Sample records for air cylinder moves

  1. Speed control with end cushion for high speed air cylinder

    DOEpatents

    Stevens, Wayne W.; Solbrig, Charles W.

    1991-01-01

    A high speed air cylinder in which the longitudinal movement of the piston within the air cylinder tube is controlled by pressurizing the air cylinder tube on the accelerating side of the piston and releasing pressure at a controlled rate on the decelerating side of the piston. The invention also includes a method for determining the pressure required on both the accelerating and decelerating sides of the piston to move the piston with a given load through a predetermined distance at the desired velocity, bringing the piston to rest safely without piston bounce at the end of its complete stroke.

  2. JEL Cylinder is moved into Crawler Transporter No. 2

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- The final Jacking, Equalization and Leveling (JEL) cylinder is moved to Crawler Transporter No. 2 (CT-2) for installation. During recent routine maintenance inspections, cracks were found on four bearings in two JEL cylinders. Further eddy current inspections indicated that cracks were present on 15 bearings. There are 16 cylinders and 32 bearings per crawler. CT-2 was repaired in order to enable Atlantis' rollout for mission STS-112, scheduled for launch no earlier than Oct. 2.

  3. Studies on shock interactions with moving cylinders using immersed boundary method

    NASA Astrophysics Data System (ADS)

    Luo, Kun; Luo, Yujuan; Jin, Tai; Fan, Jianren

    2017-06-01

    The process of shock interaction with a rigid cylinder is studied using a compressible immersed boundary method combined with a high-order weighted essentially nonoscillatory scheme. Movement of the cylinder is coupled to the flow field. First, the accuracy of the numerical scheme is validated. Then the influences of the incident shock Mach number and the cylinder diameter are discussed. The results are compared with those from cases with stationary cylinders. It is found that variation of either the incident shock Mach number or the cylinder diameter can cause different schlieren images. At a given dimensionless time, the trajectory of the upper triple point varies nonmonotonically with the incident shock Mach number while the primary reflected shock gets closer to the cylinder with increasing incident shock Mach number. For any moving case with a given incident shock Mach number and cylinder diameter, the trajectory of the upper triple point, the time evolution of the normalized vertical distance from the highest point of the primary reflected shock to the centerline of the cylinder, and the time evolution of the normalized shock detachment distance can all be predicted by linear correlation. As for the time evolution of the force exerted on the cylinder, the peak of the moving cylinder appears earlier than the stationary one in dimensionless time, with much lower value. Correlations to predict the occurrence of the peak drag and its value under different shock Mach numbers and cylinder diameters are proposed. The resulting cylinder movement is also briefly discussed.

  4. Performance of Air-cooled Engine Cylinders Using Blower Cooling

    NASA Technical Reports Server (NTRS)

    Schey, Oscar W; Ellerbrock, Herman H , Jr

    1936-01-01

    An investigation was made to obtain information on the minimum quantity of air and power required to cool conventional air cooled cylinders at various operating conditions when using a blower. The results of these tests show that the minimum power required for satisfactory cooling with an overall blower efficiency of 100 percent varied from 2 to 6 percent of the engine power depending on the operating conditions. The shape of the jacket had a large effect on the cylinder temperatures. Increasing the air speed over the front of the cylinder by keeping the greater part of the circumference of the cylinder covered by the jacket reduced the temperatures over the entire cylinder.

  5. Heat-transfer processes in air-cooled engine cylinders

    NASA Technical Reports Server (NTRS)

    Pinkel, Benjamin

    1938-01-01

    From a consideration of heat-transfer theory, semi-empirical expressions are set up for the transfer of heat from the combustion gases to the cylinder of an air-cooled engine and from the cylinder to the cooling air. Simple equations for the average head and barrel temperatures as functions of the important engine and cooling variables are obtained from these expressions. The expressions involve a few empirical constants, which may be readily determined from engine tests. Numerical values for these constants were obtained from single-cylinder engine tests for cylinders of the Pratt & Whitney 1535 and 1340-h engines. The equations provide a means of calculating the effect of the various engine and cooling variables on the cylinder temperatures and also of correlating the results of engine cooling tests. An example is given of the application of the equations to the correlation of cooling-test data obtained in flight.

  6. Dosimetric Effects of Air Pockets Around High-Dose Rate Brachytherapy Vaginal Cylinders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richardson, Susan, E-mail: srichardson@radonc.wustl.ed; Palaniswaamy, Geethpriya; Grigsby, Perry W.

    2010-09-01

    Purpose: Most physicians use a single-channel vaginal cylinder for postoperative endometrial cancer brachytherapy. Recent published data have identified air pockets between the vaginal cylinders and the vaginal mucosa. The purpose of this research was to evaluate the incidence, size, and dosimetric effects of these air pockets. Methods and Materials: 25 patients receiving postoperative vaginal cuff brachytherapy with a high-dose rate vaginal cylinders were enrolled in this prospective data collection study. Patients were treated with 6 fractions of 200 to 400 cGy per fraction prescribed at 5 mm depth. Computed tomography simulation for brachytherapy treatment planning was performed for each fraction.more » The quantity, volume, and dosimetric impact of the air pockets surrounding the cylinder were quantified. Results: In 25 patients, a total of 90 air pockets were present in 150 procedures (60%). Five patients had no air pockets present during any of their treatments. The average number of air pockets per patient was 3.6, with the average total air pocket volume being 0.34 cm{sup 3} (range, 0.01-1.32 cm{sup 3}). The average dose reduction to the vaginal mucosa at the air pocket was 27% (range, 9-58%). Ten patients had no air pockets on their first fraction but air pockets occurred in subsequent fractions. Conclusion: Air pockets between high-dose rate vaginal cylinder applicators and the vaginal mucosa are present in the majority of fractions of therapy, and their presence varies from patient to patient and fraction to fraction. The existence of air pockets results in reduced radiation dose to the vaginal mucosa.« less

  7. Adaptive individual-cylinder thermal state control using intake air heating for a GDCI engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roth, Gregory T.; Sellnau, Mark C.

    A system for a multi-cylinder compression ignition engine includes a plurality of heaters, at least one heater per cylinder, with each heater configured to heat air introduced into a cylinder. Independent control of the heaters is provided on a cylinder-by-cylinder basis. A combustion parameter is determined for combustion in each cylinder of the engine, and control of the heater for that cylinder is based on the value of the combustion parameter for combustion in that cylinder. A method for influencing combustion in a multi-cylinder compression ignition engine, including determining a combustion parameter for combustion taking place in a cylinder ofmore » the engine and controlling a heater configured to heat air introduced into that cylinder, is also provided.« less

  8. Dragging a floating horizontal cylinder

    NASA Astrophysics Data System (ADS)

    Lee, Duck-Gyu; Kim, Ho-Young

    2010-11-01

    A cylinder immersed in a fluid stream experiences a drag, and it is well known that the drag coefficient is a function of the Reynolds number only. Here we study the force exerted on a long horizontal cylinder that is dragged perpendicular to its axis while floating on an air-water interface with a high Reynolds number. In addition to the flow-induced drag, the floating body is subjected to capillary forces along the contact line where the three phases of liquid/solid/gas meet. We first theoretically predict the meniscus profile around the horizontally moving cylinder assuming the potential flow, and show that the profile is in good agreement with that obtained experimentally. Then we compare our theoretical predictions and experimental measurement results for the drag coefficient of a floating horizontal cylinder that is given by a function of the Weber number and the Bond number. This study can help us to understand the horizontal motion of partially submerged objects at air-liquid interface, such as semi-aquatic insects and marine plants.

  9. Correction of Temperatures of Air-Cooled Engine Cylinders for Variation in Engine and Cooling Conditions

    NASA Technical Reports Server (NTRS)

    Schey, Oscar W; Pinkel, Benjamin; Ellerbrock, Herman H , Jr

    1939-01-01

    Factors are obtained from semiempirical equations for correcting engine-cylinder temperatures for variation in important engine and cooling conditions. The variation of engine temperatures with atmospheric temperature is treated in detail, and correction factors are obtained for various flight and test conditions, such as climb at constant indicated air speed, level flight, ground running, take-off, constant speed of cooling air, and constant mass flow of cooling air. Seven conventional air-cooled engine cylinders enclosed in jackets and cooled by a blower were tested to determine the effect of cooling-air temperature and carburetor-air temperature on cylinder temperatures. The cooling air temperature was varied from approximately 80 degrees F. to 230 degrees F. and the carburetor-air temperature from approximately 40 degrees F. to 160 degrees F. Tests were made over a large range of engine speeds, brake mean effective pressures, and pressure drops across the cylinder. The correction factors obtained experimentally are compared with those obtained from the semiempirical equations and a fair agreement is noted.

  10. Two dimensional numerical analysis of aerodynamic characteristics for rotating cylinder on concentrated air flow

    NASA Astrophysics Data System (ADS)

    Alias, M. S.; Rafie, A. S. Mohd; Marzuki, O. F.; Hamid, M. F. Abdul; Chia, C. C.

    2017-12-01

    Over the years, many studies have demonstrated the feasibility of the Magnus effect on spinning cylinder to improve lift production, which can be much higher than the traditional airfoil shape. With this characteristic, spinning cylinder might be used as a lifting device for short take-off distance aircraft or unmanned aerial vehicle (UAV). Nonetheless, there is still a gap in research to explain the use of spinning cylinder as a good lifting device. Computational method is used for this study to analyse the Magnus effect, in which two-dimensional finite element numerical analysis method is applied using ANSYS FLUENT software to examine the coefficients of lift and drag, and to investigate the flow field around the rotating cylinder surface body. Cylinder size of 30mm is chosen and several configurations in steady and concentrated air flows have been evaluated. All in all, it can be concluded that, with the right configuration of the concentrated air flow setup, the rotating cylinder can be used as a lifting device for very short take-off since it can produce very high coefficient of lift (2.5 times higher) compared with steady air flow configuration.

  11. 27. UPPER STATION, LOWER FLOOR, BULL WHEEL, BRAKE AIR CYLINDER. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. UPPER STATION, LOWER FLOOR, BULL WHEEL, BRAKE AIR CYLINDER. - Monongahela Incline Plane, Connecting North side of Grandview Avenue at Wyoming Street with West Carson Street near Smithfield Street, Pittsburgh, Allegheny County, PA

  12. JEL Cylinder is moved into Crawler Transporter No. 2

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- After technicians removed and replaced all of the 32 bearings located in the JEL (jacking, equalization and leveling) cylinders and reinstalled the 16 cylinders on Crawler Transporter No. 2, workers take the crawler for a test run. During routine inspections, technicians found cracks in some of the bearings in the 16 JEL cylinders on the vehicle. There are 16 cylinders and 32 bearings per crawler.

  13. Engine Cylinder Temperature Control

    DOEpatents

    Kilkenny, Jonathan Patrick; Duffy, Kevin Patrick

    2005-09-27

    A method and apparatus for controlling a temperature in a combustion cylinder in an internal combustion engine. The cylinder is fluidly connected to an intake manifold and an exhaust manifold. The method and apparatus includes increasing a back pressure associated with the exhaust manifold to a level sufficient to maintain a desired quantity of residual exhaust gas in the cylinder, and varying operation of an intake valve located between the intake manifold and the cylinder to an open duration sufficient to maintain a desired quantity of fresh air from the intake manifold to the cylinder, wherein controlling the quantities of residual exhaust gas and fresh air are performed to maintain the temperature in the cylinder at a desired level.

  14. Quick release engine cylinder

    DOEpatents

    Sunnarborg, Duane A.

    2000-01-01

    A quick release engine cylinder allows optical access to an essentially unaltered combustion chamber, is suitable for use with actual combustion processes, and is amenable to rapid and repeated disassembly and cleaning. A cylinder member, adapted to constrain a piston to a defined path through the cylinder member, sealingly engages a cylinder head to provide a production-like combustion chamber. A support member mounts with the cylinder member. The support-to-cylinder mounting allows two relationships therebetween. In the first mounting relationship, the support engages the cylinder member and restrains the cylinder against the head. In the second mounting relationship, the cylinder member can pass through the support member, moving away from the head and providing access to the piston-top and head.

  15. 4. View showing cylinder end of two, cylinder, compound Corliss ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. View showing cylinder end of two, cylinder, compound Corliss steam engine with tandem air compressor. - International Smelting & Refining Company, Tooele Smelter, Powerhouse, State Route 178, Tooele, Tooele County, UT

  16. Internal combustion engine cylinder-to-cylinder balancing with balanced air-fuel ratios

    DOEpatents

    Harris, Ralph E.; Bourn, Gary D.; Smalley, Anthony J.

    2006-01-03

    A method of balancing combustion among cylinders of an internal combustion engine. For each cylinder, a normalized peak firing pressure is calculated as the ratio of its peak firing pressure to its combustion pressure. Each cylinder's normalized peak firing pressure is compared to a target value for normalized peak firing pressure. The fuel flow is adjusted to any cylinder whose normalized peak firing pressure is not substantially equal to the target value.

  17. JEL Cylinder is moved into Crawler Transporter No. 2

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- Workers help guide the final Jacking, Equalization and Leveling (JEL) cylinder into place on Crawler Transporter No. 2 (CT-2) for installation. During recent routine maintenance inspections, cracks were found on four bearings in two JEL cylinders. Further eddy current inspections indicated that cracks were present on 15 bearings. There are 16 cylinders and 32 bearings per crawler. CT-2 was repaired in order to enable Atlantis' rollout for mission STS-112, scheduled for launch no earlier than Oct. 2.

  18. [Design and experiment of a needle-to-cylinder electrode structure realizing the negative DC glow discharge in ambient air].

    PubMed

    Li, Hua; Wei, Chang-Yan; Liu, Chun-Xia; Shen, Xian-Hao; Chen, Zhen-Cheng

    2014-07-01

    A new needle-to-cylinder electrode structure was designed to realize the stable glow discharge in ambient air. The stainless steel needle tip with diameter 56.4 microm and the copper cylinder with diameter 4mm were chosen as the cathode and the anode respectively, which were kept parallel by accurate mechanical structure. In the condition that the distance between the needle and the cylinder is 2 mm, the ballasting resistor is 10 M(omega), the discharge resistor is 10 M(omega), the testing resistor is 1 k(omega), and the discharge voltage is -2 740 V, without air flow in ambient air and at room temperature, the stable glow discharge between the needle and the cylinder was realized. Three different discharge modes can be observed: corona discharge, glow discharge and spark, which were verified by the discharge waveform stored in the oscilloscope, and the discharge pictures were recorded by digital camera. The needle-to-cylinder electrode structure is easy to fabricate by the MEMS technology, which can be used as the ion source of the portable analyzing instruments.

  19. In-cylinder air-flow characteristics of different intake port geometries using tomographic PIV

    NASA Astrophysics Data System (ADS)

    Agarwal, Avinash Kumar; Gadekar, Suresh; Singh, Akhilendra Pratap

    2017-09-01

    For improving the in-cylinder flow characteristics of intake air/charge and for strengthening the turbulence intensity, specific intake port geometries have shown significant potential in compression ignition engines. In this experimental study, effects of intake port geometries on air-flow characteristics were investigated using tomographic particle imaging velocimetry (TPIV). Experiments were performed using three experimental conditions, namely, swirl port open (SPO), tangential port open (TPO), and both port open (BPO) configurations in a single cylinder optical research engine. Flow investigations were carried out in a volumetric section located in the middle of the intake and exhaust valves. Particle imaging velocimetry (PIV) images were captured using two high speed cameras at a crank angle resolution of 2° in the intake and compression strokes. The captured PIV images were then pre-processed and post-processed to obtain the final air-flow-field. Effects of these two intake ports on flow-field are presented for air velocity, vorticity, average absolute velocity, and turbulent kinetic energy. Analysis of these flow-fields suggests the dominating nature of the swirl port over the tangential port for the BPO configuration and higher rate of flow energy dissipation for the TPO configuration compared to the SPO and BPO configurations. These findings of TPIV investigations were experimentally verified by combustion and particulate characteristics of the test engine in thermal cylinder head configuration. Combustion results showed that the SPO configuration resulted in superior combustion amongst all three port configurations. Particulate characteristics showed that the TPO configuration resulted in higher particulate compared to other port configurations.

  20. Correlation of the Characteristics of Single-Cylinder and Flight Engines in Tests of High-Performance Fuels in an Air-Cooled Engine I : Cooling Characteristics

    NASA Technical Reports Server (NTRS)

    Wilson, Robert W.; Richard, Paul H.; Brown, Kenneth D.

    1945-01-01

    Variable charge-air flow, cooling-air pressure drop, and fuel-air ration investigations were conducted to determine the cooling characteristics of a full-scale air-cooled single cylinder on a CUE setup. The data are compared with similar data that were available for the same model multicylinder engine tested in flight in a four-engine airplane. The cylinder-head cooling correlations were the same for both the single-cylinder and the flight engine. The cooling correlations for the barrels differed slightly in that the barrel of the single-cylinder engine runs cooler than the barrel of te flight engine for the same head temperatures and engine conditions.

  1. A Study of Gas Economizing Pneumatic Cylinder

    NASA Astrophysics Data System (ADS)

    Li, T. C.; Wu, H. W.; Kuo, M. J.

    2006-10-01

    The pneumatic cylinder is the most typical actuator in the pneumatic equipment, and its mechanism is so simple that it is often used to operate point to point driving without the feedback loop in various automatic machines. But, the energy efficiency of pneumatic system is very poor compared with electrical systems and hydraulic systems. So, it is very important to discuss the energy saving for the pneumatic cylinder systems. In this thesis, we proposed three methods to apply the reduction in the air consumed for pneumatic cylinder systems. An air charge accumulator is used to absorb the exhausted compress air and a boost valve boosted the air to the higher pressure for used again. From the experiments, the direct used cylinder exhaust air may save about 40% of compress air.

  2. Heat-transfer coefficients for air flowing in round tubes, in rectangular ducts, and around finned cylinders

    NASA Technical Reports Server (NTRS)

    Drexel, Rober E; Mcadams, William H

    1945-01-01

    Report reviews published data and presents some new data on heat transfer to air flowing in round tubes, in rectangular ducts, and around finned cylinders. The available data for heat transfer to air in straight ducts of rectangular and circular cross section have been correlated in plots of Stanton number versus Reynolds number to provide a background for the study of the data for finned cylinders. Equations are recommended for both the streamlined and turbulent regions, and data are presented for the transition region between turbulent and laminar flow. Use of hexagonal ends on round tubes causes the characteristics of laminar flow to extend to high Reynolds numbers. Average coefficients for the entire finned cylinder have been calculated from the average temperature at the base of the fins and an equation which was derived to allow for the effectiveness of the fins. The available results for each finned cylinder are correlated herein in terms of graphs of Stanton number versus Reynolds number. In general, for a given Reynolds number, the Stanton number increases with increases in both spacing and width of the fins, and is apparently independent of cylinder diameter and temperature difference. For a given coefficient of heat transfer improved baffles and rough or wavy surfaces give a substantial reduction in pumping power per unit of heat transfer surface and a somewhat smaller decrease in pressure drop. (author)

  3. Non-invasive determination of external forces in vortex-pair-cylinder interactions

    NASA Astrophysics Data System (ADS)

    Hartmann, D.; Schröder, W.; Shashikanth, B. N.

    2012-06-01

    Expressions for the conserved linear and angular momenta of a dynamically coupled fluid + solid system are derived. Based on the knowledge of the flow velocity field, these expressions allow the determination of the external forces exerted on a body moving in the fluid such as, e.g., swimming fish. The verification of the derived conserved quantities is done numerically. The interaction of a vortex pair with a circular cylinder in various configurations of motions representing a generic test case for a dynamically coupled fluid + solid system is investigated in a weakly compressible Navier-Stokes setting using a Cartesian cut-cell method, i.e., the moving circular cylinder is represented by cut cells on a moving mesh. The objectives of this study are twofold. The first objective is to show the robustness of the derived expressions for the conserved linear and angular momenta with respect to bounded and discrete data sets. The second objective is to study the coupled dynamics of the vortex pair and a neutrally buoyant cylinder free to move in response to the fluid stresses exerted on its surface. A comparison of the vortex-body interaction with the case of a fixed circular cylinder evidences significant differences in the vortex dynamics. When the cylinder is fixed strong secondary vorticity is generated resulting in a repeating process between the primary vortex pair and the cylinder. In the neutrally buoyant cylinder case, a stable structure consisting of the primary vortex pair and secondary vorticity shear layers stays attached to the moving cylinder. In addition to these fundamental cases, the vortex-pair-cylinder interaction is studied for locomotion at constant speed and locomotion at constant thrust. It is shown that a similar vortex structure like in the neutrally buoyant cylinder case is obtained when the cylinder moves away from the approaching vortex pair at a constant speed smaller than the vortex pair translational velocity. Finally, the idealized

  4. Numerical analysis of two and three dimensional buoyancy driven water-exit of a circular cylinder

    NASA Astrophysics Data System (ADS)

    Moshari, Shahab; Nikseresht, Amir Hossein; Mehryar, Reza

    2014-06-01

    With the development of the technology of underwater moving bodies, the need for developing the knowledge of surface effect interaction of free surface and underwater moving bodies is increased. Hence, the two-phase flow is a subject which is interesting for many researchers all around the world. In this paper, the non-linear free surface deformations which occur during the water-exit of a circular cylinder due to its buoyancy are solved using finite volume discretization based code, and using Volume of Fluid (VOF) scheme for solving two phase flow. Dynamic mesh model is used to simulate dynamic motion of the cylinder. In addition, the effect of cylinder mass in presence of an external force is studied. Moreover, the oblique exit and entry of a circular cylinder with two exit angles is simulated. At last, water-exit of a circular cylinder in six degrees of freedom is simulated in 3D using parallel processing. The simulation errors of present work (using VOF method) for maximum velocity and height of a circular cylinder are less than the corresponding errors of level set method reported by previous researchers. Oblique exit shows interesting results; formation of waves caused by exit of the cylinder, wave motion in horizontal direction and the air trapped between the waves are observable. In 3D simulation the visualization of water motion on the top surface of the cylinder and the free surface breaking on the front and back faces of the 3D cylinder at the exit phase are observed which cannot be seen in 2D simulation. Comparing the results, 3D simulation shows better agreement with experimental data, specially in the maximum height position of the cylinder.

  5. The induction of water to the inlet air as a means of internal cooling in aircraft-engine cylinders

    NASA Technical Reports Server (NTRS)

    Rothrock, Addison M; Krsek, Alois, Jr; Jones, Anthony W

    1943-01-01

    Report presents the results of investigations conducted on a full-scale air-cooled aircraft-engine cylinder of 202-cubic inch displacement to determine the effects of internal cooling by water induction on the maximum permissible power and output of an internal-combustion engine. For a range of fuel-air and water-fuel ratios, the engine inlet pressure was increased until knock was detected aurally, the power was then decreased 7 percent holding the ratios constant. The data indicated that water was a very effective internal coolant, permitting large increases in engine power as limited by either knock or by cylinder temperatures.

  6. Forces on Elliptic Cylinders in Uniform Air Stream

    NASA Technical Reports Server (NTRS)

    Zahm, A F; Smith, R H; Louden, F A

    1929-01-01

    This report presents the results of wind tunnel tests on four elliptic cylinders with various fineness ratios, conducted in the Navy Aerodynamic Laboratory, Washington. The object of the tests was to investigate the characteristics of sections suitable for streamline wire which normally has an elliptic section with a fineness ratio of 4.0; also to learn whether a reduction in fineness ratio would result in improvement; also to determine the pressure distribution on the model of fineness ratio of 4. Four elliptic cylinders with fineness ratios of 2.5, 3.0, 3.5, and 4.0 were made and then tested in the 8 by 8 wind tunnel; first, for cross-wind force, drag, and yawing moment at 30 miles an hour and various angles of yaw; next for drag 0 degree pitch and 0 degree yaw and various wind speeds; then for end effect on the smallest and largest models; and lastly for pressure distribution over the surface of the largest model at 0 degree pitch and 0 degree yaw and various wind speeds. In all tests, the length of the model was transverse to the current. The results are given for standard air density, p = .002378 slug per cubic foot. This account is a slight revised form of report no. 315. A summary of conclusions is given at the end of the text. (author)

  7. Current-voltage characteristics of dc corona discharges in air between coaxial cylinders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Yuesheng, E-mail: yueshengzheng@fzu.edu.cn; Zhang, Bo, E-mail: shizbcn@tsinghua.edu.cn; He, Jinliang, E-mail: hejl@tsinghua.edu.cn

    This paper presents the experimental measurement and numerical analysis of the current-voltage characteristics of dc corona discharges in air between coaxial cylinders. The current-voltage characteristics for both positive and negative corona discharges were measured within a specially designed corona cage. Then the measured results were fitted by different empirical formulae and analyzed by the fluid model. The current-voltage characteristics between coaxial cylinders can be expressed as I = C(U − U{sub 0}){sup m}, where m is within the range 1.5–2.0, which is similar to the point-plane electrode system. The ionization region has no significant effect on the current-voltage characteristic under a low corona current,more » while it will affect the distribution for the negative corona under a high corona current. The surface onset fields and ion mobilities were emphatically discussed.« less

  8. A Visual Photographic Study of Cylinder Lubrication

    NASA Technical Reports Server (NTRS)

    Shaw, Milton C; Nussdorfer, Theodore

    1946-01-01

    A V-type engine provided with a glass cylinder was used to study visually the lubrication characteristics of an aircraft-type piston. Photographs and data were obtained with the engine motored at engine speeds up to 1000 r.p.m. and constant cylinder-head pressures of 0 and 50 pounds per square inch. A study was made of the orientation of the piston under various operating conditions, which indicated that the piston was inclined with the crown nearest the major-thrust cylinder face throughout the greater part of the cycle. The piston moved laterally in the cylinder under the influence of piston side thrust.

  9. Single-Cylinder Oil-Control Tests of Porous Chrome-Plated Cylinder Barrels for Radial Air-Cooled Engines

    DTIC Science & Technology

    1946-01-01

    plating, it will affect a choke as desired in the cylinder. When the clearance between the anode and the cathode (cylinder barrel) is decreased, an...National Advisory Commltteo for Aeronautics, Cltivel« oid , Ohio. RSFEFKICE3 1. Johnson, Robert L., wad Anderson, Roy I.: S.’.nglo-Cylindor Engine Tests...plating a choke in the bore. Choice la obtained by decreasing the clear- ance between the anode and the cylinder barrel ( cathode ). Taper on anode la

  10. Air kerma to Hp(3) conversion coefficients for a new cylinder phantom for photon reference radiation qualities.

    PubMed

    Behrens, R

    2012-09-01

    The International Organization for Standardization (ISO) has issued a standard series on photon reference radiation qualities (ISO 4037). In this series, no conversion coefficients are contained for the quantity personal dose equivalent at a 3 mm depth, H(p)(3). In the past, for this quantity, a slab phantom was recommended as a calibration phantom; however, a cylinder phantom much better approximates the shape of a human head than a slab phantom. Therefore, in this work, the conversion coefficients from air kerma to H(p)(3) for the cylinder phantom are supplied for X- and gamma radiation qualities defined in ISO 4037.

  11. Comparative Performance of Engines Using a Carburetor, Manifold Injection, and Cylinder Injection

    NASA Technical Reports Server (NTRS)

    Schey, Oscar W; Clark, J Denny

    1939-01-01

    The comparative performance was determined of engines using three methods of mixing the fuel and the air: the use of a carburetor, manifold injection, and cylinder injection. The tests were made of a single-cylinder engine with a Wright 1820-G air-cooled cylinder. Each method of mixing the fuel and the air was investigated over a range of fuel-air ratios from 0.10 to the limit of stable operation and at engine speeds of 1,500 and 1,900 r.p.m. The comparative performance with a fuel-air ratio of 0.08 was investigated for speeds from 1,300 to 1,900 r.p.m. The results show that the power obtained with each method closely followed the volumetric efficiency; the power was therefore the highest with cylinder injection because this method had less manifold restriction. The values of minimum specific fuel consumption obtained with each method of mixing of fuel and air were the same. For the same engine and cooling conditions, the cylinder temperatures are the same regardless of the method used for mixing the fuel and the air.

  12. Clean Air Program : cylinder issues associated with alternative fuels

    DOT National Transportation Integrated Search

    1999-01-01

    A number of incidents of compressed natural gas (CNG) cylinder leaks have occurred while transit buses were either in service or at a bus maintenance facility. This study was initiated to determine the degree to which cylinder problems still exist in...

  13. Numerical simulation of VAWT on the effects of rotation cylinder

    NASA Astrophysics Data System (ADS)

    Xing, Shuda; Cao, Yang; Ren, Fuji

    2017-06-01

    Based on Finite Element Analysis Method, studying on Vertical Axis Wind Turbine (VAWT) which is added rotating cylinder in front of its air foils, especially focusing on the analysis of NACA6 series air foils about variation of lift to drag ratio. Choosing the most suitable blades with rotary cylinder added on leading edge. Analysis indicates that the front rotating cylinders on the VAWT is benefit to lift rise and drag fall. The most suitable air foil whose design lift coefficient is 0.8, the blades relative thickness is 20%, and the optimistic tip speed ratio is about 7.

  14. Ozone generation by negative direct current corona discharges in dry air fed coaxial wire-cylinder reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yehia, Ashraf; Mizuno, Akira

    An analytical study was made in this paper for calculating the ozone generation by negative dc corona discharges. The corona discharges were formed in a coaxial wire-cylinder reactor. The reactor was fed by dry air flowing with constant rates at atmospheric pressure and room temperature, and stressed by a negative dc voltage. The current-voltage characteristics of the negative dc corona discharges formed inside the reactor were measured in parallel with concentration of the generated ozone under different operating conditions. An empirical equation was derived from the experimental results for calculating the ozone concentration generated inside the reactor. The results, thatmore » have been recalculated by using the derived equation, have agreed with the experimental results over the whole range of the investigated parameters, except in the saturation range for the ozone concentration. Therefore, the derived equation represents a suitable criterion for expecting the ozone concentration generated by negative dc corona discharges in dry air fed coaxial wire-cylinder reactors under any operating conditions in range of the investigated parameters.« less

  15. Efficient visual grasping alignment for cylinders

    NASA Technical Reports Server (NTRS)

    Nicewarner, Keith E.; Kelley, Robert B.

    1992-01-01

    Monocular information from a gripper-mounted camera is used to servo the robot gripper to grasp a cylinder. The fundamental concept for rapid pose estimation is to reduce the amount of information that needs to be processed during each vision update interval. The grasping procedure is divided into four phases: learn, recognition, alignment, and approach. In the learn phase, a cylinder is placed in the gripper and the pose estimate is stored and later used as the servo target. This is performed once as a calibration step. The recognition phase verifies the presence of a cylinder in the camera field of view. An initial pose estimate is computed and uncluttered scan regions are selected. The radius of the cylinder is estimated by moving the robot a fixed distance toward the cylinder and observing the change in the image. The alignment phase processes only the scan regions obtained previously. Rapid pose estimates are used to align the robot with the cylinder at a fixed distance from it. The relative motion of the cylinder is used to generate an extrapolated pose-based trajectory for the robot controller. The approach phase guides the robot gripper to a grasping position. The cylinder can be grasped with a minimal reaction force and torque when only rough global pose information is initially available.

  16. Efficient visual grasping alignment for cylinders

    NASA Technical Reports Server (NTRS)

    Nicewarner, Keith E.; Kelley, Robert B.

    1991-01-01

    Monocular information from a gripper-mounted camera is used to servo the robot gripper to grasp a cylinder. The fundamental concept for rapid pose estimation is to reduce the amount of information that needs to be processed during each vision update interval. The grasping procedure is divided into four phases: learn, recognition, alignment, and approach. In the learn phase, a cylinder is placed in the gripper and the pose estimate is stored and later used as the servo target. This is performed once as a calibration step. The recognition phase verifies the presence of a cylinder in the camera field of view. An initial pose estimate is computed and uncluttered scan regions are selected. The radius of the cylinder is estimated by moving the robot a fixed distance toward the cylinder and observing the change in the image. The alignment phase processes only the scan regions obtained previously. Rapid pose estimates are used to align the robot with the cylinder at a fixed distance from it. The relative motion of the cylinder is used to generate an extrapolated pose-based trajectory for the robot controller. The approach phase guides the robot gripper to a grasping position. The cylinder can be grasped with a minimal reaction force and torque when only rough global pose information is initially available.

  17. Simulations of moving effect of coastal vegetation on tsunami damping

    NASA Astrophysics Data System (ADS)

    Tsai, Ching-Piao; Chen, Ying-Chi; Octaviani Sihombing, Tri; Lin, Chang

    2017-05-01

    A coupled wave-vegetation simulation is presented for the moving effect of the coastal vegetation on tsunami wave height damping. The problem is idealized by solitary wave propagation on a group of emergent cylinders. The numerical model is based on general Reynolds-averaged Navier-Stokes equations with renormalization group turbulent closure model by using volume of fluid technique. The general moving object (GMO) model developed in computational fluid dynamics (CFD) code Flow-3D is applied to simulate the coupled motion of vegetation with wave dynamically. The damping of wave height and the turbulent kinetic energy along moving and stationary cylinders are discussed. The simulated results show that the damping of wave height and the turbulent kinetic energy by the moving cylinders are clearly less than by the stationary cylinders. The result implies that the wave decay by the coastal vegetation may be overestimated if the vegetation was represented as stationary state.

  18. Advanced engine management of individual cylinders for control of exhaust species

    DOEpatents

    Graves, Ronald L [Knoxville, TN; West, Brian H [Knoxville, TN; Huff, Shean P [Knoxville, TN; Parks, II, James E

    2008-12-30

    A method and system controls engine-out exhaust species of a combustion engine having a plurality of cylinders. The method typically includes various combinations of steps such as controlling combustion parameters in individual cylinders, grouping the individual cylinders into a lean set and a rich set of one or more cylinders, combusting the lean set in a lean combustion parameter condition having a lean air:fuel equivalence ratio, combusting the rich set in a rich combustion parameter condition having a rich air:fuel equivalence ratio, and adjusting the lean set and the rich set of one or more cylinders to generate net-lean combustion. The exhaust species may have elevated concentrations of hydrogen and oxygen.

  19. A characteristic analysis of the fluidic muscle cylinder

    NASA Astrophysics Data System (ADS)

    Kim, Dong-Soo; Bae, Sang-Kyu; Hong, Sung-In

    2005-12-01

    The fluidic muscle cylinder consists of an air bellows tube, flanges and lock nuts. It's features are softness of material and motion, simplicity of structure, low production cost and high power efficiency. Recently, unlikely the pneumatic cylinder, the fluidic muscle cylinder without air leakage, stick slip, friction, and seal was developed as a new concept actuator. It has the characteristics such as light weight, low price, high response, durable design, long life, high power, high contraction, which is innovative product fulfilling RT(Robot Technology) which is one of the nation-leading next generation strategy technologies 6T as well as cleanness technology. The application fields of the fluidic muscle cylinder are so various like fatigue tester, brake, accelerator, high technology testing device such as driving simulator, precise position, velocity, intelligent servo actuator under special environment such as load controlling system, and intelligent robot. In this study, we carried out the finite element modeling and analysis about the main design variables such as contraction ration and force, diameter increment of fluidic muscle cylinder. On the basis of finite element analysis, the prototype of fluidic muscle cylinder was manufactured and tested. Finally, we compared the results between the test and the finite element analysis.

  20. Effect of Water-Alcohol Injection and Maximum Economy Spark Advance on Knock-Limited Performance and Fuel Economy of a Large Air-Cooled Cylinder

    NASA Technical Reports Server (NTRS)

    Heinicke, Orville H.; Vandeman, Jack E.

    1945-01-01

    An investigation was conducted to determine the effect of a coolant solution of 25 percent ethyl alcohol, 25 percent methyl alcohol, and 50 percent water by volume and maximum-economy spark advance on knock-limited performance and fuel economy of a large air-cooled cylinder. The knock-limited performance of the cylinder at engine speeds of 2100 and 2500 rpm was determined for coolant-fuel ratios of 0.0, 0.2, and 0.4. The effect of water-alcohol injection on fuel economy was determined in constant charge-air flow tests. The tests were conducted at a spark advance of 20 deg B.T.C. and maximum-economy spark advance.

  1. The Persistence of the Candle-and-Cylinder Misconception.

    ERIC Educational Resources Information Center

    Birk, James P.; Lawson, Anton E.

    1999-01-01

    Argues that the candle-and-cylinder demonstration does not show that air is composed of 21% oxygen. Finds that the heating of air results in a partial expulsion of air, and that the flame is extinguished by a local, rather than a complete, consumption of oxygen. (WRM)

  2. Characteristic analysis and experimental evaluation of artificial pneumatic cylinder

    NASA Astrophysics Data System (ADS)

    Kim, Dong-Soo; Bae, Sang-Kyu; Choi, Kyung-Hyun

    2005-12-01

    The fluidic muscle cylinder consists of an air bellows tube, flanges and lock nuts. Its features are softness of material and motion, simplicity of structure, low production cost and high power efficiency. Recently, unlikely the pneumatic cylinder, the fluidic muscle cylinder without air leakage, stick slip, friction, and seal was developed as a new concept actuator. It has the characteristics such as light weight, low price, high response, durable design, long life, high power, high contraction, which is innovative product fulfilling RT(Robot Technology) which is one of the nation-leading next generation strategy technologies 6T as well as cleanness technology. The application fields of the fluidic muscle cylinder are so various like fatigue tester, brake, accelerator, high technology testing device such as driving simulator, precise position, velocity, intelligent servo actuator under special environment such as load controlling system, and intelligent robot. In this study, we carried out the finite element modeling and analysis about the main design variables such as contraction ration and force, diameter increment of fluidic muscle cylinder. On the basis of finite element analysis, the prototype of fluidic muscle cylinder was fabricated and tested. Finally, we compared the results between the test and the finite element analysis.

  3. Experimental Evaluation of a Method for Turbocharging Four-Stroke, Single Cylinder, Internal Combustion Engines

    NASA Astrophysics Data System (ADS)

    Buchman, Michael; Winter, Amos

    2015-11-01

    Turbocharging an engine increases specific power, improves fuel economy, reduces emissions, and lowers cost compared to a naturally aspirated engine of the same power output. These advantages make turbocharging commonplace for multi-cylinder engines. Single cylinder engineers are not commonly turbocharged due to the phase lag between the exhaust stroke, which powers the turbocharger, and the intake stroke, when air is pumped into the engine. Our proposed method of turbocharging single cylinder engines is to add an ``air capacitor'' to the intake manifold, an additional volume that acts as a buffer to store compressed air between the exhaust and intake strokes, and smooth out the pressure pulses from the turbocharger. This talk presents experimental results from a single cylinder, turbocharged diesel engine fit with various sized air capacitors. Power output from the engine was measured using a dynamometer made from a generator, with the electrical power dissipated with resistive heating elements. We found that intake air density increases with capacitor size as theoretically predicted, ranging from 40 to 60 percent depending on heat transfer. Our experiment was able to produce 29 percent more power compared to using natural aspiration. These results validated that an air capacitor and turbocharger may be a simple, cost effective means of increasing the power density of single cylinder engines.

  4. Study of Multi-Cylinder Engine Manifolds

    DTIC Science & Technology

    1944-10-31

    were developed so that mnifolds for any number of cylinders could be analyzed for max- I= zm volumetrie efficiency. Eletricaleebanioal analoCies can be...deceleration of the air& The vibrations are almot Identical to thse In single cylinder intake pipes. The mmi- a= volumetrie efficiency bould be...pipe 14 in. total volume 7- In- 3 area of pipew 0.86 in 2 Table I gives the actual and calculated speeds for peak volumetri efficiencies for a sIngle

  5. CNG Cylinder Safety - Education, Outreach, and Next Steps (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, M.; Schroeder, A.

    2014-01-01

    Mr. Schroeder discussed the work that NREL is performing for the U.S. Department of Transportation on compressed natural gas cylinder end-of-life requirements. CNG vehicles are different from most other vehicles in that the CNG fuel storage cylinders have a pre-determined lifetime that may be shorter than the expected life of the vehicle. The end-of-life date for a cylinder is based on construction and test protocols, and is specific to the construction and material of each cylinder. The end-of-life date is important because it provides a safe margin of error against catastrophic cylinder failure or rupture. The end-of-life dates range frommore » 15 to 25 years from the date of manufacture. NREL worked to develop outreach materials to increase awareness of cylinder end-of-life dates, has provided technical support for individual efforts related to cylinder safety and removal, and also worked with CVEF to document best practices for cylinder removal or inspection after an accident. Mr. Smith discussed the engagement of the DOE Clean Fleets Partners, which were surveyed to identify best practices on managing cylinder inventories and approached to provide initial data on cylinder age in a fleet environment. Both DOE and NREL will continue to engage these fleets and other stakeholders to determine how to best address this issue moving forward.« less

  6. Experimental evaluation of oxygen-enriched air and emulsified fuels in a six-cylinder diesel engine

    NASA Astrophysics Data System (ADS)

    Sekar, R. R.; Marr, W. W.; Cole, R. L.; Marciniak, T. J.; Longman, D. E.

    1993-01-01

    The objectives of this investigation are to (1) determine the technical feasibility of using oxygen-enriched air to increase the efficiency of and reduce emissions from diesel engines, (2) examine the effects of water-emulsified fuel on the formation of nitrogen oxides in oxygen-enriched combustion, and (3) investigate the use of lower-grade fuels in high-speed diesel engines by emulsifying the fuel with water. These tests, completed on a Caterpillar model 3406B, six-cylinder engine are a scale-up from previous, single-cylinder-engine tests. The engine was tested with (1) intake-air oxygen levels up to 30%, (2) water content up to 20% of the fuel, (3) three fuel-injection timings, and (4) three fuel-flow rates (power levels). The Taguchi technique for experimental design was used to minimize the number of experimental points in the test matrix. Four separate test matrices were run to cover two different fuel-flow-rate strategies and two different fuels (No. 2 diesel and No. 6 diesel). A liquid-oxygen tank located outside the test cell supplied the oxygen for the tests. The only modification of the engine was installation of a pressure transducer in one cylinder. All tests were run at 1800 rpm, which corresponds to the synchronous speed of a 60-Hz generator. Test results show that oxygen enrichment results in power increases of 50% or more while significantly decreasing the levels of smoke and particulates emitted. The increase in power was accompanied by a small increase in thermal efficiency. Maximum engine power was limited by the test-cell dynamometer capacity and the capacity of the fuel-injection pump. Oxygen enrichment increases nitrogen-oxide emissions significantly. No adverse effects of oxygen enrichment on the turbocharger were observed. The engine operated successfully with No. 6 fuel, but it operated at a lower thermal efficiency and emitted more smoke and particulates than with No. 2 fuel.

  7. The inverse problem of acoustic wave scattering by an air-saturated poroelastic cylinder.

    PubMed

    Ogam, Erick; Fellah, Z E A; Baki, Paul

    2013-03-01

    The efficient use of plastic foams in a diverse range of structural applications like in noise reduction, cushioning, and sleeping mattresses requires detailed characterization of their permeability and deformation (load-bearing) behavior. The elastic moduli and airflow resistance properties of foams are often measured using two separate techniques, one employing mechanical vibration methods and the other, flow rates of fluids based on fluid mechanics technology, respectively. A multi-parameter inverse acoustic scattering problem to recover airflow resistivity (AR) and mechanical properties of an air-saturated foam cylinder is solved. A wave-fluid saturated poroelastic structure interaction model based on the modified Biot theory and plane-wave decomposition using orthogonal cylindrical functions is employed to solve the inverse problem. The solutions to the inverse problem are obtained by constructing the objective functional given by the total square of the difference between predictions from the model and scattered acoustic field data acquired in an anechoic chamber. The value of the recovered AR is in good agreement with that of a slab sample cut from the cylinder and characterized using a method employing low frequency transmitted and reflected acoustic waves in a long waveguide developed by Fellah et al. [Rev. Sci. Instrum. 78(11), 114902 (2007)].

  8. A pneumatic cylinder driving polyhedron mobile mechanism

    NASA Astrophysics Data System (ADS)

    Ding, Wan; Kim, Sung-Chan; Yao, Yan-An

    2012-03-01

    A novel pneumatic cylinder driving polyhedron mobile mechanism is proposed in this paper. The mechanism is comprised of 5 tetrahedrons which includes a pneumatic cylinder in each edge. It locomotes by rolling and the rolling principle refers to the center of mass (CM) of the mechanism moved out of the supporting area and let it tip over through the controlling of the motion sequence of these cylinders. Firstly, the mathematical model is built to analysis the relation between the configuration and the CM of the mechanism. Then, a binary control strategy is developed to simplify and improve the control of this mobile mechanism. After that, dynamic simulation is performed to testify the analytical validity and feasibility of the rolling gaits. At last, a prototype is fabricated to achieve the rolling successfully to demonstrate the proposed concept.

  9. Viscous free-surface flows on rotating elliptical cylinders

    NASA Astrophysics Data System (ADS)

    Li, Weihua; Carvalho, Marcio S.; Kumar, Satish

    2017-09-01

    The flow of liquid films on rotating discrete objects having complicated cross sections is encountered in coating processes for a broad variety of products. To advance fundamental understanding of this problem, we study viscous free-surface flows on rotating elliptical cylinders by solving the governing equations in a rotating reference frame using the Galerkin finite-element method. Results of our simulations agree well with Hunt's maximum-load condition [Hunt, Numer. Methods Partial Differ. Eqs. 24, 1094 (2008), 10.1002/num.20307], which was obtained in the absence of surface tension and inertia. The simulations are also used to track the transient behavior of the free surface. For O (1 ) cylinder aspect ratios, cylinder rotation results in a droplike liquid bulge hanging on the upward-moving side of the cylinder. This bulge shrinks in size due to surface tension provided that the liquid load is smaller than a critical value, leaving a relatively smooth coating on the cylinder. A decrease in cylinder aspect ratio leads to larger gradients in film thickness, but enhances the rate of bulge shrinkage and thus shortens the time required to obtain a smooth coating. Moreover, with a suitably chosen time-dependent rotation rate, more liquid can be supported by the cylinder relative to the constant-rotation-rate case. For cylinders with even smaller aspect ratios, film rupture and liquid shedding may occur over the cylinder tips, so simultaneous drying and rotation along with the introduction of Marangoni stresses will likely be especially important for obtaining a smooth coating.

  10. Boundary states at reflective moving boundaries

    NASA Astrophysics Data System (ADS)

    Acosta Minoli, Cesar A.; Kopriva, David A.

    2012-06-01

    We derive and evaluate boundary states for Maxwell's equations, the linear, and the nonlinear Euler gas-dynamics equations to compute wave reflection from moving boundaries. In this study we use a Discontinuous Galerkin Spectral Element method (DGSEM) with Arbitrary Lagrangian-Eulerian (ALE) mapping for the spatial approximation, but the boundary states can be used with other methods, like finite volume schemes. We present four studies using Maxwell's equations, one for the linear Euler equations, and one more for the nonlinear Euler equations. These are: reflection of light from a plane mirror moving at constant velocity, reflection of light from a moving cylinder, reflection of light from a vibrating mirror, reflection of sound from a plane wall and dipole sound generation by an oscillating cylinder in an inviscid flow. The studies show that the boundary states preserve spectral convergence in the solution and in derived quantities like divergence and vorticity.

  11. Cylinder wakes in flowing soap films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vorobieff, P.; Ecke, R.E.; Vorobieff, P.

    1999-09-01

    We present an experimental characterization of cylinder wakes in flowing soap films. From instantaneous velocity and thickness fields, we find the vortex-shedding frequency, mean-flow velocity, and mean-film thickness. Using the empirical relationship between the Reynolds and Strouhal numbers obtained for cylinder wakes in three dimensions, we estimate the effective soap-film viscosity and its dependence on film thickness. We also compare the decay of vorticity with that in a simple Rankine vortex model with a dissipative term to account for air drag. [copyright] [ital 1999] [ital The American Physical Society

  12. Unsteady characteristics of low-Re flow past two tandem cylinders

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Dou, Hua-Shu; Zhu, Zuchao; Li, Yi

    2018-06-01

    This study investigated the two-dimensional flow past two tandem circular or square cylinders at Re = 100 and D / d = 4-10, where D is the center-to-center distance and d is the cylinder diameter. Numerical simulation was performed to comparably study the effect of cylinder geometry and spacing on the aerodynamic characteristics, unsteady flow patterns, time-averaged flow characteristics and flow unsteadiness. We also provided the first global linear stability analysis and sensitivity analysis on the physical problem for the potential application of flow control. The objective of this work is to quantitatively identify the effect of the cylinder geometry and spacing on the characteristic quantities. Numerical results reveal that there is wake flow transition for both geometries depending on the spacing. The characteristic quantities, including the time-averaged and fluctuating streamwise velocity and pressure coefficient, are quite similar to that of the single cylinder case for the upstream cylinder, while an entirely different variation pattern is observed for the downstream cylinder. The global linear stability analysis shows that the spatial structure of perturbation is mainly observed in the wake of the downstream cylinder for small spacing, while moves upstream with reduced size and is also observed after the upstream cylinder for large spacing. The sensitivity analysis reflects that the temporal growth rate of perturbation is the most sensitive to the near-wake flow of downstream cylinder for small spacing and upstream cylinder for large spacing.

  13. Assessing Potential Air Pollutant Emissions from Agricultural Feedstock Production using MOVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eberle, Annika; Warner, Ethan; Zhang, Yi Min

    Biomass feedstock production is expected to grow as demand for biofuels and bioenergy increases. The change in air pollutant emissions that may result from large-scale biomass supply has implications for local air quality and human health. We developed spatially explicit emissions inventories for corn grain and six cellulosic feedstocks through the extension of the National Renewable Energy Laboratory's Feedstock Production Emissions to Air Model (FPEAM). These inventories include emissions of seven pollutants (nitrogen oxides, ammonia, volatile organic compounds, particulate matter, sulfur oxides, and carbon monoxide) generated from biomass establishment, maintenance, harvest, transportation, and biofuel preprocessing activities. By integrating the EPA'smore » MOtor Vehicle Emissions Simulator (MOVES) into FPEAM, we created a scalable framework to execute county-level runs of the MOVES-Onroad model for representative counties (i.e., those counties with the largest amount of cellulosic feedstock production in each state) on a national scale. We used these results to estimate emissions from the on-road transportation of biomass and combined them with county-level runs of the MOVES-Nonroad model to estimate emissions from agricultural equipment. We also incorporated documented emission factors to estimate emissions from chemical application and the operation of drying equipment for feedstock processing, and used methods developed by the EPA and the California Air Resources Board to estimate fugitive dust emissions. The model developed here could be applied to custom equipment budgets and is extensible to accommodate additional feedstocks and pollutants. Future work will also extend this model to analyze spatial boundaries beyond the county-scale (e.g., regional or sub-county levels).« less

  14. Correlation of Cooling Data from an Air-Cooled Cylinder and Several Multicylinder Engines

    NASA Technical Reports Server (NTRS)

    Pinkel, Benjamin; Ellerbrock, Herman H , Jr

    1940-01-01

    The theory of engine-cylinder cooling developed in a previous report was further substantiated by data obtained on a cylinder from a Wright r-1820-g engine. Equations are presented for the average head and barrel temperatures of this cylinder as functions of the engine and the cooling conditions. These equations are utilized to calculate the variation in cylinder temperature with altitude for level flight and climb. A method is presented for correlating average head and barrel temperatures and temperatures at individual points on the head and the barrel obtained on the test stand and in flight. The method is applied to the correlation and the comparison of data obtained on a number of service engines. Data are presented showing the variation of cylinder temperature with time when the power and the cooling pressure drop are suddenly changed.

  15. Water entry and exit of horizontal circular cylinders

    NASA Astrophysics Data System (ADS)

    Greenhow, M.; Moyo, S.

    This paper describes fully nonlinear two-dimensional numerical calculations of the free-surface deformations of initially calm water caused by the forced motion of totally or partially submerged horizontal circular cylinders. The paper considers the following. (i) Totally submerged cylinders moving with constant velocity in vertical, horizontal or combined motions. Results are compared with the small-time asymptotic solution obtained by Tyvand and Milohin 1995. Their results, which are taken to third-order (which is when gravity terms first appear in the expansions), are in excellent agreement with the numerical calculations for small times; beyond this only the numerical method gives accurate results until the free surface breaks or the cylinder emerges from the free surface. Breaking can occur during exit due to strongly negative pressures arising on the cylinder surface, or during the downwards motion causing a free-surface depression which closes up rapidly, forming splashes. Downwards motion is also shown to give rise to high-frequency waves in some cases. (ii) The free-surface deformations, pressures and forces acting on a cylinder in vertical or oblique forced motion during engulfment when it submerges from being initially half-submerged. The initial stages, when the cylinder still pierces the free surface, specify the initial conditions for a separate program for a completely submerged body, thereby allowing complete engulfment to be studied. The free surface closes up violently over the top of the cylinder resulting in jet flow, which, while difficult to handle numerically, has been shown to be insignificant for the bulk flow and the cylinder pressures and forces.

  16. Elastic Cheerios effect: Self-assembly of cylinders on a soft solid

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Aditi; Ryan, Louis; Chaudhury, Manoj K.; Mahadevan, L.

    2015-12-01

    A rigid cylinder placed on a soft gel deforms its surface. When multiple cylinders are placed on the surface, they interact with each other via the topography of the deformed gel which serves as an energy landscape; as they move, the landscape changes which in turn changes their interaction. We use a combination of experiments, simple scaling estimates and numerical simulations to study the self-assembly of cylinders in this elastic analog of the "Cheerios Effect", which describes capillary interactions on a fluid interface. Our results show that the effective two-body interaction can be well described by an exponential attraction potential as a result of which the dynamics also show an exponential behavior with respect to the separation distance. When many cylinders are placed on the gel, the cylinders cluster together if they are not too far apart; otherwise their motion gets elastically arrested.

  17. Effect of Off-Body Laser Discharge on Drag Reduction of Hemisphere Cylinder in Supersonic Flow

    NASA Technical Reports Server (NTRS)

    Kianvashrad, Nadia; Knight, Doyle; Wilkinson, Stephen P.; Chou, Amanda; Horne, Robert A.; Herring, Gregory C.; Beeler, George B.; Jangda, Moazzam

    2017-01-01

    The interaction of an off-body laser discharge with a hemisphere cylinder in supersonic flow is investigated. The objectives are 1) experimental determination of the drag reduction and energetic efficiency of the laser discharge, and 2) assessment of the capability for accurate simulation of the interaction. The combined computational and experimental study comprises two phases. In the first phase, laser discharge in quiescent air was examined. The temporal behavior of the shock wave formed by the laser discharge was compared between experiment and simulation and good agreement is observed. In the second phase, the interaction of the laser discharge with a hemisphere cylinder was investigated numerically. Details of the pressure drag reduction and the physics of the interaction of the heated region with the bow shock are included. The drag reduction due to this interaction persisted for about five characteristic times where one characteristic time represents the time for the flow to move a distance equal to the hemisphere radius. The energetic efficiency of laser discharge for the case with 50 mJ energy absorbed by the gas is calculated as 3.22.

  18. 104. Photocopied August 1978. CYLINDER USED IN THE ERECTION OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    104. Photocopied August 1978. CYLINDER USED IN THE ERECTION OF THE INCLINED BUTTRESSES FOR POWER HOUSE REINFORCEMENT IN 1916. AN AIR LOCK WAS PLACED ON TOP OF THE CYLINDER: THE LOWER PORTION OF THE VERTICAL ELEMENT RESTED ON THE POWER HOUSE FOUNDATION APRON: THE INCLINED ELEMENT WAS CUT LEVEL WITH THE RIVER BED. THE INCLINED PORTION OF THE CYLINDER CONTAINED THE SHIELD USED TO BEGIN THE ERECTION OF THE SEGMENTED INCLINED CAST IRON BUTTRESSES. (764) - Michigan Lake Superior Power Company, Portage Street, Sault Ste. Marie, Chippewa County, MI

  19. Electric line source illumination of a chiral cylinder placed in another chiral background medium

    NASA Astrophysics Data System (ADS)

    Aslam, M.; Saleem, A.; Awan, Z. A.

    2018-05-01

    An electric line source illumination of a chiral cylinder embedded in a chiral background medium is considered. The field expressions inside and outside of a chiral cylinder have been derived using the wave field decomposition approach. The effects of various chiral cylinders, chiral background media and source locations upon the scattering gain pattern have been investigated. It is observed that the chiral background reduces the backward scattering gain as compared to the free space background for a dielectric cylinder. It is also studied that by moving a line source away from a cylinder reduces the backward scattering gain for a chiral cylinder placed in a chiral background under some specific conditions. A unique phenomenon of reduced scattering gain has been observed at a specific observation angle for a chiral cylinder placed in a chiral background having an electric line source location of unity free space wavelength. An isotropic scattering gain pattern is observed for a chiral nihility background provided that if cylinder is chiral or chiral nihility type. It is also observed that this isotropic behaviour is independent of background and cylinder chirality.

  20. Visualization by discharge illumination technique and modification by plasma actuator of rarefied Mach 2 airflow around a cylinder

    NASA Astrophysics Data System (ADS)

    Leger, L.; Sellam, M.; Barbosa, E.; Depussay, E.

