Science.gov

Sample records for air cycle machines

  1. ECS with advanced air cycle machine

    SciTech Connect

    Thomson, M.W.; Matulich, D.S.; Emerson, T.P.

    1990-11-06

    This patent describes an environmental control system for conditioning air delivered to an enclosed space operated in conjunction with a multistage turbine engine providing power for the enclosed space. It comprises: bleed air means for extracting an air flow of pressurized high temperature bleed air from the high pressure stage of the multistage turbine engine; first turbine means for directly receiving and converting latent thermal energy of the bleed air flow into rotational power; compressor means for receiving the bleed air flow from the first turbine means and for repressurizing the bleed air. The compressor means rotationally driven by the first turbine means; primary heat exchange means downstream of the compressor means for cooling the pressurized bleed air flow in heat exchange relationship with a flow of ram air; second turbine means for converting energy of the bleed air flow to rotational power and for further conditioning the bleed air flow, the second turbine means located downstream of the heat exchange means and integrally mounted to drive the compressor means; and duct means communicating with the second turbine means and the enclosed space for carrying the air flow to the enclosed space.

  2. Air cycle machine for an aircraft environmental control system

    NASA Technical Reports Server (NTRS)

    Decrisantis, Angelo A. (Inventor); O'Coin, James R. (Inventor); Taddey, Edmund P. (Inventor)

    2010-01-01

    An ECS system includes an ACM mounted adjacent an air-liquid heat exchanger through a diffuser that contains a diffuser plate. The diffuser plate receives airflow from the ACM which strikes the diffuser plate and flows radially outward and around the diffuser plate and into the air-liquid heat exchanger to provide minimal pressure loss and proper flow distribution into the air-liquid heat exchanger with significantly less packaging space.

  3. Characteristic Analysis of Vuilleumier Cycle Machine and Its Application to Air-Conditioning Heat Pump

    NASA Astrophysics Data System (ADS)

    Sekiya, Hiroshi

    The Vuilleumier (VM) cycle machine is realized as a regenerative and external-combustion machine in the same way as a Stirling (ST) cycle machine. In the VM cycle, heat enters the cyc1e from hot and cold temperature heat sources and is delivered to an intermediate temperature heat source by a working gas. In consequence of the theoretical cycle, output power is not produced. The VM cycle machine is made of the same elements as the ST cycle machine and also closely connected with the ST cycle machine in its working principle. By means of analysis using an isothermal model, it is found that the VM cycle machine is internally divided into a ST engine and a ST refrigerator. In addition, the calculated results by a simulation model based on a so-called 3rd-order method clarify that the VM cycle machine has different featuers from the ST cycle macine with regard to the working gas behavior, the energy flow and the performance depending on the revolution speed. Application of the VM cycle machine to a heat pump for heating and cooling takes effect on the environment and energy problems arising on a terrestrial scale. In reacent years, research and development have been making on the VM haet pumps.

  4. Liquid air cycle engines

    NASA Technical Reports Server (NTRS)

    Rosevear, Jerry

    1992-01-01

    Given here is a definition of Liquid Air Cycle Engines (LACE) and existing relevant technologies. Heat exchanger design and fabrication techniques, the handling of liquid hydrogen to achieve the greatest heat sink capabilities, and air decontamination to prevent heat exchanger fouling are discussed. It was concluded that technology needs to be extended in the areas of design and fabrication of heat exchangers to improve reliability along with weight and volume reductions. Catalysts need to be improved so that conversion can be achieved with lower quantities and lower volumes. Packaging studies need to be investigated both analytically and experimentally. Recycling with slush hydrogen needs further evaluation with experimental testing.

  5. High efficiency air cycle air conditioning system

    SciTech Connect

    Rannenberg, G. C.

    1985-11-19

    An air cycle air conditioning system is provided with regenerative heat exchangers upstream and downstream of an expansion turbine. A closedloop liquid circulatory system serially connects the two regenerative heat exchangers for regeneration without the bulk associated with air-to-air heat exchange. The liquid circulatory system may also provide heat transport to a remote sink heat exchanger and from a remote load as well as heat exchange within the sink heat exchanger and load for enhanced compactness and efficiency.

  6. Heat transfer head for a Stirling cycle machine

    NASA Technical Reports Server (NTRS)

    Emigh, Stuart G. (Inventor); Noble, Jack E. (Inventor); Lehmann, Gregory A. (Inventor)

    1991-01-01

    A common heat acceptor is provided between opposed displacers in a Stirling cycle machine. It includes two sets of open channels in separate fluid communications with the expansion spaces of the receptive cyclinders. The channels confine movement of working fluid in separate paths that extend between the expansion space of one cylinder and the compression space of the other. The method for operating the machine involves alternatively directing working fluid from the expansion space of each cylinder in a fluid path leading to the compression space of the other cylinder and from the compression space of each cylinder in a fluid path leading to the expansion space of the other cylinder.

  7. 5. Machine shop and air brake shop sections of roundhouse ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Machine shop and air brake shop sections of roundhouse in background. Foundry (MN-99-B) in foreground. View to south. - Duluth & Iron Range Rail Road Company Shops, Roundhouse, Southwest of downtown Two Harbors, northwest of Agate Bay, Two Harbors, Lake County, MN

  8. Air friction and rolling resistance during cycling.

    PubMed

    de Groot, G; Sargeant, A; Geysel, J

    1995-07-01

    To calculate the power output during actual cycling, the air friction force Fa and rolling resistance Fr have to be known. Instead of wind tunnel experiments or towing experiments at steady speed, in this study these friction forces were measured by coasting down experiments. Towing experiments at constant acceleration (increasing velocity) were also done for comparison. From the equation of motion, the velocity-time curve v(t) was obtained. Curve-fitting procedures on experimental data of the velocity v yielded values of the rolling resistance force Fr and of the air friction coefficient k = Fa/v2. For the coasting down experiments, the group mean values per body mass m (N = 7) were km = k/m = (2.15 +/- 0.32) x 10(-3)m-1 and ar = Fr/m = (3.76 +/- 0.18) x 10(-2)ms-2, close to other values from the literature. The curves in the phase plane (velocity vs acceleration) and the small residual sum of squares indicated the validity of the theory. The towing experiments were not congruent with the coasting down experiments. Higher values of the air friction were found, probably due to turbulence of the air.

  9. Main roll for an air press of a papermaking machine

    DOEpatents

    Beck, David A.

    2004-03-09

    A roll for use in an air press assembly of a papermaking machine has a pair of ends associated therewith. The roll includes a pair of edge portions with each edge portion extending to one of the pair of ends. Each edge portion has an edge surface portion composed of a first material, the first material having a first hardness. The roll further includes a middle portion located between the pair of edge portions, the middle portion having a middle surface portion composed of a second material. The second material has a second hardness, the second material being harder than the first material. The first material is preferably a soft, seal material which promotes reduced air leakage from the air press assembly.

  10. Cycle life machine for AX-5 space suit

    NASA Technical Reports Server (NTRS)

    Schenberger, Deborah S.

    1990-01-01

    In order to accurately test the AX-5 space suit, a complex series of motions needed to be performed which provided a unique opportunity for mechanism design. The cycle life machine design showed how 3-D computer images can enhance mechanical design as well as help in visualizing mechanisms before manufacturing them. In the early stages of the design, potential problems in the motion of the joint and in the four bar linkage system were resolved using CAD. Since these problems would have been very difficult and tedious to solve on a drawing board, they would probably not have been addressed prior to fabrication, thus limiting the final design or requiring design modification after fabrication.

  11. Volatilization of chemicals from drinking water to indoor air: the role of residential washing machines.

    PubMed

    Howard, C; Corsi, R L

    1998-10-01

    Previous research has indicated that residential washing machines are potential sources of pollution due to the associated use of chemicals found in consumer products, for example, ethanol in laundry detergent and chlorine in bleach. Washing machines may also emit hazardous air pollutants found in contaminated drinking water. To better understand the extent and impact of chemical emissions from tap water, 26 experiments were completed using a residential washing machine and a cocktail of chemical tracers representing a wide range of physicochemical properties. Variable operating conditions for these experiments included water temperature, amount of clothes present in the machine, water volume, and level of washwater agitation. Chemical stripping efficiencies and mass transfer coefficients were determined during each cycle (fill, wash, and rinse) of a normal washing machine event. Headspace ventilation rates were determined using an isobutylene tracer gas. Mass transfer rates were significantly influenced by operating parameters as exhibited by a wide range of chemical stripping efficiencies. Stripping efficiencies ranged from 0.74 to 36% for acetone, 8.2 to 99% for toluene, 10 to 99% for ethylbenzene, and 6.9 to 100% for cyclohexane.

  12. Direct control of air gap flux in permanent magnet machines

    DOEpatents

    Hsu, John S.

    2000-01-01

    A method and apparatus for field weakening in PM machines uses field weakening coils (35, 44, 45, 71, 72) to produce flux in one or more stators (34, 49, 63, 64), including a flux which counters flux normally produced in air gaps between the stator(s) (34, 49, 63, 64) and the rotor (20, 21, 41, 61) which carries the PM poles. Several modes of operation are introduced depending on the magnitude and polarity of current in the field weakening coils (35, 44, 45, 71, 72). The invention is particularly useful for, but not limited to, the electric vehicle drives and PM generators.

  13. HUMID AIR TURBINE CYCLE TECHNOLOGY DEVELOPMENT PROGRAM

    SciTech Connect

    Richard Tuthill

    2002-07-18

    The Humid Air Turbine (HAT) Cycle Technology Development Program focused on obtaining HAT cycle combustor technology that will be the foundation of future products. The work carried out under the auspices of the HAT Program built on the extensive low emissions stationary gas turbine work performed in the past by Pratt & Whitney (P&W). This Program is an integral part of technology base development within the Advanced Turbine Systems Program at the Department of Energy (DOE) and its experiments stretched over 5 years. The goal of the project was to fill in technological data gaps in the development of the HAT cycle and identify a combustor configuration that would efficiently burn high moisture, high-pressure gaseous fuels with low emissions. The major emphasis will be on the development of kinetic data, computer modeling, and evaluations of combustor configurations. The Program commenced during the 4th Quarter of 1996 and closed in the 4th Quarter of 2001. It teamed the National Energy Technology Laboratory (NETL) with P&W, the United Technologies Research Center (UTRC), and a subcontractor on-site at UTRC, kraftWork Systems Inc. The execution of the program started with bench-top experiments that were conducted at UTRC for extending kinetic mechanisms to HAT cycle temperature, pressure, and moisture conditions. The fundamental data generated in the bench-top experiments was incorporated into the analytical tools available at P&W to design the fuel injectors and combustors. The NETL then used the hardware to conduct combustion rig experiments to evaluate the performance of the combustion systems at elevated pressure and temperature conditions representative of the HAT cycle. The results were integrated into systems analysis done by kraftWork to verify that sufficient understanding of the technology had been achieved and that large-scale technological application and demonstration could be undertaken as follow-on activity. An optional program extended the

  14. Predicting submicron air pollution indicators: a machine learning approach.

    PubMed

    Pandey, Gaurav; Zhang, Bin; Jian, Le

    2013-05-01

    The regulation of air pollutant levels is rapidly becoming one of the most important tasks for the governments of developing countries, especially China. Submicron particles, such as ultrafine particles (UFP, aerodynamic diameter ≤ 100 nm) and particulate matter ≤ 1.0 micrometers (PM1.0), are an unregulated emerging health threat to humans, but the relationships between the concentration of these particles and meteorological and traffic factors are poorly understood. To shed some light on these connections, we employed a range of machine learning techniques to predict UFP and PM1.0 levels based on a dataset consisting of observations of weather and traffic variables recorded at a busy roadside in Hangzhou, China. Based upon the thorough examination of over twenty five classifiers used for this task, we find that it is possible to predict PM1.0 and UFP levels reasonably accurately and that tree-based classification models (Alternating Decision Tree and Random Forests) perform the best for both these particles. In addition, weather variables show a stronger relationship with PM1.0 and UFP levels, and thus cannot be ignored for predicting submicron particle levels. Overall, this study has demonstrated the potential application value of systematically collecting and analysing datasets using machine learning techniques for the prediction of submicron sized ambient air pollutants.

  15. Effect of the Machining Processes on Low Cycle Fatigue Behavior of a Powder Metallurgy Disk

    NASA Technical Reports Server (NTRS)

    Telesman, J.; Kantzos, P.; Gabb, T. P.; Ghosn, L. J.

    2010-01-01

    A study has been performed to investigate the effect of various machining processes on fatigue life of configured low cycle fatigue specimens machined out of a NASA developed LSHR P/M nickel based disk alloy. Two types of configured specimen geometries were employed in the study. To evaluate a broach machining processes a double notch geometry was used with both notches machined using broach tooling. EDM machined notched specimens of the same configuration were tested for comparison purposes. Honing finishing process was evaluated by using a center hole specimen geometry. Comparison testing was again done using EDM machined specimens of the same geometry. The effect of these machining processes on the resulting surface roughness, residual stress distribution and microstructural damage were characterized and used in attempt to explain the low cycle fatigue results.

  16. Ozone and other air pollutants from photocopying machines

    SciTech Connect

    Hansen, T.B.; Andersen, B.

    1986-10-01

    The ozone emission from 69 different photocopying machines was determined by a described standard procedure. The emission rates were in the range of 0 to 1350 ..mu..g/min. The concentration in the breathing zone of 19 operators was found to be between less than or equal to 0.001 and 0.15 ppm. Technical conditions for the amount of ozone generated by photocopiers are described, as well as conditions for the rate of decomposition of ozone. The efficiencies of three different types of ozone filters were tested: activated carbon granulate; polyester; and polyurethane impregnated with activated carbon. Other pollutants levels from the copying process (selenium and cadmium) were less than the limit of detection. Dust concentrations (toner) in the air exhausted from photocopies were found in the same magnitude as normal dust concentrations in offices. Vapors from the resin in the toner were often present in concentrations and gave operators an unpleasant feeling.

  17. Review of open-cycle desiccant air-conditioning concepts and systems

    SciTech Connect

    Wurm, J.

    1986-08-01

    This paper attempts to overview the development status of desiccant cooling. Over the past 30 years of progressively intensifying attention, this promising technology has become a domain of interest of many research agencies and manufacturing companies. As a result, the market potential for machines based on desiccant processes, particularly in comfort cooling and agricultural applications, is getting close to realization. One of the most important incentives of developing heat-activated, open-cycle desiccant cooling machines (air conditioners) has always been its potential simplicity. Such premise has been deceiving to a degree that in many instances has slowed the progress. However, the persistent analytical and material research brought some desiccant systems close to the marketplace. They provide attractive alternatives to consumers and utilities, offering particularly effective humidity and temperature control in cases of high fresh-air-makeup requirements. The control of bacteria, airborne particulates, as well as CO/sub 2/, combined with effective heating capability make them attractive for controlled-atmosphere agriculture. Finally, the capability of using low-temperature waste heat to drive the cycle becomes an important attribute of a desiccant concept, specifically when combined with a regular vapor-compression cooling machine in energy saving space-conditioning concepts. The presented assessment concludes that, particularly for specialized applications, machines based on open-cycle desiccant cooling processes are very close to playing an important role in the space-conditioning (including comfort control) marketplace.

  18. Validity of cycle test in air compared to underwater cycling.

    PubMed

    Almeling, M; Schega, L; Witten, F; Lirk, P; Wulf, K

    2006-01-01

    According to international guidelines, fitness to dive is generally assessed using a bicycle stress test (BST) in air. To date, there is no study explicitly addressing the question whether the results of a BST in air really predict performance status under water. Therefore, the aim of the present study was twofold: first, to design an experimental setting allowing the examination of physical performance status under water, and second, to examine whether there is an association of response to exercise in air compared to exercise under water using self contained underwater breathing apparatus (SCUBA). We constructed and evaluated a measurement technique for a bicycle ergometry and for gas analysis under water. Part of the work was the development of a new valve system which allowed to collect the exhaled air in total and to transport it to the spirometer next to the pool. Twenty-eight healthy male divers underwent a BST. Compared to a given workload in air, gross capacity decreased significantly by about 50% underwater. High performance in air was associated with a high performance underwater. The examinations were carried out without any complications. In conclusion, our experimental setting allowed the safe and reliable examination of physical performance status under water. First results indicate that the results of a BST in air correlate well with the cardio-circulatory performance status underwater. A subsequent study with a larger sample size will enable us to more precisely model this correlation.

  19. Active vibration and balance system for closed cycle thermodynamic machines

    NASA Technical Reports Server (NTRS)

    Qiu, Songgang (Inventor); Augenblick, John E. (Inventor); Peterson, Allen A. (Inventor); White, Maurice A. (Inventor)

    2004-01-01

    An active balance system is provided for counterbalancing vibrations of an axially reciprocating machine. The balance system includes a support member, a flexure assembly, a counterbalance mass, and a linear motor or an actuator. The support member is configured for attachment to the machine. The flexure assembly includes at least one flat spring having connections along a central portion and an outer peripheral portion. One of the central portion and the outer peripheral portion is fixedly mounted to the support member. The counterbalance mass is fixedly carried by the flexure assembly along another of the central portion and the outer peripheral portion. The linear motor has one of a stator and a mover fixedly mounted to the support member and another of the stator and the mover fixedly mounted to the counterbalance mass. The linear motor is operative to axially reciprocate the counterbalance mass. A method is also provided.

  20. Improving air traffic control: Proving new tools or approving the joint human-machine system?

    NASA Technical Reports Server (NTRS)

    Gaillard, Irene; Leroux, Marcel

    1994-01-01

    From the description of a field problem (i.e., designing decision aids for air traffic controllers), this paper points out how a cognitive engineering approach provides the milestones for the evaluation of future joint human-machine systems.

  1. MEASUREMENT OF INDOOR AIR EMISSIONS FROM DRY-PROCESS PHOTOCOPY MACHINES

    EPA Science Inventory

    The article provides background information on indoor air emissions from office equipment, with emphasis on dry-process photocopy machines. The test method is described in detail along with results of a study to evaluate the test method using four dry-process photocopy machines. ...

  2. Study on the Refrigeration Cycle of Automotive Air-Conditioner

    NASA Astrophysics Data System (ADS)

    Hara, Junichiro; Honda, Itsuro; Kanazawa, Koji; Ohba, Hideki; Uemura, Masakazu

    The steady state characteristics of a refrigeration cycle for automotive air-conditioners using Freon 12 gas is studied numerically. The numerical method for the simulation of a refrigeration cycle executed on a personal computer is presented. The model for a refrigeration cycle consists of a compressor, condenser, expansion valve and evaporator. Non linear equations for pressure, temperature and refrigerant mass are calculated by the Newton-Raphson method. In particular, experimental date are employed for calculation of compressor condition and influence of refrigerator oil is considered. From the comparison with the experiment, it is made c1ear that this simulation is useful for the prediction of the performance of a refrigeration cycle. Therefore, the optimum design and the shortening of the design process for automotive air-conditioners are possible by this simulation.

  3. Mounting arrangement for the drive system of an air-bearing spindle on a machine tool

    DOEpatents

    Lunsford, J.S.; Crisp, D.W.; Petrowski, P.L.

    1987-12-07

    The present invention is directed to a mounting arrangement for the drive system of an air-bearing spindle utilized on a machine tool such as a lathe. The mounting arrangement of the present invention comprises a housing which is secured to the casing of the air bearing in such a manner that the housing position can be selectively adjusted to provide alignment of the air-bearing drive shaft supported by the housing and the air-bearing spindle. Once this alignment is achieved the air between spindle and the drive arrangement is maintained in permanent alignment so as to overcome misalignment problems encountered in the operation of the machine tool between the air-bearing spindle and the shaft utilized for driving the air-bearing spindle.

  4. Neon turbo-Brayton cycle refrigerator for HTS power machines

    NASA Astrophysics Data System (ADS)

    Hirai, Hirokazu; Hirokawa, M.; Yoshida, Shigeru; Nara, N.; Ozaki, S.; Hayashi, H.; Okamoto, H.; Shiohara, Y.

    2012-06-01

    We developed a prototype turbo-Brayton refrigerator whose working fluid is neon gas. The refrigerator is designed for a HTS (High Temperature Superconducting) power transformer and its cooling power is more than 2 kW at 65 K. The refrigerator has a turboexpander and a turbo-compressor, which utilize magnetic bearings. These rotational machines have no rubbing parts and no oil-components. Those make a long maintenance interval of the refrigerator. The refrigerator is very compact because our newly developed turbo-compressor is volumetrically smaller than a displacement type compressor in same operating specification. Another feature of the refrigerator is a wide range operation capability for various heat-loads. Cooling power is controlled by the input-power of the turbo-compressor instead of the conventional method of using an electric heater. The rotational speed of the compressor motor is adjusted by an inverter. This system is expected to be more efficient. We show design details, specification and cooling test results of the new refrigerator in this paper.

  5. Mist control at a machining center, Part 2: Mist control following installation of air cleaners.

    PubMed

    Yacher, J M; Heitbrink, W A; Burroughs, G E

    2000-01-01

    At a machining center used to produce transaxle and transmission parts, aerosol instrumentation was used to quantitatively evaluate size-dependent mist generation of a synthetic metalworking fluid (MWF) consisting primarily of water and triethanolamine (TEA). This information was used to select an air cleaner for controlling the mist. During most machining operations, the MWF was flooded over the part. These machining operations were performed in a nearly complete enclosure that was exhausted to an air cleaner consisting of three sections: a fall-out chamber, a trifilter section to capture metal chips and mist, and a 1.13 m3/sec (2400 ft3/min) blower. The partnering company requested that National Institute for Occupational Safety and Health (NIOSH) researchers perform an evaluation of the effectiveness of a commercially available air cleaner. After NIOSH researchers characterized mist generation at the machining centers and found that performance of a test air cleaner appeared to be suitable, the company installed more than 25 air cleaners on different machining centers in this plant and enclosed the corresponding fluid filtration unit. The facility also has implemented a maintenance program for the air cleaners that involves regularly scheduled filter changes; performance is ensured by monitoring static pressure. A NIOSH-conducted air sampling evaluation showed that area TEA concentrations were reduced from a geometric mean of 0.25 to 0.03 mg/m3. Personal total particulate concentrations were reduced from a geometric mean of 0.22 to 0.06 mg/m3. These results show the effectiveness of this combination of enclosure, ventilation, and filtration to greatly reduce the exposure to MWF mist generated in modern machining centers.

  6. Use of absorption refrigerating machines in mine air-conditioning systems

    SciTech Connect

    Duganov, G.V.; Rozhko, V.F.; Shtompel, A.I.; Timofeevskii, L.S.

    1984-07-01

    This article describes lithium bromide absorption refrigerating machines (LBARMs) designed for use in mine air-conditioning systems (MACS). The application of LBARMs in MACS is difficult due to the elevation of temperature of the cold carrier when supplied to the mine air refrigerants. A thermodynamic and thermoeconomic analysis was conducted to determine the principal lines of LBARM design for creating a suitable microclimate in underground mines. The MACS will maintain the temperature in the mines at a horizon of 913 m at 24-26/sup 0/C. A scheme is proposed for stage-by-stage cooling by connecting two machines in succession. It is concluded that the use of absorption refrigerating machines in coal mine air-conditioning systems facilitates the integrated and economic use of heat energy as well as of secondary heat resources for cold generation.

  7. Permanent-magnet-less machine having an enclosed air gap

    DOEpatents

    Hsu, John S.

    2013-03-05

    A permanent magnet-less, brushless synchronous system includes a stator that generates a magnetic rotating field when sourced by an alternating current. An uncluttered rotor disposed within the magnetic rotating field is spaced apart from the stator to form an air gap relative to an axis of rotation. A stationary excitation core spaced apart from the uncluttered rotor by an axial air gap and a radial air gap substantially encloses the stationary excitation core. Some permanent magnet-less, brushless synchronous systems include stator core gaps to reduce axial flux flow. Some permanent magnet-less, brushless synchronous systems include an uncluttered rotor coupled to outer laminations. The quadrature-axis inductance may be increased in some synchronous systems. Some synchronous systems convert energy such as mechanical energy into electrical energy (e.g., a generator); other synchronous systems may convert any form of energy into mechanical energy (e.g., a motor).

  8. Permanent-magnet-less machine having an enclosed air gap

    DOEpatents

    Hsu, John S.

    2012-02-07

    A permanent magnet-less, brushless synchronous system includes a stator that generates a magnetic rotating field when sourced by an alternating current. An uncluttered rotor disposed within the magnetic rotating field is spaced apart from the stator to form an air gap relative to an axis of rotation. A stationary excitation core spaced apart from the uncluttered rotor by an axial air gap and a radial air gap substantially encloses the stationary excitation core. Some permanent magnet-less, brushless synchronous systems include stator core gaps to reduce axial flux flow. Some permanent magnet-less, brushless synchronous systems include an uncluttered rotor coupled to outer laminations. The quadrature-axis inductance may be increased in some synchronous systems. Some synchronous systems convert energy such as mechanical energy into electrical energy (e.g., a generator); other synchronous systems may convert any form of energy into mechanical energy (e.g., a motor).

  9. Thermodynamic study of air-cycle and mercury-vapor-cycle systems for refrigerating cooling air for turbines or other components

    NASA Technical Reports Server (NTRS)

    Nachtigall, Alfred J; Freche, John C; Esgar, Jack B

    1956-01-01

    An analysis of air refrigeration systems indicated that air cycles are generally less satisfactory than simple heat exchangers unless high component efficiencies and high values of heat-exchanger effectiveness can be obtained. A system employing a mercury-vapor cycle appears to be feasible for refrigerating air that must enter the system at temperature levels of approximately 1500 degrees R, and this cycle is more efficient than the air cycle. Weight of the systems was not considered. The analysis of the systems is presented in a generalized dimensionless form.

  10. Performance Prediction Method of CO2 Cycle for Air Cooling

    NASA Astrophysics Data System (ADS)

    Koyama, Shigeru; Xue, Jun; Kuwahara, Ken

    From the perspective of global environmental protection and energy-saving, the research and development on high-efficiency heat pump and refrigeration systems using environment-friendly refrigerants have become one of the most important issues in the air-conditioning and refrigeration sector. In the present work, a steady-state model of the CO2 transcritical cycle for air cooling, which consists of a rotary compressor, a fin-tube gas cooler,a fin-tube evaporator and an expansion valve, has been developed. The detailed model of fin-tube heat exchanger has been constructed by means of the finite volume method, in which the local heat transfer and flow characteristics are evaluated. It should be noted that the effects of the dew condensation generated on the cooling surface are considered in the evaporator model. As a calculation example, the effects of the indoor air wet-bulb temperature on the cycle performance have been examined with this developed simulator.

  11. LIFE CYCLE DESIGN OF AIR INTAKE MANIFOLDS; PHASE I: 2.0 L FORD CONTOUR AIR INTAKE MANIFOLD

    EPA Science Inventory

    The project team applied the life cycle design methodology to the design analysis of three alternative air intake manifolds: a sand cast aluminum, brazed aluminum tubular, and nylon composite. The design analysis included a life cycle inventory analysis, environmental regulatory...

  12. Life cycle assessment comparison of photocatalytic coating and air purifier.

    PubMed

    Tichá, Marie; Žilka, Miroslav; Stieberová, Barbora; Freiberg, František

    2016-07-01

    This article presents a comparison of 2 very different options for removal of undesirable microorganisms and airborne pollutants from the indoor environment of hospitals, schools, homes, and other enclosed spaces using air purifiers and photocatalytic coatings based on nano titanium dioxide (TiO2 ). Both products were assessed by life cycle assessment (LCA) methodology from cradle-to-grave. The assessment also includes comparison of 2 different nano TiO2 production technologies, one by continuous hydrothermal synthesis and the other by a sulfate process. Results of the study showed a relatively large contribution of photocatalytic coatings to reducing the effects of selected indices in comparison with an air purifier, regardless of which nano TiO2 production method is used. Although the impacts of the sulfate process are significantly lower compared to those of hydrothermal synthesis when viewed in terms of production alone, taken in the context of the entire product life cycle, the net difference becomes less significant. The study has been elaborated within the Sustainable Hydrothermal Manufacturing of Nanomaterials (SHYMAN) project, which aims to develop competitive and sustainable continuous nanoparticle (NP) production technology based on supercritical hydrothermal synthesis. Integr Environ Assess Manag 2016;12:478-485. © 2016 SETAC.

  13. Life cycle assessment comparison of photocatalytic coating and air purifier.

    PubMed

    Tichá, Marie; Žilka, Miroslav; Stieberová, Barbora; Freiberg, František

    2016-07-01

    This article presents a comparison of 2 very different options for removal of undesirable microorganisms and airborne pollutants from the indoor environment of hospitals, schools, homes, and other enclosed spaces using air purifiers and photocatalytic coatings based on nano titanium dioxide (TiO2 ). Both products were assessed by life cycle assessment (LCA) methodology from cradle-to-grave. The assessment also includes comparison of 2 different nano TiO2 production technologies, one by continuous hydrothermal synthesis and the other by a sulfate process. Results of the study showed a relatively large contribution of photocatalytic coatings to reducing the effects of selected indices in comparison with an air purifier, regardless of which nano TiO2 production method is used. Although the impacts of the sulfate process are significantly lower compared to those of hydrothermal synthesis when viewed in terms of production alone, taken in the context of the entire product life cycle, the net difference becomes less significant. The study has been elaborated within the Sustainable Hydrothermal Manufacturing of Nanomaterials (SHYMAN) project, which aims to develop competitive and sustainable continuous nanoparticle (NP) production technology based on supercritical hydrothermal synthesis. Integr Environ Assess Manag 2016;12:478-485. © 2016 SETAC. PMID:27082715

  14. Modelling and simulation of air-conditioning cycles

    NASA Astrophysics Data System (ADS)

    Rais, Sandi; Kadono, Yoshinori; Murayama, Katsunori; Minakuchi, Kazuya; Takeuchi, Hisae; Hasegawa, Tatsuya

    2016-05-01

    The heat-pump cycle for air conditioning was investigated both numerically and experimentally by evaluating the coefficient of performance (COP) under Japanese Industrial Standard (JIS B 8619:1999) and ANSI/AHRI standard 750-2007 operating conditions. We used two expansion valve coefficients Cv_{(\\varphi )} = 0.12 for standard operating conditions (Case 1) approaching 1.3 MPa at high pressure and 0.2 MPa at low pressure, and Cv_{(\\varphi )} = 0.06 namely poor operating conditions (Case 2). To improve the performance of the air conditioner, we compared the performance for two outside air temperatures, 35 and 40 °C (Case 3). The simulation and experiment comparison resulted the decreasing of the COP for standard operating condition is equal to 14 %, from 3.47 to 2.95 and a decrease of the cooling capacity is equal to 18 %, from 309.72 to 253.53 W. This result was also occurred in poor operating condition which the COP was superior at 35 °C temperature.

  15. The hybrid pressurized air receiver (HPAR) in the SUNDISC cycle

    NASA Astrophysics Data System (ADS)

    Heller, Lukas; Hoffmann, Jaap; Gauché, Paul

    2016-05-01

    Tubular metallic pressurized air solar receivers face challenges in terms of temperature distribution on the absorber tubes and the limited sustainable solar influx. The HPAR concept aims at mitigating these problems through a macro-volumetric design and a secondary non-pressurized air flow around the absorber elements. Here, a 360◦ manifestation of this concept for implementation in the dual-pressure SUNDISC cycle is presented. Computationally inexpensive models for the numerous heat flows were developed for use in parametric studies of a receiver's geometric layout. Initial findings are presented on the optical penetration of concentrated solar radiation into the absorber structure, blocking of thermal radiation from hot surfaces and the influence of the flow path through the heated tubes. In the basic design the heat transfer to the non-pressurized air stream is found to be insufficient and possible measures for its improvement are given. Their effect will be examined in more detailed models of external convection and thermal radiation to be able to provide performance estimates of the system.

  16. Study on Cooling Performance of Stirling Cycle Machine wiht New Regenerator Matrix

    NASA Astrophysics Data System (ADS)

    Kagawa, Noboru; Kitahama, Dai; Takeuchi, Takuro; Matsuguchi, Atsushi; Tsuruno, Seizo

    In order to develop Stirling cycle machines with high efficiency, suitable regenerator for each machine must be designed. To realize the flexibility of design and to improve the performance of regenerator, a new matrix, mesh sheet was proposed. It is a plate type with electrically etched holes. Each small hole is connected with neighboring holes by grooves on the plate. The performance test of cooling mode was carried out with a 3-kW Stirling engine in order to measure its cooling performance. Three types of the mesh sheet were developed and two of them were respectively stacked to install in the machine. Also, the pressure and regenerator losses were compared with conventional stacked wire gauzes and the mesh sheets. From the results, it was clarified that the performance of the cooling mode was improved about 5 to 40 % by the mesh sheet. In this paper, the relation between the dimensions of the mesh sheet, the pressure and regenerator losses were also clarified.

  17. Air exchange rates from atmospheric CO2 daily cycle

    PubMed Central

    Carrilho, João Dias; Mateus, Mário; Batterman, Stuart; da Silva, Manuel Gameiro

    2015-01-01

    We propose a new approach for measuring ventilation air exchange rates (AERs). The method belongs to the class of tracer gas techniques, but is formulated in the light of systems theory and signal processing. Unlike conventional CO2 based methods that assume the outdoor ambient CO2 concentration is constant, the proposed method recognizes that photosynthesis and respiration cycle of plants and processes associated with fuel combustion produce daily, quasi-periodic, variations in the ambient CO2 concentrations. These daily variations, which are within the detection range of existing monitoring equipment, are utilized for estimating ventilation rates without the need of a source of CO2 in the building. Using a naturally-ventilated residential apartment, AERs obtained using the new method compared favorably (within 10%) to those obtained using the conventional CO2 decay fitting technique. The new method has the advantages that no tracer gas injection is needed, and high time resolution results are obtained. PMID:26236090

  18. Effect of machining damage on low cycle fatigue crack initiation life in drilled holes in UdimetRTM 720

    NASA Astrophysics Data System (ADS)

    Magadanz, Christine M.

    White layer is a generic term for a light etching surface layer on metal alloys that can result under extreme deformation conditions in wear, sliding or machining. While there has been some characterization of white layer due to abusive machining, the specific effect on fatigue crack initiation life has not been well documented. This study aimed to establish a relationship between the presence of white layer due to abusive machining and fatigue crack initiation life in a wrought nickel based superalloy (Udimet ® 720). Low cycle fatigue testing was conducted on large specimens containing through holes drilled with parameters aimed at creating holes with and without white layer. Initially, Acoustic Emission monitoring technologies were used to monitor for acoustic events associated with crack initiation, however, this technology was deemed unreliable for this testing. Instead, cycles to crack initiation was determined using striation density measurements on each fracture surface to estimate the number of cycles of crack propagation, which was subtracted from the total number of cycles for the specimen. A total of sixteen specimens were tested in this manner. The results suggested that the crack initiation lives of holes machined with good machining parameters were statistically longer than crack initiation lives of holes machined with poor machining parameters. The mean initiation life of the poorly machined specimens was a factor of approximately 2 times shorter than the mean initiation life of the well machined specimens. The holes machined with good machining parameters exhibited subsurface initiations which suggested that no anomalies affected crack initiation for these specimens. It was also shown that some of the poorly machined holes exhibited subsurface initiations rather than initiations at white layer damage. These holes had better surface finish than the poorly machined specimens that did fail at white layer. The mean initiation life of the poorly

  19. Hadoop-Based Distributed System for Online Prediction of Air Pollution Based on Support Vector Machine

    NASA Astrophysics Data System (ADS)

    Ghaemi, Z.; Farnaghi, M.; Alimohammadi, A.

    2015-12-01

    The critical impact of air pollution on human health and environment in one hand and the complexity of pollutant concentration behavior in the other hand lead the scientists to look for advance techniques for monitoring and predicting the urban air quality. Additionally, recent developments in data measurement techniques have led to collection of various types of data about air quality. Such data is extremely voluminous and to be useful it must be processed at high velocity. Due to the complexity of big data analysis especially for dynamic applications, online forecasting of pollutant concentration trends within a reasonable processing time is still an open problem. The purpose of this paper is to present an online forecasting approach based on Support Vector Machine (SVM) to predict the air quality one day in advance. In order to overcome the computational requirements for large-scale data analysis, distributed computing based on the Hadoop platform has been employed to leverage the processing power of multiple processing units. The MapReduce programming model is adopted for massive parallel processing in this study. Based on the online algorithm and Hadoop framework, an online forecasting system is designed to predict the air pollution of Tehran for the next 24 hours. The results have been assessed on the basis of Processing Time and Efficiency. Quite accurate predictions of air pollutant indicator levels within an acceptable processing time prove that the presented approach is very suitable to tackle large scale air pollution prediction problems.

  20. Thermodynamic performance of a hybrid air cycle refrigeration system using a desiccant rotor

    NASA Astrophysics Data System (ADS)

    Hwang, Kyudae; Song, Chan Ho; Kim, Sung Ki; Saito, Kiyoshi; Kawai, Sunao

    2013-03-01

    Due to the concern on global warming, the demand for a system using natural refrigerant is increasing and many researches have been devoted to develop systems with natural refrigerants. Among natural refrigerant systems, an air cycle system has emerged as one of alternatives of Freon gas system due to environmentally friendly feature in spite of the inherent low efficiency. To overcome the technical barrier, this study proposed combination of multiple systems as a hybrid cycle to achieve higher efficiency of an air cycle system. The hybrid air cycle adopts a humidity control units such as an adsorber and a desorber to obtain the cooling effect from latent heat as well as sensible heat. To investigate the efficacy of the hybrid air cycle, the cooling performance of a hybrid air cycle is investigated analytically and experimentally. From the simulation result, it is found that COP of the hybrid air cycle is two times higher than that of the conventional air cycle. The experiments are conducted on the performance of the desiccant system according to the rotation speed in the system and displayed the feasibility of the key element in the hybrid air cycle system. From the results, it is shown that the system efficiency can be enhanced by utilization of the exhausted heat through the ambient heat exchanger with advantage of controlling the humidity by the desiccant rotor.

  1. Comparison of the regulated air pollutant emission characteristics of real-world driving cycle and ECE cycle for motorcycles

    NASA Astrophysics Data System (ADS)

    Chiang, Hung-Lung; Huang, Pei-Hsiu; Lai, Yen-Ming; Lee, Ting-Yi

    2014-04-01

    Motorcycles are an important means of transportation, and their numbers have increased significantly in recent years. However, motorcycles can emit significant amounts of air pollutants; therefore, the emission characteristics and driving patterns of motorcycles are necessary baseline information for the implementation of control measures for motorcycles in urban areas. The selected motorcycles were equipped with global positioning systems (GPS) to obtain speed-time data for determination of the characteristics of real-world driving parameters, and an on-board exhaust gas analyser with data logger was employed to determine the instantaneous concentration of regulated air pollutants from motorcycle exhaust. Results indicated that the time proportions of acceleration, cruising, and deceleration are different from those of the Economic Commission for Europe (ECE) driving cycle, and the time percentages of acceleration and deceleration of the ECE cycle are much less than those in Taichung city. In general, the emission factors of the Taichung motorcycle driving cycle (TMDC) were higher HC and lower NOx emission than those of the ECE cycle. The average fuel consumption of tested motorcycles on three roads during workdays was 5% higher than that on weekends. The fuel consumption in the real-world motorcycle driving cycle was also about 7% higher than that of the ECE cycle, which again indicates that the ECE cycle is unsuitable for measuring fuel consumption in the Taichung metropolitan area. Therefore, understanding the local driving cycle is necessary for developing accurate emission data for air pollution control measures for urban areas.

  2. Power Output and Air Requirements of a Two-stroke Cycle Engine for Aeronautical Use

    NASA Technical Reports Server (NTRS)

    Paton, C R; Kemper, Carlton

    1927-01-01

    This investigation was undertaken to determine the pressure and amount of air necessary for satisfactory high-speed, two-stroke cycle operation and thus permit the power requirements of the air pump or blower to be determined. Based on power output and air requirement here obtained the two-stroke cycle engine would seem to be favorable for aeronautical use. No attempts were made to secure satisfactory operation at idling speeds.

  3. Air compressor battery duration with mechanical ventilation in a field anesthesia machine.

    PubMed

    Szpisjak, Dale F; Giberman, Anthony A

    2015-05-01

    Compressed air to power field anesthesia machine ventilators may be supplied by air compressor with battery backup. This study determined the battery duration when the compPAC ventilator's air compressor was powered by NiCd battery to ventilate the Vent Aid Training Test Lung modeling high (HC = 0.100 L/cm H2O) and low (LC = 0.020 L/cm H2O) pulmonary compliance. Target tidal volumes (VT) were 500, 750, and 1,000 mL. Respiratory rate = 10 bpm, inspiratory-to-expiratory time ratio = 1:2, and fresh gas flow = 1 L/min air. N = 5 in each group. Control limits were determined from the first 150 minutes of battery power for each run and lower control limit = mean VT - 3SD. Battery depletion occurred when VT was below the lower control limit. Battery duration ranged from 185.8 (±3.2) minutes in the LC-1000 group to 233.3 (±3.6) minutes in the HC-750 group. Battery duration of the LC-1000 group was less than all others (p = 0.027). The differences among the non-LC-1000 groups were not clinically significant.

  4. The optimization air separation plants for combined cycle MHD-power plant applications

    NASA Technical Reports Server (NTRS)

    Juhasz, A. J.; Springmann, H.; Greenberg, R.

    1980-01-01

    Some of the design approaches being employed during a current supported study directed at developing an improved air separation process for the production of oxygen enriched air for magnetohydrodynamics (MHD) combustion are outlined. The ultimate objective is to arrive at conceptual designs of air separation plants, optimized for minimum specific power consumption and capital investment costs, for integration with MHD combined cycle power plants.

  5. Supercontinuum based absorption spectrometer for cycle-resolved multiparameter measurements in a rapid compression machine.

    PubMed

    Werblinski, Thomas; Kleindienst, Stefan; Engelbrecht, Rainer; Zigan, Lars; Will, Stefan

    2016-06-10

    A broadband supercontinuum (SC) based absorption spectrometer capable of cycle-resolved multiparameter measurements at internal combustion (IC) engine conditions is presented. Three parameters, temperature, pressure and water mole fraction, were extracted from broadband near-infrared H2O absorption spectra, spanning the wavelength-range from 1340 to 1405.5 nm, which exhibits a large number of specific H2O transitions. The spectrometer is based on spatial domain detection and features a near-infrared line scan camera as a detector. Measurements were performed during a compression cycle of a rapid compression machine comprising a pressure and temperature range from 2.5 to 65 bar and 300 to 900 K, respectively. With the new spectrometer, we are for the first time, based on the authors' knowledge, able to perform measurements based on SC radiation over a complete compression and expansion stroke at measurement rates up to 50 kHz. A detailed overview is provided about the best match algorithm between theory and experiments, including parameters from two different spectral databases, namely the Barber-Tennyson database (BT2) and HITRAN2012. The results indicate that spectral broadening effects are not properly described by theory, especially at pressure levels exceeding 20 bar, which culminates in a clear underestimation of the derived pressure data by SC absorption spectroscopy. Nevertheless, temperature can be determined accurately by performing a three-parameter fit based on water mole fraction, temperature, and pressure. In contrast, making use of pressure transducer data as look-up values and varying only temperature and H2O mole fraction to find the best match leads to a clear overestimation of temperature at elevated pressures. PMID:27409013

  6. Supercontinuum based absorption spectrometer for cycle-resolved multiparameter measurements in a rapid compression machine.

    PubMed

    Werblinski, Thomas; Kleindienst, Stefan; Engelbrecht, Rainer; Zigan, Lars; Will, Stefan

    2016-06-10

    A broadband supercontinuum (SC) based absorption spectrometer capable of cycle-resolved multiparameter measurements at internal combustion (IC) engine conditions is presented. Three parameters, temperature, pressure and water mole fraction, were extracted from broadband near-infrared H2O absorption spectra, spanning the wavelength-range from 1340 to 1405.5 nm, which exhibits a large number of specific H2O transitions. The spectrometer is based on spatial domain detection and features a near-infrared line scan camera as a detector. Measurements were performed during a compression cycle of a rapid compression machine comprising a pressure and temperature range from 2.5 to 65 bar and 300 to 900 K, respectively. With the new spectrometer, we are for the first time, based on the authors' knowledge, able to perform measurements based on SC radiation over a complete compression and expansion stroke at measurement rates up to 50 kHz. A detailed overview is provided about the best match algorithm between theory and experiments, including parameters from two different spectral databases, namely the Barber-Tennyson database (BT2) and HITRAN2012. The results indicate that spectral broadening effects are not properly described by theory, especially at pressure levels exceeding 20 bar, which culminates in a clear underestimation of the derived pressure data by SC absorption spectroscopy. Nevertheless, temperature can be determined accurately by performing a three-parameter fit based on water mole fraction, temperature, and pressure. In contrast, making use of pressure transducer data as look-up values and varying only temperature and H2O mole fraction to find the best match leads to a clear overestimation of temperature at elevated pressures.

  7. Evaluating different machine learning approaches for the interpolation of ambient air temperature at Mt. Kilimajaro, Tanzania

    NASA Astrophysics Data System (ADS)

    Appelhans, Tim; Mwangomo, Ephraim; Hardy, Douglas; Hemp, Andreas; Nauss, Thomas

    2015-04-01

    Spatially high resolution climate information is required for a variety of applications in but not limited to functional biodiversity research. In order to scale the generally plot-based research findings to a landscape level, spatial interpolation methods of meteorological variables are required. Based on a network of 60 observation plots across the southern slopes of Mt. Kilimanjaro, the skill of 14 machine learning algorithms in predicting spatial temperature patterns is tested and evaluated against the heavily utilized kriging approach. Based on a leave-many-out testing design, regression trees generally perform better than linear and non-linear regression models. The best individual performance has been observed by the Cubist model followed by stochastic gradient boosting, random forest and model averaged neural networks which except for the latter are all regression tree-based algorithms. While these machine learning algorithms perform better than kriging in this quantitative evaluation, the overall visual interpretation of the resulting air temperature maps is ambiguous. Here, a combined Cubist and residual kriging approach might be the best solution.

  8. Carbon dioxide, ground air and carbon cycling in Gibraltar karst

    NASA Astrophysics Data System (ADS)

    Mattey, D. P.; Atkinson, T. C.; Barker, J. A.; Fisher, R.; Latin, J.-P.; Durrell, R.; Ainsworth, M.

    2016-07-01

    We put forward a general conceptual model of CO2 behaviour in the vadose zone of karst aquifers, based on physical principles of air flow through porous media and caves, combined with a geochemical interpretation of cave monitoring data. This 'Gibraltar model' links fluxes of water, air and carbon through the soil with the porosity of the vadose zone, the circulation of ground air and the ventilation of caves. Gibraltar hosts many natural caves whose locations span the full length and vertical range of the Rock. We report results of an 8-year monitoring study of carbon in soil organic matter and bedrock carbonate, dissolved inorganic carbon in vadose waters, and gaseous CO2 in soil, cave and ground air. Results show that the regime of cave air CO2 results from the interaction of cave ventilation with a reservoir of CO2-enriched ground air held within the smaller voids of the bedrock. The pCO2 of ground air, and of vadose waters that have been in close contact with it, are determined by multiple factors that include recharge patterns, vegetation productivity and root respiration, and conversion of organic matter to CO2 within the soil, the epikarst and the whole vadose zone. Mathematical modelling and field observations show that ground air is subject to a density-driven circulation that reverses seasonally, as the difference between surface and underground temperatures reverses in sign. The Gibraltar model suggests that cave air pCO2 is not directly related to CO2 generated in the soil or the epikarstic zone, as is often assumed. Ground air CO2 formed by the decay of organic matter (OM) washed down into the deeper unsaturated zone is an important additional source of pCO2. In Gibraltar the addition of OM-derived CO2 is the dominant control on the pCO2 of ground air and the Ca-hardness of waters within the deep vadose zone. The seasonal regime of CO2 in cave air depends on the position of a cave in relation to the density-driven ground air circulation pattern which

  9. Application of high temperature air heaters to advanced power generation cycles

    SciTech Connect

    Thompson, T R; Boss, W H; Chapman, J N

    1992-03-01

    Recent developments in ceramic composite materials open up the possibility of recuperative air heaters heating air to temperatures well above the feasible with metal tubes. A high temperature air heater (HTAH) has long been recognized as a requirement for the most efficient MHD plants in order to reach high combustor flame temperatures. The application of gas turbines in coal-fired plants of all types has been impeded because of the problems in cleaning exhaust gas sufficiently to avoid damage to the turbine. With a possibility of a HTAH, such plants may become feasible on the basis of air turbine cycles, in which air is compressed and heated in the HTAH before being applied to turbine. The heat exchanger eliminates the need for the hot gas cleanup system. The performance improvement potential of advanced cycles with HTAH application including the air turbine cycle in several variations such as the DOE program on ``Coal-Fired Air Furnace Combined Cycle...,`` variations originated by the authors, and the MHD combined cycle are presented. The status of development of ceramic air heater technology is included.

  10. Monthly prediction of air temperature in Australia and New Zealand with machine learning algorithms

    NASA Astrophysics Data System (ADS)

    Salcedo-Sanz, S.; Deo, R. C.; Carro-Calvo, L.; Saavedra-Moreno, B.

    2016-07-01

    Long-term air temperature prediction is of major importance in a large number of applications, including climate-related studies, energy, agricultural, or medical. This paper examines the performance of two Machine Learning algorithms (Support Vector Regression (SVR) and Multi-layer Perceptron (MLP)) in a problem of monthly mean air temperature prediction, from the previous measured values in observational stations of Australia and New Zealand, and climate indices of importance in the region. The performance of the two considered algorithms is discussed in the paper and compared to alternative approaches. The results indicate that the SVR algorithm is able to obtain the best prediction performance among all the algorithms compared in the paper. Moreover, the results obtained have shown that the mean absolute error made by the two algorithms considered is significantly larger for the last 20 years than in the previous decades, in what can be interpreted as a change in the relationship among the prediction variables involved in the training of the algorithms.

  11. Innovative open air brayton combined cycle systems for the next generation nuclear power plants

    NASA Astrophysics Data System (ADS)

    Zohuri, Bahman

    The purpose of this research was to model and analyze a nuclear heated multi-turbine power conversion system operating with atmospheric air as the working fluid. The air is heated by a molten salt, or liquid metal, to gas heat exchanger reaching a peak temperature of 660 0C. The effects of adding a recuperator or a bottoming steam cycle have been addressed. The calculated results are intended to identify paths for future work on the next generation nuclear power plant (GEN-IV). This document describes the proposed system in sufficient detail to communicate a good understanding of the overall system, its components, and intended uses. The architecture is described at the conceptual level, and does not replace a detailed design document. The main part of the study focused on a Brayton --- Rankine Combined Cycle system and a Recuperated Brayton Cycle since they offer the highest overall efficiencies. Open Air Brayton power cycles also require low cooling water flows relative to other power cycles. Although the Recuperated Brayton Cycle achieves an overall efficiency slightly less that the Brayton --- Rankine Combined Cycle, it is completely free of a circulating water system and can be used in a desert climate. Detailed results of modeling a combined cycle Brayton-Rankine power conversion system are presented. The Rankine bottoming cycle appears to offer a slight efficiency advantage over the recuperated Brayton cycle. Both offer very significant advantages over current generation Light Water Reactor steam cycles. The combined cycle was optimized as a unit and lower pressure Rankine systems seem to be more efficient. The combined cycle requires a lot less circulating water than current power plants. The open-air Brayton systems appear to be worth investigating, if the higher temperatures predicted for the Next Generation Nuclear Plant do materialize.

  12. A PILOT STUDY OF THE INFLUENCE OF RESIDENTIAL HAC DUTY CYCLE ON INDOOR AIR QUALITY (AE)

    EPA Science Inventory

    A simple methodology was developed to collect measurements of duty cycle, the fraction of time the heating and air conditioning (HAC) system was operating, inside residences. The primary purpose of the measurements was to assess whether the HAC duty cycle was related to reductio...

  13. A PILOT STUDY OF THE INFLUENCE OF RESIDENTIAL HAC DUTY CYCLE ON INDOOR AIR QUALITY

    EPA Science Inventory

    A simple methodology was developed to collect measurements of duty cycle, the fraction of time the heating and air conditioning (HAC) system was operating inside residences. The primary purpose of the measurements was to assess whether the HAC duty cycle was related to reducti...

  14. Thermodynamic Cycle and CFD Analyses for Hydrogen Fueled Air-breathing Pulse Detonation Engines

    NASA Technical Reports Server (NTRS)

    Povinelli, Louis A.; Yungster, Shaye

    2002-01-01

    This paper presents the results of a thermodynamic cycle analysis of a pulse detonation engine (PDE) using a hydrogen-air mixture at static conditions. The cycle performance results, namely the specific thrust, fuel consumption and impulse are compared to a single cycle CFD analysis for a detonation tube which considers finite rate chemistry. The differences in the impulse values were indicative of the additional performance potential attainable in a PDE.

  15. INFLUENCE OF RESIDENTIAL HVAC DUTY CYCLE ON INDOOR AIR QUALITY

    EPA Science Inventory

    Measurements of duty cycle, the fraction of time the heating and cooling (HVAC) system was operating, were made in homes during the spring season of the RTP Particulate Matter Panel Study and the Tampa Asthmatic Children's Study. A temperature sensor/logger placed on an outlet...

  16. Integrated air separation plant-integrated gasification combined cycle power generator

    SciTech Connect

    Allam, R.J.; Topham, A.

    1992-01-21

    This patent describes an integrated gasification combined cycle power generation system, comprising an air separation unit wherein air is compressed, cooled, and separated into an oxygen and nitrogen enriched fractions, a gasification system for generating a fuel gas, an air compressor system for supplying compressed air for use in combusting the fuel gas, a combustion zone for effecting combustion of the compressed air and the fuel gas, and a gas turbine for effecting the generation of power from the resulting combusted gases from the combustion zone in the combined cycle power generation system. It comprises independently compressing feed air to the air separation unit to pressures of from 8 to 20 bar from the compressor system used to compress air for the combustion zone; cryogenically separating the air in the air separation unit having at least one distillation column operating at pressures of between 8 and 20 bar and producing an oxygen enriched fraction consisting of low purity oxygen, and; utilizing at least a portion of the low purity oxygen for effecting gasification of a carbon containing fuel source by partial oxidation in the gasification system and thereby generating a fuel gas stream; removing at least a portion of a nitrogen enriched fraction from the air separation unit and boosting its pressures to a pressure substantially equal to that of the fuel gas stream; and expanding at least another portion of the nitrogen enriched fraction in an expansion engine.

  17. Cascade Reverse Osmosis Air Conditioning System: Cascade Reverse Osmosis and the Absorption Osmosis Cycle

    SciTech Connect

    2010-09-01

    BEETIT Project: Battelle is developing a new air conditioning system that uses a cascade reverse osmosis (RO)-based absorption cycle. Analyses show that this new cycle can be as much as 60% more efficient than vapor compression, which is used in 90% of air conditioners. Traditional vapor-compression systems use polluting liquids for a cooling effect. Absorption cycles use benign refrigerants such as water, which is absorbed in a salt solution and pumped as liquid—replacing compression of vapor. The refrigerant is subsequently separated from absorbing salt using heat for re-use in the cooling cycle. Battelle is replacing thermal separation of refrigerant with a more efficient reverse osmosis process. Research has shown that the cycle is possible, but further investment will be needed to reduce the number of cascade reverse osmosis stages and therefore cost.

  18. Can air pollution negate the health benefits of cycling and walking?

    PubMed

    Tainio, Marko; de Nazelle, Audrey J; Götschi, Thomas; Kahlmeier, Sonja; Rojas-Rueda, David; Nieuwenhuijsen, Mark J; de Sá, Thiago Hérick; Kelly, Paul; Woodcock, James

    2016-06-01

    Active travel (cycling, walking) is beneficial for the health due to increased physical activity (PA). However, active travel may increase the intake of air pollution, leading to negative health consequences. We examined the risk-benefit balance between active travel related PA and exposure to air pollution across a range of air pollution and PA scenarios. The health effects of active travel and air pollution were estimated through changes in all-cause mortality for different levels of active travel and air pollution. Air pollution exposure was estimated through changes in background concentrations of fine particulate matter (PM2.5), ranging from 5 to 200μg/m3. For active travel exposure, we estimated cycling and walking from 0 up to 16h per day, respectively. These refer to long-term average levels of active travel and PM2.5 exposure. For the global average urban background PM2.5 concentration (22μg/m3) benefits of PA by far outweigh risks from air pollution even under the most extreme levels of active travel. In areas with PM2.5 concentrations of 100μg/m3, harms would exceed benefits after 1h 30min of cycling per day or more than 10h of walking per day. If the counterfactual was driving, rather than staying at home, the benefits of PA would exceed harms from air pollution up to 3h 30min of cycling per day. The results were sensitive to dose-response function (DRF) assumptions for PM2.5 and PA. PA benefits of active travel outweighed the harm caused by air pollution in all but the most extreme air pollution concentrations.

  19. Can air pollution negate the health benefits of cycling and walking?

    PubMed

    Tainio, Marko; de Nazelle, Audrey J; Götschi, Thomas; Kahlmeier, Sonja; Rojas-Rueda, David; Nieuwenhuijsen, Mark J; de Sá, Thiago Hérick; Kelly, Paul; Woodcock, James

    2016-06-01

    Active travel (cycling, walking) is beneficial for the health due to increased physical activity (PA). However, active travel may increase the intake of air pollution, leading to negative health consequences. We examined the risk-benefit balance between active travel related PA and exposure to air pollution across a range of air pollution and PA scenarios. The health effects of active travel and air pollution were estimated through changes in all-cause mortality for different levels of active travel and air pollution. Air pollution exposure was estimated through changes in background concentrations of fine particulate matter (PM2.5), ranging from 5 to 200μg/m3. For active travel exposure, we estimated cycling and walking from 0 up to 16h per day, respectively. These refer to long-term average levels of active travel and PM2.5 exposure. For the global average urban background PM2.5 concentration (22μg/m3) benefits of PA by far outweigh risks from air pollution even under the most extreme levels of active travel. In areas with PM2.5 concentrations of 100μg/m3, harms would exceed benefits after 1h 30min of cycling per day or more than 10h of walking per day. If the counterfactual was driving, rather than staying at home, the benefits of PA would exceed harms from air pollution up to 3h 30min of cycling per day. The results were sensitive to dose-response function (DRF) assumptions for PM2.5 and PA. PA benefits of active travel outweighed the harm caused by air pollution in all but the most extreme air pollution concentrations. PMID:27156248

  20. Environmental impacts associated with the aluminum-air battery electric vehicle fuel cycle

    SciTech Connect

    Berger, K.J.E.

