therapeutic values for several diseases. In this study, we adopted the alkaline extraction-acid precipitation (AEAP) method for extraction of oligostilbenes from the seed kernel of Iris lactea Then, the high-speed counter-current chromatography (HSCCC) was used for preparative isolation and purification of oligostilbenes from the AEAP extracts. Finally, three oligostilbenes, namely vitisin D (73 mg), ampelopsin B (25 mg) and cis-vitisin A (16 mg), were successfully fractionated by HSCCC with a two-phase solvent system composed of n-hexane-ethyl acetate-methanol-water (2:5:3:6, v/v/v/v) from 300 mg of the AEAP extracts in ∼ 190 min. The purities of the three isolated oligostilbenes were all over 95.0% as analyzed by high performance liquid chromatography. They all were isolated from I. lacteal for the first time.The method of AEAP for the preparation of the oligostilbene-enriched crude sample was simple, and the HSCCC technique for the isolation and purification of oligostilbenes was efficient.

  2. Preparative isolation of cordycepin, N(6)-(2-hydroxyethyl)-adenosine and adenosine from Cordyceps militaris by macroporous resin and purification by recycling high-speed counter-current chromatography.

    PubMed

    Zhang, Zhong; Tudi, Tuernisan; Liu, Yanfang; Zhou, Shuai; Feng, Na; Yang, Yan; Tang, Chuanhong; Tang, Qingjiu; Zhang, Jingsong

    2016-10-15

    In this study, cordycepin, N(6)-(2-hydroxyethyl)-adenosine (HEA) and adenosine from the fruiting bodies of Cordyceps militaris were separated by using macroporous resin NKA-II adsorption. The parameters of static adsorption were tested and the optimized conditions were as follow: the total adsorption time was 12h, 50% ethanol was used for desorption and the desorption time was 9h. The crude sample that was prepared by macroporous resin NKA-II contained 3.4% cordycepin, 3.7% HEA and 4.9% adenosine. Then the crude sample was further purified by recycling high-speed counter-current chromatography (HSCCC) with ethyl acetate, n-butanol, 1.5% aqueous ammonium hydroxide (1:4:5, v/v/v) as the optimized two-phase solvent system. Three nucleosides including 15.6mg of cordycepin, 16.9mg of HEA and 23.2mg of adenosine were obtained from 500mg of crude sample in one-step separation. The purities of three compounds were 98.5, 98.3 and 98.0%, respectively, as determined by high performance liquid chromatography.

  3. Preparative isolation and purification of cuminaldehyde and p-menta-1,4-dien-7-al from the essential oil of Cuminum cyminum L. by high-speed counter-current chromatography.

    PubMed

    Chen, Qinqin; Hu, Xuefang; Li, Jingming; Liu, Ping; Yang, Yang; Ni, Yuanying

    2011-03-09

    High-speed counter-current chromatography (HSCCC) technique in semi-preparative scale was successfully used in isolation and purification of cuminaldehyde and p-menta-1,4-dien-7-al from the essential oil of Cuminum cyminum L. by using a two-phase solvent system composed of n-hexane-methanol-water (5:4:1, v/v/v). The targeted compounds were isolated, collected, purified by HSCCC in the head-tail mode, and then analyzed by gas chromatography (GC). A total of 12.72 ± 0.22 mg of cuminaldehyde and 10.61 ± 0.27 mg of p-menta-1,4-dien-7-al were obtained from 50 mg of the essential oil of C. cyminum L. in less than 6 h, with purities of 95.42% and 97.21%, respectively. In addition to GC-EI/MS, the identity of the cuminaldehyde was further confirmed with the retention time using the method of standard addition, while, the structural identification of p-menta-1,4-dien-7-al was performed with GC-EI/MS, (1)H NMR and (1)H-(1)H COSY.

  4. Ionic Liquid-Based Ultrasonic-Assisted Extraction of Forsythosides from the Leaf of Forsythia suspensa (Thunb.) Vahl and Subsequent Separation and Purification by High-Speed Counter-Current Chromatography.

    PubMed

    Sun, Yinshi; Hou, Zhiguang; Liu, Zhengbo; Wang, Jianhua

    2016-09-01

    An ionic liquid-based ultrasonic-assisted extraction (ILUAE) method was developed for the extraction of the two forsythosides, namely forsythosides I and A from the leaf of Forsythia suspensa (Thunb.) Vahl. Three kinds of l-alkyl-3-methylimidazolium ionic liquids with different alkyl chain and anion were investigated. The results indicated that ionic liquids showed remarkable effects on the extraction yields of forsythosides. In addition, several ILUAE ultrasonic parameters, such as the solvent concentration, solvent to solid ratio and extraction time have been optimized. Under these optimal conditions (e.g., with 0.6 M [C6MIM]Br, solvent to solid ratio of 15 mL/g and extraction time of 10 min), this approach gained the highest extraction yields of forsythoside I (0.89%) and forsythoside A (10.74%). Meanwhile, forsythosides in the ILUAE extract were separated and purified successfully through the high-speed counter-current chromatography with a two-phase solvent system consisting of ethyl acetate-ethanol-acetic acid-water (4 : 1 : 0.25 : 6, v/v). 5.4 mg of forsythoside I and 59.7 mg of forsythoside A were obtained from 120 mg of the prepurified sample in one-step separation, with the purity of 96.1 and 97.9%, respectively, as determined by high-performance liquid chromatography. Their structures were identified by (1)H nuclear magnetic resonance (NMR) and (13)C NMR.

  5. Reactive uptake coefficients for N2O5 determined from aircraft measurements during the Second Texas Air Quality Study: Comparison to current model parameterizations

    NASA Astrophysics Data System (ADS)

    Brown, Steven S.; Dubé, William P.; Fuchs, Hendrik; Ryerson, Thomas B.; Wollny, Adam G.; Brock, Charles A.; Bahreini, Roya; Middlebrook, Ann M.; Neuman, J. Andrew; Atlas, Elliot; Roberts, James M.; Osthoff, Hans D.; Trainer, Michael; Fehsenfeld, Frederick C.; Ravishankara, A. R.

    2009-04-01

    This paper presents determinations of reactive uptake coefficients for N2O5, γ(N2O5), on aerosols from nighttime aircraft measurements of ozone, nitrogen oxides, and aerosol surface area on the NOAA P-3 during Second Texas Air Quality Study (TexAQS II). Determinations based on both the steady state approximation for NO3 and N2O5 and a plume modeling approach yielded γ(N2O5) substantially smaller than current parameterizations used for atmospheric modeling and generally in the range 0.5-6 × 10-3. Dependence of γ(N2O5) on variables such as relative humidity and aerosol composition was not apparent in the determinations, although there was considerable scatter in the data. Determinations were also inconsistent with current parameterizations of the rate coefficient for homogenous hydrolysis of N2O5 by water vapor, which may be as much as a factor of 10 too large. Nocturnal halogen activation via conversion of N2O5 to ClNO2 on chloride aerosol was not determinable from these data, although limits based on laboratory parameterizations and maximum nonrefractory aerosol chloride content showed that this chemistry could have been comparable to direct production of HNO3 in some cases.

  6. Metal-Air Batteries

    SciTech Connect

    Zhang, Jiguang; Bruce, Peter G.; Zhang, Gregory

    2011-08-01

    Metal-air batteries have much higher specific energies than most currently available primary and rechargeable batteries. Recent advances in electrode materials and electrolytes, as well as new designs on metal-air batteries, have attracted intensive effort in recent years, especially in the development of lithium-air batteries. The general principle in metal-air batteries will be reviewed in this chapter. The materials, preparation methods, and performances of metal-air batteries will be discussed. Two main metal-air batteries, Zn-air and Li-air batteries will be discussed in detail. Other type of metal-air batteries will also be described.

  7. Partition efficiencies of newly fabricated universal high-speed counter-current chromatograph for separation of two different types of sugar derivatives with organic-aqueous two-phase solvent systems

    PubMed Central

    Shinomiya, Kazufusa; Sato, Kazuki; Yoshida, Kazunori; Tokura, Koji; Maruyama, Hiroshi; Yanagidaira, Kazuhiro; Ito, Yoichiro

    2013-01-01

    Universal high-speed counter-current chromatograph (HSCCC) was newly designed and fabricated in our laboratory. It holds a set of four column holders symmetrically around the rotary frame at a distance of 11.2 cm from the central axis. By engaging the stationary gear on the central axis of the centrifuge to the planetary gears on the column holder shaft through a set of idle gears, two pairs of diagonally located column holders simultaneously rotate about their own axes in the opposite directions: one forward (type-J planetary motion) and the other backward (type-I planetary motion) each synchronously with the revolution. Using the eccentric coil assembly, partition efficiencies produced by these two planetary motions were compared on the separation of two different types of sugar derivatives (4-methylumbelliferyl and 5-bromo-4-chloro-3-indoxyl sugar derivatives) using organic-aqueous two-phase solvent systems composed of n-hexane/ethyl acetate/1-butanol/methanol/water and aqueous 0.1 M sodium tetraborate, respectively. With lower phase mobile, better peak resolution was obtained by the type-J forward rotation for both samples probably due to higher retention of the stationary phase. With upper phase mobile, however, similar peak resolutions were obtained between these two planetary motions for both sugar derivatives. The overall results indicate that the present universal HSCCC is useful for counter-current chromatographic separation since each planetary motion has its specific applications: e.g., vortex CCC by the type-I planetary motion and HSCCC by the type-J planetary motion both for separation of various natural and synthetic products. PMID:24267319

  8. Partition efficiencies of newly fabricated universal high-speed counter-current chromatograph for separation of two different types of sugar derivatives with organic-aqueous two-phase solvent systems.

