Science.gov

Sample records for air curtain incinerator

  1. 40 CFR 62.15365 - What is an air curtain incinerator?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 9 2013-07-01 2013-07-01 false What is an air curtain incinerator? 62..., 1999 Air Curtain Incinerators That Burn 100 Percent Yard Waste § 62.15365 What is an air curtain incinerator? An air curtain incinerator operates by forcefully projecting a curtain of air across an...

  2. 40 CFR 62.15365 - What is an air curtain incinerator?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 8 2011-07-01 2011-07-01 false What is an air curtain incinerator? 62..., 1999 Air Curtain Incinerators That Burn 100 Percent Yard Waste § 62.15365 What is an air curtain incinerator? An air curtain incinerator operates by forcefully projecting a curtain of air across an...

  3. 40 CFR 62.15365 - What is an air curtain incinerator?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 9 2014-07-01 2014-07-01 false What is an air curtain incinerator? 62..., 1999 Air Curtain Incinerators That Burn 100 Percent Yard Waste § 62.15365 What is an air curtain incinerator? An air curtain incinerator operates by forcefully projecting a curtain of air across an...

  4. 40 CFR 60.2810 - What is an air curtain incinerator?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false What is an air curtain incinerator? 60..., 1999 Model Rule-Air Curtain Incinerators § 60.2810 What is an air curtain incinerator? (a) An air curtain incinerator operates by forcefully projecting a curtain of air across an open chamber or open...

  5. 40 CFR 60.2810 - What is an air curtain incinerator?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What is an air curtain incinerator? 60..., 1999 Model Rule-Air Curtain Incinerators § 60.2810 What is an air curtain incinerator? (a) An air curtain incinerator operates by forcefully projecting a curtain of air across an open chamber or open...

  6. 40 CFR 62.15365 - What is an air curtain incinerator?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false What is an air curtain incinerator? 62..., 1999 Air Curtain Incinerators That Burn 100 Percent Yard Waste § 62.15365 What is an air curtain incinerator? An air curtain incinerator operates by forcefully projecting a curtain of air across an...

  7. 40 CFR 62.15365 - What is an air curtain incinerator?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 9 2012-07-01 2012-07-01 false What is an air curtain incinerator? 62..., 1999 Air Curtain Incinerators That Burn 100 Percent Yard Waste § 62.15365 What is an air curtain incinerator? An air curtain incinerator operates by forcefully projecting a curtain of air across an...

  8. 40 CFR 60.2970 - What is an air curtain incinerator?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false What is an air curtain incinerator? 60... Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.2970 What is an air curtain incinerator? (a) An air curtain incinerator operates by forcefully projecting a curtain of...

  9. 40 CFR 60.2970 - What is an air curtain incinerator?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false What is an air curtain incinerator? 60... Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.2970 What is an air curtain incinerator? (a) An air curtain incinerator operates by forcefully projecting a curtain of...

  10. 40 CFR 60.2810 - What is an air curtain incinerator?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false What is an air curtain incinerator? 60... Commercial and Industrial Solid Waste Incineration Units Model Rule-Air Curtain Incinerators § 60.2810 What is an air curtain incinerator? (a) An air curtain incinerator operates by forcefully projecting...

  11. 40 CFR 60.2810 - What is an air curtain incinerator?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false What is an air curtain incinerator? 60... Commercial and Industrial Solid Waste Incineration Units Model Rule-Air Curtain Incinerators § 60.2810 What is an air curtain incinerator? (a) An air curtain incinerator operates by forcefully projecting...

  12. 40 CFR 60.3061 - What are the requirements for temporary-use incinerators and air curtain incinerators used in...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-use incinerators and air curtain incinerators used in disaster recovery? 60.3061 Section 60.3061... Incinerators and Air Curtain Incinerators Used in Disaster Recovery § 60.3061 What are the requirements for temporary-use incinerators and air curtain incinerators used in disaster recovery? Your incinerator or...

  13. 40 CFR 60.3061 - What are the requirements for temporary-use incinerators and air curtain incinerators used in...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-use incinerators and air curtain incinerators used in disaster recovery? 60.3061 Section 60.3061... Incinerators and Air Curtain Incinerators Used in Disaster Recovery § 60.3061 What are the requirements for temporary-use incinerators and air curtain incinerators used in disaster recovery? Your incinerator or...

  14. 40 CFR 60.3061 - What are the requirements for temporary-use incinerators and air curtain incinerators used in...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-use incinerators and air curtain incinerators used in disaster recovery? 60.3061 Section 60.3061... Incinerators and Air Curtain Incinerators Used in Disaster Recovery § 60.3061 What are the requirements for temporary-use incinerators and air curtain incinerators used in disaster recovery? Your incinerator or...

  15. 40 CFR 60.3061 - What are the requirements for temporary-use incinerators and air curtain incinerators used in...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-use incinerators and air curtain incinerators used in disaster recovery? 60.3061 Section 60.3061... Incinerators and Air Curtain Incinerators Used in Disaster Recovery § 60.3061 What are the requirements for temporary-use incinerators and air curtain incinerators used in disaster recovery? Your incinerator or...

  16. 40 CFR 60.3061 - What are the requirements for temporary-use incinerators and air curtain incinerators used in...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-use incinerators and air curtain incinerators used in disaster recovery? 60.3061 Section 60.3061... Incinerators and Air Curtain Incinerators Used in Disaster Recovery § 60.3061 What are the requirements for temporary-use incinerators and air curtain incinerators used in disaster recovery? Your incinerator or...

  17. 40 CFR 60.2969 - What are the requirements for temporary-use incinerators and air curtain incinerators used in...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-use incinerators and air curtain incinerators used in disaster recovery? 60.2969 Section 60.2969... Curtain Incinerators Used in Disaster Recovery § 60.2969 What are the requirements for temporary-use incinerators and air curtain incinerators used in disaster recovery? Your incinerator or air...

  18. 40 CFR 60.2969 - What are the requirements for temporary-use incinerators and air curtain incinerators used in...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-use incinerators and air curtain incinerators used in disaster recovery? 60.2969 Section 60.2969... Commenced on or After June 16, 2006 Temporary-Use Incinerators and Air Curtain Incinerators Used in Disaster... used in disaster recovery? Your incinerator or air curtain incinerator is excluded from...

  19. 40 CFR 60.2969 - What are the requirements for temporary-use incinerators and air curtain incinerators used in...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-use incinerators and air curtain incinerators used in disaster recovery? 60.2969 Section 60.2969... Commenced on or After June 16, 2006 Temporary-Use Incinerators and Air Curtain Incinerators Used in Disaster... used in disaster recovery? Your incinerator or air curtain incinerator is excluded from...

  20. 40 CFR 60.2969 - What are the requirements for temporary-use incinerators and air curtain incinerators used in...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-use incinerators and air curtain incinerators used in disaster recovery? 60.2969 Section 60.2969... Curtain Incinerators Used in Disaster Recovery § 60.2969 What are the requirements for temporary-use incinerators and air curtain incinerators used in disaster recovery? Your incinerator or air...

  1. 40 CFR 60.2969 - What are the requirements for temporary-use incinerators and air curtain incinerators used in...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-use incinerators and air curtain incinerators used in disaster recovery? 60.2969 Section 60.2969... Curtain Incinerators Used in Disaster Recovery § 60.2969 What are the requirements for temporary-use incinerators and air curtain incinerators used in disaster recovery? Your incinerator or air...

  2. 40 CFR 60.2888 - Are air curtain incinerators regulated under this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Are air curtain incinerators regulated... § 60.2888 Are air curtain incinerators regulated under this subpart? (a) Air curtain incinerators that burn less than 35 tons per day of municipal solid waste or air curtain incinerators located...

  3. 40 CFR 60.2250 - What are the emission limitations for air curtain incinerators?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... air curtain incinerators? 60.2250 Section 60.2250 Protection of Environment ENVIRONMENTAL PROTECTION... 1, 2001 Air Curtain Incinerators § 60.2250 What are the emission limitations for air curtain incinerators? (a) Within 60 days after your air curtain incinerator reaches the charge rate at which it...

  4. 40 CFR 60.2888 - Are air curtain incinerators regulated under this subpart?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Are air curtain incinerators regulated... § 60.2888 Are air curtain incinerators regulated under this subpart? (a) Air curtain incinerators that burn less than 35 tons per day of municipal solid waste or air curtain incinerators located...

  5. 40 CFR 60.1435 - What is an air curtain incinerator?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false What is an air curtain incinerator? 60... Modification or Reconstruction is Commenced After June 6, 2001 Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1435 What is an air curtain incinerator? An air curtain incinerator operates...

  6. 40 CFR 60.1910 - What is an air curtain incinerator?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false What is an air curtain incinerator? 60... Incinerators That Burn 100 Percent Yard Waste § 60.1910 What is an air curtain incinerator? An air curtain incinerator operates by forcefully projecting a curtain of air across an open chamber or open pit in...

  7. 40 CFR 60.2888 - Are air curtain incinerators regulated under this subpart?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Are air curtain incinerators regulated... § 60.2888 Are air curtain incinerators regulated under this subpart? (a) Air curtain incinerators that burn less than 35 tons per day of municipal solid waste or air curtain incinerators located...

  8. 40 CFR 60.2245 - What is an air curtain incinerator?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What is an air curtain incinerator? 60... Which Modification or Reconstruction Is Commenced on or After June 1, 2001 Air Curtain Incinerators § 60.2245 What is an air curtain incinerator? (a) An air curtain incinerator operates by...

  9. 40 CFR 60.2250 - What are the emission limitations for air curtain incinerators?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... air curtain incinerators? 60.2250 Section 60.2250 Protection of Environment ENVIRONMENTAL PROTECTION... 1, 2001 Air Curtain Incinerators § 60.2250 What are the emission limitations for air curtain incinerators? (a) Within 60 days after your air curtain incinerator reaches the charge rate at which it...

  10. 40 CFR 60.1910 - What is an air curtain incinerator?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false What is an air curtain incinerator? 60... Incinerators That Burn 100 Percent Yard Waste § 60.1910 What is an air curtain incinerator? An air curtain incinerator operates by forcefully projecting a curtain of air across an open chamber or open pit in...

  11. 40 CFR 60.3062 - What is an air curtain incinerator?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false What is an air curtain incinerator? 60... Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3062 What is an air curtain incinerator? (a) An air curtain incinerator operates by forcefully projecting...

  12. 40 CFR 60.3062 - What is an air curtain incinerator?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false What is an air curtain incinerator? 60... Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3062 What is an air curtain incinerator? (a) An air curtain incinerator operates by forcefully projecting...

  13. 40 CFR 60.2888 - Are air curtain incinerators regulated under this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Are air curtain incinerators regulated... § 60.2888 Are air curtain incinerators regulated under this subpart? (a) Air curtain incinerators that burn less than 35 tons per day of municipal solid waste or air curtain incinerators located...

  14. 40 CFR 60.1910 - What is an air curtain incinerator?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What is an air curtain incinerator? 60... Incinerators That Burn 100 Percent Yard Waste § 60.1910 What is an air curtain incinerator? An air curtain incinerator operates by forcefully projecting a curtain of air across an open chamber or open pit in...

  15. 40 CFR 60.1435 - What is an air curtain incinerator?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false What is an air curtain incinerator? 60... Modification or Reconstruction is Commenced After June 6, 2001 Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1435 What is an air curtain incinerator? An air curtain incinerator operates...

  16. 40 CFR 60.1910 - What is an air curtain incinerator?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false What is an air curtain incinerator? 60... Incinerators That Burn 100 Percent Yard Waste § 60.1910 What is an air curtain incinerator? An air curtain incinerator operates by forcefully projecting a curtain of air across an open chamber or open pit in...

  17. 40 CFR 60.2250 - What are the emission limitations for air curtain incinerators?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... air curtain incinerators? 60.2250 Section 60.2250 Protection of Environment ENVIRONMENTAL PROTECTION... 1, 2001 Air Curtain Incinerators § 60.2250 What are the emission limitations for air curtain incinerators? (a) Within 60 days after your air curtain incinerator reaches the charge rate at which it...

  18. 40 CFR 60.3062 - What is an air curtain incinerator?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false What is an air curtain incinerator? 60... Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3062 What is an air curtain incinerator? (a) An air curtain incinerator operates by forcefully projecting...

  19. 40 CFR 60.2888 - Are air curtain incinerators regulated under this subpart?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Are air curtain incinerators regulated... § 60.2888 Are air curtain incinerators regulated under this subpart? (a) Air curtain incinerators that burn less than 35 tons per day of municipal solid waste or air curtain incinerators located...

  20. 40 CFR 60.1910 - What is an air curtain incinerator?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false What is an air curtain incinerator? 60... Incinerators That Burn 100 Percent Yard Waste § 60.1910 What is an air curtain incinerator? An air curtain incinerator operates by forcefully projecting a curtain of air across an open chamber or open pit in...

  1. 40 CFR 60.1435 - What is an air curtain incinerator?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What is an air curtain incinerator? 60... Modification or Reconstruction is Commenced After June 6, 2001 Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1435 What is an air curtain incinerator? An air curtain incinerator operates...

  2. 40 CFR 60.1435 - What is an air curtain incinerator?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false What is an air curtain incinerator? 60... Modification or Reconstruction is Commenced After June 6, 2001 Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1435 What is an air curtain incinerator? An air curtain incinerator operates...

  3. 40 CFR 60.2245 - What is an air curtain incinerator?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false What is an air curtain incinerator? 60... Which Modification or Reconstruction Is Commenced on or After June 1, 2001 Air Curtain Incinerators § 60.2245 What is an air curtain incinerator? (a) An air curtain incinerator operates by...

  4. 40 CFR 60.1435 - What is an air curtain incinerator?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false What is an air curtain incinerator? 60... Modification or Reconstruction is Commenced After June 6, 2001 Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1435 What is an air curtain incinerator? An air curtain incinerator operates...

  5. 40 CFR 60.3062 - What is an air curtain incinerator?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false What is an air curtain incinerator? 60... Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3062 What is an air curtain incinerator? (a) An air curtain incinerator operates by forcefully projecting...

  6. 40 CFR 60.2245 - What is an air curtain incinerator?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false What is an air curtain incinerator? 60... Which Modification or Reconstruction Is Commenced on or After June 1, 2001 Air Curtain Incinerators § 60.2245 What is an air curtain incinerator? (a) An air curtain incinerator operates by...

  7. 40 CFR 60.2860 - What are the emission limitations for air curtain incinerators?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... air curtain incinerators? 60.2860 Section 60.2860 Protection of Environment ENVIRONMENTAL PROTECTION... Curtain Incinerators § 60.2860 What are the emission limitations for air curtain incinerators? (a) After... for air curtain incinerators? After the date the initial stack test is required or...

  8. 40 CFR 60.2970 - What is an air curtain incinerator?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.2970 What is an air... incinerators include both firebox and trench burner units. (b) Air curtain incinerators that burn only...

  9. 40 CFR 62.14765 - What is an air curtain incinerator?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 9 2012-07-01 2012-07-01 false What is an air curtain incinerator? 62... Construction On or Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood Wastes, Clean Lumber And/or Yard Waste § 62.14765 What is an air curtain incinerator? An air curtain...

  10. 40 CFR 62.14765 - What is an air curtain incinerator?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 9 2014-07-01 2014-07-01 false What is an air curtain incinerator? 62... Construction On or Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood Wastes, Clean Lumber And/or Yard Waste § 62.14765 What is an air curtain incinerator? An air curtain...

  11. 40 CFR 60.2250 - What are the emission limitations for air curtain incinerators?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... air curtain incinerators? 60.2250 Section 60.2250 Protection of Environment ENVIRONMENTAL PROTECTION... of Performance for Commercial and Industrial Solid Waste Incineration Units Air Curtain Incinerators § 60.2250 What are the emission limitations for air curtain incinerators? Within 60 days after your...

  12. 40 CFR 60.2250 - What are the emission limitations for air curtain incinerators?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... air curtain incinerators? 60.2250 Section 60.2250 Protection of Environment ENVIRONMENTAL PROTECTION... of Performance for Commercial and Industrial Solid Waste Incineration Units Air Curtain Incinerators § 60.2250 What are the emission limitations for air curtain incinerators? Within 60 days after your...

  13. 40 CFR 60.2255 - How must I monitor opacity for air curtain incinerators?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... curtain incinerators? 60.2255 Section 60.2255 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Performance for Commercial and Industrial Solid Waste Incineration Units Air Curtain Incinerators § 60.2255 How must I monitor opacity for air curtain incinerators? (a) Use Method 9 of appendix A of this...

  14. 40 CFR 60.2255 - How must I monitor opacity for air curtain incinerators?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... curtain incinerators? 60.2255 Section 60.2255 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Performance for Commercial and Industrial Solid Waste Incineration Units Air Curtain Incinerators § 60.2255 How must I monitor opacity for air curtain incinerators? (a) Use Method 9 of appendix A of this...

  15. 40 CFR 62.14765 - What is an air curtain incinerator?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Federal Plan Requirements for Commercial and Industrial Solid Waste Incineration Units That Commenced Construction On or Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood Wastes, Clean Lumber And/or Yard Waste § 62.14765 What is an air curtain incinerator? An air curtain...

  16. 40 CFR 62.14765 - What is an air curtain incinerator?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Federal Plan Requirements for Commercial and Industrial Solid Waste Incineration Units That Commenced Construction On or Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood Wastes, Clean Lumber And/or Yard Waste § 62.14765 What is an air curtain incinerator? An air curtain...

  17. 40 CFR 62.14765 - What is an air curtain incinerator?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Federal Plan Requirements for Commercial and Industrial Solid Waste Incineration Units That Commenced Construction On or Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood Wastes, Clean Lumber And/or Yard Waste § 62.14765 What is an air curtain incinerator? An air curtain...

  18. 40 CFR 60.2255 - How must I monitor opacity for air curtain incinerators?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false How must I monitor opacity for air curtain incinerators? 60.2255 Section 60.2255 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY..., 2001 Air Curtain Incinerators § 60.2255 How must I monitor opacity for air curtain incinerators?...

  19. 40 CFR 60.2255 - How must I monitor opacity for air curtain incinerators?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false How must I monitor opacity for air curtain incinerators? 60.2255 Section 60.2255 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY..., 2001 Air Curtain Incinerators § 60.2255 How must I monitor opacity for air curtain incinerators?...

  20. 40 CFR 60.2860 - What are the emission limitations for air curtain incinerators?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... air curtain incinerators? 60.2860 Section 60.2860 Protection of Environment ENVIRONMENTAL PROTECTION... Construction On or Before November 30, 1999 Model Rule-Air Curtain Incinerators § 60.2860 What are the emission limitations for air curtain incinerators? (a) After the date the initial stack test is required or...

  1. 40 CFR 60.2994 - Are air curtain incinerators regulated under this subpart?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Are air curtain incinerators regulated... December 9, 2004 Applicability of State Plans § 60.2994 Are air curtain incinerators regulated under this subpart? (a) Air curtain incinerators that burn less than 35 tons per day of municipal solid waste or...

  2. 40 CFR 60.56b - Standards for air curtain incinerators.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standards for air curtain incinerators... Modification or Reconstruction is Commenced After June 19, 1996 § 60.56b Standards for air curtain incinerators... completed under § 60.8 of subpart A of this part, the owner or operator of an air curtain incinerator...

  3. 40 CFR 60.56b - Standards for air curtain incinerators.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for air curtain incinerators... Modification or Reconstruction is Commenced After June 19, 1996 § 60.56b Standards for air curtain incinerators... completed under § 60.8 of subpart A of this part, the owner or operator of an air curtain incinerator...

  4. 40 CFR 60.2970 - What is an air curtain incinerator?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false What is an air curtain incinerator? 60... Modification or Reconstruction is Commenced on or After June 16, 2006 Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.2970 What is an air curtain incinerator? (a) An...

  5. 40 CFR 60.2994 - Are air curtain incinerators regulated under this subpart?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Are air curtain incinerators regulated... December 9, 2004 Applicability of State Plans § 60.2994 Are air curtain incinerators regulated under this subpart? (a) Air curtain incinerators that burn less than 35 tons per day of municipal solid waste or...

  6. 40 CFR 60.2970 - What is an air curtain incinerator?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false What is an air curtain incinerator? 60... Modification or Reconstruction is Commenced on or After June 16, 2006 Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.2970 What is an air curtain incinerator? (a) An...

  7. 40 CFR 60.2860 - What are the emission limitations for air curtain incinerators?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... air curtain incinerators? 60.2860 Section 60.2860 Protection of Environment ENVIRONMENTAL PROTECTION... Construction On or Before November 30, 1999 Model Rule-Air Curtain Incinerators § 60.2860 What are the emission limitations for air curtain incinerators? (a) After the date the initial stack test is required or...

  8. 40 CFR 60.56b - Standards for air curtain incinerators.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standards for air curtain incinerators... Modification or Reconstruction is Commenced After June 19, 1996 § 60.56b Standards for air curtain incinerators... completed under § 60.8 of subpart A of this part, the owner or operator of an air curtain incinerator...

  9. 40 CFR 60.2255 - How must I monitor opacity for air curtain incinerators?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false How must I monitor opacity for air curtain incinerators? 60.2255 Section 60.2255 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY..., 2001 Air Curtain Incinerators § 60.2255 How must I monitor opacity for air curtain incinerators?...

  10. 40 CFR 60.2994 - Are air curtain incinerators regulated under this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Are air curtain incinerators regulated... December 9, 2004 Applicability of State Plans § 60.2994 Are air curtain incinerators regulated under this subpart? (a) Air curtain incinerators that burn less than 35 tons per day of municipal solid waste or...

  11. 40 CFR 60.56b - Standards for air curtain incinerators.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standards for air curtain incinerators... Modification or Reconstruction is Commenced After June 19, 1996 § 60.56b Standards for air curtain incinerators... completed under § 60.8 of subpart A of this part, the owner or operator of an air curtain incinerator...

  12. 40 CFR 60.2994 - Are air curtain incinerators regulated under this subpart?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Are air curtain incinerators regulated... December 9, 2004 Applicability of State Plans § 60.2994 Are air curtain incinerators regulated under this subpart? (a) Air curtain incinerators that burn less than 35 tons per day of municipal solid waste or...

  13. 40 CFR 60.56b - Standards for air curtain incinerators.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standards for air curtain incinerators... Modification or Reconstruction is Commenced After June 19, 1996 § 60.56b Standards for air curtain incinerators... completed under § 60.8 of subpart A of this part, the owner or operator of an air curtain incinerator...

  14. 40 CFR 60.2994 - Are air curtain incinerators regulated under this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Are air curtain incinerators regulated... December 9, 2004 Applicability of State Plans § 60.2994 Are air curtain incinerators regulated under this subpart? (a) Air curtain incinerators that burn less than 35 tons per day of municipal solid waste or...

  15. 40 CFR 60.2865 - How must I monitor opacity for air curtain incinerators?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false How must I monitor opacity for air curtain incinerators? 60.2865 Section 60.2865 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Curtain Incinerators § 60.2865 How must I monitor opacity for air curtain incinerators? (a) Use Method...

  16. 40 CFR 60.2865 - How must I monitor opacity for air curtain incinerators?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false How must I monitor opacity for air curtain incinerators? 60.2865 Section 60.2865 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Curtain Incinerators § 60.2865 How must I monitor opacity for air curtain incinerators? (a) Use Method...

  17. 40 CFR 60.2865 - How must I monitor opacity for air curtain incinerators?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false How must I monitor opacity for air curtain incinerators? 60.2865 Section 60.2865 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Curtain Incinerators § 60.2865 How must I monitor opacity for air curtain incinerators? (a) Use Method...

  18. 40 CFR 60.2860 - What are the emission limitations for air curtain incinerators?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false What are the emission limitations for air curtain incinerators? 60.2860 Section 60.2860 Protection of Environment ENVIRONMENTAL PROTECTION... Curtain Incinerators § 60.2860 What are the emission limitations for air curtain incinerators? After...

  19. 40 CFR 60.2860 - What are the emission limitations for air curtain incinerators?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false What are the emission limitations for air curtain incinerators? 60.2860 Section 60.2860 Protection of Environment ENVIRONMENTAL PROTECTION... Curtain Incinerators § 60.2860 What are the emission limitations for air curtain incinerators? After...

  20. 40 CFR 60.1445 - What are the emission limits for air curtain incinerators that burn 100 percent yard waste?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1445 What are the emission limits for air curtain incinerators that burn 100 percent yard waste? If your air curtain incinerator combusts... curtain incinerators that burn 100 percent yard waste? 60.1445 Section 60.1445 Protection of...

  1. 40 CFR 60.1445 - What are the emission limits for air curtain incinerators that burn 100 percent yard waste?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... curtain incinerators that burn 100 percent yard waste? 60.1445 Section 60.1445 Protection of Environment... Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1445 What are the emission limits for air curtain incinerators that burn 100 percent yard waste? If your air curtain incinerator...

  2. 40 CFR 60.1445 - What are the emission limits for air curtain incinerators that burn 100 percent yard waste?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... curtain incinerators that burn 100 percent yard waste? 60.1445 Section 60.1445 Protection of Environment... Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1445 What are the emission limits for air curtain incinerators that burn 100 percent yard waste? If your air curtain incinerator...

  3. 40 CFR 60.1445 - What are the emission limits for air curtain incinerators that burn 100 percent yard waste?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... curtain incinerators that burn 100 percent yard waste? 60.1445 Section 60.1445 Protection of Environment... Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1445 What are the emission limits for air curtain incinerators that burn 100 percent yard waste? If your air curtain incinerator...

  4. 40 CFR 60.1445 - What are the emission limits for air curtain incinerators that burn 100 percent yard waste?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... curtain incinerators that burn 100 percent yard waste? 60.1445 Section 60.1445 Protection of Environment... Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1445 What are the emission limits for air curtain incinerators that burn 100 percent yard waste? If your air curtain incinerator...

  5. 40 CFR 60.2245 - What is an air curtain incinerator?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Industrial Solid Waste Incineration Units Air Curtain Incinerators § 60.2245 What is an air curtain... under “Air Curtain Incinerators” (§§ 60.2245 through 60.2260). (1) 100 percent wood waste. (2) 100 percent clean lumber. (3) 100 percent mixture of only wood waste, clean lumber, and/or yard waste....

  6. 40 CFR 60.2245 - What is an air curtain incinerator?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Industrial Solid Waste Incineration Units Air Curtain Incinerators § 60.2245 What is an air curtain... under “Air Curtain Incinerators” (§§ 60.2245 through 60.2260). (1) 100 percent wood waste. (2) 100 percent clean lumber. (3) 100 percent mixture of only wood waste, clean lumber, and/or yard waste....

  7. 40 CFR 60.37b - Emission guidelines for air curtain incinerators.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... incinerators. 60.37b Section 60.37b Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... § 60.37b Emission guidelines for air curtain incinerators. For approval, a State plan shall include emission limits for opacity for air curtain incinerators at least as protective as those listed in §...

  8. 40 CFR 60.37b - Emission guidelines for air curtain incinerators.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... incinerators. 60.37b Section 60.37b Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... § 60.37b Emission guidelines for air curtain incinerators. For approval, a State plan shall include emission limits for opacity for air curtain incinerators at least as protective as those listed in §...

  9. 40 CFR 60.37b - Emission guidelines for air curtain incinerators.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... incinerators. 60.37b Section 60.37b Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... § 60.37b Emission guidelines for air curtain incinerators. For approval, a State plan shall include emission limits for opacity for air curtain incinerators at least as protective as those listed in §...

  10. 40 CFR 60.37b - Emission guidelines for air curtain incinerators.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... incinerators. 60.37b Section 60.37b Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... § 60.37b Emission guidelines for air curtain incinerators. For approval, a State plan shall include emission limits for opacity for air curtain incinerators at least as protective as those listed in §...

  11. 40 CFR 60.37b - Emission guidelines for air curtain incinerators.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... incinerators. 60.37b Section 60.37b Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... § 60.37b Emission guidelines for air curtain incinerators. For approval, a State plan shall include emission limits for opacity for air curtain incinerators at least as protective as those listed in §...

  12. 40 CFR 62.14107 - Emission limits for air curtain incinerators.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... incinerators. 62.14107 Section 62.14107 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... 20, 1994 § 62.14107 Emission limits for air curtain incinerators. The owner or operator of an air curtain incinerator with the capacity to combust greater than 250 tons per day of municipal solid...

  13. 40 CFR 62.14107 - Emission limits for air curtain incinerators.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... incinerators. 62.14107 Section 62.14107 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... 20, 1994 § 62.14107 Emission limits for air curtain incinerators. The owner or operator of an air curtain incinerator with the capacity to combust greater than 250 tons per day of municipal solid...

  14. 40 CFR 62.14107 - Emission limits for air curtain incinerators.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... incinerators. 62.14107 Section 62.14107 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... 20, 1994 § 62.14107 Emission limits for air curtain incinerators. The owner or operator of an air curtain incinerator with the capacity to combust greater than 250 tons per day of municipal solid...

  15. 40 CFR 62.14107 - Emission limits for air curtain incinerators.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... incinerators. 62.14107 Section 62.14107 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... 20, 1994 § 62.14107 Emission limits for air curtain incinerators. The owner or operator of an air curtain incinerator with the capacity to combust greater than 250 tons per day of municipal solid...

  16. 40 CFR 62.14107 - Emission limits for air curtain incinerators.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... incinerators. 62.14107 Section 62.14107 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... 20, 1994 § 62.14107 Emission limits for air curtain incinerators. The owner or operator of an air curtain incinerator with the capacity to combust greater than 250 tons per day of municipal solid...

  17. 40 CFR 62.14805 - What must I do if I close my air curtain incinerator and then restart it?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and 40 CFR part 70 or 71 until you close your air curtain incinerator and at the time you restart it. ... curtain incinerator and then restart it? 62.14805 Section 62.14805 Protection of Environment ENVIRONMENTAL... air curtain incinerator and then restart it? (a) If you close your incinerator but will reopen...

  18. 40 CFR 62.14805 - What must I do if I close my air curtain incinerator and then restart it?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and 40 CFR part 70 or 71 until you close your air curtain incinerator and at the time you restart it. ... curtain incinerator and then restart it? 62.14805 Section 62.14805 Protection of Environment ENVIRONMENTAL... air curtain incinerator and then restart it? (a) If you close your incinerator but will reopen...

  19. 40 CFR 60.2850 - What must I do if I close my air curtain incinerator and then restart it?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... curtain incinerator and then restart it? 60.2850 Section 60.2850 Protection of Environment ENVIRONMENTAL... Rule-Air Curtain Incinerators § 60.2850 What must I do if I close my air curtain incinerator and then restart it? (a) If you close your incinerator but will reopen it prior to the final compliance date...

  20. 40 CFR 62.14805 - What must I do if I close my air curtain incinerator and then restart it?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... and 40 CFR part 70 or 71 until you close your air curtain incinerator and at the time you restart it. ... curtain incinerator and then restart it? 62.14805 Section 62.14805 Protection of Environment ENVIRONMENTAL... Incineration Units That Commenced Construction On or Before November 30, 1999 Air Curtain Incinerators...

  1. 40 CFR 60.2850 - What must I do if I close my air curtain incinerator and then restart it?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... curtain incinerator and then restart it? 60.2850 Section 60.2850 Protection of Environment ENVIRONMENTAL... Rule-Air Curtain Incinerators § 60.2850 What must I do if I close my air curtain incinerator and then restart it? (a) If you close your incinerator but will reopen it prior to the final compliance date...

  2. 40 CFR 60.2850 - What must I do if I close my air curtain incinerator and then restart it?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... curtain incinerator and then restart it? 60.2850 Section 60.2850 Protection of Environment ENVIRONMENTAL... Rule-Air Curtain Incinerators § 60.2850 What must I do if I close my air curtain incinerator and then restart it? (a) If you close your incinerator but will reopen it prior to the final compliance date...

  3. 40 CFR 60.2865 - How must I monitor opacity for air curtain incinerators?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false How must I monitor opacity for air curtain incinerators? 60.2865 Section 60.2865 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Construction On or Before November 30, 1999 Model Rule-Air Curtain Incinerators § 60.2865 How must I...

  4. 40 CFR 60.2865 - How must I monitor opacity for air curtain incinerators?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false How must I monitor opacity for air curtain incinerators? 60.2865 Section 60.2865 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Construction On or Before November 30, 1999 Model Rule-Air Curtain Incinerators § 60.2865 How must I...

  5. 40 CFR 60.3068 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn only...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... reporting requirements for air curtain incinerators that burn only wood waste, clean lumber, and yard waste... Model Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3068 What are the recordkeeping and reporting requirements for air curtain incinerators that burn only...

  6. 40 CFR 62.14825 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... reporting requirements for air curtain incinerators that burn 100 percent wood wastes, clean lumber, and/or... Commenced Construction On or Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood... for air curtain incinerators that burn 100 percent wood wastes, clean lumber, and/or yard waste?...

  7. 40 CFR 62.14825 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... reporting requirements for air curtain incinerators that burn 100 percent wood wastes, clean lumber, and/or... Commenced Construction On or Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood... for air curtain incinerators that burn 100 percent wood wastes, clean lumber, and/or yard waste?...

  8. 40 CFR 62.14825 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... reporting requirements for air curtain incinerators that burn 100 percent wood wastes, clean lumber, and/or... Commenced Construction On or Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood... for air curtain incinerators that burn 100 percent wood wastes, clean lumber, and/or yard waste?...

  9. 40 CFR 60.2973 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn only...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... reporting requirements for air curtain incinerators that burn only wood waste, clean lumber, and yard waste... Qualification Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.2973 What are the recordkeeping and reporting requirements for air curtain incinerators that burn only...

  10. 40 CFR 60.3068 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn only...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... reporting requirements for air curtain incinerators that burn only wood waste, clean lumber, and yard waste... Model Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3068 What are the recordkeeping and reporting requirements for air curtain incinerators that burn only...

  11. 40 CFR 60.3068 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn only...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... reporting requirements for air curtain incinerators that burn only wood waste, clean lumber, and yard waste... Model Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3068 What are the recordkeeping and reporting requirements for air curtain incinerators that burn only...

  12. 40 CFR 60.3068 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn only...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... reporting requirements for air curtain incinerators that burn only wood waste, clean lumber, and yard waste... Model Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3068 What are the recordkeeping and reporting requirements for air curtain incinerators that burn only...

  13. 40 CFR 62.14825 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... reporting requirements for air curtain incinerators that burn 100 percent wood wastes, clean lumber, and/or... Commenced Construction On or Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood... for air curtain incinerators that burn 100 percent wood wastes, clean lumber, and/or yard waste?...

  14. 40 CFR 60.2973 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn only...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... reporting requirements for air curtain incinerators that burn only wood waste, clean lumber, and yard waste... Qualification Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.2973 What are the recordkeeping and reporting requirements for air curtain incinerators that burn only...

  15. 40 CFR 62.14825 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... reporting requirements for air curtain incinerators that burn 100 percent wood wastes, clean lumber, and/or... Commenced Construction On or Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood... for air curtain incinerators that burn 100 percent wood wastes, clean lumber, and/or yard waste?...

  16. 40 CFR 60.1455 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... reporting requirements for air curtain incinerators that burn 100 percent yard waste? 60.1455 Section 60... Reconstruction is Commenced After June 6, 2001 Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1455 What are the recordkeeping and reporting requirements for air curtain incinerators that burn...

  17. 40 CFR 60.2973 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn only...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... reporting requirements for air curtain incinerators that burn only wood waste, clean lumber, and yard waste... Qualification Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.2973 What are the recordkeeping and reporting requirements for air curtain incinerators that burn only...

  18. 40 CFR 62.14815 - What are the emission limitations for air curtain incinerators that burn 100 percent wood wastes...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... air curtain incinerators that burn 100 percent wood wastes, clean lumber and/or yard waste? 62.14815... Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood Wastes, Clean Lumber And/or Yard Waste § 62.14815 What are the emission limitations for air curtain incinerators that burn...

  19. 40 CFR 60.3068 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn only...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... reporting requirements for air curtain incinerators that burn only wood waste, clean lumber, and yard waste... Model Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3068 What are the recordkeeping and reporting requirements for air curtain incinerators that burn only...

  20. 40 CFR 60.3066 - What are the emission limitations for air curtain incinerators that burn only wood waste, clean...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... air curtain incinerators that burn only wood waste, clean lumber, and yard waste? 60.3066 Section 60... Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3066 What are the emission limitations for air curtain incinerators that burn only wood waste, clean lumber, and yard...

  1. 40 CFR 60.3066 - What are the emission limitations for air curtain incinerators that burn only wood waste, clean...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... air curtain incinerators that burn only wood waste, clean lumber, and yard waste? 60.3066 Section 60... Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3066 What are the emission limitations for air curtain incinerators that burn only wood waste, clean lumber, and yard...

  2. 40 CFR 60.3066 - What are the emission limitations for air curtain incinerators that burn only wood waste, clean...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... air curtain incinerators that burn only wood waste, clean lumber, and yard waste? 60.3066 Section 60... Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3066 What are the emission limitations for air curtain incinerators that burn only wood waste, clean lumber, and yard...

  3. 40 CFR 60.1920 - What are the emission limits for air curtain incinerators that burn 100 percent yard waste?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....1920 What are the emission limits for air curtain incinerators that burn 100 percent yard waste? If your air curtain incinerator combusts 100 percent yard waste, you must only meet the emission limits in... curtain incinerators that burn 100 percent yard waste? 60.1920 Section 60.1920 Protection of...

  4. 40 CFR 62.15375 - What are the emission limits for air curtain incinerators that burn 100 percent yard waste?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Waste § 62.15375 What are the emission limits for air curtain incinerators that burn 100 percent yard waste? If your air curtain incinerator combusts 100 percent yard waste, you must meet only the emission... curtain incinerators that burn 100 percent yard waste? 62.15375 Section 62.15375 Protection of...

  5. 40 CFR 60.3066 - What are the emission limitations for air curtain incinerators that burn only wood waste, clean...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... air curtain incinerators that burn only wood waste, clean lumber, and yard waste? 60.3066 Section 60... Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3066 What are the emission limitations for air curtain incinerators that burn only wood waste, clean lumber, and yard...

  6. 40 CFR 60.1920 - What are the emission limits for air curtain incinerators that burn 100 percent yard waste?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... curtain incinerators that burn 100 percent yard waste? 60.1920 Section 60.1920 Protection of Environment... or Before August 30, 1999 Model Rule-Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1920 What are the emission limits for air curtain incinerators that burn 100 percent yard waste?...

  7. 40 CFR 60.3066 - What are the emission limitations for air curtain incinerators that burn only wood waste, clean...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... air curtain incinerators that burn only wood waste, clean lumber, and yard waste? 60.3066 Section 60... Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3066 What are the emission limitations for air curtain incinerators that burn only wood waste, clean lumber, and yard...

  8. 40 CFR 60.1450 - How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... curtain incinerators that burn 100 percent yard waste? 60.1450 Section 60.1450 Protection of Environment... Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1450 How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste? (a) Use EPA Reference Method 9 in appendix A...

  9. 40 CFR 60.1925 - How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... curtain incinerators that burn 100 percent yard waste? 60.1925 Section 60.1925 Protection of Environment... or Before August 30, 1999 Model Rule-Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1925 How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste? (a)...

  10. 40 CFR 62.15375 - What are the emission limits for air curtain incinerators that burn 100 percent yard waste?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... curtain incinerators that burn 100 percent yard waste? 62.15375 Section 62.15375 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Air Curtain Incinerators That Burn 100 Percent Yard Waste § 62.15375 What are the emission limits for air curtain incinerators that burn 100 percent...

  11. 40 CFR 60.1925 - How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... curtain incinerators that burn 100 percent yard waste? 60.1925 Section 60.1925 Protection of Environment... or Before August 30, 1999 Model Rule-Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1925 How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste? (a)...

  12. 40 CFR 60.1920 - What are the emission limits for air curtain incinerators that burn 100 percent yard waste?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... curtain incinerators that burn 100 percent yard waste? 60.1920 Section 60.1920 Protection of Environment... or Before August 30, 1999 Model Rule-Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1920 What are the emission limits for air curtain incinerators that burn 100 percent yard waste?...

  13. 40 CFR 62.15375 - What are the emission limits for air curtain incinerators that burn 100 percent yard waste?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... curtain incinerators that burn 100 percent yard waste? 62.15375 Section 62.15375 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Air Curtain Incinerators That Burn 100 Percent Yard Waste § 62.15375 What are the emission limits for air curtain incinerators that burn 100 percent...

  14. 40 CFR 60.1450 - How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... curtain incinerators that burn 100 percent yard waste? 60.1450 Section 60.1450 Protection of Environment... Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1450 How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste? (a) Use EPA Reference Method 9 in appendix A...

  15. 40 CFR 60.1925 - How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... curtain incinerators that burn 100 percent yard waste? 60.1925 Section 60.1925 Protection of Environment... or Before August 30, 1999 Model Rule-Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1925 How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste? (a)...

  16. 40 CFR 62.15375 - What are the emission limits for air curtain incinerators that burn 100 percent yard waste?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... curtain incinerators that burn 100 percent yard waste? 62.15375 Section 62.15375 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Air Curtain Incinerators That Burn 100 Percent Yard Waste § 62.15375 What are the emission limits for air curtain incinerators that burn 100 percent...

  17. 40 CFR 60.1920 - What are the emission limits for air curtain incinerators that burn 100 percent yard waste?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... curtain incinerators that burn 100 percent yard waste? 60.1920 Section 60.1920 Protection of Environment... or Before August 30, 1999 Model Rule-Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1920 What are the emission limits for air curtain incinerators that burn 100 percent yard waste?...

  18. 40 CFR 60.1450 - How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... curtain incinerators that burn 100 percent yard waste? 60.1450 Section 60.1450 Protection of Environment... Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1450 How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste? (a) Use EPA Reference Method 9 in appendix A...

  19. 40 CFR 60.1925 - How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... curtain incinerators that burn 100 percent yard waste? 60.1925 Section 60.1925 Protection of Environment... or Before August 30, 1999 Model Rule-Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1925 How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste? (a)...

  20. 40 CFR 60.2850 - What must I do if I close my air curtain incinerator and then restart it?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... curtain incinerator and then restart it? 60.2850 Section 60.2850 Protection of Environment ENVIRONMENTAL... Commenced Construction On or Before November 30, 1999 Model Rule-Air Curtain Incinerators § 60.2850 What must I do if I close my air curtain incinerator and then restart it? (a) If you close your...

  1. 40 CFR 60.1450 - How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... curtain incinerators that burn 100 percent yard waste? 60.1450 Section 60.1450 Protection of Environment... Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1450 How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste? (a) Use EPA Reference Method 9 in appendix A...