    2013-06-01

    The use of plasma actuators for flow control has received considerable attention in recent years. This kind of device seems to be an appropriate means of raising abilities in flow control thanks to total electric control, no moving parts and a fast response time. The experimental work presented here shows, firstly, the non-intrusive character of the visualization of the density field of an airflow around a cylinder obtained using a plasma luminescence technique. Experiments are made in a continuous supersonic wind tunnel. The static pressure in the flow is 8 Pa, the mean free path is about 0.3 mm and the airflow velocity is 510 m s-1. Pressure measurements obtained by means of glass Pitot tube without the visualization discharge are proposed. Measured and simulated pressure profiles are in good agreement in the region near the cylinder. There is good correlation between numerical simulations of the supersonic flow field, analytical model predictions and experimental flow visualizations obtained by a plasma luminescence technique. Consequently, we show that the plasma luminescence technique is non-intrusive. Secondly, the effect of a dc discharge on a supersonic rarefied air flow around a cylinder is studied. An electrode is flush mounted on the cylinder. Stagnation pressure profiles are examined for different electrode positions on the cylinder. A shock wave modification depending on the electrode location is observed. The discharge placed at the upstream stagnation point induces an upstream shift of the bow shock, whereas a modification of the shock wave shape is observed when it is placed at 45° or 90°.

  1. Experimental investigation of in-cylinder air flow to optimize number of helical guide vanes to enhance DI diesel engine performance using mamey sapote biodiesel

    NASA Astrophysics Data System (ADS)

    Kumar, A. Raj; Janardhana Raju, G.; Hemachandra Reddy, K.

    2018-03-01

    The current research work investigates the influence of helical guide vanes in to the intake runner of a D.I diesel engine operating by the high viscous Mamey Sapote biodiesel to enhance in-cylinder suction air flow features. Helical guide vanes of different number of vanes are produced from 3D printing and placed in the intake manifold to examine the air flow characteristics. Four different helical guide vane devices namely 3, 4, 5 and 6 vanes of the same dimensions are tested in a D.I diesel engine operating with Mamey Sapote biodiesel blend. As per the experimental results of engine performance and emission characteristics, it is found that 5 vanes helical guide vane swirl device exhibited in addition number of increased improvements such as the brake power and bake thermal efficiency by 2.4% and 8.63% respectively and the HC, NOx, Carbon monoxide and, Smoke densities are reduced by 15.62%, 4.23%, 14.27% and 9.6% at peak load operating conditions as collate with normal engine at the same load. Hence this investigation concluded that Helical Guide Vane Devices successfully enhanced the in-cylinder air flow to improve better addition of Mamey Sapote biodiesel with air leading in better performance of the engine than without vanes.

  2. A computer simulation of the transient response of a 4 cylinder Stirling engine with burner and air preheater in a vehicle

    NASA Technical Reports Server (NTRS)

    Martini, W. R.

    1981-01-01

    A series of computer programs are presented with full documentation which simulate the transient behavior of a modern 4 cylinder Siemens arrangement Stirling engine with burner and air preheater. Cold start, cranking, idling, acceleration through 3 gear changes and steady speed operation are simulated. Sample results and complete operating instructions are given. A full source code listing of all programs are included.

  3. Numerical study on the interaction of a weak shock wave with an elliptic gas cylinder

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Zou, L.; Zheng, X.; Wang, B.

    2018-05-01

    The interaction of a weak shock wave with a heavy elliptic gas cylinder is investigated by solving the Eulerian equations in two-dimensional Cartesian coordinates. An interface-capturing algorithm based on the γ -model and the finite volume weighed essential non-oscillatory scheme is employed to trace the motion of the discontinuous interface. Three gas pairs with different Atwood numbers ranging from 0.21 to 0.91 are considered, including carbon dioxide cylinder in air (air-CO_2 ), sulfur hexafluoride cylinder in air (air-SF_6 ), and krypton cylinder in helium (He-Kr). For each gas pair, the elliptic cylinder aspect ratio ranging from 1/4 to 4 is defined as the ratio of streamwise axis length to spanwise axis length. Special attention is given to the aspect ratio effects on wave patterns and circulation. With decreasing aspect ratio, the wave patterns in the interaction are summarized as transmitted shock reflection, regular interaction, and transmitted shock splitting. Based on the scaling law model of Samtaney and Zabusky (J Fluid Mech 269:45-78, 1994), a theoretical approach is developed for predicting the circulation at the time when the fastest shock wave reaches the leeward pole of the gas cylinder (i.e., the primary deposited circulation). For both prolate (i.e., the minor axis of the ellipse is along the streamwise direction) and oblate (i.e., the minor axis of the ellipse is along the spanwise direction) cases, the proposed approach is found to estimate the primary deposited circulation favorably.

  4. Lattice Boltzmann simulation of viscoelastic flow past a confined free rotating cylinder

    NASA Astrophysics Data System (ADS)

    Xia, Yi; Zhang, Peijie; Lin, Jianzhong; Ku, Xiaoke; Nie, Deming

    2018-05-01

    To study the dynamics of rigid body immersed in viscoelastic fluid, an Oldroyd-B fluid flow past an eccentrically situated, free rotating cylinder in a two-dimensional (2D) channel is simulated by a novel lattice Boltzmann method. Two distribution functions are employed, one of which is aimed to solve Navier-Stokes equation and the other to the constitutive equation, respectively. The unified interpolation bounce-back scheme is adopted to treat the moving curved boundary of cylinder, and the novel Galilean invariant momentum exchange method is utilized to obtain the hydrodynamic force and torque exerted on the cylinder. Results show that the center-fixed cylinder rotates inversely in the direction where a cylinder immersed in Newtonian fluid do, which generates a centerline-oriented lift force according to Magnus effect. The cylinder’s eccentricity, flow inertia, fluid elasticity and viscosity would affect the rotation of cylinder in different ways. The cylinder rotates more rapidly when located farther away from the centerline, and slows down when it is too close to the wall. The rotation frequency decreases with increasing Reynolds number, and larger rotation frequency responds to larger Weissenberg number and smaller viscosity ratio, indicating that the fluid elasticity and low solvent viscosity accelerates the flow-induced rotation of cylinder.

  5. Investigating adsorption/desorption of carbon dioxide in aluminum compressed gas cylinders.

    PubMed

    Miller, Walter R; Rhoderick, George C; Guenther, Franklin R

    2015-02-03

    Between June 2010 and June 2011, the National Institute of Standards and Technology (NIST) gravimetrically prepared a suite of 20 carbon dioxide (CO2) in air primary standard mixtures (PSMs). Ambient mole fraction levels were obtained through six levels of dilution beginning with pure (99.999%) CO2. The sixth level covered the ambient range from 355 to 404 μmol/mol. This level will be used to certify cylinder mixtures of compressed dry whole air from both the northern and southern hemispheres as NIST standard reference materials (SRMs). The first five levels of PSMs were verified against existing PSMs in a balance of air or nitrogen with excellent agreement observed (the average percent difference between the calculated and analyzed values was 0.002%). After the preparation of a new suite of PSMs at ambient level, they were compared to an existing suite of PSMs. It was observed that the analyzed concentration of the new PSMs was less than the calculated gravimetric concentration by as much as 0.3% relative. The existing PSMs had been used in a Consultative Committee for Amount of Substance-Metrology in Chemistry Key Comparison (K-52) in which there was excellent agreement (the NIST-analyzed value was -0.09% different from the calculated value, while the average of the difference for all 18 participants was -0.10%) with those of other National Metrology Institutes and World Meteorological Organization designated laboratories. In order to determine the magnitude of these losses at the ambient level, a series of "daughter/mother" tests were initiated and conducted in which the gas mixture containing CO2 from a "mother" cylinder was transferred into an evacuated "daughter" cylinder. These cylinder pairs were then compared using cavity ring-down spectroscopy under high reproducibility conditions (the average percent relative standard deviation of sample response was 0.02). A ratio of the daughter instrument response to the mother response was calculated, with the

  6. Coordinated interaction of two hydraulic cylinders when moving large-sized objects

    NASA Astrophysics Data System (ADS)

    Kreinin, G. V.; Misyurin, S. Yu; Lunev, A. V.

    2017-12-01

    The problem of the choice of parameters and the control scheme of the dynamics system for the coordinated displacement of a large mass object by two hydraulic piston type engines is considered. As a first stage, the problem is solved with respect to a system in which a heavy load of relatively large geometric dimensions is lifted or lowered in the progressive motion by two unidirectional hydraulic cylinders while maintaining the plane of the lifted object in a strictly horizontal position.

  7. Moving Towards Multi - Air Pollutant Strategies in Major U.S. Industry Sectors, 2011

    EPA Pesticide Factsheets

    This report presents a summary of the Work Group’s discussions, a Framework for evaluating new approaches, and a set of recommendations for moving toward sector based, multi-pollutant strategies for air pollution reduction.

  8. Pipe crawler with extendable legs

    DOEpatents

    Zollinger, William T.

    1992-01-01

    A pipe crawler for moving through a pipe in inchworm fashion having front and rear leg assemblies separated by air cylinders to increase and decrease the spacing between assemblies. Each leg of the four legs of an assembly is moved between a wall-engaging, extended position and a retracted position by a separate air cylinder. The air cylinders of the leg assemblies are preferably arranged in pairs of oppositely directed cylinders with no pair lying in the same axial plane as another pair. Therefore, the cylinders can be as long a leg assembly is wide and the crawler can crawl through sections of pipes where the diameter is twice that of other sections. The crawler carries a valving system, a manifold to distribute air supplied by a single umbilical air hose to the various air cylinders in a sequence controlled electrically by a controller. The crawler also utilizes a rolling mechanism, casters in this case, to reduce friction between the crawler and pipe wall thereby further extending the range of the pipe crawler.

  9. Pipe crawler with extendable legs

    DOEpatents

    Zollinger, W.T.

    1992-06-16

    A pipe crawler for moving through a pipe in inchworm fashion having front and rear leg assemblies separated by air cylinders to increase and decrease the spacing between assemblies. Each leg of the four legs of an assembly is moved between a wall-engaging, extended position and a retracted position by a separate air cylinder. The air cylinders of the leg assemblies are preferably arranged in pairs of oppositely directed cylinders with no pair lying in the same axial plane as another pair. Therefore, the cylinders can be as long as a leg assembly is wide and the crawler can crawl through sections of pipes where the diameter is twice that of other sections. The crawler carries a valving system, a manifold to distribute air supplied by a single umbilical air hose to the various air cylinders in a sequence controlled electrically by a controller. The crawler also utilizes a rolling mechanism, casters in this case, to reduce friction between the crawler and pipe wall thereby further extending the range of the pipe crawler. 8 figs.

  10. Pipe crawler with extendable legs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zollinger, W.T.

    1992-06-16

    A pipe crawler for moving through a pipe in inchworm fashion having front and rear leg assemblies separated by air cylinders to increase and decrease the spacing between assemblies. Each leg of the four legs of an assembly is moved between a wall-engaging, extended position and a retracted position by a separate air cylinder. The air cylinders of the leg assemblies are preferably arranged in pairs of oppositely directed cylinders with no pair lying in the same axial plane as another pair. Therefore, the cylinders can be as long as a leg assembly is wide and the crawler can crawlmore » through sections of pipes where the diameter is twice that of other sections. The crawler carries a valving system, a manifold to distribute air supplied by a single umbilical air hose to the various air cylinders in a sequence controlled electrically by a controller. The crawler also utilizes a rolling mechanism, casters in this case, to reduce friction between the crawler and pipe wall thereby further extending the range of the pipe crawler. 8 figs.« less

  11. A linear motor and compact cylinder-piston driver for left ventricular bypass.

    PubMed

    Qian, K X

    1990-01-01

    A simple, portable, reliable and noise-free pneumatic driver has been developed. It consists of a linear motor attached to a cylinder piston, in one unit. The motor coil is directly wound on the cylinder, and the permanent magnet is fixed to the piston. As a continuous voltage square wave is applied to the coil, the cylinder reciprocates on the piston periodically, producing air pressure and vacuum alternately. In conjunction with a locally made diaphragm pump, the driver was tested in vitro and in vivo. Results demonstrated that the device could drive the diaphragm pump and so support the circulation of an experimental animal. The driver weighs 12 kg. For 200 mmHg air pressure and -80 mmHg vacuum the power consumed is 30 W. Its noise is about 30 dB, less than that of an artificial valve and pump.

  12. Cylinder To Cylinder Balancing Using Intake Valve Actuation

    DOEpatents

    Duffy, Kevin P.; Kieser, Andrew J.; Kilkenny, Jonathan P.

    2005-01-18

    A method and apparatus for balancing a combustion phasing between a plurality of cylinders located in an engine. The method and apparatus includes a determining a combustion timing in each cylinder, establishing a baseline parameter for a desired combustion timing, and varying actuation of at least one of a plurality of intake valves, each intake valve being in fluid communication with a corresponding cylinder, such that the combustion timing in each cylinder is substantially equal to the desired combustion timing.

  13. Location of and landing on a source of human body odour by female Culex quinquefasciatus in still and moving air.

    PubMed

    Lacey, Emerson S; Cardé, Ring T

    2012-06-01

    The orientation to and landing on a source of human odour by female Culex quinquefasciatus Say (Diptera: Culicidae) is observed in a wind tunnel without an airflow or with a laminar airflow of 0.2 m s -1 . Odours from human feet are collected by 'wearing' clean glass beads inside a stocking and presenting beads in a Petri dish in a wind tunnel. Mosquitoes are activated by brief exposure to a 1 L min -1 jet of 4% CO 2 positioned 10 cm from the release cage. In moving air at 0.2 m s -1 , a mean of 3.45 ± 0.49 landings are observed in 10 min trials (5 mosquitoes per trial), whereas 6.50 ± 0.96 landings are recorded in still air. Furthermore, 1.45 ± 0.31mosquitoes are recorded on beads at any one time in moving air (a measure of individuals landing versus one landing multiple times) compared to 3.10 ± 0.31 in still air. Upwind flight to beads in moving air is demonstrated by angular headings of flight immediately prior to landing, whereas approaches to beads in still air are oriented randomly. The mean latency until first landing is 226.7 ± 17.98 s in moving air compared to 122.5 ± 24.18 in still air. Strategies used to locate a prospective host at close range in still air are considered.

  14. Wave drift damping acting on multiple circular cylinders (model tests)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kinoshita, Takeshi; Sunahara, Shunji; Bao, W.

    1995-12-31

    The wave drift damping for the slow drift motion of a four-column platform is experimentally investigated. The estimation of damping force of the slow drift motion of moored floating structures in ocean waves, is one of the most important topics. Bao et al. calculated an interaction of multiple circular cylinders based on the potential flow theory, and showed that the wave drift damping is significantly influenced by the interaction between cylinders. This calculation method assumes that the slow drift motion is approximately replaced by steady current, that is, structures on slow drift motion are supposed to be equivalent to onesmore » in both regular waves and slow current. To validate semi-analytical solutions of Bao et al., experiments were carried out. At first, added resistance due to waves acting on a structure composed of multiple (four) vertical circular cylinders fixed to a slowly moving carriage, was measured in regular waves. Next, the added resistance of the structure moored by linear spring to the slowly moving carriage were measured in regular waves. Furthermore, to validate the assumption that the slow drift motion is replaced by steady current, free decay tests in still water and in regular waves were compared with the simulation of the slow drift motion using the wave drift damping coefficient obtained by the added resistance tests.« less

  15. Film condensation of steam flowing downward on a tier of horizontal cylinders at different inclination angles in the presence of a non-condensable gas

    NASA Astrophysics Data System (ADS)

    Ramadan, Abdulghani; Yamali, Cemil

    2013-12-01

    The problem of forced laminar film condensation of steam flowing downward a tier of horizontal cylinders is investigated numerically. The effects of free stream non-condensable gas, air concentration (m1,∞), free stream velocity (Reynolds number), cylinder diameter, and angle of inclination on the condensation heat transfer are analyzed. Two flow arrangements, inline and staggered, are analyzed and investigated. The mathematical model takes into account the effect of staggering of the cylinders and how condensation is affected at the lower cylinders when condensate does not fall on to the center line of the cylinders. Condensation heat transfer results are available in ranges from (U∞ = 1 - 30 m/s) for free stream velocity, (m1,∞ = 0.01 -0.8) for free stream air mass fraction and (D = 12.7 -50.8 mm) for cylinder diameter. Results show that; a remarked reduction in the vapor side heat transfer coefficient is noticed. This results from the presence of small amounts of free stream air mass fractions in the steam-air mixture and increase in the cylinder diameter. On the other hand, it increases by increasing the free stream velocity (Reynolds number). Average heat transfer coefficient at the middle and the bottom cylinders increases by increasing the angle of inclination, whereas, no significant change is observed for that of the upper cylinder. Down the bank, a rapid decrease in the vapor side heat transfer coefficient is noticed. It may be resulted from the combined effects of inundation, decrease in the vapor velocity and increase in the non-condensable gas (air) at the bottom cylinders in the bank.

  16. Pulsatile blood flow and oxygen transport past a circular cylinder.

    PubMed

    Zierenberg, Jennifer R; Fujioka, Hideki; Hirschl, Ronald B; Bartlett, Robert H; Grotberg, James B

    2007-04-01

    The fundamental study of blood flow past a circular cylinder filled with an oxygen source is investigated as a building block for an artificial lung. The Casson constitutive equation is used to describe the shear-thinning and yield stress properties of blood. The presence of hemoglobin is also considered. Far from the cylinder, a pulsatile blood flow in the x direction is prescribed, represented by a time periodic (sinusoidal) component superimposed on a steady velocity. The dimensionless parameters of interest for the characterization of the flow and transport are the steady Reynolds number (Re), Womersley parameter (alpha), pulsation amplitude (A), and the Schmidt number (Sc). The Hill equation is used to describe the saturation curve of hemoglobin with oxygen. Two different feed-gas mixtures were considered: pure O(2) and air. The flow and concentration fields were computed for Re=5, 10, and 40, 0< or =A< or =0.75, alpha=0.25, 0.4, and Schmidt number, Sc=1000. The Casson fluid properties result in reduced recirculations (when present) downstream of the cylinder as compared to a Newtonian fluid. These vortices oscillate in size and strength as A and alpha are varied. Hemoglobin enhances mass transport and is especially important for an air feed which is dominated by oxyhemoglobin dispersion near the cylinder. For a pure O(2) feed, oxygen transport in the plasma dominates near the cylinder. Maximum oxygen transport is achieved by operating near steady flow (small A) for both feed-gas mixtures. The time averaged Sherwood number, Sh, is found to be largely influenced by the steady Reynolds number, increasing as Re increases and decreasing with A. Little change is observed with varying alpha for the ranges investigated. The effect of pulsatility on Sh is greater at larger Re. Increasing Re aids transport, but yields a higher cylinder drag force and shear stresses on the cylinder surface which are potentially undesirable.

  17. Analytical solution of concentric two-pole Halbach cylinders as a preliminary design tool for magnetic refrigeration systems

    NASA Astrophysics Data System (ADS)

    Fortkamp, F. P.; Lozano, J. A.; Barbosa, J. R.

    2017-12-01

    This work presents a parametric analysis of the performance of nested permanent magnet Halbach cylinders intended for applications in magnetic refrigeration and heat pumping. An analytical model for the magnetic field generated by the cylinders is used to systematically investigate the influence of their geometric parameters. The proposed configuration generates two poles in the air gap between the cylinders, where active magnetic regenerators are positioned for conversion of magnetic work into cooling capacity or heat power. A sample geometry based on previous designs of magnetic refrigerators is investigated, and the results show that the magnetic field in the air gap oscillates between 0 to approximately 1 T, forming a rectified cosine profile along the circumference of the gap. Calculations of the energy density of the magnets indicate the need to operate at a low energy (particular the inner cylinder) in order to generate a magnetic profile suitable for a magnetic cooler. In practice, these low-energy regions of the magnet can be potentially replaced by soft ferromagnetic material. A parametric analysis of the air gap height has been performed, showing that there are optimal values which maximize the magnet efficiency parameter Λcool . Some combinations of cylinder radii resulted in magnetic field changes that were too small for practical purposes. No demagnetization of the cylinders has been found for the range of parameters considered.

  18. Design and CFD analysis of intake port and exhaust port for a 4 valve cylinder head engine

    NASA Astrophysics Data System (ADS)

    Latheesh, V. M.; Parthasarathy, P.; Baskaran, V.; Karthikeyan, S.

    2018-02-01

    In cylinder air motion in a compression ignition engine effects mixing of air-fuel, quality of combustion and emission produced. The primary objective is to design and analyze intake and the exhaust port for a four valve cylinder head to meet higher emission norms for a given diesel engine with two valves. In this work, an existing cylinder head designed for two valves was redesigned with 4 valves. The modern trend also confirms this approach. This is being followed in the design and development of new generation engines to meet the stringent environment norms, competition in market and demand for more fuel-efficient engines. The swirl ratio and flow coefficient were measured for different valve lifts using STAR CCM+. CFD results were validated with the two-valve cylinder experimental results. After validation, a comparison between two-valve and four-valve cylinder head was done. The conversion of two valve cylinder head to 4 valves may not support modern high swirl generating port layout and requires a trade-off between many design parameters.

  19. Pipe crawler with extendable legs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zollinger, W.T.

    1991-04-02

    This invention is comprised of a pipe crawler for moving through a pipe in inchworm fashion having front and rear leg assemblies separated by air cylinders to increase and decrease the spacing. between assemblies. Each leg of the four legs of an assembly is moved between a wall-engaging, extended position and a retracted position by a separate air cylinder. The air cylinders of the leg assemblies are preferably arranged in pairs of oppositely directed cylinders with no pair laying in the same axial plane as another pair. Therefore, the cylinders can be as long as a leg assembly is widemore » and the crawler can crawl through sections of pipes where the diameter is twice that of other sections. The crawler carries a valving system, a manifold to distribute air supplied by a single umbilical air hose to the various air cylinders in a sequence controlled electrically by a controller. The crawler also utilizes a rolling mechanism, casters in this case, to reduce friction between the crawler and pipe wall thereby further extending the range of the pipe crawler.« less

  20. Numerical simulation of the flow and fuel-air mixing in an axisymmetric piston-cylinder arrangement

    NASA Technical Reports Server (NTRS)

    Shih, T. I. P.; Smith, G. E.; Springer, G. S.

    1982-01-01

    The implicit factored method of Beam and Warming was employed to describe the flow and the fuel-air mixing in an axisymmetric piston-cylinder configuration during the intake and compression strokes. The governing equations were established on the basis of laminar flow. The increased mixing due to turbulence was simulated by appropriately chosen effective transport properties. Calculations were performed for single-component gases and for two-component gases and for two-component gas mixtures. The flow field was calculated as functions of time and position for different geometries, piston speeds, intake-charge-to-residual-gas-pressure ratios, and species mass fractions of the intake charge. Results are presented in graphical form which show the formation, growth, and break-up of those vortices which form during the intake stroke and the mixing of fuel and air throughout the intake and compression strokes. It is shown that at bore-to-stroke ratio of less than unity, the vortices may break-up during the intake stroke. It is also shown that vortices which do not break-up during the intake stroke coalesce during the compression stroke. The results generated were compared to existing numerical solutions and to available experimental data.

  1. Ground moving target geo-location from monocular camera mounted on a micro air vehicle

    NASA Astrophysics Data System (ADS)

    Guo, Li; Ang, Haisong; Zheng, Xiangming

    2011-08-01

    The usual approaches to unmanned air vehicle(UAV)-to-ground target geo-location impose some severe constraints to the system, such as stationary objects, accurate geo-reference terrain database, or ground plane assumption. Micro air vehicle(MAV) works with characteristics including low altitude flight, limited payload and onboard sensors' low accuracy. According to these characteristics, a method is developed to determine the location of ground moving target which imaged from the air using monocular camera equipped on MAV. This method eliminates the requirements for terrain database (elevation maps) and altimeters that can provide MAV's and target's altitude. Instead, the proposed method only requires MAV flight status provided by its inherent onboard navigation system which includes inertial measurement unit(IMU) and global position system(GPS). The key is to get accurate information on the altitude of the ground moving target. First, Optical flow method extracts background static feature points. Setting a local region around the target in the current image, The features which are on the same plane with the target in this region are extracted, and are retained as aided features. Then, inverse-velocity method calculates the location of these points by integrated with aircraft status. The altitude of object, which is calculated by using position information of these aided features, combining with aircraft status and image coordinates, geo-locate the target. Meanwhile, a framework with Bayesian estimator is employed to eliminate noise caused by camera, IMU and GPS. Firstly, an extended Kalman filter(EKF) provides a simultaneous localization and mapping solution for the estimation of aircraft states and aided features location which defines the moving target local environment. Secondly, an unscented transformation(UT) method determines the estimated mean and covariance of target location from aircraft states and aided features location, and then exports them for the

  2. PIV measurements of in-cylinder, large-scale structures in a water-analogue Diesel engine

    NASA Astrophysics Data System (ADS)

    Kalpakli Vester, A.; Nishio, Y.; Alfredsson, P. H.

    2016-11-01

    Swirl and tumble are large-scale structures that develop in an engine cylinder during the intake stroke. Their structure and strength depend on the design of the inlet ports and valves, but also on the valve lift history. Engine manufacturers make their design to obtain a specific flow structure that is assumed to give the best engine performance. Despite many efforts, there are still open questions, such as how swirl and tumble depend on the dynamics of the valves/piston as well as how cycle-to-cycle variations should be minimized. In collaboration with Swedish vehicle industry we perform PIV measurements of the flow dynamics during the intake stroke inside a cylinder of a water-analogue engine model having the same geometrical characteristics as a typical truck Diesel engine. Water can be used since during the intake stroke the flow is nearly incompressible. The flow from the valves moves radially outwards, hits the vertical walls of the cylinder, entrains surrounding fluid, moves along the cylinder walls and creates a central backflow, i.e. a tumble motion. Depending on the port and valve design and orientation none, low, or high swirl can be established. For the first time, the effect of the dynamic motion of the piston/valves on the large-scale structures is captured. Supported by the Swedish Energy Agency, Scania CV AB and Volvo GTT, through the FFI program.

  3. 30 CFR 7.506 - Breathable air components.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... cylinders, or boreholes with fans installed on the surface or compressors installed on the surface. Only....5 percent. (c) Breathable air supplied by compressed air from cylinders, fans, or compressors shall provide a minimum flow rate of 12.5 cubic feet per minute of breathable air for each person. (1) Fans or...

  4. Aerodynamic heating and the deflection of drops by an obstacle in an air stream in relation to aircraft icing

    NASA Technical Reports Server (NTRS)

    Kantrowitz, Arthur

    1940-01-01

    Two topics of interest to persons attempting to apply the heat method of preventing ice formation on aircraft are considered. Surfaces moving through air at high speed are shown, both theoretically and experimentally, to be subject to important aerodynamic heating effects that will materially reduce the heat required to prevent ice. Numerical calculations of the path of water drops in an air stream around a circular cylinder are given. From these calculations, information is obtained on the percentage of the swept area cleared of drops.

  5. Cylinder Test Specification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richard Catanach; Larry Hill; Herbert Harry

    1999-10-01

    The purpose of the cylinder testis two-fold: (1) to characterize the metal-pushing ability of an explosive relative to that of other explosives as evaluated by the E{sub 19} cylinder energy and the G{sub 19} Gurney energy and (2) to help establish the explosive product equation-of-state (historically, the Jones-Wilkins-Lee (JWL) equation). This specification details the material requirements and procedures necessary to assemble and fire a typical Los Alamos National Laboratory (LANL) cylinder test. Strict adherence to the cylinder. material properties, machining tolerances, material heat-treatment and etching processes, and high explosive machining tolerances is essential for test-to-test consistency and to maximize radialmore » wall expansions. Assembly and setup of the cylinder test require precise attention to detail, especially when placing intricate pin wires on the cylinder wall. The cylinder test is typically fired outdoors and at ambient temperature.« less

  6. Combustion engine. [for air pollution control

    NASA Technical Reports Server (NTRS)

    Houseman, J. (Inventor)

    1977-01-01

    An arrangement for an internal combustion engine is provided in which one or more of the cylinders of the engine are used for generating hydrogen rich gases from hydrocarbon fuels, which gases are then mixed with air and injected into the remaining cylinders to be used as fuel. When heavy load conditions are encountered, hydrocarbon fuel may be mixed with the hydrogen rich gases and air and the mixture is then injected into the remaining cylinders as fuel.

  7. Effects of Atwood number on shock focusing in shock-cylinder interaction

    NASA Astrophysics Data System (ADS)

    Ou, Junfeng; Ding, Juchun; Luo, Xisheng; Zhai, Zhigang

    2018-02-01

    The evolution of shock-accelerated heavy-gas cylinder surrounded by the air with different Atwood numbers (A_t=0.28, 0.50, 0.63) is investigated, concentrating on shock focusing and jet formation. Experimentally, a soap film technique is used to generate an ideal two-dimensional discontinuous gas cylinder with a clear surface, which can guarantee the observation of shock wave movements inside the cylinder. Different Atwood numbers are realized by different mixing ratios of SF_6 and air inside the cylinder. A high-speed schlieren system is adopted to capture the shock motions and jet morphology. Numerical simulations are also performed to provide more information. The results indicate that an inward jet is formed for low Atwood numbers, while an outward jet is generated for high Atwood numbers. Different Atwood numbers will lead to the differences in the relative velocities between the incident shock and the refraction shock, which ultimately results in the differences in shock competition near the downstream pole. The morphology and feature of the jet are closely associated with the position and intensity of shock focusing. The pressure and vorticity contours indicate that the jet formation should be attributed to the pressure pulsation caused by shock focusing, and the jet development is ascribed to the vorticity induction. Finally, a time ratio proposed in the previous work for determining the shock-focusing type is verified by experiments.

  8. Effect of intake swirl on the performance of single cylinder direct injection diesel engine

    NASA Astrophysics Data System (ADS)

    Sharma, Vinod Kumar; Mohan, Man; Mouli, Chandra

    2017-11-01

    In the present work, the effect of inlet manifold geometry and swirl intensity on the direct injection (DI) diesel engine performance was investigated experimentally. Modifications in inlet manifold geometry have been suggested to achieve optimized swirl for the better mixing of fuel with air. The intake swirl intensities of modified cylinder head were measured in swirl test rig at different valve lifts. Later, the overall performance of 435 CC DI diesel engine was measured using modified cylinder head. In addition, the performance of engine was compared for both modified and old cylinder head. For same operating conditions, the brake power and brake specific fuel consumption was improved by 6% and 7% respectively with modified cylinder head compared to old cylinder head. The maximum brake power of 9 HP was achieved for modified cylinder head. The results revealed that the intake swirl has great influence on engine performance.

  9. Visualization of High Speed Liquid Jet Impaction on a Moving Surface

    PubMed Central

    Guo, Yuchen; Green, Sheldon

    2015-01-01

    Two apparatuses for examining liquid jet impingement on a high-speed moving surface are described: an air cannon device (for examining surface speeds between 0 and 25 m/sec) and a spinning disk device (for examining surface speeds between 15 and 100 m/sec). The air cannon linear traverse is a pneumatic energy-powered system that is designed to accelerate a metal rail surface mounted on top of a wooden projectile. A pressurized cylinder fitted with a solenoid valve rapidly releases pressurized air into the barrel, forcing the projectile down the cannon barrel. The projectile travels beneath a spray nozzle, which impinges a liquid jet onto its metal upper surface, and the projectile then hits a stopping mechanism. A camera records the jet impingement, and a pressure transducer records the spray nozzle backpressure. The spinning disk set-up consists of a steel disk that reaches speeds of 500 to 3,000 rpm via a variable frequency drive (VFD) motor. A spray system similar to that of the air cannon generates a liquid jet that impinges onto the spinning disc, and cameras placed at several optical access points record the jet impingement. Video recordings of jet impingement processes are recorded and examined to determine whether the outcome of impingement is splash, splatter, or deposition. The apparatuses are the first that involve the high speed impingement of low-Reynolds-number liquid jets on high speed moving surfaces. In addition to its rail industry applications, the described technique may be used for technical and industrial purposes such as steelmaking and may be relevant to high-speed 3D printing. PMID:25938331

  10. Visualization of high speed liquid jet impaction on a moving surface.

    PubMed

    Guo, Yuchen; Green, Sheldon

    2015-04-17

    Two apparatuses for examining liquid jet impingement on a high-speed moving surface are described: an air cannon device (for examining surface speeds between 0 and 25 m/sec) and a spinning disk device (for examining surface speeds between 15 and 100 m/sec). The air cannon linear traverse is a pneumatic energy-powered system that is designed to accelerate a metal rail surface mounted on top of a wooden projectile. A pressurized cylinder fitted with a solenoid valve rapidly releases pressurized air into the barrel, forcing the projectile down the cannon barrel. The projectile travels beneath a spray nozzle, which impinges a liquid jet onto its metal upper surface, and the projectile then hits a stopping mechanism. A camera records the jet impingement, and a pressure transducer records the spray nozzle backpressure. The spinning disk set-up consists of a steel disk that reaches speeds of 500 to 3,000 rpm via a variable frequency drive (VFD) motor. A spray system similar to that of the air cannon generates a liquid jet that impinges onto the spinning disc, and cameras placed at several optical access points record the jet impingement. Video recordings of jet impingement processes are recorded and examined to determine whether the outcome of impingement is splash, splatter, or deposition. The apparatuses are the first that involve the high speed impingement of low-Reynolds-number liquid jets on high speed moving surfaces. In addition to its rail industry applications, the described technique may be used for technical and industrial purposes such as steelmaking and may be relevant to high-speed 3D printing.

  11. Fracture mechanics analysis of NGV fuel cylinders. Part 1: Steel cylinders

    NASA Astrophysics Data System (ADS)

    Connolly, M. P.; Hudak, S. J.; Roy, S.

    1993-02-01

    Compressed natural gas (CNG) cylinders for natural gas vehicles (NGVs) are subject to a combination of pressure cycles, associated with periodic refueling, and a potentially corrosive CNG environment. Under these conditions it has been shown that the life of the cylinder is governed by the corrosion-fatigue crack growth of internal flaws such as voids, pits or folds that may be present after manufacture. For NGV applications, these cylinders are required to operate for at least 15 years and the report, through a detailed fracture mechanics analysis, describes approaches to achieving the desired life. The analysis shows that a 15 year cylinder life can be obtained by using quality control to ensure that no initial defects greater than 0.045 in. X 0.090 in. exist after manufacture. Alternatively, gas drying can be used at the distribution stations to reduce the detrimental effects of the remaining CNG impurities, and thereby, produce long cylinder lives. The analysis also considers the role of in-service inspection/retest and shows that in-service NDE has little advantage, either technically or economically, for ensuring the fitness-for-service of steel NGV cylinders. The analysis also shows that hydrostatic testing of cylinders, either at manufacture or in service, is ineffective for detecting fatigue cracks and therefore should not be implemented as part of a fitness-for-service plan for NGV fuel cylinders. The issue of cylinder geometry was also considered and the analysis shows that improperly designed flat-bottomed CNG cylinders can result in premature fatigue failures originating at the inner wall in the transition region between the cylinder end and sidewall.

  12. The direct and inverse problems of an air-saturated porous cylinder submitted to acoustic radiation.

    PubMed

    Ogam, Erick; Depollier, Claude; Fellah, Z E A

    2010-09-01

    Gas-saturated porous skeleton materials such as geomaterials, polymeric and metallic foams, or biomaterials are fundamental in a diverse range of applications, from structural materials to energy technologies. Most polymeric foams are used for noise control applications and knowledge of the manner in which the energy of sound waves is dissipated with respect to the intrinsic acoustic properties is important for the design of sound packages. Foams are often employed in the audible, low frequency range where modeling and measurement techniques for the recovery of physical parameters responsible for energy loss are still few. Accurate acoustic methods of characterization of porous media are based on the measurement of the transmitted and/or reflected acoustic waves by platelike specimens at ultrasonic frequencies. In this study we develop an acoustic method for the recovery of the material parameters of a rigid-frame, air-saturated polymeric foam cylinder. A dispersion relation for sound wave propagation in the porous medium is derived from the propagation equations and a model solution is sought based on plane-wave decomposition using orthogonal cylindrical functions. The explicit analytical solution equation of the scattered field shows that it is also dependent on the intrinsic acoustic parameters of the porous cylinder, namely, porosity, tortuosity, and flow resistivity (permeability). The inverse problem of the recovery of the flow resistivity and porosity is solved by seeking the minima of the objective functions consisting of the sum of squared residuals of the differences between the experimental and theoretical scattered field data.

  13. Heat Exchange with Air and Temperature Profile of a Moving Oversize Tire

    NASA Astrophysics Data System (ADS)

    Grinchuk, P. S.; Fisenko, S. P.

    2016-11-01

    A one-dimensional mathematical model of heat transfer in a tire with account for the deformation energy dissipation and heat exchange of a moving tire with air has been developed. The mean temperature profiles are calculated and transition to a stationary thermal regime is considered. The influence of the rate of energy dissipation and of effective thermal conductivity of rubber on the temperature field is investigated quantitatively.

  14. 35. DETAIL OF STRETCH SLING CYLINDER AND PULLEY LOCATED ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. DETAIL OF STRETCH SLING CYLINDER AND PULLEY LOCATED ON EAST SIDE OF SLC-3W MST STATION 85.5 - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  15. The direct and inverse problems of an air-saturated poroelastic cylinder submitted to acoustic radiation

    NASA Astrophysics Data System (ADS)

    Ogam, Erick; Fellah, Z. E. A.

    2011-09-01

    A wave-fluid saturated poroelastic structure interaction model based on the modified Biot theory (MBT) and plane-wave decomposition using orthogonal cylindrical functions is developed. The model is employed to recover from real data acquired in an anechoic chamber, the poromechanical properties of a soft cellular melamine cylinder submitted to an audible acoustic radiation. The inverse problem of acoustic diffraction is solved by constructing the objective functional given by the total square of the difference between predictions from the MBT interaction model and diffracted field data from experiment. The faculty of retrieval of the intrinsic poromechanical parameters from the diffracted acoustic fields, indicate that a wave initially propagating in a light fluid (air) medium, is able to carry in the absence of mechanical excitation of the specimen, information on the macroscopic mechanical properties which depend on the microstructural and intrinsic properties of the solid phase.

  16. Research on a lubricating grease print process for cylindrical cylinder

    NASA Astrophysics Data System (ADS)

    Yang, Liu; Zhang, Xuan; Wang, XianYan; Tan, XiaoYan

    2017-09-01

    In vehicle braking system and clutch system of transmission, there is always a kind of cylindrical component dose reciprocating motion. The main working method is the reciprocating motion between the rubber sealing parts and cylindrical parts, the main factor affects the service life of the product is the lubricating performance of the moving parts. So the lubricating performance between cylinders and rubber sealing rings is particularly important, same as the quality of the grease applies on the surface of the surface of cylinder. Traditional method of manually applying grease has some defects such as applying unevenly, applying tools like brush and cloth easily falls off and affect the cleanness of products, contact skin easily cause allergy, waste grease due to the uncontrollable of grease quantity using in applying, low efficiency of manual operation. An automatic, quantitative and high pressure applying equipment is introduced in this document to replace the traditional manually applying method, which can guarantee the applying quality of the grease which are painted on the surface of cylinder and bring economic benefits to the company.

  17. The effect of preignition on cylinder temperatures, pressures, power output, and piston failures

    NASA Technical Reports Server (NTRS)

    Corrington, Lester C; Fisher, William F

    1947-01-01

    An investigation was conducted using a cylinder of a V-type liquid-cooled engine to observe the behavior of the cylinder when operated under preignition conditions. Data were recorded that showed cylinder-head temperatures, time of ignition, engine speed, power output, and change in maximum cylinder pressure as a function of time as the engine entered preignition and was allowed to operate under preignition conditions for a short time. The effects of the following variables on the engine behavior during preignition were investigated: fuel-air ratio, power level, aromatic content of fuel, engine speed, mixture temperature, and preignition source. The power levels at which preignition would cause complete piston failure for the selected engine operating conditions and the types of failure encountered when using various values of clearance between the piston and cylinder barrel were determined. The fuels used had performance numbers high enough to preclude any possibility of knock throughout the test program.

  18. A Method for Turbocharging Four-Stroke Single Cylinder Engines

    NASA Astrophysics Data System (ADS)

    Buchman, Michael; Winter, Amos

    2014-11-01

    Turbocharging is not conventionally used with single cylinder engines due to the timing mismatch between when the turbo is powered and when it can deliver air to the cylinder. The proposed solution involves a fixed, pressurized volume - which we call an air capacitor - on the intake side of the engine between the turbocharger and intake valves. The capacitor acts as a buffer and would be implemented as a new style of intake manifold with a larger volume than traditional systems. This talk will present the flow analysis used to determine the optimal size for the capacitor, which was found to be four to five times the engine capacity, as well as its anticipated contributions to engine performance. For a capacitor sized for a one-liter engine, the time to reach operating pressure was found to be approximately two seconds, which would be acceptable for slowly accelerating applications and steady state applications. The air density increase that could be achieved, compared to ambient air, was found to vary between fifty percent for adiabatic compression and no heat transfer from the capacitor, to eighty percent for perfect heat transfer. These increases in density are proportional to, to first order, the anticipated power increases that could be realized. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. 1122374.

  19. Shear-induced autorotation of freely rotatable cylinder in a channel flow at moderate Reynolds number

    NASA Astrophysics Data System (ADS)

    Xia, Yi; Lin, Jianzhong; Ku, Xiaoke; Chan, Tatleung

    2018-04-01

    Flow past a center-pinned freely rotatable cylinder asymmetrically confined in a two-dimensional channel is simulated with the lattice Boltzmann method for a range of Reynolds number 0.1 ≤ Re ≤ 200, eccentricity ratio 0/8 ≤ ɛ ≤ 7/8, and blockage ratio 0.1 ≤ β ≤ 0.5. It is found that the inertia tends to facilitate the anomalous clockwise rotation of the cylinder. As the eccentricity ratio increases, the cylinder rotates faster in the counterclockwise direction and then slows down at a range of Re < 10. At a range of Re > 40, there exists an anomalous clockwise rotation for the cylinder at a low eccentricity ratio and the domain where the cylinder rotates anomalously becomes larger with the increase in the Reynolds number. In a channel with a higher blockage ratio, the rotation of the cylinder is more sensitive to the change of cylinder lateral position, and the separatrix at which the cylinder remains a state of rest moves upward generally. The cylinder is more likely to rotate counterclockwise and the rotating velocity is larger. At a lower blockage ratio, the anomalous clockwise rotation is more likely to occur, and the largest rotating velocity occurs when the blockage ratio is equal to 0.3. The mechanism of distinct rotational behavior of the cylinder is attributed to the transformation of distribution of shear stress which is resulted from the variation of pressure drop, the shift of maximum or minimum pressure zones along the upper and lower semi-cylinder surface, and the movement of stagnant point and separate point. Finally, the effects of the cylinder rotation on the flow structure and hydrodynamic force exerted on the cylinder surface are analyzed as well.

  20. 37. REDUCTION PLANT DRYER Stainless steel screen cylinder, encased ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    37. REDUCTION PLANT - DRYER Stainless steel screen cylinder, encased within an outer steel shell (top half missing). As fish were tumbled by the rotating screen, they were cooked and dried by live steam piped into the dryer through overhead pipes. The dryer is mounted on a slight angle, aiding the process by moving the drying fish towards the exhaust end of the dryer. - Hovden Cannery, 886 Cannery Row, Monterey, Monterey County, CA

  1. Spark-Timing Control Based on Correlation of Maximum-Economy Spark Timing, Flame-front Travel, and Cylinder-Pressure Rise

    NASA Technical Reports Server (NTRS)

    Cook, Harvey A; Heinicke, Orville H; Haynie, William H

    1947-01-01

    An investigation was conducted on a full-scale air-cooled cylinder in order to establish an effective means of maintaining maximum-economy spark timing with varying engine operating conditions. Variable fuel-air-ratio runs were conducted in which relations were determined between the spark travel, and cylinder-pressure rise. An instrument for controlling spark timing was developed that automatically maintained maximum-economy spark timing with varying engine operating conditions. The instrument also indicated the occurrence of preignition.

  2. Simulation of vortex-induced vibrations of a cylinder using ANSYS CFX

    NASA Astrophysics Data System (ADS)

    Izhar, Abu Bakar; Qureshi, Arshad Hussain; Khushnood, Shahab

    2014-08-01

    In this paper, vortex-induced vibrations of a cylinder are simulated by use of ANSYS CFX simulation code. The cylinder is treated as a rigid body and transverse displacements are obtained by use of a one degree of freedom spring damper system. 2-D as well as 3-D analysis is performed using air as the fluid. Reynolds number is varied from 40 to 16000 approx., covering the laminar and turbulent regimes of flow. The experimental results of (Khalak and Williamson, 1997) and other researchers are used for validation purposes. The results obtained are comparable.

  3. NASA Dryden technicians (Dave Dennis, Freddy Green and Jeff Doughty) position a support cylinder und

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA Dryden technicians (Dave Dennis, Freddy Green and Jeff Doughty) position a support cylinder under the right wing of the Active Aeroelastic Wing F/A-18 test aircraft prior to ground vibration tests. The cylinder contains an 'air bag' that allows vibrations induced by an electro-mechanical shaker device to propagate through the airframe as they would if the aircraft were flying.

  4. Upgraded Analytical Model of the Cylinder Test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Souers, P. Clark; Lauderbach, Lisa; Garza, Raul

    2013-03-15

    A Gurney-type equation was previously corrected for wall thinning and angle of tilt, and now we have added shock wave attenuation in the copper wall and air gap energy loss. Extensive calculations were undertaken to calibrate the two new energy loss mechanisms across all explosives. The corrected Gurney equation is recommended for cylinder use over the original 1943 form. The effect of these corrections is to add more energy to the adiabat values from a relative volume of 2 to 7, with low energy explosives having the largest correction. The data was pushed up to a relative volume of aboutmore » 15 and the JWL parameter ω was obtained directly. The total detonation energy density was locked to the v=7 adiabat energy density, so that the Cylinder test gives all necessary values needed to make a JWL.« less

  5. Delamination of Composite Cylinders

    NASA Astrophysics Data System (ADS)

    Davies, Peter; Carlsson, Leif A.

    The delamination resistance of filament wound glass/epoxy cylinders has been characterized for a range of winding angles and fracture mode ratios using beam fracture specimens. The results reveal that the delamination fracture resistance increases with increasing winding angle and mode II (shear) fraction (GΠ/G). It was also found that interlaced fiber bundles in the filament wound cylinder wall acted as effective crack arresters in mode I loading. To examine the sensitivity of delamina-tion damage on the strength of the cylinders, external pressure tests were performed on filament-wound glass/epoxy composite cylinders with artificial defects and impact damage. The results revealed that the cylinder strength was insensitive to the presence of single delaminations but impact damage caused reductions in failure pressure. The insensitivity of the failure pressure to a single delamination is attributed to the absence of buckling of the delaminated sublaminates before the cylinder wall collapsed. The impacted cylinders contained multiple delaminations, which caused local reduction in the compressive load capability and reduction in failure pressure. The response of glass/epoxy cylinders was compared to impacted carbon reinforced cylinders. Carbon/epoxy is more sensitive to damage but retains higher implosion resistance while carbon/PEEK shows the opposite trend.

  6. AXONOMETRIC, LAUNCH DOOR AND DOOR CYLINDER, LAUNCH PLATFORM ROLLER GUIDE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    AXONOMETRIC, LAUNCH DOOR AND DOOR CYLINDER, LAUNCH PLATFORM ROLLER GUIDE, CRIB SUSPENSION SHOCK STRUT, LAUNCH PLATFORM - Dyess Air Force Base, Atlas F Missle Site S-8, Launch Facility, Approximately 3 miles east of Winters, 500 feet southwest of Highway 1770, center of complex, Winters, Runnels County, TX

  7. Genetic algorithm based active vibration control for a moving flexible smart beam driven by a pneumatic rod cylinder

    NASA Astrophysics Data System (ADS)

    Qiu, Zhi-cheng; Shi, Ming-li; Wang, Bin; Xie, Zhuo-wei

    2012-05-01

    A rod cylinder based pneumatic driving scheme is proposed to suppress the vibration of a flexible smart beam. Pulse code modulation (PCM) method is employed to control the motion of the cylinder's piston rod for simultaneous positioning and vibration suppression. Firstly, the system dynamics model is derived using Hamilton principle. Its standard state-space representation is obtained for characteristic analysis, controller design, and simulation. Secondly, a genetic algorithm (GA) is applied to optimize and tune the control gain parameters adaptively based on the specific performance index. Numerical simulations are performed on the pneumatic driving elastic beam system, using the established model and controller with tuned gains by GA optimization process. Finally, an experimental setup for the flexible beam driven by a pneumatic rod cylinder is constructed. Experiments for suppressing vibrations of the flexible beam are conducted. Theoretical analysis, numerical simulation and experimental results demonstrate that the proposed pneumatic drive scheme and the adopted control algorithms are feasible. The large amplitude vibration of the first bending mode can be suppressed effectively.

  8. Mixed convection cooling of a cylinder using slot jet impingement at different circumferential angles

    NASA Astrophysics Data System (ADS)

    Naderipour, S.; Yousefi, T.; Ashjaee, M.; Naylor, D.

    2016-08-01

    An experimental study using Mach-Zehnder interferometer has been carried out to investigate the heat transfer from an isothermal horizontal circular cylinder, which is exposed to an air slot jet at different angles of jet impingement. A square edged nozzle is mounted parallel with the cylinder axis and jet flow impinges on the side of the cylinder at angles Θ = 0°, 30°, 60° and 90°. The Reynolds number varied from 240 to 1900 while the Grashof number and slot- to cylinder-spacing is kept constant at Gr = 22,300 and H/w = 7 respectively. The Richardson number varied from 0.006 to 0.4. The flow field is greatly influenced by the slot exit velocity and the buoyancy force due to density change. The local Nusselt number around the cylinder has been calculated using the infinite fringe interferograms at 10° intervals. Average Nusselt number shows that heat transfer is decreased when the angle of jet impingement is increased .

  9. Experimental investigation of thermal processes in the multi-ring Couette system with counter rotation of cylinders

    NASA Astrophysics Data System (ADS)

    Mamonov, V. N.; Nazarov, A. D.; Serov, A. F.; Terekhov, V. I.

    2016-01-01

    The effect of parameters of the multi-ring Couette system with counter rotating coaxial cylinders on the process of thermal energy release in a viscous liquid filling this system is considered with regard to the problem of determining the possibility of creating the high-performance wind heat generator. The multi-cylinder rotor design allows directly conversion of the mechanical power of a device consisting of two "rotor" wind turbines with a common axis normal to the air flow into the thermal energy in a wide range of rotational speed of the cylinders. Experimental results on the measurement of thermal power released in the pilot heat generator at different relative angular speeds of cylinder rotation are presented.

  10. Influence of free stream inhomogeneity on aerodynamic characteristics of a blunt cylinder in a supersonic flow

    NASA Astrophysics Data System (ADS)

    Nikiforov, G. V.; Lashkov, V. A.; Mashek, I. Ch.; Khoronzhuk, R. S.

    2018-05-01

    The influence of density inhomogeneity on aerodynamic characteristics of a blunt cylinder has been studied experimentally. The inhomogeneity of the supersonic free stream was obtained by injection of a thin helium jet into the main air stream. The interaction of the density inhomogeneity of the supersonic flow and shock wave resulted in a decrease of drag and heat flux on the blunt cylinder.

  11. Interim Air Purity Guidelines for Dry Deck Shelter (DDS) Operations

    DTIC Science & Technology

    1990-10-01

    The acceptable limits for gaseous contaminants in submarine compressed air for use as diver’s breathing air are derived from the 8-hour Time Weighted...accompanying documentation. Cylinders must be declared as hazardous cargo (" Air , Compressed Non-Flammable Gas") prior to air transport. Analysis of cylinder...capi NAVAL MEDICAL RESEARCH INSTITUTE Bethesda, MD 20889-5055 NMRI 90-109 October 1990 AD-A231 432 INTERIM AIR PURITY GUIDELINES FOR DRY DECK

  12. Numerical studies of the formation and destruction of vortices in a motored four-stroke piston-cylinder configuration

    NASA Technical Reports Server (NTRS)

    Schock, H. J.; Sosoka, D. J.; Ramos, J. I.

    1983-01-01

    A finite-difference procedure which solves the conservation equations of mass, momentum, and energy is used to investigate the effects of the compression ratio, engine speed, bore-to-stroke ratio, and air intake flow angle on the turbulent flow field within an axisymmetric piston-cylinder configuration. It is shown that in a four-stroke piston-cylinder configuration, the intake stroke is characterized by the formation of a piston vortex. The piston vortex is stretched during the intake stroke, and the head vortex has an almost constant diameter. For a 0-deg air intake flow angle, both vortices disappear by the end of the compression stroke; for an air intake flow angle of 45 deg, the flow field within the cylinder shows three elongated vortices which persist into the compression stroke and then break up and merge. It is also shown that larger bore-to-stroke ratios give rise to lower turbulent levels than smaller bore-to-stroke ratios and that the turbulent intensity is almost independent of the rpm.

  13. Upgraded Analytical Model of the Cylinder Test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Souers, P. Clark; Lauderbach, Lisa; Garza, Raul

    2013-03-15

    A Gurney-type equation was previously corrected for wall thinning and angle of tilt, and now we have added shock wave attenuation in the copper wall and air gap energy loss. Extensive calculations were undertaken to calibrate the two new energy loss mechanisms across all explosives. The corrected Gurney equation is recommended for cylinder use over the original 1943 form. The effect of these corrections is to add more energy to the adiabat values from a relative volume of 2 to 7, with low energy explosives having the largest correction. The data was pushed up to a relative volume of aboutmore » 15 and the JWL parameter ω was obtained directly. Finally, the total detonation energy density was locked to the v = 7 adiabat energy density, so that the Cylinder test gives all necessary values needed to make a JWL.« less

  14. Baseline performance and emissions data for a single-cylinder, direct-injected diesel engine

    NASA Technical Reports Server (NTRS)

    Dezelick, R. A.; Mcfadden, J. J.; Ream, L. W.; Barrows, R. F.

    1983-01-01

    Comprehensive fuel consumption, mean effective cylinder pressure, and emission test results for a supercharged, single-cylinder, direct-injected, four-stroke-cycle, diesel test engine are documented. Inlet air-to-exhaust pressure ratios were varied from 1.25 to 3.35 in order to establish the potential effects of turbocharging techniques on engine performance. Inlet air temperatures and pressures were adjusted from 34 to 107 C and from 193 to 414 kPa to determine the effects on engine performance and emissions. Engine output ranged from 300 to 2100 kPa (brake mean effective pressure) in the speed range of 1000 to 3000 rpm. Gaseous and particulate emission rates were measured. Real-time values of engine friction and pumping loop losses were measured independently and compared with motored engine values.

  15. Combined action of transverse oscillations and uniform cross-flow on vortex formation and pattern of a circular cylinder

    NASA Astrophysics Data System (ADS)

    Lam, K. M.; Liu, P.; Hu, J. C.

    2010-07-01

    This paper attempts to study the roles of lateral cylinder oscillations and a uniform cross-flow in the vortex formation and wake modes of an oscillating circular cylinder. A circular cylinder is given lateral oscillations of varying amplitudes (between 0.28 and 1.42 cylinder-diameters) in a slow uniform flow stream (Reynolds number=284) to produce the 2S, 2P and P+S wake modes. Detailed flow information is obtained with time-resolved particle-image velocimetry and the phase-locked averaging techniques. In the 2S and 2P mode, the flow speeds relative to the cylinder movement are less than the uniform flow velocity and it is found that initial formation of a vortex is caused by shear-layer separation of the uniform flow on the cylinder. Subsequent development of the shear-layer vortices is affected by the lateral cylinder movement. At small cylinder oscillation amplitudes, vortices are shed in synchronization with the cylinder movement, resulting in the 2S mode. The 2P mode occurs at larger cylinder oscillation amplitudes at which each shear-layer vortex is found to undergo intense stretching and eventual bifurcation into two separate vortices. The P+S mode occurs when the cylinder moving speeds are, for most of the time, higher than the speed of the uniform flow. These situations are found at fast and large-amplitude cylinder oscillations in which the flow relative to the cylinder movement takes over the uniform flow in governing the initial vortex formation. The formation stages of vortices from the cylinder are found to bear close resemblance to those of a vortex street pattern of a cylinder oscillating in an otherwise quiescent fluid at Keulegan-Carpenter numbers around 16. Vortices in the inclined vortex street pattern so formed are then convected downstream by the uniform flow as the vortex pairs in the 2P mode.

