Science.gov

Sample records for air dielectric coaxial

  1. Estimation of dielectric slab permittivity using a flared coaxial line

    NASA Astrophysics Data System (ADS)

    Shin, Dong H.; Eom, Hyo J.

    2003-04-01

    Estimation of dielectric slab permittivity is considered by using a flared coaxial line. A problem of reflection from a flared coaxial line that radiates into a dielectric slab with a flange is solved. A flared coaxial line is modeled with multiply stepped coaxial lines with different inner and outer conductors. A set of simultaneous equations for the modal coefficients is constituted based on the boundary conditions. Computations are performed to illustrate the reflection behavior in terms of the coaxial line geometry, frequency, and permittivity of a dielectric slab. Nomograms are developed to estimate the permittivity from the measured reflection coefficients. The utility of a flared coaxial line for the determination of slab permittivity is discussed.

  2. Monitoring Coaxial-Probe Contact Force for Dielectric Properties Measurement

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A means is described for measuring and monitoring the contact force applied to a material sample with an open-ended coaxial-line probe for purposes of measuring the dielectric properties of semisolid material samples such as fruit, vegetable and animal tissues. The equipment consists of a stainless...

  3. Handheld Flyback driven coaxial dielectric barrier discharge: Development and characterization

    SciTech Connect

    Law, V. J.; Milosavljevic, V.; O'Connor, N.; Daniels, S.; Lalor, J. F.

    2008-09-15

    The development of a handheld single and triple chamber atmospheric pressure coaxial dielectric barrier discharge driven by Flyback circuitry for helium and argon discharges is described. The Flyback uses external metal-oxide-semiconductor field-effect transistor power switching technology and the transformer operates in the continuous current mode to convert a continuous dc power of 10-33 W to generate a 1.2-1.6 kV 3.5 {mu}s pulse. An argon discharge breakdown voltage of {approx}768 V is measured. With a 50 kHz, pulse repetition rate and an argon flow rate of 0.5-10 argon slm (slm denotes standard liters per minute), the electrical power density deposited in the volume discharge increases linearly at a rate of 75{+-}20% mW/cm{sup 3} per 1 slm of gas. Electrical power transfer efficiency between the secondary Flyback coil and the discharge volume increases from 0.1% to 0.65%. Neutral argon gas forced convection analysis yields a similar energy loss rate to the electrical discharge process. Optical emission spectroscopy studies of the expanding discharge plume into ambient air reveal that the air climatically controls the plume chemistry to produce an abundance of neutral argon atoms and molecular nitrogen.

  4. Handheld Flyback driven coaxial dielectric barrier discharge: Development and characterization.

    PubMed

    Law, V J; Milosavljević, V; O'Connor, N; Lalor, J F; Daniels, S

    2008-09-01

    The development of a handheld single and triple chamber atmospheric pressure coaxial dielectric barrier discharge driven by Flyback circuitry for helium and argon discharges is described. The Flyback uses external metal-oxide-semiconductor field-effect transistor power switching technology and the transformer operates in the continuous current mode to convert a continuous dc power of 10-33 W to generate a 1.2-1.6 kV 3.5 micros pulse. An argon discharge breakdown voltage of approximately 768 V is measured. With a 50 kHz, pulse repetition rate and an argon flow rate of 0.5-10 argon slm (slm denotes standard liters per minute), the electrical power density deposited in the volume discharge increases linearly at a rate of 75+/-20% mW/cm(3) per 1 slm of gas. Electrical power transfer efficiency between the secondary Flyback coil and the discharge volume increases from 0.1% to 0.65%. Neutral argon gas forced convection analysis yields a similar energy loss rate to the electrical discharge process. Optical emission spectroscopy studies of the expanding discharge plume into ambient air reveal that the air climatically controls the plume chemistry to produce an abundance of neutral argon atoms and molecular nitrogen. PMID:19044446

  5. COAXIAL TWO-CHANNEL DIELECTRIC WAKE FIELD ACCELERATOR

    SciTech Connect

    Hirshfield, Jay L.

    2013-04-30

    Theory, computations, and experimental apparatus are presented that describe and are intended to confirm novel properties of a coaxial two-channel dielectric wake field accelerator. In this configuration, an annular drive beam in the outer coaxial channel excites multimode wakefields which, in the inner channel, can accelerate a test beam to an energy much higher than the energy of the drive beam. This high transformer ratio is the result of judicious choice of the dielectric structure parameters, and of the phase separation between drive bunches and test bunches. A structure with cm-scale wakefields has been build for tests at the Argonne Wakefield Accelerator Laboratory, and a structure with mm-scale wakefields has been built for tests at the SLAC FACET facility. Both tests await scheduling by the respective facilities.

  6. A novel type N coaxial air-line verification standard

    NASA Astrophysics Data System (ADS)

    Shoaib, N.; Kuhlmann, K.; Judaschke, R.

    2015-04-01

    In this paper, the design and analysis of a novel coaxial type N verification standard based on an air-line is presented. The measurement uncertainty budget is computed by taking into account the mechanical and dielectric tolerances, thus allowing the determination of the transmission loss uncertainties of the verification standard. The calculated results are obtained by using commercially available electromagnetic software. The data analysis is carried out for complex-valued quantities. The measurement uncertainty due to different error sources is computed according to the Law of Propagation of Uncertainty. Simulated and experimental results are compared to demonstrate the applicability of the approach.

  7. Measuring the dielectric properties of soil-organic mixtures using coaxial impedance dielectric reflectometry

    NASA Astrophysics Data System (ADS)

    Francisca, Franco M.; Montoro, Marcos A.

    2012-05-01

    Contamination of soils with non-aqueous phase liquids (NAPLs) is frequently produced by accidental spills and storage tanks or pipes leakage. The main goals dealing with soil and groundwater contamination include determining the extension of the affected zone, monitoring the contaminant plume and quantifying the pollution degree. The objective of this work is to evaluate the potential of dielectric permittivity measurements to detect the presence of NAPLs in sands. Tested samples were fine, medium, coarse and silty sand with different volumetric contents of water and paraffin oil. The dielectric permittivity was measured by means of a Coaxial Impedance Dielectric Reflectometry method in specimens with either known fluid content or at different stages during immiscible displacement tests. A simplified method was developed to quantify the amount of oil from dielectric permittivity measurements and effective mixture media models. Obtained results showed that groundwater contamination with NAPL and the monitoring of immiscible fluid displacement in saturated porous media can be clearly identified from dielectric measurements. Finally, very accurate results can be obtained when computing the contamination degree with the proposed method in comparison with the real volumetric content of NAPL (r2 > 90%).

  8. Resonance effects in dielectric beads of coaxial connectors

    NASA Astrophysics Data System (ADS)

    Olbrich, G.

    1984-08-01

    A resonator model for calculating H(11) resonance mode frequencies of coaxial connectors is presented. Theoretical results are compared with measurement results obtained with original beads as well as with enlarged connector models. Operational frequencies and bead resonance frequencies for various connector types are given for applications up to 40 GHz.

  9. A THz Coaxial Two-Channel Dielectric Wakefield Structure for High Gradient Acceleration

    SciTech Connect

    Marshall, T. C.; Sotnikov, G. V.; Hirshfield, J. L.

    2010-11-04

    A coaxial two-channel dielectric wakefield structure is examined for use as a high gradient accelerator. A THz design, having radius {approx}1 mm, is shown to provide GeV/m--level acceleration gradient, high transformer ratio, and stable accelerated bunch motion when excited by a stable-moving 5-GeV 6-nC annular drive bunch.

  10. A THz Coaxial Two-Channel Dielectric Wakefield Structure for High Gradient Acceleration

    NASA Astrophysics Data System (ADS)

    Marshall, T. C.; Sotnikov, G. V.; Hirshfield, J. L.

    2010-11-01

    A coaxial two-channel dielectric wakefield structure is examined for use as a high gradient accelerator. A THz design, having radius ˜1 mm, is shown to provide GeV/m—level acceleration gradient, high transformer ratio, and stable accelerated bunch motion when excited by a stable-moving 5-GeV 6-nC annular drive bunch.

  11. Coaxial-probe contact-force monitoring for dielectric properties measurements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A means is described for measuring and monitoring the contact force applied to a material sample with an open-ended coaxial-line probe for purposes of measuring the dielectric properties of semisolid material samples such as fruit, vegetable and animal tissues. The equipment consists of a stainless...

  12. Coaxial twin-fluid atomization with pattern air gas streams

    NASA Astrophysics Data System (ADS)

    Hei Ng, Chin; Aliseda, Alberto

    2010-11-01

    Coaxial twin-fluid atomization has numerous industrial applications, most notably fuel injection and spray coating. In the coating process of pharmaceutical tablets, the coaxial atomizing air stream is accompanied by two diametrically opposed side jets that impinge on the liquid/gas coaxial jets at an angle to produce an elliptical shape of the spray's cross section. Our study focuses on the influence of these side jets on the break up process and on the droplet velocity and diameter distribution along the cross section. The ultimate goal is to predict the size distribution and volume flux per unit area in the spray. With this predictive model, an optimal atomizing air/pattern air ratio can be found to achieve the desired coating result. This model is also crucial in scaling up the laboratory setup to production level. We have performed experiments with different atomized liquids, such as water and glycerine-water mixtures, that allow us to establish the effect of liquid viscosity, through the Ohnesorge number, in the spray characteristics. The gas Reynolds number of our experiments ranges from 9000 to 18000 and the Weber number ranges from 400 to 1600. We will present the effect of pattern air in terms of the resulting droplets size, droplet number density and velocity at various distances downstream of the nozzle where the effect of pattern air is significant.

  13. Coaxial injector spray characterization using water/air as simulants

    NASA Technical Reports Server (NTRS)

    Zaller, Michelle M.; Klem, Mark D.

    1991-01-01

    Quantitative information about the atomization of injector sprays is required to improve the accuracy of computational models that predict the performance and stability of liquid propellant rocket engines. An experimental program is being conducted at NASA-Lewis to measure the drop size and velocity distributions in shear coaxial injector sprays. A phase/Doppler interferometer is used to obtain drop size data in water air shear coaxial injector sprays. Droplet sizes and axial component of droplet velocities are measured at different radii for various combinations of water flow rate, air flow rate, injector liquid jet diameter, injector annular gap, and liquid post recess. Sauter mean diameters measured in the spray center 51 mm downstream of the liquid post tip range from 28 to 68 microns, and mean axial drop velocities at the same location range from 37 to 120 m/s. The shear coaxial injector sprays show a high degree of symmetry; the mean drop size and velocity profiles vary with liquid flow rate, post recess, and distance from the injector face. The drop size data can be used to estimate liquid oxygen/hydrogen spray drop sizes by correcting property differences between water-air and liquid oxygen/hydrogen.

  14. Dielectric property measurement of ocular tissues up to 110 GHz using 1 mm coaxial sensor

    NASA Astrophysics Data System (ADS)

    Sasaki, K.; Isimura, Y.; Fujii, K.; Wake, K.; Watanabe, S.; Kojima, M.; Suga, R.; Hashimoto, O.

    2015-08-01

    Measurement of the dielectric properties of ocular tissues up to 110 GHz was performed by the coaxial probe method. A coaxial sensor was fabricated to allow the measurement of small amounts of biological tissues. Four-standard calibration was applied in the dielectric property measurement to obtain more accurate data than that obtained with conventional three-standard calibration, especially at high frequencies. Novel data of the dielectric properties of several ocular tissues are presented and compared with data from the de facto database.

  15. Dielectric property measurement of ocular tissues up to 110 GHz using 1 mm coaxial sensor.

    PubMed

    Sasaki, K; Isimura, Y; Fujii, K; Wake, K; Watanabe, S; Kojima, M; Suga, R; Hashimoto, O

    2015-08-21

    Measurement of the dielectric properties of ocular tissues up to 110 GHz was performed by the coaxial probe method. A coaxial sensor was fabricated to allow the measurement of small amounts of biological tissues. Four-standard calibration was applied in the dielectric property measurement to obtain more accurate data than that obtained with conventional three-standard calibration, especially at high frequencies. Novel data of the dielectric properties of several ocular tissues are presented and compared with data from the de facto database. PMID:26237580

  16. Surface plasmon polariton modes in coaxial metal-dielectric-metal waveguides

    NASA Astrophysics Data System (ADS)

    van de Haar, Marie Anne; Maas, Ruben; Brenny, Benjamin; Polman, Albert

    2016-04-01

    We explore the optical properties of a coaxial plasmonic metamaterial consisting of hollow dielectric cylinders with a diameter of 100–250 nm and a ring wall width of 10–50 nm, embedded in metal. We investigate the modal electric and magnetic fields and dispersion relation for different geometries and material choices of a single coaxial channel by using realistic values for all design parameters. The Fabry–Pérot modes of a finite thickness slab are investigated with cathodoluminescence spectroscopy and explained by extracting the mode index from FDTD simulations. Furthermore, we investigate the coupling behavior of adjacent coaxes inside a hexagonal array. We find a change from the single-ring dispersion relation for coaxes with a ring-to-ring distance smaller than 20 nm.

  17. Dielectric measurement using an open ended coaxial line with an extended center conductor

    NASA Technical Reports Server (NTRS)

    Wegmueller, Urs; Guerra, Abel G.

    1992-01-01

    Permittivity may be determined by measuring the complex reflection coefficient of an open-ended coaxial line placed in contact with a test sample. This method works best for liquid samples. For the measurement of non-liquid materials problems can arise. A perfect preparation is needed to provide a good contact between the tip and the dielectric medium. At times, the dimension of the sensor cannot be freely chosen, as is the case for the measurement of the dielectric constant of the xylem layer of a living tree. The influence of the installation of the sensor on a tree's water status must be minimized by using a small sensor. In such cases the capacitance cannot be optimized. By extending the center conductor of the open-ended coaxial line, some of these problems can be avoided. This provides an additional tool to tune the capacitance of the sensor by adjusting the length of the extension. Therefore the measurement accuracy can be optimized. The sensor also becomes sensitive to a larger volume. A comparative study of a flush and extended tipped probes shows that the ability to measure the dielectric constant of trees has been notably increased due to the extension of the center conductor.

  18. Numerical Simulation of Hydrogen Air Supersonic Coaxial Jet

    NASA Astrophysics Data System (ADS)

    Dharavath, Malsur; Manna, Pulinbehari; Chakraborty, Debasis

    2016-06-01

    In the present study, the turbulent structure of coaxial supersonic H2-air jet is explored numerically by solving three dimensional RANS equations along with two equation k-ɛ turbulence model. Grid independence of the solution is demonstrated by estimating the error distribution using Grid Convergence Index. Distributions of flow parameters in different planes are analyzed to explain the mixing and combustion characteristics of high speed coaxial jets. The flow field is seen mostly diffusive in nature and hydrogen diffusion is confined to core region of the jet. Both single step laminar finite rate chemistry and turbulent reacting calculation employing EDM combustion model are performed to find the effect of turbulence-chemistry interaction in the flow field. Laminar reaction predicts higher H2 mol fraction compared to turbulent reaction because of lower reaction rate caused by turbulence chemistry interaction. Profiles of major species and temperature match well with experimental data at different axial locations; although, the computed profiles show a narrower shape in the far field region. These results demonstrate that standard two equation class turbulence model with single step kinetics based turbulence chemistry interaction can describe H2-air reaction adequately in high speed flows.

  19. Coaxial probe and apparatus for measuring the dielectric spectra of high pressure liquids and supercritical fluid mixtures

    NASA Astrophysics Data System (ADS)

    Lee, Sung B.; Smith, Richard L.; Inomata, Hiroshi; Arai, Kunio

    2000-11-01

    A probe and apparatus were developed for measuring the dielectric spectra (complex permittivity) of high pressure liquids and supercritical fluid mixtures. The probe consisted a 2.2 mm semirigid coaxial cable that was cut off flat and mounted into a high pressure tube. The apparatus for measuring complex permittivity consisted of the dielectric probe, cell, densimeter, piston for varying the system density at constant composition, and magnetic pump for agitation and recirculation, all of which were housed in a constant temperature air bath. The probe is simple, robust, inexpensive, and further, its design allows for quick connection to high pressure systems. Probe accuracy is estimated to be ±0.5 in ɛ' and ±0.5 in ɛ″ from 200 MHz to 18 GHz based on replicate measurements of calibration and 2σ deviations over the interval. Dielectric spectra were measured over the 200 MHz-20 GHz range for methanol+carbon dioxide mixture at 323.2 K and a pressures up to 18 MPa.

  20. Determination of Relationship between Dielectric Properties, Compressive Strength, and Age of Concrete with Rice Husk Ash Using Planar Coaxial Probe

    NASA Astrophysics Data System (ADS)

    Piladaeng, Nawarat; Angkawisittpan, Niwat; Homwuttiwong, Sahalaph

    2016-02-01

    This paper deals with an investigation of the dielectric properties of concretes that includes rice husk ash using a planar coaxial probe. The planar coaxial probe has a planar structure with a microstrip and coaxial features. The measurement was performed over the frequency range of 0.5-3.5 GHz, and concrete specimens with different percentages of rice husk ash were tested. The results indicated that the dielectric constant of the concretes was inversely proportional to the frequency, while the conductivity was proportional to the frequency. The dielectric constant decreased with the increasing age of the concrete at the frequency of 1 GHz. The conductivity of the concrete decreased with the increasing age of the concrete at the frequency of 3.2 GHz. In addition, the dielectric constant and the conductivity decreased when the compressive strength increased. It was also shown that the obtained dielectric properties of the concrete could be used to investigate the relationship between the compressive strength and age of the concrete. Moreover, there is an opportunity to apply the proposed probe to determine the dielectric properties of other materials.

  1. Effects of Coaxial Air on Nitrogen-Diluted Hydrogen Jet Diffusion Flame Length and NOx Emission

    SciTech Connect

    Weiland, N.T.; Chen, R.-H.; Strakey, P.A.

    2007-10-01

    Turbulent nitrogen-diluted hydrogen jet diffusion flames with high velocity coaxial air flows are investigated for their NOx emission levels. This study is motivated by the DOE turbine program’s goal of achieving 2 ppm dry low NOx from turbine combustors running on nitrogen-diluted high-hydrogen fuels. In this study, effects of coaxial air velocity and momentum are varied while maintaining low overall equivalence ratios to eliminate the effects of recirculation of combustion products on flame lengths, flame temperatures, and resulting NOx emission levels. The nature of flame length and NOx emission scaling relationships are found to vary, depending on whether the combined fuel and coaxial air jet is fuel-rich or fuel-lean. In the absence of differential diffusion effects, flame lengths agree well with predicted trends, and NOx emissions levels are shown to decrease with increasing coaxial air velocity, as expected. Normalizing the NOx emission index with a flame residence time reveals some interesting trends, and indicates that a global flame strain based on the difference between the fuel and coaxial air velocities, as is traditionally used, is not a viable parameter for scaling the normalized NOx emissions of coaxial air jet diffusion flames.

  2. A high performance humidity sensor based on dielectric detection with a novel coaxial nanostructure

    NASA Astrophysics Data System (ADS)

    Cai, Dong; Zhao, Huaizhou; Rizal, Binod; Kirkpatrick, Timothy; Ren, Zhifeng; Naughton, Michael J.; Chiles, Thomas C.

    2011-03-01

    High throughput coaxial nanocavity arrays are developed by overlaying porous Al 2 O3 and Al layers on vertically aligned carbon nanotube arrays. The porosity of Al 2 O3 was electrochemically characterized. The dielectric properties of the nanocoax structure were measured by impedance spectroscopy, from 10 mHz to 1 MHz. The capacitance of the sensor responded to humidity applied to the chip, i . e . soaking the array with water increased the capacitance by 130%. The detection mechanism was established for sensing changes to the dielectric constant due to adsorbed moisture in the porous Al 2 O3 coax annulus, with theoretical calculations based on~the Clausius-Mossotti equation~in agreement with the measurements.~ Highly sensitive humidity detection was demonstrated by applying relative humidity between 0.1% and 100%, with a power-law response, RH ~xα . This nanocoaxial structure thus offers the possibility of unprecedented performance of porous Al 2 O3 -mediated capacitancer sensing for humidity detection. The National Cancer Institute CA137681, the Department of Navy, the National Science Foundation PHY-0804718, and the Seaver Institute. Emails: caid@bc.edu; naughton@bc.edu

  3. A Coaxial Dielectric Probe Technique for Distinguishing Tooth Enamel from Dental Resin

    PubMed Central

    Williams, Benjamin B.; Geimer, Shireen D.; Flood, Ann B.; Swartz, Harold M.