  2. 40 CFR 62.15375 - What are the emission limits for air curtain incinerators that burn 100 percent yard waste?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... curtain incinerators that burn 100 percent yard waste? 62.15375 Section 62.15375 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Air Curtain Incinerators That Burn 100 Percent Yard Waste § 62.15375 What are the emission limits for air curtain incinerators that burn 100 percent...

  3. 40 CFR 60.1920 - What are the emission limits for air curtain incinerators that burn 100 percent yard waste?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... curtain incinerators that burn 100 percent yard waste? 60.1920 Section 60.1920 Protection of Environment... or Before August 30, 1999 Model Rule-Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1920 What are the emission limits for air curtain incinerators that burn 100 percent yard waste?...

  4. 40 CFR 60.2971 - What are the emission limitations for air curtain incinerators that burn only wood waste, clean...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... air curtain incinerators that burn only wood waste, clean lumber, and yard waste? 60.2971 Section 60... Reconstruction is Commenced on or After June 16, 2006 Air Curtain Incinerators That Burn Only Wood Waste, Clean... only wood waste, clean lumber, and yard waste? (a) Within 60 days after your air curtain...

  5. 40 CFR 60.2971 - What are the emission limitations for air curtain incinerators that burn only wood waste, clean...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... air curtain incinerators that burn only wood waste, clean lumber, and yard waste? 60.2971 Section 60... Reconstruction is Commenced on or After June 16, 2006 Air Curtain Incinerators That Burn Only Wood Waste, Clean... only wood waste, clean lumber, and yard waste? (a) Within 60 days after your air curtain...

  6. 40 CFR 60.2971 - What are the emission limitations for air curtain incinerators that burn only wood waste, clean...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... air curtain incinerators that burn only wood waste, clean lumber, and yard waste? 60.2971 Section 60... Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.2971 What are the emission limitations for air curtain incinerators that burn only wood waste, clean lumber, and yard waste? (a)...

  7. 40 CFR 60.2971 - What are the emission limitations for air curtain incinerators that burn only wood waste, clean...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... air curtain incinerators that burn only wood waste, clean lumber, and yard waste? 60.2971 Section 60... Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.2971 What are the emission limitations for air curtain incinerators that burn only wood waste, clean lumber, and yard waste? (a)...

  8. 40 CFR 60.2971 - What are the emission limitations for air curtain incinerators that burn only wood waste, clean...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... air curtain incinerators that burn only wood waste, clean lumber, and yard waste? 60.2971 Section 60... Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.2971 What are the emission limitations for air curtain incinerators that burn only wood waste, clean lumber, and yard waste? (a)...

  9. 40 CFR 60.1930 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... reporting requirements for air curtain incinerators that burn 100 percent yard waste? 60.1930 Section 60... Incinerators That Burn 100 Percent Yard Waste § 60.1930 What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100 percent yard waste? (a) Provide a notice of...

  10. 40 CFR 60.3069 - Am I required to apply for and obtain a title V operating permit for my air curtain incinerator...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... title V operating permit for my air curtain incinerator that burns only wood waste, clean lumber, and... December 9, 2004 Model Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard... incinerator that burns only wood waste, clean lumber, and yard waste? Yes, if your air curtain incinerator...

  11. 40 CFR 60.3069 - Am I required to apply for and obtain a title V operating permit for my air curtain incinerator...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... title V operating permit for my air curtain incinerator that burns only wood waste, clean lumber, and... December 9, 2004 Model Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard... incinerator that burns only wood waste, clean lumber, and yard waste? Yes, if your air curtain incinerator...

  12. 40 CFR 60.3069 - Am I required to apply for and obtain a title V operating permit for my air curtain incinerator...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... title V operating permit for my air curtain incinerator that burns only wood waste, clean lumber, and... December 9, 2004 Model Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard... incinerator that burns only wood waste, clean lumber, and yard waste? Yes, if your air curtain incinerator...

  13. 40 CFR 60.2974 - Am I required to apply for and obtain a title V operating permit for my air curtain incinerator...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... title V operating permit for my air curtain incinerator that burns only wood waste, clean lumber, and... and Qualification Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste... incinerator that burns only wood waste, clean lumber, and yard waste? Yes, if your air curtain incinerator...

  14. 40 CFR 60.2974 - Am I required to apply for and obtain a title V operating permit for my air curtain incinerator...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... title V operating permit for my air curtain incinerator that burns only wood waste, clean lumber, and... and Qualification Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste... incinerator that burns only wood waste, clean lumber, and yard waste? Yes, if your air curtain incinerator...

  15. 40 CFR 60.3069 - Am I required to apply for and obtain a title V operating permit for my air curtain incinerator...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... title V operating permit for my air curtain incinerator that burns only wood waste, clean lumber, and... December 9, 2004 Model Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard... incinerator that burns only wood waste, clean lumber, and yard waste? Yes, if your air curtain incinerator...

  16. 40 CFR 60.3069 - Am I required to apply for and obtain a title V operating permit for my air curtain incinerator...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... title V operating permit for my air curtain incinerator that burns only wood waste, clean lumber, and... December 9, 2004 Model Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard... incinerator that burns only wood waste, clean lumber, and yard waste? Yes, if your air curtain incinerator...

  17. 40 CFR 60.2974 - Am I required to apply for and obtain a title V operating permit for my air curtain incinerator...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... title V operating permit for my air curtain incinerator that burns only wood waste, clean lumber, and... and Qualification Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste... incinerator that burns only wood waste, clean lumber, and yard waste? Yes, if your air curtain incinerator...

  18. 40 CFR 60.2855 - What must I do if I plan to permanently close my air curtain incinerator and not restart it?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... close my air curtain incinerator and not restart it? 60.2855 Section 60.2855 Protection of Environment... Units Model Rule-Air Curtain Incinerators § 60.2855 What must I do if I plan to permanently close my air curtain incinerator and not restart it? If you plan to close your incinerator rather than comply with...

  19. 40 CFR 60.2855 - What must I do if I plan to permanently close my air curtain incinerator and not restart it?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... close my air curtain incinerator and not restart it? 60.2855 Section 60.2855 Protection of Environment... Units Model Rule-Air Curtain Incinerators § 60.2855 What must I do if I plan to permanently close my air curtain incinerator and not restart it? If you plan to close your incinerator rather than comply with...

  20. 40 CFR 60.2855 - What must I do if I plan to permanently close my air curtain incinerator and not restart it?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... close my air curtain incinerator and not restart it? 60.2855 Section 60.2855 Protection of Environment... Units Model Rule-Air Curtain Incinerators § 60.2855 What must I do if I plan to permanently close my air curtain incinerator and not restart it? If you plan to close your incinerator rather than comply with...

  1. 40 CFR 60.2810 - What is an air curtain incinerator?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Commercial and Industrial Solid Waste Incineration Units Model Rule-Air Curtain Incinerators § 60.2810 What... percent wood waste. (2) 100 percent clean lumber. (3) 100 percent mixture of only wood waste, clean lumber, and/or yard waste....

  2. 40 CFR 60.2850 - What must I do if I close my air curtain incinerator and then restart it?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... curtain incinerator and then restart it? 60.2850 Section 60.2850 Protection of Environment ENVIRONMENTAL... must I do if I close my air curtain incinerator and then restart it? (a) If you close your incinerator but will reopen it prior to the final compliance date in your State plan, you must meet the...

  3. 40 CFR 62.14815 - What are the emission limitations for air curtain incinerators that burn 100 percent wood wastes...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... air curtain incinerators that burn 100 percent wood wastes, clean lumber and/or yard waste? 62.14815... Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood Wastes, Clean Lumber And/or... percent wood wastes, clean lumber and/or yard waste? (a) After the date the initial test for opacity...

  4. 40 CFR 62.14815 - What are the emission limitations for air curtain incinerators that burn 100 percent wood wastes...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... air curtain incinerators that burn 100 percent wood wastes, clean lumber and/or yard waste? 62.14815... Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood Wastes, Clean Lumber And/or... percent wood wastes, clean lumber and/or yard waste? (a) After the date the initial test for opacity...

  5. 40 CFR 60.2973 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn only...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... reporting requirements for air curtain incinerators that burn only wood waste, clean lumber, and yard waste... Wood Waste, Clean Lumber, and Yard Waste § 60.2973 What are the recordkeeping and reporting requirements for air curtain incinerators that burn only wood waste, clean lumber, and yard waste? (a) Prior...

  6. 40 CFR 60.2973 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn only...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... reporting requirements for air curtain incinerators that burn only wood waste, clean lumber, and yard waste... Wood Waste, Clean Lumber, and Yard Waste § 60.2973 What are the recordkeeping and reporting requirements for air curtain incinerators that burn only wood waste, clean lumber, and yard waste? (a) Prior...

  7. 40 CFR 62.14815 - What are the emission limitations for air curtain incinerators that burn 100 percent wood wastes...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... air curtain incinerators that burn 100 percent wood wastes, clean lumber and/or yard waste? 62.14815... Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood Wastes, Clean Lumber And/or... percent wood wastes, clean lumber and/or yard waste? (a) After the date the initial test for opacity...

  8. 40 CFR 62.14815 - What are the emission limitations for air curtain incinerators that burn 100 percent wood wastes...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... air curtain incinerators that burn 100 percent wood wastes, clean lumber and/or yard waste? 62.14815... Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood Wastes, Clean Lumber And/or... percent wood wastes, clean lumber and/or yard waste? (a) After the date the initial test for opacity...

  9. 40 CFR 60.1455 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... reporting requirements for air curtain incinerators that burn 100 percent yard waste? 60.1455 Section 60...) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Small Municipal Waste... Reconstruction is Commenced After June 6, 2001 Air Curtain Incinerators That Burn 100 Percent Yard Waste §...

  10. 40 CFR 60.1930 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... reporting requirements for air curtain incinerators that burn 100 percent yard waste? 60.1930 Section 60... Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Model Rule-Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1930 What are the recordkeeping and reporting...

  11. 40 CFR 62.15385 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... reporting requirements for air curtain incinerators that burn 100 percent yard waste? 62.15385 Section 62... for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Air Curtain Incinerators That Burn 100 Percent Yard Waste § 62.15385 What are the recordkeeping and reporting...

  12. 40 CFR 62.15385 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... reporting requirements for air curtain incinerators that burn 100 percent yard waste? 62.15385 Section 62... for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Air Curtain Incinerators That Burn 100 Percent Yard Waste § 62.15385 What are the recordkeeping and reporting...

  13. 40 CFR 60.1930 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... reporting requirements for air curtain incinerators that burn 100 percent yard waste? 60.1930 Section 60... Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Model Rule-Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1930 What are the recordkeeping and reporting...

  14. 40 CFR 60.1455 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... reporting requirements for air curtain incinerators that burn 100 percent yard waste? 60.1455 Section 60...) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Small Municipal Waste... Reconstruction is Commenced After June 6, 2001 Air Curtain Incinerators That Burn 100 Percent Yard Waste §...

  15. 40 CFR 62.15385 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... reporting requirements for air curtain incinerators that burn 100 percent yard waste? 62.15385 Section 62... for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Air Curtain Incinerators That Burn 100 Percent Yard Waste § 62.15385 What are the recordkeeping and reporting...

  16. 40 CFR 60.1450 - How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste? 60.1450 Section 60.1450 Protection of Environment... Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1450 How must I monitor opacity for...

  17. 40 CFR 60.1925 - How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste? 60.1925 Section 60.1925 Protection of Environment....1925 How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste? (a)...

  18. 40 CFR 60.3065 - What must I do if I plan to permanently close my air curtain incinerator that burns only wood...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... close my air curtain incinerator that burns only wood waste, clean lumber, and yard waste and not..., 2004 Model Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3065 What must I do if I plan to permanently close my air curtain incinerator that burns only...

  19. 40 CFR 60.3065 - What must I do if I plan to permanently close my air curtain incinerator that burns only wood...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... close my air curtain incinerator that burns only wood waste, clean lumber, and yard waste and not..., 2004 Model Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3065 What must I do if I plan to permanently close my air curtain incinerator that burns only...

  20. 40 CFR 60.3065 - What must I do if I plan to permanently close my air curtain incinerator that burns only wood...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... close my air curtain incinerator that burns only wood waste, clean lumber, and yard waste and not..., 2004 Model Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3065 What must I do if I plan to permanently close my air curtain incinerator that burns only...

  1. 40 CFR 60.3065 - What must I do if I plan to permanently close my air curtain incinerator that burns only wood...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... close my air curtain incinerator that burns only wood waste, clean lumber, and yard waste and not..., 2004 Model Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3065 What must I do if I plan to permanently close my air curtain incinerator that burns only...

  2. 40 CFR 60.3065 - What must I do if I plan to permanently close my air curtain incinerator that burns only wood...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... close my air curtain incinerator that burns only wood waste, clean lumber, and yard waste and not..., 2004 Model Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3065 What must I do if I plan to permanently close my air curtain incinerator that burns only...

  3. 40 CFR 60.2855 - What must I do if I plan to permanently close my air curtain incinerator and not restart it?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... close my air curtain incinerator and not restart it? 60.2855 Section 60.2855 Protection of Environment... Units that Commenced Construction On or Before November 30, 1999 Model Rule-Air Curtain Incinerators § 60.2855 What must I do if I plan to permanently close my air curtain incinerator and not restart...

  4. 40 CFR 60.2855 - What must I do if I plan to permanently close my air curtain incinerator and not restart it?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... close my air curtain incinerator and not restart it? 60.2855 Section 60.2855 Protection of Environment... Units that Commenced Construction On or Before November 30, 1999 Model Rule-Air Curtain Incinerators § 60.2855 What must I do if I plan to permanently close my air curtain incinerator and not restart...

  5. 40 CFR 60.3064 - What must I do if I close my air curtain incinerator that burns only wood waste, clean lumber...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... curtain incinerator that burns only wood waste, clean lumber, and yard waste and then restart it? 60.3064... Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3064 What must I do if I close my air curtain incinerator that burns only wood waste, clean lumber, and...

  6. 40 CFR 60.3064 - What must I do if I close my air curtain incinerator that burns only wood waste, clean lumber...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... curtain incinerator that burns only wood waste, clean lumber, and yard waste and then restart it? 60.3064... Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3064 What must I do if I close my air curtain incinerator that burns only wood waste, clean lumber, and...

  7. 40 CFR 60.2972 - How must I monitor opacity for air curtain incinerators that burn only wood waste, clean lumber...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... curtain incinerators that burn only wood waste, clean lumber, and yard waste? 60.2972 Section 60.2972... Commenced on or After June 16, 2006 Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.2972 How must I monitor opacity for air curtain incinerators that burn only wood...

  8. 40 CFR 60.3064 - What must I do if I close my air curtain incinerator that burns only wood waste, clean lumber...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... curtain incinerator that burns only wood waste, clean lumber, and yard waste and then restart it? 60.3064... Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3064 What must I do if I close my air curtain incinerator that burns only wood waste, clean lumber, and...

  9. 40 CFR 60.2972 - How must I monitor opacity for air curtain incinerators that burn only wood waste, clean lumber...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... curtain incinerators that burn only wood waste, clean lumber, and yard waste? 60.2972 Section 60.2972... Commenced on or After June 16, 2006 Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.2972 How must I monitor opacity for air curtain incinerators that burn only wood...

  10. 40 CFR 60.3064 - What must I do if I close my air curtain incinerator that burns only wood waste, clean lumber...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... curtain incinerator that burns only wood waste, clean lumber, and yard waste and then restart it? 60.3064... Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3064 What must I do if I close my air curtain incinerator that burns only wood waste, clean lumber, and...

  11. 40 CFR 60.3064 - What must I do if I close my air curtain incinerator that burns only wood waste, clean lumber...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... curtain incinerator that burns only wood waste, clean lumber, and yard waste and then restart it? 60.3064... Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3064 What must I do if I close my air curtain incinerator that burns only wood waste, clean lumber, and...

  12. 40 CFR 60.3062 - What is an air curtain incinerator?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3062 What is... this subpart. (1) 100 percent wood waste. (2) 100 percent clean lumber. (3) 100 percent yard waste. (4) 100 percent mixture of only wood waste, clean lumber, and/or yard waste....

  13. 40 CFR 60.2260 - What are the recordkeeping and reporting requirements for air curtain incinerators?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... SOURCES Standards of Performance for Commercial and Industrial Solid Waste Incineration Units Air Curtain... paper copy or electronic format, unless the Administrator approves another format, for at least 5 years...) Submit initial and annual opacity test reports as electronic or paper copy on or before the...

  14. 40 CFR 60.2260 - What are the recordkeeping and reporting requirements for air curtain incinerators?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... SOURCES Standards of Performance for Commercial and Industrial Solid Waste Incineration Units Air Curtain... paper copy or electronic format, unless the Administrator approves another format, for at least 5 years...) Submit initial and annual opacity test reports as electronic or paper copy on or before the...

  15. 40 CFR 60.1930 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... initial startup date. (3) Types of fuels you plan to combust in your air curtain incinerator. (4) The... media. (g) If the Administrator agrees, you may change the annual reporting dates (see § 60.19(c))....

  16. 40 CFR 60.1930 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... initial startup date. (3) Types of fuels you plan to combust in your air curtain incinerator. (4) The... media. (g) If the Administrator agrees, you may change the annual reporting dates (see § 60.19(c))....

  17. 40 CFR 60.1455 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... construct the air curtain incinerator. (2) Your planned initial startup date. (3) Types of fuels you plan to... agrees, you may submit reports on electronic media. (g) If the Administrator agrees, you may change...

  18. 40 CFR 60.1455 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... construct the air curtain incinerator. (2) Your planned initial startup date. (3) Types of fuels you plan to... agrees, you may submit reports on electronic media. (g) If the Administrator agrees, you may change...

  19. 40 CFR 60.2974 - Am I required to apply for and obtain a title V operating permit for my air curtain incinerator...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... title V operating permit for my air curtain incinerator that burns only wood waste, clean lumber, and... Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.2974 Am I required to apply for and obtain a title V operating permit for my air curtain incinerator that burns only wood waste, clean...

  20. 40 CFR 60.2974 - Am I required to apply for and obtain a title V operating permit for my air curtain incinerator...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... title V operating permit for my air curtain incinerator that burns only wood waste, clean lumber, and... Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.2974 Am I required to apply for and obtain a title V operating permit for my air curtain incinerator that burns only wood waste, clean...

  1. 40 CFR 62.14810 - What must I do if I plan to permanently close my air curtain incinerator and not restart it?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... close my air curtain incinerator and not restart it? 62.14810 Section 62.14810 Protection of Environment... Incinerators That Burn 100 Percent Wood Wastes, Clean Lumber And/or Yard Waste § 62.14810 What must I do if I plan to permanently close my air curtain incinerator and not restart it? If you plan to...

  2. 40 CFR 62.14810 - What must I do if I plan to permanently close my air curtain incinerator and not restart it?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... close my air curtain incinerator and not restart it? 62.14810 Section 62.14810 Protection of Environment... Incinerators That Burn 100 Percent Wood Wastes, Clean Lumber And/or Yard Waste § 62.14810 What must I do if I plan to permanently close my air curtain incinerator and not restart it? If you plan to...

  3. 40 CFR 62.14805 - What must I do if I close my air curtain incinerator and then restart it?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... DESIGNATED FACILITIES AND POLLUTANTS Federal Plan Requirements for Commercial and Industrial Solid Waste Incineration Units That Commenced Construction On or Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood Wastes, Clean Lumber And/or Yard Waste § 62.14805 What must I do if I close...

  4. 40 CFR 62.14805 - What must I do if I close my air curtain incinerator and then restart it?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... DESIGNATED FACILITIES AND POLLUTANTS Federal Plan Requirements for Commercial and Industrial Solid Waste Incineration Units That Commenced Construction On or Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood Wastes, Clean Lumber And/or Yard Waste § 62.14805 What must I do if I close...

  5. 40 CFR 62.15385 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... subpart A of 40 CFR part 60). (h) Keep a copy of all reports onsite for a period of 5 years. Equations ... reporting requirements for air curtain incinerators that burn 100 percent yard waste? 62.15385 Section 62... Incinerators That Burn 100 Percent Yard Waste § 62.15385 What are the recordkeeping and reporting...

  6. 40 CFR 60.3067 - How must I monitor opacity for air curtain incinerators that burn only wood waste, clean lumber...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... curtain incinerators that burn only wood waste, clean lumber, and yard waste? 60.3067 Section 60.3067... Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3067 How must I monitor opacity for air curtain incinerators that burn only wood waste, clean lumber, and yard waste? (a) Use Method 9...

  7. 40 CFR 60.3067 - How must I monitor opacity for air curtain incinerators that burn only wood waste, clean lumber...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... curtain incinerators that burn only wood waste, clean lumber, and yard waste? 60.3067 Section 60.3067... Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3067 How must I monitor opacity for air curtain incinerators that burn only wood waste, clean lumber, and yard waste? (a) Use Method 9...

  8. 40 CFR 60.3067 - How must I monitor opacity for air curtain incinerators that burn only wood waste, clean lumber...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... curtain incinerators that burn only wood waste, clean lumber, and yard waste? 60.3067 Section 60.3067... Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3067 How must I monitor opacity for air curtain incinerators that burn only wood waste, clean lumber, and yard waste? (a) Use Method 9...

  9. 40 CFR 60.3067 - How must I monitor opacity for air curtain incinerators that burn only wood waste, clean lumber...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... curtain incinerators that burn only wood waste, clean lumber, and yard waste? 60.3067 Section 60.3067... Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3067 How must I monitor opacity for air curtain incinerators that burn only wood waste, clean lumber, and yard waste? (a) Use Method 9...

  10. 40 CFR 60.3067 - How must I monitor opacity for air curtain incinerators that burn only wood waste, clean lumber...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... curtain incinerators that burn only wood waste, clean lumber, and yard waste? 60.3067 Section 60.3067... Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3067 How must I monitor opacity for air curtain incinerators that burn only wood waste, clean lumber, and yard waste? (a) Use Method 9...

  11. 40 CFR 60.2972 - How must I monitor opacity for air curtain incinerators that burn only wood waste, clean lumber...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... curtain incinerators that burn only wood waste, clean lumber, and yard waste? 60.2972 Section 60.2972... PERFORMANCE FOR NEW STATIONARY SOURCES Operator Training and Qualification Air Curtain Incinerators That Burn... incinerators that burn only wood waste, clean lumber, and yard waste? (a) Use Method 9 of appendix A of...

  12. 40 CFR 62.14810 - What must I do if I plan to permanently close my air curtain incinerator and not restart it?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Waste Incineration Units That Commenced Construction On or Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood Wastes, Clean Lumber And/or Yard Waste § 62.14810 What must I do if...

  13. 40 CFR 62.14810 - What must I do if I plan to permanently close my air curtain incinerator and not restart it?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Waste Incineration Units That Commenced Construction On or Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood Wastes, Clean Lumber And/or Yard Waste § 62.14810 What must I do if...

  14. 40 CFR 62.14810 - What must I do if I plan to permanently close my air curtain incinerator and not restart it?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Waste Incineration Units That Commenced Construction On or Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood Wastes, Clean Lumber And/or Yard Waste § 62.14810 What must I do if...

  15. 40 CFR 62.14820 - How must I monitor opacity for air curtain incinerators that burn 100 percent wood wastes, clean...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... wood wastes, clean lumber, and/or yard waste? (a) Use Method 9 of 40 CFR part 60, appendix A to... curtain incinerators that burn 100 percent wood wastes, clean lumber, and/or yard waste? 62.14820 Section... Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood Wastes, Clean Lumber...

  16. 40 CFR 60.2972 - How must I monitor opacity for air curtain incinerators that burn only wood waste, clean lumber...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... curtain incinerators that burn only wood waste, clean lumber, and yard waste? 60.2972 Section 60.2972... Only Wood Waste, Clean Lumber, and Yard Waste § 60.2972 How must I monitor opacity for air curtain incinerators that burn only wood waste, clean lumber, and yard waste? (a) Use Method 9 of appendix A of...

  17. 40 CFR 62.14820 - How must I monitor opacity for air curtain incinerators that burn 100 percent wood wastes, clean...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... wood wastes, clean lumber, and/or yard waste? (a) Use Method 9 of 40 CFR part 60, appendix A to... curtain incinerators that burn 100 percent wood wastes, clean lumber, and/or yard waste? 62.14820 Section... Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood Wastes, Clean Lumber...

  18. 40 CFR 62.14820 - How must I monitor opacity for air curtain incinerators that burn 100 percent wood wastes, clean...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... wood wastes, clean lumber, and/or yard waste? (a) Use Method 9 of 40 CFR part 60, appendix A to... curtain incinerators that burn 100 percent wood wastes, clean lumber, and/or yard waste? 62.14820 Section... Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood Wastes, Clean Lumber...

  19. 40 CFR 62.14820 - How must I monitor opacity for air curtain incinerators that burn 100 percent wood wastes, clean...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... wood wastes, clean lumber, and/or yard waste? (a) Use Method 9 of 40 CFR part 60, Appendix A to... curtain incinerators that burn 100 percent wood wastes, clean lumber, and/or yard waste? 62.14820 Section... Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood Wastes, Clean Lumber...

  20. 40 CFR 60.2972 - How must I monitor opacity for air curtain incinerators that burn only wood waste, clean lumber...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... curtain incinerators that burn only wood waste, clean lumber, and yard waste? 60.2972 Section 60.2972... Only Wood Waste, Clean Lumber, and Yard Waste § 60.2972 How must I monitor opacity for air curtain incinerators that burn only wood waste, clean lumber, and yard waste? (a) Use Method 9 of appendix A of...

  1. 40 CFR 62.14820 - How must I monitor opacity for air curtain incinerators that burn 100 percent wood wastes, clean...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... wood wastes, clean lumber, and/or yard waste? (a) Use Method 9 of 40 CFR part 60, Appendix A to... curtain incinerators that burn 100 percent wood wastes, clean lumber, and/or yard waste? 62.14820 Section... Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood Wastes, Clean Lumber...

  2. 40 CFR 62.15385 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... initial startup date. (3) Types of fuels you plan to combust in your air curtain incinerator. (4) The... media. (g) If the Administrator agrees, you may change the annual reporting dates (see § 60.19(c) in subpart A of 40 CFR part 60). (h) Keep a copy of all reports onsite for a period of 5 years. Equations...

  3. 40 CFR 60.3063 - When must I comply if my air curtain incinerator burns only wood waste, clean lumber, and yard...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... incinerator burns only wood waste, clean lumber, and yard waste? 60.3063 Section 60.3063 Protection of... Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3063 When must I comply if my air curtain incinerator burns only wood waste, clean lumber, and yard waste? Table 1 of this subpart specifies the...

  4. 40 CFR 60.3063 - When must I comply if my air curtain incinerator burns only wood waste, clean lumber, and yard...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... incinerator burns only wood waste, clean lumber, and yard waste? 60.3063 Section 60.3063 Protection of... Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3063 When must I comply if my air curtain incinerator burns only wood waste, clean lumber, and yard waste? Table 1 of this subpart specifies the...

  5. 40 CFR 60.3063 - When must I comply if my air curtain incinerator burns only wood waste, clean lumber, and yard...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... incinerator burns only wood waste, clean lumber, and yard waste? 60.3063 Section 60.3063 Protection of... Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3063 When must I comply if my air curtain incinerator burns only wood waste, clean lumber, and yard waste? Table 1 of this subpart specifies the...

  6. 40 CFR 60.3063 - When must I comply if my air curtain incinerator burns only wood waste, clean lumber, and yard...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... incinerator burns only wood waste, clean lumber, and yard waste? 60.3063 Section 60.3063 Protection of... Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3063 When must I comply if my air curtain incinerator burns only wood waste, clean lumber, and yard waste? Table 1 of this subpart specifies the...

  7. 40 CFR 60.3063 - When must I comply if my air curtain incinerator burns only wood waste, clean lumber, and yard...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... incinerator burns only wood waste, clean lumber, and yard waste? 60.3063 Section 60.3063 Protection of... Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3063 When must I comply if my air curtain incinerator burns only wood waste, clean lumber, and yard waste? Table 1 of this subpart specifies the...

  8. 40 CFR 62.15380 - How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... waste? (a) Use EPA Reference Method 9 in Appendix A of 40 CFR part 60 to determine compliance with the opacity limit. (b) Conduct an initial test for opacity as specified in § 60.8 of subpart A of 40 CFR part... curtain incinerators that burn 100 percent yard waste? 62.15380 Section 62.15380 Protection of...

  9. 40 CFR 62.15380 - How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... waste? (a) Use EPA Reference Method 9 in appendix A of 40 CFR part 60 to determine compliance with the opacity limit. (b) Conduct an initial test for opacity as specified in § 60.8 of subpart A of 40 CFR part... curtain incinerators that burn 100 percent yard waste? 62.15380 Section 62.15380 Protection of...

  10. 40 CFR 62.15380 - How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... waste? (a) Use EPA Reference Method 9 in appendix A of 40 CFR part 60 to determine compliance with the opacity limit. (b) Conduct an initial test for opacity as specified in § 60.8 of subpart A of 40 CFR part... curtain incinerators that burn 100 percent yard waste? 62.15380 Section 62.15380 Protection of...

  11. 40 CFR 62.15380 - How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... waste? (a) Use EPA Reference Method 9 in appendix A of 40 CFR part 60 to determine compliance with the opacity limit. (b) Conduct an initial test for opacity as specified in § 60.8 of subpart A of 40 CFR part... curtain incinerators that burn 100 percent yard waste? 62.15380 Section 62.15380 Protection of...

  12. 40 CFR 62.15380 - How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... waste? (a) Use EPA Reference Method 9 in Appendix A of 40 CFR part 60 to determine compliance with the opacity limit. (b) Conduct an initial test for opacity as specified in § 60.8 of subpart A of 40 CFR part... curtain incinerators that burn 100 percent yard waste? 62.15380 Section 62.15380 Protection of...

  13. 40 CFR 60.2260 - What are the recordkeeping and reporting requirements for air curtain incinerators?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SOURCES Standards of Performance for Commercial and Industrial Solid Waste Incineration Units for Which... initial and annual opacity tests onsite in either paper copy or electronic format, unless the... as electronic or paper copy on or before the applicable submittal date. (f) Keep a copy of...

  14. 40 CFR 60.2260 - What are the recordkeeping and reporting requirements for air curtain incinerators?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... SOURCES Standards of Performance for Commercial and Industrial Solid Waste Incineration Units for Which... initial and annual opacity tests onsite in either paper copy or electronic format, unless the... as electronic or paper copy on or before the applicable submittal date. (f) Keep a copy of...

  15. 40 CFR 60.2870 - What are the recordkeeping and reporting requirements for air curtain incinerators?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... SOURCES Emissions Guidelines and Compliance Times for Commercial and Industrial Solid Waste Incineration... onsite in either paper copy or electronic format, unless the Administrator approves another format, for... report. (e) Submit initial and annual opacity test reports as electronic or paper copy on or before...

  16. 40 CFR 60.2870 - What are the recordkeeping and reporting requirements for air curtain incinerators?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... SOURCES Emissions Guidelines and Compliance Times for Commercial and Industrial Solid Waste Incineration... onsite in either paper copy or electronic format, unless the Administrator approves another format, for... report. (e) Submit initial and annual opacity test reports as electronic or paper copy on or before...

  17. 40 CFR 60.2870 - What are the recordkeeping and reporting requirements for air curtain incinerators?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... SOURCES Emissions Guidelines and Compliance Times for Commercial and Industrial Solid Waste Incineration... onsite in either paper copy or electronic format, unless the Administrator approves another format, for... the previous report. (e) Submit initial and annual opacity test reports as electronic or paper copy...

  18. 40 CFR 60.2260 - What are the recordkeeping and reporting requirements for air curtain incinerators?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... SOURCES Standards of Performance for Commercial and Industrial Solid Waste Incineration Units for Which... initial and annual opacity tests onsite in either paper copy or electronic format, unless the... as electronic or paper copy on or before the applicable submittal date. (f) Keep a copy of...

  19. 40 CFR 60.2870 - What are the recordkeeping and reporting requirements for air curtain incinerators?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... SOURCES Emissions Guidelines and Compliance Times for Commercial and Industrial Solid Waste Incineration... records of results of all initial and annual opacity tests onsite in either paper copy or electronic... annual opacity test reports as electronic or paper copy on or before the applicable submittal date...

  20. 40 CFR 60.2870 - What are the recordkeeping and reporting requirements for air curtain incinerators?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SOURCES Emissions Guidelines and Compliance Times for Commercial and Industrial Solid Waste Incineration... records of results of all initial and annual opacity tests onsite in either paper copy or electronic... annual opacity test reports as electronic or paper copy on or before the applicable submittal date...

  1. Aerodynamical sealing by air curtains

    NASA Astrophysics Data System (ADS)

    Frank, Daria; Linden, Paul

    2015-11-01

    Air curtains are artificial high-velocity plane turbulent jets which are installed in a doorway in order to reduce the heat and the mass exchange between two environments. The performance of an air curtain is assessed in terms of the sealing effectiveness E, the fraction of the exchange flow prevented by the air curtain compared to the open-door situation. The main controlling parameter for air curtain dynamics is the deflection modulus Dm representing the ratio of the momentum flux of the air curtain and the transverse forces acting on it due to the stack effect. In this talk, we examine the influence of two factors on the performance of an air curtain: the presence of an additional ventilation pathway in the room, such as a small top opening, and the effects of an opposing buoyancy force which for example arises if a downwards blowing air curtain is heated. Small-scale experiments were conducted to investigate the E (Dm) -curve of an air curtain in both situations. We present both experimental results and theoretical explanations for our observations. We also briefly illustrate how simplified models developed for air curtains can be used for more complex phenomena such as the effects of wind blowing around a model building on the ventilation rates through the openings.

  2. The effectiveness of a heated air curtain

    NASA Astrophysics Data System (ADS)

    Frank, Daria

    2014-11-01

    Air curtains are high-velocity plane turbulent jets which are installed in the doorway in order to reduce the heat and the mass exchange between two environments. The air curtain effectiveness E is defined as the fraction of the exchange flow prevented by the air curtain compared to the open-door situation. In the present study, we investigate the effects of an opposing buoyancy force on the air curtain effectiveness. Such an opposing buoyancy force arises for example if a downwards blowing air curtain is heated. We conducted small-scale experiments using water as the working fluid with density differences created by salt and sugar. The effectiveness of a downwards blowing air curtain was measured for situations in which the initial density of the air curtain was less than both the indoor and the outdoor fluid density, which corresponds to the case of a heated air curtain. We compare the effectiveness of the heated air curtain to the case of the neutrally buoyant air curtain. It is found that the effectiveness starts to decrease if the air curtain is heated beyond a critical temperature. Furthermore, we propose a theoretical model to describe the dynamics of the buoyant air curtain. Numerical results obtained from solving this model corroborate our experimental findings.

  3. Three-Dimensional Air Curtains

    NASA Technical Reports Server (NTRS)

    Stephenson, J. G.; Daniher, C. E. J.

    1982-01-01

    Proposed scheme for gas "curtains" partitions large volume into several separate spaces. Concept may also be useful in such terrestrial applications as unobtrusive isolation of smoking and nonsmoking sections in restaurants and office. Scheme is suitable for isolation of objectionable or hazardous gases in free space.

  4. Design of air curtains used for area confinement in tunnels

    NASA Astrophysics Data System (ADS)

    Guyonnaud, L.; Solliec, C.; Dufresne de Virel, M.; Rey, C.

    Air curtains' devices, i.e., plane air jets, are used as virtual screens to reduce the heat and mass transfer from one zone to another subjected to different environmental or climatic conditions. An air curtain is a plane air jet blown through an opening. It produces a pressure drop that forbids transversal flow through the opening. The principal advantage of such installations is to facilitate the transit of people, vehicles or material through doorways of buildings and other enclosures. The purpose of this research is twofold: (i) to characterize the efficiency of air curtains; (ii) to establish how scaled down models could be used to set up full-scale installations.

  5. AIR TOXICS EMISSIONS FROM A VINYL SHOWER CURTAIN

    EPA Science Inventory

    The paper reports results of both static and dynamic chamber tests conducted to evaluate emission characteristics of air toxics from a vinyl shower Curtain. (NOTE: Due to the relatively low price and ease of installation, vinyl shower curtains have been widely used in bathrooms i...

  6. Controlled air incinerator conceptual design study

    SciTech Connect

    Not Available

    1982-01-01

    This report presents a conceptual design study for a controlled air incinerator facility for incineration of low level combustible waste at Three Mile Island Unit 2 (TMI-2). The facility design is based on the use of a Helix Process Systems controlled air incinerator. Cost estimates and associated engineering, procurement, and construction schedules are also provided. The cost estimates and schedules are presented for two incinerator facility designs, one with provisions for waste ash solidification, the other with provisions for packaging the waste ash for transport to an undefined location.

  7. Acoustic wave propagation in air-bubble curtains in water. Part 2. Field experiment

    SciTech Connect

    Domenico, S.N.

    1982-03-01

    A field experiment consisted of hydrophone recordings in a pond, 25 ft deep, of signals transmitted through air-bubble curtains from a water gun source. The air curtains issued from one to 13 pipes (20 ft long and spaced at 1.67-ft intervals). Air pressures used in the pipes were 15, 25, and 50 psi. Length and complexity of the signals indicate that reverberations occurred to an increasing extent as the number of consecutive air curtains was increased. Analysis of the first pulse in the recorded signals, after approximate removal of hydrophone and recorder response, indicates that the reverberations occur principally in the bubble-free corridors between air curtains. This pulse broadens and its peak amplitude is delayed linearly as the number of successive air curtains is increased. The peak amplitude is decreased substantially by the first air curtain and thereafter remains between 0.1 and 0.2 of the amplitude without air curtains.

  8. Controlling air emissions from incinerators

    SciTech Connect

    Foisy, M.B.; Li, R.; Chattapadhyay, A.

    1994-04-01

    Last year, EPA published final rules establishing technical standards for the use and disposal of wastewater biosolids (40 CFR, Part 503). Subpart E specifically regulates the operations of and emissions from municipal wastewater biosolids incinerators.

  9. Incinerator air emissions: Inhalation exposure perspectives

    SciTech Connect

    Rogers, H.W.

    1995-12-01

    Incineration is often proposed as the treatment of choice for processing diverse wastes, particularly hazardous wastes. Where such treatment is proposed, people are often fearful that it will adversely affect their health. Unfortunately, information presented to the public about incinerators often does not include any criteria or benchmarks for evaluating such facilities. This article describes a review of air emission data from regulatory trial burns in a large prototype incinerator, operated at design capacity by the US Army to destroy chemical warfare materials. It uses several sets of criteria to gauge the threat that these emissions pose to public health. Incinerator air emission levels are evaluated with respect to various toxicity screening levels and ambient air levels of the same pollutants. Also, emission levels of chlorinated dioxins and furans are compared with emission levels of two common combustion sources. Such comparisons can add to a community`s understanding of health risks associated with an incinerator. This article focuses only on the air exposure/inhalation pathway as related to human health. It does not address other potential human exposure pathways or the possible effects of emissions on the local ecology, both of which should also be examined during a complete analysis of any major new facility.

  10. Flow characteristics of an inclined air-curtain range hood in a draft.

    PubMed

    Chen, Jia-Kun

    2015-01-01

    The inclined air-curtain technology was applied to build an inclined air-curtain range hood. A draft generator was applied to affect the inclined air-curtain range hood in three directions: lateral (θ=0°), oblique (θ=45°), and front (θ=90°). The three suction flow rates provided by the inclined air-curtain range hood were 10.1, 10.9, and 12.6 m(3)/min. The laser-assisted flow visualization technique and the tracer-gas test method were used to investigate the performance of the range hood under the influence of a draft. The results show that the inclined air-curtain range hood has a strong ability to resist the negative effect of a front draft until the draft velocity is greater than 0.5 m/s. The oblique draft affected the containment ability of the inclined air-curtain range hood when the draft velocity was larger than 0.3 m/s. When the lateral draft effect was applied, the capture efficiency of the inclined air-curtain range hood decreased quickly in the draft velocity from 0.2 m/s to 0.3 m/s. However, the capture efficiencies of the inclined air-curtain range hood under the influence of the front draft were higher than those under the influence of the oblique draft from 0.3 m/s to 0.5 m/s.

  11. Flow characteristics of an inclined air-curtain range hood in a draft

    PubMed Central

    CHEN, Jia-Kun

    2015-01-01

    The inclined air-curtain technology was applied to build an inclined air-curtain range hood. A draft generator was applied to affect the inclined air-curtain range hood in three directions: lateral (θ=0°), oblique (θ=45°), and front (θ=90°). The three suction flow rates provided by the inclined air-curtain range hood were 10.1, 10.9, and 12.6 m3/min. The laser-assisted flow visualization technique and the tracer-gas test method were used to investigate the performance of the range hood under the influence of a draft. The results show that the inclined air-curtain range hood has a strong ability to resist the negative effect of a front draft until the draft velocity is greater than 0.5 m/s. The oblique draft affected the containment ability of the inclined air-curtain range hood when the draft velocity was larger than 0.3 m/s. When the lateral draft effect was applied, the capture efficiency of the inclined air-curtain range hood decreased quickly in the draft velocity from 0.2 m/s to 0.3 m/s. However, the capture efficiencies of the inclined air-curtain range hood under the influence of the front draft were higher than those under the influence of the oblique draft from 0.3 m/s to 0.5 m/s. PMID:25810445

  12. Beneficial outcomes of the air curtain project in Ghana, August 14-27, 2011

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A number of questions existed about the feasibility of using the air curtain system in West Africa and after the project was completed many of the questions had been answered. Air curtains can be securely mounted on the truck mounted stairs used for passenger planning and deplaning. The Accra Airpor...