  16. Vortex shedding noise of a cylinder with hairy flaps

    NASA Astrophysics Data System (ADS)

    Kamps, Laura; Geyer, Thomas F.; Sarradj, Ennes; Brücker, Christoph

    2017-02-01

    This study describes the modification of acoustic noise emitted from cylinders in a stationary subsonic flow for a cylinder equipped with flexible hairy flaps at the aft part as a passive way to manipulate the flow and acoustics. The study was motivated by the results from previous water tunnel measurements, which demonstrated that hairy flaps can modify the shedding cycle behind the cylinder and can reduce the wake deficit. In the present study, wind tunnel experiments were conducted on such a modified cylinder and the results were compared to the reference case of a plain cylinder. The acoustic spectrum was measured using two microphones while simultaneously recording the flap motion. To further examine the flow structures in the downstream vicinity of the cylinder, constant temperature anemometry measurements as well as flow visualizations were also performed. The results show that, above a certain Reynolds number, the hairy flaps lead to a jump in the vortex shedding frequency. This phenomenon is similarly observed in the water flow experiments as a jump in the non-dimensional Strouhal number that is related to the change of the shedding cycle. This jump appears to be coupled to a resonant excitation of the flaps. The specific Reynolds number at which the jump occurs is higher in the present case, which is attributed to the lower added mass in air as compared with the one in water. The flow visualizations confirmed that such action of the flaps lead to a more slender elongated shape of the time-averaged separation bubble. In addition, the hairy flaps induce a noticeable reduction of the tonal noise as well as broadband noise as long as the flaps do not touch each other.

  17. Carbon-carbon cylinder block

    NASA Technical Reports Server (NTRS)

    Ransone, Philip O. (Inventor)

    1995-01-01

    A lightweight cylinder block composed of carbon-carbon is disclosed. The use of carbon-carbon over conventional materials, such as cast iron or aluminum, reduces the weight of the cylinder block and improves thermal efficiency of the internal combustion reciprocating engine. Due to the negligible coefficient of thermal expansion and unique strength at elevated temperatures of carbon-carbon, the piston-to-cylinder wall clearance can be small, especially when the carbon-carbon cylinder block is used in conjunction with a carbon-carbon piston. Use of the carbon-carbon cylinder has the effect of reducing the weight of other reciprocating engine components allowing the piston to run at higher speeds and improving specific engine performance.

  18. Feedback stabilization of an oscillating vertical cylinder by POD Reduced-Order Model

    NASA Astrophysics Data System (ADS)

    Tissot, Gilles; Cordier, Laurent; Noack, Bernd R.

    2015-01-01

    The objective is to demonstrate the use of reduced-order models (ROM) based on proper orthogonal decomposition (POD) to stabilize the flow over a vertically oscillating circular cylinder in the laminar regime (Reynolds number equal to 60). The 2D Navier-Stokes equations are first solved with a finite element method, in which the moving cylinder is introduced via an ALE method. Since in fluid-structure interaction, the POD algorithm cannot be applied directly, we implemented the fictitious domain method of Glowinski et al. [1] where the solid domain is treated as a fluid undergoing an additional constraint. The POD-ROM is classically obtained by projecting the Navier-Stokes equations onto the first POD modes. At this level, the cylinder displacement is enforced in the POD-ROM through the introduction of Lagrange multipliers. For determining the optimal vertical velocity of the cylinder, a linear quadratic regulator framework is employed. After linearization of the POD-ROM around the steady flow state, the optimal linear feedback gain is obtained as solution of a generalized algebraic Riccati equation. Finally, when the optimal feedback control is applied, it is shown that the flow converges rapidly to the steady state. In addition, a vanishing control is obtained proving the efficiency of the control approach.

  19. BOREAS AFM-2 King Air 1994 Aircraft Flux and Moving Window Data

    NASA Technical Reports Server (NTRS)

    Kelly, Robert D.; Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The BOREAS AFM-2 team collected pass-by-pass fluxes (and many other statistics) for a large number of level (constant altitude), straight-line passes used in a variety of flight patterns. The data were collected by the University of Wyoming King Air in 1994 BOREAS IFCs 1-3. Most of these data were collected at 60-70 m above ground level, but a significant number of passes were also flown at various levels in the planetary boundary layer, up to about the inversion height. This documentation concerns only the data from the straight and level passes that are presented as original (over the NSA and SSA) and moving window values (over the Transect). Another archive of King Air data is also available, containing data from all the soundings flown by the King Air 1994 IFCs 1-3. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884) or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  20. Enhancement of polarizabilities of cylinders with cylinder-slab resonances

    PubMed Central

    Xiao, Meng; Huang, Xueqin; Liu, H.; Chan, C. T.

    2015-01-01

    If an object is very small in size compared with the wavelength of light, it does not scatter light efficiently. It is hence difficult to detect a very small object with light. We show using analytic theory as well as full wave numerical calculation that the effective polarizability of a small cylinder can be greatly enhanced by coupling it with a superlens type metamaterial slab. This kind of enhancement is not due to the individual resonance effect of the metamaterial slab, nor due to that of the object, but is caused by a collective resonant mode between the cylinder and the slab. We show that this type of particle-slab resonance which makes a small two-dimensional object much “brighter” is actually closely related to the reverse effect known in the literature as “cloaking by anomalous resonance” which can make a small cylinder undetectable. We also show that the enhancement of polarizability can lead to strongly enhanced electromagnetic forces that can be attractive or repulsive, depending on the material properties of the cylinder. PMID:25641391

  1. Anaesthesia Gas Supply: Gas Cylinders

    PubMed Central

    Srivastava, Uma

    2013-01-01

    Invention of oxygen cylinder was one of the most important developments in the field of medical practice. Oxygen and other gases were compressed and stored at high pressure in seamless containers constructed from hand-forged steel in1880. Materials technology has continued to evolve and now medical gas cylinders are generally made of steel alloys or aluminum. The filling pressure as well as capacity has increased considerably while at the same time the weight of cylinders has reduced. Today oxygen cylinder of equivalent size holds a third more oxygen but weighs about 20 kg less. The cylinders are of varying sizes and are color coded. They are tested at regular intervals by the manufacturer using hydraulic, impact, and tensile tests. The top end of the cylinder is fitted with a valve with a variety of number and markings stamped on it. Common valve types include: Pin index valve, bull nose, hand wheel and integral valve. The type of valve varies with cylinder size. Small cylinders have a pin index valve while large have a bull nose type. Safety features in the cylinder are: Color coding, pin index, pressure relief device, Bodok seal, and label attached etc., Safety rules and guidelines must be followed during storage, installation and use of cylinders to ensure safety of patients, hospital personnel and the environment. PMID:24249883

  2. Anaesthesia gas supply: gas cylinders.

    PubMed

    Srivastava, Uma

    2013-09-01

    Invention of oxygen cylinder was one of the most important developments in the field of medical practice. Oxygen and other gases were compressed and stored at high pressure in seamless containers constructed from hand-forged steel in1880. Materials technology has continued to evolve and now medical gas cylinders are generally made of steel alloys or aluminum. The filling pressure as well as capacity has increased considerably while at the same time the weight of cylinders has reduced. Today oxygen cylinder of equivalent size holds a third more oxygen but weighs about 20 kg less. The cylinders are of varying sizes and are color coded. They are tested at regular intervals by the manufacturer using hydraulic, impact, and tensile tests. The top end of the cylinder is fitted with a valve with a variety of number and markings stamped on it. Common valve types include: Pin index valve, bull nose, hand wheel and integral valve. The type of valve varies with cylinder size. Small cylinders have a pin index valve while large have a bull nose type. Safety features in the cylinder are: Color coding, pin index, pressure relief device, Bodok seal, and label attached etc., Safety rules and guidelines must be followed during storage, installation and use of cylinders to ensure safety of patients, hospital personnel and the environment.

  3. Gas Cylinder Safety, Course 9518

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glass, George

    2016-10-27

    This course, Gas Cylinder Safety (#9518), presents an overview of the hazards and controls associated with handling, storing, using, and transporting gas cylinders. Standard components and markings of gas cylinders are also presented, as well as the process for the procurement, delivery, and return of gas cylinders at Los Alamos National Laboratory (LANL).

  4. Spatial atomic layer deposition on flexible substrates using a modular rotating cylinder reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Kashish; Hall, Robert A.; George, Steven M., E-mail: Steven.George@Colorado.Edu

    2015-01-15

    Spatial atomic layer deposition (ALD) is a new version of ALD based on the separation of reactant gases in space instead of time. In this paper, the authors present results for spatial ALD on flexible substrates using a modular rotating cylinder reactor. The design for this reactor is based on two concentric cylinders. The outer cylinder remains fixed and contains a series of slits. These slits can accept a wide range of modules that attach from the outside. The modules can easily move between the various slit positions and perform precursor dosing, purging, or pumping. The inner cylinder rotates withmore » the flexible substrate and passes underneath the various spatially separated slits in the outer cylinder. Trimethyl aluminum and ozone were used to grow Al{sub 2}O{sub 3} ALD films at 40 °C on metallized polyethylene terephthalate (PET) substrates to characterize this spatial ALD reactor. Spectroscopic ellipsometry measurements revealed a constant Al{sub 2}O{sub 3} ALD growth rate of 1.03 Å/cycle with rotation speeds from 40 to 100 RPM with the outer cylinder configured for one Al{sub 2}O{sub 3} ALD cycle per rotation. The Al{sub 2}O{sub 3} ALD growth rate then decreased at higher rotation rates for reactant residence times < 5 ms. The Al{sub 2}O{sub 3} ALD films were also uniform to within <1% across the central portion of metallized PET substrate. Fixed deposition time experiments revealed that Al{sub 2}O{sub 3} ALD films could be deposited at 2.08 Å/s at higher rotation speeds of 175 RPM. Even faster deposition rates are possible by adding more modules for additional Al{sub 2}O{sub 3} ALD cycles for every one rotation of the inner cylinder.« less

  5. Overall Heat Transfer Coefficients for a Horizontal Cylinder in a Fluidized Bed.

    DTIC Science & Technology

    1984-04-01

    The distribution system is composed of 2 in. PVC pipe and fittings arranged in a convenient air-tight geometry. Pressure regulators, pressure gauges...uniform fluidization. After i£ A_ 4 passing through the beads, the air is exhausted to the outside by means of galvanized duct work. Fluidized Bed...design is the matching with the copper cylinder of outer diameters, the fastening with recessed set screws , their length and the material selection. In

  6. Transient bow shock around a cylinder in a supersonic dusty plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, John K.; Merlino, Robert L.

    2013-07-15

    Visual observations of the formation of a bow shock in the transient supersonic flow of a dusty plasma incident on a biased cylinder are presented. The bow shock formed when the advancing front of a streaming dust cloud was reflected by the obstacle. After its formation, the density jump of the bow shock increased as it moved upstream of the obstacle. A physical picture for the formation of the electrohydrodynamic bow shock is discussed.

  7. Development of Air-cooled Engines with Blower Cooling

    NASA Technical Reports Server (NTRS)

    Lohner, Kurt

    1933-01-01

    With the aid of a heating device, the heat transfer to cylinders with conical fins of various forms is determined both for shrouded and exposed cylinders. Simultaneously the pressure drop for overcoming the resistance to the motion of air between the fins of the enclosed cylinder is measured. Thus the relations between the heat transfer and the energy required for cooling are discovered. The investigations show that the heat transfer in a conducted air flow is much greater than in a free current and that further improvement, as compared with free exposure, is possible through narrower spaces between the fins.

  8. MOVES and Related Models

    EPA Pesticide Factsheets

    MOVES is a state-of-the-science emission modeling system that estimates emissions for mobile sources at the national, county, and project level for criteria air pollutants, greenhouse gases, and air toxics.

  9. RESULTS FROM A DEMONSTRATION OF RF-BASED UF6 CYLINDER ACCOUNTING AND TRACKING SYSTEM INSTALLED AT A USEC FACILITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pickett, Chris A; Kovacic, Donald N; Morgan, Jim

    processing and to add tamper-indicating and data authentication features to some of the pertinent system components. Future efforts will focus on these needs along with implementing protocols relevant to IAEA safeguards. The work detailed in this report demonstrates the feasibility of constructing RF devices that can survive the operational rigors associated with the transportation, storage, and processing of UF6 cylinders. The system software specially designed for this project is called Cylinder Accounting and Tracking System (CATS). This report details the elements of the CATS rules-based architecture and its use in safeguards-monitoring and asset-tracking applications. Information is also provided on improvements needed to make the technology ready, as well as options for improving the safeguards aspects of the technology. The report also includes feedback from personnel involved in the testing, as well as individuals who could utilize an RF-based system in supporting the performance of their work. The system software was set up to support a Mailbox declaration, where a declaration can be made either before or after cylinder movements take place. When the declaration is made before cylinders move, the operators must enter this information into CATS. If the IAEA then shows up unexpectedly at the facility, they can see how closely the operational condition matches the declaration. If the declaration is made after the cylinders move, this provides greater operational flexibility when schedules are interrupted or are changed, by allowing operators to declare what moves have been completed. The IAEA can then compare where cylinders are with where CATS or the system says they are located. The ability of CATS to automatically generate Mailbox declarations is seen by the authors as a desirable feature. The Mailbox approach is accepted by the IAEA but has not been widely implemented (and never in enrichment facilities). During the course of this project, we have incorporated

  10. High-Frequency Normal Mode Propagation in Aluminum Cylinders

    USGS Publications Warehouse

    Lee, Myung W.; Waite, William F.

    2009-01-01

    Acoustic measurements made using compressional-wave (P-wave) and shear-wave (S-wave) transducers in aluminum cylinders reveal waveform features with high amplitudes and with velocities that depend on the feature's dominant frequency. In a given waveform, high-frequency features generally arrive earlier than low-frequency features, typical for normal mode propagation. To analyze these waveforms, the elastic equation is solved in a cylindrical coordinate system for the high-frequency case in which the acoustic wavelength is small compared to the cylinder geometry, and the surrounding medium is air. Dispersive P- and S-wave normal mode propagations are predicted to exist, but owing to complex interference patterns inside a cylinder, the phase and group velocities are not smooth functions of frequency. To assess the normal mode group velocities and relative amplitudes, approximate dispersion relations are derived using Bessel functions. The utility of the normal mode theory and approximations from a theoretical and experimental standpoint are demonstrated by showing how the sequence of P- and S-wave normal mode arrivals can vary between samples of different size, and how fundamental normal modes can be mistaken for the faster, but significantly smaller amplitude, P- and S-body waves from which P- and S-wave speeds are calculated.

  11. The miniaturization and reproducibility of the cylinder expansion test

    NASA Astrophysics Data System (ADS)

    Rumchik, Chad; Nep, Rachel; Butler, George C.; Breaux, Bradley; Lindsay, Christopher

    2012-03-01

    The cylinder test (aka cylinder expansion or Cylex test) is a standard way to measure the Gurney velocity and determine the JWL coefficients of an explosive and has been utilized by the explosives community for many years. More recently, early time shock information has been found to be useful in examining the early pressure-time history during the expansion of the cylinder. Work in the area of nanoenergetics has prompted Air Force researchers to develop a miniaturized version of the Cylex test, for materials with a sufficiently small critical diameter, to reduce the cost and quantity of material required for the test. This paper discusses the development of a half-inch diameter version of the Cylex test. A measurement systems analysis of the new miniaturized and the standard one-inch test has been performed using the liquid explosive PLX (nitromethane sensitized with ethylene diamine). The resulting velocity and displacement profiles obtained from the streak records were compared to Photo Doppler Velocimetry (PDV) measurements as well as CTH hydrocode simulations. Measurements of the Gurney value for both diameter tests were in agreement and yielded a similar level of variability of 1%-4%.

  12. Diesel Combustion and Emission Using High Boost and High Injection Pressure in a Single Cylinder Engine

    NASA Astrophysics Data System (ADS)

    Aoyagi, Yuzo; Kunishima, Eiji; Asaumi, Yasuo; Aihara, Yoshiaki; Odaka, Matsuo; Goto, Yuichi

    Heavy-duty diesel engines have adopted numerous technologies for clean emissions and low fuel consumption. Some are direct fuel injection combined with high injection pressure and adequate in-cylinder air motion, turbo-intercooler systems, and strong steel pistons. Using these technologies, diesel engines have achieved an extremely low CO2 emission as a prime mover. However, heavy-duty diesel engines with even lower NOx and PM emission levels are anticipated. This study achieved high-boost and lean diesel combustion using a single cylinder engine that provides good engine performance and clean exhaust emission. The experiment was done under conditions of intake air quantity up to five times that of a naturally aspirated (NA) engine and 200MPa injection pressure. The adopted pressure booster is an external supercharger that can control intake air temperature. In this engine, the maximum cylinder pressure was increased and new technologies were adopted, including a monotherm piston for endurance of Pmax =30MPa. Moreover, every engine part is newly designed. As the boost pressure increases, the rate of heat release resembles the injection rate and becomes sharper. The combustion and brake thermal efficiency are improved. This high boost and lean diesel combustion creates little smoke; ISCO and ISTHC without the ISNOx increase. It also yields good thermal efficiency.

  13. A 400,000 lb crude oil storage tank was moved on an 11 in. air blanket

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-03-01

    The British patented-system used to move the 55,000 bbl tank at the Cushing, Okla., tank farm of Getty Oil Co. uses the same airlift principle employed by various hovercraft. Representatives from 20 pipeline and oil companies watched the move, which placed the tank 22 ft higher and 600 ft away from its former location, to improve its gravity flow rate, an improvement spurred by greater crude demands placed on Cushing Terminal. Two 425 hp air compressors were attached to the tank's shell and produced 130,000 cu ft/min of air. The airflow was directed beneath the tank through a segmented skirtmore » fixed to the circumference of the tank's base. Less than 0.5 psi air pressure across the tank floor was needed to lift the tank. Four large D-7 tractors pulled and guided the tank up the incline onto its new pad, where the vessel was rotated into alignment for piping connections. Preliminary rig-up, grading, and pad preparation took six days, but actual tank relocation required only two hours. Getty's Cushing terminal feeds to the 20 in. dia Osage pipeline that serves Getty's El Dorado, Kans., refinery as well as other carriers.« less

  14. Lock-in in forced vibration of a circular cylinder

    NASA Astrophysics Data System (ADS)

    Kumar, Samvit; Navrose, Mittal, Sanjay

    2016-11-01

    The phenomenon of lock-in/synchronization in uniform flow past an oscillating cylinder is investigated via a stabilized finite element method at Re = 100. Computations are carried out for various amplitudes and frequencies of cylinder oscillation to accurately obtain the boundary of the lock-in regime. Results from earlier studies show a significant scatter in the lock-in boundary. The scatter might be an outcome of the difference in data collection or the use of a different criterion for identifying lock-in. A new criterion for lock-in is proposed, wherein the following two conditions are to be satisfied. (i) The most dominant frequency in the power spectrum of lift coefficient matches the frequency of cylinder oscillation (fy) and (ii) other peaks in the power spectrum, if any, are present only at super-harmonics of fy. Utilizing this criterion, three flow regimes are identified on the frequency-amplitude plane: lock-in, transition, and no lock-in. The behaviour of the wake is also investigated by examining the power spectra of the velocity traces at various locations downstream of the cylinder. Wake-lock-in is observed during lock-in. A wake-transition regime is identified wherein the near wake, up to a certain streamwise location, is in a lock-in state while the downstream region is in a desynchronized state. For a fixed fy, the location beyond which the wake is desynchronized moves downstream as the amplitude of oscillation is increased. The proposed criterion for lock-in addresses the wide scatter in the boundary of the lock-in regime among earlier studies. Energy transfer from the fluid to the structure, per cycle of cylinder oscillation, is computed from the data for forced vibration. The data is utilized to generate iso-energy transfer contours in the frequency-amplitude plane. The free vibration response with zero structural damping is found to be in very good agreement with the contour corresponding to zero energy transfer.

  15. Friction coefficient of an intact free liquid jet moving in air

    NASA Astrophysics Data System (ADS)

    Comiskey, P. M.; Yarin, A. L.

    2018-04-01

    Here, we propose a novel method of determining the friction coefficient of intact free liquid jets moving in quiescent air. The middle-size jets of this kind are relevant for such applications as decorative fountains, fiber-forming, fire suppression, agriculture, and forensics. The present method is based on measurements of trajectories created using a straightforward experimental apparatus emulating such jets at a variety of initial inclination angles. Then, the trajectories are described theoretically, accounting for the longitudinal traction imposed on such jets by the surrounding air. The comparison of the experimental data with the theoretical predictions shows that the results can be perfectly superimposed with the friction coefficient {C_{{fd}}}=5R{e_d}^{{ - 1/2 ± 0.05}}, in the 621 ≤ R{e_d} ≤ 1289 range, with Red being the Reynolds number based on the local cross-sectional diameter of the jet. The results also show that the farthest distance such jets can reach corresponds to the initial inclination angle α =35° which is in agreement with already published data.

  16. Tandem Cylinder Noise Predictions

    NASA Technical Reports Server (NTRS)

    Lockard, David P.; Khorrami, Mehdi R.; CHoudhari, Meelan M.; Hutcheson, Florence V.; Brooks, Thomas F.; Stead, Daniel J.

    2007-01-01

    In an effort to better understand landing-gear noise sources, we have been examining a simplified configuration that still maintains some of the salient features of landing-gear flow fields. In particular, tandem cylinders have been studied because they model a variety of component level interactions. The present effort is directed at the case of two identical cylinders spatially separated in the streamwise direction by 3.7 diameters. Experimental measurements from the Basic Aerodynamic Research Tunnel (BART) and Quiet Flow Facility (QFF) at NASA Langley Research Center (LaRC) have provided steady surface pressures, detailed off-surface measurements of the flow field using Particle Image Velocimetry (PIV), hot-wire measurements in the wake of the rear cylinder, unsteady surface pressure data, and the radiated noise. The experiments were conducted at a Reynolds number of 166 105 based on the cylinder diameter. A trip was used on the upstream cylinder to insure a fully turbulent shedding process and simulate the effects of a high Reynolds number flow. The parallel computational effort uses the three-dimensional Navier-Stokes solver CFL3D with a hybrid, zonal turbulence model that turns off the turbulence production term everywhere except in a narrow ring surrounding solid surfaces. The current calculations further explore the influence of the grid resolution and spanwise extent on the flow and associated radiated noise. Extensive comparisons with the experimental data are used to assess the ability of the computations to simulate the details of the flow. The results show that the pressure fluctuations on the upstream cylinder, caused by vortex shedding, are smaller than those generated on the downstream cylinder by wake interaction. Consequently, the downstream cylinder dominates the noise radiation, producing an overall directivity pattern that is similar to that of an isolated cylinder. Only calculations based on the full length of the model span were able to

  17. 4 x 8 inch concrete cylinders versus 6 x 12 cylinders.

    DOT National Transportation Integrated Search

    1984-01-01

    Laboratory and field investigations were conducted to compare the compressive strengths obtained for 4 x 8 in. (100 x 200 mm) cylinders with those for standard 6 x 12 in. (150 x 300 mm) cylinders, both made with aggregate having a nominal maximum siz...

  18. Surface flow and heating distributions on a cylinder in near wake of Aeroassist Flight Experiment (AFE) configuration at incidence in Mach 10 Air

    NASA Technical Reports Server (NTRS)

    Wells, William L.

    1990-01-01

    Experimental heat transfer distributions and surface streamline directions are presented for a cylinder in the near wake of the Aeroassist Flight Experiment forebody configuration. Tests were conducted in air at a nominal free stream Mach number of 10, with post shock Reynolds numbers based on model base height of 6,450 to 50,770, and angles of attack of 5, 0, -5, and -10 degrees. Heat transfer data were obtained with thin film resistance gage and surface streamline directions by the oil flow technique. Comparisons between measured values and predicted values were made by using a Navier-Stokes computer code.

  19. Performance of a Compression-ignition Engine with a Precombustion Chamber Having High-Velocity Air Flow

    NASA Technical Reports Server (NTRS)

    Spanogle, J A; Moore, C S

    1931-01-01

    Presented here are the results of performance tests made with a single-cylinder, four stroke cycle, compression-ignition engine. These tests were made on a precombustion chamber type of cylinder head designed to have air velocity and tangential air flow in both the chamber and cylinder. The performance was investigated for variable load and engine speed, type of fuel spray, valve opening pressure, injection period and, for the spherical chamber, position of the injection spray relative to the air flow. The pressure variations between the pear-shaped precombustion chamber and the cylinder for motoring and full load conditions were determined with a Farnboro electric indicator. The combustion chamber designs tested gave good mixing of a single compact fuel spray with the air, but did not control the ensuing combustion sufficiently. Relative to each other, the velocity of air flow was too high, the spray dispersion by injection too great, and the metering effect of the cylinder head passage insufficient. The correct relation of these factors is of the utmost importance for engine performance.

  20. Portable oxygen concentrators versus oxygen cylinder during walking in interstitial lung disease: A randomized crossover trial.

    PubMed

    Khor, Yet H; McDonald, Christine F; Hazard, Anita; Symons, Karen; Westall, Glen; Glaspole, Ian; Goh, Nicole S L; Holland, Anne E

    2017-11-01

    Ambulatory oxygen therapy is often provided to patients with interstitial lung disease (ILD). Lightweight portable oxygen concentrators (POCs) provide an alternative to traditional portable systems such as compressed oxygen cylinders; however, their efficacy in patients with ILD has not been assessed. This study aimed to evaluate the clinical performance of three ambulatory oxygen systems (two different POCs and a compressed oxygen cylinder) during 6-min walk tests (6MWTs) in patients with ILD and exertional desaturation. A total of 20 participants with ILD of varying aetiologies who demonstrated exertional desaturation to <90% on room air during 6MWT were recruited. Each participant performed two 6MWTs while breathing room air. On a subsequent day, two further 6MWTs were performed, in random order: one breathing oxygen via a POC (either the Inogen One G2 POC or the EverGo POC at the setting of 6) and one with a compressed oxygen cylinder (at 5 L/min). There were no significant differences in nadir oxygen saturation (SpO 2 ) during 6MWTs using different portable oxygen devices (Trial 1: mean SpO 2 for Inogen One G2 POC: 82.3 ± 3.5% vs oxygen cylinder: 80.3 ± 2.2%, P = 0.14; Trial 2: mean SpO 2 for EverGo POC: 85.7 ± 7.7% vs oxygen cylinder: 86.1 ± 6.1%, P = 0.79). The mean 6-min walk distances were not significantly different among the three devices. The performance of the Inogen One G2 POC and the EverGo POC had comparable performance with that of the compressed oxygen cylinder during walking in patients with ILD and exertional desaturation. © 2017 Asian Pacific Society of Respirology.

  1. Dynamic Friction Performance of a Pneumatic Cylinder with Al2O3 Film on Cylinder Surface.

    PubMed

    Chang, Ho; Lan, Chou-Wei; Wang, Hao-Xian

    2015-11-01

    A friction force system is proposed for accurately measuring friction force and motion properties produced by reciprocating motion of piston in a pneumatic cylinder. In this study, the proposed system is used to measure the effects of lubricating greases of different viscosities on the friction properties of pneumatic cylinder, and improvement of stick-slip motion for the cylinder bore by anodizing processes. A servo motor-driven ball screw is used to drive the pneumatic cylinder to be tested and to measure the change in friction force of the pneumatic cylinder. Experimental results show, that under similar test conditions, the lubricating grease with viscosity VG100 is best suited for measuring reciprocating motion of the piston of pneumatic cylinder. The wear experiment showed that, in the Al2O3 film obtained at a preset voltage 40 V in the anodic process, the friction coefficient and hardness decreased by 55% and increased by 274% respectively, thus achieving a good tribology and wear resistance. Additionally, the amplitude variation in the friction force of the pneumatic cylinder wall that received the anodizing treatment was substantially reduced. Additionally, the stick-slip motion of the pneumatic cylinder during low-speed motion was substantially improved.

  2. Experimental Study on Interference Effects of Two Tandem Cylinders Wrapped Around by Triple Helical Rods with Gap on Induced Drag

    NASA Astrophysics Data System (ADS)

    Prastianto, R. W.; Dwipayana, K. H.; Syahroni, N.; Pumbarino, B.

    2018-03-01

    This paper examines the results of laboratory experiments to investigate the effect of interference of two tandem cylinders covered by triple helical rods with gap to the induced drag force. Two identical rigid models are horizontally positioned with roll support on both ends of each cylinder. Uniform air flow in subcritical regime that correspond to Reynolds number (Re) of 1.6 × 104 ∼ 6.5 × 104 perpendicularly flowed to the models in the wind tunnel with three variations of the distance between the cylinders which are 1.75D, 3D and 5D. At Re = 4.2 × 104 the results show that the maximum shielding effects occur in the rear cylinder at the distance of 1.75D so the drag coefficient (CD) is reduced to 93.6% compared to single cylinder case. This shielding effect will weaken with increasing the distance between the cylinder. In contrast, the fluid flow interference effect on the front cylinder increases due to increasing of spacing between the two cylinders and still occurred at that spacing of 5D until CD reduction reached 10% of the single cylinder case.

  3. Reducing cylinder drag by adding a plate

    NASA Astrophysics Data System (ADS)

    Frolov, Vladimir A.; Kozlova, Anna S.

    2017-10-01

    Reducing the drag of bodies is a central problem of modern aerohydrodynamics. The paper presents theoretical and experimental studies of a new method for reducing the drag of a circular cylinder. To reduce the drag we propose to install a flat plate along the flow in front of the cylinder. The theoretical investigation of the drag was carried out using FlowSimulation software. An experimental study of the body drag was performed in an open wind tunnel. The drag coefficient results of the cylinder depended on the different locations of the flat plate relative to the cylinder. The following geometric characteristics of the cylinder/plate are studied: the width of the gap between the cylinder and the plate and the meridional angle of the plate with respect to the cylinder. On the basis of Numerical and Physical Modeling, the values of the drag coefficient for the cylinder/plate are presented. The results included establishment the locations of the cylinder/plate which give the value of the drag coefficient for the combination of the two bodies. That total drag coefficient of the cylinder/plate can be less than the cylinder alone.

  4. Detection of cylinder unbalance from Bayesian inference combining cylinder pressure and vibration block measurement in a Diesel engine

    NASA Astrophysics Data System (ADS)

    Nguyen, Emmanuel; Antoni, Jerome; Grondin, Olivier

    2009-12-01

    In the automotive industry, the necessary reduction of pollutant emission for new Diesel engines requires the control of combustion events. This control is efficient provided combustion parameters such as combustion occurrence and combustion energy are relevant. Combustion parameters are traditionally measured from cylinder pressure sensors. However this kind of sensor is expensive and has a limited lifetime. Thus this paper proposes to use only one cylinder pressure on a multi-cylinder engine and to extract combustion parameters from the other cylinders with low cost knock sensors. Knock sensors measure the vibration circulating on the engine block, hence they do not all contain the information on the combustion processes, but they are also contaminated by other mechanical noises that disorder the signal. The question is how to combine the information coming from one cylinder pressure and knock sensors to obtain the most relevant combustion parameters in all engine cylinders. In this paper, the issue is addressed trough the Bayesian inference formalism. In that cylinder where a cylinder pressure sensor is mounted, combustion parameters will be measured directly. In the other cylinders, they will be measured indirectly from Bayesian inference. Experimental results obtained on a four cylinder Diesel engine demonstrate the effectiveness of the proposed algorithm toward that purpose.

  5. Effect of Fin Passage Length on Optimization of Cylinder Head Cooling Fins

    NASA Technical Reports Server (NTRS)

    Siegel, R.; Graham, R. W.

    1977-01-01

    The heat transfer performance of baffled cooling fins on cylinder heads of small, air-cooled, general-aviation aircraft engines was analyzed to determine the potential for improving cooling fin design. Flow baffles were assumed to be installed tightly against the fin end edges, an ideal baffle configuration for guiding all flow between the fins. A rectangular flow passage is thereby formed between each set of two adjacent fins, the fin base surface, and the baffle. These passages extend around each side of the cylinder head, and the cooling air absorbs heat as it flows within them. For each flow passage length, the analysis was concerned with optimizing fin spacing and thickness to achieve the best heat transfer for each fin width. Previous literature has been concerned mainly with maximizing the local fin conductance and has not considered the heating of the gas in the flow direction, which leads to higher wall temperatures at the fin passage exits. If the fins are close together, there is a large surface area, but the airflow is restricted.

  6. Focal surfaces of hyperbolic cylinders

    NASA Astrophysics Data System (ADS)

    Georgiev, Georgi Hristov; Pavlov, Milen Dimov

    2017-12-01

    Cylindrical surfaces have many applications in geometric modeling, architecture and other branches of engineering. In this paper, we describe two cylindrical surfaces associated to a given hyperbolic cylinder. The first one is a focal surface which is determined by reciprocal principle curvature of the hyperbolic cylinder. The second one is a generalized focal surface obtained by reciprocal mean curvature of the same hyperbolic cylinder. In particular, we show that each of these surfaces admits three different parametric representations. As consequence, it is proved that the focal and generalized focal surfaces of the hyperbolic cylinder are rational surfaces. An illustrative example is included.

  7. 34. VIEW FROM STATION 78 OF STRETCH SLING HYDRAULIC CYLINDER, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    34. VIEW FROM STATION 78 OF STRETCH SLING HYDRAULIC CYLINDER, PULLEY, AND LANYARDS LOCATED ON EAST SIDE OF SLC-3W MST STATION 85.5. LANYARDS (STOWED BEHIND SOME TUBING ON STATION 78 IN THIS PHOTO) PASS THROUGH OPENINGS IN STATION 78 TO BE ATTACHED NEAR TOP OF ATLAS AIRFRAME. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  8. MOVES Model Review Work Group

    EPA Pesticide Factsheets

    The FACA MOVES Review Work Group was formed under the Mobile Sources Technical Review Subcommittee (MSTRS), and is charged to provide input to EPA via the MSTRS and the Clean Air Act Advisory Committee on specific issues regarding MOVES development.

  9. 30 CFR 7.506 - Breathable air components.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Breathable air components. 7.506 Section 7.506... APPROVAL OF MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Refuge Alternatives § 7.506 Breathable air components. (a) Breathable air shall be supplied by compressed air cylinders, compressed breathable-oxygen...

  10. 30 CFR 7.506 - Breathable air components.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Breathable air components. 7.506 Section 7.506... APPROVAL OF MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Refuge Alternatives § 7.506 Breathable air components. (a) Breathable air shall be supplied by compressed air cylinders, compressed breathable-oxygen...

  11. 30 CFR 7.506 - Breathable air components.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Breathable air components. 7.506 Section 7.506... APPROVAL OF MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Refuge Alternatives § 7.506 Breathable air components. (a) Breathable air shall be supplied by compressed air cylinders, compressed breathable-oxygen...

  12. Comparison of Several Methods of Predicting the Pressure Loss at Altitude Across a Baffled Aircraft-Engine Cylinder

    NASA Technical Reports Server (NTRS)

    Neustein, Joseph; Schafer, Louis J , Jr

    1946-01-01

    Several methods of predicting the compressible-flow pressure loss across a baffled aircraft-engine cylinder were analytically related and were experimentally investigated on a typical air-cooled aircraft-engine cylinder. Tests with and without heat transfer covered a wide range of cooling-air flows and simulated altitudes from sea level to 40,000 feet. Both the analysis and the test results showed that the method based on the density determined by the static pressure and the stagnation temperature at the baffle exit gave results comparable with those obtained from methods derived by one-dimensional-flow theory. The method based on a characteristic Mach number, although related analytically to one-dimensional-flow theory, was found impractical in the present tests because of the difficulty encountered in defining the proper characteristic state of the cooling air. Accurate predictions of altitude pressure loss can apparently be made by these methods, provided that they are based on the results of sea-level tests with heat transfer.

  13. Numerical investigation of flow past 17-cylinder array of square cylinders

    NASA Astrophysics Data System (ADS)

    Shams-ul-Islam, Nazeer, Ghazala; Ying, Zhou Chao

    2018-06-01

    In this work, flow past 17-cylinder array is simulated using the two-dimensional lattice Boltzmann method. Effect of gap spacings (0.5 ≤ gx* ≤ 3, 0.5 ≤ gy* ≤ 3) and Reynolds number (Re = 75 - 150) is analyzed in details. Results are presented in the form of vorticity contours plots, time-histories of drag and lift coefficients and power spectrum of lift coefficient. Six distinct flow regimes are identified for different gap spacings and Reynolds numbers: steady flow regime, single bluff body flow regime, non-fully developed flow regime, chaotic flow regime, quasi-periodic-I flow regime and quasi-periodic-II flow regime. Chaotic flow regime is the mostly observed flow regime while the single bluff body flow regime rarely occurs for this configuration. It is observed that drag force along each cylinder in 17-cylinder array decreases in the streamwise direction for fixed Reynold number and gap spacing. C1 and C2 cylinders experience the maximum drag at small gap spacing and Reynolds number. Also the Reynolds number is found to be more effective on flow characteristics as compared to gap spacings.

  14. The Miniaturization and Reproducibility of the Cylinder Expansion Test

    NASA Astrophysics Data System (ADS)

    Rumchik, Chad; Nep, Rachel; Butler, George; Lindsay, C. Michael

    2011-06-01

    The cylinder expansion test (aka Cylex) is a standard way to measure the Gurney energy and determine the JWL coefficients of an explosive and has been utilized by the explosives community for many years. More recently, early time shock information has been found to be useful in examining the early pressure time history during the expansion of the cylinder. Work in the area of nanoenergetics has prompted Air Force researchers to develop a miniaturized version of the Cylex test, for materials with a sufficiently small critical diameter, to reduce the cost and quantity of material required for the test. This paper will cover the development of the half inch diameter miniaturized Cylex test as well as the results of a measurement systems analysis performed on the miniaturized test and the one inch diameter standard Cylex test using nitromethane sensitized with EDA as the explosive. Both tests yielded the same Gurney values with similar levels of variability - approximately 2%. 96ABW-2011-0072

  15. Air stepping in response to optic flows that move Toward and Away from the neonate.

    PubMed

    Barbu-Roth, Marianne; Anderson, David I; Desprès, Adeline; Streeter, Ryan J; Cabrol, Dominique; Trujillo, Michael; Campos, Joseph J; Provasi, Joëlle

    2014-07-01

    To shed further light on the perceptual regulation of newborn stepping, we compared neonatal air stepping in response to optic flows simulating forward or backward displacement with stepping forward on a surface. Twenty-two 3-day-olds performed four 60 s trials in which they stepped forward on a table (Tactile) or in the air in response to a pattern that moved toward (Toward) or away (Away) from them or was static (Static). Significantly more steps were taken in the Tactile and Toward conditions than the Static condition. The Away condition was intermediate to the other conditions. The knee joint activity across the entire trial was significantly greater in the Toward than the Away condition. Within-limb kinematics and between-limb coordination were very similar for steps taken in the air and on the table, particularly in the Toward and Tactile conditions. These findings highlight that visual and tactile stimulation can equally elicit neonatal stepping. © 2013 Wiley Periodicals, Inc.

  16. Massless rotating fermions inside a cylinder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ambruş, Victor E., E-mail: victor.ambrus@gmail.com; Winstanley, Elizabeth

    2015-12-07

    We study rotating thermal states of a massless quantum fermion field inside a cylinder in Minkowski space-time. Two possible boundary conditions for the fermion field on the cylinder are considered: the spectral and MIT bag boundary conditions. If the radius of the cylinder is sufficiently small, rotating thermal expectation values are finite everywhere inside the cylinder. We also study the Casimir divergences on the boundary. The rotating thermal expectation values and the Casimir divergences have different properties depending on the boundary conditions applied at the cylinder. This is due to the local nature of the MIT bag boundary condition, whilemore » the spectral boundary condition is nonlocal.« less

  17. Gripper deploying and inverting linkage

    DOEpatents

    Minichan, R.L.; Killian, M.A.

    1993-03-02

    An end effector deploying and inverting linkage. The linkage comprises an air cylinder mounted in a frame or tube, a sliding bracket next to the air cylinder, a stopping bracket depending from the frame and three, pivotally-attached links that are attached to the end effector and to each other in such a way as to be capable of inverting the end effector and translating it laterally. The first of the three links is a straight element that is moved up and down by the shaft of the air cylinder. The second link is attached at one end to the stopping bracket and to the side of the end effector at the other end. The first link is attached near the middle of the second, sharply angled link so that, as the shaft of the air cylinder moves up and down, the second link rotates about an axis perpendicular to the frame and inverts and translates the end effector. The rotation of the second link is stopped at both ends when the link engages stops on the stopping bracket. The third link, slightly angled, is attached to the sliding bracket at one end and to the end of the end effector at the other. The third helps to control the end effector in its motion.

  18. Research on cylinder processes of gasoline homogenous charge compression ignition (HCCI) engine

    NASA Astrophysics Data System (ADS)

    Cofaru, Corneliu

    2017-10-01

    This paper is designed to develop a HCCI engine starting from a spark ignition engine platform. The engine test was a single cylinder, four strokes provided with carburetor. The results of experimental research on this version were used as a baseline for the next phase of the work. After that, the engine was modified for a HCCI configuration, the carburetor was replaced by a direct fuel injection system in order to control precisely the fuel mass per cycle taking into account the measured intake air-mass. To ensure that the air - fuel mixture auto ignite, the compression ratio was increased from 9.7 to 11.5. The combustion process in HCCI regime is governed by chemical kinetics of mixture of air-fuel, rein ducted or trapped exhaust gases and fresh charge. To modify the quantities of trapped burnt gases, the exchange gas system was changed from fixed timing to variable valve timing. To analyze the processes taking place in the HCCI engine and synthesizing a control system, a model of the system which takes into account the engine configuration and operational parameters are needed. The cylinder processes were simulated on virtual model. The experimental research works were focused on determining the parameters which control the combustion timing of HCCI engine to obtain the best energetic and ecologic parameters.

  19. Solar heating system at Security State Bank, Starkville, Mississippi

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The 312 square feet of Solaron flat plate air collectors provide for 788 square feet of space heating, an estimated 55 percent of the heating load. Solar heated air is distributed to the 96 cubic foot steel cylinder, which contains two inch diameter rocks. An air handler unit moves the air over the collector and into the steel cylinder. Four motorized dampers and two gravity dampers are also part of the system. A Solaron controller which has sensors located at the collectors, rock storage, and at the return air, automatically controls the system. Auxiliary heating energy is provided by electric resistance duct heaters.

  20. Relativistic Bessel cylinders

    NASA Astrophysics Data System (ADS)

    Krisch, J. P.; Glass, E. N.

    2014-10-01

    A set of cylindrical solutions to Einstein's field equations for power law densities is described. The solutions have a Bessel function contribution to the metric. For matter cylinders regular on axis, the first two solutions are the constant density Gott-Hiscock string and a cylinder with a metric Airy function. All members of this family have the Vilenkin limit to their mass per length. Some examples of Bessel shells and Bessel motion are given.

  1. Harnessing electrical power from vortex-induced vibration of a circular cylinder

    NASA Astrophysics Data System (ADS)

    Soti, Atul Kumar; Thompson, Mark C.; Sheridan, John; Bhardwaj, Rajneesh

    2017-04-01

    The generation of electrical power from Vortex-Induced Vibration (VIV) of a cylinder is investigated numerically. The cylinder is free to oscillate in the direction transverse to the incoming flow. The cylinder is attached to a magnet that can move along the axis of a coil made from conducting wire. The magnet and the coil together constitute a basic electrical generator. When the cylinder undergoes VIV, the motion of the magnet creates a voltage across the coil, which is connected to a resistive load. By Lenz's law, induced current in the coil applies a retarding force to the magnet. Effectively, the electrical generator applies a damping force on the cylinder with a spatially varying damping coefficient. For the initial investigation reported here, the Reynolds number is restricted to Re < 200, so that the flow is laminar and two-dimensional (2D). The incompressible 2D Navier-Stokes equations are solved using an extensively validated spectral-element based solver. The effects of the electromagnetic (EM) damping constant xi_m, coil dimensions (radius a, length L), and mass ratio on the electrical power extracted are quantified. It is found that there is an optimal value of xi_m (xi_opt) at which maximum electrical power is generated. As the radius or length of the coil is increased, the value of xi_opt is observed to increase. Although the maximum average power remains the same, a larger coil radius or length results in a more robust system in the sense that a relatively large amount of power can be extracted when xi_m is far from xi_opt, unlike the constant damping ratio case. The average power output is also a function of Reynolds number, primarily through the increased maximum oscillation amplitude that occurs with increased Reynolds number at least within the laminar range, although the general qualitative findings seem likely to carry across to high Reynolds number VIV.

  2. Air on the Move.

    ERIC Educational Resources Information Center

    NatureScope, 1985

    1985-01-01

    Provides (1) background information on global winds, air masses, fronts, and pressure systems; (2) five activities on this topic; and (3) a ready-to-copy coloring page and worksheet. Each activity includes an objective, list of materials needed, recommended age level(s), subject area(s), and instructional strategies. (JN)

  3. Interaction of a weak shock wave with a discontinuous heavy-gas cylinder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiansheng; Yang, Dangguo; Wu, Junqiang

    2015-06-15

    The interaction between a cylindrical inhomogeneity and a weak planar shock wave is investigated experimentally and numerically, and special attention is given to the wave patterns and vortex dynamics in this scenario. A soap-film technique is realized to generate a well-controlled discontinuous cylinder (SF{sub 6} surrounded by air) with no supports or wires in the shock-tube experiment. The symmetric evolving interfaces and few disturbance waves are observed in a high-speed schlieren photography. Numerical simulations are also carried out for a detailed analysis. The refracted shock wave inside the cylinder is perturbed by the diffracted shock waves and divided into threemore » branches. When these shock branches collide, the shock focusing occurs. A nonlinear model is then proposed to elucidate effects of the wave patterns on the evolution of the cylinder. A distinct vortex pair is gradually developing during the shock-cylinder interaction. The numerical results show that a low pressure region appears at the vortex core. Subsequently, the ambient fluid is entrained into the vortices which are expanding at the same time. Based on the relation between the vortex motion and the circulation, several theoretical models of circulation in the literature are then checked by the experimental and numerical results. Most of these theoretical circulation models provide a reasonably good prediction of the vortex motion in the present configuration.« less

  4. Introducing an experimental split-cylinder to study flows with geophysical interest: First steps and first results

    NASA Astrophysics Data System (ADS)

    Rodriguez-Garcia, Jesus O.; Burguete, Javier

    2017-11-01

    A new experimental setup has been developed in order to study rotating flows. Our research is derived from the experiments carried out in our group relating to this kind of flows, and the setup is inspired by the simulations performed by Lopez & Gutierrez-Castillo using a split-cylinder flow. In their work they study the different bifurcations taking place into the flow, among others, finding inertial waves in different configurations of the movement of the split-cylinder. Our setup consists in a split-cylinder in which each half can move in co-rotation or in counter-rotation. Moreover, we can set the rotation velocity of each half independently in order to study these different configurations of the flow. The aspect ratio defined as Γ = H / R can be modified, where H is the internal length of the cylinder and R is its radius. With this setup, we study the flow developed inside the split-cylinder depending on the Reynolds number like the different symmetry-breaking that should appear according to Lopez & Gutierrez-Castillo. To obtain the experimental data we use both laser Doppler velocimetry (LDV) and particle image velocimetry (PIV) techniques. The firsts results got are in the co-rotation case rotating one half faster than the other. We acknowledge support from Spanish Government Grant FIS 2014-54101-P. Jesús O. Rodríguez-García acknowledge research Grant from Asociación de Amigos de la Universidad de Navarra.

  5. A novel multiport cylinder dryer.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, S. U.; Yu, W.; France, D. M.

    2001-02-01

    A multiport dryer design concept that could create breakthroughs in the drying of pulp and paper is under development. The feasibility of this novel concept was demonstrated in a proof-of-concept test. Experiments were performed in a specially designed test apparatus to investigate the condensing heat-transfer characteristics of a single channel (representative of a multiport cylinder dryer) under typical operating conditions. The experimental results showed that multiport cylinder-dryer technology provides very high heat-transfer coefficients of 15,000 W/m{sup 2}{center_dot}K (2600 Btu/h{center_dot}ft{sup 2} {sup o}F) and a highly uniform distribution of cylinder-wall temperature. These experimental results suggest that a multiport cylinder dryer canmore » increase the rate of paper drying compared with a conventional cylinder dryer. The increased dryer efficiency translates into either a reduction in the number of dryers at the same level of production or an increase in the rate of production with the same number of dryers.« less

  6. Acoustic power of a moving point source in a moving medium

    NASA Technical Reports Server (NTRS)

    Cole, J. E., III; Sarris, I. I.

    1976-01-01

    The acoustic power output of a moving point-mass source in an acoustic medium which is in uniform motion and infinite in extent is examined. The acoustic medium is considered to be a homogeneous fluid having both zero viscosity and zero thermal conductivity. Two expressions for the acoustic power output are obtained based on a different definition cited in the literature for the average energy-flux vector in an acoustic medium in uniform motion. The acoustic power output of the source is found by integrating the component of acoustic intensity vector in the radial direction over the surface of an infinitely long cylinder which is within the medium and encloses the line of motion of the source. One of the power expressions is found to give unreasonable results even though the flow is uniform.

  7. PBX 9502 air-gap tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dickson, Peter; Novak, Alan M.; Foley, Timothy J.

    A small number of simple air-gap tests were performed on 1-inch diameter PBX 9502 cylinders to determine an approximate threshold for detonation failure. The primary diagnostics were streak imaging and dent measurements in a steel witness plate. Relight was found to occur, with negligible excess transit time, for air gaps up to 1 mm. Relight did not occur with a 3-mm air gap.

  8. Multi-cylinder hot gas engine

    DOEpatents

    Corey, John A.

    1985-01-01

    A multi-cylinder hot gas engine having an equal angle, V-shaped engine block in which two banks of parallel, equal length, equally sized cylinders are formed together with annular regenerator/cooler units surrounding each cylinder, and wherein the pistons are connected to a single crankshaft. The hot gas engine further includes an annular heater head disposed around a central circular combustor volume having a new balanced-flow hot-working-fluid manifold assembly that provides optimum balanced flow of the working fluid through the heater head working fluid passageways which are connected between each of the cylinders and their respective associated annular regenerator units. This balanced flow provides even heater head temperatures and, therefore, maximum average working fluid temperature for best operating efficiency with the use of a single crankshaft V-shaped engine block.

  9. Moving in a moving medium: new perspectives on flight

    PubMed Central

    Shepard, Emily L. C.; Portugal, Steven J.

    2016-01-01

    One of the defining features of the aerial environment is its variability; air is almost never still. This has profound consequences for flying animals, affecting their flight stability, speed selection, energy expenditure and choice of flight path. All these factors have important implications for the ecology of flying animals, and the ecosystems they interact with, as well as providing bio-inspiration for the development of unmanned aerial vehicles. In this introduction, we touch on the factors that drive the variability in airflows, the scales of variability and the degree to which given airflows may be predictable. We then summarize how papers in this volume advance our understanding of the sensory, biomechanical, physiological and behavioural responses of animals to air flows. Overall, this provides insight into how flying animals can be so successful in this most fickle of environments. This article is part of the themed issue ‘Moving in a moving medium: new perspectives on flight’. PMID:27528772

  10. Heat Transfer from a Horizontal Cylinder Rotating in Oil

    NASA Technical Reports Server (NTRS)

    Seban, R. A.; Johnson, H. A.

    1959-01-01

    Measurements of the heat transfer from a horizontal cylinder rotating about its axis have been made with oil as the surrounding fluid to provide an addition to the heat-transfer results for this system heretofore available only for air. The results embrace a Prandtl number range from about 130 to 660, with Reynolds numbers up to 3 x 10(exp 4), and show an increasing dependence of free-convection heat transfer on rotation as the Prandtl number is increased by reducing the oil temperature. Some correlation of this effect, which agrees with the prior results for air, has been achieved. At higher rotative speeds the flow becomes turbulent, the free- convection effect vanishes, and the results with oil can be correlated generally with those for air and with mass-transfer results for even higher Prandtl numbers. For this system, however, the analogy calculations which have successfully related the heat transfer to the friction for pipe flows at high Prandtl numbers fail.

  11. Kinetics of Some Metal Atom and Metal Fluoride Oxidation Reactions Relevant to Air Force Technology Development

    DTIC Science & Technology

    1981-03-01

    Products and Chemicals , Inc ., supplied a complete analysis with each cylinder. Initial measurements with the original batch (cylinder 1) were considered...NF 3] in this limited tempera- ture range. The NFs used in these experiments was made available by Kelly Air Force Base. The manufacturer, Air

  12. Multiple Cylinder Free-Piston Stirling Machinery

    NASA Astrophysics Data System (ADS)

    Berchowitz, David M.; Kwon, Yong-Rak

    In order to improve the specific power of piston-cylinder type machinery, there is a point in capacity or power where an advantage accrues with increasing number of piston-cylinder assemblies. In the case of Stirling machinery where primary energy is transferred across the casing wall of the machine, this consideration is even more important. This is due primarily to the difference in scaling of basic power and the required heat transfer. Heat transfer is found to be progressively limited as the size of the machine increases. Multiple cylinder machines tend to preserve the surface area to volume ratio at more favorable levels. In addition, the spring effect of the working gas in the so-called alpha configuration is often sufficient to provide a high frequency resonance point that improves the specific power. There are a number of possible multiple cylinder configurations. The simplest is an opposed pair of piston-displacer machines (beta configuration). A three-cylinder machine requires stepped pistons to obtain proper volume phase relationships. Four to six cylinder configurations are also possible. A small demonstrator inline four cylinder alpha machine has been built to demonstrate both cooling operation and power generation. Data from this machine verifies theoretical expectations and is used to extrapolate the performance of future machines. Vibration levels are discussed and it is argued that some multiple cylinder machines have no linear component to the casing vibration but may have a nutating couple. Example applications are discussed ranging from general purpose coolers, computer cooling, exhaust heat power extraction and some high power engines.

  13. Natural convective heat transfer from square cylinder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novomestský, Marcel, E-mail: marcel.novomestsky@fstroj.uniza.sk; Smatanová, Helena, E-mail: helena.smatanova@fstroj.uniza.sk; Kapjor, Andrej, E-mail: andrej.kapjor@fstroj.uniza.sk

    This article is concerned with natural convective heat transfer from square cylinder mounted on a plane adiabatic base, the cylinders having an exposed cylinder surface according to different horizontal angle. The cylinder receives heat from a radiating heater which results in a buoyant flow. There are many industrial applications, including refrigeration, ventilation and the cooling of electrical components, for which the present study may be applicable.

  14. A Sequence of Cylinders

    ERIC Educational Resources Information Center

    Johnson, Erica

    2006-01-01

    Hoping to develop in her students an understanding of mathematics as a way of thinking more than a way of doing, the author of this article describes how her students worked on a spatial reasoning problem stemming from an iteratively constructed sequence of cylinders. She presents an activity of making cylinders out of paper models, and for every…

  15. Homogenous charge compression ignition engine having a cylinder including a high compression space

    DOEpatents

    Agama, Jorge R.; Fiveland, Scott B.; Maloney, Ronald P.; Faletti, James J.; Clarke, John M.

    2003-12-30

    The present invention relates generally to the field of homogeneous charge compression engines. In these engines, fuel is injected upstream or directly into the cylinder when the power piston is relatively close to its bottom dead center position. The fuel mixes with air in the cylinder as the power piston advances to create a relatively lean homogeneous mixture that preferably ignites when the power piston is relatively close to the top dead center position. However, if the ignition event occurs either earlier or later than desired, lowered performance, engine misfire, or even engine damage, can result. Thus, the present invention divides the homogeneous charge between a controlled volume higher compression space and a lower compression space to better control the start of ignition.

  16. High-Altitude Flight Cooling Investigation of a Radial Air-Cooled Engine

    NASA Technical Reports Server (NTRS)

    Manganiello, Eugene J; Valerino, Michael F; Bell, E Barton

    1947-01-01

    An investigation of the cooling of an 18-cylinder, twin-row, radial, air-cooled engine in a high-performance pursuit airplane has been conducted for variable engine and flight conditions at altitudes ranging from 5000 to 35,000 feet in order to provide a basis for predicting high-altitude cooling performance from sea-level or low altitude experimental results. The engine cooling data obtained were analyzed by the usual NACA cooling-correlation method wherein cylinder-head and cylinder-barrel temperatures are related to the pertinent engine and cooling-air variables. A theoretical analysis was made of the effect on engine cooling of the change of density of the cooling air across the engine (the compressibility effect), which becomes of increasing importance as altitude is increased. Good agreement was obtained between the results of the theoretical analysis and the experimental data.

  17. Effect of Maximum Cruise-power Operation at Ultra-lean Mixture and Increased Spark Advance on the Mechanical Condition of Cylinder Components

    NASA Technical Reports Server (NTRS)

    Harris, Herbert B.; Duffy, Robert T.; Erwin, Robert D., Jr.

    1945-01-01

    A continuous 50-hour test was conducted to determine the effect of maximum cruise-power operation at ultra-lean fuel-air mixture and increased spark advance on the mechanical conditions of cylinder components. The test was conducted on a nine-cylinder air-cooled radial engine at the following conditions:brake horsepower, 750; engine speed, 1900 rpm; brake mean effective pressure, 172 pounds per square inch; fuel-air ratio, 0.052; spark advance, 30 deg B.T.C.; and maximum rear-spark-plug-bushing temperature, 400 F. In addition to the data on corrosion and wear, data are presented and briefly discussed on the effect of engine operation at the conditions of this test on economy, knock, preignition, and mixture distribution. Cylinder, piston, and piston-ring wear was small and all cylinder component were in good condition at the conclusion of the 50-hour test except that all exhaust-valve guides were bellmouthed beyond the Army's specified limit and one exhaust-valve face was lightly burned. It is improbable that the light burning in one spot of the valve face would have progressed further because the burn was filled with a hard deposit so that the valve face formed an unbroken seal and the mating seat showed no evidence of burning. The bellmouthing of the exhaust-valve guides is believed to have been a result of the heavy carbon and lead-oxide deposits, which were present on the head end of the guided length of the exhaust-valve stem. Engine operational the conditions of this test was shown to result In a fuel saving of 16.8 percent on a cooled-power basis as compared with operation at the conditions recommended for this engine by the Army Air Forces for the same power.