    2016-01-01

    For purposes of biodosimetry in the event of a large scale radiation disaster, one major and very promising point-of contact device is assessing dose using tooth enamel. This technique utilizes the capabilities of electron paramagnetic resonance to measure free radicals and other unpaired electron species, and the fact that the deposition of energy from ionizing radiation produces free radicals in most materials. An important stipulation for this strategy is that the measurements, need to be performed on a central incisor that is basically intact, i.e. which has an area of enamel surface that is as large as the probing tip of the resonator that is without decay or restorative care that replaces the enamel. Therefore, an important consideration is how to quickly assess whether the tooth has sufficient enamel to be measured for dose and whether there is resin present on the tooth being measured and to be able to characterize the amount of surface that is impacted. While there is a relatively small commercially available dielectric probe which could be used in this context, it has several disadvantages for the intended use. Therefore, a smaller, 1.19mm diameter 50 ohm, open-ended, coaxial dielectric probe has been developed as an alternative. The performance of the custom probe was validated against measurement results of known standards. Measurements were taken of multiple teeth enamel and dental resin samples using both probes. While the probe contact with the teeth samples was imperfect and added to measurement variability, the inherent dielectric contrast between the enamel and resin was sufficient that the probe measurements could be used as a robust means of distinguishing the two material types. The smaller diameter probe produced markedly more definitive results in terms of distinguishing the two materials. PMID:27182531

  4. Erratum to "Surface Modification of PBO Fibers for Composites by Coaxial Atmospheric Dielectric Barrier Discharge (PLA-PLA)"

    NASA Astrophysics Data System (ADS)

    2013-08-01

    There is a mistake in the funding number (National Natural Science Foundation of China (No. 10875146)) of article Surface Modification of PBO Fibers for Composites by Coaxial Atmospheric Dielectric Barrier Discharge (PLA-PLA), written by HU Qianqian, XU Jinzhou, ZHOU Zhenxing, ZHANG Jing, published in Plasma Science and Technology, 2013, Vol. 15, Issue 5, page number 429, it should be corrected as National Natural Science Foundation of China (No. 11075033).

  5. Coaxial fuel and air premixer for a gas turbine combustor

    DOEpatents

    York, William D; Ziminsky, Willy S; Lacy, Benjamin P

    2013-05-21

    An air/fuel premixer comprising a peripheral wall defining a mixing chamber, a nozzle disposed at least partially within the peripheral wall comprising an outer annular wall spaced from the peripheral wall so as to define an outer air passage between the peripheral wall and the outer annular wall, an inner annular wall disposed at least partially within and spaced from the outer annular wall, so as to define an inner air passage, and at least one fuel gas annulus between the outer annular wall and the inner annular wall, the at least one fuel gas annulus defining at least one fuel gas passage, at least one air inlet for introducing air through the inner air passage and the outer air passage to the mixing chamber, and at least one fuel inlet for injecting fuel through the fuel gas passage to the mixing chamber to form an air/fuel mixture.

  6. Current-voltage characteristics of dc corona discharges in air between coaxial cylinders

    NASA Astrophysics Data System (ADS)

    Zheng, Yuesheng; Zhang, Bo; He, Jinliang

    2015-02-01

    This paper presents the experimental measurement and numerical analysis of the current-voltage characteristics of dc corona discharges in air between coaxial cylinders. The current-voltage characteristics for both positive and negative corona discharges were measured within a specially designed corona cage. Then the measured results were fitted by different empirical formulae and analyzed by the fluid model. The current-voltage characteristics between coaxial cylinders can be expressed as I = C(U - U0)m, where m is within the range 1.5-2.0, which is similar to the point-plane electrode system. The ionization region has no significant effect on the current-voltage characteristic under a low corona current, while it will affect the distribution for the negative corona under a high corona current. The surface onset fields and ion mobilities were emphatically discussed.

  7. Current-voltage characteristics of dc corona discharges in air between coaxial cylinders

    SciTech Connect

    Zheng, Yuesheng; Zhang, Bo He, Jinliang

    2015-02-15

    This paper presents the experimental measurement and numerical analysis of the current-voltage characteristics of dc corona discharges in air between coaxial cylinders. The current-voltage characteristics for both positive and negative corona discharges were measured within a specially designed corona cage. Then the measured results were fitted by different empirical formulae and analyzed by the fluid model. The current-voltage characteristics between coaxial cylinders can be expressed as I = C(U − U{sub 0}){sup m}, where m is within the range 1.5–2.0, which is similar to the point-plane electrode system. The ionization region has no significant effect on the current-voltage characteristic under a low corona current, while it will affect the distribution for the negative corona under a high corona current. The surface onset fields and ion mobilities were emphatically discussed.

  8. Microwave open-ended coaxial dielectric probe: interpretation of the sensing volume re-visited

    PubMed Central

    2014-01-01

    Background Tissue dielectric properties are specific to physiological changes and consequently have been pursued as imaging biomarkers of cancer and other pathological disorders. However, a recent study (Phys Med Biol 52:2637–2656, 2007; Phys Med Biol 52:6093–6115, 2007), which utilized open-ended dielectric probing techniques and a previously established sensing volume, reported that the dielectric property contrast may only be 10% or less between breast cancer and normal fibroglandular tissue whereas earlier data suggested ratios of 4:1 and higher may exist. Questions about the sensing volume of this probe relative to the amount of tissue interrogated raise the distinct possibility that the conclusions drawn from that study may have been over interpreted. Methods We performed open-ended dielectric probe measurements in two-layer compositions consisting of a background liquid and a planar piece of Teflon that was translated to predetermined distances away from the probe tip to assess the degree to which the probe produced property estimates representative of the compositional averages of the dielectric properties of the two materials resident within a small sensing volume around the tip of the probe. Results When Teflon was in contact with the probe, the measured properties were essentially those of pure Teflon whereas the properties were nearly identical to those of the intervening liquid when the Teflon was located more than 2 mm from the probe tip. However, when the Teflon was moved closer to the probe tip, the dielectric property measurements were not linearly related to the compositional fraction of the two materials, but reflected nearly 50% of those of the intervening liquid at separation distances as small as 0.2 mm, and approximately 90% of the liquid when the Teflon was located 0.5 mm from the probe tip. Conclusion These results suggest that the measurement methods reported in the most recent breast tissue dielectric property study are not likely

  9. FDTD simulations and analysis of thin sample dielectric properties measurements using coaxial probes

    SciTech Connect

    Bringhurst, S.; Iskander, M.F.; White, M.J.

    1996-12-31

    A metallized ceramic probe has been designed for high temperature broadband dielectric properties measurements. The probe was fabricated out of an alumina tube and rod as the outer and inner conductors respectively. The alumina was metallized with a 3 mil layer of moly-manganese and then covered with a 0.5 mil protective layer of nickel plating. The probe has been used to make complex dielectric properties measurements over the complete frequency band from 500 MHz to 3 GHz, and for temperatures as high as 1,000 C. A 3D Finite-Difference Time-Domain (FDTD) code was used to help investigate the feasibility of this probe to measure the complex permittivity of thin samples. It is shown that by backing the material under test with a standard material of known dielectric constant, the complex permittivity of thin samples can be measured accurately using the developed FDTD algorithm. This FDTD procedure for making thin sample dielectric properties measurements will be described.

  10. Mie resonance in the arrays of dielectric rods in air

    NASA Astrophysics Data System (ADS)

    Dalal, Reena; Kalra, Yogita; Sinha, R. K.

    2015-09-01

    Mie resonance in square arrays of dielectric rods has been reported. Arrays in square lattice of dielectric rods with very high permittivity in air have been considered. Light of transverse electric mode has been launched on the square array of cylindrical dielectric rods. Mie resonance of first two orders has been observed in the dielectric rods, due to which electric and magnetic dipoles are generated in the rods. Thus, electric resonance and magnetic resonance at different frequencies has been observed with material of high value of permittivity.

  11. A Supersonic Argon/Air Coaxial Jet Experiment for Computational Fluid Dynamics Code Validation

    NASA Technical Reports Server (NTRS)

    Clifton, Chandler W.; Cutler, Andrew D.

    2007-01-01

    A non-reacting experiment is described in which data has been acquired for the validation of CFD codes used to design high-speed air-breathing engines. A coaxial jet-nozzle has been designed to produce pressure-matched exit flows of Mach 1.8 at 1 atm in both a center jet of argon and a coflow jet of air, creating a supersonic, incompressible mixing layer. The flowfield was surveyed using total temperature, gas composition, and Pitot probes. The data set was compared to CFD code predictions made using Vulcan, a structured grid Navier-Stokes code, as well as to data from a previous experiment in which a He-O2 mixture was used instead of argon in the center jet of the same coaxial jet assembly. Comparison of experimental data from the argon flowfield and its computational prediction shows that the CFD produces an accurate solution for most of the measured flowfield. However, the CFD prediction deviates from the experimental data in the region downstream of x/D = 4, underpredicting the mixing-layer growth rate.

  12. Preliminary Broadband Measurements of Dielectric Permittivity of Planetary Regolith Analog Materials Using a Coaxial Airline

    NASA Astrophysics Data System (ADS)

    Boivin, A.; Tsai, C. A.; Ghent, R. R.; Daly, M. G.

    2014-12-01

    When considering radar observations of airless bodies containing regolith, the radar backscatter coefficient is dependent upon the complex dielectric permittivity of the regolith materials. In many current applications of imaging radar data, uncertainty in the dielectric permittivity precludes quantitative estimates of such important parameters as regolith thickness and depth to buried features (e.g., lava flows on the Aristarchus Plateau on the Moon and the flows that surround the Quetzalpetlatl Corona on Venus). For asteroids, radar is an important tool for detecting and characterizing regoliths. Many previous measurements of the real and/or complex parts of the dielectric permittivity have been made, particularly for the Moon (on both Apollo samples and regolith analogues). However, no studies to date have systematically explored the relationship between permittivity and the various mineralogical components such as presence of FeO and TiO2. For lunar materials, the presence of the mineral ilmenite (FeTiO3), which contains equal portions FeO and TiO2, is thought to be the dominant factor controlling the loss tangent (tanδ, the ratio of the imaginary and real components of the dielectric permittivity). Ilmenite, however, is not the only mineral to contain iron in the lunar soil and our understanding of the effect of iron on the loss tangent is insufficient. Beyond the Moon, little is known about the effects on permittivity of carbonaceous materials. This is particularly relevant for missions to asteroids, such as the OSIRIS-REx mission to (101955) Bennu, a carbonaceous asteroid whose regolith composition is largely unknown. Here we present preliminary broadband (300 Mhz to 14 GHz) measurements on materials intended as planetary regolith analogs. Our ultimate goal is to establish a database of the effects of a wide range mineralogical components on dielectric permittivity, in support of the OSIRIS REx mission and ongoing Earth-based radar investigation of the Moon

  13. Monolithic structure of integrated coaxial microhollow dielectric barrier discharges: Characterization for environmental and biomedical applications

    NASA Astrophysics Data System (ADS)

    Tachibana, Kunihide; Nakamura, Toshihiro; Motomura, Hideki

    2016-07-01

    The characteristics of microhollow dielectric barrier discharge devices in a thin monolithic planar structure with many holes were analyzed regarding the production of OH radicals, using optical emission and laser-induced fluorescence (LIF) spectroscopy techniques. Spatial distributions of OH radical density depended on the diameter of electrode holes from 0.6 to 1.5 mm and the discharge operating gas species. Apparent emission intensity from OH radicals and the LIF signals were very high in He and Ar gases but quite low in N2. However, taking into account the LIF quenching rate in each gas, the existing densities of OH radicals in all tested gases were not greatly different from each other. The absolute density of OH radicals estimated by a comparison of the LIF intensity with our measured result on a conventional He plasma jet referring to reported densities in similar situations was on the order of 1014 cm‑3.

  14. Design and characterization of a novel coaxial VHF plasma source for air plasma formation

    NASA Astrophysics Data System (ADS)

    Byrns, Brandon; Wooten, Daniel; Shannon, Steven

    2011-10-01

    A key challenge in the expansion of atmospheric plasma applicators into new markets is the effective surface area that these systems can efficiently treat. To this end, a large area atmospheric air glow discharge, with approximately 9.5 cm2 cross sectional area, is obtained using a simple coaxial structure. The room air plasma is driven by a 162MHz generator at powers ranging from 300W-1000W. The VHF drive appears to produce a steady state glow void of streamers or arcs typically found in atmospheric air systems. Electrical measurements coupled with a global plasma model and transmission line theory allow for the calculation of electron density. Densities calculated for 400W are approximately 1011 cm-3. Spectroscopy data shows dominant emissions consist of OH, N2, and N2+,along with a continuum indicating neutral bremsstrahlung radiation; this is used for electron density calculations and model validation. In this presentation, source design, plasma characterization, and preliminary surface treatments of HDPE will be presented. A key challenge in the expansion of atmospheric plasma applicators into new markets is the effective surface area that these systems can efficiently treat. To this end, a large area atmospheric air glow discharge, with approximately 9.5 cm2 cross sectional area, is obtained using a simple coaxial structure. The room air plasma is driven by a 162MHz generator at powers ranging from 300W-1000W. The VHF drive appears to produce a steady state glow void of streamers or arcs typically found in atmospheric air systems. Electrical measurements coupled with a global plasma model and transmission line theory allow for the calculation of electron density. Densities calculated for 400W are approximately 1011 cm-3. Spectroscopy data shows dominant emissions consist of OH, N2, and N2+,along with a continuum indicating neutral bremsstrahlung radiation; this is used for electron density calculations and model validation. In this presentation, source design

  15. Rotor hover performance and system design of an efficient coaxial rotary wing micro air vehicle

    NASA Astrophysics Data System (ADS)

    Bohorquez, Felipe

    2007-12-01

    Rotary-wing Micro air vehicles (MAVs) due to their unique hovering and low-speed flight capabilities are specially suited for missions that require operation in constrained spaces. Size restrictions force MAVs to operate in a low Reynolds number aerodynamic regime where viscous effects are dominant. This results in poor aerodynamic performance of conventional airfoils and rotor configurations. This dissertation explores the design issues that affect the hover performance of small-scale rotors and the implementation of a working coaxial MAV prototype. A computerized hover test stand was used for the systematic testing of single and coaxial small-scale rotors. Thin circular arcs were chosen for blade manufacturing because of their good aerodynamic characteristics at low Reynolds numbers, and simplified parameterization. Influence of airfoil geometry on single rotor hover performance was studied on untwisted rectangular blades. Non rectangular blades were used to study coupled airfoil and blade parameters. Tip tapered geometries were manufactured by removing material from baseline rectangular blades producing a coupling between blade planform, twist distribution, and spanwise airfoil shape. Performance gains were obtained by introducing large negative twist angles over short radial distances at the blade tips. A parametric study of the blade geometries resulted in maximum figures of merit of 0.65. Coaxial rotor performance at torque equilibrium was explored for different trims and operating conditions. It was found that the upper rotor was marginally affected by the lower one at spacings larger than 35% of the rotor radius, and that it produced about 60% of the total thrust. Experiments showed that power loading was maximized when higher collectives were used at the lower rotor, resulting in sizable differences in rotational speed between rotors. The CFD solver INS2d was used for a two-dimensional parametric aerodynamic study of circular arc airfoils. Lift, drag, and

  16. Characteristics Of A Dielectric Barrier Discharge In Atmospheric Air

    NASA Astrophysics Data System (ADS)

    Lai, C. K.; Chin, O. H.; Thong, K. L.

    2009-07-01

    Parallel plate dielectric barrier discharges consisting of two electrodes with glass (ɛr = 7.5) and alumina (ɛr = 9.0) as the dielectric barrier were constructed. The system is powered by a variable 20 kV high voltage supply which is capable of delivering unipolar voltage pulses at frequency of 0.1-2.5 kHz and sinusoidal voltages at 6.5 kHz and above. At atmospheric pressure, the discharges exhibit either diffuse or filamentary appearance depending on parameters which include the series capacitance established by the electrodes with the dielectric barrier and varying air gap, dielectric material, and frequency of the supply voltages. This DBD system is built for the study of bacterial sterilization.

  17. Rapid breakdown mechanisms of open air nanosecond dielectric barrier discharges.

    PubMed

    Ito, Tsuyohito; Kanazawa, Tatsuya; Hamaguchi, Satoshi

    2011-08-01

    The discharge initiation mechanism of nanosecond dielectric barrier discharges in open air has been clarified with time-dependent measurement of the discharge electric field by electric-field-induced coherent Raman scattering and optical emission. Our experimental observations have revealed that, in the prebreakdown phase of a nanosecond dielectric barrier discharge, the externally applied fast-rising electric field is strongly enhanced near the cathode due to large accumulation of space charge, which then strongly enhances ionization near the cathode. Once a sufficiently large number of ionizations take place, the location of peak ionization forms a front and propagates toward the cathode with strong optical emission, which establishes the discharge. This process is essentially different from the well-known Townsend mechanism for slower discharges. PMID:21902331

  18. Rapid Breakdown Mechanisms of Open Air Nanosecond Dielectric Barrier Discharges

    NASA Astrophysics Data System (ADS)

    Ito, Tsuyohito; Kanazawa, Tatsuya; Hamaguchi, Satoshi

    2011-08-01

    The discharge initiation mechanism of nanosecond dielectric barrier discharges in open air has been clarified with time-dependent measurement of the discharge electric field by electric-field-induced coherent Raman scattering and optical emission. Our experimental observations have revealed that, in the prebreakdown phase of a nanosecond dielectric barrier discharge, the externally applied fast-rising electric field is strongly enhanced near the cathode due to large accumulation of space charge, which then strongly enhances ionization near the cathode. Once a sufficiently large number of ionizations take place, the location of peak ionization forms a front and propagates toward the cathode with strong optical emission, which establishes the discharge. This process is essentially different from the well-known Townsend mechanism for slower discharges.

  19. Effect of dielectric material on bipolar nanosecond pulse diffuse dielectric barrier discharge in air at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Tang, Kai; Wang, Wenchun; Yang, Dezheng; Zhang, Shuai; Yang, Yang; Liu, Zhijie

    2013-08-01

    In this paper, dielectric plates made by ceramic, quartz and polytetrafluoroethylene (PTFE) respectively are employed to generate low gas temperature, diffuse dielectric barrier discharge plasma by using a needle-plate electrode configuration in air at atmospheric pressure. Both discharge images and the optical emission spectra are obtained while ceramic, quartz and PTFE are used as dielectric material. Plasma gas temperature is also calculated by comparing the experimental emission spectra with the best fitted spectra of N2 (C3Πu → B3Πg 1-3) and N2 (C3Πu → B3Πg 0-2). The effects of different pulse peak voltages and gas gap distances on the emission intensity of N2 (C3Πu → B3Πg, 0-0, 337.1 nm) and the plasma area on dielectric surface are investigated while ceramic, quartz and PTFE are used as dielectric material. It is found that the permittivity of dielectric material plays an important role in the discharge homogeneity, plasma gas temperature, emission spectra intensity of the discharge, etc. Dielectric with higher permittivity i.e., ceramic means brighter discharge luminosity and stronger emission spectra intensity of N2 (C3Πu → B3Πg, 0-0, 337.1 nm) among the three dielectric materials. However, more homogeneous, larger plasma area on dielectric surface and lower plasma gas temperature can be obtained under dielectric with lower permittivity i.e., PTFE. The emission spectra intensity and plasma gas temperature of the discharge while the dielectric plate is made by quartz are smaller than that while ceramic is used as dielectric material and bigger than that when PTFE is used as dielectric material.

  20. Effect of dielectric material on bipolar nanosecond pulse diffuse dielectric barrier discharge in air at atmospheric pressure.