    1982-01-01

    The aluminum-air battery concept is discussed, and a scenario is developed which forecasts ten million aluminum-air electric vehicles in the US by the year 2000. An estimation is made regarding the consumption of natural resources and generation of wastes due to the aluminum-air battery's fuel cycle and to the increased demand on the US aluminum industry because of the scenario. The battery's fuel cycle considers the entire process of its generation and use; this includes the extraction of the raw material, processing, transportation, distribution, implementation and recycling. An analysis is also performed in which a comparison is made between the air emissions from an aluminum-air battery electric vehicle and those generated by a standard internal combustion engine vehicle. Finally, an examination is made of various ways by which potential adverse environmental impacts may be eliminated or reduced. The document concludes that no serious environmental impacts should be expected from the aluminum-air battery electric vehicle fuel cycle (provided a clean and inexpensive source of electricity is available) and that the introduction of such a vehicle could aid in reducing urban air pollution.

  1. Cryogenic hydrogen-induced air-liquefaction technologies for combined-cycle propulsion applications

    NASA Technical Reports Server (NTRS)

    Escher, William J. D.

    1992-01-01

    Given here is a technical assessment of the realization of cryogenic hydrogen induced air liquefaction technologies in a prospective onboard aerospace vehicle process setting. The technical findings related to the status of air liquefaction technologies are reviewed. Compact lightweight cryogenic heat exchangers, heat exchanger atmospheric constituent fouling alleviation measures, para/ortho-hydrogen shift-conversion catalysts, cryogenic air compressors and liquid air pumps, hydrogen recycling using slush hydrogen as a heat sink, liquid hydrogen/liquid air rocket-type combustion devices, and technically related engine concepts are discussed. Much of the LACE work is related to aerospaceplane propulsion concepts that were developed in the 1960's. Emphasis is placed on the Liquid Air Cycle Engine (LACE).

  2. A novel triple-actuating mechanism of an active air mount for vibration control of precision manufacturing machines: experimental work

    NASA Astrophysics Data System (ADS)

    Kim, Hyung-Tae; Kim, Cheol-Ho; Choi, Seung-Bok; Moon, Seok-Jun; Song, Won-Gil

    2014-07-01

    With the goal of vibration control and isolation in a clean room, we propose a new type of air mount which consists of pneumatic, electromagnetic (EM), and magnetorheological (MR) actuators. The air mount is installed below a semiconductor manufacturing machine to reduce the adverse effects caused by unwanted vibration. The proposed mechanism integrates the forces in a parallel connection of the three actuators. The MR part is designed to operate in an air spring in which the EM part is installed. The control logic is developed with a classical method and a switching mode to avoid operational mismatch among the forces developed. Based on extended microprocessors, a portable, embedded controller is installed to execute both nonlinear logic and digital communication with the peripherals. The pneumatic forces constantly support the heavy weight of an upper structure and maintain the level of the air mount. The MR damper handles the transient response, while the EM controller reduces the resonance response, which is switched mutually with a threshold. Vibration is detected by laser displacement sensors which have submicron resolution. The impact test results of three tons load weight demonstrate practical feasibility by showing that the proposed triple-actuating mechanism can reduce the transient response as well as the resonance in the air mount, resulting in accurate motion of the semiconductor manufacturing machine.

  3. Late - Cycle Injection of Air/Oxygen - Enriched Air for Diesel Exhaust Emissions Control

    SciTech Connect

    Mather, Daniel

    2000-08-20

    Reduce the ''Engine Out'' particulates using the ''In Cylinder'' technique of late cycle auxiliary gas injection (AGI). Reduce the ''Engine Out'' NOx by combining AGI with optimization of fuel injection parameters. Maintain or Improve the Fuel Efficiency.

  4. Study of hydraulic air compression for Ocean Thermal Energy Conversion open-cycle application

    NASA Astrophysics Data System (ADS)

    Golshani, A.; Chen, F. C.

    1983-01-01

    A hydraulic air compressor, which requires no mechanical moving parts and operates in a nearly isothermal mode, can be an alternative for the noncondensible gas disposal of an Ocean Thermal Energy Conversion (OTEC) open-cycle power system. The compressor requires only a downward flow of water to accomplish air compression. An air compressor test loop was assembled and operated to obtain test data that would lead to the design of an OTEC hydraulic air compressor. A one dimensional, hydraulic gas compressor, computer model was employed to simulate the laboratory experiments, and it was tuned to fit the test results. A sensitivity study that shows the effects of various parameters on the applied head of the hydraulic air compression is presented.

  5. Electric power generating plant having direct coupled steam and compressed air cycles

    DOEpatents

    Drost, Monte K.

    1982-01-01

    An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

  6. Electric power generating plant having direct-coupled steam and compressed-air cycles

    DOEpatents

    Drost, M.K.

    1981-01-07

    An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

  7. Effect of fast freeze-thaw cycles on mechanical properties of ordinary-air-entrained concrete.

    PubMed

    Shang, Huai-shuai; Cao, Wei-qun; Wang, Bin

    2014-01-01

    Freezing-thawing resistance is a very significant characteristic for concrete in severe environment (such as cold region with the lowest temperature below 0°C). In this study, ordinary-air-entrained (O-A-E) concrete was produced in a laboratory environment; the compressive strength, cubic compressive strength of C50, C40, C30, C25, and C20 ordinary-air-entrained concrete, tensile strength, and cleavage strength of C30 ordinary-air-entrained concrete were measured after fast freeze-thaw cycles. The effects of fast freeze-thaw cycles on the mechanical properties (compressive strength and cleavage strength) of ordinary-air-entrained concrete materials are investigated on the basis of the experimental results. And the concise mathematical formula between mechanical behavior and number of fast freeze-thaw cycles was established. The experiment results can be used as a reference in design, maintenance, and life prediction of ordinary-air-entrained concrete structure (such as dam, offshore platform, etc.) in cold regions.

  8. Effect of Fast Freeze-Thaw Cycles on Mechanical Properties of Ordinary-Air-Entrained Concrete

    PubMed Central

    Shang, Huai-shuai; Cao, Wei-qun; Wang, Bin

    2014-01-01

    Freezing-thawing resistance is a very significant characteristic for concrete in severe environment (such as cold region with the lowest temperature below 0°C). In this study, ordinary-air-entrained (O-A-E) concrete was produced in a laboratory environment; the compressive strength, cubic compressive strength of C50, C40, C30, C25, and C20 ordinary-air-entrained concrete, tensile strength, and cleavage strength of C30 ordinary-air-entrained concrete were measured after fast freeze-thaw cycles. The effects of fast freeze-thaw cycles on the mechanical properties (compressive strength and cleavage strength) of ordinary-air-entrained concrete materials are investigated on the basis of the experimental results. And the concise mathematical formula between mechanical behavior and number of fast freeze-thaw cycles was established. The experiment results can be used as a reference in design, maintenance, and life prediction of ordinary-air-entrained concrete structure (such as dam, offshore platform, etc.) in cold regions. PMID:24895671

  9. Evaluation of life-cycle air emission factors of freight transportation.

    PubMed

    Facanha, Cristiano; Horvath, Arpad

    2007-10-15

    Life-cycle air emission factors associated with road, rail, and air transportation of freight in the United States are analyzed. All life-cycle phases of vehicles, infrastructure, and fuels are accounted for in a hybrid life-cycle assessment (LCA). It includes not only fuel combustion, but also emissions from vehicle manufacturing, maintenance, and end of life, infrastructure construction, operation, maintenance, and end of life, and petroleum exploration, refining, and fuel distribution. Results indicate that total life-cycle emissions of freight transportation modes are underestimated if only tailpipe emissions are accounted for. In the case of CO2 and NOx, tailpipe emissions underestimate total emissions by up to 38%, depending on the mode. Total life-cycle emissions of CO and SO2 are up to seven times higher than tailpipe emissions. Sensitivity analysis considers the effects of vehicle type, geography, and mode efficiency on the final results. Policy implications of this analysis are also discussed. For example, while it is widely assumed that currently proposed regulations will result in substantial reductions in emissions, we find that this is true for NOx, emissions, because fuel combustion is the main cause, and to a lesser extent for SO2, but not for PM10 emissions, which are significantly affected by the other life-cycle phases.

  10. The relationship of air temperature variations over the northern hemisphere during the secular and 11-year solar cycles

    NASA Technical Reports Server (NTRS)

    Ryzhakov, L. Y.; Tomskaya, A. S.

    1978-01-01

    A comparison was made of air temperature anomaly maps for the months of January and July against a background of high and low secular solar activity, with and without regard for the 11 year cycle. By comparing temperature variations during the 11 year and secular cycles, it is found that the 11 year cycle influences thermal conditions more strongly than the secular cycle, and that temperature differences between extreme phases of the solar cycles are greater in January than in July.

  11. Air Evaporation closed cycle water recovery technology - Advanced energy saving designs

    NASA Technical Reports Server (NTRS)

    Morasko, Gwyndolyn; Putnam, David F.; Bagdigian, Robert

    1986-01-01

    The Air Evaporation water recovery system is a visible candidate for Space Station application. A four-man Air Evaporation open cycle system has been successfully demonstrated for waste water recovery in manned chamber tests. The design improvements described in this paper greatly enhance the system operation and energy efficiency of the air evaporation process. A state-of-the-art wick feed design which results in reduced logistics requirements is presented. In addition, several design concepts that incorporate regenerative features to minimize the energy input to the system are discussed. These include a recuperative heat exchanger, a heat pump for energy transfer to the air heater, and solar collectors for evaporative heat. The addition of the energy recovery devices will result in an energy reduction of more than 80 percent over the systems used in earlier manned chamber tests.

  12. Cost and energy consumption estimates for the aluminum-air battery anode fuel cycle

    NASA Astrophysics Data System (ADS)

    1990-01-01

    At the request of DOE's Office of Energy Storage and Distribution (OESD), Pacific Northwest Laboratory (PNL) conducted a study to generate estimates of the energy use and costs associated with the aluminum anode fuel cycle of the aluminum-air (Al-air) battery. The results of this analysis indicate that the cost and energy consumption characteristics of the mechanically rechargeable Al-air battery system are not as attractive as some other electrically rechargeable electric vehicle battery systems being developed by OESD. However, there are distinct advantages to mechanically rechargeable batteries, which may make the Al-air battery (or other mechanically rechargeable batteries) attractive for other uses, such as stand-alone applications. Fuel cells, such as the proton exchange membrane (PEM), and advanced secondary batteries may be better suited to electric vehicle applications.

  13. Cost and energy consumption estimates for the aluminum-air battery anode fuel cycle

    SciTech Connect

    Humphreys, K.K.; Brown, D.R.

    1990-01-01

    At the request of DOE's Office of Energy Storage and Distribution (OESD), Pacific Northwest Laboratory (PNL) conducted a study to generate estimates of the energy use and costs associated with the aluminum anode fuel cycle of the aluminum-air (Al-air) battery. The results of this analysis indicate that the cost and energy consumption characteristics of the mechanically rechargeable Al-air battery system are not as attractive as some other electrically rechargeable electric vehicle battery systems being developed by OESD. However, there are distinct advantages to mechanically rechargeable batteries, which may make the Al-air battery (or other mechanically rechargeable batteries) attractive for other uses, such as stand-alone applications. Fuel cells, such as the proton exchange membrane (PEM), and advanced secondary batteries may be better suited to electric vehicle applications. 26 refs., 3 figs., 25 tabs.

  14. A 100-W grade closed-cycle thermosyphon cooling system used in HTS rotating machines

    NASA Astrophysics Data System (ADS)

    Felder, Brice; Miki, Motohiro; Tsuzuki, Keita; Shinohara, Nobuyuki; Hayakawa, Hironao; Izumi, Mitsuru

    2012-06-01

    The cooling systems used for rotating High-Temperature Superconducting (HTS) machines need a cooling power high enough to ensure a low temperature during various utilization states. Radiation, torque tube or current leads represent hundreds of watts of invasive heat. The architecture also has to allow the rotation of the refrigerant. In this paper, a free-convection thermosyphon using two Gifford-McMahon (GM) cryocoolers is presented. The cryogen is mainly neon but helium can be added for an increase of the heat transfer coefficient. The design of the heat exchangers was first optimized with FEM thermal analysis. After manufacture, they were assembled for preliminary experiments and the necessity of annealing was studied for the copper parts. A single evaporator was installed to evaluate the thermal properties of such a heat syphon. The maximum bearable static heat load was also investigated, but was not reached even at 150 W of load. Finally, this cooling system was tested in the cooling down of a 100-kW range HTS rotating machine containing 12 Bi-2223 double-pancake coils (DPC).

  15. Feasibility and operating costs of an air cycle for CCHP in a fast food restaurant

    DOE PAGES

    Perez-Blanco, Horacio; Vineyard, Edward

    2016-05-06

    This work considers the possibilities of an air-based Brayton cycle to provide the power, heating and cooling needs of fast-food restaurants. A model of the cycle based on conventional turbomachinery loss coefficients is formulated. The heating, cooling and power capabilities of the cycle are extracted from simulation results. Power and thermal loads for restaurants in Knoxville, TN and in International Falls, MN, are considered. It is found that the cycle can meet the loads by setting speed and mass flow-rate apportionment between the power and cooling functional sections. The associated energy costs appear elevated when compared to the cost ofmore » operating individual components or a more conventional, absorption-based CHP system. Lastly, a first-order estimate of capital investments is provided. Suggestions for future work whereby the operational costs could be reduced are given in the conclusions.« less

  16. Consequential life cycle air emissions externalities for plug-in electric vehicles in the PJM interconnection

    NASA Astrophysics Data System (ADS)

    Weis, Allison; Jaramillo, Paulina; Michalek, Jeremy

    2016-02-01

    We perform a consequential life cycle analysis of plug-in electric vehicles (PEVs), hybrid electric vehicles (HEVs), and conventional gasoline vehicles in the PJM interconnection using a detailed, normative optimization model of the PJM electricity grid that captures the change in power plant operations and related emissions due to vehicle charging. We estimate and monetize the resulting human health and environmental damages from life cycle air emissions for each vehicle technology. We model PJM using the most recent data available (2010) as well as projections of the PJM grid in 2018 and a hypothetical scenario with increased wind penetration. We assess a range of sensitivity cases to verify the robustness of our results. We find that PEVs have higher life cycle air emissions damages than gasoline HEVs in the recent grid scenario, which has a high percentage of coal generation on the margin. In particular, battery electric vehicles with large battery capacity can produce two to three times as much air emissions damage as gasoline HEVs, depending on charge timing. In our future 2018 grid scenarios that account for predicted coal plant retirements, PEVs would produce air emissions damages comparable to or slightly lower than HEVs.

  17. Cycle analysis of an integrated solid oxide fuel cell and recuperative gas turbine with an air reheating system

    NASA Astrophysics Data System (ADS)

    Zhang, Xiongwen; Li, Jun; Li, Guojun; Feng, Zhenping

    Cycle simulation and analysis for two kinds of SOFC/GT hybrid systems were conducted with the help of the simulation tool: Aspen Custom Modeler. Two cycle schemes of recuperative heat exchanger (RHE) and exhaust gas recirculated (EGR) were described according to the air reheating method. The system performance with operating pressure, turbine inlet temperature and fuel cell load were studied based on the simulation results. Then the effects of oxygen utilization, fuel utilization, operating temperature and efficiencies of the gas turbine components on the system performance of the RHE cycle and the EGR cycle were discussed in detail. Simulation results indicated that the system optimum efficiency for the EGR air reheating cycle scheme was higher than that of the RHE cycle system. A higher pressure ratio would be available for the EGR cycle system in comparison with the RHE cycle. It was found that increasing fuel utilization or oxygen utilization would decrease fuel cell efficiency but improve the system efficiency for both of the RHE and EGR cycles. The efficiency of the RHE cycle hybrid system decreased as the fuel cell air inlet temperature increased. However, the system efficiency of EGR cycle increased with fuel cell air inlet temperature. The effect of turbine efficiency on the system efficiency was more obvious than the effect of the compressor and recuperator efficiencies among the gas turbine components. It was also indicated that improving the gas turbine component efficiencies for the RHE cycle increased system efficiency higher than that for the EGR cycle.

  18. Solar energy system for heating and cooling of buildings utilizing moist air cycles

    SciTech Connect

    Holbrook, E.M.; Wallace, J.J.

    1980-01-08

    An integrated system is presented for the collection, storage, and utilization of solar energy in the heating and cooling of buildings utilizing a moist air cycle involving evaporation and condensation of water vapor at constant pressure to obtain the advantages of high heat capacity, resulting from phase change, and low mass flow rate. Subersaturated moist air is circulated through solar collectors where evaporation takes place; the coolant leaving the solar collectors in a saturated condition and returning to a hot storage tank. There the coolant flows across the surface of hot stored water where condensation takes place, and thereafter leaves the hot storage tank in a saturated condition and at a temperature only slightly above that of the stored water. The hot storage tank further includes floating heat exchanger means for heating water in the portable water supply system. Upon leaving the hot storage tank the coolant is passed through a novel humidifying device which restores exactly the amount of moisture that was lost by condensation. This device withdraws water from the hot storage tank by means of a pump and introduces the water into the moist air stream in the form of a fog and very fine mist by the process of high pressure atomization. The supersaturated mixture is then returned to the solar collectors to repeat the cycle. Suitable controls modulate both the air and water flow rates in response to the rate at which solar energy is being collected. The system also includes means for using the solar equipment at night to dissipate thermal energy with the moist air cycle and thus chill water in a second tank to create a heat sink. Another salient feature of this system is means for heating and cooling a space or a building by circulating conditioned air through building cavities, creating a thermal envelope and utilizing the radiant effect of large surfaces such as walls and/or ceilings and floors to heat and cool the space.

  19. Predictable surface ablation of dielectrics with few-cycle laser pulse even beyond air ionization

    NASA Astrophysics Data System (ADS)

    Pasquier, C.; Sentis, M.; Utéza, O.; Sanner, N.

    2016-08-01

    We study surface ablation of dielectrics with single-shot few-cycle optical pulse (˜10 fs) in air, at intensities below and above the onset of air ionization. We perform 3D analysis and careful calibration of the fluence distribution at the laser focus, spanning from linear- to nonlinear- focusing regimes, enabling to thoroughly characterize the severe limitation of the fluence delivered onto the sample surface upon increase of incident pulse energy. Despite significant beam reshaping taking place at high fluence, we demonstrate that it is nevertheless possible to confidently predict the resulting crater profiles on fused silica surface, even in the regime of filamentation.

  20. Analyzing the evolutionary mechanisms of the Air Transportation System-of-Systems using network theory and machine learning algorithms

    NASA Astrophysics Data System (ADS)

    Kotegawa, Tatsuya

    Complexity in the Air Transportation System (ATS) arises from the intermingling of many independent physical resources, operational paradigms, and stakeholder interests, as well as the dynamic variation of these interactions over time. Currently, trade-offs and cost benefit analyses of new ATS concepts are carried out on system-wide evaluation simulations driven by air traffic forecasts that assume fixed airline routes. However, this does not well reflect reality as airlines regularly add and remove routes. A airline service route network evolution model that projects route addition and removal was created and combined with state-of-the-art air traffic forecast methods to better reflect the dynamic properties of the ATS in system-wide simulations. Guided by a system-of-systems framework, network theory metrics and machine learning algorithms were applied to develop the route network evolution models based on patterns extracted from historical data. Constructing the route addition section of the model posed the greatest challenge due to the large pool of new link candidates compared to the actual number of routes historically added to the network. Of the models explored, algorithms based on logistic regression, random forests, and support vector machines showed best route addition and removal forecast accuracies at approximately 20% and 40%, respectively, when validated with historical data. The combination of network evolution models and a system-wide evaluation tool quantified the impact of airline route network evolution on air traffic delay. The expected delay minutes when considering network evolution increased approximately 5% for a forecasted schedule on 3/19/2020. Performance trade-off studies between several airline route network topologies from the perspectives of passenger travel efficiency, fuel burn, and robustness were also conducted to provide bounds that could serve as targets for ATS transformation efforts. The series of analysis revealed that high

  1. The effects of two air-powder abrasive prophylaxis systems on the surface of machined titanium: a pilot study.

    PubMed

    Koka, S; Han, J; Razzoog, M E; Bloem, T J

    1992-01-01

    This in vitro pilot project compared the effect of two air-abrasive prophylaxis systems on the surface of machined titanium. Single Brånemark titanium abutment cylinders were exposed to the Prophy-Jet and Microprophy systems for 90 seconds each. Both of the test cylinders were compared with an untreated control cylinder by scanning electron microscopy. Machining marks were completely removed by the Prophy-Jet and only partially removed by the Microprophy. Both of the resultant surfaces appeared to be smoother and thus may be more resistant to plaque formation. A rationale for the removal of machining marks is presented, although the reason for the difference in removal by the two systems is unclear. The prophylaxis cleaning powders were also examined by scanning electron microscopy and exhibited similar particle dimensions and morphology. A noncrystalline deposit was observed on the surface of the abutment cylinder exposed to the Microprophy. Energy dispersive spectroscopy analysis revealed that the deposit consisted almost entirely of sodium. Further investigation of the deposit is needed. PMID:1338499

  2. Self-focusing in air with phase-stabilized few-cycle light pulses.

    PubMed

    Laban, D E; Wallace, W C; Glover, R D; Sang, R T; Kielpinski, D

    2010-05-15

    We investigate the nonlinear optical phenomenon of self-focusing in air with phase-stabilized few-cycle light pulses. This investigation looks at the role of the carrier-envelope phase by observing a filament in air, a nonlinear phenomenon that can be utilized for few-cycle pulse compression [Appl. Phys. B79, 673 (2004)]. We were able to measure the critical power for self-focusing in air to be 18+/-1 GW for a 6.3 fs pulse centered at 800 nm. Using this value and a basic first-order theory, we predicted that the self-focusing distance should deviate by 790 mum as the carrier-envelope phase is shifted from 0 to pi/2 rad. In contrast, the experimental results showed no deviation in the focus distance with a 3sigma upper limit of 180 mum. These counterintuitive results show the need for further study of self-focusing dynamics in the few-cycle regime.

  3. Dimensional approach on hot air turbine power plant in opened cycle for straw recycling

    NASA Astrophysics Data System (ADS)

    Bălănescu, D. T.; Homutescu, V. M.; Atanasiu, M. V.

    2016-08-01

    Currently, disposal of straw is one of the biggest problems that crop plant producers are facing. The ideal case implies not only to get rid of straw but also to recover its energetic potential. In this context, the performance of a hot air turbine power plant operating in open cycle, with straw as fuel, was analyzed in a previous study and proved to be a very interesting solution for straw disposal. As consequence, dimensional analysis of the hot air turbine power plant is required into the next step and this makes the subject of the present study. The dimensional analysis is focused on the compressed air heater - the largest component of the Power Plant, with crucial role in what concerns its entire size and mass. Once both performance and dimensional analysis performed, the final conclusions are drawn in an overall approach, by taking also into consideration the economic aspects.

  4. Solar energy system for heating and cooling of buildings utilizing moist air cycles

    SciTech Connect

    Holbrook, E.M.; Wallace, J.J.

    1982-12-28

    An integrated system for the collection, storage, and utilization of solar energy in the heating and cooling of buildings utilizing a moist air cycle involving evaporation and condensation of water vapor at constant pressure to obtain the advantages of high heat capacity, resulting from phase change, and low mass flow rate. Supersaturated moist air is circulated through solar collectors where evaporation takes place; the coolant leaving the solar collectors in a saturated condition and returning to a hot storage tank. There the coolant flows across the surface of hot stored water where condensation takes place, and thereafter leaves the hot storage tank in a saturated condition and at a temperature only slightly above that of the stored water. The hot storage tank further includes floating heat exchanger means for heating water in the portable water supply system. Upon leaving the hot storage tank the coolant is passed through a novel humidifying device which restores exactly the amount of moisture that was lost by condensation. This device withdraws water from the hot storage tank by means of a pump and introduces the water into the moist air stream in the form of a fog and very fine mist by the process of high pressure atomization. The supersaturated mixture is then returned to the solar collectors to repeat the cycle. Suitable controls modulate both the air and water flow rates in response to the rate at which solar energy is being collected.

  5. Effect of duty-cycles on the air plasma gas-phase of dielectric barrier discharges

    NASA Astrophysics Data System (ADS)

    Barni, R.; Biganzoli, I.; Dell'Orto, E. C.; Riccardi, C.

    2015-10-01

    An experimental investigation concerning the effects of a duty-cycle in the supply of a dielectric barrier discharge in atmospheric pressure air has been performed. Electrical characteristics of the discharge have been measured, focusing mainly on the statistical properties of the current filaments and on dielectric surface charging, both affected by the frequent repetition of breakdown imposed by the duty-cycle. Information on the gas-phase composition was gathered too. In particular, a strong enhancement in the ozone formation rate is observed when suitable long pauses separate the active discharge phases. A simulation of the chemical kinetics in the gas-phase, based on a simplified discharge modeling, is briefly described in order to shed light on the observed increase in ozone production. The effect of a duty-cycle on surface modification of polymeric films in order to increase their wettability has been investigated too.

  6. Investigation on multi-variable decoupled temperature control system for enamelling machine with heated air circulation

    NASA Astrophysics Data System (ADS)

    Li, Yang; Qin, Le; Zou, Shipeng; Long, Shijun

    2014-04-01

    A lots of problems may occur frequently when controlling the temperature of the enamelling machine oven in the real industrial process, such as multi-variable coupled problem. an experimental rig with triple inputs and triple outputs was devised and a simulation modeling was established accordingly in this study,. the temperature control system based on the feedforward compensation algorithm was proposed. Experimental results have shown that the system is of high efficiency, good stability and promising application.

  7. Investigation on multi-variable decoupled temperature control system for enamelling machine with heated air circulation

    SciTech Connect

    Li, Yang; Qin, Le; Zou, Shipeng; Long, Shijun

    2014-04-11

    A lots of problems may occur frequently when controlling the temperature of the enamelling machine oven in the real industrial process, such as multi-variable coupled problem. an experimental rig with triple inputs and triple outputs was devised and a simulation modeling was established accordingly in this study,. the temperature control system based on the feedforward compensation algorithm was proposed. Experimental results have shown that the system is of high efficiency, good stability and promising application.

  8. Life is a Self-Organizing Machine Driven by the Informational Cycle of Brillouin

    NASA Astrophysics Data System (ADS)

    Michel, Denis

    2013-04-01

    Acquiring information is indisputably energy-consuming and conversely, the availability of information permits greater efficiency. Strangely, the scientific community long remained reluctant to establish a physical equivalence between the abstract notion of information and sensible thermodynamics. However, certain physicists such as Szilard and Brillouin proposed: (i) to give to information the status of a genuine thermodynamic entity ( k B T ln2 joules/bit) and (ii) to link the capacity of storing information inferred from correlated systems, to that of indefinitely increasing organization. This positive feedback coupled to the self-templating molecular potential could provide a universal basis for the spontaneous rise of highly organized structures, typified by the emergence of life from a prebiotic chemical soup. Once established, this mechanism ensures the longevity and robustness of life envisioned as a general system, by allowing it to accumulate and optimize microstate-reducing recipes, thereby giving rise to strong nonlinearity, decisional capacity and multistability. Mechanisms possibly involved in priming this cycle are proposed.

  9. Analyzing the possibility of constructing the air heating system for an integrated solid fuel gasification combined-cycle power plant

    NASA Astrophysics Data System (ADS)

    Mikula, V. A.; Ryzhkov, A. F.; Val'tsev, N. V.

    2015-11-01

    Combined-cycle power plants operating on solid fuel have presently been implemented only in demonstration projects. One of possible ways for improving such plants consists in making a shift to hybrid process circuits of integrated gasification combined-cycle plants with external firing of solid fuel. A high-temperature air heater serving to heat compressed air is a key element of the hybrid process circuit. The article describes application of a high-temperature recuperative metal air heater in the process circuit of an integrated gasification combined-cycle power plant (IGCC). The available experience with high-temperature air heating is considered, and possible air heater layout arrangements are analyzed along with domestically produced heat-resistant grades of steel suitable for manufacturing such air heater. An alternative (with respect to the traditional one) design is proposed, according to which solid fuel is fired in a noncooled furnace extension, followed by mixing the combustion products with recirculation gases, after which the mixture is fed to a convective air heater. The use of this design makes it possible to achieve considerably smaller capital outlays and operating costs. The data obtained from thermal and aerodynamic calculations of the high-temperature air heater with a thermal capacity of 258 MW for heating air to a temperature of up to 800°C for being used in the hybrid process circuit of a combined-cycle power plant are presented.

  10. Infrared pulse characterization using four-wave mixing inside a few cycle pulse filament in air

    SciTech Connect

    Marceau, Claude Thomas, Steven; Kassimi, Yacine; Gingras, Guillaume; Witzel, Bernd

    2014-02-03

    We demonstrate a four-wave mixing (FWM) technique to measure near- and mid-infrared (IR) laser pulse shapes in time domain. Few cycle 800 nm laser pulses were synchronized with the IR pulse and focused colinearly to generate a plasma filament in air. Second harmonic radiation around 400 nm was generated through FWM, with a yield proportional to the IR pulse intensity. Excellent signal to noise ratio was observed from 2.1 μm to 18 μm. With proper phase stabilization of the IR beam, this technique is a promising step toward direct electric field sensing of near-IR pulses in air.

  11. Monitoring of Plant Light/Dark Cycles Using Air-coupled Ultrasonic Spectroscopy

    NASA Astrophysics Data System (ADS)

    Fariñas, M. D.; Sancho-Knapik, D.; Peguero-Pina, J.; Gil-Pelegrín, E.; Álvarez-Arenas, T. E. G.

    This work presents the application of a technique based on the excitation, sensing and spectral analysis of leaves thickness resonances using air-coupled and wide-band ultrasound to monitor variations in leaves properties due to the plant response along light/dark cycles. The main features of these resonances are determined by the tautness of the cells walls in such a way that small modifications produced by variations in the transpiration rate, stomata aperture or water potential have a direct effect on the thickness resonances that can be measured in a completely non-invasive and contactless way. Results show that it is possible to monitor leaves changes due to variations in light intensity along the diurnal cycle, moreover, the technique reveals differences in the leaf response for different species and also within the same species but for specimens grown under different conditions that present different cell structures at the tissue level.

  12. Study and Development of an Air Conditioning System Operating on a Magnetic Heat Pump Cycle

    NASA Technical Reports Server (NTRS)

    Wang, Pao-Lien

    1991-01-01

    This report describes the design of a laboratory scale demonstration prototype of an air conditioning system operating on a magnetic heat pump cycle. Design parameters were selected through studies performed by a Kennedy Space Center (KSC) System Simulation Computer Model. The heat pump consists of a rotor turning through four magnetic fields that are created by permanent magnets. Gadolinium was selected as the working material for this demonstration prototype. The rotor was designed to be constructed of flat parallel disks of gadolinium with very little space in between. The rotor rotates in an aluminum housing. The laboratory scale demonstration prototype is designed to provide a theoretical Carnot Cycle efficiency of 62 percent and a Coefficient of Performance of 16.55.

  13. A theoretical study of limit cycle oscillations of plenum air cushions

    NASA Astrophysics Data System (ADS)

    Hinchey, M. J.; Sullivan, P. A.

    1981-11-01

    Air cushion vehicles (ACV) are prone to the occurrence of dynamic instabilities which frequently appear as stable finite amplitude oscillations. The aim of this work is to ascertain if the non-linearities characteristics of ACV dynamics generate limit cycle oscillations for cushion systems operating at conditions for which a linear theory predicts instability. The types of non-linearity that can occur are discussed, and an analysis is presented for a single cell flexible skirted plenum chamber constrained to move in pure heave only. Two cushion feed cases are considered: a plenum box supply and a duct. The results obtained by a Galerkin/describing function analysis are compared with those generated by a full numerical simulation. For the plenum box supply system, it is shown that the limit cycles can be suppressed by using a piston to introduce high frequency small amplitude volume oscillations into the plenum chamber.

  14. Engine Cycle Analysis of Air Breathing Microwave Rocket with Reed Valves

    SciTech Connect

    Fukunari, Masafumi; Komatsu, Reiji; Yamaguchi, Toshikazu; Komurasaki, Kimiya; Arakawa, Yoshihiro; Katsurayama, Hiroshi

    2011-11-10

    The Microwave Rocket is a candidate for a low cost launcher system. Pulsed plasma generated by a high power millimeter wave beam drives a blast wave, and a vehicle acquires impulsive thrust by exhausting the blast wave. The thrust generation process of the Microwave Rocket is similar to a pulse detonation engine. In order to enhance the performance of its air refreshment, the air-breathing mechanism using reed valves is under development. Ambient air is taken to the thruster through reed valves. Reed valves are closed while the inside pressure is high enough. After the time when the shock wave exhausts at the open end, an expansion wave is driven and propagates to the thrust-wall. The reed valve is opened by the negative gauge pressure induced by the expansion wave and its reflection wave. In these processes, the pressure oscillation is important parameter. In this paper, the pressure oscillation in the thruster was calculated by CFD combined with the flux through from reed valves, which is estimated analytically. As a result, the air-breathing performance is evaluated using Partial Filling Rate (PFR), the ratio of thruster length to diameter L/D, and ratio of opening area of reed valves to superficial area {alpha}. An engine cycle and predicted thrust was explained.

  15. Air-braked cycle ergometers: validity of the correction factor for barometric pressure.

    PubMed

    Finn, J P; Maxwell, B F; Withers, R T

    2000-10-01

    Barometric pressure exerts by far the greatest influence of the three environmental factors (barometric pressure, temperature and humidity) on power outputs from air-braked ergometers. The barometric pressure correction factor for power outputs from air-braked ergometers is in widespread use but apparently has never been empirically validated. Our experiment validated this correction factor by calibrating two air-braked cycle ergometers in a hypobaric chamber using a dynamic calibration rig. The results showed that if the power output correction for changes in air resistance at barometric pressures corresponding to altitudes of 38, 600, 1,200 and 1,800 m above mean sea level were applied, then the coefficients of variation were 0.8-1.9% over the range of 160-1,597 W. The overall mean error was 3.0 % but this included up to 0.73 % for the propagated error that was associated with errors in the measurement of: a) temperature b) relative humidity c) barometric pressure d) force, distance and angular velocity by the dynamic calibration rig. The overall mean error therefore approximated the +/- 2.0% of true load that was specified by the Laboratory Standards Assistance Scheme of the Australian Sports Commission. The validity of the correction factor for barometric pressure on power output was therefore demonstrated over the altitude range of 38-1,800 m.

  16. Air-braked cycle ergometers: validity of the correction factor for barometric pressure.

    PubMed

    Finn, J P; Maxwell, B F; Withers, R T

    2000-10-01

    Barometric pressure exerts by far the greatest influence of the three environmental factors (barometric pressure, temperature and humidity) on power outputs from air-braked ergometers. The barometric pressure correction factor for power outputs from air-braked ergometers is in widespread use but apparently has never been empirically validated. Our experiment validated this correction factor by calibrating two air-braked cycle ergometers in a hypobaric chamber using a dynamic calibration rig. The results showed that if the power output correction for changes in air resistance at barometric pressures corresponding to altitudes of 38, 600, 1,200 and 1,800 m above mean sea level were applied, then the coefficients of variation were 0.8-1.9% over the range of 160-1,597 W. The overall mean error was 3.0 % but this included up to 0.73 % for the propagated error that was associated with errors in the measurement of: a) temperature b) relative humidity c) barometric pressure d) force, distance and angular velocity by the dynamic calibration rig. The overall mean error therefore approximated the +/- 2.0% of true load that was specified by the Laboratory Standards Assistance Scheme of the Australian Sports Commission. The validity of the correction factor for barometric pressure on power output was therefore demonstrated over the altitude range of 38-1,800 m. PMID:11071051

  17. Ionic Liquid Electrolytes for Li–Air Batteries: Lithium Metal Cycling

    PubMed Central

    Grande, Lorenzo; Paillard, Elie; Kim, Guk-Tae; Monaco, Simone; Passerini, Stefano

    2014-01-01

    In this work, the electrochemical stability and lithium plating/stripping performance of N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (Pyr14TFSI) are reported, by investigating the behavior of Li metal electrodes in symmetrical Li/electrolyte/Li cells. Electrochemical impedance spectroscopy measurements and galvanostatic cycling at different temperatures are performed to analyze the influence of temperature on the stabilization of the solid electrolyte interphase (SEI), showing that TFSI-based ionic liquids (ILs) rank among the best candidates for long-lasting Li–air cells. PMID:24815072

  18. Prediction of DC Corona Onset Voltage for Rod-Plane Air Gaps by a Support Vector Machine

    NASA Astrophysics Data System (ADS)

    Jin, Shuo; Ruan, Jiangjun; Du, Zhiye; Zhu, Lin; Shu, Shengwen

    2016-10-01

    This paper proposes a new method to predict the corona onset voltage for a rod-plane air gap, based on the support vector machine (SVM). Because the SVM is not limited by the size, dimension and nonlinearity of the samples, this method can realize accurate prediction with few training data. Only electric field features are chosen as the input; no geometric parameter is included. Therefore, the experiment data of one kind of electrode can be used to predict the corona onset voltages of other electrodes with different sizes. With the experimental data obtained by ozone detection technology, and experimental data provided by the reference, the efficiency of the proposed method is validated. Accurate predicted results with an average relative less than 3% are obtained with only 6 experimental data. supported by National Natural Science Foundation of China (No. 51477120)

  19. Properties of the Carrol system and a machine design for solar-powered, air cooled, absorption space cooling

    NASA Astrophysics Data System (ADS)

    1981-05-01

    The name Carrol was selected as a convenient shorthand designation for a prime candidate chemical system comprising ethylene glycol-lithium bromide as an absorbent mixture with water as a refrigerant. The instrumentation, methods of handling data and numerical results from a systematic determination of Carrol property data required to design an air cooled absorption machine based on this chemical system are described. These data include saturation temperature, relative enthalpy, density, specific heat capacity, thermal conductivity, viscosity and absorber film heat transfer coefficient as functions of solution temperature and Carrol concentration over applicable ranges. For each of the major components of the absorption chiller, i.e., generator, chiller, absorber, condenser, heat exchanger, purge and controls, the report contains an assembly drawing and the principal operating characteristics of that component.

  20. Development and Performance Evaluation of an Ozone-Contained Ice Making Machine Employing Pressurized Air Tight Containers

    NASA Astrophysics Data System (ADS)

    Yoshimura, Kenji; Akiyama, Tomoaki; Hirofuji, Yushi; Koyama, Shigeru

    Ozone has the capability of sterilization and deodorization due to high oxidation power. It is also effective for the conservation of perishable foods and purification of water. However, ozone has a disadvantage, that is, conservation of ozone is difficult because it reacts to oxygen. Recently, ozone-contained ice is taken attention for the purpose of its conservation. The use of ozone-contained ice seems to keep food fresher when we conserve and transport perishable foods due to the effects of cooling and sterilization of ozone-contained ice. In the present study, we have developed an ozone-contained ice making machine employing pressurized air tight containers with commercially available size. And the performance evaluation of the system is also carried out. Furthermore, we investigated the sterilization effect of ozone-contained ice on conservation of fish. It was seen that ozone-contained ice is effective for sterilization of surface of fish.

  1. Controlled-force end seal arrangement for an air press of a papermaking machine

    DOEpatents

    Beck, David A.

    2003-07-08

    An air press for pressing a fiber web includes a plurality of rolls and a pair of end seal arrangements. Of the plurality of rolls, each pair of adjacent rolls forms a nip therebetween. Further, each roll has a pair of roll ends, the plurality of rolls together forming two sets of roll ends. Each end seal arrangement coacts with one set of roll ends, the plurality of rolls and the pair of end seal arrangements together defining an air press chamber having an air chamber pressure. Each end seal arrangement is composed of at least one roll seal, including a first roll seal, and an adjustable bias mechanism. Each roll seal forms a seal with at least one roll end, and one side of the first roll seal being exposed to the air chamber pressure. The adjustable bias mechanism is configured for controlling a position of each roll seal relative to a respective at least one roll end and for adjusting a seal force between the roll seal and the respective at least one roll end.

  2. Annual cycles of organochlorine pesticide enantiomers in Arctic air suggest changing sources and pathways

    NASA Astrophysics Data System (ADS)

    Bidleman, T. F.; Jantunen, L. M.; Hung, H.; Ma, J.; Stern, G. A.; Rosenberg, B.; Racine, J.

    2015-02-01

    Air samples collected during 1994-2000 at the Canadian Arctic air monitoring station Alert (82°30' N, 62°20' W) were analysed by enantiospecific gas chromatography-mass spectrometry for α-hexachlorocyclohexane (α-HCH), trans-chlordane (TC) and cis-chlordane (CC). Results were expressed as enantiomer fractions (EF = peak areas of (+)/[(+) + (-)] enantiomers), where EFs = 0.5, < 0.5 and > 0.5 indicate racemic composition, and preferential depletion of (+) and (-) enantiomers, respectively. Long-term average EFs were close to racemic values for α -HCH (0.504 ± 0.004, n = 197) and CC (0.505 ± 0.004, n = 162), and deviated farther from racemic for TC (0.470 ± 0.013, n = 165). Digital filtration analysis revealed annual cycles of lower α-HCH EFs in summer-fall and higher EFs in winter-spring. These cycles suggest volatilization of partially degraded α-HCH with EF < 0.5 from open water and advection to Alert during the warm season, and background transport of α-HCH with EF > 0.5 during the cold season. The contribution of sea-volatilized α-HCH was only 11% at Alert, vs. 32% at Resolute Bay (74.68° N, 94.90° W) in 1999. EFs of TC also followed annual cycles of lower and higher values in the warm and cold seasons. These were in phase with low and high cycles of the TC/CC ratio (expressed as FTC = TC/(TC+CC)), which suggests greater contribution of microbially "weathered" TC in summer-fall versus winter-spring. CC was closer to racemic than TC and displayed seasonal cycles only in 1997-1998. EF profiles are likely to change with rising contribution of secondary emission sources, weathering of residues in the environment, and loss of ice cover in the Arctic. Enantiomer-specific analysis could provide added forensic capability to air monitoring programs.

  3. Biannual cycles of organochlorine pesticide enantiomers in arctic air suggest changing sources and pathways

    NASA Astrophysics Data System (ADS)

    Bidleman, T. F.; Jantunen, L. M.; Hung, H.; Ma, J.; Stern, G. A.; Rosenberg, B.; Racine, J.

    2014-09-01

    Air samples collected during 1994-2000 at the Canadian arctic air monitoring station Alert (82°30' N, 62°20' W) were analyzed by enantiospecific gas chromatography - mass spectrometry for α-hexachlorocyclohexane (α-HCH), trans-chlordane (TC) and cis-chlordane (CC). Results were expressed as enantiomer fractions (EF = quantities of (+)/[(+) + (-)] enantiomers), where EFs = 0.5, <0.5 and >0.5 indicate racemic composition, and preferential depletion of (+) and (-) enantiomers, respectively. Long-term average EFs were close to racemic values for α-HCH (0.504 ± 0.004, n = 197) and CC (0.505 ± 0.004, n = 162), and deviated farther from racemic for TC (0.470 ± 0.013, n = 165). Digital filtration analysis revealed biannual cycles of lower α-HCH EFs in summer-fall and higher EFs in winter-spring. These cycles suggest volatilization of partially degraded α-HCH with EF < 0.5 from open water and advection to Alert during the warm season, and background transport of α-HCH with EF > 0.5 during the cold season. The contribution of sea-volatilized α-HCH was only 11% at Alert, vs. 32% at Resolute Bay (74.68° N, 94.90° W) in 1999. EFs of TC also followed biannual cycles of lower and higher values in the warm and cold seasons. These were in phase with low and high cycles of the TC/CC ratio (expressed as FTC = TC/(TC + CC)), which suggests greater contribution of microbially "weathered" TC in summer-fall vs. winter-spring. CC was closer to racemic than TC and displayed seasonal cycles only in 1997-1998. EF profiles are likely to change with rising contribution of secondary emission sources, weathering of residues in the environment, and loss of ice cover in the Arctic. Enantiomer-specific analysis could provide added forensic capability to air monitoring programs.

  4. Enhanced cycling stability of hybrid Li-air batteries enabled by ordered Pd3Fe intermetallic electrocatalyst.

    PubMed

    Cui, Zhiming; Li, Longjun; Manthiram, Arumugam; Goodenough, John B

    2015-06-17

    We report an ordered Pd3Fe intermetallic catalyst that exhibits significantly enhanced activity and durability for the oxygen reduction reaction under alkaline conditions. Ordered Pd3Fe enables a hybrid Li-air battery to exhibit the best reported full-cell cycling performance (220 cycles, 880 h). PMID:26020366

  5. Performance and cycle life of carbon- and conductive-based air electrodes for rechargeable Zn-air battery applications

    NASA Astrophysics Data System (ADS)

    Chellapandi Velraj, Samgopiraj

    The development of high-performance, cyclically stable bifunctional air electrodes are critical to the commercial deployment of rechargeable Zn-air batteries. The carbon material predominantly used as support material in the air electrodes due to its higher surface area and good electrical conductivity suffers from corrosion at high oxygen evolution overpotentials. This study addresses the carbon corrosion issues and suggests alternate materials to replace the carbon as support in the air electrode. In this study, Sm0.5Sr0.5CoO3-delta with good electrochemical performance and cyclic lifetime was identified as an alternative catalyst material to the commonly used La0.4Ca 0.6CoO3 catalyst for the carbon-based bifunctional electrodes. Also, a comprehensive study on the effects of catalyst morphology, testing conditions on the cycle life as well as the relevant degradation mechanism for the carbon-based electrode was conducted in this dissertation. The cyclic life of the carbon-based electrodes was strongly dependent on the carbon support material, while the degradation mechanisms were entirely controlled by the catalyst particle size/morphology. Some testing conditions like resting time and electrolyte concentration did not change the cyclic life or degradation mechanism of the carbon-based electrode. The current density used for cyclic testing was found to dictate the degradation mechanism leading to the electrode failure. An alternate way to circumvent the carbon corrosion is to replace the carbon support with a suitable electrically-conductive ceramic material. In this dissertation, LaNi0.9Mn0.1O3, LaNi 0.8Co0.2O3, and NiCo2O4 were synthesized and evaluated as prospective support materials due to their good electrical conductivity and their ability to act as the catalyst needed for the bifunctional electrode. The carbon-free electrodes had remarkably higher catalytic activity for oxygen evolution reaction (OER) when compared to the carbon-based electrode. However

  6. Low-cycle fatigue of two austenitic alloys in hydrogen gas and air at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Jaske, C. E.; Rice, R. C.

    1976-01-01

    The low-cycle fatigue resistance of type 347 stainless steel and Hastelloy Alloy X was evaluated in constant-amplitude, strain-controlled fatigue tests conducted under continuous negative strain cycling at a constant strain rate of 0.001 per sec and at total axial strain ranges of 1.5, 3.0, and 5.0 percent in both hydrogen gas and laboratory air environments in the temperature range 538-871 C. Elevated-temperature, compressive-strain hold-time experiments were also conducted. In hydrogen, the cyclic stress-strain behavior of both materials at 538 C was characterized by appreciable cyclic hardening at all strain ranges. At 871 C neither material hardened significantly; in fact, at 5% strain range 347 steel showed continuous cyclic softening until failure. The fatigue resistance of 347 steel was slightly higher than that of Alloy X at all temperatures and strain ranges. Ten-minute compressive hold time experiments at 760 and 871 C resulted in increased fatigue lives for 347 steel and decreased fatigue lives for Alloy X. Both alloys showed slightly lower fatigue resistance in air than in hydrogen. Some fractographic and metallographic results are also given.

  7. Life-cycle assessment of selected management options for air pollution control residues from waste incineration.

    PubMed

    Fruergaard, Thilde; Hyks, Jiri; Astrup, Thomas

    2010-09-15

    Based on available technology and emission data seven selected management options for air-pollution-control (APC) residues from waste incineration were evaluated by life-cycle assessment (LCA) using the EASEWASTE model. Scenarios were evaluated with respect to both non-toxicity impact categories (e.g. global warming) and toxicity related impact categories (e.g. ecotoxicity and human toxicity). The assessment addressed treatment and final placement of 1 tonne of APC residue in seven scenarios: 1) direct landfilling without treatment (baseline), 2) backfilling in salt mines, 3) neutralization of waste acid, 4) filler material in asphalt, 5) Ferrox stabilization, 6) vitrification, and 7) melting with automobile shredder residues (ASR). The management scenarios were selected as examples of the wide range of different technologies available worldwide while at the same time using realistic technology data. Results from the LCA were discussed with respect to importance of: energy consumption/substitution, material substitution, leaching, air emissions, time horizon aspects for the assessment, and transportation distances. The LCA modeling showed that thermal processes were associated with the highest loads in the non-toxicity categories (energy consumption), while differences between the remaining alternatives were small and generally considered insignificant. In the toxicity categories, all treatment/utilization options were significantly better than direct landfilling without treatment (lower leaching), although the thermal processes had somewhat higher impacts than the others options (air emissions). Transportation distances did not affect the overall ranking of the management alternatives.

  8. Air pollution at a hotspot location in Delhi: Detecting trends, seasonal cycles and oscillations

    NASA Astrophysics Data System (ADS)

    Kandlikar, Milind

    This paper uses spectral methods to analyze changes in air quality at a single monitoring site in Delhi since 2000. Power spectral density calculations of daily concentration data for particulate matter (PM10), carbon monoxide (CO), oxides of nitrogen (NO x) and oxides of sulfur (SO x) reveal the presence of trends and periodic oscillations for all the pollutants. Singular Spectrum Analysis (SSA) is used to decompose daily data into statistically significant non-linear trends, seasonal cycles and other oscillations. Periods of sharp reductions were observed for both SO x and CO concentrations in 2001 and 2002, respectively. NO x concentration trends show a sustained rise from 2000 to 2004, followed by small decline thereafter. PM10 concentration trends remain essentially unchanged over the time period. All pollutants also show strong annual and biannual cycles. The observed trends in CO and NO x likely relate changes in Delhi's vehicular traffic emissions. The sharp drop in both the trend and amplitude of the seasonal cycle of CO coincides with the switch to Compressed Natural Gas (CNG) as a fuel for Delhi's public transport fleet. Observed changes in SO x and PM10 concentrations were most likely caused by sources unrelated to vehicular traffic.

  9. Using Machine learning method to estimate Air Temperature from MODIS over Berlin

    NASA Astrophysics Data System (ADS)

    Marzban, F.; Preusker, R.; Sodoudi, S.; Taheri, H.; Allahbakhshi, M.

    2015-12-01

    Land Surface Temperature (LST) is defined as the temperature of the interface between the Earth's surface and its atmosphere and thus it is a critical variable to understand land-atmosphere interactions and a key parameter in meteorological and hydrological studies, which is involved in energy fluxes. Air temperature (Tair) is one of the most important input variables in different spatially distributed hydrological, ecological models. The estimation of near surface air temperature is useful for a wide range of applications. Some applications from traffic or energy management, require Tair data in high spatial and temporal resolution at two meters height above the ground (T2m), sometimes in near-real-time. Thus, a parameterization based on boundary layer physical principles was developed that determines the air temperature from remote sensing data (MODIS). Tair is commonly obtained from synoptic measurements in weather stations. However, the derivation of near surface air temperature from the LST derived from satellite is far from straight forward. T2m is not driven directly by the sun, but indirectly by LST, thus T2m can be parameterized from the LST and other variables such as Albedo, NDVI, Water vapor and etc. Most of the previous studies have focused on estimating T2m based on simple and advanced statistical approaches, Temperature-Vegetation index and energy-balance approaches but the main objective of this research is to explore the relationships between T2m and LST in Berlin by using Artificial intelligence method with the aim of studying key variables to allow us establishing suitable techniques to obtain Tair from satellite Products and ground data. Secondly, an attempt was explored to identify an individual mix of attributes that reveals a particular pattern to better understanding variation of T2m during day and nighttime over the different area of Berlin. For this reason, a three layer Feedforward neural networks is considered with LMA algorithm

  10. Cross-directional interlocking of rolls in an air press of a papermaking machine

    DOEpatents

    Beck, David A.; Gorshe, Thomas

    2003-05-13

    An air press for pressing a paper web is composed of a plurality of rolls including at least a first roll and a second roll. The first roll and the second roll are positioned adjacent one another and form a first nip therebetween. Further, the first roll and the second roll each have a roll end, the roll end of the first roll adjoining the roll end of the second roll. A bevel plate is attached to the roll end of the first roll, the bevel plate having at least a first angled plate face. A seal ring is positioned adjacent the roll end of the second roll, the seal ring being juxtaposed to the bevel plate. The seal ring has at least a first angled ring face, and the first angled ring face mates with the first angled plate face.

  11. Influence of number of dental autoclave treatment cycles on rotational performance of commercially available air-turbine handpieces.

    PubMed

    Nagai, Masahiro; Takakuda, Kazuo

    2006-06-01

    The influence of number of autoclave treatment cycles (N) on rotational speed and total indicated run-out of commercially available air-turbine handpieces from five manufacturers was investigated at N=0, 50, 100, 150, 200, 250 and 300 cycles, and the significance in the test results was assessed by Dunnett's multiple comparison test. Some air-turbine handpieces showed the significant differences in rotational speed at N=300 cycles, however, the decreases of the rotational speeds were only 1 to 3.5 percent. Some air-turbine handpieces showed the significant differences in total indicated run-out, however, the respective values were smaller than that at N=0 cycle. Accordingly, it can be considered that the ball bearing in the air-turbine handpieces is not affected significantly by autoclave. To further evaluate rotational performance, this study focused on the rotational vibration of the ball bearing components of the air-turbine, as measured by Fast Fourier Transform (FFT) analysis; the power spectra of frequency of the ball's revolution, frequency of the cage's rotation and frequency of the ball's rotation were comparatively investigated at N=0, 150 and 300 cycles, and the influence of autoclave was evaluated qualitatively. No abnormalities in the ball bearings were recognized. PMID:16913570

  12. Air core notch-coil magnet with variable geometry for fast-field-cycling NMR.

    PubMed

    Kruber, S; Farrher, G D; Anoardo, E

    2015-10-01

    In this manuscript we present details on the optimization, construction and performance of a wide-bore (71 mm) α-helical-cut notch-coil magnet with variable geometry for fast-field-cycling NMR. In addition to the usual requirements for this kind of magnets (high field-to-power ratio, good magnetic field homogeneity, low inductance and resistance values) a tunable homogeneity and a more uniform heat dissipation along the magnet body are considered. The presented magnet consists of only one machined metallic cylinder combined with two external movable pieces. The optimal configuration is calculated through an evaluation of the magnetic flux density within the entire volume of interest. The magnet has a field-to-current constant of 0.728 mT/A, allowing to switch from zero to 0.125 T in less than 3 ms without energy storage assistance. For a cylindrical sample volume of 35 cm(3) the effective magnet homogeneity is lower than 130 ppm. PMID:26367321

  13. Air core notch-coil magnet with variable geometry for fast-field-cycling NMR

    NASA Astrophysics Data System (ADS)

    Kruber, S.; Farrher, G. D.; Anoardo, E.

    2015-10-01

    In this manuscript we present details on the optimization, construction and performance of a wide-bore (71 mm) α -helical-cut notch-coil magnet with variable geometry for fast-field-cycling NMR. In addition to the usual requirements for this kind of magnets (high field-to-power ratio, good magnetic field homogeneity, low inductance and resistance values) a tunable homogeneity and a more uniform heat dissipation along the magnet body are considered. The presented magnet consists of only one machined metallic cylinder combined with two external movable pieces. The optimal configuration is calculated through an evaluation of the magnetic flux density within the entire volume of interest. The magnet has a field-to-current constant of 0.728 mT/A, allowing to switch from zero to 0.125 T in less than 3 ms without energy storage assistance. For a cylindrical sample volume of 35 cm3 the effective magnet homogeneity is lower than 130 ppm.

  14. Air core notch-coil magnet with variable geometry for fast-field-cycling NMR.

    PubMed

    Kruber, S; Farrher, G D; Anoardo, E

    2015-10-01

    In this manuscript we present details on the optimization, construction and performance of a wide-bore (71 mm) α-helical-cut notch-coil magnet with variable geometry for fast-field-cycling NMR. In addition to the usual requirements for this kind of magnets (high field-to-power ratio, good magnetic field homogeneity, low inductance and resistance values) a tunable homogeneity and a more uniform heat dissipation along the magnet body are considered. The presented magnet consists of only one machined metallic cylinder combined with two external movable pieces. The optimal configuration is calculated through an evaluation of the magnetic flux density within the entire volume of interest. The magnet has a field-to-current constant of 0.728 mT/A, allowing to switch from zero to 0.125 T in less than 3 ms without energy storage assistance. For a cylindrical sample volume of 35 cm(3) the effective magnet homogeneity is lower than 130 ppm.

  15. Life-cycle cost and payback period analysis for commercial unitary air conditioners

    SciTech Connect

    Rosenquist, Greg; Coughlin, Katie; Dale, Larry; McMahon, James; Meyers, Steve

    2004-03-31

    This report describes an analysis of the economic impacts of possible energy efficiency standards for commercial unitary air conditioners and heat pumps on individual customers in terms of two metrics: life-cycle cost (LCC) and payback period (PBP). For each of the two equipment classes considered, the 11.5 EER provides the largest mean LCC savings. The results show how the savings vary among customers facing different electricity prices and other conditions. At 11.5 EER, at least 80% of the users achieve a positive LCC savings. At 12.0 EER, the maximum efficiency analyzed, mean LCC savings are lower but still positive. For the {ge} $65,000 Btu/h to <135,000 Btu/h equipment class, 59% of users achieve a positive LCC savings. For the $135,000 Btu/h to <240,000 Btu/h equipment class, 91% of users achieve a positive LCC savings.