  13. The Solar Dynamic Buffer Zone (SDBZ) curtain wall: Validation and design of a solar air collector curtain wall

    NASA Astrophysics Data System (ADS)

    Richman, Russell Corey

    Given the increases in both the environmental and economic costs of energy, there is a need to design and building more sustainable and low-energy building systems now. Curtain wall assemblies show great promise---the spandrel panels within them can be natural solar collectors. By using a Solar Dynamic Buffer Zone (SDBZ) in the spandrel cavity, solar energy can be efficiently gathered using the movement of air. There is a need for a numerical model capable of predicting performance of an SDBZ Curtain Wall system. This research designed, constructed and quantified a prototype SDBZ curtain wall system through by experimental testing in a laboratory environment. The laboratory experiments focussed on three main variables: air flow through the system, incoming radiation and collector surface type. Results from the experimental testing were used to validate a one-dimensional numerical model of the prototype. Results from this research show a SDBZ curtain wall system as an effective means of reducing building heating energy consumption through the preheating of incoming exterior ventilation air during the heating season in cold climates. The numerical model showed good correlation with experimental results at higher operating flows and at lower flows when using an apparent velocity at the heat transfer boundary layer. A seasonal simulation for Toronto, ON predicted energy savings of 205 kWh/m2 with an average seasonal efficiency of 28%. This is considered in the upper range when compared to other solar air collectors. Given the lack of published literature for similar systems, this research acts to introduce a simple, innovative approach to collect solar energy that would otherwise be lost to the exterior using already existing components within a curtain wall. Specifically, the research has provided: results from experiments and simulation, a first generation numerical model, aspects of design and construction of the SDBZ curtain wall and specific directions for further

  14. Behavior of a horizontal air curtain subjected to a vertical pressure gradient

    NASA Astrophysics Data System (ADS)

    Linden, James; Phelps, LeEllen

    2012-09-01

    We present the details on an experiment to investigate the behavior of an air curtain that is subjected to a transverse pressure gradient. The setup simulates the conditions that will be present in the Advanced Technology Solar Telescope (ATST), a 4-meter solar observatory that will be built on Haleakala, Hawaii. A test rig was built to replicate the region at which the optical path crosses a temperature and pressure boundary between the telescope mount region, which is at the ambient temperature and pressure, and a warmer, pressurized lab space directly below. Use of an air curtain in place of an optically-transmitting window at the interface would allow science observations at a wider range of scientific wavelengths. With the air curtain exhibiting transitional flow behavior across the boundary, and applied pressure gradients of up to 6.5 Pa, we found that the air curtain was able to hold a pressure gradient of 0.25 Pa. As the applied pressure was increased, transient turbulent regions formed at the interface, and predictable flow behavior only occurred in the region closest to the air curtain blower. Computer modeling is used to validate the test data, identify laminar regions of the air curtain where minimal image distortion would occur, and explore the relationship between the applied pressure, effective pressure difference, and air curtain profile.

  15. Flow and performance of an air-curtain biological safety cabinet.

    PubMed

    Huang, Rong Fung; Chou, Chun I

    2009-06-01

    Using laser-assisted smoke flow visualization and tracer gas concentration detection techniques, this study examines aerodynamic flow properties and the characteristics of escape from containment, inward dispersion, and cross-cabinet contamination of a biological safety cabinet installed with an air curtain across the front aperture. The experimental method partially simulates the NSF/ANSI 49 standards with the difference that the biological tracer recommended by these standards is replaced by a mixture of 10% SF(6) in N(2). The air curtain is set up across the cabinet aperture plane by means of a narrow planar jet issued from the lower edge of the sash and a suction flow going through a suction slot installed at the front edge of the work surface. Varying the combination of jet velocity, suction flow velocity, and descending flow velocity reveals three types of characteristic flow modes: 'straight curtain', 'slightly concave curtain', and 'severely concave curtain'. Operating the cabinet in the straight curtain mode causes the air curtain to impinge on the doorsill and therefore induces serious escape from containment. In the severely concave curtain mode, drastically large inward dispersion and cross-cabinet contamination were observed because environmental air entered into the cabinet and a three-dimensional vortical flow structure formed in the cabinet. The slightly concave curtain mode presents a smooth and two-dimensional flow pattern with an air curtain separating the outside atmosphere from the inside space of the cabinet, and therefore exhibited negligibly small escape from containment, inward dispersion, and cross-cabinet contamination. PMID:19398506

  16. Flow and performance of an air-curtain biological safety cabinet.

    PubMed

    Huang, Rong Fung; Chou, Chun I

    2009-06-01

    Using laser-assisted smoke flow visualization and tracer gas concentration detection techniques, this study examines aerodynamic flow properties and the characteristics of escape from containment, inward dispersion, and cross-cabinet contamination of a biological safety cabinet installed with an air curtain across the front aperture. The experimental method partially simulates the NSF/ANSI 49 standards with the difference that the biological tracer recommended by these standards is replaced by a mixture of 10% SF(6) in N(2). The air curtain is set up across the cabinet aperture plane by means of a narrow planar jet issued from the lower edge of the sash and a suction flow going through a suction slot installed at the front edge of the work surface. Varying the combination of jet velocity, suction flow velocity, and descending flow velocity reveals three types of characteristic flow modes: 'straight curtain', 'slightly concave curtain', and 'severely concave curtain'. Operating the cabinet in the straight curtain mode causes the air curtain to impinge on the doorsill and therefore induces serious escape from containment. In the severely concave curtain mode, drastically large inward dispersion and cross-cabinet contamination were observed because environmental air entered into the cabinet and a three-dimensional vortical flow structure formed in the cabinet. The slightly concave curtain mode presents a smooth and two-dimensional flow pattern with an air curtain separating the outside atmosphere from the inside space of the cabinet, and therefore exhibited negligibly small escape from containment, inward dispersion, and cross-cabinet contamination.

  17. Improving flow and spillage characteristics of range hoods by using an inclined air-curtain technique.

    PubMed

    Huang, Rong Fung; Nian, You-Cyun; Chen, Jia-Kun; Peng, Kuan-Lin

    2011-03-01

    The current study developed a new type of range hood, which was termed an 'inclined air-curtain range hood', in order to improve the flow and performance of the conventionally used wall-mounted range hood. The flow characteristics and oil mist spillages of air-curtain and conventional range hoods under the influences of both a mannequin presence and a simulated walk-by motion were experimentally examined. The study examined flow patterns by using a laser-light-sheet-assisted smoke-flow visualization technique and diagnosed spillages by using the tracer gas concentration test method. A mannequin presented in front of the conventional hood induced turbulent dispersion of oil mists toward the chest and nose of the mannequin owing to the complex interaction among the suction, wake, and wall effect, while the inclined air-curtain hood presented excellent hood performance by isolating the oil mists from the mannequin with an air curtain and therefore could reduce spillages out into the atmosphere and the mannequin's breathing zone. Both flow visualization and the tracer gas test indicated that the air-curtain hood had excellent 'robustness' over the conventional hood in resisting the influence of walk-by motion. The air-curtain technique could drastically improve the flow characteristics and performance of the range hood by consuming less energy.

  18. Electric controlled air incinerator for radioactive wastes

    DOEpatents

    Warren, Jeffery H.; Hootman, Harry E.

    1981-01-01

    A two-stage incinerator is provided which includes a primary combustion chamber and an afterburner chamber for off-gases. The latter is formed by a plurality of vertical tubes in combination with associated manifolds which connect the tubes together to form a continuous tortuous path. Electrically-controlled heaters surround the tubes while electrically-controlled plate heaters heat the manifolds. A gravity-type ash removal system is located at the bottom of the first afterburner tube while an air mixer is disposed in that same tube just above the outlet from the primary chamber. A ram injector in combination with rotary magazine feeds waste to a horizontal tube forming the primary combustion chamber.

  19. Optimization and investigation of the effect of velocity distribution of air curtains on the performance of food refrigerated display cabinets

    NASA Astrophysics Data System (ADS)

    Wu, XueHong; Chang, ZhiJuan; Ma, QiuYang; Lu, YanLi; Yin, XueMei

    2016-08-01

    This paper focuses on improving the performance of the vertical open refrigerated display cabinets (VORDC) by optimizing the structure of deflector, which is affected by inlet velocity and velocity distribution of air curtains. The results show that the temperature of products located at the front and at the rear reduces as the increases of inlet velocity of air curtains. The increase of the inlet velocity of air curtains can strengthen the disturbance inside the VORDC, and also decrease the temperature of products inside the VORDC; the increase of the outer velocity of air curtain will exacerbate the disturbance outside the VORDC and decrease air curtain's performance. The present study can provide a theoretical foundation for the design of VORDC.

  20. Flow and containment characteristics of an air-curtain fume hood operated at high temperatures.

    PubMed

    Chen, Jia-Kun; Huang, Rong Fung; Hsin, Pei-Yi; Hsu, Ching Min; Chen, Chun-Wann

    2012-01-01

    The flow and leakage characteristics of the air-curtain fume hood under high temperature operation (between 100°C and 250°C) were studied. Laser-assisted flow visualization technique was used to reveal the hot plume movements in the cabinet and the critical conditions for the hood-top leakage. The sulfur hexafluoride tracer-gas concentration test method was employed to examine the containment spillages from the sash opening and the hood top. It was found that the primary parameters dominating the behavior of the flow field and hood performance are the sash height and the suction velocity as an air-curtain hood is operated at high temperatures. At large sash height and low suction velocity, the air curtain broke down and accompanied with three-dimensional flow in the cabinet. Since the suction velocity was low and the sash opening was large, the makeup air drawn down from the hood top became insufficient to counter act the rising hot plume. Under this situation, containment leakage from the sash opening and the hood top was observed. At small sash opening and high suction velocity, the air curtain presented robust characteristics and the makeup air flow from the hood top was sufficiently large. Therefore the containment leakages from the sash opening and the hood top were not observed. According to the results of experiments, quantitative operation sash height and suction velocity corresponding to the operation temperatures were suggested. PMID:22293724

  1. Flow and containment characteristics of an air-curtain fume hood operated at high temperatures.

    PubMed

    Chen, Jia-Kun; Huang, Rong Fung; Hsin, Pei-Yi; Hsu, Ching Min; Chen, Chun-Wann

    2012-01-01

    The flow and leakage characteristics of the air-curtain fume hood under high temperature operation (between 100°C and 250°C) were studied. Laser-assisted flow visualization technique was used to reveal the hot plume movements in the cabinet and the critical conditions for the hood-top leakage. The sulfur hexafluoride tracer-gas concentration test method was employed to examine the containment spillages from the sash opening and the hood top. It was found that the primary parameters dominating the behavior of the flow field and hood performance are the sash height and the suction velocity as an air-curtain hood is operated at high temperatures. At large sash height and low suction velocity, the air curtain broke down and accompanied with three-dimensional flow in the cabinet. Since the suction velocity was low and the sash opening was large, the makeup air drawn down from the hood top became insufficient to counter act the rising hot plume. Under this situation, containment leakage from the sash opening and the hood top was observed. At small sash opening and high suction velocity, the air curtain presented robust characteristics and the makeup air flow from the hood top was sufficiently large. Therefore the containment leakages from the sash opening and the hood top were not observed. According to the results of experiments, quantitative operation sash height and suction velocity corresponding to the operation temperatures were suggested.

  2. Development and evaluation of an air-curtain fume cabinet with considerations of its aerodynamics.

    PubMed

    Huang, R F; Wu, Y D; Chen, H D; Chen, C-C; Chen, C-W; Chang, C-P; Shih, T-S

    2007-03-01

    In order to avoid the inherent aerodynamic difficulties of the conventional fume hood, an innovative design--the 'air curtain-isolated fume hood' is developed. The new hood applies a specially designed air curtain (which is generated by a narrow planar jet and a suction slot flow at low velocities) across the sash plane. The hood constructed for the study is full size and transparent for flow visualization. The aerodynamic characteristics are diagnosed by using the laser-light-sheet-assisted smoke flow visualization method. Four characteristic air-curtain flow modes are identified in the domain of jet and suction velocities when the sash remains static. Some of these characteristic flow modes have much improved flow patterns when compared with those of the conventional fume hoods. From the viewpoint of the aerodynamics and mass transport, the results indicate that the air curtain properly setup across the sash opening allows almost no sensible exchange of momentum and mass between the flowfields of the cabinet and the outside environment. Two standard sulfur hexafluoride (SF6) tracer gas concentration measurement methods following the ANSI/ASHRAE 110-1995 standard and the prEN14175 protocol for static test are employed to examine the contaminant leakage levels. Results of the rigorous examinations of leakage show unusually satisfactory hood performance. The leakage of the tracer gas can approach almost null (<0.001 p.p.m.) if the jet and suction velocities are properly adjusted. PMID:16857702

  3. EMISSIONS FROM THE BURNING OF VEGETATIVE DEBRIS IN AIR CURTAIN DESTRUCTORS

    EPA Science Inventory

    Although no data has been published on emissions from construction and demolition (C&D) debris burned in an air curtain destructor (ACD), a few studies provide information on emissions from combustion of vegetative debris. These results are compared to studies of open burning of...

  4. Development and evaluation of an air-curtain fume cabinet with considerations of its aerodynamics.

    PubMed

    Huang, R F; Wu, Y D; Chen, H D; Chen, C-C; Chen, C-W; Chang, C-P; Shih, T-S

    2007-03-01

    In order to avoid the inherent aerodynamic difficulties of the conventional fume hood, an innovative design--the 'air curtain-isolated fume hood' is developed. The new hood applies a specially designed air curtain (which is generated by a narrow planar jet and a suction slot flow at low velocities) across the sash plane. The hood constructed for the study is full size and transparent for flow visualization. The aerodynamic characteristics are diagnosed by using the laser-light-sheet-assisted smoke flow visualization method. Four characteristic air-curtain flow modes are identified in the domain of jet and suction velocities when the sash remains static. Some of these characteristic flow modes have much improved flow patterns when compared with those of the conventional fume hoods. From the viewpoint of the aerodynamics and mass transport, the results indicate that the air curtain properly setup across the sash opening allows almost no sensible exchange of momentum and mass between the flowfields of the cabinet and the outside environment. Two standard sulfur hexafluoride (SF6) tracer gas concentration measurement methods following the ANSI/ASHRAE 110-1995 standard and the prEN14175 protocol for static test are employed to examine the contaminant leakage levels. Results of the rigorous examinations of leakage show unusually satisfactory hood performance. The leakage of the tracer gas can approach almost null (<0.001 p.p.m.) if the jet and suction velocities are properly adjusted.

  5. Dynamic effects on containment of air-curtain fume hood operated with heat source.

    PubMed

    Chen, Jia-Kun; Huang, Rong Fung; Hsin, Pei-Yi

    2012-01-01

    This study focused on the leakage characteristics of the air-curtain fume hood that are subject to the influences of sash movement and walk-by motion while a high temperature heat source was operated in the hood. The flow visualization and trace gas test method were used to investigate the performance of the air-curtain fume hood. An electric heater was placed in the hood to simulate the heat source. The temperature of the heat source installed inside the air-curtain fume hood varied between 180°C and 300°C. Trace gas tests following the dynamic test methods of EN-14175 protocol were employed to measure the spillages of sulfur hexafluoride gas that were released in the hood. When subject to the influence of sash movement at a heat source temperature lower than 260°C, the leakage level was high at the suction velocity V(s) < 8 m/sec but was negligibly small at V(s) > 10 m/sec. When subject to the influence of people walk-by, the leakage level was relatively low at the suction velocity larger than 8 m/sec at sash height H = 50 cm. The height of the sash opening was a crucial parameter for the containment of the air-curtain fume hood. At the sash opening lower than about 25 cm, suction velocity less than or equal to 6 m/sec was enough to make the sulfur hexafluoride leakage less than the threshold value, 0.65 ppm, suggested by the BG Chemie. The air-curtain fume hood presented a great performance to resist the effect of drafts even though there was a high temperature heat source working in the hood. PMID:23009207

  6. Effects of walk-by and sash movement on contaminant leakage of air curtain-isolated fume hood.

    PubMed

    Huang, Rong Fung; Chen, Hong Da; Hung, Chien-Hsiung

    2007-12-01

    The effects of the walk-by motion and sash movement on the containment leakage of an air curtain-isolated fume hood were evaluated and compared with the results of a corresponding conventional fume hood. The air curtain was generated by a narrow planar jet issued from the double-layered sash and a suction slot-flow arranged on the floor of the hood just behind the doorsill. The conventional fume hood used for comparison had the major dimensions identical to the air-curtain hood. SF tracer-gas concentrations were released and measured following the prEN 14175-3:2003 protocol to examine the contaminant leakage levels. Experimental results showed that operating the air-curtain hood at the suction velocity above about 6 m/s and jet velocity about 1 m/s could provide drastically high containment performance when compared with the corresponding conventional fume hood operated at the face velocity of 0.5 m/s. The total air flow required for the air-curtain hood operated at 6 m/s suction velocity and 1 m/s jet velocity was about 20% less than that exhausted by the conventional fume hood. If the suction velocity of the air-curtain hood was increased above 8 m/s, the containment leakage during dynamic motions could be reduced to ignorable level (about 10(3) ppm). PMID:18212476

  7. Noise reduction by the application of an air-bubble curtain in offshore pile driving

    NASA Astrophysics Data System (ADS)

    Tsouvalas, A.; Metrikine, A. V.

    2016-06-01

    Underwater noise pollution is a by-product of marine industrial operations. In particular, the noise generated when a foundation pile is driven into the soil with an impact hammer is considered to be harmful for the aquatic species. In an attempt to reduce the ecological footprint, several noise mitigation techniques have been investigated. Among the various solutions proposed, the air-bubble curtain is often applied due to its efficacy in noise reduction. In this paper, a model is proposed for the investigation of the sound reduction during marine piling when an air-bubble curtain is placed around the pile. The model consists of the pile, the surrounding water and soil media, and the air-bubble curtain which is positioned at a certain distance from the pile surface. The solution approach is semi-analytical and is based on the dynamic sub-structuring technique and the modal decomposition method. Two main results of the paper can be distinguished. First, a new model is proposed that can be used for predictions of the noise levels in a computationally efficient manner. Second, an analysis is presented of the principal mechanisms that are responsible for the noise reduction due to the application of the air-bubble curtain in marine piling. The understanding of these mechanisms turns to be crucial for the exploitation of the maximum efficiency of the system. It is shown that the principal mechanism of noise reduction depends strongly on the frequency content of the radiated sound and the characteristics of the bubbly medium. For piles of large diameter which radiate most of the acoustic energy at relatively low frequencies, the noise reduction is mainly attributed to the mismatch of the acoustic impedances between the seawater and the bubbly layer. On the contrary, for smaller piles and when the radiated acoustic energy is concentrated at frequencies close to, or higher than, the resonance frequency of the air bubbles, the sound absorption within the bubbly layer

  8. Microbiological Evaluation of a Large-Volume Air Incinerator

    PubMed Central

    Barbeito, Manuel S.; Taylor, Larry A.; Seiders, Reginald W.

    1968-01-01

    Two semiportable metal air incinerators, each with a capacity of 1,000 to 2,200 standard ft3 of air per min, were constructed to sterilize infectious aerosols created for investigative work in a microbiological laboratory. Each unit has about the same air-handling capacity as a conventional air incinerator with a brick stack but costs only about one-third as much. The units are unique in that the burner housing and combustion chamber are air-tight and utilize a portion of the contaminated air stream to support combustion of fuel oil. Operation is continuous. Aerosols of liquid and dry suspensions of Bacillus subtilis var. niger spores and dry vegetative cells of Serratia marcescens were disseminated into the two incinerators to determine the conditions required for sterilization of contaminated air. With the latter organisms (concentration 2.03 × 107 cells/ft3 of air), a temperature of 525 F (274 C), measured at the firebox in front of the heat exchanger, was sufficient for sterilization. To sterilize 1.74 × 107 and 1.74 × 109 wet spores of B. subtilis per ft3, the required temperature ranged from 525 to 675 F (274 to 357 C) and 625 to 700 F (329 to 371 C), respectively. Air-sterilization temperature varied with each incinerator. This was because of innate differences of fabrication, different spore concentrations, and use of one or two burners With dry B. subtilis spores (1.86 × 108/ft3), a temperature of 700 F was required for sterilization. With dry spores, no difference was noted in the sterilization temperature for the two incinerators. PMID:4967758

  9. Development and characterization of an inclined air-curtain (IAC) fume hood.

    PubMed

    Huang, Rong Fung; Chen, Jia-Kun; Tang, Kun-Chi

    2015-06-01

    An inclined air-curtain (IAC) fume hood was developed and characterized using the laser-assisted smoke flow visualization technique and tracer-gas (sulphur hexafluoride) concentration detection method. The IAC fume hood features four innovative design elements: (i) an elongated suction slot installed at the hood roof with an offset towards the rear wall, (ii) an elongated up-blowing planar jet issued from the work surface near the hood inlet, (iii) two deflection plates installed at the left and right side walls, and (iv) a boundary-layer separation controller installed at the sash bottom. Baffles employed in conventional hoods were not used. The suction slot and the up-blowing planar jet formed a rearward-inclined push-pull air curtain. The deflection plates worked with the inclined air curtain to induce four rearward-inclined counter-rotating 'tornados.' The fumes generated in the hood were isolated behind the rearward-inclined air curtain, entrained by the low pressure within the vortical flows, moved up spirally, and finally exhausted through the suction slot. The risk of containment leakage due to the large recirculation vortex that usually exists behind the sash of conventional hoods was reduced by the boundary-layer separation controller. The results of the tracer-gas concentration detection method based on the EN-14175 method showed that the flow field created by the geometric configurations of the IAC hood presented characteristics of low leakage and high resistance to dynamic disturbances at low face velocities. The leakage levels measured by the static, sash movement, and walk-by tests were negligible at a face velocity of 0.26 m s(-1).

  10. Development and characterization of an inclined air-curtain (IAC) fume hood.

    PubMed

    Huang, Rong Fung; Chen, Jia-Kun; Tang, Kun-Chi

    2015-06-01

    An inclined air-curtain (IAC) fume hood was developed and characterized using the laser-assisted smoke flow visualization technique and tracer-gas (sulphur hexafluoride) concentration detection method. The IAC fume hood features four innovative design elements: (i) an elongated suction slot installed at the hood roof with an offset towards the rear wall, (ii) an elongated up-blowing planar jet issued from the work surface near the hood inlet, (iii) two deflection plates installed at the left and right side walls, and (iv) a boundary-layer separation controller installed at the sash bottom. Baffles employed in conventional hoods were not used. The suction slot and the up-blowing planar jet formed a rearward-inclined push-pull air curtain. The deflection plates worked with the inclined air curtain to induce four rearward-inclined counter-rotating 'tornados.' The fumes generated in the hood were isolated behind the rearward-inclined air curtain, entrained by the low pressure within the vortical flows, moved up spirally, and finally exhausted through the suction slot. The risk of containment leakage due to the large recirculation vortex that usually exists behind the sash of conventional hoods was reduced by the boundary-layer separation controller. The results of the tracer-gas concentration detection method based on the EN-14175 method showed that the flow field created by the geometric configurations of the IAC hood presented characteristics of low leakage and high resistance to dynamic disturbances at low face velocities. The leakage levels measured by the static, sash movement, and walk-by tests were negligible at a face velocity of 0.26 m s(-1). PMID:25690760

  11. The Controlled-Air Incinerator at Los Alamos

    SciTech Connect

    Newmyer, J.N.

    1994-04-01

    The Controlled-Air Incinerator (CAI) at Los Alamos is being modified and upgraded to begin routine operations treating low-level mixed waste (LLMW), radioactively contaminated polychlorinated biphenyl (PCB) wastes, low-level liquid wastes, and possibly transuranic (TRU) wastes. This paper describes those modifications. Routine waste operations should begin in late FY95.

  12. Incinerator apparatus

    SciTech Connect

    Crawford, J.P.

    1992-10-06

    This patent describes an incinerator apparatus. It comprises: a primary incinerator chamber; a secondary incinerator chamber coupled to the primary incinerator chamber by a passageway; a primary air input into the incinerator chamber; a secondary air input into the secondary incinerator chamber; a plurality of flame detector ports opening into the secondary incinerator chamber and each flame detector port being spaced in a predetermined relationship to each other; and a plurality of ultraviolet flame detectors.

  13. Air emissions from the incineration of hazardous waste.

    PubMed

    Oppelt, E T

    1990-10-01

    In the United States over the last ten years, concern over important disposal practices of the past has manifested itself in the passage of a series of federal and state-level hazardous waste clean-up and control statutes of unprecedented scope. The impact of these various statutes will be a significant modification of waste management practices. The more traditional and lowest cost methods of direct landfilling, storage in surface impoundments and deep-well injection will be replaced, in large measure, by waste minimization at the source of generation, waste reuse, physical/chemical/biological treatment, incineration and chemical stabilization/solidification methods. Of all of the "terminal" treatment technologies, properly-designed incineration systems are capable of the highest overall degree of destruction and control for the broadest range of hazardous waste streams. Substantial design and operational experience exists and a wide variety of commercial systems are available. Consequently, significant growth is anticipated in the use of incineration and other thermal destruction methods. The objective of this paper is to examine the current state of knowledge regarding air emissions from hazardous waste incineration in an effort to put the associated technological and environmental issues into perspective.

  14. Installation of a flow control device in an inclined air-curtain fume hood to control wake-induced exposure.

    PubMed

    Chen, Jia-Kun

    2016-08-01

    An inclined plate for flow control was installed at the lower edge of the sash of an inclined air-curtain fume hood to reduce the effects of the wake around a worker standing in front of the fume hood. Flow inside the fume hood is controlled by the inclined air-curtain and deflection plates, thereby forming a quad-vortex flow structure. Controlling the face velocity of the fume hood resulted in convex, straight, concave, and attachment flow profiles in the inclined air-curtain. We used the flow visualization and conducted a tracer gas test with a mannequin to determine the performance of two sash geometries, namely, the half-cylinder and inclined plate designs. When the half-cylinder design was used, the tracer gas test registered a high leakage concentration at Vf ≦ 57.1 fpm or less. This concentration occurred at the top of the sash opening, which was close to the breathing zone of the mannequin placed in front of the fume hood. When the inclined plate design was used, the containment was good, with concentrations of 0.002-0.004 ppm, at Vf ≦ 63.0 fpm. Results indicate that an inclined plate effectively reduces the leakage concentration induced by recirculation flow structures that form in the wake of a worker standing in front of an inclined air-curtain fume hood. PMID:26950527

  15. Installation of a flow control device in an inclined air-curtain fume hood to control wake-induced exposure.

    PubMed

    Chen, Jia-Kun

    2016-08-01

    An inclined plate for flow control was installed at the lower edge of the sash of an inclined air-curtain fume hood to reduce the effects of the wake around a worker standing in front of the fume hood. Flow inside the fume hood is controlled by the inclined air-curtain and deflection plates, thereby forming a quad-vortex flow structure. Controlling the face velocity of the fume hood resulted in convex, straight, concave, and attachment flow profiles in the inclined air-curtain. We used the flow visualization and conducted a tracer gas test with a mannequin to determine the performance of two sash geometries, namely, the half-cylinder and inclined plate designs. When the half-cylinder design was used, the tracer gas test registered a high leakage concentration at Vf ≦ 57.1 fpm or less. This concentration occurred at the top of the sash opening, which was close to the breathing zone of the mannequin placed in front of the fume hood. When the inclined plate design was used, the containment was good, with concentrations of 0.002-0.004 ppm, at Vf ≦ 63.0 fpm. Results indicate that an inclined plate effectively reduces the leakage concentration induced by recirculation flow structures that form in the wake of a worker standing in front of an inclined air-curtain fume hood.

  16. Note: A heated-air curtain design using the Coanda effect to protect optical access windows in high-temperature, condensing, and corrosive stack environments

    NASA Astrophysics Data System (ADS)

    Williams, Gustavious Paul; Keenan, Thomas L.; Herning, James; Kimblin, Clare; DiBenedetto, John; Anthony, Glen

    2011-01-01

    We present an air knife design for creating a heated air curtain to protect optical infrared access windows in high-temperature, condensing, and corrosive stack environments. The design uses the Coanda effect to turn the air curtain and to attach the air curtain to the window surface. The design was tested and verified on our 24 m stack and used extensively over a 6 yr period on several release stacks. During testing and subsequent use no detrimental changes to access window materials have been noted. This design allows stack monitoring without significantly affecting the stack flow profile or chemical concentration.

  17. Note: A heated-air curtain design using the Coanda effect to protect optical access windows in high-temperature, condensing, and corrosive stack environments.

    PubMed

    Williams, Gustavious Paul; Keenan, Thomas L; Herning, James; Kimblin, Clare; DiBenedetto, John; Anthony, Glen

    2011-01-01

    We present an air knife design for creating a heated air curtain to protect optical infrared access windows in high-temperature, condensing, and corrosive stack environments. The design uses the Coanda effect to turn the air curtain and to attach the air curtain to the window surface. The design was tested and verified on our 24 m stack and used extensively over a 6 yr period on several release stacks. During testing and subsequent use no detrimental changes to access window materials have been noted. This design allows stack monitoring without significantly affecting the stack flow profile or chemical concentration. PMID:21280868

  18. A case study of air enrichment in rotary kiln incineration

    SciTech Connect

    Melo, G.F.; Lacava, P.T.; Carvalho, J.A. Jr.

    1998-07-01

    This paper presents a case study of air enrichment in an industrial rotary kiln type incineration unit. The study is based on mass and energy balances, considering the combustion reaction of a mixture composed by the residue and the auxiliary fuel with air enriched with oxygen. The steps are shown for the primary chamber (rotary kiln) and secondary chamber (afterburner). The residence times in the primary and secondary chamber are 2.0 and 3.2 sec, respectively. The pressure is atmospheric in both chambers. Based on constant chamber gas residence time and gas temperature, it is shown that the residue input rates can be increased by one order of magnitude as air is substituted by pure oxygen. As the residue consumption rate in the rotary kiln is also dependent on residue physical characteristics (mainly size), the study was also carried out for different percentages of oxygen in the oxidizer gas.

  19. Flow and containment characteristics of a sash-less, variable-height inclined air-curtain fume hood.

    PubMed

    Huang, Rong Fung; Chen, Jia-Kun; Hung, Wei-Lun

    2013-08-01

    To increase containment efficiency and reduce energy consumption, a sash-less, variable-height inclined air-curtain fume hood (sIAC hood) was developed and tested by a laser-assisted flow visualization technique and tracer-gas detection method. This novel design requires neither sash nor baffle. The sIAC hood employed the inclined push-pull air-curtain technique and two deflection plates installed on the side walls of the hood to induce a tetra-vortex flow structure. The results of flow visualization showed that the slot for suction flow, offset from the slot for the up-blowing jet, caused the air curtain to incline towards the rear wall, thus enhancing the robustness of the tetra-vortex flow structure. Such a flow structure could reduce the influence of draught and human walk-by across the hood face. The containment around the central area of the hood was isolated by the inclined push-pull air curtain. The pollutants carried by the reverse flow induced by the flow separation were guided by the deflection plates from the side walls towards the rear, thus contributing to the formation of the tetra-vortex flow structure. The up/down movable ceiling positioned the suction slot close to the device's pollutant emission opening, but left room (less than 50 cm) for unrestricted hand movement. Testing was carried out based on the methodology described in EN14175. The results of a static test showed that small face velocities of 0.25 and 0.16 m s(-1) were enough to obtain nearly null leakage levels for low and tall pollutant sources. The results of a traversing plate test showed that the face velocity, 0.32 m s(-1), would cause negligibly small leakage levels. The sIAC hood could obtain significantly higher containment efficiency than a conventional hood by operating at a face velocity significantly lower than that of conventional hoods. PMID:23519947

  20. Flow and containment characteristics of a sash-less, variable-height inclined air-curtain fume hood.

    PubMed

    Huang, Rong Fung; Chen, Jia-Kun; Hung, Wei-Lun

    2013-08-01

    To increase containment efficiency and reduce energy consumption, a sash-less, variable-height inclined air-curtain fume hood (sIAC hood) was developed and tested by a laser-assisted flow visualization technique and tracer-gas detection method. This novel design requires neither sash nor baffle. The sIAC hood employed the inclined push-pull air-curtain technique and two deflection plates installed on the side walls of the hood to induce a tetra-vortex flow structure. The results of flow visualization showed that the slot for suction flow, offset from the slot for the up-blowing jet, caused the air curtain to incline towards the rear wall, thus enhancing the robustness of the tetra-vortex flow structure. Such a flow structure could reduce the influence of draught and human walk-by across the hood face. The containment around the central area of the hood was isolated by the inclined push-pull air curtain. The pollutants carried by the reverse flow induced by the flow separation were guided by the deflection plates from the side walls towards the rear, thus contributing to the formation of the tetra-vortex flow structure. The up/down movable ceiling positioned the suction slot close to the device's pollutant emission opening, but left room (less than 50 cm) for unrestricted hand movement. Testing was carried out based on the methodology described in EN14175. The results of a static test showed that small face velocities of 0.25 and 0.16 m s(-1) were enough to obtain nearly null leakage levels for low and tall pollutant sources. The results of a traversing plate test showed that the face velocity, 0.32 m s(-1), would cause negligibly small leakage levels. The sIAC hood could obtain significantly higher containment efficiency than a conventional hood by operating at a face velocity significantly lower than that of conventional hoods.

  1. Airborne nanoparticle exposures while using constant-flow, constant-velocity, and air-curtain-isolated fume hoods.

    PubMed

    Tsai, Su-Jung Candace; Huang, Rong Fung; Ellenbecker, Michael J

    2010-01-01

    Tsai et al. (Airborne nanoparticle exposures associated with the manual handling of nanoalumina and nanosilver in fume hoods. J Nanopart Res 2009; 11: 147-61) found that the handling of dry nanoalumina and nanosilver inside laboratory fume hoods can cause a significant release of airborne nanoparticles from the hood. Hood design affects the magnitude of release. With traditionally designed fume hoods, the airflow moves horizontally toward the hood cupboard; the turbulent airflow formed in the worker wake region interacts with the vortex in the constant-flow fume hood and this can cause nanoparticles to be carried out with the circulating airflow. Airborne particle concentrations were measured for three hood designs (constant-flow, constant-velocity, and air-curtain hoods) using manual handling of nanoalumina particles. The hood operator's airborne nanoparticle breathing zone exposure was measured over the size range from 5 nm to 20 mum. Experiments showed that the exposure magnitude for a constant-flow hood had high variability. The results for the constant-velocity hood varied by operating conditions, but were usually very low. The performance of the air-curtain hood, a new design with significantly different airflow pattern from traditional hoods, was consistent under all operating conditions and release was barely detected. Fog tests showed more intense turbulent airflow in traditional hoods and that the downward airflow from the double-layered sash to the suction slot of the air-curtain hood did not cause turbulence seen in other hoods. PMID:19933309

  2. The use of an air bubble curtain to reduce the received sound levels for harbor porpoises (Phocoena phocoena).

    PubMed

    Lucke, Klaus; Lepper, Paul A; Blanchet, Marie-Anne; Siebert, Ursula

    2011-11-01

    In December 2005 construction work was started to replace a harbor wall in Kerteminde harbor, Denmark. A total of 175 wooden piles were piled into the ground at the waters edge over a period of 3 months. During the same period three harbor porpoises were housed in a marine mammal facility on the opposite side of the harbor. All animals showed strong avoidance reactions after the start of the piling activities. As a measure to reduce the sound exposure for the animals an air bubble curtain was constructed and operated in a direct path between the piling site and the opening of the animals' semi-natural pool. The sound attenuation effect achieved with this system was determined by quantitative comparison of pile driving impulses simultaneously measured in front of and behind the active air bubble curtain. Mean levels of sound attenuation over a sequence of 95 consecutive pile strikes were 14 dB (standard deviation (s.d.) 3.4 dB) for peak to peak values and 13 dB (s.d. 2.5 dB) for SEL values. As soon as the air bubble curtain was installed and operated, no further avoidance reactions of the animals to the piling activities were apparent.

  3. Emissions from the burning of vegetative debris in air curtain destructors.

    PubMed

    Miller, C Andrew; Lemieux, Paul M

    2007-08-01

    Although air curtain destructors (ACDs) have been used for quite some time to dispose of vegetative debris, relatively little in-depth testing has been conducted to quantify emissions of pollutants other than CO and particulate matter. As part of an effort to prepare for possible use of ACDs to dispose of the enormous volumes of debris generated by Hurricanes Katrina and Rita, the literature on ACD emissions was reviewed to identify potential environmental issues associated with ACD disposal of construction and demolition (C&D) debris. Although no data have been published on emissions from C&D debris combustion in an ACD, a few studies provided information on emissions from the combustion of vegetative debris. These studies are reviewed, and the results compared with studies of open burning of biomass. Combustion of vegetative debris in ACD units results in significantly lower emissions of particulate matter and CO per unit of mass of debris compared with open pile burning. The available data are not sufficient to make general estimates regarding emissions of organic or metal compounds. The highly transient nature of the ACD combustion process, a minimal degree of operational control, and significant variability in debris properties make accurate prediction of ACD emissions impossible in general. Results of scoping tests conducted in preparation for possible in-depth emissions tests demonstrate the challenges associated with sampling ACD emissions and highlight the transient nature of the process. The environmental impacts of widespread use of ACDs for disposal of vegetative debris and their potential use to reduce the volume of C&D debris in future disaster response scenarios remain a considerable gap in understanding the risks associated with debris disposal options.

  4. Blowing a liquid curtain

    NASA Astrophysics Data System (ADS)

    Lhuissier, H.; Brunet, P.; Dorbolo, S.

    2015-11-01

    We study the response of a steady free-falling liquid curtain perturbed by focused air jets blowing perpendicularly against it. Asymmetric and symmetric perturbations are applied by using either a single pulsed jet or two identical steady jets facing each other. The response strongly depends on the curtain flow rate, and the location and strength of the perturbation. For pulsed asymmetric perturbations of increasing amplitude, sinuous wave, drop ejection, bubble ejection, and hole opening are successively observed. For steady symmetric perturbations, a steady hole forms downstream in the wake. For this latter case, we present a model for the curtain thickness and the location of the hole inthe wake which compares favorably to the experiments providing the perturbation is small enough (jet stagnation pressure smaller than curtain stagnation pressure) and the liquid viscosity is negligible.

  5. Air-pollution aspects of modular heat-recovery incinerators. Final report

    SciTech Connect

    Savoie, M.J.; Schanche, G.W.; Mikucki, W.J.

    1986-02-01

    This report provides technical information on modular solid-waste heat-recovery incinerators (HRIs), air-pollution regulations that apply to HRIs, air-pollutant emissions from currently marketed HRIs, and air-polution-control techniques for HRIs. The information will be useful to Army installations, Major Commands, and Corps of Engineers Districts that must plan and design HRI facilities.

  6. Development of an air bubble curtain to reduce underwater noise of percussive piling.

    PubMed

    Würsig, B; Greene, C R; Jefferson, T A

    2000-02-01

    Underwater bubbles can inhibit sound transmission through water due to density mismatch and concomitant reflection and absorption of sound waves. For the present study, a perforated rubber hose was used to produce a bubble curtain, or screen, around pile-driving activity in 6-8-m depth waters of western Hong Kong. The percussive hammer blow sounds of the pile driver were measured on 2 days at distances of 250, 500, and 1000 m; broadband pulse levels were reduced by 3-5 dB by the bubble curtain. Sound intensities were measured from 100 Hz to 25.6 kHz, and greatest sound reduction by the bubble curtain was evident from 400 to 6400 Hz. Indo-Pacific hump-backed dolphins (Sousa chinensis) occurred in the immediate area of the industrial activity before and during pile driving, but with a lower abundance immediately after it. While hump-backed dolphins generally showed no overt behavioral changes with and without pile driving, their speeds of travel increased during pile driving, indicating that bubble screening did not eliminate all behavioral responses to the loud noise. Because the bubble curtain effectively lowered sound levels within 1 km of the activity, the experiment and its application during construction represented a success, and this measure should be considered for other appropriate areas with high industrial noises and resident or migrating sound-sensitive animals.

  7. Flow and leakage characteristics of a sashless inclined air-curtain (sIAC) fume hood containing tall pollutant-generation tanks.

    PubMed

    Chen, Jia-Kun; Huang, Rong Fung; Hung, Wei-Lun

    2013-01-01

    In many fume hood applications, pollutant-generation devices are tall. Human operators of a fume hood must stand close to the front of the hood and lift up their hands to reach the top opening of the tall tank. In this situation, it is inconvenient to access the conventional hood because the sash acts as a barrier. Also, the bluff-body wake in front of the operator's chest causes a problem. By using laser-assisted smoke flow visualization and tracer-gas test methods, the present study examines a sashless inclined air-curtain (sIAC) fume hood for tall pollutant-generation tanks, with a mannequin standing in front of the hood face. The configuration of the sIAC fume hood, which had the important element of a backward-inclined push-pull air curtain, was different from conventional configurations. Depending on suction velocity, the backward-inclined air curtain had three characteristic modes: straight, concave, and attachment. A large recirculation bubble covering the area--from the hood ceiling to the work surface--was formed behind the inclined air curtain in the straight and concave modes. In the attachment mode, the inclined air curtain was attached to the rear wall of the hood, about 50 cm from the hood ceiling, and bifurcated into up and down streams. Releasing the pollutants at an altitude above where the inclined air curtain was attached caused the suction slot to directly draw up the pollutants. Releasing pollutants in the rear recirculation bubble created a risk of pollutants' leaking from the hood face. The tracer-gas (SF6) test results showed that operating the sIAC hood in the attachment mode, with the pollutants being released high above the critical altitude, could guarantee almost no leakage, even though a mannequin was standing in front of the sashless hood face. PMID:24195536

  8. Flow and leakage characteristics of a sashless inclined air-curtain (sIAC) fume hood containing tall pollutant-generation tanks.

    PubMed

    Chen, Jia-Kun; Huang, Rong Fung; Hung, Wei-Lun

    2013-01-01

    In many fume hood applications, pollutant-generation devices are tall. Human operators of a fume hood must stand close to the front of the hood and lift up their hands to reach the top opening of the tall tank. In this situation, it is inconvenient to access the conventional hood because the sash acts as a barrier. Also, the bluff-body wake in front of the operator's chest causes a problem. By using laser-assisted smoke flow visualization and tracer-gas test methods, the present study examines a sashless inclined air-curtain (sIAC) fume hood for tall pollutant-generation tanks, with a mannequin standing in front of the hood face. The configuration of the sIAC fume hood, which had the important element of a backward-inclined push-pull air curtain, was different from conventional configurations. Depending on suction velocity, the backward-inclined air curtain had three characteristic modes: straight, concave, and attachment. A large recirculation bubble covering the area--from the hood ceiling to the work surface--was formed behind the inclined air curtain in the straight and concave modes. In the attachment mode, the inclined air curtain was attached to the rear wall of the hood, about 50 cm from the hood ceiling, and bifurcated into up and down streams. Releasing the pollutants at an altitude above where the inclined air curtain was attached caused the suction slot to directly draw up the pollutants. Releasing pollutants in the rear recirculation bubble created a risk of pollutants' leaking from the hood face. The tracer-gas (SF6) test results showed that operating the sIAC hood in the attachment mode, with the pollutants being released high above the critical altitude, could guarantee almost no leakage, even though a mannequin was standing in front of the sashless hood face.