    PubMed

    Shinomiya, Kazufusa; Sato, Kazuki; Yoshida, Kazunori; Tokura, Koji; Maruyama, Hiroshi; Yanagidaira, Kazuhiro; Ito, Yoichiro

    2013-12-27

    A new design of universal high-speed counter-current chromatograph (HSCCC) was fabricated in our laboratory. It holds a set of four column holders symmetrically around the rotary frame at a distance of 11.2cm from the central axis. By engaging the stationary gear on the central axis of the centrifuge to the planetary gears on the column holder shaft through a set of idle gears, two pairs of diagonally located column holders simultaneously rotate about their own axes in the opposite directions: one forward (type-J planetary motion) and the other backward (type-I planetary motion) each synchronously with the revolution. Using the eccentric coil assembly, partition efficiencies produced by these two planetary motions were compared on the separation of two different types of sugar derivatives (4-methylumbelliferyl and 5-bromo-4-chloro-3-indoxyl sugar derivatives) using organic-aqueous two-phase solvent systems composed of n-hexane/ethyl acetate/1-butanol/methanol/water and aqueous 0.1M sodium tetraborate, respectively. With lower phase mobile, better peak resolution was obtained by the type-J forward rotation for both samples probably due to higher retention of the stationary phase. With upper phase mobile, however, similar peak resolutions were obtained between these two planetary motions for both sugar derivatives. The overall results indicate that the present universal HSCCC is useful for counter-current chromatographic separation since each planetary motion has its specific applications: e.g., vortex CCC by the type-I planetary motion and HSCCC by the type-J planetary motion both for separation of various natural and synthetic products.

  9. Modeling Compressibility Effects in High-Speed Turbulent Flows

    NASA Technical Reports Server (NTRS)

    Sarkar, S.

    2004-01-01

    Man has strived to make objects fly faster, first from subsonic to supersonic and then to hypersonic speeds. Spacecraft and high-speed missiles routinely fly at hypersonic Mach numbers, M greater than 5. In defense applications, aircraft reach hypersonic speeds at high altitude and so may civilian aircraft in the future. Hypersonic flight, while presenting opportunities, has formidable challenges that have spurred vigorous research and development, mainly by NASA and the Air Force in the USA. Although NASP, the premier hypersonic concept of the eighties and early nineties, did not lead to flight demonstration, much basic research and technology development was possible. There is renewed interest in supersonic and hypersonic flight with the HyTech program of the Air Force and the Hyper-X program at NASA being examples of current thrusts in the field. At high-subsonic to supersonic speeds, fluid compressibility becomes increasingly important in the turbulent boundary layers and shear layers associated with the flow around aerospace vehicles. Changes in thermodynamic variables: density, temperature and pressure, interact strongly with the underlying vortical, turbulent flow. The ensuing changes to the flow may be qualitative such as shocks which have no incompressible counterpart, or quantitative such as the reduction of skin friction with Mach number, large heat transfer rates due to viscous heating, and the dramatic reduction of fuel/oxidant mixing at high convective Mach number. The peculiarities of compressible turbulence, so-called compressibility effects, have been reviewed by Fernholz and Finley. Predictions of aerodynamic performance in high-speed applications require accurate computational modeling of these "compressibility effects" on turbulence. During the course of the project we have made fundamental advances in modeling the pressure-strain correlation and developed a code to evaluate alternate turbulence models in the compressible shear layer.

  10. Air-breathing Rocket Engine Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This Quick Time movie depicts the Rocketdyne static test of an air-breathing rocket. Air-breathing engines, known as rocket based, combined-cycle engines, get their initial take-off power from specially designed rockets, called air-augmented rockets, that boost performance about 15 percent over conventional rockets. When the vehicle's velocity reaches twice the speed of sound, the rockets are turned off and the engine relies totally on oxygen in the atmosphere to burn hydrogen fuel, as opposed to a rocket that must carry its own oxygen, thus reducing weight and flight costs. Once the vehicle has accelerated to about 10 times the speed of sound, the engine converts to a conventional rocket-powered system to propel the craft into orbit or sustain it to suborbital flight speed. NASA's advanced Transportation Program at the Marshall Space Flight Center, along with several industry partners and collegiate forces, is developing this technology to make space transportation affordable for everyone from business travelers to tourists. The goal is to reduce launch costs from today's price tag of $10,000 per pound to only hundreds of dollars per pound. NASA's series of hypersonic flight demonstrators currently include three air-breathing vehicles: the X-43A, X-43B and X-43C.

  11. Thermal and Melt Wear Characterization of Materials in Sliding Contact at High Speed

    DTIC Science & Technology

    2014-03-01

    at high speeds . The high speed air flow will have a convective heating effect on the slipper. If the slipper were in constant contact with the rail...resulting from the high speed air flow also occurs on the top and front faces of the slipper. The cumulative effects of conductive frictional and...observe the effects of 11 convective heating in uniformly defined regions over the course of a modeled run. The speed of the air in the gap is assumed to

  12. Orthogonal test design for optimization of suitable conditions to separate C-phycocyanin from Spirulina platensis by high-speed counter-current chromatography using reverse micelle solvent system.

    PubMed

    Yin, Lianhong; Xu, Lina; Yu, Kun; Zhen, Yuhong; Han, Xu; Xu, Youwei; Qi, Yan; Peng, Jinyong; Tan, Aiping

    2011-06-01

    High-speed counter-current chromatography (HSCCC) was applied to separate C-phycocyanin (C-PC) from Spirulina platensis in the article. The suitable conditions were optimized by an orthogonal test design (L(9)(3)(3)), including the stationary phase of reverse micelle solvent system (0.10 g/mL cetyltrimethylammonium bromide [CTAB]/isooctane-hexylalcohol), mobile phase A (0.05 mol/L sodium phosphate buffer, pH 4.0, containing 0.2 mol/L KCl) and mobile phase B (0.05 mol/L sodium phosphate buffer, pH 8.0, containing 0.4 mol/L KCl). Under the selected conditions, 78.7 mg protein was purified from 200 mg crude extract of S. platensis, and the purity of the product was 4.25 based on the absorbance ratio of A(620)/A(280) , which was increased 6.85 times compared with the crude extract. Then, the protein was identified to be C-PC by MALDI-TOF/TOF-MS and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis compared with the standard. The application of HSCCC used in the separation of C-PC from S. platensis was first reported in the article. Furthermore, three kinds of tumor cell lines including human hepatoma cell line SMMC-7721, human ovarian carcinoma cell line ES-2, and human lung adenocarcinoma cell line SPCA-1 were used to evaluate the anticancer activities of the separated product, and the results showed that the separated C-PC had excellent anti-tumor actions with the IC(50) values at 2.998, 4.854, and 8.423 μg/mL, respectively, for 48 h treatment. The outcome indicates that an effective method for C-PC purification by HSCCC has been established.

  13. High-speed counter-current chromatography coupled online to high performance liquid chromatography-diode array detector-mass spectrometry for purification, analysis and identification of target compounds from natural products.

    PubMed

    Liang, Xuejuan; Zhang, Yuping; Chen, Wei; Cai, Ping; Zhang, Shuihan; Chen, Xiaoqin; Shi, Shuyun

    2015-03-13

    A challenge in coupling high-speed counter-current chromatography (HSCCC) online with high performance liquid chromatography (HPLC) for purity analysis was their time incompatibility. Consequently, HSCCC-HPLC was conducted by either controlling HPLC analysis time and HSCCC flow rate or using stop-and-go scheme. For natural products containing compounds with a wide range of polarities, the former would optimize experimental conditions, while the latter required more time. Here, a novel HSCCC-HPLC-diode array detector-mass spectrometry (HSCCC-HPLC-DAD-MS) was developed for undisrupted purification, analysis and identification of multi-compounds from natural products. Two six-port injection valves and a six-port switching valve were used as interface for collecting key HSCCC effluents alternatively for HPLC-DAD-MS analysis and identification. The ethyl acetate extract of Malus doumeri was performed on the hyphenated system to verify its efficacy. Five main flavonoids, 3-hydroxyphloridzin (1), phloridzin (2), 4',6'-dihydroxyhydrochalcone-2'-O-β-D-glucopyranoside (3, first found in M. doumeri), phloretin (4), and chrysin (5), were purified with purities over 99% by extrusion elution and/or stepwise elution mode in two-step HSCCC, and 25mM ammonium acetate solution was selected instead of water to depress emulsification in the first HSCCC. The online system shortened manipulation time largely compared with off-line analysis procedure and stop-and-go scheme. The results indicated that the present method could serve as a simple, rapid and effective way to achieve target compounds with high purity from natural products.

  14. Performance study of personal inhalable aerosol samplers at ultra-low wind speeds.

    PubMed

    Sleeth, Darrah K; Vincent, James H

    2012-03-01

    The assessment of personal inhalable aerosol samplers in a controlled laboratory setting has not previously been carried out at the ultra-low wind speed conditions that represent most modern workplaces. There is currently some concern about whether the existing inhalable aerosol convention is appropriate at these low wind speeds and an alternative has been suggested. It was therefore important to assess the performance of the most common personal samplers used to collect the inhalable aerosol fraction, especially those that were designed to match the original curve. The experimental set-up involved use of a hybrid ultra-low speed wind tunnel/calm air chamber and a rotating, heating breathing mannequin to measure the inhalable fraction of aerosol exposure. The samplers that were tested included the Institute of Occupational Medicine (IOM), Button, and GSP inhalable samplers as well as the closed-face cassette sampler that has been (and still is) widely used by occupational hygienists in many countries. The results showed that, down to ∼0.2 m s(-1), the samplers matched the current inhalability criterion relatively well but were significantly greater than this at the lowest wind speed tested. Overall, there was a significant effect of wind speed on sampling efficiency, with lower wind speeds clearly associated with an increase in sampling efficiency.

  15. Contact air abrasion.

    PubMed

    Porth, R

    1999-05-01

    The advantages of contact air abrasion techniques are readily apparent. The first, of course, is the greatly increased ease of use. Working with contact also tends to speed the learning curve by giving the process a more natural dental feel. In addition, as one becomes familiar with working with a dust stream, the potential for misdirecting the air flow is decreased. The future use of air abrasion for deep decay removal will make this the treatment of choice for the next millennium.