  18. Advection within side-by-side liquid micro-cylinders in a cross-flow

    NASA Astrophysics Data System (ADS)

    Dong, Qingming; Sau, Amalendu

    2017-11-01

    The gaseous SO2 entrainment from outer air stream and dispersion in binary and ternary liquid micro-cylinders appearing side-by-side are examined hereby. The separation/attachment regulated non-uniform interfacial momentum exchange creates main stream driven "primary" and shear reversed "secondary" vortices in the liquid cylinders. At separation points, the sense of rotation of the generated "primary-secondary" vortex pair remains inward directed. We define such a vortex pair as the "inflow" type. However, at stagnation or attachment points, the sense of rotation of a "primary-primary" or "secondary-secondary" vortex pair remains outward directed, and such a vortex pair is defined as the "outflow" type. For the coupled water cylinders facing an oncoming stream contaminated by gaseous SO2, its absorption and internal transport are effectively controlled by dominant "inflow" and "outflow" natured dynamics of the said vortex pairs, besides by diffusion. The evolving "inflow" natured "primary-secondary" vortex pairs at separation points actively entrain the outer SO2, whereas the "outflow" natured vortex-pairs oppose SO2 entry through the stagnation regions. Moreover, the blockage induced steady-symmetric, steady-deflected, and flip-flopping air-jets through gaps, for varied gap-ratio (1 ≤ G/R ≤ 4) and Reynolds number (30 ≤ Re ≤ 160), create distinctive impact both on quantitative SO2 absorption (mso2 ') and convective nature of the SO2 transport in upper, lower, and middle cylinders, by virtue of modified strength and size of the inflow and outflow paired vortices. The present study shows that the tiny "secondary vortices" play important roles in SO2 entrainment and in effectively controlling the local absorption rate Rs o2. The sudden acceleration and upward/downward deflection of gap-flows enhanced near-neck advective SO2 entrainment by suitably strengthening the "inflow" natured local vortex dynamics. Conversely, for the reduced size of secondary vortices

  19. Performance of personal inhalable aerosol samplers in very slowly moving air when facing the aerosol source.

    PubMed

    Witschger, O; Grinshpun, S A; Fauvel, S; Basso, G

    2004-06-01

    While personal aerosol samplers have been characterized primarily based on wind tunnel tests conducted at relatively high wind speeds, modern indoor occupational environments are usually represented by very slow moving air. Recent surveys suggest that elevated levels of occupational exposure to inhalable airborne particles are typically observed when the worker, operating in the vicinity of the dust source, faces the source. Thus, the first objective of this study was to design and test a new, low cost experimental protocol for measuring the sampling efficiency of personal inhalable aerosol samplers in the vicinity of the aerosol source when the samplers operate in very slowly moving air. In this system, an aerosol generator, which is located in the centre of a room-sized non-ventilated chamber, continuously rotates and omnidirectionally disperses test particles of a specific size. The test and reference samplers are equally distributed around the source at the same distance from the centre and operate in parallel (in most of our experiments, the total number of simultaneously operating samplers was 15). Radial aerosol transport is driven by turbulent diffusion and some natural convection. For each specific particle size and the sampler, the aerosol mass concentration is measured by weighing the collection filter. The second objective was to utilize the new protocol to evaluate three widely used aerosol samplers: the IOM Personal Inhalable Sampler, the Button Personal Inhalable Aerosol Sampler and the 25 mm Millipore filter holder (closed-face C25 cassette). The sampling efficiencies of each instrument were measured with six particle fractions, ranging from 6.9 to 76.9 micro m in their mass median aerodynamic diameter. The Button Sampler efficiency data demonstrated a good agreement with the standard inhalable convention and especially with the low air movement inhalabilty curve. The 25 mm filter holder was found to considerably under-sample the particles larger

  20. Equivalence of expressions for the radiation force on cylinders and application to elliptical cylinders

    NASA Astrophysics Data System (ADS)

    Wei, Wei; Marston, Philip L.

    2005-09-01

    Using an appropriate grouping of terms, a radiation force expression for cylinders in a standing wave based on far-field scattering [W. Wei, D. B. Thiessen, and P. L. Marston, J. Acoust. Soc. Am. 116, 202-208 (2004)] is transformed to an expression given elsewhere [F. G. Mitri, Eur. Phys. J. B 44, 71-78 (2005)]. Mitri's result is from a near-field derivation for the specific case of a circular cylinder. In the usual case, in an ideal lossless media the far-field derivation is not an approximation. The far-field derivation also applies to noncircular objects having mirror symmetry about the incident wave vector. Some general and historical aspects of far-field derivations of optical and acoustical radiation force (going back to 1909) will be noted. Our formulation yields a simple low-frequency approximation for the radiation force on elliptical cylinders by introducing approximations for the partial-wave scattering coefficients of elliptical cylinders first derived by Rayleigh. [Work supported by NASA.

  1. The simulated air flow pattern around a moving animal transport vehicle as the basis for a prospective biosecurity risk assessment.

    PubMed

    Seedorf, Jens; Schmidt, Ralf-Gunther

    2017-08-01

    Research that investigates bioaerosol emissions from animal transport vehicles (ATVs) and their importance in the spread of harmful airborne agents while the ATVs travel on roads is limited. To investigate the dynamical behaviour of theoretically released particles from a moving ATV, the open-source computational fluid dynamics (CFD) software OpenFOAM was used to calculate the external and internal air flow fields with passive and forced ventilated openings of a common ATV moving at a speed of 80 km/h. In addition to a computed flow rate of approximately 40,000 m 3 /h crossing the interior of the ATV, the visualization of the trajectories has demonstrated distinct patterns of the spatial distribution of potentially released bioaerosols in the vicinity of the ATV. Although the front openings show the highest air flow to the outside, the recirculations of air masses between the interior of the ATV and the atmosphere also occur, which complicate the emission and the dispersion characterizations. To specify the future emission rates of ATVs, a database of bioaerosol concentrations within the ATV is necessary in conjunction with high-performance computing resources to simulate the potential dispersion of bioaerosols in the environment.

  2. Free Surface Wave Interaction with a Horizontal Cylinder

    NASA Astrophysics Data System (ADS)

    Oshkai, P.; Rockwell, D.

    1999-10-01

    Classes of vortex formation from a horizontal cylinder adjacent to an undulating free-surface wave are characterized using high-image-density particle image velocimetry. Instantaneous representations of the velocity field, streamline topology and vorticity patterns yield insight into the origin of unsteady loading of the cylinder. For sufficiently deep submergence of the cylinder, the orbital nature of the wave motion results in multiple sites of vortex development, i.e., onset of vorticity concentrations, along the surface of the cylinder, followed by distinctive types of shedding from the cylinder. All of these concentrations of vorticity then exhibit orbital motion about the cylinder. Their contributions to the instantaneous values of the force coefficients are assessed by calculating moments of vorticity. It is shown that large contributions to the moments and their rate of change with time can occur for those vorticity concentrations having relatively small amplitude orbital trajectories. In a limiting case, collision with the surface of the cylinder can occur. Such vortex-cylinder interactions exhibit abrupt changes in the streamline topology during the wave cycle, including abrupt switching of the location of saddle points in the wave. The effect of nominal depth of submergence of the cylinder is characterized in terms of the time history of patterns of vorticity generated from the cylinder and the free surface. Generally speaking, generic types of vorticity concentrations are formed from the cylinder during the cycle of the wave motion for all values of submergence. The proximity of the free surface, however, can exert a remarkable influence on the initial formation, the eventual strength, and the subsequent motion of concentrations of vorticity. For sufficiently shallow submergence, large-scale vortex formation from the upper surface of the cylinder is inhibited and, in contrast, that from the lower surface of the cylinder is intensified. Moreover

  3. Critically safe vacuum pickup for use in wet or dry cleanup of radioactive materials

    DOEpatents

    Zeren, Joseph D.

    1994-01-01

    A vacuum pickup of critically safe quantity and geometric shape is used in cleanup of radioactive materials. Collected radioactive material is accumulated in four vertical, parallel, equally spaced canisters arranged in a cylinder configuration. Each canister contains a filter bag. An upper intake manifold includes four 90 degree spaced, downward facing nipples. Each nipple communicates with the top of a canister. The bottom of each canister communicates with an exhaust manifold comprising four radially extending tubes that meet at the bottom of a centrally located vertical cylinder. The top of the central cylinder terminates at a motor/fan power head. A removable HEPA filter is located intermediate the top of the central cylinder and the power head. Four horizontal bypass tubes connect the top of the central cylinder to the top of each of the canisters. Air enters the vacuum cleaner via a hose connected to the intake manifold. Air then travels down the canisters, where particulate material is accumulated in generally equal quantities in each filter bag. Four air paths of bag filtered air then pass radially inward to the bottom of the central cylinder. Air moves up the central cylinder, through the HEPA filter, through a vacuum fan compartment, and exits the vacuum cleaner. A float air flow valve is mounted at the top of the central cylinder. When liquid accumulates to a given level within the central cylinder, the four bypass tubes, and the four canisters, suction is terminated by operation of the float valve.

  4. Stabilization of flow past a rounded cylinder

    NASA Astrophysics Data System (ADS)

    Samtaney, Ravi; Zhang, Wei

    2016-11-01

    We perform global linear stability analysis on low-Re flow past a rounded cylinder. The cylinder corners are rounded with a radius R, normalized as R+ = R / D where D is the cylinder diameter, and its effect on the flow stability characteristics is investigated. We compute the critical Reynolds number (Recr) for the onset of first instability, and quantify the perturbation growth rate for the super-critical flows. It is found that the flow can be stabilized by partially rounding the cylinder. Compared with the square and circular cylinders, the partially rounded cylinder has a higher Recr , attaining a maximum at around R+ = 0 . 30 , and the perturbation growth rate of the super-critical flows is reduced for Re <= 100 . We perform sensitivity analysis to explore the source of the stabilization. The growth rate sensitivity to base flow modification has two different spatial structures: the growth rate is sensitive to the wake backflow in a large region for square-like cylinders (R+ -> 0 . 00), while only the near-wake backflow is crucial for circular-like cylinders (R+ -> 0 . 50). The stability analysis results are also verified with those of the direct simulations and very good agreement is achieved. Supported by the KAUST Office of Competitive Research Funds under Award No. URF/1/1394-01. The supercomputer Shaheen at KAUST was utilized for the simulations.

  5. Cylinder head for internal combustion engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bell, D.W.

    1992-10-06

    This patent describes a cylinder head for attachment to a block assembly having at least one cylinder bore therein. It comprises: a cylinder head body adapted for attachment to the block assembly and having at least one side-entry fluid intake opening in communication with the cylinder bore, and having at least one side-exit exhaust fluid opening in communication with the cylinderbore; an intake spool mounted for axial rotation within the intake spool cavity; an exhaust spool mounted for axial rotation within the exhaust spool cavity; timing means for rotating the intake spool and the exhaust spool; and at least onemore » intake port and at least one exhaust port.« less

  6. 30 CFR 57.4601 - Oxygen cylinder storage.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Oxygen cylinder storage. 57.4601 Section 57.4601 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... and Control Welding/cutting/compressed Gases § 57.4601 Oxygen cylinder storage. Oxygen cylinders shall...

  7. 30 CFR 57.4601 - Oxygen cylinder storage.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Oxygen cylinder storage. 57.4601 Section 57.4601 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... and Control Welding/cutting/compressed Gases § 57.4601 Oxygen cylinder storage. Oxygen cylinders shall...

  8. 30 CFR 57.4601 - Oxygen cylinder storage.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Oxygen cylinder storage. 57.4601 Section 57.4601 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... and Control Welding/cutting/compressed Gases § 57.4601 Oxygen cylinder storage. Oxygen cylinders shall...

  9. 30 CFR 57.4601 - Oxygen cylinder storage.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Oxygen cylinder storage. 57.4601 Section 57.4601 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... and Control Welding/cutting/compressed Gases § 57.4601 Oxygen cylinder storage. Oxygen cylinders shall...

  10. Maximal liquid bridges between horizontal cylinders

    NASA Astrophysics Data System (ADS)

    Cooray, Himantha; Huppert, Herbert E.; Neufeld, Jerome A.

    2016-08-01

    We investigate two-dimensional liquid bridges trapped between pairs of identical horizontal cylinders. The cylinders support forces owing to surface tension and hydrostatic pressure that balance the weight of the liquid. The shape of the liquid bridge is determined by analytically solving the nonlinear Laplace-Young equation. Parameters that maximize the trapping capacity (defined as the cross-sectional area of the liquid bridge) are then determined. The results show that these parameters can be approximated with simple relationships when the radius of the cylinders is small compared with the capillary length. For such small cylinders, liquid bridges with the largest cross-sectional area occur when the centre-to-centre distance between the cylinders is approximately twice the capillary length. The maximum trapping capacity for a pair of cylinders at a given separation is linearly related to the separation when it is small compared with the capillary length. The meniscus slope angle of the largest liquid bridge produced in this regime is also a linear function of the separation. We additionally derive approximate solutions for the profile of a liquid bridge, using the linearized Laplace-Young equation. These solutions analytically verify the above-mentioned relationships obtained for the maximization of the trapping capacity.

  11. 30 CFR 56.4601 - Oxygen cylinder storage.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Oxygen cylinder storage. 56.4601 Section 56.4601 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... Control Welding/cutting/compressed Gases § 56.4601 Oxygen cylinder storage. Oxygen cylinders shall not be...

  12. 30 CFR 56.4601 - Oxygen cylinder storage.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Oxygen cylinder storage. 56.4601 Section 56.4601 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... Control Welding/cutting/compressed Gases § 56.4601 Oxygen cylinder storage. Oxygen cylinders shall not be...

  13. 30 CFR 56.4601 - Oxygen cylinder storage.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Oxygen cylinder storage. 56.4601 Section 56.4601 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... Control Welding/cutting/compressed Gases § 56.4601 Oxygen cylinder storage. Oxygen cylinders shall not be...

  14. 30 CFR 56.4601 - Oxygen cylinder storage.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Oxygen cylinder storage. 56.4601 Section 56.4601 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... Control Welding/cutting/compressed Gases § 56.4601 Oxygen cylinder storage. Oxygen cylinders shall not be...

  15. Study on the influence of supplying compressed air channels and evicting channels on pneumatical oscillation systems for vibromooshing

    NASA Astrophysics Data System (ADS)

    Glăvan, D. O.; Radu, I.; Babanatsas, T.; Babanatis Merce, R. M.; Kiss, I.; Gaspar, M. C.

    2018-01-01

    The paper presents a pneumatic system with two oscillating masses. The system is composed of a cylinder (framework) with mass m1, which has a piston with mass m2 inside. The cylinder (framework system) has one supplying channel for compressed air and one evicting channel for each work chamber (left and right of the piston). Functionality of the piston position comparatively with the cylinder (framework) is possible through the supplying or evicting of compressed air. The variable force that keeps the movement depends on variation of the pressure that is changing depending on the piston position according to the cylinder (framework) and to the section form that is supplying and evicting channels with compressed air. The paper presents the physical model/pattern, the mathematical model/pattern (differential equations) and numerical solution of the differential equations in hypothesis with the section form of supplying and evicting channels with compressed air is rectangular (variation linear) or circular (variation nonlinear).

  16. 46 CFR 197.338 - Compressed gas cylinders.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... STANDARDS GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.338 Compressed gas cylinders. Each compressed gas cylinder must— (a) Be stored in a ventilated area; (b) Be protected from excessive heat; (c... 46 Shipping 7 2010-10-01 2010-10-01 false Compressed gas cylinders. 197.338 Section 197.338...

  17. AIRES and RAPEAS on the Move

    NASA Technical Reports Server (NTRS)

    Janches, Diego; Brunini, Claudio

    2011-01-01

    We report on this presentation an update on two closely related projects with relevance to LISN: AIRES (Argentina Ionospheric Radar Experiment Station) and RAPEAS (Spanish acronym for Argentina Network for Upper Atmosphere Research). AIRES' main goal is the deployment and long term operation of a face of the Afvance Modular Incoherent Scatter Radar (AMISR) close to La Plata city, in Argentina, where it is possible to perform ionospheric measurements of the geomagnetic conjugate point of the Arecibo Observatory in Puerto Rico. The initial construction of 16 AMISR panels and the infrastructure for the their deployment in Argentina have been initiated in March 2011, in the framework of a memorandum of understanding agreed between the U.S. National Science Foundation (NSF) and the Argentina National Council for Scientific and Technical Research (CONICET). In addition, in August 2011, CONICET created RAPEAS, which main objective is to maximize the benefits of AIRES as well as other networks and instruments in Argentina dedicated to Upper Atmosphere research. Over forty scientist and engineers from fifteen scientific and academic institutions are currently part of RAPE AS. Both, RAPEAS and AIRES will create a great synergy within the Argentina Upper Atmosphere community and will open new opportunities for international collaborations among which, the LISN project should play a relevant role.

  18. Vision-guided gripping of a cylinder

    NASA Technical Reports Server (NTRS)

    Nicewarner, Keith E.; Kelley, Robert B.

    1991-01-01

    The motivation for vision-guided servoing is taken from tasks in automated or telerobotic space assembly and construction. Vision-guided servoing requires the ability to perform rapid pose estimates and provide predictive feature tracking. Monocular information from a gripper-mounted camera is used to servo the gripper to grasp a cylinder. The procedure is divided into recognition and servo phases. The recognition stage verifies the presence of a cylinder in the camera field of view. Then an initial pose estimate is computed and uncluttered scan regions are selected. The servo phase processes only the selected scan regions of the image. Given the knowledge, from the recognition phase, that there is a cylinder in the image and knowing the radius of the cylinder, 4 of the 6 pose parameters can be estimated with minimal computation. The relative motion of the cylinder is obtained by using the current pose and prior pose estimates. The motion information is then used to generate a predictive feature-based trajectory for the path of the gripper.

  19. Fano-like resonance phenomena by flexural shell modes in sound transmission through two-dimensional periodic arrays of thin-walled hollow cylinders

    NASA Astrophysics Data System (ADS)

    Kosevich, Yuriy A.; Goffaux, Cecile; Sánchez-Dehesa, Jose

    2006-07-01

    It is shown that the n=2 and 3 flexural shell vibration modes of thin-walled hollow cylinders result in Fano-like resonant enhancement of sound wave transmission through or reflection from two-dimensional periodic arrays of these cylinders in air. The frequencies of the resonant modes are well described by the analytical theory of flexural (circumferential) modes of thin-walled hollow cylinders and are confirmed by finite-difference time-domain simulations. When the modes are located in the band gaps of the phononic crystal, an enhancement of the band-gap widths is produced by the additional restoring forces caused by the flexural shell deformations. Our conclusions provide an alternative method for the vibration control of airborne phononic crystals.

  20. Low Mass-Damping Vortex-Induced Vibrations of a Single Cylinder at Moderate Reynolds Number.

    PubMed

    Jus, Y; Longatte, E; Chassaing, J-C; Sagaut, P

    2014-10-01

    The feasibility and accuracy of large eddy simulation is investigated for the case of three-dimensional unsteady flows past an elastically mounted cylinder at moderate Reynolds number. Although these flow problems are unconfined, complex wake flow patterns may be observed depending on the elastic properties of the structure. An iterative procedure is used to solve the structural dynamic equation to be coupled with the Navier-Stokes system formulated in a pseudo-Eulerian way. A moving mesh method is involved to deform the computational domain according to the motion of the fluid structure interface. Numerical simulations of vortex-induced vibrations are performed for a freely vibrating cylinder at Reynolds number 3900 in the subcritical regime under two low mass-damping conditions. A detailed physical analysis is provided for a wide range of reduced velocities, and the typical three-branch response of the amplitude behavior usually reported in the experiments is exhibited and reproduced by numerical simulation.

  1. Measurements of the Flowfield Interaction Between Tandem Cylinders

    NASA Technical Reports Server (NTRS)

    Neuhart, Dan H.; Jenkins, Luther N.; Choudhari, Meelan M.; Khorrami, Mehdi R.

    2009-01-01

    This paper presents the most recent measurements from an ongoing investigation of the unsteady wake interference between a pair of circular cylinders in tandem. The purpose of this investigation is to help build an in-depth experimental database for this canonical flow configuration that embodies the effects of component interaction in landing gear noise. This new set of measurements augments the previous database at the primary Reynolds number (based on tunnel speed and cylinder diameter) of 1.66 105 in four important respects. First, better circumferential resolution of surface pressure fluctuations is obtained via cylinder "clocking". Second, higher resolution particle image velocimetry measurements of the shear layer separating from the cylinders are achieved. Third, the effects of simultaneous boundary layer trips along both the front and rear cylinders, versus front cylinder alone in the previous measurements, are studied. Lastly, on-surface and off-surface characteristics of unsteady flow near the "critical" cylinder spacing, wherein the flow switches intermittently between two states that are characteristic of lower and higher spacings, are examined. This critical spacing occurs in the middle of a relatively sudden change in the drag of either cylinder and is characterized by a loud intermittent noise and a flow behavior that randomly transitions between shear layer attachment to the rear cylinder and constant shedding and rollup in front of it. Analysis of this bistable flow state reveals much larger spanwise correlation lengths of surface pressure fluctuations than those at larger and smaller values of the cylinder spacing.

  2. Comparison of aerodynamic noise from three nose-cylinder combinations

    NASA Technical Reports Server (NTRS)

    Guenther, R. A.; Reding, M. P.

    1970-01-01

    Results of experiments with three different cylinder and blunted nose combinations are discussed. Combinations include smooth cylinder with single 15 deg cone, smooth cylinder with double cone of 25 and 10 deg, and longitudinally corrugated cylinder with similar double cone.

  3. Knock probability estimation through an in-cylinder temperature model with exogenous noise

    NASA Astrophysics Data System (ADS)

    Bares, P.; Selmanaj, D.; Guardiola, C.; Onder, C.

    2018-01-01

    This paper presents a new knock model which combines a deterministic knock model based on the in-cylinder temperature and an exogenous noise disturbing this temperature. The autoignition of the end-gas is modelled by an Arrhenius-like function and the knock probability is estimated by propagating a virtual error probability distribution. Results show that the random nature of knock can be explained by uncertainties at the in-cylinder temperature estimation. The model only has one parameter for calibration and thus can be easily adapted online. In order to reduce the measurement uncertainties associated with the air mass flow sensor, the trapped mass is derived from the in-cylinder pressure resonance, which improves the knock probability estimation and reduces the number of sensors needed for the model. A four stroke SI engine was used for model validation. By varying the intake temperature, the engine speed, the injected fuel mass, and the spark advance, specific tests were conducted, which furnished data with various knock intensities and probabilities. The new model is able to predict the knock probability within a sufficient range at various operating conditions. The trapped mass obtained by the acoustical model was compared in steady conditions by using a fuel balance and a lambda sensor and differences below 1 % were found.

  4. An investigation of crankshaft oscillations for cylinder health diagnostics

    NASA Astrophysics Data System (ADS)

    Geveci, Mert; Osburn, Andrew W.; Franchek, Matthew A.

    2005-09-01

    The vibrational characteristics of an internal combustion engine crankshaft are investigated from a cylinder health diagnostics point of view. Experimental results from a six-cylinder industrial diesel engine are presented to demonstrate the effects of cylinder imbalance on the individual harmonic components of the engine speed signal. A crank-angle domain numerical model of the crankshaft dynamics for a six-cylinder industrial diesel engine is also adopted to establish the effects of continuous low-power production in individual cylinders of a multi-cylinder engine. Outline of a diagnostics algorithm that makes use of the properties of crankshaft vibration behaviour is provided. In particular, crank-angle domain notch filters are employed to extact the harmonic components of engine speed. The outlined method can be implemented for individual cylinder health diagnostics across a family of multi-cylinder engines and can be formulated to handle changes in crankshaft characteristics due to replacement of mechanical components and/or wear.

  5. 49 CFR 178.68 - Specification 4E welded aluminum cylinders.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... to cylinder by welding by inert gas shielded arc process or by threads. If threads are used, they... process and cylinders with longitudinal seams are not authorized. (b) Authorized material. The cylinder...'s lot number. (d) Manufacture. Cylinders must be manufactured using equipment and processes adequate...

  6. 49 CFR 178.68 - Specification 4E welded aluminum cylinders.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... to cylinder by welding by inert gas shielded arc process or by threads. If threads are used, they... process and cylinders with longitudinal seams are not authorized. (b) Authorized material. The cylinder...'s lot number. (d) Manufacture. Cylinders must be manufactured using equipment and processes adequate...

  7. 49 CFR 178.68 - Specification 4E welded aluminum cylinders.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... to cylinder by welding by inert gas shielded arc process or by threads. If threads are used, they... process and cylinders with longitudinal seams are not authorized. (b) Authorized material. The cylinder...'s lot number. (d) Manufacture. Cylinders must be manufactured using equipment and processes adequate...

  8. An immersed boundary formulation for simulating high-speed compressible viscous flows with moving solids

    NASA Astrophysics Data System (ADS)

    Qu, Yegao; Shi, Ruchao; Batra, Romesh C.

    2018-02-01

    We present a robust sharp-interface immersed boundary method for numerically studying high speed flows of compressible and viscous fluids interacting with arbitrarily shaped either stationary or moving rigid solids. The Navier-Stokes equations are discretized on a rectangular Cartesian grid based on a low-diffusion flux splitting method for inviscid fluxes and conservative high-order central-difference schemes for the viscous components. Discontinuities such as those introduced by shock waves and contact surfaces are captured by using a high-resolution weighted essentially non-oscillatory (WENO) scheme. Ghost cells in the vicinity of the fluid-solid interface are introduced to satisfy boundary conditions on the interface. Values of variables in the ghost cells are found by using a constrained moving least squares method (CMLS) that eliminates numerical instabilities encountered in the conventional MLS formulation. The solution of the fluid flow and the solid motion equations is advanced in time by using the third-order Runge-Kutta and the implicit Newmark integration schemes, respectively. The performance of the proposed method has been assessed by computing results for the following four problems: shock-boundary layer interaction, supersonic viscous flows past a rigid cylinder, moving piston in a shock tube and lifting off from a flat surface of circular, rectangular and elliptic cylinders triggered by shock waves, and comparing computed results with those available in the literature.

  9. Flow past a rotating cylinder

    NASA Astrophysics Data System (ADS)

    Mittal, Sanjay; Kumar, Bhaskar

    2003-02-01

    Flow past a spinning circular cylinder placed in a uniform stream is investigated via two-dimensional computations. A stabilized finite element method is utilized to solve the incompressible Navier Stokes equations in the primitive variables formulation. The Reynolds number based on the cylinder diameter and free-stream speed of the flow is 200. The non-dimensional rotation rate, [alpha] (ratio of the surface speed and freestream speed), is varied between 0 and 5. The time integration of the flow equations is carried out for very large dimensionless time. Vortex shedding is observed for [alpha] < 1.91. For higher rotation rates the flow achieves a steady state except for 4.34 < [alpha] < 4:70 where the flow is unstable again. In the second region of instability, only one-sided vortex shedding takes place. To ascertain the instability of flow as a function of [alpha] a stabilized finite element formulation is proposed to carry out a global, non-parallel stability analysis of the two-dimensional steady-state flow for small disturbances. The formulation and its implementation are validated by predicting the Hopf bifurcation for flow past a non-rotating cylinder. The results from the stability analysis for the rotating cylinder are in very good agreement with those from direct numerical simulations. For large rotation rates, very large lift coefficients can be obtained via the Magnus effect. However, the power requirement for rotating the cylinder increases rapidly with rotation rate.

  10. Simple method to measure the refractive index of liquid with graduated cylinder and beaker.

    PubMed

    An, Yu-Kuan

    2017-12-01

    A simple method is introduced to measure the refractive index (RI) of a liquid with an experimental device composed of a graduated cylinder and a beaker which are coaxial. A magnified image of the graduated cylinder is formed as the liquid is poured into the beaker. Optical path analysis indicates that the RI of the liquid is equal to the product of the image's diameter magnification and the RI of air, irrelevant to the beaker. Theoretically, the RI measurement range is unlimited and the liquid dosage could be small as well. The device is used to carry out experiments by means of both the photographic method and telescope method to measure RIs of three kinds of liquids. The results show that the measured RIs all fit their published values well.

  11. Simple method to measure the refractive index of liquid with graduated cylinder and beaker

    NASA Astrophysics Data System (ADS)

    An, Yu-Kuan

    2017-12-01

    A simple method is introduced to measure the refractive index (RI) of a liquid with an experimental device composed of a graduated cylinder and a beaker which are coaxial. A magnified image of the graduated cylinder is formed as the liquid is poured into the beaker. Optical path analysis indicates that the RI of the liquid is equal to the product of the image's diameter magnification and the RI of air, irrelevant to the beaker. Theoretically, the RI measurement range is unlimited and the liquid dosage could be small as well. The device is used to carry out experiments by means of both the photographic method and telescope method to measure RIs of three kinds of liquids. The results show that the measured RIs all fit their published values well.

  12. Optimized Dose Distribution of Gammamed Plus Vaginal Cylinders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Supe, Sanjay S.; Bijina, T.K.; Varatharaj, C.

    2009-04-01

    Endometrial carcinoma is the most common malignancy arising in the female genital tract. Intracavitary vaginal cuff irradiation may be given alone or with external beam irradiation in patients determined to be at risk for locoregional recurrence. Vaginal cylinders are often used to deliver a brachytherapy dose to the vaginal apex and upper vagina or the entire vaginal surface in the management of postoperative endometrial cancer or cervical cancer. The dose distributions of HDR vaginal cylinders must be evaluated carefully, so that clinical experiences with LDR techniques can be used in guiding optimal use of HDR techniques. The aim of thismore » study was to optimize dose distribution for Gammamed plus vaginal cylinders. Placement of dose optimization points was evaluated for its effect on optimized dose distributions. Two different dose optimization point models were used in this study, namely non-apex (dose optimization points only on periphery of cylinder) and apex (dose optimization points on periphery and along the curvature including the apex points). Thirteen dwell positions were used for the HDR dosimetry to obtain a 6-cm active length. Thus 13 optimization points were available at the periphery of the cylinder. The coordinates of the points along the curvature depended on the cylinder diameters and were chosen for each cylinder so that four points were distributed evenly in the curvature portion of the cylinder. Diameter of vaginal cylinders varied from 2.0 to 4.0 cm. Iterative optimization routine was utilized for all optimizations. The effects of various optimization routines (iterative, geometric, equal times) was studied for the 3.0-cm diameter vaginal cylinder. The effect of source travel step size on the optimized dose distributions for vaginal cylinders was also evaluated. All optimizations in this study were carried for dose of 6 Gy at dose optimization points. For both non-apex and apex models of vaginal cylinders, doses for apex point and

  13. Stress and reliability analyses of multilayered composite cylinder under thermal and mechanical loads

    NASA Astrophysics Data System (ADS)

    Wang, Xiaohua

    The coupling resulting from the mutual influence of material thermal and mechanical parameters is examined in the thermal stress analysis of a multilayered isotropic composite cylinder subjected to sudden axisymmetric external and internal temperature. The method of complex frequency response functions together with the Fourier transform technique is utilized. Because the coupling parameters for some composite materials, such as carbon-carbon, are very small, the effect of coupling is neglected in the orthotropic thermal stress analysis. The stress distributions in multilayered orthotropic cylinders subjected to sudden axisymmetric temperature loading combined with dynamic pressure as well as asymmetric temperature loading are also obtained. The method of Fourier series together with the Laplace transform is utilized in solving the heat conduction equation and thermal stress analysis. For brittle materials, like carbon-carbon composites, the strength variability is represented by two or three parameter Weibull distributions. The 'weakest link' principle which takes into account both the carbon-carbon composite cylinders. The complex frequency response analysis is performed on a multilayered orthotropic cylinder under asymmetrical thermal load. Both deterministic and random thermal stress and reliability analyses can be based on the results of this frequency response analysis. The stress and displacement distributions and reliability of rocket motors under static or dynamic line loads are analyzed by an elasticity approach. Rocket motors are modeled as long hollow multilayered cylinders with an air core, a thick isotropic propellant inner layer and a thin orthotropic kevlar-epoxy case. The case is treated as a single orthotropic layer or a ten layered orthotropic structure. Five material properties and the load are treated as random variable with normal distributions when the reliability of the rocket motor is analyzed by the first-order, second-moment method (FOSM).

  14. Method for Making a Carbon-Carbon Cylinder Block

    NASA Technical Reports Server (NTRS)

    Ransone, Phillip O. (Inventor)

    1997-01-01

    A method for making a lightweight cylinder block composed of carbon-carbon is disclosed. The use of carbon-carbon over conventional materials. such as cast iron or aluminum, reduces the weight of the cylinder block and improves thermal efficiency of the internal combustion reciprocating engine. Due to the negligible coefficient of thermal expansion and unique strength at elevated temperatures of carbon-carbon, the piston-to-cylinder wall clearance can be small, especially when the carbon-carbon cylinder block is used in conjunction with a carbon-carbon piston. Use of the carbon-carbon cylinder block has the effect of reducing the weight of other reciprocating engine components allowing the piston to run at higher speeds and improving specific engine performance.

  15. Electrohydrodynamic ionic wind, force field, and ionic mobility in a positive dc wire-to-cylinders corona discharge in air

    NASA Astrophysics Data System (ADS)

    Monrolin, Nicolas; Praud, Olivier; Plouraboué, Franck

    2018-06-01

    Ionic wind refers to the acceleration of partially ionized air between two high-voltage electrodes. We study the momentum transfer from ions to air, resulting from ionic wind created by two asymmetric electrodes and producing a net thrust. This electrohydrodynamic (EHD) thrust, has already been measured in previous studies with digital scales. In this study, we provide more insights into the electrohydrodynamic momentum transfer for a wire-to-cylinder(s) positive dc corona discharge. We provide a simple and general theoretical derivation for EHD thrust, which is proportional to the current/mobility ratio and also to an effective distance integrated on the surface of the electrodes. By considering various electrode configurations, our investigation brings out the physical origin of previously obtained optimal configurations, associated with a better tradeoff between Coulomb forcing, friction occurring at the collector, and wake interactions. By measuring two-dimensional velocity fields using particle image velocimetry (PIV), we are able to evaluate the resulting local net force, including the pressure gradient. It is shown that the contribution of velocity fluctuations in the wake of the collecting electrode(s) must be taken into account to recover the net thrust. We confirm the proportionality between the EHD force and the current/mobility ratio experimentally, and evaluate the ion mobility from PIV measurements. A spectral analysis of the velocity fluctuations indicates a dominant frequency corresponding to a Strouhal number of 0.3 based on the ionic wind velocity and the collector size. Finally, the effective mobility of charge carriers is estimated by a PIV based method inside the drift region.

  16. Charging Characteristics of an Insulating Hollow Cylinder in Vacuum

    NASA Astrophysics Data System (ADS)

    Yamamoto, Osamu; Hayashi, Hirotaka; Wadahama, Toshihiko; Takeda, Daisuke; Hamada, Shoji; Ohsawa, Yasuharu

    This paper deals with charging characteristics of the inner surface of an insulating hollow cylinder in vacuum. We conducted measurements of electric field strength near the triple points on cathode by using an electrostatic probe. Also we conducted a computer simulation of charging based on the Secondary Electron Emission Avalanche (SEEA) mechanism. These results are compared with those obtained previously for solid cylinders. As a result, we have clarified that hollow cylinders acquire surface charge which is larger than that of solid cylinders. We have also found that charge controlling effect by roughening the inner surface, which have been proved effective to depress charging on the surface of solid cylinders in our previous studies, is limited for hollow cylinders.

  17. Theory of interacting dislocations on cylinders.

    PubMed

    Amir, Ariel; Paulose, Jayson; Nelson, David R

    2013-04-01

    We study the mechanics and statistical physics of dislocations interacting on cylinders, motivated by the elongation of rod-shaped bacterial cell walls and cylindrical assemblies of colloidal particles subject to external stresses. The interaction energy and forces between dislocations are solved analytically, and analyzed asymptotically. The results of continuum elastic theory agree well with numerical simulations on finite lattices even for relatively small systems. Isolated dislocations on a cylinder act like grain boundaries. With colloidal crystals in mind, we show that saddle points are created by a Peach-Koehler force on the dislocations in the circumferential direction, causing dislocation pairs to unbind. The thermal nucleation rate of dislocation unbinding is calculated, for an arbitrary mobility tensor and external stress, including the case of a twist-induced Peach-Koehler force along the cylinder axis. Surprisingly rich phenomena arise for dislocations on cylinders, despite their vanishing Gaussian curvature.

  18. The Charging Process in a High-speed, Single-cylinder, Four-stroke Engine

    NASA Technical Reports Server (NTRS)

    Reynolds, Blake; Schecter, Harry; Taylor, E S

    1939-01-01

    Experimental measurements and theoretical calculations were made on an aircraft-type, single cylinder engine, in order to determine the physical nature of the inlet process, especially at high piston speeds. The engine was run at speeds from 1,500 to 2,600 r.p.m. (mean piston speeds of 1,370 to 2,380 feet per minute). Measurements were made of the cylinder pressure during the inlet stroke and of the power output and volumetric efficiency. Measurements were also made, with the engine not running, to determine the resistance and mass of air in the inlet valve port at various crank angles. Results of analysis indicate that mass has an appreciable effect, but friction plays the major part in restricting flow. The observed fact that the volumetric efficiency is considerably less than 100 percent is attributed to thermal effects. An estimate was made of the magnitude of these effects in the present case, and their general nature is discussed.

  19. 49 CFR 173.316 - Cryogenic liquids in cylinders.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Cryogenic liquids in cylinders. 173.316 Section... REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.316 Cryogenic liquids in cylinders. (a) General requirements. (1) A cylinder may not be loaded with a cryogenic liquid colder than...

  20. 49 CFR 173.316 - Cryogenic liquids in cylinders.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Cryogenic liquids in cylinders. 173.316 Section... REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.316 Cryogenic liquids in cylinders. (a) General requirements. (1) A cylinder may not be loaded with a cryogenic liquid colder than...

  1. Turbine endwall single cylinder program

    NASA Technical Reports Server (NTRS)

    Langston, L. S.

    1982-01-01

    Detailed measurement of the flow field in front of a large-scale single cylinder, mounted in a wind tunnel is discussed. A better understanding of the three dimensional separation occuring in front of the cylinder on the endwall, and of the vortex system that is formed is sought. A data base with which to check analytical and numerical computer models of three dimensional flows is also anticipated.

  2. Moving Beyond Earth Gallery Opening

    NASA Image and Video Library

    2009-11-18

    David DeVorkin, Senior Curator, Collection: Astronomy and space sciences speaks during a press briefing at the new "Moving Beyond Earth," exhibition at the National Air and Space Museum in Washingon, Wednesday, Nov. 18, 2009. Moving Beyond Earth is an immersive exhibition that places visitors “in orbit” in the shuttle and space-station era to explore recent human spaceflight and future possibilities. Photo Credit: (NASA/Paul E. Alers)

  3. SMAP Gets Ready to Move

    NASA Image and Video Library

    2015-01-21

    In the Astrotech payload processing facility on Vandenberg Air Force Base in California, technicians secure a transportation canister around NASA Soil Moisture Active Passive SMAP spacecraft for its move to the launch pad.

  4. 49 CFR 176.92 - Cylinders laden in vehicles.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Cylinders laden in vehicles. 176.92 Section 176.92... Requirements for Transport Vehicles Loaded With Hazardous Materials and Transported on Board Ferry Vessels § 176.92 Cylinders laden in vehicles. Any cylinder of Class 2 (compressed gas) material which is...

  5. 49 CFR 176.92 - Cylinders laden in vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Cylinders laden in vehicles. 176.92 Section 176.92... Requirements for Transport Vehicles Loaded With Hazardous Materials and Transported on Board Ferry Vessels § 176.92 Cylinders laden in vehicles. Any cylinder of Class 2 (compressed gas) material which is...

  6. 49 CFR 176.92 - Cylinders laden in vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Cylinders laden in vehicles. 176.92 Section 176.92... Requirements for Transport Vehicles Loaded With Hazardous Materials and Transported on Board Ferry Vessels § 176.92 Cylinders laden in vehicles. Any cylinder of Class 2 (compressed gas) material which is...

  7. 49 CFR 176.92 - Cylinders laden in vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Cylinders laden in vehicles. 176.92 Section 176.92... Requirements for Transport Vehicles Loaded With Hazardous Materials and Transported on Board Ferry Vessels § 176.92 Cylinders laden in vehicles. Any cylinder of Class 2 (compressed gas) material which is...

  8. Flexible pipe crawling device having articulated two axis coupling

    DOEpatents

    Zollinger, William T.

    1994-01-01

    An apparatus for moving through the linear and non-linear segments of piping systems. The apparatus comprises a front leg assembly, a rear leg assembly, a mechanism for extension and retraction of the front and rear leg assembles with respect to each other, such as an air cylinder, and a pivoting joint. One end of the flexible joint attaches to the front leg assembly and the other end to the air cylinder, which is also connected to the rear leg assembly. The air cylinder allows the front and rear leg assemblies to progress through a pipe in "inchworm" fashion, while the joint provides the flexibility necessary for the pipe crawler to negotiate non-linear piping segments. The flexible connecting joint is coupled with a spring-force suspension system that urges alignment of the front and rear leg assemblies with respect to each other. The joint and suspension system cooperate to provide a firm yet flexible connection between the front and rear leg assemblies to allow the pivoting of one with respect to the other while moving around a non-linear pipe segment, but restoring proper alignment coming out of the pipe bend.

  9. Flexible pipe crawling device having articulated two axis coupling

    DOEpatents

    Zollinger, W.T.

    1994-05-10

    An apparatus is described for moving through the linear and non-linear segments of piping systems. The apparatus comprises a front leg assembly, a rear leg assembly, a mechanism for extension and retraction of the front and rear leg assembles with respect to each other, such as an air cylinder, and a pivoting joint. One end of the flexible joint attaches to the front leg assembly and the other end to the air cylinder, which is also connected to the rear leg assembly. The air cylinder allows the front and rear leg assemblies to progress through a pipe in inchworm' fashion, while the joint provides the flexibility necessary for the pipe crawler to negotiate non-linear piping segments. The flexible connecting joint is coupled with a spring-force suspension system that urges alignment of the front and rear leg assemblies with respect to each other. The joint and suspension system cooperate to provide a firm yet flexible connection between the front and rear leg assemblies to allow the pivoting of one with respect to the other while moving around a non-linear pipe segment, but restoring proper alignment coming out of the pipe bend. 4 figures.

  10. PIV measurements of airflow past multiple cylinders

    NASA Astrophysics Data System (ADS)

    Wodziak, Waldemar; Sobczyk, Jacek

    2018-06-01

    Flow characteristics in vicinity of six circular cylinders aligned inline was investigated experimentally by means of PIV method. Experiments were conducted in a low speed closed circuit wind tunnel. Inflow velocity was 1.2 m/s which corresponds to Re=1600 based on the cylinder diameter. Spacing ratio between cylinders L/D was 1.5. Instantaneous and averaged velocity fields were presented. Experiments were designed in order to use their results as a test case for future numerical calculations.

  11. Acoustics and Surface Pressure Measurements from Tandem Cylinder Configurations

    NASA Technical Reports Server (NTRS)

    Hutcheson, Florence V.; Brooks, Thomas F.; Lockard, David P.; Choudhari, Meelan M.; Stead, Daniel J.

    2014-01-01

    Acoustic and unsteady surface pressure measurements from two cylinders in tandem configurations were acquired to study the effect of spacing, surface trip and freestream velocity on the radiated noise. The Reynolds number ranged from 1.15x10(exp 5) to 2.17x10(exp 5), and the cylinder spacing varied between 1.435 and 3.7 cylinder diameters. The acoustic and surface pressure spectral characteristics associated with the different flow regimes produced by the cylinders' wake interference were identified. The dependence of the Strouhal number, peak Sound Pressure Level and spanwise coherence on cylinder spacing and flow velocity was examined. Directivity measurements were performed to determine how well the dipole assumption for the radiation of vortex shedding noise holds for the largest and smallest cylinder spacing tested.

  12. The Cylinder and Semicylinder in Subsonic Flow

    NASA Technical Reports Server (NTRS)

    Bingham, Harry J.; Weimer, David K..; Griffith, Wayland

    1952-01-01

    In studying the diffraction of shock waves around various two-dimensional obstacles we have observed that flow separation and the formation of vortices contributes in an important way to transient loading of the obstacle. The cases of a cylinder and semicylinder are especially interesting because the breakaway point is not clearly defined as it is for objects having sharp corners. Accordingly a number of experiments have been made in the shock tube to observe the influence of Reynolds number and Mach number on the transient flow patterns about a cylinder and about a semicylinder mounted on a smooth plane. Some differences might be anticipated since the plane would impose a symmetry on the flow and produce a viscous boundary layer for which there is no counterpart with the cylinder. In the course of these experiments it was noted that a condition of steady subsonic flow about both the cylinder and semicylinder was approached. Thus a comparison with von Karrnan's theoretical calculation of the drag on a cylinder, from certain characteristics of its wake or "vortex street", was undertaken.

  13. Moving Beyond Earth Gallery Opening

    NASA Image and Video Library

    2009-11-18

    David H. DeVorkin, Senior Curator, Astronomy and the Space Sciences Division of Space History, at the Smithsonian's National Air and Space Museum, speaks during a press briefing at the new "Moving Beyond Earth," exhibition at the museum in Washingon, Wednesday, Nov. 18, 2009. Moving Beyond Earth is an immersive exhibition that places visitors "in orbit" in the shuttle and space-station era to explore recent human spaceflight and future possibilities. Photo Credit: (NASA/Paul E. Alers)

  14. Piping inspection instrument carriage with precise and repeatable position control and location determination

    DOEpatents

    Hapstack, Mark; Talarek, Ted R.; Zollinger, W. Thor; Heckendorn, II, Frank M.; Park, Larry R.

    1994-01-01

    An instrument carriage for inspection of piping comprises front and rear leg assemblies for engaging the interior of the piping and supporting and centering the carriage therein, and an instrumentation arm carried by a shaft system running from the front to rear leg assemblies. The shaft system has a screw shaft for moving the arm axially and a spline gear for moving the arm azimuthally. The arm has a pair of air cylinders that raise and lower a plate in the radial direction. On the plate are probes including an eddy current probe and an ultrasonic testing probe. The ultrasonic testing probe is capable of spinning 360.degree. about its axis. The instrument carriage uses servo motors and pressurized air cylinders for precise actuation of instrument components and precise, repeatable actuation of position control mechanisms.

  15. The Federal Cylinder Project: A Guide to Field Cylinder Collections in Federal Agencies. Volume 8, Early Anthologies.

    ERIC Educational Resources Information Center

    Lee, Dorothy Sara, Ed; And Others

    This catalog describes wax cylinder recordings of music collected by two pioneers in ethnomusicology. The 101 cylinders in the Benjamin Ives Gilman Collection recorded at the 1893 World's Columbian Exposition in Chicago contain Fijian, Samoan, Uvean, Javanese, Turkish, and Kwakiutl or Vancouver Island Indian music. The Gilman Collection is…

  16. Numerical modelling of ozone production in a wire-cylinder corona discharge and comparison with a wire-plate corona discharge

    NASA Astrophysics Data System (ADS)

    Wang, Pengxiang; Chen, Junhong

    2009-02-01

    The effect of electrode configuration on ozone production in the direct-current corona discharge of dry and humid air is studied by a numerical model that combines the electron distribution in the corona plasma, plasma chemistry and transport phenomena. Two electrode configurations are considered: wire-cylinder discharge with air flowing along the wire axis and wire-plate discharge with air flowing transverse to the wire. The ozone distributions in both types of discharges are compared. For both electrode configurations, the ozone production rate is higher in the negative corona than in the positive corona and it decreases with an increase in relative humidity. More importantly, the detailed ozone distribution in the neighbourhood of the discharge wire, together with the ozone kinetics, reveals the possible difference in the ozone production from the two discharges. With the same operating conditions and sufficiently short flow residence time, the ozone production rate is nearly the same for both electrode configurations. When the flow residence time is longer than the characteristic time for homogeneous ozone destruction, the net ozone production is higher in the wire-cylinder discharge than in the wire-plate discharge due to relatively less ozone destruction.

  17. Development of advanced high temperature in-cylinder components and tribological systems for low heat rejection diesel engines, phase 1

    NASA Astrophysics Data System (ADS)

    Kroeger, C. A.; Larson, H. J.

    1992-03-01

    Analysis and concept design work completed in Phase 1 have identified a low heat rejection engine configuration with the potential to meet the Heavy Duty Transport Technology program specific fuel consumption goal of 152 g/kW-hr. The proposed engine configuration incorporates low heat rejection, in-cylinder components designed for operation at 24 MPa peak cylinder pressure. Water cooling is eliminated by selective oil cooling of the components. A high temperature lubricant will be required due to increased in-cylinder operating temperatures. A two-stage turbocharger air system with intercooling and aftercooling was selected to meet engine boost and BMEP requirements. A turbocompound turbine stage is incorporated for exhaust energy recovery. The concept engine cost was estimated to be 43 percent higher compared to a Caterpillar 3176 engine. The higher initial engine cost is predicted to be offset by reduced operating costs due the lower fuel consumption.

  18. Development of advanced high temperature in-cylinder components and tribological systems for low heat rejection diesel engines, phase 1

    NASA Technical Reports Server (NTRS)

    Kroeger, C. A.; Larson, H. J.

    1992-01-01

    Analysis and concept design work completed in Phase 1 have identified a low heat rejection engine configuration with the potential to meet the Heavy Duty Transport Technology program specific fuel consumption goal of 152 g/kW-hr. The proposed engine configuration incorporates low heat rejection, in-cylinder components designed for operation at 24 MPa peak cylinder pressure. Water cooling is eliminated by selective oil cooling of the components. A high temperature lubricant will be required due to increased in-cylinder operating temperatures. A two-stage turbocharger air system with intercooling and aftercooling was selected to meet engine boost and BMEP requirements. A turbocompound turbine stage is incorporated for exhaust energy recovery. The concept engine cost was estimated to be 43 percent higher compared to a Caterpillar 3176 engine. The higher initial engine cost is predicted to be offset by reduced operating costs due the lower fuel consumption.

  19. Label inspection of approximate cylinder based on adverse cylinder panorama

    NASA Astrophysics Data System (ADS)

    Lin, Jianping; Liao, Qingmin; He, Bei; Shi, Chenbo

    2013-12-01

    This paper presents a machine vision system for automated label inspection, with the goal to reduce labor cost and ensure consistent product quality. Firstly, the images captured from each single-camera are distorted, since the inspection object is approximate cylindrical. Therefore, this paper proposes an algorithm based on adverse cylinder projection, where label images are rectified by distortion compensation. Secondly, to overcome the limited field of viewing for each single-camera, our method novelly combines images of all single-cameras and build a panorama for label inspection. Thirdly, considering the shake of production lines and error of electronic signal, we design the real-time image registration to calculate offsets between the template and inspected images. Experimental results demonstrate that our system is accurate, real-time and can be applied for numerous real- time inspections of approximate cylinders.

  20. Incompressible flow simulations on regularized moving meshfree grids

    NASA Astrophysics Data System (ADS)

    Vasyliv, Yaroslav; Alexeev, Alexander

    2017-11-01

    A moving grid meshfree solver for incompressible flows is presented. To solve for the flow field, a semi-implicit approximate projection method is directly discretized on meshfree grids using General Finite Differences (GFD) with sharp interface stencil modifications. To maintain a regular grid, an explicit shift is used to relax compressed pseudosprings connecting a star node to its cloud of neighbors. The following test cases are used for validation: the Taylor-Green vortex decay, the analytic and modified lid-driven cavities, and an oscillating cylinder enclosed in a container for a range of Reynolds number values. We demonstrate that 1) the grid regularization does not impede the second order spatial convergence rate, 2) the Courant condition can be used for time marching but the projection splitting error reduces the convergence rate to first order, and 3) moving boundaries and arbitrary grid distortions can readily be handled. Financial support provided by the National Science Foundation (NSF) Graduate Research Fellowship, Grant No. DGE-1148903.

  1. Size effect and cylinder test on several commercial explosives

    NASA Astrophysics Data System (ADS)

    Souers, P. Clark; Lauderbach, Lisa; Moua, Kou; Garza, Raul

    2012-03-01

    Some size (diameter) effect and the Cylinder test results for Kinepak (ammonium nitrate/nitromethane), Semtex 1, Semtex H and urea nitrate are presented. Cylinder test data appears normal despite faster sound speeds in the copper wall. Most explosives come to steady state in the Cylinder test as expected, but Kinepak shows a steadily increasing wall velocity with distance down the cylinder. Some data on powder densities as a function of loading procedure are also given.

  2. Enrichment Assay Methods Development for the Integrated Cylinder Verification System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Leon E.; Misner, Alex C.; Hatchell, Brian K.

    2009-10-22

    International Atomic Energy Agency (IAEA) inspectors currently perform periodic inspections at uranium enrichment plants to verify UF6 cylinder enrichment declarations. Measurements are typically performed with handheld high-resolution sensors on a sampling of cylinders taken to be representative of the facility's entire product-cylinder inventory. Pacific Northwest National Laboratory (PNNL) is developing a concept to automate the verification of enrichment plant cylinders to enable 100 percent product-cylinder verification and potentially, mass-balance calculations on the facility as a whole (by also measuring feed and tails cylinders). The Integrated Cylinder Verification System (ICVS) could be located at key measurement points to positively identify eachmore » cylinder, measure its mass and enrichment, store the collected data in a secure database, and maintain continuity of knowledge on measured cylinders until IAEA inspector arrival. The three main objectives of this FY09 project are summarized here and described in more detail in the report: (1) Develop a preliminary design for a prototype NDA system, (2) Refine PNNL's MCNP models of the NDA system, and (3) Procure and test key pulse-processing components. Progress against these tasks to date, and next steps, are discussed.« less

  3. Stresses in and General Instability of Monocoque Cylinders with Cutouts I : Experimental Investigation of Cylinders with a Symmetric Cutout Subjected to Pure Bending

    NASA Technical Reports Server (NTRS)

    Hoff, N J; Boley, Bruno A

    1946-01-01

    Ten 24S-T alclad cylinders of 20-inch diameter, 45- or 58-inch length, and 0.012-inch wall thickness, reinforced with 24S-T aluminum alloy stringers and rings were tested in pure bending. In the middle of the compression side of the cylinders there was a cutout extending over 19 inches in the longitudinal direction, and over an angle of 45 degrees, 90 degrees, or 135 degrees in the circumferential direction. The strain in the stringers and in the sheet covering was measured with metal electric strain gages. The stress distribution in the cylinders deviate considerably from the linear law valid for cylinders without a cutout. The maximum strain measured was about four-thirds of the value calculated from the Mc/I formula when I was taken as the moment of inertia of the cross section of the portion of the cylinder where the cutout was situated. A diagram is presented containing the strain factors defined as the ratios of measured strain to strain calculated with the Mc/I formula. All the 10 cylinders tested failed in general instability. Two symmetric and one antisymmetric pattern of buckling were observed and the buckling load appeared to be independent of the method of manufacture and the length of the cylinder. The buckling load of the cylinders having cutouts extending over 45 degrees, 90 degrees, and 135 degrees was 66, 47, and 31 percent, respectively, of the buckling load of the cylinder without a cutout.

  4. MONOMIALS AND BASIN CYLINDERS FOR NETWORK DYNAMICS.

    PubMed

    Austin, Daniel; Dinwoodie, Ian H

    We describe methods to identify cylinder sets inside a basin of attraction for Boolean dynamics of biological networks. Such sets are used for designing regulatory interventions that make the system evolve towards a chosen attractor, for example initiating apoptosis in a cancer cell. We describe two algebraic methods for identifying cylinders inside a basin of attraction, one based on the Groebner fan that finds monomials that define cylinders and the other on primary decomposition. Both methods are applied to current examples of gene networks.

  5. MONOMIALS AND BASIN CYLINDERS FOR NETWORK DYNAMICS

    PubMed Central

    AUSTIN, DANIEL; DINWOODIE, IAN H

    2014-01-01

    We describe methods to identify cylinder sets inside a basin of attraction for Boolean dynamics of biological networks. Such sets are used for designing regulatory interventions that make the system evolve towards a chosen attractor, for example initiating apoptosis in a cancer cell. We describe two algebraic methods for identifying cylinders inside a basin of attraction, one based on the Groebner fan that finds monomials that define cylinders and the other on primary decomposition. Both methods are applied to current examples of gene networks. PMID:25620893

  6. High-Order Moving Overlapping Grid Methodology in a Spectral Element Method

    NASA Astrophysics Data System (ADS)

    Merrill, Brandon E.