    PubMed

    Tang, Kai; Wang, Wenchun; Yang, Dezheng; Zhang, Shuai; Yang, Yang; Liu, Zhijie

    2013-08-01

    In this paper, dielectric plates made by ceramic, quartz and polytetrafluoroethylene (PTFE) respectively are employed to generate low gas temperature, diffuse dielectric barrier discharge plasma by using a needle-plate electrode configuration in air at atmospheric pressure. Both discharge images and the optical emission spectra are obtained while ceramic, quartz and PTFE are used as dielectric material. Plasma gas temperature is also calculated by comparing the experimental emission spectra with the best fitted spectra of N2 (C(3)Πu→B(3)Πg 1-3) and N2 (C(3)Πu→B(3)Πg 0-2). The effects of different pulse peak voltages and gas gap distances on the emission intensity of N2 (C(3)Πu→B(3)Πg, 0-0, 337.1 nm) and the plasma area on dielectric surface are investigated while ceramic, quartz and PTFE are used as dielectric material. It is found that the permittivity of dielectric material plays an important role in the discharge homogeneity, plasma gas temperature, emission spectra intensity of the discharge, etc. Dielectric with higher permittivity i.e., ceramic means brighter discharge luminosity and stronger emission spectra intensity of N2 (C(3)Πu→B(3)Πg, 0-0, 337.1 nm) among the three dielectric materials. However, more homogeneous, larger plasma area on dielectric surface and lower plasma gas temperature can be obtained under dielectric with lower permittivity i.e., PTFE. The emission spectra intensity and plasma gas temperature of the discharge while the dielectric plate is made by quartz are smaller than that while ceramic is used as dielectric material and bigger than that when PTFE is used as dielectric material. PMID:23673240

  1. Ozone generation by negative direct current corona discharges in dry air fed coaxial wire-cylinder reactors

    SciTech Connect

    Yehia, Ashraf; Mizuno, Akira

    2013-05-14

    An analytical study was made in this paper for calculating the ozone generation by negative dc corona discharges. The corona discharges were formed in a coaxial wire-cylinder reactor. The reactor was fed by dry air flowing with constant rates at atmospheric pressure and room temperature, and stressed by a negative dc voltage. The current-voltage characteristics of the negative dc corona discharges formed inside the reactor were measured in parallel with concentration of the generated ozone under different operating conditions. An empirical equation was derived from the experimental results for calculating the ozone concentration generated inside the reactor. The results, that have been recalculated by using the derived equation, have agreed with the experimental results over the whole range of the investigated parameters, except in the saturation range for the ozone concentration. Therefore, the derived equation represents a suitable criterion for expecting the ozone concentration generated by negative dc corona discharges in dry air fed coaxial wire-cylinder reactors under any operating conditions in range of the investigated parameters.

  2. Magnetic Ignition of Pulsed Gas Discharges in Air of Low Pressure in a Coaxial Plasma Gun

    NASA Technical Reports Server (NTRS)

    Thom, Karlheinz; Norwood, Joseph, Jr.

    1961-01-01

    The effect of an axial magnetic field on the breakdown voltage of a coaxial system of electrodes has been investigated by earlier workers. For low values of gas pressure times electrode spacing, the breakdown voltage is decreased by the application of the magnetic field. The electron cyclotron radius now assumes the role held by the mean free path in nonmagnetic discharges and the breakdown voltage becomes a function of the magnetic flux density. In this paper the dependence of the formative time lag as a function of the magnetic flux density is established and the feasibility of using a magnetic field for igniting high-voltage, high-current discharges is shown through theory and experiment. With a 36 microfarad capacitor bank charged to 48,000 volts, a peak current of 1.3 x 10( exp 6) amperes in a coaxial type of plasma gun was achieved with a current rise time of only 2 microseconds.

  3. Characteristics of dielectric barrier discharge plasmas in atmospheric humid air

    NASA Astrophysics Data System (ADS)

    Fukuda, Y.; Fukui, K.; Iwami, R.; Matsuoka, Y.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.

    2012-10-01

    Atmospheric pressure plasmas have a great advantage for industrial applications such as surface modifications, sterilization and film preparation. In particular, reactive plasmas including OH radicals can be generated in humid air. On the other hand, it is known that dielectric barrier discharge (DBD) plasmas in air are strongly affected by humidity. In this study, a twisted pair sample is used as a DBD electrode. The twisted pair consists of two enameled wires, and it is installed in a climate chamber to control ambient temperature and humidity. Repetitive impulse voltage pulses were applied to the twisted pair to produce DBD plasmas. Light emission, electromagnetic wave and current pulses were used to detect discharge activities. The discharge inception voltage (DIV) is basically determined by Paschen curve in air, however, the DIV was decreased by increasing the humidity. In addition, it was found that there were largely scattered data of DIV at the low humidity condition. After the pre-discharges, the DIV reached to the steady state value. On the other hand, there was no scattering of the observed DIV at the high humidity condition. Measurements of surface potential of the sample after the discharge show these behaviors could be explained by surface charge accumulation on the enameled wire. It is noted that there was no fluctuation in the DIV data in the case of unipolar voltage pulse.

  4. [Temporal behavior of light emission of dielectric barrier discharges in air at atmospheric pressure].

    PubMed

    Yin, Zeng-qian; Dong, Li-fang; Han, Li; Li, Xue-chen; Chai, Zhi-fang

    2002-12-01

    The experimental setup of dielectric barrier discharge was designed which is propitious to optical measurement. Temporal behavior of light emission of dielectric barrier discharges (filamentary model) in air at atmospheric pressure was measured by using optical method. Temporal behavior of dielectric barrier discharges was obtained. The experimental results show that the discharge burst in each half cycle of applied voltage consists of a series of discharge pulses, the duration of each discharge pulse is about 30-50 ns, and the interval of the neighboring discharge pulses is about a few hundred ns. The result is of great importance to the application of dielectric barrier discharges. PMID:12914154

  5. THE CHARACTERISTIC IMPEDANCE OF RECTANGULAR TRANSMISSION LINES WITH THIN CENTER CONDUCTOR AND AIR DIELECTRIC

    EPA Science Inventory

    The characteristic impedance of large-scale rectangular strip transmission line facilities used for such purposes as EMI susceptibility testing, biological exposures, etc., is discussed. These lines are characterized by a thin center conductor and an air dielectric. Impedance dat...

  6. High-Performance Lithium-Air Battery with a Coaxial-Fiber Architecture.

    PubMed

    Zhang, Ye; Wang, Lie; Guo, Ziyang; Xu, Yifan; Wang, Yonggang; Peng, Huisheng

    2016-03-24

    The lithium-air battery has been proposed as the next-generation energy-storage device with a much higher energy density compared with the conventional lithium-ion battery. However, lithium-air batteries currently suffer enormous problems including parasitic reactions, low recyclability in air, degradation, and leakage of liquid electrolyte. Besides, they are designed into a rigid bulk structure that cannot meet the flexible requirement in the modern electronics. Herein, for the first time, a new family of fiber-shaped lithium-air batteries with high electrochemical performances and flexibility has been developed. The battery exhibited a discharge capacity of 12,470 mAh g(-1) and could stably work for 100 cycles in air; its electrochemical performances were well maintained under bending and after bending. It was also wearable and formed flexible power textiles for various electronic devices. PMID:26929017

  7. Thermal coefficient of delay for various coaxial and fiber-optic cables

    NASA Technical Reports Server (NTRS)

    Lutes, G. F.; Diener, W.

    1989-01-01

    Data are presented on the thermal coefficient of delay for various coaxial and fiber optic cables, as measured by the Frequency and Timing Systems Engineering Group and the Time and Frequency Systems Research Group. The measured pressure coefficient of delay is also given for the air-dielectric coaxial cables. A description of the measurement method and a description of each of the cables and its use at JPL and in the DSN are included. An improvement in frequency and phase stability by a factor of ten is possible with the use of fiber optics.

  8. Coaxial airblast atomizers

    NASA Technical Reports Server (NTRS)

    Hardalupas, Y.; Whitelaw, J. H.

    1993-01-01

    An experimental investigation was performed to quantify the characteristics of the sprays of coaxial injectors with particular emphasis on those aspects relevant to the performance of rocket engines. Measurements for coaxial air blast atomizers were obtained using air to represent the gaseous stream and water to represent the liquid stream. A wide range of flow conditions were examined for sprays with and without swirl for gaseous streams. The parameters varied include Weber number, gas flow rate, liquid flow rate, swirl, and nozzle geometry. Measurements were made with a phase Doppler velocimeter. Major conclusions of the study focused upon droplet size as a function of Weber number, effect of gas flow rate on atomization and spray spread, effect of nozzle geometry on atomization and spread, effect of swirl on atomization, spread, jet recirculation and breakup, and secondary atomization.

  9. Reconstruction of scattering properties of rough air-dielectric boundary

    NASA Astrophysics Data System (ADS)

    Sokolov, V. G.; Zhdanov, D. D.; Potemin, I. S.; Garbul, A. A.; Voloboy, A. G.; Galaktionov, V. A.; Kirilov, N.

    2016-08-01

    The article is devoted to elaboration of the method of reconstruction of rough surface scattering properties. The object with rough surface is made of transparent dielectric material. Typically these properties are described with bi-directional scattering distribution function (BSDF). Direct measurement of such function is either impossible or very expensive. The suggested solution provides physically reasonable method for the rough surface BSDF reconstruction. The method is based on Monte-Carlo ray tracing simulation for BSDF calculation. Optimization technique is further applied to correctly reconstruct the BSDF. The results of the BSDF reconstruction together with measurement results are presented in the article as well.

  10. The influencing factors of nanosecond pulse homogeneous dielectric barrier discharge in air.

    PubMed

    Zhang, Shuai; Jia, Li; Wang, Wen-chun; Yang, De-zheng; Tang, Kai; Liu, Zhi-jie

    2014-01-01

    In this paper, a bipolar nanosecond high pulse voltage with 20 ns rising time was employed to generate homogeneous dielectric barrier discharges using the plate-plate electrode configuration in air at atmospheric pressure. The effects of pulse peak voltage, gas discharge gap, and dielectric plates made by different materials or thicknesses on the discharge homogeneity, voltage-current waveform, and optical emission spectra were investigated. Results show that aforementioned parameters have a strongly impact on the discharge homogeneity and the optical emission spectra, but it is hard to identify definitely their influences on the discharge voltage-current waveform. Homogeneous discharges were easily observed when using low permittivity dielectric plate and the emission intensity of N2 (C(3)Πu→B(3)Πg, 0-0, 337.1 nm) increases with the rising of pulse peak voltage and the permittivity of dielectric material but decreases with the increasing of gas discharge gap and the dielectric plate thickness. The rotational and vibrational temperatures (Trot and Tvib) were determined at Trot=350±5 K and Tvib=3045 K via fitting the simulative spectra of N2 (C(3)Πu→B(3)Πg, 0-2) with the measured one. PMID:24036046

  11. The influencing factors of nanosecond pulse homogeneous dielectric barrier discharge in air

    NASA Astrophysics Data System (ADS)

    Zhang, Shuai; Jia, Li; Wang, Wen-chun; Yang, De-zheng; Tang, Kai; Liu, Zhi-jie

    2014-01-01

    In this paper, a bipolar nanosecond high pulse voltage with 20 ns rising time was employed to generate homogeneous dielectric barrier discharges using the plate-plate electrode configuration in air at atmospheric pressure. The effects of pulse peak voltage, gas discharge gap, and dielectric plates made by different materials or thicknesses on the discharge homogeneity, voltage-current waveform, and optical emission spectra were investigated. Results show that aforementioned parameters have a strongly impact on the discharge homogeneity and the optical emission spectra, but it is hard to identify definitely their influences on the discharge voltage-current waveform. Homogeneous discharges were easily observed when using low permittivity dielectric plate and the emission intensity of N2 (C3Πu → B3Πg, 0-0, 337.1 nm) increases with the rising of pulse peak voltage and the permittivity of dielectric material but decreases with the increasing of gas discharge gap and the dielectric plate thickness. The rotational and vibrational temperatures (Trot and Tvib) were determined at Trot = 350 ± 5 K and Tvib = 3045 K via fitting the simulative spectra of N2 (C3Πu → B3Πg, 0-2) with the measured one.

  12. Radio frequency coaxial feedthrough

    DOEpatents

    Owens, Thomas L.

    1989-01-17

    An improved radio frequency coaxial transmission line vacuum feed-through provided based on the use of a half-wavelength annular dielectric pressure barrier disk, or multiple disks comprising an effective half wavelength structure to eliminate reflections from the barrier surfaces. Gas-tight seals are formed about the outer and inner diameter surfaces of the barrier disk using a sealing technique which generates radial forces sufficient to form seals by forcing the conductor walls against the surfaces of the barrier disks in a manner which does not deform the radii of the inner and outer conductors, thereby preventing enhancement of the electric field at the barrier faces which limits voltage and power handling capabilities of a feedthrough.

  13. Quantitative assessment of radiation force effect at the dielectric air-liquid interface

    PubMed Central

    Capeloto, Otávio Augusto; Zanuto, Vitor Santaella; Malacarne, Luis Carlos; Baesso, Mauro Luciano; Lukasievicz, Gustavo Vinicius Bassi; Bialkowski, Stephen Edward; Astrath, Nelson Guilherme Castelli

    2016-01-01

    We induce nanometer-scale surface deformation by exploiting momentum conservation of the interaction between laser light and dielectric liquids. The effect of radiation force at the air-liquid interface is quantitatively assessed for fluids with different density, viscosity and surface tension. The imparted pressure on the liquids by continuous or pulsed laser light excitation is fully described by the Helmholtz electromagnetic force density. PMID:26856622

  14. Predictable surface ablation of dielectrics with few-cycle laser pulse even beyond air ionization

    NASA Astrophysics Data System (ADS)

    Pasquier, C.; Sentis, M.; Utéza, O.; Sanner, N.

    2016-08-01

    We study surface ablation of dielectrics with single-shot few-cycle optical pulse (˜10 fs) in air, at intensities below and above the onset of air ionization. We perform 3D analysis and careful calibration of the fluence distribution at the laser focus, spanning from linear- to nonlinear- focusing regimes, enabling to thoroughly characterize the severe limitation of the fluence delivered onto the sample surface upon increase of incident pulse energy. Despite significant beam reshaping taking place at high fluence, we demonstrate that it is nevertheless possible to confidently predict the resulting crater profiles on fused silica surface, even in the regime of filamentation.

  15. Parameter studies for traveling wave coaxial launchers

    SciTech Connect

    Wu, A.Y. . Center for Electromechanics)

    1991-01-01

    The traveling wave coaxial launcher is a complex machine that requires very extensive parameter studies to optimize. Most of previous attempts to realize hypervelocity using coaxial launchers have failed partly due to inadequate analyses. This paper reports the results of very extensive air-core coaxial launcher parameter studies performed using computers. These results and the methodology introduced should help future researchers on this topic. In the course of studying the feasibility of accelerating a 1-kg projectile to 10 km/s with an 18 m air-core multiphase coaxial launcher powered by a rising frequency generator (RFGs), a complete simulation code based on the current filament method was developed. Results from the simulation code indicate rather chaotic behavior of an arbitrary coaxial launcher design. More fundamental studies were then conducted using various computer codes based on the current filament method.

  16. Ultraviolet-B radiation enhancement in dielectric barrier discharge based xenon chloride exciplex source by air

    SciTech Connect

    Gulati, P.; Prakash, R.; Pal, U. N.; Kumar, M.; Vyas, V.

    2014-07-07

    A single barrier dielectric barrier discharge tube of quartz with multi-strip Titanium-Gold (Ti-Au) coatings have been developed and utilized for ultraviolet-B (UV-B) radiation production peaking at wavelength 308 nm. The observed radiation at this wavelength has been examined for the mixtures of the Xenon together with chlorine and air admixtures. The gas mixture composition, chlorine gas content, total gas pressure, and air pressure dependency of the UV intensity, has been analyzed. It is found that the larger concentration of Cl{sub 2} deteriorates the performance of the developed source and around 2% Cl{sub 2} in this source produced optimum results. Furthermore, an addition of air in the xenon and chlorine working gas environment leads to achieve same intensity of UV-B light but at lower working gas pressure where significant amount of gas is air.

  17. Ultraviolet-B radiation enhancement in dielectric barrier discharge based xenon chloride exciplex source by air

    NASA Astrophysics Data System (ADS)

    Gulati, P.; Prakash, R.; Pal, U. N.; Kumar, M.; Vyas, V.

    2014-07-01

    A single barrier dielectric barrier discharge tube of quartz with multi-strip Titanium-Gold (Ti-Au) coatings have been developed and utilized for ultraviolet-B (UV-B) radiation production peaking at wavelength 308 nm. The observed radiation at this wavelength has been examined for the mixtures of the Xenon together with chlorine and air admixtures. The gas mixture composition, chlorine gas content, total gas pressure, and air pressure dependency of the UV intensity, has been analyzed. It is found that the larger concentration of Cl2 deteriorates the performance of the developed source and around 2% Cl2 in this source produced optimum results. Furthermore, an addition of air in the xenon and chlorine working gas environment leads to achieve same intensity of UV-B light but at lower working gas pressure where significant amount of gas is air.

  18. The Effect of Air Plasma on Sterilization of Escherichia coli in Dielectric Barrier Discharge

    NASA Astrophysics Data System (ADS)

    Hu, Miao; Guo, Yun

    2012-08-01

    In this work, a Dielectric Barrier Discharge (DBD) air plasma was used to sterilize Escherichia coli (E. coli) on the surface of medical Polyethylene Terephthalate (PET) film. The leakage of cellular DNA and protein by optical absorbance measurement at 260 nm and 280 nm, together with transmission electron microscopy (TEM) about cell morphology were performed after sterilization to analyse inactivation mechanisms. The results indicated that the DBD air plasma was very effective in E. coli sterilization. The plasma germicidal efficiency depended on the plasma treatment time, the air-gap distance, and the applied voltage. Within 5 min of plasma treatment, the germicidal efficiency against E. coli could reach 99.99%. An etching action on cell membranes by electrons, ions and radicals is the primary mechanism for DBD air plasma sterilization, which leads to the effusion of cellular contents (DNA and protein) and bacterial death.

  19. Underwater splice for submarine coaxial cable

    SciTech Connect

    Inouye, A.T.; Roe, T. Jr.; Tausing, W.R.; Wilson, J.V.

    1984-10-30

    The invention is a device for splicing submarine coaxial cable underwater on the seafloor with a simple push-on operation to restore and maintain electrical and mechanical strength integrity; the splice device is mateable directly with the severed ends of a coaxial cable to be repaired. Splicing assemblies comprise a dielectric pressure compensating fluid filled guide cavity, a gelled castor oil cap and wiping seals for exclusion of seawater, electrical contacts, a cable strength restoration mechanism, and a pressure compensation system for controlled extrusion of and depletion loss prevention of dielectric seal fluid during cable splicing. A splice is made underwater by directly inserting prepared ends of coaxial cable, having no connector attachments, into splicing assemblies.

  20. Effects of ultraviolet (UV) irradiation in air and under vacuum on low-k dielectrics

    NASA Astrophysics Data System (ADS)

    Choudhury, F. A.; Ryan, E. T.; Nguyen, H. M.; Nishi, Y.; Shohet, J. L.

    2016-07-01

    This work addresses the effect of ultraviolet radiation of wavelengths longer than 250 nm on Si-CH3 bonds in porous low-k dielectrics. Porous low-k films (k = 2.3) were exposed to 4.9 eV (254 nm) ultraviolet (UV) radiation in both air and vacuum for one hour. Using Fourier Transform Infrared (FTIR) spectroscopy, the chemical structures of the dielectric films were analyzed before and after the UV exposure. UV irradiation in air led to Si-CH3 bond depletion in the low-k material and made the films hydrophilic. However, no change in Si-CH3 bond concentration was observed when the same samples were exposed to UV under vacuum with a similar fluence. These results indicate that UV exposures in vacuum with wavelengths longer than ˜250 nm do not result in Si-CH3 depletion in low-k films. However, if the irradiation takes place in air, the UV irradiation removes Si-CH3 although direct photolysis of air species does not occur above ˜242nm. We propose that photons along with molecular oxygen and, water, synergistically demethylate the low-k films.

  1. Effect of duty-cycles on the air plasma gas-phase of dielectric barrier discharges

    NASA Astrophysics Data System (ADS)

    Barni, R.; Biganzoli, I.; Dell'Orto, E. C.; Riccardi, C.