  16. Vehicle speed control device

    SciTech Connect

    Thornton-Trump, W.E.

    1987-03-10

    An apparatus is described for automatically limiting the speed of a vehicle powered by an internal combustion engine having a spark ignition system with an ignition coil, comprising: sensor means for generating a speed signal directly representative of the speed of the vehicle comprising a series of speed signal pulses having a pulse repetition frequency proportional to the speed of the vehicle; control means for converting speed signal pulses into a DC voltage proportional to the vehicle speed; means for comparing the DC voltage to a predetermined DC voltage having substantially zero AC components representative of a predetermined maximum speed and for generating a difference signal in response thereto; and means for generating a pulse-width modulated control signal responsive to the difference signal; power means responsive to the control signal for intermittently interrupting the ignition system.

  17. Subsurface evaluation of the west parking lot and landfill 3 areas of Air Force Plant 4, Fort Worth, Texas, using two-dimensional direct-current resistivity profiling

    USGS Publications Warehouse

    Braun, Christopher L.; Jones, Sonya A.

    2002-01-01

    During September 1999, the U.S. Geological Survey made 10 two-dimensional direct-current resistivity profile surveys in the west parking lot and landfill 3 areas of Air Force Plant 4, Fort Worth, Texas, to identify subsurface areas of anomalously high or low resistivity that could indicate potential contamination, contaminant pathways, or anthropogenic structures. Six of the 10 surveys (transects) were in the west parking lot. Each of the inverted sections of these transects had anomalously high resistivities in the terrace alluvium/fill (the surficial subsurface layer) that probably were caused by highly resistive fill material. In addition, each of these transects had anomalously low resistivities in the Walnut Formation (a bedrock layer immediately beneath the alluvium/fill) that could have been caused by saturation of fractures within the Walnut Formation. A high-resistivity anomaly in the central part of the study area probably is associated with pea gravel fill used in construction of a French drain. Another high resistivity anomaly in the west parking lot, slightly southeast of the French drain, could be caused by dense nonaqueous-phase liquid in the Walnut Formation. The inverted sections of the four transects in the landfill 3 area tended to have slightly higher resistivities in both the alluvium/fill and the Walnut Formation than the transects in the west parking lot. The higher resistivities in the alluvium/fill could have been caused by drier conditions in grassy areas relative to conditions in the west parking lot. Higher resistivities in parts of the Walnut Formation also could be a function of drier conditions or variations in the lithology of the Walnut Formation. In addition to the 10 vertical sections, four horizontal sections at 2-meteraltitude intervals show generally increasing resistivity with decreasing altitude that most likely results from the increased influence of the Walnut Formation, which has a higher resistivity than the terrace

  18. Preparative separation and identification of novel subsidiary colors of the color additive D&C Red No. 33 (Acid Red 33) using spiral high-speed counter-current chromatography.

    PubMed

    Weisz, Adrian; Ridge, Clark D; Mazzola, Eugene P; Ito, Yoichiro

    2015-02-06

    Three low-level subsidiary color impurities (A, B, and C) often present in batches of the color additive D&C Red No. 33 (R33, Acid Red 33, Colour Index No. 17200) were separated from a portion of R33 by spiral high-speed counter-current chromatography (HSCCC). The separation involved use of a very polar solvent system, 1-BuOH/5mM aq. (NH4)2SO4. Addition of ammonium sulfate to the lower phase forced partition of the components into the upper phase, thereby eliminating the need to add a hydrophobic counterion as was previously required for separations of components from sulfonated dyes. The very polar solvent system used would not have been retained in a conventional multi-layer coil HSCCC instrument, but the spiral configuration enabled retention of the stationary phase, and thus, the separation was possible. A 1g portion of R33 enriched in A, B, and C was separated using the upper phase of the solvent system as the mobile phase. The retention of the stationary phase was 38.1%, and the separation resulted in 4.8 mg of A of >90% purity, 18.3mg of B of >85% purity, and 91 mg of C of 65-72% purity. A second separation of a portion of the C mixture resulted in 7 mg of C of >94% purity. The separated impurities were identified by high-resolution mass spectrometry and NMR spectroscopic techniques as follows: 5-amino-3-biphenyl-3-ylazo-4-hydroxy-naphthalene-2,7-disulfonic acid, A; 5-amino-4-hydroxy-6-phenyl-3-phenylazo-naphthalene-2,7-disulfonic acid, B; and 5-amino-4-hydroxy-3,6-bis-phenylazo-naphthalene-2,7-disulfonic acid, C. The isomers A and B are compounds reported for the first time. Application of the spiral HSCCC method resulted in the additional benefit of yielding 930 mg of the main component of R33, 5-amino-4-hydroxy-3-phenylazo-naphthalene-2,7-disulfonic acid, of >97% purity.

  19. Preparative separation and identification of novel subsidiary colors of the color additive D&C Red No. 33 (Acid Red 33) using spiral high-speed counter-current chromatography☆

    PubMed Central

    Weisz, Adrian; Ridge, Clark D.; Mazzola, Eugene P.; Ito, Yoichiro

    2015-01-01

    Three low-level subsidiary color impurities (A, B, and C) often present in batches of the color additive D&C Red No. 33 (R33, Acid Red 33, Colour Index No. 17200) were separated from a portion of R33 by spiral high-speed counter-current chromatography (HSCCC). The separation involved use of a very polar solvent system, 1-BuOH/5 mM aq. (NH4)2SO4. Addition of ammonium sulfate to the lower phase forced partition of the components into the upper phase, thereby eliminating the need to add a hydrophobic counterion as was previously required for separations of components from sulfonated dyes. The very polar solvent system used would not have been retained in a conventional multi-layer coil HSCCC instrument, but the spiral configuration enabled retention of the stationary phase, and thus, the separation was possible. A 1 g portion of R33 enriched in A, B, and C was separated using the upper phase of the solvent system as the mobile phase. The retention of the stationary phase was 38.1%, and the separation resulted in 4.8 mg of A of >90% purity, 18.3 mg of B of >85% purity, and 91 mg of C of 65–72% purity. A second separation of a portion of the C mixture resulted in 7 mg of C of >94% purity. The separated impurities were identified by high-resolution mass spectrometry and NMR spectroscopic techniques as follows: 5-amino-3-biphenyl-3-ylazo-4-hydroxy-naphthalene-2,7-disulfonic acid, A; 5-amino-4-hydroxy-6-phenyl-3-phenylazo-naphthalene-2,7-disulfonic acid, B; and 5-amino-4-hydroxy-3,6-bis-phenylazo-naphthalene-2,7-disulfonic acid, C. The isomers A and B are compounds reported for the first time. Application of the spiral HSCCC method resulted in the additional benefit of yielding 930 mg of the main component of R33, 5-amino-4-hydroxy-3-phenylazo-naphthalene-2,7-disulfonic acid, of >97% purity. PMID:25591404

  20. Air Quality Guide for Ozone

    MedlinePlus

    Local Air Quality Conditions Zip Code: State : My Current Location Air Quality Guide for Ozone Ground-level ozone is one ... exposure and protect your health. For your local air quality, visit www.airnow.gov View or print guide ...

  1. The evolution of the high-speed civil transport

    NASA Technical Reports Server (NTRS)

    Spearman, M. Leroy

    1994-01-01

    Current research directed toward the technology requirements for a high-speed civil transport (HSCT) airplane is an outgrowth of many years of activity related to air transportation. The purpose was to review some of the events that provided the background upon which current research programs are built. The review will include the subsonic era of transport aircraft and some events of the supersonic era that are related to the development of commercial supersonic transport aircraft. These events include the early NASA in-house studies and industry evaluations, the U.S. Supersonic Transport (SST) Program, the follow-on NASA supersonic cruise research programs, and the issuance of the National Aeronautical Research and Development (R&D) goals. Observations are made concerning some of the factors, both technical and nontechnical, that have had an impact on HSCT studies.

  2. High speed civil transport

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This report discusses the design and marketability of a next generation supersonic transport. Apogee Aeronautics Corporation has designated its High Speed Civil Transport (HSCT): Supercruiser HS-8. Since the beginning of the Concorde era, the general consensus has been that the proper time for the introduction of a next generation Supersonic Transport (SST) would depend upon the technical advances made in the areas of propulsion (reduction in emissions) and material composites (stronger, lighter materials). It is believed by many in the aerospace industry that these beforementioned technical advances lie on the horizon. With this being the case, this is the proper time to begin the design phase for the next generation HSCT. The design objective for a HSCT was to develop an aircraft that would be capable of transporting at least 250 passengers with baggage at a distance of 5500 nmi. The supersonic Mach number is currently unspecified. In addition, the design had to be marketable, cost effective, and certifiable. To achieve this goal, technical advances in the current SST's must be made, especially in the areas of aerodynamics and propulsion. As a result of these required aerodynamic advances, several different supersonic design concepts were reviewed.

  3. Study for Air Vehicles at High Speeds, Identifying the Potential Benefits to Transport Aircraft of a Continuously Variable Geometry Trailing-Edge Structure that can be Utilized for Aircraft Control, Trim, Load-Alleviation, and High Lift

    DTIC Science & Technology

    2011-08-01

    1.58 for deltas , Ref.16. The GR is a function of CLmax, wing loading (W/S), rolling friction (µ), Thrust (T) and Lift Induced Drag factor (k). VSTALL...5.2.10 L/D – CL, M 0.75, AR 6 WING + TAILPLANE, Effect of Flap Angle (Plain Flap ) CDi Wing CDi Tail CDo PITCH TRIMMED CASES δTE CL...Geometry and Modelling 6.2. High Speed (M 0.75) Performance, Clean Wing , Plain Flaps and Variable TE 6.3. Low Speed (M 0.20) Performance 6.4. Stability

  4. Air brake-dynamometer accurately measures torque

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Air brake-dynamometer assembly combines the principles of the air turbine and the air pump to apply braking torque. The assembly absorbs and measures power outputs of rotating machinery over a wide range of shaft speeds. It can also be used as an air turbine.