  9. Dow Chemical Building 703 incinerator exhaust and ambient air study. Final report

    SciTech Connect

    Trembly, M.G.; Amendola, G.A.

    1987-03-01

    The purposes of this study were: (1) determine the levels of dioxins and other toxic compounds in ambient air near the Dow Chemical Midland plant; and (2) determine the levels of dioxin and other chemicals in the Building 703 incinerator exhaust gas, wastewater, and ash, under normal operating conditions. The ambient air study included positive findings of low levels of dioxins at air monitoring sites near the plant fence line and at the site located in the city, ranging up to 0.0004 ug/m/sup 3/ for the less-toxic forms. The study concluded there were no readily observable relationships between the incinerator temperature, pressure, air-pollution control device and flow rates, and the levels of certain dioxins found in the exhaust during the three days of testing. However, there may be a relationship between the levels of dioxin fed into the incinerator and the levels of dioxin discharged.

  10. Welding Curtains

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Concept of transparent welding curtains made of heavy duty vinyl originated with David F. Wilson, President of Wilson Sales Company. In 1968, Wilson's curtains reduced glare of welding arc and blocked ultraviolet radiation. When later research uncovered blue light hazards, Wilson sought improvement of his products. He contracted Dr. Charles G. Miller and James B. Stephens, both of Jet Propulsion Laboratory (JPL), and they agreed to undertake development of a curtain capable of filtering out harmful irradiance, including ultraviolet and blue light and provide protection over a broad range of welding operation. Working on their own time, the JPL pair spent 3 years developing a patented formula that includes light filtering dyes and small particles of zinc oxide. The result was the Wilson Spectra Curtain.

  11. IMPACTS OF DIOXIN EMISSIONS FROM THE SHINKAMPO INCINERATOR TO THE U.S. NAVAL AIR FACILITY AT ATSUGI, JAPAN

    EPA Science Inventory

    The United States Naval Air Facility at Atsugi, Japan (NAF Atsugi) is located in the Kanto Plain area on the island of Honshu, Japan. Directly to the south of the facility, in the Tade River Valley, was the Shinkampo Incinerator Complex (SIC). The Incinerator is no longer in op...

  12. [Investigations of some chemical compounds produced by the incineration of old tires in the open air (author's transl)].

    PubMed

    Möse, J R; Binder, H; Raber, H; Eder, J

    1977-08-01

    The chemical compounds which are discharged from the site at which old tires are incinerated in the open air roughly corresponded to those of waste water. In the smoke "mushroom" above the site of incineration, at a height of 31 to 40 metres, many types and large quantities of polycyclic aromatic and also cancerogenic hydrocarbons were found adsorbed on soot particles. PMID:910585

  13. Incinerator performance: effects of changes in waste input and furnace operation on air emissions and residues.

    PubMed

    Astrup, Thomas; Riber, Christian; Pedersen, Anne Juul

    2011-10-01

    Waste incineration can be considered a robust technology for energy recovery from mixed waste. Modern incinerators are generally able to maintain relatively stable performance, but changes in waste input and furnace operation may affect emissions. This study investigated how inorganic air emissions and residue composition at a full-scale incinerator were affected by known additions of specific waste materials to the normal municipal solid waste (MSW) input. Six individual experiments were carried out (% ww of total waste input): NaCl (0.5%), shoes (1.6%), automobile shredder waste (14%), batteries (0.5%), poly(vinyl chloride) (5.5%) and chromate-cupper-arsenate impregnated wood (11%). Materials were selected based on chemical composition and potential for being included or excluded from the waste mix. Critical elements in the waste materials were identified based on comparison with six experiments including 'as-large-as-possible' changes in furnace operation (oxygen levels, air supply and burnout level) only using normal MSW as input. The experiments showed that effects from the added waste materials were significant in relation to: air emissions (in particular As, Cd, Cr, Hg, Sb), element transfer coefficients, and residue composition (As, Cd, Cl, Cr, Cu, Hg, Mo, Ni, Pb, S, Sb, Zn). Changes in furnace operation could not be directly linked to changes in emissions and residues. The results outlined important elements in waste which should be addressed in relation to waste incinerator performance. Likely ranges of element transfer coefficients were provided as the basis for sensitivity analysis of life-cycle assessment (LCA) results involving waste incinerator technologies.

  14. Incinerator performance: effects of changes in waste input and furnace operation on air emissions and residues.

    PubMed

    Astrup, Thomas; Riber, Christian; Pedersen, Anne Juul

    2011-10-01

    Waste incineration can be considered a robust technology for energy recovery from mixed waste. Modern incinerators are generally able to maintain relatively stable performance, but changes in waste input and furnace operation may affect emissions. This study investigated how inorganic air emissions and residue composition at a full-scale incinerator were affected by known additions of specific waste materials to the normal municipal solid waste (MSW) input. Six individual experiments were carried out (% ww of total waste input): NaCl (0.5%), shoes (1.6%), automobile shredder waste (14%), batteries (0.5%), poly(vinyl chloride) (5.5%) and chromate-cupper-arsenate impregnated wood (11%). Materials were selected based on chemical composition and potential for being included or excluded from the waste mix. Critical elements in the waste materials were identified based on comparison with six experiments including 'as-large-as-possible' changes in furnace operation (oxygen levels, air supply and burnout level) only using normal MSW as input. The experiments showed that effects from the added waste materials were significant in relation to: air emissions (in particular As, Cd, Cr, Hg, Sb), element transfer coefficients, and residue composition (As, Cd, Cl, Cr, Cu, Hg, Mo, Ni, Pb, S, Sb, Zn). Changes in furnace operation could not be directly linked to changes in emissions and residues. The results outlined important elements in waste which should be addressed in relation to waste incinerator performance. Likely ranges of element transfer coefficients were provided as the basis for sensitivity analysis of life-cycle assessment (LCA) results involving waste incinerator technologies. PMID:21930520

  15. Operation of a 1/10 scale mixed water incinerator air pollution control system

    SciTech Connect

    Burns, D.B.; Wong, A.; Walker, W.

    1996-08-01

    The Consolidated Incineration Facility (CIF) at the Savannah River Site is designed to treat solid and liquid RCRA hazardous and mixed wastes generated by site operations and clean-up activities. The technologies selected for use in the CIF air pollution control system (APCS) were based on reviews of existing commercial and DOE incinerators, on-site air pollution control experience, and recommendations from contracted consultants. In order to study the CIF APCS prior to operation, a 1/10 scale pilot facility, known as the Offgas Components Test Facility (OCTF) was constructed and has been in operation since late 1994. Its current mission is to demonstrate the design integrity of the CIF APCS and optimize equipment/instrument performance of the full scale production facility. Due to the nature of the wastes to be incinerated at the CIF, High Efficiency Particulate Air (HEPA) filters are used to remove hazardous and radioactive particulates from the exhaust gas stream before being released into the atmosphere. The HEPA filter change-out frequency has been a potential issue and was the first technical issue to be studied at the OCTF. Tests were conducted to evaluate the performance of HEPA filters under different operating conditions. These tests included evaluating the impact on HEPA life of scrubber operating parameters and the type of HEPA prefilter used. This pilot-scale testing demonstrated satisfactory HEPA filter life when using cleanable metal prefilters and high flows of steam and water in the offgas scrubber.

  16. Recycling of air pollution control residues from municipal solid waste incineration into lightweight aggregates.

    PubMed

    Quina, Margarida J; Bordado, João M; Quinta-Ferreira, Rosa M

    2014-02-01

    This work focuses on the assessment of technological properties and on the leaching behavior of lightweight aggregates (LWA) produced by incorporating different quantities of air pollution control (APC) residues from municipal solid waste (MSW) incineration. Currently this hazardous waste has been mostly landfilled after stabilization/solidification. The LWA were produced by pelletizing natural clay, APC residues as-received from incineration plant, or after a washing treatment, a small amount of oil and water. The pellets were fired in a laboratory chamber furnace over calcium carbonate. The main technological properties of the LWA were evaluated, mainly concerning morphology, bulk and particle densities, compressive strength, bloating index, water adsorption and porosity. Given that APC residues do not own expansive (bloating) properties, the incorporation into LWA is only possible in moderate quantities, such as 3% as received or 5% after pre-washing treatment. The leaching behavior of heavy metals from sintered LWA using water or acid solutions was investigated, and despite the low acid neutralization capacity of the synthetic aggregates, the released quantities were low over a wide pH range. In conclusion, after a washing pre-treatment and if the percentage of incorporation is low, these residues may be incorporated into LWA. However, the recycling of APC residues from MSW incineration into LWA does not revealed any technical advantage.

  17. Recycling of air pollution control residues from municipal solid waste incineration into lightweight aggregates.

    PubMed

    Quina, Margarida J; Bordado, João M; Quinta-Ferreira, Rosa M

    2014-02-01

    This work focuses on the assessment of technological properties and on the leaching behavior of lightweight aggregates (LWA) produced by incorporating different quantities of air pollution control (APC) residues from municipal solid waste (MSW) incineration. Currently this hazardous waste has been mostly landfilled after stabilization/solidification. The LWA were produced by pelletizing natural clay, APC residues as-received from incineration plant, or after a washing treatment, a small amount of oil and water. The pellets were fired in a laboratory chamber furnace over calcium carbonate. The main technological properties of the LWA were evaluated, mainly concerning morphology, bulk and particle densities, compressive strength, bloating index, water adsorption and porosity. Given that APC residues do not own expansive (bloating) properties, the incorporation into LWA is only possible in moderate quantities, such as 3% as received or 5% after pre-washing treatment. The leaching behavior of heavy metals from sintered LWA using water or acid solutions was investigated, and despite the low acid neutralization capacity of the synthetic aggregates, the released quantities were low over a wide pH range. In conclusion, after a washing pre-treatment and if the percentage of incorporation is low, these residues may be incorporated into LWA. However, the recycling of APC residues from MSW incineration into LWA does not revealed any technical advantage. PMID:24238798

  18. Using strobe lights, air bubble curtains for cost-effective fish diversion

    SciTech Connect

    McCauley, D.J.; Navarro, J.E.; Mountouri, L.

    1996-04-01

    Faced with a high, and potentially costly, rate of fish turbine passage, a northern Michigan hydro project owner began investigating the use of behavioral barriers to divert fish away from turbines. Strobe lights, with and without air bubbles, proved to be highly effective, yielding dramatic reductions in the number of fish entrained.

  19. Testing cleanable/reuseable HEPA prefilters for mixed waste incinerator air pollution control systems

    SciTech Connect

    Burns, D.B.; Wong, A.; Walker, B.W.; Paul, J.D.

    1997-08-01

    The Consolidated Incineration Facility (CIF) at the US DOE Savannah River Site is undergoing preoperational testing. The CIF is designed to treat solid and liquid RCRA hazardous and mixed wastes from site operations and clean-up activities. The technologies selected for use in the air pollution control system (APCS) were based on reviews of existing incinerators, air pollution control experience, and recommendations from consultants. This approach resulted in a facility design using experience from other operating hazardous/radioactive incinerators. In order to study the CIF APCS prior to operation, a 1/10 scale pilot facility, the Offgas Components Test Facility (OCTF), was constructed and has been in operation since late 1994. Its mission is to demonstrate the design integrity of the CIF APCS and optimize equipment/instrument performance of the full scale production facility. Operation of the pilot facility has provided long-term performance data of integrated systems and critical facility components. This has reduced facility startup problems and helped ensure compliance with facility performance requirements. Technical support programs assist in assuring all stakeholders the CIF can properly treat combustible hazardous, mixed, and low-level radioactive wastes. High Efficiency Particulate Air (HEPA) filters are used to remove hazardous and radioactive particulates from the exhaust gas strewn before being released into the atmosphere. The HEPA filter change-out frequency has been a potential issue and was the first technical issue to be studied at the OCTF. Tests were conducted to evaluate the performance of HEPA filters under different operating conditions. These tests included evaluating the impact on HEPA life of scrubber operating parameters and the type of HEPA prefilter used. This pilot-scale testing demonstrated satisfactory HEPA filter life when using cleanable metal prefilters and high flows of steam and water in the offgas scrubber. 8 figs., 2 tabs.

  20. Los Alamos Controlled Air Incinerator for radioactive waste. Volume II. Engineering design reference manual

    SciTech Connect

    Koenig, R.A.; Draper, W.E.; Newmyer, J.M.; Warner, C.L.

    1982-10-01

    This two-volume report is a detailed design and operating documentation of the Los Alamos National Laboratory Controlled Air Incinerator (CAI) and is an aid to technology transfer to other Department of Energy contractor sites and the commercial sector. Volume I describes the CAI process, equipment, and performance, and it recommends modifications based on Los Alamos experience. It provides the necessary information for conceptual design and feasibility studies. Volume II provides descriptive engineering information such as drawings, specifications, calculations, and costs. It aids duplication of the process at other facilities.

  1. Cotton gin trash incinerator-air heat project. Consultant report (final)

    SciTech Connect

    Not Available

    1980-05-01

    The California Energy Commission has funded the final phase of a four year project resulting in development of a successful system for burning cotton gin trash as a fuel providing the heat for ginning. The incinerator - air heater system installed in Corcoran, California operates continuously throughout the ginning season. Trash feeding and burning rate is automatically controlled from the combustion temperature, hot air temperature is controlled by the drying needs, and ashes are automatically removed from the system and pneumatically conveyed to the disposal site. The system complies with state and county air pollution codes by means of baghouse collectors. Savings in fossil fuel and trash disposal costs have demonstrated the equipment system is feasible for a four year payback at large, well utilized gins.

  2. National Emission Standard for Hazardous Air Pollutants compliance verification plan for the K-1435 Toxic Substances Control Act Incinerator

    SciTech Connect

    Ambrose, M.L.

    1986-07-28

    This documentation was prepared for submittal to the Environmental Protection Agency (EPA) in order to meet the requirements of the National Emissions Standards for Hazardous Air Pollutants (NESHAP). This document will emphasize the control of radioactive emissions from the K-1435 Toxic Substances Control Act (TSCA) Incinerator. The TSCA Incinerator is a dual purpose solid/liquid incinerator that is under construction at the Oak Ridge Gaseous Diffusion Plant to destroy radioactively contaminated polychlorinated biphenyls (PCBs) and other hazardous organic wastes in compliance with the TSCA and the Resource Conservation and Recovery Act (RCRA). These wastes are generated at the facilities managed by the Department of Energy, Oak Ridge Operations (DOE-ORO). Destruction of the PCBs and the hazardous organic wastes will be accomplished in a rotary kiln incinerator with an afterburner. The incinerator will thermally destroy the organic constituents of the liquids, solids, and sludges to produce an organically inert ash. In addition to the incinerator, an extensive off-gas treatment facility is being constructed to remove particulate and acidic gas air emissions.

  3. Life-cycle-assessment of the historical development of air pollution control and energy recovery in waste incineration.

    PubMed

    Damgaard, Anders; Riber, Christian; Fruergaard, Thilde; Hulgaard, Tore; Christensen, Thomas H

    2010-07-01

    Incineration of municipal solid waste is a debated waste management technology. In some countries it is the main waste management option whereas in other countries it has been disregarded. The main discussion point on waste incineration is the release of air emissions from the combustion of the waste, but also the energy recovery efficiency has a large importance. The historical development of air pollution control in waste incineration was studied through life-cycle-assessment modelling of eight different air pollution control technologies. The results showed a drastic reduction in the release of air emissions and consequently a significant reduction in the potential environmental impacts of waste incineration. Improvements of a factor 0.85-174 were obtained in the different impact potentials as technology developed from no emission control at all, to the best available emission control technologies of today (2010). The importance of efficient energy recovery was studied through seven different combinations of heat and electricity recovery, which were modelled to substitute energy produced from either coal or natural gas. The best air pollution control technology was used at the incinerator. It was found that when substituting coal based energy production total net savings were obtained in both the standard and toxic impact categories. However, if the substituted energy production was based on natural gas, only the most efficient recovery options yielded net savings with respect to the standard impacts. With regards to the toxic impact categories, emissions from the waste incineration process were always larger than those from the avoided energy production based on natural gas. The results shows that the potential environmental impacts from air emissions have decreased drastically during the last 35 years and that these impacts can be partly or fully offset by recovering energy which otherwise should have been produced from fossil fuels like coal or natural gas.

  4. Life-cycle-assessment of the historical development of air pollution control and energy recovery in waste incineration

    SciTech Connect

    Damgaard, Anders; Riber, Christian; Fruergaard, Thilde; Hulgaard, Tore; Christensen, Thomas H.

    2010-07-15

    Incineration of municipal solid waste is a debated waste management technology. In some countries it is the main waste management option whereas in other countries it has been disregarded. The main discussion point on waste incineration is the release of air emissions from the combustion of the waste, but also the energy recovery efficiency has a large importance. The historical development of air pollution control in waste incineration was studied through life-cycle-assessment modelling of eight different air pollution control technologies. The results showed a drastic reduction in the release of air emissions and consequently a significant reduction in the potential environmental impacts of waste incineration. Improvements of a factor 0.85-174 were obtained in the different impact potentials as technology developed from no emission control at all, to the best available emission control technologies of today (2010). The importance of efficient energy recovery was studied through seven different combinations of heat and electricity recovery, which were modelled to substitute energy produced from either coal or natural gas. The best air pollution control technology was used at the incinerator. It was found that when substituting coal based energy production total net savings were obtained in both the standard and toxic impact categories. However, if the substituted energy production was based on natural gas, only the most efficient recovery options yielded net savings with respect to the standard impacts. With regards to the toxic impact categories, emissions from the waste incineration process were always larger than those from the avoided energy production based on natural gas. The results shows that the potential environmental impacts from air emissions have decreased drastically during the last 35 years and that these impacts can be partly or fully offset by recovering energy which otherwise should have been produced from fossil fuels like coal or natural gas.

  5. Evaluation of air pollution abatement systems for multiple-hearth sewage sludge incinerators

    SciTech Connect

    Annamraju, G.; Gerstle, R.W.; Shah, Y.M.; Arora, M.L.

    1986-09-01

    Capital and annual costs were calculated for the application of six different air-pollution-control system options to municipal sewage-sludge incinerators that were using multiple-hearth furnaces. The systems involved three principal types of air-pollution equipment - wet scrubbers, fabric filters, and electrostatic precipitators - applied to three different plant sizes (plants incinerating 36, 72, and 300 tons of dry sludge per day in one, two, and eight multiple-hearth furnaces, respectively). The six options were: (1) venturi/tray scrubber with a 40-inch pressure drop, (2) fabric filter system operating at 500 deg and equipped with an upstream temperature control, (3) fabric filter system operating at 500 deg and equipped with a heat exchanger and a scrubber for SO/sub 2/ reduction, (4) electrostatic precipitator (ESP) with upstream limited temperature and humidity control, (5) same as Option 4 but with an additional downstream wet scrubber for SO/sub 2/ reduction, and (6) ESP with upstream temperature control and an SO/sub 2/ scrubber. Technical feasibility studies indicated that all three types of controls could achieve a total particulate removal efficiency of 99 percent. The venturi/tray scrubber option entailed the lowest capital cost, but annual operating costs were highest because of the high pressure drops and increased energy use.

  6. Effects of air pollution resulting from wire reclamation incineration on pulmonary function in children

    SciTech Connect

    Hsiue, T.R.; Lee, S.S.; Chen, H.I. )

    1991-09-01

    This study evaluated the effect of long-term air pollution resulting from wire reclamation incineration on pulmonary function in children. General physical examination and the determination of spirometric parameters, including forced vital capacity (FVC), forced expiratory volume in 1 s (FEV1), and forced mid-expiratory flow (FEF25-75%) were conducted in 400 primary school children between ages 9 and 11 years who reside in one control and three polluted areas. A survey using ATS-DLD-78-C questionnaire indicated that there were no significant differences in their demographic characteristics among children in the four areas under study. Those who had nonrespiratory diseases that might affect pulmonary function and those who failed to perform spirometric measurements were excluded from the study; therefore, 382 children were included in data analysis. The results revealed that (1) the mean values of FVC and FEV1 (expressed as percentage of predicted values calculated from Polgar's equations) in the polluted areas were significantly lower than the nonpolluted area (p less than 0.05), and (2) the incidence of pulmonary function abnormality in the polluted areas was greater than that of the nonpolluted area (p less than 0.05). The results indicated that air pollution produced by wire reclamation incineration can impair children's pulmonary function.

  7. A COMPARISON: ORGANIC EMISSIONS FROM HAZARDOUS WASTE INCINERATORS VERSUS THE 1990 TOXICS RELEASE INVENTORY AIR RELEASES.

    EPA Science Inventory

    Incineration is often the preferred technology for disposing of hazardous waste, and remediating Superfund sites. The effective implementation of this technology is frequently impeded by strong public opposition `to hazardous waste' incineration HWI). One of the reasons cited for...

  8. Removal efficiencies of PCDDs/PCDFs by air pollution control devices in municipal solid waste incinerators.

    PubMed

    Kim, S C; Jeon, S H; Jung, I R; Kim, K H; Kwon, M H; Kim, J H; Yi, J H; Kim, S J; You, J C; Jung, D H

    2001-01-01

    Removal efficiencies of polychlorinated dibenzo-p-dioxins/polychlorinated dibenzofurans (PCDDs/PCDFs) by air pollution control devices (APCDs) in the commercial-scale municipal solid waste (MSW) incinerators with a capacity of above 200 ton/day were evaluated. The removal efficiencies of PCDDs/PCDFs were up to 95% when the activated carbon (AC) was injected in front of electrostatic precipitator (EP). Spray dryer absorber/bag filter (SDA/BF) had high removal efficiency (99%)) of PCDDs/PCDFs when a mixture of lime and AC was sprayed into the SDA. When the AC was not added in scrubbing solution, the whole congeners of PCDDs/PCDFs were enriched in the wet scrubber (WS) with negative removal efficiencies of -25% to -5731%. Discharge of PCDDs/PCDFs was decreased with increasing the proportions of AC added in scrubbing solution. Selective catalytic reduction (SCR) system had the removal efficiencies of up to 93% during the test operation.

  9. Ready, set,...quit! A review of the controlled-air incinerator

    SciTech Connect

    Reader, G.E.

    1996-05-01

    The Los Alamos National Laboratory (LANL) Controlled-Air Incinerator (CAI) has had a long and productive past as a research and development tool. It now appears that use of the CAI to treat LANL legacy and other wastes under the Federal Facilities Compliance Act is no longer viable due to numerous programmatic problems. This paper will review the history of the CAI. Various aspects associated with the CAI and how those aspects resulted in the loss of this Department of Energy asset as a viable waste treatment option will also be discussed. Included are past missions and tests-CAI capabilities, emissions, and permits; Federal Facility Compliance Act and associated Agreement; National Environmental Policy Act coverage; cost; budget impacts; public perception; the U.S. Environmental Protection Agency Combustion Strategy; Independent Technical Review {open_quotes}Red{close_quotes} Team review; waste treatment alternative technologies; the New Mexico Environment Department; and future options and issues.

  10. Life-cycle assessment of selected management options for air pollution control residues from waste incineration.

    PubMed

    Fruergaard, Thilde; Hyks, Jiri; Astrup, Thomas

    2010-09-15

    Based on available technology and emission data seven selected management options for air-pollution-control (APC) residues from waste incineration were evaluated by life-cycle assessment (LCA) using the EASEWASTE model. Scenarios were evaluated with respect to both non-toxicity impact categories (e.g. global warming) and toxicity related impact categories (e.g. ecotoxicity and human toxicity). The assessment addressed treatment and final placement of 1 tonne of APC residue in seven scenarios: 1) direct landfilling without treatment (baseline), 2) backfilling in salt mines, 3) neutralization of waste acid, 4) filler material in asphalt, 5) Ferrox stabilization, 6) vitrification, and 7) melting with automobile shredder residues (ASR). The management scenarios were selected as examples of the wide range of different technologies available worldwide while at the same time using realistic technology data. Results from the LCA were discussed with respect to importance of: energy consumption/substitution, material substitution, leaching, air emissions, time horizon aspects for the assessment, and transportation distances. The LCA modeling showed that thermal processes were associated with the highest loads in the non-toxicity categories (energy consumption), while differences between the remaining alternatives were small and generally considered insignificant. In the toxicity categories, all treatment/utilization options were significantly better than direct landfilling without treatment (lower leaching), although the thermal processes had somewhat higher impacts than the others options (air emissions). Transportation distances did not affect the overall ranking of the management alternatives.

  11. Statistical estimate of mercury removal efficiencies for air pollution control devices of municipal solid waste incinerators.

    PubMed

    Takahashi, Fumitake; Kida, Akiko; Shimaoka, Takayuki

    2010-10-15

    Although representative removal efficiencies of gaseous mercury for air pollution control devices (APCDs) are important to prepare more reliable atmospheric emission inventories of mercury, they have been still uncertain because they depend sensitively on many factors like the type of APCDs, gas temperature, and mercury speciation. In this study, representative removal efficiencies of gaseous mercury for several types of APCDs of municipal solid waste incineration (MSWI) were offered using a statistical method. 534 data of mercury removal efficiencies for APCDs used in MSWI were collected. APCDs were categorized as fixed-bed absorber (FA), wet scrubber (WS), electrostatic precipitator (ESP), and fabric filter (FF), and their hybrid systems. Data series of all APCD types had Gaussian log-normality. The average removal efficiency with a 95% confidence interval for each APCD was estimated. The FA, WS, and FF with carbon and/or dry sorbent injection systems had 75% to 82% average removal efficiencies. On the other hand, the ESP with/without dry sorbent injection had lower removal efficiencies of up to 22%. The type of dry sorbent injection in the FF system, dry or semi-dry, did not make more than 1% difference to the removal efficiency. The injection of activated carbon and carbon-containing fly ash in the FF system made less than 3% difference. Estimation errors of removal efficiency were especially high for the ESP. The national average of removal efficiency of APCDs in Japanese MSWI plants was estimated on the basis of incineration capacity. Owing to the replacement of old APCDs for dioxin control, the national average removal efficiency increased from 34.5% in 1991 to 92.5% in 2003. This resulted in an additional reduction of about 0.86Mg emission in 2003. Further study using the methodology in this study to other important emission sources like coal-fired power plants will contribute to better emission inventories.

  12. Evaluation of pressure response in the Los Alamos controlled air incinerator during three incident scenarios

    SciTech Connect

    Vavruska, J.S.; Elsberry, K.; Thompson, T.K.; Pendergrass, J.A.

    1996-05-01

    The Los Alamos Controlled Air Incinerator (CAI) is a system designed to accept radioactive mixed waste containing alpha-emitting radionuclides. A mathematical model was developed to predict the pressure response throughout the offgas treatment system of the CAI during three hypothetical incident scenarios. The scenarios examined included: (1) loss of burner flame and failure of the flame safeguard system with subsequent reignition of fuel gas in the primary chamber, (2) pyrolytic gas buildup from a waste package due to loss of induced draft and subsequent restoration of induced draft, and (3) accidental charging of propellant spray cans in a solid waste package to the primary chamber during a normal feed cycle. For each of the three scenarios, the finite element computer model was able to determine the transient pressure surge and decay response throughout the system. Of particular interest were the maximum absolute pressures attainable at critical points in the system as well as maximum differential pressures across the high efficiency particulate air (HEPA) filters. Modeling results indicated that all three of the scenarios resulted in maximum HEPA filter differential pressures well below the maximum allowable levels.

  13. Method for incinerating sludges

    SciTech Connect

    Lalanne, J.; Nivert, J.; Tarascou, D.

    1980-03-25

    A method is disclosed for incinerating sludges. The process consists of the following steps: delivering a very homogeneous mixture of at least one combustible gas with a large amount of excess air at a plurality of locations in the lower part of an incineration zone; initiating the combustion of said mixture; finely pulverizing the sludge in the combustion zone; evacuating the incineration products from the incineration zone by carrying them along with the gaseous combustion products; and controlling precisely the temperature of the combustion products while they are being evacuated from the incineration zone.

  14. Growth rate and transition to turbulence of a gas curtain

    SciTech Connect

    Vorobieff, P.; Rightley, P.; Benjamin, R.

    1997-09-01

    The authors conduct shock-tube experiments to investigate Richtmyer-Meshkov (RM) instability of a narrow curtain of heavy gas (SF{sub 6}) embedded in lighter gas (air). Initial perturbations of the curtain can be varied, producing different flow patterns in the subsequent evolution of the curtain. Multiple-exposure video flow visualization provides images of the growth of the instability and its transition to turbulence, making it possible to extract quantitative information such as the width of the perturbed curtain. They demonstrate that the width of the curtain with initial perturbation on the downstream side is non-monotonic. As the initial perturbation undergoes phase inversion, the width of the curtain actually decreases before beginning to grow as the RM instability evolves.

  15. Effect of municipal solid waste incinerator types on characteristics of ashes from different air pollution control devices.

    PubMed

    Lu, Chien-Hsing; Chuang, Kui-Hao

    2016-01-01

    The purpose of this paper is to investigate the characteristics of fly and bottom ashes sampled from both fluidized bed (FB) and mass-burning (MB) municipal solid waste incinerators (MSWIs), respectively. Fly ashes from different locations at FB and MB MSWIs equipped with a cyclone, a semi-dry scrubber, and a bag filter as air pollution control devices were examined to provide the baseline information between physicochemical properties and leaching ability. Experimental results of leachability indicated that the bag filter fly ash (FB-FA(B)) from the FB incinerator meets Taiwan regulatory standards set through the toxicity characteristic leaching procedure. X-ray diffraction results revealed the presence of Cr5O12 and Pb2O3 in the cyclone fly ash (MB-FA(C)) and bag filter fly ash (MB-FA(B)), respectively, from the MB incinerator. To observe lead incorporation mechanism, mixture of simulate lead-laden waste with bed material were fired between 600 °C and 900 °C in a laboratory scale FB reactor. The results clearly demonstrate a substantial decrease in lead leaching ratio for products with an appropriate temperature. The concentration of Pb in the MB-FA(B) was 250 times that in the FB-FA(B), suggesting that incineration of MSW in FB is a good strategy for stabilizing hazardous metals.

  16. Effect of municipal solid waste incinerator types on characteristics of ashes from different air pollution control devices.

    PubMed

    Lu, Chien-Hsing; Chuang, Kui-Hao

    2016-01-01

    The purpose of this paper is to investigate the characteristics of fly and bottom ashes sampled from both fluidized bed (FB) and mass-burning (MB) municipal solid waste incinerators (MSWIs), respectively. Fly ashes from different locations at FB and MB MSWIs equipped with a cyclone, a semi-dry scrubber, and a bag filter as air pollution control devices were examined to provide the baseline information between physicochemical properties and leaching ability. Experimental results of leachability indicated that the bag filter fly ash (FB-FA(B)) from the FB incinerator meets Taiwan regulatory standards set through the toxicity characteristic leaching procedure. X-ray diffraction results revealed the presence of Cr5O12 and Pb2O3 in the cyclone fly ash (MB-FA(C)) and bag filter fly ash (MB-FA(B)), respectively, from the MB incinerator. To observe lead incorporation mechanism, mixture of simulate lead-laden waste with bed material were fired between 600 °C and 900 °C in a laboratory scale FB reactor. The results clearly demonstrate a substantial decrease in lead leaching ratio for products with an appropriate temperature. The concentration of Pb in the MB-FA(B) was 250 times that in the FB-FA(B), suggesting that incineration of MSW in FB is a good strategy for stabilizing hazardous metals. PMID:26226945

  17. Evaluation of an adsorption system to concentrate VOC in air streams prior to catalytic incineration.

    PubMed

    Campesi, María A; Luzi, Carlos D; Barreto, Guillermo F; Martínez, Osvaldo M

    2015-05-01

    Catalytic combustion is a well-developed process for the removal of volatile organic compounds (VOCs). In order to reduce both the amount of catalyst needed for incineration and the surface area of recuperative heat exchangers, an evaluation of the use of thermal swing adsorption as a previous step for VOC concentration is made. An air stream containing ethyl acetate and ethanol (employed as solvents in printing processes) has been taken as a case study. Based on the characteristics of the adsorption/desorption system and the properties of the stream to be treated, a monolithic rotor concentrator with activated carbon as adsorbent material is adopted. Once the temperature of the inlet desorption stream TD is chosen, the minimum possible desorption flow rate, WD,min, and the amount of adsorbent material can be properly defined according to the extent of the Mass Transfer Zone (MTZ) at the end of the adsorption stage. An approximate procedure to speed up the calculations needed for sizing the bed and predicting the operating variables is also presented. In the case studied here, the concentration of the VOC stream can reach 6 times that of the primary effluent when TD = 200 °C is chosen.

  18. Evaluation of an adsorption system to concentrate VOC in air streams prior to catalytic incineration.

    PubMed

    Campesi, María A; Luzi, Carlos D; Barreto, Guillermo F; Martínez, Osvaldo M

    2015-05-01

    Catalytic combustion is a well-developed process for the removal of volatile organic compounds (VOCs). In order to reduce both the amount of catalyst needed for incineration and the surface area of recuperative heat exchangers, an evaluation of the use of thermal swing adsorption as a previous step for VOC concentration is made. An air stream containing ethyl acetate and ethanol (employed as solvents in printing processes) has been taken as a case study. Based on the characteristics of the adsorption/desorption system and the properties of the stream to be treated, a monolithic rotor concentrator with activated carbon as adsorbent material is adopted. Once the temperature of the inlet desorption stream TD is chosen, the minimum possible desorption flow rate, WD,min, and the amount of adsorbent material can be properly defined according to the extent of the Mass Transfer Zone (MTZ) at the end of the adsorption stage. An approximate procedure to speed up the calculations needed for sizing the bed and predicting the operating variables is also presented. In the case studied here, the concentration of the VOC stream can reach 6 times that of the primary effluent when TD = 200 °C is chosen. PMID:25734958

  19. Characterization of air pollution control residues produced in a municipal solid waste incinerator in Portugal.

    PubMed

    Quina, Margarida J; Santos, Regina C; Bordado, João C; Quinta-Ferreira, Rosa M

    2008-04-01

    This study is mainly related with the physical and chemical characterization of a solid waste, produced in a municipal solid waste (MSW) incineration process, which is usually referred as air pollution control (APC) residue. The moisture content, loss on ignition (LOI), particle size distribution, density, porosity, specific surface area and morphology were the physical properties addressed here. At the chemical level, total elemental content (TC), total availability (TA) and the leaching behaviour with compliance tests were determined, as well as the acid neutralization capacity (ANC). The main mineralogical crystalline phases were identified, and the thermal behaviour of the APC residues is also shown. The experimental work involves several techniques such as laser diffraction spectrometry, mercury porosimetry, helium pycnometry, gas adsorption, flame atomic absorption spectrometry (FAAS), ion chromatography, scanning electron microscopy (SEM), X-ray fluorescence (XRF), X-ray diffraction (XRD) and simultaneous thermal analysis (STA). The results point out that the APC residues do not comply with regulations in force at the developed countries, and therefore the waste should be considered hazardous. Among the considered heavy metals, lead, zinc and chromium were identified as the most problematic ones, and their total elemental quantities are similar for several samples collected in an industrial plant at different times. Moreover, the high amount of soluble salts (NaCl, KCl, calcium compounds) may constitute a major problem and should be taken into account for all management strategies. The solubility in water is very high (more than 24% for a solid/liquid ratio of 10) and thus the possible utilizations of this residue are very limited, creating difficulties also in the ordinary treatments, such as in solidification/stabilization with binders.

  20. A Comparison of Organic Emissions from Hazardous Waste Incinerators Versus the 1990 Toxics Release Inventory Air Releases

    EPA Science Inventory

    Incineration is often the preferred technology for disposing of hazardous waste and remediating Superfund sites. The effective implementation of this technology is frequently impeded by strong public opposition to hazardous waste incineration (HWI). One of the reasons cited for t...

  1. Municipal waste incinerators: air and biological monitoring of workers for exposure to particles, metals, and organic compounds

    PubMed Central

    Maitre, A; Collot-Fertey, D; Anzivino, L; Marques, M; Hours, M; Stoklov, M

    2003-01-01

    Aims: To evaluate occupational exposure to toxic pollutants at municipal waste incinerators (MWIs). Methods: Twenty nine male subjects working near the furnaces in two MWIs, and 17 subjects not occupationally exposed to combustion generated pollutants were studied. Individual air samples were taken throughout the shift; urine samples were collected before and after. Stationary air samples were taken near potential sources of emission. Results: Occupational exposure did not result in the infringement of any occupational threshold limit value. Atmospheric exposure levels to particles and metals were 10–100 times higher in MWIs than at the control site. The main sources were cleaning operations for particles, and residue transfer and disposal operations for metals. MWI workers were not exposed to higher levels of polycyclic aromatic hydrocarbons than workers who are routinely in contact with vehicle exhaust. The air concentrations of volatile organic compounds and aldehydes were low and did not appear to pose any significant threat to human health. Only the measurement of chlorinated hydrocarbon levels would seem to be a reliable marker for the combustion of plastics. Urine metal levels were significantly higher at plant 1 than at plant 2 because of high levels of pollutants emanating from one old furnace. Conclusion: While biological monitoring is an easy way of acquiring data on long term personal exposure, air monitoring remains the only method that makes it possible to identify the primary sources of pollutant emission which need to be controlled if occupational exposure and environmental pollution are to be reduced. PMID:12883016

  2. Study of air pollution in the proximity of a waste incinerator

    NASA Astrophysics Data System (ADS)

    Barrera, V.; Calzolai, G.; Chiari, M.; Lucarelli, F.; Nava, S.; Giannoni, M.; Becagli, S.; Frosini, D.

    2015-11-01

    Montale is a small town in Tuscany characterised by high PM10 levels. Close to the town there is a waste incinerator plant. There are many concerns in the population and in the press about the causes of the high levels of pollution in this area. Daily PM10 samples were collected for 1 year by the FAI Hydra Dual sampler and analysed by different techniques in order to obtain a complete chemical speciation (elements by PIXE and ICP-MS, ions by Ion Chromatography, elemental and organic carbon by a thermo-optical instrument); hourly fine (<2.5 μm) and coarse (2.5-10 μm) PM samples were collected for shorter periods by the Streaker sampler and hourly elemental concentrations were obtained by PIXE analysis. Positive Matrix Factorization identified and quantified the major aerosol sources. Biomass burning turned out to be the most important source with an average percentage contribution to PM10 of 27% of and even higher percentages during the winter period when there are the highest PM10 concentrations. The contribution of the incinerator source has been estimated as about 6% of PM10.

  3. Leachability of organic and inorganic contaminants in ashes from lime-based air pollution control devices on a municipal waste incinerator

    SciTech Connect

    Sawell, S.E.; Bridle, T.R.; Constable, T.W. )

    1987-01-01

    Concern for public health, coupled with the implementation of more stringent guidelines for exhaust gas emissions from municipal solid waste (MSW) incineration units, has resulted in the development of more efficient flue gas cleaning systems. While these systems help reduce emissions of airborne contaminants, they also increase the quantities of ash which require proper disposal. Although recent studies have identified MSW incinerator bottom ash as a relatively benign waste, they have also indicated that MSW incinerator flue gas ashes may not be environmentally acceptable for landfilling. In 1984, the Wastewater Technology Centre began conducting a series of studies on the leachability of MSW incinerator ash, under Environment Canada's National Incinerator Testing and Evaluation Program (NITEP). The studies were undertaken to obtain additional information on the chemical and physical characteristics of these ashes and to assist in the development of solid waste management criteria for their ultimate disposal. This paper focuses on the results from the second study in the series, which was conducted on residues collected from an air pollution control (APC) pilot plant built by FLAKT Canada.

  4. Health risk assessment of air emissions from a municipal solid waste incineration plant--a case study.

    PubMed

    Cangialosi, Federico; Intini, Gianluca; Liberti, Lorenzo; Notarnicola, Michele; Stellacci, Paolo

    2008-01-01

    A health risk assessment of long-term emissions of carcinogenic and non-carcinogenic air pollutants has been carried out for the municipal solid waste incinerator (MSWI) of the city of Taranto, Italy. Ground level air concentrations and soil deposition of carcinogenic (Polychlorinated Dibenzo-p-Dioxins/Furans and Cd) and non-carcinogenic (Pb and Hg) pollutants have been estimated using a well documented atmospheric dispersion model. Health risk values for air inhalation, dermal contact, soil and food ingestion have been calculated based on a combination of these concentrations and a matrix of environmental exposure factors. Exposure of the surrounding population has been addressed for different release scenarios based on four pollutants, four exposure pathways and two receptor groups (children and adults). Spatial risk distribution and cancer excess cases projected from plant emissions have been compared with background mortality records. Estimated results based on the MSWI emissions show: (1) individual risks well below maximum acceptable levels, (2) very small incremental cancer risk compared with background level. PMID:17611096

  5. Health risk assessment of air emissions from a municipal solid waste incineration plant--a case study.

    PubMed

    Cangialosi, Federico; Intini, Gianluca; Liberti, Lorenzo; Notarnicola, Michele; Stellacci, Paolo

    2008-01-01

    A health risk assessment of long-term emissions of carcinogenic and non-carcinogenic air pollutants has been carried out for the municipal solid waste incinerator (MSWI) of the city of Taranto, Italy. Ground level air concentrations and soil deposition of carcinogenic (Polychlorinated Dibenzo-p-Dioxins/Furans and Cd) and non-carcinogenic (Pb and Hg) pollutants have been estimated using a well documented atmospheric dispersion model. Health risk values for air inhalation, dermal contact, soil and food ingestion have been calculated based on a combination of these concentrations and a matrix of environmental exposure factors. Exposure of the surrounding population has been addressed for different release scenarios based on four pollutants, four exposure pathways and two receptor groups (children and adults). Spatial risk distribution and cancer excess cases projected from plant emissions have been compared with background mortality records. Estimated results based on the MSWI emissions show: (1) individual risks well below maximum acceptable levels, (2) very small incremental cancer risk compared with background level.

  6. Municipal solid waste incineration in Canada

    SciTech Connect

    David, A.

    1996-12-31

    This paper discusses Environment Canada`s role and policy on solid waste management and the role of incineration in relation to other municipal solid waste (MSW) disposal methods. Incineration in Canada is reviewed in terms of the quantities of waste combusted, the number of incinerators/energy-from-waste facilities, air pollution control systems, incinerator types, rated capacities and energy production. Ash management is also briefly described. This paper summarizes recent decisions in Canada about two large scale proposals including incineration, and discusses the Province of Ontario`s ban on new incineration facilities.