    2015-10-01

    An experimental investigation concerning the effects of a duty-cycle in the supply of a dielectric barrier discharge in atmospheric pressure air has been performed. Electrical characteristics of the discharge have been measured, focusing mainly on the statistical properties of the current filaments and on dielectric surface charging, both affected by the frequent repetition of breakdown imposed by the duty-cycle. Information on the gas-phase composition was gathered too. In particular, a strong enhancement in the ozone formation rate is observed when suitable long pauses separate the active discharge phases. A simulation of the chemical kinetics in the gas-phase, based on a simplified discharge modeling, is briefly described in order to shed light on the observed increase in ozone production. The effect of a duty-cycle on surface modification of polymeric films in order to increase their wettability has been investigated too.

  2. Dielectric barrier discharge in air with a controllable spatial distribution—a tomographic investigation

    NASA Astrophysics Data System (ADS)

    van der Schans, M.; Sobota, A.; Kroesen, G. M. W.

    2016-05-01

    A novel dielectric barrier discharge source with a controllable discharge distribution has been designed for operation in atmospheric air. A predictable distribution has been achieved through the design of the powered electrode and the dielectric barrier. Optical emission tomography is used to study the discharge distribution. The method and its applicability in studies of non-symmetric plasmas are discussed in the paper. The results show that a desired discharge distribution may be achieved through the manipulation of the electric field amplification by the powered electrode and it is found that the discharge shape resembles the field imposed at the powered electrode only. Together with the flexibility of the plasma source design, this can prove highly advantageous for the treatment of irregularly shaped surfaces in plasma medicine and plasma surface processing at atmospheric pressure.

  3. Laser-induced damage of multilayer dielectric gratings with picosecond laser pulses under vacuum and air

    NASA Astrophysics Data System (ADS)

    Kong, Fanyu; Jin, Yunxia; Huang, Haopeng; Zhang, Hong; Liu, Shijie; He, Hongbo

    2015-10-01

    In this study, laser damage tests of multilayer dielectric gratings (MDGs) are performed in vacuum (5×10-4 Pa) and in air at a wavelength of 1053 nm with pulse widths of 0.56 ps ~9.7 ps. The laser-induced damage threshold (LIDT) of MDGs in vacuum/air ranges from 2.1/2.2 J/cm2 to 4.4/4.8 J/cm2 for laser beams of normal incidence. The LIDT of MDGs follows a τ0.26 scaling in the pulse width regime considered. The typical damage morphologies in the two environments caused by the near threshold pulse were observed using a scanning electron microscope (SEM); the results indicate that the damage features of MDGs in vacuum are the same as those in air. The testing results reveal that a clean vacuum environment neither changes the laser damage mechanism nor lowers the LIDT of MDGs.

  4. Comparison of Metal-Backed Free-Space and Open-Ended Coaxial Probe Techniques for the Dielectric Characterization of Aeronautical Composites †

    PubMed Central

    López-Rodríguez, Patricia; Escot-Bocanegra, David; Poyatos-Martínez, David; Weinmann, Frank

    2016-01-01

    The trend in the last few decades is that current unmanned aerial vehicles are completely made of composite materials rather than metallic, such as carbon-fiber or fiberglass composites. From the electromagnetic point of view, this fact forces engineers and scientists to assess how these materials may affect their radar response or their electronics in terms of electromagnetic compatibility. In order to evaluate this, electromagnetic characterization of different composite materials has become a need. Several techniques exist to perform this characterization, all of them based on the utilization of different sensors for measuring different parameters. In this paper, an implementation of the metal-backed free-space technique, based on the employment of antenna probes, is utilized for the characterization of composite materials that belong to an actual drone. Their extracted properties are compared with those given by a commercial solution, an open-ended coaxial probe (OECP). The discrepancies found between both techniques along with a further evaluation of the methodologies, including measurements with a split-cavity resonator, conclude that the implemented free-space technique provides more reliable results for this kind of composites than the OECP technique. PMID:27347966

  5. Comparison of Metal-Backed Free-Space and Open-Ended Coaxial Probe Techniques for the Dielectric Characterization of Aeronautical Composites.

    PubMed

    López-Rodríguez, Patricia; Escot-Bocanegra, David; Poyatos-Martínez, David; Weinmann, Frank

    2016-01-01

    The trend in the last few decades is that current unmanned aerial vehicles are completely made of composite materials rather than metallic, such as carbon-fiber or fiberglass composites. From the electromagnetic point of view, this fact forces engineers and scientists to assess how these materials may affect their radar response or their electronics in terms of electromagnetic compatibility. In order to evaluate this, electromagnetic characterization of different composite materials has become a need. Several techniques exist to perform this characterization, all of them based on the utilization of different sensors for measuring different parameters. In this paper, an implementation of the metal-backed free-space technique, based on the employment of antenna probes, is utilized for the characterization of composite materials that belong to an actual drone. Their extracted properties are compared with those given by a commercial solution, an open-ended coaxial probe (OECP). The discrepancies found between both techniques along with a further evaluation of the methodologies, including measurements with a split-cavity resonator, conclude that the implemented free-space technique provides more reliable results for this kind of composites than the OECP technique. PMID:27347966

  6. Honeycomb superlattice pattern in a dielectric barrier discharge in argon/air

    SciTech Connect

    Zhu, Ping; Dong, Lifang Yang, Jing; Gao, Yenan; Wang, Yongjie; Li, Ben

    2015-02-15

    We report on a honeycomb superlattice pattern in a dielectric barrier discharge in argon/air for the first time. It consists of hexagon lattice and honeycomb framework and bifurcates from a hexagon pattern as the applied voltage increases. A phase diagram of the pattern as a function of the gas component and gas pressure is presented. The instantaneous images show that the hexagon lattice and honeycomb framework are ignited in turn in each half voltage cycle. The honeycomb framework is composed of filaments ignited randomly. The spatiotemporal dynamics of honeycomb superlattice pattern is discussed by wall charges.

  7. Experimental investigation on large-area dielectric barrier discharge in atmospheric nitrogen and air assisted by the ultraviolet lamp.

    PubMed

    Zhang, Yan; Gu, Biao; Wang, Wenchun; Wang, Dezhen; Peng, Xuwen

    2009-04-01

    In this paper, ultraviolet radiation produced by the ultraviolet lamp is employed to supply pre-ionization for the dielectric barrier discharge in N(2) or air at atmospheric pressure. The effect of the ultraviolet pre-ionization on improving the uniformity of the dielectric barrier discharge is investigated experimentally. The atmospheric pressure glow discharge of the large area (270 mm x 120 mm) is obtained successfully via the ultraviolet pre-ionization in atmospheric DBD in N(2) when the gas gap decrease to 3mm. Based on the emission spectra, the mechanism which ultraviolet pre-ionization improves the uniformity of the dielectric barrier discharge is discussed. PMID:19129005

  8. Air and dielectric bands photonic crystal microringresonator for refractive index sensing.

    PubMed

    Urbonas, Darius; Balčytis, Armandas; Vaškevičius, Konstantinas; Gabalis, Martynas; Petruškevičius, Raimondas

    2016-08-01

    We present the experimental and numerical analysis of a microring resonator with an integrated one-dimensional photonic crystal fabricated on a silicon-on-insulator platform and show its applicability in bulk refractive index sensing. The photonic crystal is formed by periodically patterned, partially etched cylindrical perforations, whose induced photonic bandgap is narrower than the range of measurable wavelengths (1520-1620 nm). Of particular interest is that the microring operates in both air and dielectric bands, and the sensitivities of the resonances on both edges of the bandgap were investigated. We showed that a higher field localization inside the volume of the perforations for the air band mode leads to an increase in sensitivity. PMID:27472642

  9. Modified Coaxial Probe Feeds for Layered Antennas

    NASA Technical Reports Server (NTRS)

    Fink, Patrick W.; Chu, Andrew W.; Dobbins, Justin A.; Lin, Greg Y.

    2006-01-01

    In a modified configuration of a coaxial probe feed for a layered printed-circuit antenna (e.g., a microstrip antenna), the outer conductor of the coaxial cable extends through the thickness of at least one dielectric layer and is connected to both the ground-plane conductor and a radiator-plane conductor. This modified configuration simplifies the incorporation of such radio-frequency integrated circuits as power dividers, filters, and low-noise amplifiers. It also simplifies the design and fabrication of stacked antennas with aperture feeds.

  10. A novel multi-level interconnect scheme with air as low K inter-metal dielectric for ultradeep submicron application

    NASA Astrophysics Data System (ADS)

    Chen, Chung-Hui; Fang, Yean-Kuen; Lin, Chun-Sheng; Yang, Chih-Wei; Hsieh, Jang-Cheng

    2001-01-01

    In this letter, a novel multi-level interconnect scheme with air as the low K inter-metal dielectric for ultra large scale integrated circuit (ULSI) application in ultradeep submicron (UDSM) range is proposed. The detailed process integration with copper dual damascene processing is described. The feasibility of the scheme is examined by trimethylaluminum Raphael simulation for the effective dielectric constant and the cutoff frequency in a standard divide by three counter. The simulation results are also compared with these reported air gap formation technologies. The results show the developed multi-level interconnect system is suitable for UDSM application.

  11. High-speed sterilization technique using dielectric barrier discharge plasmas in atmospheric humid air

    NASA Astrophysics Data System (ADS)

    Miyamae, M.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.

    2010-11-01

    The inactivation of Bacillus atrophaeus spores by a dielectric barrier discharge (DBD) plasma produced by an ac voltage application of 1 kHz in atmospheric humid air was investigated in order to develop low-temperature, low-cost and high-speed plasma sterilization technique. The biological indicators covered with a Tyvek sheet were set just outside the DBD plasma region, where the air temperature and humidity as a discharge gas were precisely controlled by an environmental test chamber. The results show that the inactivation of Bacillus atrophaeus spores was found to be dependent strongly on the humidity, and was completed within 15 min at a relative humidity of 90 % and a temperature of 30 C. The treatment time for sterilization is shorter than those of conventional sterilization methods using ethylene oxide gas and dry heat treatment. It is considered that reactive species such as hydroxyl radicals that are effective for the inactivation of Bacillus atrophaeus spores could be produced by the DBD plasma in the humid air. Repetitive micro-pulsed discharge plasmas in the humid air will be applied for the sterilization experiment to enhance the sterilization efficiency.

  12. Microminiature coaxial cable and methods manufacture

    DOEpatents

    Bongianni, Wayne L.

    1986-01-01

    A coaxial cable is provided having a ribbon inner conductor surrounded by a dielectric and a circumferential conductor. The coaxial cable may be microminiature comprising a very thin ribbon strip conductor from between 5 to 15 .mu.m thick and from 150 to 200 .mu.m wide, having a surrounding foamed dielectric or parylene applied thereon by a vapor plasma process and an outer conductor of an adhering high conductivity metal vacuum deposited on the dielectric. Alternately the foam dielectric embodiment may have a contiguous parylene coating applied adjacent the inner conductor or the outer conductor or both. Also, the cable may be fabricated by forming a thin ribbon of strip conductive material into an inner conductor, applying thereabout a dielectric by spraying on a solution of polystyrene and polyethylene and then vacuum depositing and adhering high conductivity metal about the dielectric. The cable strength may be increased by adding glass microfilament fibers or glass microballoons to the solution of polystyrene and polyethylene. Further, the outer conductive layer may be applied by electroless deposition in an aqueous solution rather than by vacuum deposition. A thin coating of parylene is preferably applied to the outer conductor to prevent its oxidation and inhibit mechanical abrasion.

  13. Microminiature coaxial cable and method of manufacture

    DOEpatents

    Bongianni, Wayne L.

    1989-01-01

    A coaxial cable is provided having a ribbon inner conductor surrounded by a dielectric and a circumferential conductor. The coaxial cable may be microminiature comprising a very thin ribbon strip conductor from between 5 to 15 .mu.m thick and from 150 to 200 .mu.m wide, having a surrounding foamed dielectric or parylene applied thereon by a vapor plasma process and an outer conductor of an adhering high conductivity metal vacuum deposited on the dielectric. Alternately, the foam dielectric embodiment may have a contiguous parylene coating applied adjacent the inner conductor or the outer conductor or both. Also, the cable may be fabricated by forming a thin ribbon of strip conductive material into an inner conductor, applying thereabout a dielectric by spraying on a solution of polystyrene and polyethylene and then vacuum depositing and adhering high conductivity metal about the dielectric. The cable strength may be increased by adding glass microfilament fibers or glass microspheres to the solution of polystyrene and polyethylene. Further, the outer conductive layer may be applied by electroless deposition in an aqueous solution rather than by vacuum deposition. A thin coating of parylene is preferably applied to the outer conductor to prevent its oxidation and inhibit mechanical abrasion.

  14. Microminiature coaxial cable and method of manufacture

    DOEpatents

    Bongianni, W.L.

    1989-03-28

    A coaxial cable is provided having a ribbon inner conductor surrounded by a dielectric and a circumferential conductor. The coaxial cable may be microminiature comprising a very thin ribbon strip conductor from between 5 to 15 [mu]m thick and from 150 to 200 [mu]m wide, having a surrounding foamed dielectric or parylene applied thereon by a vapor plasma process and an outer conductor of an adhering high conductivity metal vacuum deposited on the dielectric. Alternately, the foam dielectric embodiment may have a contiguous parylene coating applied adjacent the inner conductor or the outer conductor or both. Also, the cable may be fabricated by forming a thin ribbon of strip conductive material into an inner conductor, applying thereabout a dielectric by spraying on a solution of polystyrene and polyethylene and then vacuum depositing and adhering high conductivity metal about the dielectric. The cable strength may be increased by adding glass microfilament fibers or glass microspheres to the solution of polystyrene and polyethylene. Further, the outer conductive layer may be applied by electroless deposition in an aqueous solution rather than by vacuum deposition. A thin coating of parylene is preferably applied to the outer conductor to prevent its oxidation and inhibit mechanical abrasion. 2 figs.

  15. Microminiature coaxial cable and methods manufacture

    DOEpatents

    Bongianni, W.L.

    1986-04-08

    A coaxial cable is provided having a ribbon inner conductor surrounded by a dielectric and a circumferential conductor. The coaxial cable may be microminiature comprising a very thin ribbon strip conductor from between 5 to 15 [mu]m thick and from 150 to 200 [mu]m wide, having a surrounding foamed dielectric or parylene applied thereon by a vapor plasma process and an outer conductor of an adhering high conductivity metal vacuum deposited on the dielectric. Alternately the foam dielectric embodiment may have a contiguous parylene coating applied adjacent the inner conductor or the outer conductor or both. Also, the cable may be fabricated by forming a thin ribbon of strip conductive material into an inner conductor, applying thereabout a dielectric by spraying on a solution of polystyrene and polyethylene and then vacuum depositing and adhering high conductivity metal about the dielectric. The cable strength may be increased by adding glass microfilament fibers or glass microballoons to the solution of polystyrene and polyethylene. Further, the outer conductive layer may be applied by electroless deposition in an aqueous solution rather than by vacuum deposition. A thin coating of parylene is preferably applied to the outer conductor to prevent its oxidation and inhibit mechanical abrasion. 2 figs.

  16. Strategies for NO{sub x} cleanup from air streams using dielectric barrier discharges

    SciTech Connect

    Gentile, A.C.; Kushner, M.J.

    1993-12-01

    Efficient processes for the removal of NO{sub x} from exhaust gases due to the combustion of fossil fuels is of increasing interest due to stringent EPA limits on allowable emissions. Strategies for plasma remediation of NO{sub x} using both reduction (N + NO {yields} N{sub 2} + O) and oxidation (NO{sub 2} + OH {yields} HNO{sub 3}) techniques are being developed as an energy efficient cleansing method. The dry reduction technique is preferred since there is no acidic waste product. The authors have developed a plasma chemistry computer model for atmospheric pressure gas streams excited by dielectric barrier discharges to investigate optimum methods to remove NO{sub x} from air. They will report on efficiencies for removing 100s ppm of NO{sub x} while varying water content and power deposition. Comparisons will be made to experiments by Chang et. al.

  17. Compact High-Velocity Atmospheric Pressure Dielectric Barrier Plasma Jet in Ambient Air

    NASA Astrophysics Data System (ADS)

    Annette, Meiners; Michael, Leck; Bernd, Abel

    2015-01-01

    In this paper, a non-thermal atmospheric pressure plasma jet at high streaming velocity operating with ambient air is highlighted. In the present technological approach, the employment of air poses a significant challenge. The high oxygen concentration in air results in a reduced concentration of reactive species in combination with a short species lifetime. The plasma jet assembly presented here contains a special dielectric barrier with a high secondary emission coefficient. In this way, the electron density and in turn the density of reactive species is increased. In addition, the plasma jet assembly is equipped with a short electrode. This leads to a higher voltage across the discharge gap and in turn to an increased density of reactive plasma species. The plasma jet is formed within and emitted by a small conical nozzle. A high-speed gas flow with gas velocity of 340 m/s was achieved at the end of the nozzle. In the jet the concentration of toxic and unwanted neutral plasma species like O3 or NOx is significantly reduced because of the shorter residence time within the plasma. The range of short-lived active plasma species is in turn considerably enhanced. The jet efficiency and action range measured through the oxidation of a test surface were determined by measuring the increase of surface tension of a polypropylene substrate via contact angle measurements after plasma treatment. Numerical modeling of the plasma plume indicates that oxygen atoms are in fact the main active species in the plasma plume.

  18. Influence of surface emission processes on a fast-pulsed dielectric barrier discharge in air at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Pechereau, François; Bonaventura, Zdeněk; Bourdon, Anne

    2016-08-01

    This paper presents simulations of an atmospheric pressure air discharge in a point-to-plane geometry with a dielectric layer parallel to the cathode plane. Experimentally, a discharge reignition in the air gap below the dielectrics has been observed. With a 2D fluid model, it is shown that due to the fast rise of the high voltage applied and the sharp point used, a first positive spherical discharge forms around the point. Then this discharge propagates axially and impacts the dielectrics. As the first discharge starts spreading on the upper dielectric surface, in the second air gap with a low preionization density of {{10}4}~\\text{c}{{\\text{m}}-3} , the 2D fluid model predicts a rapid reignition of a positive discharge. As in experiments, the discharge reignition is much slower, a discussion on physical processes to be considered in the model to increase the reignition delay is presented. The limit case with no initial seed charges in the second air gap has been studied. First, we have calculated the time to release an electron from the cathode surface by thermionic and field emission processes for a work function φ \\in ≤ft[3,4\\right] eV and an amplification factor β \\in ≤ft[100,220\\right] . Then a 3D Monte Carlo model has been used to follow the dynamics of formation of an avalanche starting from a single electron emitted at the cathode. Due to the high electric field in the second air gap, we have shown that in a few nanoseconds, a Gaussian cloud of seed charges is formed at a small distance from the cathode plane. This Gaussian cloud has been used as the initial condition of the 2D fluid model in the second air gap. In this case, the propagation of a double headed discharge in the second air gap has been observed and the reignition delay is in rather good agreement with experiments.

  19. Study of flow fields induced by surface dielectric barrier discharge actuator in low-pressure air

    SciTech Connect

    Che, Xueke E-mail: st@mail.iee.ac.cn; Nie, Wansheng; Tian, Xihui; Hou, Zhiyong; He, Haobo; Zhou, Penghui; Zhou, Siyin; Yang, Chao; Shao, Tao E-mail: st@mail.iee.ac.cn

    2014-04-15

    Surface dielectric barrier discharge (SDBD) is a promising method for a flow control. Flow fields induced by a SDBD actuator driven by the ac voltage in static air at low pressures varying from 1.0 to 27.7 kPa are measured by the particle image velocimetry method. The influence of the applied ac voltage frequency and magnitude on the induced flow fields is studied. The results show that three different classes of flow fields (wall jet flow field, complex flow field, and vortex-shape flow field) can be induced by the SDBD actuator in the low-pressure air. Among them, the wall jet flow field is the same as the tangential jet at atmospheric pressure, which is, together with the vertical jet, the complex flow field. The vortex-shape flow field is composed of one vertical jet which points towards the wall and two opposite tangential jets. The complex and the vortex-shape flow fields can be transformed to the wall jet flow field when the applied ac voltage frequency and magnitude are changed. It is found that the discharge power consumption increases initially, decreases, and then increases again at the same applied ac voltage magnitude when the air pressure decreases. The tangential velocity of the wall jet flow field increases when the air pressure decreases. It is however opposite for the complex flow field. The variation of the applied ac voltage frequency influences differently three different flow fields. When the applied ac voltage magnitude increases at the same applied ac voltage frequency, the maximal jet velocity increases, while the power efficiency increases only initially and then decreases again. The discharge power shows either linear or exponential dependences on the applied ac voltage magnitude.