  5. High speed handpieces

    PubMed Central

    Bhandary, Nayan; Desai, Asavari; Shetty, Y Bharath

    2014-01-01

    High speed instruments are versatile instruments used by clinicians of all specialties of dentistry. It is important for clinicians to understand the types of high speed handpieces available and the mechanism of working. The centers for disease control and prevention have issued guidelines time and again for disinfection and sterilization of high speed handpieces. This article presents the recent developments in the design of the high speed handpieces. With a view to prevent hospital associated infections significant importance has been given to disinfection, sterilization & maintenance of high speed handpieces. How to cite the article: Bhandary N, Desai A, Shetty YB. High speed handpieces. J Int Oral Health 2014;6(1):130-2. PMID:24653618

  6. Air Modeling - Observational Meteorological Data

    EPA Pesticide Factsheets

    Observed meteorological data for use in air quality modeling consist of physical parameters that are measured directly by instrumentation, and include temperature, dew point, wind direction, wind speed, cloud cover, cloud layer(s), ceiling height,

  7. Nonintrusive shaft speed sensor

    NASA Technical Reports Server (NTRS)

    Barkhoudarian, S.; Wyett, L.; Maram, J.

    1985-01-01

    Reusable rocket engines such as the Space Shuttle Main Engines (SSME), the Orbital Transfer Vehicles (OTV), etc., have throttling capabilities that require real-time, closed-loop control systems of engine propellant flows, combustion temperatures and pressures, and turbopump rotary speeds. In the case of the SSME, there are four turbopumps that require real-time measurement and control of their rotary speeds. Variable-reluctance magnetic speed sensors were designed, fabricated, and tested for all four turbopumps, resulting in the successful implementation and operation of three of these speed sensors during each of the 12 Shuttle flights.

  8. Air surveillance

    SciTech Connect

    Patton, G.W.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the air surveillance and monitoring programs currently in operation at that Hanford Site. Atmospheric releases of pollutants from Hanford to the surrounding region are a potential source of human exposure. For that reason, both radioactive and nonradioactive materials in air are monitored at a number of locations. The influence of Hanford emissions on local radionuclide concentrations was evaluated by comparing concentrations measured at distant locations within the region to concentrations measured at the Site perimeter. This section discusses sample collection, analytical methods, and the results of the Hanford air surveillance program. A complete listing of all analytical results summarized in this section is reported separately by Bisping (1995).

  9. Can anti-speeding messages based on protection motivation theory influence reported speeding intentions?

    PubMed

    Glendon, A Ian; Walker, Britta L

    2013-08-01

    The study investigated the effects of anti-speeding messages based on protection motivation theory (PMT) components: severity, vulnerability, rewards, self-efficacy, response efficacy, and response cost, on reported speeding intentions. Eighty-three participants aged 18-25 years holding a current Australian driver's license completed a questionnaire measuring their reported typical and recent speeding behaviors. Comparisons were made between 18 anti-speeding messages used on Australian roads and 18 new anti-speeding messages developed from the PMT model. Participants reported their reactions to the 36 messages on the perceived effectiveness of the message for themselves and for the general population of drivers, and also the likelihood of themselves and other drivers driving within the speed limit after viewing each message. Overall the PMT model-derived anti-speeding messages were better than jurisdiction-use anti-speeding messages in influencing participants' reported intention to drive within the speed limit. Severity and vulnerability were the most effective PMT components for developing anti-speeding messages. Male participants reported significantly lower intention to drive within the speed limit than did female participants. However, males reported significantly higher intention to drive within the speed limit for PMT-derived messages compared with jurisdiction-based messages. Third-person effects were that males reported anti-speeding messages to be more effective for the general driving population than for themselves. Females reported the opposite effect - that all messages would be more effective for themselves than for the general driving population. Findings provided support for using a sound conceptual basis as an effective foundation for anti-speeding message development as well as for evaluating proposed anti-speeding messages on the target driver population.

  10. SU-E-P-15: Technique Factor Modulation and Reference Plane Air Kerma Rates in Response to Simulated Patient Thickness Variations for a Sample of Current Generation Fluoroscopes

    SciTech Connect

    Wunderle, K; Rakowski, J; Dong, F

    2015-06-15

    Purpose: To evaluate and compare approaches to technique factor modulation and air kerma rates in response to simulated patient thickness variations for four state-of-the-art and one previous-generation interventional fluoroscopes. Methods: A polymethyl methacrylate (PMMA) phantom was used as a tissue surrogate for the purposes of determining fluoroscopic reference plane air kerma rates, kVp, mA, and spectral filtration over a wide range of simulated tissue thicknesses. Data were acquired for each fluoroscopic and acquisition dose curve within a default abdomen or body imaging protocol. Results: The data obtained indicated vendor- and model-specific variations in the approach to technique factor modulation and reference plane air kerma rates across a range of tissue thicknesses. Some vendors have made hardware advances increasing the radiation output capabilities of their fluoroscopes; this was evident in the acquisition air kerma rates. However, in the imaging protocol evaluated, all of the state-of-the-art systems had relatively low air kerma rates in the fluoroscopic low-dose imaging mode as compared to the previous-generation unit. Each of the newest-generation systems also employ copper filtration in the selected protocol in the acquisition mode of imaging; this is a substantial benefit, reducing the skin entrance dose to the patient in the highest dose-rate mode of fluoroscope operation. Conclusion: Understanding how fluoroscopic technique factors are modulated provides insight into the vendor-specific image acquisition approach and provides opportunities to optimize the imaging protocols for clinical practice. The enhanced radiation output capabilities of some of the fluoroscopes may, under specific conditions, may be beneficial; however, these higher output capabilities also have the potential to lead to unnecessarily high dose rates. Therefore, all parties involved in imaging, including the clinical team, medical physicists, and imaging vendors, must work

  11. Magnetically Coupled Adjustable Speed Motor Drives - Motor Tip Sheet #13

    SciTech Connect

    2008-07-01

    Alternating current electric motors rotate at a nearly constant speed that is determined by motor design and line frequency. Energy savings of 50% or more may be available when fixed speed systems are modified to allow the motor speed to match variable load requirements of a centrifugal fan or pump.

  12. Air Research

    EPA Pesticide Factsheets

    EPA's air research provides the critical science to develop and implement outdoor air regulations under the Clean Air Act and puts new tools and information in the hands of air quality managers and regulators to protect the air we breathe.

  13. A new method for speed estimation of magnetically suspended flywheel in low speed region

    NASA Astrophysics Data System (ADS)

    Liu, Gang; Liu, Jianzhang; Li, Jianke

    2008-10-01

    It is very important to accurately detect rotor position and speed in brushless direct current motor (BLDCM). Aiming at BLDCM which drives the magnetic suspended reaction flywheel (MSRFW), a novel scheme to estimate the low speed of the BLDCM based on Hall sensors and Kalmam fliter is presented. The average speed over the previous sector is achieved according to the outputs of the three hall sensors, then rotor position of the next sector is computed at the sampling time. The electrical angle calculated can be used to estimate the transient speed with Kalman filter equation. Simulation and experiment show that the proposed method is valid.

  14. High-speed rotorcraft propulsion

    NASA Technical Reports Server (NTRS)

    Rutherford, John W.; Fitzpatrick, Robert E.

    1991-01-01

    Recently completed high-speed rotorcraft design studies for NASA provide the basis to assess technology needs for the development of these aircraft. Preliminary analysis of several concepts possessing helicopter-like hover characteristics and cruise capabilities in the 450 knot regime, led to the selection of two concepts for further study. The concepts selected included the Rotor/Wing and the Tilt Wing. The two unique concepts use turbofan and turboshaft engines respectively. Designs, based on current technology for each, established a baseline configuration from which technology trade studies could be conducted. Propulsion technology goals from the IHPTET program established the advanced technolgy year. Due to high-speed requirements, each concept possesses its own unique propulsion challenges. Trade studies indicate that achieving th IHPTET Phase III goals significantly improves the effectiveness of both concepts. Increased engine efficiency is particularly important to VTOL aircraft by reducing gross weight.

  15. Experimenting with End-Correction and the Speed of Sound

    ERIC Educational Resources Information Center

    LoPresto, Michael C.