  16. Valuation of plug-in vehicle life-cycle air emissions and oil displacement benefits.

    PubMed

    Michalek, Jeremy J; Chester, Mikhail; Jaramillo, Paulina; Samaras, Constantine; Shiau, Ching-Shin Norman; Lave, Lester B

    2011-10-01

    We assess the economic value of life-cycle air emissions and oil consumption from conventional vehicles, hybrid-electric vehicles (HEVs), plug-in hybrid-electric vehicles (PHEVs), and battery electric vehicles in the US. We find that plug-in vehicles may reduce or increase externality costs relative to grid-independent HEVs, depending largely on greenhouse gas and SO(2) emissions produced during vehicle charging and battery manufacturing. However, even if future marginal damages from emissions of battery and electricity production drop dramatically, the damage reduction potential of plug-in vehicles remains small compared to ownership cost. As such, to offer a socially efficient approach to emissions and oil consumption reduction, lifetime cost of plug-in vehicles must be competitive with HEVs. Current subsidies intended to encourage sales of plug-in vehicles with large capacity battery packs exceed our externality estimates considerably, and taxes that optimally correct for externality damages would not close the gap in ownership cost. In contrast, HEVs and PHEVs with small battery packs reduce externality damages at low (or no) additional cost over their lifetime. Although large battery packs allow vehicles to travel longer distances using electricity instead of gasoline, large packs are more expensive, heavier, and more emissions intensive to produce, with lower utilization factors, greater charging infrastructure requirements, and life-cycle implications that are more sensitive to uncertain, time-sensitive, and location-specific factors. To reduce air emission and oil dependency impacts from passenger vehicles, strategies to promote adoption of HEVs and PHEVs with small battery packs offer more social benefits per dollar spent.

  17. Valuation of plug-in vehicle life-cycle air emissions and oil displacement benefits.

    PubMed

    Michalek, Jeremy J; Chester, Mikhail; Jaramillo, Paulina; Samaras, Constantine; Shiau, Ching-Shin Norman; Lave, Lester B

    2011-10-01

    We assess the economic value of life-cycle air emissions and oil consumption from conventional vehicles, hybrid-electric vehicles (HEVs), plug-in hybrid-electric vehicles (PHEVs), and battery electric vehicles in the US. We find that plug-in vehicles may reduce or increase externality costs relative to grid-independent HEVs, depending largely on greenhouse gas and SO(2) emissions produced during vehicle charging and battery manufacturing. However, even if future marginal damages from emissions of battery and electricity production drop dramatically, the damage reduction potential of plug-in vehicles remains small compared to ownership cost. As such, to offer a socially efficient approach to emissions and oil consumption reduction, lifetime cost of plug-in vehicles must be competitive with HEVs. Current subsidies intended to encourage sales of plug-in vehicles with large capacity battery packs exceed our externality estimates considerably, and taxes that optimally correct for externality damages would not close the gap in ownership cost. In contrast, HEVs and PHEVs with small battery packs reduce externality damages at low (or no) additional cost over their lifetime. Although large battery packs allow vehicles to travel longer distances using electricity instead of gasoline, large packs are more expensive, heavier, and more emissions intensive to produce, with lower utilization factors, greater charging infrastructure requirements, and life-cycle implications that are more sensitive to uncertain, time-sensitive, and location-specific factors. To reduce air emission and oil dependency impacts from passenger vehicles, strategies to promote adoption of HEVs and PHEVs with small battery packs offer more social benefits per dollar spent. PMID:21949359

  18. Valuation of plug-in vehicle life-cycle air emissions and oil displacement benefits

    PubMed Central

    Michalek, Jeremy J.; Chester, Mikhail; Jaramillo, Paulina; Samaras, Constantine; Shiau, Ching-Shin Norman; Lave, Lester B.

    2011-01-01

    We assess the economic value of life-cycle air emissions and oil consumption from conventional vehicles, hybrid-electric vehicles (HEVs), plug-in hybrid-electric vehicles (PHEVs), and battery electric vehicles in the US. We find that plug-in vehicles may reduce or increase externality costs relative to grid-independent HEVs, depending largely on greenhouse gas and SO2 emissions produced during vehicle charging and battery manufacturing. However, even if future marginal damages from emissions of battery and electricity production drop dramatically, the damage reduction potential of plug-in vehicles remains small compared to ownership cost. As such, to offer a socially efficient approach to emissions and oil consumption reduction, lifetime cost of plug-in vehicles must be competitive with HEVs. Current subsidies intended to encourage sales of plug-in vehicles with large capacity battery packs exceed our externality estimates considerably, and taxes that optimally correct for externality damages would not close the gap in ownership cost. In contrast, HEVs and PHEVs with small battery packs reduce externality damages at low (or no) additional cost over their lifetime. Although large battery packs allow vehicles to travel longer distances using electricity instead of gasoline, large packs are more expensive, heavier, and more emissions intensive to produce, with lower utilization factors, greater charging infrastructure requirements, and life-cycle implications that are more sensitive to uncertain, time-sensitive, and location-specific factors. To reduce air emission and oil dependency impacts from passenger vehicles, strategies to promote adoption of HEVs and PHEVs with small battery packs offer more social benefits per dollar spent. PMID:21949359

  19. Integrating Human Indoor Air Pollutant Exposure within Life Cycle Impact Assessment

    SciTech Connect

    Hellweg, Stefanie; Demou, Evangelia; Bruzzi, Raffaella; Meijer, Arjen; Rosenbaum, Ralph K.; Huijbregts, Mark A.J.; McKone, Thomas E.

    2008-12-21

    Neglecting health effects from indoor pollutant emissions and exposure, as currently done in Life Cycle Assessment (LCA), may result in product or process optimizations at the expense of workers? or consumers? health. To close this gap, methods for considering indoor exposure to chemicals are needed to complement the methods for outdoor human exposure assessment already in use. This paper summarizes the work of an international expert group on the integration of human indoor and outdoor exposure in LCA, within the UNEP/SETAC Life Cycle Initiative. A new methodological framework is proposed for a general procedure to include human-health effects from indoor exposure in LCA. Exposure models from occupational hygiene and household indoor air quality studies and practices are critically reviewed and recommendations are provided on the appropriateness of various model alternatives in the context of LCA. A single-compartment box model is recommended for use as a default in LCA, enabling one to screen occupational and household exposures consistent with the existing models to assess outdoor emission in a multimedia environment. An initial set of model parameter values was collected. The comparison between indoor and outdoor human exposure per unit of emission shows that for many pollutants, intake per unit of indoor emission may be several orders of magnitude higher than for outdoor emissions. It is concluded that indoor exposure should be routinely addressed within LCA.

  20. Optimum outlet temperature of solar collector for maximum work output for an Otto air-standard cycle with ideal regeneration

    SciTech Connect

    Eldighidy, S.M. )

    1993-09-01

    The optimum solar collector outlet temperature for maximizing the work output for an Otto air-standard cycle with ideal regeneration is investigated. A mathematical model for the energy balance on the solar collector along with the useful work output and the thermal efficiency of the Otto air-standard cycle with ideal regeneration is developed. The optimum solar collector outlet temperature for maximum work output is determined. The effect of radiative and convective heat losses from the solar collector, on the optimum outlet temperature is presented. The results reveal that the highest solar collector outlet temperature and, therefore, greatest Otto cycle efficiency and work output can be attained with the lowest values of radiative and convective heat losses. Moreover, high cycle work output (as a fraction of absorbed solar energy) and high efficiency of an Otto heat engine with ideal regeneration, driven by a solar collector system, can be attained with low compression ratio.

  1. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  2. Daily global solar radiation prediction from air temperatures using kernel extreme learning machine: A case study for Iran

    NASA Astrophysics Data System (ADS)

    Shamshirband, Shahaboddin; Mohammadi, Kasra; Chen, Hui-Ling; Narayana Samy, Ganthan; Petković, Dalibor; Ma, Chao

    2015-11-01

    Lately, the kernel extreme learning machine (KELM) has gained considerable importance in the scientific area due to its great efficiency, easy implementation and fast training speed. In this paper, for the first time the potential of KELM to predict the daily horizontal global solar radiation from the maximum and minimum air temperatures (Tmax and Tmin) is appraised. The effectiveness of the proposed KELM method is evaluated against the grid search based support vector regression (SVR), as a robust methodology. Three KELM and SVR models are developed using different input attributes including: (1) Tmin and Tmax, (2) Tmin and Tmax-Tmin, and (3) Tmax and Tmax-Tmin. The achieved results reveal that the best predictions precision is achieved by models (3). The achieved results demonstrate that KELM offers favorable predictions and outperforms the SVR. For the KELM (3) model, the obtained statistical parameters of mean absolute bias error, root mean square error, relative root mean square error and correlation coefficient are 1.3445 MJ/m2, 2.0164 MJ/m2, 11.2464% and 0.9057%, respectively for the testing data. As further examination, a month-by-month evaluation is conducted and found that in six months from May to October the KELM (3) model provides further accuracy than overall accuracy. Based upon the relative root mean square error, the KELM (3) model shows excellent capability in the period of April to October while in the remaining months represents good performance.

  3. Interim Report: Air-Cooled Condensers for Next Generation Geothermal Power Plants Improved Binary Cycle Performance

    SciTech Connect

    Daniel S. Wendt; Greg L. Mines

    2010-09-01

    As geothermal resources that are more expensive to develop are utilized for power generation, there will be increased incentive to use more efficient power plants. This is expected to be the case with Enhanced Geothermal System (EGS) resources. These resources will likely require wells drilled to depths greater than encountered with hydrothermal resources, and will have the added costs for stimulation to create the subsurface reservoir. It is postulated that plants generating power from these resources will likely utilize the binary cycle technology where heat is rejected sensibly to the ambient. The consumptive use of a portion of the produced geothermal fluid for evaporative heat rejection in the conventional flash-steam conversion cycle is likely to preclude its use with EGS resources. This will be especially true in those areas where there is a high demand for finite supplies of water. Though they have no consumptive use of water, using air-cooling systems for heat rejection has disadvantages. These systems have higher capital costs, reduced power output (heat is rejected at the higher dry-bulb temperature), increased parasitics (fan power), and greater variability in power generation on both a diurnal and annual basis (larger variation in the dry-bulb temperature). This is an interim report for the task ‘Air-Cooled Condensers in Next- Generation Conversion Systems’. The work performed was specifically aimed at a plant that uses commercially available binary cycle technologies with an EGS resource. Concepts were evaluated that have the potential to increase performance, lower cost, or mitigate the adverse effects of off-design operation. The impact on both cost and performance were determined for the concepts considered, and the scenarios identified where a particular concept is best suited. Most, but not all, of the concepts evaluated are associated with the rejection of heat. This report specifically addresses three of the concepts evaluated: the use of

  4. Solar Cycle and Anthropogenic Forcing of Surface-Air Temperature at Armagh Observatory, Northern Ireland

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    2010-01-01

    A comparison of 10-yr moving average (yma) values of Armagh Observatory (Northern Ireland) surface-air temperatures with selected solar cycle indices (sunspot number (SSN) and the Aa geomagnetic index (Aa)), sea-surface temperatures in the Nino 3.4 region, and Mauna Loa carbon dioxide (CO2) (MLCO2) atmospheric concentration measurements reveals a strong correlation (r = 0.686) between the Armagh temperatures and Aa, especially, prior to about 1980 (r = 0.762 over the interval of 1873-1980). For the more recent interval 1963-2003, the strongest correlation (r = 0.877) is between Armagh temperatures and MLCO2 measurements. A bivariate fit using both Aa and Mauna Loa values results in a very strong fit (r = 0.948) for the interval 1963-2003, and a trivariate fit using Aa, SSN, and Mauna Loa values results in a slightly stronger fit (r = 0.952). Atmospheric CO2 concentration now appears to be the stronger driver of Armagh surface-air temperatures. An increase of 2 C above the long-term mean (9.2 C) at Armagh seems inevitable unless unabated increases in anthropogenic atmospheric gases can be curtailed. The present growth in 10-yma Armagh temperatures is about 0.05 C per yr since 1982. The present growth in MLCO2 is about 0.002 ppmv, based on an exponential fit using 10-yma values, although the growth appears to be steepening, thus, increasing the likelihood of deleterious effects attributed to global warming.

  5. Dynamic evaluation of a regional air quality model: Assessing the emissions-induced weekly ozone cycle

    NASA Astrophysics Data System (ADS)

    Pierce, Thomas; Hogrefe, Christian; Trivikrama Rao, S.; Porter, P. Steven; Ku, Jia-Yeong

    2010-09-01

    Air quality models are used to predict changes in pollutant concentrations resulting from envisioned emission control policies. Recognizing the need to assess the credibility of air quality models in a policy-relevant context, we perform a dynamic evaluation of the Community Multiscale Air Quality (CMAQ) modeling system for the "weekend ozone effect" to determine if observed changes in ozone due to weekday-to-weekend (WDWE) reductions in precursor emissions can be accurately simulated. The weekend ozone effect offers a unique opportunity for dynamic evaluation, as it is a widely documented phenomenon that has persisted since the 1970s. In many urban areas of the Unites States, higher ozone has been observed on weekends than weekdays, despite dramatically reduced emissions of ozone precursors (nitrogen oxides [NO x] and volatile organic compounds [VOCs]) on weekends. More recent measurements, however, suggest shifts in the spatial extent or reductions in WDWE ozone differences. Using 18 years (1988-2005) of observed and modeled ozone and temperature data across the northeastern United States, we re-examine the long-term trends in the weekend effect and confounding factors that may be complicating the interpretation of this trend and explore whether CMAQ can replicate the temporal features of the observed weekend effect. The amplitudes of the weekly ozone cycle have decreased during the 18-year period in our study domain, but the year-to-year variability in weekend minus weekday (WEWD) ozone amplitudes is quite large. Inter-annual variability in meteorology appears to influence WEWD differences in ozone, as well as WEWD differences in VOC and NO x emissions. Because of the large inter-annual variability, modeling strategies using a single episode lasting a few days or a few episodes in a given year may not capture the WEWD signal that exists over longer time periods. The CMAQ model showed skill in predicting the absolute values of ozone concentrations during the

  6. Nuclear Air-Brayton Combined Cycle Power Conversion Design, Physical Performance Estimation and Economic Assessment

    NASA Astrophysics Data System (ADS)

    Andreades, Charalampos

    The combination of an increased demand for electricity for economic development in parallel with the widespread push for adoption of renewable energy sources and the trend toward liberalized markets has placed a tremendous amount of stress on generators, system operators, and consumers. Non-guaranteed cost recovery, intermittent capacity, and highly volatile market prices are all part of new electricity grids. In order to try and remediate some of these effects, this dissertation proposes and studies the design and performance, both physical and economic, of a novel power conversion system, the Nuclear Air-Brayton Combined Cycle (NACC). The NACC is a power conversion system that takes a conventional industrial frame type gas turbine, modifies it to accept external nuclear heat at 670°C, while also maintaining its ability to co-fire with natural gas to increase temperature and power output at a very quick ramp rate. The NACC addresses the above issues by allowing the generator to gain extra revenue through the provision of ancillary services in addition to energy payments, the grid operator to have a highly flexible source of capacity to back up intermittent renewable energy sources, and the consumer to possibly see less volatile electricity prices and a reduced probability of black/brown outs. This dissertation is split into six sections that delve into specific design and economic issues related to the NACC. The first section describes the basic design and modifications necessary to create a functional externally heated gas turbine, sets a baseline design based upon the GE 7FB, and estimates its physical performance under nominal conditions. The second section explores the off-nominal performance of the NACC and characterizes its startup and shutdown sequences, along with some of its safety measures. The third section deals with the power ramp rate estimation of the NACC, a key performance parameter in a renewable-heavy grid that needs flexible capacity. The

  7. Indoor Air Pollutant Exposure for Life Cycle Assessment: Regional Health Impact Factors for Households.

    PubMed

    Rosenbaum, Ralph K; Meijer, Arjen; Demou, Evangelia; Hellweg, Stefanie; Jolliet, Olivier; Lam, Nicholas L; Margni, Manuele; McKone, Thomas E

    2015-11-01

    Human exposure to indoor pollutant concentrations is receiving increasing interest in Life Cycle Assessment (LCA). We address this issue by incorporating an indoor compartment into the USEtox model, as well as by providing recommended parameter values for households in four different regions of the world differing geographically, economically, and socially. With these parameter values, intake fractions and comparative toxicity potentials for indoor emissions of dwellings for different air tightness levels were calculated. The resulting intake fractions for indoor exposure vary by 2 orders of magnitude, due to the variability of ventilation rate, building occupation, and volume. To compare health impacts as a result of indoor exposure with those from outdoor exposure, the indoor exposure characterization factors determined with the modified USEtox model were applied in a case study on cooking in non-OECD countries. This study demonstrates the appropriateness and significance of integrating indoor environments into LCA, which ensures a more holistic account of all exposure environments and allows for a better accountability of health impacts. The model, intake fractions, and characterization factors are made available for use in standard LCA studies via www.usetox.org and in standard LCA software. PMID:26444519

  8. Relationship between gear ratio and 10-s sprint cycling on an air-braked ergometer.

    PubMed

    Barnett, C; Jenkins, D G; Mackinnon, L T

    1996-01-01

    This investigation examined the relationship between gear ratio and peak and mean power outputs (PPO and MPO) and peak cadence (PC) during a 10-s all-out sprint on a multi-geared air-braked cycle ergometer. Ten physically active men [mean age 21.0 years (SEM 0.7)] performed in random order six 10-s sprints (15-min rest between each sprint) on two occasions (48 h apart) in six different gear ratios; flywheel revolutions per pedal crank revolution (FR/PCR) ranged between 5.22 and 11.61. The PPO, MPO, and PC were recorded from each sprint. Of the six gear ratios tested, a gear ratio eliciting 8.87 FR/PCR elicited the highest PPO for the initial test session; the PPO output of 1274 W was significantly greater (P < 0.01) than that produced in the other five gears. Analysis of data from the second test session revealed no statistically significant difference in PPO between gear ratios eliciting 8.00, 8.87, and 10.06 FR/PCR. The PPO from these three ratios were significantly greater (P < 0.05) than those produced using the ratios resulting in 6.32, 7.06, and 10.78 FR/PCR. The PC in the gear ratio maximising PPO was 120 rpm. Analysis of PC data revealed a significant decrease (P < 0.05) as the number of FR/PCR increased. PMID:8925824

  9. Indoor Air Pollutant Exposure for Life Cycle Assessment: Regional Health Impact Factors for Households.

    PubMed

    Rosenbaum, Ralph K; Meijer, Arjen; Demou, Evangelia; Hellweg, Stefanie; Jolliet, Olivier; Lam, Nicholas L; Margni, Manuele; McKone, Thomas E

    2015-11-01

    Human exposure to indoor pollutant concentrations is receiving increasing interest in Life Cycle Assessment (LCA). We address this issue by incorporating an indoor compartment into the USEtox model, as well as by providing recommended parameter values for households in four different regions of the world differing geographically, economically, and socially. With these parameter values, intake fractions and comparative toxicity potentials for indoor emissions of dwellings for different air tightness levels were calculated. The resulting intake fractions for indoor exposure vary by 2 orders of magnitude, due to the variability of ventilation rate, building occupation, and volume. To compare health impacts as a result of indoor exposure with those from outdoor exposure, the indoor exposure characterization factors determined with the modified USEtox model were applied in a case study on cooking in non-OECD countries. This study demonstrates the appropriateness and significance of integrating indoor environments into LCA, which ensures a more holistic account of all exposure environments and allows for a better accountability of health impacts. The model, intake fractions, and characterization factors are made available for use in standard LCA studies via www.usetox.org and in standard LCA software.

  10. Workout Machine

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Orbotron is a tri-axle exercise machine patterned after a NASA training simulator for astronaut orientation in the microgravity of space. It has three orbiting rings corresponding to roll, pitch and yaw. The user is in the middle of the inner ring with the stomach remaining in the center of all axes, eliminating dizziness. Human power starts the rings spinning, unlike the NASA air-powered system. Marketed by Fantasy Factory (formerly Orbotron, Inc.), the machine can improve aerobic capacity, strength and endurance in five to seven minute workouts.

  11. Environmental, health and safety impact analysis of an aluminum-air battery for vehicular applications and impact analysis associated with its overall fuel cycle. Volume 1. Battery and fuel cycle. Final report

    SciTech Connect

    Gratt, L.B.

    1981-11-30

    This volume considers the potential environmental, health, and safety concerns of the aluminum-air battery and its overall fuel cycle. It quantifies the consumption of natural resources and the generation of environmental residuals due to the battery's fuel cycle. A comparison of the air emissions of the aluminum-air battery vehicle to an internal combustion engine vehicle is presented. Methods of mitigating potentially adverse impacts are examined along with the areas requiring further environmental, health and safety research.

  12. Performance analysis of a bio-gasification based combined cycle power plant employing indirectly heated humid air turbine

    NASA Astrophysics Data System (ADS)

    Mukherjee, S.; Mondal, P.; Ghosh, S.

    2016-07-01

    Rapid depletion of fossil fuel has forced mankind to look into alternative fuel resources. In this context, biomass based power generation employing gas turbine appears to be a popular choice. Bio-gasification based combined cycle provides a feasible solution as far as grid-independent power generation is concerned for rural electrification projects. Indirectly heated gas turbine cycles are promising alternatives as they avoid downstream gas cleaning systems. Advanced thermodynamic cycles have become an interesting area of study to improve plant efficiency. Water injected system is one of the most attractive options in this field of applications. This paper presents a theoretical model of a biomass gasification based combined cycle that employs an indirectly heated humid air turbine (HAT) in the topping cycle. Maximum overall electrical efficiency is found to be around 41%. Gas turbine specific air consumption by mass is minimum when pressure ratio is 6. The study reveals that, incorporation of the humidification process helps to improve the overall performance of the plant.

  13. A spatially and temporally explicit life cycle inventory of air pollutants from gasoline and ethanol in the United States.

    PubMed

    Tessum, Christopher W; Marshall, Julian D; Hill, Jason D

    2012-10-16

    The environmental health impacts of transportation depend in part on where and when emissions occur during fuel production and combustion. Here we describe spatially and temporally explicit life cycle inventories (LCI) of air pollutants from gasoline, ethanol derived from corn grain, and ethanol from corn stover. Previous modeling for the U.S. by Argonne National Laboratory (GREET: Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) suggested that life cycle emissions are generally higher for ethanol from corn grain or corn stover than for gasoline. Our results show that for ethanol, emissions are concentrated in the Midwestern "Corn Belt". We find that life cycle emissions from ethanol exhibit different temporal patterns than from gasoline, reflecting seasonal aspects of farming activities. Enhanced chemical speciation beyond current GREET model capabilities is also described. Life cycle fine particulate matter emissions are higher for ethanol from corn grain than for ethanol from corn stover; for black carbon, the reverse holds. Overall, our results add to existing state-of-the-science transportation fuel LCI by providing spatial and temporal disaggregation and enhanced chemical speciation, thereby offering greater understanding of the impacts of transportation fuels on human health and opening the door to advanced air dispersion modeling of fuel life cycles.

  14. Green Machine Florida Canyon Hourly Data

    DOE Data Explorer

    Vanderhoff, Alex

    2013-07-15

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 6/1/13 to 6/30/13

  15. Green Machine Florida Canyon Hourly Data 20130731

    DOE Data Explorer

    Vanderhoff, Alex

    2013-08-30

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 7/1/13 to 7/31/13.

  16. 20130416_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer

    Vanderhoff, Alex

    2013-04-24

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 4/16/13.

  17. 20140430_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer

    Thibedeau, Joe

    2014-05-05

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 April to 30 April 2014.

  18. Observations of Air Quality at the Edge of Kathmandu, Nepal, and the Diurnal Cycle of Air Pollution In and Around the Kathmandu Valley

    NASA Astrophysics Data System (ADS)

    Panday, A. K.; Prinn, R. G.; Regmi, R. P.

    2006-12-01

    The Kathmandu Valley is a bowl-shaped basin in the Nepal Himalaya, with a rapidly growing city surrounded by rice fields and steep terraced and forested mountain slopes. The valley's air quality is influenced by urban and rural emissions, nocturnal pooling of cold air, slope winds, and a daily exchange of air through mountain passes. To understand these processes and to inform air pollution policy in Nepal, we have carried out the most comprehensive study of air pollution in Nepal to date. During the 9-month dry season of 2004-2005, we carried out continuous measurements every minute of carbon monoxide, ozone, PM10, wind speed, wind direction, solar radiation, temperature, and humidity on the eastern edge of Kathmandu city, at a site that daily received air from both the city and rural areas. We recorded the diurnal cycle of the vertical temperature structure and stability with temperature loggers on towers and mountains. A sodar measured the mixed layer height and upper-level winds. 24-hour simultaneous bag sampling campaigns on mountain peaks, passes, the rural valley, and within the city provided glimpses of the spatial patterns of the diurnal cycle of CO -- a useful tracer of anthropogenic emissions. We measured winds on mountain passes and ozone on mountain peaks. At our main measurement site we found a daily-recurring pattern of CO and PM10, with an afternoon low showing rural background levels, even though the arriving air had traversed the city. This was followed by an evening peak starting at sunset, a second low late at night, and a morning peak enhanced by re-circulation. Pollutants emitted in the valley only traveled out of the valley between the late morning and sunset. During winter months, rush hour was outside of this period, enhancing the morning and evening peaks. Within the city, ozone dropped to zero at night. At mid-day we observed an ozone peak enhanced by photochemical production when the air mass that had been stagnant over the city swept

  19. [Life support of the Mars exploration crew. Control of a zeolite system for carbon dioxide removal from space cabin air within a closed air regeneration cycle].

    PubMed

    Chekov, Iu F

    2009-01-01

    The author describes a zeolite system for carbon dioxide removal integrated into a closed air regeneration cycle aboard spacecraft. The continuous operation of a double-adsorbent regeneration system with pCO2-dependable productivity is maintained through programmable setting of adsorption (desorption) semicycle time. The optimal system regulation curve is presented within the space of statistical performance family obtained in quasi-steady operating modes with controlled parameters of the recurrent adsorption-desorption cycle. The automatically changing system productivity ensures continuous intake of concentrated CO2. Control of the adsorption-desorption process is based on calculation of the differential adsorption (desorption) heat from gradient of adsorbent and test inert substance temperatures. The adaptive algorithm of digital control is implemented through the standard spacecraft interface with the board computer system and programmable microprocessor-based controllers. PMID:19621802

  20. Dynamic Evaluation of a Regional Air Quality Model: Assessing the Emissions-Induced Weekly Ozone Cycle

    EPA Science Inventory

    Air quality models are used to predict changes in pollutant concentrations resulting from envisioned emission control policies. Recognizing the need to assess the credibility of air quality models in a policy-relevant context, we perform a dynamic evaluation of the community Mult...

  1. Municipal solid waste management health risk assessment from air emissions for China by applying life cycle analysis.

    PubMed

    Li, Hua; Nitivattananon, Vilas; Li, Peng

    2015-05-01

    This study is to quantify and objectively evaluate the extent of environmental health risks from three waste treatment options suggested by the national municipal solid waste management enhancing strategy (No [2011] 9 of the State Council, promulgated on 19 April 2011), which includes sanitary landfill, waste-to-energy incineration and compost, together with the material recovery facility through a case study in Zhangqiu City of China. It addresses potential chronic health risks from air emissions to residential receptors in the impacted area. It combines field survey, analogue survey, design documents and life cycle inventory methods in defining the source strength of chemicals of potential concern. The modelling of life cycle inventory and air dispersion is via integrated waste management(IWM)-2 and Screening Air Dispersion Model (Version 3.0) (SCREEN3). The health risk assessment is in accordance with United States Environmental Protection Agency guidance Risk Assessment Guidance for Superfund (RAGS), Volume I: Human Health Evaluation Manual (Part F, Supplemental Guidance for Inhalation Risk Assessment). The exposure concentration is based on long-term exposure to the maximum ground level contaminant in air under the 'reasonable worst situation' emissions and then directly compared with reference for concentration and unit risk factor/cancer slope factor derived from the national air quality standard (for a conventional pollutant) and toxicological studies (for a specific pollutant). Results from this study suggest that the option of compost with material recovery facility treatment may pose less negative health impacts than other options; the sensitivity analysis shows that the landfill integrated waste management collection rate has a great influence on the impact results. Further investigation is needed to validate or challenge the findings of this study.

  2. Municipal solid waste management health risk assessment from air emissions for China by applying life cycle analysis.

    PubMed

    Li, Hua; Nitivattananon, Vilas; Li, Peng

    2015-05-01

    This study is to quantify and objectively evaluate the extent of environmental health risks from three waste treatment options suggested by the national municipal solid waste management enhancing strategy (No [2011] 9 of the State Council, promulgated on 19 April 2011), which includes sanitary landfill, waste-to-energy incineration and compost, together with the material recovery facility through a case study in Zhangqiu City of China. It addresses potential chronic health risks from air emissions to residential receptors in the impacted area. It combines field survey, analogue survey, design documents and life cycle inventory methods in defining the source strength of chemicals of potential concern. The modelling of life cycle inventory and air dispersion is via integrated waste management(IWM)-2 and Screening Air Dispersion Model (Version 3.0) (SCREEN3). The health risk assessment is in accordance with United States Environmental Protection Agency guidance Risk Assessment Guidance for Superfund (RAGS), Volume I: Human Health Evaluation Manual (Part F, Supplemental Guidance for Inhalation Risk Assessment). The exposure concentration is based on long-term exposure to the maximum ground level contaminant in air under the 'reasonable worst situation' emissions and then directly compared with reference for concentration and unit risk factor/cancer slope factor derived from the national air quality standard (for a conventional pollutant) and toxicological studies (for a specific pollutant). Results from this study suggest that the option of compost with material recovery facility treatment may pose less negative health impacts than other options; the sensitivity analysis shows that the landfill integrated waste management collection rate has a great influence on the impact results. Further investigation is needed to validate or challenge the findings of this study. PMID:25908094

  3. Life-cycle assessment of an axial air compressor manufactured by the firm Fini Compressori

    NASA Astrophysics Data System (ADS)

    Neri, Paolo; Buttol, Patrizia; Cremonini, Marco; Ronchi, Alessio; Tani, Giovanni

    2001-02-01

    This study was performed jointly by ENEA (Italian National Agency for New Technologies, Energy and Environment), Bologna and Florence Universities and the firm FINI COMPRESSORI. The functional unit is an axial air compressor manufactured by FINI COMPRESSORI, lubricated, having a 25-litres air tank, provided by 1.8 kW electrical motor. The system boundaries include raw material extraction and the end of life of the compressor. All metallic materials have the recycling as waste scenario. The LCA is obtained by using the SimaPro 3.1 code and the two methods Eco-indicator 95 and Ecopoints. The results show that air tank and stator of electrical motor are the components with greater environmental damage, even if the damage is mainly due to the electrical energy consumed during use. The most important categories of damage produced by the air tank are carcinogenic substances, heavy metals and acidification due to the material and processes used for its manufacturing and the ones produced by aluminium part of stator are acidification and winter smog due to material manufacturing. To reduce the damage of air compressor we have proposed some design solutions to lower air temperature in cylinder and at collector outlet.

  4. Life-cycle-assessment of the historical development of air pollution control and energy recovery in waste incineration.

    PubMed

    Damgaard, Anders; Riber, Christian; Fruergaard, Thilde; Hulgaard, Tore; Christensen, Thomas H

    2010-07-01

    Incineration of municipal solid waste is a debated waste management technology. In some countries it is the main waste management option whereas in other countries it has been disregarded. The main discussion point on waste incineration is the release of air emissions from the combustion of the waste, but also the energy recovery efficiency has a large importance. The historical development of air pollution control in waste incineration was studied through life-cycle-assessment modelling of eight different air pollution control technologies. The results showed a drastic reduction in the release of air emissions and consequently a significant reduction in the potential environmental impacts of waste incineration. Improvements of a factor 0.85-174 were obtained in the different impact potentials as technology developed from no emission control at all, to the best available emission control technologies of today (2010). The importance of efficient energy recovery was studied through seven different combinations of heat and electricity recovery, which were modelled to substitute energy produced from either coal or natural gas. The best air pollution control technology was used at the incinerator. It was found that when substituting coal based energy production total net savings were obtained in both the standard and toxic impact categories. However, if the substituted energy production was based on natural gas, only the most efficient recovery options yielded net savings with respect to the standard impacts. With regards to the toxic impact categories, emissions from the waste incineration process were always larger than those from the avoided energy production based on natural gas. The results shows that the potential environmental impacts from air emissions have decreased drastically during the last 35 years and that these impacts can be partly or fully offset by recovering energy which otherwise should have been produced from fossil fuels like coal or natural gas.

  5. Life-cycle-assessment of the historical development of air pollution control and energy recovery in waste incineration

    SciTech Connect

    Damgaard, Anders; Riber, Christian; Fruergaard, Thilde; Hulgaard, Tore; Christensen, Thomas H.

    2010-07-15

    Incineration of municipal solid waste is a debated waste management technology. In some countries it is the main waste management option whereas in other countries it has been disregarded. The main discussion point on waste incineration is the release of air emissions from the combustion of the waste, but also the energy recovery efficiency has a large importance. The historical development of air pollution control in waste incineration was studied through life-cycle-assessment modelling of eight different air pollution control technologies. The results showed a drastic reduction in the release of air emissions and consequently a significant reduction in the potential environmental impacts of waste incineration. Improvements of a factor 0.85-174 were obtained in the different impact potentials as technology developed from no emission control at all, to the best available emission control technologies of today (2010). The importance of efficient energy recovery was studied through seven different combinations of heat and electricity recovery, which were modelled to substitute energy produced from either coal or natural gas. The best air pollution control technology was used at the incinerator. It was found that when substituting coal based energy production total net savings were obtained in both the standard and toxic impact categories. However, if the substituted energy production was based on natural gas, only the most efficient recovery options yielded net savings with respect to the standard impacts. With regards to the toxic impact categories, emissions from the waste incineration process were always larger than those from the avoided energy production based on natural gas. The results shows that the potential environmental impacts from air emissions have decreased drastically during the last 35 years and that these impacts can be partly or fully offset by recovering energy which otherwise should have been produced from fossil fuels like coal or natural gas.

  6. Evaluation of Hybrid Air-Cooled Flash/Binary Power Cycle

    SciTech Connect

    Greg Mines

    2005-10-01

    Geothermal binary power plants reject a significant portion of the heat removed from the geothermal fluid. Because of the relatively low temperature of the heat source (geothermal fluid), the performance of these plants is quite sensitive to the sink temperature to which heat is rejected. This is particularly true of air-cooled binary plants. Recent efforts by the geothermal industry have examined the potential to evaporatively cool the air entering the air-cooled condensers during the hotter portions of a summer day. While the work has shown the benefit of this concept, air-cooled binary plants are typically located in regions that lack an adequate supply of clean water for use in this evaporative cooling. In the work presented, this water issue is addressed by pre-flashing the geothermal fluid to produce a clean condensate that can be utilized during the hotter portions of the year to evaporatively cool the air. This study examines both the impact of this pre-flash on the performance of the binary plant, and the increase in power output due to the ability to incorporate an evaporative component to the heat rejection process.

  7. The importance of the diurnal and annual cycle of air traffic for contrail radiative forcing

    NASA Astrophysics Data System (ADS)

    Stuber, Nicola; Forster, Piers; Rädel, Gaby; Shine, Keith

    2006-06-01

    Air traffic condensation trails, or contrails, are believed to have a net atmospheric warming effect, although one that is currently small compared to that induced by other sources of human emissions. However, the comparably large growth rate of air traffic requires an improved understanding of the resulting impact of aircraft radiative forcing on climate. Contrails have an effect on the Earth's energy balance similar to that of high thin ice clouds. Their trapping of outgoing longwave radiation emitted by the Earth and atmosphere (positive radiative forcing) is partly compensated by their reflection of incoming solar radiation (negative radiative forcing). On average, the longwave effect dominates and the net contrail radiative forcing is believed to be positive. Over daily and annual timescales, varying levels of air traffic, meteorological conditions, and solar insolation influence the net forcing effect of contrails. Here we determine the factors most important for contrail climate forcing using a sophisticated radiative transfer model for a site in southeast England, located in the entrance to the North Atlantic flight corridor. We find that night-time flights during winter (December to February) are responsible for most of the contrail radiative forcing. Night flights account for only 25 per cent of daily air traffic, but contribute 60 to 80 per cent of the contrail forcing. Further, winter flights account for only 22 per cent of annual air traffic, but contribute half of the annual mean forcing. These results suggest that flight rescheduling could help to minimize the climate impact of aviation.

  8. The importance of the diurnal and annual cycle of air traffic for contrail radiative forcing.

    PubMed

    Stuber, Nicola; Forster, Piers; Rädel, Gaby; Shine, Keith

    2006-06-15

    Air traffic condensation trails, or contrails, are believed to have a net atmospheric warming effect, although one that is currently small compared to that induced by other sources of human emissions. However, the comparably large growth rate of air traffic requires an improved understanding of the resulting impact of aircraft radiative forcing on climate. Contrails have an effect on the Earth's energy balance similar to that of high thin ice clouds. Their trapping of outgoing longwave radiation emitted by the Earth and atmosphere (positive radiative forcing) is partly compensated by their reflection of incoming solar radiation (negative radiative forcing). On average, the longwave effect dominates and the net contrail radiative forcing is believed to be positive. Over daily and annual timescales, varying levels of air traffic, meteorological conditions, and solar insolation influence the net forcing effect of contrails. Here we determine the factors most important for contrail climate forcing using a sophisticated radiative transfer model for a site in southeast England, located in the entrance to the North Atlantic flight corridor. We find that night-time flights during winter (December to February) are responsible for most of the contrail radiative forcing. Night flights account for only 25 per cent of daily air traffic, but contribute 60 to 80 per cent of the contrail forcing. Further, winter flights account for only 22 per cent of annual air traffic, but contribute half of the annual mean forcing. These results suggest that flight rescheduling could help to minimize the climate impact of aviation.

  9. The importance of the diurnal and annual cycle of air traffic for contrail radiative forcing.

    PubMed

    Stuber, Nicola; Forster, Piers; Rädel, Gaby; Shine, Keith

    2006-06-15

    Air traffic condensation trails, or contrails, are believed to have a net atmospheric warming effect, although one that is currently small compared to that induced by other sources of human emissions. However, the comparably large growth rate of air traffic requires an improved understanding of the resulting impact of aircraft radiative forcing on climate. Contrails have an effect on the Earth's energy balance similar to that of high thin ice clouds. Their trapping of outgoing longwave radiation emitted by the Earth and atmosphere (positive radiative forcing) is partly compensated by their reflection of incoming solar radiation (negative radiative forcing). On average, the longwave effect dominates and the net contrail radiative forcing is believed to be positive. Over daily and annual timescales, varying levels of air traffic, meteorological conditions, and solar insolation influence the net forcing effect of contrails. Here we determine the factors most important for contrail climate forcing using a sophisticated radiative transfer model for a site in southeast England, located in the entrance to the North Atlantic flight corridor. We find that night-time flights during winter (December to February) are responsible for most of the contrail radiative forcing. Night flights account for only 25 per cent of daily air traffic, but contribute 60 to 80 per cent of the contrail forcing. Further, winter flights account for only 22 per cent of annual air traffic, but contribute half of the annual mean forcing. These results suggest that flight rescheduling could help to minimize the climate impact of aviation. PMID:16778887

  10. Comparative life-cycle air emissions of coal, domestic natural gas, LNG, and SNG for electricity generation

    SciTech Connect

    Paulina Jaramillo; W. Michael Griffin; H. Scott Matthews

    2007-09-15

    The U.S. Department of Energy (DOE) estimates that in the coming decades the United States' natural gas (NG) demand for electricity generation will increase. Estimates also suggest that NG supply will increasingly come from imported liquefied natural gas (LNG). Additional supplies of NG could come domestically from the production of synthetic natural gas (SNG) via coal gasification-methanation. The objective of this study is to compare greenhouse gas (GHG), SOx, and NOx life-cycle emissions of electricity generated with NG/LNG/SNG and coal. This life-cycle comparison of air emissions from different fuels can help us better understand the advantages and disadvantages of using coal versus globally sourced NG for electricity generation. Our estimates suggest that with the current fleet of power plants, a mix of domestic NG, LNG, and SNG would have lower GHG emissions than coal. If advanced technologies with carbon capture and sequestration (CCS) are used, however, coal and a mix of domestic NG, LNG, and SNG would have very similar life-cycle GHG emissions. For SOx and NOx we find there are significant emissions in the upstream stages of the NG/LNG life-cycles, which contribute to a larger range in SOx and NOx emissions for NG/LNG than for coal and SNG. 38 refs., 3 figs., 2 tabs.

  11. Comparative life-cycle air emissions of coal, domestic natural gas, LNG, and SNG for electricity generation.

    PubMed

    Jaramillo, Paulina; Griffin, W Michael; Matthews, H Scott

    2007-09-01

    The U.S. Department of Energy (DOE) estimates that in the coming decades the United States' natural gas (NG) demand for electricity generation will increase. Estimates also suggest that NG supply will increasingly come from imported liquefied natural gas (LNG). Additional supplies of NG could come domestically from the production of synthetic natural gas (SNG) via coal gasification-methanation. The objective of this study is to compare greenhouse gas (GHG), SOx, and NOx life-cycle emissions of electricity generated with NG/LNG/SNG and coal. This life-cycle comparison of air emissions from different fuels can help us better understand the advantages and disadvantages of using coal versus globally sourced NG for electricity generation. Our estimates suggest that with the current fleet of power plants, a mix of domestic NG, LNG, and SNG would have lower GHG emissions than coal. If advanced technologies with carbon capture and sequestration (CCS) are used, however, coal and a mix of domestic NG, LNG, and SNG would have very similar life-cycle GHG emissions. For SOx and NOx we find there are significant emissions in the upstream stages of the NG/ LNG life-cycles, which contribute to a larger range in SOx and NOx emissions for NG/LNG than for coal and SNG. PMID:17937317

  12. Comparative life-cycle air emissions of coal, domestic natural gas, LNG, and SNG for electricity generation.

    PubMed

    Jaramillo, Paulina; Griffin, W Michael; Matthews, H Scott

    2007-09-01

    The U.S. Department of Energy (DOE) estimates that in the coming decades the United States' natural gas (NG) demand for electricity generation will increase. Estimates also suggest that NG supply will increasingly come from imported liquefied natural gas (LNG). Additional supplies of NG could come domestically from the production of synthetic natural gas (SNG) via coal gasification-methanation. The objective of this study is to compare greenhouse gas (GHG), SOx, and NOx life-cycle emissions of electricity generated with NG/LNG/SNG and coal. This life-cycle comparison of air emissions from different fuels can help us better understand the advantages and disadvantages of using coal versus globally sourced NG for electricity generation. Our estimates suggest that with the current fleet of power plants, a mix of domestic NG, LNG, and SNG would have lower GHG emissions than coal. If advanced technologies with carbon capture and sequestration (CCS) are used, however, coal and a mix of domestic NG, LNG, and SNG would have very similar life-cycle GHG emissions. For SOx and NOx we find there are significant emissions in the upstream stages of the NG/ LNG life-cycles, which contribute to a larger range in SOx and NOx emissions for NG/LNG than for coal and SNG.

  13. Mathematical model of a closed hot air engine cycle using MATLAB Simulink

    NASA Astrophysics Data System (ADS)

    Oršanský, Pavol; Ftorek, Branislav; Durčanský, Peter

    2014-08-01

    In our work we present a model of a closed hot air engine, which we simulate in MATLAB®Simulink® environment. That gives us many opportunities of investigating the influence of extreme demanding conditions on the stability and functionality of the device. We were also able to try the conditions that would real device cannot resist as high temperature or pressure.

  14. Air-sea heat exchange, an element of the water cycle

    NASA Technical Reports Server (NTRS)

    Chahine, M. T.

    1984-01-01

    The distribution and variation of water vapor, clouds and precipitation are examined. Principal driving forces for these distributions are energy exchange and evaporation at the air-sea interface, which are also important elements of air-sea interaction studies. The overall aim of air-sea interaction studies is to quantitatively determine mass, momentum and energy fluxes, with the goal of understanding the mechanisms controlling them. The results of general circulation simulations indicate that the atmosphere in mid-latitudes responds to changes in the oceanic surface conditions in the tropics. This correlation reflects the strong interaction between tropical and mid-latitude conditions caused by the transport of heat and momentum from the tropics. Studies of air-sea exchanges involve a large number of physica, chemical and dynamical processes including heat flux, radiation, sea-surface temperature, precipitation, winds and ocean currents. The fluxes of latent heat are studied and the potential use of satellite data in determining them evaluated. Alternative ways of inferring heat fluxes will be considered.

  15. Numerical simulation of the interface molten metal air in the shot sleeve chambre and mold cavity of a die casting machine

    NASA Astrophysics Data System (ADS)

    Korti, Abdel Illah Nabil; Abboudi, Said

    2011-11-01

    The objective of this study relates to the numerical simulation of the free surface during the two-dimensional flow and solidification of aluminum in the horizontal cylinder and mold cavity of the high pressure die casting HPDC machine with cold chamber. The flow is governed by the Navier-Stokes equations (the mass and the momentum conservations) and solved in the two phase's liquid aluminum and air. The tracking of the free surface is ensured by the VOF method. The equivalent specific heat method is used to solve the phase change heat transfer problem in the solidification process. Considering the displacement of the plunger, the geometry of the problem is variable and the numerical resolution uses a dynamic grid. The study examines the influence of the plunger speed on the evolution of the interface aluminum liquid-air profile, the mass of air imprisoned and the stream function contours versus time. Filling of a mold is an essential part of HPDC process and affects significantly the heat transfer and solidification of the melt. For this reason, accurate prediction of the temperature field in the system can be achieved only by including simulation of filling in the analysis.

  16. A micro-machined piezoelectric flexural-mode hydrophone with air backing: a hydrostatic pressure-balancing mechanism for integrity preservation.

    PubMed

    Choi, Sungjoon; Lee, Haksue; Moon, Wonkyu

    2010-09-01

    Although an air-backed thin plate is an effective sound receiver structure, it is easily damaged via pressure unbalance caused by external hydrostatic pressure. To overcome this difficulty, a simple pressure-balancing module is proposed. Despite its small size and relative simplicity, with proper design and operation, micro-channel structure provides a solution to the pressure-balancing problem. If the channel size is sufficiently small, the gas-liquid interface may move back and forth without breach by the hydrostatic pressure since the surface tension can retain the interface surface continuously. One input port of the device is opened to an intermediate liquid, while the other port is connected to the air-backing chamber. As the hydrostatic pressure increases, the liquid in the micro-channel compresses the air, and the pressure in the backing chamber is then equalized to match the external hydrostatic pressure. To validate the performance of the proposed mechanism, a micro-channel prototype is designed and integrated with the piezoelectric micro-machined flexural sensor developed in our previous work. The working principle of the mechanism is experimentally verified. In addition, the effect of hydrostatic pressure on receiving sensitivity is evaluated and compared with predicted behavior.

  17. Effect of air resistance on the metabolic cost and performance of cycling.

    PubMed

    Davies, C T

    1980-01-01

    The metabolic cost (VO2) of cycling against a range of wind velocities (VW) was studied in a wind tunnel of 15 male cyclists and the results compared with work on a stationary cycle ergometer, uphill cycling on a treadmill, and performance times in road racing competitions. The results showed that VO2 at constant treadmill speed was proportional to V2W and was a linear function of work rate, both on the stationary ergometer and during uphill cycling on a motor driven treadmill. Maximal values of 5.04 1 x min-1 (69.3 ml x kg-1 x min-1) and 482 W were observed. The mean force (F) acting on the cyclists during the experiments in the wind tunnel was found to be equal to 0.0175 V2W x ms-1 (r = +0.98). The mean projected area (AP), drag areas (AD) and drag coefficient (CD) for the 15 cyclists were 0.50 m2, 0.280 m2, and 0.56 m2, respectively. During cycling out of doors on a calm day VO2 was calculated to be a curvilinear function of the cyclists' speed of progression (V). The best guide to the cyclists' maximal aerobic power output (VO2max) was given by their 16.1 km (10 mile) time: VO2max (1 x min-1) = -4.219 + 0.7727 V (ms-1) r = +0.89. The results suggested that the relative aerobic power output (% VO2max) which could be sustained for a given time by elite cyclists, is similar to that found previously for marathon athletes. However, due to the differences in the non-drag component of the work for given metabolic cost the cyclist will travel approx. 2 1/2 times the distance of an endurance athlete.

  18. Time scales of the European surface air temperature variability: The role of the 7-8 year cycle

    NASA Astrophysics Data System (ADS)

    Jajcay, Nikola; Hlinka, Jaroslav; Kravtsov, Sergey; Tsonis, Anastasios A.; Paluš, Milan

    2016-01-01

    Air temperature variability on different time scales exhibits recurring patterns and quasi-oscillatory phenomena. Climate oscillations with the period about 7-8 years have been observed in many instrumental records in Europe. Although these oscillations are weak if considering their amplitude, they might have nonnegligible influence on temperature variability on shorter time scales due to cross-scale interactions recently observed by Paluš (2014). In order to quantify the cross-scale influence, we propose a simple conditional mean approach which estimates the effect of the cycle with the period close to 8 years on the amplitude of the annual cycle in surface air temperature (SAT) in the range 0.7-1.4°C and the effect on the overall variability of the SAT anomalies (SATA) leads to the changes 1.5-1.7°C in the annual SATA means. The strongest effect in the winter SATA means reaches 4-5°C in central European station and reanalysis data.

  19. New high efficiency mixed cycles with air-blown combustion for CO{sub 2} emission abatement

    SciTech Connect

    Gambini, M.; Guizzi, G.L.; Vellini, M.

    1999-07-01

    In this paper a new advanced mixed cycle (AMC) for CO{sub 2} emission abatement with high conversion efficiency is presented. The AMC plant lay-out consists of a reheat gas turbine with steam injection in the first combustion chamber, a steam turbine for steam expansion before its injection, a heat recovery boiler for superheated and resuperheated steam generation and an atmospheric separator for water recovery from exhaust gas mixture. The steam recirculation in the cycle allows to reduce the excess of air to limit the turbine inlet temperature and then to enrich the exhaust gas by CO{sub 2}, as it occurs in combined cycle provided with exhaust gas recirculation at the compressor inlet. This involves a stack flow rate much lower than in conventional cycle configuration sot that exhaust gas treatment for CO{sub 2} removal may be usefully applied. In this work the chemical absorption technique for CO{sub 2} removal has been considered. The thermodynamic performance of the proposed AMC plant has been investigated in comparison with that attainable by combined cycle power plants (CC). This comparison has been developed pointing out the efficiency decrease involved by the CO{sub 2} removal systems and by the unit for the liquefaction of the removed carbon dioxide. The main result of the performed investigation is that while the two plants attain the same efficiency level without CO{sub 2} removal (about 56% for AMC and 55.8% for CC) the AMC plant achieves a net electric efficiency of about 50% with CO{sub 2} removal and liquefaction units: it's over 2 points higher than the efficiency evaluated for the Cc equipped with the same CO{sub 2} units (about 47.7%). The final carbon dioxide emissions are about 0.04 kg/kWh for AMC and CC, while the emissions of the plants without CO{sub 2} removal systems are about 0.36 kg/kWh.

  20. Impact of Charge Degradation on the Life Cycle Climate Performance of a Residential Air-Conditioning System

    SciTech Connect

    Beshr, Mohamed; Aute, Vikrant; Abdelaziz, Omar; Fricke, Brian A; Radermacher, Reinhard

    2014-01-01

    Vapor compression systems continuously leak a small fraction of their refrigerant charge to the environment, whether during operation or servicing. As a result of the slow leak rate occurring during operation, the refrigerant charge decreases until the system is serviced and recharged. This charge degradation, after a certain limit, begins to have a detrimental effect on system capacity, energy consumption, and coefficient of performance (COP). This paper presents a literature review and a summary of previous experimental work on the effect of undercharging or charge degradation of different vapor compression systems, especially those without a receiver. These systems include residential air conditioning and heat pump systems utilizing different components and refrigerants, and water chiller systems. Most of these studies show similar trends for the effect of charge degradation on system performance. However, it is found that although much experimental work exists on the effect of charge degradation on system performance, no correlation or comparison between charge degradation and system performance yet exists. Thus, based on the literature review, three different correlations that characterize the effect of charge on system capacity and energy consumption are developed for different systems as follows: one for air-conditioning systems, one for vapor compression water-to-water chiller systems, and one for heat pumps. These correlations can be implemented in vapor compression cycle simulation tools to obtain a better prediction of the system performance throughout its lifetime. In this paper, these correlations are implemented in an open source tool for life cycle climate performance (LCCP) based design of vapor compression systems. The LCCP of a residential air-source heat pump is evaluated using the tool and the effect of charge degradation on the results is studied. The heat pump is simulated using a validated component-based vapor compression system model and

  1. Development of naval diesel engine duty cycles for air exhaust emission environmental impact analysis. Master's thesis

    SciTech Connect

    Markle, S.P.

    1994-05-01

    A strategy for testing naval diesel engines for exhaust emissions was developed. A survey of existing international and national standard diesel engine duty cycles was conducted. All were found to be inadequate for testing and certification of engine exhaust emissions from naval diesel powered ships. Naval ship data covering 11,500 hours of engine operation of four U.S. Navy LSD 41 Class amphibious ships was analyzed to develop a 27 point class operating profile. A procedure combining ship hull form characteristics, ship propulsion plant parameters, and ship operating profile was detailed to derive an 11-Mode duty cycle representative for testing LSD 41 Class propulsion diesel engines. A similar procedure was followed for ship service diesel engines. Comparisons with industry accepted duty cycles were conducted using exhaust emission contour plots for the Colt-Pielstick PC-4B diesel engines. Results showed the 11-Mode LSD 41 Class Duty Cycle best predicted ship propulsion engine emissions compared to the 27 point operating profile propeller curve. The procedure was applied to T-AO 187 Class with similar results. The application of civilian industry standards to measure naval diesel ship propulsion engine exhaust emissions was found to be inadequate. Engine exhaust flow chemistry post turbocharger was investigated using the SANDIA Lab computer tool CHEMKIN. Results showed oxidation and reduction reactions within exhaust gases are quenched in the exhaust stack. Since the exhaust stream in the stack is unreactive, emission sampling may be performed where most convenient. A proposed emission measurement scheme for LSD 41 Class ships was presented.

  2. On-Machine Acceptance

    SciTech Connect

    Arnold, K.F.

    2000-02-14

    Probing processes are used intermittently and not effectively as an on-line measurement device. This project was needed to evolve machine probing from merely a setup aid to an on-the-machine inspection system. Use of probing for on-machine inspection would significantly decrease cycle time by elimination of the need for first-piece inspection (at a remote location). Federal Manufacturing and Technologies (FM and T) had the manufacturing facility and the ability to integrate the system into production. The Contractor had a system that could optimize the machine tool to compensate for thermal growth and related error.

  3. Spatial and temporal trends of POPs in Norwegian and UK background air: implications for global cycling.

    PubMed

    Meijer, S N; Ockenden, W A; Steinnes, E; Corrigan, B P; Jones, K C

    2003-02-01

    Data are presented for PCBs and HCB measured by passive air samplers (SPMDs) along a latitudinal transect from the south of the UK to the north of Norway during 1998-2000. This work is part of an ongoing air sampling campaign in which data were previously gathered for 1994-1996. Comparisons of the masses of chemicals sequestered by the SPMDs during these different time intervals are used to investigate spatial and temporal trends. Results are discussed in the context of sources, long-range atmospheric transport, fractionation/cold condensation, and global clearance processes controlling ambient levels of POPs. Spatial trends show a decrease in absolute sequestered amounts of PCBs with increasing latitude i.e., with increasing distance from the source area. However, relative sequestered amounts of the homologue groups (expressed as a ratio to penta-PCB) show a clear latitudinal trend, with the relative contribution of the lighter congeners increasing with increasing latitude, providing evidence of latitudinal fractionation. Absolute amounts of HCB increase with latitude, suggesting this compound is undergoing cold condensation. Sequestered amounts of PCBs generally decreased between the two sampling periods by a factor 2-5 over 4 years, suggesting half-lives on the order of 1.7-4 years. The relative rates of decline (1998-2000 data as a percentage of the 1994-1996 data) were compared for different congeners and latitudes. No clear latitudinal trends were found, with all sites/congeners showing a similar marked decline over time to ca. 30% of the former value. We discuss the interpretation of these observations and conclude they imply that the underlying trends of current ambient levels of PCBs in European background air are still largely controlled by primary emissions, rather than recycling/secondary emissions from the major environmental repositories such as soils or water bodies.

  4. Life cycle air emissions impacts and ownership costs of light-duty vehicles using natural gas as a primary energy source.

    PubMed

    Luk, Jason M; Saville, Bradley A; MacLean, Heather L

    2015-04-21

    This paper aims to comprehensively distinguish among the merits of different vehicles using a common primary energy source. In this study, we consider compressed natural gas (CNG) use directly in conventional vehicles (CV) and hybrid electric vehicles (HEV), and natural gas-derived electricity (NG-e) use in plug-in battery electric vehicles (BEV). This study evaluates the incremental life cycle air emissions (climate change and human health) impacts and life cycle ownership costs of non-plug-in (CV and HEV) and plug-in light-duty vehicles. Replacing a gasoline CV with a CNG CV, or a CNG CV with a CNG HEV, can provide life cycle air emissions impact benefits without increasing ownership costs; however, the NG-e BEV will likely increase costs (90% confidence interval: $1000 to $31 000 incremental cost per vehicle lifetime). Furthermore, eliminating HEV tailpipe emissions via plug-in vehicles has an insignificant incremental benefit, due to high uncertainties, with emissions cost benefits between -$1000 and $2000. Vehicle criteria air contaminants are a relatively minor contributor to life cycle air emissions impacts because of strict vehicle emissions standards. Therefore, policies should focus on adoption of plug-in vehicles in nonattainment regions, because CNG vehicles are likely more cost-effective at providing overall life cycle air emissions impact benefits.