  20. Load-resistant coaxial transmission line

    DOEpatents

    Hall, David R.; Fox, Joe

    2006-01-03

    A transmission line for downhole tools that make up all or part of a tool string for drilling and production of oil, gas, and geothermal wells that can withstand the dynamic gravitational forces and other accelerations associated with downhole excavations. The transmission line has a metal tube, or outer conductor, that houses a coaxial wire inner conductor. A non-metallic dielectric material is interposed between the inner and outer conductors. The outer and inner conductors and the dielectric are sufficiently compressed together so that independent motion between them is abated. Compression of the components of the transmission line may be achieved by drawing the transmission through one or more dies in order to draw down the outer conductor onto the dielectric, or by expanding the inner conductor against the dielectric using a mandrel or hydraulic pressure. Non-metallic bead segments may be used in aid of the compression necessary to resist the dynamic forces and accelerations of drilling.

  1. Microminiature coaxial cable and methods of manufacture

    DOEpatents

    Bongianni, W.L.

    1983-12-29

    A coaxial cable is provided having a ribbon inner conductor surrounded by a dielectric and a circumferential conductor. The coaxial cable may be microminiature comprising a very thin ribbon strip conductor from between 5 to 15 ..mu..m thick and from 150 to 200 ..mu..m wide, having a surrounding foamed dielectric or parylene applied thereon by a vapor plasma process and an outer conductor of an adhering high conductivity metal vacuum deposited on the dieleectric. Alternately the foam dielectric embodiment may have a contiguous parylene coating applied adjacent the inner conductor or the outer conductor or both. Also, the cable may be fabricated by forming a thin ribbon of strip conductive material into an inner conductor, applying thereabout a dielectric by spraying on a solution of polystyrene and polyethylene and then vacuum depositing and adhering high conductivity metal about the dielectric. The cable strength may be increased by adding glass microfilament fibers or glass microballoons to the solution of polystyrene and polyethylene. Further, the outer conductive layer may be applied by electroless deposition in an aqueous solution rather than by vacuum deposition. A thin coating of parylene is preferably applied to the outer conductor to prevent its oxidation and inhibit mechanical abrasion.

  2. Automated, low-temperature dielectric relaxation apparatus for measurement of air-sensitive, corrosive, hygroscopic, powdered samples

    NASA Astrophysics Data System (ADS)

    Bessonette, Paul W. R.; White, Mary Anne

    1999-07-01

    An automated apparatus for dielectric determinations on solid samples was designed to allow cryogenic measurements on air-sensitive, corrosive, hygroscopic, powdered samples, without determination of sample thickness, provided that it is uniform. A three-terminal design enabled measurements that were not affected by errors due to dimensional changes of the sample or the electrodes with changes in temperature. Meaningful dielectric data could be taken over the frequency range from 20 Hz to 1 MHz and the temperature range from 12 to 360 K. Tests with Teflon and with powdered NH4Cl gave results that were accurate within a few percent when compared with literature values.

  3. Surface treatment of aramid fiber by air dielectric barrier discharge plasma at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Jia, Caixia; Chen, Ping; Liu, Wei; Li, Bin; Wang, Qian

    2011-02-01

    Aramid fiber samples are treated by air dielectric barrier discharge (DBD) plasma at atmospheric pressure; the plasma treatment time is investigated as the major parameter. The effects of this treatment on the fiber surface physical and chemical properties are studied by using surface characterization techniques. Scanning electron microscopy (SEM) is performed to determine the surface morphology changes, X-ray photoelectron spectroscopy (XPS) is analyzed to reveal the surface chemical composition variations and dynamic contact angle analysis (DCAA) is used to examine the changes of the fiber surface wettability. In addition, the wetting behavior of a kind of thermoplastic resin, poly(phthalazinone ether sulfone ketone) (PPESK), on aramid fiber surface is also observed by SEM photos. The study shows that there seems to be an optimum treatment condition for surface modification of aramid fiber by the air DBD plasma. In this paper, after the 12 s, 27.6 W/cm3 plasma treatment the aramid fiber surface roughness is significantly improved, some new oxygen-containing groups such as C-O, Cdbnd O and Odbnd C-O are generated on the fiber surface and the fiber surface wettability is greatly enhanced, which results in the better wetting behavior of PPESK resin on the plasma-treated aramid fiber.

  4. Improved Ethanol Production from Xylose by Candida shehatae Induced by Dielectric Barrier Discharge Air Plasma

    NASA Astrophysics Data System (ADS)

    Chen, Huixia; Xiu, Zhilong; Bai, Fengwu

    2014-06-01

    Xylose fermentation is essential for ethanol production from lignocellulosic biomass. Exposure of the xylose-fermenting yeast Candida shehatae (C. shehatae) CICC1766 to atmospheric pressure dielectric barrier discharge (DBD) air plasma yields a clone (designated as C81015) with stability, which exhibits a higher ethanol fermentation rate from xylose, giving a maximal enhancement in ethanol production of 36.2% compared to the control (untreated). However, the biomass production of C81015 is lower than that of the control. Analysis of the NADH (nicotinamide adenine dinucleotide)- and NADPH (nicotinamide adenine dinucleotide phosphate)-linked xylose reductases and NAD+-linked xylitol dehydrogenase indicates that their activities are enhanced by 34.1%, 61.5% and 66.3%, respectively, suggesting that the activities of these three enzymes are responsible for improving ethanol fermentation in C81015 with xylose as a substrate. The results of this study show that DBD air plasma could serve as a novel and effective means of generating microbial strains that can better use xylose for ethanol fermentation.

  5. Dielectric Constant Modelling with Soil–Air Composition and Its Effect on Sar Radar Signal Backscattered over Soil Surface

    PubMed Central

    Zribi, Mehrez; Le Morvan, Aurélie; Baghdadi, Nicolas

    2008-01-01

    The objective of this paper is to present the contribution of a new dielectric constant characterisation for the modelling of radar backscattering behaviour. Our analysis is based on a large number of radar measurements acquired during different experimental campaigns (Orgeval'94, Pays de Caux'98, 99). We propose a dielectric constant model, based on the combination of contributions from both soil and air fractions. This modelling clearly reveals the joint influence of the air and soil phases, in backscattering measurements over rough surfaces with large clods. A relationship is established between the soil fraction and soil roughness, using the Integral Equation Model (IEM), fitted to real radar data. Finally, the influence of the air fraction on the linear relationship between moisture and the backscattered radar signal is discussed.

  6. Coaxial short pulsed laser

    DOEpatents

    Nelson, M.A.; Davies, T.J.

    1975-08-01

    This invention relates to a laser system of rugged design suitable for use in a field environment. The laser itself is of coaxial design with a solid potting material filling the space between components. A reservoir is employed to provide a gas lasing medium between an electrode pair, each of which is connected to one of the coaxial conductors. (auth)

  7. Permanent hydrophilization of outer and inner surfaces of polytetrafluoroethylene tubes using ambient air plasma generated by surface dielectric barrier discharges

    SciTech Connect

    Pavliňák, D.; Galmiz, O.; Zemánek, M.; Brablec, A.; Čech, J.; Černák, M.

    2014-10-13

    We present an atmospheric pressure ambient air plasma technique developed for technically simple treatment of inner and/or outer surfaces of plastic tubes and other hollow dielectric bodies. It is based on surface dielectric barrier discharge generating visually diffuse plasma layers along the treated dielectric surfaces using water-solution electrodes. The observed visual uniformity and measured plasma rotational and vibrational temperatures of 333 K and 2350 K indicate that the discharge can be readily applied to material surface treatment without significant thermal effect. This is exemplified by the obtained permanent surface hydrophilization of polytetrafluoroethylene tubes related to the replacement of a high fraction (more than 80%) of the surface fluorine determined by X-ray photoelectron spectroscopy. A tentative explanation of the discharge mechanism based on high-speed camera observations and the discharge current and voltage of measurements is outlined.

  8. Coaxial diode and vircator

    NASA Astrophysics Data System (ADS)

    Liu, Guozhi; Qiu, Shi; Wang, Hongjun; Huang, Wenhua; Wang, Feng

    1997-10-01

    The experimental and theoretical results of coaxial diode and the theoretical results of coaxial vircator are presented in this paper. The cathode is a cold, field- emitting graphite ring and needle-shaped copper applied to a grounded cylinder. The anode is a semi-transparent cylinder located inside of, and concentric to the cathode cylinder. The anode cylinder is pulsed positive. The coaxial vircator generates microwave by injecting a radial electron beam into cylinder such that the space-charge limited current is exceeded. A virtual cathode forms and oscillates in radial position and amplitude, generating microwaves which are extracted by an attached waveguide with a circular cross- section. Analytic and PIC simulations were used to study coaxial diode and vircator, with aid of the two dimensional PIC code, KARAT. The comparisons between the theoretical and the experimental results for a coaxial diode are presented.

  9. A radio frequency coaxial feedthrough

    DOEpatents

    Owens, T.L.

    1987-12-07

    An improved radio frequency coaxial transmission line vacuum feedthrough is provided based on the use of a half-wavelength annular dielectric pressure barrier disk, or multiple disks comprising an effective half wavelength structure to eliminate reflection from the barrier surfaces. Gas-tight seals are formed about the outer and inner diameter surfaces of the barrier disk using a sealing technique which generates radial forces sufficient to form seals by forcing the conductor walls against the surfaces of the barrier disks in a manner which does not deform the radii of the inner and outer conductors, thereby preventing enhancement of the electric field at the barrier faces which limits the voltage and power handling capabilities of a feedthrough.

  10. Shear coaxial injector instability mechanisms

    NASA Astrophysics Data System (ADS)

    Kaltz, T.; Glogowski, M.; Micci, M. M.

    1993-11-01

    Although stable operating regimes for cryogenic coaxial injectors have been empirically determined, there is no knowledge of the spray characteristics corresponding to stable operation, or the physical processes which produce the atomization patterns that result in stable or unstable operation. The current engineering method for determining the stable operating regime of a cryogenic coaxial injector is the 'hydrogen temperature ramping' method, however there is no definitive knowledge of whether the hydrogen temperature influences the chamber stability by decreasing the injected gas velocity, by affecting a recirculation region at the base of the LOX Post, or by changing the pressure drop across the injector, allowing chamber pressure oscillations to couple to the fuel feed system. Results for the injector response from a linearized lumped-element model are presented as a function of temperature and frequency. LDV measurements in the recess region at the base of the LOX post show reverse flow indicative of a recirculation region. Finally, Phase Doppler Particle Analyzer (PDPA) measurements of droplet size and velocity distributions are discussed for a coaxial injector element similar to the SSME preburner element operating with water and air at atmospheric pressure and liquid and gaseous nitrogen at 20 bars.

  11. Shear coaxial injector instability mechanisms

    NASA Technical Reports Server (NTRS)

    Kaltz, T.; Glogowski, M.; Micci, M. M.

    1993-01-01

    Although stable operating regimes for cryogenic coaxial injectors have been empirically determined, there is no knowledge of the spray characteristics corresponding to stable operation, or the physical processes which produce the atomization patterns that result in stable or unstable operation. The current engineering method for determining the stable operating regime of a cryogenic coaxial injector is the 'hydrogen temperature ramping' method, however there is no definitive knowledge of whether the hydrogen temperature influences the chamber stability by decreasing the injected gas velocity, by affecting a recirculation region at the base of the LOX Post, or by changing the pressure drop across the injector, allowing chamber pressure oscillations to couple to the fuel feed system. Results for the injector response from a linearized lumped-element model are presented as a function of temperature and frequency. LDV measurements in the recess region at the base of the LOX post show reverse flow indicative of a recirculation region. Finally, Phase Doppler Particle Analyzer (PDPA) measurements of droplet size and velocity distributions are discussed for a coaxial injector element similar to the SSME preburner element operating with water and air at atmospheric pressure and liquid and gaseous nitrogen at 20 bars.

  12. Efficient new process for the desulfurization of mixtures of air and hydrogen sulfide via a dielectric barrier discharge plasma

    NASA Astrophysics Data System (ADS)

    Dahle, S.

    2015-10-01

    The efficient removal of hydrogen sulfide, H2S, from streams of H2S in air via a dielectric barrier discharge (DBD) plasma has been investigated using a quadrupole mass spectrometer. A suitable plasma device with a reservoir for storing sorbent powder of various kinds within the plasma region was constructed. Plasma treatments of gas streams with high concentrations of hydrogen sulfide in air yielded a removal of more than 98% of the initial hydrogen sulfide and a deposition of sulfur at the surface of the dielectric, while small amounts of sulfur dioxide were generated. The presence of calcium carbonate within the plasma region of the DBD device resulted in the removal of over 99% of the initial hydrogen sulfide content and the removal of 98% of the initial sulfur dioxide impurities from the gas mixture.

  13. Atomic oxygen dynamics in an air dielectric barrier discharge: a combined diagnostic and modeling approach

    NASA Astrophysics Data System (ADS)

    Baldus, Sabrina; Schröder, Daniel; Bibinov, Nikita; Schulz-von der Gathen, Volker; Awakowicz, Peter

    2015-06-01

    Cold atmospheric pressure plasmas are a promising alternative therapy for treatment of chronic wounds, as they have already shown in clinical trials. In this study an air dielectric barrier discharge (DBD) developed for therapeutic use in dermatology is characterized with respect to the plasma produced reactive oxygen species, namely atomic oxygen and ozone, which are known to be of great importance to wound healing. To understand the plasma chemistry of the applied DBD, xenon-calibrated two-photon laser-induced fluorescence spectroscopy and optical absorption spectroscopy are applied. The measured spatial distributions are shown and compared to each other. A model of the afterglow chemistry based on optical emission spectroscopy is developed to cross-check the measurement results and obtain insight into the dynamics of the considered reactive oxygen species. The atomic oxygen density is found to be located mostly between the electrodes with a maximum density of {{n}\\text{O}}=6× {{10}16} cm-3 . Time resolved measurements reveal a constant atomic oxygen density between two high voltage pulses. The ozone is measured up to 3 mm outside the active plasma volume, reaching a maximum value of {{n}{{\\text{O}3}}}=3× {{10}16} cm-3 between the electrodes.

  14. Laser electric field measurement in open-air dielectric barrier discharges

    NASA Astrophysics Data System (ADS)

    Ito, Tsuyohito; Kanazawa, Tatsuya; Hamaguchi, Satoshi

    2011-10-01

    Electric field induced coherent Raman scattering (E-CRS) measurement is a promising technique for measuring electric field in high-pressure environments. In this study, the discharge initiation mechanism of nanosecond dielectric barrier discharges (DBDs) in open air has been examined with time dependent measurement of the discharge electric field by E-CRS. Two pulsed ns laser beams (532 nm and 607 nm) are employed. In the presence of nitrogen molecules the two laser beams together with the electric field induce a coherent IR signal at a wavelength of 4.29 μm and the normal coherent anti-Stokes Raman scattering (CARS) signal at 473 nm. The ratio of these two signals (IR and CARS) is a function of the electric field strength, so that the magnitude of the electric field can be estimated. Our experimental observations have revealed that, in the pre-breakdown phase of a nanosecond DBD discharge, the externally applied fast-rising electric field is strongly enhanced near the cathode due to large accumulation of space charge, which then strongly enhances ionization near the cathode. This process is essentially different from the well-known Townsend mechanism for slower discharges.

  15. Dynamic Characteristics of Positive Pulsed Dielectric Barrier Discharge for Ozone Generation in Air

    NASA Astrophysics Data System (ADS)

    Wei, Linsheng; Peng, Bangfa; Li, Ming; Zhang, Yafang; Hu, Zhaoji

    2016-02-01

    A comprehensive dynamic model consisting of 66 reactions and 24 species is developed to investigate the dynamic characteristics of ozone generation by positive pulsed dielectric barrier discharge (DBD) using parallel-plate reactor in air. The electron energy conservation equation is coupled to the electron continuity equation, the heavy species continuity equation, and Poisson's equation for a better description. The reliability of the model is experimentally confirmed. The model can be used to predict the temporal and spatial evolution of species, as well as streamer propagation. The simulation results show that electron density increases nearly exponentially in the direction to the anode at the electron avalanche. Streamer propagation velocity is about 5.26 × 104 m/s from anode to cathode in the simulated condition. The primary positive ion, negative ion, and excited species are O2+, O3- and O2(1Δg) in pulsed DBD in air, respectively. N2O has the largest density among nitrogen oxides. e and N2+ densities in the streamer head increase gradually to maximum values with the development of the streamer. Meanwhile, the O2+, O, O3, N2(A3Σ) and N2O densities reach maximum values in the vicinity of the anode. supported by National Natural Science Foundation of China (Nos. 51366012 and 11105067), Jiangxi Province Young Scientists (Jinggang Star) Cultivation Plan of China (No. 20133BCB23008), Natural Science Foundation of Jiangxi, China (No. 20151BAB206047) and Jiangxi Province Higher School Science and Technology Landing Plan of China (No. KJLD-14015)

  16. Angularly symmetric splitting of a light beam upon reflection and refraction at an air-dielectric plane boundary: reply.

    PubMed

    Azzam, R M A

    2016-05-01

    The simplified explicit expressions derived by Andersen [J. Opt. Soc. Am. A33, 984 (2016)JOAOD60740-323210.1364/JOSAA.32.000984], that relate to angularly symmetric beam splitting by reflection and refraction at an air-dielectric interface recently described by Azzam [J. Opt. Soc. Am. A32, 2436 (2015)JOAOD60740-323210.1364/JOSAA.32.002436], are welcome. A few additional remarks are also included in my reply to Andersen's comment. PMID:27140898

  17. Superhydrophobic and oleophobic fibers by coaxial electrospinning.

    PubMed

    Han, Daewoo; Steckl, Andrew J

    2009-08-18

    Control of surface wetting properties to produce strongly hydrophobic or hydrophilic effects is at the heart of many macro- and microfluidic applications. In this work, we have investigated coaxial electrospinning to produce core-sheath-structured nano/microfibers that combine different properties from individual core and sheath materials. Teflon AF is an amorphous fluoropolymer that is widely utilized as a hydrophobic material. Hydrophobic fluoropolymers are normally not electrospinnable because their low dielectric constant prevents sufficient charging for a solution to be electrospun. The first Teflon electrospun fibers are reported using coaxial electrospinning with Teflon AF sheath and poly(epsilon-caprolactone) (PCL) core materials. Using these core/sheath fibers, superhydrophobic and oleophobic membranes have been successfully produced. These coaxial fibers also preserve the core material properties as demonstrated with mechanical tensile tests. The fact that a normally nonelectrospinnable material such as Teflon AF has been successfully electrospun when combined with an electrospinnable core material indicates the potential of coaxial electrospinning to provide a new degree of freedom in terms of material combinations for many applications. PMID:19374456

  18. [Air Dielectric Barrier Discharge Emission Spectrum Measurement and Particle Analysis of Discharge Process].

    PubMed

    Shen, Shuang-yan; Jin, Xing; Zhang, Peng

    2016-02-01

    The emission spectrum detection and diagnosis is one of the most common methods of application to the plasma. It provides wealth of information of the chemical and physical process of the plasma. The analysis of discharge plasma dynamic behavior plays an important role in the study of gas discharge mechanism and application. An air dielectric discharge spectrum measuring device was designed and the emission spectrum data was measured under the experimental condition. The plasma particles evolution was analyzed from the emission spectrum. The numerical calculation model was established and the density equation, energy transfer equation and the Boltzmann equation was coupled to analyze the change of the particle density to explain the emission spectrum characteristics. The results are that the particle density is growing with the increasing of reduced electric field. The particle density is one or two orders of magnitude difference for the same particle at the same moment for the reduced electric field of 40, 60 or 80 Td. A lot of N₂ (A³), N₂ (A³) and N₂ (C³) particles are generated by the electric field excitation. However, it transforms quickly due to the higher energy level. The transformation returns to the balance after the discharge of 10⁻⁶ s. The emission spectrometer measured in the experiments is mostly generated by the transition of excited nitrogen. The peak concentration of O₂ (A¹), O₂ (B¹) and O₂ (A³ ∑⁺u) is not low compared to the excited nitrogen molecules. These particles energy is relatively low and the transition spectral is longer. The spectrometer does not capture the oxygen emission spectrum. And the peak concentration of O particles is small, so the transition emission spectrum is weak. The calculation results of the stabled model can well explain the emission spectrum data. PMID:27209731

  19. Contribution of positive and negative ions to the electrohydrodynamic force in a dielectric barrier discharge plasma actuator operating in air

    SciTech Connect

    Boeuf, J. P.; Lagmich, Y.; Pitchford, L. C.