    A moving overlapping mesh methodology that achieves spectral accuracy in space and up to second-order accuracy in time is developed for solution of unsteady incompressible flow equations in three-dimensional domains. The targeted applications are in aerospace and mechanical engineering domains and involve problems in turbomachinery, rotary aircrafts, wind turbines and others. The methodology is built within the dual-session communication framework initially developed for stationary overlapping meshes. The methodology employs semi-implicit spectral element discretization of equations in each subdomain and explicit treatment of subdomain interfaces with spectrally-accurate spatial interpolation and high-order accurate temporal extrapolation, and requires few, if any, iterations, yet maintains the global accuracy and stability of the underlying flow solver. Mesh movement is enabled through the Arbitrary Lagrangian-Eulerian formulation of the governing equations, which allows for prescription of arbitrary velocity values at discrete mesh points. The stationary and moving overlapping mesh methodologies are thoroughly validated using two- and three-dimensional benchmark problems in laminar and turbulent flows. The spatial and temporal global convergence, for both methods, is documented and is in agreement with the nominal order of accuracy of the underlying solver. Stationary overlapping mesh methodology was validated to assess the influence of long integration times and inflow-outflow global boundary conditions on the performance. In a turbulent benchmark of fully-developed turbulent pipe flow, the turbulent statistics are validated against the available data. Moving overlapping mesh simulations are validated on the problems of two-dimensional oscillating cylinder and a three-dimensional rotating sphere. The aerodynamic forces acting on these moving rigid bodies are determined, and all results are compared with published data. Scaling tests, with both methodologies

  7. Sub-grid drag model for immersed vertical cylinders in fluidized beds

    DOE PAGES

    Verma, Vikrant; Li, Tingwen; Dietiker, Jean -Francois; ...

    2017-01-03

    Immersed vertical cylinders are often used as heat exchanger in gas-solid fluidized beds. Computational Fluid Dynamics (CFD) simulations are computationally expensive for large scale systems with bundles of cylinders. Therefore sub-grid models are required to facilitate simulations on a coarse grid, where internal cylinders are treated as a porous medium. The influence of cylinders on the gas-solid flow tends to enhance segregation and affect the gas-solid drag. A correction to gas-solid drag must be modeled using a suitable sub-grid constitutive relationship. In the past, Sarkar et al. have developed a sub-grid drag model for horizontal cylinder arrays based on 2Dmore » simulations. However, the effect of a vertical cylinder arrangement was not considered due to computational complexities. In this study, highly resolved 3D simulations with vertical cylinders were performed in small periodic domains. These simulations were filtered to construct a sub-grid drag model which can then be implemented in coarse-grid simulations. Gas-solid drag was filtered for different solids fractions and a significant reduction in drag was identified when compared with simulation without cylinders and simulation with horizontal cylinders. Slip velocities significantly increase when vertical cylinders are present. Lastly, vertical suspension drag due to vertical cylinders is insignificant however substantial horizontal suspension drag is observed which is consistent to the finding for horizontal cylinders.« less

  8. The nonlinear bending response of thin-walled laminated composite cylinders

    NASA Technical Reports Server (NTRS)

    Fuchs, Hannes P.; Hyer, Michael W.

    1992-01-01

    The geometrically nonlinear Donnell shell theory is applied to the problem of stable bending of thin-walled circular cylinders. Responses are computed for cylinders with a radius-to-thickness ratio of 50 and length-to-radius ratios of 1 and 5. Four laminated composite cylinders and an aluminum cylinder are considered. Critical moment estimates are presented for short cylinders for which compression-type buckling behavior is important, and for very long cylinders for which the cross-section flattening, i.e., Brazier effect, is important. A finite element analysis is used to estimate the critical end rotation in addition to establishing the range of validity of the prebuckling analysis. The radial displacement response shows that the character of the boundary layer is significantly influenced by the geometric nonlinearities. Application of a first ply failure analysis using the maximum stress criterion suggests that in nearly all instances material failure occurs before buckling. Failure of the composite cylinders can be attributed to fiber breakage. Striking similarities are seen between the prebuckling displacements of the bending problem and axial compression problem for short cylinders.

  9. Dynamic analysis of a hollow cylinder subject to a dual traveling force imposed on its inner surface

    NASA Astrophysics Data System (ADS)

    Lee, Sooyoung; Seok, Jongwon

    2015-03-01

    The dynamic behavior of a hollow cylinder under a dual traveling force applied to the inner surface is investigated in this study. The cylinder is constrained at both the top and bottom surfaces not to move in the length direction but free in other directions. And a dual force travels at a constant velocity along the length direction on the inner surface of the hollow cylinder. The resulting governing field equations and the associated boundary conditions are ruled by the general Hooke's law. Due to the nature of the field equations, proper adjoint system of equations and biorthogonality conditions were derived in a precise and detailed manner. To solve these field equations in this study, the method of separation of variable is used and the method of Fro¨benius is employed for the differential equations in the radial direction. Using the field equations, the eigenanalyses on both the original and its adjoint system were performed with great care, which results in the eigenfunction sets of both systems. The biorthogonality conditions were applied to the field equations to obtain the discretized equation for each mode. Using the solutions of the discretized equations that account for the boundary forcing terms, the critical speed for a dual traveling force for each mode could be computed.

  10. Dynamic Measurement of Extra Long Stroke Cylinder in the Pneumatic System

    NASA Astrophysics Data System (ADS)

    Chang, Ho; Lan, Chou-wei; Chen, Liang-Chia

    2006-10-01

    This paper sets up the measure and control system of the dynamic characteristics of the extra long stroke cylinder. In the different types of the control conditions (e.g. different control law, operating pressure and direct control valves), using the measure and control system to measure the relation between the pressure and the velocity of the motion of the long stroke cylinder and to observe the stick slip phenomenon of the motion of the long stroke cylinder. In the innovate measurement system, two pressure sensors are set on the long stroke cylinder to measure the difference of the pressure between the inlet and the exhaust of the long stroke cylinder. In additions, a draw line encoder is set on the system to measure the position and the velocity of the motion of the long stroke cylinder. The measuring data of the measure system is transferred to the computer via A/D interface card and counter card, and Home-made program of Haptic Interface Device is used to control the system, saving the data of the motion of the long stroke cylinder. The system uses different types of direction control valve to control the motion of the long stroke cylinder and compares the difference of the motion of the long stroke cylinder. The results show that the motion of the cylinder that pauses in the middle of the cylinder stroke and causes the stick slip phenomenon is more violent than the stick slip phenomenon in other position. When the length of the pause time reaches the some range, the acceleration of the motion of the cylinder will be rised substantially. This paper not only focuses on the testing method of the dynamic characteristics of the motion of the long stroke cylinder, but also includes the analysis of the dynamic characteristics of the motion of the long stroke cylinder. It provides the data of the dynamic characteristics of the motion of the long stroke cylinder to improve and design the pneumatic system of the long stroke cylinder.

  11. Design for a Simple and Inexpensive Cylinder-within-a-Cylinder Gradient Maker for the Undergraduate Biochemistry Laboratory

    ERIC Educational Resources Information Center

    Sims, Paul A.; O'Mealey, Gary B.; Khan, Nabeel A.; Larabee, Chelsea M.

    2011-01-01

    A design for a simple and inexpensive gradient maker is described. The gradient maker is assembled by (i) cutting the tops off two plastic bottles of differing diameters to produce two cylinders with intact bottoms; (ii) drilling a small hole toward the bottom of the smaller diameter cylinder and plugging the hole with a size 00 cork stopper; and…

  12. 28. Main engine air pump located to port side of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. Main engine air pump located to port side of main engine cylinder beside engine bed. Dynamo lies aft of air pump (at right), pipe at extreme left of image carries lake water to condenser valves. - Steamboat TICONDEROGA, Shelburne Museum Route 7, Shelburne, Chittenden County, VT

  13. Modeling flow for modified concentric cylinder rheometer geometry

    NASA Astrophysics Data System (ADS)

    Ekeruche, Karen; Connelly, Kelly; Kavehpour, H. Pirouz

    2016-11-01

    Rheology experiments on biological fluids can be difficult when samples are limited in volume, sensitive to degradation, and delicate to extract from tissues. A probe-like geometry has been developed to perform shear creep experiments on biological fluids and to use the creep response to characterize fluid material properties. This probe geometry is a modified concentric cylinder setup, where the gap is large and we assume the inner cylinder rotates in an infinite fluid. To validate this assumption we perform shear creep tests with the designed probe on Newtonian and non-Newtonian fluids and vary the outer cylinder container diameter. We have also created a numerical model based on the probe geometry setup to compare with experimental results at different outer cylinder diameters. A creep test is modeled by applying rotation to the inner cylinder and solving for the deformation of the fluid throughout the gap. Steady state viscosity values are calculated from creep compliance curves and compared between experimental and numerical results.

  14. Correlation of cylinder-head temperatures and coolant heat rejections of a multicylinder, liquid-cooled engine of 1710-cubic-inch displacement

    NASA Technical Reports Server (NTRS)

    Lundin, Bruce T; Povolny, John H; Chelko, Louis J

    1949-01-01

    Data obtained from an extensive investigation of the cooling characteristics of four multicylinder, liquid-cooled engines have been analyzed and a correlation of both the cylinder-head temperatures and the coolant heat rejections with the primary engine and coolant variables was obtained. The method of correlation was previously developed by the NACA from an analysis of the cooling processes involved in a liquid-cooled-engine cylinder and is based on the theory of nonboiling, forced-convection heat transfer. The data correlated included engine power outputs from 275 to 1860 brake horsepower; coolant flows from 50 to 320 gallons per minute; coolants varying in composition from 100 percent water to 97 percent ethylene glycol and 3 percent water; and ranges of engine speed, manifold pressure, carburetor-air temperature, fuel-air ratio, exhaust-gas pressure, ignition timing, and coolant temperature. The effect on engine cooling of scale formation on the coolant passages of the engine and of boiling of the coolant under various operating conditions is also discussed.

  15. 77 FR 37712 - High Pressure Steel Cylinders From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-22

    ... Pressure Steel Cylinders From China Determinations On the basis of the record \\1\\ developed in the subject... cylinders from China, provided for in subheading 7311.00.00 of the Harmonized Tariff Schedule of the United... preliminary determinations by Commerce that imports of high pressure steel cylinders from China were...

  16. Pistons and Cylinders Made of Carbon-Carbon Composite Materials

    NASA Technical Reports Server (NTRS)

    Rivers, H. Kevin (Inventor); Ransone, Philip O. (Inventor); Northam, G. Burton (Inventor); Schwind, Francis A. (Inventor)

    2000-01-01

    An improved reciprocating internal combustion engine has a plurality of engine pistons, which are fabricated from carbon-carbon composite materials, in operative association with an engine cylinder block, or an engine cylinder tube, or an engine cylinder jug, all of which are also fabricated from carbon-carbon composite materials.

  17. One False Move: Training Deployers in Cross-Cultural Negotiations

    DTIC Science & Technology

    2016-02-28

    AU/ACSC/2016 AIR COMMAND AND STAFF COLLEGE AIR UNIVERSITY ONE FALSE MOVE: TRAINING DEPLOYERS IN CROSS-CULTURAL NEGOTIATIONS by... negotiations while deployed …………….20 vii Abstract In 2015 Secretary of the...Air Force Deborah Lee James directed that members of the Air Force be trained in cross-cultural negotiation skills before deploying. The next step

  18. Carbon fiber reinforced hierarchical orthogrid stiffened cylinder: Fabrication and testing

    NASA Astrophysics Data System (ADS)

    Wu, Hao; Lai, Changlian; Sun, Fangfang; Li, Ming; Ji, Bin; Wei, Weiyi; Liu, Debo; Zhang, Xi; Fan, Hualin

    2018-04-01

    To get strong, stiff and light cylindrical shell, carbon fiber reinforced hierarchical orthogrid stiffened cylinders are designed and fabricated. The cylinder is stiffened by two-scale orthogrid. The primary orthogrid has thick and high ribs and contains several sub-orthogrid cells whose rib is much thinner and lower. The primary orthogrid stiffens the bending rigidity of the cylinder to resist the global instability while the sub-orthogrid stiffens the bending rigidity of the skin enclosed by the primary orthogrid to resist local buckling. The cylinder is fabricated by filament winding method based on a silicone rubber mandrel with hierarchical grooves. Axial compression tests are performed to reveal the failure modes. With hierarchical stiffeners, the cylinder fails at skin fracture and has high specific strength. The cylinder will fail at end crushing if the end of the cylinder is not thickened. Global instability and local buckling are well restricted by the hierarchical stiffeners.

  19. Steady flow past a vertical surface-piercing circular cylinder

    NASA Astrophysics Data System (ADS)

    Chaplin, J. R.; Teigen, P.

    2003-09-01

    This paper describes experiments in which a vertical surface-piercing circular cylinder with a large draught was towed at steady speeds through water initially at rest. The cylinder diameter d was 210mm, and measurements were made of pressures around its circumference at elevations between 2.4d below still water level to 0.7d above, at Froude numbers (based on d) up to 1.67. The tests were carried out at a constant ratio of Reynolds number to Froude number of 2.79×105. The total resistance coefficient reached a maximum at a Froude number of about 1, when that part of the loading that can be attributed to the presence of the free surface was equivalent to the submerged form drag on a length of cylinder of about 0.9d. Measurements are also presented of the run-up on the front of the cylinder and of the depth of the depression at the back. Previous measurements by Hay (Flow about Semi-submerged Cylinders of Finite Length. Princeton University Report, Princeton, NJ, 1947) for the case of a cylinder with a submerged free end, and by Hsieh (Proc. Am. Soc. Civil Eng. 90 (1964) 161) of forces on cylinders standing on the floor of an open channel, are reanalysed. In most respects these results are found to be compatible with the present data for a cylinder of large draught.

  20. Beating motion of a circular cylinder in vortex-induced vibrations

    NASA Astrophysics Data System (ADS)

    Shen, Linwei; Chan, Eng-Soon; Wei, Yan

    2018-04-01

    In this paper, beating phenomenon of a circular cylinder in vortex-induced vibration is studied by numerical simulations in a systematic manner. The cylinder mass coefficients of 2 and 10 are considered, and the Reynolds number is 150. Two distinctive frequencies, namely cylinder oscillation and vortex shedding frequencies, are obtained from the harmonic analysis of the cylinder displacement. The result is consistent with that observed in laboratory experiments. It is found that the cylinder oscillation frequency changes with the natural frequency of the cylinder while the reduced velocity is varied. The added-mass coefficient of the cylinder in beating motion is therefore estimated. Meanwhile, the vortex shedding frequency does not change dramatically in the beating situations. In fact, it is very close to 0.2. Accordingly, the lift force coefficient has two main components associated with these two frequencies. Besides, higher harmonics of the cylinder oscillation frequency appear in the spectrum of the lift coefficient. Moreover, the vortex shedding timing is studied in the beating motion by examining the instantaneous flow fields in the wake, and two scenarios of the vortex formation are observed.

  1. 77 FR 1975 - Safety Advisory: Unauthorized Marking of Compressed Gas Cylinders

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-12

    ... Jackson Plaza, Ann Arbor, MI improperly requalified and marked high pressure compressed gas cylinders... DOT specification cylinders after its authority to requalifiy high pressure cylinders expired on... that Spears Fire & Safety continued to requalify and mark high pressure cylinders after their authority...

  2. MHD natural convection in open inclined square cavity with a heated circular cylinder

    NASA Astrophysics Data System (ADS)

    Hosain, Sheikh Anwar; Alim, M. A.; Saha, Satrajit Kumar

    2017-06-01

    MHD natural convection in open cavity becomes very important in many scientific and engineering problems, because of it's application in the design of electronic devices, solar thermal receivers, uncovered flat plate solar collectors having rows of vertical strips, geothermal reservoirs, etc. Several experiments and numerical investigations have been presented for describing the phenomenon of natural convection in open cavity for two decades. MHD natural convection and fluid flow in a two-dimensional open inclined square cavity with a heated circular cylinder was considered. The opposite wall to the opening side of the cavity was first kept to constant heat flux q, at the same time the surrounding fluid interacting with the aperture was maintained to an ambient temperature T∞. The top and bottom wall was kept to low and high temperature respectively. The fluid with different Prandtl numbers. The properties of the fluid are assumed to be constant. As a result a buoyancy force is created inside the cavity due to temperature difference and natural convection is formed inside the cavity. The Computational Fluid Dynamics (CFD) code are used to discretize the solution domain and represent the numerical result to graphical form.. Triangular meshes are used to obtain the solution of the problem. The streamlines and isotherms are produced, heat transfer parameter Nu are obtained. The results are presented in graphical as well as tabular form. The results show that heat flux decreases for increasing inclination of the cavity and the heat flux is a increasing function of Prandtl number Pr and decreasing function of Hartmann number Ha. It is observed that fluid moves counterclockwise around the cylinder in the cavity. Various recirculations are formed around the cylinder. The almost all isotherm lines are concentrated at the right lower corner of the cavity. The object of this work is to develop a Mathematical model regarding the effect of MHD natural convection flow around

  3. Modal Structures in flow past a cylinder

    NASA Astrophysics Data System (ADS)

    Murshed, Mohammad

    2017-11-01

    With the advent of data, there have been opportunities to apply formalism to detect patterns or simple relations. For instance, a phenomenon can be defined through a partial differential equation which may not be very useful right away, whereas a formula for the evolution of a primary variable may be interpreted quite easily. Having access to data is not enough to move on since doing advanced linear algebra can put strain on the way computations are being done. A canonical problem in the field of aerodynamics is the transient flow past a cylinder where the viscosity can be adjusted to set the Reynolds number (Re). We observe the effect of the critical Re on the certain modes of behavior in time scale. A 2D-velocity field works as an input to analyze the modal structure of the flow using the Proper Orthogonal Decomposition and Koopman Mode/Dynamic Mode Decomposition. This will enable prediction of the solution further in time (taking into account the dependence on Re) and help us evaluate and discuss the associated error in the mechanism.

  4. 78 FR 16044 - Hazardous Materials Packaging-Composite Cylinder Standards; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-13

    .... PHMSA-2013-0017; Notice No. 13-02] Hazardous Materials Packaging--Composite Cylinder Standards; Public..., marking, sale and use of non-DOT specification composite cylinders. The non-DOT specification cylinders... Organization (ISO) standards for composite cylinders ISO 11119 Parts - 1, -2, -3 incorporated by reference into...

  5. Piping inspection instrument carriage with precise and repeatable position control and location determination

    DOEpatents

    Hapstack, M.; Talarek, T.R.; Zollinger, W.T.; Heckendorn, F.M. II; Park, L.R.

    1994-02-15

    An instrument carriage for inspection of piping comprises front and rear leg assemblies for engaging the interior of the piping and supporting and centering the carriage therein, and an instrumentation arm carried by a shaft system running from the front to rear leg assemblies. The shaft system has a screw shaft for moving the arm axially and a spline gear for moving the arm azimuthally. The arm has a pair of air cylinders that raise and lower a plate in the radial direction. On the plate are probes including an eddy current probe and an ultrasonic testing probe. The ultrasonic testing probe is capable of spinning 360[degree] about its axis. The instrument carriage uses servo motors and pressurized air cylinders for precise actuation of instrument components and precise, repeatable actuation of position control mechanisms. 8 figures.

  6. Results of a study of Mach number and Reynolds number effects on the crossflow drag characteristics of ogive cylinders and ogive-cylinder-frustum-cylinders at angles of attack to 30 degrees

    NASA Technical Reports Server (NTRS)

    Foley, J. E.

    1971-01-01

    An analysis was made to determine the effects of Mach number and Reynolds number on the local and total crossflow drag characteristics of ogive-cylinders and ogive-cylinder-frustum-cylinders at angles of the MSFC 14 in TWT and the LTV 4 ft HSWT, and pressure data obtained in the TWT, at Mach numbers 0.14, 0.8, 1.2, and 2.0, and a wide range of Reynolds numbers. Results indicate that the streamwise Reynolds number, VD/nusin alpha, is an important correlation parameter in the subcritical Reynolds number range at imcompressible speeds and that the crossflow Mach number correlates compressibility effects.

  7. Performance tests of a single-cylinder compression-ignition engine with a displacer piston

    NASA Technical Reports Server (NTRS)

    Moore, C S; Foster, H H

    1935-01-01

    Engine performance was investigated using a rectangular displacer on the piston crown to cause a forced air flow in a vertical-disk combustion chamber of a single-cylinder, 4-stroke-cycle compression-ignition engine. The optimum air-flow area was determined first with the area concentrated at one end of the displacer and then with the area equally divided between two passages, one at each end of the displacer. Best performance was obtained with the two-passage air flow arranged to give a calculated maximum air-flow speed of 8 times the linear crank-pin speed. With the same fuel-spray formation as used without the air flow, the maximum clear exhaust brake mean effective pressure at 1,500 r.p.m. was increased from 90 to 115 pounds per square inch and the corresponding fuel consumption reduced from 0.46 to 0.43 pound per brake horsepower-hour. At 1,200 r.p.m., a maximum clear exhaust brake mean effective pressure of 120 pounds per square inch was obtained at a fuel consumption of 0.42 pound per brake horsepower-hour. At higher specific fuel consumption the brake mean effective pressure was still increasing rapidly.

  8. Maximum Evaporation Rates of Water Droplets Approaching Obstacles in the Atmosphere Under Icing Conditions

    NASA Technical Reports Server (NTRS)

    Lowell, H. H.

    1953-01-01

    When a closed body or a duct envelope moves through the atmosphere, air pressure and temperature rises occur ahead of the body or, under ram conditions, within the duct. If cloud water droplets are encountered, droplet evaporation will result because of the air-temperature rise and the relative velocity between the droplet and stagnating air. It is shown that the solution of the steady-state psychrometric equation provides evaporation rates which are the maximum possible when droplets are entrained in air moving along stagnation lines under such conditions. Calculations are made for a wide variety of water droplet diameters, ambient conditions, and flight Mach numbers. Droplet diameter, body size, and Mach number effects are found to predominate, whereas wide variation in ambient conditions are of relatively small significance in the determination of evaporation rates. The results are essentially exact for the case of movement of droplets having diameters smaller than about 30 microns along relatively long ducts (length at least several feet) or toward large obstacles (wings), since disequilibrium effects are then of little significance. Mass losses in the case of movement within ducts will often be significant fractions (one-fifth to one-half) of original droplet masses, while very small droplets within ducts will often disappear even though the entraining air is not fully stagnated. Wing-approach evaporation losses will usually be of the order of several percent of original droplet masses. Two numerical examples are given of the determination of local evaporation rates and total mass losses in cases involving cloud droplets approaching circular cylinders along stagnation lines. The cylinders chosen were of 3.95-inch (10.0+ cm) diameter and 39.5-inch 100+ cm) diameter. The smaller is representative of icing-rate measurement cylinders, while with the larger will be associated an air-flow field similar to that ahead of an airfoil having a leading-edge radius

  9. The flow around circular cylinders partially coated with porous media

    NASA Astrophysics Data System (ADS)

    Ruck, Bodo; Klausmann, Katharina; Wacker, Tobias

    2012-05-01

    There are indications that the flow resistance of bodies can be reduced by a porous coating or porous sheath. A few numerical investigations exists in this field, however, experimental evidence is lacking. In order to investigate this phenomenon, the drag resistance of cylinders with porous coating has been investigated qualitatively and quantitatively in wind tunnel experiments. The Reynolds number was systematically varied in the range from 104 to 1.3*105. The results show that the boundary layer over the porous surface is turbulent right from the beginning and thickens faster because of the possible vertical momentum exchange at the interface. The region of flow detachment is widened resulting in a broader area with almost vanishing low flow velocities. All in all, the measurements show that a full porous coating of the cylinders increase the flow resistance. However, the measurements show that a partial coating only on the leeward side can decrease the flow resistance of the body. This effect seems due to the fact that the recirculating velocity and the underpressure in the wake is reduced significantly through a leeward porous coating. Thus, combining a smooth non-permeable windward side with a porous-coated leeward side can lead to a reduction of the body's flow resistance. These findings can be applied advantageously in many technical areas, such as energy saving of moving bodies (cars/trains/planes) or in reducing fluid loads on submersed bodies.

  10. Coupled Thermo-Mechanical Analyses of Dynamically Loaded Rubber Cylinders

    NASA Technical Reports Server (NTRS)

    Johnson, Arthur R.; Chen, Tzi-Kang

    2000-01-01

    A procedure that models coupled thermo-mechanical deformations of viscoelastic rubber cylinders by employing the ABAQUS finite element code is described. Computational simulations of hysteretic heating are presented for several tall and short rubber cylinders both with and without a steel disk at their centers. The cylinders are compressed axially and are then cyclically loaded about the compressed state. The non-uniform hysteretic heating of the rubber cylinders containing a steel disk is presented. The analyses performed suggest that the coupling procedure should be considered for further development as a design tool for rubber degradation studies.

  11. Precision cylinder optics for higher requirements; Techical Digest

    NASA Astrophysics Data System (ADS)

    Bergner, Dieter; Falkenstorfer, Oliver; Malina, Dirk; Roder, Janett; Schreiner, Roland

    2005-05-01

    JENOPTIK Laser, Optik, Systeme GmbH (JO L.O.S.) enlarged its product range in the field of cylinder lenses and crystal optics. These components are used in optical measuring technology and in various laser applications. The new cylinder components are a result of the state of the art manufacturing technology. For applications, where the quality of standard cylinders with a surface deviation of PV Lambda/2 to Lambda/5 @632,8nm and tested with a reference glass only is not sufficient, the surface shape can be improved to PV Lambda/10 @632,8nm. The presentation deals with Jenoptik's current state to produce cylinder optics, to reduce remaining surface shape deviations of semi-finished cylinder optics and to test these elements. Based on in-house developed machinery, cylinders are manufactured by means of blocking or drum. The required surface quality in the range of PV Lambda/10 @632,8nm for cylindrical lenses can be reached by computer aided correction using mrf-polishing techniques in connection with an interferometer test set-up. Therefore, the polishing machine is equipped with an additional axis of movement. The interferometer measurement of the residual surface deviation is done by Computer Generated Holograms (CGH), which are designed and manufactured in-house. CGHs from JO L.O.S. for testing cylindrical lenses can be custom designed starting with F#1.0. They are related to the typical rectangular geometry of cylinder components. Using these measurement techniques, testing is no longer the limiting factor in achieving high quality cylindrical surfaces. JO L.O.S. has all the capabilities of effective manufacturing, testing and correcting cylindrical lenses. Latest results achieved in series production are shown.

  12. Precision cylinder optics for higher requirements; Techical Digest

    NASA Astrophysics Data System (ADS)

    Bergner, Dieter; Falkenstorfer, Oliver; Malina, Dirk; Roder, Janett; Schreiner, Roland

    2005-05-01

    JENOPTIK Laser, Optik, Systeme GmbH (JO L.O.S.) enlarged its product range in the field of cylinder lenses and crystal optics. These components are used in optical measuring technology and in various laser applications. The new cylinder components are a result of the state of the art manufacturing technology. For applications, where the quality of standard cylinders with a surface deviation of PV~Lambda/2 to ~Lambda/5 @632,8nm and tested with a reference glass only is not sufficient, the surface shape can be improved to PV Lambda/10 @632,8nm. The presentation deals with Jenoptik's current state to produce cylinder optics, to reduce remaining surface shape deviations of semi-finished cylinder optics and to test these elements. Based on in-house developed machinery, cylinders are manufactured by means of blocking or drum. The required surface quality in the range of PV~Lambda/10 @632,8nm for cylindrical lenses can be reached by computer aided correction using mrf-polishing techniques in connection with an interferometer test set-up. Therefore, the polishing machine is equipped with an additional axis of movement. The interferometer measurement of the residual surface deviation is done by Computer Generated Holograms (CGH), which are designed and manufactured in-house. CGHs from JO L.O.S. for testing cylindrical lenses can be custom designed starting with F#1.0. They are related to the typical rectangular geometry of cylinder components. Using these measurement techniques, testing is no longer the limiting factor in achieving high quality cylindrical surfaces. JO L.O.S. has all the capabilities of effective manufacturing, testing and correcting cylindrical lenses. Latest results achieved in series production are shown.

  13. Unmanned. Evaluation of Bauer High Pressure Breathing Air P-5 Purification System

    DTIC Science & Technology

    1991-08-01

    suspended in the compressed air . The molecular sieve is made to adsorb oil and water vapors. The second cylinder uses cartridge No. 058825 and is a...during compressor start up. This provides for optimum filtering, moisture separation and prevents compressed air return from the charged air storage...reciprocating, air -cooled unit. The compressor is rated to deliver 20 cfm of free air compressed to 5000 psig. - .. .. . .. ’,= .• .. . .. . -. . I

  14. Dynamical instability of a charged gaseous cylinder

    NASA Astrophysics Data System (ADS)

    Sharif, M.; Mumtaz, Saadia

    2017-10-01

    In this paper, we discuss dynamical instability of a charged dissipative cylinder under radial oscillations. For this purpose, we follow the Eulerian and Lagrangian approaches to evaluate linearized perturbed equation of motion. We formulate perturbed pressure in terms of adiabatic index by applying the conservation of baryon numbers. A variational principle is established to determine characteristic frequencies of oscillation which define stability criteria for a gaseous cylinder. We compute the ranges of radii as well as adiabatic index for both charged and uncharged cases in Newtonian and post-Newtonian limits. We conclude that dynamical instability occurs in the presence of charge if the gaseous cylinder contracts to the radius R*.

  15. Prediction model of velocity field around circular cylinder over various Reynolds numbers by fusion convolutional neural networks based on pressure on the cylinder

    NASA Astrophysics Data System (ADS)

    Jin, Xiaowei; Cheng, Peng; Chen, Wen-Li; Li, Hui

    2018-04-01

    A data-driven model is proposed for the prediction of the velocity field around a cylinder by fusion convolutional neural networks (CNNs) using measurements of the pressure field on the cylinder. The model is based on the close relationship between the Reynolds stresses in the wake, the wake formation length, and the base pressure. Numerical simulations of flow around a cylinder at various Reynolds numbers are carried out to establish a dataset capturing the effect of the Reynolds number on various flow properties. The time series of pressure fluctuations on the cylinder is converted into a grid-like spatial-temporal topology to be handled as the input of a CNN. A CNN architecture composed of a fusion of paths with and without a pooling layer is designed. This architecture can capture both accurate spatial-temporal information and the features that are invariant of small translations in the temporal dimension of pressure fluctuations on the cylinder. The CNN is trained using the computational fluid dynamics (CFD) dataset to establish the mapping relationship between the pressure fluctuations on the cylinder and the velocity field around the cylinder. Adam (adaptive moment estimation), an efficient method for processing large-scale and high-dimensional machine learning problems, is employed to implement the optimization algorithm. The trained model is then tested over various Reynolds numbers. The predictions of this model are found to agree well with the CFD results, and the data-driven model successfully learns the underlying flow regimes, i.e., the relationship between wake structure and pressure experienced on the surface of a cylinder is well established.

  16. Altitude Cooling Investigation of the R-2800-21 Engine in the P-47G Airplane. IV - Engine Cooling-Air Pressure Distribution

    NASA Technical Reports Server (NTRS)

    Kaufman, Samuel J.; Staudt, Robert C.; Valerino, Michael F.

    1947-01-01

    A study of the data obtained in a flight investigation of an R-2800-21 engine in a P-47G airplane was made to determine the effect of the flight variables on the engine cooling-air pressure distribution. The investigation consisted of level flights at altitudes from 5000 to 35,000 feet for the normal range of engine and airplane operation. The data showed that the average engine front pressures ranged from 0.73 to 0.82 of the impact pressure (velocity head). The average engine rear pressures ranged from 0.50 to 0.55 of the impact pressure for closed cowl flaps and from 0.10 to 0.20 for full-open cowl flaps. In general, the highest front pressures were obtained at the bottom of the engine. The rear pressures for the rear-row cylinders were .lower and the pressure drops correspondingly higher than for the front-row cylinders. The rear-pressure distribution was materially affected by cowl-flap position in that the differences between the rear pressures of the front-row and rear-row cylinders markedly increased as the cowl flaps were opened. For full-open cowl flaps, the pressure drops across the rear-row cylinders were in the order of 0.2 of the impact pressure greater than across the front-row cylinders. Propeller speed and altitude had little effect on the -coolingair pressure distribution, Increase in angle of inclination of the thrust axis decreased the front ?pressures for the cylinders at the top of the engine and increased them for the cylinders at the bottom of the engine. As more auxiliary air was taken from the engine cowling, the front pressures and, to a lesser extent, the rear pressures for the cylinders at the bottom of the engine decreased. No correlation existed between the cooling-air pressure-drop distribution and the cylinder-temperature distribution.

  17. Pulsatile Flow and Transport of Blood past a Cylinder: Basic Transport for an Artificial Lung.

    NASA Astrophysics Data System (ADS)

    Zierenberg, Jennifer R.

    2005-11-01

    The fluid mechanics and transport for flow of blood past a single cylinder is investigated using CFD. This work refers to an artificial lung in which oxygen travels through fibers oriented perpendicularly to the incoming blood flow. A pulsatile blood flow was considered: Ux=U0[ 1+A( φt ) ], where Ux is the velocity far from the cylinder. The Casson equation was used to describe the shear thinning and yield stress properties of blood. The presence of hemoglobin (i.e. facilitated diffusion) was considered. We examined the effect of A, U0 and φ on the flow and transport by varying the dimensionless parameters: A; Reynolds number, Re; and Womersley parameter, α. Two different feed gases were considered: pure O2 and air. The flow and concentration fields were computed for Re = 5, 10, and 40, 0 <=A<= 0.75, α = 0.25, 0.4, and Schmidt number, Sc = 1000. Vortices attached downstream of the cylinder are found to oscillate in size and strength as α and A are varied. Mass transport is found to primarily depend on Re and to increase with increasing Re, α and decreasing A. The presence of hemoglobin increases mass transport. Supported by NIH HL69420, NSF Fellowship

  18. SU-G-206-06: Analytic Dose Function for CT Scans in Infinite Cylinders as a Function of Scan Length and Cylinder Radius

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakalyar, D; Feng, W; McKenney, S

    Purpose: The radiation dose absorbed at a particular radius ρ within the central plane of a long cylinder following a CT scan is a function of the length of the scan L and the cylinder radius R along with kVp and cylinder composition. An analytic function was created that that not only expresses these dependencies but is integrable in closed form over the area of the central plane. This feature facilitates explicit calculation of the planar average dose. The “approach to equilibrium” h(L) discussed in the TG111 report is seamlessly included in this function. Methods: For a cylindrically symmetric radiationmore » field, Monte Carlo calculations were performed to compute the dose distribution to long polyethylene cylinders for scans of varying L for cylinders ranging in radius from 5 to 20 cm. The function was developed from the resultant Monte Carlo data. In addition, the function was successfully fit to data taken from measurements on the 30 cm diameter ICRU/TG200 phantom using a real-time dosimeter. Results: Symmetry and continuity dictate a local extremum at the center which is a minimum for the larger sizes. There are competing effects as the beam penetrates the cylinder from the outside: attenuation, resulting in a decrease; scatter, abruptly increasing at the circumference. This competition may result in an absolute maximum between the center and outer edge leading to a “gull wing” shape for the radial dependence. For the smallest cylinders, scatter may dominate to the extent that there is an absolute maximum at the center. Conclusion: An integrable, analytic function has been developed that provides the radial dependency of dose for the central plane of a scan of length L for cylinders of varying diameter. Equivalently, we have developed h(L,R,ρ).« less

  19. A Convenient Storage Rack for Graduated Cylinders

    ERIC Educational Resources Information Center

    Love, Brian

    2004-01-01

    An attempt is made to find a solution to the occasional problem of a need for storing large numbers of graduated cylinders in many teaching and research laboratories. A design, which involves the creation of a series of parallel channels that are used to suspend inverted graduated cylinders by their bases, is proposed.

  20. Passively Enhancing Convection Heat Transfer Around Cylinder Using Shrouds

    NASA Astrophysics Data System (ADS)

    Samaha, Mohamed A.; Kahwaji, Ghalib Y.

    2017-11-01

    Natural convection heat transfer around a horizontal cylinder has received considerable attention through decades since it has been used in several viable applications. However, investigations into passively enhancement of the free convective cooling using external walls and chimney effect are lacking. In this work, a numerical simulation to study natural convection from a horizontal cylinder configured with semicircular shrouds with an expended chimney is employed. The fluid flow and convective heat transfer around the cylinder are modeled. The bare cylinder is also simulated for comparison. The present study are aimed at improving our understanding of the parameters advancing the free convective cooling of the cylinder implemented with the shrouds configuration. For validation, the present results for the bare tube are compared with data reported in the literature. The numerical simulations indicate that applying the shrouds configuration with extended chimney to a tube promotes the convection heat transfer from the cylinder. Such a method is less expensive and simpler in design than other configurations (e.g. utilizing extended surfaces, fins), making the technology more practical for industrial productions, especially for cooling systems. Dubai Silicon Oasis Authority (DSOA) Grants.

  1. Analysis of thermoelastic characteristics in a thick walled FGM cylinder

    NASA Astrophysics Data System (ADS)

    Tanvir, A. N. M.; Islam, Md. Didarul; Ahmed, Faisal

    2017-12-01

    This study is concerned with the behavior of stress and strain in a thick walled functionally graded material (FGM) cylinder under internal pressure. The incompatible eigenstrain and equivalent eigenstrain developed in the cylinder, are taken into account. As a demonstration, a TiC/Al2O3 FGM cylinder is considered and different components of stress and strain are presented in order to study the effects of internal pressure, temperature difference (between room and sintering temperature), cylinder wall thickness and material distribution. The numerical result presented here shows that the thermoelastic characteristic like stress and strain of an FGM cylinder is significantly influenced by some of the above-mentioned parameters and can be controlled by properly controlling these parameters.

  2. Nonlinear Deformation of a Piecewise Homogeneous Cylinder Under the Action of Rotation

    NASA Astrophysics Data System (ADS)

    Akhundov, V. M.; Kostrova, M. M.

    2018-05-01

    Deformation of a piecewise cylinder under the action of rotation is investigated. The cylinder consists of an elastic matrix with circular fibers of square cross section made of a more rigid elastic material and arranged doubly periodically in the cylinder. Behavior of the cylinder under large displacements and deformations is examined using the equations of a nonlinear elasticity theory for cylinder constituents. The problem posed is solved by the finite-difference method using the method of continuation with respect to the rotational speed of the cylinder.

  3. Adaptive individual-cylinder thermal state control using piston cooling for a GDCI engine

    DOEpatents

    Roth, Gregory T; Husted, Harry L; Sellnau, Mark C

    2015-04-07

    A system for a multi-cylinder compression ignition engine includes a plurality of nozzles, at least one nozzle per cylinder, with each nozzle configured to spray oil onto the bottom side of a piston of the engine to cool that piston. Independent control of the oil spray from the nozzles is provided on a cylinder-by-cylinder basis. A combustion parameter is determined for combustion in each cylinder of the engine, and control of the oil spray onto the piston in that cylinder is based on the value of the combustion parameter for combustion in that cylinder. A method for influencing combustion in a multi-cylinder engine, including determining a combustion parameter for combustion taking place in in a cylinder of the engine and controlling an oil spray targeted onto the bottom of a piston disposed in that cylinder is also presented.

  4. The three-dimensional flow past a rapidly rotating circular cylinder

    NASA Technical Reports Server (NTRS)

    Denier, James P.; Duck, Peter W.

    1993-01-01

    The high Reynolds number (Re) flow past a rapidly rotating circular cylinder is investigated. The rotation rate of the cylinder is allowed to vary (slightly) along the axis of the cylinder, thereby provoking three-dimensional flow disturbances, which are shown to involve relatively massive (O(Re)) velocity perturbations to the flow away from the cylinder surface. Additionally, three integral conditions, analogous to the single condition determined in two dimensions by Batchelor, are derived, based on the condition of periodicity in the azimuthal direction.

  5. Manufacturing stresses and strains in filament wound cylinders

    NASA Technical Reports Server (NTRS)

    Calius, E. P.; Kidron, M.; Lee, S. Y.; Springer, G. S.

    1988-01-01

    Tests were performed to verify a previously developed model for simulating the manufacturing process of filament wound cylinders. The axial and hoop strains were measured during cure inside a filament wound Fiberite T300/976 graphite-epoxy cylinder. The measured strains were compared to those computed by the model. Good agreements were found between the data and the model, indicating that the model is a useful representation of the process. For the conditions of the test, the manufacturing stresses inside the cylinder were also calculated using the model.

  6. Levi-Civita cylinders with fractional angular deficit

    NASA Astrophysics Data System (ADS)

    Krisch, J. P.; Glass, E. N.

    2011-05-01

    The angular deficit factor in the Levi-Civita vacuum metric has been parametrized using a Riemann-Liouville fractional integral. This introduces a new parameter into the general relativistic cylinder description, the fractional index α. When the fractional index is continued into the negative α region, new behavior is found in the Gott-Hiscock cylinder and in an Israel shell.

  7. Vibrations and stresses in layered anisotropic cylinders

    NASA Technical Reports Server (NTRS)

    Mulholland, G. P.; Gupta, B. P.

    1976-01-01

    An equation describing the radial displacement in a k layered anisotropic cylinder was obtained. The cylinders are initially unstressed but are subjected to either a time dependent normal stress or a displacement at the external boundaries of the laminate. The solution is obtained by utilizing the Vodicka orthogonalization technique. Numerical examples are given to illustrate the procedure.

  8. Reordering transitions during annealing of block copolymer cylinder phases

    DOE PAGES

    Majewski, Pawel W.; Yager, Kevin G.

    2015-10-06

    While equilibrium block-copolymer morphologies are dictated by energy-minimization effects, the semi-ordered states observed experimentally often depend on the details of ordering pathways and kinetics. In this study, we explore reordering transitions in thin films of block-copolymer cylinder-forming polystyrene- block-poly(methyl methacrylate). We observe several transient states as films order towards horizontally-aligned cylinders. In particular, there is an early-stage reorganization from randomly-packed cylinders into hexagonally-packed vertically-aligned cylinders; followed by a reorientation transition from vertical to horizontal cylinder states. These transitions are thermally activated. The growth of horizontal grains within an otherwise vertical morphology proceeds anisotropically, resulting in anisotropic grains in the finalmore » horizontal state. The size, shape, and anisotropy of grains are influenced by ordering history; for instance, faster heating rates reduce grain anisotropy. These results help elucidate aspects of pathway-dependent ordering in block-copolymer thin films.« less

  9. Curing A Large Composite Cylinder Without An Autoclave

    NASA Technical Reports Server (NTRS)

    Frazer, Robert E.

    1992-01-01

    Proposed technique provides application of heat and pressure to cure fiber-wound composite cylinder too large to fit in autoclave. Tube wound around cylinder applies pressure. Blanket distributes pressure. Pressure expels gas bubbles from material. Heat applied by conventional methods.

  10. Experimental investigation of moving surfaces for boundary layer and circulation control of airfoils and wings

    NASA Astrophysics Data System (ADS)

    Vets, Robert

    An experimental study was conducted to assess the application of a moving surface to affect boundary layers and circulation around airfoils for the purpose of altering and enhancing aerodynamic performance of finite wings at moderate Reynolds numbers. The moving surface was established by a wide, lightweight, nylon belt that enveloped a wing's symmetric airfoil profile articulated via a friction drive cylinder such that the direction of the upper surface was in the direction of the free stream. A water tunnel visualization study accompanied wind tunnel testing at the University of Washington, Kirsten Wind Tunnel of finite wings. An experimental study was conducted to assess the application of a moving surface to affect boundary layers and circulation around airfoils for the purpose of altering and enhancing aerodynamic performance of finite wings at moderate Reynolds numbers. The moving surface was established by a wide, lightweight, nylon belt that enveloped a wing's symmetric airfoil profile articulated via a friction drive cylinder such that the direction of the upper surface was in the direction of the free stream. A water tunnel visualization study accompanied wind tunnel testing at the University of Washington, Kirsten Wind Tunnel of finite wings. The defining non-dimensional parameter for the system is the ratio of the surface velocity to the free stream velocity, us/Uo. Results show a general increase in lift with increasing us/Uo. The endurance parameter served as an additional metric for the system's performance. Examining the results of the endurance parameter shows general increase in endurance and lift with the moving surface activated. Peak performance in terms of increased endurance along with increased lift occurs at or slightly above us/Uo = 1. Water tunnel visualization showed a marked difference in the downwash for velocity ratios greater than 1, supporting the measured data. Reynolds numbers for this investigation were 1.9E5 and 4.3E5, relevant

  11. W-76 PBX 9501 cylinder tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, L.G.; Catanach, R.A.

    1998-07-01

    Five 1-inch diameter cylinder tests were fired in support of the W-76 high explosive surveillance program. Three of the tests used baseline material, and two used stockpile return material. The diagnostics were electrical pins to measure detonation velocity and a streak camera to measure wall motion. The data was analyzed for cylinder energy, Gurney energy, and detonation velocity. The results of all three measures were consistent for all five tests, to within the experimental accuracy.

  12. Natural convection heat transfer in an oscillating vertical cylinder

    PubMed Central

    Ali Shah, Nehad; Tassaddiq, Asifa; Mustapha, Norzieha; Kechil, Seripah Awang

    2018-01-01

    This paper studies the heat transfer analysis caused due to free convection in a vertically oscillating cylinder. Exact solutions are determined by applying the Laplace and finite Hankel transforms. Expressions for temperature distribution and velocity field corresponding to cosine and sine oscillations are obtained. The solutions that have been obtained for velocity are presented in the forms of transient and post-transient solutions. Moreover, these solutions satisfy both the governing differential equation and all imposed initial and boundary conditions. Numerical computations and graphical illustrations are used in order to study the effects of Prandtl and Grashof numbers on velocity and temperature for various times. The transient solutions for both cosine and sine oscillations are also computed in tables. It is found that, the transient solutions are of considerable interest up to the times t = 15 for cosine oscillations and t = 1.75 for sine oscillations. After these moments, the transient solutions can be neglected and, the fluid moves according with the post-transient solutions. PMID:29304161

  13. Natural convection heat transfer in an oscillating vertical cylinder.

    PubMed

    Khan, Ilyas; Ali Shah, Nehad; Tassaddiq, Asifa; Mustapha, Norzieha; Kechil, Seripah Awang

    2018-01-01

    This paper studies the heat transfer analysis caused due to free convection in a vertically oscillating cylinder. Exact solutions are determined by applying the Laplace and finite Hankel transforms. Expressions for temperature distribution and velocity field corresponding to cosine and sine oscillations are obtained. The solutions that have been obtained for velocity are presented in the forms of transient and post-transient solutions. Moreover, these solutions satisfy both the governing differential equation and all imposed initial and boundary conditions. Numerical computations and graphical illustrations are used in order to study the effects of Prandtl and Grashof numbers on velocity and temperature for various times. The transient solutions for both cosine and sine oscillations are also computed in tables. It is found that, the transient solutions are of considerable interest up to the times t = 15 for cosine oscillations and t = 1.75 for sine oscillations. After these moments, the transient solutions can be neglected and, the fluid moves according with the post-transient solutions.

  14. Effects of cylinder Reynolds number on the turbulent horseshoe vortex system and near wake of a surface-mounted circular cylinder

    NASA Astrophysics Data System (ADS)

    Kirkil, Gokhan; Constantinescu, George

    2015-07-01

    The turbulent horseshoe vortex (HV) system and the near-wake flow past a circular cylinder mounted on a flat bed in an open channel are investigated based on the results of eddy-resolving simulations and supporting flow visualizations. Of particular interest are the changes in the mean flow and turbulence statistics within the HV region as the necklace vortices wrap around the cylinder's base and the variation of the mean flow and turbulence statistics in the near wake, in between the channel bed and the free surface. While it is well known that the drag crisis induces important changes in the flow past infinitely long circular cylinders, the changes are less understood and more complex for the case of flow past a surface-mounted cylinder. This is because even at very high cylinder Reynolds numbers, ReD, the flow regime remains subcritical in the vicinity of the bed surface due to the reduction of the incoming flow velocity within the bottom boundary layer. The paper provides a detailed discussion of the changes in the flow physics between cylinder Reynolds numbers at which the flow in the upstream part of the separated shear layers (SSLs) is laminar (ReD = 16 000, subcritical flow regime) and Reynolds numbers at which the transition occurs inside the attached boundary layers away from the bed and the flow within the SSLs is turbulent (ReD = 5 ∗ 105, supercritical flow regime). The changes between the two regimes in the dynamics and level of coherence of the large-scale coherent structures (necklace vortices, vortex tubes shed in the SSLs and roller vortices shed in the wake) and their capacity to induce high-magnitude bed friction velocities in the mean and instantaneous flow fields and to amplify the near-bed turbulence are analyzed. Being able to quantitatively and qualitatively describe these changes is critical to understand Reynolds-number-induced scale effects on sediment erosion mechanisms around cylinders mounted on a loose bed, which is a problem of

  15. An asymmetric pair of vortices adjacent to a spinning cylinder

    NASA Astrophysics Data System (ADS)

    Iosilevskii, G.; Seginer, A.

    The two-dimensional flow field over a spinning circular cylinder is analyzed using an extension of the Foeppl method. Equilibrium equations for two asymmetric point vortices in the wake of the cylinder are solved for a case when both vortices are equidistant from the cylinder. The two Foeppl solutions for the cylinder are presented. It is observed that the spin does not affect the angle between the two vortices; however, it displaces the vortex pair in the spin direction and the sinus of the displacement angle is proportional to the spin rate.

  16. Utilising flags to reduce drag around a short finite circular cylinder

    NASA Astrophysics Data System (ADS)

    Javadi, Kh.; Kiani, F.; Tahaye Abadi, M.

    2018-03-01

    This paper utilises flags to decrease the drag around a short finite circular cylinder. Wall-adapted large eddy simulation and two-way fluid-structure interaction methods were applied to resolve unsteady turbulent flow structure. The far-field Reynolds number of the current configuration based on the cylinder diameter was chosen to be 20,000. In addition, the length-to-diameter ratio of the cylinder was assumed to be L/D = 2 whereas the flexible flag had a width-to-diameter ratio of W/D = 1.5. The results were compared with the regular short finite circular cylinder and the rigid flagged cylinder in our previous work. The results indicate that utilising flags inside the near-wake region of the cylinder reduces the pressure drag. The physical mechanism of this drag reduction is presented.

  17. Stratified spin-up in a sliced, square cylinder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munro, R. J.; Foster, M. R.

    We previously reported experimental and theoretical results on the linear spin-up of a linearly stratified, rotating fluid in a uniform-depth square cylinder [M. R. Foster and R. J. Munro, “The linear spin-up of a stratified, rotating fluid in a square cylinder,” J. Fluid Mech. 712, 7–40 (2012)]. Here we extend that analysis to a “sliced” square cylinder, which has a base-plane inclined at a shallow angle α. Asymptotic results are derived that show the spin-up phase is achieved by a combination of the Ekman-layer eruptions (from the perimeter region of the cylinder's lid and base) and cross-slope-propagating stratified Rossby waves.more » The final, steady state limit for this spin-up phase is identical to that found previously for the uniform depth cylinder, but is reached somewhat more rapidly on a time scale of order E{sup −1/2}Ω{sup −1}/log (α/E{sup 1/2}) (compared to E{sup −1/2}Ω{sup −1} for the uniform-depth cylinder), where Ω is the rotation rate and E the Ekman number. Experiments were performed for Burger numbers, S, between 0.4 and 16, and showed that for S≳O(1), the Rossby modes are severely damped, and it is only at small S, and during the early stages, that the presence of these wave modes was evident. These observations are supported by the theory, which shows the damping factors increase with S and are numerically large for S≳O(1)« less

  18. Computation in the Wild: Moving Beyond the Metaphor

    DTIC Science & Technology

    2006-03-01

    AFRL-IF-RS-TR-2006-105 Final Technical Report March 2006 COMPUTATION IN THE WILD: MOVING BEYOND THE METAPHOR University...Government. AIR FORCE RESEARCH LABORATORY INFORMATION DIRECTORATE ROME RESEARCH SITE ROME, NEW YORK STINFO FINAL REPORT This... report has been reviewed by the Air Force Research Laboratory, Information Directorate, Public Affairs Office (IFOIPA) and is releasable to the National

  19. Krypton gas cylinders as a source of radiation.

    PubMed

    Fischer, Helmut W; Bielefeld, Tom; Hettwig, Bernd

    2010-07-01

    A standard 40 foot shipping container with a cargo of pressurized krypton gas in 159 steel cylinders, which had triggered a radiation alarm, was investigated to address radiation safety and illicit nuclear trafficking concerns. The investigation included contamination and dose rate measurements as well as in situ high resolution gamma spectroscopy. The dose rate measurements gave a maximum value of 0.07 microSv h(-1) above background (0.08 to 0.11 microSv h(-1)) on the cylinder surface and no detectable increase above background at distances of 1 m and higher. Contamination monitor readings showed a similar relative increase (plus 8 cpm) above background (about 12 cpm) to the dose rate readings. Quantitative gamma spectroscopy revealed a contamination of the gas with 85Kr at a level of 3.5 x 10(5) Bq kg(-1). This value was found to be consistent with analytical and numerical estimates based on current data for atmospheric 85Kr, which is captured from ambient air together with stable krypton during the production process. This incident demonstrates an apparent lack of radiation-related knowledge by those who handle krypton gas, as well as by border control personnel and emergency responders. We therefore propose to improve labeling and documentation standards for such shipments. This effort may be facilitated by introducing the new category of "technically enhanced artificial radioactive material," or "TEARM" (similar to the existing "naturally occurring radioactive material" or "NORM" and "technically enhanced naturally occurring radioactive material" or "TENORM" categories).

  20. 49 CFR 180.205 - General requirements for requalification of specification cylinders.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... for steel and nickel cylinders (IBR, see § 171.7 of this subchapter); C-6.1 for seamless aluminum... neck using a steel stamp; (ii) For composite cylinders, securely affix to the cylinder a label with the...

  1. 49 CFR 180.205 - General requirements for requalification of specification cylinders.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... for steel and nickel cylinders (IBR, see § 171.7 of this subchapter); C-6.1 for seamless aluminum... neck using a steel stamp; (ii) For composite cylinders, securely affix to the cylinder a label with the...

  2. 49 CFR 180.205 - General requirements for requalification of specification cylinders.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... for steel and nickel cylinders (IBR, see § 171.7 of this subchapter); C-6.1 for seamless aluminum... neck using a steel stamp; (ii) For composite cylinders, securely affix to the cylinder a label with the...

  3. 49 CFR 180.205 - General requirements for requalification of specification cylinders.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... for steel and nickel cylinders (IBR, see § 171.7 of this subchapter); C-6.1 for seamless aluminum... neck using a steel stamp; (ii) For composite cylinders, securely affix to the cylinder a label with the...

  4. Modal and Impact Dynamics Analysis of an Aluminum Cylinder

    NASA Technical Reports Server (NTRS)

    Lessard, Wendy B.

    2002-01-01

    This paper presents analyses for the modal characteristics and impact response of an all-aluminum cylinder. The analyses were performed in preparation for impact tests of the cylinder at The Impact Dynamics Research Facility (IDRF) at the NASA Langley Research Center. Mode shapes and frequencies were computed using NASTRAN and compared with existing experimental data to assess the overall accuracy of the mass and stiffness of the finite element model. A series of non-linear impact analyses were then performed using MSC Dytran in which the weight distribution on the floor and the impact velocity of the cylinder were varied. The effects of impact velocity and mass on the rebound and gross deformation of the cylinder were studied in this investigation.

  5. Optimal viscous damping of vibrating porous cylinders

    NASA Astrophysics Data System (ADS)

    Jafari Kang, Saeed; Masoud, Hassan

    2017-11-01

    We theoretically study small-amplitude oscillations of permeable cylinders immersed in an unbounded fluid. Specifically, we examine the effects of permeability and oscillation frequency on the damping coefficient, which is proportional to the power required to sustain the vibrations. Cylinders of both circular and non-circular cross-sections undergoing transverse and rotational vibrations are considered. Our calculations indicate that the damping coefficient often varies non-monotonically with the permeability. Depending on the oscillation period, the maximum damping of a permeable cylinder can be many times greater than that of an otherwise impermeable one. This might seem counter-intuitive at first since generally the power it takes to steadily drag a permeable object through the fluid is less than the power needed to drive the steady motion of the same but impermeable object. However, the driving power (or damping coefficient) for oscillating bodies is determined by not only the amplitude of the cyclic fluid force experienced by them but also by the phase shift between the force and their periodic motion. An increase in the latter is responsible for excess damping coefficient of vibrating porous cylinders.