  5. Life cycle air emissions impacts and ownership costs of light-duty vehicles using natural gas as a primary energy source.

    PubMed

    Luk, Jason M; Saville, Bradley A; MacLean, Heather L

    2015-04-21

    This paper aims to comprehensively distinguish among the merits of different vehicles using a common primary energy source. In this study, we consider compressed natural gas (CNG) use directly in conventional vehicles (CV) and hybrid electric vehicles (HEV), and natural gas-derived electricity (NG-e) use in plug-in battery electric vehicles (BEV). This study evaluates the incremental life cycle air emissions (climate change and human health) impacts and life cycle ownership costs of non-plug-in (CV and HEV) and plug-in light-duty vehicles. Replacing a gasoline CV with a CNG CV, or a CNG CV with a CNG HEV, can provide life cycle air emissions impact benefits without increasing ownership costs; however, the NG-e BEV will likely increase costs (90% confidence interval: $1000 to $31 000 incremental cost per vehicle lifetime). Furthermore, eliminating HEV tailpipe emissions via plug-in vehicles has an insignificant incremental benefit, due to high uncertainties, with emissions cost benefits between -$1000 and $2000. Vehicle criteria air contaminants are a relatively minor contributor to life cycle air emissions impacts because of strict vehicle emissions standards. Therefore, policies should focus on adoption of plug-in vehicles in nonattainment regions, because CNG vehicles are likely more cost-effective at providing overall life cycle air emissions impact benefits. PMID:25825338

  6. Water loss control using pressure management: life-cycle energy and air emission effects.

    PubMed

    Stokes, Jennifer R; Horvath, Arpad; Sturm, Reinhard

    2013-10-01

    Pressure management is one cost-effective and efficient strategy for controlling water distribution losses. This paper evaluates the life-cycle energy use and emissions for pressure management zones in Philadelphia, Pennsylvania, and Halifax, Nova Scotia. It compares water savings using fixed-outlet and flow-modulated pressure control to performance without pressure control, considering the embedded electricity and chemical consumption in the lost water, manufacture of pipe and fittings to repair breaks caused by excess pressure, and pressure management. The resulting energy and emissions savings are significant. The Philadelphia and Halifax utilities both avoid approximately 130 million liters in water losses annually using flow-modulated pressure management. The conserved energy was 780 GJ and 1900 GJ while avoided greenhouse gas emissions were 50 Mg and 170 Mg a year by Philadelphia and Halifax, respectively. The life-cycle financial and environmental performance of pressure management systems compares favorably to the traditional demand management strategy of installing low-flow toilets. The energy savings may also translate to cost-effective greenhouse gas emission reductions depending on the energy mix used, an important advantage in areas where water and energy are constrained and/or expensive and greenhouse gas emissions are regulated as in California, for example.

  7. Carrier-envelope phase-dependent electronic conductivity in an air filament driven by few-cycle laser pulses

    NASA Astrophysics Data System (ADS)

    Wang, Lifeng; Lu, Xin; Teng, Hao; Xi, Tingting; Chen, Shiyou; He, Peng; He, Xinkui; Wei, Zhiyi

    2016-07-01

    The modulation of the electron conductivity in an air filament, which is produced by carrier-envelope phase (CEP) stabilized 7-fs laser pulses, is realized experimentally. Numerical results based on a coupled 3D+1 generalized nonlinear Schrödinger equation including the real electric-field dependent ionization model are in good agreement with those from the experiment. It is demonstrated that the CEP effect on the electron density originates from the CEP-induced modification of the electric field of the laser pulse, and this modification is amplified during nonlinear propagation. The results provide important information to help understand the physical mechanism of the filaments driven by few-cycle femtosecond laser pulses.

  8. A Life-Cycle Cost Estimating Methodology for NASA-Developed Air Traffic Control Decision Support Tools

    NASA Technical Reports Server (NTRS)

    Wang, Jianzhong Jay; Datta, Koushik; Landis, Michael R. (Technical Monitor)

    2002-01-01

    This paper describes the development of a life-cycle cost (LCC) estimating methodology for air traffic control Decision Support Tools (DSTs) under development by the National Aeronautics and Space Administration (NASA), using a combination of parametric, analogy, and expert opinion methods. There is no one standard methodology and technique that is used by NASA or by the Federal Aviation Administration (FAA) for LCC estimation of prospective Decision Support Tools. Some of the frequently used methodologies include bottom-up, analogy, top-down, parametric, expert judgement, and Parkinson's Law. The developed LCC estimating methodology can be visualized as a three-dimensional matrix where the three axes represent coverage, estimation, and timing. This paper focuses on the three characteristics of this methodology that correspond to the three axes.

  9. Study of loading/air back-pulse cleaning cycles on the performance of ceramic membrane filters

    SciTech Connect

    Waggoner, Charles; Alderman, Steven; Parsons, Michael; Hogoncamp, Kristina; Alderman, Steven

    2007-07-01

    Available in abstract form only. Full text of publication follows: The most commonly identified threats to conventional glass fiber HEPA filter performance are moisture and rapid blinding of filters by smoke. Regenerable filter media composed of ceramics or sintered metal can be utilized as pre-filters to protect the more vulnerable glass fiber HEPA filters in the event of upset conditions. Additionally, used in a pre-filtering application, the use of these regenerable filters can potentially extend the lifetime of conventional units. A series of tests have been conducted using CeraMem ceramic membrane filters in an effort to evaluate their performance after repeated loading and air back pulse cleaning. This was done in an effort to access filter performance after repeated loading/cleaning cycles. The filters were loaded using a solid potassium chloride aerosol challenge. The filters were evaluated for pressure drop and filtering efficiency changes from one cleaning cycle to the next. Additionally, the particle size distribution of the aerosol penetrating the filters was measured. (authors)

  10. Organics in the atmosphere: From air pollution to biogeochemical cycles and climate (Vilhelm Bjerknes Medal)

    NASA Astrophysics Data System (ADS)

    Kanakidou, Maria

    2016-04-01

    Organics are key players in the biosphere-atmosphere-climate interactions. They have also a significant anthropogenic component due to primary emissions or interactions with pollution. The organic pool in the atmosphere is a complex mixture of compounds of variable reactivity and properties, variable content in C, H, O, N and other elements depending on their origin and their history in the atmosphere. Multiphase atmospheric chemistry is known to produce organic acids with high oxygen content, like oxalic acid. This water soluble organic bi-acid is used as indicator for cloud processing and can form complexes with atmospheric Iron, affecting Iron solubility. Organics are also carriers of other nutrients like nitrogen and phosphorus. They also interact with solar radiation and with atmospheric water impacting on climate. In line with this vision for the role of organics in the atmosphere, we present results from a global 3-dimensional chemistry-transport model on the role of gaseous and particulate organics in atmospheric chemistry, accounting for multiphase chemistry and aerosol ageing in the atmosphere as well as nutrients emissions, atmospheric transport and deposition. Historical simulations and projections highlight the human impact on air quality and atmospheric deposition to the oceans. The results are put in the context of climate change. Uncertainties and implications of our findings for biogeochemical and climate modeling are discussed.

  11. Modeled Seasonal Variations of Firn Density Induced by Steady State Surface Air Temperature Cycle

    NASA Technical Reports Server (NTRS)

    Jun, Li; Zwally, H. Jay; Koblinsky, Chester J. (Technical Monitor)

    2001-01-01

    Seasonal variations of firn density in ice-sheet firn layers have been attributed to variations in deposition processes or other processes within the upper firn. A recent high-resolution (mm scale) density profile, measured along a 181 m core from Antarctica, showed small-scale density variations with a clear seasonal cycle that apparently was not-related to seasonal variations in deposition or known near-surface processes (Gerland and others 1999). A recent model of surface elevation changes (Zwally and Li, submitted) produced a seasonal variation in firn densification, and explained the seasonal surface elevation changes observed by satellite radar altimeters. In this study, we apply our 1-D time-dependent numerical model of firn densification that includes a temperature-dependent formulation of firn densification based on laboratory measurements of grain growth. The model is driven by a steady-state seasonal surface temperature and a constant accumulation rate appropriate for the measured Antarctic ice core. The modeled seasonal variations in firn density show that the layers of snow deposited during spring to mid-summer with the highest temperature history compress to the highest density, and the layers deposited during later summer to autumn with the lowest temperature history compress to the lowest density. The initial amplitude of the seasonal difference of about 0.13 reduces to about 0.09 in five years and asymptotically to 0.92 at depth, which is consistent with the core measurements.

  12. Regionalized life cycle impact assessment of air pollution on the global scale: Damage to human health and vegetation

    NASA Astrophysics Data System (ADS)

    van Zelm, Rosalie; Preiss, Philipp; van Goethem, Thomas; Van Dingenen, Rita; Huijbregts, Mark

    2016-06-01

    We developed regionalized characterization factors (CFs) for human health damage from particulate matter (PM2.5) and ozone, and for damage to vegetation from ozone, at the global scale. These factors can be used in the impact assessment phase of an environmental life cycle assessment. CFs express the overall damage of a certain pollutant per unit of emission of a precursor, i.e. primary PM2.5, nitrogen oxides (NOx), ammonia (NH3), sulfur dioxide (SO2) and non-methane volatile organic compounds (NMVOCs). The global chemical transport model TM5 was used to calculate intake fractions of PM2.5 and ozone for 56 world regions covering the whole globe. Furthermore, region-specific effect and damage factors were derived, using mortality rates, background concentrations and years of life lost. The emission-weighted world average CF for primary PM2.5 emissions is 629 yr kton-1, varying up to 3 orders of magnitude over the regions. Larger CFs were obtained for emissions in central Asia and Europe, and smaller factors in Australia and South America. The world average CFs for PM2.5 from secondary aerosols, i.e. NOx, NH3, and SO2, is 67.2 to 183.4 yr kton-1. We found that the CFs for ozone human health damage are 2-4 orders of magnitude lower compared to the CFs for damage due to primary PM2.5 and PM2.5 precursor emissions. Human health damage due to the priority air pollutants considered in this study was 1.7·10-2 yr capita-1 worldwide in year 2010, with primary PM2.5 emissions as the main contributor (62%). The emission-weighted world average CF for ecosystem damage due to ozone was 2.5 km2 yr kton-1 for NMVOCs and 8.7 m2 yr kg-1 for NOx emissions, varying 2-3 orders of magnitude over the regions. Ecosystem damage due to the priority air pollutants considered in this study was 1.6·10-4 km2 capita-1 worldwide in 2010, with NOx as the main contributor (72%). The spatial range in CFs stresses the importance of including spatial variation in life cycle impact assessment of

  13. Regionalized life cycle impact assessment of air pollution on the global scale: Damage to human health and vegetation

    NASA Astrophysics Data System (ADS)

    van Zelm, Rosalie; Preiss, Philipp; van Goethem, Thomas; Van Dingenen, Rita; Huijbregts, Mark

    2016-06-01

    We developed regionalized characterization factors (CFs) for human health damage from particulate matter (PM2.5) and ozone, and for damage to vegetation from ozone, at the global scale. These factors can be used in the impact assessment phase of an environmental life cycle assessment. CFs express the overall damage of a certain pollutant per unit of emission of a precursor, i.e. primary PM2.5, nitrogen oxides (NOx), ammonia (NH3), sulfur dioxide (SO2) and non-methane volatile organic compounds (NMVOCs). The global chemical transport model TM5 was used to calculate intake fractions of PM2.5 and ozone for 56 world regions covering the whole globe. Furthermore, region-specific effect and damage factors were derived, using mortality rates, background concentrations and years of life lost. The emission-weighted world average CF for primary PM2.5 emissions is 629 yr kton-1, varying up to 3 orders of magnitude over the regions. Larger CFs were obtained for emissions in central Asia and Europe, and smaller factors in Australia and South America. The world average CFs for PM2.5 from secondary aerosols, i.e. NOx, NH3, and SO2, is 67.2 to 183.4 yr kton-1. We found that the CFs for ozone human health damage are 2-4 orders of magnitude lower compared to the CFs for damage due to primary PM2.5 and PM2.5 precursor emissions. Human health damage due to the priority air pollutants considered in this study was 1.7·10-2 yr capita-1 worldwide in year 2010, with primary PM2.5 emissions as the main contributor (62%). The emission-weighted world average CF for ecosystem damage due to ozone was 2.5 km2 yr kton-1 for NMVOCs and 8.7 m2 yr kg-1 for NOx emissions, varying 2-3 orders of magnitude over the regions. Ecosystem damage due to the priority air pollutants considered in this study was 1.6·10-4 km2 capita-1 worldwide in 2010, with NOx as the main contributor (72%). The spatial range in CFs stresses the importance of including spatial variation in life cycle impact

  14. 20140201-0228_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer

    Thibedeau, Joe

    2014-03-03

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 Feb to 28 Feb 2014.

  15. 20131201-1231_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer

    Thibedeau, Joe

    2014-01-08

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 Dec to 31 Dec 2013.

  16. 20131101-1130_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer

    Thibedeau, Joe

    2013-12-02

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 Nov to 30 Nov 2013.

  17. 20140101-0131_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer

    Thibedeau, Joe

    2014-02-03

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 Jan to 31 Jan 2014.

  18. 20130901-0930_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer

    Thibedeau, Joe

    2013-10-25

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 1 September 2013 to 30 September 2013.

  19. 20130501-20130531_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer

    Vanderhoff, Alex

    2013-06-18

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from May 2013

  20. 20130801-0831_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer

    Vanderhoff, Alex

    2013-09-10

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 8/1/13 to 8/31/13.

  1. 20140501-0531_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer

    Thibedeau, Joe

    2014-06-02

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 May to 31 May 2014.

  2. 20140301-0331_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer

    Thibedeau, Joe

    2014-04-07

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 Mar to 31 Mar 2014.

  3. 20140701-0731_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer

    Thibedeau, Joe

    2014-07-31

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 July to 31 July 2014.

  4. 20131001-1031_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer

    Thibedeau, Joe

    2013-11-05

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 1 Oct 2013 to 31 Oct 2013.

  5. 20140601-0630_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer

    Thibedeau, Joe

    2014-06-30

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 June to 30 June 2014.

  6. Machine Shop Grinding Machines.

    ERIC Educational Resources Information Center

    Dunn, James

    This curriculum manual is one in a series of machine shop curriculum manuals intended for use in full-time secondary and postsecondary classes, as well as part-time adult classes. The curriculum can also be adapted to open-entry, open-exit programs. Its purpose is to equip students with basic knowledge and skills that will enable them to enter the…

  7. The neuroergonomic evaluation of human machine interface design in air traffic control using behavioral and EGG/ERP measures.

    PubMed

    Giraudet, L; Imbert, J-P; Bérenger, M; Tremblay, S; Causse, M

    2015-11-01

    The Air Traffic Control (ATC) environment is complex and safety-critical. Whilst exchanging information with pilots, controllers must also be alert to visual notifications displayed on the radar screen (e.g., warning which indicates a loss of minimum separation between aircraft). Under the assumption that attentional resources are shared between vision and hearing, the visual interface design may also impact the ability to process these auditory stimuli. Using a simulated ATC task, we compared the behavioral and neural responses to two different visual notification designs--the operational alarm that involves blinking colored "ALRT" displayed around the label of the notified plane ("Color-Blink"), and the more salient alarm involving the same blinking text plus four moving yellow chevrons ("Box-Animation"). Participants performed a concurrent auditory task with the requirement to react to rare pitch tones. P300 from the occurrence of the tones was taken as an indicator of remaining attentional resources. Participants who were presented with the more salient visual design showed better accuracy than the group with the suboptimal operational design. On a physiological level, auditory P300 amplitude in the former group was greater than that observed in the latter group. One potential explanation is that the enhanced visual design freed up attentional resources which, in turn, improved the cerebral processing of the auditory stimuli. These results suggest that P300 amplitude can be used as a valid estimation of the efficiency of interface designs, and of cognitive load more generally. PMID:26200718

  8. Wind motor machine

    SciTech Connect

    Goedecke, A.

    1984-12-25

    An improved wind motor machine having a wind rotor rotatable about a vertical axis. The rotor core body of the machine is provided with convexly curved wind application surfaces and coacting outer wing bodies having load supporting airplane wing-shaped cross-sections. The efficiency of the machine is improved by means of stream guiding bodies disposed in the intermediate space between the rotor core body and the wing bodies. These stream guiding bodies extend in a desired streaming direction, that is normal to the rotational axis of the wind body, which insures substantially laminar air streaming within the intermediate space.

  9. Machine tools get smarter

    SciTech Connect

    Valenti, M.

    1995-11-01

    This article describes how, using software, sensors, and controllers, a new generation of intelligent machine tools are optimizing grinding, milling, and molding processes. A paradox of manufacturing parts is that the faster the parts are made, the less accurate they are--and vice versa. However, a combination of software, sensors, controllers, and mechanical innovations are being used to create a new generation of intelligent machine tools capable of optimizing their own grinding, milling, and molding processes. These brainy tools are allowing manufacturers to machine more-complex, higher-quality parts in shorter cycle times. The technology also lowers scrap rates and reduces or eliminates the need for polishing inadequately finished parts.

  10. Diamond machine tool face lapping machine

    DOEpatents

    Yetter, H.H.

    1985-05-06

    An apparatus for shaping, sharpening and polishing diamond-tipped single-point machine tools. The isolation of a rotating grinding wheel from its driving apparatus using an air bearing and causing the tool to be shaped, polished or sharpened to be moved across the surface of the grinding wheel so that it does not remain at one radius for more than a single rotation of the grinding wheel has been found to readily result in machine tools of a quality which can only be obtained by the most tedious and costly processing procedures, and previously unattainable by simple lapping techniques.

  11. Life cycle air quality impacts of conventional and alternative light-duty transportation in the United States

    SciTech Connect

    Tessum, Christopher W.; Hill, Jason D.; Marshall, Julian D.

    2014-12-30

    Commonly considered strategies for reducing the environmental impact of light-duty transportation include using alternative fuels and improving vehicle fuel economy. We evaluate the air quality-related human health impacts of 10 such options, including the use of liquid biofuels, diesel, and compressed natural gas (CNG) in internal combustion engines; the use of electricity from a range of conventional and renewable sources to power electric vehicles (EVs); and the use of hybrid EV technology. Our approach combines spatially, temporally, and chemically detailed life cycle emission inventories; comprehensive, fine-scale state-of-the-science chemical transport modeling; and exposure, concentration–response, and economic health impact modeling for ozone (O3) and fine particulate matter (PM2.5). We find that powering vehicles with corn ethanol or with coal-based or “grid average” electricity increases monetized environmental health impacts by 80% or more relative to using conventional gasoline. Conversely, EVs powered by low-emitting electricity from natural gas, wind, water, or solar power reduce environmental health impacts by 50% or more. Consideration of potential climate change impacts alongside the human health outcomes described here further reinforces the environmental preferability of EVs powered by low-emitting electricity relative to gasoline vehicles.

  12. Life cycle air quality impacts of conventional and alternative light-duty transportation in the United States

    PubMed Central

    Hill, Jason D.; Marshall, Julian D.

    2014-01-01

    Commonly considered strategies for reducing the environmental impact of light-duty transportation include using alternative fuels and improving vehicle fuel economy. We evaluate the air quality-related human health impacts of 10 such options, including the use of liquid biofuels, diesel, and compressed natural gas (CNG) in internal combustion engines; the use of electricity from a range of conventional and renewable sources to power electric vehicles (EVs); and the use of hybrid EV technology. Our approach combines spatially, temporally, and chemically detailed life cycle emission inventories; comprehensive, fine-scale state-of-the-science chemical transport modeling; and exposure, concentration–response, and economic health impact modeling for ozone (O3) and fine particulate matter (PM2.5). We find that powering vehicles with corn ethanol or with coal-based or “grid average” electricity increases monetized environmental health impacts by 80% or more relative to using conventional gasoline. Conversely, EVs powered by low-emitting electricity from natural gas, wind, water, or solar power reduce environmental health impacts by 50% or more. Consideration of potential climate change impacts alongside the human health outcomes described here further reinforces the environmental preferability of EVs powered by low-emitting electricity relative to gasoline vehicles. PMID:25512510

  13. Life cycle air quality impacts of conventional and alternative light-duty transportation in the United States.

    PubMed

    Tessum, Christopher W; Hill, Jason D; Marshall, Julian D

    2014-12-30

    Commonly considered strategies for reducing the environmental impact of light-duty transportation include using alternative fuels and improving vehicle fuel economy. We evaluate the air quality-related human health impacts of 10 such options, including the use of liquid biofuels, diesel, and compressed natural gas (CNG) in internal combustion engines; the use of electricity from a range of conventional and renewable sources to power electric vehicles (EVs); and the use of hybrid EV technology. Our approach combines spatially, temporally, and chemically detailed life cycle emission inventories; comprehensive, fine-scale state-of-the-science chemical transport modeling; and exposure, concentration-response, and economic health impact modeling for ozone (O3) and fine particulate matter (PM2.5). We find that powering vehicles with corn ethanol or with coal-based or "grid average" electricity increases monetized environmental health impacts by 80% or more relative to using conventional gasoline. Conversely, EVs powered by low-emitting electricity from natural gas, wind, water, or solar power reduce environmental health impacts by 50% or more. Consideration of potential climate change impacts alongside the human health outcomes described here further reinforces the environmental preferability of EVs powered by low-emitting electricity relative to gasoline vehicles. PMID:25512510

  14. The Role of Distribution Infrastructure and Equipment in the Life-cycle Air Emissions of Liquid Transportation Fuels

    NASA Astrophysics Data System (ADS)

    Strogen, Bret Michael

    Production of fuel ethanol in the United States has increased ten-fold since 1993, largely as a result of government programs motivated by goals to improve domestic energy security, economic development, and environmental impacts. Over the next decade, the growth of and eventually the total production of second generation cellulosic biofuels is projected to exceed first generation (e.g., corn-based) biofuels, which will require continued expansion of infrastructure for producing and distributing ethanol and perhaps other biofuels. In addition to identifying potential differences in tailpipe emissions from vehicles operating with ethanol-blended or ethanol-free gasoline, environmental comparison of ethanol to petroleum fuels requires a comprehensive accounting of life-cycle environmental effects. Hundreds of published studies evaluate the life-cycle emissions from biofuels and petroleum, but the operation and maintenance of storage, handling, and distribution infrastructure and equipment for fuels and fuel feedstocks had not been adequately addressed. Little attention has been paid to estimating and minimizing emissions from these complex systems, presumably because they are believed to contribute a small fraction of total emissions for petroleum and first generation biofuels. This research aims to quantify the environmental impacts associated with the major components of fuel distribution infrastructure, and the impacts that will be introduced by expanding the parallel infrastructure needed to accommodate more biofuels in our existing systems. First, the components used in handling, storing, and transporting feedstocks and fuels are physically characterized by typical operating throughput, utilization, and lifespan. US-specific life-cycle GHG emission and water withdrawal factors are developed for each major distribution chain activity by applying a hybrid life-cycle assessment methodology to the manufacturing, construction, maintenance and operation of each

  15. Life cycle air quality impacts of conventional and alternative light-duty transportation in the United States.

    PubMed

    Tessum, Christopher W; Hill, Jason D; Marshall, Julian D

    2014-12-30

    Commonly considered strategies for reducing the environmental impact of light-duty transportation include using alternative fuels and improving vehicle fuel economy. We evaluate the air quality-related human health impacts of 10 such options, including the use of liquid biofuels, diesel, and compressed natural gas (CNG) in internal combustion engines; the use of electricity from a range of conventional and renewable sources to power electric vehicles (EVs); and the use of hybrid EV technology. Our approach combines spatially, temporally, and chemically detailed life cycle emission inventories; comprehensive, fine-scale state-of-the-science chemical transport modeling; and exposure, concentration-response, and economic health impact modeling for ozone (O3) and fine particulate matter (PM2.5). We find that powering vehicles with corn ethanol or with coal-based or "grid average" electricity increases monetized environmental health impacts by 80% or more relative to using conventional gasoline. Conversely, EVs powered by low-emitting electricity from natural gas, wind, water, or solar power reduce environmental health impacts by 50% or more. Consideration of potential climate change impacts alongside the human health outcomes described here further reinforces the environmental preferability of EVs powered by low-emitting electricity relative to gasoline vehicles.

  16. Life cycle air quality impacts of conventional and alternative light-duty transportation in the United States

    DOE PAGES

    Tessum, Christopher W.; Hill, Jason D.; Marshall, Julian D.

    2014-12-30

    Commonly considered strategies for reducing the environmental impact of light-duty transportation include using alternative fuels and improving vehicle fuel economy. We evaluate the air quality-related human health impacts of 10 such options, including the use of liquid biofuels, diesel, and compressed natural gas (CNG) in internal combustion engines; the use of electricity from a range of conventional and renewable sources to power electric vehicles (EVs); and the use of hybrid EV technology. Our approach combines spatially, temporally, and chemically detailed life cycle emission inventories; comprehensive, fine-scale state-of-the-science chemical transport modeling; and exposure, concentration–response, and economic health impact modeling for ozonemore » (O3) and fine particulate matter (PM2.5). We find that powering vehicles with corn ethanol or with coal-based or “grid average” electricity increases monetized environmental health impacts by 80% or more relative to using conventional gasoline. Conversely, EVs powered by low-emitting electricity from natural gas, wind, water, or solar power reduce environmental health impacts by 50% or more. Consideration of potential climate change impacts alongside the human health outcomes described here further reinforces the environmental preferability of EVs powered by low-emitting electricity relative to gasoline vehicles.« less

  17. Air exposure behavior of the semiterrestrial crab Neohelice granulata allows tolerance to severe hypoxia but not prevent oxidative damage due to hypoxia-reoxygenation cycle.

    PubMed

    de Lima, Tábata Martins; Geihs, Márcio Alberto; Nery, Luiz Eduardo Maia; Maciel, Fábio Everton

    2015-11-01

    The air exposure behavior of the semi-terrestrial crab Neohelice granulata during severe hypoxia was studied. This study also verified whether this behavior mitigates possible oxidative damage, namely lipoperoxidation, caused by hypoxia and reoxygenation cycles. The lethal time for 50% of the crabs subjected to severe hypoxia (0.5 mgO2 · L(-1)) with free access to air was compared to that of crabs subjected to severe hypoxia without access to air. Crabs were placed in aquaria divided into three zones: water (when the animal was fully submersed), land (when the animal was completely emerged) and intermediate (when the animal was in contact with both environments) zones. Then the crabs were held in this condition for 270 min, and the time spent in each zone was recorded. Lipid peroxidation (LPO) damage to the walking leg muscles was determined for the following four experimental conditions: a--normoxic water with free access to air; b--hypoxic water without access to air; c--hypoxic water followed by normoxic water without air access; and d--hypoxic water with free access to air. When exposed to hypoxic water, N. granulata spent significantly more time on land, 135.3 ± 17.7 min, whereas control animals (exposed to normoxic water) spent more time submerged, 187.4 ± 20.2 min. By this behavior, N. granulata was able to maintain a 100% survival rate when exposed to severe hypoxia. However, N. granulata must still return to water after periods of air exposure (~ 14 min), causing a sequence of hypoxia/reoxygenation events. Despite increasing the survival rate, hypoxia with air access does not decrease the lipid peroxidation damage caused by the hypoxia and reoxygenation cycle experienced by these crabs.

  18. In-flight oxygen collection for a two-stage air-launch vehicle: integration of vehicle and separation cycle design

    NASA Astrophysics Data System (ADS)

    Verstraete, D.; Bizzarri, D.; Hendrick, P.

    2009-09-01

    In-flight oxygen collection is a very promising technique to reduce the launch costs and improve the payload capabilities of two-stage-to-orbit semireusable launchers. Using liquid hydrogen the incoming air is deeply cooled and enriched in oxygen during the cruise phase of the first stage. The liquified enriched air is stored in the second stage which is then launched into orbit. This paper gives the result of a conceptual design of a two-stage-to-orbit air launched space vehicle. The mass, aerodynamic, and propulsive characteristics of the first stage are determined and an assessment of the influence of the collection plant performance on the subsonic first stage is made. The results for a centrifugally enhanced destillation unit are given together with the plant cycle arrangement. Integration options for the plant into the first stage are proposed and a short description of the air separation test unit and its test bench is also given.

  19. Consumer life-cycle cost impacts of energy-efficiency standards for residential-type central air conditioners and heat pumps

    SciTech Connect

    Rosenquist, Gregory; Chan, Peter; Lekov, Alex; McMahon, James; Van Buskirk, Robert

    2001-10-10

    In support of the federal government's efforts to raise the minimum energy-efficiency standards for residential-type central air conditioners and heat pumps, a consumer life-cycle cost (LCC) analysis was conducted to demonstrate the economic impacts on individual consumers from revisions to the standards. LCC is the consumer's cost of purchasing and installing an air conditioner or heat pump and operating the unit over its lifetime. The LCC analysis is conducted on a nationally representative sample of air conditioner and heat pump consumers resulting in a distribution of LCC impacts showing the percentage of consumers that are either benefiting or being burdened by increased standards. Relative to the existing minimum efficiency standard of 10 SEER, the results show that a majority of split system air conditioner and heat pump consumers will either benefit or be insignificantly impacted by increased efficiency standards of up to 13 SEER.

  20. Performance optimization of an air-standard irreversible dual-atkinson cycle engine based on the ecological coefficient of performance criterion.

    PubMed

    Gonca, Guven; Sahin, Bahri

    2014-01-01

    This paper presents an ecological performance analysis and optimization for an air-standard irreversible Dual-Atkinson cycle (DAC) based on the ecological coefficient of performance (ECOP) criterion which includes internal irreversibilities, heat leak, and finite-rate of heat transfer. A comprehensive numerical analysis has been realized so as to investigate the global and optimal performances of the cycle. The results obtained based on the ECOP criterion are compared with a different ecological function which is named as the ecologic objective-function and with the maximum power output conditions. The results have been attained introducing the compression ratio, cut-off ratio, pressure ratio, Atkinson cycle ratio, source temperature ratio, and internal irreversibility parameter. The change of cycle performance with respect to these parameters is investigated and graphically presented. PMID:25170525

  1. Performance Optimization of an Air-Standard Irreversible Dual-Atkinson Cycle Engine Based on the Ecological Coefficient of Performance Criterion

    PubMed Central

    Gonca, Guven; Sahin, Bahri

    2014-01-01

    This paper presents an ecological performance analysis and optimization for an air-standard irreversible Dual-Atkinson cycle (DAC) based on the ecological coefficient of performance (ECOP) criterion which includes internal irreversibilities, heat leak, and finite-rate of heat transfer. A comprehensive numerical analysis has been realized so as to investigate the global and optimal performances of the cycle. The results obtained based on the ECOP criterion are compared with a different ecological function which is named as the ecologic objective-function and with the maximum power output conditions. The results have been attained introducing the compression ratio, cut-off ratio, pressure ratio, Atkinson cycle ratio, source temperature ratio, and internal irreversibility parameter. The change of cycle performance with respect to these parameters is investigated and graphically presented. PMID:25170525

  2. Life-cycle assessment of greenhouse gas and air emissions of electric vehicles: A comparison between China and the U.S.

    NASA Astrophysics Data System (ADS)

    Huo, Hong; Cai, Hao; Zhang, Qiang; Liu, Fei; He, Kebin

    2015-05-01

    We evaluated the fuel-cycle emissions of greenhouse gases (GHGs) and air pollutants (NOx, SO2, PM10, and PM2.5) of electric vehicles (EVs) in China and the United States (U.S.), two of the largest potential markets for EVs in the world. Six of the most economically developed and populated regions in China and the U.S. were selected. The results showed that EV fuel-cycle emissions depend substantially on the carbon intensity and cleanness of the electricity mix, and vary significantly across the regions studied. In those regions with a low share of coal-based electricity (e.g., California), EVs can reduce GHG and air pollutant emissions (except for PM) significantly compared with conventional vehicles. However, in the Chinese regions and selected U.S. Midwestern states where coal dominates in the generation mix, EVs can reduce GHG emissions but increase the total and urban emissions of air pollutants. In 2025, EVs will offer greater reductions in GHG and air pollutant emissions because emissions from power plants will be better controlled; EVs in the Chinese regions examined, however, may still increase SO2 and PM emissions. Reductions of 60-85% in GHGs and air pollutants could be achieved were EVs charged with 80% renewable electricity or the electricity generated from the best available technologies of coal-fired power plants, which are futuristic power generation scenarios.

  3. A comparison between molten carbonate fuel cells based hybrid systems using air and supercritical carbon dioxide Brayton cycles with state of the art technology

    NASA Astrophysics Data System (ADS)

    Sánchez, D.; Muñoz de Escalona, J. M.; Chacartegui, R.; Muñoz, A.; Sánchez, T.

    A proposal for high efficiency hybrid systems based on molten carbonate fuel cells is presented in this paper. This proposal is based on adopting a closed cycle bottoming gas turbine using supercritical carbon dioxide as working fluid as opposed to open cycle hot air turbines typically used in this type of power generators. First, both bottoming cycles are compared for the same operating conditions, showing that their performances do not differ as much as initially expected, even if the initial objective of reducing compression work is accomplished satisfactorily. In view of these results, a profound review of research and industrial literature is carried out in order to determine realistic specifications for the principal components of the bottoming systems. From this analysis, it is concluded that an appropriate set of specifications must be developed for each bottoming cycle as the performances of compressor, turbine and recuperator differ significantly from one working fluid to another. Thus, when the operating conditions are updated, the performances of the resulting systems show a remarkable advantage of carbon dioxide based systems over conventional air units. Actually, the proposed hybrid system shows its capability to achieve 60% net efficiency, what represents a 10% increase with respect to the reference system.

  4. A high-fidelity multiphysics model for the new solid oxide iron-air redox battery part I: Bridging mass transport and charge transfer with redox cycle kinetics

    SciTech Connect

    Jin, XF; Zhao, X; Huang, K

    2015-04-15

    A high-fidelity two-dimensional axial symmetrical multi-physics model is described in this paper as an effort to simulate the cycle performance of a recently discovered solid oxide metal-air redox battery (SOMARB). The model collectively considers mass transport, charge transfer and chemical redox cycle kinetics occurring across the components of the battery, and is validated by experimental data obtained from independent research. In particular, the redox kinetics at the energy storage unit is well represented by Johnson-Mehl-Avrami-Kolmogorov (JIVIAK) and Shrinking Core models. The results explicitly show that the reduction of Fe3O4 during the charging cycle limits the overall performance. Distributions of electrode potential, overpotential, Nernst potential, and H-2/H2O-concentration across various components of the battery are also systematically investigated. (C) 2015 Elsevier B.V. All rights reserved.

  5. Electric machine

    SciTech Connect

    El-Refaie, Ayman Mohamed Fawzi; Reddy, Patel Bhageerath

    2012-07-17

    An interior permanent magnet electric machine is disclosed. The interior permanent magnet electric machine comprises a rotor comprising a plurality of radially placed magnets each having a proximal end and a distal end, wherein each magnet comprises a plurality of magnetic segments and at least one magnetic segment towards the distal end comprises a high resistivity magnetic material.

  6. Nonplanar machines

    SciTech Connect

    Ritson, D. )

    1989-05-01

    This talk examines methods available to minimize, but never entirely eliminate, degradation of machine performance caused by terrain following. Breaking of planar machine symmetry for engineering convenience and/or monetary savings must be balanced against small performance degradation, and can only be decided on a case-by-case basis. 5 refs.

  7. Axial gap rotating electrical machine

    DOEpatents

    None

    2016-02-23

    Direct drive rotating electrical machines with axial air gaps are disclosed. In these machines, a rotor ring and stator ring define an axial air gap between them. Sets of gap-maintaining rolling supports bear between the rotor ring and the stator ring at their peripheries to maintain the axial air gap. Also disclosed are wind turbines using these generators, and structures and methods for mounting direct drive rotating electrical generators to the hubs of wind turbines. In particular, the rotor ring of the generator may be carried directly by the hub of a wind turbine to rotate relative to a shaft without being mounted directly to the shaft.

  8. Permutation Machines.

    PubMed

    Bhatia, Swapnil; LaBoda, Craig; Yanez, Vanessa; Haddock-Angelli, Traci; Densmore, Douglas

    2016-08-19

    We define a new inversion-based machine called a permuton of n genetic elements, which allows the n elements to be rearranged in any of the n·(n - 1)·(n - 2)···2 = n! distinct orderings. We present two design algorithms for architecting such a machine. We define a notion of a feasible design and use the framework to discuss the feasibility of the permuton architectures. We have implemented our design algorithms in a freely usable web-accessible software for exploration of these machines. Permutation machines could be used as memory elements or state machines and explicitly illustrate a rational approach to designing biological systems.

  9. Permutation Machines.

    PubMed

    Bhatia, Swapnil; LaBoda, Craig; Yanez, Vanessa; Haddock-Angelli, Traci; Densmore, Douglas

    2016-08-19

    We define a new inversion-based machine called a permuton of n genetic elements, which allows the n elements to be rearranged in any of the n·(n - 1)·(n - 2)···2 = n! distinct orderings. We present two design algorithms for architecting such a machine. We define a notion of a feasible design and use the framework to discuss the feasibility of the permuton architectures. We have implemented our design algorithms in a freely usable web-accessible software for exploration of these machines. Permutation machines could be used as memory elements or state machines and explicitly illustrate a rational approach to designing biological systems. PMID:27383067

  10. The comparison of cold-water immersion and cold air therapy on maximal cycling performance and recovery markers following strength exercises.

    PubMed

    Hayter, Kane J; Doma, Kenji; Schumann, Moritz; Deakin, Glen B

    2016-01-01

    This study examined the effects of cold-water immersion (CWI) and cold air therapy (CAT) on maximal cycling performance (i.e. anaerobic power) and markers of muscle damage following a strength training session. Twenty endurance-trained but strength-untrained male (n = 10) and female (n = 10) participants were randomised into either: CWI (15 min in 14 °C water to iliac crest) or CAT (15 min in 14 °C air) immediately following strength training (i.e. 3 sets of leg press, leg extensions and leg curls at 6 repetition maximum, respectively). Creatine kinase, muscle soreness and fatigue, isometric knee extensor and flexor torque and cycling anaerobic power were measured prior to, immediately after and at 24 (T24), 48 (T48) and 72 (T72) h post-strength exercises. No significant differences were found between treatments for any of the measured variables (p > 0.05). However, trends suggested recovery was greater in CWI than CAT for cycling anaerobic power at T24 (10% ± 2%, ES = 0.90), T48 (8% ± 2%, ES = 0.64) and T72 (8% ± 7%, ES = 0.76). The findings suggest the combination of hydrostatic pressure and cold temperature may be favourable for recovery from strength training rather than cold temperature alone. PMID:27069791

  11. The comparison of cold-water immersion and cold air therapy on maximal cycling performance and recovery markers following strength exercises

    PubMed Central

    Hayter, Kane J.; Schumann, Moritz; Deakin, Glen B.

    2016-01-01

    This study examined the effects of cold-water immersion (CWI) and cold air therapy (CAT) on maximal cycling performance (i.e. anaerobic power) and markers of muscle damage following a strength training session. Twenty endurance-trained but strength-untrained male (n = 10) and female (n = 10) participants were randomised into either: CWI (15 min in 14 °C water to iliac crest) or CAT (15 min in 14 °C air) immediately following strength training (i.e. 3 sets of leg press, leg extensions and leg curls at 6 repetition maximum, respectively). Creatine kinase, muscle soreness and fatigue, isometric knee extensor and flexor torque and cycling anaerobic power were measured prior to, immediately after and at 24 (T24), 48 (T48) and 72 (T72) h post-strength exercises. No significant differences were found between treatments for any of the measured variables (p > 0.05). However, trends suggested recovery was greater in CWI than CAT for cycling anaerobic power at T24 (10% ± 2%, ES = 0.90), T48 (8% ± 2%, ES = 0.64) and T72 (8% ± 7%, ES = 0.76). The findings suggest the combination of hydrostatic pressure and cold temperature may be favourable for recovery from strength training rather than cold temperature alone. PMID:27069791

  12. Monel Machining

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Castle Industries, Inc. is a small machine shop manufacturing replacement plumbing repair parts, such as faucet, tub and ballcock seats. Therese Castley, president of Castle decided to introduce Monel because it offered a chance to improve competitiveness and expand the product line. Before expanding, Castley sought NERAC assistance on Monel technology. NERAC (New England Research Application Center) provided an information package which proved very helpful. The NASA database was included in NERAC's search and yielded a wealth of information on machining Monel.

  13. Characterizing the annual cycle of African dust transport to the Caribbean Basin and South America and its impact on the environment and air quality

    NASA Astrophysics Data System (ADS)

    Prospero, Joseph M.; Collard, François-Xavier; Molinié, Jack; Jeannot, Alexis

    2014-07-01

    Decades of aerosol measurements on Barbados have yielded a detailed picture of African mineral dust transport to the Caribbean Basin that shows a strong seasonal cycle with a maximum in boreal summer and a minimum in winter. Satellite aerosol products suggest that in spring, there is a comparable transport to northeastern South America. Here we characterize the complete annual cycle of dust transport to the western Atlantic by linking the Barbados record to multiyear records of airborne particulate matter less than 10 µm diameter (PM10) measured in air quality programs at Cayenne (French Guiana) and Guadeloupe. Comparisons of PM10 at these sites with concurrent dust measurements at Barbados demonstrate that high PM10 levels are almost entirely due to dust. Cayenne PM10 peaks in spring in a cycle which is consistent with satellite aerosol optical depth and suggests that the Sahel is the dominant source. The persistent transport of dust during much of the year could impact a wide range of environmental processes over a broad region that extends from the southern United States to the Amazon Basin. Finally, the average 24 h PM10 concentrations at Cayenne and Guadeloupe frequently exceed the World Health Organization air quality guideline. Thus soil dust PM10 could be a significant, but generally unrecognized, health factor at western Atlantic sites and also in other relatively remote regions affected by long-range dust from Africa. Because dust emissions and transport are highly sensitive to climate variability, climate change in coming decades could greatly affect a wide range of biogeochemical processes and human health in this region.

  14. FEATURE B. MACHINE GUN POSITION WITH LEWIS MOUNT, VIEW FACING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FEATURE B. MACHINE GUN POSITION WITH LEWIS MOUNT, VIEW FACING NORTHWEST (with scale stick). - Naval Air Station Barbers Point, Battery-Machine Gun Positions, South of Point Cruz Road & west of Coral Sea Road, Ewa, Honolulu County, HI

  15. FEATURE B. MACHINE GUN POSITION WITH LEWIS MOUNT, VIEW FACING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FEATURE B. MACHINE GUN POSITION WITH LEWIS MOUNT, VIEW FACING NORTHWEST. - Naval Air Station Barbers Point, Battery-Machine Gun Positions, South of Point Cruz Road & west of Coral Sea Road, Ewa, Honolulu County, HI

  16. FEATURE C. MACHINE GUN POSITION WITH REMNANT OF MOUNT, VIEW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FEATURE C. MACHINE GUN POSITION WITH REMNANT OF MOUNT, VIEW FACING SOUTH-SOUTHEAST. - Naval Air Station Barbers Point, Battery-Machine Gun Positions, South of Point Cruz Road & west of Coral Sea Road, Ewa, Honolulu County, HI

  17. Production cost and air emissions impacts of coal cycling in power systems with large-scale wind penetration

    NASA Astrophysics Data System (ADS)

    Oates, David Luke; Jaramillo, Paulina

    2013-06-01

    Wind power introduces variability into electric power systems. Due to the physical characteristics of wind, most of this variability occurs at inter-hour time-scales and coal units are therefore technically capable of balancing wind. Operators of coal-fired units have raised concerns that additional cycling will be prohibitively costly. Using PJM bid-data, we observe that coal operators are likely systematically under-bidding their startup costs. We then consider the effects of a 20% wind penetration scenario in the coal-heavy PJM West area, both when coal units bid business as usual startup costs, and when they bid costs accounting for the elevated wear and tear that occurs during cycling. We conclude that while 20% wind leads to increased coal cycling and reduced coal capacity factors under business as usual startup costs, including full startup costs shifts the burden of balancing wind onto more flexible units. This shift has benefits for CO2, NOX, and SO2 emissions as well as for the profitability of coal plants, as calculated by our dispatch model.

  18. RuO2 nanoparticles decorated MnOOH/C as effective bifunctional electrocatalysts for lithium-air battery cathodes with long-cycling stability

    NASA Astrophysics Data System (ADS)

    Kim, Gil-Pyo; Lim, Dongwook; Park, Inyeong; Park, Hyelee; Shim, Sang Eun; Baeck, Sung-Hyeon

    2016-08-01

    Manganite (MnOOH) is one of the most effective electrocatalysts for oxygen reduction reaction (ORR), and RuO2 nanoparticles exhibit high activity for oxygen evolution reaction (OER). We herein report a facile means of producing well dispersed RuO2/MnOOH on Ketjen black (RuO2/MnOOH/C) as a bifunctional catalyst for lithium-air (Li-air) batteries. RuO2/MnOOH/C was simply synthesized using a hydrothermal/precipitation based method, and was used as a cathode for a Li-air battery using a Swagelok-type cell. The importance of dispersing active catalysts on a carbon support was clearly demonstrated by textural, charge-discharge voltammetric, and electrochemical impedance spectroscopic (EIS) analyses, comparing results with a catalyst produced by physically mixing RuO2/MnOOH with carbon (RuO2/MnOOH + C). RuO2/MnOOH/C showed low overpotential and stable cycleability up to 170th cycles with 1000 mAh g-1 of charge-discharge capacity, which was attributed to its enhanced active surface area and low charge-transfer resistance. The results obtained suggest that this strategy can be widely applied to bifunctional electrocatalysis, such as secondary batteries and regenerative fuel cell (RFC).

  19. RuO2 nanoparticles decorated MnOOH/C as effective bifunctional electrocatalysts for lithium-air battery cathodes with long-cycling stability

    NASA Astrophysics Data System (ADS)

    Kim, Gil-Pyo; Lim, Dongwook; Park, Inyeong; Park, Hyelee; Shim, Sang Eun; Baeck, Sung-Hyeon

    2016-08-01

    Manganite (MnOOH) is one of the most effective electrocatalysts for oxygen reduction reaction (ORR), and RuO2 nanoparticles exhibit high activity for oxygen evolution reaction (OER). We herein report a facile means of producing well dispersed RuO2/MnOOH on Ketjen black (RuO2/MnOOH/C) as a bifunctional catalyst for lithium-air (Li-air) batteries. RuO2/MnOOH/C was simply synthesized using a hydrothermal/precipitation based method, and was used as a cathode for a Li-air battery using a Swagelok-type cell. The importance of dispersing active catalysts on a carbon support was clearly demonstrated by textural, charge-discharge voltammetric, and electrochemical impedance spectroscopic (EIS) analyses, comparing results with a catalyst produced by physically mixing RuO2/MnOOH with carbon (RuO2/MnOOH + C). RuO2/MnOOH/C showed low overpotential and stable cycleability up to 170th cycles with 1000 mAh g-1 of charge-discharge capacity, which was attributed to its enhanced active surface area and low charge-transfer resistance. The results obtained suggest that this strategy can be widely applied to bifunctional electrocatalysis, such as secondary batteries and regenerative fuel cell (RFC).

  20. Determination of carbon-reduction-cycle intermediates in leaves of Arbutus unedo L. suffering depressions in photosynthesis after application of abscisic acid or exposure to dry air.

    PubMed

    Loske, D; Raschke, K

    1988-02-01

    Gas exchange and contents of photosynthetic intermediates of leaves of Arbutus unedo L. were determined with the aim of recognizing the mechanisms of inhibition that were responsible for the "midday depression" of photosynthesis following exposure to dry air, and the decline in photosynthetic capacity following application of abscisic acid (ABA). Rapidly killed (<0.1 s) leaf samples were taken when gas analysis showed reduced CO2 assimilation. Determination of the contents of 3-phosphoglyceric acid (PGA), ribulose 1,5-bisphosphate (RuBP), triose phosphates, fructose 1,6-bisphosphate and hexose phosphates in the samples showed that significant variation occurred only in the level of PGA. As a result, the ratio PGA/RuBP decreased with increasing inhibition of photosynthesis, particularly when application of ABA had been the cause. A comparison of metabolite patterns did not bring out qualitative differences that would have indicated that effects of ABA and of dry air had been caused by separate mechanisms. Depression of photosynthesis occurred in the presence of sufficient RuBP which indicated that the carboxylation reaction of the carbon-reduction-cycle was inhibited after application of ABA or exposure to dry air. PMID:24226409

  1. Low-cycle fatigue of Type 347 stainless steel and Hastelloy alloy X in hydrogen gas and in air at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Jaske, C. E.; Rice, R. C.; Buchheit, R. D.; Roach, D. B.; Porfilio, T. L.

    1976-01-01

    An investigation was conducted to assess the low-cycle fatigue resistance of two alloys, Type 347 stainless steel and Hastelloy Alloy X, that were under consideration for use in nuclear-powered rocket vehicles. Constant-amplitude, strain-controlled fatigue tests were conducted under compressive strain cycling at a constant strain rate of 0.001/sec and at total axial strain ranges of 1.5, 3.0, and 5.0 %, in both laboratory-air and low-pressure hydrogen-gas environments at temperatures from 538 to 871 C. Specimens were obtained from three heats of Type 347 stainless steel bar and two heats of Hastelloy Alloy X. The tensile properties of each heat were determined at 21, 538, 649, and 760 C. The continuous cycling fatigue resistance was determined for each heat at temperatures of 538, 760, and 871 C. The Type 347 stainless steel exhibited equal or superior fatigue resistance to the Hastelloy Alloy X at all conditions of this study.

  2. Thirteen years of air pollution hourly monitoring in a large city: potential sources, trends, cycles and effects of car-free days.

    PubMed

    Masiol, Mauro; Agostinelli, Claudio; Formenton, Gianni; Tarabotti, Enzo; Pavoni, Bruno

    2014-10-01

    Thirteen air pollutant concentrations were measured hourly for 13 years (2000-2013) at an urban background site of a large city in the eastern Po Valley (Italy) and results were chemometrically analysed. The pollutant list includes CO, NO, NO2, NOx, O3, SO2, benzene, toluene, ethylbenzene, o-, m- and p-xylenes and PM10, all known or suspected of having adverse effects on human health. The hourly data were statistically processed to detect the long-term trends in relation to the changes in the emission scenarios occurred in the last decade. The most probable emission sources and atmospheric photochemical processes were investigated by analyzing the seasonal, weekly, diurnal cycles of pollutants and the lagged correlations amongst pollutants. The role of micro-meteorological factors upon the air quality was assessed by analyzing the relationships with key weather parameters, while the location of the potential sources was studied by matching atmospheric circulation and pollution data through bivariate polar plots and conditional probability functions. In addition, a new statistical procedure is presented and tested to analyze the periods when common mitigation measures were adopted in the city (e.g., the total stop of traffic and car-free days) and to evaluate their real effect upon the air quality. By providing direct information on the levels and trends of key pollutants, this study finally enables some general considerations about air pollution in an important hotspot of Southern Europe, the eastern Po Valley, where the levels of some key pollutants are still far from meeting the EC limit and target values. It may help policy-makers to take successful mitigation measures.

  3. Wacky Machines

    ERIC Educational Resources Information Center

    Fendrich, Jean

    2002-01-01

    Collectors everywhere know that local antique shops and flea markets are treasure troves just waiting to be plundered. Science teachers might take a hint from these hobbyists, for the next community yard sale might be a repository of old, quirky items that are just the things to get students thinking about simple machines. By introducing some…

  4. Observations on persistent organic pollutants in plants: Implications for their use as passive air samplers and for POP cycling

    SciTech Connect

    Ockenden, W.A.; Parker, C.; Jones, K.C.; Steinnes, E.

    1998-09-15

    Pine Needle (Pinus sylvestris) and lichen (Hypogymnia physodes) samples from various remote sites across Norway have been analyzed for a range of persistent organic pollutants (POPs). Results have shown differences in accumulation between species, with higher concentrations being noted in the H. physodes than the P. sylvestris. This indicates that to use vegetation as a biomonitor, intraspecies and not interspecies comparisons in vegetation pollutant loading between sites are necessary. {alpha}/{gamma}-HCH ratios were highest at colder northern sites, indicating increased distance from source areas and long-range atmospheric transport. Concentrations of PCBs 101, 118, 138, and 153 in H. physodes were found to be higher at lower temperatures. Trends between burdens of the other POPs in H. physodes or P. sylvestris and site temperature or latitude were not apparent. Plant/air partition coefficients indicate favored accumulation of PCBs in vegetation at lower temperatures and for higher chlorinated congeners.

  5. Changes in Belowground Carbon Cycling After 10 Years at the Duke Free-Air CO2 Enrichment (FACE) Experiment

    NASA Astrophysics Data System (ADS)

    Jackson, R. B.; Cook, C. W.; Pippen, J. S.

    2006-05-01

    Carbon dioxide concentrations are increasing rapidly in the earth's atmosphere and have risen by a third since the start of the industrial revolution. Beginning in 1996, the Duke Free-Air CO2 Enrichment (FACE) experiment has exposed a loblolly pine forest to an additional 200 parts per million CO2 (high CO2 treatment) compared to trees at ambient CO2. Root biomass has increased significantly at high CO2, as have soil respiration and the concentration of CO2 in the soil at different depths. Peak changes for root biomas, soil respiration, and many other variables occur in mid summer, with responses diminishing or disappearing in winter. This presentation will review the changes over the first decade of the experiment, emphasizing results from the most recent three years.

  6. Strain-cycling fatigue behavior of ten structural metals tested in liquid helium (4 K), in liquid nitrogen (78 K), and in ambient air (300 K)

    NASA Technical Reports Server (NTRS)

    Nachtigall, A. J.

    1974-01-01

    Strain-cycling fatigue behavior of 10 different structural alloys and metals was investigated in liquid helium (4 K), in liquid nitrogen (78 K), and in ambient air (300 K). At high cyclic lives, fatigue resistance increased with decreasing temperature for all the materials investigated. At low cyclic lives, fatigue resistance generally decreased with decreasing temperature for the materials investigated. Only for Inconel 718 did fatigue resistance increase with decreasing temperature over the entire life range investigated. Comparison of the experimental fatigue behavior with that predicted by the Manson method of universal slopes showed that the fatigue behavior of these materials can be predicted for cryogenic temperatures by using material tensile properties obtained at those same temperatures.

  7. Machine Learning

    NASA Astrophysics Data System (ADS)

    Hoffmann, Achim; Mahidadia, Ashesh

    The purpose of this chapter is to present fundamental ideas and techniques of machine learning suitable for the field of this book, i.e., for automated scientific discovery. The chapter focuses on those symbolic machine learning methods, which produce results that are suitable to be interpreted and understood by humans. This is particularly important in the context of automated scientific discovery as the scientific theories to be produced by machines are usually meant to be interpreted by humans. This chapter contains some of the most influential ideas and concepts in machine learning research to give the reader a basic insight into the field. After the introduction in Sect. 1, general ideas of how learning problems can be framed are given in Sect. 2. The section provides useful perspectives to better understand what learning algorithms actually do. Section 3 presents the Version space model which is an early learning algorithm as well as a conceptual framework, that provides important insight into the general mechanisms behind most learning algorithms. In section 4, a family of learning algorithms, the AQ family for learning classification rules is presented. The AQ family belongs to the early approaches in machine learning. The next, Sect. 5 presents the basic principles of decision tree learners. Decision tree learners belong to the most influential class of inductive learning algorithms today. Finally, a more recent group of learning systems are presented in Sect. 6, which learn relational concepts within the framework of logic programming. This is a particularly interesting group of learning systems since the framework allows also to incorporate background knowledge which may assist in generalisation. Section 7 discusses Association Rules - a technique that comes from the related field of Data mining. Section 8 presents the basic idea of the Naive Bayesian Classifier. While this is a very popular learning technique, the learning result is not well suited for

  8. Semiautomatic machine for turning inside out industrial leather gloves

    NASA Astrophysics Data System (ADS)

    Aragón-Gonzalez, G.; Cano-Blanco, M.; León-Galicia, A.; Medrano-Sierra, L. F.; Morales-Gómez, J. R.

    2015-01-01

    The last step in the industrial leather gloves manufacturing is to turn the inside out so that the sewing be in the inside of the glove. This work presents the design and testing of a machine for that purpose. In order to quantify the relevant variables, testing was performed with a prototype glove. The employed devices and the testing proceeding were developed experimentally. The obtained information was used to build the turning inside out machine. This machine works with pneumatic power to carry the inside out turning by means of double effect lineal actuators. It has two independent work stations that could be operated simultaneously by two persons, one in each station or in single mode operating one station by one person. The turning inside out cycle is started by means of directional control valves operated with pedals. The velocity and developed force by the actuators is controlled with typical pneumatic resources. The geometrical dimensions of the machine are: 1.15 m length; 0.71 m width and 2.15 m high. Its approximated weight is 120 kg. The air consumption is 5.4 fps by each working station with 60 psig work pressure. The turning inside out operation is 40 s for each industrial leather glove.

  9. Factors Regulating the Seasonal Cycle of Inter-continental Air Pollution Transport between Asia, the United States and Europe

    NASA Astrophysics Data System (ADS)

    Mauzerall, D. L.; Horowitz, L.; Kim, N.