    2011-01-01

    What follows is an alternative to the standard tuning fork and quarter-wave tube speed of sound experiment. Rather than adjusting the water level in a glass or plastic tube to vary the length of an air column, a set of resonance tubes of different lengths is used. The experiment still demonstrates the principles of standing waves in air columns…

  16. Current challenges in modelling far-range air pollution induced by the 2014-2015 Bárðarbunga fissure eruption (Iceland)

    NASA Astrophysics Data System (ADS)

    Boichu, Marie; Chiapello, Isabelle; Brogniez, Colette; Péré, Jean-Christophe; Thieuleux, Francois; Torres, Benjamin; Blarel, Luc; Mortier, Augustin; Podvin, Thierry; Goloub, Philippe; Söhne, Nathalie; Clarisse, Lieven; Bauduin, Sophie; Hendrick, François; Theys, Nicolas; Van Roozendael, Michel; Tanré, Didier

    2016-08-01

    The 2014-2015 Holuhraun lava-flood eruption of Bárðarbunga volcano (Iceland) emitted prodigious amounts of sulfur dioxide into the atmosphere. This eruption caused a large-scale episode of air pollution throughout Western Europe in September 2014, the first event of this magnitude recorded in the modern era. We gathered chemistry-transport simulations and a wealth of complementary observations from satellite sensors (OMI, IASI), ground-based remote sensing (lidar, sunphotometry, differential optical absorption spectroscopy) and ground-level air quality monitoring networks to characterize both the spatial-temporal distributions of volcanic SO2 and sulfate aerosols as well as the dynamics of the planetary boundary layer. Time variations of dynamical and microphysical properties of sulfate aerosols in the aged low-tropospheric volcanic cloud, including loading, vertical distribution, size distribution and single scattering albedo, are provided. Retrospective chemistry-transport simulations at low horizontal resolution (25 km × 25 km) capture the correct temporal dynamics of this far-range air pollution event but fail to reproduce the correct magnitude of SO2 concentration at ground-level. Simulations at higher spatial resolution, relying on two nested domains with finest resolution of 7.3 km × 7.3 km, improve substantially the far-range vertical distribution of the volcanic cloud and subsequently the description of ground-level SO2 concentrations. However, remaining discrepancies between model and observations are shown to result from an inaccurate representation of the planetary boundary layer (PBL) dynamics. Comparison with lidar observations points out a systematic under-estimation of the PBL height by the model, whichever the PBL parameterization scheme. Such a shortcoming impedes the capture of the overlying Bárðarbunga cloud into the PBL at the right time and in sufficient quantities. This study therefore demonstrates the key role played by the PBL

  17. Characterization and Performance Comparison of Low-Voltage, High-Speed, Push-Pull and Traveling-Wave Silicon Mach-Zehnder Modulators

    DTIC Science & Technology

    2014-03-27

    Latchu, Second Lieutenant, USAF AFIT-ENG-14-M-48 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air...Department of Electrical and Computer Engineering Graduate School of Engineering and Management Air Force Institute of Technology Air University Air...processor clock speeds, showing that clock speeds have now nearly leveled out. [1] (VLSI) technologies and facilities. Additionally, silicon wafers have

  18. Air-Breathing Rocket Engine Test

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This photograph depicts an air-breathing rocket engine that completed an hour or 3,600 seconds of testing at the General Applied Sciences Laboratory in Ronkonkoma, New York. Referred to as ARGO by its design team, the engine is named after the mythological Greek ship that bore Jason and the Argonauts on their epic voyage of discovery. Air-breathing engines, known as rocket based, combined-cycle engines, get their initial take-off power from specially designed rockets, called air-augmented rockets, that boost performance about 15 percent over conventional rockets. When the vehicle's velocity reaches twice the speed of sound, the rockets are turned off and the engine relies totally on oxygen in the atmosphere to burn hydrogen fuel, as opposed to a rocket that must carry its own oxygen, thus reducing weight and flight costs. Once the vehicle has accelerated to about 10 times the speed of sound, the engine converts to a conventional rocket-powered system to propel the craft into orbit or sustain it to suborbital flight speed. NASA's Advanced SpaceTransportation Program at Marshall Space Flight Center, along with several industry partners and collegiate forces, is developing this technology to make space transportation affordable for everyone from business travelers to tourists. The goal is to reduce launch costs from today's price tag of $10,000 per pound to only hundreds of dollars per pound. NASA's series of hypersonic flight demonstrators currently include three air-breathing vehicles: the X-43A, X-43B and X-43C.

  19. [Forward medical air evacuation].

    PubMed

    Czerniak, Erik; Le Dorze, Patrick Causse; Hersan, Olivier; Pohl, Jean-Baptiste; Angot, Emmanuel

    2014-09-01

    The medical chain which assures the treatment of casualties from the theatre of operations back to France comprises several links connected by medical air transport. Whether it is tactical or strategic, it forms an integral part of the treatment pathway and offers casualties the best possible conditions for medical treatment with a high degree of safety, speed and traceability.

  20. Shaft speed control

    NASA Technical Reports Server (NTRS)

    Ford, A. G.

    1979-01-01

    Simple mechanism controls rotation of heavy-duty shaft by mechanical comparison with rotation of small, precise, stepper motor. Mechanism can be used to limit winding and unwinding speeds of large spools and reels and to control speed of other rotating shafts. Setup incorporates reference shaft geared down from stepper motor and feedback shaft geared up from shaft to be controlled. Feedback and reference shafts are coupled with brake assembly inside stationary cylinder. When work shaft speeds up, brakes are activated automatically to slow it down.

  1. 77 FR 1513 - Air Show and Air Races; Public Hearing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-10

    ... From the Federal Register Online via the Government Publishing Office NATIONAL TRANSPORTATION SAFETY BOARD Air Show and Air Races; Public Hearing TIME AND DATE: 9 a.m., Tuesday, January 10, 2012... hearing is to examine current regulations and oversight practices for air shows and air races,...

  2. Optical air data systems and methods

    NASA Technical Reports Server (NTRS)

    Caldwell, Loren M. (Inventor); O'Brien, Martin J. (Inventor); Weimer, Carl S. (Inventor); Nelson, Loren D. (Inventor)

    2005-01-01

    Systems and methods for sensing air outside a moving aircraft are presented. In one embodiment, a system includes a laser for generating laser energy. The system also includes one or more transceivers for projecting the laser energy as laser radiation to the air. Subsequently, each transceiver receives laser energy as it is backscattered from the air. A computer processes signals from the transceivers to distinguish molecular scattered laser radiation from aerosol scattered laser radiation and determines one or more air parameters based on the scattered laser radiation. Such air parameters may include air speed, air pressure, air temperature and aircraft orientation angle, such as yaw, angle of attack and sideslip.

  3. Optical air data systems and methods

    NASA Technical Reports Server (NTRS)

    Caldwell, Loren M. (Inventor); Tang, Shoou-yu (Inventor); O'Brien, Martin (Inventor)

    2010-01-01

    Systems and methods for sensing air outside a moving aircraft are presented. In one embodiment, a system includes a laser for generating laser energy. The system also includes one or more transceivers for projecting the laser energy as laser radiation to the air. Subsequently, each transceiver receives laser energy as it is backscattered from the air. A computer processes signals from the transceivers to distinguish molecular scattered laser radiation from aerosol scattered laser radiation and determines one or more air parameters based on the scattered laser radiation. Such air parameters may include air speed, air pressure, air temperature and aircraft orientation angle, such as yaw, angle of attack and sideslip.

  4. Changing speed-VMT distributions: the effects on emissions inventories and conformity.

    PubMed

    Nanzetta, K; Niemeier, D; Utts, J M

    2000-03-01

    The emissions factor modeling component of the motor vehicle emissions inventory (MVEI) modeling suite is currently being revised by the California Air Resources Board (CARB). One of the proposed changes in modeling philosophy is a shift from using link-based travel activity data to trip-based travel data for preparing mobile emissions inventories. Also as part of the revisions, new speed correction factors (SCFs) will be developed by CARB for the revised model. The new SCFs will be derived from vehicle emissions on 15 new driving cycles, each constructed to represent a typical trip at a specific average speed. This paper discusses how the new SCFs will affect transportation conformity and emissions inventory development, and evaluates the differences in total emissions produced by trip-based and link-based distributions of speed and vehicle miles of travel (VMT). We simulated both link-based and trip-based speed-VMT distributions using travel data from the Sacramento and San Diego travel demand models. On the basis of the simulation results, there is reason to expect that mobile emissions inventories constructed using the proposed trip-based philosophy will differ markedly from those constructed in the current manner. Noting that results may vary by region, increases are expected in the CO and HC inventory levels, with concomitant decreases in the NOx mobile emissions inventories.

  5. Method and system for controlling a rotational speed of a rotor of a turbogenerator

    DOEpatents

    Stahlhut, Ronnie Dean; Vuk, Carl Thomas

    2008-12-30

    A system and method controls a rotational speed of a rotor or shaft of a turbogenerator in accordance with a present voltage level on a direct current bus. A lower threshold and a higher threshold are established for a speed of a rotor or shaft of a turbogenerator. A speed sensor determines speed data or a speed signal for the rotor or shaft associated with a turbogenerator. A voltage regulator adjusts a voltage level associated with a direct current bus within a target voltage range if the speed data or speed signal indicates that the speed is above the higher threshold or below the lower threshold.

  6. Dental air turbine handpiece performance testing.

    PubMed

    Dyson, J E; Darvell, B W

    1995-10-01

    Air turbine handpieces are expected to continue to be widely used as the main means of carrying out dental cutting work and scope exists for further design improvements. An understanding of the theoretical principles governing the performance of these devices seems essential for the systematic development of better handpiece designs and methods of specification. Furthermore, for experimental work on cutting behaviour with air turbine equipment, this knowledge is required for appropriate characterization of the performance of the particular handpiece used with respect to actual rates of energy disposition. The literature relating to air turbine handpiece performance is critically reviewed to assess currently available methods of measuring important variables such as speed, torque, and power. In this, consideration is given to the current state of knowledge of the influence on these variables of air pressure, flow and turbine design features. It is apparent that, although various measurement methods have been described and data for individual handpieces published, no attempt has yet been made to explore the functional relationships that exist between the variables. It is concluded that there is a need to identify the factors influencing turbine performance, to develop measurement systems which would provide adequate accuracy and precision and then to investigate the functional relationships between these relevant variables.

  7. Speeding earthquake disaster relief

    USGS Publications Warehouse

    Mortensen, Carl; Donlin, Carolyn; Page, Robert A.; Ward, Peter

    1995-01-01

    In coping with recent multibillion-dollar earthquake disasters, scientists and emergency managers have found new ways to speed and improve relief efforts. This progress is founded on the rapid availability of earthquake information from seismograph networks.

  8. Speed- Reading Made Easy

    ERIC Educational Resources Information Center

    Brown, W. S.

    1970-01-01

    Illustrates a compromise between vertical and horizontal typographies which should make speed reading faster and more reliable, and suggests that computers could prepare text according to this arrangement. (MB)

  9. High Speed Research Program

    NASA Technical Reports Server (NTRS)

    Anderson, Robert E.; Corsiglia, Victor R.; Schmitz, Frederic H. (Technical Monitor)

    1994-01-01

    An overview of the NASA High Speed Research Program will be presented from a NASA Headquarters perspective. The presentation will include the objectives of the program and an outline of major programmatic issues.