  7. Treatment and use of air pollution control residues from MSW incineration: an overview.

    PubMed

    Quina, Margarida J; Bordado, João C; Quinta-Ferreira, Rosa M

    2008-11-01

    This work reviews strategies for the management of municipal solid waste incineration (MSWI) residues, particularly solid particles collected from flue gases. These tiny particles may be retained by different equipment, with or without additives (lime, activated carbon, etc.), and depending on the different possible combinations, their properties may vary. In industrial plants, the most commonly used equipment for heat recovery and the cleaning of gas emissions are: heat recovery devices (boiler, superheater and economiser); dry, semidry or wet scrubbers; electrostatic precipitators; bag filters; fabric filters, and cyclones. In accordance with the stringent regulations in force in developed countries, these residues are considered hazardous, and therefore must be treated before being disposed of in landfills. Nowadays, research is being conducted into specific applications for these residues in order to prevent landfill practices. There are basically two possible ways of handling these residues: landfill after adequate treatment or recycling as a secondary material. The different types of treatment may be grouped into three categories: separation processes, solidification/stabilization, and thermal methods. These residues generally have limited applications, mainly due to the fact that they tend to contain large quantities of soluble salts (NaCl, KCl, calcium compounds), significant amounts of toxic heavy metals (Pb, Zn, Cr, Cu, Ni, Cd) in forms that may easily leach out, and trace quantities of very toxic organic compounds (dioxin, furans). The most promising materials for recycling this residue are ceramics and glass-ceramic materials. The main purpose of the present paper is to review the published literature in this field. A range of studies have been summarized in a series of tables focusing upon management strategies used in various countries, waste composition, treatment processes and possible applications.

  8. Thermal treatment of stabilized air pollution control residues in a waste incinerator pilot plant. Part 1: Fate of elements and dioxins.

    PubMed

    Bergfeldt, Brita; Jay, Klaus; Seifert, Helmuth; Vehlow, Jürgen; Christensen, Thomas H; Baun, Dorthe L; Mogensen, Erhardt P B

    2004-02-01

    Air pollution control (APC) residues from municipal solid waste incinerator plants that are treated by means of the Ferrox process can be more safely disposed of due to reduction of soluble salts and stabilization of heavy metals in an iron oxide matrix. Further stabilization can be obtained by thermal treatment inside a combustion chamber of a municipal solid waste incinerator. The influence of the Ferrox products on the combustion process, the quality of the residues, and the partitioning of heavy metals between the various solids and the gas have been investigated in the Karlsruhe TAM-ARA pilot plant for waste incineration. During the experiments only few parameters were influenced. An increase in the SO2 concentration in the raw gas and slightly lower temperatures in the fuel bed could be observed compared with reference tests. Higher contents of Fe and volatile heavy metals such as Zn, Cd, Pb and partly Hg in the Ferrox products lead to increased concentration of these elements in the solid residues of the co-feeding tests. Neither the burnout nor the PCDD/F formation was altered by the addition of the Ferrox products. Co-feeding of treated APC residues seems to be a feasible approach for obtaining a single solid residue from waste incineration.

  9. [Modeling research on impact of pH on metals leaching behavior of air pollution control residues from MSW incinerator].

    PubMed

    Zhang, Hua; He, Pin-Jing; Li, Xin-Jie; Shao, Li-Ming

    2008-01-01

    Metals leaching behavior of air pollution control residues (APC residues) from municipal solid waste incinerator (MSWI) is greatly dependent on the leachate pH. pH-varying leaching tests and Visual MINTEQ modeling were conducted to investigate the mechanism of pH effect on the metals leaching characteristics from MSWI APC residues. Results show that, under acidic environment (for Cd, Zn, and Ni, pH < 8; for Pb, Cu, and Cr, pH < 6; for Al, pH < 4), leaching concentrations of metals increase greatly with the decrease of pH. Release of amphoteric metals, Pb and Zn, can be induced in strong alkaline leachate, reaching to 42 and 2.4 mg x L(-1) at pH 12.5 respectively. The equilibrium modeling results are well in agreement with the analyzed leaching concentrations. Variation of leachate pH changes the metals speciation in the leaching system, thus influencing their leaching concentrations. Speciation and leaching behavior of Pb, Zn, Cu, Ca, and Al mainly depend on their dissolution/precipitation reactions under different leachate pH. Leachability of Cd, Cr, and Ni can be lowered under acidic and neutral leachate pH due to HFO adsorption, while under alkaline conditions, the effect of adsorption is not significant and dissolution/precipitation becomes the major reactions controlling the leaching toxicity of these heavy metals.

  10. Source emission testing of the medical waste incinerator, Andrews Air Force Base, Maryland. Final report, 8-9 July 1992

    SciTech Connect

    O'Brien, R.J.

    1992-12-01

    Source emission testing for particulate matter and hydrogen chloride was conducted on the medical waste incinerator located at Bldg 1055, Andrews AFB MD. Compliance standards are found in Temporary Operating Permit No. 16-0655-2-0116N, issued by the State of Maryland on 20 October 1991. Test results indicate incinerator emissions are above the state standard for particulate matter and below the state standard for hydrogen chloride. Recommendations are made to reduce particulate emissions and to retest.... Particulate matter, Hydrogen chloride, Andrews AFB, Medical waste incinerator, Source emission testing.

  11. Emissions of polychlorinated dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs), and dioxin-like polychlorinated biphenyls (PCBs) to air from waste incinerators and high thermal processes in India.

    PubMed

    Thacker, Neeta; Sheikh, Javed; Tamane, S M; Bhanarkar, Anil; Majumdar, Deepanjan; Singh, Kanchan; Chavhan, Chatrapati; Trivedi, Jitendra

    2013-01-01

    This study investigated dioxins and dioxin-like polychlorinated biphenyls in gasses emitted from waste incinerators and thermal processes in central and western parts of India. The concentrations of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDDs/DFs) ranged from 0.0070 to 26.8140 ng toxicity equivalent (TEQ)/Nm(3), and those of dioxin-like polychlorinated biphenyls (PCBs) ranged from 0.0001 × 10(-1) to 0.0295 ng TEQ/Nm(3). The characteristics of mean PCDD/F I-TEQ concentration and congener profiles were studied over all the samples of air. In particular, a pattern consisting of a low proportion of dioxin-like PCBs and high proportion of PCDDs/DFs was common for all the samples from incinerators and high-temperature processes.

  12. Incineration and incinerator ash processing

    SciTech Connect

    Blum, T.W.

    1991-01-01

    Parallel small-scale studies on the dissolution and anion exchange recovery of plutonium from Rocky Flats Plant incinerator ash were conducted at the Los Alamos National Laboratory and at the Rocky Flats Plant. Results from these two studies are discussed in context with incinerator design considerations that might help to mitigate ash processing related problems. 11 refs., 1 fig., 1 tab.

  13. Distribution of PCDD/Fs in the fly ash and atmospheric air of two typical hazardous waste incinerators in eastern China.

    PubMed

    Chen, Tong; Zhan, Ming-Xiu; Lin, Xiao-Qing; Fu, Jian-Ying; Lu, Sheng-Yong; Li, Xiao-Dong

    2015-01-01

    Distribution of polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs) in the fly ash and atmospheric air of one medical waste incinerator (MWI) and one industrial hazardous waste incinerator (IHWI) plants were characterized. The PCDD/F concentrations of the stack gas (fly ash) produced from MWI and IHWI were 17.7 and 0.7 ng international toxic equivalent (I-TEQ)/Nm(3) (4.1 and 2.5 ng I-TEQ/g), respectively. For workplace air, the total concentrations of PCDD/Fs were 11.32 and 0.28 pg I-TEQ/Nm(3) (819.5 and 15.3 pg/Nm(3)). We assumed that the large differences of PCDD/F concentrations in workplace air were due to the differences in chlorine content of the waste, combustion conditions, and other contamination sources. With respect to the homologue profiles, the concentrations of PCDFs decreased with the increase of the substituted chlorine number for each site. Among all of the PCDD/F congeners, 2,3,4,7,8-PeCDF was the most important contributor to the I-TEQ value accounting for ca. 43 % of two sites. The gas/particle partition of PCDD/Fs in the atmosphere of the workplace in the MWI was also investigated, indicating that PCDD/Fs were more associated in the particle phase, especially for the higher chlorinated ones. Moreover, the ratio of the I-TEQ values in particle and gas phase of workplace air was 11.0. At last, the relationship between the distribution of PCDD/Fs in the workplace air and that from stack gas and fly ash was also analyzed and discussed. The high correlation coefficient might be a sign for diffuse gas emissions at transient periods of fumes escaping from the incinerator.

  14. Incineration of toluene and chlorobenzene in a laboratory incinerator

    SciTech Connect

    Mao, Z.; Mcintosh, M.J.; Demirgian, J.C.

    1992-01-01

    This paper reports experimental results on the incineration of toluene and chlorobenzene in a small laboratory incinerator. Temperature of the incinerator, excess air ratio and mean residence time were varied to simulate both complete and incomplete combustion conditions. The flue gas was monitored on line using Fourier transform infrared (FTIR) spectroscopy coupling with a heated long path cell (LPC). Methane, toluene, benzene, chlorobenzene, hydrogen chloride and carbon monoxide in the flue gas were simultaneously analyzed. Experimental results indicate that benzene is a major product of incomplete combustion (PIC) besides carbon monoxide in the incineration of toluene and chlorobenzene, and is very sensitive to combustion conditions. This suggests that benzene is a target analyle to be monitored in full-scale incinerators.

  15. Characteristics of ashes from different locations at the MSW incinerator equipped with various air pollution control devices

    SciTech Connect

    Song, Geum-Ju; Kim, Ki-Heon; Seo, Yong-Chil; Kim, Sam-Cwan

    2004-07-01

    The characteristics of ashes from different locations at a municipal solid waste incinerator (MSWI) equipped with a water spray tower (WST) as a cooling system, and a spray dryer adsorber (SDA), a bag filter (BF) and a selective catalytic reactor (SCR) as air pollution control devices (APCD) was investigated to provide the basic data for further treatment of ashes. A commercial MSWI with a capacity of 100 tons per day was selected. Ash was sampled from different locations during the normal operation of the MSWI and was analyzed to obtain chemical composition, basicity, metal contents and leaching behavior of heavy metals. Basicity and pH of ash showed a broad range between 0.08-9.07 and 3.5-12.3, respectively. Some major inorganics in ash were identified and could affect the basicity. This could be one of the factors to determine further treatment means. Partitioning of hazardous heavy metals such as Pb, Cu, Cr, Hg and Cd was investigated. Large portions of Hg and Cd were emitted from the furnace while over 90% of Pb, Cu and Cr remained in bottom ash. However 54% of Hg was captured by WST and 41% by SDA/BF and 3.6% was emitted through the stack, while 81.5% of Cd was captured by SDA/BF. From the analysis data of various metal contents in ash and leach analysis, such capturing of metal was confirmed and some heavy metals found to be easily released from ash. Based on the overall characteristics of ash in different locations at the MSWI during the investigation, some considerations and suggestions for determining the appropriate treatment methods of ash were made as conclusions.

  16. Thermal treatment of stabilized air pollution control residues in a waste incinerator pilot plant. Part 2: Leaching characteristics of bottom ashes.

    PubMed

    Baun, Dorthe L; Christensen, Thomas H; Bergfeldt, Brita; Vehlow, Jürgen; Mogensen, Erhardt P B

    2004-02-01

    With the perspective of generating only one solid residue from waste incineration, co-feeding of municipal solid waste and air pollution control residues stabilized by the Ferrox process was investigated in the TAMARA pilot plant incinerator as described in Bergfeldt et al. (Waste Management Research, 22, 49-57, 2004). This paper reports on leaching from the combined bottom ashes. Batch leaching test, pH-static leaching tests, availability tests and column leaching tests were used to characterize the leaching properties. The leaching properties are key information in the context of reuse in construction or in landfilling of the combined residue. In general, the combined bottom ashes had leaching characteristics similar to the reference bottom ash, which contained no APC residue. However, As and Pb showed slightly elevated leaching from the combined bottom ashes, while Cr showed less leaching. The investigated combined bottom ashes had contents of metals comparable to what is expected at steady state after continuous co-feeding of APC residues. Only Cd and Pb were partly volatilized (30-40%) during the incineration process and thus the combined bottom ashes had lower contents of Cd and Pb than expected at steady state. Furthermore, a major loss of Hg was, not surprisingly, seen and co-feeding of Ferrox-products together with municipal solid waste will require dedicated removal of Hg in the flue gas to prevent a build up of Hg in the system. In spite of this, a combined single solid residue from waste incineration seems to be a significant environmental improvement to current technology.

  17. Evaluation of pilot-scale air pollution control devices on a municipal waterfall incinerator. Project report, June 1978-June 1980

    SciTech Connect

    Hall, F.D.; Bruck, J.M.; Albrinck, D.N.

    1985-10-01

    The project report describes the results of a program for the testing of two pilot-scale pollution control devices, a fabric filter, and a venturi scrubber at the Braintree, Massachusetts Municipal Solid Waste Incinerator. It includes operation, sampling, and analytical efforts and outlines the plant operating conditions at the time of testing of the two pilot control devices. The Braintree Municipal Incinerator is a mass-burn, water-wall type consisting of two furnaces, each designed to burn 4.7 Mg (5 tons) per hour of unprocessed refuse.

  18. Curtains for Enceladus

    NASA Astrophysics Data System (ADS)

    Spitale, Joseph N.; Hurford, Terry A.; Rhoden, Alyssa R.; Berkson, Emily E.; Platts, Symeon S.

    2014-11-01

    We have produced maps of fracture activity in Enceladus' south-polar region at five different times spanning about one year in 2009 and 2010 using Cassini imaging data. In contrast to our prior work (Spitale and Porco 2007), where we triangulated the locations of eight prominent sources based on distant Cassini imaging observations, in this work we use more recent close-in imaging to characterize the activity in finer detail than possible in the earlier study. We apply a new approach that is more compatible with the geometry of the south-polar fractures than previous approaches (Spitale and Porco 2007, Porco et al. 2014) and which allows us to consider the entire range of activity detectable in the Cassini images. We note that many features in the high-resolution images that might otherwise be identified as discrete jets are fictitious, arising from the viewing geometry relative to continuous curtains of material emanating from the fractures. We find good agreement between average activity counts and the pattern of thermal anomalies seen by the Cassini Composite Infrared Spectrometer (Howett et al. 2011). The total length of active fracture at each mean anomaly is consistent with the variation of the material observed in the global plume by the Cassini Visual and Infrared Mapping Spectrometer (Hedman et al. 2013). Our results suggest that heating along the tiger stripes is significantly influenced by the cycle of fractures turning on and off, rather than solely by the magnitude of the material flux. We infer the presence of two unseen fractures parallel to Baghdad Sulcus that have become active as recently as 1000 years ago. Large fractures associated with Damascus, Baghdad, and Alexandria Sulci show no activity and may have recently become inactive. We note the sudden activation of three discrete jets on Baghdad Sulcus and place a lower bound of 120 m/s on the average particle velocities in two of those jets.

  19. Electrostatic curtain studies

    SciTech Connect

    Meyer, L C

    1992-05-01

    This report presents the results of experiments using electrostatic curtains (ESCS) as a transuranic (TRU) contamination control technique. The TRU contaminants included small (micrometer to sub micrometer) particles of plutonium and americium compounds associated with defense-related waste. Three series of experiments were conducted. The first was with uncontaminated Idaho National Engineering Laboratory (INEL) soil, the second used contaminated soil containing plutonium-239 (from a mixture of Rocky Flats Plant contaminated soil and INEL uncontaminated soil), and the third was uncontaminated INEL soil spiked with plutonium-239. All experiments with contaminated soil were conducted inside a glove box containing a dust generator, low volume cascade impactor (LVCI), electrostatic separator, and electrostatic materials. The data for these experiments consisted of the mass of dust collected on the various material coupons, plates, and filters; radiochemical analysis of selected samples; and photographs, as well as computer printouts giving particle size distributions and dimensions from the scanning electron microscope (SEM). The following results were found: (a) plutonium content (pCi/g) was found to increase with smaller soil particle sizes and (b) the electrostatic field had a stronger influence on smaller particle sizes compared to larger particle sizes. The SEM analysis indicated that the particle size of the tracer Pu239 used in the spiked soil experiments was below the detectable size limit (0.5 {mu}m) of the SEM and, thus, may not be representative of plutonium particles found in defense-related waste. The use of radiochemical analysis indicated that plutonium could be found on separator plates of both polarities, as well as passing through the electric field and collecting on LVCI filters.

  20. SRB thermal curtain design support

    NASA Technical Reports Server (NTRS)

    Dixon, Carl A.; Lundblad, Wayne E.; Koenig, John R.

    1992-01-01

    Improvements in SRB Thermal Curtain were identified by thermal design featuring: selection of materials capable of thermal protection and service temperatures by tri-layering quartz, S2 glass, and Kevlar in thinner cross section; weaving in single piece (instead of 24 sections) to achieve improved strength; and weaving to reduce manufacturing cost with angle interlock construction.

  1. Consolidated incineration facility technical support

    SciTech Connect

    Burns, D.; Looper, M.G.

    1993-12-31

    In 1996, the Savannah River Site plans to begin operation of the Consolidated Incineration Facility (CIF) to treat solid and liquid RCRA hazardous and mixed wastes. The Savannah River Technology Center (SRTC) leads an extensive technical support program designed to obtain incinerator and air pollution control equipment performance data to support facility start-up and operation. Key components of this technical support program include recently completed waste burn tests at both EPA`s Incineration Research Facility and at Energy and Environmental Research Corporation`s Solid Waste Incineration Test Facility. The main objectives for these tests were determining the fate of heavy metals, measuring organics destruction and removal efficiencies, and quantifying incinerator offgas particulate loading and size distribution as a function of waste feed characteristics and incineration conditions. In addition to these waste burning tests, the SRTC has recently completed installations of the Offgas Components Test Facility (OCTF), a 1/10 scale CIF offgas system pilot plant. This pilot facility will be used to demonstrate system operability and maintainability, evaluate and optimize equipment and instrument performance, and provide direct CIF start-up support. Technical support programs of this type are needed to resolve technical issues related with treatment and disposal of combustible hazardous, mixed, and low-level radioactive waste. Implementation of this program will minimize facility start-up problems and help insure compliance with all facility performance requirements.

  2. Spatial and seasonal distributions of polychlorinated dibenzo-p-dioxins and dibenzofurans and polychlorinated biphenyls around a municipal solid waste incinerator, determined using polyurethane foam passive air samplers.

    PubMed

    Gao, Lirong; Zhang, Qin; Liu, Lidan; Li, Changliang; Wang, Yiwen

    2014-11-01

    Twenty-six ambient air samples were collected around a municipal solid waste incinerator (MSWI) in the summer and winter using polyurethane foam passive air samplers, and analyzed to assess the spatial and seasonal distributions of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and polychlorinated biphenyls (PCBs). Three stack gas samples were also collected and analyzed to determine PCDD/F (971 pg m(-3) in average) and PCB (2,671 pg m(-3) in average) emissions from the MSWI and to help identify the sources of the pollutants in the ambient air. The total PCDD/F concentrations in the ambient air samples were lower in the summer (472-1,223 fg m(-3)) than the winter (561-3913 fg m(-3)). In contrast, the atmospheric total PCB concentrations were higher in the summer (716-4,902 fg m(-3)) than the winter (489-2,298 fg m(-3)). Principal component analysis showed that, besides emissions from the MSWI, the domestic burning of coal and wood also contributed to the presence of PCDD/Fs and PCBs in the ambient air. The PCDD/F and PCB spatial distributions were analyzed using ordinary Kriging Interpolation and limited effect was found to be caused by emissions from the MSWI. Higher PCDD/F and PCB concentrations were observed downwind of the MSWI than in the other directions, but the highest concentrations were not to be found in the direction with the greatest wind frequency which might be caused by emissions from domestic coal and wood burning. We used a systemic method including sampling and data analysis method which can provide pioneering information for characterizing risks and assessing uncertainty of PCDD/Fs and PCBs in the ambient air around MSWIs in China.

  3. Incinerator for the high speed combustion of waste products

    SciTech Connect

    Chang, S.F.

    1988-06-07

    A high speed burning furnace and incinerator, is described wherein the incinerator comprises a burner which includes a fuel tank, a mixer, and a controller for controlling the amount of the fuel and the air flow; a burner furnace, an incinerator means which includes mainly an outer pipe, an intermediate pipe, and an inner pipe which are all of transverse cylindrical shape. A neck portion on the right side of the inner pipe is of a truncated conical shape and is connected to the burning furnace; a preheating chamber located on the outer pipe of the incinerator means the incinerator being characterized in that the incinerator is provided with an endless ash conveyor with the incinerator, the ash conveyor to rotate the ash conveyor, the gears having as axis that is mounted within the incinerator and two partition plates inside the ash conveyor, the partition plates being located between the two transmitting gears.

  4. Source emission testing of the classified waste incinerator, griffiss Air Force Base, New York. Final report, 10-14 August 1992

    SciTech Connect

    Sylvia, D.A.

    1993-02-01

    Source emission testing for particulate matter and hydrogen chloride was conducted on the classified waste incinerator located in Bldg 13, Griffiss AFB NY. Compliance standards are found in Codes, Rules, and Regulations of the State of New York, Title 6. Test results indicate incinerator emissions are above the state standard for particulate matter. No hydrogen chloride standards are applicable to this incinerator. Recommendations are made to reduce particulate emissions and to retest.... Particulate matter, Hydrogen chloride, Griffiss AFB, Classified waste incinerator, Source emission testing.

  5. Pulsating incinerator hearth

    SciTech Connect

    Basic, J.N. Sr.

    1984-10-09

    A pulsating hearth for an incinerator wherein the hearth is suspended on a fixed frame for movement in a limited short arc to urge random size particles burning in a pile on the hearth in a predetermined path intermittently across the surface of the heart. Movement is imparted to the hearth in periodic pulses preferably by inflating sets of air bags mounted on the frame, which stroke the hearth to move it a short distance from an initial position and jar it against the frame, thus impelling the burning particles a short distance by inertia and concurrently stoking the burning pile upon each stroke, and then returning the hearth to its initial position. The hearth may also have a plurality of nozzles connected to a source of air for delivering gently flowing air to the burning pile on the hearth.

  6. Occurrence and impact of polychlorinated dibenzo-p-dioxins/dibenzofurans in the air and soil around a municipal solid waste incinerator.

    PubMed

    Zhou, Zhiguang; Ren, Yue; Chu, Jiazhi; Li, Nan; Zhen, Sen; Zhao, Hu; Fan, Shuang; Zhang, Hui; Xu, Pengjun; Qi, Li; Liang, Shuting; Zhao, Bin

    2016-06-01

    To assess the influence of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) on the environment in the vicinity of municipal solid waste incinerators (MSWIs), we determined the levels of PCDD/Fs in air and soil samples collected around a MSWI, which is the largest in China. The International Toxicity Equivalency Quantity (I-TEQ) concentrations of PCDD/Fs in air samples were from 0.0300 to 1.03pgI-TEQ/m(3) (0.445-13.6pg/m(3)), with an average of 0.237pgI-TEQ/m(3), while in soil samples they ranged from 0.520 to 3.40pgI-TEQ/g (2.41-88.7pg/g) with an average of 1.49pgI-TEQ/g. The concentrations of PCDD/Fs in air and soil samples were comparable to other areas, and PeCDFs were the dominant contributors, which was different from stack gas homologue patterns. Multivariate statistical analysis showed that PCDD/Fs emission from the MSWI did not directly affect the profiles of PCDD/Fs in air and soils, so that vehicles and unidentified emission sources should be considered. The daily inhalation levels of PCDD/Fs for children (0.0110 to 0.392pgI-TEQ/(kg·day) and adults (0.00600 to 0.221pgI-TEQ/(kg·day) near the MSWI were lower than the tolerable daily intake of 1.00 to 4.00pg WHO-TEQ/(kg·day), but in winter the values were higher than in summer. These results can be used as basic data for assessing the risk of PCDD/Fs exposure in residents living around this MSWI, and more monitoring programs and studies should be carried out around MSWIs. PMID:27266321

  7. Theoretical analysis of aqueous residues incineration with oxygen enriched flames

    SciTech Connect

    Lacava, P.T.; Pimenta, A.P.; Veras, C.A.G.; Carvalho, J.A. Jr.

    1999-10-01

    The use of oxygen to enrich the oxidizer can be an attractive alternate to increase incineration rates of a combustion chamber originally designed to operate with air. For a certain fuel flow rate, if some incineration parameters are held constant (as combustion chamber temperature, turbulence level, and residence time), an increase of incineration rates becomes possible with injection of oxygen. This work presents a theoretical evaluation of combustion air enrichment in a combustion chamber designed to incinerate aqueous residues using methane as fuel and air as oxidizer. Detailed chemistry was employed to predict pollutants formation. The overall process was investigated using the PSR routine from the CHEMKIN library.

  8. Alloy 45TM in waste incineration applications

    SciTech Connect

    Agarwal, D.C.; Kloewer, J.; Grossmann, G.K.

    1997-08-01

    Industrial and municipal wastes produced in the western society are being increasingly destroyed and managed by controlled high temperature incineration. Depending on the chemical make-up of the waste stream and operational parameters of the incinerator, a variety of high temperature corrosive environments are generated. Typically most of the modern incineration systems consist of a high temperature incinerator chamber, a heat recovery system, a quench section to further reduce the temperature of the flue gas stream and a host of air pollution control equipment to scrub acidic gases and control the particulate emissions. This paper describes the development of a new nickel-base high chromium-high silicon alloy, which has shown good resistance to high temperature corrosion in incinerator environments. Some field test data are also presented.

  9. Auxiliary incinerator apparatus

    SciTech Connect

    Crawford, J.P.

    1987-08-11

    An auxiliary incinerator apparatus is described for an incinerator comprising: a main incinerator having primary and secondary chambers formed with a plurality of refractory walls, the main incinerator having a main door into the primary chamber, and the main incinerator having an outer framework and walls spaced from the refractory walls, and one refractory wall having an opening therethrough; a refractory passageway extending from the opening in the main incinerator wall to the outer wall and having an opening through the outer wall; an auxiliary incinerator attached to one side of the main incinerator adjacent to the opening from the refractory passageway through the outer wall, the auxiliary incinerator having an incineration chamber formed therein with an opening thereinto; and auxiliary door means for opening and closing over the opening from the refractory passageway through the outer wall and for opening and closing over the opening into the auxiliary incinerator, whereby partially incinerated materials can be moved from the main incinerator to the auxiliary incinerator for further combustion.

  10. Method and apparatus for incinerating hazardous waste

    DOEpatents

    Korenberg, Jacob

    1990-01-01

    An incineration apparatus and method for disposal of infectious hazardous waste including a fluidized bed reactor containing a bed of granular material. The reactor includes a first chamber, a second chamber, and a vertical partition separating the first and second chambers. A pressurized stream of air is supplied to the reactor at a sufficient velocity to fluidize the granular material in both the first and second chambers. Waste materials to be incinerated are fed into the first chamber of the fluidized bed, the fine waste materials being initially incinerated in the first chamber and subsequently circulated over the partition to the second chamber wherein further incineration occurs. Coarse waste materials are removed from the first chamber, comminuted, and recirculated to the second chamber for further incineration. Any partially incinerated waste materials and ash from the bottom of the second chamber are removed and recirculated to the second chamber for further incineration. This process is repeated until all infectious hazardous waste has been completely incinerated.

  11. Mutagenicity of combustion emissions from a biomedical-waste incinerator

    SciTech Connect

    Driver, J.H.; Rogers, H.W.; Claxton, L.D.

    1989-01-01

    The Ames Salmonella typhimurium (TA98) assay was used to determine the mutagenicity of stack fly ash from a medical/pathological waste incinerator. Stack fly ash also collected from a boiler plant adjacent to the incinerator and ambient air particles (upwind and downwind of the incinerator and boiler facilities) were collected and bioassayed. Downwind particulate mutagenicity (revertants per cubic meter of air) was significantly greater than upwind particulate mutagenicity. Mutagenic emission-rate estimates (revertants per kilogram waste feed) for the incinerator and boiler were less than estimates for ash and downwind ambient-air particulate samples collected during incinerator auxiliary burner failure and demonstrated significant increase in mutagenicity compared to samples collected during routine incinerator operation.

  12. Continuous emission monitor for incinerators

    SciTech Connect

    Demirgian, J.

    1992-07-01

    This paper describes the development of Fourier transform infrared (FTIR) spectroscopy to continuous monitoring of incinerator emissions. Fourier transform infrared spectroscopy is well suited to this application because it can identify and quantify selected target analytes in a complex mixture without first separating the components in the mixture. Currently, there is no on-stream method to determine the destruction of hazardous substances, such as benzene, or to continuously monitor for hazardous products of incomplete combustion (PICs) in incinerator exhaust emissions. This capability is especially important because of Federal regulations in the Clean Air Act of 1990, which requires the monitoring of air toxics (Title III), the Resource Conservation and Recovery Act (RCRA), and the Toxic Substances Control Act (TSCA). An on-stream continuous emission monitor (CEM) that can differentiate species in the ppm and ppb range and can calculate the destruction and removal efficiency (DRE) could be used to determine the safety and reliability of incinerators. This information can be used to address reasonable public concern about incinerator safety and aid in the permitting process.

  13. Continuous emission monitor for incinerators

    SciTech Connect

    Demirgian, J.

    1992-01-01

    This paper describes the development of Fourier transform infrared (FTIR) spectroscopy to continuous monitoring of incinerator emissions. Fourier transform infrared spectroscopy is well suited to this application because it can identify and quantify selected target analytes in a complex mixture without first separating the components in the mixture. Currently, there is no on-stream method to determine the destruction of hazardous substances, such as benzene, or to continuously monitor for hazardous products of incomplete combustion (PICs) in incinerator exhaust emissions. This capability is especially important because of Federal regulations in the Clean Air Act of 1990, which requires the monitoring of air toxics (Title III), the Resource Conservation and Recovery Act (RCRA), and the Toxic Substances Control Act (TSCA). An on-stream continuous emission monitor (CEM) that can differentiate species in the ppm and ppb range and can calculate the destruction and removal efficiency (DRE) could be used to determine the safety and reliability of incinerators. This information can be used to address reasonable public concern about incinerator safety and aid in the permitting process.

  14. Incinerator system

    SciTech Connect

    Rathmell, R.K.

    1986-10-07

    An incineration system is described which consists of: combustion chamber structure having an inlet, an outlet, and burner structure in the combustion chamber, heat exchanger structure defining a chamber, divider structure between the heat exchanger chamber and the combustion chamber, an array of tubes extending through the heat exchanger chamber to the inlet of the combustion chamber at the divider structure. The heat exchanger chamber has an inlet coupled to the outlet of the combustion chamber for flow of the combustion products discharged from the combustion chamber through the heat exchanger chamber over the tubes in heat exchange relation, and an outlet for discharge of products from the heat exchanger chamber, aspirator sleeve structure secured to the divider structure between the heat exchanger chamber and the combustion chamber. Each aspirator sleeve receives the outlet end of a heat exchanger tube in slip fit relation so that the heat exchanger tubes are free to thermally expand longitudinally within the aspirator sleeves, and means for flowing vapor through the heat exchanger tubes into the combustion chamber at sufficiently high velocity to produce a reduced pressure effect in the aspirator sleeves in the heat exchanger chamber to draw a minor fraction of combustion products through the aspirator sleeves into the combustion chamber for reincineration.

  15. Numerical Simulation for Blast Analysis of Insulating Glass in a Curtain Wall

    NASA Astrophysics Data System (ADS)

    Deng, Rong-bing; Jin, Xian-long

    2010-04-01

    This article presents a three-dimensional numerical simulation method for blast response calculation of insulating glass in a curtain wall based on multi-material arbitrary Lagrangian-Eulerian (ALE) formulation and high-performance computer. The whole analytical model consists of explosion, air, curtain wall system, and ground. In particular, detailed components including insulating glass panels, aluminum column, silicone sealant, and other parts in the curtain wall are set up in terms of actual size and actual assembly. This model takes account of the coupling between blast and structure, nonlinear material behavior, brittle failure of glass material, and non-reflecting boundary definition. Final calculation has been performed on the Dawning 4000A supercomputer using the finite-element code LS-DYNA 971 MPP. The propagation of shock wave in air and blast-structure interaction is quite well estimated by numerical calculation. The damage regions of outer and inner glass are reproduced in the numerical simulations, which are in agreement with the experimental observations. The result provides a global understanding of insulating glass panels under blast loading in the curtain wall system. It may be generated to supplement experimental studies for developing appropriate design guidelines for curtain wall systems as well.

  16. Energy and mass balance calculations for incinerators

    SciTech Connect

    Lee, C.C.; Huffman, G.L.

    1998-01-01

    Calculation of energy and mass balance within an incinerator is a very important part of designing and/or evaluating the incineration process. This article describes a simple computer model used to calculate an energy and mass balance for a rotary kiln incinerator. The main purpose of the model is to assist US Environmental Protection Agency (EPA) permit writers in evaluating the adequacy of the data submitted by applicants seeking incinerator permits. The calculation is based on the assumption that a thermodynamic equilibrium condition exits within the combustion chamber. Key parameters that the model can calculate include theoretical combustion air, excess air needed for actual combustion cases, flue gas flow rate, and exit temperature.

  17. Incinerator technology overview

    NASA Astrophysics Data System (ADS)

    Santoleri, Joseph J.

    1991-04-01

    In the 1960's, much effort was expended on cleaning up the air and water. Air Quality and Water Quality Acts were written and inpleinented in many states and coninunities. New products such as unleaded gasoline and water base paints were developed to aid in minimizing pollution. Conversion from oil fired combustion systems to natural gas fired for comfort and industrial heating was the normal practice. In 1970, the Clean Air Act was passed. There was concern on how to safely dispose of hazardous wastes. Indiscriminate dumping of chemical process wastes had been the practice since the birth of the chemical industry in the USA. Land dumping, inadequate landfills, and river-ocean dumping were the most economical ways to dispose of chemical wastes. Processes that would have reduced or eliminated wastes were disregarded as being too costly. Many of the major chemical companies who regarded a safe environment as their responsibility installed waste treatment and disposal facilities on their plant sites. Many of these plants elected to use incinerators as the treatment process. This was not always the most economical method, but in many cases it was the only method of disposal that provided a safe and sure method of maximum destruction. Environmental concern over contamination from uncontrolled land disposal sites, and the emergence of tougher regulations for land disposal provide incentives for industry to employ a wide variety of traditional and advanced technologies for managing hazardous wastes. Incineration systems utilizing proper design, operation, and maintenance provides the safest and in the long run, the most economical avenue to the maximum level of destruction of organic hazardous wastes.

  18. Investigation of novel incineration technology for hospital waste.

    PubMed

    Liu, Yangsheng; Ma, Lanlan; Liu, Yushan; Kong, Guoxing

    2006-10-15

    Conventional incineration systems for hospital waste (HW) emit large amounts of particulate matter (PM) and heavy metals, as well as dioxins, due to the large excess air ratio. Additionally, the final process residues--bottom and fly ashes containing high levels of heavy metals and dioxins--also constitute a serious environmental problem. These issues faced by HW incineration processes are very similar to those confronted by conventional municipal solid waste (MSW) incinerators. In our previous work, we developed a novel technology integrating drying, pyrolysis, gasification, combustion, and ash vitrification (DPGCV) in one step, which successfully solved these issues in MSW incineration. In this study, many experiments are carried out to investigate the feasibility of employing the DPGCV technology to solve the issues faced by HW incineration processes, although there was no MSW incinerator used as a HW incinerator till now. Experiments were conducted in an industrial HW incineration plant with a capacity of 24 tons per day (TPD), located in Zhenzhou, Henan Province. Results illustrated that this DPGCV technology successfully solved these issues as confronted by the conventional HW incinerators and achieved the expected results for HW incineration as it did for MSW incineration. The outstanding performance of this DPGCV technology is due to the fact that the primary chamber acted as both gasifier for organic matter and vitrifying reactor for ashes, and the secondary chamber acted as a gas combustor. PMID:17120573

  19. Plutonium waste incineration using pyrohydrolysis

    SciTech Connect

    Meyer, M.L.

    1991-01-01

    Waste generated by Savannah River Site (SRS) plutonium operations includes a contaminated organic waste stream. A conventional method for disposing of the organic waste stream and recovering the nuclear material is by incineration. When the organic material is burned, the plutonium remains in the incinerator ash. Plutonium recovery from incinerator ash is highly dependent on the maximum temperature to which the oxide is exposed. Recovery via acid leaching is reduced for a high fired ash (>800{degree}C), while plutonium oxides fired at lower decomposition temperatures (400--800{degrees}C) are more soluble at any given acid concentration. To determine the feasibility of using a lower temperature process, tests were conducted using an electrically heated, controlled-air incinerator. Nine nonradioactive, solid, waste materials were batch-fed and processed in a top-heated cylindrical furnace. Waste material processing was completed using a 19-liter batch over a nominal 8-hour cycle. A processing cycle consisted of 1 hour for heating, 4 hours for reacting, and 3 hours for chamber cooling. The water gas shift reaction was used to hydrolyze waste materials in an atmosphere of 336% steam and 4.4% oxygen. Throughput ranged from 0.14 to 0.27 kg/hr depending on the variability in the waste material composition and density.

  20. Plutonium waste incineration using pyrohydrolysis

    SciTech Connect

    Meyer, M.L.

    1991-12-31

    Waste generated by Savannah River Site (SRS) plutonium operations includes a contaminated organic waste stream. A conventional method for disposing of the organic waste stream and recovering the nuclear material is by incineration. When the organic material is burned, the plutonium remains in the incinerator ash. Plutonium recovery from incinerator ash is highly dependent on the maximum temperature to which the oxide is exposed. Recovery via acid leaching is reduced for a high fired ash (>800{degree}C), while plutonium oxides fired at lower decomposition temperatures (400--800{degrees}C) are more soluble at any given acid concentration. To determine the feasibility of using a lower temperature process, tests were conducted using an electrically heated, controlled-air incinerator. Nine nonradioactive, solid, waste materials were batch-fed and processed in a top-heated cylindrical furnace. Waste material processing was completed using a 19-liter batch over a nominal 8-hour cycle. A processing cycle consisted of 1 hour for heating, 4 hours for reacting, and 3 hours for chamber cooling. The water gas shift reaction was used to hydrolyze waste materials in an atmosphere of 336% steam and 4.4% oxygen. Throughput ranged from 0.14 to 0.27 kg/hr depending on the variability in the waste material composition and density.

  1. Evaluation of medical waste incinerators in Alexandria.

    PubMed

    Labib, Ossama A; Hussein, Ahmed H; El-Shall, Waffaa I; Zakaria, Adel; Mohamed, Mona G

    2005-01-01

    Medical establishments play important roles in different activities by using of modern technology to serve the humans and the environment through different departments in the establishment and its firms. Medical wastes are considered as a hazardous waste because they contain toxic materials, infectious, or non-infectious wastes and they are considered as a hazard to millions of patients, health care workers, and visitors. Treatment processes for medical wastes comprise autoclaving, microwaving, chemical disinfection, irradiation, plasma system, and incineration. Incineration is a thermal process, which destroys most of the waste including microorganisms. Combustion process must be under controlled conditions to convert wastes containing hazardous materials into mineral residues and gases. Hospital waste incinerators may emit a number of pollutants depending on the waste being incinerated. These pollutants include particulate matter, acid gases, toxic metals, and toxic organic compounds products of incomplete combustion, e.g., dioxins, furans, and carbon monoxide, as well as sulfur oxides and nitrogen oxides. So, there should be a reduction of emissions of most of these pollutants by air pollution control devices. This study was conducted in 51 medical establishments (ME) in Alexandria. To evaluate its incinerators. It was found that only 31.4% of total ME have their own incinerators to treat their medical waste. Also, the incinerators conditions were poor with incomplete combustion. So, the study recommend handling of all medical wastes of ME in Alexandria by the company which is responsible now for management of domestic solid wastes of the city.

  2. Effects of injected activated carbon and solidification treatment on the leachability of polychlorinated dibenzo-p-dioxins and dibenzofurans from air pollution control residues of municipal waste incineration.

    PubMed

    Hsi, Hsing-Cheng; Wang, Lin-Chi; Yu, Tsung-Hsien

    2007-04-01

    To assess the effectiveness of the injected activated carbon, cement, and sulfur-containing chelating agent in controlling polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) release from the surface of air pollution control (APC) residues, this study examined the leachability of PCDD/Fs from APC residues generated by municipal solid waste incinerators. Results showed that PCDD/Fs were stably retained in the APC residues when the samples were leached with acetic acid solution. Highly chlorinated PCDD/F homologues (i.e., hepta- and octa-CDDs and CDFs) were relatively easy to leach. The leaching percentages of PCDD/Fs from raw APC residue samples containing activated carbon were smaller than those from samples without activated carbon, especially when n-hexane was used as the leachant. These results indicate that the flue gas injected activated carbon not only controls PCDD/F emissions, but also suppresses the leachability of PCDD/Fs from the APC residues. Solidification/stabilization (S/S) processes with 30wt% cement and 5wt% sulfur-containing agent can additionally decrease the leachability of PCDD/Fs with humic acid. Using n-hexane as the leachant, S/S processes increased the leachability of PCDD/Fs. Various low chlorinated PCDD/F congeners were moreover leached out of the APC residue samples, markedly increasing the leachate toxicity. The enhancement of leachability and toxicity owing to S/S processes may negatively impact the environment when APC residues are exposed to nonpolar organic solvents.

  3. Solid waste combustion for alpha waste incineration

    SciTech Connect

    Orloff, D.I.

    1981-02-01

    Radioactive waste incinerator development at the Savannah River Laboratory has been augmented by fundamental combustion studies at the University of South Carolina. The objective was to measure and model pyrolysis and combustion rates of typical Savannah River Plant waste materials as a function of incinerator operating conditions. The analytical models developed in this work have been incorporated into a waste burning transient code. The code predicts maximum air requirement and heat energy release as a function of waste type, package size, combustion chamber size, and temperature. Historically, relationships have been determined by direct experiments that did not allow an engineering basis for predicting combustion rates in untested incinerators. The computed combustion rates and burning times agree with measured values in the Savannah River Laboratory pilot (1 lb/hr) and full-scale (12 lb/hr) alpha incinerators for a wide variety of typical waste materials.