    2002-12-01

    This talk will demonstrate the interdependency of air quality in the northern hemisphere on the emissions and subsequent transport of pollutants from each of the major industrialized continental regions. We examine the contribution that emissions from continental regions in the northern hemisphere make to the composition of the remote troposphere. We also examine the processes that control the concentration of reactive pollutants in continental boundary layers over the United States, Europe and East Asia and export from these boundary layers to the global troposphere. We use the MOZART-2 (Model of Ozone and Related Tracers, version 2) global chemical tracer model with tagged CO from fossil fuel and biomass burning emissions from each region. In conjunction with CO measurements from the Climate Monitoring and Diagnostic Lab (CMDL), we examine the influence that each regions' emissions have on remote surface locations in the northern hemisphere. We find that the remote troposphere of the northern hemisphere contains a mélange of CO emitted from different continental regions the contributions of which vary seasonally as a function of emissions, meteorology and atmospheric lifetime. To examine factors regulating the concentration distributions of O3, CO, NOx, PAN and HNO3 over the United States, Europe and Asia and their export to the global troposphere, we quantify and compare the seasonal contributions of chemistry, advection, convection and deposition to boundary layer concentrations of each chemical species and examine the horizontal and vertical fluxes of each species out of each regions boundary layer to the global troposphere.

  10. Pulsed, Hydraulic Coal-Mining Machine

    NASA Technical Reports Server (NTRS)

    Collins, Earl R., Jr.

    1986-01-01

    In proposed coal-cutting machine, piston forces water through nozzle, expelling pulsed jet that cuts into coal face. Spring-loaded piston reciprocates at end of travel to refill water chamber. Machine a onecylinder, two-cycle, internal-combustion engine, fueled by gasoline, diesel fuel, or hydrogen. Fuel converted more directly into mechanical energy of water jet.

  11. Charging machine

    DOEpatents

    Medlin, John B.

    1976-05-25

    A charging machine for loading fuel slugs into the process tubes of a nuclear reactor includes a tubular housing connected to the process tube, a charging trough connected to the other end of the tubular housing, a device for loading the charging trough with a group of fuel slugs, means for equalizing the coolant pressure in the charging trough with the pressure in the process tubes, means for pushing the group of fuel slugs into the process tube and a latch and a seal engaging the last object in the group of fuel slugs to prevent the fuel slugs from being ejected from the process tube when the pusher is removed and to prevent pressure liquid from entering the charging machine.

  12. Fullerene Machines

    NASA Technical Reports Server (NTRS)

    Globus, Al; Saini, Subhash

    1998-01-01

    Recent computational efforts at NASA Ames Research Center and computation and experiment elsewhere suggest that a nanotechnology of machine phase functionalized fullerenes may be synthetically accessible and of great interest. We have computationally demonstrated that molecular gears fashioned from (14,0) single-walled carbon nanotubes and benzyne teeth should operate well at 50-100 gigahertz. Preliminary results suggest that these gears can be cooled by a helium atmosphere and a laser motor can power fullerene gears if a positive and negative charge have been added to form a dipole. In addition, we have unproven concepts based on experimental and computational evidence for support structures, computer control, a system architecture, a variety of components, and manufacture. Combining fullerene machines with the remarkable mechanical properties of carbon nanotubes, there is some reason to believe that a focused effort to develop fullerene nanotechnology could yield materials with tremendous properties.

  13. Induction machine

    DOEpatents

    Owen, Whitney H.

    1980-01-01

    A polyphase rotary induction machine for use as a motor or generator utilizing a single rotor assembly having two series connected sets of rotor windings, a first stator winding disposed around the first rotor winding and means for controlling the current induced in one set of the rotor windings compared to the current induced in the other set of the rotor windings. The rotor windings may be wound rotor windings or squirrel cage windings.

  14. Cycling of weathered chlordane residues in the environment: compositional and chiral profiles in contiguous soil, vegetation, and air compartments.

    PubMed

    Mattina, MaryJane Incorvia; White, Jason; Eitzer, Brian; Iannucci-Berger, William

    2002-02-01

    Technical chlordane, a synthetic organic pesticide composed of 147 separate components, some of which exhibit optical activity, was used as an insecticide, herbicide, and termiticide prior to all uses being banned in the United States in 1988. It has been shown that food crops grown in soil treated decades earlier with technical chlordane translocate the weathered chlordane residues from the soil into root and aerial plant tissues. A rigorous analytical method is presented for the simultaneous, quantitative determination of both achiral and chiral components of technical chlordane in soil, plant, and air compartments using chiral gas chromatography interfaced to ion trap mass spectrometry and internal standard calibration. Using this method, we have observed differences in both the absolute and the relative amounts of trans- and cis-chlordane enantiomers and achiral trans-nonachlor between the soil compartment and various plant tissue compartments for several field-grown food crops. Changes in the relative amounts of the (+) and (-) enantiomers of trans- and cis-chlordane indicate enantioselective processes are in effect in the contiguous compartments of soil, plant roots, and aerial plant tissues. The data for zucchini (Cucurbita pepo L.), in particular, show an approximate fivefold enhancement in absolute concentration for total trans-chlordane, an eightfold concentration enhancement for total cis-chlordane, and a 2.5-fold enhancement for trans-nonachlor in the root relative to the soil matrix, the largest enhancements of any crop studied. This is the first comprehensive report of enantioselective processes into and through plant tissues for a variety of field-grown food crops. The selectivity will be related to observed insect toxicities of the enantiomers.

  15. Comparison of Anthropogenic CO2, NOx, and CO Emissions: Exploiting a Synergy Between Air Quality and Carbon Cycle Studies

    NASA Astrophysics Data System (ADS)

    Fischer, M. L.; Gurney, K. R.; Gregg, J. S.; Murtishaw, S.; Knox, S.; Andres, R. J.; Sieb, B.

    2005-05-01

    Studies of biospheric CO2 exchange at the regional to continental scale would be facilitated by spatiotemporally resolved estimates of CO2 emissions from fossil fuel combustion and other human activities. However, current estimates of fossil CO2 emissions do not provide sufficient temporal or spatial resolution for regional-scale investigations. The US-EPA National Emission Inventory (NEI) for criteria pollutants (e.g., NOx and CO) was developed for control of regional air quality and currently provides high resolution emissions estimates that are based, in part on, estimates of fuel consumption. Here we investigate the applicability of estimating CO2 emissions from either 1) NEI estimates of NOx or CO emissions, or 2) underlying information on fuel use contained within NEI. First, we calculate monthly sums of NOx and CO emissions separately for mobile, distributed area, and point sources for the 48 continental United States. We compare the aggregate NOx and CO emissions with monthly sums of each states CO2 emissions computed from sales of petroleum, natural gas, and coal as reported by the US Energy Information Agency (EIA). We then compute linear regressions to estimate CO:CO2 and NOx:CO2 emissions ratios and quantify the fraction of variance in CO2 captured by NOx and CO. Although the categories in the two data sets do not overlap perfectly, we find that in the cases where a close correspondence between fuel type and use is expected (e.g., petroleum and mobile sources), variations in NOx and CO explain approximately 80% of the variation in CO2 emissions. Second, we employ the Consolidated Community Emissions Processing Tool (CONCEPT) framework to extract estimates of fuel use or other proxy variables and estimate CO2 directly from the information contained in the NEI, and compare with the EIA estimates of CO2 emissions, and with NEI estimates of NOx and CO emissions as above. Finally, we discuss these results with consideration of previous atmospheric

  16. Comparison of Anthropogenic CO2, NOx, and CO Emissions: Exploiting a Synergy Between Air Quality and Carbon Cycle Studies

    NASA Astrophysics Data System (ADS)

    Fischer, M. L.; Gurney, K. R.; Gregg, J. S.; Murtishaw, S.; Knox, S.; Andres, R. J.; Sieb, B.

    2006-12-01

    Studies of biospheric CO2 exchange at the regional to continental scale would be facilitated by spatiotemporally resolved estimates of CO2 emissions from fossil fuel combustion and other human activities. However, current estimates of fossil CO2 emissions do not provide sufficient temporal or spatial resolution for regional-scale investigations. The US-EPA National Emission Inventory (NEI) for criteria pollutants (e.g., NOx and CO) was developed for control of regional air quality and currently provides high resolution emissions estimates that are based, in part on, estimates of fuel consumption. Here we investigate the applicability of estimating CO2 emissions from either 1) NEI estimates of NOx or CO emissions, or 2) underlying information on fuel use contained within NEI. First, we calculate monthly sums of NOx and CO emissions separately for mobile, distributed area, and point sources for the 48 continental United States. We compare the aggregate NOx and CO emissions with monthly sums of each states CO2 emissions computed from sales of petroleum, natural gas, and coal as reported by the US Energy Information Agency (EIA). We then compute linear regressions to estimate CO:CO2 and NOx:CO2 emissions ratios and quantify the fraction of variance in CO2 captured by NOx and CO. Although the categories in the two data sets do not overlap perfectly, we find that in the cases where a close correspondence between fuel type and use is expected (e.g., petroleum and mobile sources), variations in NOx and CO explain approximately 80% of the variation in CO2 emissions. Second, we employ the Consolidated Community Emissions Processing Tool (CONCEPT) framework to extract estimates of fuel use or other proxy variables and estimate CO2 directly from the information contained in the NEI, and compare with the EIA estimates of CO2 emissions, and with NEI estimates of NOx and CO emissions as above. Finally, we discuss these results with consideration of previous atmospheric

  17. Application of support vector machine method for the analysis of absorption spectra of exhaled air of patients with broncho-pulmonary diseases

    NASA Astrophysics Data System (ADS)

    Bukreeva, Ekaterina B.; Bulanova, Anna A.; Kistenev, Yury V.; Kuzmin, Dmitry A.; Tuzikov, Sergei A.; Yumov, Evgeny L.

    2014-11-01

    The results of the joint use of laser photoacoustic spectroscopy and chemometrics methods in gas analysis of exhaled air of patients with respiratory diseases (chronic obstructive pulmonary disease, pneumonia and lung cancer) are presented. The absorption spectra of exhaled breath of all volunteers were measured, the classification methods of the scans of the absorption spectra were applied, the sensitivity/specificity of the classification results were determined. It were obtained a result of nosological in pairs classification for all investigated volunteers, indices of sensitivity and specificity.

  18. Estimating the Mean Annual Surface Air Temperature at Armagh Observatory, Northern Ireland, and the Global Land-Ocean Temperature Index for Sunspot Cycle 24, the Current Ongoing Sunspot Cycle

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    2013-01-01

    As noted by Gray et al., Sir William Herschel was the first to suggest a possible close connection between the Sun and the Earth’s climate. The Sun, being the source of energy that impacts and drives the Earth’s climate system, displays a variety of changes over both short and long term time scales, the most obvious examples being the somewhat regular waxing and waning of sunspots with time (i.e., the sunspot cycle (SC)), first described by Samuel Heinrich Schwabe, a German apothecary and amateur astronomer who observed the Sun from Dessau, Germany, and the now well established variation of the Sun’s irradiance over the SC. Other factors related to the SC have been linked to changes in climate as well. Some of these other factors include the role of cosmic rays and the solar wind (i.e., the geomagnetic cycle) on climate, as well as the apparent close association between trends in global and northern hemispheric temperature and the length of the SC, although some investigators have described the inferred association between climate and, in particular, SC length as now being weak. More recently, Solheim et al. have reported on the relation between SC length and the average temperature in the same and immediately following SC for a number of meteorological stations in Norway and in the North Atlantic region. They noted that while they found no significant trend (correlation) between SC length and the average temperature when measured for the same cycle, in contrast, they found a significant negative trend when SC length was compared with the following cycle’s average temperature. From this observation, they suggested that average northern hemispheric temperature during the present ongoing SC (SC24) will be lower by about 0.9 °C than was seen in SC23 (spanning 1996–2007, based on yearly averages of sunspot number (SSN), and onset for SC24 occurring in 2008). The purpose of this Technical Publication (TP) is to examine the annual variations of the Armagh

  19. Investigating Air Pollution

    ERIC Educational Resources Information Center

    Carter, Edward J.

    1977-01-01

    Describes an experiment using live plants and cigarette smoke to demonstrate the effects of air pollution on a living organism. Procedures include growth of the test plants in glass bottles, and construction and operation of smoking machine. (CS)

  20. Electrical machine

    DOEpatents

    De Bock, Hendrik Pieter Jacobus; Alexander, James Pellegrino; El-Refaie, Ayman Mohamed Fawzi; Gerstler, William Dwight; Shah, Manoj Ramprasad; Shen, Xiaochun

    2016-06-21

    An apparatus, such as an electrical machine, is provided. The apparatus can include a rotor defining a rotor bore and a conduit disposed in and extending axially along the rotor bore. The conduit can have an annular conduit body defining a plurality of orifices disposed axially along the conduit and extending through the conduit body. The rotor can have an inner wall that at least partially defines the rotor bore. The orifices can extend through the conduit body along respective orifice directions, and the rotor and conduit can be configured to provide a line of sight along the orifice direction from the respective orifices to the inner wall.

  1. TEMPO machine

    SciTech Connect

    Rohwein, G.J.; Lancaster, K.T.; Lawson, R.N.

    1986-06-01

    TEMPO is a transformer powered megavolt pulse generator with an output pulse of 100 ns duration. The machine was designed for burst mode operation at pulse repetition rates up to 10 Hz with minimum pulse-to-pulse voltage variations. To meet the requirement for pulse duration a nd a 20-..omega.. output impedance within reasonable size constraints, the pulse forming transmission line was designed as two parallel water-insulated, strip-type Blumleins. Stray capacitance and electric fields along the edges of the line elements were controlled by lining the tank with plastic sheet.

  2. From human-machine interaction to human-machine cooperation.

    PubMed

    Hoc, J M

    2000-07-01

    Since the 1960s, the rapid growth of information systems has led to the wide development of research on human-computer interaction (HCI) that aims at the designing of human-computer interfaces presenting ergonomic properties, such as friendliness, usability, transparency, etc. Various work situations have been covered--clerical work, computer programming, design, etc. However, they were mainly static in the sense that the user fully controls the computer. More recently, public and private organizations have engaged themselves in the enterprise of managing more and more complex and coupled systems by the means of automation. Modern machines not only process information, but also act on dynamic situations as humans have done in the past, managing stock exchange, industrial plants, aircraft, etc. These dynamic situations are not fully controlled and are affected by uncertain factors. Hence, degrees of freedom must be maintained to allow the humans and the machine to adapt to unforeseen contingencies. A human-machine cooperation (HMC) approach is necessary to address the new stakes introduced by this trend. This paper describes the possible improvement of HCI by HMC, the need for a new conception of function allocation between humans and machines, and the main problems encountered within the new forms of human-machine relationship. It proposes a conceptual framework to study HMC from a cognitive point of view in highly dynamic situations like aircraft piloting or air-traffic control, and concludes on the design of 'cooperative' machines.

  3. Seasonal cycle and interannual variability of the total CH4 mixing ratios in West Siberia: Results from AIRS/AMSU and chemistry transport models for 2003-2013

    NASA Astrophysics Data System (ADS)

    Lagutin, Anatoly; Mordvin, Egor

    Methane (CH4) is an important greenhouse gas. It has much higher global warming potential comparing to carbon dioxide on per mass emitted basis. Atmospheric methane also plays an important role in atmospheric ozone chemistry and is the main source of water vapor in the stratosphere. The recent increase of CH4 in 2007-2008, after a nearly stable period of about one decade, is attributed to the increased emissions from tropical and Arctic wetlands. However, many uncertainties regarding natural and anthropogenic methane emissions still exist. For example, the total CH4 emissions from wetlands in West Siberia are estimated to be in the range from 1.6 to 20 Tg/year. The main causes leading to such large uncertainties are significant spatial and temporal variation of CH4 emissions and the sparseness of ground observational networks. The purpose of this study is to investigate the seasonal cycle and interannual variability of the total CH4 mixing ratios (CH4-Tot) in West Siberia for 2003-2013 using the AIRS/AMSU-Aqua measurements and the results from chemistry transport models MOZART4 and ACTM-CCSR/NIES/FRCGC. The key feature of the proposed approach is chemistry transport model-based regression equation linking CH4-Tot with mid-upper tropospheric CH4 (in the layer from 50 to 250 hPa below the tropopause), the tropopause height and the surface temperature. The observational information in our approach comes from the AIRS/AMSU measurements. Comparison of the retrieved CH4-Tot with the measurements of CH4 from the Total Carbon Column Observing Network (TCCON) have shown that the model captures observed seasonal cycles and interannual variability at mid-latitude sites. The spatial and temporal distributions of CH4-Tot in West Siberia for 2003-2013 are presented. Analysis of deseasonalized time-series indicates that the total CH4 mixing ratios increases about 4 ppbv/yr from 2007. This work was supported in part by the Russian Foundation for Basic Research (grant No 13

  4. Evaluation of 11 terrestrial carbon-nitrogen cycle models against observations from two temperate Free-Air CO2 Enrichment studies.

    PubMed

    Zaehle, Sönke; Medlyn, Belinda E; De Kauwe, Martin G; Walker, Anthony P; Dietze, Michael C; Hickler, Thomas; Luo, Yiqi; Wang, Ying-Ping; El-Masri, Bassil; Thornton, Peter; Jain, Atul; Wang, Shusen; Warlind, David; Weng, Ensheng; Parton, William; Iversen, Colleen M; Gallet-Budynek, Anne; McCarthy, Heather; Finzi, Adrien; Hanson, Paul J; Prentice, I Colin; Oren, Ram; Norby, Richard J

    2014-05-01

    We analysed the responses of 11 ecosystem models to elevated atmospheric [CO2 ] (eCO2 ) at two temperate forest ecosystems (Duke and Oak Ridge National Laboratory (ORNL) Free-Air CO2 Enrichment (FACE) experiments) to test alternative representations of carbon (C)-nitrogen (N) cycle processes. We decomposed the model responses into component processes affecting the response to eCO2 and confronted these with observations from the FACE experiments. Most of the models reproduced the observed initial enhancement of net primary production (NPP) at both sites, but none was able to simulate both the sustained 10-yr enhancement at Duke and the declining response at ORNL: models generally showed signs of progressive N limitation as a result of lower than observed plant N uptake. Nonetheless, many models showed qualitative agreement with observed component processes. The results suggest that improved representation of above-ground-below-ground interactions and better constraints on plant stoichiometry are important for a predictive understanding of eCO2 effects. Improved accuracy of soil organic matter inventories is pivotal to reduce uncertainty in the observed C-N budgets. The two FACE experiments are insufficient to fully constrain terrestrial responses to eCO2 , given the complexity of factors leading to the observed diverging trends, and the consequential inability of the models to explain these trends. Nevertheless, the ecosystem models were able to capture important features of the experiments, lending some support to their projections.

  5. Evaluation of 11 terrestrial carbon–nitrogen cycle models against observations from two temperate Free-Air CO2 Enrichment studies

    PubMed Central

    Zaehle, Sönke; Medlyn, Belinda E; De Kauwe, Martin G; Walker, Anthony P; Dietze, Michael C; Hickler, Thomas; Luo, Yiqi; Wang, Ying-Ping; El-Masri, Bassil; Thornton, Peter; Jain, Atul; Wang, Shusen; Warlind, David; Weng, Ensheng; Parton, William; Iversen, Colleen M; Gallet-Budynek, Anne; McCarthy, Heather; Finzi, Adrien; Hanson, Paul J; Prentice, I Colin; Oren, Ram; Norby, Richard J

    2014-01-01

    We analysed the responses of 11 ecosystem models to elevated atmospheric [CO2] (eCO2) at two temperate forest ecosystems (Duke and Oak Ridge National Laboratory (ORNL) Free-Air CO2 Enrichment (FACE) experiments) to test alternative representations of carbon (C)–nitrogen (N) cycle processes. We decomposed the model responses into component processes affecting the response to eCO2 and confronted these with observations from the FACE experiments. Most of the models reproduced the observed initial enhancement of net primary production (NPP) at both sites, but none was able to simulate both the sustained 10-yr enhancement at Duke and the declining response at ORNL: models generally showed signs of progressive N limitation as a result of lower than observed plant N uptake. Nonetheless, many models showed qualitative agreement with observed component processes. The results suggest that improved representation of above-ground–below-ground interactions and better constraints on plant stoichiometry are important for a predictive understanding of eCO2 effects. Improved accuracy of soil organic matter inventories is pivotal to reduce uncertainty in the observed C–N budgets. The two FACE experiments are insufficient to fully constrain terrestrial responses to eCO2, given the complexity of factors leading to the observed diverging trends, and the consequential inability of the models to explain these trends. Nevertheless, the ecosystem models were able to capture important features of the experiments, lending some support to their projections. PMID:24467623

  6. Cloning and expression of StAR during gonadal cycle and hCG-induced oocyte maturation of air-breathing catfish, Clarias gariepinus.

    PubMed

    Sreenivasulu, G; Sridevi, P; Sahoo, P K; Swapna, I; Ge, W; Kirubagaran, R; Dutta-Gupta, A; Senthilkumaran, B

    2009-09-01

    Complementary DNAs encoding steroidogenic acute regulatory protein (StAR) have been isolated from different fish species, yet the relevance of StAR during gonadal cycle and more importantly in final oocyte maturation has not been assessed so far. A cDNA encoding StAR was isolated from the ovarian follicles of air-breathing catfish, Clarias gariepinus. Catfish StAR exhibited 55 to 72% identity at nucleotide level with other vertebrate orthologs. RT-PCR analysis of tissue distribution pattern demonstrated the presence of StAR mRNA in various tissues including gonads, kidney, liver, brain and intestine of catfish. Real-time RT-PCR analysis revealed high expression of StAR mRNA in the pre-spawning phase of ovary while it was low in preparatory, spawning and regressed phases. In testis, maximum expression was noticed during the preparatory phase. During human chorionic gonadotropin (hCG)-induced oocyte maturation, both in vitro and in vivo, StAR mRNA levels were augmented by 2 h and then declined gradually to reach basal levels by 12 h as that of saline-treated controls. Taken together, high level of expression during hCG-induced oocyte maturation vis-à-vis in spawning suggests a role for StAR, in addition to the steroidogenic enzyme genes in final oocyte maturation.

  7. The validity of power output recorded during exercise performance tests using a Kingcycle air-braked cycle ergometer when compared with an SRM powermeter.

    PubMed

    Balmer, J; Davison, R C; Coleman, D A; Bird, S R

    2000-04-01

    This study assessed the validity of power output recorded using an air-braked cycle ergometer (Kingcycle) when compared with a power measuring crankset (SRM). For part one of the study thirteen physically active subjects completed a continuous incremental exercise test (OBLA), for part two of the study twelve trained cyclists completed two tests; a maximal aerobic power test (MAP) and a 16.1 km time-trial (16.1 km TT). The following were compared; the peak power output (PPO) recorded for 1 min during MAP, the average power output for the duration of the time-trial and power output recorded during each stage of OBLA. For all tests, power output recorded using Kingcycle was significantly higher than SRM (P < 0.001). Ratio limits of agreement between SRM and Kingcycle for OBLA showed a bias (P < 0.00) of 0.90 (95%CI = 0.90-0.91) with a random error of X or / 1.07, and for PPO and 16.1 km TT ratio limits of agreement were 0.90 (95%CI = 0.88-0.92) X or / 1.07 and 0.92 (95% CI = 0.90-0.94) X or / 1.07, respectively. These data revealed that the Kingcycle ergometry system did not provide a valid measure of power output when compared with SRM.

  8. Life cycle inventory analysis of regenerative thermal oxidation of air emissions from oriented strand board facilities in Minnesota - a perspective of global climate change

    SciTech Connect

    Nicholson, W.J.

    1997-12-31

    Life cycle inventory analysis has been applied to the prospective operation of regenerative thermal oxidation (RTO) technology at oriented strand board plants at Bemidji (Line 1) and Cook, Minnesota. The net system destruction of VOC`s and carbon monoxide, and at Cook a small quantity of particulate, has a very high environmental price in terms of energy and water use, global warming potential, sulfur and nitrogen oxide emissions, solids discharged to water, and solid waste deposited in landfills. The benefit of VOC destruction is identified as minor in terms of ground level ozone at best and possibly slightly detrimental. Recognition of environmental tradeoffs associated with proposed system changes is critical to sound decision-making. There are more conventional ways to address carbon monoxide emissions than combustion in RTO`s. In an environment in which global warming is a concern, fuel supplemental combustion for environmental control does not appear warranted. Consideration of non-combustion approaches to address air emission issues at the two operations is recommended. 1 ref., 5 tabs.

  9. Cloning and expression of StAR during gonadal cycle and hCG-induced oocyte maturation of air-breathing catfish, Clarias gariepinus.

    PubMed

    Sreenivasulu, G; Sridevi, P; Sahoo, P K; Swapna, I; Ge, W; Kirubagaran, R; Dutta-Gupta, A; Senthilkumaran, B

    2009-09-01

    Complementary DNAs encoding steroidogenic acute regulatory protein (StAR) have been isolated from different fish species, yet the relevance of StAR during gonadal cycle and more importantly in final oocyte maturation has not been assessed so far. A cDNA encoding StAR was isolated from the ovarian follicles of air-breathing catfish, Clarias gariepinus. Catfish StAR exhibited 55 to 72% identity at nucleotide level with other vertebrate orthologs. RT-PCR analysis of tissue distribution pattern demonstrated the presence of StAR mRNA in various tissues including gonads, kidney, liver, brain and intestine of catfish. Real-time RT-PCR analysis revealed high expression of StAR mRNA in the pre-spawning phase of ovary while it was low in preparatory, spawning and regressed phases. In testis, maximum expression was noticed during the preparatory phase. During human chorionic gonadotropin (hCG)-induced oocyte maturation, both in vitro and in vivo, StAR mRNA levels were augmented by 2 h and then declined gradually to reach basal levels by 12 h as that of saline-treated controls. Taken together, high level of expression during hCG-induced oocyte maturation vis-à-vis in spawning suggests a role for StAR, in addition to the steroidogenic enzyme genes in final oocyte maturation. PMID:19409506

  10. Safety improvements in high pressure thermal machines

    SciTech Connect

    Otters, J.L.

    1988-02-09

    In a thermal machine of the type including a machine body having a main axis extending between a thermal end and a work end, a working fluid at relatively high pressure in a working fluid chamber defined in the body and a displacer element reciprocable within the chamber for subjecting the fluid to a thermodynamic cycle in cooperation with a reciprocable work piston, the improvement is described comprising outer shell means enclosing the machine body for maintaining a substantially sealed atmosphere about the machine body, and diffuser means arranged between the machine body and the outer shell means for diffusing a shock wave traveling towards the outer shell means resulting from explosive failure of the machine body and for shielding the outer shell means against fragments projected upon such failure.

  11. Foam-Mixing-And-Dispensing Machine

    NASA Technical Reports Server (NTRS)

    Chong, Keith Y.; Toombs, Gordon R.; Jackson, Richard J.

    1996-01-01

    Time-and-money-saving machine produces consistent, homogeneously mixed foam, enhancing production efficiency. Automatically mixes and dispenses polyurethane foam in quantities specified by weight. Consists of cart-mounted, air-driven proportioning unit; air-activated mechanical mixing gun; programmable timer/counter, and controller.

  12. Mining machine

    SciTech Connect

    Becker, H.R.

    1984-12-04

    A mining machine is disclosed comprising a mobile base and a cutting head assembly at a forward end of the mobile base having a cutter drum rotatable about an output shaft disposed along the longitudinal axis of the cutter drum. A drive system for the cutting head assembly comprises at least one motor for driving at least one toothed motor pinion and a generally cylindrical combination gear having generally circular end surfaces. A bevel or face gear is formed in at least one of the end surfaces, having teeth adapted to mate with and be driven by the toothed motor pinion. The combination gear has a worm gear formed in the outside cylindrical surface, which is disposed in driving engagement with the teeth of an output gear integrally and coaxially connected to the output shaft of the cutter drum.

  13. Rechargeability of Li-air cathodes pre-filled with discharge products using an ether-based electrolyte solution: implications for cycle-life of Li-air cells.

    PubMed

    Meini, Stefano; Tsiouvaras, Nikolaos; Schwenke, K Uta; Piana, Michele; Beyer, Hans; Lange, Lukas; Gasteiger, Hubert A

    2013-07-21

    The instability of currently used electrolyte solutions and of the carbon support during charge-discharge in non-aqueous lithium-oxygen cells can lead to discharge products other than the desired Li2O2, such as Li2CO3, which is believed to reduce cycle-life. Similarly, discharge in an O2 atmosphere which contains H2O and CO2 impurities would lead to LiOH and Li2CO3 discharge products. In this work we therefore investigate the rechargeability of model cathodes pre-filled with four possible Li-air cell discharge products, namely Li2O2, Li2CO3, LiOH, and Li2O. Using Online Electrochemical Mass Spectrometry (OEMS), we determined the charge voltages and the gases evolved upon charge of pre-filled electrodes, thus determining the reversibility of the formation/electrooxidation reactions. We show that Li2O2 is the only reversible discharge product in ether-based electrolyte solutions, and that the formation of Li2CO3, LiOH, or Li2O is either irreversible and/or reacts with the electrolyte solution or the carbon during its oxidation.

  14. Rechargeability of Li-air cathodes pre-filled with discharge products using an ether-based electrolyte solution: implications for cycle-life of Li-air cells.

    PubMed

    Meini, Stefano; Tsiouvaras, Nikolaos; Schwenke, K Uta; Piana, Michele; Beyer, Hans; Lange, Lukas; Gasteiger, Hubert A

    2013-07-21

    The instability of currently used electrolyte solutions and of the carbon support during charge-discharge in non-aqueous lithium-oxygen cells can lead to discharge products other than the desired Li2O2, such as Li2CO3, which is believed to reduce cycle-life. Similarly, discharge in an O2 atmosphere which contains H2O and CO2 impurities would lead to LiOH and Li2CO3 discharge products. In this work we therefore investigate the rechargeability of model cathodes pre-filled with four possible Li-air cell discharge products, namely Li2O2, Li2CO3, LiOH, and Li2O. Using Online Electrochemical Mass Spectrometry (OEMS), we determined the charge voltages and the gases evolved upon charge of pre-filled electrodes, thus determining the reversibility of the formation/electrooxidation reactions. We show that Li2O2 is the only reversible discharge product in ether-based electrolyte solutions, and that the formation of Li2CO3, LiOH, or Li2O is either irreversible and/or reacts with the electrolyte solution or the carbon during its oxidation. PMID:23748698

  15. Minimal universal quantum heat machine.

    PubMed

    Gelbwaser-Klimovsky, D; Alicki, R; Kurizki, G

    2013-01-01

    In traditional thermodynamics the Carnot cycle yields the ideal performance bound of heat engines and refrigerators. We propose and analyze a minimal model of a heat machine that can play a similar role in quantum regimes. The minimal model consists of a single two-level system with periodically modulated energy splitting that is permanently, weakly, coupled to two spectrally separated heat baths at different temperatures. The equation of motion allows us to compute the stationary power and heat currents in the machine consistent with the second law of thermodynamics. This dual-purpose machine can act as either an engine or a refrigerator (heat pump) depending on the modulation rate. In both modes of operation, the maximal Carnot efficiency is reached at zero power. We study the conditions for finite-time optimal performance for several variants of the model. Possible realizations of the model are discussed.

  16. Transfer rates of enteric microorganisms in recycled water during machine clothes washing.

    PubMed

    O'Toole, Joanne; Sinclair, Martha; Leder, Karin

    2009-03-01

    Approximately 15% of overall Australian household water usage is in the laundry; hence, a significant reduction in household drinking water demand could be achieved if potable-quality water used for clothes washing is replaced with recycled water. To investigate the microbiological safety of using recycled water in washing machines, bacteriophages MS-2 and PRD-1, Escherichia coli, and Cryptosporidium parvum oocysts were used in a series of experiments to investigate the transfer efficiency of enteric microorganisms from washing machine water to objects including hands, environmental surfaces, air, and fabric swatches. By determining the transference efficiency, it is possible to estimate the numbers of microorganisms that the user will be exposed to if recycled water with various levels of residual microorganisms is used in washing machines. Results, expressed as transfer rates to a given surface area per object, showed that the mean transfer efficiency of E. coli, bacteriophages MS-2 and PRD-1, and C. parvum oocysts from seeded water to fabric swatches ranged from 0.001% to 0.090%. Greatest exposure to microorganisms occurred through direct contact of hands with seeded water and via hand contact with contaminated fabric swatches. No microorganisms were detected in the air samples during the washing machine spin cycle, and transfer rates of bacteriophages from water to environmental surfaces were 100-fold less than from water directly to hands. Findings from this study provide relevant information that can be used to refine regulations governing recycled water and to allay public concerns about the use of recycled water.

  17. Machine wanting.

    PubMed

    McShea, Daniel W

    2013-12-01

    Wants, preferences, and cares are physical things or events, not ideas or propositions, and therefore no chain of pure logic can conclude with a want, preference, or care. It follows that no pure-logic machine will ever want, prefer, or care. And its behavior will never be driven in the way that deliberate human behavior is driven, in other words, it will not be motivated or goal directed. Therefore, if we want to simulate human-style interactions with the world, we will need to first understand the physical structure of goal-directed systems. I argue that all such systems share a common nested structure, consisting of a smaller entity that moves within and is driven by a larger field that contains it. In such systems, the smaller contained entity is directed by the field, but also moves to some degree independently of it, allowing the entity to deviate and return, to show the plasticity and persistence that is characteristic of goal direction. If all this is right, then human want-driven behavior probably involves a behavior-generating mechanism that is contained within a neural field of some kind. In principle, for goal directedness generally, the containment can be virtual, raising the possibility that want-driven behavior could be simulated in standard computational systems. But there are also reasons to believe that goal-direction works better when containment is also physical, suggesting that a new kind of hardware may be necessary. PMID:23792091

  18. Machine wanting.

    PubMed

    McShea, Daniel W

    2013-12-01

    Wants, preferences, and cares are physical things or events, not ideas or propositions, and therefore no chain of pure logic can conclude with a want, preference, or care. It follows that no pure-logic machine will ever want, prefer, or care. And its behavior will never be driven in the way that deliberate human behavior is driven, in other words, it will not be motivated or goal directed. Therefore, if we want to simulate human-style interactions with the world, we will need to first understand the physical structure of goal-directed systems. I argue that all such systems share a common nested structure, consisting of a smaller entity that moves within and is driven by a larger field that contains it. In such systems, the smaller contained entity is directed by the field, but also moves to some degree independently of it, allowing the entity to deviate and return, to show the plasticity and persistence that is characteristic of goal direction. If all this is right, then human want-driven behavior probably involves a behavior-generating mechanism that is contained within a neural field of some kind. In principle, for goal directedness generally, the containment can be virtual, raising the possibility that want-driven behavior could be simulated in standard computational systems. But there are also reasons to believe that goal-direction works better when containment is also physical, suggesting that a new kind of hardware may be necessary.

  19. Over-expressing the C3 photosynthesis cycle enzyme Sedoheptulose-1-7 Bisphosphatase improves photosynthetic carbon gain and yield under fully open air CO2 fumigation (FACE)

    PubMed Central

    2011-01-01

    Background Biochemical models predict that photosynthesis in C3 plants is most frequently limited by the slower of two processes, the maximum capacity of the enzyme Rubisco to carboxylate RuBP (Vc,max), or the regeneration of RuBP via electron transport (J). At current atmospheric [CO2] levels Rubisco is not saturated; consequently, elevating [CO2] increases the velocity of carboxylation and inhibits the competing oxygenation reaction which is also catalyzed by Rubisco. In the future, leaf photosynthesis (A) should be increasingly limited by RuBP regeneration, as [CO2] is predicted to exceed 550 ppm by 2050. The C3 cycle enzyme sedoheptulose-1,7 bisphosphatase (SBPase, EC 3.1.3.17) has been shown to exert strong metabolic control over RuBP regeneration at light saturation. Results We tested the hypothesis that tobacco transformed to overexpressing SBPase will exhibit greater stimulation of A than wild type (WT) tobacco when grown under field conditions at elevated [CO2] (585 ppm) under fully open air fumigation. Growth under elevated [CO2] stimulated instantaneous A and the diurnal photosynthetic integral (A') more in transformants than WT. There was evidence of photosynthetic acclimation to elevated [CO2] via downregulation of Vc,max in both WT and transformants. Nevertheless, greater carbon assimilation and electron transport rates (J and Jmax) for transformants led to greater yield increases than WT at elevated [CO2] compared to ambient grown plants. Conclusion These results provide proof of concept that increasing content and activity of a single photosynthesis enzyme can enhance carbon assimilation and yield of C3 crops grown at [CO2] expected by the middle of the 21st century. PMID:21884586

  20. Synoptic evaluation of carbon cycling in Beaufort Sea during summer: contrasting river inputs, ecosystem metabolism and air-sea CO2 fluxes

    NASA Astrophysics Data System (ADS)

    Forest, A.; Coupel, P.; Else, B.; Nahavandian, S.; Lansard, B.; Raimbault, P.; Papakyriakou, T.; Gratton, Y.; Fortier, L.; Tremblay, J.-É.; Babin, M.

    2013-10-01

    The accelerated decline in Arctic sea ice combined with an ongoing trend toward a more dynamic atmosphere is modifying carbon cycling in the Arctic Ocean. A critical issue is to understand how net community production (NCP; the balance between gross primary production and community respiration) responds to changes and modulates air-sea CO2 fluxes. Using data collected as part of the ArcticNet-Malina 2009 expedition in southeastern Beaufort Sea (Arctic Ocean), we synthesize information on sea ice, wind, river, water column properties, metabolism of the planktonic food web, organic carbon fluxes and pools, as well as air-sea CO2 exchange, with the aim of identifying indices of ecosystem response to environmental changes. Data were analyzed to develop a non-steady-state carbon budget and an assessment of NCP against air-sea CO2 fluxes. The mean atmospheric forcing was a mild upwelling-favorable wind (~5 km h-1) blowing from the N-E and a decaying ice cover (<80% concentration) was observed beyond the shelf, the latter being fully exposed to the atmosphere. We detected some areas where the surface mixed layer was net autotrophic owing to high rates of primary production (PP), but the ecosystem was overall net heterotrophic. The region acted nonetheless as a sink for atmospheric CO2 with a mean uptake rate of -2.0 ± 3.3 mmol C m-2d-1. We attribute this discrepancy to: (1) elevated PP rates (>600 mg C m-2d-1) over the shelf prior to our survey, (2) freshwater dilution by river runoff and ice melt, and (3) the presence of cold surface waters offshore. Only the Mackenzie River delta and localized shelf areas directly affected by upwelling were identified as substantial sources of CO2 to the atmosphere (>10mmol C m-2d-1). Although generally <100 mg C m-2d-1, daily PP rates cumulated to a total PP of ~437.6 × 103 t C, which was roughly twice higher than the organic carbon delivery by river inputs (~241.2 × 103 t C). Subsurface PP represented 37.4% of total PP for the

  1. Biogeochemical cycles: Interactions in global metabolism

    NASA Technical Reports Server (NTRS)

    Moore, B., III; Morowitz, H.; Dastoor, M. N.

    1984-01-01

    A science that chooses the globe as it fundamental biogeophysical unit forces extraordinary conceptual difficulties. The roles of energy flow, matter cycles, carbon cycle, air pollution, global effects, air water interactions are discussed.

  2. 29 CFR 1926.803 - Compressed air.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of fresh air shall be provided. (5) Whenever heat-producing machines (moles, shields) are used in... be equipped with noncombustible, nonabsorptive, insulating sockets, approved handles, basket...

  3. Rapid cycling superconducting magnets

    NASA Astrophysics Data System (ADS)

    Fabbricatore, P.; Farinon, S.; Gambardella, U.; Greco, M.; Volpini, G.

    2006-04-01

    The paper deals with the general problematic related to the development of fast cycled superconducting magnets for application in particle accelerator machines. Starting from the requirements of SIS300 synchrotron under design at GSI and an envisaged future Super-SPS injector at CERN, it is shown which developments are mandatory in the superconducting wire technology and in the magnet design field.

  4. OptiCentric lathe centering machine

    NASA Astrophysics Data System (ADS)

    Buß, C.; Heinisch, J.

    2013-09-01

    High precision optics depend on precisely aligned lenses. The shift and tilt of individual lenses as well as the air gap between elements require accuracies in the single micron regime. These accuracies are hard to meet with traditional assembly methods. Instead, lathe centering can be used to machine the mount with respect to the optical axis. Using a diamond turning process, all relevant errors of single mounted lenses can be corrected in one post-machining step. Building on the OptiCentric® and OptiSurf® measurement systems, Trioptics has developed their first lathe centering machines. The machine and specific design elements of the setup will be shown. For example, the machine can be used to turn optics for i-line steppers with highest precision.

  5. Magnitude and value of electric vehicle emissions reductions for six driving cycles in four US cities with varying air quality problems

    SciTech Connect

    Wang, Q.; Santini, D.L.

    1992-12-31

    The emissions of logically competing mid-1990 gasoline vehicles (GVs) and electric vehicles (EVs) are estimated as if the vehicles were driven in the same pattern of driving. Six different driving cycles are evaluated, ranging in speed from 7 to 49 miles per hour (mph). These steps are repeated using specifics of fuel composition, electric power mix, and environmental conditions applicable to Chicago, Denver, Los Angeles, and New York in the month of July. The year 2000 emissions differences for each of four regulated pollutants - HC, CO, NO{sub x,} SO{sub x} - are estimated. CO{sub 2} emissions are also estimated. With use of EVs, HC and CO emissions are consistently lowered by 98% or more. CO{sub 2} emissions reductions are uniformly large at low speed, but variable at high speed. It is found that initially introduced EVs could achieve 100% emission reductions in Chicago by using off-peak power from nuclear power plants for EV electricity generation. Emissions reductions occur for all combinations in Los Angeles, and for most combinations in New York, excepting SO{sub x}. NO{sub x} emissions are reduced in all four cities. An ``avoided cost`` value for each regulated pollutant is estimated for each of the cities. The values for each city depend on severity of air quality violations. It is estimated that the emissions reduction value of EVs driven an average of one and one half hours per day in Los Angeles ranges from $1050 to $3,900; $590 to $2100 in New York; $270 to $1200 in Chicago, and $330 to $1250 in Denver (1989$). Assuming a range of about 100 miles in congested conditions with speeds of 10 mph or less, the estimates range from $3600 to $13300 for Los Angeles; $2004 to $7200 for New York; $930 to $2930 for Chicago; and $1120 to $4290 for Denver. Low estimates are obtained using EPA`s draft Mobile5 model for GV emissions, high values by using California`s EMFAC7EP-SCF1 model. The dollar value benefit estimates include no economic value.

  6. Magnitude and value of electric vehicle emissions reductions for six driving cycles in four US cities with varying air quality problems

    SciTech Connect

    Wang, Q. ); Santini, D.L. )

    1992-01-01

    The emissions of logically competing mid-1990 gasoline vehicles (GVs) and electric vehicles (EVs) are estimated as if the vehicles were driven in the same pattern of driving. Six different driving cycles are evaluated, ranging in speed from 7 to 49 miles per hour (mph). These steps are repeated using specifics of fuel composition, electric power mix, and environmental conditions applicable to Chicago, Denver, Los Angeles, and New York in the month of July. The year 2000 emissions differences for each of four regulated pollutants - HC, CO, NO[sub x,] SO[sub x] - are estimated. CO[sub 2] emissions are also estimated. With use of EVs, HC and CO emissions are consistently lowered by 98% or more. CO[sub 2] emissions reductions are uniformly large at low speed, but variable at high speed. It is found that initially introduced EVs could achieve 100% emission reductions in Chicago by using off-peak power from nuclear power plants for EV electricity generation. Emissions reductions occur for all combinations in Los Angeles, and for most combinations in New York, excepting SO[sub x]. NO[sub x] emissions are reduced in all four cities. An avoided cost'' value for each regulated pollutant is estimated for each of the cities. The values for each city depend on severity of air quality violations. It is estimated that the emissions reduction value of EVs driven an average of one and one half hours per day in Los Angeles ranges from $1050 to $3,900; $590 to $2100 in New York; $270 to $1200 in Chicago, and $330 to $1250 in Denver (1989$). Assuming a range of about 100 miles in congested conditions with speeds of 10 mph or less, the estimates range from $3600 to $13300 for Los Angeles; $2004 to $7200 for New York; $930 to $2930 for Chicago; and $1120 to $4290 for Denver. Low estimates are obtained using EPA's draft Mobile5 model for GV emissions, high values by using California's EMFAC7EP-SCF1 model. The dollar value benefit estimates include no economic value.

  7. N2 fixation and cycling in Alnus glutinosa, Betula pendula and Fagus sylvatica woodland exposed to free air CO2 enrichment.

    PubMed

    Millett, Jonathan; Godbold, Douglas; Smith, Andrew R; Grant, Helen

    2012-06-01

    We measured the effect of elevated atmospheric CO(2) on atmospheric nitrogen (N(2)) fixation in the tree species Alnus glutinosa growing in monoculture or in mixture with the non-N(2)-fixing tree species Betula pendula and Fagus sylvatica. We addressed the hypotheses that (1) N(2) fixation in A. glutinosa will increase in response to increased atmospheric CO(2) concentrations, when growing in monoculture, (2) the impact of elevated CO(2) on N(2) fixation in A. glutinosa is the same in mixture and in monoculture and (3) the impacts of elevated CO(2) on N cycling will be evident by a decrease in leaf δ(15)N and by the soil-leaf enrichment factor (EF), and that these impacts will not differ between mixed and single species stands. Trees were grown in a forest plantation on former agricultural fields for four growing seasons, after which the trees were on average 3.8 m tall and canopy closure had occurred. Atmospheric CO(2) concentrations were maintained at either ambient or elevated (by 200 ppm) concentrations using a free-air CO(2) enrichment (FACE) system. Leaf δ(15)N was measured and used to estimate the amount (N(dfa)) and proportion (%N(dfa)) of N derived from atmospheric fixation. On average, 62% of the N in A. glutinosa leaves was from fixation. The %N(dfa) and N(dfa) for A. glutinosa trees in monoculture did not increase under elevated CO(2), despite higher growth rates. However, N(2) fixation did increase for trees growing in mixture, despite the absence of significant growth stimulation. There was evidence that fixed N(2) was transferred from A. glutinosa to F. sylvatica and B. pendula, but no evidence that this affected their CO(2) response. The results of this study show that N(2) fixation in A. glutinosa may be higher in a future elevated CO(2) world, but that this effect will only occur where the trees are growing in mixed species stands.

  8. High-Cycle Fatigue Behavior of a Nicalon(tm)/Si-N-C Composite

    NASA Technical Reports Server (NTRS)

    Verrilli, Michael J.; Kalluri, Sreeramesh; Kantzos, Peter T.

    1999-01-01

    Elevated temperature, high-cycle fatigue behavior of a woven SiC/Si-N-C ceramic matrix composite system was investigated at 910 C. High frequency (100 Hz) fatigue tests were conducted in air on specimens machined from the composite system, A power-law type fatigue life relationship adequately characterized the high-cycle fatigue data generated in the study. Post failure fractographic and metallographic studies were performed to document the fatigue crack initiation regions and damage mechanisms in the composite system. Fatigue cracks initiated primarily from the corners of the specimens and propagated along the 90 degree fiber tows.

  9. Laboratory Test of Vending Machine with Advanced Defrosting Technology and Integrated Accumulatory/Expander Concept

    SciTech Connect

    Bryne, M E; Domitrovic, R E; Mei, V C; Chen, F C; Fransson, J H.M.

    2000-10-01

    The manufacturer delivered an off-the-shelf soft drink vending machine for testing to ORNL. The machine was tested for baseline performance and it was found that the cold air passage was not properly designed. An inadequate cold air supply to the product resulted in recirculation of the evaporator air and heavy frost accumulation on the evaporator coil.

  10. 75 FR 34673 - Approval of the Clean Air Act, Section 112(l), Authority for Hazardous Air Pollutants: Air...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-18

    ... Pollutants: Air Emission Standards for Halogenated Solvent Cleaning Machines: State of Rhode Island... applies to organic solvent cleaning machines in Rhode Island, except for continuous web cleaning machines... General Definitions Rule in place of the Halogenated Solvent NESHAP for organic solvent cleaning...

  11. Synoptic evaluation of carbon cycling in the Beaufort Sea during summer: contrasting river inputs, ecosystem metabolism and air-sea CO2 fluxes

    NASA Astrophysics Data System (ADS)

    Forest, A.; Coupel, P.; Else, B.; Nahavandian, S.; Lansard, B.; Raimbault, P.; Papakyriakou, T.; Gratton, Y.; Fortier, L.; Tremblay, J.-É.; Babin, M.

    2014-05-01

    The accelerated decline in Arctic sea ice and an ongoing trend toward more energetic atmospheric and oceanic forcings are modifying carbon cycling in the Arctic Ocean. A critical issue is to understand how net community production (NCP; the balance between gross primary production and community respiration) responds to changes and modulates air-sea CO2 fluxes. Using data collected as part of the ArcticNet-Malina 2009 expedition in the southeastern Beaufort Sea (Arctic Ocean), we synthesize information on sea ice, wind, river, water column properties, metabolism of the planktonic food web, organic carbon fluxes and pools, as well as air-sea CO2 exchange, with the aim of documenting the ecosystem response to environmental changes. Data were analyzed to develop a non-steady-state carbon budget and an assessment of NCP against air-sea CO2 fluxes. During the field campaign, the mean wind field was a mild upwelling-favorable wind (~ 5 km h-1) from the NE. A decaying ice cover (< 80% concentration) was observed beyond the shelf, the latter being fully exposed to the atmosphere. We detected some areas where the surface mixed layer was net autotrophic owing to high rates of primary production (PP), but the ecosystem was overall net heterotrophic. The region acted nonetheless as a sink for atmospheric CO2, with an uptake rate of -2.0 ± 3.3 mmol C m-2 d-1 (mean ± standard deviation associated with spatial variability). We attribute this discrepancy to (1) elevated PP rates (> 600 mg C m-2 d-1) over the shelf prior to our survey, (2) freshwater dilution by river runoff and ice melt, and (3) the presence of cold surface waters offshore. Only the Mackenzie River delta and localized shelf areas directly affected by upwelling were identified as substantial sources of CO2 to the atmosphere (> 10 mmol C m-2 d-1). Daily PP rates were generally < 100 mg C m-2 d-1 and cumulated to a total PP of ~ 437.6 × 103 t C for the region over a 35-day period. This amount was about twice the

  12. Thermochemical cycles

    NASA Technical Reports Server (NTRS)

    Funk, J. E.; Soliman, M. A.; Carty, R. H.; Conger, W. L.; Cox, K. E.; Lawson, D.

    1975-01-01

    The thermochemical production of hydrogen is described along with the HYDRGN computer program which attempts to rate the various thermochemical cycles. Specific thermochemical cycles discussed include: iron sulfur cycle; iron chloride cycle; and hybrid sulfuric acid cycle.

  13. Tube Alinement for Machining

    NASA Technical Reports Server (NTRS)

    Garcia, J.

    1984-01-01

    Tool with stepped shoulders alines tubes for machining in preparation for welding. Alinement with machine tool axis accurate to within 5 mils (0.13mm) and completed much faster than visual setup by machinist.

  14. Stirling machine operating experience

    NASA Technical Reports Server (NTRS)

    Ross, Brad; Dudenhoefer, James E.

    1991-01-01

    Numerous Stirling machines have been built and operated, but the operating experience of these machines is not well known. It is important to examine this operating experience in detail, because it largely substantiates the claim that Stirling machines are capable of reliable and lengthy lives. The amount of data that exists is impressive, considering that many of the machines that have been built are developmental machines intended to show proof of concept, and were not expected to operate for any lengthy period of time. Some Stirling machines (typically free-piston machines) achieve long life through non-contact bearings, while other Stirling machines (typically kinematic) have achieved long operating lives through regular seal and bearing replacements. In addition to engine and system testing, life testing of critical components is also considered.

  15. Women, Men, and Machines.

    ERIC Educational Resources Information Center

    Form, William; McMillen, David Byron

    1983-01-01

    Data from the first national study of technological change show that proportionately more women than men operate machines, are more exposed to machines that have alienating effects, and suffer more from the negative effects of technological change. (Author/SSH)

  16. Energy and economic performance analysis of an open cycle solar desiccant dehumidification air-conditioning system for application in Hong Kong

    SciTech Connect

    Li, Yutong; Lu, Lin; Yang, Hongxing

    2010-12-15

    In this article, a transient simulation model and the EnergyPlus were used to study the energy performance and economical feasibility for integrating a solar liquid desiccant dehumidification system with a conventional vapor compression air-conditioning system for the weather condition of Hong Kong. The vapor compression system capacity in the solar assisted air-conditioning system can be reduced to 19 kW from original 28 kW of a conventional air-conditioning system as a case study due to the solar desiccant cooling. The economical performance of the solar desiccant dehumidification system is compared with that of the conventional air-conditioning system. The results show that the energy saving potentials due to incorporation of the solar desiccant dehumidification system in a traditional air-conditioning system is significant for the hot wet weather in Hong Kong due to higher COP resulted from higher supply chilled water temperature from chiller plants. The annual operation energy savings for the hybrid system is 6760 kWh and the payback period of the hybrid system is around 7 years. The study shows that the solar assisted air-conditioning is a viable technology for utilizations in subtropical areas. (author)

  17. Simplified theory of Ringbom Stirling machines

    SciTech Connect

    Rochelle, P.; Stouffs, P.

    1998-07-01

    This paper presents a first order analysis of four types of overdriven free-displacer Stirling machines. All the presented types of machines can work as refrigerating machines, prime movers or heat exchange accelerators depending on parameters such as the hot to cold source temperatures ratio, the dimensional mass of working gas in the machine, the displacer rod to displacer cross sectional area ratio, the corrected dead space to piston cylinder volume ratio and the displacer to piston cylinder volume ratio. In its analytical form this theory holds for machines at low speed as it is assumed that the piston displacement can be neglected during the displacer movement duration. This analysis may be used to find the conditions and values giving either the best theoretical refrigerating cycle or the best theoretical prime mover cycle, the associated reference work, reference time, efficiency and heat quantities involved. A table gives the analytical expressions and the limiting values of the main parameters for the four different types of Ringbom machines considered. The preliminary design of a Ringbom prime mover is then presented. The main parameters influences are predicted and the magnitude of work, rotational speed limit and efficiency are obtained.

  18. Information Model for Machine-Tool-Performance Tests

    PubMed Central

    Lee, Y. Tina; Soons, Johannes A.; Donmez, M. Alkan

    2001-01-01

    This report specifies an information model of machine-tool-performance tests in the EXPRESS [1] language. The information model provides a mechanism for describing the properties and results of machine-tool-performance tests. The objective of the information model is a standardized, computer-interpretable representation that allows for efficient archiving and exchange of performance test data throughout the life cycle of the machine. The report also demonstrates the implementation of the information model using three different implementation methods. PMID:27500031

  19. Cable-Twisting Machine

    NASA Technical Reports Server (NTRS)

    Kurnett, S.

    1982-01-01

    New cable-twisting machine is smaller and faster than many production units. Is useful mainly in production of short-run special cables. Already-twisted cable can be fed along axis of machine. Faster operation than typical industrial cable-twisting machines possible by using smaller spools of wire.

  20. Your Sewing Machine.

    ERIC Educational Resources Information Center

    Peacock, Marion E.

    The programed instruction manual is designed to aid the student in learning the parts, uses, and operation of the sewing machine. Drawings of sewing machine parts are presented, and space is provided for the student's written responses. Following an introductory section identifying sewing machine parts, the manual deals with each part and its…

  1. Automatic Inspection During Machining

    NASA Technical Reports Server (NTRS)

    Ransom, Clyde L.

    1988-01-01

    In experimental manufacturing process, numerically-controlled machine tool temporarily converts into inspection machine by installing electronic touch probes and specially-developed numerical-control software. Software drives probes in paths to and on newly machined parts and collects data on dimensions of parts.

  2. Apprentice Machine Theory Outline.

    ERIC Educational Resources Information Center

    Connecticut State Dept. of Education, Hartford. Div. of Vocational-Technical Schools.

    This volume contains outlines for 16 courses in machine theory that are designed for machine tool apprentices. Addressed in the individual course outlines are the following topics: basic concepts; lathes; milling machines; drills, saws, and shapers; heat treatment and metallurgy; grinders; quality control; hydraulics and pneumatics;…

  3. Continuous mining machine

    SciTech Connect

    Kiefer, H.E.

    1992-02-11

    This patent describes a continuous mining machine for excavating a longitudinal shaft or tunnel underneath the surface of the earth, the mining machine. It comprises: transport means for moving the machine over a floor of the shaft or tunnel that is being excavated; a working platform having forward and trailing ends.

  4. MACHINE ROOM FROM DOORWAY TO COMMUNICATIONS ROOM, VIEW FACING SOUTHWEST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MACHINE ROOM FROM DOORWAY TO COMMUNICATIONS ROOM, VIEW FACING SOUTHWEST. - Naval Air Station Barbers Point, World War II Command Center, Midway Street east of Lexington Avenue, Ewa, Honolulu County, HI

  5. Evaluation of rotor-bearing system dynamic response to unbalance. [air conditioning equipment

    NASA Technical Reports Server (NTRS)

    Thaller, R. E.; Ozimek, D. W.

    1979-01-01

    The vibration environment within air conditioner rotating machinery referred to as an air cycle machine (ACM) was investigated to effectively increase ACM reliability. To assist in the selection of design changes which would result in improved ACM performance, various design modifications were incorporated into a baseline ACM configuration. For each design change, testing was conducted with the best balance achieveable (baseline) and with various degrees of unbalance. Relationships between unbalance (within the context of design changes) and the parameters associated with design goals were established. The results of rotor dynamics tests used to establish these relationships are presented.

  6. Fuel cell and advanced turbine power cycle

    SciTech Connect

    White, D.J.

    1995-10-19

    Solar Turbines, Incorporated (Solar) has a vested interest in the integration of gas turbines and high temperature fuel cells and in particular, solid oxide fuel cells (SOFCs). Solar has identified a parallel path approach to the technology developments needed for future products. The primary approach is to move away from the simple cycle industrial machines of the past and develop as a first step more efficient recuperated engines. This move was prompted by the recognition that the simple cycle machines were rapidly approaching their efficiency limits. Improving the efficiency of simple cycle machines is and will become increasingly more costly. Each efficiency increment will be progressively more costly than the previous step.