    2009-07-15

    We present a parametric study of the electrohydrodynamic force generated by surface dielectric barrier discharge plasma actuators in air for sinusoidal voltage waveforms. The simulation results confirm that momentum is transferred from the charged particles to the neutral species in the same direction during both positive and negative parts of the cycle. The momentum transfer is due to positive ions during the positive part of the cycle (electrode above the dielectric layer is the anode), and to negative ions during the negative part of the cycle. The relative contribution of the positive and negative parts of the cycle depends on the voltage amplitude and frequency. The model predicts that the contribution of negative ions tends to be dominant at low voltage frequencies and high voltage amplitudes.

  20. Coaxial foilless diode

    SciTech Connect

    Kong, Long; Liu, QingXiang; Li, XiangQiang; Wang, ShaoMeng

    2014-05-15

    A kind of coaxial foilless diode is proposed in this paper, with the structure model and operating principle of the diode are given. The current-voltage relation of the coaxial foilless diode and the effects of structure parameters on the relation are studied by simulation. By solving the electron motion equation, the beam deviation characteristic in the presence of external magnetic field in transmission process is analyzed, and the relationship between transverse misalignment with diode parameters is obtained. These results should be of interest to the area of generation and propagation of radial beam for application of generating high power microwaves.

  1. Radio frequency coaxial feedthrough device

    DOEpatents

    Owens, Thomas L.; Baity, Frederick W.; Hoffman, Daniel J.; Whealton, John H.

    1987-01-01

    A radio frequency coaxial vacuum feedthrough is provided which utilizes a cylindrical ceramic vacuum break formed of an alumina ceramic. The cylinder is coaxially disposed and brazed between tapered coaxial conductors to form a vacuum sealed connection between a pressurized upstream coaxial transmission line and a utilization device located within a vacuum container. The feedthrough provides 50 ohm matched impedance RF feedthrough up to about 500 MHz at power levels in the multimegawatt range.

  2. Angularly symmetric splitting of a light beam upon reflection and refraction at an air-dielectric plane boundary: comment.

    PubMed

    Andersen, Torben B

    2016-05-01

    In a recent paper, conditions for achieving equal and opposite angular deflections of a light beam by reflection and refraction at an interface between air and a dielectric were determined [J. Opt. Soc. Am. A32, 2436 (2015)JOAOD60740-323210.1364/JOSAA.32.002436]. The paper gives plots of angles of incidence and refraction as a function of the prism refractive index as well as plots of reflectances and incident linear-polarization azimuth angles as functions of the refractive index. We show here that it is possible to express these quantities as simple algebraic functions of the refractive index. PMID:27140897

  3. Realistic simulations of coaxial atomisation

    NASA Astrophysics Data System (ADS)

    Zaleski, Stephane; Fuster, Daniel; Arrufat Jackson, Tomas; Ling, Yue; Cenni, Matteo; Scardovelli, Ruben; Tryggvason, Gretar

    2015-11-01

    We discuss advances in the methodology for Direct Numerical Simulations of coaxial atomization in typical experimental conditions. Such conditions are extremely demanding for the numerical methods. The key difficulty seems to be the combination of high density ratios, surface tension, and large Reynolds numbers. We explore how using a momentum-conserving Volume-Of-Fluid scheme allows to improve the stability and accuracy of the simulations. We show computational evidence that the use of momentum conserving methods allows to reduce the required number of grid points by an order of magnitude in the simple case of a falling rain drop. We then apply these ideas to coaxial atomization. We show that in moderate-size simulations in air-water conditions close to real experiments, instabilities are still present and then discuss ways to fix them. Among those, removing small VOF debris and improving the time-stepping scheme are two important directions.The accuracy of the simulations is then discussed in comparison with experimental results and in particular the angle of ejection of the structures. The code used for this research is free and distributed at http://parissimulator.sf.net.

  4. Coaxial Electric Heaters

    NASA Technical Reports Server (NTRS)

    Strekalov, Dmitry; Matsko, Andrey; Savchenkov, Anatoliy; Maleki, Lute

    2008-01-01

    Coaxial electric heaters have been conceived for use in highly sensitive instruments in which there are requirements for compact heaters but stray magnetic fields associated with heater electric currents would adversely affect operation. Such instruments include atomic clocks and magnetometers that utilize heated atomic-sample cells, wherein stray magnetic fields at picotesla levels could introduce systematic errors into instrument readings. A coaxial electric heater is essentially an axisymmetric coaxial cable, the outer conductor of which is deliberately made highly electrically resistive so that it can serve as a heating element. As in the cases of other axisymmetric coaxial cables, the equal magnitude electric currents flowing in opposite directions along the inner and outer conductors give rise to zero net magnetic field outside the outer conductor. Hence, a coaxial electric heater can be placed near an atomic-sample cell or other sensitive device. A coaxial electric heater can be fabricated from an insulated copper wire, the copper core of which serves as the inner conductor. For example, in one approach, the insulated wire is dipped in a colloidal graphite emulsion, then the emulsion-coated wire is dried to form a thin, uniform, highly electrically resistive film that serves as the outer conductor. Then the film is coated with a protective layer of high-temperature epoxy except at the end to be electrically connected to the power supply. Next, the insulation is stripped from the wire at that end. Finally, electrical leads from the heater power supply are attached to the exposed portions of the wire and the resistive film. The resistance of the graphite film can be tailored via its thickness. Alternatively, the film can be made from an electrically conductive paint, other than a colloidal graphite emulsion, chosen to impart the desired resistance. Yet another alternative is to tailor the resistance of a graphite film by exploiting the fact that its resistance

  5. High Power Co-Axial SRF Coupler

    SciTech Connect

    M.L. Neubauer, R.A. Rimmer

    2009-05-01

    There are over 35 coupler designs for SRF cavities ranging in frequency from 325 to 1500 MHz. Two-thirds of these designs are coaxial couplers using disk or cylindrical ceramics in various combinations and configurations. While it is well known that dielectric losses go down by several orders of magnitude at cryogenic temperatures, it not well known that the thermal conductivity also goes down, and it is the ratio of thermal conductivity to loss tangent (SRF ceramic Quality Factor) and ceramic volume which will determine the heat load of any given design. We describe a novel robust co-axial SRF coupler design which uses compressed window technology. This technology will allow the use of highly thermally conductive materials for cryogenic windows. The mechanical designs will fit into standard-sized ConFlat® flanges for ease of assembly. Two windows will be used in a coaxial line. The distance between the windows is adjusted to cancel their reflections so that the same window can be used in many different applications at various frequencies.

  6. Internal coaxial cable seal system

    DOEpatents

    Hall, David R.; Sneddon, Cameron; Dahlgren, Scott Steven; Briscoe, Michael A.

    2006-07-25

    The invention is a seal system for a coaxial cable and is placed within the coaxial cable and its constituent components. A series of seal stacks including load ring components and elastomeric rings are placed on load bearing members within the coaxial cable sealing the annular space between the coaxial cable and an electrical contact passing there through. The coaxial cable is disposed within drilling components to transmit electrical signals between drilling components within a drill string. The seal system can be used in a variety of downhole components, such as sections of pipe in a drill string, drill collars, heavy weight drill pipe, and jars.

  7. Development of a diffuse air-argon plasma source using a dielectric-barrier discharge at atmospheric pressure

    SciTech Connect

    Tang Jie; Jiang Weiman; Zhao Wei; Wang Yishan; Li Shibo; Wang Haojing; Duan Yixiang

    2013-01-21

    A stable diffuse large-volume air plasma source was developed by using argon-induced dielectric-barrier discharges at atmospheric pressure. This plasma source can be operated in a filamentary discharge with the average areal power density of 0.27 W/cm{sup 2} and the gas temperature of 315{+-}3 K. Spatial measurement of emission spectrum and temperature indicates that this plasma is uniform in the central region along the transverse direction. It is also found that the formation of diffuse air plasma mainly lies in the creation of sufficient seed electrons by the Penning effect through collisions between two argon or nitrogen metastables at low electric fields.

  8. Dielectric Spectroscopy of Fresh Chicken Breast Meat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The dielectric properties of fresh chicken breast meat were measured at temperatures from 5 to 85 'C over the frequency range from 10 MHz to 1.8 GHz by dielectric spectroscopy techniques with an open-ended coaxial-line probe and impedance analyzer. Samples were cut from both the Pectoralis major an...

  9. Dielectric Spectroscopy of Fresh Chicken Breast Meat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Technical abstract The dielectric properties of fresh chicken breast meat were measured at temperatures from 5 to 85 degrees °C over the frequency range from 10 MHz to 1.8 GHz by dielectric spectroscopy techniques with an open-ended coaxial-line probe and impedance analyzer. Samples were cut from ...

  10. Surface treatment of polypropylene (PP) film by 50 Hz dielectric barrier discharge produced in air and argon/air mixture at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Joshi, Ujjwal Man; Subedi, Deepak Prasad

    2015-07-01

    Thin films of polypropylene (PP) are treated for improving hydrophilicity using non-thermal plasma generated by 50 Hz line frequency dielectric barrier discharge produced in air and argon/air mixture at atmospheric pressure. PP samples before and after the treatments are studied using contact angle measurements, surface free energy calculations and scanning electron microscopy (SEM). Distilled water (H2O), glycerol (C3H8O3) and diiodomethane (CH2I2) are used as test liquids. The contact angle measurements between test liquids and PP samples are used to determine total surface free energy using sessile drop technique. PP films show a remarkable increase in surface free energy after plasma treatment. SEM analysis of the plasma-treated PP films shows that plasma treatment introduces greater roughness on the surface leading to the increased surface free energy. Furthermore, it is found that introducing a small quantity of argon can enhance the surface treatment remarkably.

  11. High power coaxial ubitron

    NASA Astrophysics Data System (ADS)

    Balkcum, Adam J.

    In the ubitron, also known as the free electron laser, high power coherent radiation is generated from the interaction of an undulating electron beam with an electromagnetic signal and a static periodic magnetic wiggler field. These devices have experimentally produced high power spanning the microwave to x-ray regimes. Potential applications range from microwave radar to the study of solid state material properties. In this dissertation, the efficient production of high power microwaves (HPM) is investigated for a ubitron employing a coaxial circuit and wiggler. Designs for the particular applications of an advanced high gradient linear accelerator driver and a directed energy source are presented. The coaxial ubitron is inherently suited for the production of HPM. It utilizes an annular electron beam to drive the low loss, RF breakdown resistant TE01 mode of a large coaxial circuit. The device's large cross-sectional area greatly reduces RF wall heat loading and the current density loading at the cathode required to produce the moderate energy (500 keV) but high current (1-10 kA) annular electron beam. Focusing and wiggling of the beam is achieved using coaxial annular periodic permanent magnet (PPM) stacks without a solenoidal guide magnetic field. This wiggler configuration is compact, efficient and can propagate the multi-kiloampere electron beams required for many HPM applications. The coaxial PPM ubitron in a traveling wave amplifier, cavity oscillator and klystron configuration is investigated using linear theory and simulation codes. A condition for the dc electron beam stability in the coaxial wiggler is derived and verified using the 2-1/2 dimensional particle-in-cell code, MAGIC. New linear theories for the cavity start-oscillation current and gain in a klystron are derived. A self-consistent nonlinear theory for the ubitron-TWT and a new nonlinear theory for the ubitron oscillator are presented. These form the basis for simulation codes which, along

  12. On spatial stabilization of dielectric barrier discharge microfilaments by residual heat build-up in air

    NASA Astrophysics Data System (ADS)

    Ráhel, Jozef; Szalay, Zsolt; Čech, Jan; Morávek, Tomás

    2016-04-01

    Microfilaments of dielectric barrier discharge are known for their multiple re-appearance at the same spot on dielectrics. This effect of localized re-appearance is driven by residual excited species and ions, surface charge deposited on the dielectric and the local temperature build-up resulting in the local increase of reduced electric field E/ΔN. To assess the magnitude of the latter, the breakdown voltage vs. temperature up to 180 °C was carefully measured at coplanar DBD and used as an input into the numerical simulation of heat build-up by the train of discharge pulses. An average reduction of breakdown voltage was found to be 20 V/K. The model predicted a quasi-stable microfilament temperature into which the thermal build-up rapidly converges. Its magnitude agreed well with the reported rotational temperature of similar electrode configuration. The impact of quasi-stable temperature on microfilament formation dynamics is further discussed. Contribution to the Topical Issue "Recent Breakthroughs in Microplasma Science and Technology", edited by Kurt Becker, Jose Lopez, David Staack, Klaus-Dieter Weltmann and Wei Dong Zhu.

  13. Characteristics of TiO2 Thin Film Surfaces Treated by Helium and Air Dielectric Barrier Discharge Plasmas

    NASA Astrophysics Data System (ADS)

    Kawakami, Retsuo; Niibe, Masahito; Takeichi, Atsushi; Mori, Yuta; Konishi, Masashi; Kotaka, Takuya; Matsunaga, Fumihiko; Takasaki, Toshihide; Kitano, Takanori; Miyazaki, Takahiro; Inaoka, Takeshi; Tominaga, Kikuo

    2012-08-01

    The characteristics of TiO2 thin film surfaces treated with He and air dielectric barrier discharge (DBD) plasmas at different gas pressures are investigated. There is a difference between the two DBD plasma characteristics: for He-DBD, which is an atmospheric pressure glow discharge (APGD), the breakdown voltage and discharge current hardly change with increasing gas pressure, whereas for air-DBD, which is basically a filamentary discharge, they increase with increasing gas pressure. There is also a difference between the characteristics of TiO2 surfaces treated with the two DBDs. The surface roughness for He-DBD is lower than the roughness of the as-grown surface, whereas that for air-DBD is higher. The surface hydrophilicity for He-DBD is more enhanced than the hydrophilicity of the as-grown surface regardless of UV irradiation. The hydrophilicity for air-DBD is dependent on UV irradiation. It is more enhanced with UV irradiation; it is not improved adequately without UV irradiation.

  14. Monitoring of the dielectric strength of the air/SF6-mixtures for application in gas insulated transmission lines

    NASA Astrophysics Data System (ADS)

    Moukengué Imano, A.

    2004-11-01

    This paper investigates the dielectric properties of various air/SF{6} gas mixtures based upon a cylindrical spacer model with adhering particle on the surface under homogeneous field conditions. The investigation involves a comparison with pure SF{6}. The flashover field strength for clean and particle contaminated spacer surface under lightning impulse (LI) and alternating voltage (AC) stress is determined. The results of the investigations show the sensitivity of air/SF{6} gas mixtures to conducting particles on spacer surfaces for gas pressure up to 1000 kPa. Moreover, the correspondence between pure SF{6} and air/SF{6} gas mixtures for AC and LI flashover field strength range from 50 to 178 kV/cm is determined. Conclusions are drawn about the ability of air/SF{6} gas mixtures to serve as technically efficient media for long Gas Insulated Transmission Lines (GITL). The results shed light on the issue of the SF{6} reduction and the particle detectability in GITL.

  15. CO-AXIAL DISCHARGES

    DOEpatents

    Luce, J.S.; Smith, L.P.

    1960-11-22

    A method and apparatus are given for producing coaxial arc discharges in an evacuated enclosure and within a strong, confining magnetic field. The arcs are maintained at a high potential difference. Electrons will diffuse to the more positive arc from the negative arc, and positive ions will diffuse from the more positive arc to the negative arc. Coaxial arc discharges have the advantage that ions which return to strike the positive arc discharge will lose no energy since they do not strike a solid wall or electrode. Those discharges are useful in confining an ionized plasma between the discharges, and have the advantage of preventing impurities from the walls of the enclosure from entering ihe plasma area because of the arc barrier set up bv the cylindrical outer arc.

  16. Coaxial phased array antenna

    NASA Astrophysics Data System (ADS)

    Ellis, H., Jr.

    1980-08-01

    A coaxial antenna array for communicating circularly polarized electromagnetic radiation is disclosed. A pair of open ended antenna cavities is coaxially constructed and operates by excitation of linear radiation elements arranged within each of the cavities. A pair of crossed dipole radiation devices is centered within the inner cavity and operated by means of a phase shifting network circuit to transmit as well as receive circularly polarized radiation. Four monopole radiation devices are symmetrically arranged to operate in the outer cavity in phase quadrature by means of the phase shifting network circuit to both transmit and receive circularly polarized electromagnetic radiation. Combined operation of the two antenna cavities with a 180 deg phase differential between the fields related to the two antenna cavities provides a broad beam, relatively wide frequency bandwidth communication capability. Particular embodiments disclosed feature a generally square cavity array as well as a circular cavity array.

  17. Co-axial discharges

    DOEpatents

    Luce, J. S.; Smith, L. P.

    1960-11-22

    An apparatus is described for producing coaxial arc discharges in an evacuated enclosure and within a strong, confining magnetic field. The arcs are maintained at a high potential difference. Electrons diffuse to the more positive arc from the negative arc, and positive ions diffuse from the more positive arc to the negative arc. Coaxial arc discharges have the advantuge that ions that return to strike the positive arc discharge will lose no energy since they do not strike a solid wall or electrode. These discharges are useful in confining an ionized plasma between the discharges and have the advantage of preventing impurities from the walls of the enclosure from entering the plasma area because of the arc barrier set up by the cylindrical outer arc. (auth)

  18. Coaxial phased array antenna

    NASA Technical Reports Server (NTRS)

    Ellis, H., Jr. (Inventor)

    1980-01-01

    A coaxial antenna array for communicating circularly polarized electromagnetic radiation is disclosed. A pair of open ended antenna cavities is coaxially constructed and operates by excitation of linear radiation elements arranged within each of the cavities. A pair of crossed dipole radiation devices is centered within the inner cavity and operated by means of a phase shifting network circuit to transmit as well as receive circularly polarized radiation. Four monopole radiation devices are symmetrically arranged to operate in the outer cavity in phase quadrature by means of the phase shifting network circuit to both transmit and receive circularly polarized electromagnetic radiation. Combined operation of the two antenna cavities with a 180 deg phase differential between the fields related to the two antenna cavities provides a broad beam, relatively wide frequency bandwidth communication capability. Particular embodiments disclosed feature a generally square cavity array as well as a circular cavity array.

  19. Experimental assessment of spanwise-oscillating dielectric electroactive surfaces for turbulent drag reduction in an air channel flow

    NASA Astrophysics Data System (ADS)

    Gatti, Davide; Güttler, Andreas; Frohnapfel, Bettina; Tropea, Cameron

    2015-05-01

    In the present work, wall oscillations for turbulent skin friction drag reduction are realized in an air turbulent duct flow by means of spanwise-oscillating active surfaces based on dielectric electroactive polymers. The actuator system produces spanwise wall velocity oscillations of 820 mm/s semi-amplitude at its resonance frequency of 65 Hz while consuming an active power of a few 100 mW. The actuators achieved a maximum integral drag reduction of 2.4 %. The maximum net power saving, budget of the power benefit and cost of the control, was measured for the first time with wall oscillations. Though negative, the net power saving is order of magnitudes higher than what has been estimated in previous studies. Two new direct numerical simulations of turbulent channel flow show that the finite size of the actuator only partially explains the lower values of integral drag reduction typically achieved in laboratory experiments compared to numerical simulations.

  20. Ion energy and angular distributions onto polymer surfaces delivered by dielectric barrier discharge filaments in air: II. Particles

    NASA Astrophysics Data System (ADS)

    Babaeva, Natalia Yu; Kushner, Mark J.

    2011-06-01

    Atmospheric pressure streamers intersecting particles are of interest in the context of plasma aided combustion, where the particle may be a fuel aerosol droplet, or in sterilization of air, where the particle may be a bacterium. The ion energy and angular distributions (IEADs) incident on the particles, small curved dielectric surfaces, then in part determine the propensity for activating chemical reactions or, in the case of bacteria, the plasma's sterilization capability. In this paper, we discuss results from a computational investigation of IEADs on small particles (45 µm radius) produced by atmospheric pressure discharge. Streamers intersecting a particle momentarily generate a large sheath potential as the streamer passes by as the particle charges towards the plasma floating potential. During that time, ions of energies up to 3-10 eV can strike the particle. The permittivity of the particle and the streamer polarity in part determine the character of the IEAD.