  4. Water Motion in a Water Curtain Head for Cleaning a Large Glass Plate

    NASA Astrophysics Data System (ADS)

    Habuka, Hitoshi; Yoshii, Hirofumi; Kobayashi, Shinji; Hattori, Nozomi; Ikuma, Shingo; Kato, Masayuki; Takeuchi, Takashi

    2007-02-01

    Water motion in a water curtain head, which generates a thin and wide water screen to clean a large, thin and flat glass plate, is studied using numerical calculations based on fluid dynamics and experimental observation of the motion of colored water and small air bubbles in the water channel of the water curtain head. The colored water motion, the observed position of the remaining small air bubbles, and the time required to completely remove the air bubbles were in agreement with the behavior derived from the calculations, such as the water flow pattern and the region having low pressure. In conclusion, the most important factor for the design of the water curtain head is the direction of the water recirculation, which is governed by the distance between the small water-ejection pipes arranged along the wall of the water channel. The entire design of a very wide water curtain head can be performed by considering the water flow in a local region.

  5. Nanomaterial disposal by incineration.

    PubMed

    Holder, Amara L; Vejerano, Eric P; Zhou, Xinzhe; Marr, Linsey C

    2013-09-01

    As nanotechnology-based products enter into widespread use, nanomaterials will end up in disposal waste streams that are ultimately discharged to the environment. One possible end-of-life scenario is incineration. This review attempts to ascertain the potential pathways by which nanomaterials may enter incinerator waste streams and the fate of these nanomaterials during the incineration process. Although the literature on incineration of nanomaterials is scarce, results from studies of their behavior at high temperature or in combustion environments for other applications can help predict their fate within an incinerator. Preliminary evidence suggests nanomaterials may catalyze the formation or destruction of combustion by-products. Depending on their composition, nanomaterials may undergo physical and chemical transformations within the incinerator, impacting their partitioning within the incineration system (e.g., bottom ash, fly ash) and the effectiveness of control technology for removing them. These transformations may also drastically affect nanomaterial transport and impacts in the environment. Current regulations on incinerator emissions do not specifically address nanomaterials, but limits on particle and metal emissions may prove somewhat effective at reducing the release of nanomaterials in incinerator effluent. Control technology used to meet these regulations, such as fabric filters, electrostatic precipitators, and wet electrostatic scrubbers, are expected to be at least partially effective at removing nanomaterials from incinerator flue gas. PMID:23880913

  6. Nanomaterial disposal by incineration.

    PubMed

    Holder, Amara L; Vejerano, Eric P; Zhou, Xinzhe; Marr, Linsey C

    2013-09-01

    As nanotechnology-based products enter into widespread use, nanomaterials will end up in disposal waste streams that are ultimately discharged to the environment. One possible end-of-life scenario is incineration. This review attempts to ascertain the potential pathways by which nanomaterials may enter incinerator waste streams and the fate of these nanomaterials during the incineration process. Although the literature on incineration of nanomaterials is scarce, results from studies of their behavior at high temperature or in combustion environments for other applications can help predict their fate within an incinerator. Preliminary evidence suggests nanomaterials may catalyze the formation or destruction of combustion by-products. Depending on their composition, nanomaterials may undergo physical and chemical transformations within the incinerator, impacting their partitioning within the incineration system (e.g., bottom ash, fly ash) and the effectiveness of control technology for removing them. These transformations may also drastically affect nanomaterial transport and impacts in the environment. Current regulations on incinerator emissions do not specifically address nanomaterials, but limits on particle and metal emissions may prove somewhat effective at reducing the release of nanomaterials in incinerator effluent. Control technology used to meet these regulations, such as fabric filters, electrostatic precipitators, and wet electrostatic scrubbers, are expected to be at least partially effective at removing nanomaterials from incinerator flue gas.

  7. 17. Rear (west) side of incinerator. Incinerator control panel on ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. Rear (west) side of incinerator. Incinerator control panel on the right. Looking south towards scrubber cell. - Plutonium Finishing Plant, Waste Incinerator Facility, 200 West Area, Richland, Benton County, WA

  8. Incinerator for the high speed combustion of waste products

    SciTech Connect

    Chang, S.F.

    1986-12-30

    A high speed combustion incinerator is described comprising: a burner which includes a fuel tank, a mixer, and a controller for controlling the amount of the fuel and the air flow; a burner furnace; an incinerator means which includes mainly an outer pipe, an intermediate pipe, and an inner pipe which are all of transverse cylindrical shape. A neck portion on the right side of the inner pipe is of a truncated conical shape and is connected to the burning furnace; a preheating chamber located on the outer pipe of the incinerator means; and a conveyor located in the preheating chamber for conveying waste product to be burned into the incinerator means.

  9. 40 CFR 60.2015 - What is a new incineration unit?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false What is a new incineration unit? 60.2015 Section 60.2015 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... Industrial Solid Waste Incineration Units Applicability § 60.2015 What is a new incineration unit? (a) A...

  10. Shredder and incinerator technology for treatment of commercial transuranic wastes

    SciTech Connect

    Oma, K.H.; Westsik, J.H. Jr.; Ross, W.A.

    1985-10-01

    This report describes the selection and evaluation of process equipment to accomplish the shredding and incineration of commercial TRU wastes. The primary conclusions derived from this study are: Shredding and incineration technology appears effective for converting simulated commercial TRU wastes to a noncombustible form. The gas-heated controlled-air incinerator received the highest technical ranking. On a scale of 1 to 10, the incinerator had a Figure-of-Merit (FOM) number of 7.0. This compares to an FOM of 6.1 for the electrically heated controlled-air incinerator and an FOM of 5.8 for the rotary kiln incienrator. The present worth costs of the incineration processes for a postulated commercial reprocessing plant were lowest for the electrically heated and gas-heated controlled-air incinerators with costs of $16.3 M and $16.9 M, respectively (1985 dollars). Due to higher capital and operating costs, the rotary kiln process had a present worth cost of $20.8 M. The recommended process from the three evaluated for the commercial TRU waste application is the gas-heated controlled-air incinerator with a single stage of shredding for feed pretreatment. This process had the best cost-effectiveness ratio of 1.0 (normalized). The electrically heated controller-air incinerator had a rating of 1.2 and the rotary kiln rated a 1.5. Most of the simulated wastes were easily processed by the low-speed shredders evaluated. The HEPA filters proved difficult to process, however. Wood-framed HEPA filters tended to ride on the cutter wheels and spacers without being gripped and shredded. The metal-framed HEPA filters and other difficult to shred items caused the shredders to periodically reach the torque limit and go into an automatic reversal cycle; however, the filters were eventually processed by the units. All three incinerators were ineffective for oxidizing the aluminum metal used as spacers in HEPA filters.

  11. Reduction of radiation exposure by lead curtain shielding in dedicated extremity cone beam CT

    PubMed Central

    Lee, C-H; Ryu, J H; Lee, Y-H

    2015-01-01

    Objective: A dedicated extremity cone beam CT (CBCT) was introduced recently, and is rapidly becoming an attractive modality for extremity imaging. This study aimed to evaluate the effectiveness of a curtain-shaped lead shielding in reducing the exposure of patients to scattered radiation in dedicated extremity CBCT. Methods: A dedicated extremity CBCT scanner was used. The lead shielding curtain was 42 × 60 cm with 0.5-mm lead equivalent. Scattered radiation dose from CBCT was measured using thermoluminescence dosimetry chips at 20 points, at different distances and directions from the CT gantry. Two sets of scattered radiation dose measurements were performed before and after installation of curtain-shaped lead shield, and the percentage reduction in dose in air was calculated. Results: Mean radiation exposure dose at measured points was 34.46 ± 48.40 μGy without curtains and 9.67 ± 4.53 μGy with curtains, exhibiting 71.94% reduction (p = 0.000). The use of lead shielding curtains significantly reduced scattered radiation at 0.5, 1.0 and 1.5 m from the CT gantry, with percent reductions of 84.8%, 58.0% and 35.5%, respectively (p = 0.000, 0.000 and 0.002). The percent reduction in the diagonal (+45°, −45°) and vertical forward (0°) directions were 86.3%, 83.1% and 77.7%, respectively, and were statistically significant (p = 0.029, 0.020 and 0.041). Conclusion: Shielding with lead curtains suggests an easy and effective method for reducing patient exposure to radiation in extremity CBCT imaging. Advances in knowledge: Lead shielding curtains are an effective technique to reduce scattered radiation dose in dedicated extremity CBCT, with higher dose reduction closer to the gantry opening. PMID:25811096

  12. INCINERATION RESEARCH FACILITY

    EPA Science Inventory

    The Cincinnati-based Risk Reduction Engineering Laboratory, ORD, U.S. EPA operates the Incineration Research Facility *IRF) in Jefferson, Arkansas. This facility's pilot-scale experimental incineration systems include a Rotary Kiln System and a Liquid Injection System. Each syste...

  13. Technology documentation for selected radwaste incineration systems

    SciTech Connect

    Ziegler, D.L.

    1982-12-01

    Several incineration systems have been developed and demonstrated on a production scale for combustion of radioactive waste from contractor operated Department of Energy (DOE) facilities. Demonstrated operating information and engineered design information is documented in this report on four of these systems; the Cyclone Incinerator (CI), Fluidized Bed Incinerator (FBI), Controlled-Air Incinerator (CAI) and Electric Controlled Air Incinerator (ECAI). The CI, FBI and CAI have been demonstrated with actual contaminated plant waste and the ECAI has been demonstrated with simulated waste using dysprosium oxide as a stand-in for plutonium oxide. The weight and volume reduction that can be obtained by each system processing typical solid plant transuranic (TRU) waste has been presented. Where a given system has been tested for other applications, such as combustion of resins, TBP-solvent mixtures, organic liquids, polychlorinated biphenyl (PCB), resuts of these experiments have been included. This document is a compilation of reports prepared by the operating contractor personnel responsible for development of each of the systems. In addition, as a part of the program management responsibility, the Transuranic Waste System Office (TWSO) has provided an overview of the contractor supplied information.

  14. Ohio incinerator battle continues

    SciTech Connect

    Melody, M.

    1993-05-01

    Waste Technologies Industries (WTI; East Liverpool, Ohio) is trying to wing what it hopes will be its final battle in a 13-year, $160 million war with the government, and community and environmental groups. The company since 1980 has sought EPA approval to operate a hazardous waste incinerator in East Liverpool, Ohio. WTI late last year conducted a pre-test burn, or shakedown, during which the incinerator burned certain types of hazardous waste. The test demonstrates the incinerator's performance under normal operating conditions, Regulatory authorities, including EPA and the Ohio Environmental Protection Agency (OEPA), monitored activity during the shakedown, which was limited to 720 hours of operation. In accordance with RCRA requirements, the company in March conducted a trial burn to demonstrate that the incinerator meets permit standards. WTI's permit specifies three performance parameters the incinerator must meet -- particulate and hydrogen chloride emissions limits, and destruction removal efficiencies (DREs).

  15. Nuclear waste incineration technology status

    SciTech Connect

    Ziegler, D.L.; Lehmkuhl, G.D.; Meile, L.J.

    1981-07-15

    The incinerators developed and/or used for radioactive waste combustion are discussed and suggestions are made for uses of incineration in radioactive waste management programs and for incinerators best suited for specific applications. Information on the amounts and types of radioactive wastes are included to indicate the scope of combustible wastes being generated and in existence. An analysis of recently developed radwaste incinerators is given to help those interested in choosing incinerators for specific applications. Operating information on US and foreign incinerators is also included to provide additional background information. Development needs are identified for extending incinerator applications and for establishing commercial acceptance.

  16. Year-round Application of Water Curtain for Environmental Control in Greenhouse

    NASA Astrophysics Data System (ADS)

    Ibuki, R.; Sugita, E.

    2011-12-01

    In large area of Japan needs forced environmental control to cultivate yields in hard temperature condition. Water Curtain is applied in Japan for night time air temperature control of small greenhouse, making strawberry and covered by plastic film. Water is splayed on extended plastic film, located above strawberry and below roof film. Underground water is utilized for cooling in summer, and warming in winter. Heat exchange between water and ground, and also water and air in the greenhouse is occurring in this system. Furthermore, heat transfer by radiation effect is also controlled by water membrane. In winter night, infrared radiation through plastic film is reduced by water membrane because of its high absorption coefficient on wave length of infrared. Besides water has a high transparency on wave length of visible light. These features are useful on the daytime radiation control of greenhouse to maintain visible light level for photosynthesis and to reduce excess infrared, damages yields in summer. Also in daytime of sunny day in winter season, temperature is too high to cultivate yields in closed greenhouse. Under this situation, water curtain is useful to storage from broad area in greenhouse excess heat from air in the circulation water. Warm water is useful to maintain temperature in greenhouse. On the contrary, in summer season, water can storage heat in daytime and release in night time. Water curtain system will contribute to be a sustainable and low energy consumption system to maintain comfortable environment for yields growth. For this reason we are considering to use water curtain in year-round. At the first step of the year-round application, day time use in summer is experimentally investigated. General water curtain splays water on plastic film extended on metal pipe. In this situation water is gathered at valley part of the film. Then water membrane is partially made and radiation control is not effective at large area. Therefore we applied new

  17. Occupational exposures among personnel working near combined burn pit and incinerator operations at Bagram Airfield, Afghanistan.

    PubMed

    Blasch, Kyle; Kolivosky, John; Hill, Barry

    2016-04-01

    Occupational air samples were collected at Bagram Airfield Afghanistan for security forces (SF) stationed at the perimeter of the solid waste disposal facility that included a burn pit, air curtain destructors, and solid waste and medical waste incinerators. The objective of the investigation was to quantify inhalation exposures of workers near the disposal facility. Occupational air sample analytes included total particulates not otherwise specified (PNOS), respirable PNOS, acrolein and polyaromatic hydrocarbons (PAH). Exposures were measured for four SF job specialties. Thirty 12-hour shifts were monitored from November 2011 to March 2012. The geometric means for respirable particulate matter and PAH for all job specialties were below the 12-hour adjusted American Conference of Governmental Industrial Hygienists threshold limit value time weighted averages (TLV-TWA). The geometric mean of the respirable particulate matter 12-hour TWAs for the four job specialties ranged from 0.116 to 0.134 mg/m(3). One measurement collected at the tower (3.1 mg/m(3)) position exceeded the TLV-TWA. Naphthalene and pyrene were the only PAHs detected in multiple samples of the 18 PAHs analyzed. The geometric mean concentration for naphthalene was 9.39E-4 mg/m(3) and the maximum concentration was 0.0051 mg/m(3). The geometric mean of acrolein for the four job specialties ranged from 0.021 to 0.047 mg/m(3). There were four exceedances of the Occupational Safety and Health Administration 8-hour permissible exposure limit- time weighted average (PEL-TWA), respectively, ranging from 0.13 to 0.32 mg/m(3). PMID:27092584

  18. Flow field simulation for a corncob incinerator

    SciTech Connect

    Wu, C.H.

    1999-02-01

    This article utilizes the standard k-{epsilon} turbulent model to simulate a corncob incinerator using the PISO algorithm with computational fluid dynamics (CFD). The flow patterns of the incinerator equipped with secondary air inlets are predicted and compared for the various geometrical layouts. It is demonstrated that a wider recirculation zone can be found while the inclined angles of inlets increased, so a longer residence time and higher combustion efficiency will be expected. The longer distance between primary and secondary inlets will facilitate the formation of recirculation zone in this bigger space. The more the number of the secondary air inlets, the less the resident air in the top recirculation zone near the exit of the furnace. By using the CFD technique, the flow field of the incinerator can be understood more precisely, and it can serve as an excellent design tool. Furthermore, the computational program can be composed with FORTRAN and set up on a PC, and can easily be analyzed to get the flow field of the corncob incinerator.

  19. Hydraulics and Mathematics Simulation on the Weir and Gas Curtain in Tundish of Ultrathick Slab Continuous Casting

    NASA Astrophysics Data System (ADS)

    Chen, Dengfu; Xie, Xin; Long, Mujun; Zhang, Min; Zhang, Leilei; Liao, Qi

    2014-04-01

    The molten steel flow pattern in continuous casting tundish could be improved if the flow control devices were properly used. With reasonable application of weir and air curtain, the disturbance at injection zone of the tundish was reduced. The flow path of the molten steel was changed, and the short-circuit flow was eliminated. Therefore, the residence time was lengthened. An air curtain with bubbles floating could promote the surface flow and improve inclusions removal. The application of weir and air curtain in an ultrathick slab continuous casting tundish was investigated with hydraulics and mathematics simulation. The residence time and dead volume fraction were studied through orthogonal experiments with different positions of the flow control devices. The efficiency of three factors was analyzed, and the optimum positions of the weir and air curtain were obtained. Besides, the discrete phase model was suitable for simulation of the interaction between gas bubbles and molten steel, and the mathematics results shown the optimum one got larger inclusion flotation rate.

  20. Apparatus for incinerating hazardous waste

    DOEpatents

    Chang, Robert C. W.

    1994-01-01

    An apparatus for incinerating wastes, including an incinerator having a combustion chamber, a fluidtight shell enclosing the combustion chamber, an afterburner, an off-gas particulate removal system and an emergency off-gas cooling system. The region between the inner surface of the shell and the outer surface of the combustion chamber forms a cavity. Air is supplied to the cavity and heated as it passes over the outer surface of the combustion chamber. Heated air is drawn from the cavity and mixed with fuel for input into the combustion chamber. The pressure in the cavity is maintained at least approximately 2.5 cm WC (about 1" WC) higher than the pressure in the combustion chamber. Gases cannot leak from the combustion chamber since the pressure outside the chamber (inside the cavity) is higher than the pressure inside the chamber. The apparatus can be used to treat any combustible wastes, including biological wastes, toxic materials, low level radioactive wastes, and mixed hazardous and low level transuranic wastes.

  1. Apparatus for incinerating hazardous waste

    DOEpatents

    Chang, R.C.W.

    1994-12-20

    An apparatus is described for incinerating wastes, including an incinerator having a combustion chamber, a fluid-tight shell enclosing the combustion chamber, an afterburner, an off-gas particulate removal system and an emergency off-gas cooling system. The region between the inner surface of the shell and the outer surface of the combustion chamber forms a cavity. Air is supplied to the cavity and heated as it passes over the outer surface of the combustion chamber. Heated air is drawn from the cavity and mixed with fuel for input into the combustion chamber. The pressure in the cavity is maintained at least approximately 2.5 cm WC higher than the pressure in the combustion chamber. Gases cannot leak from the combustion chamber since the pressure outside the chamber (inside the cavity) is higher than the pressure inside the chamber. The apparatus can be used to treat any combustible wastes, including biological wastes, toxic materials, low level radioactive wastes, and mixed hazardous and low level transuranic wastes. 1 figure.

  2. Discharge source with gas curtain for protecting optics from particles

    DOEpatents

    Fornaciari, Neal R.; Kanouff, Michael P.

    2004-03-30

    A gas curtain device is employed to deflect debris that is generated by an extreme ultraviolet and soft x-ray radiation discharge source such as an electric discharge plasma source. The gas curtain device projects a stream of gas over the path of the radiation to deflect debris particles into a direction that is different from that of the path of the radiation. The gas curtain can be employed to prevent debris accumulation on the optics used in photolithography.

  3. The Stars behind the Curtain

    NASA Astrophysics Data System (ADS)

    2010-02-01

    ESO is releasing a magnificent VLT image of the giant stellar nursery surrounding NGC 3603, in which stars are continuously being born. Embedded in this scenic nebula is one of the most luminous and most compact clusters of young, massive stars in our Milky Way, which therefore serves as an excellent "local" analogue of very active star-forming regions in other galaxies. The cluster also hosts the most massive star to be "weighed" so far. NGC 3603 is a starburst region: a cosmic factory where stars form frantically from the nebula's extended clouds of gas and dust. Located 22 000 light-years away from the Sun, it is the closest region of this kind known in our galaxy, providing astronomers with a local test bed for studying intense star formation processes, very common in other galaxies, but hard to observe in detail because of their great distance from us. The nebula owes its shape to the intense light and winds coming from the young, massive stars which lift the curtains of gas and clouds revealing a multitude of glowing suns. The central cluster of stars inside NGC 3603 harbours thousands of stars of all sorts (eso9946): the majority have masses similar to or less than that of our Sun, but most spectacular are several of the very massive stars that are close to the end of their lives. Several blue supergiant stars crowd into a volume of less than a cubic light-year, along with three so-called Wolf-Rayet stars - extremely bright and massive stars that are ejecting vast amounts of material before finishing off in glorious explosions known as supernovae. Using another recent set of observations performed with the SINFONI instrument on ESO's Very Large Telescope (VLT), astronomers have confirmed that one of these stars is about 120 times more massive than our Sun, standing out as the most massive star known so far in the Milky Way [1]. The clouds of NGC 3603 provide us with a family picture of stars in different stages of their life, with gaseous structures that are

  4. Carbon monoxide formation and emissions during waste incineration in a grate-circulating fluidized bed incinerator.

    PubMed

    Yanguo Zhang; Qinghai Li; Aihong Meng; Changhe Chen

    2011-03-01

    This paper presents an experimental study of carbon monoxide (CO) formation and emissions in both grate drying bed incinerators and circulating fluidized bed (CFB) incinerators to simulate the two key parts of a combined grate and circulating fluidized bed (grate-CFB) incinerator in order to investigate pollutant emission control in municipal solid waste (MSW) combustion that occurs in a grate-CFB incinerator utilizing a patented technology. Polyvinyl chloride, polystyrene, kitchen waste, paper, textile, etc. were chosen to simulate the MSW. The effects of temperature, air staging, and moisture on the CO formation and emissions were analysed for both the grate drying bed combustion and the CFB combustion. In the grate drying bed, the low temperatures increased the carbon to CO conversion rate which also increased slightly with the moisture content. Industrial field tests in a commercial grate-CFB incinerator showed that the CO concentration at the grate drying bed exit was very high and decreased along furnace height. The carbon to CO conversion rates were 0-20% for the grate drying bed which exceeded the range of 0.8-16% measured in a grate drying bed exit of the commercial grate-CFB incinerator tests. In the commercial grate-CFB incinerator tests, at excess air ratios ranging from 1.5-2.0 or more, the CO emissions decreased to a low and stable level, whose corresponding carbon to CO conversion rates were far lower than 0-10%. The low CO emission is one of the factors enabling the polychlorinated dibenzodioxin/polychlorinated dibenzofuran emissions to satisfy the Chinese national regulations.

  5. Electrochemical incineration of wastes

    NASA Technical Reports Server (NTRS)

    Bockris, J. O. M.; Bhardwaj, R. C.; Tennakoon, C. L. K.

    1993-01-01

    There is an increasing concern regarding the disposal of human wastes in space vehicles. It is of utmost importance to convert such wastes into harmless products which can be recycled into an Environmental Life Support System (CELSS), which incorporates the growth of plants (e.g. wheat) and algae to supplement the diet of the astronauts. Chemical treatments have proven relatively unsatisfactory and tend to be increasingly so with increase of the mission duration. Similarly, the use of heat to destroy wastes and convert them to CO2 by the use of air or oxygen has the disadvantage and difficulty of dissipating heat in a space environment and to the inevitable presence of oxides of nitrogen and carbon monoxide in the effluent gases. In particular, electrochemical techniques offer several advantages including low temperatures which may be used and the absence of any NO and CO in the evolved gases. Successful research has been carried out in the electrochemical oxidation of wastes over the last several years. The major task for 1992 was to conduct parametric studies in preparation for the building of a breadboard system, i.e., an actual practical device to consume the daily waste output of one astronaut in 24 hours, electrochemical incineration of human wastes in space vehicles. One of the main objectives was to decide on the type of three dimensional or other electrode system that would suit this purpose. The various types of electrode systems which were considered for this purpose included: rotating disc electrode, micro-electrode (an array), vibrating electrode, jet electrode, and packed bed electrode.

  6. Special roundup feature report on incineration

    SciTech Connect

    Peacy, J.

    1984-04-01

    The document reviews incineration as a means of destroying hazardous and industrial wastes. The designs of several different incinerators are discussed including modular-type incinerators, rotary kilns, fluidized bed incinerators, grate systems, and multiple hearth incinerators. Environmental controls, recovery, ancillary equipment, utilities and services and financing are among the other incineration-related issues discussed.

  7. Research study: Thermal curtain permeability and thermal response test for SRB reentry

    NASA Technical Reports Server (NTRS)

    Fuller, C. E.; Levie, J. K., III; Powell, R. T.

    1978-01-01

    Nine inch diameter samples of the material which will provide thermal and acoustic protection between the nozzle and outer skirt on the space shuttle solid rocket boosters were subjected to heating tests to determine the porosity of the material and the thermal response to a step change in heating. For the porosity measurements a steady state flow of air at 70 F, 500 F, and 1000 F was passed through a sample of the curtain material and measurements of the flow rates were made at different pressure drops across the sample. For the transient measurements, a sample of the curtain material was subjected to a step change in temperature as air was passed through the sample. Measurements of the heat flow through the sample were made as a function of time after the input of the heat pulse. The sample consisted of three layers of curtain panels. Each panel was made of combinations of quartz and fiberglass cloth between which a fiberfrax filler material had been stitched. The hardware design and test procedures were described. Data are provided in engineering units for the flow conditions and and temperatures at which measurements were conducted.

  8. Summary of DOE Incineration Capabilities

    SciTech Connect

    Knecht, M.

    1998-07-01

    This document summarizes and compares operating capacities, waste acceptance criteria, and permits pertaining to the U.S. Department of Energy's three mixed waste incinerators. The information will assist Department evaluation of the incinerators.

  9. Electrochemical membrane incinerator

    DOEpatents

    Johnson, Dennis C.; Houk, Linda L.; Feng, Jianren

    2001-03-20

    Electrochemical incineration of p-benzoquinone was evaluated as a model for the mineralization of carbon in toxic aromatic compounds. A Ti or Pt anode was coated with a film of the oxides of Ti, Ru, Sn and Sb. This quaternary metal oxide film was stable; elemental analysis of the electrolyzed solution indicated the concentration of these metal ions to be 3 .mu.g/L or less. The anode showed good reactivity for the electrochemical incineration of benzoquinone. The use of a dissolved salt matrix as the so-called "supporting electrolyte" was eliminated in favor of a solid-state electrolyte sandwiched between the anode and cathode.

  10. Electrochemical Membrane Incinerator

    SciTech Connect

    Johnson, Dennis C.; Houk, Linda L.; Feng, Jianren

    1998-12-08

    Electrochemical incineration of benzoquinone was evaluated as a model for the mineralization of carbon in toxic aromatic compounds. A Ti or Pt anode was coated with a film of the oxides of Ti, Ru, Sn and Sb. This quaternary metal oxide film was stable; elemental analysis of the electrolyzed solution indicated the concentration of these metal ions to be 3 {micro}g/L or less. The anode showed good reactivity for the electrochemical incineration of benzoquinone. The use of a dissolved salt matrix as the so-called ''supporting electrolyte'' was eliminated in favor of a solid-state electrolyte sandwiched between the anode and cathode.

  11. Drawing the Curtain on Enceladus' South-Polar Eruptions

    NASA Astrophysics Data System (ADS)

    Spitale, Joseph N.; Hurford, Terry A.; Rhoden, Alyssa R.; Berkson, Emily E.; Platts, Symeon S.

    2015-11-01

    For a comprehensive description of Enceladus' south-polar eruptions observed at high resolution, they must be represented as broad curtains rather than discrete jets. Meanders in the fractures from which the curtains of material erupt give rise to optical illusions that look like discrete jets, even along fractures with no local variations in eruptive activity, implying that many features previously identified as "jets" are in fact phantoms. By comparing Cassini images with model curtain eruptions, we are able to obtain maps of eruptive activity that are not biased by the presence of those phantom jets. The average of our activity maps over all times agrees well with thermal maps produced by Cassini CIRS. We can best explain the observed curtains by assuming spreading angles with altitude of up to 14° and zenith angles of up to 8°, for curtains observed in geometries that are sensitive to those quantities.

  12. Nanomaterial disposal by incineration

    EPA Science Inventory

    As nanotechnology-based products enter into widespread use, nanomaterials will end up in disposal waste streams that are ultimately discharged to the environment. One possible end-of-life scenario is incineration. This review attempts to ascertain the potential pathways by which ...

  13. PERMITTING HAZARDOUS WASTE INCINERATORS

    EPA Science Inventory

    This publication is a compilation of information presented at a seminar series designed to address the issues that affect the issuance of hazardous waste incineration permits and to improve the overall understanding of trial burn testing. pecifically, the document provides guidan...

  14. Acoustic assessment of speech privacy curtains in two nursing units

    PubMed Central

    Pope, Diana S.; Miller-Klein, Erik T.

    2016-01-01

    Hospitals have complex soundscapes that create challenges to patient care. Extraneous noise and high reverberation rates impair speech intelligibility, which leads to raised voices. In an unintended spiral, the increasing noise may result in diminished speech privacy, as people speak loudly to be heard over the din. The products available to improve hospital soundscapes include construction materials that absorb sound (acoustic ceiling tiles, carpet, wall insulation) and reduce reverberation rates. Enhanced privacy curtains are now available and offer potential for a relatively simple way to improve speech privacy and speech intelligibility by absorbing sound at the hospital patient's bedside. Acoustic assessments were performed over 2 days on two nursing units with a similar design in the same hospital. One unit was built with the 1970s’ standard hospital construction and the other was newly refurbished (2013) with sound-absorbing features. In addition, we determined the effect of an enhanced privacy curtain versus standard privacy curtains using acoustic measures of speech privacy and speech intelligibility indexes. Privacy curtains provided auditory protection for the patients. In general, that protection was increased by the use of enhanced privacy curtains. On an average, the enhanced curtain improved sound absorption from 20% to 30%; however, there was considerable variability, depending on the configuration of the rooms tested. Enhanced privacy curtains provide measureable improvement to the acoustics of patient rooms but cannot overcome larger acoustic design issues. To shorten reverberation time, additional absorption, and compact and more fragmented nursing unit floor plate shapes should be considered. PMID:26780959

  15. Acoustic assessment of speech privacy curtains in two nursing units.

    PubMed

    Pope, Diana S; Miller-Klein, Erik T

    2016-01-01

    Hospitals have complex soundscapes that create challenges to patient care. Extraneous noise and high reverberation rates impair speech intelligibility, which leads to raised voices. In an unintended spiral, the increasing noise may result in diminished speech privacy, as people speak loudly to be heard over the din. The products available to improve hospital soundscapes include construction materials that absorb sound (acoustic ceiling tiles, carpet, wall insulation) and reduce reverberation rates. Enhanced privacy curtains are now available and offer potential for a relatively simple way to improve speech privacy and speech intelligibility by absorbing sound at the hospital patient's bedside. Acoustic assessments were performed over 2 days on two nursing units with a similar design in the same hospital. One unit was built with the 1970s' standard hospital construction and the other was newly refurbished (2013) with sound-absorbing features. In addition, we determined the effect of an enhanced privacy curtain versus standard privacy curtains using acoustic measures of speech privacy and speech intelligibility indexes. Privacy curtains provided auditory protection for the patients. In general, that protection was increased by the use of enhanced privacy curtains. On an average, the enhanced curtain improved sound absorption from 20% to 30%; however, there was considerable variability, depending on the configuration of the rooms tested. Enhanced privacy curtains provide measureable improvement to the acoustics of patient rooms but cannot overcome larger acoustic design issues. To shorten reverberation time, additional absorption, and compact and more fragmented nursing unit floor plate shapes should be considered. PMID:26780959

  16. Acoustic assessment of speech privacy curtains in two nursing units.

    PubMed

    Pope, Diana S; Miller-Klein, Erik T

    2016-01-01

    Hospitals have complex soundscapes that create challenges to patient care. Extraneous noise and high reverberation rates impair speech intelligibility, which leads to raised voices. In an unintended spiral, the increasing noise may result in diminished speech privacy, as people speak loudly to be heard over the din. The products available to improve hospital soundscapes include construction materials that absorb sound (acoustic ceiling tiles, carpet, wall insulation) and reduce reverberation rates. Enhanced privacy curtains are now available and offer potential for a relatively simple way to improve speech privacy and speech intelligibility by absorbing sound at the hospital patient's bedside. Acoustic assessments were performed over 2 days on two nursing units with a similar design in the same hospital. One unit was built with the 1970s' standard hospital construction and the other was newly refurbished (2013) with sound-absorbing features. In addition, we determined the effect of an enhanced privacy curtain versus standard privacy curtains using acoustic measures of speech privacy and speech intelligibility indexes. Privacy curtains provided auditory protection for the patients. In general, that protection was increased by the use of enhanced privacy curtains. On an average, the enhanced curtain improved sound absorption from 20% to 30%; however, there was considerable variability, depending on the configuration of the rooms tested. Enhanced privacy curtains provide measureable improvement to the acoustics of patient rooms but cannot overcome larger acoustic design issues. To shorten reverberation time, additional absorption, and compact and more fragmented nursing unit floor plate shapes should be considered.

  17. 3M corporate incinerator environmental monitoring study and risk analysis

    SciTech Connect

    Stevens, J.B.; Elnabarawy, M.T.; Pilney, J.

    1998-12-31

    A one-year multi-media environmental monitoring study was performed around the 3M Cottage Grove Facility. Particulate metals from the 3M Corporate hazardous waste incinerator were the focus of the study. Two environmental media were of primary interest: area soil sampling was conducted to investigate the impact of past incinerator emissions on the environment, and ambient air monitoring was conducted to address current impacts. Over 180 soil samples were taken from both agricultural and forested land in the vicinity of the Facility. More than 25 chemical parameters were then quantified in the samples. The potential impacts of past emissions from the incinerator were assessed by comparing chemical concentrations from locations where incinerator impacts were expected to be greatest (based on air dispersion modeling) to chemical concentrations in matched samples from sites expected to be least impacted. The ambient air monitoring network consisted of six stations. Source-receptor modeling was used to determine the most likely contribution of the incinerator and six additional major area sources for the air monitoring (i.e. filter) data at each station. The model provided a best-fit analysis regarding the likely contributions of each source to the sample results. The results of these evaluations lead to the conclusion that the current emissions from this Facility do not present an unacceptable risk to human health.

  18. Semitransparent curtains for control of optical radiation hazards

    NASA Technical Reports Server (NTRS)

    Sliney, D. H.; Moss, C. E.; Miller, C. G.; Stephens, J. B.

    1981-01-01

    The purposes and functions of semitransparent eye protective curtains are analyzed. Based upon this analysis, functional requirements are developed, and design requirements are specified for optimum curtains to be used with open arc welding and arc cutting processes. Such curtains also protect against other high intensity broad-spectral-band sources such as compact arc lamps. The requirements for filtering out hazardous UV radiation and blue light must be balanced against the need for transparency in the visible spectrum and the need for reduced glare. Infrared attenuation is shown to be of very little importance.

  19. Aquifer-Circulating Water Curtain Cultivation System To Recover Groundwater Level And Temperature

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Ko, K.; Chon, C.; Oh, S.

    2011-12-01

    Groundwater temperature, which generally ranges 14 to 16 degree of Celsius all year long, can be said to be 'constant' compared to the amplitude of daily variation of air temperature or surface water. Water curtain cultivating method utilizes this 'constant' groundwater temperature to warm up the inside of greenhouse during winter night by splash groundwater on the roof of inner greenhouse. The area of water curtain cultivation system have increased up to 107.5 square kilometers as of 2006 since when it is first introduced to South Korea in 1984. Groundwater shortage problem became a great issue in a concentrated water curtain cultivation area because the pumped and splashed groundwater is abandoned to nearby stream and natural recharge rate is reduced by greenhouses. The amount of groundwater use for water curtain cultivation system in South Korea is calculated to be 587 million cubic meters which is 35% of national agricultural use of groundwater. A new water curtain cultivation system coupled with aquifer circulating of the splashed groundwater and greenhouse roof-top rainwater harvesting is developed and applied to field site in Nonsan-si, Chungnam province to minimize groundwater shortage problem and recover groundwater level. The aquifer circulating water curtain cultivation system is consist of a pumping well and a injection well of 80 m deep, groundwater transfer and splashing system, recovery tank and rainwater collecting waterway. The distance between injection and pumping well is 15 m and an observation well is installed in the middle of the wells. To characterize hydrogeological properties of this site, hydraulic test such as pumping tests and tracer tests with dye tracer, thermal tracer and ion tracer. Once the integrated system is constructed in this site, hydraulic head in all the wells and temperature of air, recovery tank and groundwater in all the wells are monitored during the operation for 3months in winter season. Hydraulic test and tracer

  20. Closure of Building 624 incinerator

    SciTech Connect

    Ridley, M.N.; Hallisey, M.L.; Terusaki, S.; Steverson, M.

    1992-06-01

    The Building 624 incinerator was a Resource Conservation Recovery Act (RCRA) mixed waste incinerator at Lawrence Livermore National Laboratory (LLNL). This incinerator was in operation from 1978 to 1989. The incinerator was to be closed as a mixed waste incinerator, but was to continue burning classified nonhazardous solid waste. The decision was later made to discontinue all use of the incinerator. Closure activities were performed from June 15 to December 15, 1991, when a clean closure was completed. The main part of the closure was the characterization, which included 393 samples and 30 blanks. From these 393 samples, approximately 13 samples indicated the need for further investigation, such as an isotopic scan; however, none of the samples was concluded to be hazardous or radioactive.

  1. 40 CFR 60.2015 - What is a new incineration unit?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....2015 Section 60.2015 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... Industrial Solid Waste Incineration Units Applicability § 60.2015 What is a new incineration unit? (a) A new... subpart. Effective Date Note: At 78 FR 9178, Feb. 7, 2013, § 60.2015 was amended by revising paragraphs...

  2. Solvent vapors controlled by pre-concentration, incineration

    SciTech Connect

    Sundberg, R.E.

    1996-01-01

    Concentration of solvent vapors in ventilation air exhausted from the workplace often is too dilute for efficient destruction or recovery. Several techniques are being developed to pre-concentrate the vapors before treating them in a catalytic incinerator. Molnbacka Industri AB (Forshaga, Sweden) has developed a system to control volatile organic compound emissions by using activated carbon adsorbers to pre-concentrate the solvent vapors. The technology uses carbon adsorption and desorption to concentrate dilute solvent vapors to a much smaller air stream for efficient destruction in a catalytic incinerator.

  3. Radioactive Waste Incineration: Status Report

    SciTech Connect

    Diederich, A.R.; Akins, M.J.

    2008-07-01

    Incineration is generally accepted as a method of reducing the volume of radioactive waste. In some cases, the resulting ash may have high concentrations of materials such as Plutonium or Uranium that are valuable materials for recycling. Incineration can also be effective in treating waste that contains hazardous chemicals as well as radioactive contamination. Despite these advantages, the number of operating incinerators currently in the US currently appears to be small and potentially declining. This paper describes technical, regulatory, economic and political factors that affect the selection of incineration as a preferred method of treating radioactive waste. The history of incinerator use at commercial and DOE facilities is summarized, along with the factors that have affected each of the sectors, thus leading to the current set of active incinerator facilities. In summary: Incineration has had a long history of use in radioactive waste processing due to their ability to reduce the volume of the waste while destroying hazardous chemicals and biological material. However, combinations of technical, regulatory, economic and political factors have constrained the overall use of incineration. In both the Government and Private sectors, the trend is to have a limited number of larger incineration facilities that treat wastes from a multiple sites. Each of these sector is now served by only one or two incinerators. Increased use of incineration is not likely unless there is a change in the factors involved, such as a significant increase in the cost of disposal. Medical wastes with low levels of radioactive contamination are being treated effectively at small, local incineration facilities. No trend is expected in this group. (authors)

  4. Pilot-scale incineration of contaminated sludges from the Bofors-Nobel superfund site

    SciTech Connect

    King, C.; Waterland, L.R.

    1993-01-01

    A detailed test program was performed at the U.S. EPA Incineration Research Facility to help determine the effectiveness of incineration in treating two contaminated lagoon sludges from the Bofors-Nobel Superfund Site in Muskegon, MI. The sludges tested were contaminated with various organic contaminants and trace metals. Three incineration tests were conducted for each sludge, for a total of six tests, in the facility's rotary kiln incineration system. Test results suggested that incineration under the conditions tested represented an effective treatment option for both sludges. Particulate emissions at the scrubber exit were high during incineration of one of the sludges while cadmium and lead collection efficiencies were low. This suggested the wet scrubber system may not be an appropriate choice for air pollution control.

  5. Environmental implications of incineration of municipal solid waste and ash disposal.

    PubMed

    Lisk, D J

    1988-08-01

    Owing to unsightliness and the threat of groundwater pollution, landfilling of municipal solid waste (MSW) is giving way to incineration in many communities. Environmental contamination from particulate and gaseous emissions containing heavy metals, polychlorinated dibenzodioxins (PCDD) and polychlorinated dibenzofurans (PCDF), polycyclic aromatics (PCA), acids and other compounds from such incinerators, as well as safe ash disposal, are of great concern. Concentration ranges of elements and organic toxicants in incinerator ashes, emissions and cooling waters are given. The literature is reviewed concerning the effects of incinerator operating parameters on emissions. Incinerators equipped with modern pollution control devices (electrostatic precipitators, fabric filters, dry scrubbers, spray towers) and operated at optimum temperature with sufficient oxygen, turbulence (mixing) and residence time for complete combustion appear to minimize ash, elemental, gaseous and organic emissions. Environmental aspects of MSW incineration are considered and reviewed. The presence of metals and organics in incinerator quench water and in leachates from ash disposed in landfills are reviewed, as well as their toxicity to fish. The behavior and effects of atmospheric emissions in soils and plants are discussed. Research on the effect of ash-derived PCDD and PCDF on hepatic microsomal mixed function oxidase activity and the immune system in laboratory animals is cited. The presence of metals, organics and mutagens in the incinerator workplace air and the possible effects of air-borne contaminants on inhabitants nearby is reviewed. Several studies dealing with human risk assessment of MSW incineration are cited.

  6. Analysis of incinerator performance and metal emissions from recent trial and test burns

    SciTech Connect

    Ho, T.C.; Lee, H.T.; Kuo, T.H.

    1994-12-31

    Recent trial- and test-burn data from five rotary kiln incinerator facilities were analyzed for combustion performance and metal emissions. The incinerator facilities examined included: DuPont`s Gulf Coast Regional Waste Incinerator in Orange, Texas; Chemical Waste Management`s Incinerator in Port Arthur, Texas; Rollins Environmental Service`s Incinerator in Deer Park, Texas; Martin Marietta`s TSCA Incinerator in Oak Ridge, Tennessee; and EPA`s Incineration Research Facility in Jefferson, Arkansas. The analysis involved the use of a PC-based computer program capable of performing material and energy balance calculations and predicting equilibrium compositions based on the minimization of system free energy. For each analysis, the feed data of waste and fuel and the corresponding operating parameters associated with incinerator and/or afterburner operation were input to the program and the program simulated the combustion performance under equilibrium conditions. In the analysis, the field-recorded performance data were compared with the simulated equilibrium results and the incinerator performance, including the quality of the field data, the combustion efficiency, the percent excess air, the heat loss, and the amount of air inleakage, was evaluated. In addition, the field-obtained metal data were analyzed for emission rate and metal balance. 13 refs., 4 figs., 16 tabs.