  7. Cyclodextrin-based molecular machines.

    PubMed

    Hashidzume, Akihito; Yamaguchi, Hiroyasu; Harada, Akira

    2014-01-01

    This chapter overviews molecular machines based on cyclodextrins (CDs). The categories of CD-based molecular machines, external stimuli for CD-based molecular machines, and typical examples of CD-based molecular machines are briefly described.

  8. Creating unorganised machines from memristors

    NASA Astrophysics Data System (ADS)

    Howard, Gerard; Bull, Larry; Costello, Ben De Lacy; Adamatzky, Andrew

    2012-09-01

    There is growing interest in memristive devices following their recent nanoscale fabrication. This paper describes initial consideration of the implementation of artificial intelligence within predominantly memristive hardware. In particular, versions of Alan Turing's discrete dynamical network formalism — the unorganised machine — are used as the knowledge representation scheme and a population-based search technique is used to design appropriate networks. Issues including memristor count and global network synchrony are compared for two memristive logic implementations (NAND and IMP) on a well-known simulated robotics benchmark task. It is shown that IMP networks are harder to design than NAND, but are simpler to implement and require fewer processor cycles.

  9. Size reduction machine

    SciTech Connect

    Fricke, V.

    1999-12-15

    The Size Reduction Machine (SRM) is a mobile platform capable of shearing various shapes and types of metal components at a variety of elevations. This shearing activity can be performed without direct physical movement and placement of the shear head by the operator. The base unit is manually moved and roughly aligned to each cut location. The base contains the electronics: hydraulic pumps, servos, and actuators needed to move the shear-positioning arm. The movable arm allows the shear head to have six axes of movement and to cut to within 4 inches of a wall surface. The unit has a slick electrostatic capture coating to assist in external decontamination. Internal contamination of the unit is controlled by a high-efficiency particulate air (HEPA) filter on the cooling inlet fan. The unit is compact enough to access areas through a 36-inch standard door opening. This paper is an Innovative Technology Summary Report designed to provide potential users with the information they need to quickly determine if a technology would apply to a particular environmental management problem. They also are designed for readers who may recommend that a technology be considered by prospective users.

  10. A life cycle cost economics model for automation projects with uniformly varying operating costs. [applied to Deep Space Network and Air Force Systems Command

    NASA Technical Reports Server (NTRS)

    Remer, D. S.

    1977-01-01

    The described mathematical model calculates life-cycle costs for projects with operating costs increasing or decreasing linearly with time. The cost factors involved in the life-cycle cost are considered, and the errors resulting from the assumption of constant rather than uniformly varying operating costs are examined. Parameters in the study range from 2 to 30 years, for project life; 0 to 15% per year, for interest rate; and 5 to 90% of the initial operating cost, for the operating cost gradient. A numerical example is presented.

  11. Radiator debris removing apparatus and work machine using same

    DOEpatents

    Martin, Kevin L.; Elliott, Dwight E.

    2008-09-02

    A radiator assembly includes a finned radiator core and a debris removing apparatus having a compressed air inlet and at least one compressed air outlet configured to direct compressed air through the radiator core. A work machine such as a wheel loader includes a radiator and a debris removing apparatus coupled with on-board compressed air and having at least one pressurized gas outlet configured to direct a gas toward the face of the radiator.

  12. Machine for applying a two component resin to a roadway surface

    DOEpatents

    Huszagh, D.W.

    1984-01-01

    A portable machine for spraying two component resins onto a roadway, the machine having a pneumatic control system, including means for purging the machine of mixed resin with air and then removing remaining resin with solvent. Interlocks prevent contamination of solvent and resin, and mixed resin can be purged in the event of a power failure.

  13. Machine for applying a two component resin to a roadway surface

    DOEpatents

    Huszagh, Donald W.

    1985-01-01

    A portable machine for spraying two component resins onto a roadway, the machine having a pneumatic control system, including apparatus for purging the machine of mixed resin with air and then removing remaining resin with solvent. Interlocks prevent contamination of solvent and resin, and mixed resin can be purged in the event of a power failure.

  14. Rankine-cycle solar-cooling systems

    NASA Technical Reports Server (NTRS)

    Weathers, H. M.

    1979-01-01

    Report reviews progress made by three contractors to Marshall Space Flight Center and Department of Energy in developing Rankine-cycle machines for solar cooling and testing of commercially available equipment involved.

  15. Variability in the O{sub 2}/N{sub 2} ratio of southern hemisphere air, 1991-1994: Implications for the carbon cycle

    SciTech Connect

    Bender, M.; Ellis, T.; Tans, P.

    1996-03-01

    The oxygen/nitrogen ratio of air was measured from 1991 to 1994 and analyzed for trends attributable to fossil fuel combustion and decreasing biosphere. Mass spectrometric analysis of flask samples from Tasmania and Greenland was used for the study. The data showed the expected seasonal variations and a trend of decreasing oxygen concentration. Anthropogenic carbon fluxes calculated from the data are presented. The oxygen/nitrogen ratio of air decreased at the rate of 12 {plus_minus} 4 per meg per year from winter 1991 and winter 1993. The oxygen consumption rate for fossil fuel burning is estimated at 20 per meg per year. This suggests that either the land biosphere was an oxygen source and carbon dioxide sink during this period, or the oceans were a transient oxygen sink. 26 refs., 3 figs., 7 tabs.

  16. Machine tool locator

    DOEpatents

    Hanlon, John A.; Gill, Timothy J.

    2001-01-01

    Machine tools can be accurately measured and positioned on manufacturing machines within very small tolerances by use of an autocollimator on a 3-axis mount on a manufacturing machine and positioned so as to focus on a reference tooling ball or a machine tool, a digital camera connected to the viewing end of the autocollimator, and a marker and measure generator for receiving digital images from the camera, then displaying or measuring distances between the projection reticle and the reference reticle on the monitoring screen, and relating the distances to the actual position of the autocollimator relative to the reference tooling ball. The images and measurements are used to set the position of the machine tool and to measure the size and shape of the machine tool tip, and examine cutting edge wear. patent

  17. Fault Tolerant State Machines

    NASA Technical Reports Server (NTRS)

    Burke, Gary R.; Taft, Stephanie

    2004-01-01

    State machines are commonly used to control sequential logic in FPGAs and ASKS. An errant state machine can cause considerable damage to the device it is controlling. For example in space applications, the FPGA might be controlling Pyros, which when fired at the wrong time will cause a mission failure. Even a well designed state machine can be subject to random errors us a result of SEUs from the radiation environment in space. There are various ways to encode the states of a state machine, and the type of encoding makes a large difference in the susceptibility of the state machine to radiation. In this paper we compare 4 methods of state machine encoding and find which method gives the best fault tolerance, as well as determining the resources needed for each method.

  18. Ultra precision machining

    NASA Astrophysics Data System (ADS)

    Debra, Daniel B.; Hesselink, Lambertus; Binford, Thomas

    1990-05-01

    There are a number of fields that require or can use to advantage very high precision in machining. For example, further development of high energy lasers and x ray astronomy depend critically on the manufacture of light weight reflecting metal optical components. To fabricate these optical components with machine tools they will be made of metal with mirror quality surface finish. By mirror quality surface finish, it is meant that the dimensions tolerances on the order of 0.02 microns and surface roughness of 0.07. These accuracy targets fall in the category of ultra precision machining. They cannot be achieved by a simple extension of conventional machining processes and techniques. They require single crystal diamond tools, special attention to vibration isolation, special isolation of machine metrology, and on line correction of imperfection in the motion of the machine carriages on their way.

  19. La problématique de la maîtrise de l'inventaire plutonium et actinides mineurs dans le cycle du combustible nucléaire

    NASA Astrophysics Data System (ADS)

    Mouney, Henri

    2002-10-01

    The mastering of the plutonium and minor actinides inventory in the French Nuclear Cycle is based on a progressive approach from the present status, dealing with the partial reprocessing of spent fuels and the recycling of Pu in the MOX assemblies loaded in the 20 licensed PWRs. This strategy keeps the door open long-term, for example, for the eventual multirecycling of excess Pu in dedicated new assemblies, such as APA or CORAIL in order to stabilise the Pu inventory in the fuel cycle or allow its utilization in new types of fast reactors. Presently, in the framework of 1991 law, scenario studies relying on present and/or innovative technologies are carried out in order to transmute both Pu and minor actinides, thus minimising the quantities to be for disposal. To cite this article: H. Mouney, C. R. Physique 3 (2002) 773-782.

  20. Media-Augmented Exercise Machines

    NASA Astrophysics Data System (ADS)

    Krueger, T.

    2002-01-01

    Cardio-vascular exercise has been used to mitigate the muscle and cardiac atrophy associated with adaptation to micro-gravity environments. Several hours per day may be required. In confined spaces and long duration missions this kind of exercise is inevitably repetitive and rapidly becomes uninteresting. At the same time, there are pressures to accomplish as much as possible given the cost- per-hour for humans occupying orbiting or interplanetary. Media augmentation provides a the means to overlap activities in time by supplementing the exercise with social, recreational, training or collaborative activities and thereby reducing time pressures. In addition, the machine functions as an interface to a wide range of digital environments allowing for spatial variety in an otherwise confined environment. We hypothesize that the adoption of media augmented exercise machines will have a positive effect on psycho-social well-being on long duration missions. By organizing and supplementing exercise machines, data acquisition hardware, computers and displays into an interacting system this proposal increases functionality with limited additional mass. This paper reviews preliminary work on a project to augment exercise equipment in a manner that addresses these issues and at the same time opens possibilities for additional benefits. A testbed augmented exercise machine uses a specialty built cycle trainer as both input to a virtual environment and as an output device from it using spatialized sound, and visual displays, vibration transducers and variable resistance. The resulting interactivity increases a sense of engagement in the exercise, provides a rich experience of the digital environments. Activities in the virtual environment and accompanying physiological and psychological indicators may be correlated to track and evaluate the health of the crew.

  1. Perspex machine II: visualization

    NASA Astrophysics Data System (ADS)

    Anderson, James A. D. W.

    2005-01-01

    We review the perspex machine and improve it by reducing its halting conditions to one condition. We also introduce a data structure, called the "access column," that can accelerate a wide class of perspex programs. We show how the perspex can be visualised as a tetrahedron, artificial neuron, computer program, and as a geometrical transformation. We discuss the temporal properties of the perspex machine, dissolve the famous time travel paradox, and present a hypothetical time machine. Finally, we discuss some mental properties and show how the perspex machine solves the mind-body problem and, specifically, how it provides one physical explanation for the occurrence of paradigm shifts.

  2. Perspex machine II: visualization

    NASA Astrophysics Data System (ADS)

    Anderson, James A. D. W.

    2004-12-01

    We review the perspex machine and improve it by reducing its halting conditions to one condition. We also introduce a data structure, called the "access column," that can accelerate a wide class of perspex programs. We show how the perspex can be visualised as a tetrahedron, artificial neuron, computer program, and as a geometrical transformation. We discuss the temporal properties of the perspex machine, dissolve the famous time travel paradox, and present a hypothetical time machine. Finally, we discuss some mental properties and show how the perspex machine solves the mind-body problem and, specifically, how it provides one physical explanation for the occurrence of paradigm shifts.

  3. Parallel Kinematic Machines (PKM)

    SciTech Connect

    Henry, R.S.

    2000-03-17

    The purpose of this 3-year cooperative research project was to develop a parallel kinematic machining (PKM) capability for complex parts that normally require expensive multiple setups on conventional orthogonal machine tools. This non-conventional, non-orthogonal machining approach is based on a 6-axis positioning system commonly referred to as a hexapod. Sandia National Laboratories/New Mexico (SNL/NM) was the lead site responsible for a multitude of projects that defined the machining parameters and detailed the metrology of the hexapod. The role of the Kansas City Plant (KCP) in this project was limited to evaluating the application of this unique technology to production applications.

  4. Transfer rates of enteric microorganisms in recycled water during machine clothes washing.

    PubMed

    O'Toole, Joanne; Sinclair, Martha; Leder, Karin

    2009-03-01

    Approximately 15% of overall Australian household water usage is in the laundry; hence, a significant reduction in household drinking water demand could be achieved if potable-quality water used for clothes washing is replaced with recycled water. To investigate the microbiological safety of using recycled water in washing machines, bacteriophages MS-2 and PRD-1, Escherichia coli, and Cryptosporidium parvum oocysts were used in a series of experiments to investigate the transfer efficiency of enteric microorganisms from washing machine water to objects including hands, environmental surfaces, air, and fabric swatches. By determining the transference efficiency, it is possible to estimate the numbers of microorganisms that the user will be exposed to if recycled water with various levels of residual microorganisms is used in washing machines. Results, expressed as transfer rates to a given surface area per object, showed that the mean transfer efficiency of E. coli, bacteriophages MS-2 and PRD-1, and C. parvum oocysts from seeded water to fabric swatches ranged from 0.001% to 0.090%. Greatest exposure to microorganisms occurred through direct contact of hands with seeded water and via hand contact with contaminated fabric swatches. No microorganisms were detected in the air samples during the washing machine spin cycle, and transfer rates of bacteriophages from water to environmental surfaces were 100-fold less than from water directly to hands. Findings from this study provide relevant information that can be used to refine regulations governing recycled water and to allay public concerns about the use of recycled water. PMID:19124592

  5. Transfer Rates of Enteric Microorganisms in Recycled Water during Machine Clothes Washing▿

    PubMed Central

    O'Toole, Joanne; Sinclair, Martha; Leder, Karin

    2009-01-01

    Approximately 15% of overall Australian household water usage is in the laundry; hence, a significant reduction in household drinking water demand could be achieved if potable-quality water used for clothes washing is replaced with recycled water. To investigate the microbiological safety of using recycled water in washing machines, bacteriophages MS-2 and PRD-1, Escherichia coli, and Cryptosporidium parvum oocysts were used in a series of experiments to investigate the transfer efficiency of enteric microorganisms from washing machine water to objects including hands, environmental surfaces, air, and fabric swatches. By determining the transference efficiency, it is possible to estimate the numbers of microorganisms that the user will be exposed to if recycled water with various levels of residual microorganisms is used in washing machines. Results, expressed as transfer rates to a given surface area per object, showed that the mean transfer efficiency of E. coli, bacteriophages MS-2 and PRD-1, and C. parvum oocysts from seeded water to fabric swatches ranged from 0.001% to 0.090%. Greatest exposure to microorganisms occurred through direct contact of hands with seeded water and via hand contact with contaminated fabric swatches. No microorganisms were detected in the air samples during the washing machine spin cycle, and transfer rates of bacteriophages from water to environmental surfaces were 100-fold less than from water directly to hands. Findings from this study provide relevant information that can be used to refine regulations governing recycled water and to allay public concerns about the use of recycled water. PMID:19124592

  6. Properties and Cycle Performance of Refrigerant Blends Operating Near and Above the Refrigerant Critical Point, Task 2: Air Conditioner System Study

    SciTech Connect

    Piotr A. Domanski; W. Vance Payne

    2002-10-31

    The main goal of this project was to investigate and compare the performance of an R410A air conditioner to that of an R22 air conditioner, with specific interest in performance at high ambient temperatures at which the condenser of the R410A system may be operating above the refrigerant's critical point. Part 1 of this project consisted of conducting comprehensive measurements of thermophysical for refrigerant R125 and refrigerant blends R410A and R507A and developing new equation of state formulations and mixture models for predicting thermophysical properties of HFC refrigerant blends. Part 2 of this project conducted performance measurements of split-system, 3-ton R22 and R410A residential air conditioners in the 80 to 135 F (27.8 to 57.2 C) outdoor temperature range and development of a system performance model. The performance data was used in preparing a beta version of EVAP-COND, a windows-based simulation package for predicting performance of finned-tube evaporators and condensers. The modeling portion of this project also included the formulation of a model for an air-conditioner equipped with a thermal expansion valve (TXV). Capacity and energy efficiency ratio (EER) were measured and compared. The R22 system's performance was measured over the outdoor ambient temperature range of 80 to 135 F (27.8 to 57.2 C). The same test range was planned for the R410A system. However, the compressor's safety system cut off the compressor at the 135.0 F (57.2 C) test temperature. The highest measurement on this system was at 130.0 F (54.4 C). Subsequently, a custom-manufactured R410A compressor with a disabled safety system and a more powerful motor was installed and performance was measured at outdoor temperatures up to 155.0 F (68.3 C). Both systems had similar capacity and EER performance at 82.0 F (27.8 C). The capacity and EER degradation of both systems were nearly linearly dependent with rising ambient outdoor ambient test temperatures. The performance

  7. Laser Machining of Melt Infiltrated Ceramic Matrix Composite

    NASA Technical Reports Server (NTRS)

    Jarmon, D. C.; Ojard, G.; Brewer, D.

    2012-01-01

    As interest grows in considering the use of ceramic matrix composites for critical components, the effects of different machining techniques, and the resulting machined surfaces, on strength need to be understood. This work presents the characterization of a Melt Infiltrated SiC/SiC composite material system machined by different methods. While a range of machining approaches were initially considered, only diamond grinding and laser machining were investigated on a series of tensile coupons. The coupons were tested for residual tensile strength, after a stressed steam exposure cycle. The data clearly differentiated the laser machined coupons as having better capability for the samples tested. These results, along with micro-structural characterization, will be presented.

  8. NASA Tropical Rainfall Measurement Mission (TRMM): Effects of tropical rainfall on upper ocean dynamics, air-sea coupling and hydrologic cycle

    NASA Technical Reports Server (NTRS)

    Lagerloef, Gary; Busalacchi, Antonio J.; Liu, W. Timothy; Lukas, Roger B.; Niiler, Pern P.; Swift, Calvin T.

    1995-01-01

    This was a Tropical Rainfall Measurement Mission (TRMM) modeling, analysis and applications research project. Our broad scientific goals addressed three of the seven TRMM Priority Science Questions, specifically: What is the monthly average rainfall over the tropical ocean areas of about 10(exp 5) sq km, and how does this rain and its variability affect the structure and circulation of the tropical oceans? What is the relationship between precipitation and changes in the boundary conditions at the Earth's surface (e.g., sea surface temperature, soil properties, vegetation)? How can improved documentation of rainfall improve understanding of the hydrological cycle in the tropics?

  9. In vitro short-term exposure to air pollution PM2.5-0.3 induced cell cycle alterations and genetic instability in a human lung cell coculture model.

    PubMed

    Abbas, Imane; Verdin, Anthony; Escande, Fabienne; Saint-Georges, Françoise; Cazier, Fabrice; Mulliez, Philippe; Courcot, Dominique; Shirali, Pirouz; Gosset, Pierre; Garçon, Guillaume

    2016-05-01

    Although its adverse health effects of air pollution particulate matter (PM2.5) are well-documented and often related to oxidative stress and pro-inflammatory response, recent evidence support the role of the remodeling of the airway epithelium involving the regulation of cell death processes. Hence, the overarching goals of the present study were to use an in vitro coculture model, based on human AM and L132 cells to study the possible alteration of TP53-RB gene signaling pathways (i.e. cell cycle phases, gene expression of TP53, BCL2, BAX, P21, CCND1, and RB, and protein concentrations of their active forms), and genetic instability (i.e. LOH and/or MSI) in the PM2.5-0.3-exposed coculture model. PM2.5-0.3 exposure of human AM from the coculture model induced marked cell cycle alterations after 24h, as shown by increased numbers of L132 cells in subG1 and S+G2 cell cycle phases, indicating apoptosis and proliferation. Accordingly, activation of the TP53-RB gene signaling pathways after the coculture model exposure to PM2.5-0.3 was reported in the L132 cells. Exposure of human AM from the coculture model to PM2.5-0.3 resulted in MS alterations in 3p chromosome multiple critical regions in L132 cell population. Hence, in vitro short-term exposure of the coculture model to PM2.5-0.3 induced cell cycle alterations relying on the sequential occurrence of molecular abnormalities from TP53-RB gene signaling pathway activation and genetic instability.

  10. Spin Cycle

    ERIC Educational Resources Information Center

    Casey, Dick

    2005-01-01

    Laundry equipment is an investment, and the investment should be protected. To keep laundry equipment working at an optimum level, schools must maintain their machines. This article offers preventive-maintenance tips for washing machines and dryers. To prevent faucets from binding up, close and reopen the water faucets. This also is a great way to…

  11. Simple Machine Junk Cars

    ERIC Educational Resources Information Center

    Herald, Christine

    2010-01-01

    During the month of May, the author's eighth-grade physical science students study the six simple machines through hands-on activities, reading assignments, videos, and notes. At the end of the month, they can easily identify the six types of simple machine: inclined plane, wheel and axle, pulley, screw, wedge, and lever. To conclude this unit,…

  12. Semantics via Machine Translation

    ERIC Educational Resources Information Center

    Culhane, P. T.

    1977-01-01

    Recent experiments in machine translation have given the semantic elements of collocation in Russian more objective criteria. Soviet linguists in search of semantic relationships have attempted to devise a semantic synthesis for construction of a basic language for machine translation. One such effort is summarized. (CHK)

  13. An asymptotical machine

    NASA Astrophysics Data System (ADS)

    Cristallini, Achille

    2016-07-01

    A new and intriguing machine may be obtained replacing the moving pulley of a gun tackle with a fixed point in the rope. Its most important feature is the asymptotic efficiency. Here we obtain a satisfactory description of this machine by means of vector calculus and elementary trigonometry. The mathematical model has been compared with experimental data and briefly discussed.

  14. Technique for Machining Glass

    NASA Technical Reports Server (NTRS)

    Rice, S. H.

    1982-01-01

    Process for machining glass with conventional carbide tools requires a small quantity of a lubricant for aluminum applied to area of glass to be machined. A carbide tool is then placed against workpiece with light pressure. Tool is raised periodically to clear work of glass dust and particles. Additional lubricant is applied as it is displaced.

  15. Compound taper milling machine

    NASA Technical Reports Server (NTRS)

    Campbell, N. R.

    1969-01-01

    Simple, inexpensive milling machine tapers panels from a common apex to a uniform height at panel edge regardless of the panel perimeter configuration. The machine consists of an adjustable angled beam upon which the milling tool moves back and forth above a rotatable table upon which the workpiece is held.

  16. Stirling machine operating experience

    SciTech Connect

    Ross, B.; Dudenhoefer, J.E.

    1994-09-01

    Numerous Stirling machines have been built and operated, but the operating experience of these machines is not well known. It is important to examine this operating experience in detail, because it largely substantiates the claim that stirling machines are capable of reliable and lengthy operating lives. The amount of data that exists is impressive, considering that many of the machines that have been built are developmental machines intended to show proof of concept, and are not expected to operate for lengthy periods of time. Some Stirling machines (typically free-piston machines) achieve long life through non-contact bearings, while other Stirling machines (typically kinematic) have achieved long operating lives through regular seal and bearing replacements. In addition to engine and system testing, life testing of critical components is also considered. The record in this paper is not complete, due to the reluctance of some organizations to release operational data and because several organizations were not contacted. The authors intend to repeat this assessment in three years, hoping for even greater participation.

  17. Machining heavy plastic sections

    NASA Technical Reports Server (NTRS)

    Stalkup, O. M.

    1967-01-01

    Machining technique produces consistently satisfactory plane-parallel optical surfaces for pressure windows, made of plexiglass, required to support a photographic study of liquid rocket combustion processes. The surfaces are machined and polished to the required tolerances and show no degradation from stress relaxation over periods as long as 6 months.

  18. THE TEACHING MACHINE.

    ERIC Educational Resources Information Center

    KLEIN, CHARLES; WAYNE, ELLIS

    THE ROLE OF THE TEACHING MACHINE IS COMPARED WITH THE ROLE OF THE PROGRAMED TEXTBOOK. THE TEACHING MACHINE IS USED FOR INDIVIDUAL INSTRUCTION, CONTAINS AND PRESENTS PROGRAM CONTENT IN STEPS, PROVIDES A MEANS WHEREBY THE STUDENT MAY RESPOND TO THE PROGRAM, PROVIDES THE STUDENT WITH IMMEDIATE INFORMATION OF SOME KIND CONCERNING HIS RESPONSE THAT CAN…

  19. Simple Machines Made Simple.

    ERIC Educational Resources Information Center

    St. Andre, Ralph E.

    Simple machines have become a lost point of study in elementary schools as teachers continue to have more material to cover. This manual provides hands-on, cooperative learning activities for grades three through eight concerning the six simple machines: wheel and axle, inclined plane, screw, pulley, wedge, and lever. Most activities can be…

  20. Machine Translation Project

    NASA Technical Reports Server (NTRS)

    Bajis, Katie

    1993-01-01

    The characteristics and capabilities of existing machine translation systems were examined and procurement recommendations were developed. Four systems, SYSTRAN, GLOBALINK, PC TRANSLATOR, and STYLUS, were determined to meet the NASA requirements for a machine translation system. Initially, four language pairs were selected for implementation. These are Russian-English, French-English, German-English, and Japanese-English.

  1. 14. Interior, Machine Shop, Roundhouse Machine Shop Extension, Southern Pacific ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. Interior, Machine Shop, Roundhouse Machine Shop Extension, Southern Pacific Railroad Carlin Shops, view to north (90mm lens). - Southern Pacific Railroad, Carlin Shops, Roundhouse Machine Shop Extension, Foot of Sixth Street, Carlin, Elko County, NV

  2. BRITISH MOLDING MACHINE, PBQ AUTOMATIC COPE AND DRAG MOLDING MACHINE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    BRITISH MOLDING MACHINE, PBQ AUTOMATIC COPE AND DRAG MOLDING MACHINE MAKES BOTH MOLD HALVES INDIVIDUALLY WHICH ARE LATER ROTATED, ASSEMBLED, AND LOWERED TO POURING CONVEYORS BY ASSISTING MACHINES. - Southern Ductile Casting Company, Casting, 2217 Carolina Avenue, Bessemer, Jefferson County, AL

  3. Introduction to machine learning.

    PubMed

    Baştanlar, Yalin; Ozuysal, Mustafa

    2014-01-01

    The machine learning field, which can be briefly defined as enabling computers make successful predictions using past experiences, has exhibited an impressive development recently with the help of the rapid increase in the storage capacity and processing power of computers. Together with many other disciplines, machine learning methods have been widely employed in bioinformatics. The difficulties and cost of biological analyses have led to the development of sophisticated machine learning approaches for this application area. In this chapter, we first review the fundamental concepts of machine learning such as feature assessment, unsupervised versus supervised learning and types of classification. Then, we point out the main issues of designing machine learning experiments and their performance evaluation. Finally, we introduce some supervised learning methods. PMID:24272434

  4. Introduction to machine learning.

    PubMed

    Baştanlar, Yalin; Ozuysal, Mustafa

    2014-01-01

    The machine learning field, which can be briefly defined as enabling computers make successful predictions using past experiences, has exhibited an impressive development recently with the help of the rapid increase in the storage capacity and processing power of computers. Together with many other disciplines, machine learning methods have been widely employed in bioinformatics. The difficulties and cost of biological analyses have led to the development of sophisticated machine learning approaches for this application area. In this chapter, we first review the fundamental concepts of machine learning such as feature assessment, unsupervised versus supervised learning and types of classification. Then, we point out the main issues of designing machine learning experiments and their performance evaluation. Finally, we introduce some supervised learning methods.

  5. Micro-machining.

    PubMed

    Brinksmeier, Ekkard; Preuss, Werner

    2012-08-28

    Manipulating bulk material at the atomic level is considered to be the domain of physics, chemistry and nanotechnology. However, precision engineering, especially micro-machining, has become a powerful tool for controlling the surface properties and sub-surface integrity of the optical, electronic and mechanical functional parts in a regime where continuum mechanics is left behind and the quantum nature of matter comes into play. The surprising subtlety of micro-machining results from the extraordinary precision of tools, machines and controls expanding into the nanometre range-a hundred times more precise than the wavelength of light. In this paper, we will outline the development of precision engineering, highlight modern achievements of ultra-precision machining and discuss the necessity of a deeper physical understanding of micro-machining.

  6. 15 CFR 700.31 - Metalworking machines.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... machinery and hammers Gear cutting and finishing machines Grinding machines Hydraulic and pneumatic presses, power driven Machining centers and way-type machines Manual presses Mechanical presses, power...

  7. 15 CFR 700.31 - Metalworking machines.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... machinery and hammers Gear cutting and finishing machines Grinding machines Hydraulic and pneumatic presses, power driven Machining centers and way-type machines Manual presses Mechanical presses, power...

  8. High-temperature low-cycle fatigue and tensile properties of Hastelloy X and alloy 617 in air and HTGR-helium

    SciTech Connect

    Strizak, J.P.; Brinkman, C.R.; Rittenhouse, P.L.

    1981-01-01

    Results of strain controlled fatigue and tensile tests are presented for two nickel base solution hardened alloys which are reference structural alloys for use in several high temperature gas cooled reactor concepts. These alloys, Hastelloy X Inconel 617, were tested at temperatures ranging from room temperature to 871/sup 0/C in air and impure helium. Materials were tested in the solution annealed as well as in the pre-aged condition where aging consisted of isothermal exposure at one of several temperatures for periods of up to 20,000 h. Comparisons are also given between the strain controlled fatigue lives of these alloys and several other commonly used alloys all tested at 538/sup 0/C.

  9. Filières nucléaires et gestion du plutonium et des actinides mineurs la recherche de la flexibilité du cycle

    NASA Astrophysics Data System (ADS)

    Thomas, Jean-Baptiste

    2002-10-01

    Transuranics management concerns all NPP types, because of the specifications for a sustainable development. Multiple recycling is mandatory. Neutronic abundance can be obtained in fast spectrum, or by adding external neutrons or (temporarily) with additional 235U. The LWRs can control the plutonium inventory and significantly reduce the amount of transuranics transferred to the geological repository, thanks to the use of innovative nuclear fuel in a limited part of the NPP fleet. HTR adapted to transuranics burning can help. In the future, in addition to the liquid metal FBR, a strategy based on a gas cooled technological line and advanced fuel opens a second path towards fast spectra. Strategies for defining the optimal mix of reactor types in the nuclear fleet at a given time and demonstrating the fuel cycle flexibility are under study. To cite this article: J.-B. Thomas, C. R. Physique 3 (2002) 783-796.

  10. Life Cycle Assessment of Residential Heating and Cooling Systems in Minnesota A comprehensive analysis on life cycle greenhouse gas (GHG) emissions and cost-effectiveness of ground source heat pump (GSHP) systems compared to the conventional gas furnace and air conditioner system

    NASA Astrophysics Data System (ADS)

    Li, Mo

    Ground Source Heat Pump (GSHP) technologies for residential heating and cooling are often suggested as an effective means to curb energy consumption, reduce greenhouse gas (GHG) emissions and lower homeowners' heating and cooling costs. As such, numerous federal, state and utility-based incentives, most often in the forms of financial incentives, installation rebates, and loan programs, have been made available for these technologies. While GSHP technology for space heating and cooling is well understood, with widespread implementation across the U.S., research specific to the environmental and economic performance of these systems in cold climates, such as Minnesota, is limited. In this study, a comparative environmental life cycle assessment (LCA) is conducted of typical residential HVAC (Heating, Ventilation, and Air Conditioning) systems in Minnesota to investigate greenhouse gas (GHG) emissions for delivering 20 years of residential heating and cooling—maintaining indoor temperatures of 68°F (20°C) and 75°F (24°C) in Minnesota-specific heating and cooling seasons, respectively. Eight residential GSHP design scenarios (i.e. horizontal loop field, vertical loop field, high coefficient of performance, low coefficient of performance, hybrid natural gas heat back-up) and one conventional natural gas furnace and air conditioner system are assessed for GHG and life cycle economic costs. Life cycle GHG emissions were found to range between 1.09 × 105 kg CO2 eq. and 1.86 × 10 5 kg CO2 eq. Six of the eight GSHP technology scenarios had fewer carbon impacts than the conventional system. Only in cases of horizontal low-efficiency GSHP and hybrid, do results suggest increased GHGs. Life cycle costs and present value analyses suggest GSHP technologies can be cost competitive over their 20-year life, but that policy incentives may be required to reduce the high up-front capital costs of GSHPs and relatively long payback periods of more than 20 years. In addition

  11. AIRE-Linux

    NASA Astrophysics Data System (ADS)

    Zhou, Jianfeng; Xu, Benda; Peng, Chuan; Yang, Yang; Huo, Zhuoxi

    2015-08-01

    AIRE-Linux is a dedicated Linux system for astronomers. Modern astronomy faces two big challenges: massive observed raw data which covers the whole electromagnetic spectrum, and overmuch professional data processing skill which exceeds personal or even a small team's abilities. AIRE-Linux, which is a specially designed Linux and will be distributed to users by Virtual Machine (VM) images in Open Virtualization Format (OVF), is to help astronomers confront the challenges. Most astronomical software packages, such as IRAF, MIDAS, CASA, Heasoft etc., will be integrated into AIRE-Linux. It is easy for astronomers to configure and customize the system and use what they just need. When incorporated into cloud computing platforms, AIRE-Linux will be able to handle data intensive and computing consuming tasks for astronomers. Currently, a Beta version of AIRE-Linux is ready for download and testing.

  12. The basic anaesthesia machine.

    PubMed

    Gurudatt, Cl

    2013-09-01

    After WTG Morton's first public demonstration in 1846 of use of ether as an anaesthetic agent, for many years anaesthesiologists did not require a machine to deliver anaesthesia to the patients. After the introduction of oxygen and nitrous oxide in the form of compressed gases in cylinders, there was a necessity for mounting these cylinders on a metal frame. This stimulated many people to attempt to construct the anaesthesia machine. HEG Boyle in the year 1917 modified the Gwathmey's machine and this became popular as Boyle anaesthesia machine. Though a lot of changes have been made for the original Boyle machine still the basic structure remains the same. All the subsequent changes which have been brought are mainly to improve the safety of the patients. Knowing the details of the basic machine will make the trainee to understand the additional improvements. It is also important for every practicing anaesthesiologist to have a thorough knowledge of the basic anaesthesia machine for safe conduct of anaesthesia.

  13. Machine learning and radiology.

    PubMed

    Wang, Shijun; Summers, Ronald M

    2012-07-01

    In this paper, we give a short introduction to machine learning and survey its applications in radiology. We focused on six categories of applications in radiology: medical image segmentation, registration, computer aided detection and diagnosis, brain function or activity analysis and neurological disease diagnosis from fMR images, content-based image retrieval systems for CT or MRI images, and text analysis of radiology reports using natural language processing (NLP) and natural language understanding (NLU). This survey shows that machine learning plays a key role in many radiology applications. Machine learning identifies complex patterns automatically and helps radiologists make intelligent decisions on radiology data such as conventional radiographs, CT, MRI, and PET images and radiology reports. In many applications, the performance of machine learning-based automatic detection and diagnosis systems has shown to be comparable to that of a well-trained and experienced radiologist. Technology development in machine learning and radiology will benefit from each other in the long run. Key contributions and common characteristics of machine learning techniques in radiology are discussed. We also discuss the problem of translating machine learning applications to the radiology clinical setting, including advantages and potential barriers.

  14. Machine Learning and Radiology

    PubMed Central

    Wang, Shijun; Summers, Ronald M.

    2012-01-01

    In this paper, we give a short introduction to machine learning and survey its applications in radiology. We focused on six categories of applications in radiology: medical image segmentation, registration, computer aided detection and diagnosis, brain function or activity analysis and neurological disease diagnosis from fMR images, content-based image retrieval systems for CT or MRI images, and text analysis of radiology reports using natural language processing (NLP) and natural language understanding (NLU). This survey shows that machine learning plays a key role in many radiology applications. Machine learning identifies complex patterns automatically and helps radiologists make intelligent decisions on radiology data such as conventional radiographs, CT, MRI, and PET images and radiology reports. In many applications, the performance of machine learning-based automatic detection and diagnosis systems has shown to be comparable to that of a well-trained and experienced radiologist. Technology development in machine learning and radiology will benefit from each other in the long run. Key contributions and common characteristics of machine learning techniques in radiology are discussed. We also discuss the problem of translating machine learning applications to the radiology clinical setting, including advantages and potential barriers. PMID:22465077

  15. The Basic Anaesthesia Machine

    PubMed Central

    Gurudatt, CL

    2013-01-01

    After WTG Morton's first public demonstration in 1846 of use of ether as an anaesthetic agent, for many years anaesthesiologists did not require a machine to deliver anaesthesia to the patients. After the introduction of oxygen and nitrous oxide in the form of compressed gases in cylinders, there was a necessity for mounting these cylinders on a metal frame. This stimulated many people to attempt to construct the anaesthesia machine. HEG Boyle in the year 1917 modified the Gwathmey's machine and this became popular as Boyle anaesthesia machine. Though a lot of changes have been made for the original Boyle machine still the basic structure remains the same. All the subsequent changes which have been brought are mainly to improve the safety of the patients. Knowing the details of the basic machine will make the trainee to understand the additional improvements. It is also important for every practicing anaesthesiologist to have a thorough knowledge of the basic anaesthesia machine for safe conduct of anaesthesia. PMID:24249876

  16. DNA-based machines.

    PubMed

    Wang, Fuan; Willner, Bilha; Willner, Itamar

    2014-01-01

    The base sequence in nucleic acids encodes substantial structural and functional information into the biopolymer. This encoded information provides the basis for the tailoring and assembly of DNA machines. A DNA machine is defined as a molecular device that exhibits the following fundamental features. (1) It performs a fuel-driven mechanical process that mimics macroscopic machines. (2) The mechanical process requires an energy input, "fuel." (3) The mechanical operation is accompanied by an energy consumption process that leads to "waste products." (4) The cyclic operation of the DNA devices, involves the use of "fuel" and "anti-fuel" ingredients. A variety of DNA-based machines are described, including the construction of "tweezers," "walkers," "robots," "cranes," "transporters," "springs," "gears," and interlocked cyclic DNA structures acting as reconfigurable catenanes, rotaxanes, and rotors. Different "fuels", such as nucleic acid strands, pH (H⁺/OH⁻), metal ions, and light, are used to trigger the mechanical functions of the DNA devices. The operation of the devices in solution and on surfaces is described, and a variety of optical, electrical, and photoelectrochemical methods to follow the operations of the DNA machines are presented. We further address the possible applications of DNA machines and the future perspectives of molecular DNA devices. These include the application of DNA machines as functional structures for the construction of logic gates and computing, for the programmed organization of metallic nanoparticle structures and the control of plasmonic properties, and for controlling chemical transformations by DNA machines. We further discuss the future applications of DNA machines for intracellular sensing, controlling intracellular metabolic pathways, and the use of the functional nanostructures for drug delivery and medical applications.

  17. DNA-based machines.

    PubMed

    Wang, Fuan; Willner, Bilha; Willner, Itamar

    2014-01-01

    The base sequence in nucleic acids encodes substantial structural and functional information into the biopolymer. This encoded information provides the basis for the tailoring and assembly of DNA machines. A DNA machine is defined as a molecular device that exhibits the following fundamental features. (1) It performs a fuel-driven mechanical process that mimics macroscopic machines. (2) The mechanical process requires an energy input, "fuel." (3) The mechanical operation is accompanied by an energy consumption process that leads to "waste products." (4) The cyclic operation of the DNA devices, involves the use of "fuel" and "anti-fuel" ingredients. A variety of DNA-based machines are described, including the construction of "tweezers," "walkers," "robots," "cranes," "transporters," "springs," "gears," and interlocked cyclic DNA structures acting as reconfigurable catenanes, rotaxanes, and rotors. Different "fuels", such as nucleic acid strands, pH (H⁺/OH⁻), metal ions, and light, are used to trigger the mechanical functions of the DNA devices. The operation of the devices in solution and on surfaces is described, and a variety of optical, electrical, and photoelectrochemical methods to follow the operations of the DNA machines are presented. We further address the possible applications of DNA machines and the future perspectives of molecular DNA devices. These include the application of DNA machines as functional structures for the construction of logic gates and computing, for the programmed organization of metallic nanoparticle structures and the control of plasmonic properties, and for controlling chemical transformations by DNA machines. We further discuss the future applications of DNA machines for intracellular sensing, controlling intracellular metabolic pathways, and the use of the functional nanostructures for drug delivery and medical applications. PMID:24647836

  18. The Kelastic variable wall mining machine. Interim final report

    SciTech Connect

    1995-11-12

    This machine cuts coal along a longwall face extending up to 500 feet by a rotating auger with bits. The machine also transports the coal that is cut acting as screw conveyor. By virtue of an integral shroud comprising part of the conveyor the machine is also amenable to a separation of the zones where men work from air being contaminated by dust and methane gas by the cutting action. Beginning as single intake air courses, the air separates at the working section where one split provides fresh air to the Occupied Zone (OZ) for human needs and the other split purges and carries away dust and methane from face fragmentation in the Cutting Zone (CZ). The attractiveness of the Variable Wall Mining Machine is that it addresses the limitations of current longwall mining equipment: it can consistently out-produce continuous mining machines and most longwall shearing machines. It also is amenable to configuring an environment, the dual-duct system, where the air for human breathing is separated from dust-laden ventilating air with methane mixtures. The objective of the research was to perform a mathematical and experimental study of the interrelationships of the components of the system so that a computer model could demonstrate the workings of the system in an animation program. The analysis resulted in the compilation of the parameters for three different configurations of a dual aircourse system of ventilating underground mines. In addressing the goal of an inherently safe mining system the dual-duct adaptation to the Variable Wall Mining Machine appears to offer the path to solution. The respirable dust problem is solvable; the explosive dust problem is nearly solvable; and the explosive methane problem can be greatly reduced. If installed in a highly gassy mine, the dual duct models would also be considerably less costly.

  19. Quantum Boltzmann Machine

    NASA Astrophysics Data System (ADS)

    Kulchytskyy, Bohdan; Andriyash, Evgeny; Amin, Mohammed; Melko, Roger

    The field of machine learning has been revolutionized by the recent improvements in the training of deep networks. Their architecture is based on a set of stacked layers of simpler modules. One of the most successful building blocks, known as a restricted Boltzmann machine, is an energetic model based on the classical Ising Hamiltonian. In our work, we investigate the benefits of quantum effects on the learning capacity of Boltzmann machines by extending its underlying Hamiltonian with a transverse field. For this purpose, we employ exact and stochastic training procedures on data sets with physical origins.

  20. Machine Tool Software

    NASA Technical Reports Server (NTRS)

    1988-01-01

    A NASA-developed software package has played a part in technical education of students who major in Mechanical Engineering Technology at William Rainey Harper College. Professor Hack has been using (APT) Automatically Programmed Tool Software since 1969 in his CAD/CAM Computer Aided Design and Manufacturing curriculum. Professor Hack teaches the use of APT programming languages for control of metal cutting machines. Machine tool instructions are geometry definitions written in APT Language to constitute a "part program." The part program is processed by the machine tool. CAD/CAM students go from writing a program to cutting steel in the course of a semester.

  1. OPTICAM machine design

    NASA Astrophysics Data System (ADS)

    Liedes, Jyrki T.

    1992-01-01

    Rank Pneumo has worked with the Center of Optics Manufacturing to design a multiple-axis flexible machining center for spherical lens fabrication. The OPTICAM/SM prototype machine has been developed in cooperation with the Center's Manufacturing Advisory Board. The SM will generate, fine grind, pre-polish, and center a spherical lens surface in one setup sequence. Unique features of the design incorporate machine resident metrology to provide RQM (Real-time Quality Management) and closed-loop feedback control that corrects for lens thickness, diameter, and centering error. SPC (Statistical Process Control) software can compensate for process drift and QA data collection is provided without additional labor.

  2. Estimates of embodied global energy and air-emission intensities of Japanese products for building a Japanese input-output life cycle assessment database with a global system boundary.

    PubMed

    Nansai, Keisuke; Kondo, Yasushi; Kagawa, Shigemi; Suh, Sangwon; Nakajima, Kenichi; Inaba, Rokuta; Tohno, Susumu

    2012-08-21

    To build a life cycle assessment (LCA) database of Japanese products embracing their global supply chains in a manner requiring lower time and labor burdens, this study estimates the intensity of embodied global environmental burden for commodities produced in Japan. The intensity of embodied global environmental burden is a measure of the environmental burden generated globally by unit production of the commodity and can be used as life cycle inventory data in LCA. The calculation employs an input-output LCA method with a global link input-output model that defines a global system boundary grounded in a simplified multiregional input-output framework. As results, the intensities of embodied global environmental burden for 406 Japanese commodities are determined in terms of energy consumption, greenhouse-gas emissions (carbon dioxide, methane, nitrous oxide, perfluorocarbons, hydrofluorocarbons, sulfur hexafluoride, and their summation), and air-pollutant emissions (nitrogen oxide and sulfur oxide). The uncertainties in the intensities of embodied global environmental burden attributable to the simplified structure of the global link input-output model are quantified using Monte Carlo simulation. In addition, by analyzing the structure of the embodied global greenhouse-gas intensities we characterize Japanese commodities in the context of LCA embracing global supply chains. PMID:22881452

  3. Estimates of embodied global energy and air-emission intensities of Japanese products for building a Japanese input-output life cycle assessment database with a global system boundary.

    PubMed

    Nansai, Keisuke; Kondo, Yasushi; Kagawa, Shigemi; Suh, Sangwon; Nakajima, Kenichi; Inaba, Rokuta; Tohno, Susumu

    2012-08-21

    To build a life cycle assessment (LCA) database of Japanese products embracing their global supply chains in a manner requiring lower time and labor burdens, this study estimates the intensity of embodied global environmental burden for commodities produced in Japan. The intensity of embodied global environmental burden is a measure of the environmental burden generated globally by unit production of the commodity and can be used as life cycle inventory data in LCA. The calculation employs an input-output LCA method with a global link input-output model that defines a global system boundary grounded in a simplified multiregional input-output framework. As results, the intensities of embodied global environmental burden for 406 Japanese commodities are determined in terms of energy consumption, greenhouse-gas emissions (carbon dioxide, methane, nitrous oxide, perfluorocarbons, hydrofluorocarbons, sulfur hexafluoride, and their summation), and air-pollutant emissions (nitrogen oxide and sulfur oxide). The uncertainties in the intensities of embodied global environmental burden attributable to the simplified structure of the global link input-output model are quantified using Monte Carlo simulation. In addition, by analyzing the structure of the embodied global greenhouse-gas intensities we characterize Japanese commodities in the context of LCA embracing global supply chains.

  4. Designing a Cu(II)-ArCu(II)-ArCu(III)-Cu(I) catalytic cycle: Cu(II)-catalyzed oxidative arene C-H bond azidation with air as an oxidant under ambient conditions.

    PubMed

    Yao, Bo; Liu, Yang; Zhao, Liang; Wang, De-Xian; Wang, Mei-Xiang

    2014-11-21

    On the basis of our recent discovery of high valent organocopper compounds, we have designed and achieved efficient copper(II)-catalyzed oxidative arene C-H bond azidation under very mild aerobic conditions by using NaN3 as an azide source. In the presence of a Cu(II) catalyst, a number of azacalix[1]arene[3]pyridines underwent direct arene C-H bond cupration through an electrophilic aromatic metalation pathway to form an arylcopper(II) intermediate. Oxidized by a free copper(II) ion, the arylcopper(II) intermediate was transformed into an arylcopper(III) species that subsequently cross-coupled with azide to furnish the formation of aryl azide products with the release of a copper(I) ion. Under ambient catalytic reaction conditions, the copper(I) species generated was oxidized by air into copper(II), which entered into the next catalytic cycle. Application of the method was demonstrated by the synthesis of functional azacalix[1]arene[3]pyridines by means of simple and practical functional group transformations of azide. The showcase of the Cu(II)-ArCu(II)-ArCu(III)-Cu(I) catalytic cycle would provide a new strategy for the design of copper(II)-catalyzed aerobic oxidative arene C-H bond activation and transformations.

  5. Designing a Cu(II)-ArCu(II)-ArCu(III)-Cu(I) catalytic cycle: Cu(II)-catalyzed oxidative arene C-H bond azidation with air as an oxidant under ambient conditions.

    PubMed

    Yao, Bo; Liu, Yang; Zhao, Liang; Wang, De-Xian; Wang, Mei-Xiang

    2014-11-21

    On the basis of our recent discovery of high valent organocopper compounds, we have designed and achieved efficient copper(II)-catalyzed oxidative arene C-H bond azidation under very mild aerobic conditions by using NaN3 as an azide source. In the presence of a Cu(II) catalyst, a number of azacalix[1]arene[3]pyridines underwent direct arene C-H bond cupration through an electrophilic aromatic metalation pathway to form an arylcopper(II) intermediate. Oxidized by a free copper(II) ion, the arylcopper(II) intermediate was transformed into an arylcopper(III) species that subsequently cross-coupled with azide to furnish the formation of aryl azide products with the release of a copper(I) ion. Under ambient catalytic reaction conditions, the copper(I) species generated was oxidized by air into copper(II), which entered into the next catalytic cycle. Application of the method was demonstrated by the synthesis of functional azacalix[1]arene[3]pyridines by means of simple and practical functional group transformations of azide. The showcase of the Cu(II)-ArCu(II)-ArCu(III)-Cu(I) catalytic cycle would provide a new strategy for the design of copper(II)-catalyzed aerobic oxidative arene C-H bond activation and transformations. PMID:25350606

  6. Sensitivity analysis of an Ocean Carbon Cycle Model in the North Atlantic: an investigation of parameters affecting the air-sea CO2 flux, primary production and export of detritus

    NASA Astrophysics Data System (ADS)

    Scott, V.; Kettle, H.; Merchant, C. J.

    2010-12-01

    The sensitivity of the biological parameters in a nutrient-phytoplankton-zooplankton-detritus (NPZD) model in the calculation of the air-sea CO2 flux, primary production and detrital export is analysed. The NPZD model is the Hadley Centre Ocean Carbon Cycle model (HadOCC) from the UK Met Office, used in the Hadley Centre Coupled Model 3 (HadCM3) and FAst Met Office and Universities Simulator (FAMOUS) GCMs. Here, HadOCC is coupled to the 1-D General Ocean Turbulence Model (GOTM) and forced with European Centre for Medium-Range Weather Forecasting meteorology to undertake a sensitivity analysis of its twenty biological parameters. Analyses are performed at three sites in the EuroSITES European Ocean Observatory Network: the Central Irminger Sea (60° N 40° W), the Porcupine Abyssal Plain (49° N 16° W) and the European Station for Time series in the Ocean Canary Islands (29° N 15° W) to assess variability in parameter sensitivities at different locations in the North Atlantic Ocean. Reasonable changes to the values of key parameters are shown to have a large effect on the calculation of the air-sea CO2 flux, primary production, and export of biological detritus to the deep ocean. Changes in the values of key parameters have a greater effect in more productive regions than in less productive areas. We perform the analysis using one-at-a-time perturbations and using a statistical emulator, and compare results. The most sensitive parameters are generic to many NPZD ocean ecosystem models. The air-sea CO2 flux is most influenced by variation in the parameters that control phytoplankton growth, detrital sinking and carbonate production by phytoplankton (the rain ratio). Primary production is most sensitive to the parameters that define the shape of the photosythesis-irradiance curve. Export production is most sensitive to the parameters that control the rate of detrital sinking and the remineralisation of detritus.

  7. Stage-by-Stage and Parallel Flow Path Compressor Modeling for a Variable Cycle Engine, NASA Advanced Air Vehicles Program - Commercial Supersonic Technology Project - AeroServoElasticity

    NASA Technical Reports Server (NTRS)

    Kopasakis, George; Connolly, Joseph W.; Cheng, Larry

    2015-01-01

    This paper covers the development of stage-by-stage and parallel flow path compressor modeling approaches for a Variable Cycle Engine. The stage-by-stage compressor modeling approach is an extension of a technique for lumped volume dynamics and performance characteristic modeling. It was developed to improve the accuracy of axial compressor dynamics over lumped volume dynamics modeling. The stage-by-stage compressor model presented here is formulated into a parallel flow path model that includes both axial and rotational dynamics. This is done to enable the study of compressor and propulsion system dynamic performance under flow distortion conditions. The approaches utilized here are generic and should be applicable for the modeling of any axial flow compressor design accurate time domain simulations. The objective of this work is as follows. Given the parameters describing the conditions of atmospheric disturbances, and utilizing the derived formulations, directly compute the transfer function poles and zeros describing these disturbances for acoustic velocity, temperature, pressure, and density. Time domain simulations of representative atmospheric turbulence can then be developed by utilizing these computed transfer functions together with the disturbance frequencies of interest.

  8. Can fast-growing plantation trees escape biochemical down-regulation of photosynthesis when grown throughout their complete production cycle in the open air under elevated carbon dioxide?

    PubMed

    Davey, P A; Olcer, H; Zakhleniuk, O; Bernacchi, C J; Calfapietra, C; Long, S P; Raines, C A

    2006-07-01

    Poplar trees sustain close to the predicted increase in leaf photosynthesis when grown under long-term elevated CO2 concentration ([CO2]). To investigate the mechanisms underlying this response, carbohydrate accumulation and protein expression were determined over four seasons of growth. No increase in the levels of soluble carbohydrates was observed in the young expanding or mature sun leaves of the three poplar genotypes during this period. However, substantial increases in starch levels were observed in the mature leaves of all three poplar genotypes grown in elevated [CO2]. Despite the very high starch levels, no changes in the expression of photosynthetic Calvin cycle proteins, or in the starch biosynthetic enzyme ADP-glucose pyrophosphorylase (AGPase), were observed. This suggested that no long-term photosynthetic acclimation to CO2 occurred in these plants. Our data indicate that poplar trees are able to 'escape' from long-term, acclimatory down-regulation of photosynthesis through a high capacity for starch synthesis and carbon export. These findings show that these poplar genotypes are well suited to the elevated [CO2] conditions forecast for the middle of this century and may be particularly suited for planting for the long-term carbon sequestration into wood.

  9. An autonomous agent for on-machine acceptance of machined components

    SciTech Connect

    Panceerella, C.M.; Hazelton, A.J.; Frost, H.R.

    1995-12-31

    In recent years, manufacturers of high precision mechanical parts have been required to produce increasingly complex designs, in smaller lot sizes, with improved quality. These requirements demand lower process costs, shorter development cycles and more accurate manufacturing technologies. To meet these demands, manufacturers are attempting to both improve process quality and provide better CAD/CAM integration. The technique of on-machine acceptance provides one mechanism for improving the part inspection and verification process. This approach allows one machine and one process capability model to be used for both fabrication and inspection, reducing capital cost and overall cycle time. However, the on-machine acceptance technique possesses greater potential than as simply an alternative mechanism for verifying part geometry. If the inspection capability information generated by on-machine acceptance processes can be made available to designers, it can be used to create a design-for-inspectability environment and help realize the benefits of concurrent 2048 engineering. This paper proposes a novel architecture which integrates on-machine acceptance with an agent-based concurrent design environment, for reducing both the cost and production time for high quality, small lot size, mechanical parts. This work has focused on the production of stainless steel pressure vessels at the Integrated Manufacturing Technology Laboratory (IMTL) manufacturing cell, located at Sandia National Laboratories, California.

  10. Data Machine Independence

    1994-12-30

    Data-machine independence achieved by using four technologies (ASN.1, XDR, SDS, and ZEBRA) has been evaluated by encoding two different applications in each of the above; and their results compared against the standard programming method using C.

  11. The TUM walking machines.

    PubMed

    Pfeiffer, Friedrich

    2007-01-15

    This paper presents some aspects of walking machine design with a special emphasis on the three machines MAX, MORITZ and JOHNNIE, having been developed at the Technical University of Munich within the last 20 years. The design of such machines is discussed as an iterative process improving the layout with every iteration. The control concepts are event-driven and follow logical rules, which have largely been transferred from neurobiological findings. At least for the six-legged machine MAX, a nearly perfect autonomy could be achieved, whereas for the biped JOHNNIE, a certain degree of autonomy could be realized by a vision system with appropriate decision algorithms. This vision system was developed by the group of Prof. G. Schmidt, TU-München. A more detailed description of the design and realization is presented for the biped JOHNNIE.

  12. Laser machining of ceramic

    SciTech Connect

    Laudel, A.

    1980-01-01

    The Kansas City Division of The Bendix Corporation manufactures hybrid microcircuits (HMCs) using both thin film and thick film technologies. Laser machining is used to contour the ceramic substrates and to drill holes in the ceramic for frontside-backside interconnections (vias) and holes for mounting components. A 1000 W CO/sub 2/ type laser is used. The laser machining process, and methods used for removing protruding debris and debris from holes, for cleaning the machined surfaces, and for refiring are described. The laser machining process described consistently produces vias, component holes and contours with acceptable surface quality, hole locations, diameter, flatness and metallization adhesion. There are no cracks indicated by dipping in fluorescent dye penetrant and the substances are resistant to repeated thermal shock.

  13. Real-time, adaptive machine learning for non-stationary, near chaotic gasoline engine combustion time series.

    PubMed

    Vaughan, Adam; Bohac, Stanislav V

    2015-10-01

    Fuel efficient Homogeneous Charge Compression Ignition (HCCI) engine combustion timing predictions must contend with non-linear chemistry, non-linear physics, period doubling bifurcation(s), turbulent mixing, model parameters that can drift day-to-day, and air-fuel mixture state information that cannot typically be resolved on a cycle-to-cycle basis, especially during transients. In previous work, an abstract cycle-to-cycle mapping function coupled with ϵ-Support Vector Regression was shown to predict experimentally observed cycle-to-cycle combustion timing over a wide range of engine conditions, despite some of the aforementioned difficulties. The main limitation of the previous approach was that a partially acasual randomly sampled training dataset was used to train proof of concept offline predictions. The objective of this paper is to address this limitation by proposing a new online adaptive Extreme Learning Machine (ELM) extension named Weighted Ring-ELM. This extension enables fully causal combustion timing predictions at randomly chosen engine set points, and is shown to achieve results that are as good as or better than the previous offline method. The broader objective of this approach is to enable a new class of real-time model predictive control strategies for high variability HCCI and, ultimately, to bring HCCI's low engine-out NOx and reduced CO2 emissions to production engines. PMID:26164437

  14. Real-time, adaptive machine learning for non-stationary, near chaotic gasoline engine combustion time series.

    PubMed

    Vaughan, Adam; Bohac, Stanislav V

    2015-10-01

    Fuel efficient Homogeneous Charge Compression Ignition (HCCI) engine combustion timing predictions must contend with non-linear chemistry, non-linear physics, period doubling bifurcation(s), turbulent mixing, model parameters that can drift day-to-day, and air-fuel mixture state information that cannot typically be resolved on a cycle-to-cycle basis, especially during transients. In previous work, an abstract cycle-to-cycle mapping function coupled with ϵ-Support Vector Regression was shown to predict experimentally observed cycle-to-cycle combustion timing over a wide range of engine conditions, despite some of the aforementioned difficulties. The main limitation of the previous approach was that a partially acasual randomly sampled training dataset was used to train proof of concept offline predictions. The objective of this paper is to address this limitation by proposing a new online adaptive Extreme Learning Machine (ELM) extension named Weighted Ring-ELM. This extension enables fully causal combustion timing predictions at randomly chosen engine set points, and is shown to achieve results that are as good as or better than the previous offline method. The broader objective of this approach is to enable a new class of real-time model predictive control strategies for high variability HCCI and, ultimately, to bring HCCI's low engine-out NOx and reduced CO2 emissions to production engines.