  6. Simulation of moving boundaries interacting with compressible reacting flows using a second-order adaptive Cartesian cut-cell method

    NASA Astrophysics Data System (ADS)

    Muralidharan, Balaji; Menon, Suresh

    2018-03-01

    A high-order adaptive Cartesian cut-cell method, developed in the past by the authors [1] for simulation of compressible viscous flow over static embedded boundaries, is now extended for reacting flow simulations over moving interfaces. The main difficulty related to simulation of moving boundary problems using immersed boundary techniques is the loss of conservation of mass, momentum and energy during the transition of numerical grid cells from solid to fluid and vice versa. Gas phase reactions near solid boundaries can produce huge source terms to the governing equations, which if not properly treated for moving boundaries, can result in inaccuracies in numerical predictions. The small cell clustering algorithm proposed in our previous work is now extended to handle moving boundaries enforcing strict conservation. In addition, the cell clustering algorithm also preserves the smoothness of solution near moving surfaces. A second order Runge-Kutta scheme where the boundaries are allowed to change during the sub-time steps is employed. This scheme improves the time accuracy of the calculations when the body motion is driven by hydrodynamic forces. Simple one dimensional reacting and non-reacting studies of moving piston are first performed in order to demonstrate the accuracy of the proposed method. Results are then reported for flow past moving cylinders at subsonic and supersonic velocities in a viscous compressible flow and are compared with theoretical and previously available experimental data. The ability of the scheme to handle deforming boundaries and interaction of hydrodynamic forces with rigid body motion is demonstrated using different test cases. Finally, the method is applied to investigate the detonation initiation and stabilization mechanisms on a cylinder and a sphere, when they are launched into a detonable mixture. The effect of the filling pressure on the detonation stabilization mechanisms over a hyper-velocity sphere launched into a hydrogen

  7. Hydroelastic analysis of surface wave interaction with concentric porous and flexible cylinder systems

    NASA Astrophysics Data System (ADS)

    Mandal, S.; Datta, N.; Sahoo, T.

    2013-10-01

    The present study deals with the hydroelastic analysis of gravity wave interaction with concentric porous and flexible cylinder systems, in which the inner cylinder is rigid and the outer cylinder is porous and flexible. The problems are analyzed in finite water depth under the assumption of small amplitude water wave theory and structural response. The cylinder configurations in the present study are namely (a) surface-piercing truncated cylinders, (b) bottom-touching truncated cylinders and (c) complete submerged cylinders extended from free surface to bottom. As special cases of the concentric cylinder system, wave diffraction by (i) porous flexible cylinder and (ii) flexible floating cage with rigid bottom are analyzed. The scattering potentials are evaluated using Fourier-Bessel series expansion method and the least square approximation method. The convergence of the double series is tested numerically to determine the number of terms in the Fourier-Bessel series expansion. The effects of porosity and flexibility of the outer cylinder, in attenuating the hydrodynamic forces and dynamic overturning moments, are analyzed for various cylinder configurations and wave characteristics. A parametric study with respect to wave frequency, ratios of inner-to-outer cylinder radii, annular spacing between the two cylinders and porosities is done. In order to understand the flow distribution around the cylinders, contour plots are provided. The findings of the present study are likely to be of immense help in the design of various types of marine structures which can withstand the wave loads of varied nature in the marine environment. The theory can be easily extended to deal with a large class of problems associated with acoustic wave interaction with flexible porous structures.

  8. Effect of porous material heating on the drag force of a cylinder with gas-permeable porous inserts in a supersonic flow

    NASA Astrophysics Data System (ADS)

    Mironov, S. G.; Poplavskaya, T. V.; Kirilovskiy, S. V.

    2017-10-01

    The paper presents the results of an experimental investigation of supersonic flow around a solid cylinder with a gas-permeable porous insert on its front end and of supersonic flow around a hollow cylinder with internal porous inserts in the presence of heating of the porous material. The experiments were performed in a supersonic wind tunnel with Mach number 4.85 and 7 with porous inserts of cellular-porous nickel. The results of measurements on the filtration stand of the air filtration rate through the cellular-porous nickel when it is heated are also shown. For a number of experiments, numerical modeling based on the skeletal model of a cellular-porous material was carried out.

  9. Lubricity of well-characterized jet and broad-cut fuels by ball-on-cylinder machine

    NASA Technical Reports Server (NTRS)

    Prok, G. M.; Kim, W. S.

    1984-01-01

    A ball-on-cylinder machine (BOCM) was used to measure the lubricity of fuels. The fuels tested were well-characterized fuels available from other programs at the NASA Lewis Research Center plus some in-house mildly hydroprocessed shale fuels from other programs included Jet-A, ERBS fuel, ERBS blends, and blend stock. The BOCM tests were made before and after clay treatment of some of these fuels with both humidified air and dry nitrogen as the preconditioning and cover gas. As expected, clay treatment always reduced fuel lubricity. Using nitrogen preconditioning and cover gas always resulted in a smaller wear scar diameter than when humidified air was used. Also observed was an indication of lower lubricity with lower boiling range fuels and lower aromatic fuels. Gas chromatographic analysis indicted changes in BOCM-stressed fuels.

  10. 32 CFR 989.29 - Force structure and unit move proposals.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Force structure and unit move proposals. 989.29 Section 989.29 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE ENVIRONMENTAL PROTECTION ENVIRONMENTAL IMPACT ANALYSIS PROCESS (EIAP) § 989.29 Force structure and unit move...

  11. 21 CFR 886.1840 - Simulatan (including crossed cylinder).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... of cylinder lenses that provides various equal plus and minus refractive strengths. The lenses are arranged so that the user can exchange the positions of plus and minus cylinder lenses of equal strengths... given object is clearly in focus, as the examiner uses different lenses). (b) Classification. Class I...

  12. An emission processing system for air quality modelling in the Mexico City metropolitan area: Evaluation and comparison of the MOBILE6.2-Mexico and MOVES-Mexico traffic emissions.

    PubMed

    Guevara, M; Tena, C; Soret, A; Serradell, K; Guzmán, D; Retama, A; Camacho, P; Jaimes-Palomera, M; Mediavilla, A

    2017-04-15

    This article describes the High-Elective Resolution Modelling Emission System for Mexico (HERMES-Mex) model, an emission processing tool developed to transform the official Mexico City Metropolitan Area (MCMA) emission inventory into hourly, gridded (up to 1km 2 ) and speciated emissions used to drive mesoscale air quality simulations with the Community Multi-scale Air Quality (CMAQ) model. The methods and ancillary information used for the spatial and temporal disaggregation and speciation of the emissions are presented and discussed. The resulting emission system is evaluated, and a case study on CO, NO 2 , O 3 , VOC and PM 2.5 concentrations is conducted to demonstrate its applicability. Moreover, resulting traffic emissions from the Mobile Source Emission Factor Model for Mexico (MOBILE6.2-Mexico) and the MOtor Vehicle Emission Simulator for Mexico (MOVES-Mexico) models are integrated in the tool to assess and compare their performance. NO x and VOC total emissions modelled are reduced by 37% and 26% in the MCMA when replacing MOBILE6.2-Mexico for MOVES-Mexico traffic emissions. In terms of air quality, the system composed by the Weather Research and Forecasting model (WRF) coupled with the HERMES-Mex and CMAQ models properly reproduces the pollutant levels and patterns measured in the MCMA. The system's performance clearly improves in urban stations with a strong influence of traffic sources when applying MOVES-Mexico emissions. Despite reducing estimations of modelled precursor emissions, O 3 peak averages are increased in the MCMA core urban area (up to 30ppb) when using MOVES-Mexico mobile emissions due to its VOC-limited regime, while concentrations in the surrounding suburban/rural areas decrease or increase depending on the meteorological conditions of the day. The results obtained suggest that the HERMES-Mex model can be used to provide model-ready emissions for air quality modelling in the MCMA. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. The flow dynamics behind a flexible finite cylinder as a flexible agitator

    NASA Astrophysics Data System (ADS)

    Yong, T. H.; Chan, H. B.; Dol, S. S.; Wee, S. K.; Kumar, P.

    2017-06-01

    This paper investigates the flow dynamics behind a flexible finite cylinder in a single-phase flow using a water tunnel. The cylinder was individually submerged in water at ReD = 4000, 6000 and 8000. The cylinder investigated has a AR = 10 and 16 and is made of EVA in order to achieve the lower stiffness for flexibility. A same AR of its aluminium rigid cylinder was investigated to serve as a benchmark to the flow dynamics behind a flexible cylinder. The results the downwash that hinders the transportation of vortices to the downstream was diminished. As a direct consequence of this phenomenon, the turbulence production has seen significant improvement for flexible finite cylinder.

  14. MOVES-Matrix and distributed computing for microscale line source dispersion analysis.

    PubMed

    Liu, Haobing; Xu, Xiaodan; Rodgers, Michael O; Xu, Yanzhi Ann; Guensler, Randall L

    2017-07-01

    MOVES and AERMOD are the U.S. Environmental Protection Agency's recommended models for use in project-level transportation conformity and hot-spot analysis. However, the structure and algorithms involved in running MOVES make analyses cumbersome and time-consuming. Likewise, the modeling setup process, including extensive data requirements and required input formats, in AERMOD lead to a high potential for analysis error in dispersion modeling. This study presents a distributed computing method for line source dispersion modeling that integrates MOVES-Matrix, a high-performance emission modeling tool, with the microscale dispersion models CALINE4 and AERMOD. MOVES-Matrix was prepared by iteratively running MOVES across all possible iterations of vehicle source-type, fuel, operating conditions, and environmental parameters to create a huge multi-dimensional emission rate lookup matrix. AERMOD and CALINE4 are connected with MOVES-Matrix in a distributed computing cluster using a series of Python scripts. This streamlined system built on MOVES-Matrix generates exactly the same emission rates and concentration results as using MOVES with AERMOD and CALINE4, but the approach is more than 200 times faster than using the MOVES graphical user interface. Because AERMOD requires detailed meteorological input, which is difficult to obtain, this study also recommends using CALINE4 as a screening tool for identifying the potential area that may exceed air quality standards before using AERMOD (and identifying areas that are exceedingly unlikely to exceed air quality standards). CALINE4 worst case method yields consistently higher concentration results than AERMOD for all comparisons in this paper, as expected given the nature of the meteorological data employed. The paper demonstrates a distributed computing method for line source dispersion modeling that integrates MOVES-Matrix with the CALINE4 and AERMOD. This streamlined system generates exactly the same emission rates and

  15. Response of Buried Vertically Oriented Cylinders to Dynamic Loading,

    DTIC Science & Technology

    1980-06-01

    BALSARA • , . / ,, _,-, -. 1i S ,LESPONSE OF BURIED VERTICALLY 9RIENTED CYLINDERS 𔃺 .-TO DINAMIC LOADING_ 9AYLE E. LRTOrwW&-N JIIMY P./BALSARA Nk...1.7, 2,8, and 4.0 inches). The end caps for the cylinders consisted of a steel shell filled with high- strength concrete; however, the end caps were...not designed to be test articles. The average concrete compressive strength of the cylinders on test day was 44.0 MPa (6,380 psi). The three DEOT

  16. An innovative system for supplying air and fuel mixture to a combustion chamber of an engine

    NASA Astrophysics Data System (ADS)

    Saikumar, G. R. Bharath

    2018-04-01

    Conventional carburetors are being used since decades to ensure that the desired ratio of air and fuel enters the combustion chamber for combustion for the purpose of generating power in an Spark Ignition(SI) internal combustion engine. However to increase the efficiency, the carburetor system is gradually being replaced by fuel injection systems. Fuel injection systems use injectors to supply pressurized fuel into the combustion chamber. Owing to the high initial and maintenance cost, carburetors are still ruling in the low cost vehicle domain. An innovative concept is conceived, which is an alternative method to the carburetor system to supply the air and fuel mixture to a combustion chamber of an engine. This system comprises of an inner hollow cylinder with minute holes drilled along its length with an outer cylinder capable of sliding along its length or its longitudinal axis. This system is placed in the venturi instead of the conventional carburetor system. Fuel enters from the bottom inlet of the inner cylinder and flows out through the holes provided along its length. The fuel flow from the inner cylinder is dependent on the size and the number of holes exposed at that instance by the sliding outer cylinder which in turn is connected to the throttle or accelerator.

  17. Numerical Study On Propulsion Performance Of The Parabolic Laser Thruster With Elongate Cylinder Nozzle

    NASA Astrophysics Data System (ADS)

    Cheng, Fuqiang; Hong, Yanji; Li, Qian; Wen, Ming

    2011-11-01

    Laser thrusters with a single nozzle, e.g. parabolic or conical, failed to constrict the flow field of high pressure effectively, resulting in poor propulsive performance. Under the condition of air-breathing mode, parabolic thruster models with an elongate cylinder nozzle were studied numerically by building a physical computation model. Initially, to verify the computation model, the influence of cylinder length on the momentum coupling coefficient was computed and compared with the experiments, which shows a good congruence. A model of diameter 20 mm and cylindrical length 80 mm obtains about 627.7 N/MW at single pulse energy density 1.5 J/cm2. Then, the influence of expanding angle of the parabolic nozzle on propulsion performance was gained for different laser pulse energies, and the evolution process of the flow field was analyzed. The results show: as the expanding angel increases, the momentum coupling coefficient increases remarkably at first and descends relative slowly after reaching a peak value; moreover, the peak positions stay constant around 33° with little variation when laser energy differs.

  18. 76 FR 33023 - Safety Advisory; Unauthorized Marking of Compressed Gas Cylinders

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-07

    ... cylinders. The cylinders were neither marked nor certified by an authorized independent inspection agency... mark, the cylinder did not undergo the complete series of safety tests and inspections required by the... contents under pressure during normal transportation and use. Extensive property damage, serious personal...

  19. 76 FR 71124 - Safety Advisory: Unauthorized Marking of Compressed Gas Cylinders

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-16

    ... requalification company and properly marked. FOR FURTHER INFORMATION CONTACT: Morgan Welding and Supply, Mr... high pressure DOT cylinders. The evidence suggests that if a cylinder purchased from Morgan Welding and... cylinders from service and contact Morgan Welding and Supply, Albion, MI for further instructions. However...

  20. Three-Dimensional, Laminar Flow Past a Short, Surface-Mounted Cylinder

    NASA Astrophysics Data System (ADS)

    Liakos, Anastasios; Malamataris, Nikolaos

    2016-11-01

    The topology and evolution of three-dimensional flow past a cylinder of slenderness ratio SR = 1 mounted in a wind tunnel is examined for 0 . 1 <= Re <= 325 (based on the diameter of the cylinder) where steady-state solutions have been obtained. Direct numerical simulations were computed using an in-house parallel finite element code. Results indicate that symmetry breaking occurs at Re = 1 , while the first prominent structure is a horseshoe vortex downstream from the cylinder. At Re = 150 , two foci are observed, indicating the formation of two tornadolike vortices downstream. Concurrently, another horseshoe vortex is formed upstream from the cylinder. For higher Reynolds numbers, the flow downstream is segmented to upper and lower parts, whereas the topology of the flow on the solid boundaries remains unaltered. Pressure distributions show that pressure, the key physical parameter in the flow, decreases everywhere except immediately upstream from the cylinder. In addition, creation of critical points from saddle-node-type bifurcations occur when the streamwise component of the pressure gradient changes sign. Finally, at Re = 325 , an additional horseshoe vorrtex is formed at the wake of the cylinder

  1. Transient thermal stress problem for a circumferentially cracked hollow cylinder

    NASA Technical Reports Server (NTRS)

    Nied, H. F.; Erdogan, F.

    1982-01-01

    The transient thermal stress problem for a hollow elasticity cylinder containing an internal circumferential edge crack is considered. It is assumed that the problem is axisymmetric with regard to the crack geometry and the loading, and that the inertia effects are negligible. The problem is solved for a cylinder which is suddenly cooled from inside. First the transient temperature and stress distributions in an uncracked cylinder are calculated. By using the equal and opposite of this thermal stress as the crack surface traction in the isothermal cylinder the crack problem is then solved and the stress intensity factor is calculated. The numerical results are obtained as a function of the Fourier number tD/b(2) representing the time for various inner-to-outer radius ratios and relative crack depths, where D and b are respectively the coefficient of diffusivity and the outer radius of the cylinder.

  2. The Measurement of Fuel-Air Ratio by Analysis for the Oxidized Exhaust Gas

    NASA Technical Reports Server (NTRS)

    Gerrish, Harold C.; Meem, J. Lawrence, Jr.

    1943-01-01

    An investigation was made to determine a method of measuring fuel-air ratio that could be used for test purposes in flight and for checking conventional equipment in the laboratory. Two single-cylinder test engines equipped with typical commercial engine cylinders were used. The fuel-air ratio of the mixture delivered to the engines was determined by direct measurement of the quantity of air and of fuel supplied and also by analysis of the oxidized exhaust gas and of the normal exhaust gas. Five fuels were used: gasoline that complied with Army-Navy fuel Specification No. AN-VV-F-781 and four mixtures of this gasoline with toluene, benzene, and xylene. The method of determining the fuel-air ratio described in this report involves the measurement of the carbon-dioxide content of the oxidized exhaust gas and the use of graphs for the presented equation. This method is considered useful in aircraft, in the field, or in the laboratory for a range of fuel-air ratios from 0.047 to 0.124.

  3. The Measurement of Fuel-air Ratio by Analysis of the Oxidized Exhaust Gas

    NASA Technical Reports Server (NTRS)

    Memm, J. Lawrence, Jr.

    1943-01-01

    An investigation was made to determine a method of measuring fuel-air ratio that could be used for test purposes in flight and for checking conventional equipment in the laboratory. Two single-cylinder test engines equipped with typical commercial engine cylinders were used. The fuel-air ratio of the mixture delivered to the engines was determined by direct measurement of the quantity of air and of fuel supplied and also by analysis of the oxidized exhaust gas and of the normal exhaust gas. Five fuels were used: gasoline that complied with Army-Navy Fuel Specification, No. AN-VV-F-781 and four mixtures of this gasoline with toluene, benzene, and xylene. The method of determining the fuel-air ratio described in this report involves the measurement of the carbon-dioxide content of the oxidized exhaust gas and the use of graphs or the presented equation. This method is considered useful in aircraft, in the field, or in the laboratory for a range of fuel-air ratios from 0.047 to 0.124

  4. 46 CFR 95.16-20 - Extinguishing agent: Cylinder storage.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... cylinder storage room and the protected spaces must meet the insulation criteria for Class A-60, as defined... pneumatic heat actuator as well as a remote manual control. (c) The cylinder storage space must be properly...

  5. 46 CFR 95.16-20 - Extinguishing agent: Cylinder storage.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... cylinder storage room and the protected spaces must meet the insulation criteria for Class A-60, as defined... pneumatic heat actuator as well as a remote manual control. (c) The cylinder storage space must be properly...

  6. 46 CFR 95.16-20 - Extinguishing agent: Cylinder storage.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... cylinder storage room and the protected spaces must meet the insulation criteria for Class A-60, as defined... pneumatic heat actuator as well as a remote manual control. (c) The cylinder storage space must be properly...

  7. Failure of Non-Circular Composite Cylinders

    NASA Technical Reports Server (NTRS)

    Hyer, M. W.

    2004-01-01

    In this study, a progressive failure analysis is used to investigate leakage in internally pressurized non-circular composite cylinders. This type of approach accounts for the localized loss of stiffness when material failure occurs at some location in a structure by degrading the local material elastic properties by a certain factor. The manner in which this degradation of material properties takes place depends on the failure modes, which are determined by the application of a failure criterion. The finite-element code STAGS, which has the capability to perform progressive failure analysis using different degradation schemes and failure criteria, is utilized to analyze laboratory scale, graphite-epoxy, elliptical cylinders with quasi-isotropic, circumferentially-stiff, and axially-stiff material orthotropies. The results are divided into two parts. The first part shows that leakage, which is assumed to develop if there is material failure in every layer at some axial and circumferential location within the cylinder, does not occur without failure of fibers. Moreover before fibers begin to fail, only matrix tensile failures, or matrix cracking, takes place, and at least one layer in all three cylinders studied remain uncracked, preventing the formation of a leakage path. That determination is corroborated by the use of different degradation schemes and various failure criteria. Among the degradation schemes investigated are the degradation of different engineering properties, the use of various degradation factors, the recursive or non-recursive degradation of the engineering properties, and the degradation of material properties using different computational approaches. The failure criteria used in the analysis include the noninteractive maximum stress criterion and the interactive Hashin and Tsai-Wu criteria. The second part of the results shows that leakage occurs due to a combination of matrix tensile and compressive, fiber tensile and compressive, and inplane

  8. An online ID identification system for liquefied-gas cylinder plant

    NASA Astrophysics Data System (ADS)

    He, Jin; Ding, Zhenwen; Han, Lei; Zhang, Hao

    2017-11-01

    An automatic ID identification system for gas cylinders' online production was developed based on the production conditions and requirements of the Technical Committee for Standardization of Gas Cylinders. A cylinder ID image acquisition system was designed to improve the image contrast of ID regions on gas cylinders against the background. Then the ID digits region was located by the CNN template matching algorithm. Following that, an adaptive threshold method based on the analysis of local average grey value and standard deviation was proposed to overcome defects of non-uniform background in the segmentation results. To improve the single digit identification accuracy, two BP neural networks were trained respectively for the identification of all digits and the easily confusable digits. If the single digit was classified as one of confusable digits by the former BP neural network, it was further tested by the later one, and the later result was taken as the final identification result of this single digit. At last, the majority voting was adopted to decide the final identification result for the 6-digit cylinder ID. The developed system was installed on a production line of a liquefied-petroleum-gas cylinder plant and worked in parallel with the existing weighing step on the line. Through the field test, the correct identification rate for single ID digit was 94.73%, and none of the tested 2000 cylinder ID was misclassified through the majority voting.

  9. Frictional properties of lubrication greases with the addition of nickel nanoparticles in pneumatic cylinder

    NASA Astrophysics Data System (ADS)

    Chang, Ho; Lan, Chou-Wei; Guo, Jia-Bin

    2011-12-01

    This paper studies the influence of addition of 100 nm diameter nickel nano-particles on the friction properties of synthetic grease (Li base, VG100) in pneumatic cylinder. The friction force test of pneumatic cylinder equipment measures the frictional force between seal and cylinder bore in pneumatic cylinders. The lubricants with addition of nickel nano-particles were used for lubricating the contact interface between seal and cylinder bore. The friction force test equipment employ a load cell force sensor to measure the friction force between seals and cylinder bores. Results obtained from experimental tests are compared to determine the friction force between seals and cylinder bore in pneumatic cylinders. The study leads to the conclusion that the addition of nickel nano-particles to synthetic grease results in a decrease in friction force between seals and cylinder bores in pneumatic cylinder. This tribological behavior is closely related to the deposition of nano-particles on the rubbing surfaces

  10. Flow around a helically twisted elliptic cylinder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Woojin; Lee, Jungil; Choi, Haecheon, E-mail: choi@snu.ac.kr

    In the present study, we conduct unsteady three-dimensional simulations of flows around a helically twisted elliptic (HTE) cylinder at the Reynolds numbers of 100 and 3900, based on the free-stream velocity and square root of the product of the lengths of its major and minor axes. A parametric study is conducted for Re = 100 by varying the aspect ratio (AR) of the elliptic cross section and the helical spanwise wavelength (λ). Depending on the values of AR and λ, the flow in the wake contains the characteristic wavelengths of λ, 2λ, 6λ, or even longer than 60λ, showing amore » wide diversity of flows in the wake due to the shape change. The drag on the optimal (i.e., having lowest drag) HTE cylinder (AR = 1.3 and λ = 3.5d) is lower by 18% than that of the circular cylinder, and its lift fluctuations are zero owing to complete suppression of vortex shedding in the wake. This optimal HTE configuration reduces the drag by 23% for Re = 3900 where the wake is turbulent, showing that the HTE cylinder reduces the mean drag and lift fluctuations for both laminar and turbulent flows.« less

  11. A numerical solution of the Navier-Stokes equations for chemically nonequilibrium, merged stagnation shock layers on spheres and two-dimensional cylinders in air

    NASA Technical Reports Server (NTRS)

    Johnston, K. D.; Hendricks, W. L.

    1978-01-01

    Results of solving the Navier-Stokes equations for chemically nonequilibrium, merged stagnation shock layers on spheres and two-dimensional cylinders are presented. The effects of wall catalysis and slip are also examined. The thin shock layer assumption is not made, and the thick viscous shock is allowed to develop within the computational domain. The results show good comparison with existing data. Due to the more pronounced merging of shock layer and boundary layer for the sphere, the heating rates for spheres become higher than those for cylinders as the altitude is increased.

  12. Wind driven vertical transport in a vegetated, wetland water column with air-water gas exchange

    NASA Astrophysics Data System (ADS)

    Poindexter, C.; Variano, E. A.

    2010-12-01

    Flow around arrays of cylinders at low and intermediate Reynolds numbers has been studied numerically, analytically and experimentally. Early results demonstrated that at flow around randomly oriented cylinders exhibits reduced turbulent length scales and reduced diffusivity when compared to similarly forced, unimpeded flows (Nepf 1999). While horizontal dispersion in flows through cylinder arrays has received considerable research attention, the case of vertical dispersion of reactive constituents has not. This case is relevant to the vertical transfer of dissolved gases in wetlands with emergent vegetation. We present results showing that the presence of vegetation can significantly enhance vertical transport, including gas transfer across the air-water interface. Specifically, we study a wind-sheared air-water interface in which randomly arrayed cylinders represent emergent vegetation. Wind is one of several processes that may govern physical dispersion of dissolved gases in wetlands. Wind represents the dominant force for gas transfer across the air-water interface in the ocean. Empirical relationships between wind and the gas transfer coefficient, k, have been used to estimate spatial variability of CO2 exchange across the worlds’ oceans. Because wetlands with emergent vegetation are different from oceans, different model of wind effects is needed. We investigated the vertical transport of dissolved oxygen in a scaled wetland model built inside a laboratory tank equipped with an open-ended wind tunnel. Plastic tubing immersed in water to a depth of approximately 40 cm represented emergent vegetation of cylindrical form such as hard-stem bulrush (Schoenoplectus acutus). After partially removing the oxygen from the tank water via reaction with sodium sulfite, we used an optical probe to measure dissolved oxygen at mid-depth as the tank water re-equilibrated with the air above. We used dissolved oxygen time-series for a range of mean wind speeds to estimate the

  13. The provision of clearances accuracy in piston - cylinder mating

    NASA Astrophysics Data System (ADS)

    Glukhov, V. I.; Shalay, V. V.

    2017-08-01

    The paper is aimed at increasing the quality of the pumping equipment in oil and gas industry. The main purpose of the study is to stabilize maximum values of productivity and durability of the pumping equipment based on the selective assembly of the cylinder-piston kinematic mating by optimization criterion. It is shown that the minimum clearance in the piston-cylinder mating is formed by maximum material dimensions. It is proved that maximum material dimensions are characterized by their own laws of distribution within the tolerance limits for the diameters of the cylinder internal mirror and the outer cylindrical surface of the piston. At that, their dispersion zones should be divided into size groups with a group tolerance equal to half the tolerance for the minimum clearance. The techniques for measuring the material dimensions - the smallest cylinder diameter and the largest piston diameter according to the envelope condition - are developed for sorting them into size groups. Reliable control of the dimensions precision ensures optimal minimum clearances of the piston-cylinder mating in all the size groups of the pumping equipment, necessary for increasing the equipment productivity and durability during the production, operation and repair processes.

  14. An Experiment in Heat Conduction Using Hollow Cylinders

    ERIC Educational Resources Information Center

    Ortuno, M.; Marquez, A.; Gallego, S.; Neipp, C.; Belendez, A.

    2011-01-01

    An experimental apparatus was designed and built to allow students to carry out heat conduction experiments in hollow cylinders made of different materials, as well as to determine the thermal conductivity of these materials. The evolution of the temperature difference between the inner and outer walls of the cylinder as a function of time is…

  15. Acoustic resonances in cylinder bundles oscillating in a compressibile fluid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, W.H.; Raptis, A.C.

    1984-12-01

    This paper deals with an analytical study on acoustic resonances of elastic oscillations of a group of parallel, circular, thin cylinders in an unbounded volume of barotropic, compressible, inviscid fluid. The perturbed motion of the fluid is assumed due entirely to the flexural oscillations of the cylinders. The motion of the fluid disturbances is first formulated in a three-dimensional wave form and then casted into a two-dimensional Helmholtz equation for the harmonic motion in time and in axial space. The acoustic motion in the fluid and the elastic motion in the cylinders are solved simultaneously. Acoustic resonances were approximately determinedmore » from the secular (eigenvalue) equation by the method of successive iteration with the use of digital computers for a given set of the fluid properties and the cylinders' geometry and properties. Effects of the flexural wavenumber and the configuration of and the spacing between the cylinders on the acoustic resonances were thoroughly investigated.« less

  16. Cylinder stitching interferometry: with and without overlap regions

    NASA Astrophysics Data System (ADS)

    Peng, Junzheng; Chen, Dingfu; Yu, Yingjie

    2017-06-01

    Since the cylinder surface is closed and periodic in the azimuthal direction, existing stitching methods cannot be used to yield the 360° form map. To address this problem, this paper presents two methods for stitching interferometry of cylinder: one requires overlap regions, and the other does not need the overlap regions. For the former, we use the first order approximation of cylindrical coordinate transformation to build the stitching model. With it, the relative parameters between the adjacent sub-apertures can be calculated by the stitching model. For the latter, a set of orthogonal polynomials, termed Legendre Fourier (LF) polynomials, was developed. With these polynomials, individual sub-aperture data can be expanded as composition of inherent form of partial cylinder surface and additional misalignment parameters. Then the 360° form map can be acquired by simultaneously fitting all sub-aperture data with LF polynomials. Finally the two proposed methods are compared under various conditions. The merits and drawbacks of each stitching method are consequently revealed to provide suggestion in acquisition of 360° form map for a precision cylinder.

  17. 78 FR 42817 - Safety Advisory: Unauthorized Filling of Compressed Gas Cylinders

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-17

    ... transportation high pressure compressed gas cylinders without verifying that they met the appropriate safety... in turn alerted PHMSA of an incident on June 25, 2013, in which a high pressure DOT 3A 1800 cylinder... high pressure US DOT and special permit cylinders with compressed gases without verifying that they met...

  18. Standardized Curriculum for Heating and Air Conditioning.

    ERIC Educational Resources Information Center

    Mississippi State Dept. of Education, Jackson. Office of Vocational, Technical and Adult Education.

    Standardized vocational education course titles and core contents for two courses in Mississippi are provided: heating and air conditioning I and II. The first course contains the following units: (1) orientation; (2) safety; (3) refrigeration gauges and charging cylinder; (4) vacuum pump service operations; (5) locating refrigerant leaks; (6)…

  19. Turbulence and mechanism of resistance on spheres and cylinders

    NASA Technical Reports Server (NTRS)

    Ahlborn, FR

    1932-01-01

    The nature of turbulent flow through pipes and around obstacles is analyzed and illustrated by photographs of turbulence on screens and straighteners. It is shown that the reversal of flow and of the resistance law on spheres is not explainable by Prandtl's turbulence in the boundary layer. The investigation of the analogous phenomena on the cylinder yields a reversal of the total field of flow. The very pronounced changes in pressure distribution connected with it were affirmed by manometric measurements on spheres by Professor O. Krell. The reversal in a homogenous nonvortical flow is brought about by the advance of the stable arrangement of Karman's dead air vortices toward the test object and by the substitution of an alternatingly one-sided or rotating but stable vortex formation in place of the initially symmetrical formation. This also explains the marked variations of the models.

  20. Fluid forces on two circular cylinders in crossflow

    NASA Astrophysics Data System (ADS)

    Jendrzejczyk, J. A.; Chen, S. S.

    1986-07-01

    Fluid excitation forces are measured in a water loop for two circular cylinders arranged in tandem and normal to flow. The Strouhal number and fluctuating drag and lift coefficients for both cylinders are presented for various spacings and incoming flow conditions. The results show the effects of Reynolds number, pitch ratio, and upstream turbulence on the fluid excitation forces.

  1. Effects of cylinder Reynolds number on the turbulent horseshoe vortex system and near wake of a surface-mounted circular cylinder

    NASA Astrophysics Data System (ADS)

    Kirkil, Gokhan; Constantinescu, George

    2014-11-01

    The turbulent horseshoe vortex (HV) system and the near-wake flow past a circular cylinder mounted on a flat bed in an open channel are investigated based on results of eddy-resolving simulations and supporting flow visualizations. Of particular interest are the changes in the mean flow and turbulence statistics within the HV region as the necklace vortices wrap around the cylinder's base and the variation of the mean flow and turbulence statistics in the near wake, in between the channel bed and the free surface. While it is well known that the drag crisis induces important changes in the flow past infinitely-long circular cylinders, the changes are less understood and more complex for the case of flow past a surface-mounted cylinder. A detailed discussion of the changes in the flow physics between cylinder Reynolds numbers at which the flow in the upstream part of the separated shear layers (SSLs) is laminar (Re = 16,000, subcritical flow regime) and Reynolds numbers at which transition occurs inside the attached boundary layers away from the bed and the flow within the SSLs is turbulent (Re = 500,000, supercritical flow regime). The changes between the two regimes in the dynamics and level of coherence of the large-scale coherent structures (necklace vortices, vortex tubes shed in the SSLs and roller vortices shed in the wake) and their capacity to induce high-magnitude bed friction velocities in the mean and instantaneous flow fields and to amplify the near-bed turbulence are analyzed.

  2. Evolution of In-Cylinder Diesel Engine Soot and Emission Characteristics Investigated with Online Aerosol Mass Spectrometry.

    PubMed

    Malmborg, V B; Eriksson, A C; Shen, M; Nilsson, P; Gallo, Y; Waldheim, B; Martinsson, J; Andersson, Ö; Pagels, J

    2017-02-07

    To design diesel engines with low environmental impact, it is important to link health and climate-relevant soot (black carbon) emission characteristics to specific combustion conditions. The in-cylinder evolution of soot properties over the combustion cycle and as a function of exhaust gas recirculation (EGR) was investigated in a modern heavy-duty diesel engine. A novel combination of a fast gas-sampling valve and a soot particle aerosol mass spectrometer (SP-AMS) enabled online measurements of the in-cylinder soot chemistry. The results show that EGR reduced the soot formation rate. However, the late cycle soot oxidation rate (soot removal) was reduced even more, and the net effect was increased soot emissions. EGR resulted in an accumulation of polycyclic aromatic hydrocarbons (PAHs) during combustion, and led to increased PAH emissions. We show that mass spectral and optical signatures of the in-cylinder soot and associated low volatility organics change dramatically from the soot formation dominated phase to the soot oxidation dominated phase. These signatures include a class of fullerene carbon clusters that we hypothesize represent less graphitized, C 5 -containing fullerenic (high tortuosity or curved) soot nanostructures arising from decreased combustion temperatures and increased premixing of air and fuel with EGR. Altered soot properties are of key importance when designing emission control strategies such as diesel particulate filters and when introducing novel biofuels.

  3. The Federal Cylinder Project: A Guide to Field Cylinder Collections in Federal Agencies. Volume 2, Northeastern Indian Catalog and Southeastern Indian Catalog.

    ERIC Educational Resources Information Center

    Gray, Judith A., Ed.; And Others

    Two catalogs inventory field-recorded wax cylinders which document the music and language of Indian tribes in northeastern and southeastern United States from 1890-1930. The Northeastern Indian Catalog contains entries for 738 cylinders comprising 16 music and spoken word collections from the Chippewa, Fox, Iroquois, Kickapoo, Menominee,…

  4. Dynamic Fracture Simulations of Explosively Loaded Cylinders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arthur, Carly W.; Goto, D. M.

    2015-11-30

    This report documents the modeling results of high explosive experiments investigating dynamic fracture of steel (AerMet® 100 alloy) cylinders. The experiments were conducted at Lawrence Livermore National Laboratory (LLNL) during 2007 to 2008 [10]. A principal objective of this study was to gain an understanding of dynamic material failure through the analysis of hydrodynamic computer code simulations. Two-dimensional and three-dimensional computational cylinder models were analyzed using the ALE3D multi-physics computer code.

  5. 49 CFR 173.301a - Additional general requirements for shipment of specification cylinders.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... gases in specification cylinders. (b) Authorized cylinders not marked with a service pressure. For authorized cylinders not marked with a service pressure, the service pressure is designated as follows: Specification marking Service Pressure psig 3 1800 3E 1800 8 250 (c) Cylinder pressure at 21 °C (70 °F). The...

  6. 49 CFR 173.301a - Additional general requirements for shipment of specification cylinders.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... gases in specification cylinders. (b) Authorized cylinders not marked with a service pressure. For authorized cylinders not marked with a service pressure, the service pressure is designated as follows: Specification marking Service Pressure psig 3 1800 3E 1800 8 250 (c) Cylinder pressure at 21 °C (70 °F). The...

  7. 49 CFR 173.301a - Additional general requirements for shipment of specification cylinders.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... gases in specification cylinders. (b) Authorized cylinders not marked with a service pressure. For authorized cylinders not marked with a service pressure, the service pressure is designated as follows: Specification marking Service Pressure psig 3 1800 3E 1800 8 250 (c) Cylinder pressure at 21 °C (70 °F). The...

  8. 49 CFR 173.301a - Additional general requirements for shipment of specification cylinders.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... gases in specification cylinders. (b) Authorized cylinders not marked with a service pressure. For authorized cylinders not marked with a service pressure, the service pressure is designated as follows: Specification marking Service Pressure psig 3 1800 3E 1800 8 250 (c) Cylinder pressure at 21 °C (70 °F). The...

  9. Flow of wormlike micellar solutions around confined microfluidic cylinders.

    PubMed

    Zhao, Ya; Shen, Amy Q; Haward, Simon J

    2016-10-26

    Wormlike micellar (WLM) solutions are frequently used in enhanced oil and gas recovery applications in porous rock beds where complex microscopic geometries result in mixed flow kinematics with strong shear and extensional components. Experiments with WLM solutions through model microfluidic porous media have revealed a variety of complex flow phenomena, including the formation of stable gel-like structures known as a Flow-Induced Structured Phase (FISP), which undoubtedly play an important role in applications of WLM fluids, but are still poorly understood. A first step in understanding flows of WLM fluids through porous media can be made by examining the flow around a single micro-scale cylinder aligned on the flow axis. Here we study flow behavior of an aqueous WLM solution consisting of cationic surfactant cetyltrimethylammonium bromide (CTAB) and a stable hydrotropic salt 3-hydroxy naphthalene-2-carboxylate (SHNC) in microfluidic devices with three different cylinder blockage ratios, β. We observe a rich sequence of flow instabilities depending on β as the Weissenberg number (Wi) is increased to large values while the Reynolds number (Re) remains low. Instabilities upstream of the cylinder are associated with high stresses in fluid that accelerates into the narrow gap between the cylinder and the channel wall; vortex growth upstream is reminiscent of that seen in microfluidic contraction geometries. Instability downstream of the cylinder is associated with stresses generated at the trailing stagnation point and the resulting flow modification in the wake, coupled with the onset of time-dependent flow upstream and the asymmetric division of flow around the cylinder.

  10. Schlieren-based temperature measurement inside the cylinder of an optical spark ignition and homogeneous charge compression ignition engine.

    PubMed

    Aleiferis, Pavlos; Charalambides, Alexandros; Hardalupas, Yannis; Soulopoulos, Nikolaos; Taylor, A M K P; Urata, Yunichi

    2015-05-10

    Schlieren [Schlieren and Shadowgraphy Techniques (McGraw-Hill, 2001); Optics of Flames (Butterworths, 1963)] is a non-intrusive technique that can be used to detect density variations in a medium, and thus, under constant pressure and mixture concentration conditions, measure whole-field temperature distributions. The objective of the current work was to design a schlieren system to measure line-of-sight (LOS)-averaged temperature distribution with the final aim to determine the temperature distribution inside the cylinder of internal combustion (IC) engines. In a preliminary step, we assess theoretically the errors arising from the data reduction used to determine temperature from a schlieren measurement and find that the total error, random and systematic, is less than 3% for typical conditions encountered in the present experiments. A Z-type, curved-mirror schlieren system was used to measure the temperature distribution from a hot air jet in an open air environment in order to evaluate the method. Using the Abel transform, the radial distribution of the temperature was reconstructed from the LOS measurements. There was good agreement in the peak temperature between the reconstructed schlieren and thermocouple measurements. Experiments were then conducted in a four-stroke, single-cylinder, optical spark ignition engine with a four-valve, pentroof-type cylinder head to measure the temperature distribution of the reaction zone of an iso-octane-air mixture. The engine optical windows were designed to produce parallel rays and allow accurate application of the technique. The feasibility of the method to measure temperature distributions in IC engines was evaluated with simulations of the deflection angle combined with equilibrium chemistry calculations that estimated the temperature of the reaction zone at the position of maximum ray deflection as recorded in a schlieren image. Further simulations showed that the effects of exhaust gas recirculation and air

  11. Global stability analysis of axisymmetric boundary layer over a circular cylinder

    NASA Astrophysics Data System (ADS)

    Bhoraniya, Ramesh; Vinod, Narayanan

    2018-05-01

    This paper presents a linear global stability analysis of the incompressible axisymmetric boundary layer on a circular cylinder. The base flow is parallel to the axis of the cylinder at inflow boundary. The pressure gradient is zero in the streamwise direction. The base flow velocity profile is fully non-parallel and non-similar in nature. The boundary layer grows continuously in the spatial directions. Linearized Navier-Stokes (LNS) equations are derived for the disturbance flow quantities in the cylindrical polar coordinates. The LNS equations along with homogeneous boundary conditions forms a generalized eigenvalues problem. Since the base flow is axisymmetric, the disturbances are periodic in azimuthal direction. Chebyshev spectral collocation method and Arnoldi's iterative algorithm is used for the solution of the general eigenvalues problem. The global temporal modes are computed for the range of Reynolds numbers and different azimuthal wave numbers. The largest imaginary part of the computed eigenmodes is negative, and hence, the flow is temporally stable. The spatial structure of the eigenmodes shows that the disturbance amplitudes grow in size and magnitude while they are moving towards downstream. The global modes of axisymmetric boundary layer are more stable than that of 2D flat-plate boundary layer at low Reynolds number. However, at higher Reynolds number they approach 2D flat-plate boundary layer. Thus, the damping effect of transverse curvature is significant at low Reynolds number. The wave-like nature of the disturbance amplitudes is found in the streamwise direction for the least stable eigenmodes.

  12. Optimization of In-Cylinder Pressure Filter for Engine Research

    DTIC Science & Technology

    2017-06-01

    ARL-TR-8034 ● JUN 2017 US Army Research Laboratory Optimization of In-Cylinder Pressure Filter for Engine Research by Kenneth...Laboratory Optimization of In-Cylinder Pressure Filter for Engine Research by Kenneth S Kim, Michael T Szedlmayer, Kurt M Kruger, and Chol-Bum M...

  13. Thermo-Mechanical Analyses of Dynamically Loaded Rubber Cylinders

    NASA Technical Reports Server (NTRS)

    Johnson, Arthur R.; Chen, Tzi-Kang

    2002-01-01

    Thick rubber components are employed by the Army to carry large loads. In tanks, rubber covers road wheels and track systems to protect roadways. It is difficult for design engineers to simulate the details of the hysteretic heating for large strain viscoelastic deformations. In this study, an approximation to the viscoelastic energy dissipated per unit time is investigated for use in estimating mechanically induced viscoelastic heating. Coupled thermo-mechanical simulations of large cyclic deformations of rubber cylinders are presented. The cylinders are first compressed axially and then cyclically loaded about the compressed state. Details of the algorithm and some computational issues are discussed. The coupled analyses are conducted for tall and short rubber cylinders both with and without imbedded metal disks.

  14. Effect of rotation rate on the forces of a rotating cylinder: Simulation and control

    NASA Technical Reports Server (NTRS)

    Burns, John A.; Ou, Yuh-Roung

    1993-01-01

    In this paper we present numerical solutions to several optimal control problems for an unsteady viscous flow. The main thrust of this work is devoted to simulation and control of an unsteady flow generated by a circular cylinder undergoing rotary motion. By treating the rotation rate as a control variable, we can formulate two optimal control problems and use a central difference/pseudospectral transform method to numerically compute the optimal control rates. Several types of rotations are considered as potential controls, and we show that a proper synchronization of forcing frequency with the natural vortex shedding frequency can greatly influence the flow. The results here indicate that using moving boundary controls for such systems may provide a feasible mechanism for flow control.

  15. System and method of cylinder deactivation for optimal engine torque-speed map operation

    DOEpatents

    Sujan, Vivek A; Frazier, Timothy R; Follen, Kenneth; Moon, Suk-Min

    2014-11-11

    This disclosure provides a system and method for determining cylinder deactivation in a vehicle engine to optimize fuel consumption while providing the desired or demanded power. In one aspect, data indicative of terrain variation is utilized in determining a vehicle target operating state. An optimal active cylinder distribution and corresponding fueling is determined from a recommendation from a supervisory agent monitoring the operating state of the vehicle of a subset of the total number of cylinders, and a determination as to which number of cylinders provides the optimal fuel consumption. Once the optimal cylinder number is determined, a transmission gear shift recommendation is provided in view of the determined active cylinder distribution and target operating state.

  16. The oxygen concentrator is a suitable alternative to oxygen cylinders in Nepal.

    PubMed

    Shrestha, Bisharad M; Singh, Birendra B; Gautam, Madhav P; Chand, Man B

    2002-01-01

    To review the efficacy and reliability of oxygen concentrators used over the last six years in Nepal. The apparatus used was a DeVilbiss(R) oxygen concentrator that provided O(2) for anesthesia supplemented with compressed air to drive a Penlon Manley Multivent Ventilator(R). It remains difficult to supply oxygen in cylinders to peripheral hospitals in Nepal due to lack of proper roads. We conducted a retrospective analysis of a sample of 378 cases anesthetized at the Bir Hospital and at a private hospital in Kathmandu from April through October 1999. The Bain circuit or its modification was used in adults, and Bain or Ayre's T piece in children. High flows from the oxygen concentrator used with the Bain and Ayre's T-circuits were reduced to 2 L/min, delivered through the halothane vaporizer, supplemented by room air in the modified Bain circuit. Positive pressure ventilation was provided with an Ambubag, Oxford Inflating Bellows or Penlon Manley Multivent Ventilator. Blood pressure, electrocardiogram, FiO(2) and SpO(2) were monitored in all cases. Surgery included urologic, general surgery, obstetrics and gynecological procedures, neurosurgery and closed mitral valvotomy. Age ranged from six months to 78 yr. The anesthetic time lasted from 45 min to 12 hr. The FiO(2) ranged from 0.5 to 0.6 in the Bain and Ayre's T circuits, and from 0.34 to 0.40 in the modified Bain circuit with a flow of oxygen of 2 L/min from the concentrator. With regular maintenance and servicing done locally, the oxygen concentrator can be used safely in adults and children. Use of the oxygen concentrator is a suitable alternative to oxygen cylinders in the developing world.

  17. Effect of timed secondary-air injection on automotive emissions

    NASA Technical Reports Server (NTRS)

    Coffin, K. P.

    1973-01-01

    A single cylinder of an automotive V-8 engine was fitted with an electronically timed system for the pulsed injection of secondary air. A straight-tube exhaust minimized any mixing other than that produced by secondary-air pulsing. The device was operated over a range of engine loads and speeds. Effects attributable to secondary-air pulsing were found, but emission levels were generally no better than using the engine's own injection system. Under nontypical fast-idle, no-load conditions, emission levels were reduced by roughly a factor of 2.

  18. 49 CFR 178.35 - General requirements for specification cylinders.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... cylinders made by the billet-piercing process, billets must be inspected and shown to be free from pipe... specific construction design.); (v) Witnessing all tests; (vi) Verify threads by gauge; (vii) Reporting... certifies that the processes of manufacture and heat treatment of cylinders were observed and found...

  19. 49 CFR 178.35 - General requirements for specification cylinders.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... cylinders made by the billet-piercing process, billets must be inspected and shown to be free from pipe... specific construction design.); (v) Witnessing all tests; (vi) Verify threads by gauge; (vii) Reporting... certifies that the processes of manufacture and heat treatment of cylinders were observed and found...

  20. 49 CFR 178.35 - General requirements for specification cylinders.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... cylinders made by the billet-piercing process, billets must be inspected and shown to be free from pipe... specific construction design.); (v) Witnessing all tests; (vi) Verify threads by gauge; (vii) Reporting... certifies that the processes of manufacture and heat treatment of cylinders were observed and found...

  1. 49 CFR 178.35 - General requirements for specification cylinders.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... cylinders made by the billet-piercing process, billets must be inspected and shown to be free from pipe... specific construction design.); (v) Witnessing all tests; (vi) Verify threads by gauge; (vii) Reporting... certifies that the processes of manufacture and heat treatment of cylinders were observed and found...

  2. Numerical study of axial turbulent flow over long cylinders

    NASA Technical Reports Server (NTRS)

    Neves, J. C.; Moin, P.; Moser, R. D.

    1991-01-01

    The effects of transverse curvature are investigated by means of direct numerical simulations of turbulent axial flow over cylinders. Two cases of Reynolds number of about 3400 and layer-thickness-to-cylinder-radius ratios of 5 and 11 were simulated. All essential turbulence scales were resolved in both calculations, and a large number of turbulence statistics were computed. The results are compared with the plane channel results of Kim et al. (1987) and with experiments. With transverse curvature the skin friction coefficient increases and the turbulence statistics, when scaled with wall units, are lower than in the plane channel. The momentum equation provides a scaling that collapses the cylinder statistics, and allows the results to be interpreted in light of the plane channel flow. The azimuthal and radial length scales of the structures in the flow are of the order of the cylinder diameter. Boomerang-shaped structures with large spanwise length scales were observed in the flow.

  3. Finite deformations in pressurized thick-walled circular cylinder with steady state temperature

    NASA Astrophysics Data System (ADS)

    Sharma, Sanjeev; Sharma, Richa

    2017-10-01

    In this paper finite elastic and plastic stresses have been investigated using the concept of transition theory with the use of generalized strain measure i.e. nonlinear terms in the displacement are also included which are not included in classical theory. In this paper, we analyze the impact of temperature and pressure on the circular cylinder which is the cause of failure of cylinder. It has been noticed from the results that pressure and temperature play a significant role in the failure of the cylinder. It has been noticed that cylinder made up of the material whose compressibility is at the higher side is best for the designing purpose as compared to cylinder with less compressible material.

  4. Modeling of composite hydrogen storage cylinders using finite element analysis

    DOT National Transportation Integrated Search

    2008-02-01

    Pressurized hydrogen storage cylinders are critical components of hydrogen transportation systems. Composite cylinders have pressure/thermal relief devices that are activated in case of an emergency. The difficulty in accurately analyzing the behavio...

  5. State of practice for concrete cylinder match curing and effect of test cylinder size.

    DOT National Transportation Integrated Search

    2014-01-01

    The prestressed concrete element industry is interested in exploring the application of different types of matchcuring : technologies and in using 4 x 8-in. (100 x 200-mm) cylinders to measure concrete compressive strength : instead of the standard 6...

  6. Impact fragmentation of polyurethane and polypropylene cylinder

    NASA Astrophysics Data System (ADS)

    Kishimura, Hiroaki; Noguchi, Daisuke; Preechasupanya, Worrayut; Matsumoto, Hitoshi

    2013-11-01

    The impact fragmentation of a bulk polyurethane elastomer (PU) and polypropylene (PP) cylinder have been investigated using a Cu plate projectile launched by a propellant gun at a velocity of 0.53-1.4 km/s. A projectile drills into a PU sample and forms a cavity in the sample. A small number of tiny fragments are formed. When the projectile smashes in at 1.4 km/s, the PU cylinder bursts and PU fragments form. On the other hand, a brittle fracture occurs on the PP cylinder. The mass of fragments from the PU sample generated at a lower impact velocity is distributed in the lognormal form, whereas the mass of fragments from the PU sample generated by a 1.4 km/s impact follows a power-law distribution. The fragment mass distribution of the PP sample generated at a lower impact velocity obeys the power-law form, whereas that generated at a higher impact velocity follows the lognormal form.

  7. 49 CFR 178.35 - General requirements for specification cylinders.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... cylinders made by the billet-piercing process, billets must be inspected and shown to be free from pipe... specific construction design.); (v) Witnessing all tests; (vi) Verify threads by gauge; (vii) Reporting... finished cylinder has been welded by the spinning process, or effected by plugging. (ii) As prescribed in...

  8. Method of making superconducting cylinders for flux detectors

    DOEpatents

    Goodkind, J.M.; Stolfa, D.L.

    1971-07-06

    A method of making superconducting cylinders of the ''weak link'' type is provided. The method allows the weak link to be made much smaller than was heretofore possible, thereby greatly increasing sensitivity and operating temperature range when the cylinder is used in a flux detector. The resistance of the weak link is monitored continuously as metal is removed from the link by electrochemical action.

  9. Rotation of an immersed cylinder sliding near a thin elastic coating

    NASA Astrophysics Data System (ADS)

    Rallabandi, Bhargav; Saintyves, Baudouin; Jules, Theo; Salez, Thomas; Schönecker, Clarissa; Mahadevan, L.; Stone, Howard A.

    2017-07-01

    It is known that an object translating parallel to a soft wall in a viscous fluid produces hydrodynamic stresses that deform the wall, which in turn results in a lift force on the object. Recent experiments with cylinders sliding under gravity near a soft incline, which confirmed theoretical arguments for the lift force, also reported an unexplained steady-state rotation of the cylinders [B. Saintyves et al., Proc. Natl. Acad. Sci. USA 113, 5847 (2016), 10.1073/pnas.1525462113]. Motivated by these observations, we show, in the lubrication limit, that an infinite cylinder that translates in a viscous fluid parallel to a soft wall at constant speed and separation distance must also rotate in order to remain free of torque. Using the Lorentz reciprocal theorem, we show analytically that for small deformations of the elastic layer, the angular velocity of the cylinder scales with the cube of the sliding speed. These predictions are confirmed numerically. We then apply the theory to the gravity-driven motion of a cylinder near a soft incline and find qualitative agreement with the experimental observations, namely, that a softer elastic layer results in a greater angular speed of the cylinder.

  10. Transient thermal stress problem for a circumferentially cracked hollow cylinder

    NASA Technical Reports Server (NTRS)

    Nied, H. F.; Erdogan, F.

    1983-01-01

    The paper is concerned with the transient thermal stress problem for a long hollow circular cylinder containing an internal axisymmetric circumferential edge crack that is suddenly cooled from inside. It is assumed that the transient thermal stress problem is quasi-static, i.e., the inertial effects are negligible. Also, all thermoelastic coupling effects and the possible temperature dependence of the thermoelastic constants are neglected. The problem is considered in two parts. The first part is the evaluation of transient thermal stresses in an uncracked cylinder; the second part is the isothermal perturbation problem for the cracked cylinder in which the crack surface tractions, equal and opposite to the thermal stresses obtained from the first problem, are the only external loads. The superposition of the two solutions gives results for the cracked cylinder.

  11. Controllable parabolic-cylinder optical rogue wave.

    PubMed

    Zhong, Wei-Ping; Chen, Lang; Belić, Milivoj; Petrović, Nikola

    2014-10-01

    We demonstrate controllable parabolic-cylinder optical rogue waves in certain inhomogeneous media. An analytical rogue wave solution of the generalized nonlinear Schrödinger equation with spatially modulated coefficients and an external potential in the form of modulated quadratic potential is obtained by the similarity transformation. Numerical simulations are performed for comparison with the analytical solutions and to confirm the stability of the rogue wave solution obtained. These optical rogue waves are built by the products of parabolic-cylinder functions and the basic rogue wave solution of the standard nonlinear Schrödinger equation. Such rogue waves may appear in different forms, as the hump and paw profiles.

  12. Aeroacoustic Simulations of Tandem Cylinders with Subcritical Spacing

    NASA Technical Reports Server (NTRS)

    Lockard, David P.; Choudhari, Meelan M.; Khorrami, Mehdi R.; Neuhart, Dan H.; Hutcheson, Florence V.; Brooks, Thomas F.; Stead, Daniel J.