  7. Alternatives to incineration: There's more than one way to remediate

    SciTech Connect

    Pellerin, C.

    1994-10-01

    Hazardous waste is everywhere. It comes from paints, motor oil, hair spray, household cleaners, automotive chemicals, and all kinds of toxic medical, industrial and military products. Most industrial processes - from which come cosmetics and pharmaceuticals, computers and garden pesticides - generate wastes that the EPA, acting under the Resource Conservation Recovery Act (RCRA), says can harm human health or the environment if not properly managed. As a waste-disposal technology, incineration has been around for about 500,000 years - an interesting spinoff of that timely Homo erectus discovery, fire. For millennia, incineration looked like a pretty good way to turn big piles of hazardous waste into air emissions, smaller piles of ash, and sometimes energy. And it's still a good idea. The EPA, for one, calls high-temperature incineration the best available technology for disposing of most hazardous waste. But incineration has drawbacks. When hazardous waste goes into an incinerator, it comes out as potentially harmful air emissions, although these emissions are strictly controlled, and ash ash that's treated to meet EPA standards and then disposed of in an authorized landfill. It doesn't just vanish into thin air.

  8. 1. Bombproof barracks, southwest corner from atop curtain wall, looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Bomb-proof barracks, southwest corner from atop curtain wall, looking easterly. Two lightning rods can be seen in background. - Fort Hamilton, Bomb-Proof Barracks, Rose Island, Newport, Newport County, RI

  9. Curtain Fabric Detail and Designed Furniture including Dining Table, Dining ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Curtain Fabric Detail and Designed Furniture including Dining Table, Dining Chair, Coffee Table, End Table, and Ottoman - Cedric & Patricia Boulter House, 1 Rawson Woods Circle, Cincinnati, Hamilton County, OH

  10. Overview of curtain walls at Control Room. Backup exciter in ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Overview of curtain walls at Control Room. Backup exciter in foreground. View to west-southwest - Mystic Lake Hydroelectric Facility, Powerhouse, Along West Rosebud Creek, 1 3/4 miles northeast of Mystic Lake Dam, Fishtail, Stillwater County, MT

  11. Water cooled rolling grate incinerator

    SciTech Connect

    Ettehadieh, B.

    1991-08-27

    This patent describes a water cooled roller grate incinerator cooperatively associated with a boiler. It comprises cylindrical shaped roller grates, each having a plurality of circular arrays of spaced apart cooling tubes separated by perforated webs and connected at each end to a ring header; a rotary joint associated with each cylindrical roller grate for supplying cooling fluid to the circular array of tubes to keep them cool and returning heated fluid to the boiler; each roller grate being disposed to rotate about a centrally disposed axis; the axes of the roller grates being disposed in an inclined plane generally parallel to each other so as to form an undulating surface; a waster hopper with a waste feed ram disposed on the lower end of the hopper for feeding waste to the undulating surface; a combustion air system for supplying combustion air through the perforated webs to the waste pushed on the undulating surface by the waste feed ram to burn the waste; a separate drive system for each grate, the drive system regulating the rate at which the burning waste progresses across the undulating surface portion of each grate as the grates rotate transferring the waste from one roller grate to the next lower roller grate as the waste burns.

  12. 41. BUILDINGS 2215, 2216, AND 2217, INCINERATORS. INCINERATORS AS MODIFIED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    41. BUILDINGS 2215, 2216, AND 2217, INCINERATORS. INCINERATORS AS MODIFIED WITH ENCLOSURES TO PREVENT GARBAGE FROM BEING BLOWN OFF THE PLATFORM WHEN UNLOADED, AND STEPS TO THE PLATFORM. Fort McCoy photograph, #57-13, October 1943. - Fort McCoy, Sparta, Monroe County, WI

  13. Composition profiles and health risk of PCDD/F in outdoor air and fly ash from municipal solid waste incineration and adjacent villages in East China.

    PubMed

    Li, Jiafu; Dong, Han; Sun, Jie; Nie, Jihua; Zhang, Shuyu; Tang, Jinshun; Chen, Zhihai

    2016-11-15

    In present study, composition profiles and health risk of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in outdoor air and fly ash from domestic waste treatment center (DWTC) were studied. In addition, the composition profiles and health risk of PCDD/F in outdoor air from adjacent villages were researched and used to quantitatively analyze the difference between onsite workers and adjacent villagers. Moreover, the difference between old intake method and new inhalation dosimetry method in the process of assessing the health risk of PCDD/Fs in outdoor air was quantitatively compared and analyzed. The results of this study were summarized as follows. (1) The 95th percentile carcinogenic risk (CR) and non-carcinogenic risk (non-CR) for onsite workers and adjacent villagers were much lower than the threshold values of 10(-6) and 1.0, respectively, suggesting no potential health risk. (2) The 95th percentile CR for onsite workers was 1.27×10(-8) and was 64.8 times higher than that of adjacent villagers (1.99×10(-10)). (3) The 95th percentile non-CR for onsite workers and adjacent villagers were 1.37×10(-4) and 1.31×10(-7), respectively. (3) Accidental ingestion of fly ash was the largest contributor to CR and non-CR for onsite workers, contributing 62.98% and 64.04% to CR and non-CR, respectively. (4) The CR and non-CR of PCDD/Fs in outdoor air for onsite workers and adjacent villagers which calculated by old intake method was much higher than the results from new inhalation dosimetry method. The results quantitatively showed the levels and potential risks of PCDD/Fs posed by a DWTC site, which can be helpful to predict the influence from DWTC sites and promote the management of DWTC in China. PMID:27432723

  14. Mobility of organic carbon from incineration residues

    SciTech Connect

    Ecke, Holger Svensson, Malin

    2008-07-01

    Dissolved organic carbon (DOC) may affect the transport of pollutants from incineration residues when landfilled or used in geotechnical construction. The leaching of dissolved organic carbon (DOC) from municipal solid waste incineration (MSWI) bottom ash and air pollution control residue (APC) from the incineration of waste wood was investigated. Factors affecting the mobility of DOC were studied in a reduced 2{sup 6-1} experimental design. Controlled factors were treatment with ultrasonic radiation, full carbonation (addition of CO{sub 2} until the pH was stable for 2.5 h), liquid-to-solid (L/S) ratio, pH, leaching temperature and time. Full carbonation, pH and the L/S ratio were the main factors controlling the mobility of DOC in the bottom ash. Approximately 60 weight-% of the total organic carbon (TOC) in the bottom ash was available for leaching in aqueous solutions. The L/S ratio and pH mainly controlled the mobilization of DOC from the APC residue. About 93 weight-% of TOC in the APC residue was, however, not mobilized at all, which might be due to a high content of elemental carbon. Using the European standard EN 13 137 for determination of total organic carbon (TOC) in MSWI residues is inappropriate. The results might be biased due to elemental carbon. It is recommended to develop a TOC method distinguishing between organic and elemental carbon.

  15. Hydrodynamics of a Multistage Wet Scrubber Incineration Conditions

    ERIC Educational Resources Information Center

    Said, M. M.; Manyele, S. V.; Raphael, M. L.

    2012-01-01

    The objective of the study was to determine the hydrodynamics of the two stage counter-current cascade wet scrubbers used during incineration of medical waste. The dependence of the hydrodynamics on two main variables was studied: Inlet air flow rate and inlet liquid flow rate. This study introduces a new wet scrubber operating features, which are…

  16. 40 CFR 63.988 - Incinerators, boilers, and process heaters.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES... Routing to a Fuel Gas System or a Process § 63.988 Incinerators, boilers, and process heaters. (a... design evaluation may be used as an alternative to the performance test for storage vessels and...

  17. Evolution of WTE utilization - a global look. Asian perspective - waste incineration and it`s value in Japan

    SciTech Connect

    Tanaka, Masaru

    1997-12-01

    Incineration carries significant weight in waste disposal in general. Seventy-five percent of the total quantity of municipal solid waste is incinerated. In the year 1994, there were a total of 1,854 incineration plants in Japan. Waste heat from MSW incineration is utilized for power generation at most large-scale incineration plants. In 1994, a total of 3,376 industrial waste incineration plants existed in Japan. They have been contributing much toward waste volume reduction, improvement of the quality of landfill materials through conversion of organic substances into inorganic substances which are more beneficial for landfill purposes, and conservation of resources by energy recovery. But air pollution by exhaust substances - especially dioxin - from incineration plants pose a problem. This may place a big hurdle before future incineration plant projects. Small batch-type incineration furnaces are slowly dying out. Some municipalities will jointly construct a large incineration plant among themselves while others will consider introducing RDF producing plant, which is getting popular. More efforts will be made to melt and solify the incineration residue, reduce the environmental load imposed by pollutants in the exhaust gas from now on.

  18. Technology reviews: Dynamic curtain wall systems

    SciTech Connect

    Schuman, J.; Rubinstein, F.; Papamichael, K.; Beltran, L.; Lee, E.S.; Selkowitz, S.

    1992-09-01

    We present a representative review of existing, emerging, and future technology options in each of five hardware and systems areas in envelope and lighting technologies: lighting systems, glazing systems, shading systems, daylighting optical systems, and dynamic curtain wall systems. The term technology is used here to describe any design choice for energy efficiency, ranging from individual components to more complex systems to general design strategies. The purpose of this task is to characterize die state of the art in envelope and lighting technologies in order to identify those with promise for advanced integrated systems, with an emphasis on California commercial buildings. For each technology category, the following activities have been attempted to the extent possible: Identify key performance characteristics and criteria for each technology. Determine the performance range of available technologies. Identify the most promising technologies and promising trends in technology advances. Examine market forces and market trends. Develop a continuously growing in-house database to be used throughout the project. A variety of information sources have been used in these technology characterizations, including miscellaneous periodicals, manufacturer catalogs and cut sheets, other research documents, and data from previous computer simulations. We include these different sources in order to best show the type and variety of data available, however publication here does not imply our guarantee of these data. Within each category, several broad classes are identified, and within each class we examine the generic individual technologies that fall into that class.

  19. Damage assessment of curtain wall glass

    NASA Astrophysics Data System (ADS)

    Puga, H.; Olmos, BA; Olmos, L.; Jara, J. M.; Jara, M.

    2015-07-01

    The failure prediction of simply supported annealed glass plates subjected to uniform loads is one of the main purposes in the design codes of the United States, Canada and the European Community. The methodologies and codes available in the literature are based on concepts and criteria applicable to the glass failure prediction; they evaluate the load associated to a specific probability of failure. The aim of this work is to estimate fragility curves for curtain glass under different uniform loads representative of the wind loads that they can be subjected, using the lifetime prediction model. The capacity of the structural elements was determined experimentally considering as-received annealed soda lime silica glass; this material is used in structural elements although the material is brittle and random. The capacity and demand are associated with the life time prediction model. The results let us understand the glass failure mechanisms of glass panels with different thickness, as well as assess their probability of failure by estimating fragility curves.

  20. Evaluation of the leachability of polychlorinated dibenzo-p-dioxins and dibenzofurans in raw and solidified air pollution control residues from municipal waste incinerators.

    PubMed

    Hsi, Hsing-Cheng; Yu, Tsung-Hsien

    2007-04-01

    Leachability of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) from raw and solidified air pollution control (APC) residues with selected solvents, including acetic acid, simulated acid rain, humic acid, linear alkylbenzene sulfonate (LAS) and n-hexane was investigated. High-chlorinated PCDD/F congeners were observed in all leachates of raw APC residue samples, with the largest total leaching concentration (61.60 ngm(-3); 0.30 ngI-TEQm(-3)) from treatment with humic acid. Low-chlorinated congeners were mainly leached with LAS and n-hexane. Solidification and stabilization (S/S) processes with cement and sulfur-containing chelating agent decreased the leachability of PCDD/Fs by up to 98% with humic acid and LAS as solvents. However, S/S processes enhanced the leachability of both high- and low-chlorinated PCDD/F congeners with n-hexane as the solvent, which largely increased the toxic equivalent quantity of leachates. These results suggest that conventional S/S processes may effectively restrain the release of PCDD/Fs when APC residues are leached with rain water or natural organic compounds (e.g., humic acid), but may have a deteriorated effect when APC residues are leached with nonpolar organic solvents (e.g., n-hexane) coexisting in the landfill sites.

  1. Flow Visualization and Measurements of the Mixing Evolution of a Shock-Accelerated Gas Curtain

    SciTech Connect

    Prestridge, K.; Vorobieff, P.V.; Rightley, P.M.; Benjamin, R.F

    1999-07-19

    We describe a highly-detailed experimental characterization of the impulsively driven Rayleigh-Taylor instability, called the Richtmyer-Meshkov instability. This instability is produced by flowing a diffuse, vertical curtain of heavy gas (SF{sub 6}) into the test section of an air-filled horizontally oriented shock tube. The instability evolves after the passage of a Mach 1.2 shock past the curtain, and the development of the curtain is visualized by seeding the SF{sub 6} with small (d{approximately}0.5 and micro;m) glycol droplets using a modified theatrical fog generator. Because the event lasts only 1 ms and the initial conditions vary from test to test, rapid and complete data acquisition is required in order to characterize the initial and dynamic conditions for each experimental shot. Through the use of a custom-built pulsed Nd: YAG laser, we are able to image the flowfield at seven different times. We acquire a double-pulsed image of the flow with the use of a second pulsed Nd:YAG, which is used to determine the instantaneous velocity field using Particle Image Velocimetry (PIV). During a single experiment, high resolution images of the initial conditions and dynamic conditions are acquired using three CCD cameras. Issues of the fidelity of the flow seeding technique and the reliability of the PIV technique will be addressed. We have successfully provided interesting data through analysis of the images alone, and we are hoping that PIV information will be able to add further physical insight to the evolution of the RM instability and the transition to turbulence.

  2. Geiselbullach refuse incineration plant

    SciTech Connect

    Not Available

    1990-03-01

    The vast diversity of wastes, heightened awareness of environmental problems, and unabating demand for power and raw materials, are making it imperative to minimize waste-dumping. Refuse incineration power plants present an ecologically and economically sound answer to this problem, since they also enable communities and large industrial facilities to convert their wastes into electricity and energy for district heating. The refuse produced each year by 1,000,000 people represents a resource equivalent to $30 million of fuel oil. This plant is now converting into energy the waste produced by a population of 280,000. The conversion and expansion were completed without any significant interruption to plant operation. The modernized plant complies fully with today's stringent legal requirements for obtaining an operating license in West Germany. Because landfill sites are becoming increasingly scarce everywhere, thermal processes that dispose of refuse and simultaneously generate electrical power and heat are creating a great deal of interest.

  3. Lessons learned from start-up testing of a mixed waste incinerator

    SciTech Connect

    Holmes Burns, H.; Burns, D.B.

    1997-05-01

    Start-up testing of a new mixed waste incinerator, the Consolidated Incineration Facility (CIF), has been completed at the Department of Energy`s Savannah River Site (SRS). The incinerator is equipped with an air pollution control system (APCS) that includes a wet quench and scrubber followed by dry air filtration using high efficiency particulate air (HEPA) filters. The system was designed with optimum materials to maximize reliability, runtime, and ease of maintenance. Changes to the CIF operation and materials have been made to maximize system performance and minimize corrosion. This paper presents a brief overview of the incinerator design philosophy, pilot-scale testing results, and some of the lessons learned during the start-up testing of the CIF.

  4. Disinsection: evolution of the air curtain in the last year

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Certain countries require disinsection of commercial aircraft from overseas flights before passengers and crews disembark. Currently acceptable method: spray aircraft interior with pesticides. One of the problems with this is that passengers and crew are exposed to pesticides. There are pesticide se...

  5. Leaching behaviour of hexabromocyclododecane from treated curtains.

    PubMed

    Stubbings, William A; Kajiwara, Natsuko; Takigami, Hidetaka; Harrad, Stuart

    2016-02-01

    A series of laboratory experiments were conducted, whereby two HBCDD treated polyester curtain samples were contacted with deionised Milli-Q water as leaching fluid and HBCDD determined in the resulting leachate. As well as single batch (no replenishment of leaching fluid), serial batch (draining of leachate and replenishment with fresh leaching fluid at various time intervals) experiments were conducted. In single batch experiments at 20 °C, ΣHBCDD concentrations increased only slightly with increasing contact time (6 h, 24 h, and 48 h). This is supported by serial batch tests at 20 °C in which leaching fluid was replaced after 6 h, 24 h, 48 h, 72 h, 96 h, and 168 h. Data from these experiments show that while concentrations of HBCDD in leachate after 24 h cumulative contact time exceed those at 6 h; concentrations in samples collected at subsequent contact times remained steady at ∼50% of those in the 24 h sample. Consistent with this, leaching is shown to be second order, whereby a period of initially intense dissolution of more labile HBCDD is followed by a slower stage corresponding to external diffusion of the soluble residue within the textile. In experiments conducted at 20 °C, α-HBCDD is preferentially leached compared to β- and γ-HBCDD. However, at higher temperatures, the relatively more hydrophobic diastereomers are proportionally more readily leached, i.e. raising the temperature from 20 °C to 80 °C increased concentrations of γ-HBCDD in the leachate by a factor of 28-33 while corresponding α-HBCDD concentrations only increased by a factor of 4.3-4.8. PMID:26583291

  6. Recycling incineration: Evaluating the choices

    SciTech Connect

    Denison, R.A.; Ruston, J.

    1993-01-01

    Conflicts between proponents of municipal solid waste incineration and advocates of recycling have escalated with efforts to reduce the volume of waste that ends up in landfills. Central to this debate is competition for materials that are both combustible and recyclable. Environmental and economic concerns also play a major role. This book, produced by the Environmental Defense Fund, compares recycling and incineration. It is intended for citizens, government officials, and business people who want to help resolve the solid-waste crisis.' The book is divided into three parts: recycling and incineration; health and environmental risk of incineration; and planning, public participation, and environmental review requirements. The book does an excellent job of discussing the benefits of recycling and the pitfalls of incineration. It provides helpful information for identifying questions that should be raised about incineration, but it does not raise similar queries about recycling. There is much worthwhile information here, but the book would be more useful if it identified critical issues for all waste reduction and management options.

  7. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  8. Incineration of different types of medical wastes: emission factors for gaseous emissions

    NASA Astrophysics Data System (ADS)

    Alvim-Ferraz, M. C. M.; Afonso, S. A. V.

    Previous research works showed that to protect public health, the hospital incinerators should be provided with air pollution control devices. As most hospital incinerators do not possess such equipment, efficient methodologies should be developed to evaluate the safety of incineration procedure. Emission factors (EF) can be used for an easy estimation of legal parameters. Nevertheless, the actual knowledge is yet very scarce, mainly because EF previously published do not include enough information about the incinerated waste composition, besides considering many different waste classifications. This paper reports the first EF estimated for CO, SO 2, NO x and HCl, associated to the incineration of medical waste, segregated in different types according to the classification of the Portuguese legislation. The results showed that those EF are strongly influenced by incinerated waste composition, directly affected by incinerated waste type, waste classification, segregation practice and management methodology. The correspondence between different waste classifications was analysed comparing the estimated EF with the sole results previously published for specific waste types, being observed that the correspondence is not always possible. The legal limit for pollutant concentrations could be obeyed for NO x, but concentrations were higher than the limit for CO (11-24 times), SO 2 (2-5 times), and HCl (9-200 times), confirming that air pollution control devices must be used to protect human health. The small heating value of medical wastes with compulsory incineration implied the requirement of a bigger amount of auxiliary fuel for their incineration, which affects the emitted amounts of CO, NO x and SO 2 (28, 20 and practically 100% of the respective values were related with fuel combustion). Nevertheless, the incineration of those wastes lead to the smallest amount of emitted pollutants, the emitted amount of SO 2 and NO x reducing to 93% and the emitted amount of CO

  9. 77 FR 24451 - Direct Final Approval of Hospital/Medical/Infectious Waste Incinerators State Plan for Designated...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-24

    ... AGENCY 40 CFR Part 62 Direct Final Approval of Hospital/Medical/Infectious Waste Incinerators State Plan...' revised State Plan to control air pollutants from Hazardous/ Medical/Infectious Waste Incinerators (HMIWI... consistent with Emission Guidelines promulgated by EPA on October 6, 2009. This approval means that EPA...

  10. 40 CFR 63.1203 - What are the standards for hazardous waste incinerators that are effective until compliance with...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... waste incinerators that are effective until compliance with the standards under § 63.1219? 63.1203 Section 63.1203 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... Operating Limits for Incinerators, Cement Kilns, and Lightweight Aggregate Kilns § 63.1203 What are...

  11. Non-axisymmetric annular curtain stability

    NASA Astrophysics Data System (ADS)

    Ahmed, Zahir U.; Khayat, Roger E.; Maissa, Philippe; Mathis, Christian

    2013-08-01

    A stability analysis of non-axisymmetric annular curtain is carried out for an axially moving viscous jet subject in surrounding viscous gas media. The effect of inertia, surface tension, gas-to-liquid density ratio, inner-to-outer radius ratio, and gas-to-liquid viscosity ratio on the stability of the jet is studied. In general, the axisymmetric disturbance is found to be the dominant mode. However, for small wavenumber, the non-axisymmetric mode is the most unstable mode and the one likely observed in reality. Inertia and the viscosity ratio for non-axisymmetric disturbances show a similar stability influence as observed for axisymmetric disturbances. The maximum growth rate in non-axisymmetric flow, interestingly, appears at very small wavenumber for all inertia levels. The dominant wavenumber increases (decreases) with inertia for non-axisymmetric (axisymmetric) flow. Gas-to-liquid density ratio, curvature effect, and surface tension, however, exhibit an opposite influence on growth rate compared to axisymmetric disturbances. Surface tension tends to stabilize the flow with reductions of the unstable wavenumber range and the maximum growth rate as well as the dominant wavenumber. The dominant wavenumber remains independent of viscosity ratio indicating the viscosity ratio increases the breakup length of the sheet with very little influence on the size of the drops. The range of unstable wavenumbers is affected only by curvature in axisymmetric flow, whereas all the stability parameters control the range of unstable wavenumbers in non-axisymmetric flow. Inertia and gas density increase the unstable wavenumber range, whereas the radius ratio, surface tension, and the viscosity ratio decrease the unstable wavenumber range. Neutral curves are plotted to separate the stable and unstable domains. Critical radius ratio decreases linearly and nonlinearly with the wavenumber for axisymmetric and non-axisymmetric disturbances, respectively. At smaller Weber numbers, a

  12. Environmental assessment of incinerator residue utilisation.

    PubMed

    Toller, S; Kärrman, E; Gustafsson, J P; Magnusson, Y

    2009-07-01

    Incineration ashes may be treated either as a waste to be dumped in landfill, or as a resource that is suitable for re-use. In order to choose the best management scenario, knowledge is needed on the potential environmental impact that may be expected, including not only local, but also regional and global impact. In this study, A life cycle assessment (LCA) based approach was outlined for environmental assessment of incinerator residue utilisation, in which leaching of trace elements as well as other emissions to air and water and the use of resources were regarded as constituting the potential environmental impact from the system studied. Case studies were performed for two selected ash types, bottom ash from municipal solid waste incineration (MSWI) and wood fly ash. The MSWI bottom ash was assumed to be suitable for road construction or as drainage material in landfill, whereas the wood fly ash was assumed to be suitable for road construction or as a nutrient resource to be recycled on forest land after biofuel harvesting. Different types of potential environmental impact predominated in the activities of the system and the use of natural resources and the trace element leaching were identified as being relatively important for the scenarios compared. The scenarios differed in use of resources and energy, whereas there is a potential for trace element leaching regardless of how the material is managed. Utilising MSWI bottom ash in road construction and recycling of wood ash on forest land saved more natural resources and energy than when these materials were managed according to the other scenarios investigated, including dumping in landfill. PMID:19362462

  13. "The Iron Curtain" (1948): Hollywood's First Cold War Movie.

    ERIC Educational Resources Information Center

    Leab, Daniel J.

    1988-01-01

    Examines the nature of Hollywood movies produced during the Cold War and the transformation of U.S. popular culture. Discusses the 1948 production of "The Iron Curtain," based on the defection of Igor Gouzenko. Appendices include (1) the defection of Igor Gouzenko; and (2) Twentieth Century-Fox's purchase of the Igor Gouzenko story rights. (GEA)

  14. Winston Churchill's "Iron Curtain" Address: Implications for the Present.

    ERIC Educational Resources Information Center

    Bush, George

    1988-01-01

    Evaluates the "Iron Curtain" speech made by Winston Churchill in 1946, discussing its relevance and implications for the present. Examines Churchill's predictions for the future and his assessment of the USSR. Reviews world developments since the speech and proposes foreign policy goals for the next 40 years. (GEA)

  15. Technological and economic evalution of municipal solid-waste incineration. Final report

    SciTech Connect

    Rood, M.J.

    1988-09-01

    The report describes the important aspects of municipal solid waste (MSW) combustion that should be considered by municipalities within the State of Illinois. Combustion of municipal solid waste is an important issue to municipalities because of the shortage of available landfill capacity in the State of Illinois. Discussion is focused on the description of typical types of MSW incinerators that are currently used throughout the United States, the pollutants that are generated by the facilities, air pollution control technologies, the influence of recycling on MSW incineration, applicable State of Illinois regulations, and an economic analysis of MSW incinerators.

  16. Advanced two-stage incinerator

    SciTech Connect

    Rehmat, A.; Khinkis, M.

    1991-01-01

    The Institute of Gas Technology (IGT) is developing an advanced incinerator that combines the fluidized-bed agglomeration/incineration and cyclonic combustion/incineration technologies that have been developed separately at IGT over many years. This combination results in a unique and extremely flexible incinerator for solid, sludge, liquid, and gaseous wastes. This system can operate over a wide range of conditions in the first stage, from low temperature (desorption) to high temperature (agglomeration), including gasification of high-Btu wastes. In the combined system, solid, liquid, and gaseous organic wastes would be easily and efficiently destroyed (>99.99% destruction and removal efficiency (DRE)), whereas solid inorganic contaminants would be contained within a glassy matrix, rendering them benign and suitable for disposal in an ordinary landfill. This technology is different from other existing technologies because of its agglomeration and encapsulation capability and its flexibility with respect to the types wastes it can handle. Both the fluidized-bed as well as the cyclonic incineration technologies have been fully developed and tested separately at pilot scales. 12 refs., 4 figs., 4 tabs.

  17. Dioxin danger from garbage incineration

    SciTech Connect

    Karasek, F.W.; Hutzinger, O.

    1986-05-01

    Incineration, an alternative to burying for the disposal of urban garbage, is practiced throughout the world. Given the limited number of landfill sites and the future hazard to the environment that such sites may pose, it is now obvious that the number of municipal solid waste incinerator (MSWI) facilities must be increased. The major obstacle to construction of new MSWI facilities is that incineration produces several hundred stable and toxic compounds, including polychlorinated dibenzodioxins (PCDDs). These compounds are always present at parts-per-million concentrations in all MSWI units, both in the fly ash formed during combustion and in the stack emissions. Because MSWI facilities are the major contributors of dioxins to the environment today, many studies of the MSWI process have been carried out since dioxins were first discovered in MSWI fly ash in 1977. In view of the importance of incineration, the MSWI process was a major topic discussed by 500 experts gathered at the University of Bayreuth in Germany last September for the Fifth International Symposium on Chlorinated Dioxins. This status report is a consensus of the studies presented about incineration; the full text of all symposium papers will appear in a special issue of Chemosphere in June. 3 figures, 3 tables.

  18. Assessment of incineration and melting treatment technologies for RWMC buried waste

    SciTech Connect

    Geimer, R.; Hertzler, T.; Gillins, R.; Anderson, G.L.

    1992-02-01

    This report provides an identification, description, and ranking evaluation of the available thermal treatment technologies potentially capable of treating the Idaho National Engineering Laboratory Radioactive Waste Management Complex (RWMC) buried mixed waste. The ranking evaluation focused separately upon incinerators for treatment of combustible wastes and melters for noncombustible wastes. The highest rank incinerators are rotary kilns and controlled air furnaces, while the highest rank melters are the hearth configuration plasma torch, graphite electrode arc, and joule-heated melters. 4 refs.

  19. Environmental impact assessment of the incineration of municipal solid waste with auxiliary coal in China.

    PubMed

    Zhao, Yan; Xing, Wei; Lu, Wenjing; Zhang, Xu; Christensen, Thomas H

    2012-10-01

    The environmental impacts of waste incineration with auxiliary coal were investigated using the life-cycle-based software, EASEWASTE, based on the municipal solid waste (MSW) management system in Shuozhou City. In the current system, MSW is collected, transported, and incinerated with 250 kg of coal per ton of waste. Based on observed environmental impacts of incineration, fossil CO(2) and heavy metals were primary contributors to global warming and ecotoxicity in soil, respectively. Compared with incinerators using excess coal, incineration with adequate coal presents significant benefits in mitigating global warming, whereas incineration with a mass of coal can avoid more impacts to acidification, photochemical ozone and nutrient enrichment because of increased electricity substitution and reduced emission from coal power plants. The "Emission standard of air pollutants for thermal power plants (GB13223-2011)" implemented in 2012 introduced stricter policies on controlling SO(2) and NO(x) emissions from coal power plants. Thus, increased use of auxiliary coal during incineration yields fewer avoided impacts on acidification and nutrient enrichment. When two-thirds of ash is source-separated and landfilled, the incineration of rest-waste presents better results on global warming, acidification, nutrient enrichment, and even ecotoxicity in soil. This process is considered a promising solution for MSW management in Shuozhou City. Weighted normalized environmental impacts were assessed based on Chinese political reduction targets. Results indicate that heavy metal and acidic gas emissions should be given more attention in waste incineration. This study provides scientific support for the management of MSW systems dominated by incineration with auxiliary coal in China. PMID:22683228

  20. INCINERATION TREATMENT OF ARSENIC-CONTAMINATED SOIL

    EPA Science Inventory

    An incineration test program was conducted at the U.S. Environmental Protection Agency's Incineration Research Facility to evaluate the potential of incineration as a treatment option for contaminated soils at the Baird and McGuire Superfund site in Holbrook, Massachusetts. The p...

  1. Emission of ultrafine particles from the incineration of municipal solid waste: A review

    NASA Astrophysics Data System (ADS)

    Jones, Alan M.; Harrison, Roy M.

    2016-09-01

    Ultrafine particles (diameter <100 nm) are of great topical interest because of concerns over possible enhanced toxicity relative to larger particles of the same composition. While combustion processes, and especially road traffic exhaust are a known major source of ultrafine particle emissions, relatively little is known of the magnitude of emissions from non-traffic sources. One such source is the incineration of municipal waste, and this article reviews studies carried out on the emissions from modern municipal waste incinerators. The effects of engineering controls upon particle emissions are considered, as well as the very limited information on the effects of changing waste composition. The results of measurements of incinerator flue gas, and of atmospheric sampling at ground level in the vicinity of incinerators, show that typical ultrafine particle concentrations in flue gas are broadly similar to those in urban air and that consequently, after the dispersion process dilutes incinerator exhaust with ambient air, ultrafine particle concentrations are typically indistinguishable from those that would occur in the absence of the incinerator. In some cases the ultrafine particle concentration in the flue gas may be below that in the local ambient air. This appears to be a consequence of the removal of semi-volatile vapours in the secondary combustion zone and abatement plant, and the high efficiency of fabric filters for ultrafine particle collection.

  2. New design incinerator being built

    SciTech Connect

    Not Available

    1980-09-01

    A $14 million garbage-burning facility is being built by Reedy Creek Utilities Co. in cooperation with DOE at Lake Buena Vista, Fla., on the edge of Walt Disney World. The nation's first large-volume slagging pyrolysis incinerator will burn municipal waste in a more beneficial way and supply 15% of the amusement park's energy demands. By studying the new incinerators slag-producing capabilities, engineers hope to design similar facilities for isolating low-level nuclear wastes in inert, rocklike slag.

  3. Evaluation of volatile organic emissions from hazardous waste incinerators.

    PubMed Central

    Sedman, R M; Esparza, J R

    1991-01-01

    Conventional methods of risk assessment typically employed to evaluate the impact of hazardous waste incinerators on public health must rely on somewhat speculative emissions estimates or on complicated and expensive sampling and analytical methods. The limited amount of toxicological information concerning many of the compounds detected in stack emissions also complicates the evaluation of the public health impacts of these facilities. An alternative approach aimed at evaluating the public health impacts associated with volatile organic stack emissions is presented that relies on a screening criterion to evaluate total stack hydrocarbon emissions. If the concentration of hydrocarbons in ambient air is below the screening criterion, volatile emissions from the incinerator are judged not to pose a significant threat to public health. Both the screening criterion and a conventional method of risk assessment were employed to evaluate the emissions from 20 incinerators. Use of the screening criterion always yielded a substantially greater estimate of risk than that derived by the conventional method. Since the use of the screening criterion always yielded estimates of risk that were greater than that determined by conventional methods and measuring total hydrocarbon emissions is a relatively simple analytical procedure, the use of the screening criterion would appear to facilitate the evaluation of operating hazardous waste incinerators. PMID:1954928

  4. Using neural networks to predict incinerator emissions: A case study

    SciTech Connect

    Heitz, M.W.; George, B.; Welp, J.E.

    1997-12-31

    This paper presents a case study applying a neural network to predict incinerator emissions. A neural network is a program which is used to develop relationships between process operating variables (input data) and emissions (output data). Recent Federal 503 Regulations for Sewage Sludge Incinerators have required the installation of total hydrocarbon (THC) or carbon monoxide (CO) continuous emission monitoring systems (CEMS) to assure emission compliance. These systems are expensive to install, operate, and maintain. An investigation was performed to develop a simulation model using an artificial intelligence program with the goal of improved operations and reduced air emissions. This paper presents methods used for data collection, data preprocessing, and network training, as well as the architecture and weights of the final network. The network application has improved incinerator operations and limited emissions by determining acceptable ranges of operating variables. Neural networks have been found to accurately predict incinerator emissions. Their use would reduce the burden of high monitoring and compliance costs associated with CEMS. Neural networks may be applied to other environmental monitoring and control processes.

  5. The origin and behavior of lead, cadmium and antimony in MSW incinerator

    SciTech Connect

    Nakamura, Kazuo; Kinoshita, Sayuri; Takatsuki, Hiroshi

    1996-12-31

    The Amendment to the Waste Disposal and Public Cleansing Law in Japan has introduced new regulation of waste requiring strict management. In this regulation, the fly ash generated in the Municipal Solid Waste (MSW) incinerator process was designated as specially controlled solid waste because of relatively high concentrations of lead and cadmium. Furthermore, antimony is a regulated constituent within the Basel Convention on the control of transboundary movements of hazardous wastes and their disposal and was designated a monitor item of environmental standards on water pollution. Thus, in order to understand where the problems lie, the behaviors of these heavy metals in the MSW incinerator was investigated. Also investigated were the kinds of products causing the fly ash to be contaminated. As a result, the amount of lead, cadmium and antimony in household waste was about 120, 3.5 and 7.6 g/T, respectively. The major origins of Pb, Cd and Sb from household waste are small sealed lead batteries, nickel-cadmium batteries and flame-proofed products such as curtains and plastic covers. By incineration treatment, these metals shifted to the fly ash (EP ash); the transfer ratio of Pb, Cd and Sb was about 33, 92 and 45%, respectively. The observed results indicated that the partitioning of metals in the MSW incinerator showed the influence of the vapor pressure of the elements and their compounds. Clearly, to produce precise estimates of this behavior, it will be necessary to determine not only the concentration of the elements in the waste but also the compounds used and the changes these would undergo in the furnace. Finally, several measures which will be helpful in solving these problems are introduced to discuss the future direction of environmentally-friendly social systems.

  6. Enviromental impact of a hospital waste incineration plant in Krakow (Poland).

    PubMed

    Gielar, Agnieszka; Helios-Rybicka, Edeltrauda

    2013-07-01

    The environmental impact of a hospital waste incineration plant in Krakow was investigated. The objective of this study was to assess the degree of environmental effect of the secondary solid waste generated during the incineration process of medical waste. The analysis of pollution of the air emissions and leaching test of ashes and slag were carried out. The obtained results allowed us to conclude that (i) the hospital waste incineration plant significantly solves the problems of medical waste treatment in Krakow; (ii) the detected contaminant concentrations were generally lower than the permissible values; (iii) the generated ashes and slag contained considerable concentrations of heavy metals, mainly zinc, and chloride and sulfate anions. Ashes and slag constituted 10-15% of the mass of incinerated wastes; they are more harmful for the environment when compared with untreated waste, and after solidification they can be deposited in the hazardous waste disposal.

  7. The early days of incineration

    SciTech Connect

    Valenti, M.

    1995-05-01

    Landfills reaching capacity, beaches fouled with trash, neighborhood residents protesting waste disposal sites in their backyards, and municipalities forced to recycle. Sound familiar? These issues might have been taken from today`s headlines, but they were also problems facing mechanical engineers a century ago. Conditions such as these were what led engineers to design the first incinerators for reducing the volume of municipal garbage, as well as for producing heat and electricity. The paper discusses these early days.

  8. Furnace for the selective incineration or carbonization of waste materials

    SciTech Connect

    Angelo, J.F. II

    1988-03-29

    A combustion device for selectively incinerating, or carbonizing a carbonaceous feed material by a process of controlled devolatilization is described comprising: a. an elongated cylindrical siln inclined slightly from the horizontal and having an upper end and a lower end; b. means operable to introduce a solid carbonaceous feed material into the upper end of the kiln; c. means operable to elevate the temperature of the feed material in the kiln to either incineration or carbonizing temperature, only until the desired temperature is obtained; d. means located in an upper portion of the kiln to introduce air into the full length of the kiln into the upper portion thereof only; e. draft inducing means operable to create a draft in the kiln toward an outlet end thereof, and f. afterburner means interconnected to the draft outlet of the kiln, and operable to produce combustion of combustible gaseous or solid components entrained in the draft.

  9. Detection of radioactive accumulations within an incinerator

    SciTech Connect

    Schoenig, F.C. Jr.; Grossman, L.N.

    1986-03-25

    This patent describes an incinerator for burning combustible material contaminated by radiation. This incinerator has a combustion chamber having containment walls of high density refractory brick provided with at least one window opening through the high density refractory brick containment walls. The window consists of a low density body of ceramic fibers. Any radiation from residual radioactive ash within the incinerator containment and inhibited by the high density refractory brick can penetrate outward through the window of low density fiber to beyond the incinerator containment walls. A radiation detector is mounted outside the incinerator containment walls adjacent to the window of low density ceramic fiber for measuring any radiation passing out from the combustion chamber through the low density window. The amount of retained radioactive ash accumulated in the incinerator combustion chamber is indicated on the detector.

  10. 16. Rear (west) side of incinerator. Glove boxes to the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. Rear (west) side of incinerator. Glove boxes to the left. Metal catwalk in the middle. Incinerator control panel to the right. Looking south towards scrubber cell. - Plutonium Finishing Plant, Waste Incinerator Facility, 200 West Area, Richland, Benton County, WA

  11. 8. Front (east) side of incinerator and glove boxes. Ash ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Front (east) side of incinerator and glove boxes. Ash canning hood to the left, combustion chamber in the middle, incinerator hood to the right. Looking west. - Plutonium Finishing Plant, Waste Incinerator Facility, 200 West Area, Richland, Benton County, WA

  12. Fundamental characteristics of input waste of small MSW incinerators in Korea.

    PubMed

    Choi, Ki-In; Lee, Suk-Hui; Lee, Dong-Hoon; Osako, Masahiro

    2008-11-01

    Waste incineration in a small incinerator is a simple and convenient way of treating waste discharged from small areas or from large facilities and buildings such as business centers, marketplaces, factories, and military units. Despite their ostensible advantages, however, many small incinerators frequently suffer from serious problems, e.g., unsystematic waste feeding, unstable combustion, deficient air pollution control devices, and consequently, environmental pollution. To obtain a better understanding of the characterization of wastes in small incinerators, we investigated a series of fundamental characteristics, i.e., physical composition, bulk density, proximate and ultimate analysis, potential energy content, and so on. The main waste components in small incinerators were identified as paper and plastic; the proportion of food waste was less than that in large incinerators. Especially, a low ratio of food waste had a strong influence on other waste characteristics, e.g., lower moisture content and bulk density, and higher potential energy. On the other hand, in contrast with that of HCl, there was no distinguishable linear relationship between Cl content in waste and PCDD/DF concentration in combustion gas. PMID:18082391

  13. Fundamental characteristics of input waste of small MSW incinerators in Korea.

    PubMed

    Choi, Ki-In; Lee, Suk-Hui; Lee, Dong-Hoon; Osako, Masahiro

    2008-11-01

    Waste incineration in a small incinerator is a simple and convenient way of treating waste discharged from small areas or from large facilities and buildings such as business centers, marketplaces, factories, and military units. Despite their ostensible advantages, however, many small incinerators frequently suffer from serious problems, e.g., unsystematic waste feeding, unstable combustion, deficient air pollution control devices, and consequently, environmental pollution. To obtain a better understanding of the characterization of wastes in small incinerators, we investigated a series of fundamental characteristics, i.e., physical composition, bulk density, proximate and ultimate analysis, potential energy content, and so on. The main waste components in small incinerators were identified as paper and plastic; the proportion of food waste was less than that in large incinerators. Especially, a low ratio of food waste had a strong influence on other waste characteristics, e.g., lower moisture content and bulk density, and higher potential energy. On the other hand, in contrast with that of HCl, there was no distinguishable linear relationship between Cl content in waste and PCDD/DF concentration in combustion gas.