  15. 16. Interior, Machine Shop, Roundhouse Machine Shop Extension, Southern Pacific ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. Interior, Machine Shop, Roundhouse Machine Shop Extension, Southern Pacific Railroad Carlin Shops, view to south (90mm lens). Note the large segmental-arched doorway to move locomotives in and out of Machine Shop. - Southern Pacific Railroad, Carlin Shops, Roundhouse Machine Shop Extension, Foot of Sixth Street, Carlin, Elko County, NV

  16. NASA GLENN RESEARCH CENTER'S AIR POWER 2003 TEAM POSE WITH ORVILLE AND WILBUR WRIGHT NEAR THEIR

    NASA Technical Reports Server (NTRS)

    2003-01-01

    NASA GLENN RESEARCH CENTER'S AIR POWER 2003 TEAM POSE WITH ORVILLE AND WILBUR WRIGHT NEAR THEIR WONDERFUL FLYING MACHINES AT WRIGHT PATTERSON AIR FORCE BASE OPEN HOUSE - AIR POWER 2003, MAY 10-11, 2003

  17. Doubly fed induction machine

    DOEpatents

    Skeist, S. Merrill; Baker, Richard H.

    2005-10-11

    An electro-mechanical energy conversion system coupled between an energy source and an energy load including an energy converter device having a doubly fed induction machine coupled between the energy source and the energy load to convert the energy from the energy source and to transfer the converted energy to the energy load and an energy transfer multiplexer coupled to the energy converter device to control the flow of power or energy through the doubly fed induction machine.

  18. Flexible machining systems described

    NASA Astrophysics Data System (ADS)

    Butters, H. J.

    1985-03-01

    The rationalization and gradual automation of short rotationally symmetric parts in the Saalfeld VEB Machine Tool Factory was carried out in three stages: (1) part-specific manufacturing; (2) automated production line for manufacturing toothed gears; and (3) automated manufacturing section for short rotationally symmetric parts. The development of numerically controlled machine tools and of industrial robot technology made possible automated manufacturing. The design of current facilities is explored, manufacturing control is examined, experience is reported.

  19. Human-machine interactions

    DOEpatents

    Forsythe, J. Chris; Xavier, Patrick G.; Abbott, Robert G.; Brannon, Nathan G.; Bernard, Michael L.; Speed, Ann E.

    2009-04-28

    Digital technology utilizing a cognitive model based on human naturalistic decision-making processes, including pattern recognition and episodic memory, can reduce the dependency of human-machine interactions on the abilities of a human user and can enable a machine to more closely emulate human-like responses. Such a cognitive model can enable digital technology to use cognitive capacities fundamental to human-like communication and cooperation to interact with humans.

  20. Metalworking and machining fluids

    DOEpatents

    Erdemir, Ali; Sykora, Frank; Dorbeck, Mark

    2010-10-12

    Improved boron-based metal working and machining fluids. Boric acid and boron-based additives that, when mixed with certain carrier fluids, such as water, cellulose and/or cellulose derivatives, polyhydric alcohol, polyalkylene glycol, polyvinyl alcohol, starch, dextrin, in solid and/or solvated forms result in improved metalworking and machining of metallic work pieces. Fluids manufactured with boric acid or boron-based additives effectively reduce friction, prevent galling and severe wear problems on cutting and forming tools.

  1. Sealing intersecting vane machines

    DOEpatents

    Martin, Jedd N.; Chomyszak, Stephen M.

    2007-06-05

    The invention provides a toroidal intersecting vane machine incorporating intersecting rotors to form primary and secondary chambers whose porting configurations minimize friction and maximize efficiency. Specifically, it is an object of the invention to provide a toroidal intersecting vane machine that greatly reduces the frictional losses through intersecting surfaces without the need for external gearing by modifying the width of one or both tracks at the point of intermeshing. The inventions described herein relate to these improvements.

  2. Sealing intersecting vane machines

    DOEpatents

    Martin, Jedd N.; Chomyszak, Stephen M.

    2005-06-07

    The invention provides a toroidal intersecting vane machine incorporating intersecting rotors to form primary and secondary chambers whose porting configurations minimize friction and maximize efficiency. Specifically, it is an object of the invention to provide a toroidal intersecting vane machine that greatly reduces the frictional losses through intersecting surfaces without the need for external gearing by modifying the width of one or both tracks at the point of intermeshing. The inventions described herein relate to these improvements.

  3. A Function Machine

    ERIC Educational Resources Information Center

    Hewitt, Dave

    2008-01-01

    In this article, the author describes a lesson he observed involving a function machine. This function machine was a box with a slot at the top of one side and a large cut-out hole at the bottom of the opposite side. A card with a number written on it (the input) was pushed into the slot and the teacher put their hand through the hole of the other…

  4. Opticam PM machine design

    NASA Astrophysics Data System (ADS)

    Liedes, Jyrki T.

    1992-12-01

    Rank Pneumo has worked with the Center for Optics Manufacturing and the Center's Manufacturing Advisory Board to design a multi-axis prism grinding machine. The Opticam PM is a three axis, high precision CNC reciprocating grinder. It is designed for the automated manufacturing of glass prisms. Unique features of the design incorporate electrolytic in- process dressing of the finishing wheel, nested grinding wheels and machine resident metrology to provide RQM (Real-time Quality Management).

  5. Linear positioning laser calibration setup of CNC machine tools

    NASA Astrophysics Data System (ADS)

    Sui, Xiulin; Yang, Congjing

    2002-10-01

    The linear positioning laser calibration setup of CNC machine tools is capable of executing machine tool laser calibraiotn and backlash compensation. Using this setup, hole locations on CNC machien tools will be correct and machien tool geometry will be evaluated and adjusted. Machien tool laser calibration and backlash compensation is a simple and straightforward process. First the setup is to 'find' the stroke limits of the axis. Then the laser head is then brought into correct alignment. Second is to move the machine axis to the other extreme, the laser head is now aligned, using rotation and elevation adjustments. Finally the machine is moved to the start position and final alignment is verified. The stroke of the machine, and the machine compensation interval dictate the amount of data required for each axis. These factors determine the amount of time required for a through compensation of the linear positioning accuracy. The Laser Calibrator System monitors the material temperature and the air density; this takes into consideration machine thermal growth and laser beam frequency. This linear positioning laser calibration setup can be used on CNC machine tools, CNC lathes, horizontal centers and vertical machining centers.

  6. Could a machine think

    SciTech Connect

    Churchland, P.M.; Churchland, P.S. )

    1990-01-01

    There are many reasons for saying yes. One of the earliest and deepest reason lay in two important results in computational theory. The first was Church's thesis, which states that every effectively computable function is recursively computable. The second important result was Alan M. Turing's demonstration that any recursively computable function can be computed in finite time by a maximally simple sort of symbol-manipulating machine that has come to be called a universal Turing machine. This machine is guided by a set of recursively applicable rules that are sensitive to the identity, order and arrangement of the elementary symbols it encounters as input. The authors reject the Turing test as a sufficient condition for conscious intelligence. They base their position of the specific behavioral failures of the classical SM machines and on the specific virtues of machines with a more brain-like architecture. These contrasts show that certain computational strategies have vast and decisive advantages over others where typical cognitive tasks are concerned, advantages that are empirically inescapable. Clearly, the brain is making systematic use of these computational advantage. But it need not be the only physical system capable of doing so. Artificial intelligence, in a nonbiological but massively parallel machine, remain a compelling and discernible prospect.

  7. The Knife Machine. Module 15.

    ERIC Educational Resources Information Center

    South Carolina State Dept. of Education, Columbia. Office of Vocational Education.

    This module on the knife machine, one in a series dealing with industrial sewing machines, their attachments, and operation, covers one topic: performing special operations on the knife machine (a single needle or multi-needle machine which sews and cuts at the same time). These components are provided: an introduction, directions, an objective,…

  8. Feedback in sequential machine realizations.

    NASA Technical Reports Server (NTRS)

    Harlow, C. A.; Coates, C. L., Jr.

    1972-01-01

    A method is described for determining the realizability of a sequential machine with trigger or set-reset flip-flop memory elements when the feedback of the machine is given by a Boolean function. Feedbacks in several types of sequential machines with different memory elements are compared, showing the memory specifications allowing the realization of such machines.

  9. Non-traditional machining techniques

    SciTech Connect

    Day, Robert D; Fierro, Frank; Garcia, Felix P; Hatch, Douglass J; Randolph, Randall B; Reardon, Patrick T; Rivera, Gerald

    2008-01-01

    During the course of machining targets for various experiments it sometimes becomes necessary to adapt fixtures or machines, which are designed for one function, to another function. When adapting a machine or fixture is not adequate, it may be necessary to acquire a machine specifically designed to produce the component required. In addition to the above scenarios, the features of a component may dictate that multi-step machining processes are necessary to produce the component. This paper discusses the machining of four components where adaptation, specialized machine design, or multi-step processes were necessary to produce the components.

  10. Menstrual Cycle

    MedlinePlus

    ... Pregnancy This information in Spanish ( en español ) The menstrual cycle Day 1 starts with the first day of ... drop around Day 25 . This signals the next menstrual cycle to begin. The egg will break apart and ...

  11. Biogeochemical Cycling

    NASA Technical Reports Server (NTRS)

    Bebout, Brad; Fonda, Mark (Technical Monitor)

    2002-01-01

    This lecture will introduce the concept of biogeochemical cycling. The roles of microbes in the cycling of nutrients, production and consumption of trace gases, and mineralization will be briefly introduced.

  12. Diel cycles of isoprenoids in the emissions of Norway spruce, four Scots pine chemotypes, and in Boreal forest ambient air during HUMPPA-COPEC-2010

    NASA Astrophysics Data System (ADS)

    Yassaa, N.; Song, W.; Lelieveld, J.; Vanhatalo, A.; Bäck, J.; Williams, J.

    2012-08-01

    contributed more than 50% of the total monoterpenes. The ambient data reflect the emission rate, atmospheric reactivity and tree type abundance. The diel cycles of isoprenoid mixing ratios showed high levels during the night-time which is consistent with continued low nocturnal emission and a low and stable boundary layer. The chirality of α-pinene was dominated by (+)-enantiomers both in the direct emission and in the atmosphere. The two highest emitters showed no enantiomeric preference for α-pinene emissions, whereas the two lowest emitting pines emitted more (+)-enantiomer. The spruce emissions were dominated by (-)-enantiomer. The exceptionally hot temperatures in the summer of 2010 led to relatively strong emissions of monoterpenes, greater diversity in chemical composition and high ambient mixing ratios.

  13. The Bearingless Electrical Machine

    NASA Technical Reports Server (NTRS)

    Bichsel, J.

    1992-01-01

    Electromagnetic bearings allow the suspension of solids. For rotary applications, the most important physical effect is the force of a magnetic circuit to a high permeable armature, called the MAXWELL force. Contrary to the commonly used MAXWELL bearings, the bearingless electrical machine will take advantage of the reaction force of a conductor carrying a current in a magnetic field. This kind of force, called Lorentz force, generates the torque in direct current, asynchronous and synchronous machines. The magnetic field, which already exists in electrical machines and helps to build up the torque, can also be used for the suspension of the rotor. Besides the normal winding of the stator, a special winding was added, which generates forces for levitation. So a radial bearing, which is integrated directly in the active part of the machine, and the motor use the laminated core simultaneously. The winding was constructed for the levitating forces in a special way so that commercially available standard ac inverters for drives can be used. Besides wholly magnetic suspended machines, there is a wide range of applications for normal drives with ball bearings. Resonances of the rotor, especially critical speeds, can be damped actively.

  14. Non Contact Measuring Machine

    NASA Astrophysics Data System (ADS)

    Carvalho, Fernando D.; Sebastiao, Pedro; Henriques, Bernardo G.

    1989-01-01

    One of the problems of the production of cables is the measurement of the thickness plastic cover at the production line. If for some reason the thickness of the plastic is smaller than the minimum necessary several meters of cable may be lost. If the problem exists in the middle of a long cable and the default is not detected in time, the loss will be significant. To solve this problem it is possible to use automatic measuring machines which may detect a default as soon as it happens. It is also possible to interact with the production line in order to avoid any losses. In this paper it is presented a non contact measuring machine, developed for this purpose. The machine uses a laser which is scanned through a field of 80 mm. The interruption of the beam gives information about the external dimension of the object. The technical study of the resolution, sensitivity and precision are presented on the paper. Also the hardware solution and the software are presented. The machine has an interface which allows communication with a PC. The PC may receive information from several measuring units and to interact with machines installed at the production line. The prototype is finished and is going to be tested in the industry.

  15. Extreme ultraviolet lithography machine

    SciTech Connect

    Tichenor, D.A.; Kubiak, G.D.; Haney, S.J.; Sweeney, D.W.

    2000-02-29

    An extreme ultraviolet lithography (EUVL) machine or system is disclosed for producing integrated circuit (IC) components, such as transistors, formed on a substrate. The EUVL machine utilizes a laser plasma point source directed via an optical arrangement onto a mask or reticle which is reflected by a multiple mirror system onto the substrate or target. The EUVL machine operates in the 10--14 nm wavelength soft x-ray photon. Basically the EUV machine includes an evacuated source chamber, an evacuated main or project chamber interconnected by a transport tube arrangement, wherein a laser beam is directed into a plasma generator which produces an illumination beam which is directed by optics from the source chamber through the connecting tube, into the projection chamber, and onto the reticle or mask, from which a patterned beam is reflected by optics in a projection optics (PO) box mounted in the main or projection chamber onto the substrate. In one embodiment of a EUVL machine, nine optical components are utilized, with four of the optical components located in the PO box. The main or projection chamber includes vibration isolators for the PO box and a vibration isolator mounting for the substrate, with the main or projection chamber being mounted on a support structure and being isolated.

  16. Extreme ultraviolet lithography machine

    DOEpatents

    Tichenor, Daniel A.; Kubiak, Glenn D.; Haney, Steven J.; Sweeney, Donald W.

    2000-01-01

    An extreme ultraviolet lithography (EUVL) machine or system for producing integrated circuit (IC) components, such as transistors, formed on a substrate. The EUVL machine utilizes a laser plasma point source directed via an optical arrangement onto a mask or reticle which is reflected by a multiple mirror system onto the substrate or target. The EUVL machine operates in the 10-14 nm wavelength soft x-ray photon. Basically the EUV machine includes an evacuated source chamber, an evacuated main or project chamber interconnected by a transport tube arrangement, wherein a laser beam is directed into a plasma generator which produces an illumination beam which is directed by optics from the source chamber through the connecting tube, into the projection chamber, and onto the reticle or mask, from which a patterned beam is reflected by optics in a projection optics (PO) box mounted in the main or projection chamber onto the substrate. In one embodiment of a EUVL machine, nine optical components are utilized, with four of the optical components located in the PO box. The main or projection chamber includes vibration isolators for the PO box and a vibration isolator mounting for the substrate, with the main or projection chamber being mounted on a support structure and being isolated.

  17. Meso-Machining Capabilities

    SciTech Connect

    BENAVIDES,GILBERT L.; ADAMS,DAVID P.; YANG,PIN

    2001-06-01

    Meso-scale manufacturing processes are bridging the gap between silicon-based MEMS processes and conventional miniature machining. These processes can fabricate two and three-dimensional parts having micron size features in traditional materials such as stainless steels, rare earth magnets, ceramics, and glass. Meso-scale processes that are currently available include, focused ion beam sputtering, micro-milling, micro-turning, excimer laser ablation, femtosecond laser ablation, and micro electro discharge machining. These meso-scale processes employ subtractive machining technologies (i.e., material removal), unlike LIGA, which is an additive meso-scale process. Meso-scale processes have different material capabilities and machining performance specifications. Machining performance specifications of interest include minimum feature size, feature tolerance, feature location accuracy, surface finish, and material removal rate. Sandia National Laboratories is developing meso-scale mechanical components and actuators which require meso-scale parts fabricated in a variety of materials. Subtractive meso-scale manufacturing processes expand the functionality of meso-scale components and complement silicon based MEMS and LIGA technologies.

  18. High-Compression-Ratio; Atkinson-Cycle Engine Using Low-Pressure Direct Injection and Pneumatic-Electronic Valve Actuation Enabled by Ionization Current and Foward-Backward Mass Air Flow Sensor Feedback

    SciTech Connect

    Harold Schock; Farhad Jaberi; Ahmed Naguib; Guoming Zhu; David Hung

    2007-12-31

    This report describes the work completed over a two and one half year effort sponsored by the US Department of Energy. The goal was to demonstrate the technology needed to produce a highly efficient engine enabled by several technologies which were to be developed in the course of the work. The technologies included: (1) A low-pressure direct injection system; (2) A mass air flow sensor which would measure the net airflow into the engine on a per cycle basis; (3) A feedback control system enabled by measuring ionization current signals from the spark plug gap; and (4) An infinitely variable cam actuation system based on a pneumatic-hydraulic valve actuation These developments were supplemented by the use of advanced large eddy simulations as well as evaluations of fuel air mixing using the KIVA and WAVE models. The simulations were accompanied by experimental verification when possible. In this effort a solid base has been established for continued development of the advanced engine concepts originally proposed. Due to problems with the valve actuation system a complete demonstration of the engine concept originally proposed was not possible. Some of the highlights that were accomplished during this effort are: (1) A forward-backward mass air flow sensor has been developed and a patent application for the device has been submitted. We are optimistic that this technology will have a particular application in variable valve timing direct injection systems for IC engines. (2) The biggest effort on this project has involved the development of the pneumatic-hydraulic valve actuation system. This system was originally purchased from Cargine, a Swedish supplier and is in the development stage. To date we have not been able to use the actuators to control the exhaust valves, although the actuators have been successfully employed to control the intake valves. The reason for this is the additional complication associated with variable back pressure on the exhaust valves when

  19. Iron-Air Rechargeable Battery

    NASA Technical Reports Server (NTRS)

    Narayan, Sri R. (Inventor); Prakash, G.K. Surya (Inventor); Kindler, Andrew (Inventor)

    2014-01-01

    Embodiments include an iron-air rechargeable battery having a composite electrode including an iron electrode and a hydrogen electrode integrated therewith. An air electrode is spaced from the iron electrode and an electrolyte is provided in contact with the air electrode and the iron electrodes. Various additives and catalysts are disclosed with respect to the iron electrode, air electrode, and electrolyte for increasing battery efficiency and cycle life.

  20. Modeling the weekly cycle of NOx and CO emissions and their impacts on O3 in the Los Angeles-South Coast Air Basin during the CalNex 2010 field campaign

    NASA Astrophysics Data System (ADS)

    Kim, S.-W.; McDonald, B. C.; Baidar, S.; Brown, S. S.; Dube, B.; Ferrare, R. A.; Frost, G. J.; Harley, R. A.; Holloway, J. S.; Lee, H.-J.; McKeen, S. A.; Neuman, J. A.; Nowak, J. B.; Oetjen, H.; Ortega, I.; Pollack, I. B.; Roberts, J. M.; Ryerson, T. B.; Scarino, A. J.; Senff, C. J.; Thalman, R.; Trainer, M.; Volkamer, R.; Wagner, N.; Washenfelder, R. A.; Waxman, E.; Young, C. J.

    2016-02-01

    We developed a new nitrogen oxide (NOx) and carbon monoxide (CO) emission inventory for the Los Angeles-South Coast Air Basin (SoCAB) expanding the Fuel-based Inventory for motor-Vehicle Emissions and applied it in regional chemical transport modeling focused on the California Nexus of Air Quality and Climate Change (CalNex) 2010 field campaign. The weekday NOx emission over the SoCAB in 2010 is 620 t d-1, while the weekend emission is 410 t d-1. The NOx emission decrease on weekends is caused by reduced diesel truck activities. Weekday and weekend CO emissions over this region are similar: 2340 and 2180 t d-1, respectively. Previous studies reported large discrepancies between the airborne observations of NOx and CO mixing ratios and the model simulations for CalNex based on the available bottom-up emission inventories. Utilizing the newly developed emission inventory in this study, the simulated NOx and CO mixing ratios agree with the observations from the airborne and the ground-based in situ and remote sensing instruments during the field study. The simulations also reproduce the weekly cycles of these chemical species. Both the observations and the model simulations indicate that decreased NOx on weekends leads to enhanced photochemistry and increase of O3 and Ox (=O3 + NO2) in the basin. The emission inventory developed in this study can be extended to different years and other urban regions in the U.S. to study the long-term trends in O3 and its precursors with regional chemical transport models.

  1. Dual-rotor, radial-flux, toroidally-wound, permanent-magnet machine

    DOEpatents

    Qu, Ronghai; Lipo, Thomas A.

    2005-08-02

    The present invention provides a novel dual-rotor, radial-flux, toroidally-wound, permanent-magnet machine. The present invention improves electrical machine torque density and efficiency. At least one concentric surface-mounted permanent magnet dual-rotor is located inside and outside of a torus-shaped stator with back-to-back windings, respectively. The machine substantially improves machine efficiency by reducing the end windings and boosts the torque density by at least doubling the air gap and optimizing the machine aspect ratio.

  2. Long-range transport and re-circulation of pollutants in the western Mediterranean during the project Regional Cycles of Air Pollution in the West-Central Mediterranean Area

    NASA Astrophysics Data System (ADS)

    Gangoiti, Gotzon; Millán, Millán M.; Salvador, Rosa; Mantilla, Enrique

    During the warm season (March-September), high ozone concentrations have been reported at the coastal and mountain monitoring stations of the eastern Iberia coast (Millán et al., J. Geophys. Res. 102 (D7) 8811, J. Appl. Meteorol. 4 (2000) 487). The vegetation protection threshold of current Directive 92/72/EEC and the World Health Organisation guideline for the protection of crops and semi-natural vegetation are systematically exceeded during the whole period. The main objective of the present study is to search for the origin of these chronic pollution levels: to search for the reason(s) for such high O 3 concentrations during such a long period. A mesoscale model is used to reproduce the diurnal cycle of winds and stability/layering over the Western Mediterranean Basin (WMB), at a sufficient space/temporal resolution, under a typical recursive synoptic condition during the warm season: data from the flight tracks of the European Project—Regional Cycles of Air Pollution in the West-Central Mediterranean Area—are used to substantiate the model results. Times of residence and the final distribution of pollutants entering the WMB are estimated using single-particle Lagrangian trajectories and a multiple-particle dispersion model. Our results show that the marine boundary layer and the lower troposphere in the region between the Balearic Islands and eastern Iberia are subject to a flow regime that tends to accumulate pollutants within large circulations, covering the entire western basin. We have also shown a diurnal pulsation of the Tramontana/Mistral wind regime, which can transport new pollutants into the area (background concentrations of 50-65 ppb of O 3 of continental European origin) that are added to local emissions and re-circulated within the coastal breezes at eastern Iberia for periods of more than five days. Local emissions and wind configuration contribute to increase the O 3 concentrations up to 100 ppb and even more.

  3. Superconducting PM undiffused machines with stationary superconducting coils

    DOEpatents

    Hsu, John S.; Schwenterly, S. William

    2004-03-02

    A superconducting PM machine has a stator, a rotor and a stationary excitation source without the need of a ferromagnetic frame which is cryogenically cooled for operation in the superconducting state. PM material is placed between poles on the rotor to prevent leakage or diffusion of secondary flux before reaching the main air gap, or to divert PM flux where it is desired to weaken flux in the main air gap. The PM material provides hop-along capability for the machine in the event of a fault condition.

  4. Machinable oxide ceramic

    SciTech Connect

    Rayne, R.J.; Toth, L.E.; Jones, L.D.; Soulen, R.J. Jr.; Bender, B.A.

    1993-06-01

    A method of forming a machinable bulk superconductor by melt-casting the described comprising the steps of: weighing out amounts of powdered SrCO[sub 3], CuO, CaCO[sub 3], and Bi[sub 2]O[sub 3] for the desired stoichiometry of the superconductor; combining the amounts of Bi[sub 2]O[sub 3], SrCO[sub 3], CuO and CaCO[sub 3] to form a mixture of uniform color; removing the carbonates in the mixture; heating the mixture until the mixture melts completely, to form a melt; pouring the melt into a preheated, non-reactive mold; cooling the melted mixture in the mold to room temperature, to form a casting; inducing a superconducting phase having randomly oriented platelets within the casting; and machining, by a metal cutting technique, said casting having said induced superconducting phase; wherein said machining step is performed with a steel tool.

  5. Micro-machined resonator

    DOEpatents

    Godshall, Ned A.; Koehler, Dale R.; Liang, Alan Y.; Smith, Bradley K.

    1993-01-01

    A micro-machined resonator, typically quartz, with upper and lower micro-machinable support members, or covers, having etched wells which may be lined with conductive electrode material, between the support members is a quartz resonator having an energy trapping quartz mesa capacitively coupled to the electrode through a diaphragm; the quartz resonator is supported by either micro-machined cantilever springs or by thin layers extending over the surfaces of the support. If the diaphragm is rigid, clock applications are available, and if the diaphragm is resilient, then transducer applications can be achieved. Either the thin support layers or the conductive electrode material can be integral with the diaphragm. In any event, the covers are bonded to form a hermetic seal and the interior volume may be filled with a gas or may be evacuated. In addition, one or both of the covers may include oscillator and interface circuitry for the resonator.

  6. Micro-machined resonator

    DOEpatents

    Godshall, N.A.; Koehler, D.R.; Liang, A.Y.; Smith, B.K.

    1993-03-30

    A micro-machined resonator, typically quartz, with upper and lower micro-machinable support members, or covers, having etched wells which may be lined with conductive electrode material, between the support members is a quartz resonator having an energy trapping quartz mesa capacitively coupled to the electrode through a diaphragm; the quartz resonator is supported by either micro-machined cantilever springs or by thin layers extending over the surfaces of the support. If the diaphragm is rigid, clock applications are available, and if the diaphragm is resilient, then transducer applications can be achieved. Either the thin support layers or the conductive electrode material can be integral with the diaphragm. In any event, the covers are bonded to form a hermetic seal and the interior volume may be filled with a gas or may be evacuated. In addition, one or both of the covers may include oscillator and interface circuitry for the resonator.

  7. Air Pollution

    MedlinePlus

    Air pollution is a mixture of solid particles and gases in the air. Car emissions, chemicals from factories, ... Ozone, a gas, is a major part of air pollution in cities. When ozone forms air pollution, it's ...

  8. Automated fiber pigtailing machine

    DOEpatents

    Strand, O.T.; Lowry, M.E.

    1999-01-05

    The Automated Fiber Pigtailing Machine (AFPM) aligns and attaches optical fibers to optoelectronic (OE) devices such as laser diodes, photodiodes, and waveguide devices without operator intervention. The so-called pigtailing process is completed with sub-micron accuracies in less than 3 minutes. The AFPM operates unattended for one hour, is modular in design and is compatible with a mass production manufacturing environment. This machine can be used to build components which are used in military aircraft navigation systems, computer systems, communications systems and in the construction of diagnostics and experimental systems. 26 figs.

  9. Automated fiber pigtailing machine

    DOEpatents

    Strand, Oliver T.; Lowry, Mark E.

    1999-01-01

    The Automated Fiber Pigtailing Machine (AFPM) aligns and attaches optical fibers to optoelectonic (OE) devices such as laser diodes, photodiodes, and waveguide devices without operator intervention. The so-called pigtailing process is completed with sub-micron accuracies in less than 3 minutes. The AFPM operates unattended for one hour, is modular in design and is compatible with a mass production manufacturing environment. This machine can be used to build components which are used in military aircraft navigation systems, computer systems, communications systems and in the construction of diagnostics and experimental systems.

  10. New photolithography stepping machine

    SciTech Connect

    Hale, L.; Klingmann, J.; Markle, D.

    1995-03-08

    A joint development project to design a new photolithography steeping machine capable of 150 nanometer overlay accuracy was completed by Ultratech Stepper and the Lawrence Livermore National Laboratory. The principal result of the project is a next-generation product that will strengthen the US position in step-and-repeat photolithography. The significant challenges addressed and solved in the project are the subject of this report. Design methods and new devices that have broader application to precision machine design are presented in greater detail while project specific information serves primarily as background and motivation.

  11. Precision Robotic Assembly Machine

    ScienceCinema

    None

    2016-07-12

    The world's largest laser system is the National Ignition Facility (NIF), located at Lawrence Livermore National Laboratory. NIF's 192 laser beams are amplified to extremely high energy, and then focused onto a tiny target about the size of a BB, containing frozen hydrogen gas. The target must be perfectly machined to incredibly demanding specifications. The Laboratory's scientists and engineers have developed a device called the "Precision Robotic Assembly Machine" for this purpose. Its unique design won a prestigious R&D-100 award from R&D Magazine.

  12. Precision Robotic Assembly Machine

    SciTech Connect

    2009-08-14

    The world's largest laser system is the National Ignition Facility (NIF), located at Lawrence Livermore National Laboratory. NIF's 192 laser beams are amplified to extremely high energy, and then focused onto a tiny target about the size of a BB, containing frozen hydrogen gas. The target must be perfectly machined to incredibly demanding specifications. The Laboratory's scientists and engineers have developed a device called the "Precision Robotic Assembly Machine" for this purpose. Its unique design won a prestigious R&D-100 award from R&D Magazine.

  13. Intersecting vane machines

    DOEpatents

    Bailey, H. Sterling; Chomyszak, Stephen M.

    2007-01-16

    The invention provides a toroidal intersecting vane machine incorporating intersecting rotors to form primary and secondary chambers whose porting configurations minimize friction and maximize efficiency. Specifically, it is an object of the invention to provide a toroidal intersecting vane machine that greatly reduces the frictional losses through meshing surfaces without the need for external gearing by modifying the function of one or the other of the rotors from that of "fluid moving" to that of "valving" thereby reducing the pressure loads and associated inefficiencies at the interface of the meshing surfaces. The inventions described herein relate to these improvements.

  14. Paradigms for machine learning

    NASA Technical Reports Server (NTRS)

    Schlimmer, Jeffrey C.; Langley, Pat

    1991-01-01

    Five paradigms are described for machine learning: connectionist (neural network) methods, genetic algorithms and classifier systems, empirical methods for inducing rules and decision trees, analytic learning methods, and case-based approaches. Some dimensions are considered along with these paradigms vary in their approach to learning, and the basic methods are reviewed that are used within each framework, together with open research issues. It is argued that the similarities among the paradigms are more important than their differences, and that future work should attempt to bridge the existing boundaries. Finally, some recent developments in the field of machine learning are discussed, and their impact on both research and applications is examined.

  15. Implementation of Tritium in the Lmdz-Iso General Circulation Model: First Promising Results for the Study of the Relationships Between Stratospheric Air Inputs into the Lower Troposphere in Polar Regions, Water Cycle and Climate

    NASA Astrophysics Data System (ADS)

    Cauquoin, A.; Jean Baptiste, P.; Risi, C. M.; Fourre, E.; Landais, A.

    2014-12-01

    Understanding the links between climate and water cycle is essential in the current context of global warming. The water isotopic composition, quantified as δD, δ18O or δ17O, has a great potential to trace the organization of present-day hydrological cycle. When recorded in various archives as tree rings, sediments, ice cores, they have also been largely used to reconstruct the past evolution of climate and water. The Antarctic cap is extremely sensitive to climate change. Moreover, this region is under the influence of exchanges between the troposphere and the stratosphere because of the presence of the polar vortex. Tritium (3H) has been shown to be an appropriate tracer for the intrusion of stratospheric air masses into the lower troposphere. Natural tritium is mainly produced by the interaction of cosmic radiations with the upper atmosphere. This tritium enters the hydrological cycle in the form of tritiated water molecules (HTO) and has a radioactive half-life of 4500±8 days. In an approach combining data and model, we have first implemented tritium in the coupled Laboratoire de Météorologie Dynamique Zoom (LMDZ) Atmospheric General Circulation Model developed at IPSL [Risi et al., 2010]: LMDZ-iso. The implementation of natural tritium uses the same model architecture as for the other water isotopes, after a correct description of associated cosmogenic production terms [Masarik and Beer, 2009]. The model is used in a configuration dedicated to the simulation of the stratosphere, with 39 layers. In this presentation, we will focus on the modeling of spatial and temporal natural variations of tritium content in precipitation. The model is validated against a compilation of available data for natural tritium. We show that the continental and latitudinal effects are well reproduced by the model and that simulated seasonal variations of the tritium content of precipitation are coherent with our current knowledge of troposphere-stratosphere exchanges. Masarik

  16. Mist control at a machining center, Part 1: Mist characterization.

    PubMed

    Heitbrink, W A; Yacher, J M; Deye, G J; Spencer, A B

    2000-01-01

    At a machining center used to produce transmission parts, aerosol instrumentation was used to quantitatively study mist generation and to evaluate the performance of an air cleaner for controlling the mist. This machining center drilled and tapped holes at rotational speeds of 1000 to 3000 rpm. During most machining operations, the metal-working fluid (MWF) was flooded over the part. To facilitate metal chip removal during some operations, MWF was pumped through the orifices in some tools at a pressure of 800 psi. These machining operations were performed in a nearly complete enclosure that was exhausted to an air cleaner at a flow rate of 1.1 m3/sec (2400 ft3/m). Although the use of high-pressure MWF increased the mist concentration by about 200%, it did not affect the mist size distribution. The observed penetration through the air cleaner appeared to be mostly consistent with the manufacturer's specifications on the air cleaner's filters. During the testing, MWF was observed to accumulate in the bottom of the filter housing and may have been reentrained due to air motion or mechanical vibration.

  17. Fast and stable electrical discharge machining (EDM)

    NASA Astrophysics Data System (ADS)

    Wu, Jianyang; Zhou, Ming; Xu, Xiaoyi; Yang, Jianwei; Zeng, Xiangwei; Xu, Donghui

    2016-05-01

    In order to improve EDM performances, the most important issue is to develop a highly stable control system. As a serious defect in EDM adaptive control system by minimum-variance control law, the occasional instability deterred its full applications in industries. This paper focuses on stabilizing EDM process by establishing a new minimum-variance and pole-placement coupled control law. Based on real-time estimation of EDM process model parameters, this adaptive control system directly controls electrode discharging cycle not only to follow a specified gap state for fast machining but also to track the dynamical response of a reference model for stabilizing EDM process. Confirmation experiment demonstrates that this control system can timely adjust electrode discharging cycle in terms of different machining situations quantified as a series of varied gap states to maintain a stable and fast fabrication. The adaptive control system by this newly developed control law exhibits its superior machining ability and capability of stabilizing sparking process to those of the adaptive control system by minimum-variance control law. The adaptive system has actually theoretically and technically solved the stability issue puzzled EDM circle for decades.

  18. Insect-machine interface based neurocybernetics.

    PubMed

    Bozkurt, Alper; Gilmour, Robert F; Sinha, Ayesa; Stern, David; Lal, Amit

    2009-06-01

    We present details of a novel bioelectric interface formed by placing microfabricated probes into insect during metamorphic growth cycles. The inserted microprobes emerge with the insect where the development of tissue around the electronics during the pupal development allows mechanically stable and electrically reliable structures coupled to the insect. Remarkably, the insects do not react adversely or otherwise to the inserted electronics in the pupae stage, as is true when the electrodes are inserted in adult stages. We report on the electrical and mechanical characteristics of this novel bioelectronic interface, which we believe would be adopted by many investigators trying to investigate biological behavior in insects with negligible or minimal traumatic effect encountered when probes are inserted in adult stages. This novel insect-machine interface also allows for hybrid insect-machine platforms for further studies. As an application, we demonstrate our first results toward navigation of flight in moths. When instrumented with equipment to gather information for environmental sensing, such insects potentially can assist man to monitor the ecosystems that we share with them for sustainability. The simplicity of the optimized surgical procedure we invented allows for batch insertions to the insect for automatic and mass production of such hybrid insect-machine platforms. Therefore, our bioelectronic interface and hybrid insect-machine platform enables multidisciplinary scientific and engineering studies not only to investigate the details of insect behavioral physiology but also to control it.

  19. Machine speech and speaking about machines

    SciTech Connect

    Nye, A.

    1996-12-31

    Current philosophy of language prides itself on scientific status. It boasts of being no longer contaminated with queer mental entities or idealist essences. It theorizes language as programmable variants of formal semantic systems, reimaginable either as the properly epiphenomenal machine functions of computer science or the properly material neural networks of physiology. Whether or not such models properly capture the physical workings of a living human brain is a question that scientists will have to answer. I, as a philosopher, come at the problem from another direction. Does contemporary philosophical semantics, in its dominant truth-theoretic and related versions, capture actual living human thought as it is experienced, or does it instead reflect, regardless of (perhaps dubious) scientific credentials, pathology of thought, a pathology with a disturbing social history.

  20. Combined cycle plants: Yesterday, today, and tomorrow (review)

    NASA Astrophysics Data System (ADS)

    Ol'khovskii, G. G.

    2016-07-01

    Gas turbine plants (GTP) for a long time have been developed by means of increasing the initial gas temperature and improvement of the turbo-machines aerodynamics and the efficiency of the critical components air cooling within the framework of a simple thermodynamic cycle. The application of watercooling systems that were used in experimental turbines and studied approximately 50 years ago revealed the fundamental difficulties that prevented the practical implementation of such systems in the industrial GTPs. The steam cooling researches have developed more substantially. The 300 MW power GTPs with a closedloop steam cooling, connected in parallel with the intermediate steam heating line in the steam cycle of the combined cycle plant (CCP) have been built, tested, and put into operation. The designs and cycle arrangements of such GTPs and entire combined cycle steam plants have become substantially more complicated without significant economic benefits. As a result, the steam cooling of gas turbines has not become widespread. The cycles—complicated by the intermediate air cooling under compression and reheat of the combustion products under expansion and their heat recovery to raise the combustion chamber entry temperature of the air—were used, in particular, in the domestic power GTPs with a moderate (700-800°C) initial gas turbine entry temperature. At the temperatures being reached to date (1300-1450°C), only one company, Alstom, applies in their 240-300 MW GTPs the recycled fuel cycle under expansion of gases in the turbine. Although these GTPs are reliable, there are no significant advantages in terms of their economy. To make a forecast of the further improvement of power GTPs, a brief review and assessment of the water cooling and steam cooling of hot components and complication of the GTP cycle by the recycling of fuel under expansion of gases in the turbine has been made. It is quite likely in the long term to reach the efficiency for the

  1. 12. Photocopied August 1978. CHANNELING MACHINES, NOVEMBER 1898. THESE MACHINES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Photocopied August 1978. CHANNELING MACHINES, NOVEMBER 1898. THESE MACHINES BLOCKED OUT SECTIONS IN THE ROCK CUT IN PREPARATION FOR DRILLING AND BLASTING. (17) - Michigan Lake Superior Power Company, Portage Street, Sault Ste. Marie, Chippewa County, MI

  2. BRASS FOUNDRY MACHINE ROOM USED TO MACHINE CAST BRONZE PIECES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    BRASS FOUNDRY MACHINE ROOM USED TO MACHINE CAST BRONZE PIECES FOR VALVES AND PREPARE BRONZE VALVE BODIES FOR ASSEMBLY. - Stockham Pipe & Fittings Company, Brass Foundry, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  3. 14. Machine in north 1922 section of Building 59. Machine ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. Machine in north 1922 section of Building 59. Machine is 24' Jointer made by Oliver Machinery Co. Camera pointed E. - Puget Sound Naval Shipyard, Pattern Shop, Farragut Avenue, Bremerton, Kitsap County, WA

  4. FES cycling.

    PubMed

    Newham, D J; Donaldson, N de N

    2007-01-01

    Spinal cord injury (SCI) leads to a partial or complete disruption of motor, sensory, and autonomic nerve pathways below the level of the lesion. In paraplegic patients, functional electrical stimulation (FES) was originally widely considered as a means to restore walking function but this was proved technically very difficult because of the numerous degrees of freedom involved in walking. FES cycling was developed for people with SCI and has the advantages that cycling can be maintained for reasonably long periods in trained muscles and the risk of falls is low. In the article, we review research findings relevant to the successful application of FES cycling including the effects on muscle size, strength and function, and the cardiovascular and bone changes. We also describe important practical considerations in FES cycling regarding the application of surface electrodes, training and setting up the stimulator limitations, implanted stimulators and FES cycling including FES cycling in groups and other FES exercises such as FES rowing.

  5. A Turing Machine Simulator.

    ERIC Educational Resources Information Center

    Navarro, Aaron B.

    1981-01-01

    Presents a program in Level II BASIC for a TRS-80 computer that simulates a Turing machine and discusses the nature of the device. The program is run interactively and is designed to be used as an educational tool by computer science or mathematics students studying computational or automata theory. (MP)

  6. Support vector machines

    NASA Technical Reports Server (NTRS)

    Garay, Michael J.; Mazzoni, Dominic; Davies, Roger; Wagstaff, Kiri

    2004-01-01

    Support Vector Machines (SVMs) are a type of supervised learning algorith,, other examples of which are Artificial Neural Networks (ANNs), Decision Trees, and Naive Bayesian Classifiers. Supervised learning algorithms are used to classify objects labled by a 'supervisor' - typically a human 'expert.'.

  7. Electrical discharge machining.

    PubMed

    LaBarge, K W

    1997-11-01

    This article describes a laboratory technique of achieving the highest degree of passive fit of an implant-retained restoration using electric discharge machining (EDM). This process can save time by eliminating the need for conventional soldering procedures, increase the longevity of the restoration, and when used along with the clinical technique of fabricating a verification index, eliminate the clinical try-in phase.

  8. Laser machining of explosives

    SciTech Connect

    Perry, Michael D.; Stuart, Brent C.; Banks, Paul S.; Myers, Booth R.; Sefcik, Joseph A.

    2000-01-01

    The invention consists of a method for machining (cutting, drilling, sculpting) of explosives (e.g., TNT, TATB, PETN, RDX, etc.). By using pulses of a duration in the range of 5 femtoseconds to 50 picoseconds, extremely precise and rapid machining can be achieved with essentially no heat or shock affected zone. In this method, material is removed by a nonthermal mechanism. A combination of multiphoton and collisional ionization creates a critical density plasma in a time scale much shorter than electron kinetic energy is transferred to the lattice. The resulting plasma is far from thermal equilibrium. The material is in essence converted from its initial solid-state directly into a fully ionized plasma on a time scale too short for thermal equilibrium to be established with the lattice. As a result, there is negligible heat conduction beyond the region removed resulting in negligible thermal stress or shock to the material beyond a few microns from the laser machined surface. Hydrodynamic expansion of the plasma eliminates the need for any ancillary techniques to remove material and produces extremely high quality machined surfaces. There is no detonation or deflagration of the explosive in the process and the material which is removed is rendered inert.

  9. Cybernetic anthropomorphic machine systems

    NASA Technical Reports Server (NTRS)

    Gray, W. E.

    1974-01-01

    Functional descriptions are provided for a number of cybernetic man machine systems that augment the capacity of normal human beings in the areas of strength, reach or physical size, and environmental interaction, and that are also applicable to aiding the neurologically handicapped. Teleoperators, computer control, exoskeletal devices, quadruped vehicles, space maintenance systems, and communications equipment are considered.

  10. Working with Simple Machines

    ERIC Educational Resources Information Center

    Norbury, John W.

    2006-01-01

    A set of examples is provided that illustrate the use of work as applied to simple machines. The ramp, pulley, lever and hydraulic press are common experiences in the life of a student, and their theoretical analysis therefore makes the abstract concept of work more real. The mechanical advantage of each of these systems is also discussed so that…

  11. Biomimetic machine vision system.

    PubMed

    Harman, William M; Barrett, Steven F; Wright, Cameron H G; Wilcox, Michael

    2005-01-01

    Real-time application of digital imaging for use in machine vision systems has proven to be prohibitive when used within control systems that employ low-power single processors without compromising the scope of vision or resolution of captured images. Development of a real-time machine analog vision system is the focus of research taking place at the University of Wyoming. This new vision system is based upon the biological vision system of the common house fly. Development of a single sensor is accomplished, representing a single facet of the fly's eye. This new sensor is then incorporated into an array of sensors capable of detecting objects and tracking motion in 2-D space. This system "preprocesses" incoming image data resulting in minimal data processing to determine the location of a target object. Due to the nature of the sensors in the array, hyperacuity is achieved thereby eliminating resolutions issues found in digital vision systems. In this paper, we will discuss the biological traits of the fly eye and the specific traits that led to the development of this machine vision system. We will also discuss the process of developing an analog based sensor that mimics the characteristics of interest in the biological vision system. This paper will conclude with a discussion of how an array of these sensors can be applied toward solving real-world machine vision issues.

  12. Electrical Discharge Machining.

    ERIC Educational Resources Information Center

    Montgomery, C. M.

    The manual is for use by students learning electrical discharge machining (EDM). It consists of eight units divided into several lessons, each designed to meet one of the stated objectives for the unit. The units deal with: introduction to and advantages of EDM, the EDM process, basic components of EDM, reaction between forming tool and workpiece,…

  13. Machine-Aided Indexing.

    ERIC Educational Resources Information Center

    Jacobs, Charles R.

    Progress is reported at the 1,000,000 word level on the development of a partial syntatic analysis technique for indexing text. A new indexing subroutine for hyphens is provided. New grammars written and programmed for Machine Aided Indexing (MAI) are discussed. (ED 069 290 is a related document) (Author)

  14. The Art Machine.

    ERIC Educational Resources Information Center

    Vertelney, Harry; Grossberger, Lucia

    1983-01-01

    Introduces educators to possibilities of computer graphics using an inexpensive computer system which takes advantage of existing equipment (35mm camera, super 8 movie camera, VHS video cassette recorder). The concept of the "art machine" is explained, highlighting input and output devices (X-Y plotter, graphic tablets, video digitizers). (EJS)

  15. The Answer Machine.

    ERIC Educational Resources Information Center

    Feldman, Susan

    2000-01-01

    Discusses information retrieval systems and the need to have them adapt to user needs, integrate information in any format, reveal patterns and trends in information, and answer questions. Topics include statistics and probability; natural language processing; intelligent agents; concept mapping; machine-aided indexing; text mining; filtering;…

  16. Giving Machines the Vision

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Amherst Systems manufactures foveal machine vision technology and systems commercially available to end-users and system integrators. This technology was initially developed under NASA contracts NAS9-19335 (Johnson Space Center) and NAS1-20841 (Langley Research Center). This technology is currently being delivered to university research facilities and military sites. More information may be found in www.amherst.com.

  17. Close-cycle Solid Sorption Refrigeration

    NASA Astrophysics Data System (ADS)

    C. Boelman, Elisa; Kashiwagi, Takao

    An overview is given of closed cycle solid sorption cooling applications for air-conditioning, refrigeration and cryogenics. The main applications are outlined, and the suitability of sorbent refrigerant pairs to temperature ranges is indicated. The use of cycles with heat recovery and with near-environmental temperature heat sources is discussed. Development efforts on cycles, coolers and elemental technologies are also outlined.

  18. Quantification of uncertainty in machining operations for on-machine acceptance.

    SciTech Connect

    Claudet, Andre A.; Tran, Hy D.; Su, Jiann-Chemg

    2008-09-01

    Manufactured parts are designed with acceptance tolerances, i.e. deviations from ideal design conditions, due to unavoidable errors in the manufacturing process. It is necessary to measure and evaluate the manufactured part, compared to the nominal design, to determine whether the part meets design specifications. The scope of this research project is dimensional acceptance of machined parts; specifically, parts machined using numerically controlled (NC, or also CNC for Computer Numerically Controlled) machines. In the design/build/accept cycle, the designer will specify both a nominal value, and an acceptable tolerance. As part of the typical design/build/accept business practice, it is required to verify that the part did meet acceptable values prior to acceptance. Manufacturing cost must include not only raw materials and added labor, but also the cost of ensuring conformance to specifications. Ensuring conformance is a substantial portion of the cost of manufacturing. In this project, the costs of measurements were approximately 50% of the cost of the machined part. In production, cost of measurement would be smaller, but still a substantial proportion of manufacturing cost. The results of this research project will point to a science-based approach to reducing the cost of ensuring conformance to specifications. The approach that we take is to determine, a priori, how well a CNC machine can manufacture a particular geometry from stock. Based on the knowledge of the manufacturing process, we are then able to decide features which need further measurements from features which can be accepted 'as is' from the CNC. By calibration of the machine tool, and establishing a machining accuracy ratio, we can validate the ability of CNC to fabricate to a particular level of tolerance. This will eliminate the costs of checking for conformance for relatively large tolerances.

  19. 8. VIEW OF THE MACHINE SHOP. BY 1966, THE MACHINE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. VIEW OF THE MACHINE SHOP. BY 1966, THE MACHINE SHOP HANDLED PRIMARILY STAINLESS STEEL COMPONENTS, WHICH WERE SENT TO THE MACHINE SHOP TO BE FORMED INTO THEIR FINAL SHAPES. (7/24/70) - Rocky Flats Plant, General Manufacturing, Support, Records-Central Computing, Southern portion of Plant, Golden, Jefferson County, CO

  20. Progress in Documentation: Machine Translation and Machine-Aided Translation.

    ERIC Educational Resources Information Center

    Hutchins, W. J.

    1978-01-01

    Discusses the prospects for fully automatic machine translation of good quality. Sections include history and background, operational and experimental machine translation systems of recent years, descriptions of interactive systems and machine-assisted translation, and a general survey of present problems and future possibilities. (VT)

  1. Tattoo machines, needles and utilities.

    PubMed

    Rosenkilde, Frank

    2015-01-01

    Starting out as a professional tattooist back in 1977 in Copenhagen, Denmark, Frank Rosenkilde has personally experienced the remarkable development of tattoo machines, needles and utilities: all the way from home-made equipment to industrial products of substantially improved quality. Machines can be constructed like the traditional dual-coil and single-coil machines or can be e-coil, rotary and hybrid machines, with the more convenient and precise rotary machines being the recent trend. This development has resulted in disposable needles and utilities. Newer machines are more easily kept clean and protected with foil to prevent crosscontaminations and infections. The machines and the tattooists' knowledge and awareness about prevention of infection have developed hand-in-hand. For decades, Frank Rosenkilde has been collecting tattoo machines. Part of his collection is presented here, supplemented by his personal notes. PMID:25833620

  2. Performance limits of multilevel and multipartite quantum heat machines

    NASA Astrophysics Data System (ADS)

    Niedenzu, Wolfgang; Gelbwaser-Klimovsky, David; Kurizki, Gershon

    2015-10-01

    We present the general theory of a quantum heat machine based on an N -level system (working medium) whose N -1 excited levels are degenerate, a prerequisite for steady-state interlevel coherence. Our goal is to find out the extent to which coherence in the working medium is an asset for heat machines. The performance bounds of such a machine are common to (reciprocating) cycles that consist of consecutive strokes and continuous cycles wherein the periodically driven system is constantly coupled to cold and hot heat baths. Intriguingly, we find that the machine's performance strongly depends on the relative orientations of the transition-dipole vectors in the system. Perfectly aligned (parallel) transition dipoles allow for steady-state coherence effects, but also give rise to dark states, which hinder steady-state thermalization and thus reduce the machine's performance. Similar thermodynamic properties hold for N two-level atoms conforming to the Dicke model. We conclude that level degeneracy, but not necessarily coherence, is a thermodynamic resource, equally enhancing the heat currents and the power output of the heat machine. By contrast, the efficiency remains unaltered by this degeneracy and adheres to the Carnot bound.

  3. Automatically-Programed Machine Tools

    NASA Technical Reports Server (NTRS)

    Purves, L.; Clerman, N.

    1985-01-01

    Software produces cutter location files for numerically-controlled machine tools. APT, acronym for Automatically Programed Tools, is among most widely used software systems for computerized machine tools. APT developed for explicit purpose of providing effective software system for programing NC machine tools. APT system includes specification of APT programing language and language processor, which executes APT statements and generates NC machine-tool motions specified by APT statements.

  4. Problem of technological inheritance in machine engineering

    NASA Astrophysics Data System (ADS)

    Blumenstein, Valery; Rakhimyanov, Kharis; Heifetz, Mikhail; Kleptzov, Alexander

    2016-01-01

    This article demonstrates the importance of the research study with regard to the technological inheritance of the properties, which characterize the surface layer, at different stages of a part's life cycle. It looks back at the major achievements and gives the findings relating to the technological inheritance of the parameters of the surface layer strength and quality as well as to how they affect the performance properties of machine parts. It demonstrates that high rates of machine engineering development, occurrence of new materials and more complicated machine operation environment require a shorter period for design-to-manufacture facility by reducing experiments and increasing design work. That, in its turn, generates the necessity in more complex but also more accurate models of metal behavior under stressing. It is especially critical for strengthening treatment. Among them are the models developed within the mechanics of technological inheritance. It is assumed that at the stages of a part's life cycle deformation accumulates on a continuous basis and the plasticity reserve of the metal, which the surface layer is made of, depletes. The research study of technological inheritance and the discovery of physical patterns of the evolution and degradation of the structures in a thin surface layer, which occur during machining and operational stressing of parts made from existing and unique including nanopatterned metals, is a crucial scientific challenge. This leads to the acquisition of new knowledge in the plasticity of state-of-the-art metals in the conditions of complex non monotonous stressing and to the development of efficient integrated and combined methods of technological impact.

  5. Air Conditioning. FOS: Fundamentals of Service.

    ERIC Educational Resources Information Center

    Employment and Training Administration (DOL), Washington, DC. Office of Youth Programs.

    This manual on air conditioning is one of a series of power mechanics texts and visual aids covering theory of operation, diagnosis, and repair. Information is presented for use by vocational students and teachers as well as shop servicemen and laymen. Focus is on air conditioning systems for mobile machines, but most of the information also…

  6. Machine Shop Fundamentals: Part I.

    ERIC Educational Resources Information Center

    Kelly, Michael G.; And Others

    These instructional materials were developed and designed for secondary and adult limited English proficient students enrolled in machine tool technology courses. Part 1 includes 24 lessons covering introduction, safety and shop rules, basic machine tools, basic machine operations, measurement, basic blueprint reading, layout, and bench tools.…

  7. Hydraulic Fatigue-Testing Machine

    NASA Technical Reports Server (NTRS)

    Hodo, James D.; Moore, Dennis R.; Morris, Thomas F.; Tiller, Newton G.

    1987-01-01

    Fatigue-testing machine applies fluctuating tension to number of specimens at same time. When sample breaks, machine continues to test remaining specimens. Series of tensile tests needed to determine fatigue properties of materials performed more rapidly than in conventional fatigue-testing machine.

  8. Association installs condom machine.

    PubMed

    1994-08-01

    On the occasion of World Population Day (11 July), India installed its first condom vending machine. The machine was inaugurated by Mr. Eruch Lala, an official of the Family Planning Association of India, as part of the association's campaign to help the country curb its rapid population growth rate and stem the spread of AIDS (acquired immune deficiency syndrome). Each condom, called sangam ("union" in English) costs Rupees 2 (about 6.5 US cents). The machine is located at a textile mill in Bombay. The Association said it would install at least 60 such machines in Bombay over the coming months. "A psychological advantage of the machine is that the user need not personally meet the dispenser and can collect a condom without any embarrassment," Mr. Lala said. "The machine is expected to promote efforts at curbing population growth and prevent the spread of AIDS," he said. In a separate report, AIDS has been found to be racing through India just eight years after the first case was detected. Prostitutes, drug addicts and untested blood supplies are the conduits. More than half of the prostitutes in cities such as Bombay have HIV (human immunodeficiency virus), which causes AIDS. The truck drivers and itinerant workers they serve carry it to their own villages, according to the report by Mr. Thomas Wagner writing for the Associated Press. There are 43 million cases of sexually transmitted diseases reported each year in the country, according to the report. The HIV virus has been reported in all 25 states of India. Although the AIDS pandemic came to India later than most large countries, the National AIDS Control Organization estimates there are 1.62 million cases in the population, up 60% from 1993, according to the report. "AIDS is no longer just a problem of high-risk groups; it has spread to every area of India," Dr. P.R. Das Gupta of the national AIDS agency said in an interview. "So many people are migrating from their villages in search of jobs that this

  9. Shell Measuring Machine. History and Status Report

    SciTech Connect

    Birchler, Wilbur D.; Fresquez, Philip R.