    2008-01-01

    Tandem cylinders are being studied because they model a variety of component level interactions of landing gear. The present effort is directed at the case of two identical cylinders with their centroids separated in the streamwise direction by 1.435 diameters. Experiments in the Basic Aerodynamic Research Tunnel and Quiet Flow Facility at NASA Langley Research Center have provided an extensive experimental database of the nearfield flow and radiated noise. The measurements were conducted at a Mach number of 0.1285 and Reynolds number of 1.66x10(exp 5) based on the cylinder diameter. A trip was used on the upstream cylinder to insure a fully turbulent flow separation and, hence, to simulate a major aspect of high Reynolds number flow. The parallel computational effort uses the three-dimensional Navier-Stokes solver CFL3D with a hybrid, zonal turbulence model that turns off the turbulence production term everywhere except in a narrow ring surrounding solid surfaces. The experiments exhibited an asymmetry in the surface pressure that was persistent despite attempts to eliminate it through small changes in the configuration. To model the asymmetry, the simulations were run with the cylinder configuration at a nonzero but small angle of attack. The computed results and experiments are in general agreement that vortex shedding for the spacing studied herein is weak relative to that observed at supercritical spacings. Although the shedding was subdued in the simulations, it was still more prominent than in the experiments. Overall, the simulation comparisons with measured near-field data and the radiated acoustics are reasonable, especially if one is concerned with capturing the trends relative to larger cylinder spacings. However, the flow details of the 1.435 diameter spacing have not been captured in full even though very fine grid computations have been performed. Some of the discrepancy may be associated with the simulation s inexact representation of the

  13. Rapid and selective brain cooling method using vortex tube: A feasibility study.

    PubMed

    Bakhsheshi, Mohammad Fazel; Keenliside, Lynn; Lee, Ting-Yim

    2016-05-01

    Vortex tubes are simple mechanical devices to produce cold air from a stream of compressed air without any moving parts. The primary focus of the current study is to investigate the feasibility and efficiency of nasopharyngeal brain cooling method using a vortex tube. Experiments were conducted on 5 juvenile pigs. Nasopharygeal brain cooling was achieved by directing cooled air via a catheter in each nostril into the nasal cavities. A vortex tube was used to generate cold air using various sources of compressed air: (I) hospital medical air outlet (n = 1); (II) medical air cylinders (n = 3); and (III) scuba (diving) cylinders (n = 1). By using compressed air from a hospital medical air outlet at fixed inlet pressure of 50 PSI, maximum brain-rectal temperature gradient of -2°C was reached about 45-60 minutes by setting the flow rate of 25 L/min and temperature of -7°C at the cold air outlet. Similarly, by using medical air cylinders at fill-pressure of 2265 PSI and down regulate the inlet pressure to the vortex tube to 50 PSI, brain temperature could be reduced more rapidly by blowing -22°C ± 2°C air at a flow rate of 50 L/min; brain-body temperature gradient of -8°C was obtained about 30 minutes. Furthermore, we examined scuba cylinders as a portable source of compressed gas supply to the vortex tube. Likewise, by setting up the vortex tube to have an inlet pressure of 25 PSI and 50 L/min and -3°C at the cold air outlet, brain temperature decreased 4.5°C within 10-20 min. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Finite element analysis and experiment on high pressure apparatus with split cylinder

    NASA Astrophysics Data System (ADS)

    Zhao, Liang; Li, Mingzhe; Yang, Yunfei; Wang, Bolong; Li, Yi

    2017-07-01

    Ultra-high pressure belt-type die was designed with a large sample volume prism cavity and a split cylinder which was divided into eight segments to eliminate circumferential stress. The cylinder of this type die has no cambered surface on inner wall, and the inner hole is a hexagonal prism-type cavity. The divided bodies squeeze with each other, providing the massive support and lateral support effect of the cylinder. Simulation results indicate that the split cylinder with the prism cavity possesses much smaller stress and more uniform stress distribution. The split cylinder with the prism cavity has been shown to bear larger compressive stresses in radial, circumferential and axial directions due to its structure, and tungsten carbide is most effective in pure compression so this type cylinder could bear higher pressure. Experimental results prove that the high pressure apparatus with a prism-type cavity could bear higher pressure. The apparatus with a prism cavity could bear 52.2% more pressure than the belt-type die.

  15. Effect of Intake Air Filter Condition on Light-Duty Gasoline Vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, John F; Huff, Shean P; West, Brian H

    2012-01-01

    Proper maintenance can help vehicles perform as designed, positively affecting fuel economy, emissions, and the overall drivability. This effort investigates the effect of one maintenance factor, intake air filter replacement, with primary focus on vehicle fuel economy, but also examining emissions and performance. Older studies, dealing with carbureted gasoline vehicles, have indicated that replacing a clogged or dirty air filter can improve vehicle fuel economy and conversely that a dirty air filter can be significantly detrimental to fuel economy. The effect of clogged air filters on the fuel economy, acceleration and emissions of five gasoline fueled vehicles is examined. Fourmore » of these were modern vehicles, featuring closed-loop control and ranging in model year from 2003 to 2007. Three vehicles were powered by naturally aspirated, port fuel injection (PFI) engines of differing size and cylinder configuration: an inline 4, a V6 and a V8. A turbocharged inline 4-cylinder gasoline direct injection (GDI) engine powered vehicle was the fourth modern gasoline vehicle tested. A vintage 1972 vehicle equipped with a carburetor (open-loop control) was also examined. Results reveal insignificant fuel economy and emissions sensitivity of modern vehicles to air filter condition, but measureable effects on the 1972 vehicle. All vehicles experienced a measured acceleration performance penalty with clogged intake air filters.« less

  16. Pressure fluctuations on the surface of a cylinder in uniform flow

    NASA Technical Reports Server (NTRS)

    Ayoub, A.; Karamcheti, K.

    1976-01-01

    The problem of determining the pressure fluctuations induced on the surface of a cylinder by the fluctuating wake behind it is formulated. A formal solution relating the unsteady surface pressure field to the velocity field in the wake is derived and used to obtain general results independent of cylinder shape and Reynolds number. The case of the circular cylinder is then examined in detail.

  17. Damage tolerance and arrest characteristics of pressurized graphite/epoxy tape cylinders

    NASA Technical Reports Server (NTRS)

    Ranniger, Claudia U.; Lagace, Paul A.; Graves, Michael J.

    1993-01-01

    An investigation of the damage tolerance and damage arrest characteristics of internally-pressurized graphite/epoxy tape cylinders with axial notches was conducted. An existing failure prediction methodology, developed and verified for quasi-isotropic graphite/epoxy fabric cylinders, was investigated for applicability to general tape layups. In addition, the effect of external circumferential stiffening bands on the direction of fracture path propagation and possible damage arrest was examined. Quasi-isotropic (90/0/plus or minus 45)s and structurally anisotropic (plus or minus 45/0)s and (plus or minus 45/90)s coupons and cylinders were constructed from AS4/3501-6 graphite/epoxy tape. Notched and unnotched coupons were tested in tension and the data correlated using the equation of Mar and Lin. Cylinders with through-thickness axial slits were pressurized to failure achieving a far-field two-to-one biaxial stress state. Experimental failure pressures of the (90/0/plus or minus 45)s cylinders agreed with predicted values for all cases but the specimen with the smallest slit. However, the failure pressures of the structurally anisotropic cylinders, (plus or minus 45/0)s and (plus or minus 45/90)s, were above the values predicted utilizing the predictive methodology in all cases. Possible factors neglected by the predictive methodology include structural coupling in the laminates and axial loading of the cylindrical specimens. Furthermore, applicability of the predictive methodology depends on the similarity of initial fracture modes in the coupon specimens and the cylinder specimens of the same laminate type. The existence of splitting which may be exacerbated by the axial loading in the cylinders, shows that this condition is not always met. The circumferential stiffeners were generally able to redirect fracture propagation from longitudinal to circumferential. A quantitative assessment for stiffener effectiveness in containing the fracture, based on cylinder

  18. Hydrodynamic characteristics of a novel annular spouted bed with multiple air nozzles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, X.W.; Hu, G.X.; Li, Y.H.

    A novel spouted bed, namely, an annular spouted bed with multiple air nozzles, has been proposed for drying, pyrolysis, and gasification of coal particulates. It consists of two homocentric upright cylinders with some annularly located spouting air nozzles between inner and outer cylinders. Experiments have been performed to study hydrodynamic characteristics of this device. The test materials studied are ash particle, soy bean, and black bean. Three distinct spouting stages have been examined and outlined with the hold-ups increase. In the fully developed spouting stage, three flow behaviors of particles have been observed and delimited. The effects of nozzle modemore » and spouting velocity on the maximum spouting height of the dense-phase region, spoutable static bed height, and spouting pressure drop in the bed have been investigated experimentally.« less

  19. Failure analysis of thick composite cylinders under external pressure

    NASA Technical Reports Server (NTRS)

    Caiazzo, A.; Rosen, B. W.

    1992-01-01

    Failure of thick section composites due to local compression strength and overall structural instability is treated. Effects of material nonlinearity, imperfect fiber architecture, and structural imperfections upon anticipated failure stresses are determined. Comparisons with experimental data for a series of test cylinders are described. Predicting the failure strength of composite structures requires consideration of stability and material strength modes of failure using linear and nonlinear analysis techniques. Material strength prediction requires the accurate definition of the local multiaxial stress state in the material. An elasticity solution for the linear static analysis of thick anisotropic cylinders and rings is used herein to predict the axisymmetric stress state in the cylinders. Asymmetric nonlinear behavior due to initial cylinder out of roundness and the effects of end closure structure are treated using finite element methods. It is assumed that local fiber or ply waviness is an important factor in the initiation of material failure. An analytical model for the prediction of compression failure of fiber composites, which includes the effects of fiber misalignments, matrix inelasticity, and multiaxial applied stresses is used for material strength calculations. Analytical results are compared to experimental data for a series of glass and carbon fiber reinforced epoxy cylinders subjected to external pressure. Recommendations for pretest characterization and other experimental issues are presented. Implications for material and structural design are discussed.

  20. 76 FR 38697 - High Pressure Steel Cylinders From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-01

    ... Pressure Steel Cylinders From China Determinations On the basis of the record \\1\\ developed in the subject... imports from China of high pressure steel cylinders, provided for in subheading 7311.00.00 of the... than fair value (LTFV) and subsidized by the Government of China. \\1\\ The record is defined in sec. 207...

  1. Coupled vibration of isotropic metal hollow cylinders with large geometrical dimensions

    NASA Astrophysics Data System (ADS)

    Lin, Shuyu

    2007-08-01

    In this paper, the coupled vibration of isotropic metal hollow cylinders with large geometrical dimensions is studied by using an approximate analytic method. According to this method, when the equivalent mechanical coupling coefficient that is defined as the stress ratio is introduced, the coupled vibration of a metal hollow cylinder is reduced to two equivalent one-dimensional vibrations, one is an equivalent longitudinal extensional vibration in the height direction of the cylinder, and the other is an equivalent plane radial vibration in the radius direction. These two equivalent vibrations are coupled to each other by the equivalent mechanical coupling coefficient. The resonance frequency equation of metal hollow cylinders in coupled vibration is derived and longitudinal and radial resonance frequencies are computed. For comparison, the resonance frequencies of the hollow cylinders are also computed by using numerical method. The analysis shows that the results from these two methods are in a good agreement with each other.

  2. Viscous Effects on Wave Forces on A Submerged Horizontal Circular Cylinder

    NASA Astrophysics Data System (ADS)

    Teng, Bin; Mao, Hong-Fei; Lu, Lin

    2018-06-01

    Numerical simulations are carried out for wave action on a submerged horizontal circular cylinder by means of a viscous fluid model, and it is focused on the examination of the discrepancies between the viscous fluid results and the potential flow solutions. It is found that the lift force resulted from rotational flow on the circular cylinder is always in anti-phase with the inertia force and induces the discrepancies between the results. The influence factors on the magnitude of the lift force, especially the correlation between the stagnation-point position and the wave amplitude, and the effect of the vortex shedding are investigated by further examination on the flow fields around the cylinder. The viscous numerical calculations at different wave frequencies showed that the wave frequency has also significant influence on the wave forces. Under higher frequency and larger amplitude wave action, vortex shedding from the circular cylinder will appear and influence the wave forces on the cylinder substantially.

  3. Effect of air bubble localization after transfer on embryo transfer outcomes.

    PubMed

    Tiras, Bulent; Korucuoglu, Umit; Polat, Mehtap; Saltik, Ayse; Zeyneloglu, Hulusi Bulent; Yarali, Hakan

    2012-09-01

    Our study aimed to provide information about the effects of air bubble localization after transfer on embryo transfer outcomes. Retrospective analysis of 7489 ultrasound-guided embryo transfers. Group 1 included 6631 embryo transfers in which no movement of the air bubbles was observed after transfer. Group 2 consisted of 407 embryo transfers in which the air bubbles moved towards the uterine fundus spontaneously, a little time after transfer. Group 3 included 370 embryo transfers in which the air bubbles moved towards the uterine fundus with ejection, immediately after transfer. Group 4 consisted of 81 embryo transfers in which the air bubbles moved towards the cervical canal. The four patient groups were different from one another with respect to positive pregnancy tests. Post hoc test revealed that this difference was between group 4 and other groups. An initial finding of our study was significantly decreased positive pregnancy test rates and clinical pregnancy rates with air bubbles moving towards the cervical canal after transfer. Although air bubbles moving towards the uterine fundus with ejection were associated with higher pregnancy rates, higher miscarriage rates and similar live birth rates were observed compared to air bubbles remaining stable after transfer. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  4. Asymmetric vortex pair in the wake of a circular cylinder

    NASA Astrophysics Data System (ADS)

    Iosilevskii, G.; Seginer, A.

    1994-10-01

    Stationary configurations of two asymmetric point vortices in the wake of an infinite circular cylinder, spinning or not about its axis, are analytically investigated using an ideal fluid approximation. Four different vortex configurations (patterns) in the wake of a spinning cylinder are found in the case when vortex asymmetry is weak; each configuration is associated with a certain direction of the Magnus force. The qualitative relation between a pattern and a direction of the Magnus force is in agreement with experimental data. Also obtained are asymmetrical vortex configurations in the wake of a nonspinning cylinder.

  5. How many oxygen cylinders do you need to take on transport? A nomogram for cylinder size and duration

    PubMed Central

    Lutman, D; Petros, A J

    2006-01-01

    When undertaking patient retrieval, it is important to take adequate supplies of oxygen to ensure patient safety. Oxygen can be delivered via a flowmeter into a facemask or used to drive pneumatic ventilators. Given the lack of space in the back of an ambulance or helicopter, the numbers of cylinders that can be taken is limited, hence the number needed to complete the journey must be carefully calculated prior to embarking. We have produced nomograms to predict how many oxygen cylinders will be consumed during a given journey when using either a flowmeter or a commonly used transport ventilator. PMID:16921085

  6. How many oxygen cylinders do you need to take on transport? A nomogram for cylinder size and duration.

    PubMed

    Lutman, D; Petros, A J

    2006-09-01

    When undertaking patient retrieval, it is important to take adequate supplies of oxygen to ensure patient safety. Oxygen can be delivered via a flowmeter into a facemask or used to drive pneumatic ventilators. Given the lack of space in the back of an ambulance or helicopter, the numbers of cylinders that can be taken is limited, hence the number needed to complete the journey must be carefully calculated prior to embarking. We have produced nomograms to predict how many oxygen cylinders will be consumed during a given journey when using either a flowmeter or a commonly used transport ventilator.

  7. LiNbO3 Cylinder Fiber

    NASA Technical Reports Server (NTRS)

    2004-01-01

    We have successfully fabricate optical fiber with a thin layer of LiNbO3 at the boundary of the glass core and dear glass cladding. The construction of this fiber is based on our successful Semiconductor Cylinder Fibers (SCF). A schematic representation of a LiNbO3 Cylinder Fiber is shown. These fibers can be used as light modulators, sonar detectors and in other applications. The core diameter of the fiber is sufficiently small compared to the light wavelength and the indices of refraction of the core and cladding glasses are sufficiently close in value so that there is sufficient light at the core cladding boundary to interact with the LiNbO3 layer. This fiber functions best when just a single light mode propagates through the fiber. The idea for a LiNbO3 Cylinder Fiber came from Dr. Tracee Jamison of NASA. The optical properties of LiNbO3 can be changed with strain or the application of an electric field. Thus these fibers can be used as acoustic sensors as for example in a sonar. They can also be used as electric field operated light modulators. However, for this application the fibers would be made with a cross section in the form of a 'D'. The core with its surrounding LiNbO, layer would be close to the flat portion of the 'D' shaped fiber. Two metal contacts would be deposited on the flat portion of the fiber on either side of the core. A voltage applied across these contacts will result in an electric field in the core region that can be used for modulating the optical properties of the LiNbO, layer. To our knowledge this is the first ever LiNbO, Cylinder Fiber made.

  8. LiNbO3 Cylinder Fiber

    NASA Technical Reports Server (NTRS)

    Kornreich, Philip

    2004-01-01

    We have successfully fabricate optical fiber with a thin layer of LiNbO3 at the boundary of the glass core and clear glass cladding. The construction of this fiber is based on our successful Semiconductor Cylinder Fibers (SCF). A schematic representation of a LiN bo, Cylinder Fiber. These fibers can be used as light modulators, sonar detectors and in other applications. The core diameter of the fiber is sufficiently small compared to the light wavelength and the indices of refraction of the core and cladding glasses are sufficiently close in value so that there is sufficient light at the core cladding boundary to interact with the LiNbO3 layer. This fiber functions best when just a single light mode propagates through the fiber. The idea for a LiNbO3 Cylinder Fiber came from Dr. Tracee Jamison of NASA. The optical properties of LiNbO3 can be changed with strain or the application of an electric field. Thus these fibers can be used as acoustic sensors as for example in a sonar. They can also be used as electric field operated light modulators. However, for this application the fibers would be made with a cross section in the form of a "D". The core with its surrounding LiNbO, layer would be close to the flat portion of the "D" shaped fiber. Two metal contacts would be deposited on the flat portion of the fiber on either side of the core. A voltage applied across these contacts will result in an electric field in the core region that can be used for modulating the optical properties of the LiNbO3 layer. To our knowledge this is the first ever LiNbO3 Cylinder Fiber made.

  9. Actuator placement for active sound and vibration control of cylinders

    NASA Technical Reports Server (NTRS)

    Kincaid, Rex K.

    1995-01-01

    Active structural acoustic control is a method in which the control inputs (used to reduce interior noise) are applied directly to a vibrating structural acoustic system. The control concept modeled in this work is the application of in-plane force inputs to piezoceramic patches bonded to the wall of a vibrating cylinder. The cylinder is excited by an exterior noise source -- an acoustic monopole -- located near the outside of the cylinder wall. The goal is to determine the force inputs and sites for the piezoelectric actuators so that (1) the interior noise is effectively damped; (2) the level of vibration of the cylinder shell is not increased; and (3) the power requirements needed to drive the actuators are not excessive. We studied external monopole excitations at two frequencies. A cylinder resonance of 100 Hz, where the interior acoustic field is driven in multiple, off-resonance cylinder cavity modes, and a cylinder resonance of 200 Hz are characterized by both near and off-resonance cylinder vibration modes which couple effectively with a single, dominant, low-order acoustic cavity mode at resonance. Previous work has focused almost exclusively on meeting objective (1) and solving a complex least-squares problem to arrive at an optimal force vector for a given set of actuator sites. In addition, it has been noted that when the cavity mode couples with cylinder vibration modes (our 200 Hz case) control spillover may occur in higher order cylinder shell vibrational modes. How to determine the best set of actuator sites to meet objectives (1)-(3) is the main contribution of our research effort. The selection of the best set of actuator sites from a set of potential sites is done via two metaheuristics -- simulated annealing and tabu search. Each of these metaheuristics partitions the set of potential actuator sites into two disjoint sets: those that are selected to control the noise (on) and those that are not (off). Next, each metaheuristic attempts to

  10. Flow past an axially aligned spinning cylinder: Experimental Study

    NASA Astrophysics Data System (ADS)

    Carlucci, Pasquale; Buckley, Liam; Mehmedagic, Igbal; Carlucci, Donald; Thangam, Siva

    2017-11-01

    Experimental investigation of flow past a spinning cylinder is presented in the context of its application and relevance to flow past projectiles. A subsonic wind tunnel is used to perform experiments on the flow past a spinning cylinder that is mounted on a forward sting and oriented such that its axis of rotation is aligned with the mean flow. The experiments cover a Reynolds number of range of up to 45000 and rotation numbers of up to 2 (based on cylinder diameter). Time-averaged mean flow and turbulence profiles in the wake flow are presented with and without spin along with comparison to published experimental data. Funded in part by the U. S. Army ARDEC, Picatinny Arsenal, NJ.

  11. Stress intensity factors in a reinforced thick-walled cylinder

    NASA Technical Reports Server (NTRS)

    Tang, R.; Erdogan, F.

    1984-01-01

    An elastic thick-walled cylinder containing a radial crack is considered. It is assumed that the cylinder is reinforced by an elastic membrane on its inner surface. The model is intended to simulate pressure vessels with cladding. The formulation of the problem is reduced to a singular integral equation. Various special cases including that of a crack terminating at the cylinder-reinforcement interface are investigated and numerical examples are given. Results indicate that in the case of the crack touching the interface the crack surface displacement derivative is finite and consequently the stress state around the corresponding crack tip is bounded; and generally, for realistic values of the stiffness parameter, the effect of the reinforcement is not very significant.

  12. Filament winding cylinders. II - Validation of the process model

    NASA Technical Reports Server (NTRS)

    Calius, Emilio P.; Lee, Soo-Yong; Springer, George S.

    1990-01-01

    Analytical and experimental studies were performed to validate the model developed by Lee and Springer for simulating the manufacturing process of filament wound composite cylinders. First, results calculated by the Lee-Springer model were compared to results of the Calius-Springer thin cylinder model. Second, temperatures and strains calculated by the Lee-Springer model were compared to data. The data used in these comparisons were generated during the course of this investigation with cylinders made of Hercules IM-6G/HBRF-55 and Fiberite T-300/976 graphite-epoxy tows. Good agreement was found between the calculated and measured stresses and strains, indicating that the model is a useful representation of the winding and curing processes.

  13. Cylinder expansion test and gas gun experiment comparison

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrier, Danielle

    This is a summer internship presentation by the Hydro Working Group at Los Alamos National Laboratory (LANL) and goes into detail about their cylinder expansion test and gas gun experiment comparison. Specifically, the gas gun experiment is detailed along with applications, the cylinder expansion test is detailed along with applications, there is a comparison of the methods with pros and cons and limitations listed, the summer project is detailed, and future work is talked about.

  14. [Spirograph for small laboratory animals].

    PubMed

    Daniiarov, S B; Lanskiĭ, Iu M; Bebinov, E M

    1986-10-01

    A design of dry spirograph is described. It is characterized by greater precision, lack of inertia, high reliability, absence of respiration resistance, adequate form of recording, rapid resetting to any respiratory rate. The device consists of two similar injection syringes, photoelectric sensor for the identification of the initial moments of respiration stages, electromagnetic valves, two photoelectric converters of the air volume into the impulse signal, vacuum micro-pump, microcompressor and a system of air-driving tubes. In the initial position of pistons and valves the microcompressor pumps air into the inhalation cylinder and lifts the piston to the upper extreme position. With the signal marking the beginning of inspiration, the valves switch over and the piston lowers, pushing out the air, which moves into the animals' respiratory organs. Simultaneously, the signals of the inhaled air volume from the photoelectric transducer reach the recorder. During expiration the air pushes the piston down into the second cylinder and photoelectric transducer gives the information on the volume of the expired air.

  15. Gas-lubricated seal for sealing between a piston and a cylinder wall

    DOEpatents

    Hoult, David P.

    1985-01-01

    A piston-cylinder seal uses gas for a lubricant and has a runner supported on a gapless structure and placed in the space between the piston and the cylinder wall. The runner is deformed elastically under the influence of the operating pressures to follow and compensate for variations in the piston-cylinder fit and maintain a seal.

  16. Gas-lubricated seal for sealing between a piston and a cylinder wall

    DOEpatents

    Hoult, D.P.

    1985-09-10

    A piston-cylinder seal uses gas for a lubricant and has a runner supported on a gapless structure and placed in the space between the piston and the cylinder wall. The runner is deformed elastically under the influence of the operating pressures to follow and compensate for variations in the piston-cylinder fit and maintain a seal. 4 figs.

  17. Mobile Robot Localization by Remote Viewing of a Colored Cylinder

    NASA Technical Reports Server (NTRS)

    Volpe, R.; Litwin, T.; Matthies, L.

    1995-01-01

    A system was developed for the Mars Pathfinder rover in which the rover checks its position by viewing the angle back to a colored cylinder with different colors for different angles. The rover determines distance by the apparent size of the cylinder.

  18. OC5 Project Phase Ib: Validation of hydrodynamic loading on a fixed, flexible cylinder for offshore wind applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, Amy N.; Wendt, Fabian; Jonkman, Jason M.

    This paper summarizes the findings from Phase Ib of the Offshore Code Comparison, Collaboration, Continued with Correlation (OC5) project. OC5 is a project run under the International Energy Agency (IEA) Wind Research Task 30, and is focused on validating the tools used for modelling offshore wind systems through the comparison of simulated responses of select offshore wind systems (and components) to physical test data. For Phase Ib of the project, simulated hydrodynamic loads on a flexible cylinder fixed to a sloped bed were validated against test measurements made in the shallow water basin at the Danish Hydraulic Institute (DHI) withmore » support from the Technical University of Denmark (DTU). The first phase of OC5 examined two simple cylinder structures (Phase Ia and Ib) to focus on validation of hydrodynamic models used in the various tools before moving on to more complex offshore wind systems and the associated coupled physics. As a result, verification and validation activities such as these lead to improvement of offshore wind modelling tools, which will enable the development of more innovative and cost-effective offshore wind designs.« less

  19. OC5 Project Phase Ib: Validation of hydrodynamic loading on a fixed, flexible cylinder for offshore wind applications

    DOE PAGES

    Robertson, Amy N.; Wendt, Fabian; Jonkman, Jason M.; ...

    2016-10-13

    This paper summarizes the findings from Phase Ib of the Offshore Code Comparison, Collaboration, Continued with Correlation (OC5) project. OC5 is a project run under the International Energy Agency (IEA) Wind Research Task 30, and is focused on validating the tools used for modelling offshore wind systems through the comparison of simulated responses of select offshore wind systems (and components) to physical test data. For Phase Ib of the project, simulated hydrodynamic loads on a flexible cylinder fixed to a sloped bed were validated against test measurements made in the shallow water basin at the Danish Hydraulic Institute (DHI) withmore » support from the Technical University of Denmark (DTU). The first phase of OC5 examined two simple cylinder structures (Phase Ia and Ib) to focus on validation of hydrodynamic models used in the various tools before moving on to more complex offshore wind systems and the associated coupled physics. As a result, verification and validation activities such as these lead to improvement of offshore wind modelling tools, which will enable the development of more innovative and cost-effective offshore wind designs.« less

  20. Effect of location in an array on heat transfer to a cylinder in crossflow

    NASA Technical Reports Server (NTRS)

    Simoneau, R. J.; Vanfossen, G. J., Jr.

    1982-01-01

    An experiment was conducted to measure the heat transfer from a heated cylinder in crossflow in an array of circular cylinders. All cylinders had a length-to-diameter ratio of 3.0. Both in-line and staggered array patterns were studied. The cylinders were spaced 2.67 diameters apart center-to-center in both the axial and transverse directions to the flow. The row containing the heated cylinder remained in a fixed position in the channel and the relative location of this row within the array was changed by adding up to five upstream rows. The working fluid was nitrogen gas at pressures from 100 to 600 kPa. The Reynolds number ranged based on cylinder diameter and average unobstructed channel velocity was from 5,000 to 125,000. Turbulence intensity: profiles were measured for each case at a point one half space upstream of the row containing the heated cylinder. The basis of comparison for all the heat transfer data was the single row with the heated cylinder. For the in-line cases the addition of a single row of cylinders upstream of the row containing the heated cylinder increased the heat transfer by an average of 50 percent above the base case. Adding up to five more rows caused no increase or decrease in heat transfer. Adding rows in the staggered array cases resulted in average increases in heat transfer of 21, 64, 58, 46, and 46 percent for one to five upstream rows, respectively.

  1. Piezoelectric actuator models for active sound and vibration control of cylinders

    NASA Technical Reports Server (NTRS)

    Lester, Harold C.; Lefebvre, Sylvie

    1993-01-01

    Analytical models for piezoelectric actuators, adapted from flat plate concepts, are developed for noise and vibration control applications associated with vibrating circular cylinders. The loadings applied to the cylinder by the piezoelectric actuators for the bending and in-plane force models are approximated by line moment and line force distributions, respectively, acting on the perimeter of the actuator patch area. Coupling between the cylinder and interior acoustic cavity is examined by studying the modal spectra, particularly for the low-order cylinder modes that couple efficiently with the cavity at low frequencies. Within the scope of this study, the in-plane force model produced a more favorable distribution of low-order modes, necessary for efficient interior noise control, than did the bending model.

  2. Stress Intensity Factors for Part-Through Surface Cracks in Hollow Cylinders

    NASA Technical Reports Server (NTRS)

    Mettu, Sambi R.; Raju, Ivatury S.; Forman, Royce G.

    1992-01-01

    Flaws resulting from improper welding and forging are usually modeled as cracks in flat plates, hollow cylinders or spheres. The stress intensity factor solutions for these crack cases are of great practical interest. This report describes some recent efforts at improving the stress intensity factor solutions for cracks in such geometries with emphasis on hollow cylinders. Specifically, two crack configurations for cylinders are documented. One is that of a surface crack in an axial plane and the other is a part-through thumb-nail crack in a circumferential plane. The case of a part-through surface crack in flat plates is used as a limiting case for very thin cylinders. A combination of the two cases for cylinders is used to derive a relation for the case of a surface crack in a sphere. Solutions were sought which cover the entire range of the geometrical parameters such as cylinder thickness, crack aspect ratio and crack depth. Both the internal and external position of the cracks are considered for cylinders and spheres. The finite element method was employed to obtain the basic solutions. Power-law form of loading was applied in the case of flat plates and axial cracks in cylinders and uniform tension and bending loads were applied in the case of circumferential (thumb-nail) cracks in cylinders. In the case of axial cracks, the results for tensile and bending loads were used as reference solutions in a weight function scheme so that the stress intensity factors could be computed for arbitrary stress gradients in the thickness direction. For circumferential cracks, since the crack front is not straight, the above technique could not be used. Hence for this case, only the tension and bending solutions are available at this time. The stress intensity factors from the finite element method were tabulated so that results for various geometric parameters such as crack depth-to-thickness ratio (a/t), crack aspect ratio (a/c) and internal radius-to-thickness ratio (R

  3. July 2013 MOVES Model Review Work Group Meeting Materials

    EPA Pesticide Factsheets

    Presentations from the Mobile Sources Technical Review Subcommittee (MSTRS) meeting on July 9th of 2013 include MOtor Vehicle Emission Simulator (MOVES) updates; data regarding vehicle populations and activity, PM speciation, and hazardous air pollutants.

  4. September 2016 MOVES Model Review Work Group Meeting Materials

    EPA Pesticide Factsheets

    Presentations from the Mobile Sources Technical Review Subcommittee (MSTRS) meeting on Sep. 14th of 2016 include MOtor Vehicle Emission Simulator (MOVES) updates; data regarding vehicle populations and activity, PM speciation, and hazardous air pollutants.

  5. Implant abutment deformation during prosthetic cylinder screw tightening: an in vitro study.

    PubMed

    Neto, Rafael Tobias Moretti; Moura, Marcio Silva; Souza, Edson Antonio Capello; Rubo, José Henrique

    2009-01-01

    Nonpassive fit frameworks are believed to lead to implant overload and consequently loss of osseointegration. This is one of the most commonly reported failures of implant prostheses. In an ideal situation of passive fit, when torque is applied to bring the abutment-cylinder interface together some amount of deformation can be expected, and it should be homogeneous along the periphery of the abutment. The aim of this study was to verify the amount of abutment deformation that can be expected when a free-standing cylinder is screwed into place. This could give insight into what should be accepted as passive fit. Strain gauges were bonded to the sides of five standard abutments that had machined palladium-silver cylinders or cobalt-chromium cast cylinders screwed into place. Measurements were taken to verify the deformation at each site. Values of abutment deformation after abutment screw tightening ranged from -127.70 to -590.27 microepsilon. The deformation recorded for palladium-silver prosthetic cylinder tightening ranged from 56.905 to -381.50 microepsilon (mean: 173.298 microepsilon) and from -5.62638 to -383.86 microepsilon (mean: 200.474 microepsilon) for cobalt-chromium cylinders. There was no statistically significant difference among the two groups. Both abutment screw tightening and prosthetic cylinder screw tightening result in abutment deformation, which is compressive most of the time.

  6. 49 CFR 178.39 - Specification 3BN seamless nickel cylinders.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... manufactured using equipment and processes adequate to ensure that each cylinder produced conforms to the.... A reasonably smooth and uniform surface finish is required. Cylinders closed in by spinning process... plugs, etc.) for those openings. Threads conforming to the following are required on openings: (1...

  7. 49 CFR 178.39 - Specification 3BN seamless nickel cylinders.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... manufactured using equipment and processes adequate to ensure that each cylinder produced conforms to the.... A reasonably smooth and uniform surface finish is required. Cylinders closed in by spinning process... plugs, etc.) for those openings. Threads conforming to the following are required on openings: (1...

  8. 49 CFR 178.39 - Specification 3BN seamless nickel cylinders.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... manufactured using equipment and processes adequate to ensure that each cylinder produced conforms to the.... A reasonably smooth and uniform surface finish is required. Cylinders closed in by spinning process... plugs, etc.) for those openings. Threads conforming to the following are required on openings: (1...

  9. Rotating Cylinder Treatment System Demonstration

    EPA Science Inventory

    In August 2008, a rotating cylinder treatment system (RCTSTM) demonstration was conducted near Gladstone, CO. The RCTSTM is a novel technology developed to replace the aeration/oxidation and mixing components of a conventional lime precipitation treatment s...

  10. 49 CFR 178.44 - Specification 3HT seamless steel cylinders for aircraft use.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... cylinder. (d) Manufacture. Cylinders must be manufactured using equipment and processes adequate to ensure.... (h) Openings in cylinders and connections (valves, fuse plugs, etc.) for those openings. Threads conforming to the following are required on openings: (1) Threads must be clean cut, even, without cracks...

  11. 49 CFR 178.44 - Specification 3HT seamless steel cylinders for aircraft use.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... cylinder. (d) Manufacture. Cylinders must be manufactured using equipment and processes adequate to ensure.... (h) Openings in cylinders and connections (valves, fuse plugs, etc.) for those openings. Threads conforming to the following are required on openings: (1) Threads must be clean cut, even, without cracks...

  12. 49 CFR 178.44 - Specification 3HT seamless steel cylinders for aircraft use.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... cylinder. (d) Manufacture. Cylinders must be manufactured using equipment and processes adequate to ensure.... (h) Openings in cylinders and connections (valves, fuse plugs, etc.) for those openings. Threads conforming to the following are required on openings: (1) Threads must be clean cut, even, without cracks...

  13. Two Dimensional Steady State Eddy Current Analysis of a Spinning Conducting Cylinder

    DTIC Science & Technology

    2017-03-09

    generate electromagnetic effects which can disrupt the electronic components contained inside the round. Finite element analyses were conducted to...which affect the magnetic field inside the cylinder were analyzed by varying the angular velocities and the electromagnetic properties (permeability and...the magnetic field distribution inside the cylinder was affected by angular velocity and the electromagnetic properties of the cylinder. 15

  14. Development of Flexible Pneumatic Cylinder with Built-in Flexible Linear Encoder and Flexible Bending Sensor

    NASA Astrophysics Data System (ADS)

    Akagi, Tetsuya; Dohta, Shujiro; Matsushita, Hisashi; Fukuhara, Akimasa

    The purpose of this study is to develop a lightweight and intelligent soft actuator which can be safely attached to the human body. A novel flexible pneumatic cylinder that can be used even if it is deformed by external force had been proposed. The cylinder can realize both pushing and pulling motions even if the cylinder bends. In this paper, a flexible pneumatic cylinder with a built-in flexible linear encoder is proposed and tested. The encoder can detect the cylinder displacement even if the cylinder bends. In the next step, to realize an intelligent flexible cylinder, it is essential to recognize the angle of deflection of the cylinder to estimate the direction of the external force. Therefore, a flexible bending sensor that can measure the directional angle by attaching it to the end of the cylinder is also proposed and tested. The tested bending sensor also consists of four inexpensive photo-reflectors set on the circumferential surface to the cylinder tube every 90 degrees from the center of the tube. By measuring the distance between the photo reflector and the surface of the tube at each point, the bending directional angle of the cylinder can be obtained. A low cost measuring system using a micro-computer incorporating a programmed Up/Down counter to measure the displacement of the cylinder is also developed. As a result, it was confirmed that the measuring accuracy of the bending directional angle was good, less than 0.7 degrees as a standard deviation.

  15. Aspects of CO2 laser engraving of printing cylinders.

    PubMed

    Atanasov, P A; Maeno, K; Manolov, V P

    1999-03-20

    Results of the experimental and theoretical investigations of CO(2) laser-engraved cylinders are presented. The processed surfaces of test samples are examined by a phase-stepping laser interferometer, digital microscope, and computer-controlled profilometer. Fourier analysis is made on the patterns parallel to the axis of the laser-scribed test ceramic cylinders. The problem of the visually observed banding is discussed.

  16. An experimental study of wall-injected flows in a rectangular cylinder

    NASA Astrophysics Data System (ADS)

    Perrotta, A.; Romano, G. P.; Favini, B.

    2018-01-01

    An experimental investigation of the flow inside a rectangular cylinder with air injected continuously along the wall is performed. This kind of flow is a two-dimensional approximation of what happens inside a solid rocket motor, where the lateral grain burns expelling exhaust gas or in processes with air filtration or devices to attain uniform flows. We propose a brief derivation of some analytical solutions and a comparison between these solutions and experimental data, which are obtained using the particle image velocimetry technique, to provide a global reconstruction of the flowfield. The flow, which enters orthogonal to the injecting wall, turns suddenly its direction being pushed towards the exit of the chamber. Under the incompressible and inviscid flow hypothesis, two analytical solutions are reported and compared. The first one, known as Hart-McClure solution, is irrotational and the injection velocity is non-perpendicular to the injecting wall. The other one, due to Taylor and Culick, has non-zero vorticity and constant, vertical injection velocity. The comparison with laminar solutions is useful to assess whether transition to turbulence is reached and how the disturbance thrown in by the porous injection influences and modifies those solutions.

  17. A Hybrid Approach To Tandem Cylinder Noise

    NASA Technical Reports Server (NTRS)

    Lockard, David P.

    2004-01-01

    Aeolian tone generation from tandem cylinders is predicted using a hybrid approach. A standard computational fluid dynamics (CFD) code is used to compute the unsteady flow around the cylinders, and the acoustics are calculated using the acoustic analogy. The CFD code is nominally second order in space and time and includes several turbulence models, but the SST k - omega model is used for most of the calculations. Significant variation is observed between laminar and turbulent cases, and with changes in the turbulence model. A two-dimensional implementation of the Ffowcs Williams-Hawkings (FW-H) equation is used to predict the far-field noise.

  18. Effect of plasma actuator and splitter plate on drag coefficient of a circular cylinder

    NASA Astrophysics Data System (ADS)

    Akbıyık, Hürrem; Erkan Akansu, Yahya; Yavuz, Hakan; Ertuğrul Bay, Ahmet

    2016-03-01

    In this paper, an experimental study on flow control around a circular cylinder with splitter plate and plasma actuator is investigated. The study is performed in wind tunnel for Reynolds numbers at 4000 and 8000. The wake region of circular cylinder with a splitter plate is analyzed at different angles between 0 and 180 degrees. In this the study, not only plasma actuators are activated but also splitter plate is placed behind the cylinder. A couple electrodes are mounted on circular cylinder at ±90 degrees. Also, flow visualization is achieved by using smoke wire method. Drag coefficient of the circular cylinder with splitter plate and the plasma actuator are obtained for different angles and compared with the plain circular cylinder. While attack angle is 0 degree, drag coefficient is decreased about 20% by using the splitter plate behind the circular cylinder. However, when the plasma actuators are activated, the improvement of the drag reduction is measured to be 50%.

  19. Optimizing power cylinder lubrication on a large bore natural gas engine

    NASA Astrophysics Data System (ADS)

    Luedeman, Matthew R.

    More than 6000 integral compressors, located along America's natural gas pipelines, pump natural gas across the United States. These compressors are powered by 2-stroke, large bore natural gas burning engines. Lowering the operating costs, reducing the emissions, and ensuring that these engines remain compliant with future emission regulations are the drivers for this study. Substantial research has focused on optimizing efficiency and reducing the fuel derived emissions on this class of engine. However, significantly less research has focused on the effect and reduction of lubricating oil derived emissions. This study evaluates the impact of power cylinder lubricating oil on overall engine emissions with an emphasis on reducing oxidation catalyst poisoning. A traditional power cylinder lubricator was analyzed; power cylinder lubricating oil was found to significantly impact exhaust emissions. Lubricating oil was identified as the primary contributor of particulate matter production in a large bore natural gas engine. The particulate matter was determined to be primarily organic carbon, and most likely direct oil carryover of small oil droplets. The particulate matter production equated to 25% of the injected oil at a nominal power cylinder lubrication rate. In addition, power cylinder friction is considered the primary contributor to friction loss in the internal combustion engine. This study investigates the potential for optimizing power cylinder lubrication by controlling power cylinder injection to occur at the optimal time in the piston cycle. By injecting oil directly into the ring pack, it is believed that emissions, catalyst poisoning, friction, and wear can all be reduced. This report outlines the design and theory of two electronically controlled lubrication systems. Experimental results and evaluation of one of the systems is included.

  20. Online Condition Monitoring of Gripper Cylinder in TBM Based on EMD Method

    NASA Astrophysics Data System (ADS)

    Li, Lin; Tao, Jian-Feng; Yu, Hai-Dong; Huang, Yi-Xiang; Liu, Cheng-Liang

    2017-11-01

    The gripper cylinder that provides braced force for Tunnel Boring Machine (TBM) might fail due to severe vibration when the TBM excavates in the tunnel. Early fault diagnosis of the gripper cylinder is important for the safety and efficiency of the whole tunneling project. In this paper, an online condition monitoring system based on the Empirical Mode Decomposition (EMD) method is established for fault diagnosis of the gripper cylinder while TBM is working. Firstly, the lumped mass parameter model of the gripper cylinder is established considering the influence of the variable stiffness at the rock interface, the equivalent stiffness of the oil, the seals, and the copper guide sleeve. The dynamic performance of the gripper cylinder is investigated to provide basis for its health condition evaluation. Then, the EMD method is applied to identify the characteristic frequencies of the gripper cylinder for fault diagnosis and a field test is used to verify the accuracy of the EMD method for detection of the characteristic frequencies. Furthermore, the contact stiffness at the interface between the barrel and the rod is calculated with Hertz theory and the relationship between the natural frequency and the stiffness varying with the health condition of the cylinder is simulated based on the dynamic model. The simulation shows that the characteristic frequencies decrease with the increasing clearance between the barrel and the rod, thus the defects could be indicated by monitoring the natural frequency. Finally, a health condition management system of the gripper cylinder based on the vibration signal and the EMD method is established, which could ensure the safety of TBM.

  1. Hydrodynamic force characteristics of slender cylinders in the splash zone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haritos, N.; Daliri, M.R.

    1995-12-31

    This paper presents results from a pilot experimental program of research being performed on segmented vertical surface-piercing cylinders in the Department of Civil and Environmental Engineering at The University of Melbourne. The primary aim of this investigation is to determine the influence of the splash zone on the hydrodynamic force characteristics of such cylinders to wave loading in the Morison regime. This influence is assessed from a comparison of the observed force characteristics of instrumented segments located in the splash zone with the corresponding results obtained from similarly instrumented segments located in the fully submerged zone and from those obtainedmore » for the cylinder as a whole via measurements of the cylinder tip restraint force. Results to hand for uni-directional regular waves suggest that there appears to be a mild frequency dependence in the inertia force coefficient in the splash zone which only marginally exceeds the corresponding values observed for a submerged segment immediately below this zone.« less

  2. Algebraic Approximations to Extinction from Randomly Oriented Circular and Elliptical Cylinders

    DTIC Science & Technology

    1995-06-01

    amplitude (Ref. 3). The strict limit of validity of the formula is therefore the region where ( n - 1) < < 1. The cylinder is in effect treated as a slit... cylinders , l¢1x = 2Im -1lx << 1. This occurs since what we have been calling an edge effect is in fact the field distortion around the boundaries of the...ALGERBRAIC APPROXIMATIONS TO EXTINCTION FROM RANDOMLY ORIENTED CIRCULAR AND ELLIPTICAL CYLINDERS system Number: Patron Number: Requester: Notes

  3. The structural response of unsymmetrically laminated composite cylinders

    NASA Technical Reports Server (NTRS)

    Butler, T. A.; Hyer, M. W.

    1989-01-01

    The responses of an unsymmetrically laminated fiber-reinforced composite cylinder to an axial compressive load, a torsional load, and the temperature change associated with cooling from the processing temperature to the service temperature are investigated. These problems are considered axisymmetric and the response is studied in the context of linear elastic material behavior and geometrically linear kinematics. Four different laminates are studied: a general unsymmetric laminate; two unsymmetric but more conventional laminates; and a conventional quasi-isotropic symmetric laminate. The responses based on closed-form solutions for different boundary conditions are computed and studied in detail. Particular emphasis is directed at understanding the influence of elastic couplings in the laminates. The influence of coupling decreased from a large effect in the general unsymmetric laminate, to practically no effect in the quasi-isotropic laminate. For example, the torsional loading of the general unsymmetric laminate resulted in a radial displacement. The temperature change also caused a significant radial displacement to occur near the ends of the cylinder. On the other hand, the more conventional unsymmetric laminate and the quasi-isotropic cylinder did not deform radially when subjected to a torsional load. From the results obtained, it is clear the degree of elastic coupling can be controlled and indeed designed into a cylinder, the degree and character of the coupling being dictated by the application.

  4. Effect of the cross sectional aspect ratio on the flow past a twisted cylinder

    NASA Astrophysics Data System (ADS)

    Jung, Jae Hwan; Yoon, Hyun Sik

    2013-11-01

    The cross-flow around twisted cylinders of cross sectional aspect ratio (A/B) from 1 to 2.25 is investigated at a subcritical Reynolds number (Re) of 3000 using large eddy simulation (LES). The flow past a corresponding smooth and wavy cylinder is also calculated for comparison and validation against experimental data. The effect of twisted surface assessed in terms of the mean drag and root-mean-square (RMS) value of fluctuating lift. The shear layer of the twisted cylinder covering the recirculation region is more elongated than those of the smooth and the wavy cylinder. Successively, vortex shedding of the twisted cylinder is considerably suppressed, compared with those of the smooth and the wavy cylinder. The maximum drag reduction of up to 13% compared with a smooth cylinder is obtained at a certain cross sectional aspect ratio. The fluctuating lift coefficient of the twisted cylinder is also significantly suppressed. We found that the cross sectional cross sectional aspect ratio (A/B) plays an essential role in determining the vortical structures behind the twisted cylinder which has a significant effect on the reduction of the fluctuating lift and suppression of flow-induced vibration. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) through GCRC-SOP (No. 2011-0030013).

  5. High frequency scattering by a smooth coated cylinder simulated with generalized impedance boundary conditions

    NASA Technical Reports Server (NTRS)

    Syed, Hasnain H.; Volakis, John L.

    1991-01-01

    Rigorous uniform geometrical theory of diffraction (UGTD) diffraction coefficients are presented for a coated convex cylinder simulated with generalized impedance boundary conditions. In particular, ray solutions are obtained which remain valid in the transition region and reduce uniformly to those in the deep lit and shadow regions. These involve new transition functions in place of the usual Fock-type integrals, characteristic to the impedance cylinder. A uniform asymptotic solution is also presented for observations in the close vicinity of the cylinder. As usual, the diffraction coefficients for the convex cylinder are obtained via a generalization of the corresponding ones for the circular cylinder.

  6. 49 CFR 178.46 - Specification 3AL seamless aluminum cylinders.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... material; or (ii) Obtaining a certified chemical analysis from the material or cylinder manufacturer for each melt, or cast of material; or (iii) Obtaining a certified check analysis on one cylinder out of...) Selecting the samples for check analyses performed by other than the material producer; (ii) Verifying that...

  7. Apparent diffusion coefficient measurement in a moving phantom simulating linear respiratory motion.

    PubMed

    Kwee, Thomas C; Takahara, Taro; Muro, Isao; Van Cauteren, Marc; Imai, Yutaka; Nievelstein, Rutger A J; Mali, Willem P T M; Luijten, Peter R

    2010-10-01

    The aim of this study was to examine the effect of simulated linear respiratory motion on apparent diffusion coefficient (ADC) measurements. Six rectangular test tubes (14 × 92 mm) filled with either water, tomato ketchup, or mayonnaise were positioned in a box containing agarose gel. This box was connected to a double-acting pneumatic cylinder, capable of inducing periodic linear motion in the long-axis direction of the magnetic bore (23-mm stroke). Diffusion-weighted magnetic resonance imaging was performed for both the static and moving phantoms, and ADC measurements were made in the six test tubes in both situations. In the three test tubes whose long axes were parallel to the direction of motion, ADCs agreed well between the moving and static phantom situations. However, in two test tubes that were filled with fluids that had a considerably lower diffusion coefficient than the surrounding agarose gel, and whose long axes were perpendicular to the direction of motion, the ADCs agreed poorly between the moving and static phantom situations. ADC measurements of large homogeneous structures are not affected by linear respiratory motion. However, ADC measurements of inhomogeneous or small structures are affected by linear respiratory motion due to partial volume effects.

  8. Longitudinal Weld Land Buckling in Compression-Loaded Orthogrid Cylinders

    NASA Technical Reports Server (NTRS)

    Thornburgh, Robert P.; Hilburger, Mark W.

    2010-01-01

    Large stiffened cylinders used in launch vehicles (LV), such as the Space Shuttle External Tank, are manufactured by welding multiple curved panel sections into complete cylinders. The effects of the axial weld lands between the panel sections on the buckling load were studied, along with the interaction between the acreage stiffener arrangement and the weld land geometry. This document contains the results of the studies.

  9. Pilots' Attention Distributions Between Chasing a Moving Target and a Stationary Target.

    PubMed

    Li, Wen-Chin; Yu, Chung-San; Braithwaite, Graham; Greaves, Matthew

    2016-12-01

    Attention plays a central role in cognitive processing; ineffective attention may induce accidents in flight operations. The objective of the current research was to examine military pilots' attention distributions between chasing a moving target and a stationary target. In the current research, 37 mission-ready F-16 pilots participated. Subjects' eye movements were collected by a portable head-mounted eye-tracker during tactical training in a flight simulator. The scenarios of chasing a moving target (air-to-air) and a stationary target (air-to-surface) consist of three operational phases: searching, aiming, and lock-on to the targets. The findings demonstrated significant differences in pilots' percentage of fixation during the searching phase between air-to-air (M = 37.57, SD = 5.72) and air-to-surface (M = 33.54, SD = 4.68). Fixation duration can indicate pilots' sustained attention to the trajectory of a dynamic target during air combat maneuvers. Aiming at the stationary target resulted in larger pupil size (M = 27,105, SD = 6565), reflecting higher cognitive loading than aiming at the dynamic target (M = 23,864, SD = 8762). Pilots' visual behavior is not only closely related to attention distribution, but also significantly associated with task characteristics. Military pilots demonstrated various visual scan patterns for searching and aiming at different types of targets based on the research settings of a flight simulator. The findings will facilitate system designers' understanding of military pilots' cognitive processes during tactical operations. They will assist human-centered interface design to improve pilots' situational awareness. The application of an eye-tracking device integrated with a flight simulator is a feasible and cost-effective intervention to improve the efficiency and safety of tactical training.Li W-C, Yu C-S, Braithwaite G, Greaves M. Pilots' attention distributions between chasing a moving target and a stationary target. Aerosp Med

  10. Piston Temperatures in an Air-Cooled Engine for Various Operating Conditions

    NASA Technical Reports Server (NTRS)

    Manganiello, Eugene J

    1940-01-01

    As part of a program for the study of piston cooling, this report presents the results of tests conducted on a single-cylinder, air-cooled, carburetor engine to determine the effect of engine operating conditions on the temperatures at five locations on the piston.

  11. Analysis and Design of Variable Stiffness Composite Cylinders

    NASA Technical Reports Server (NTRS)

    Tatting, Brian F.; Guerdal, Zafer

    1998-01-01

    An investigation of the possible performance improvements of thin circular cylindrical shells through the use of the variable stiffness concept is presented. The variable stiffness concept implies that the stiffness parameters change spatially throughout the structure. This situation is achieved mainly through the use of curvilinear fibers within a fiber-reinforced composite laminate, though the possibility of thickness variations and discrete stiffening elements is also allowed. These three mechanisms are incorporated into the constitutive laws for thin shells through the use of Classical Lamination Theory. The existence of stiffness variation within the structure warrants a formulation of the static equilibrium equations from the most basic principles. The governing equations include sufficient detail to correctly model several types of nonlinearity, including the formation of a nonlinear shell boundary layer as well as the Brazier effect due to nonlinear bending of long cylinders. Stress analysis and initial buckling estimates are formulated for a general variable stiffness cylinder. Results and comparisons for several simplifications of these highly complex governing equations are presented so that the ensuing numerical solutions are considered reliable and efficient enough for in-depth optimization studies. Four distinct cases of loading and stiffness variation are chosen to investigate possible areas of improvement that the variable stiffness concept may offer over traditional constant stiffness and/or stiffened structures. The initial investigation deals with the simplest solution for cylindrical shells in which all quantities are constant around the circumference of the cylinder. This axisymmetric case includes a stiffness variation exclusively in the axial direction, and the only pertinent loading scenarios include constant loads of axial compression, pressure, and torsion. The results for these cases indicate that little improvement over traditional

  12. Research on torsional vibration modelling and control of printing cylinder based on particle swarm optimization

    NASA Astrophysics Data System (ADS)

    Wang, Y. M.; Xu, W. C.; Wu, S. Q.; Chai, C. W.; Liu, X.; Wang, S. H.

    2018-03-01

    The torsional oscillation is the dominant vibration form for the impression cylinder of printing machine (printing cylinder for short), directly restricting the printing speed up and reducing the quality of the prints. In order to reduce torsional vibration, the active control method for the printing cylinder is obtained. Taking the excitation force and moment from the cylinder gap and gripper teeth open & closing cam mechanism as variable parameters, authors establish the dynamic mathematical model of torsional vibration for the printing cylinder. The torsional active control method is based on Particle Swarm Optimization(PSO) algorithm to optimize input parameters for the serve motor. Furthermore, the input torque of the printing cylinder is optimized, and then compared with the numerical simulation results. The conclusions are that torsional vibration active control based on PSO is an availability method to the torsional vibration of printing cylinder.

  13. The Effects of Fuel and Cylinder Gas Densities on the Characteristics of Fuel Sprays for Oil Engines

    NASA Technical Reports Server (NTRS)

    Joachim, W F; Beardsley, Edward G

    1928-01-01

    This investigation was conducted as a part of a general research on fuel-injection engines for aircraft. The purpose of the investigation was to determine the effects of fuel and cylinder gas densities with several characteristics of fuel sprays for oil engines. The start, growth, and cut-off of single fuel sprays produced by automatic injection valves were recorded on photographic film by means of special high-speed motion-picture apparatus. This equipment, which has been described in previous reports, is capable of taking twenty-five consecutive pictures of the moving spray at the rate of 4,000 per second. The penetrations of the fuel sprays increased and the cone angles and relative distributions decreased with increase in the specific gravity of the fuel. The density of the gas into which the fuel sprays were injected controlled their penetration. This was the only characteristic of the chamber gas that had a measurable effect upon the fuel sprays. Application of fuel-spray penetration data to the case of an engine, in which the pressure is rising during injection, indicated that fuel sprays may penetrate considerably farther than when injected into a gas at a density equal to that of the gas in an engine cylinder at top center.

  14. Flow around a slotted circular cylinder at various angles of attack

    NASA Astrophysics Data System (ADS)

    Gao, Dong-Lai; Chen, Wen-Li; Li, Hui; Hu, Hui

    2017-10-01

    We experimentally investigated the flow characteristics around a circular cylinder with a slot at different angles of attack. The experimental campaign was performed in a wind tunnel at the Reynolds number of Re = 2.67 × 104. The cylindrical test model was manufactured with a slot at the slot width S = 0.075 D ( D is the diameter of the cylinder). The angle of attack α was varied from 0° to 90°. In addition to measuring the pressure distributions around the cylinder surface, a digital particle image velocimetry (PIV) system was employed to quantify the wake flow characteristics behind the baseline cylinder (i.e., baseline case of the cylinder without slot) and slotted cylinder at various angles of attack. Measurement results suggested that at low angles of attack, the passive jet flow generated by the slot would work as an effective control scheme to modify the wake flow characteristics and contribute to reducing the drag and suppressing the fluctuating lift. The flip-flop phenomenon was also identified and discussed with the slot at 0° angle of attack. As the angle of attack α became 45°, the effects of the slot were found to be minimal. When the angle of attack α of the slot approached 90°, the self-organized boundary layer suction and blowing were realized. As a result, the flow separations on both sides of the test model were found to be notably delayed, the wake width behind the slotted cylinder was decreased and the vortex formation length was greatly shrunk, in comparison with the baseline case. Instantaneous pressure measurement results revealed that the pressure difference between the two slot ends and the periodically fluctuating pressure distributions would cause the alternative boundary layer suction and blowing at α = 90°.

  15. 30 CFR 77.1013 - Air drills; safeguards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Air drills; safeguards. 77.1013 Section 77.1013... Control § 77.1013 Air drills; safeguards. Air shall be turned off and bled from the air hoses before hand-held air drills are moved from one working area to another. ...