  10. High-Speed Photography

    SciTech Connect

    Paisley, D.L.; Schelev, M.Y.

    1998-08-01

    The applications of high-speed photography to a diverse set of subjects including inertial confinement fusion, laser surgical procedures, communications, automotive airbags, lightning etc. are briefly discussed. (AIP) {copyright} {ital 1998 Society of Photo-Optical Instrumentation Engineers.}

  11. How well do stomatal conductance models perform on closing plant carbon budgets? A test using seedlings grown under current and elevated air temperatures

    NASA Astrophysics Data System (ADS)

    Way, Danielle A.; Oren, Ram; Kim, Hyun-Seok; Katul, Gabriel G.

    2011-12-01

    Future carbon and water fluxes within terrestrial ecosystems will be determined by how stomatal conductance (gs) responds to rising atmospheric CO2and air temperatures. While both short- and long-term CO2 effects on gs have been repeatedly studied, there are few studies on how gs acclimates to higher air temperatures. Six gs models were parameterized using leaf gas exchange data from black spruce (Picea mariana) seedlings grown from seed at ambient (22/16°C day/night) or elevated (30/24°C) air temperatures. Model performance was independently assessed by how well carbon gain from each model reproduced estimated carbon costs to close the seedlings' seasonal carbon budgets, a `long-term' indicator of success. A model holding a constant intercellular to ambient CO2ratio and the Ball-Berry model (based on stomatal responses to relative humidity) could not close the carbon balance for either treatment, while the Jarvis-Oren model (based on stomatal responses to vapor pressure deficit,D) and a model assuming a constant gs each closed the carbon balance for one treatment. Two models, both based on gs responses to D, performed best overall, estimating carbon uptake within 10% of carbon costs for both treatments: the Leuning model and a linear optimization model that maximizes carbon gain per unit water loss. Since gsresponses in the optimization model are not a priori assumed, this approach can be used in modeling land-atmosphere exchange of CO2 and water in future climates.

  12. The magnitude and spatial range of current-use urban PCB and PBDE emissions estimated using a coupled multimedia and air transport model.

    PubMed

    Csiszar, Susan A; Diamond, Miriam L; Daggupaty, Sreerama M

    2014-01-21

    SO-MUM, a coupled atmospheric transport and multimedia urban model, was used to estimate spatially resolved (5 × 5 km(2)) air emissions and chemical fate based on measured air concentrations and chemical mass inventories within Toronto, Canada. Approximately 95% and 70% of Σ5PCBs (CB-28, -52, -101, -153, and -180) and Σ5PBDEs (BDE-28, -47, -100, -154, and -183) emissions of 17 (2-36) and 18 (3-42) kg y(-1), respectively, undergo atmospheric transport from the city, which is partly over Lake Ontario. The urban air plume was found to reach about 50 km for PCBs and PBDEs, in the direction of prevailing winds which is almost twice the distance of the wind-independent plume. The distance traveled by the plume is a function of prevailing wind velocity, the geographic distribution of the chemical inventory, and gas-particle partitioning. Soil wash-off of historically accumulated Σ5PCBs to surface water contributed ∼ 0.4 kg y(-1) (of mainly higher congeners) to near-shore Lake Ontario compared with volatilization of ∼ 6 kg y(-1) of mainly lighter congeners. Atmospheric emissions from primary sources followed by deposition to surface films and subsequent wash-off to surface water contributed ∼ 1 kg y(-1) and was the main route of Σ5PBDE loadings to near-shore Lake Ontario which acts as a net PBDE sink. Secondary emissions of PCBs and PBDEs from at least a ∼ 900,000 km(2) rural land area would be needed to produce the equivalent primary emissions as Toronto (∼ 640 km(2)). These results provide clear support for reducing inventories of these POPs.

  13. Compact change speed transmission

    SciTech Connect

    Iwanaga, K.; Yamaguchi, T.

    1989-06-06

    A change speed transmission is described comprising: a stationary part; an input member; an output member; first and second planetary gear sets; clutch and brake means for selectively controlling the first and second planetary gear sets to provide a plurality of forward speed rations and a reverse speed ratio between the input and output member; the clutch and brake means including a first clutch, a first one-way clutch, and a second one-way clutch which, when the first clutch is engaged, provide a path of transmission of reaction to the stationary part thereby establishing a path of transmission of torque through at least a part of the first and second planetary gear sets to achieve a predetermined one speed ratio of the forward speed ratios; the clutch and brake means including also a brake and a second slutch which, when both of the brake and the second clutch are engaged, hinder the action of the second one-way clutch and that of the first one-way clutch, respectively, thereby providing engine braking during running with the predetermined one speed ratio; the first clutch including means forming a drum-shaped member disposed radially outwardly of and receiving at least one of the first and second planetary gear sets, and an actuating piston of the first clutch; and the second clutch including an actuating piston slidably disposed within the actuating piston of the first clutch.

  14. [Risk perception and speeding].

    PubMed

    Thielen, Iara Picchioni; Hartmann, Ricardo Carlos; Soares, Diogo Picchioni

    2008-01-01

    This paper discusses risk perception comparing drivers with and without fines for speeding. The research aimed to show the interaction between speeding laws and speeding behavior. Speeders' explanations for their behavior revealed important factors in the determination of risk perception: control (driver-centered), risk minimization (drivers claimed there was no risk involved in the way they speeded), self-confidence (they considered themselves good drivers and believed they were able to define what constitutes speeding), and lack of credibility in the institutions that manage traffic risks. Speeders display a cognitive construct of personal invulnerability combined with unrealistic optimism and overrated self-perception, along with an exaggerated perception of their control over the traffic setting, centered on their self-purported driving skills. No difference was found in risk perception between drivers in the two groups. There was no relationship between objective and perceived risks, since drivers from the two groups showed a generic perception of objective risks, but out-of-context in relation to the inherent potential for accidents at different speeds.

  15. High Speed Ice Friction

    NASA Astrophysics Data System (ADS)

    Seymour-Pierce, Alexandra; Sammonds, Peter; Lishman, Ben

    2014-05-01

    Many different tribological experiments have been run to determine the frictional behaviour of ice at high speeds, ostensibly with the intention of applying results to everyday fields such as winter tyres and sports. However, experiments have only been conducted up to linear speeds of several metres a second, with few additional subject specific studies reaching speeds comparable to these applications. Experiments were conducted in the cold rooms of the Rock and Ice Physics Laboratory, UCL, on a custom built rotational tribometer based on previous literature designs. Preliminary results from experiments run at 2m/s for ice temperatures of 271 and 263K indicate that colder ice has a higher coefficient of friction, in accordance with the literature. These results will be presented, along with data from further experiments conducted at temperatures between 259-273K (in order to cover a wide range of the temperature dependent behaviour of ice) and speeds of 2-15m/s to produce a temperature-velocity-friction map for ice. The effect of temperature, speed and slider geometry on the deformation of ice will also be investigated. These speeds are approaching those exhibited by sports such as the luge (where athletes slide downhill on an icy track), placing the tribological work in context.

  16. Quiet High-Speed Fan

    NASA Technical Reports Server (NTRS)

    Lieber, Lysbeth; Repp, Russ; Weir, Donald S.

    1996-01-01

    A calibration of the acoustic and aerodynamic prediction methods was performed and a baseline fan definition was established and evaluated to support the quiet high speed fan program. A computational fluid dynamic analysis of the NASA QF-12 Fan rotor, using the DAWES flow simulation program was performed to demonstrate and verify the causes of the relatively poor aerodynamic performance observed during the fan test. In addition, the rotor flowfield characteristics were qualitatively compared to the acoustic measurements to identify the key acoustic characteristics of the flow. The V072 turbofan source noise prediction code was used to generate noise predictions for the TFE731-60 fan at three operating conditions and compared to experimental data. V072 results were also used in the Acoustic Radiation Code to generate far field noise for the TFE731-60 nacelle at three speed points for the blade passage tone. A full 3-D viscous flow simulation of the current production TFE731-60 fan rotor was performed with the DAWES flow analysis program. The DAWES analysis was used to estimate the onset of multiple pure tone noise, based on predictions of inlet shock position as a function of the rotor tip speed. Finally, the TFE731-60 fan rotor wake structure predicted by the DAWES program was used to define a redesigned stator with the leading edge configured to minimize the acoustic effects of rotor wake / stator interaction, without appreciably degrading performance.

  17. Nature and measurements of torque ripple of permanent-magnet adjustable-speed motors

    SciTech Connect

    Hsu, J.S.; Scoggins, B.P.; Scudiere, M.B.; Marlino, L.D.; Adams, D.J.; Pillay, P.

    1995-08-01

    Torque ripple of permanent-magnet motors can be classified into four types depending on the nature of their origin. The four types are pulsating torque, fluctuating torque, reluctance cogging torque, and inertia and mechanical system torque. Pulsating torques are inherently produced by the trapezoidal back-emf`s and trapezoidal currents used in certain permanent-magnet adjustable-speed motors. The torque ripples caused by pulsating torques may be reduced by purposely produced fluctuating counter torques. Air-gap torque measurements are conducted on a sample motor. Experimental results agree with theoretical expectations.

  18. Current status of persistent organic pesticides residues in air, water, and soil, and their possible effect on neighboring countries: a comprehensive review of India.