    2000-06-01

    Commercialization of the Ring Rotacon Shell Measuring Machine project is a CRADA (NO. LA98C10358) between The University of California (Los Alamos National Laboratory) and Moore Tool Company, Bridgeport, CT. The actual work started on this CRADA in December of 1998. Several meetings were held with the interested parties (Los Alamos, Oak Ridge, Moore Tool, and the University of North Carolina). The results of these meetings were that the original Ring Rotacon did not measure up to the requirements of the Department of Energy and private industry, and a new configuration was investigated. This new configuration (Shell Measuring Machine [SMM]) much better fits the needs of all parties. The work accomplished on the Shell Measuring Machine in FY 99 includes the following; Specifications for size and weight were developed; Performance error budgets were established; Designs were developed; Analyses were performed (stiffness and natural frequency); Existing part designs were compared to the working SMM volume; Peer reviews were conducted; Controller requirements were studied; Fixture requirements were evaluated; and Machine motions were analyzed. The consensus of the Peer Review Committee was that the new configuration has the potential to satisfy the shell inspection needs of Department of Energy as well as several commercial customers. They recommended that more analyses be performed on error budgets, structural stiffness, natural frequency, and thermal effects and that operational processes be developed. Several design issues need to be addressed. They are the type of bearings utilized to support the tables (air bearings or mechanical roller type bearings), the selection of the probes, the design of the probe sliding mechanisms, and the design of the upper table positioning mechanism. Each item has several possible solutions, and more work is required to obtain the best design. This report includes the background and technical objectives; minutes of the working

  10. Fast, Continuous Audiogram Estimation using Machine Learning

    PubMed Central

    Song, Xinyu D.; Wallace, Brittany M.; Gardner, Jacob R.; Ledbetter, Noah M.; Weinberger, Kilian Q.; Barbour, Dennis L.

    2016-01-01

    Objectives Pure-tone audiometry has been a staple of hearing assessments for decades. Many different procedures have been proposed for measuring thresholds with pure tones by systematically manipulating intensity one frequency at a time until a discrete threshold function is determined. The authors have developed a novel nonparametric approach for estimating a continuous threshold audiogram using Bayesian estimation and machine learning classification. The objective of this study is to assess the accuracy and reliability of this new method relative to a commonly used threshold measurement technique. Design The authors performed air conduction pure-tone audiometry on 21 participants between the ages of 18 and 90 years with varying degrees of hearing ability. Two repetitions of automated machine learning audiogram estimation and 1 repetition of conventional modified Hughson-Westlake ascending-descending audiogram estimation were acquired by an audiologist. The estimated hearing thresholds of these two techniques were compared at standard audiogram frequencies (i.e., 0.25, 0.5, 1, 2, 4, 8 kHz). Results The two threshold estimate methods delivered very similar estimates at standard audiogram frequencies. Specifically, the mean absolute difference between estimates was 4.16 ± 3.76 dB HL. The mean absolute difference between repeated measurements of the new machine learning procedure was 4.51 ± 4.45 dB HL. These values compare favorably to those of other threshold audiogram estimation procedures. Furthermore, the machine learning method generated threshold estimates from significantly fewer samples than the modified Hughson-Westlake procedure while returning a continuous threshold estimate as a function of frequency. Conclusions The new machine learning audiogram estimation technique produces continuous threshold audiogram estimates accurately, reliably, and efficiently, making it a strong candidate for widespread application in clinical and research audiometry. PMID

  11. Prediction of Machine Tool Condition Using Support Vector Machine

    NASA Astrophysics Data System (ADS)

    Wang, Peigong; Meng, Qingfeng; Zhao, Jian; Li, Junjie; Wang, Xiufeng

    2011-07-01

    Condition monitoring and predicting of CNC machine tools are investigated in this paper. Considering the CNC machine tools are often small numbers of samples, a condition predicting method for CNC machine tools based on support vector machines (SVMs) is proposed, then one-step and multi-step condition prediction models are constructed. The support vector machines prediction models are used to predict the trends of working condition of a certain type of CNC worm wheel and gear grinding machine by applying sequence data of vibration signal, which is collected during machine processing. And the relationship between different eigenvalue in CNC vibration signal and machining quality is discussed. The test result shows that the trend of vibration signal Peak-to-peak value in surface normal direction is most relevant to the trend of surface roughness value. In trends prediction of working condition, support vector machine has higher prediction accuracy both in the short term ('One-step') and long term (multi-step) prediction compared to autoregressive (AR) model and the RBF neural network. Experimental results show that it is feasible to apply support vector machine to CNC machine tool condition prediction.

  12. Effect of Machining Velocity in Nanoscale Machining Operations

    NASA Astrophysics Data System (ADS)

    Islam, Sumaiya; Ibrahim, Raafat; Khondoker, Noman

    2015-04-01

    The aim of this study is to investigate the generated forces and deformations of single crystal Cu with (100), (110) and (111) crystallographic orientations at nanoscale machining operation. A nanoindenter equipped with nanoscratching attachment was used for machining operations and in-situ observation of a nano scale groove. As a machining parameter, the machining velocity was varied to measure the normal and cutting forces. At a fixed machining velocity, different levels of normal and cutting forces were generated due to different crystallographic orientations of the specimens. Moreover, after machining operation percentage of elastic recovery was measured and it was found that both the elastic and plastic deformations were responsible for producing a nano scale groove within the range of machining velocities from 250-1000 nm/s.

  13. Technologies, machines and equipment for the finishing operations of the new high energy magnetic materials

    NASA Astrophysics Data System (ADS)

    Pan, Antonio; Pan, Paolo

    1990-01-01

    This paper analyzes the working cycle of permanent magnets and the economic problems related to it; it also describes some families of tool machines particularly suitable for the finishing operations.

  14. Engineering molecular machines

    NASA Astrophysics Data System (ADS)

    Erman, Burak

    2016-04-01

    Biological molecular motors use chemical energy, mostly in the form of ATP hydrolysis, and convert it to mechanical energy. Correlated thermal fluctuations are essential for the function of a molecular machine and it is the hydrolysis of ATP that modifies the correlated fluctuations of the system. Correlations are consequences of the molecular architecture of the protein. The idea that synthetic molecular machines may be constructed by designing the proper molecular architecture is challenging. In their paper, Sarkar et al (2016 New J. Phys. 18 043006) propose a synthetic molecular motor based on the coarse grained elastic network model of proteins and show by numerical simulations that motor function is realized, ranging from deterministic to thermal, depending on temperature. This work opens up a new range of possibilities of molecular architecture based engine design.

  15. Wholly Synthetic Molecular Machines.

    PubMed

    Cheng, Chuyang; Stoddart, J Fraser

    2016-06-17

    The past quarter of a century has witnessed an increasing engagement on the part of physicists and chemists in the design and synthesis of molecular machines de novo. This minireview traces the development of artificial molecular machines from their prototypes in the form of shuttles and switches to their emergence as motors and pumps where supplies of energy in the form of chemical fuel, electrochemical potential and light activation become a minimum requirement for them to function away from equilibrium. The challenge facing this rapidly growing community of scientists and engineers today is one of putting wholly synthetic molecules to work, both individually and as collections. Here, we highlight some of the recent conceptual and practical advances relating to the operation of wholly synthetic rotary and linear motors.

  16. Machinations of thought

    SciTech Connect

    Waldrop, M.M.

    1985-03-01

    After three decades of frustrating work, artificial intelligence is coming of age--moving out of the laboratories and into the marketplace. Expert systems, computer programs that give advice like a human specialist, are pinpointing mineral deposits and diagnosing diseases. Programs are taking shape that can do a pretty fair job of understanding plain English or French. Robotics will soon benefit from computer vision systems able to store a digitized photograph of an object or scene and recognize a good bit of what is there. As the more exuberant enthusiasts see it, we might soon have machines to advise us about our income taxes or the baby's fever; silicon tutors could help a child master the enthralling possibilities of geometry and numbers; trucks might drive themselves through the night and unload themselves at their destination. In short, we could one day have machines to do almost anything that now requires intelligence in a human.

  17. A Boltzmann machine for the organization of intelligent machines

    NASA Technical Reports Server (NTRS)

    Moed, Michael C.; Saridis, George N.

    1989-01-01

    In the present technological society, there is a major need to build machines that would execute intelligent tasks operating in uncertain environments with minimum interaction with a human operator. Although some designers have built smart robots, utilizing heuristic ideas, there is no systematic approach to design such machines in an engineering manner. Recently, cross-disciplinary research from the fields of computers, systems AI and information theory has served to set the foundations of the emerging area of the design of intelligent machines. Since 1977 Saridis has been developing an approach, defined as Hierarchical Intelligent Control, designed to organize, coordinate and execute anthropomorphic tasks by a machine with minimum interaction with a human operator. This approach utilizes analytical (probabilistic) models to describe and control the various functions of the intelligent machine structured by the intuitively defined principle of Increasing Precision with Decreasing Intelligence (IPDI) (Saridis 1979). This principle, even though resembles the managerial structure of organizational systems (Levis 1988), has been derived on an analytic basis by Saridis (1988). The purpose is to derive analytically a Boltzmann machine suitable for optimal connection of nodes in a neural net (Fahlman, Hinton, Sejnowski, 1985). Then this machine will serve to search for the optimal design of the organization level of an intelligent machine. In order to accomplish this, some mathematical theory of the intelligent machines will be first outlined. Then some definitions of the variables associated with the principle, like machine intelligence, machine knowledge, and precision will be made (Saridis, Valavanis 1988). Then a procedure to establish the Boltzmann machine on an analytic basis will be presented and illustrated by an example in designing the organization level of an Intelligent Machine. A new search technique, the Modified Genetic Algorithm, is presented and proved

  18. Refractory insulation of hot end in stirling type thermal machines

    SciTech Connect

    Otters, J.L.

    1988-02-02

    A thermal machine is described comprising: a machine body comprised of axial body sections, the body having two opposite ends; means compressing the body between the opposite ends for holding the body sections in axially assembled relationship; a cylindrical displacer chamber in the body having a hot end and a cold end and containing a working fluid, a displacer reciprocable within the displacer chamber for displacing the fluid between the hot and cold ends thereby to subject the fluid to a thermodynamic cycle in cooperation with a compressor piston; refractory insulation means at least partly defining the displacer chamber and held in axial compression between a upper body sections associated with a thermal end of the machine body and lower body sections associated with a work end of the machine body, and means radially compressing the refractory insulation for pre-loading the refractory insulation means against tensile force exerted thereon by the working fluid.

  19. Quantum supremacy of many-particle thermal machines

    NASA Astrophysics Data System (ADS)

    Jaramillo, J.; Beau, M.; del Campo, A.

    2016-07-01

    While the emergent field of quantum thermodynamics has the potential to impact energy science, the performance of thermal machines is often classical. We ask whether quantum effects can boost the performance of a thermal machine to reach quantum supremacy, i.e., surpassing both the efficiency and power achieved in classical thermodynamics. To this end, we introduce a nonadiabatic quantum heat engine operating an Otto cycle with a many-particle working medium, consisting of an interacting Bose gas confined in a time-dependent harmonic trap. It is shown that thanks to the interplay of nonadiabatic and many-particle quantum effects, this thermal machine can outperform an ensemble of single-particle heat engines with same resources, demonstrating the quantum supremacy of many-particle thermal machines.

  20. Machine Translation from Text

    NASA Astrophysics Data System (ADS)

    Habash, Nizar; Olive, Joseph; Christianson, Caitlin; McCary, John

    Machine translation (MT) from text, the topic of this chapter, is perhaps the heart of the GALE project. Beyond being a well defined application that stands on its own, MT from text is the link between the automatic speech recognition component and the distillation component. The focus of MT in GALE is on translating from Arabic or Chinese to English. The three languages represent a wide range of linguistic diversity and make the GALE MT task rather challenging and exciting.

  1. Copying Machine Improvement

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Manufacturer of the Model 2210 copying machine was looking for a plastic valve bushing material that could be produced by a low-cost injection molding process to replace the unsuitable valve bushing they were using. NERAC conducted a computer search of the NASA database and was able to supply Nashua Corporation with several technical reports in their area of interest. Information aided the company's development of a urethane valve bushing which solved the problem and created a dramatic reduction in unit cost.

  2. Austempered Ductile Iron Machining

    NASA Astrophysics Data System (ADS)

    Pilc, Jozef; Šajgalík, Michal; Holubják, Jozef; Piešová, Marianna; Zaušková, Lucia; Babík, Ondrej; Kuždák, Viktor; Rákoci, Jozef

    2015-12-01

    This article deals with the machining of cast iron. In industrial practice, Austempered Ductile Iron began to be used relatively recently. ADI is ductile iron that has gone through austempering to get improved properties, among which we can include strength, wear resistance or noise damping. This specific material is defined also by other properties, such as high elasticity, ductility and endurance against tenigue, which are the properties, that considerably make the tooling characteristic worse.

  3. Airbreathing combined cycle engine systems

    NASA Technical Reports Server (NTRS)

    Rohde, John

    1992-01-01

    The Air Force and NASA share a common interest in developing advanced propulsion systems for commercial and military aerospace vehicles which require efficient acceleration and cruise operation in the Mach 4 to 6 flight regime. The principle engine of interest is the turboramjet; however, other combined cycles such as the turboscramjet, air turborocket, supercharged ejector ramjet, ejector ramjet, and air liquefaction based propulsion are also of interest. Over the past months careful planning and program implementation have resulted in a number of development efforts that will lead to a broad technology base for those combined cycle propulsion systems. Individual development programs are underway in thermal management, controls materials, endothermic hydrocarbon fuels, air intake systems, nozzle exhaust systems, gas turbines and ramjet ramburners.

  4. Cycle Analysis

    SciTech Connect

    Wright, Steven A.

    2012-03-20

    1. The Cycle Analysis code is an Microsoft Excel code that performs many different types of thermodynamic cycle analysis for power producing systems. The code will calculate the temperature and pressure and all other thermodynamic properties at the inlet and outlet of each component. The code also calculates the power that is produced, the efficiency, and the heat transported in the heater, gas chiller and recuperators. The code provides a schematic of the loop and provides the temperature and pressure at each location in the loop. The code also provides a T-S (temperature-entropy) diagram of the loop and often it provides an pressure enthalpy plot as well. 2. This version of the code concentrates on supercritical CO2 power cycles, but by simply changing the name of the working fluid many other types of fluids can be analyzed. The Cycle Analysis code provided here contains 18 different types of power cycles. Each cycle is contained in one worksheet or tab that the user can select. The user can change the yellow highlighted regions to perform different thermodynamic cycle analysis.

  5. Cycle Analysis

    2012-03-20

    1. The Cycle Analysis code is an Microsoft Excel code that performs many different types of thermodynamic cycle analysis for power producing systems. The code will calculate the temperature and pressure and all other thermodynamic properties at the inlet and outlet of each component. The code also calculates the power that is produced, the efficiency, and the heat transported in the heater, gas chiller and recuperators. The code provides a schematic of the loop andmore » provides the temperature and pressure at each location in the loop. The code also provides a T-S (temperature-entropy) diagram of the loop and often it provides an pressure enthalpy plot as well. 2. This version of the code concentrates on supercritical CO2 power cycles, but by simply changing the name of the working fluid many other types of fluids can be analyzed. The Cycle Analysis code provided here contains 18 different types of power cycles. Each cycle is contained in one worksheet or tab that the user can select. The user can change the yellow highlighted regions to perform different thermodynamic cycle analysis.« less

  6. Machine Learning in Medicine.

    PubMed

    Deo, Rahul C

    2015-11-17

    Spurred by advances in processing power, memory, storage, and an unprecedented wealth of data, computers are being asked to tackle increasingly complex learning tasks, often with astonishing success. Computers have now mastered a popular variant of poker, learned the laws of physics from experimental data, and become experts in video games - tasks that would have been deemed impossible not too long ago. In parallel, the number of companies centered on applying complex data analysis to varying industries has exploded, and it is thus unsurprising that some analytic companies are turning attention to problems in health care. The purpose of this review is to explore what problems in medicine might benefit from such learning approaches and use examples from the literature to introduce basic concepts in machine learning. It is important to note that seemingly large enough medical data sets and adequate learning algorithms have been available for many decades, and yet, although there are thousands of papers applying machine learning algorithms to medical data, very few have contributed meaningfully to clinical care. This lack of impact stands in stark contrast to the enormous relevance of machine learning to many other industries. Thus, part of my effort will be to identify what obstacles there may be to changing the practice of medicine through statistical learning approaches, and discuss how these might be overcome. PMID:26572668

  7. Machine Learning in Medicine.

    PubMed

    Deo, Rahul C

    2015-11-17

    Spurred by advances in processing power, memory, storage, and an unprecedented wealth of data, computers are being asked to tackle increasingly complex learning tasks, often with astonishing success. Computers have now mastered a popular variant of poker, learned the laws of physics from experimental data, and become experts in video games - tasks that would have been deemed impossible not too long ago. In parallel, the number of companies centered on applying complex data analysis to varying industries has exploded, and it is thus unsurprising that some analytic companies are turning attention to problems in health care. The purpose of this review is to explore what problems in medicine might benefit from such learning approaches and use examples from the literature to introduce basic concepts in machine learning. It is important to note that seemingly large enough medical data sets and adequate learning algorithms have been available for many decades, and yet, although there are thousands of papers applying machine learning algorithms to medical data, very few have contributed meaningfully to clinical care. This lack of impact stands in stark contrast to the enormous relevance of machine learning to many other industries. Thus, part of my effort will be to identify what obstacles there may be to changing the practice of medicine through statistical learning approaches, and discuss how these might be overcome.

  8. Architectures for intelligent machines

    NASA Technical Reports Server (NTRS)

    Saridis, George N.

    1991-01-01

    The theory of intelligent machines has been recently reformulated to incorporate new architectures that are using neural and Petri nets. The analytic functions of an intelligent machine are implemented by intelligent controls, using entropy as a measure. The resulting hierarchical control structure is based on the principle of increasing precision with decreasing intelligence. Each of the three levels of the intelligent control is using different architectures, in order to satisfy the requirements of the principle: the organization level is moduled after a Boltzmann machine for abstract reasoning, task planning and decision making; the coordination level is composed of a number of Petri net transducers supervised, for command exchange, by a dispatcher, which also serves as an interface to the organization level; the execution level, include the sensory, planning for navigation and control hardware which interacts one-to-one with the appropriate coordinators, while a VME bus provides a channel for database exchange among the several devices. This system is currently implemented on a robotic transporter, designed for space construction at the CIRSSE laboratories at the Rensselaer Polytechnic Institute. The progress of its development is reported.

  9. Laser machining - Theory and practice

    SciTech Connect

    Chryssolouris, G.

    1991-01-01

    Recent developments and the state of the art in the field of laser machining are reviewed with emphasis on practical applications. First, an overview of conventional material removing processes is presented. Laser machining systems are then described, and an overview is provided of the necessary knowledge from heat transfer and fluid mechanics required in order to understand the physical mechanisms and thermal processes associated with laser machining. The applications of laser machining discussed include drilling, cutting, marking, and three-dimensional machining of metals, ceramics, plastics, composites, and other materials, and micromachining. 209 refs.

  10. Engineered Surface Properties of Porous Tungsten from Cryogenic Machining

    NASA Astrophysics Data System (ADS)

    Schoop, Julius Malte

    Porous tungsten is used to manufacture dispenser cathodes due to it refractory properties. Surface porosity is critical to functional performance of dispenser cathodes because it allows for an impregnated ceramic compound to migrate to the emitting surface, lowering its work function. Likewise, surface roughness is important because it is necessary to ensure uniform wetting of the molten impregnate during high temperature service. Current industry practice to achieve surface roughness and surface porosity requirements involves the use of a plastic infiltrant during machining. After machining, the infiltrant is baked and the cathode pellet is impregnated. In this context, cryogenic machining is investigated as a substitutionary process for the current plastic infiltration process. Along with significant reductions in cycle time and resource use, surface quality of cryogenically machined un-infiltrated (as-sintered) porous tungsten has been shown to significantly outperform dry machining. The present study is focused on examining the relationship between machining parameters and cooling condition on the as-machined surface integrity of porous tungsten. The effects of cryogenic pre-cooling, rake angle, cutting speed, depth of cut and feed are all taken into consideration with respect to machining-induced surface morphology. Cermet and Polycrystalline diamond (PCD) cutting tools are used to develop high performance cryogenic machining of porous tungsten. Dry and pre-heated machining were investigated as a means to allow for ductile mode machining, yet severe tool-wear and undesirable smearing limited the feasibility of these approaches. By using modified PCD cutting tools, high speed machining of porous tungsten at cutting speeds up to 400 m/min is achieved for the first time. Beyond a critical speed, brittle fracture and built-up edge are eliminated as the result of a brittle to ductile transition. A model of critical chip thickness ( hc ) effects based on cutting

  11. Air Abrasion

    MedlinePlus

    ... delivered directly to your desktop! more... What Is Air Abrasion? Article Chapters What Is Air Abrasion? What Happens? The Pros and Cons Will I Feel Anything? Is Air Abrasion for Everyone? print full article print this ...

  12. Optimization of line configuration and balancing for flexible machining lines

    NASA Astrophysics Data System (ADS)

    Liu, Xuemei; Li, Aiping; Chen, Zurui

    2016-05-01

    Line configuration and balancing is to select the type of line and allot a given set of operations as well as machines to a sequence of workstations to realize high-efficiency production. Most of the current researches for machining line configuration and balancing problems are related to dedicated transfer lines with dedicated machine workstations. With growing trends towards great product variety and fluctuations in market demand, dedicated transfer lines are being replaced with flexible machining line composed of identical CNC machines. This paper deals with the line configuration and balancing problem for flexible machining lines. The objective is to assign operations to workstations and find the sequence of execution, specify the number of machines in each workstation while minimizing the line cycle time and total number of machines. This problem is subject to precedence, clustering, accessibility and capacity constraints among the features, operations, setups and workstations. The mathematical model and heuristic algorithm based on feature group strategy and polychromatic sets theory are presented to find an optimal solution. The feature group strategy and polychromatic sets theory are used to establish constraint model. A heuristic operations sequencing and assignment algorithm is given. An industrial case study is carried out, and multiple optimal solutions in different line configurations are obtained. The case studying results show that the solutions with shorter cycle time and higher line balancing rate demonstrate the feasibility and effectiveness of the proposed algorithm. This research proposes a heuristic line configuration and balancing algorithm based on feature group strategy and polychromatic sets theory which is able to provide better solutions while achieving an improvement in computing time.

  13. Air permeability and trapped-air content in two soils

    USGS Publications Warehouse

    Stonestrom, D.A.; Rubin, J.

    1989-01-01

    To improve understanding of hysteretic air permeability relations, a need exists for data on the water content dependence of air permeability, matric pressure, and air trapping (especially for wetting-drying cycles). To obtain these data, a special instrument was designed. The instrument is a combination of a gas permeameter (for air permeability determination), a suction plate apparatus (for retentivity curve determination), and an air pycnometer (for trapped-air-volume determination). This design allowed values of air permeability, matric pressure, and air trapping to be codetermined, i.e., determined at the same values of water content using the same sample and the same inflow-outflow boundaries. Such data were obtained for two nonswelling soils. -from Authors

  14. Fuzzy neural network machine prognosis

    NASA Astrophysics Data System (ADS)

    Simpson, Patrick K.; Brotherton, Thomas M.

    1995-06-01

    The ability to predict failures in machinery before they occur would save time, money, and lives. The Army has several areas that would benefit from this ability. Mechanical components could be replaced before they caused catastrophic damage. Electronic components could be replaced in communication and weapon systems before they endangered a mission or lives. One area that would benefit immediately from this ability is predicting the fatique life of the Army's CH-47 helicopter. The CH-47 is a twin-rotor platform that depends on the reliability of its engine, transmissions, rotors, flight controls, and a myriad of other equipment. Predicting the fatigue life of a CH-47 would save the Army operation and support costs through spares elimination and more timely maintenance cycles. We have developed a methodology for a machine fatigue life predictor that utilizes a combination of parameter estimation, model generation, and condition identification. Using data collected from various fault conditions on the tail rotor assembly of a helicopter, we have simulated fatigue conditions and demonstrated the developed methodology.

  15. Molecular Motion Machine

    ERIC Educational Resources Information Center

    Shourd, Melvin L.

    1977-01-01

    Describes the construction of an inexpensive apparatus which utilizes the oscillatory motion of 60 cycle AC current in conjunction with an electromagnetic to illustrate various principles and processes in geology. (SL)

  16. Systems Analyses of Advanced Brayton Cycles

    SciTech Connect

    A.D. Rao; D.J. Francuz; J.D. Maclay; J. Brouwer; A. Verma; M. Li; G.S. Samuelsen

    2008-09-30

    The main objective is to identify and assess advanced improvements to the Brayton Cycle (such as but not limited to firing temperature, pressure ratio, combustion techniques, intercooling, fuel or combustion air augmentation, enhanced blade cooling schemes) that will lead to significant performance improvements in coal based power systems. This assessment is conducted in the context of conceptual design studies (systems studies) that advance state-of-art Brayton cycles and result in coal based efficiencies equivalent to 65% + on natural gas basis (LHV), or approximately an 8% reduction in heat rate of an IGCC plant utilizing the H class steam cooled gas turbine. H class gas turbines are commercially offered by General Electric and Mitsubishi for natural gas based combined cycle applications with 60% efficiency (LHV) and it is expected that such machine will be offered for syngas applications within the next 10 years. The studies are being sufficiently detailed so that third parties will be able to validate portions or all of the studies. The designs and system studies are based on plants for near zero emissions (including CO{sub 2}). Also included in this program is the performance evaluation of other advanced technologies such as advanced compression concepts and the fuel cell based combined cycle. The objective of the fuel cell based combined cycle task is to identify the desired performance characteristics and design basis for a gas turbine that will be integrated with an SOFC in Integrated Gasification Fuel Cell (IGFC) applications. The goal is the conceptualization of near zero emission (including CO{sub 2} capture) integrated gasification power plants producing electricity as the principle product. The capability of such plants to coproduce H{sub 2} is qualitatively addressed. Since a total systems solution is critical to establishing a plant configuration worthy of a comprehensive market interest, a baseline IGCC plant scheme is developed and used to study

  17. Air. Ag Ed Environmental Education Series.

    ERIC Educational Resources Information Center

    Tulloch, Rodney W.

    The document is a student resource unit to be used in teaching high school vocational agriculture students about air. The following natural processes are described: carbon dioxide cycle, nitrogen cycle, gravity and atmosphere, energy of the sun, greenhouse effect, atmospheric circulation, and precipitation. Sources of air pollution are discussed.…

  18. Space Shuttle ET Friction Stir Weld Machines

    NASA Technical Reports Server (NTRS)

    Thompson, Jack M.

    2003-01-01

    NASA and Lockheed-Martin approached the FSW machine vendor community with a specification for longitudinal barrel production FSW weld machines and a shorter travel process development machine in June of 2000. This specification was based on three years of FSW process development on the Space Shuttle External Tank alloys, AL2 195-T8M4 and AL22 19-T87. The primary motivations for changing the ET longitudinal welds from the existing variable polarity Plasma Arc plasma weld process included: (1) Significantly reduced weld defect rates and related reduction in cycle time and uncertainty; (2) Many fewer process variables to control (5 vs. 17); (3) Fewer manufacturing steps; (4) Lower residual stresses and distortion; (5) Improved weld strengths, particularly at cryogenic temperatures; (6) Fewer hazards to production personnel. General Tool was the successful bidder. The equipment is at this writing installed and welding flight hardware. This paper is a means of sharing with the rest of the FSW community the unique features developed to assure NASA/L-M of successful production welds.

  19. Microcompartments and Protein Machines in Prokaryotes

    PubMed Central

    Saier, Milton H.

    2013-01-01

    The prokaryotic cell was once thought of as a “bag of enzymes” with little or no intracellular compartmentalization. In this view, most reactions essential for life occurred as a consequence of random molecular collisions involving substrates, cofactors and cytoplasmic enzymes. Our current conception of a prokaryote is far from this view. We now consider a bacterium or an archaeon as a highly structured, non-random collection of functional membrane-embedded and proteinaceous molecular machines, each of which serves a specialized function. In this article we shall present an overview of such microcompartments including (i) the bacterial cytoskeleton and the apparati allowing DNA segregation during cells division, (ii) energy transduction apparati involving light-driven proton pumping and ion gradient-driven ATP synthesis, (iii) prokaryotic motility and taxis machines that mediate cell movements in response to gradients of chemicals and physical forces, (iv) machines of protein folding, secretion and degradation, (v) metabolasomes carrying out specific chemical reactions, (vi) 24 hour clocks allowing bacteria to coordinate their metabolic activities with the daily solar cycle and (vii) proteinaceous membrane compartmentalized structures such as sulfur granules and gas vacuoles. Membrane-bounded prokaryotic organelles were considered in a recent JMMB written symposium concerned with membraneous compartmentalization in bacteria [Saier and Bogdanov, 2013]. By contrast, in this symposium, we focus on proteinaceous microcompartments. These two symposia, taken together, provide the interested reader with an objective view of the remarkable complexity of what was once thought of as a simple non-compartmentalized cell. PMID:23920489

  20. 15. Interior, Machine Shop, Roundhouse Machine Shop Extension, Southern Pacific ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. Interior, Machine Shop, Roundhouse Machine Shop Extension, Southern Pacific Railroad Carlin Shops, view to northeast (90mm lens). The arched cutouts in the bottom chords of the roof trusses were necessary to provide clearance for the smokestacks of steam locomotives, and also mark the location of the former inspection pit in the floor (now filled in and covered by a new concrete floor). - Southern Pacific Railroad, Carlin Shops, Roundhouse Machine Shop Extension, Foot of Sixth Street, Carlin, Elko County, NV

  1. Diamond Measuring Machine

    SciTech Connect

    Krstulic, J.F.

    2000-01-27

    The fundamental goal of this project was to develop additional capabilities to the diamond measuring prototype, work out technical difficulties associated with the original device, and perform automated measurements which are accurate and repeatable. For this project, FM and T was responsible for the overall system design, edge extraction, and defect extraction and identification. AccuGem provided a lab and computer equipment in Lawrence, 3D modeling, industry expertise, and sets of diamonds for testing. The system executive software which controls stone positioning, lighting, focusing, report generation, and data acquisition was written in Microsoft Visual Basic 6, while data analysis and modeling were compiled in C/C++ DLLs. All scanning parameters and extracted data are stored in a central database and available for automated analysis and reporting. The Phase 1 study showed that data can be extracted and measured from diamond scans, but most of the information had to be manually extracted. In this Phase 2 project, all data required for geometric modeling and defect identification were automatically extracted and passed to a 3D modeling module for analysis. Algorithms were developed which automatically adjusted both light levels and stone focus positioning for each diamond-under-test. After a diamond is analyzed and measurements are completed, a report is printed for the customer which shows carat weight, summarizes stone geometry information, lists defects and their size, displays a picture of the diamond, and shows a plot of defects on a top view drawing of the stone. Initial emphasis of defect extraction was on identification of feathers, pinpoints, and crystals. Defects were plotted color-coded by industry standards for inclusions (red), blemishes (green), and unknown defects (blue). Diamonds with a wide variety of cut quality, size, and number of defects were tested in the machine. Edge extraction, defect extraction, and modeling code were tested for

  2. Will machines ever think

    NASA Technical Reports Server (NTRS)

    Denning, P. J.

    1986-01-01

    Artificial Intelligence research has come under fire for failing to fulfill its promises. A growing number of AI researchers are reexamining the bases of AI research and are challenging the assumption that intelligent behavior can be fully explained as manipulation of symbols by algorithms. Three recent books -- Mind over Machine (H. Dreyfus and S. Dreyfus), Understanding Computers and Cognition (T. Winograd and F. Flores), and Brains, Behavior, and Robots (J. Albus) -- explore alternatives and open the door to new architectures that may be able to learn skills.

  3. CENTRIFUGAL CASTING MACHINE

    DOEpatents

    Shuck, A.B.

    1958-04-01

    A device is described that is specifically designed to cast uraniumn fuel rods in a vacuunn, in order to obtain flawless, nonoxidized castings which subsequently require a maximum of machining or wastage of the expensive processed material. A chamber surrounded with heating elements is connected to the molds, and the entire apparatus is housed in an airtight container. A charge of uranium is placed in the chamber, heated, then is allowed to flow into the molds While being rotated. Water circulating through passages in the molds chills the casting to form a fine grained fuel rod in nearly finished form.

  4. Hybrid solar central receiver for combined cycle power plant

    DOEpatents

    Bharathan, D.; Bohn, M.S.; Williams, T.A.

    1995-05-23

    A hybrid combined cycle power plant is described including a solar central receiver for receiving solar radiation and converting it to thermal energy. The power plant includes a molten salt heat transfer medium for transferring the thermal energy to an air heater. The air heater uses the thermal energy to preheat the air from the compressor of the gas cycle. The exhaust gases from the gas cycle are directed to a steam turbine for additional energy production. 1 figure.

  5. Hybrid solar central receiver for combined cycle power plant

    DOEpatents

    Bharathan, Desikan; Bohn, Mark S.; Williams, Thomas A.

    1995-01-01

    A hybrid combined cycle power plant including a solar central receiver for receiving solar radiation and converting it to thermal energy. The power plant includes a molten salt heat transfer medium for transferring the thermal energy to an air heater. The air heater uses the thermal energy to preheat the air from the compressor of the gas cycle. The exhaust gases from the gas cycle are directed to a steam turbine for additional energy production.

  6. Vapor Compression Cycle Design Program (CYCLE_D)

    National Institute of Standards and Technology Data Gateway

    SRD 49 NIST Vapor Compression Cycle Design Program (CYCLE_D) (PC database for purchase)   The CYCLE_D database package simulates the vapor compression refrigeration cycles. It is fully compatible with REFPROP 9.0 and covers the 62 single-compound refrigerants . Fluids can be used in mixtures comprising up to five components.

  7. Formal modeling of virtual machines

    NASA Technical Reports Server (NTRS)

    Cremers, A. B.; Hibbard, T. N.

    1978-01-01

    Systematic software design can be based on the development of a 'hierarchy of virtual machines', each representing a 'level of abstraction' of the design process. The reported investigation presents the concept of 'data space' as a formal model for virtual machines. The presented model of a data space combines the notions of data type and mathematical machine to express the close interaction between data and control structures which takes place in a virtual machine. One of the main objectives of the investigation is to show that control-independent data type implementation is only of limited usefulness as an isolated tool of program development, and that the representation of data is generally dictated by the control context of a virtual machine. As a second objective, a better understanding is to be developed of virtual machine state structures than was heretofore provided by the view of the state space as a Cartesian product.

  8. The Rehbinder effect in iron during giga-cycle fatigue loading

    SciTech Connect

    Bannikov, M. V. Naimark, O. B.

    2015-10-27

    The influence of the adsorptive strength reduction effect (the Rehbinder effect) on the fatigue life of pure iron under the giga-cycle loading regime was investigated. Specimens were loaded by an ultrasonic testing machine with a frequency of 20 kHz in air and in contact with eutectic alloy of gallium with tin and indium. A significant (by several orders of magnitude) worsening of the life-time of iron in contact with a molten metal as compared with tests in air was established. The liquid metal penetrates into the material to a depth of 200 μm to the center of a fatigue crack. The mechanism of the fatigue crack initiation in the giga-cycle regime of loading in contact with a surfactant is differing: the crack is formed on the surface of the specimen rather than within it as is the case for air. Based on the electron and optical microscopy data for the fracture surface, it can be concluded that exactly the change in the crack initiation mechanism reduces the fatigue life of iron in contact with a liquid metal because the initiated crack propagates regardless of the surfactant.

  9. Interaction with Machine Improvisation

    NASA Astrophysics Data System (ADS)

    Assayag, Gerard; Bloch, George; Cont, Arshia; Dubnov, Shlomo

    We describe two multi-agent architectures for an improvisation oriented musician-machine interaction systems that learn in real time from human performers. The improvisation kernel is based on sequence modeling and statistical learning. We present two frameworks of interaction with this kernel. In the first, the stylistic interaction is guided by a human operator in front of an interactive computer environment. In the second framework, the stylistic interaction is delegated to machine intelligence and therefore, knowledge propagation and decision are taken care of by the computer alone. The first framework involves a hybrid architecture using two popular composition/performance environments, Max and OpenMusic, that are put to work and communicate together, each one handling the process at a different time/memory scale. The second framework shares the same representational schemes with the first but uses an Active Learning architecture based on collaborative, competitive and memory-based learning to handle stylistic interactions. Both systems are capable of processing real-time audio/video as well as MIDI. After discussing the general cognitive background of improvisation practices, the statistical modelling tools and the concurrent agent architecture are presented. Then, an Active Learning scheme is described and considered in terms of using different improvisation regimes for improvisation planning. Finally, we provide more details about the different system implementations and describe several performances with the system.

  10. Smart Test Machines

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Vern Wedeven, president of Wedeven Associates, developed the WAM4, a computer-aided "smart" test machine for simulating stress on equipment, based on his bearing lubrication expertise gained while working for Lewis Research Center. During his NASA years from the 1970s into the early 1980s, Wedeven initiated an "Interdisciplinary Collaboration in Tribology," an effort that involved NASA, six universities, and several university professors. The NASA-sponsored work provided foundation for Wedeven in 1983 to form his own company. Several versions of the smart test machine, the WAM1, WAM2, and WAM3, have proceeded the current version, WAM4. This computer-controlled device can provide detailed glimpses at gear and bearing points of contact. WAM4 can yield a three-dimensional view of machinery as an operator adds "what-if" thermal and lubrication conditions, contact stress, and surface motion. Along with NASA, a number of firms, including Pratt & Whitney, Caterpillar Tractor, Exxon, and Chevron have approached Wedeven for help on resolving lubrication problems.

  11. Neural network machine vision

    SciTech Connect

    Fox, R.O.; Czerniejewski, F.; Fluet, F.; Mitchell, E.

    1988-09-01

    Gould, Inc. and Nestor, Inc. cooperated on a joint development project to combine machine vision technology with neural network technology. The result is a machine vision system which can be trained by an inexperienced operator to perform qualitative classification. The hardware preprocessor reduces the information in the 2D camera image from 122,880 (i.e. 512 x 240) bytes to several hundred bytes in 64 milliseconds. The output of the preprocessor, which is in the format of connected lines, is fed to the first neural network. This neural network performs feature recognition. The output of the first neural network is a probability map. This map is fed to the input of the second neural network which performs object verification. The output of the second neural network is the object location and classification in the field of view. This information can optionally be fed into a third neural network which analyzes spatial relationships of objects in the field of view. The final output is a classification, by quality level, or by style. The system has been tested on applications ranging from the grading of plywood and the grading of paper to the sorting of fabricated metal parts. Specific application examples are presented.

  12. Large Surface Measuring Machine

    NASA Astrophysics Data System (ADS)

    Egdall, Mark; Breidenthal, Robert S.

    1983-09-01

    A new surface measuring concept developed under government contract at Itek Optical Systems has been previously reported by Allen Greenleaf. The method uses four steerable distance-measuring interferometers at the corners of a tetrahedron to determine the posi-tions of a retroreflecting target at various locations on the surface being measured. A small wooden breadboard had been built and tested, demonstrating the feasibility of the concept. This paper reports the building of a scaled-up prototype surface measuring machine to allow the measurement of large aspheric surfaces. A major advantage of the device is that, unlike conventional interferometry, it provides surface measurement in absolute coordinates, thus allowing direct determination of radius of curvature. In addition, the device is self-calibrating. Measurements of a 24-inch mirror have been made with the new machine, giving repeatability of 4 µ m peak sag in the curvature and accuracy of 0.7 μm rms in the surface figure at best focus. The device is currently being used in the production grinding of large aspheric mirrors at Itek. The device is potentially scalable to other industries where highly accurate measurement of unusual surfaces is required.

  13. Multiple man-machine interfaces

    NASA Technical Reports Server (NTRS)

    Stanton, L.; Cook, C. W.

    1981-01-01

    The multiple man machine interfaces inherent in military pilot training, their social implications, and the issue of possible negative feedback were explored. Modern technology has produced machines which can see, hear, and touch with greater accuracy and precision than human beings. Consequently, the military pilot is more a systems manager, often doing battle against a target he never sees. It is concluded that unquantifiable human activity requires motivation that is not intrinsic in a machine.

  14. Diamond Machining Applications And Capabilities

    NASA Astrophysics Data System (ADS)

    Benjamin, Roland J.

    1983-12-01

    Aspheric surface generation and precision machining have been important technologies at Hughes Optical Products, Inc. (formerly Optical Division, Bell & Howell Company) for over twenty years. Present machining capabilities and supporting services which are available on a custom basis are described. A variety of applications of diamond machining are illustrated, involving not only the usual reflective materials such as aluminum, copper, and electroless nickel but also such IR refractive materials as germanium, silicon, and chalcogenide glasses.

  15. Miniaturized machine moving in a pipe using photothermal effect

    NASA Astrophysics Data System (ADS)

    Yoshizawa, Toru; Usui, Tomohiko; Yamamoto, Masayuki; Hayashi, Daisuke

    2002-10-01

    Optically driven small machines have such features as easily miniaturized in fabricaiont and as controlled by optical energy which is supplied in wireless. We reported an optically controled machine which moves like a caterpillar on the basis of photo-thermal effect. It constis of two parts; a body and feet. The feet can stick to the floor due to magnetic force and therefore it has such ability as ascending a slope, and ultimately it succeeded in climbing the vertical wall and moved underneath the ceiliing. A lot of applications are expected to this kind of machine. However, if the prupose is restircted to the movement inside the pipe, the structure can be more simplified. This time we propose a miniaturized machine which moves like a mole or an earthworm. It mainly consists of a shape-memory alloy and a spring, and nylon wires are attacehd at the head and tail. When the machine moves in the pipe, these wires cause difference in friction force bewteen the forward movement and the backward movement. Stretching and contracting are brought by photon-thermal effect of the body part constising of the alloy and spring. This machine is placed in a vinyl tube and controled by a light beam outside from a halogen lamp. In room tempertuare the alloy is kept stretched by the spring, but when the beam is projected ontothe body from outside, it contracts to the original size becasue photo-thermal effect brings much larger force than the stretching force due to the spring. Then the wires at the head prevent moving back and the wires at the tail easily slip. This fact brings forward movement of the machine. At this moment 25 seconds are necessary for one cycle of movement and the moving speed is 2.6 mm/cycle.

  16. Nozzle Extension for Safety Air Gun

    NASA Technical Reports Server (NTRS)

    Zumbrun, H. N.; Croom, Delwin R., Jr.

    1986-01-01

    New nozzle-extension design overcomes problems and incorporates original commercial nozzle, retaining intrinsic safety features. Components include extension tube, length of which made to suit application; adaptor fitting, and nozzle adaptor repinned to maintain original safety features. Design moves conical airstream to end of extension to blow machine chips away from operator. Nozzle-extension modification allows safe and efficient operation of machine tools while maintaining integrity of orginial safety-air-gun design.

  17. Design of a Simplified Closed Brayton Cycle for a Space Reactor Application

    SciTech Connect

    Guimaraes, Lamartine N. F.; Camillo, Giannino Ponchio; Placco, Guilherme Moreira

    2009-03-16

    The Nuclear Energy Division (ENU) of the Institute for Advanced Studies (IEAv) has started a preliminary design study for a Closed Brayton Cycle Loop (CBCL) aimed at a space reactor application. The main objectives of the study are: 1) to establish a starting concept for the CBCL components specifications, and 2) to build a demonstrative simulator of CBCL. This preliminary design study is been developed around the NOELLE 60290 turbo machine. The actual nuclear reactor study is being conducted independently. Because of that, a conventional heat source is being used for the CBCL, in this preliminary design phase. This paper describes details of the CBCL mechanical design and the steady state simulator of the CBCL operating with NOELLE 60290 turbo machine. In principle, several gases are being considered as working fluid, as for instance: air, helium, nitrogen, CO2 and gas mixtures such as helium and xenon. However, for this first application pure helium will be used as working fluid. Simplified models of heat and mass transfer were developed to simulate thermal components. A new graphical interface was developed for the simulator to display the thermal process variables in steady state and to keep track of the modifications being implemented at the NOELLE 60290 turbo machine in order to build the CBCL. A set of new results are being produced. These new results help to establish the hot and cold source geometry allowing for price estimating costs for building the actual device. These fresh new results will be presented and discussed.

  18. A Preliminary and Simplified Closed Brayton Cycle Modeling for a Space Reactor Application

    SciTech Connect

    Guimaraes, Lamartine Nogueira Frutuoso; Camillo, Giannino Ponchio

    2008-01-21

    The Nuclear Energy Division (ENU) of the Institute for Advanced Studies (IEAv) has started a preliminary design study for a Closed Brayton Cycle Loop (CBCL) aimed at a space reactor application. The main objectives of the study are: 1) to establish a starting concept for the CBCL components specifications, and 2) to build a demonstrative simulator of CBCL. This preliminary design study is developing the CBCL around the NOELLE 60290 turbo machine. The actual nuclear reactor study is being conducted independently. Because of that, a conventional heat source is being used for the CBCL, in this preliminary design phase. This paper describes the steady state simulator of the CBCL operating with NOELLE 60290 turbo machine. In principle, several gases are being considered as working fluid, as for instance: air, helium, nitrogen, CO{sub 2} and gas mixtures such as helium and xenon. However, for this first application pure helium will be used as working fluid. Simplified models of heat and mass transfer were developed to simulate thermal components. Future efforts will focus on implementing a graphical interface to display the thermal process variables in steady state and to keep track of the modifications being implemented at the NOELLE 60290 turbo machine in order to build the CBCL.

  19. Homopolar machine for reversible energy storage and transfer systems

    DOEpatents

    Stillwagon, Roy E.

    1981-01-01

    A homopolar machine designed to operate as a generator and motor in reversibly storing and transferring energy between the machine and a magnetic load coil for a thermo-nuclear reactor. The machine rotor comprises hollow thin-walled cylinders or sleeves which form the basis of the system by utilizing substantially all of the rotor mass as a conductor thus making it possible to transfer substantially all the rotor kinetic energy electrically to the load coil in a highly economical and efficient manner. The rotor is divided into multiple separate cylinders or sleeves of modular design, connected in series and arranged to rotate in opposite directions but maintain the supply of current in a single direction to the machine terminals. A stator concentrically disposed around the sleeves consists of a hollow cylinder having a number of excitation coils each located radially outward from the ends of adjacent sleeves. Current collected at an end of each sleeve by sleeve slip rings and brushes is transferred through terminals to the magnetic load coil. Thereafter, electrical energy returned from the coil then flows through the machine which causes the sleeves to motor up to the desired speed in preparation for repetition of the cycle. To eliminate drag on the rotor between current pulses, the brush rigging is designed to lift brushes from all slip rings in the machine.

  20. Homopolar machine for reversible energy storage and transfer systems

    DOEpatents

    Stillwagon, Roy E.

    1978-01-01

    A homopolar machine designed to operate as a generator and motor in reversibly storing and transferring energy between the machine and a magnetic load coil for a thermo-nuclear reactor. The machine rotor comprises hollow thin-walled cylinders or sleeves which form the basis of the system by utilizing substantially all of the rotor mass as a conductor thus making it possible to transfer substantially all the rotor kinetic energy electrically to the load coil in a highly economical and efficient manner. The rotor is divided into multiple separate cylinders or sleeves of modular design, connected in series and arranged to rotate in opposite directions but maintain the supply of current in a single direction to the machine terminals. A stator concentrically disposed around the sleeves consists of a hollow cylinder having a number of excitation coils each located radially outward from the ends of adjacent sleeves. Current collected at an end of each sleeve by sleeve slip rings and brushes is transferred through terminals to the magnetic load coil. Thereafter, electrical energy returned from the coil then flows through the machine which causes the sleeves to motor up to the desired speed in preparation for repetition of the cycle. To eliminate drag on the rotor between current pulses, the brush rigging is designed to lift brushes from all slip rings in the machine.

  1. An Updated Equilibrium Machine

    ERIC Educational Resources Information Center

    Schultz, Emeric

    2008-01-01

    A device that can demonstrate equilibrium, kinetic, and thermodynamic concepts is described. The device consists of a leaf blower attached to a plastic container divided into two chambers by a barrier of variable size and form. Styrofoam balls can be exchanged across the barrier when the leaf blower is turned on and various air pressures are…

  2. Standardized Curriculum for Machine Tool Operation/Machine Shop.

    ERIC Educational Resources Information Center

    Mississippi State Dept. of Education, Jackson. Office of Vocational, Technical and Adult Education.

    Standardized vocational education course titles and core contents for two courses in Mississippi are provided: machine tool operation/machine shop I and II. The first course contains the following units: (1) orientation; (2) shop safety; (3) shop math; (4) measuring tools and instruments; (5) hand and bench tools; (6) blueprint reading; (7)…

  3. Machine Shop Milling Machines. Oklahoma Trade and Industrial Education.

    ERIC Educational Resources Information Center

    Dunn, James

    This curriculum guide provides instructional materials designed to equip students with basic knowledge and skills that will enable them to enter the machine trades at the machine-operator level. The curriculum is designed for use in full-time secondary and postsecondary classes and part-time adult classes. It can also be adapted to open-entry,…

  4. Production Machine Shop Employment Competencies. Part Four: The Milling Machine.

    ERIC Educational Resources Information Center

    Bishart, Gus; Werner, Claire

    Competencies for production machine shop are provided for the fourth of four topic areas: the milling machine. Each competency appears in a one-page format. It is presented as a goal statement followed by one or more "indicator" statements, which are performance objectives describing an ability that, upon attainment, will establish competency for…

  5. Menu Cycles.

    ERIC Educational Resources Information Center

    Clayton, Alfred; Almony, John

    The curriculum guide for commercial foods instruction is designed to aid the teacher in communicating the importance of menu cycles in commercial food production. It also provides information about the necessary steps in getting food from the raw form to the finished product, and then to the consumer. In addition to providing information on how to…

  6. The Potential to Machine Superconductors with Electrochemical Machining

    NASA Astrophysics Data System (ADS)

    Leese, Rebecca J.; Ivanov, Atanas; Babu-Nadendla, Hari

    2016-01-01

    Superconductors (SCs), such as gadolinium barium copper oxide, are brittle ceramics which are very difficult to machine conventionally due to the easy propagation of cracks. The cracks formed during conventional machining destroy the superconductive properties of the material. As a result a new method to machine ceramic SCs is needed. In this paper, polarization experiments were conducted in various nonaqueous salt electrolytes to determine whether electrochemical machining (ECM) is a suitable method for machining gadolinium barium copper oxide with silver inclusions (GdBCO-Ag) for the first time. Sodium chloride in formic acid proved to be the best electrolyte for this application with higher dissolution rates and achieving a better surface finish. It was noted that GdBCO-Ag dissolved at higher rates in NaCl in formic acid than in other salt-solvent systems.

  7. Experimental investigation of machining parameter under MQL milling of SS304

    NASA Astrophysics Data System (ADS)

    Gatade, Vivek T.; Patil, Vikas T.; Kuppan, P.; Balan, A. S. S.; Oyyaravelu, R.

    2016-09-01

    Minimum quantity lubrication (MQL) or near dry machining has been recognized by many researchers and industrialist in order to move one step ahead towards the green manufacturing. MQL assisted machining reduces the harmful environmental impact caused by flood coolant and machining cost. In this paper an attempt has been made to study the impact of oxygen as a carrier gas in MQL during end milling of austenitic stainless steel grade SS304. Also, the machining performance under conventional MQL with air and dry machining have been studied. The evaluation was done on tool wear, surface roughness and cutting forces under two distinct cutting speeds i.e. 75 m/min and 100 m/min. Investigation brings to light that presence of oxygen is susceptible in the case of machining of SS304, it provides extra protective oxide layer near the tool chip interface. Consequently, increased tool life, reduced surface roughness and cutting forces when compared to conventional MQL assisted milling.

  8. Extremal quantum cloning machines

    SciTech Connect

    Chiribella, G.; D'Ariano, G. M.; Perinotti, P.; Cerf, N.J.

    2005-10-15

    We investigate the problem of cloning a set of states that is invariant under the action of an irreducible group representation. We then characterize the cloners that are extremal in the convex set of group covariant cloning machines, among which one can restrict the search for optimal cloners. For a set of states that is invariant under the discrete Weyl-Heisenberg group, we show that all extremal cloners can be unitarily realized using the so-called double-Bell states, whence providing a general proof of the popular ansatz used in the literature for finding optimal cloners in a variety of settings. Our result can also be generalized to continuous-variable optimal cloning in infinite dimensions, where the covariance group is the customary Weyl-Heisenberg group of displacement000.

  9. Electropulse chemical machining

    SciTech Connect

    Allen, T.A.; Rospopo, S.D.

    1984-08-01

    Electropulse Chemical Machining is a new technique in chemical milling, and we have applied it to the photoforming of molybdenum. We apply direct current in short pulses at current densities of thousands of amperes per square foot with little thermal degradation of resists or workpieces. We have achieved etch rates an order of magnitude faster than those of existing methods, with a corresponding improvement in surface finish. Equipment designed for pulse plating can be used and is readily available from plating suppliers. Chemicals are commercially available and may be diluted to levels that protect resist images, reduce hazards to personnel, and simplify disposal. We speculate that this process can be applied to other refractory metals and noble metals.

  10. Machining of uranium and uranium alloys

    SciTech Connect

    Morris, T.O.

    1981-12-14

    Uranium and uranium alloys can be readily machined by conventional methods in the standard machine shop when proper safety and operating techniques are used. Material properties that affect machining processes and recommended machining parameters are discussed. Safety procedures and precautions necessary in machining uranium and uranium alloys are also covered. 30 figures.

  11. Oil-Free Rotor Support Technologies for Long Life, Closed Cycle Brayton Turbines

    NASA Technical Reports Server (NTRS)

    Lucero, John M.; DellaCorte, Christopher

    2004-01-01

    The goal of this study is to provide technological support to ensure successful life and operation of a 50-300 kW dynamic power conversion system specifically with response to the rotor support system. By utilizing technical expertise in tribology, bearings, rotordynamic, solid lubricant coatings and extensive test facilities, valuable input for mission success is provided. A discussion of the history of closed cycle Brayton turboalternators (TA) will be included. This includes the 2 kW Mini-Brayton Rotating Unit (Mini-BRU), the 10kW Brayton Rotating Unit (BRU) and the 125 kW turboalternator-compressor (TAC) designed in mid 1970's. Also included is the development of air-cycle machines and terrestrial oil-free gas turbine power systems in the form of microturbines, specifically Capstone microturbines. A short discussion of the self-acting compliant surface hydrodynamic fluid film bearings, or foil bearings, will follow, including a short history of the load capacity advances, the NASA coatings advancements as well as design model advances. Successes in terrestrial based machines will be noted and NASA tribology and bearing research test facilities will be described. Finally, implementation of a four step integration process will be included in the discussion.

  12. The Machine Scoring of Writing

    ERIC Educational Resources Information Center

    McCurry, Doug

    2010-01-01

    This article provides an introduction to the kind of computer software that is used to score student writing in some high stakes testing programs, and that is being promoted as a teaching and learning tool to schools. It sketches the state of play with machines for the scoring of writing, and describes how these machines work and what they do.…

  13. Cleaning of Free Machining Brass

    SciTech Connect

    Shen, T

    2005-12-29

    We have investigated four brightening treatments proposed by two cleaning vendors for cleaning free machining brass. The experimental results showed that none of the proposed brightening treatments passed the swipe test. Thus, we maintain the recommendation of not using the brightening process in the cleaning of free machining brass for NIF application.

  14. Self-Adjusting Teaching Machines.

    ERIC Educational Resources Information Center

    Dovgyallo, A. M.

    A study was made on the synthesis of teaching machine elements to ensure the stabilization of the chi indicator of the teaching process of each student. At first, a procedure was developed for calculating the chi indicator for the case when the teaching machine predicts the magnitude of this indicator based on probabilities derived from an…

  15. Contraction-Only Exercise Machine

    NASA Technical Reports Server (NTRS)

    Doerr, Donald F.; Maples, Arthur B.; Campbell, Craig M.

    1992-01-01

    Standard knee-extension machine modified so subject experiences force only when lifting leg against stack of weights. Exerts little force on leg while being lowered. Hydraulic cylinder and reservoir mounted on frame of exercise machine. Fluid flows freely from cylinder to reservoir during contraction (lifting) but in constricted fashion from reservoir to cylinder during extension (lowering).

  16. The Machine Intelligence Hex Project

    ERIC Educational Resources Information Center

    Chalup, Stephan K.; Mellor, Drew; Rosamond, Fran

    2005-01-01

    Hex is a challenging strategy board game for two players. To enhance students' progress in acquiring understanding and practical experience with complex machine intelligence and programming concepts we developed the Machine Intelligence Hex (MIHex) project. The associated undergraduate student assignment is about designing and implementing Hex…

  17. Machine Trades Lab Management Guide.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Instructional Materials Lab.

    This manual was developed to guide machine trades instructors and vocational supervisors in sequencing laboratory instruction and controlling the flow of work for a 2-year machine trades training program. The first part of the guide provides information on program management (program description, safety concerns, academic issues, implementation…

  18. Man and Machines: Three Criticisms.

    ERIC Educational Resources Information Center

    Schneider, Edward F.

    As machines have become a more common part of daily life through the passage of time, the idea that the line separating man and machine is slowly fading has become more popular as well. This paper examines three critics of change through their most famous works. One of the most popular views of Mary Shelley's "Frankenstein" is that it is a…

  19. TEACHING MACHINES AND PROGRAMED INSTRUCTION.

    ERIC Educational Resources Information Center

    JOHNSON, HERBERT; AND OTHERS

    THE TEACHING MACHINE AND PROGRAMED INSTRUCTION ARE EXPLAINED ANALYTICALLY IN TERMS OF LABORATORY PROCEDURES. AN EXPLANATION IS GIVEN OF THE PSYCHOLOGY OF THE STUDENT. TEACHING MACHINES ALLEVIATE SOME PROBLEMS OF STUDENT-TEACHER RELATIONSHIPS, SUCH AS APATHY, STUBBORNNESS, AND RESENTMENT. HIGHER LEVELS OF CONCENTRATION ARE MAINTAINED. SOME…

  20. TEACHING MACHINE STUDY. FINAL REPORT.

    ERIC Educational Resources Information Center

    EVCO, Albuquerque, NM.

    IN AN INVESTIGATION OF THE POTENTIAL OF TEACHING MACHINES IN THE JOB CORPS MATHEMATICS PROGRAM, EXISTING JOB CORPS ARITHMETIC MATERIAL WAS PREPARED FOR INSTRUCTION BY MACHINE AND PROGRAMED TEXT, AND THEN FIELD TESTED. REVISIONS WERE MADE, AND A PROGRAMED MANUAL FOR INSTRUCTORS WRITTEN, AFTER WHICH A NEW FIELD TEST WAS RUN. IN THE INITIAL FIELD…