  16. 30 CFR 77.1013 - Air drills; safeguards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Air drills; safeguards. 77.1013 Section 77.1013... Control § 77.1013 Air drills; safeguards. Air shall be turned off and bled from the air hoses before hand-held air drills are moved from one working area to another. ...

  17. 30 CFR 77.1013 - Air drills; safeguards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Air drills; safeguards. 77.1013 Section 77.1013... Control § 77.1013 Air drills; safeguards. Air shall be turned off and bled from the air hoses before hand-held air drills are moved from one working area to another. ...

  18. 30 CFR 77.1013 - Air drills; safeguards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Air drills; safeguards. 77.1013 Section 77.1013... Control § 77.1013 Air drills; safeguards. Air shall be turned off and bled from the air hoses before hand-held air drills are moved from one working area to another. ...

  19. 30 CFR 77.1013 - Air drills; safeguards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Air drills; safeguards. 77.1013 Section 77.1013... Control § 77.1013 Air drills; safeguards. Air shall be turned off and bled from the air hoses before hand-held air drills are moved from one working area to another. ...

  20. 78 FR 58604 - Safety Advisory: Unauthorized Filling of Compressed Gas Cylinders

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-24

    ... questions the condition of all of the cylinders owned and filled by Komer Carbonic Corp. in the past 5 years... through a visual inspection and a pressure test at least once every 5 years. Cylinders that are not...

  1. Buckling Response of a Large-Scale, Seamless, Orthogrid-Stiffened Metallic Cylinder

    NASA Technical Reports Server (NTRS)

    Rudd, Michelle Tillotson; Hilburger, Mark W.; Lovejoy, Andrew E.; Lindell, Michael C.; Gardner, Nathaniel W.; Schultz, Marc R.

    2018-01-01

    Results from the buckling test of a compression-loaded 8-ft-diameter seamless (i.e., without manufacturing joints), orthogrid-stiffened metallic cylinder are presented. This test was used to assess the buckling response and imperfection sensitivity characteristics of a seamless cylinder. In addition, the test article and test served as a technology demonstration to show the application of the flow forming manufacturing process to build more efficient buckling-critical structures by eliminating the welded joints that are traditionally used in the manufacturing of large metallic barrels. Pretest predictions of the cylinder buckling response were obtained using a finite-element model that included measured geometric imperfections. The buckling load predicted using this model was 697,000 lb, and the test article buckled at 743,000 lb (6% higher). After the test, the model was revised to account for measured variations in skin and stiffener geometry, nonuniform loading, and material properties. The revised model predicted a buckling load of 754,000 lb, which is within 1.5% of the tested buckling load. In addition, it was determined that the load carrying capability of the seamless cylinder is approximately 28% greater than a corresponding cylinder with welded joints.

  2. Multiple buoyancy driven flows in a vertical cylinder heated from below

    NASA Technical Reports Server (NTRS)

    Yamaguchi, Y.; Chang, C. J.; Brown, R. A.

    1983-01-01

    The structure of axisymmetric buoyancy-driven convection in a vertical cylinder heated from below is probed by finite element solution of the Boussinesq equations coupled with computed-implemented perturbation techniques for detecting and tracking multiple flows and for determining flow stability. Results are reported for fluids with Prandtl number of one and for cylinders with aspect ratio (Lambda) (defined as the height to radius of the cylinder) between 0.5 and 2.25. Extensive calculations of the neutral stability curve for the static solution and of the nonlinear motions along the bifurcating flow families show a continuous evolution of the primary cellular motion from a single toroidal cell to two and three cells nested radially in the cylinder, instead of the sharp transitions found for a cylinder with shear-free sidewalls. The smooth transitions in flow structure with Rayleigh number and lambda are explained by nonlinear connectivity between the first two bifurcating flow families formed either by a secondary bifurcation point for Lambda or = Lambda * approximately 0.80 or by a limit point for Lambda Lambda *. The transition between these two modes may be described by the theory of multiple limit point bifurcation.

  3. Review of corrosion in 10- and 14-ton mild steel depleted UF{sub 6} storage cylinders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lykins, M.L.

    1995-08-01

    A literature review was conducted to determine the type, extent and severity of corrosion found in the 10- and 14-ton mild steel depleted UF{sub 6} storage cylinders. Also discussed in this review is corrosion found in the valves and plugs used in the cylinders. Corrosion of the cylinders is a gradual process which occurs slowly over time. Understanding corrosion of the cylinders is an important concern for long term storage of the UF{sub 6} in the cylinder yards, as well as the final disposition of the depleted UF{sub 6} tails inventory in the future. The following conclusions are made frommore » the literature review: (1) The general external corrosion rate of the cylinders is about 1 to 2 mils per year (1 mil = 0.001{double_prime}). The highest general external corrosion rate was over 5 mpy on the 48G type cylinders. (2) General internal corrosion from the depleted UF{sub 6} is negligible under normal storage conditions. Crevice corrosion can occur at the cylinder/saddle interface from the retention of water in this area. Crevice corrosion can occur at the cylinder/skirt interface on the older skirted cylinders due to the lack of water drainage in this area. Crevice corrosion can occur on cylinders that have been in ground contact. Crevice corrosion and galvanic corrosion can occur where the stainless steel I.D. nameplates are attached to the cylinder. The packing nuts on the bronze one-inch valves used in the cylinders are susceptible to stress corrosion cracking (SCC). Mechanical damage from routine handling can lead to a breach in a cylinder with subsequent accelerated corrosion of the mild steel due to attack from HF and other UF{sub 6} hydrolysis by-products.« less

  4. Elastic torsional buckling of thin-walled composite cylinders

    NASA Technical Reports Server (NTRS)

    Marlowe, D. E.; Sushinsky, G. F.; Dexter, H. B.

    1974-01-01

    The elastic torsional buckling strength has been determined experimentally for thin-walled cylinders fabricated with glass/epoxy, boron/epoxy, and graphite/epoxy composite materials and composite-reinforced aluminum and titanium. Cylinders have been tested with several unidirectional-ply orientations and several cross-ply layups. Specimens were designed with diameter-to-thickness ratios of approximately 150 and 300 and in two lengths of 10 in. and 20 in. The results of these tests were compared with the buckling strengths predicted by the torsional buckling analysis of Chao.

  5. Numerical Investigation of Flow Around Rectangular Cylinders with and Without Jets

    NASA Technical Reports Server (NTRS)

    Tiwari, S. N .; Pidugu, S. B.

    1999-01-01

    The problem of flow past bluff bodies was studied extensively in the past. The problem of drag reduction is very important in many high speed flow applications. Considerable work has been done in this subject area in case of circular cylinders. The present study attempts to investigate the feasibility of drag reduction on a rectangular cylinder by flow injection by flow injection from the rear stagnation region. The physical problem is modeled as two-dimensional body and numerical analysis is carried out with and without trailing jets. A commercial code is used for this purpose. Unsteady computation is performed in case of rectangular cylinders with no trailing jets where as steady state computation is performed when jet is introduced. It is found that drag can be reduced by introducing jets with small intensity in rear stagnation region of the rectangular cylinders.

  6. Method and system of measuring ultrasonic signals in the plane of a moving web

    DOEpatents

    Hall, Maclin S.; Jackson, Theodore G.; Wink, Wilmer A.; Knerr, Christopher

    1996-01-01

    An improved system for measuring the velocity of ultrasonic signals within the plane of moving web-like materials, such as paper, paperboard and the like. In addition to velocity measurements of ultrasonic signals in the plane of the web in the machine direction, MD, and a cross direction, CD, generally perpendicular to the direction of the traveling web, therefor, one embodiment of the system in accordance with the present invention is also adapted to provide on-line indication of the polar specific stiffness of the moving web. In another embodiment of the invention, the velocity of ultrasonic signals in the plane of the web are measured by way of a plurality of ultrasonic transducers carried by synchronously driven wheels or cylinders, thus eliminating undue transducer wear due to any speed differences between the transducers and the web. In order to provide relatively constant contact force between the transducers and the webs, the transducers are mounted in a sensor housings which include a spring for biasing the transducer radially outwardly. The sensor housings are adapted to be easily and conveniently mounted to the carrier to provide a relatively constant contact force between the transducers and the moving web.

  7. 49 CFR 178.36 - Specification 3A and 3AX seamless steel cylinders.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... conform to the following: (1) A DOT-3A cylinder is a seamless steel cylinder with a water capacity... steel cylinder with a water capacity not less than 1,000 pounds and a service pressure of at least 500... per unit of length of the straight cylindrical portion filled with water and compressed to the...

  8. 49 CFR 178.36 - Specification 3A and 3AX seamless steel cylinders.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... conform to the following: (1) A DOT-3A cylinder is a seamless steel cylinder with a water capacity... steel cylinder with a water capacity not less than 1,000 pounds and a service pressure of at least 500... per unit of length of the straight cylindrical portion filled with water and compressed to the...

  9. 49 CFR 178.37 - Specification 3AA and 3AAX seamless steel cylinders.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... conform to the following: (1) A DOT-3AA cylinder is a seamless steel cylinder with a water capacity... a seamless steel cylinder with a water capacity of not less than 1,000 pounds and a service pressure... the weight per unit of length of the straight cylindrical portion filled with water and compressed to...

  10. Physiological responses and air consumption during simulated firefighting tasks in a subway system.

    PubMed

    Williams-Bell, F Michael; Boisseau, Geoff; McGill, John; Kostiuk, Andrew; Hughson, Richard L

    2010-10-01

    Professional firefighters (33 men, 3 women), ranging in age from 30 to 53 years, participated in a simulation of a subway system search and rescue while breathing from their self-contained breathing apparatus (SCBA). We tested the hypothesis that during this task, established by expert firefighters to be of moderate intensity, the rate of air consumption would exceed the capacity of a nominal 30-min cylinder. Oxygen uptake, carbon dioxide output, and air consumption were measured with a portable breath-by-breath gas exchange analysis system, which was fully integrated with the expired port of the SCBA. The task involved descending a flight of stairs, walking, performing a search and rescue, retreat walking, then ascending a single flight of stairs to a safe exit. This scenario required between 9:56 and 13:24 min:s (mean, 12:10 ± 1:10 min:s) to complete, with an average oxygen uptake of 24.3 ± 4.5 mL kg(-1) min(-1) (47 ± 10 % peak oxygen uptake) and heart rate of 76% ± 7% of maximum. The highest energy requirement was during the final single-flight stair climb (30.4 ± 5.4 mL kg(-1) min(-1)). The average respiratory exchange ratio (carbon dioxide output/oxygen uptake) throughout the scenario was 0.95 ± 0.08, indicating a high carbon dioxide output for a relatively moderate average energy requirement. Air consumption from the nominal "30-min" cylinder averaged 51% (range, 26%-68%); however, extrapolation of these rates of consumption suggested that the low-air alarm, signalling that only 25% of the air remains, would have occurred as early as 11 min for an individual with the highest rate of air consumption, and at 16 min for the group average. These data suggest that even the moderate physical demands of walking combined with search and rescue while wearing full protective gear and breathing through the SCBA impose considerable physiological strain on professional firefighters. As well, the rate of air consumption in these tasks classed as moderate, compared

  11. Compressed breathing air - the potential for evil from within.

    PubMed

    Millar, Ian L; Mouldey, Peter G

    2008-06-01

    Human underwater activities rely on an adequate supply of breathable compressed gas, usually air, free from contaminants that could cause incapacitation underwater or post-dive or longer-term health effects. Potentially fatal but well-known hazards are hypoxia secondary to steel cylinder corrosion and carbon monoxide (CO) poisoning due to contaminated intake air. Another phenomenon may be behind some previously unexplained episodes of underwater incapacitation and perhaps death: low-level CO poisoning and/or the effects of gaseous contaminants generated within the compressor, including toluene and other volatile compounds. Many low molecular weight volatile contaminants are anaesthetic and will be potentiated by pressure and nitrogen narcosis. In sub-anaesthetic doses, impaired judgement, lowered seizure threshold and sensitisation of the heart to arrhythmias may occur. Toxic compounds can be volatilised from some compressor oils, especially mineral oils, in overheated compressors, or be created de novo under certain combinations of temperature, humidity and pressure, perhaps catalysed by metal traces from compressor wear and tear. Most volatiles can be removed by activated carbon filtration but many filters are undersized and may overload in hot, moist conditions and with short dwell times. A compressor that passes normal testing could contaminate one or more cylinders after heating up and then return to producing clean air as the filters dry and the systems cool. The scope of this problem is very unclear as air quality is tested infrequently and often inadequately, even after fatalities. More research is needed as well as better education regarding the safe operation and limitations of high-pressure breathing air compressors.

  12. Numerical simulation and experiment on split tungsten carbide cylinder of high pressure apparatus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yunfei; Li, Mingzhe, E-mail: limz@jlu.edu.cn; Wang, Bolong

    2015-12-15

    A new high pressure device with a split cylinder was investigated on the basis of the belt-type apparatus. The belt-type die is subjected to excessive tangential tensile stress and the tungsten carbide cylinder is easily damaged in the running process. Taking into account the operating conditions and material properties of the tungsten carbide cylinder, it is divided into 6 blocks to eliminate the tangential tensile stress. We studied two forms of the split type: radial split and tangential split. Simulation results indicate that the split cylinder has more uniform stress distribution and smaller equivalent stress compared with the belt-type cylinder.more » The inner wall of the tangential split cylinder is in the situation that compressive stress is distributed in the axial, radial, and tangential directions. It is similar to the condition of hydrostatic pressure, and it is the best condition for tungsten carbide materials. The experimental results also verify that the tangential split die can bear the highest chamber pressure. Therefore, the tangential split structure can increase the pressure bearing capacity significantly.« less

  13. Thermal convection of liquid sodium in inclined cylinders

    NASA Astrophysics Data System (ADS)

    Khalilov, Ruslan; Kolesnichenko, Ilya; Pavlinov, Alexander; Mamykin, Andrey; Shestakov, Alexander; Frick, Peter

    2018-04-01

    The effect of inclination on the low Prandtl number turbulent convection in a cylinder of unit aspect ratio was studied experimentally. The working fluid was sodium (Prandtl number Pr =0.0094 ), the measurements were performed for a fixed Rayleigh number Ra =(1.47 ±0.03 ) ×107 , and the inclination angle varied from β =0∘ (the Rayleigh-Bénard convection, the temperature gradient is vertical) up to β =90∘ (the applied temperature gradient is horizontal) with a step Δ β =10∘ . The effective axial heat flux characterized by the Nusselt number is minimal at β =0∘ and demonstrates a smooth growth with the increase of the cylinder inclination, reaching a maximum at angle β ≈70∘ and decreasing with a further increase of β . The maximal value of the normalized Nusselt number Nu (β )/Nu (0 ) was 1.21. In general, the dependence of Nu (β ) in a cylinder with unit aspect ratio is similar to what was observed in sodium convection in inclined long cylinders but is much weaker. The structure of the flow undergoes a significant transformation with inclination. Under moderate inclination (β ≲30∘ ), the fluctuations are strong and are provided by regular oscillations of large-scale circulation (LSC) and by turbulence. Under large inclination (β >60∘ ), the LSC is regular and the turbulence is weak, while in transient regimes (30∘<β <60∘ ), the LSC fluctuations are weak and the turbulence decreases with inclination. The maximum Nusselt number corresponds to the border of transient and large inclinations. We find the first evidence of strong LSC fluctuations in low Prandtl number convective flow under moderate inclination. The rms azimuthal fluctuations of LSC, about 27∘ at β =0∘ , decrease almost linearly up to β =30∘ , where they are about 9∘. The angular fluctuations in the vicinity of the end faces are much stronger (about 37∘ at β =0∘ ) and weakly decrease up to β =20∘ . The strong anticorrelation of the fluctuations in two

  14. The Federal Cylinder Project: A Guide to Field Cylinder Collections in Federal Agencies. Volume 3, Great Basin/Plateau Indian Catalog, Northwest Coast/Arctic Indian Catalog.

    ERIC Educational Resources Information Center

    Gray, Judith A., Ed.

    Two catalogs inventory wax cylinder collections, field recorded among Native American groups, 1890-1942. The catalog for Great Basin and Plateau Indian tribes contains entries for 174 cylinders in 7 collections from the Flathead, Nez Perce, Thompson/Okanagon, Northern Ute, and Yakima tribes. The catalog for Northwest Coast and Arctic Indian tribes…

  15. Numerical model of spray combustion in a single cylinder diesel engine

    NASA Astrophysics Data System (ADS)

    Acampora, Luigi; Sequino, Luigi; Nigro, Giancarlo; Continillo, Gaetano; Vaglieco, Bianca Maria

    2017-11-01

    A numerical model is developed for predicting the pressure cycle from Intake Valve Closing (IVC) to the Exhaust Valve Opening (EVO) events. The model is based on a modified one-dimensional (1D) Musculus and Kattke spray model, coupled with a zero-dimensional (0D) non-adiabatic transient Fed-Batch reactor model. The 1D spray model provides an estimate of the fuel evaporation rate during the injection phenomenon, as a function of time. The 0D Fed-Batch reactor model describes combustion. The main goal of adopting a 0D (perfectly stirred) model is to use highly detailed reaction mechanisms for Diesel fuel combustion in air, while keeping the computational cost as low as possible. The proposed model is validated by comparing its predictions with experimental data of pressure obtained from an optical single cylinder Diesel engine.

  16. 49 CFR 178.68 - Specification 4E welded aluminum cylinders.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) Where: S = wall stress in psi; P = minimum test pressure prescribed for water jacket test; D = outside... and service pressure. A DOT 4E cylinder is a welded aluminum cylinder with a water capacity (nominal... stress at twice service pressure may not exceed the lesser value of either of the following: (i) 20,000...

  17. 49 CFR 178.45 - Specification 3T seamless steel cylinder.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., and service pressure. A DOT 3T cylinder is a seamless steel cylinder with a minimum water capacity of...) Wall thickness. The minimum wall thickness must be such that the wall stress at the minimum specified... the physical tests required in paragraphs (j) and (k) of this section. A wall stress of more than 90...

  18. Performance enhancement of an air-coupled multiple moving membrane capacitive micromachined ultrasonic transducer using an optimized middle plate configuration

    NASA Astrophysics Data System (ADS)

    Emadi, Arezoo; Buchanan, Douglas

    2016-10-01

    A multiple moving membrane capacitive micromachined ultrasonic transducer has been developed. This transducer cell structure includes a second flexible plate suspended between the transducer top plate and the fixed bottom electrode. The added plate influences the transducer top plate deflection map and, therefore, the transducer properties. Three series of individual air-coupled, dual deflectable plate transducers and two 1×27 element transducer arrays were fabricated using multiuser microelectromechanical systems (MEMS) processes (MUMPs). Each set of transducers included devices with middle plate radii from 22% to 65% of the corresponding transducer top plate radius. The effect of the transducer middle plate configuration has been investigated. Electrical, optical, and acoustic characterizations were conducted and the results were compared with the simulation findings. It was found that the transducer top plate amplitude of vibration is significantly enhanced with a wider middle deflectable plate. The electrical and optical measurement results are shown to be in good agreement with simulation results. The acoustic measurement results indicated a 37% increase in the amplitude of transmitted signal by the 1-MHz air-couple transducer when its middle plate radius was increased by 35%.

  19. Air-Powered Projectile Launcher

    NASA Technical Reports Server (NTRS)

    Andrews, T.; Bjorklund, R. A.; Elliott, D. G.; Jones, L. K.

    1987-01-01

    Air-powered launcher fires plastic projectiles without using explosive propellants. Does not generate high temperatures. Launcher developed for combat training for U.S. Army. With reservoir pressurized, air launcher ready to fire. When pilot valve opened, sleeve (main valve) moves to rear. Projectile rapidly propelled through barrel, pushed by air from reservoir. Potential applications in seismic measurements, avalanche control, and testing impact resistance of windshields on vehicles.

  20. Stress distribution and pressure-bearing capacity of a high-pressure split-cylinder die with prism cavity

    NASA Astrophysics Data System (ADS)

    Zhao, Liang; Li, Mingzhe; Wang, Liyan; Qu, Erhu; Yi, Zhuo

    2018-03-01

    A novel high-pressure belt-type die with a split-type cylinder is investigated with respect to extending its lifetime and improving its pressure bearing capacity. Specifically, a tungsten carbide cylinder is split into several parts along the radial direction with a prism-type cavity. In this paper, the cylinders with different split numbers are chosen to study the stress distribution and compare them with the traditional belt-type die. The simulation results indicate that the split cylinder has much smaller stress than those in the belt-type cylinder, and the statistical analysis reveals that the split-pressure cylinder is able to bear higher pressure. Experimental tests also show that the high-pressure die with a split cylinder and prism cavity has a stronger pressure-bearing capacity than a belt-type die. The split cylinder has advantages of easy manufacturing, high pressure bearing capacity, and replaceable performance.

  1. Bending Tests of Circular Cylinders of Corrugated Aluminum-alloy Sheet

    NASA Technical Reports Server (NTRS)

    Buckwalter, John C; Reed, Warren D; Niles, Alfred S

    1937-01-01

    Bending tests were made of two circular cylinders of corrugated aluminum-alloy sheet. In each test failure occurred by bending of the corrugations in a plane normal to the skin. It was found, after analysis of the effect of short end bays, that the computed stress on the extreme fiber of a corrugated cylinder is in excess of that for a flat panel of the same basic pattern and panel length tested as a pin-ended column. It is concluded that this increased strength was due to the effects of curvature of the pitch line. It is also concluded from the tests that light bulkheads closely spaced strengthen corrugated cylinders very materially.

  2. Antisymmetric vortex interactions in the wake behind a step cylinder

    NASA Astrophysics Data System (ADS)

    Tian, Cai; Jiang, Fengjian; Pettersen, Bjørnar; Andersson, Helge I.

    2017-10-01

    Flow around a step cylinder at the Reynolds number 150 was simulated by directly solving the full Navier-Stokes equations. The configuration was adopted from the work of Morton and Yarusevych ["Vortex shedding in the wake of a step cylinder," Phys. Fluids 22, 083602 (2010)], in which the wake dynamics were systematically described. A more detailed investigation of the vortex dislocation process has now been performed. Two kinds of new loop vortex structures were identified. Additionally, antisymmetric vortex interactions in two adjacent vortex dislocation processes were observed and explained. The results in this letter serve as a supplement for a more thorough understanding of the vortex dynamics in the step cylinder wake.

  3. Hidden Criticality of Counterion Condensation Near a Charged Cylinder.

    PubMed

    Cha, Minryeong; Yi, Juyeon; Kim, Yong Woon

    2017-09-05

    Counterion condensation onto a charged cylinder, known as the Manning transition, has received a great deal of attention since it is essential to understand the properties of polyelectrolytes in ionic solutions. However, the current understanding is still far from complete and poses a puzzling question: While the strong-coupling theory valid at large ionic correlations suggests a discontinuous nature of the counterion condensation, the mean-field theory always predicts a continuous transition at the same critical point. This naturally leads to a question how one can reconcile the mean-field theory with the strong-coupling prediction. Here, we study the counterion condensation transition on a charged cylinder via Monte Carlo simulations. Varying the cylinder radius systematically in relation to the system size, we find that in addition to the Manning transition, there exists a novel transition where all counterions are bound to the cylinder and the heat capacity shows a drop at a finite Manning parameter. A finite-size scaling analysis is carried out to confirm the criticality of the complete condensation transition, yielding the same critical exponents with the Manning transition. We show that the existence of the complete condensation is essential to explain how the condensation nature alters from continuous to discontinuous transition.

  4. HUMAN EXPOSURE MEASUREMENTS OF AIR TOXICS

    EPA Science Inventory

    EPA's air toxics program is moving toward a risk-based focus. The framework for such a focus was laid out in the National Air Toxics Program: Integrated Urban Strategy which included the requirement for EPA to conduct a National-Scale Air Toxics Assessment (NATA) of human expos...

  5. 49 CFR 178.39 - Specification 3BN seamless nickel cylinders.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) Type, size and service pressure. A DOT 3BN cylinder is a seamless nickel cylinder with a water capacity (nominal) not over 125 pounds water capacity (nominal) and a service pressure at least 150 to not over 500...) Wall thickness. The wall stress may not exceed 15,000 psi. A minimum wall thickness of 0.100 inch is...

  6. 49 CFR 178.39 - Specification 3BN seamless nickel cylinders.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) Type, size and service pressure. A DOT 3BN cylinder is a seamless nickel cylinder with a water capacity (nominal) not over 125 pounds water capacity (nominal) and a service pressure at least 150 to not over 500...) Wall thickness. The wall stress may not exceed 15,000 psi. A minimum wall thickness of 0.100 inch is...

  7. Method and apparatus for ultrasonic characterization through the thickness direction of a moving web

    DOEpatents

    Jackson, Theodore; Hall, Maclin S.

    2001-01-01

    A method and apparatus for determining the caliper and/or the ultrasonic transit time through the thickness direction of a moving web of material using ultrasonic pulses generated by a rotatable wheel ultrasound apparatus. The apparatus includes a first liquid-filled tire and either a second liquid-filled tire forming a nip or a rotatable cylinder that supports a thin moving web of material such as a moving web of paper and forms a nip with the first liquid-filled tire. The components of ultrasonic transit time through the tires and fluid held within the tires may be resolved and separately employed to determine the separate contributions of the two tire thicknesses and the two fluid paths to the total path length that lies between two ultrasonic transducer surfaces contained within the tires in support of caliper measurements. The present invention provides the benefit of obtaining a transit time and caliper measurement at any point in time as a specimen passes through the nip of rotating tires and eliminates inaccuracies arising from nonuniform tire circumferential thickness by accurately retaining point-to-point specimen transit time and caliper variation information, rather than an average obtained through one or more tire rotations. Morever, ultrasonic transit time through the thickness direction of a moving web may be determined independent of small variations in the wheel axle spacing, tire thickness, and liquid and tire temperatures.

  8. Natural phenomena evaluations of the K-25 site UF{sub 6} cylinder storage yards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fricke, K.E.

    1996-09-15

    The K-25 Site UF{sub 6} cylinder storage yards are used for the temporary storage of UF{sub 6} normal assay cylinders and long-term storage of other UF{sub 6} cylinders. The K-25 Site UF{sub 6} cylinder storage yards consist of six on-site areas: K-1066-B, K-1066-E, K-1066-F, K-1066-J, K-1066-K and K-1066-L. There are no permanent structures erected on the cylinder yards, except for five portable buildings. The operating contractor for the K-25 Site is preparing a Safety Analysis Report (SAR) to examine the safety related aspects of the K-25 Site UF{sub 6} cylinder storage yards. The SAR preparation encompasses many tasks terminating inmore » consequence analysis for the release of gaseous and liquid UF{sub 6}, one of which is the evaluation of natural phenomena threats, such as earthquakes, floods, and winds. In support of the SAR, the six active cylinder storage yards were evaluated for vulnerabilities to natural phenomena, earthquakes, high winds and tornados, tornado-generated missiles, floods (local and regional), and lightning. This report summarizes those studies. 30 refs.« less

  9. Sub-grid drag models for horizontal cylinder arrays immersed in gas-particle multiphase flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarkar, Avik; Sun, Xin; Sundaresan, Sankaran

    2013-09-08

    Immersed cylindrical tube arrays often are used as heat exchangers in gas-particle fluidized beds. In multiphase computational fluid dynamics (CFD) simulations of large fluidized beds, explicit resolution of small cylinders is computationally infeasible. Instead, the cylinder array may be viewed as an effective porous medium in coarse-grid simulations. The cylinders' influence on the suspension as a whole, manifested as an effective drag force, and on the relative motion between gas and particles, manifested as a correction to the gas-particle drag, must be modeled via suitable sub-grid constitutive relationships. In this work, highly resolved unit-cell simulations of flow around an arraymore » of horizontal cylinders, arranged in a staggered configuration, are filtered to construct sub-grid, or `filtered', drag models, which can be implemented in coarse-grid simulations. The force on the suspension exerted by the cylinders is comprised of, as expected, a buoyancy contribution, and a kinetic component analogous to fluid drag on a single cylinder. Furthermore, the introduction of tubes also is found to enhance segregation at the scale of the cylinder size, which, in turn, leads to a reduction in the filtered gas-particle drag.« less

  10. Analysis of automobile engine cylinder pressure and rotation speed from engine body vibration signal

    NASA Astrophysics Data System (ADS)

    Wang, Yuhua; Cheng, Xiang; Tan, Haishu

    2016-01-01

    In order to improve the engine vibration signal process method for the engine cylinder pressure and engine revolution speed measurement instrument, the engine cylinder pressure varying with the engine working cycle process has been regarded as the main exciting force for the engine block forced vibration. The forced vibration caused by the engine cylinder pressure presents as a low frequency waveform which varies with the cylinder pressure synchronously and steadily in time domain and presents as low frequency high energy discrete humorous spectrum lines in frequency domain. The engine cylinder pressure and the rotation speed can been extract form the measured engine block vibration signal by low-pass filtering analysis in time domain or by FFT analysis in frequency domain, the low-pass filtering analysis in time domain is not only suitable for the engine in uniform revolution condition but also suitable for the engine in uneven revolution condition. That provides a practical and convenient way to design motor revolution rate and cylinder pressure measurement instrument.

  11. Induced charge electrophoresis of a conducting cylinder in a nonconducting cylindrical pore and its micromotoring application

    NASA Astrophysics Data System (ADS)

    Feng, Huicheng; Wong, Teck Neng; Che, Zhizhao

    2016-08-01

    Induced charge electrophoresis of a conducting cylinder suspended in a nonconducting cylindrical pore is theoretically analyzed and a micromotor is proposed that utilizes the cylinder rotation. The cylinder velocities are analytically obtained in the Dirichlet and the Neumann boundary conditions of the electric field on the cylindrical pore. The results show that the cylinder not only translates but also rotates when it is eccentric with respect to the cylindrical pore. The influences of a number of parameters on the cylinder velocities are characterized in detail. The cylinder trajectories show that the cylinder approaches and becomes stationary at certain positions within the cylindrical pore. The proposed micromotor is capable of working under a heavy load with a high rotational velocity when the eccentricity is large and the applied electric field is strong.

  12. Numerical investigation of cylinder wake flow with a rear stagnation jet

    NASA Astrophysics Data System (ADS)

    Mo, J. D.; Duke, M. R., Jr.

    1994-05-01

    Upon visualization of the flow past a cylinder with a rear stagnation jet (RSJ), the flow appears fully attached as conventional inviscid flow does. Therefore, at first glance, it would be suspected that the form drag on the cylinder has been reduced to zero as predicted by inviscid flow theory. However, a detailed numerical simulation reveals that the form drag coefficient increases as the jet velocity increases. The mechanics of the increasing form drag are addressed. The following conclusions were drawn: (1) flow behind a cylinder can be effectively influenced by a RSJ; (2) the unsymmetric wake flow becomes symmetric when the RSI is in operation with a velocity ratio as low as 1; the size of the symmetric recirculation region becomes smaller as the jet speed increases; (3) a RSJ forces a symmetrical wake flow pattern, thus eliminating the lateral force; (4) the pressure on the cylinder surface decreases over the entire surface, but significantly more on the downstream side of the cylinder, as the jet velocity increases, causing an increase in form drag as jet velocity ratio increases; and (5) the RSJ to significantly increase form drag on a bluff body has direct applications in aerodynamic controls of reentry or fligths at high angles of attack.

  13. Flow-induced oscillations of a floating moored cylinder

    NASA Astrophysics Data System (ADS)

    Carlson, Daniel; Modarres-Sadeghi, Yahya

    2016-11-01

    An experimental study of flow-induced oscillations of a floating model spar buoy was conducted. The model spar consisted of a floating uniform cylinder moored in a water tunnel test section, and free to oscillate about its mooring attachment point near the center of mass. For the bare cylinder, counter-clockwise (CCW) figure-eight trajectories approaching A* =1 in amplitude were observed at the lower part of the spar for a reduced velocity range of U* =4-11, while its upper part experienced clockwise (CW) orbits. It was hypothesized that the portion of the spar undergoing CCW figure eights is the portion within which the flow excites the structure. By adding helical strakes to the portion of the cylinder with CCW figure eights, the response amplitude was significantly reduced, while adding strakes to portions with clockwise orbital motion had a minimal influence on the amplitude of response. This work is partially supported by the NSF-sponsored IGERT: Offshore Wind Energy Engineering, Environmental Science, and Policy (Grant Number 1068864).

  14. Ion acceleration in shell cylinders irradiated by a short intense laser pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andreev, A.; ELI-ALPS, Szeged; Platonov, K.

    The interaction of a short high intensity laser pulse with homo and heterogeneous shell cylinders has been analyzed using particle-in-cell simulations and analytical modeling. We show that the shell cylinder is proficient of accelerating and focusing ions in a narrow region. In the case of shell cylinder, the ion energy exceeds the ion energy for a flat target of the same thickness. The constructed model enables the evaluation of the ion energy and the number of ions in the focusing region.

  15. Thermally driven film climbing a vertical cylinder

    NASA Astrophysics Data System (ADS)

    Smolka, Linda

    2017-11-01

    The dynamics of a Marangoni driven film climbing the outside of a vertical cylinder is examined in numerical simulations of a thin film model. The model has three parameters: the scaled cylinder radius R̂, upstream film height h∞ and downstream precursor film thickness b , and reduces to the model for Marangoni driven film climbing a vertical plate when R̂ -> ∞ . The advancing front displays dynamics similar to that along a vertical plate where, depending on h∞ , the film forms a Lax shock, an undercompressive double shock or a rarefaction-undercompressive shock. A linear stability analysis of the Lax shock reveals the number of fingers that form along the contact line increases linearly with cylinder circumference while no fingers form below R̂ 1.15 with b = 0.1 . The substrate curvature controls the Lax shock height, bounds on h∞ that define the three solutions and the maximum growth rate of perturbations when R̂ = O (1) , whereas the shape of solutions and the stability of the Lax shock converge to the behavior on a vertical plate when R̂ >= O (10) . The azimuthal curvatures of the base state and perturbation, arising from the annular geometry of the film, promote instability of the advancing contact line.

  16. Damage tolerance of pressurized graphite/epoxy tape cylinders under uniaxial and biaxial loading. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Priest, Stacy Marie

    1993-01-01

    The damage tolerance behavior of internally pressurized, axially slit, graphite/epoxy tape cylinders was investigated. Specifically, the effects of axial stress, structural anisotropy, and subcritical damage were considered. In addition, the limitations of a methodology which uses coupon fracture data to predict cylinder failure were explored. This predictive methodology was previously shown to be valid for quasi-isotropic fabric and tape cylinders but invalid for structurally anisotropic (+/-45/90)(sub s) and (+/-45/0)(sub s) cylinders. The effects of axial stress and structural anisotropy were assessed by testing tape cylinders with (90/0/+/-45)(sub s), (+/-45/90)(sub s), and (+/-45/0)(sub s) layups in a uniaxial test apparatus, specially designed and built for this work, and comparing the results to previous tests conducted in biaxial loading. Structural anisotropy effects were also investigated by testing cylinders with the quasi-isotropic (0/+/-45/90)(sub s) layup which is a stacking sequence variation of the previously tested (90/0/+/-45)(sub s) layup with higher D(sub 16) and D(sub 26) terms but comparable D(sub 16) and D(sub 26) to D(sub 11) ratios. All cylinders tested and used for comparison are made from AS4/3501-6 graphite/epoxy tape and have a diameter of 305 mm. Cylinder slit lengths range from 12.7 to 50.8 mm. Failure pressures are lower for the uniaxially loaded cylinders in all cases. The smallest percent failure pressure decreases are observed for the (+/-45/90)(sub s) cylinders, while the greatest such decreases are observed for the (+/-45/0)(sub s) cylinders. The relative effects of the axial stress on the cylinder failure pressures do not correlate with the degree of structural coupling. The predictive methodology is not applicable for uniaxially loaded (+/-45/90)(sub s) and (+/-45/0)(sub s) cylinders, may be applicable for uniaxially loaded (90/0/+/-45)(sub s) cylinders, and is applicable for the biaxially loaded (90/0/+/-45)(sub s) and (0

  17. Cylinders out of a top hat: counts-in-cells for projected densities

    NASA Astrophysics Data System (ADS)

    Uhlemann, Cora; Pichon, Christophe; Codis, Sandrine; L'Huillier, Benjamin; Kim, Juhan; Bernardeau, Francis; Park, Changbom; Prunet, Simon

    2018-06-01

    Large deviation statistics is implemented to predict the statistics of cosmic densities in cylinders applicable to photometric surveys. It yields few per cent accurate analytical predictions for the one-point probability distribution function (PDF) of densities in concentric or compensated cylinders; and also captures the density dependence of their angular clustering (cylinder bias). All predictions are found to be in excellent agreement with the cosmological simulation Horizon Run 4 in the quasi-linear regime where standard perturbation theory normally breaks down. These results are combined with a simple local bias model that relates dark matter and tracer densities in cylinders and validated on simulated halo catalogues. This formalism can be used to probe cosmology with existing and upcoming photometric surveys like DES, Euclid or WFIRST containing billions of galaxies.

  18. The Present Status of Using Natural Gas Cylinders and Acoustic Emission in Thailand

    NASA Astrophysics Data System (ADS)

    Jomdecha, C.; Jirarungsatian, C.; Methong, W.; Poopat, B.

    This chapter presents the status of using natural gas cylinders (CNG/NGV) and acoustic emission (AE) in Thailand. During the period from 2006 to 2013, more than 600,000 CNG cylinder units for vehicles were installed and used for transportation, cars, and trucks in Thailand. The number of cylinder units will be tentatively increased in the future due to the increase in gasoline price. Due to the use of high-pressurization equipment in public, the issue of a risk to public safety has been raised. As of this writing, in 2013, the testing standard from the Thai Department of Energy Business recommends inspection every 5 years using effective inspection methods in order to guarantee safe usage of gas cylinders, including the AE method, following ISO 16148. Normally in Thailand, AE is used in research and petrochemical plants as a special technique. The main applications are testing of pressure vessels, aboveground storage tanks, and university research. Few companies are available to conduct AE for testing natural gas cylinders due to the limited safety of the high-pressure operation and AE equipment and a lack of qualified AE personnel. To develop AE techniques, equipment, procedures, and acceptance criteria of natural gas cylinders are the main focus of AE personnel in Thailand. A desired achievement for current development is for natural gas cylinder testing, which can be applied in field tests and supported by a national testing standard.

  19. Growth behavior of surface cracks in the circumferential plane of solid and hollow cylinders

    NASA Technical Reports Server (NTRS)

    Forman, R. G.; Shivakumar, V.

    1986-01-01

    Experiments were conducted to study the growth behavior of surface fatigue cracks in the circumferential plane of solid and hollow cylinders. In the solid cylinders, the fatigue cracks were found to have a circular arc crack front with specific upper and lower limits to the arc radius. In the hollow cylinders, the fatigue cracks were found to agree accurately with the shape of a transformed semiellipse. A modification to the usual nondimensionalization expression used for surface flaws in flat plates was found to give correct trends for the hollow cylinder problem.

  20. Effect of Free Stream Turbulence on Flow Past a Circular Cylinder at Low Reynolds Numbers

    NASA Astrophysics Data System (ADS)

    Kumar, Vinoth; Singh, Mrityunjay; Thangadurai, Murugan; Chatterjee, P. K.

    2018-01-01

    Circular cylinders experiencing different upstream flow conditions have been studied for low Reynolds numbers using hot-wire anemometry and smoke flow visualizations. The upstream condition of the cylinder in the test section is varied using a wire mesh placed at the entrance of the test section. The Reynolds number is varied by varying the diameter of the cylinder and the mean velocity in the test section. Smooth cylinders of diameter varying from 1.25 to 25 mm are used in the present study. A multi-channel hot-wire anemometry is used for measuring the fluctuating velocities in the test section and the wake behind the cylinder. The sectional views of the wake behind the cylinder are obtained using a 4 MP CCD camera, 200 mJ pulsed laser and a fog generator. The flow quality in the test section is examined using higher order turbulence statistics. The effect of free stream turbulence levels and their frequencies on wake structures and the shedding frequencies of circular cylinders are studied in detail. It has been observed that the alteration in wake structure and the shedding frequency depend strongly on the frequencies and the amplitudes of upstream disturbances besides the diameter of the circular cylinder.

  1. Torque on a sphere inside a rotating cylinder.

    NASA Technical Reports Server (NTRS)

    Mena, B.; Levinson, E.; Caswell, B.

    1972-01-01

    A circular cylinder of finite dimensions is made to rotate around a sphere fixed in the center of the cylinder. The couple on the sphere is measured over a wide range of rotational speeds for both Newtonian and non-Newtonian fluids. For the Newtonian liquids a comparison of the experimental results is made with Collins' (1955) expansion of the couple as a series in even powers of the angular Reynolds number. For non-Newtonian liquids the apparatus proves to be extremely useful for an accurate determination of the zero shear rate viscosity using only a small amount of fluid.

  2. Development of Advanced In-Cylinder Components and Tribological Systems for Low Heat Rejection Diesel Engines

    NASA Technical Reports Server (NTRS)

    Yonushonis, T. M.; Wiczynski, P. D.; Myers, M. R.; Anderson, D. D.; McDonald, A. C.; Weber, H. G.; Richardson, D. E.; Stafford, R. J.; Naylor, M. G.

    1999-01-01

    In-cylinder components and tribological system concepts were designed, fabricated and tested at conditions anticipated for a 55% thermal efficiency heavy duty diesel engine for the year 2000 and beyond. A Cummins L10 single cylinder research engine was used to evaluate a spherical joint piston and connecting rod with 19.3 MPa (2800 psi) peak cylinder pressure capability, a thermal fatigue resistant insulated cylinder head, radial combustion seal cylinder liners, a highly compliant steel top compression ring, a variable geometry turbocharger, and a microwave heated particulate trap. Components successfully demonstrated in the final test included spherical joint connecting rod with a fiber reinforced piston, high conformability steel top rings with wear resistant coatings, ceramic exhaust ports with strategic oil cooling and radial combustion seal cylinder liner with cooling jacket transfer fins. A Cummins 6B diesel was used to develop the analytical methods, materials, manufacturing technology and engine components for lighter weight diesel engines without sacrificing performance or durability. A 6B diesel engine was built and tested to calibrate analytical models for the aluminum cylinder head and aluminum block.

  3. Stability of plasma cylinder with current in a helical plasma flow

    NASA Astrophysics Data System (ADS)

    Leonovich, Anatoly S.; Kozlov, Daniil A.; Zong, Qiugang

    2018-04-01

    Stability of a plasma cylinder with a current wrapped by a helical plasma flow is studied. Unstable surface modes of magnetohydrodynamic (MHD) oscillations develop at the boundary of the cylinder enwrapped by the plasma flow. Unstable eigenmodes can also develop for which the plasma cylinder is a waveguide. The growth rate of the surface modes is much higher than that for the eigenmodes. It is shown that the asymmetric MHD modes in the plasma cylinder are stable if the velocity of the plasma flow is below a certain threshold. Such a plasma flow velocity threshold is absent for the symmetric modes. They are unstable in any arbitrarily slow plasma flows. For all surface modes there is an upper threshold for the flow velocity above which they are stable. The helicity index of the flow around the plasma cylinder significantly affects both the Mach number dependence of the surface wave growth rate and the velocity threshold values. The higher the index, the lower the upper threshold of the velocity jump above which the surface waves become stable. Calculations have been carried out for the growth rates of unstable oscillations in an equilibrium plasma cylinder with current serving as a model of the low-latitude boundary layer (LLBL) of the Earth's magnetic tail. A tangential discontinuity model is used to simulate the geomagnetic tail boundary. It is shown that the magnetopause in the geotail LLBL is unstable to a surface wave (having the highest growth rate) in low- and medium-speed solar wind flows, but becomes stable to this wave in high-speed flows. However, it can remain weakly unstable to the radiative modes of MHD oscillations.

  4. Designs and Algorithms to Map Eye Tracking Data with Dynamic Multielement Moving Objects.

    PubMed

    Kang, Ziho; Mandal, Saptarshi; Crutchfield, Jerry; Millan, Angel; McClung, Sarah N

    2016-01-01

    Design concepts and algorithms were developed to address the eye tracking analysis issues that arise when (1) participants interrogate dynamic multielement objects that can overlap on the display and (2) visual angle error of the eye trackers is incapable of providing exact eye fixation coordinates. These issues were addressed by (1) developing dynamic areas of interests (AOIs) in the form of either convex or rectangular shapes to represent the moving and shape-changing multielement objects, (2) introducing the concept of AOI gap tolerance (AGT) that controls the size of the AOIs to address the overlapping and visual angle error issues, and (3) finding a near optimal AGT value. The approach was tested in the context of air traffic control (ATC) operations where air traffic controller specialists (ATCSs) interrogated multiple moving aircraft on a radar display to detect and control the aircraft for the purpose of maintaining safe and expeditious air transportation. In addition, we show how eye tracking analysis results can differ based on how we define dynamic AOIs to determine eye fixations on moving objects. The results serve as a framework to more accurately analyze eye tracking data and to better support the analysis of human performance.

  5. MOVES sensitivity analysis update : Transportation Research Board Summer Meeting 2012 : ADC-20 Air Quality Committee

    DOT National Transportation Integrated Search

    2012-01-01

    OVERVIEW OF PRESENTATION : Evaluation Parameters : EPAs Sensitivity Analysis : Comparison to Baseline Case : MOVES Sensitivity Run Specification : MOVES Sensitivity Input Parameters : Results : Uses of Study

  6. Video Analysis of Rolling Cylinders

    ERIC Educational Resources Information Center

    Phommarach, S.; Wattanakasiwich, P.; Johnston, I.

    2012-01-01

    In this work, we studied the rolling motion of solid and hollow cylinders down an inclined plane at different angles. The motions were captured on video at 300 frames s[superscript -1], and the videos were analyzed frame by frame using video analysis software. Data from the real motion were compared with the theory of rolling down an inclined…

  7. 49 CFR 178.38 - Specification 3B seamless steel cylinders.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., and service pressure. A DOT 3B cylinder is seamless steel cylinder with a water capacity (nominal) of... permitted in paragraph (d) of this section. (f) Wall thickness. The wall stress may not exceed 24,000 psi.... Calculation must be made by the following formula: S = [P(1.3D2+0.4d2)]/(D2−d2) Where: S = wall stress in psi...

  8. 49 CFR 178.65 - Specification 39 non-reusable (non-refillable) cylinders.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) Material; steel or aluminum. The cylinder must be constructed of either steel or aluminum conforming to the following requirements: (1) Steel. (i) The steel analysis must conform to the following: Ladle analysis... percent .05 .06 (ii) For a cylinder made of seamless steel tubing with integrally formed ends, hot drawn...

  9. 49 CFR 178.65 - Specification 39 non-reusable (non-refillable) cylinders.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) Material; steel or aluminum. The cylinder must be constructed of either steel or aluminum conforming to the following requirements: (1) Steel. (i) The steel analysis must conform to the following: Ladle analysis... percent .05 .06 (ii) For a cylinder made of seamless steel tubing with integrally formed ends, hot drawn...

  10. 49 CFR 178.65 - Specification 39 non-reusable (non-refillable) cylinders.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) Material; steel or aluminum. The cylinder must be constructed of either steel or aluminum conforming to the following requirements: (1) Steel. (i) The steel analysis must conform to the following: Ladle analysis... percent .05 .06 (ii) For a cylinder made of seamless steel tubing with integrally formed ends, hot drawn...

  11. 49 CFR 178.65 - Specification 39 non-reusable (non-refillable) cylinders.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) Material; steel or aluminum. The cylinder must be constructed of either steel or aluminum conforming to the following requirements: (1) Steel. (i) The steel analysis must conform to the following: Ladle analysis... percent .05 .06 (ii) For a cylinder made of seamless steel tubing with integrally formed ends, hot drawn...

  12. Gas storage cylinder formed from a composition containing thermally exfoliated graphite

    NASA Technical Reports Server (NTRS)

    Aksay, Ilhan A. (Inventor); Prud'Homme, Robert K. (Inventor)

    2012-01-01

    A gas storage cylinder or gas storage cylinder liner, formed from a polymer composite, containing at least one polymer and a modified graphite oxide material, which is a thermally exfoliated graphite oxide with a surface area of from about 300 m(exp 2)/g to 2600 m(exp 2)2/g.

  13. Effect of Catalytic Cylinders on Autothermal Reforming of Methane for Hydrogen Production in a Microchamber Reactor

    PubMed Central

    Yan, Yunfei; Guo, Hongliang; Zhang, Li; Zhu, Junchen; Yang, Zhongqing; Tang, Qiang; Ji, Xin

    2014-01-01

    A new multicylinder microchamber reactor is designed on autothermal reforming of methane for hydrogen production, and its performance and thermal behavior, that is, based on the reaction mechanism, is numerically investigated by varying the cylinder radius, cylinder spacing, and cylinder layout. The results show that larger cylinder radius can promote reforming reaction; the mass fraction of methane decreased from 26% to 21% with cylinder radius from 0.25 mm to 0.75 mm; compact cylinder spacing corresponds to more catalytic surface and the time to steady state is decreased from 40 s to 20 s; alteration of staggered and aligned cylinder layout at constant inlet flow rates does not result in significant difference in reactor performance and it can be neglected. The results provide an indication and optimize performance of reactor; it achieves higher conversion compared with other reforming reactors. PMID:25097877

  14. Rotating Cylinder Treatment System Demonstration (Presentation)

    EPA Science Inventory

    In August 2008, a rotating cylinder treatment system (RCTSTM) demonstration was conducted near Gladstone, CO. The RCTSTM is a novel technology developed to replace the aeration/oxidation and mixing components of a conventional lime precipitation treatment s...

  15. Engine cylinder pressure reconstruction using crank kinematics and recurrently-trained neural networks

    NASA Astrophysics Data System (ADS)

    Bennett, C.; Dunne, J. F.; Trimby, S.; Richardson, D.

    2017-02-01

    A recurrent non-linear autoregressive with exogenous input (NARX) neural network is proposed, and a suitable fully-recurrent training methodology is adapted and tuned, for reconstructing cylinder pressure in multi-cylinder IC engines using measured crank kinematics. This type of indirect sensing is important for cost effective closed-loop combustion control and for On-Board Diagnostics. The challenge addressed is to accurately predict cylinder pressure traces within the cycle under generalisation conditions: i.e. using data not previously seen by the network during training. This involves direct construction and calibration of a suitable inverse crank dynamic model, which owing to singular behaviour at top-dead-centre (TDC), has proved difficult via physical model construction, calibration, and inversion. The NARX architecture is specialised and adapted to cylinder pressure reconstruction, using a fully-recurrent training methodology which is needed because the alternatives are too slow and unreliable for practical network training on production engines. The fully-recurrent Robust Adaptive Gradient Descent (RAGD) algorithm, is tuned initially using synthesised crank kinematics, and then tested on real engine data to assess the reconstruction capability. Real data is obtained from a 1.125 l, 3-cylinder, in-line, direct injection spark ignition (DISI) engine involving synchronised measurements of crank kinematics and cylinder pressure across a range of steady-state speed and load conditions. The paper shows that a RAGD-trained NARX network using both crank velocity and crank acceleration as input information, provides fast and robust training. By using the optimum epoch identified during RAGD training, acceptably accurate cylinder pressures, and especially accurate location-of-peak-pressure, can be reconstructed robustly under generalisation conditions, making it the most practical NARX configuration and recurrent training methodology for use on production engines.

  16. Analysis of an Indirect Neutron Signature for Enhanced UF6 Cylinder Verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulisek, Jonathan A.; McDonald, Benjamin S.; Smith, Leon E.

    2017-02-21

    The International Atomic Energy Agency (IAEA) currently uses handheld gamma-ray spectrometers combined with ultrasonic wall-thickness gauges to verify the declared enrichment of uranium hexafluoride (UF6) cylinders. The current method provides relatively low accuracy for the assay of 235U enrichment, especially for natural and depleted UF6. Furthermore, the current method provides no capability to assay the absolute mass of 235U in the cylinder due to the localized instrument geometry and limited penetration of the 186-keV gamma-ray signature from 235U. Also, the current verification process is a time-consuming component of on-site inspections at uranium enrichment plants. Toward the goal of a more-capablemore » cylinder assay method, the Pacific Northwest National Laboratory has developed the hybrid enrichment verification array (HEVA). HEVA measures both the traditional 186-keV direct signature and a non-traditional, high-energy neutron-induced signature (HEVANT). HEVANT enables full-volume assay of UF6 cylinders by exploiting the relatively larger mean free paths of the neutrons emitted from the UF6. In this work, Monte Carlo modeling is used as the basis for characterizing HEVANT in terms of the individual contributions to HEVANT from nuclides and hardware components. Monte Carlo modeling is also used to quantify the intrinsic efficiency of HEVA for neutron detection in a cylinder-assay geometry. Modeling predictions are validated against neutron-induced gamma-ray spectra from laboratory measurements and a relatively large population of Type 30B cylinders spanning a range of enrichments. Implications of the analysis and findings on the viability of HEVA for cylinder verification are discussed, such as the resistance of the HEVANT signature to manipulation by the nearby placement of neutron-conversion materials.« less

  17. Comparisons of MOVES Light-duty Gasoline NOx Emission Rates with Real-world Measurements

    NASA Astrophysics Data System (ADS)

    Choi, D.; Sonntag, D.; Warila, J.

    2017-12-01

    Recent studies have shown differences between air quality model estimates and monitored values for nitrogen oxides. Several studies have suggested that the discrepancy between monitored and modeled values is due to an overestimation of NOx from mobile sources in EPA's emission inventory, particularly for light-duty gasoline vehicles. EPA's MOtor Vehicle Emission Simulator (MOVES) is an emission modeling system that estimates emissions for cars, trucks and other mobile sources at the national, county, and project level for criteria pollutants, greenhouse gases, and air toxics. Studies that directly measure vehicle emissions provide useful data for evaluating MOVES when the measurement conditions are properly accounted for in modeling. In this presentation, we show comparisons of MOVES2014 to thousands of real-world NOx emissions measurements from individual light-duty gasoline vehicles. The comparison studies include in-use vehicle emissions tests conducted on chassis dynamometer tests in support of Denver, Colorado's Vehicle Inspection & Maintenance Program and remote sensing data collected using road-side instruments in multiple locations and calendar years in the United States. In addition, we conduct comparisons of MOVES predictions to fleet-wide emissions measured from tunnels. We also present details on the methodology used to conduct the MOVES model runs in comparing to the independent data.

  18. On the development of lift and drag in a rotating and translating cylinder

    NASA Astrophysics Data System (ADS)

    Martin-Alcantara, Antonio; Sanmiguel-Rojas, Enrique; Fernandez-Feria, Ramon

    2014-11-01

    The two-dimensional flow around a rotating cylinder is investigated numerically using a vorticity forces formulation with the aim of analyzing the flow structures, and their evolutions, that contribute to the lift and drag forces on the cylinder. The Reynolds number, based on the cylinder diameter and steady free-stream speed, considered is Re = 200 , while the non-dimensional rotation rate (ratio of the surface speed and free-stream speed) selected were α = 1 and 3. For α = 1 the wake behind the cylinder for the fully developed flow is oscillatory due to vortex shedding, and so are the lift and drag forces. For α = 3 the fully developed flow is steady with constant (high) lift and (low) drag. Each of these cases is considered in two different transient problems, one with angular acceleration of the cylinder and constant speed, and the other one with translating acceleration of the cylinder and constant rotation. Special attention is paid to explaining the mechanisms of vortex shedding suppression for high rotation (when α = 3) and its relation to the mechanisms by which the lift is enhanced and the drag is almost suppressed when the fully developed flow is reached. Supported by the Ministerio de Economia y Competitividad of Spain Grant No. DPI2013-40479-P.

  19. Dynamics of spherical metallic particles in cylinder electrostatic separators/purifiers.

    PubMed

    Lu, Hong-Zhou; Li, Jia; Guo, Jie; Xu, Zhen-Ming

    2008-08-15

    This paper presents a theoretical analysis of the dynamics of spherical metallic particles in electrostatic separators/purifiers (ESPs). The particle equations of motion are numerically solved in two dimensions using a computational algorithm. The ESPs consist of a pair of conductor cylinder electrodes. The upper cylinder is energized by HVdc, while the lower one is grounded and fixed horizontally on a revolvable axis. Some phenomena and aspects of separation process are explained and depicted including lifting off, impact, "motion collapse" and "sudden bouncing". The results reveal that the several phenomena depend on initial position, radius and density of the particle, curvature of the cylinder electrodes, distance between the electrodes and amplitude of the applied voltage. Optimization of the parameters is presented in order to get better separation/purification processes.

  20. Integrated approach for stress analysis of high performance diesel engine cylinder head

    NASA Astrophysics Data System (ADS)

    Chainov, N. D.; Myagkov, L. L.; Malastowski, N. S.; Blinov, A. S.

    2018-03-01

    Growing thermal and mechanical loads due to development of engines with high level of a mean effective pressure determine requirements to cylinder head durability. In this paper, computational schemes for thermal and mechanical stress analysis of a high performance diesel engine cylinder head were described. The most important aspects in this approach are the account of temperature fields of conjugated details (valves and saddles), heat transfer modeling in a cooling jacket of a cylinder head and topology optimization of the detail force scheme. Simulation results are shown and analyzed.