    PubMed

    Yadav, Ishwar Chandra; Devi, Ningombam Linthoingambi; Syed, Jabir Hussain; Cheng, Zhineng; Li, Jun; Zhang, Gan; Jones, Kevin C

    2015-04-01

    Though the use of pesticides has offered significant economic benefits by enhancing the production and yield of food and fibers and the prevention of vector-borne diseases, evidence suggests that their use has adversely affected the health of human populations and the environment. Pesticides have been widely distributed and their traces can be detected in all areas of the environment (air, water and soil). Despite the ban of DDT and HCH in India, they are still in use, both in domestic and agricultural settings. In this comprehensive review, we discuss the production and consumption of persistent organic pesticides, their maximum residual limit (MRL) and the presence of persistent organic pesticides in multicomponent environmental samples (air, water and soil) from India. In order to highlight the global distribution of persistent organic pesticides and their impact on neighboring countries and regions, the role of persistent organic pesticides in Indian region is reviewed. Based on a review of research papers and modeling simulations, it can be concluded that India is one of the major contributors of global persistent organic pesticide distribution. This review also considers the health impacts of persistent organic pesticides, the regulatory measures for persistent organic pesticides, and the status of India's commitment towards the elimination of persistent organic pesticides.

  19. Speed Reading: Remember the Tortoise

    ERIC Educational Resources Information Center

    Graf, Richard G.

    1973-01-01

    After speed-reading partisans questioned the criticisms in a Psychology Today article, another psychologist conducted a controlled study of speed readers. As we said before, "Speed Readers Don't Read; They Skim". (Editor)

  20. Everyone Deserves a Speeding Ticket.

    ERIC Educational Resources Information Center

    Burris, Harold

    1993-01-01

    Presents a first day physics activity having students determine the fine for a speeding ticket if the speeds considered include the earth's rotation and revolution speed, and the movement through the galaxy. (MDH)

  1. Air Pollution

    MedlinePlus

    Air pollution is a mixture of solid particles and gases in the air. Car emissions, chemicals from factories, ... Ozone, a gas, is a major part of air pollution in cities. When ozone forms air pollution, it's ...

  2. How well do stomatal conductance models perform on closing plant carbon budgets? A test using seedlings grown under current and elevated air temperatures

    NASA Astrophysics Data System (ADS)

    Way, D.; Oren, R.; Kim, H.; Katul, G. G.

    2011-12-01

    Future carbon and water fluxes within terrestrial ecosystems will be determined by how stomatal conductance (gs) responds to rising atmospheric CO2 and air temperatures. While both short- and long-term CO2 effects on gs have been repeatedly studied, there are few studies on how gs acclimates to higher air temperatures. Six gs models were parameterized using leaf gas exchange data from black spruce (Picea mariana) seedlings grown from seed at ambient (22/16 °C day/night) or elevated (30/24 °C) temperatures. Model performance was independently assessed by how well carbon gain from each model reproduced estimated carbon costs to close the seedlings' seasonal carbon budgets, an indicator of the model success at time scales commensurate with biomass changes. A model holding a constant intercellular to ambient CO2 concentration ratio and the Ball-Berry model (based on stomatal responses to relative humidity) could not close the carbon balance for either treatment, while a so-called Jarvis-Oren model (based on stomatal responses to vapor pressure deficit, D) and a model assuming a constant gs each closed the carbon balance for one temperature treatment. Two models, both based on gs responses to D, performed best overall, estimating carbon uptake within 10% of carbon costs for both treatments: the Leuning model (a semi-empirical model that links gs to photosynthetic rates) and a linear optimization model that maximizes carbon gain per unit water loss. Since gs responses in the linear optimization model are not a priori assumed, this approach may be advantageous in modeling gs responses to temperature, especially in future climates.

  3. Advanced Air Data Systems for Commercial Aircraft

    NASA Technical Reports Server (NTRS)

    2006-01-01

    It is possible to get a crude estimate of wind speed and direction while driving a car at night in the rain, with the motion of the raindrop reflections in the headlights providing clues about the wind. The clues are difficult to interpret, though, because of the relative motions of ground, car, air, and raindrops. More subtle interpretation is possible if the rain is replaced by fog, because the tiny droplets would follow the swirling currents of air around an illuminated object, like, for example, a walking pedestrian. Microscopic particles in the air (aerosols) are better for helping make assessments of the wind, and reflective air molecules are best of all, providing the most refined measurements. It takes a bright light to penetrate fog, so it is easy to understand how other factors, like replacing the headlights with the intensity of a searchlight, can be advantageous. This is the basic principle behind a lidar system. While a radar system transmits a pulse of radiofrequency energy and interprets the received reflections, a lidar system works in a similar fashion, substituting a near-optical laser pulse. The technique allows the measurement of relative positions and velocities between the transmitter and the air, which allows measurements of relative wind and of air temperature (because temperature is associated with high-frequency random motions on a molecular level). NASA, as well as the National Oceanic and Atmospheric Administration (NOAA), have interests in this advanced lidar technology, as much of their explorative research requires the ability to measure winds and turbulent regions within the atmosphere. Lidar also shows promise for providing warning of turbulent regions within the National Airspace System to allow commercial aircraft to avoid encounters with turbulence and thereby increase the safety of the traveling public. Both agencies currently employ lidar and optical sensing for a variety of weather-related research projects, such as analyzing

  4. Nonintrusive shaft speed sensor

    NASA Astrophysics Data System (ADS)

    Barkhoudarian, S.; Wyett, L.

    1985-04-01

    A computerized literature search on nonintrusive/noncontacting speed sensing technologies was performed, resulting in 550 abstracts and 42 articles. Fourteen techniques were identified and theoretically analyzed, resulting in the recommendation of the Microwave, Infrared, and Magnetic technologies for experimental evaluation. Test results with a novel magnetic approach, consisting of a permanent magnet placed on the rotating shaft and a pickup coil placed on the housing, indicated detection of a strong signal from 3.5 inches at the lowest required speed (600 rpm), through a 1.75-inch thick Inconel plate. Test results with microwave and infrared speed sensing approaches indicated transmission of sufficient microwave and infrared energy for detection even through heavily bubble-laden water (15 percent cavitation). Although all three techniques demonstrated feasibility, the magnetic sensor was recommended for preliminary design, which indicated no technical obstacles.

  5. WORLD SURFACE CURRENTS FROM SHIP'S DRIFT OBSERVATIONS

    SciTech Connect

    Duncan, C.P.; Schladow, S.G.

    1980-11-01

    Over 4 million observations of ship's drift are on file at the U.S. National Oceanographic Data Centre, in Washington, D. C., representing a vast amount of information on ocean surface currents. The observed drift speeds are dependent on the frequency of occurence of the particular current speeds and the frequency of observation. By comparing frequency of observation with the drift speeds observed it is possible to confirm known current patterns and detect singularities in surface currents.

  6. Decadal application of WRF/chem for regional air quality and climate modeling over the U.S. under the representative concentration pathways scenarios. Part 2: Current vs. future simulations

    NASA Astrophysics Data System (ADS)

    Yahya, Khairunnisa; Campbell, Patrick; Zhang, Yang

    2017-03-01

    Following a comprehensive model evaluation, this Part II paper presents projected changes in future (2046-2055) climate, air quality, and their interactions under the RCP4.5 and RCP8.5 scenarios using the Weather, Research and Forecasting model with Chemistry (WRF/Chem). In general, both WRF/Chem RCP4.5 and RCP8.5 simulations predict similar increases on average (∼2 °C) for 2-m temperature (T2) but different spatial distributions of the projected changes in T2, 2-m relative humidity, 10-m wind speed, precipitation, and planetary boundary layer height, due to differences in the spatial distributions of projected emissions, and their feedbacks into climate. Future O3 mixing ratios will decrease for most parts of the U.S. under the RCP4.5 scenario but increase for all areas under the RCP8.5 scenario due to higher projected temperature, greenhouse gas concentrations and biogenic volatile organic compounds (VOC) emissions, higher O3 values for boundary conditions, and disbenefit of NOx reduction and decreased NO titration over VOC-limited O3 chemistry regions. Future PM2.5 concentrations will decrease for both RCP4.5 and RCP8.5 scenarios with different trends in projected concentrations of individual PM species. Total cloud amounts decrease under both scenarios in the future due to decreases in PM and cloud droplet number concentration thus increased radiation. Those results illustrate the impacts of carbon policies with different degrees of emission reductions on future climate and air quality. The WRF/Chem and WRF simulations show different spatial patterns for projected changes in T2 for future decade, indicating different impacts of prognostic and prescribed gas/aerosol concentrations, respectively, on climate change.

  7. Chemical kinetic model uncertainty minimization through laminar flame speed measurements.

    PubMed

    Park, Okjoo; Veloo, Peter S; Sheen, David A; Tao, Yujie; Egolfopoulos, Fokion N; Wang, Hai

    2016-10-01

    Laminar flame speed measurements were carried for mixture of air with eight C3-4 hydrocarbons (propene, propane, 1,3-butadiene, 1-butene, 2-butene, iso-butene, n-butane, and iso-butane) at the room temperature and ambient pressure. Along with C1-2 hydrocarbon data reported in a recent study, the entire dataset was used to demonstrate how laminar flame speed data can be utilized to explore and minimize the uncertainties in a reaction model for foundation fuels. The USC Mech II kinetic model was chosen as a case study. The method of uncertainty minimization using polynomial chaos expansions (MUM-PCE) (D.A. Sheen and H. Wang, Combust. Flame 2011, 158, 2358-2374) was employed to constrain the model uncertainty for laminar flame speed predictions. Results demonstrate that a reaction model constrained only by the laminar flame speed values of methane/air flames notably reduces the uncertainty in the predictions of the laminar flame speeds of C3 and C4 alkanes, because the key chemical pathways of all of these flames are similar to each other. The uncertainty in model predictions for flames of unsaturated C3-4 hydrocarbons remain significant without considering fuel specific laminar flames speeds in the constraining target data set, because the secondary rate controlling reaction steps are different from those in the saturated alkanes. It is shown that the constraints provided by the laminar flame speeds of the foundation fuels could reduce notably the uncertainties in the predictions of laminar flame speeds of C4 alcohol/air mixtures. Furthermore, it is demonstrated that an accurate prediction of the laminar flame speed of a particular C4 alcohol/air mixture is better achieved through measurements for key molecular intermediates formed during the pyrolysis and oxidation of the parent fuel.