  14. Dioxin formation from waste incineration.

    PubMed

    Shibamoto, Takayuki; Yasuhara, Akio; Katami, Takeo

    2007-01-01

    There has been great concern about dioxins-polychlorinated dibenzo dioxins (PCDDs), polychlorinated dibenzo furans (PCDFs), and polychlorinated biphenyls (PCBs)-causing contamination in the environment because the adverse effects of these chemicals on human health have been known for many years. Possible dioxin-contamination has received much attention recently not only by environmental scientists but also by the public, because dioxins are known to be formed during the combustion of industrial and domestic wastes and to escape into the environment via exhaust gases from incinerators. Consequently, there is a pressing need to investigate the formation mechanisms or reaction pathways of these chlorinated chemicals to be able to devise ways to reduce their environmental contamination. A well-controlled small-scale incinerator was used for the experiments in the core references of this review. These articles report the investigation of dioxin formation from the combustion of various waste-simulated samples, including different kinds of paper, various kinds of wood, fallen leaves, food samples, polyethylene (PE), polystyrene (PS), polyvinyl chloride (PVC), polyvinylidene chloride, polyethylene tetraphthalate (PET), and various kinds of plastic products. These samples were also incinerated with inorganic chlorides (NaCl, KCl, CuCI2, MgCl2, MnCl2, FeCl2, CoCl2, fly ash, and seawater) or organic chlorides (PVC, chlordane, and pentachlorophenol) to investigate the role of chlorine content and/or the presence of different metals in dioxin formation. Some samples, such as newspapers, were burned after they were impregnated with NaCl or PVC, as well as being cocombusted with chlorides. The roles of incineration conditions, including chamber temperatures, O2 concentrations, and CO concentrations, in dioxin formation were also investigated. Dioxins (PCDDs, PCDFs, and coplanar-PCBs) formed in the exhaust gases from a controlled small-scale incinerator, where experimental waste

  15. Emission of greenhouse gases from controlled incineration of cattle manure.

    PubMed

    Oshita, Kazuyuki; Sun, Xiucui; Taniguchi, Miki; Takaoka, Masaki; Matsukawa, Kazutsugu; Fujiwara, Taku

    2012-01-01

    Greenhouse gas emission is a potential limiting factor in livestock farming development. While incineration is one approach to minimize livestock manure, there are concerns about significant levels of nitrogen and organic compounds in manure as potential sources of greenhouse gas emissions (N2O and CH4). In this study, the effects of various incineration conditions, such as the furnace temperature and air ratio on N2O and CH4 formation behaviour, of cattle manure (as a representative livestock manure) were investigated in a pilot rotary kiln furnace. The results revealed that N2O emissions decreased with increasing temperature and decreasing air ratio. In addition, CH4 emissions tended to be high above 800 degrees C at a low air ratio. The emission factors for N2O and CH4 under the general conditions (combustion temperature of 800-850 degrees C and air ratio of 1.4) were determined to be 1.9-6.0% g-N2O-N/g-N and 0.0046-0.26% g-CH4/g-burning object, respectively. The emission factor for CH4 differed slightly from the published values between 0.16 and 0.38% g-CH4/g-burning object. However, the emission factor for N2O was much higher than the currently accepted value of 0.7% g-N2O-N/g-N and, therefore, it is necessary to revise the N2O emission factor for the incineration of livestock manure.

  16. Rotary kiln incineration of dichloromethane and xylene: A comparison of incinerability characteristics under various operating conditions

    SciTech Connect

    Cundy, V.A.; Lu, C.; Cook, C.A.; Sterling, A.M.; Leger, C.B.; Jakway, A.L.; Montestruc, A.N.; Conway, R. ); Lester, T.W. )

    1991-08-01

    Comparisons are made, for the first time, between the combustion characteristics of dicholoromethane and xylene in an industrial rotary kiln incinerator. The comparisons are made under different operating conditions, including variable kiln rotation rate and operation both with and without turbulence air. Continuous gas composition and temperature measurements and batch gas composition measurements were obtained from two vertical locations near the exit region of the rotary kiln. The measurements show that there is significant vertical stratification at the exit of the kiln. Addition of turbulence air enhanced combustion conditions throughout the kiln during xylene processing. During dichloromethane processing, however, the addition of turbulence air had minimal effect and only promoted greater bulk mixing; chlorinated compounds transported from the lower kiln during operation with turbulence air were not efficiently processed in the upper kiln. Evolution of test liquids from the bed was not constant but rather was characterized by intermittent peaks. The field-scale data of this work suggest that the evolution rate of the test liquid was increased as kiln rotation rate increased. Many of the differences between xylene and dichloromethane processing during these experiments are explained by a simple stoichiometric analysis.

  17. Characterization and comparison of emissions from rudimentary waste disposal technologies

    EPA Science Inventory

    Results from 2011 simulation of burn pit emissions and air curtain incinerator emissions, recent developments in methods for open air sampling, comparison of waste energy technologies, current SERDP programs in this area.

  18. 40 CFR 761.70 - Incineration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... POLYCHLORINATED BIPHENYLS (PCBs) MANUFACTURING, PROCESSING, DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS Storage...; (c) CO2; (d) Oxides of Nitrogen (NOX); (e) Hydrochloric Acid (HCl); (f) Total Chlorinated Organic... incinerator is incinerating PCBs: (i) O2; (ii) CO; and (iii) CO2. The monitoring for O2 and CO shall...

  19. 40 CFR 761.70 - Incineration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... POLYCHLORINATED BIPHENYLS (PCBs) MANUFACTURING, PROCESSING, DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS Storage...; (c) CO2; (d) Oxides of Nitrogen (NOX); (e) Hydrochloric Acid (HCl); (f) Total Chlorinated Organic... incinerator is incinerating PCBs: (i) O2; (ii) CO; and (iii) CO2. The monitoring for O2 and CO shall...

  20. 40 CFR 761.70 - Incineration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... POLYCHLORINATED BIPHENYLS (PCBs) MANUFACTURING, PROCESSING, DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS Storage...; (c) CO2; (d) Oxides of Nitrogen (NOX); (e) Hydrochloric Acid (HCl); (f) Total Chlorinated Organic... incinerator is incinerating PCBs: (i) O2; (ii) CO; and (iii) CO2. The monitoring for O2 and CO shall...

  1. 40 CFR 761.70 - Incineration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... POLYCHLORINATED BIPHENYLS (PCBs) MANUFACTURING, PROCESSING, DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS Storage...; (c) CO2; (d) Oxides of Nitrogen (NOX); (e) Hydrochloric Acid (HCl); (f) Total Chlorinated Organic... incinerator is incinerating PCBs: (i) O2; (ii) CO; and (iii) CO2. The monitoring for O2 and CO shall...

  2. 46 CFR 63.25-9 - Incinerators.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... traces of heavy metals. (4) Refined petroleum products containing halogen compounds. (d) Operating manual... by reference; see 46 CFR 63.05-1). Incinerators in compliance with ISO 13617 (incorporated by reference; see 46 CFR 63.05-1), are considered to meet IMO MEPC.76(40). Incinerators in compliance with...

  3. 46 CFR 63.25-9 - Incinerators.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... traces of heavy metals. (4) Refined petroleum products containing halogen compounds. (d) Operating manual... by reference; see 46 CFR 63.05-1). Incinerators in compliance with ISO 13617 (incorporated by reference; see 46 CFR 63.05-1), are considered to meet IMO MEPC.76(40). Incinerators in compliance with...

  4. 46 CFR 63.25-9 - Incinerators.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... heavy metals. (4) Refined petroleum products containing halogen compounds. (d) Operating manual. Each... by reference; see 46 CFR 63.05-1). Incinerators in compliance with ISO 13617 (incorporated by reference; see 46 CFR 63.05-1), are considered to meet IMO MEPC.76(40). Incinerators in compliance with...

  5. 46 CFR 63.25-9 - Incinerators.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... heavy metals. (4) Refined petroleum products containing halogen compounds. (d) Operating manual. Each... by reference; see 46 CFR 63.05-1). Incinerators in compliance with ISO 13617 (incorporated by reference; see 46 CFR 63.05-1), are considered to meet IMO MEPC.76(40). Incinerators in compliance with...

  6. 46 CFR 63.25-9 - Incinerators.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... traces of heavy metals. (4) Refined petroleum products containing halogen compounds. (d) Operating manual... by reference; see 46 CFR 63.05-1). Incinerators in compliance with ISO 13617 (incorporated by reference; see 46 CFR 63.05-1), are considered to meet IMO MEPC.76(40). Incinerators in compliance with...

  7. Curtain eruptions from Enceladus' south-polar terrain.

    PubMed

    Spitale, Joseph N; Hurford, Terry A; Rhoden, Alyssa R; Berkson, Emily E; Platts, Symeon S

    2015-05-01

    Observations of the south pole of the Saturnian moon Enceladus revealed large rifts in the south-polar terrain, informally called 'tiger stripes', named Alexandria, Baghdad, Cairo and Damascus Sulci. These fractures have been shown to be the sources of the observed jets of water vapour and icy particles and to exhibit higher temperatures than the surrounding terrain. Subsequent observations have focused on obtaining close-up imaging of this region to better characterize these emissions. Recent work examined those newer data sets and used triangulation of discrete jets to produce maps of jetting activity at various times. Here we show that much of the eruptive activity can be explained by broad, curtain-like eruptions. Optical illusions in the curtain eruptions resulting from a combination of viewing direction and local fracture geometry produce image features that were probably misinterpreted previously as discrete jets. We present maps of the total emission along the fractures, rather than just the jet-like component, for five times during an approximately one-year period in 2009 and 2010. An accurate picture of the style, timing and spatial distribution of the south-polar eruptions is crucial to evaluating theories for the mechanism controlling the eruptions. PMID:25951283

  8. Curtain eruptions from Enceladus' south-polar terrain

    NASA Astrophysics Data System (ADS)

    Spitale, Joseph N.; Hurford, Terry A.; Rhoden, Alyssa R.; Berkson, Emily E.; Platts, Symeon S.

    2015-05-01

    Observations of the south pole of the Saturnian moon Enceladus revealed large rifts in the south-polar terrain, informally called `tiger stripes', named Alexandria, Baghdad, Cairo and Damascus Sulci. These fractures have been shown to be the sources of the observed jets of water vapour and icy particles and to exhibit higher temperatures than the surrounding terrain. Subsequent observations have focused on obtaining close-up imaging of this region to better characterize these emissions. Recent work examined those newer data sets and used triangulation of discrete jets to produce maps of jetting activity at various times. Here we show that much of the eruptive activity can be explained by broad, curtain-like eruptions. Optical illusions in the curtain eruptions resulting from a combination of viewing direction and local fracture geometry produce image features that were probably misinterpreted previously as discrete jets. We present maps of the total emission along the fractures, rather than just the jet-like component, for five times during an approximately one-year period in 2009 and 2010. An accurate picture of the style, timing and spatial distribution of the south-polar eruptions is crucial to evaluating theories for the mechanism controlling the eruptions.

  9. Curtain eruptions from Enceladus' south-polar terrain.

    PubMed

    Spitale, Joseph N; Hurford, Terry A; Rhoden, Alyssa R; Berkson, Emily E; Platts, Symeon S

    2015-05-01

    Observations of the south pole of the Saturnian moon Enceladus revealed large rifts in the south-polar terrain, informally called 'tiger stripes', named Alexandria, Baghdad, Cairo and Damascus Sulci. These fractures have been shown to be the sources of the observed jets of water vapour and icy particles and to exhibit higher temperatures than the surrounding terrain. Subsequent observations have focused on obtaining close-up imaging of this region to better characterize these emissions. Recent work examined those newer data sets and used triangulation of discrete jets to produce maps of jetting activity at various times. Here we show that much of the eruptive activity can be explained by broad, curtain-like eruptions. Optical illusions in the curtain eruptions resulting from a combination of viewing direction and local fracture geometry produce image features that were probably misinterpreted previously as discrete jets. We present maps of the total emission along the fractures, rather than just the jet-like component, for five times during an approximately one-year period in 2009 and 2010. An accurate picture of the style, timing and spatial distribution of the south-polar eruptions is crucial to evaluating theories for the mechanism controlling the eruptions.

  10. Flash X-Ray measurements on the shock-induced dispersal of a dense particle curtain

    DOE PAGES

    Wagner, Justin L.; Kearney, Sean P.; Beresh, Steven J.; DeMauro, Edward Paisley; Pruett, Brian Owen Matthew

    2015-11-23

    The interaction of a Mach 1.67 shock wave with a dense particle curtain is quantified using flash radiography. These new data provide a view of particle transport inside a compressible, dense gas–solid flow of high optical opacity. The curtain, composed of 115-µm glass spheres, initially spans 87 % of the test section width and has a streamwise thickness of about 2 mm. Radiograph intensities are converted to particle volume fraction distributions using the Beer–Lambert law. The mass in the particle curtain, as determined from the X-ray data, is in reasonable agreement with that given from a simpler method using amore » load cell and particle imaging. Following shock impingement, the curtain propagates downstream and the peak volume fraction decreases from about 23 to about 4 % over a time of 340 µs. The propagation occurs asymmetrically, with the downstream side of the particle curtain experiencing a greater volume fraction gradient than the upstream side, attributable to the dependence of particle drag on volume fraction. Bulk particle transport is quantified from the time-dependent center of mass of the curtain. Furthermore, the bulk acceleration of the curtain is shown to be greater than that predicted for a single 115-µm particle in a Mach 1.67 shock-induced flow.« less

  11. Flash X-ray measurements on the shock-induced dispersal of a dense particle curtain

    NASA Astrophysics Data System (ADS)

    Wagner, Justin L.; Kearney, Sean P.; Beresh, Steven J.; DeMauro, Edward P.; Pruett, Brian O.

    2015-12-01

    The interaction of a Mach 1.67 shock wave with a dense particle curtain is quantified using flash radiography. These new data provide a view of particle transport inside a compressible, dense gas-solid flow of high optical opacity. The curtain, composed of 115-µm glass spheres, initially spans 87 % of the test section width and has a streamwise thickness of about 2 mm. Radiograph intensities are converted to particle volume fraction distributions using the Beer-Lambert law. The mass in the particle curtain, as determined from the X-ray data, is in reasonable agreement with that given from a simpler method using a load cell and particle imaging. Following shock impingement, the curtain propagates downstream and the peak volume fraction decreases from about 23 to about 4 % over a time of 340 µs. The propagation occurs asymmetrically, with the downstream side of the particle curtain experiencing a greater volume fraction gradient than the upstream side, attributable to the dependence of particle drag on volume fraction. Bulk particle transport is quantified from the time-dependent center of mass of the curtain. The bulk acceleration of the curtain is shown to be greater than that predicted for a single 115-µm particle in a Mach 1.67 shock-induced flow.

  12. Flash X-Ray measurements on the shock-induced dispersal of a dense particle curtain

    SciTech Connect

    Wagner, Justin L.; Kearney, Sean P.; Beresh, Steven J.; DeMauro, Edward Paisley; Pruett, Brian Owen Matthew

    2015-11-23

    The interaction of a Mach 1.67 shock wave with a dense particle curtain is quantified using flash radiography. These new data provide a view of particle transport inside a compressible, dense gas–solid flow of high optical opacity. The curtain, composed of 115-µm glass spheres, initially spans 87 % of the test section width and has a streamwise thickness of about 2 mm. Radiograph intensities are converted to particle volume fraction distributions using the Beer–Lambert law. The mass in the particle curtain, as determined from the X-ray data, is in reasonable agreement with that given from a simpler method using a load cell and particle imaging. Following shock impingement, the curtain propagates downstream and the peak volume fraction decreases from about 23 to about 4 % over a time of 340 µs. The propagation occurs asymmetrically, with the downstream side of the particle curtain experiencing a greater volume fraction gradient than the upstream side, attributable to the dependence of particle drag on volume fraction. Bulk particle transport is quantified from the time-dependent center of mass of the curtain. Furthermore, the bulk acceleration of the curtain is shown to be greater than that predicted for a single 115-µm particle in a Mach 1.67 shock-induced flow.

  13. 40 CFR 60.2015 - What is a new incineration unit?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What is a new incineration unit? 60.2015 Section 60.2015 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... Which Modification or Reconstruction Is Commenced on or After June 1, 2001 Applicability § 60.2015...

  14. 33 CFR 159.131 - Safety: Incinerating device.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Safety: Incinerating device. 159... (CONTINUED) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159.131 Safety: Incinerating device. An incinerating device must not incinerate unless the combustion chamber is closed,...

  15. Testing fluidized bed incinerators for energy-efficient operation for the Southtowns Sewage Treatment Agency. Final report

    SciTech Connect

    1996-01-01

    Two methods for improving the energy efficiency of fluidized bed sludge incinerators were evaluated. The first method used paper pulp and polymer as conditioning agents for municipal sludge instead of lime and ferric chloride. Automatic control of the incinerator was the second method evaluated for energy savings. To evaluate the use of paper pulp and polymer as conditioning agents, varying quantities of paper pulp were added to the liquid sludge to determine the optimal sludge-to-paper pulp ratio. The effect of the paper pulp and polymer-conditioned sludge on plant operations also was evaluated. When compared to sludge conditioned with lime and ferric chloride, the paper pulp and polymer-conditioned sludge had similar cake release and feed characteristics, higher BTU values for the dry sludge solids, required less auxiliary fuel for incineration, and generated less ash for disposal. The paper pulp and polymer did not have any appreciable negative effects on the operation of the wastewater treatment plant. It was estimated that processing and incinerating the sludge conditioned with paper pulp and polymer resulted in a cost savings of up to $91.73 per dry ton of activated sludge solids. To evaluate the effect of automatic control, all the incinerator operating parameters including air flow rates, fuel oil feed rates, and sludge feed rates, were automatically monitored and controlled to minimize auxiliary fuel oil use and to keep the incinerator running at optimal conditions. Although effective, the estimated cost savings for automatic control of the incinerator were small.

  16. Experimental testing and thermoeconomic analysis of an incineration plant postcombustor with oxycombustion

    SciTech Connect

    De Lucia, M.; Lanfranchi, C. . Dept. of Energy Engineering)

    1994-03-01

    Experimental testing was performed on a prototype postcombustor fueled by pure oxygen and designed to treat exhaust gases from industrial waste incineration. The tests validated the technical feasibility of the small-size oxycombustion incinerator, which not only proved to be more flexible and compact than conventional systems of the same rating, but also faster in reaching operating conditions. The thermoeconomic analysis which followed was based on an exergy balance developed from the system's operating conditions measured in the previous experimental phase. A subsequent comparison with conventional air-fueled solutions has shown that oxycombustion offers considerable energy savings and, as a result, economic benefits.

  17. Chlorine emissions from a medical waste incinerator.

    PubMed

    Murnyak, G R; Guzewich, D C

    1982-01-01

    Chloride/chlorine emissions from a hospital's medical waste incinerator were quantified in conjunction with a particulate emission stack test. Chlorine emissions averaged 100.5 mg/m3 with a standard deviation of 72 mg/m3 for five sample runs. It was estimated that the plastic content of the waste burned varied up to about 30%. Since, in general, emission standards for chlorine from medical waste incinerators do not exist, a simple diffusion model technique is suggested to estimate a safe distance to locate a medical waste incinerator from occupied buildings.

  18. Hazardous combustion products from municipal waste incineration.

    PubMed

    Marty, M A

    1993-01-01

    Metropolitan areas are experiencing waste management problems due to the considerable volume of municipal waste generated and the limited space for landfills. Some communities are including incineration as part of their waste management strategy. Incineration is the destruction of materials by the controlled application of heat and is a chemically complex process that leads to the de novo formation of a large number of compounds, many of which have known toxicologic properties. This article explores some of the de novo toxicants formed during incineration of municipal waste and hazardous waste.

  19. 15. BASE OF MST, SOUTHEAST SIDE, FACING SOUTHWEST. AIR COMPRESSOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. BASE OF MST, SOUTHEAST SIDE, FACING SOUTHWEST. AIR COMPRESSOR SHED AT STATION 3; PLATFORM AT STATION 12; ENVIRONMENTAL CURTAIN SWING AT STATION 21. ELECTRICAL HOOKUPS ON RIGHT SIDE OF PHOTOGRAPH. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  20. Environmental impacts of post-consumer material managements: recycling, biological treatments, incineration.

    PubMed

    Valerio, F

    2010-11-01

    The environmental impacts of recycling, mechanical biological treatments (MBT) and waste-to-energy incineration, the main management strategies to respond to the increasing production of post-consumer materials are reviewed and compared. Several studies carried out according to life-cycle assessment (LCA) confirm that the lowest environmental impact, on a global scale, is obtained by recycling and by biological treatments (composting and anaerobic fermentations) if compost is used in agriculture. The available air emission factors suggest that, on a local scale, mechanical biological treatments with energy recovery of biogas, may be intrinsically safer than waste-to-energy incinerators. Several studies confirm the capability of biological treatments to degrade many toxic xenobiotic contaminating urban wastes such as dioxins and polycyclic aromatic hydrocarbons, an important property to be improved, for safe agricultural use of compost. Further LCA studies to compare the environmental impact of MBTs and of waste-to-energy incinerators are recommended. PMID:20573498

  1. Environmental impacts of post-consumer material managements: recycling, biological treatments, incineration.

    PubMed

    Valerio, F

    2010-11-01

    The environmental impacts of recycling, mechanical biological treatments (MBT) and waste-to-energy incineration, the main management strategies to respond to the increasing production of post-consumer materials are reviewed and compared. Several studies carried out according to life-cycle assessment (LCA) confirm that the lowest environmental impact, on a global scale, is obtained by recycling and by biological treatments (composting and anaerobic fermentations) if compost is used in agriculture. The available air emission factors suggest that, on a local scale, mechanical biological treatments with energy recovery of biogas, may be intrinsically safer than waste-to-energy incinerators. Several studies confirm the capability of biological treatments to degrade many toxic xenobiotic contaminating urban wastes such as dioxins and polycyclic aromatic hydrocarbons, an important property to be improved, for safe agricultural use of compost. Further LCA studies to compare the environmental impact of MBTs and of waste-to-energy incinerators are recommended.

  2. Generation and distribution of PAHs in the process of medical waste incineration.

    PubMed

    Chen, Ying; Zhao, Rongzhi; Xue, Jun; Li, Jinhui

    2013-05-01

    After the deadly earthquake on May 12, 2008 in Wenchuan county of China, several different incineration approaches were used for medical waste disposal. This paper investigates the generation properties of polycyclic aromatic hydrocarbons (PAHs) during the incineration. Samples were collected from the bottom ash in an open burning slash site, surface soil at the open burning site, bottom ash from a simple incinerator, bottom ash generated from the municipal solid waste (MSW) incinerator used for medical waste disposal, and bottom ash and fly ash from an incinerator exclusively used for medical waste. The species of PAHs were analyzed, and the toxicity equivalency quantities (TEQs) of samples calculated. Analysis results indicate that the content of total PAHs in fly ash was 1.8×10(3) times higher than that in bottom ash, and that the strongly carcinogenic PAHs with four or more rings accumulated sensitively in fly ash. The test results of samples gathered from open burning site demonstrate that Acenaphthylene (ACY), Acenaphthene (ACE), Fluorene (FLU), Phenanthrene (PHE), Anthracene (ANT) and other PAHs were inclined to migrate into surrounding environment along air and surface watershed corridors, while 4- to 6-ring PAHs accumulated more likely in soil. Being consistent with other studies, it has also been confirmed that increases in both free oxygen molecules and combustion temperatures could promote the decomposition of polycyclic PAHs. In addition, without the influence of combustion conditions, there is a positive correlation between total PCDD/Fs and total PAHs, although no such relationship has been found for TEQ.

  3. Thermal treatment of historical radioactive solid and liquid waste into the CILVA incinerator

    SciTech Connect

    Deckers, Jan; Mols, Ludo

    2007-07-01

    Since the very beginning of the nuclear activities in Belgium, the incineration of radioactive waste was chosen as a suitable technique for achieving an optimal volume reduction of the produced waste quantities. Based on the 35 years experience gained by the operation of the old incinerator, a new industrial incineration plant started nuclear operation in May 1995, as a part of the Belgian Centralized Treatment/Conditioning Facility named CILVA. Up to the end of 2006, the CILVA incinerator has burnt 1660 tonne of solid waste and 419 tonne of liquid waste. This paper describes the type and allowable radioactivity of the waste, the incineration process, heat recovery and the air pollution control devices. Special attention is given to the treatment of several hundreds of tonne historical waste from former reprocessing activities such as alpha suspected solid waste, aqueous and organic liquid waste and spent ion exchange resins. The capacity, volume reduction, chemical and radiological emissions are also evaluated. BELGOPROCESS, a company set up in 1984 at Dessel (Belgium) where a number of nuclear facilities were already installed is specialized in the processing of radioactive waste. It is a subsidiary of ONDRAF/NIRAS, the Belgian Nuclear Waste Management Agency. According to its mission statement, the activities of BELGOPROCESS focus on three areas: treatment, conditioning and interim storage of radioactive waste; decommissioning of shut-down nuclear facilities and cleaning of contaminated buildings and land; operating of storage sites for conditioned radioactive waste. (authors)

  4. Does incineration turn infectious waste aseptic?

    PubMed

    Kanemitsu, K; Inden, K; Kunishima, H; Ueno, K; Hatta, M; Gunji, Y; Watanabe, I; Kaku, M

    2005-08-01

    Incineration of infectious waste is considered to be biologically safe. We performed basic experiments to confirm that bacillus spores are killed by incineration in a muffle furnace. Biological samples containing 10(6) spores of Bacillus stearothermophilus were placed in stainless steel Petri dishes and then into hot furnaces. The furnace temperature and duration of incineration were 300 degrees C for 15 min, 300 degrees C for 30 min, 500 degrees C for 15 min, 500 degrees C for 30 min and 1100 degrees C for 3 min. We confirmed that all spores of B. stearothermophilus were killed at each of these settings. The effect of incineration seems to be equivalent to that of sterilization, based on the satisfactory sterilization assurance level of 10(-6). PMID:15963601

  5. Control efficiency determination of sudden expansion incinerator bldg 348, Kelly AFB, Texas. Final report, 19 July 1995-11 January 1996

    SciTech Connect

    O`Brien, R.J.

    1996-06-01

    Compliance emissions testing and Volatile Organic Compound (VOC) destruction efficiency determination were conducted on the Sudden Expansion (SUE) Incinerator located at the Kelly AFB Fuel Accessory Test Facility, Bldg 348. The purpose of the Kelly AFB SUE Incinerator is to destroy calibration fluid vapors emitted from fuel accessory test stands located in Bldg 348. The incinerator can also be used to destroy liquid waste calibration fluid by burning it as a supplemental fuel. Emissions testing was conducted during combustion of both vapors and liquid calibration fluid. For purposes of determining the incinerator VOC destruction efficiency, monitoring for Total VOC concentration in the inlet air stream was conducted on 19-20 July 1995. Emissions testing of the incinerator exhaust was conducted on 10-11 January 1996 and included monitoring for Total VOC, oxides of nitrogen (NOx), carbon monoxide (CO), and visible emissions.

  6. Phosphate Bonded Solidification of Radioactive Incinerator Wastes

    SciTech Connect

    Walker, B. W.

    1999-04-13

    The incinerator at the Department of Energy Savannah River Site burns low level radioactive and hazardous waste. Ash and scrubber system waste streams are generated during the incineration process. Phosphate Ceramic technology is being tested to verify the ash and scrubber waste streams can be stabilized using this solidification method. Acceptance criteria for the solid waste forms include leachability, bleed water, compression testing, and permeability. Other testing on the waste forms include x-ray diffraction and scanning electron microscopy.

  7. National annual dioxin emissions estimate for hazardous waste incinerators

    PubMed

    Cudahy; Rigo

    1998-11-01

    Reducing emissions of polychlorinated dibenzo-p-dioxins and dibenzofurans, commonly known as dioxins, is a high priority for environmental regulatory bodies throughout much of the world. In the United States, Section 112 (c)(6) of the Clean Air Act (CAA) requires the Environmental Protection Agency (EPA) to identify and control emissions from sources that are responsible for at least 90% of the overall emissions of seven targeted hazardous air pollutants, including dioxins. On April 19, 1996, the EPA proposed Maximum Achievable Control Technology (MACT) Standards for Hazardous Waste Combustors (HWCs). In that preamble, the EPA estimated annual dioxin emissions from the nation's hazardous waste incinerators (HWIs) to be 79 grams expressed as 2,3,7,8 tetrachloro dibenzo-p-dioxins (TCDD) international toxic equivalents (ITEQs). However, early EPA dioxin emission estimates from medical waste incinerators and cement kilns were significantly overestimated; so, the following independent national dioxin emissions estimate for HWIs was prepared. This estimate corrects the errors in the EPA's HWI emissions database, uses an updated inventory of HWIs in the United States, and applies statistical imputation techniques that take maximum advantage of the limited dioxin emissions data for HWIs.

  8. Energy recovery system for an incinerator

    SciTech Connect

    Erlandsson, K.I.

    1984-12-04

    An energy recovery system for an incinerator. Hot flue gases from the incinerator are discharged into a vertical stack and the lower end of the stack is connected through an auxiliary conduit to a heat exchanger, such as a steam or hot water boiler. An induced draft fan draws the hot flue gases through the conduit and boiler to generate steam or hot water and a damper is located within the conduit. A fuel burner is connected in the conduit and operates to supply heat to the boiler during periods when the incinerator is not operating. A first flow sensing mechanism is located in the conduit upstream of the boiler, while a second flow sensing mechanism is positioned in the stack downstream of the connection of the stack and the conduit. In the incinerator mode of operation, the second flow sensing mechanism controls the damper in a manner to obtain a substantially zero flow of waste gas through the stack to the atmosphere to insure that all of the waste gas from the incinerator is directed through the conduit to the boiler. During periods when the incinerator is not operating, the burner mode of operation is established and the first flow sensing mechanism controls the damper to obtain substantially zero flow of gas upstream of the burner so that all of the heat from the burner will be directed to the boiler.

  9. A technical look at the WTI incinerator

    SciTech Connect

    1993-11-01

    EPA has granted Waste Technologies Industries (WTI) temporary authorization to burn hazardous waste in its new incinerator in East Liverpool, Ohio. The approval is based on preliminary data showing that the incinerator was able to meet EPA`s emission standards for dioxins and furans in tests run this summer. WTI is allowed to continue burning waste pending final evaluation of its March 1993 performance tests. The action marks yet another hurdle cleared by WTI in its 11-year effort to construct and operate a commercial hazardous waste incinerator. The facility`s long-standing predicament as a target for environmental and public interest groups has made it the subject of numerous lawsuits and many legal reviews. In this article, however, we focus on the technical aspects of the system. The WTI incinerator is described in {open_quotes}Performance Testing of a Rotary Kiln Incinerator,{close_quotes} a paper by Alfred Sigg of Von Roll, Incorporated (Norcross, Georgia). The paper was presented at the 1993 Incineration Conference, which was held in Knoxville, Tennessee on May 3-7, 1993. 1 fig., 2 tabs.

  10. Incinerator system arrangement with dual scrubbing chambers

    SciTech Connect

    Domnitch, I.

    1987-01-13

    An incinerator arrangement is described comprising: an incinerator housing located near the lowest point in a building, the housing containing incinerator elements therein; a chute-flue having a first end in communication with the incinerator housing, a second end at the top of the building for evacuation of combustion gases to the atmosphere therethrough, and at least one intermediately located waste disposal opening through which waste is dropped into the incinerator housing; the incinerator elements including: a main combustion chamber, an opening between the main combustion chamber and the first end of the chute-flue and a flue-damper covering the opening. The flue-damper is biased in a closed position and being operable by the weight of waste to admit the waste into the combustion chamber; a scrubbing chamber located exteriorly along the top of the combustion chamber and having a first opening into the combustion chamber and a second opening into the chute-flue; and water spraying means in the scrubbing chamber for directing a water spray at the combustion gases to wash particulate matter from the gases before the gases enter the chute-flue whereby the water spraying means which are located adjacent the combustion chamber are protected against freezing and the elements.

  11. Metallic elements fractionation in municipal solid waste incineration residues

    NASA Astrophysics Data System (ADS)

    Kowalski, Piotr R.; Kasina, Monika; Michalik, Marek

    2016-04-01

    Municipal solid waste incineration (MSWI) residues are represented by three main materials: bottom ash, fly ash and air pollution control (APC) residues. Among them ˜80 wt% is bottom ash. All of that materials are products of high temperature (>1000° C) treatment of waste. Incineration process allows to obtain significant reduction of waste mass (up to 70%) and volume (up to 90%) what is commonly used in waste management to reduce the amount need to be landfilled or managed in other way. Incineration promote accumulation non-combustible fraction of waste, which part are metallic elements. That type of concentration is object of concerns about the incineration residues impact on the environment and also gives the possibility of attempts to recover them. Metallic elements are not equally distributed among the materials. Several factors influence the process: melting points, volatility and place and forms of metallic occurrence in the incinerated waste. To investigate metallic elements distribution in MSWI residues samples from one of the biggest MSW incineration plant in Poland were collected in 2015. Chemical analysis with emphasis on the metallic elements content were performed using inductively coupled plasma optical emission (ICP-OES) and mass spectrometry (ICP-MS). The bottom ash was a SiO2-CaO-Al2O3-Fe2O3-Na2O rich material, whereas fly ash and APC residues were mostly composed of CaO and SiO2. All of the materials were rich in amorphous phase occurring together with various, mostly silicate crystalline phases. In a mass of bottom ash 11 wt% were metallic elements but also in ashes 8.5 wt% (fly ash) and ˜4.5 wt% (APC residues) of them were present. Among the metallic elements equal distribution between bottom and fly ash was observed for Al (˜3.85 wt%), Mn (770 ppm) and Ni (˜65 ppm). In bottom ash Fe (5.5 wt%), Cr (590 ppm) and Cu (1250 ppm) were concentrated. These values in comparison to fly ash were 5-fold higher for Fe, 3-fold for Cu and 1.5-fold for

  12. Evaluation of the thermal stability POHC incinerability ranking in a pilot-scale rotary kiln incinerator

    SciTech Connect

    Lee, J.W.; Waterland, L.R.; Whitworth, W.E.; Carroll, G.J.

    1991-01-01

    A series of pilot-scale incineration tests was performed at EPA's Incineration Research Facility to evaluate the thermal stability-based POHC incinerability ranking. In the tests, mixtures of 12 POHCs with predicted incinerability spanning the range of most to least difficult to incinerate class were combined with a clay-based sorbent and batch-fed to the facility's pilot-scale rotary kiln incinerator via a fiberpack drum ram feeder. Kiln operating conditions were varied to include a baseline operating condition, three modes of attempted incineration failure, and a worst case combination of the three failure modes. Kiln exit POHC DREs were in the 99.99 percent range for the volatile POHCs for the baseline, mixing failure (increased charge mass), and matrix failure (decreased feed H/C) tests. Semivolatile POHCs were not detected in the kiln exit for these tests; corresponding DREs were generally greater than 99.999 percent. The thermal failure (low kiln temperature) and worst case (combination of thermal, mixing, and matrix failure) tests resulted in substantially decreased kiln exit POHC DREs. These ranged from 99 percent or less for Freon 113 to greater than 99.999 percent for the less stable-ranked semivolatile POHCs. General agreement between relative kiln exit POHC DRE and predicted incinerability class was observed.

  13. Energy recovery and cogeneration from an existing municipal incinerator

    NASA Astrophysics Data System (ADS)

    Crego, D. F.; Eller, V. L.; Stephenson, J. W.

    1982-02-01

    An existing 727 TPD incinerator burning mixed municipal refuse was deemed to be a feasible candidate for a cogeneration energy retrofit. It is indicated that equipment and construction of the retrofit will cost $17.6 million or $24,200/rated tonne in 1980 dollars; air pollution control equipment will cost 10.4 million or $14,300/tonne. Furnace temperature and gas samplings along with pilot air pollution control equipment tests were conducted. Refuse was characterized on both wet and dry seasons. Final design is based upon burning 155,000 TPY of refuse from which can be generated, sufficient steam and electricity for inhouse use and an additional amount of 64 million kWh for sale.

  14. Comparison of the composition and properties of municipal solid-waste incinerator ashes based on incinerator configuration and operation. Final report

    SciTech Connect

    Ontiveros, J.L.

    1988-05-01

    Disposal of municipal solid wastes(MSW) is becoming a problem nationwide. Many sanitary landfills are either closing or approaching maximum capacity. With new landfills becoming difficult to site, alternative methods must be used to reduce the volume being disposed in landfills. Incineration, through thermal destruction, reduces the volume of MSW by up to 85%. However, problems do exist with the resulting fly and bottom ashes. Metals are not destroyed by this process, but are concentrated within the ashes. A majority of the ashes fail EPA's Extraction Procedure Toxicity Test by exceeding either cadmium or lead concentration limits. The objectives of this dissertation were threefold: i) examine the physical and chemical properties of ashes; ii) determine ash composition and morphology; and iii) determine extractive behavior of cadmium, chromium, and lead in an aqueous environment. Three different incinerators, from Canada, Massachusetts, and New Jersey, burning primarily residential MSW, were chosen to determine equipment and operational effects on ash composition and extractive behavior. Supplemental combustion air provided more complete combustion. Cadmium, potassium and sodium preferentially partitioned to the fly ash with lead partitioning differently between fly and bottom ashes depending on the incinerator. Fly ash morphology and composition did not vary significantly between incinerators. The ash matrices were composed primarily of complex, multi-substituted aluminosilicates, amorphous glass, and iron oxides. CaSO/sub 4/, NaCl and KCl were the predominate species. SEM micrographs showed a variety of shapes throughout the particle ranges with crystals heavily dispersed on the surfaces.

  15. 40 CFR 60.2830 - When must I submit the notifications of achievement of increments of progress?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Commenced Construction On or Before November 30, 1999 Model Rule-Air Curtain Incinerators § 60.2830 When... increments of progress must be postmarked no later than 10 business days after the compliance date for...

  16. 40 CFR 60.2835 - What if I do not meet an increment of progress?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... or Before November 30, 1999 Model Rule-Air Curtain Incinerators § 60.2835 What if I do not meet an... Administrator postmarked within 10 business days after the date for that increment of progress in table 1...

  17. Numerical study of radiation effect on the municipal solid waste combustion characteristics inside an incinerator

    SciTech Connect

    Wang, Jingfu Xue, Yanqing; Zhang, Xinxin; Shu, Xinran

    2015-10-15

    Highlights: • A 3-D model for the MSW incinerator with preheated air was developed. • Gas radiative properties were obtained from a statistical narrow-band model. • Non-gray body radiation model can provide more accurate simulation results. - Abstract: Due to its advantages of high degree volume reduction, relatively stable residue, and energy reclamation, incineration becomes one of the best choices for Municipal Solid Waste (MSW) disposal. However, detailed measurements of temperature and gas species inside a furnace are difficulty by conventional experimental techniques. Therefore, numerical simulation of MSW incineration in the packed bed and gas flow field was applied. In this work, a three dimensional (3-D) model of incinerator system, including flow, heat transfer, detailed chemical mechanisms, and non-gray gas models, was developed. Radiation from the furnace wall and the flame formed above the bed is of importance for drying and igniting the waste. The preheated air with high temperature is used for the MSW combustion. Under the conditions of high temperature and high pressure, MSW combustion produces a variety of radiating gases. The wavelength-depend radiative properties of flame adopted in non-gray radiation model were obtained from a statistical narrow-band model. The influence of radiative heat transfer on temperature, flow field is researched by adiabatic model (without considering radiation), gray radiation model, and non-gray radiation model. The simulation results show that taking into account the non-gray radiation is essential.

  18. Comparative evaluation of municipal solid waste incinerator designs by flow simulation

    SciTech Connect

    Kim, S.; Shin, D.; Choi, S.

    1996-08-01

    Flow simulations have been carried out to evaluate the effects of combustion chamber design and air/combustion gas flow configuration on the overall performance of municipal solid waste incinerators. Computational results show velocity and temperature fields in the entire region of flow passage. Local recirculations and uneven distributions of flow velocity and temperature should be minimized and mixing is to be enhanced. Two parameters are proposed to help quantify the overall flow condition. The degree of mixing of different species, which enter the incinerator from the air and combustion gas inlets, is represented by the mixing parameter {alpha}. Here, {alpha} is calculated on the nodal points. The probability distribution of {alpha} in the entire computational domain is used for comparative evaluation of incinerator designs. The thermal decomposition parameter {beta} is calculated by integrating the kinetic rates along the trajectory of a fluid element. This parameter represents the portion of the unreacted materials among the total pollutants released from the bed. By employing these parameters, various incinerator design alternatives can be quantitatively analyzed from two principal viewpoints, i.e., the effectiveness in mixing and the thermal decomposition of pollutants.

  19. Quantifying capital goods for waste incineration

    SciTech Connect

    Brogaard, L.K.; Riber, C.; Christensen, T.H.

    2013-06-15

    Highlights: • Materials and energy used for the construction of waste incinerators were quantified. • The data was collected from five incineration plants in Scandinavia. • Included were six main materials, electronic systems, cables and all transportation. • The capital goods contributed 2–3% compared to the direct emissions impact on GW. - Abstract: Materials and energy used for the construction of modern waste incineration plants were quantified. The data was collected from five incineration plants (72,000–240,000 tonnes per year) built in Scandinavia (Norway, Finland and Denmark) between 2006 and 2012. Concrete for the buildings was the main material used amounting to 19,000–26,000 tonnes per plant. The quantification further included six main materials, electronic systems, cables and all transportation. The energy used for the actual on-site construction of the incinerators was in the range 4000–5000 MW h. In terms of the environmental burden of producing the materials used in the construction, steel for the building and the machinery contributed the most. The material and energy used for the construction corresponded to the emission of 7–14 kg CO{sub 2} per tonne of waste combusted throughout the lifetime of the incineration plant. The assessment showed that, compared to data reported in the literature on direct emissions from the operation of incinerators, the environmental impacts caused by the construction of buildings and machinery (capital goods) could amount to 2–3% with respect to kg CO{sub 2} per tonne of waste combusted.

  20. Kiln control for incinerating waste

    SciTech Connect

    Byerly, H.L.; Kuhn, B.R.; Matter, D.C.; Vassiliou, E.

    1993-07-20

    An incinerating kiln device is described capable of controlling the viscosity of molten slag contained within and discharged from the kiln, the device comprising a rotary kiln having a substantially cylindrical shape, an outside skin, a center axis, an inlet, and an outlet opposite the inlet, the kiln being inclined so that the slag exits from the outlet at a discharge position, and wherein the center axis and a line crossing the center axis and having the direction of gravity define a plane of zero position, the distance between the discharge position and the plane of zero position being an indirect measure of the angular viscosity of the slag, the higher said distance the higher the angular viscosity; first detection means at the outlet of the kiln for detecting the distance between the discharge position and the plane of zero position, thus determining the angular viscosity of the slag; and means for correcting the viscosity of the slag, if the distance between the plane of zero position and the discharge position deviates from a desired value, by feeding an additive to the inlet of the kiln.