  1. Treatment of poly(ethylene terephthalate) foils by atmospheric pressure air dielectric barrier discharge and its influence on cell growth

    NASA Astrophysics Data System (ADS)

    Kuzminova, Anna; Vandrovcová, Marta; Shelemin, Artem; Kylián, Ondřej; Choukourov, Andrei; Hanuš, Jan; Bačáková, Lucie; Slavínská, Danka; Biederman, Hynek

    2015-12-01

    In this contribution an effect of dielectric barrier discharge (DBD) sustained in air at atmospheric pressure on surface properties of poly(ethylene terephthalate) (PET) foils is studied. It is found that exposure of PET to DBD plasma leads to rapid changes of surface chemical composition, wettability, surface morphology as well as mechanical properties of PET surface. In addition, based on biological tests that were performed using two cell types (Saos-2 human osteoblast-like cells and HUVEC human umbilical vein endothelial cells), it may be concluded that DBD plasma treatment positively influences cell growth on PET. This effect was found to be connected predominantly with increased surface energy and oxygen content of the surface of treated PET foils.

  2. Angularly symmetric splitting of a light beam upon reflection and refraction at an air-dielectric plane boundary.

    PubMed

    Azzam, R M A

    2015-12-01

    Conditions for achieving equal and opposite angular deflections of a light beam by reflection and refraction at an air-dielectric boundary are determined. Such angularly symmetric beam splitting (ASBS) is possible only if the angle of incidence is >60° by exactly one third of the angle of refraction. This simple law, plus Snell's law, leads to several analytical results that clarify all aspects of this phenomenon. In particular, it is shown that the intensities of the two symmetrically deflected beams can be equalized by proper choice of the prism refractive index and the azimuth of incident linearly polarized light. ASBS enables a geometrically attractive layout of optical systems that employ multiple prism beam splitters. PMID:26831398

  3. Temperature and moisture dependent dielectric properties of legume flours associated with dielectric heating

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dielectric properties of flour samples from four legumes (chickpea, green pea, lentil, and soybean) at four different moisture contents were measured using an open-ended coaxial probe and impedance analyzer at frequencies of 10 to 1800 MHz and temperatures of 20 to 90°C. The dielectric constant and ...

  4. Effects of Environmental Humidity and Temperature on Sterilization Efficiency of Dielectric Barrier Discharge Plasmas in Atmospheric Pressure Air

    NASA Astrophysics Data System (ADS)

    Kikuchi, Yusuke; Miyamae, Masanori; Nagata, Masayoshi; Fukumoto, Naoyuki

    2011-01-01

    The inactivation of Bacillus atrophaeus spores by a dielectric barrier discharge (DBD) plasma in atmospheric humid air was investigated in order to develop a low-temperature, low-cost, and high-speed plasma sterilization technique. The biological indicators covered with a Tyvek sheet were set just outside the DBD plasma region, where air temperature and humidity as a discharge gas were precisely controlled by an environmental test chamber. The results show that the inactivation of B. atrophaeus spores was found to be dependent strongly on humidity, and was completed within 15 min at a relative humidity of 90% and a temperature of 30 °C. The treatment time for sterilization is shorter than those of conventional sterilization methods using ethylene oxide gas and dry heat treatment. The inactivation rates depend on not only relative humidity but also temperature, so that water content in air could determine the generation of reactive species such as hydroxyl radicals that are effective for the inactivation of B. atrophaeus spores.

  5. Degradation of aqueous phenol solutions by coaxial DBD reactor

    NASA Astrophysics Data System (ADS)

    Dojcinovic, B. P.; Manojlovic, D.; Roglic, G. M.; Obradovic, B. M.; Kuraica, M. M.; Puric, J.

    2008-07-01

    Solutions of 2-chlorophenol, 4-chlorophenol and 2,6-dichlorophenol in bidistilled and water from the river Danube were treated in plasma reactor. In this reactor, based on coaxial dielectric barrier discharge at atmospheric pressure, plasma is formed over a thin layer of treated water. After one pass through the reactor, starting chlorophenols concentration of 20 mg/l was diminished up to 95 %. Kinetics of the chlorophenols degradation was monitored by High Pressure Liquid Chromatography method (HPLC).

  6. High-power CO[sub 2] laser with coaxial waveguide and diffusion cooling

    SciTech Connect

    Ehrlichmann, D.; Habich, U.; Plum, H.D. )

    1993-07-01

    A diffusion-cooled CO[sub 2] laser using a coaxial waveguide is analyzed theoretically and experimentally. The resonator extracting the laser beam consists of two annular plane mirrors enclosing the two ends of the waveguide. The beam exits through an aperture in one of these annular mirrors. The mirror tilt is shown to provide efficient beam extraction through this aperture. A theoretical resonator model based on the vector modes of propagation in a dielectric coaxial waveguide is presented. Experimental data show the feasibility of coaxial waveguide lasers and their ability to supply beams of high power and quality. Experimental data are discussed with respect to the presented theory.

  7. Hermetic sealing of a coaxial cable by a double tourniquet

    NASA Astrophysics Data System (ADS)

    Ponsonby, J. E. B.

    1994-04-01

    A method for sealing a semirigid solid dielectric radio frequency quality coaxial cable against ultrahigh vacuum is described. It was developed for the output cable of a hydrogen maser frequency standard that operates at the single spot frequency of 1420.4 MHz. The cable is squeezed in two places a quarter of a wavelength apart so that the two impedance mismatches introduced cancel to the first order at the spot working frequency. The length of solid dielectric trapped between the two ``tourniquets'' forms an excellent and enduring vacuum seal.

  8. Coaxial cable cutter

    DOEpatents

    Hall, Leslie C.; Hedges, Robert S.

    1990-04-10

    A cutting device is provided which is useful in trimming the jackets from semi-rigid coaxial cables and wire having a cutting bit and support attached to movable jaws. A thumbpiece is provided to actuate the opening of the jaws for receiving the cable to be trimmed, and a spring member is provided to actuate the closing of the jaws when thumbpiece is released. The cutting device utilizes one moving part during the cutting operation by using a rolling cut action. The nature of the jaws allows the cutting device to work in space having clearances less than 0.160 inches.

  9. Two-dimensional particle-in cell/Monte Carlo simulations of a packed-bed dielectric barrier discharge in air at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Zhang, Ya; Wang, Hong-yu; Jiang, Wei; Bogaerts, Annemie

    2015-08-01

    The plasma behavior in a parallel-plate dielectric barrier discharge (DBD) is simulated by a two-dimensional particle-in-cell/Monte Carlo collision model, comparing for the first time an unpacked (empty) DBD with a packed bed DBD, i.e., a DBD filled with dielectric spheres in the gas gap. The calculations are performed in air, at atmospheric pressure. The discharge is powered by a pulse with a voltage amplitude of -20 kV. When comparing the packed and unpacked DBD reactors with the same dielectric barriers, it is clear that the presence of the dielectric packing leads to a transition in discharge behavior from a combination of negative streamers and unlimited surface streamers on the bottom dielectric surface to a combination of predominant positive streamers and limited surface discharges on the dielectric surfaces of the beads and plates. Furthermore, in the packed bed DBD, the electric field is locally enhanced inside the dielectric material, near the contact points between the beads and the plates, and therefore also in the plasma between the packing beads and between a bead and the dielectric wall, leading to values of 4× {10}8 V m-1, which is much higher than the electric field in the empty DBD reactor, i.e., in the order of 2× {10}7 V m-1, thus resulting in stronger and faster development of the plasma, and also in a higher electron density. The locally enhanced electric field and the electron density in the case of a packed bed DBD are also examined and discussed for three different dielectric constants, i.e., {ɛ }r=22 (ZrO2), {ɛ }r=9 (Al2O3) and {ɛ }r=4 (SiO2). The enhanced electric field is stronger and the electron density is higher for a larger dielectric constant, because the dielectric material is more effectively polarized. These simulations are very important, because of the increasing interest in packed bed DBDs for environmental applications.

  10. Fabrication of air-stable n-type carbon nanotube thin-film transistors on flexible substrates using bilayer dielectrics.

    PubMed

    Li, Guanhong; Li, Qunqing; Jin, Yuanhao; Zhao, Yudan; Xiao, Xiaoyang; Jiang, Kaili; Wang, Jiaping; Fan, Shoushan

    2015-11-14

    Single-walled carbon nanotube (SWNT) thin-film transistors hold great potential for flexible electronics. However, fabrication of air-stable n-type devices by methods compatible with standard photolithography on flexible substrates is challenging. Here, we demonstrated that by using a bilayer dielectric structure of MgO and atomic layer deposited (ALD) Al2O3 or HfO2, air-stable n-type devices can be obtained. The mechanism for conduction type conversion was elucidated and attributed to the hole depletion in SWNT, the decrease of the trap state density by MgO assimilating adsorbed water molecules in the vicinity of SWNT, and the energy band bending because of the positive fixed charges in the ALD layer. The key advantage of the method is the relatively low temperature (120 or 90 °C) required here for the ALD process because we need not employ this step to totally remove the absorbates on the SWNTs. This advantage facilitates the integration of both p-type and n-type transistors through a simple lift off process and compact CMOS inverters were demonstrated. We also demonstrated that the doping of SWNTs in the channel plays a more important role than the Schottky barriers at the metal contacts in carbon nanotube thin-film transistors, unlike the situation in individual SWNT-based transistors. PMID:26451806

  11. Imaging and manipulation of nanoscale materials with coaxial and triaxial AFM probes

    NASA Astrophysics Data System (ADS)

    Brown, Keith A.; Westervelt, R. M.

    2011-03-01

    We present coaxial and triaxial Atomic Force Microscope (AFM) probes and demonstrate their applications to imaging and manipulating nanoscale materials. A coaxial probe with concentric electrodes at its tip creates a highly confined electric field that decays as a dipole field, making the coaxial probe useful for near field imaging of electrical properties. We show nearly an order of magnitude improvement in the step resolution of Kelvin probe force microscopy with coaxial probes. We further demonstrate that coaxial probes can image dielectric materials with the dielectrophoretic force. In addition to imaging, the capacitive structure that makes up the cantilever of a coaxial probe is used to locally mechanically drive the probe, making them self-driving probes. Finally, coaxial probes can create strong forces with dielectrophoresis (DEP) which we combine with the nanometer precision of the AFM to create a nanometer scale pick-and-place tool. We demonstrate 3D assembly of micrometer scale objects with coaxial probes using positive DEP and discuss the assembly of nanometer scale objects with triaxial probes using negative DEP.

  12. Surface treatment of polypropylene (PP) film by 50 Hz dielectric barrier discharge produced in air and argon/air mixture at atmospheric pressure

    SciTech Connect

    Joshi, Ujjwal Man Subedi, Deepak Prasad

    2015-07-31

    Thin films of polypropylene (PP) are treated for improving hydrophilicity using non-thermal plasma generated by 50 Hz line frequency dielectric barrier discharge produced in air and argon/air mixture at atmospheric pressure. PP samples before and after the treatments are studied using contact angle measurements, surface free energy calculations and scanning electron microscopy (SEM). Distilled water (H{sub 2}O), glycerol (C{sub 3}H{sub 8}O{sub 3}) and diiodomethane (CH{sub 2}I{sub 2}) are used as test liquids. The contact angle measurements between test liquids and PP samples are used to determine total surface free energy using sessile drop technique. PP films show a remarkable increase in surface free energy after plasma treatment. SEM analysis of the plasma-treated PP films shows that plasma treatment introduces greater roughness on the surface leading to the increased surface free energy. Furthermore, it is found that introducing a small quantity of argon can enhance the surface treatment remarkably.

  13. A nanosecond surface dielectric barrier discharge in air at high pressures and different polarities of applied pulses: transition to filamentary mode

    NASA Astrophysics Data System (ADS)

    Stepanyan, S. A.; Starikovskiy, A. Yu; Popov, N. A.; Starikovskaia, S. M.

    2014-08-01

    The development of a nanosecond surface dielectric barrier discharge in air at pressures 1-6 bar is studied. At atmospheric pressure, the discharge develops as a set of streamers starting synchronously from the high-voltage electrode and propagating along the dielectric layer. Streamers cover the dielectric surface creating a ‘quasi-uniform’ plasma layer. At high pressures and high voltage amplitudes on the cathode, filamentation of the discharge is observed a few nanoseconds after the discharge starts. Parameters of the observed ‘streamers-to-filaments’ transition are measured; physics of transition is discussed on the basis of theoretical estimates and numerical modeling. Ionization-heating instability on the boundary of the cathode layer is suggested as a mechanism of filamentation.

  14. Coaxial atomic force microscope tweezers

    NASA Astrophysics Data System (ADS)

    Brown, K. A.; Aguilar, J. A.; Westervelt, R. M.

    2010-03-01

    We demonstrate coaxial atomic force microscope (AFM) tweezers that can trap and place small objects using dielectrophoresis (DEP). An attractive force is generated at the tip of a coaxial AFM probe by applying a radio frequency voltage between the center conductor and a grounded shield; the origin of the force is found to be DEP by measuring the pull-off force versus applied voltage. We show that the coaxial AFM tweezers can perform three-dimensional assembly by picking up a specified silica microsphere, imaging with the microsphere at the end of the tip, and placing it at a target destination.

  15. Fabrication of air-stable n-type carbon nanotube thin-film transistors on flexible substrates using bilayer dielectrics

    NASA Astrophysics Data System (ADS)

    Li, Guanhong; Li, Qunqing; Jin, Yuanhao; Zhao, Yudan; Xiao, Xiaoyang; Jiang, Kaili; Wang, Jiaping; Fan, Shoushan

    2015-10-01

    Single-walled carbon nanotube (SWNT) thin-film transistors hold great potential for flexible electronics. However, fabrication of air-stable n-type devices by methods compatible with standard photolithography on flexible substrates is challenging. Here, we demonstrated that by using a bilayer dielectric structure of MgO and atomic layer deposited (ALD) Al2O3 or HfO2, air-stable n-type devices can be obtained. The mechanism for conduction type conversion was elucidated and attributed to the hole depletion in SWNT, the decrease of the trap state density by MgO assimilating adsorbed water molecules in the vicinity of SWNT, and the energy band bending because of the positive fixed charges in the ALD layer. The key advantage of the method is the relatively low temperature (120 or 90 °C) required here for the ALD process because we need not employ this step to totally remove the absorbates on the SWNTs. This advantage facilitates the integration of both p-type and n-type transistors through a simple lift off process and compact CMOS inverters were demonstrated. We also demonstrated that the doping of SWNTs in the channel plays a more important role than the Schottky barriers at the metal contacts in carbon nanotube thin-film transistors, unlike the situation in individual SWNT-based transistors.Single-walled carbon nanotube (SWNT) thin-film transistors hold great potential for flexible electronics. However, fabrication of air-stable n-type devices by methods compatible with standard photolithography on flexible substrates is challenging. Here, we demonstrated that by using a bilayer dielectric structure of MgO and atomic layer deposited (ALD) Al2O3 or HfO2, air-stable n-type devices can be obtained. The mechanism for conduction type conversion was elucidated and attributed to the hole depletion in SWNT, the decrease of the trap state density by MgO assimilating adsorbed water molecules in the vicinity of SWNT, and the energy band bending because of the positive fixed

  16. An in situ and downstream study of non-thermal plasma chemistry in an air fed dielectric barrier discharge (DBD)

    NASA Astrophysics Data System (ADS)

    Al-Abduly, Abdullah; Christensen, Paul

    2015-12-01

    This paper reports a spectroscopic study of non-thermal plasma chemistry in an air-fed dielectric barrier discharge (DBD) plasma jet. In situ analysis (i.e. the analysis of the plasma glow) and downstream analysis were carried out to identify and monitor species produced in the plasma as they propagate from the plasma glow to downstream regions. The analyses were carried out using Fourier Transform InfraRed (FTIR) and UV-Vis spectroscopies. The species: O3, N2O5, N2O, HNO3, CO2, CO and, for the first time, a vibrationally excited form of CO2 (i.e. \\text{CO}2* (v)) were identified in the plasma glow, while O3, N2O5, HNO3 and N2O were detected in the downstream exhaust. The behaviour of these species was monitored as a function of a range of experimental conditions including: input power, gas flow rate, relative humidity, gas temperature and feed gas composition. In addition, the uncertainty associated with UV-vis detection of ozone in the presence of N2O5 and/or HNO3 as interfering species was determined.

  17. Functionalization of Hydrogen-free Diamond-like Carbon Films using Open-air Dielectric Barrier Discharge Atmospheric Plasma Treatments

    SciTech Connect

    Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Instituto de Materiales de Madrid, C.S.I.C., Cantoblanco, 28049 Madrid, Spain; Instituto de Quimica-Fisica"Rocasolano"C.S.I.C., 28006 Madrid, Spain; Mahasarakham University, Mahasarakham 44150, Thailand; CASTI, CNR-INFM Regional Laboratory, L'Aquila 67100, Italy; SUNY Upstate Medical University, Syracuse, NY 13210, USA; Endrino, Jose; Endrino, J. L.; Marco, J. F.; Poolcharuansin, P.; Phani, A.R.; Allen, M.; Albella, J. M.; Anders, A.

    2007-12-28

    A dielectric barrier discharge (DBD) technique has been employed to produce uniform atmospheric plasmas of He and N2 gas mixtures in open air in order to functionalize the surface of filtered-arc deposited hydrogen-free diamond-like carbon (DLC) films. XPS measurements were carried out on both untreated and He/N2 DBD plasma treated DLC surfaces. Chemical states of the C 1s and N 1s peaks were collected and used to characterize the surface bonds. Contact angle measurements were also used to record the short- and long-term variations in wettability of treated and untreated DLC. In addition, cell viability tests were performed to determine the influence of various He/N2 atmospheric plasma treatments on the attachment of osteoblast MC3T3 cells. Current evidence shows the feasibility of atmospheric plasmas in producing long-lasting variations in the surface bonding and surface energy of hydrogen-free DLC and consequently the potential for this technique in the functionalization of DLC coated devices.

  18. Limiting current enhancements for a relativistic electron beam propagating through coaxial cylinders

    SciTech Connect

    Baedke, W. C.

    2009-09-15

    An investigation of the space-charge-limited (SCL) currents for un-neutralized relativistic electron beams drifting through an infinitely long dielectrically lined coaxial cylindrical structure with a biased inner conductor is presented. To begin, an approximate limiting current expression is developed for an un-neutralized finite-width relativistic electron beam drifting through a biased coaxial cylindrical structure, which contains no dielectric liner. The SCL currents are then numerically calculated and compared to the approximation and it is shown that there is good agreement between the two. Building on this, the SCL currents are then numerically calculated when a dielectric liner, which encloses the finite-width electron beam, is present. It is shown that when a dielectric liner is present, there is a point at which increases in the SCL currents saturate and increasing the relative dielectric constant provides no additional increase in the expected SCL currents. In addition, it is demonstrated that the dielectric liner, in conjunction with the biased inner conductor, provides significant SCL current enhancements when compared to a system with no dielectric liner and no biased inner conductor. Finally, the possibility of dielectric breakdown is addressed as well as the amount of accumulated charge at the vacuum-dielectric interface.

  19. 45. Building 102, view of waveguide "coaxial waste load" device ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    45. Building 102, view of waveguide "coaxial waste load" device connected to waveguide combiner. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  20. Study of the homogeneity of the current distribution in a dielectric barrier discharge in air by means of a segmented electrode

    NASA Astrophysics Data System (ADS)

    Malashin, M. V.; Moshkunov, S. I.; Khomich, V. Yu.

    2016-02-01

    The current distribution in a dielectric barrier discharge in atmospheric-pressure air at a natural humidity of 40-60% was studied experimentally with a time resolution of 200 ps. The experimental results are interpreted by means of numerically simulating the discharge electric circuit. The obtained results indicate that the discharge operating in the volumetric mode develops simultaneously over the entire transverse cross section of the discharge gap.

  1. Design and fabrication of dielectric diaphragm pressure sensors for applications to shock wave measurement in air

    NASA Astrophysics Data System (ADS)

    Parkes, W.; Djakov, V.; Barton, J. S.; Watson, S.; MacPherson, W. N.; Stevenson, J. T. M.; Dunare, C. C.