  8. Propagation or failure of detonation across an air gap in an LX-17 column: continuous time-dependent detonation or shock speed using the Embedded Fiber Optic (EFO) technique

    SciTech Connect

    Hare, D E; Chandler, J B; Compton, S M; Garza, R G; Grimsley, D A; Hernandez, A; Villafana, R J; Wade, J T; Weber, S R; Wong, B M; Souers, P C

    2008-01-16

    The detailed history of the shock/detonation wave propagation after crossing a room-temperature-room-pressure (RTP) air gap between a 25.4 mm diameter LX-17 donor column and a 25.4 mm diameter by 25.4 mm long LX-17 acceptor pellet is investigated for three different gap widths (3.07, 2.08, and 0.00 mm) using the Embedded Fiber Optic (EFO) technique. The 2.08 mm gap propagated and the 3.07 mm gap failed and this can be seen clearly and unambiguously in the EFO data even though the 25.4 mm-long acceptor pellet would be considered quite short for a determination by more traditional means such as pins.

  9. Apparatus and method for controlling the rotary airlocks in a coal processing system by reversing the motor current rotating the air lock

    DOEpatents

    Groombridge, Clifton E.

    1996-01-01

    An improvement to a coal processing system where hard materials found in the coal may cause jamming of either inflow or outflow rotary airlocks, each driven by a reversible motor. The instantaneous current used by the motor is continually monitored and compared to a predetermined value. If an overcurrent condition occurs, indicating a jamming of the airlock, a controller means starts a "soft" reverse rotation of the motor thereby clearing the jamming. Three patterns of the motor reversal are provided.

  10. SPEEDE Made Easy.

    ERIC Educational Resources Information Center

    Palmer, Barbara H.; Wei, P. Betty

    1993-01-01

    A nontechnical overview of electronic data interchange (EDI) and of the SPEEDE/ExPRESS Project, which uses EDI to transmit transcripts between schools and colleges, is presented. It explores the fundamental value of the technology, specific costs and benefits, and its potential to transform the delivery of academic support services. (Author/MSE)

  11. High speed metal removal

    NASA Astrophysics Data System (ADS)

    Pugh, R. F.; Pohl, R. F.

    1982-10-01

    Four types of steel (AISI 1340, 4140, 4340, and HF-1) which are commonly used in large caliber projectile manufacture were machined at different hardness ranges representing the as-forged and the heat treated condition with various ceramic tools using ceramic coated tungsten carbide as a reference. Results show that machining speeds can be increased significantly using present available tooling.

  12. High speed door assembly

    DOEpatents

    Shapiro, Carolyn

    1993-01-01

    A high speed door assembly, comprising an actuator cylinder and piston rods, a pressure supply cylinder and fittings, an electrically detonated explosive bolt, a honeycomb structured door, a honeycomb structured decelerator, and a structural steel frame encasing the assembly to close over a 3 foot diameter opening within 50 milliseconds of actuation, to contain hazardous materials and vapors within a test fixture.

  13. High speed door assembly

    DOEpatents

    Shapiro, C.

    1993-04-27

    A high speed door assembly is described, comprising an actuator cylinder and piston rods, a pressure supply cylinder and fittings, an electrically detonated explosive bolt, a honeycomb structured door, a honeycomb structured decelerator, and a structural steel frame encasing the assembly to close over a 3 foot diameter opening within 50 milliseconds of actuation, to contain hazardous materials and vapors within a test fixture.

  14. Transition at hypersonic speeds

    NASA Technical Reports Server (NTRS)

    Morkovin, Mark V.

    1987-01-01

    Certain conjectures on the physics of instabilities in high-speed flows are discussed and the state of knowledge of hypersonic transition summarized. The case is made for an unpressured systematic research program in this area consisting of controlled microscopic experiments, theory, and numerical simulations.

  15. Innovative Airbreathing Propulsion Concepts for High-speed Applications

    NASA Technical Reports Server (NTRS)

    Whitlow, Woodrow, Jr.

    2002-01-01

    The current cost to launch payloads to low earth orbit (LEO) is approximately loo00 U.S. dollars ($) per pound ($22000 per kilogram). This high cost limits our ability to pursue space science and hinders the development of new markets and a productive space enterprise. This enterprise includes NASA's space launch needs and those of industry, universities, the military, and other U.S. government agencies. NASA's Advanced Space Transportation Program (ASTP) proposes a vision of the future where space travel is as routine as in today's commercial air transportation systems. Dramatically lower launch costs will be required to make this vision a reality. In order to provide more affordable access to space, NASA has established new goals in its Aeronautics and Space Transportation plan. These goals target a reduction in the cost of launching payloads to LEO to $lo00 per pound ($2200 per kilogram) by 2007 and to $100' per pound by 2025 while increasing safety by orders of magnitude. Several programs within NASA are addressing innovative propulsion systems that offer potential for reducing launch costs. Various air-breathing propulsion systems currently are being investigated under these programs. The NASA Aerospace Propulsion and Power Base Research and Technology Program supports long-term fundamental research and is managed at GLenn Research Center. Currently funded areas relevant to space transportation include hybrid hyperspeed propulsion (HHP) and pulse detonation engine (PDE) research. The HHP Program currently is addressing rocket-based combined cycle and turbine-based combined cycle systems. The PDE research program has the goal of demonstrating the feasibility of PDE-based hybrid-cycle and combined cycle propulsion systems that meet NASA's aviation and access-to-space goals. The ASTP also is part of the Base Research and Technology Program and is managed at the Marshall Space Flight Center. As technologies developed under the Aerospace Propulsion and Power Base

  16. Scalar control on speed drive for ac motor

    NASA Astrophysics Data System (ADS)

    Barsoum, Nader

    2012-11-01

    This paper aims to investigate the performance of ABB ACS800 variable speed drive operating under Scalar Control mode, and eventually develop a set of experimental procedures for undergraduate laboratory purposes. Scalar Control is the most widespread form of ac drive, for its low cost and simplicity especially implemented in the open loop mode. Scalar control is achieved by controlling the stator voltage and frequency, thus maintaining the motor's air-gap flux at a constant value. To illustrate the control method, the ac drive is configured according to the wiring diagram in the firmware manual that the drive control location can be both local and external. The drive is selected to operate under Factory application macro, whereby either ordinary speed control applications or constant speeds applications may be used. Under ordinary speed control, frequency reference signals are provided to the drive through the analogue input AI1. The drive will operate at the given frequency reference value throughout the operation regardless of any changes in the load. The torque speed curve moves along the speed axis with no changes to the shape as the supply frequencies changes. On the other hand, the drive allows three preset constant speed through digital inputs DI5 and DI6. The drive operate at a constant speed value over a time period, and only switch from one constant speed to another constant speed by triggering the two input switches. Scalar control is most suitable for applications not required high precision, such as blowers, fans and pumps.

  17. High Speed Vortex Flows

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Wilcox, Floyd J., Jr.; Bauer, Steven X. S.; Allen, Jerry M.

    2000-01-01

    A review of the research conducted at the National Aeronautics and Space Administration (NASA), Langley Research Center (LaRC) into high-speed vortex flows during the 1970s, 1980s, and 1990s is presented. The data reviewed is for flat plates, cavities, bodies, missiles, wings, and aircraft. These data are presented and discussed relative to the design of future vehicles. Also presented is a brief historical review of the extensive body of high-speed vortex flow research from the 1940s to the present in order to provide perspective of the NASA LaRC's high-speed research results. Data are presented which show the types of vortex structures which occur at supersonic speeds and the impact of these flow structures to vehicle performance and control is discussed. The data presented shows the presence of both small- and large scale vortex structures for a variety of vehicles, from missiles to transports. For cavities, the data show very complex multiple vortex structures exist at all combinations of cavity depth to length ratios and Mach number. The data for missiles show the existence of very strong interference effects between body and/or fin vortices and the downstream fins. It was shown that these vortex flow interference effects could be both positive and negative. Data are shown which highlights the effect that leading-edge sweep, leading-edge bluntness, wing thickness, location of maximum thickness, and camber has on the aerodynamics of and flow over delta wings. The observed flow fields for delta wings (i.e. separation bubble, classical vortex, vortex with shock, etc.) are discussed in the context of' aircraft design. And data have been shown that indicate that aerodynamic performance improvements are available by considering vortex flows as a primary design feature. Finally a discussing of a design approach for wings which utilize vortex flows for improved aerodynamic performance at supersonic speed is presented.

  18. Apparatus and method for controlling the rotary airlocks in a coal processing system by reversing the motor current rotating the air lock

    SciTech Connect

    Groombridge, C.E.

    1996-11-19

    An improvement is described to a coal processing system where hard materials found in the coal may cause jamming of either inflow or outflow rotary airlocks, each driven by a reversible motor. The instantaneous current used by the motor is continually monitored and compared to a predetermined value. If an overcurrent condition occurs, indicating a jamming of the airlock, a controller means starts a ``soft`` reverse rotation of the motor thereby clearing the jamming. Three patterns of the motor reversal are provided. 10 figs.

  19. Air Pollution and Industry.

    ERIC Educational Resources Information Center

    Ross, R. D., Ed.

    This book is an authoritative reference and practical guide designed to help the plant engineer identify and solve industrial air pollution problems in order to be able to meet current air pollution regulations. Prepared under the editorial supervision of an experienced chemical engineer, with each chapter contributed by an expert in his field,…

  20. Portable oven air circulator

    DOEpatents

    Jorgensen, Jorgen A.; Nygren, Donald W.

    1983-01-01

    A portable air circulating apparatus for use in cooking ovens which is used to create air currents in the oven which transfer heat to cooking foodstuffs to promote more rapid and more uniform cooking or baking, the apparatus including a motor, fan blade and housing of metallic materials selected from a class of heat resistant materials.