    2007-07-01

    Optical fibre pressure sensors have potential performance advantages over electrical sensors in measuring rapid transients such as shock waves from explosive blasts. We report the development of micromachined optical fibre Fabry-Pérot pressure sensors using a silicon dioxide or nitride diaphragm and detail the fabrication stages of the sensor body and diaphragm. The planar technology used is based on silicon deep etching and direct fusion bonding of silicon wafers. Test results for both types of diaphragm are presented. Sensors with rise times better than 3 µs, range 0.1 to 1 MPa and resolution ~500 Pa have been demonstrated in explosives trials. Despite the difference in the sign of stress for the two diaphragm types, both demonstrated excellent high-speed response to explosively generated air shocks.

  2. Optical characterization of MEMS-based multiple air-dielectric blue-spectrum distributed Bragg reflectors

    NASA Astrophysics Data System (ADS)

    Ghaderi, M.; Ayerden, N. P.; de Graaf, G.; Wolffenbuttel, R. F.

    2015-05-01

    The optical performance of a distributed Bragg reflector (DBR) is typically the determining factor in many optical MEMS devices and is mainly limited by the number of the periods (number of layers) and the refractive index contrast (RIC) of the materials used. The number of suitable available materials is limited and implementing a large number of periods increases the process complexity. Using air as a low-index material improves the RIC by almost 50% as compared with most conventional layer combinations and hence provides a higher optical performance at a given number of layers. This paper presents the design, fabrication, and optical characterization of multiple air-SiO2 Bragg reflectors with two airgap layers designed for the visible spectrum. Alternate polysilicon deposition and silicon-dioxide growth on the wafers followed by the selective etching of polysilicon layers in a TMAH-based solution results in a layer stack according to the optical design. However, unlike the conventional MEMS processes, fabrication of a blue-band airdielectric DBR demands several sacrificial layers in the range of 100 nm. Therefore, a successful release of the membrane after wet-etching is critical to the successful performance of the device. In this study, several DBRs with two periods have been fabricated using a CO2 supercritical drying process. The wide-area reflection measurements showed a peak reflectance of 65% and an FWHM of about 100 nm for a DBR centered at 500 nm. DBRs centered on 400 nm gave a much wider spectral response. This paper presents preliminary optical characterization results and discusses the challenges for a reflector design in the blue-visible range.

  3. The flow field of an underexpanded H2 jet coaxially injected into a hot free or ducted supersonic jet of air or nitrogen

    NASA Technical Reports Server (NTRS)

    Jenkins, R. V.

    1977-01-01

    Experimental data obtained in an investigation of the mixing of an underexpanded hydrogen jet in a supersonic flow both with and without combustion are presented. Tests were conducted in a Mach 2 test stream with both air and nitrogen as test media. Total temperature of the test stream was 2170 K, and static exit pressure was about one atmosphere. The static pressure at the exit of the hydrogen injector's Mach 2 nozzle was about two atmospheres. Primary measurements included shadowgraphs and pitot pressure surveys of the flow field. Pitot surveys and wall static pressures were measured for the case where the entire flow was shrouded. The results are compared to similar experimental data and theoretical predictions for the matched pressure case.

  4. Ozone generation in a kHz-pulsed He-O2 capillary dielectric barrier discharge operated in ambient air

    NASA Astrophysics Data System (ADS)

    Sands, Brian L.; Ganguly, Biswa N.

    2013-12-01

    The generation of reactive oxygen species using nonequilibrium atmospheric pressure plasma jet devices has been a subject of recent interest due to their ability to generate localized concentrations from a compact source. To date, such studies with plasma jet devices have primarily utilized radio-frequency excitation. In this work, we characterize ozone generation in a kHz-pulsed capillary dielectric barrier discharge configuration comprised of an active discharge plasma jet operating in ambient air that is externally grounded. The plasma jet flow gas was composed of helium with an admixture of up to 5% oxygen. A unipolar voltage pulse train with a 20 ns pulse risetime was used to drive the discharge at repetition rates between 2-25 kHz. Using UVLED absorption spectroscopy centered at 255 nm near the Hartley-band absorption peak, ozone was detected over 1 cm from the capillary axis. We observed roughly linear scaling of ozone production with increasing pulse repetition rate up to a "turnover frequency," beyond which ozone production steadily dropped and discharge current and 777 nm O(5P→5S°) emission sharply increased. The turnover in ozone production occurred at higher pulse frequencies with increasing flow rate and decreasing applied voltage with a common energy density of 55 mJ/cm3 supplied to the discharge. The limiting energy density and peak ozone production both increased with increasing O2 admixture. The power dissipated in the discharge was obtained from circuit current and voltage measurements using a modified parallel plate dielectric barrier discharge circuit model and the volume-averaged ozone concentration was derived from a 2D ozone absorption measurement. From these measurements, the volume-averaged efficiency of ozone production was calculated to be 23 g/kWh at conditions for peak ozone production of 41 mg/h at 11 kV applied voltage, 3% O2, 2 l/min flow rate, and 13 kHz pulse repetition rate, with 1.79 W dissipated in the discharge.

  5. Dielectric spectroscopy measurements for moisture prediction in vidalia onions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microwave sensing offers an opportunity to determine nondestructively the amount of moisture in materials by sensing the dielectric properties of the material. Dielectric properties of Vidalia onions grown in southeastern Georgia were measured with an open-ended coaxial-line probe and network analyz...

  6. Automated Monitoring Of Dielectric Properties Of Tree Trunks

    NASA Technical Reports Server (NTRS)

    Mcdonald, Kyle C.; Chun, William

    1996-01-01

    Semiautomated instrumentation system called "dielectric monitoring system" (DMS) developed for measuring microwave permittivities of selected components of plants, in particular, of active xylems in tree trunks. System set up with coaxial probes inserted in tree trunks to measure dielectric properties. Can be left to operate unattended to gather data on permittivities as function of time.

  7. Mechanism of Ethane Destruction in Dielectric Barrier Discharge in Air: Detailed Elementary Reaction Model and Experiment

    NASA Astrophysics Data System (ADS)

    Krasnoperov, Lev; Modenese, Camila; Krishtopa, Larisa

    2006-10-01

    Free radical destruction mechanism was extended by inclusion of reactions of excited and ionic species. The mechanism consists of 935 reactions of 85 neutral species, 9 excited states and 38 ions. The reactions include 9 initiation processes in streamers, 66 processes involving excited states and 83 reactions involving ions. The reactant, the final products as well as the major intermediates of the destruction of ethane in air in corona discharge were identified and quantified Carbon dioxide (CO2), water (H2O), formaldehyde (H2CO), acetaldehyde (CH3CHO), methanol (CH3OH), ethanol (C2H5OH), formic acid (HCOOH), acetic acid (CH3COOH), methyl nitrate (CH3ONO2) and ethyl nitrate (C2H5ONO2) were identified among the major destruction products. The destruction efficiency predicted by the mechanism is in good agreement with the experiment, the major contribution is being due to the ionization transfer reactions. Reactions of excited species play but only a minor role. The product spectrum is consistent with the subsequent low temperature free radical reactions complicated by the presence of ozone and nitrogen oxides. The generic reaction mechanism for other organic as well as inorganic compounds is discussed.

  8. Coaxial test fixture

    DOEpatents

    Praeg, Walter F.

    1986-01-01

    An assembly is provided for testing one or more contact material samples in a vacuum environment. The samples are positioned as an inner conductive cylinder assembly which is mounted for reciprocal vertical motion as well as deflection from a vertical axis. An outer conductive cylinder is coaxially positioned around the inner cylinder and test specimen to provide a vacuum enclosure therefor. A power source needed to drive test currents through the test specimens is connected to the bottom of each conductive cylinder, through two specially formed conductive plates. The plates are similar in form, having a plurality of equal resistance current paths connecting the power source to a central connecting ring. The connecting rings are secured to the bottom of the inner conductive assembly and the outer cylinder, respectively. A hydraulic actuator is also connected to the bottom of the inner conductor assembly to adjust the pressure applied to the test specimens during testing. The test assembly controls magnetic forces such that the current distribution through the test samples is symmetrical and that contact pressure is not reduced or otherwise disturbed.

  9. Coaxial waveguide MRI.

    PubMed

    Alt, Stefan; Müller, Marco; Umathum, Reiner; Bolz, Armin; Bachert, Peter; Semmler, Wolfhard; Bock, Michael

    2012-04-01

    As ultrahigh-field MR imaging systems suffer from the standing wave problems of conventional coil designs, the use of antenna systems that generate travelling waves was suggested. As a modification to the original approach, we propose the use of a coaxial waveguide configuration with interrupted inner conductor. This concept can focus the radiofrequency energy to the desired imaging region in the human body and can operate at different Larmor frequencies without hardware modifications, as it is not limited by a lower cut-off frequency. We assessed the potential of the method with a hardware prototype setup that was loaded with a tissue equivalent phantom and operated with imaging areas of different size. Signal and flip angle distributions within the phantom were analyzed, and imaging at different Larmor frequencies was performed. Results were compared to a finite difference time domain simulation of the setup that additionally provides information on the spatial distribution of the specific absorption rate load. Furthermore, simulation results with a human model (virtual family) are presented. It was found that the proposed method can be used for MRI at multiple frequencies, achieving transmission efficiencies similar to other travelling wave approaches but still suffers from several limitations due to the used mode of wave propagation. PMID:22021117

  10. Investigating effects of aging on radio-frequency dielectric properties of chicken meat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Effects of aging on dielectric properties of chicken meat were tracked through measurement of the dielectric properties with an open-ended coaxial probe between 200 MHz and 20 GHz at 23 oC. The chicken meat was stored in a refrigerator for 13 days at 4 oC. The changes in dielectric constant and loss...

  11. Dielectric Spectroscopy of Watermelons for Sensing Quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dielectric properties of four small-sized watermelons, grown and harvested to provide a range of maturities, were measured with an open-ended coaxial-line probe and impedance analyzer over the frequency range from 10 MHz to 1.8 GHz. Probe measurements were made on the external surface of the melons...

  12. Dielectric Spectroscopy of Watermelons for Sensing Quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dielectric properties of four small-sized watermelon varieties, grown and harvested to provide a range of maturities, were measured with an open-ended coaxial-line probe and impedance analyzer over the frequency range from 10 MHz to 1.8 GHz. Probe measurements were made on the external surface of t...

  13. Sensing Quality of Watermelons through Dielectric Permittivity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dielectric properties of four small-sized watermelon cultivars, grown and harvested to provide a range of maturities, were measured with an open-ended coaxial-line probe and impedance analyzer over the frequency range from 10 MHz to 1.8 GHz. Probe measurements were made on the external surface of t...

  14. High Power Co-Axial Coupler

    SciTech Connect

    Johnson, Rolland; Neubauer, Michael

    2013-08-14

    A superconducting RF (SRF) power coupler capable of handling 500 kW CW RF power at 750 MHz is required for present and future storage rings and linacs. There are over 35 coupler designs for SRF cavities ranging in frequency from 325 to 1500 MHz. Coupler windows vary from cylinders to cones to disks and RF power couplers will always be limited by the ability of ceramic windows and their matching systems to withstand the stresses due to non-uniform heating from dielectric and wall losses, multipactor, and mechanical flexure. In the Phase II project, we built a double window coaxial system with materials that would not otherwise be useable due to individual VSWRs. Double window systems can be operated such that one is cold (LN2) and one is warm. They can have different materials and still have a good match without using matching elements that create problematic multipactor bands. The match of the two windows will always result from the cancellation of the two window’s reflections when they are located approximately a quarter wavelength apart or multiples of a quarter wavelength. The window assemblies were carefully constructed to put the window material and its braze joint in compression at all times. This was done using explosion bonding techniques which allow for inexpensive fabrication of the vacuum / compression ring out of stainless steel with copper plating applied to the inner surface. The EIA 3-1/8” double window assembly was then successfully baked out and tested to 12 kW in a 3-1/8” co-axial system. The thermal gradient across the window was measured to be 90 C which represents about 15 ksi tensile stress in an uncompressed window. In our design the compression was calculated to be about 25 ksi, so the net compressive force was 5 ksi at full power.

  15. Calibration-independent measurement of complex permittivity of liquids using a coaxial transmission line

    NASA Astrophysics Data System (ADS)

    Guoxin, Cheng

    2015-01-01

    In recent years, several calibration-independent transmission/reflection methods have been developed to determine the complex permittivity of liquid materials. However, these methods experience their own respective defects, such as the requirement of multi measurement cells, or the presence of air gap effect. To eliminate these drawbacks, a fast calibration-independent method is proposed in this paper. There are two main advantages of the present method over those in the literature. First, only one measurement cell is required. The cell is measured when it is empty and when it is filled with liquid. This avoids the air gap effect in the approach, in which the structure with two reference ports connected with each other is needed to be measured. Second, it eliminates the effects of uncalibrated coaxial cables, adaptors, and plug sections; systematic errors caused by the experimental setup are avoided by the wave cascading matrix manipulations. Using this method, three dielectric reference liquids, i.e., ethanol, ethanediol, and pure water, and low-loss transformer oil are measured over a wide frequency range to validate the proposed method. Their accuracy is assessed by comparing the results with those obtained from the other well known techniques. It is demonstrated that this proposed method can be used as a robust approach for fast complex permittivity determination of liquid materials.

  16. ZnO-based thin film transistors employing aluminum titanate gate dielectrics deposited by spray pyrolysis at ambient air.

    PubMed

    Afouxenidis, Dimitrios; Mazzocco, Riccardo; Vourlias, Georgios; Livesley, Peter J; Krier, Anthony; Milne, William I; Kolosov, Oleg; Adamopoulos, George

    2015-04-01

    The replacement of SiO2 gate dielectrics with metal oxides of higher dielectric constant has led to the investigation of a wide range of materials with superior properties compared with SiO2. Despite their attractive properties, these high-k dielectrics are usually manufactured using costly vacuum-based techniques. To overcome this bottleneck, research has focused on the development of alternative deposition methods based on solution-processable metal oxides. Here we report the application of spray pyrolysis for the deposition and investigation of Al2x-1·TixOy dielectrics as a function of the [Ti(4+)]/[Ti(4+)+2·Al(3+)] ratio and their implementation in thin film transistors (TFTs) employing spray-coated ZnO as the active semiconducting channels. The films are studied by UV-visible absorption spectroscopy, spectroscopic ellipsometry, impedance spectroscopy, atomic force microscopy, X-ray diffraction and field-effect measurements. Analyses reveal amorphous Al2x-1·TixOy dielectrics that exhibit a wide band gap (∼4.5 eV), low roughness (∼0.9 nm), high dielectric constant (k ∼ 13), Schottky pinning factor S of ∼0.44 and very low leakage currents (<5 nA/cm(2)). TFTs employing stoichiometric Al2O3·TiO2 gate dielectrics and ZnO semiconducting channels exhibit excellent electron transport characteristics with low operating voltages (∼10 V), negligible hysteresis, high on/off current modulation ratio of ∼10(6), subthreshold swing (SS) of ∼550 mV/dec and electron mobility of ∼10 cm(2) V(-1) s(-1). PMID:25774574

  17. Generation of high-power ultrawideband electromagnetic pulses in a system with a coaxial tem horn

    NASA Astrophysics Data System (ADS)

    Gubanov, V. P.; Korovin, S. D.; Pegel', I. V.; Rostov, V. V.; Stepchenko, A. S.; Tarakanov, V. P.

    1996-12-01

    A coaxial TEM horn was designed on the basis of results from nonstationary computer modeling using code KARAT. With its high dielectric strength, this antenna is capable of radiating high-power ultrawideband nanosecond pulses. The pulse source used was a compact generator built around a coaxial forming line with a built-in Tesla transformer, which shapes pulses up to 1 GW high at repetition frequencies up to 1 kHz. The amplitude of the pulses on a matched load was 20 kV at a duration of 4 nsec. Returns of ultrawideband signals from objects with simple geometric shapes were studied in laboratory experiments using this radiator.

  18. Ultra-wideband electronics, design methods, algorithms, and systems for dielectric spectroscopy of isolated B16 tumor cells in liquid medium

    NASA Astrophysics Data System (ADS)

    Maxwell, Erick N.

    halfwavelength resonance. In this dissertation, a simple coaxial transmission line fixture for holding liquids by dispensing with the air-core assumption inherent in previous designs was developed (patent pending 60/916,042). In addition, a genetic algorithm was applied towards extracting dielectric properties from measurement data to circumvent problems of local minima and half wavelength resonance. Finally, in this research the capacity for using dielectric properties to quantify isolated B16-F10 tumor cells in McCoy's liquid medium was investigated. In so doing, the utility of the Maxwell-Wagner mixture formula for cell quantification was demonstrated by measuring distinct dielectric properties for differing volumes of cell suspensions using frequency- and time-domain dielectric spectroscopy.

  19. Experimental studies on coaxial vortex loops

    NASA Astrophysics Data System (ADS)

    Mariani, R.; Kontis, K.

    2010-12-01

    An experimental study has been conducted on the formation and propagation of coaxial vortex loops using a shock tube facility. The study aimed at evaluating the flow characteristics of pairs of corotating vortex rings that generate the leapfrogging phenomenon. The driver and driven gas of the shock tube were air. Three driver pressures were used (4, 8, and 12 bars) with the driven gas being at ambient conditions. The Mach numbers of the shock wave generated inside the shock tube were 1.34, 1.54, and 1.66, respectively. The sudden expansion present at the diaphragm location effectively decreased the Mach number value of the traveling shock wave. Results showed that a pair of vortex rings staggered with respect to time and with the same direction rotation lead to leapfrogging. Results also indicated that the number of leapfrogging occurrences is related to the Reynolds number of the vortex ring pairs with a decrease in leapfrogs at higher Reynolds numbers.

  20. Frequency Selective Properties of Coaxial Transmission Lines Loaded with Combined Artificial Inclusions

    PubMed Central

    2014-01-01

    The properties of a modified coaxial transmission line by periodic inclusions will be discussed. The introduction of split ring resonators, conductor stubs, air gaps, and combination of these gives rise to new frequency selective properties, such as stopband or passband behavior, observable in planar as well as volumetric metamaterial structures. These results envisage new potential applications and implementation of devices in coaxial transmission line technology. PMID:24587748

  1. Fiber optic and broadband coaxial cable data network alternatives for a flying mission base

    NASA Astrophysics Data System (ADS)

    Weigand, Robert M.

    1987-05-01

    Air Force flying mission bases (strategic, tactical, and military airlift) require an upgraded and survivable data network to interconnect data processing equipment. The results of a comparative analysis of performance, survivability, and cost of fiber optic and coaxial cable data networks for this application are reported herein. The principal conclusion to be drawn from this work is that a fiber optic network offers survivability, reliability, and growth advantages at a cost comparable to an equivalent coaxial cable network.

  2. Electro-Mechanical Coaxial Valve

    NASA Technical Reports Server (NTRS)

    Patterson, Paul R (Inventor)

    2004-01-01

    Coaxial valves usually contain only one moving part. It has not been easy, then, to provide for electric motor actuation. Many actuators being proposed involve designs which lead to bulky packages. The key facing those improving coaxial valves is the provision of suitable linear actuation. The valve herein indudes a valve housing with a flow channel there-through. Arranged in the flow channel is a closing body. In alignment with the closing body is a ball screw actuator which includes a ball nut and a cylindrical screw. The ball nut sounds a threaded portion of the cylindrical screw. The cylindrical screw is provided with a passageway there-through through which fluid flows. The cylindrical screw is disposed in the flow channel to become a control tube adapted to move toward and away from the valve seat. To rotate the ball nut an actuating drive is employed driven by a stepper motor.

  3. Coaxial microreactor for particle synthesis

    DOEpatents

    Bartsch, Michael; Kanouff, Michael P; Ferko, Scott M; Crocker, Robert W; Wally, Karl

    2013-10-22

    A coaxial fluid flow microreactor system disposed on a microfluidic chip utilizing laminar flow for synthesizing particles from solution. Flow geometries produced by the mixing system make use of hydrodynamic focusing to confine a core flow to a small axially-symmetric, centrally positioned and spatially well-defined portion of a flow channel cross-section to provide highly uniform diffusional mixing between a reactant core and sheath flow streams. The microreactor is fabricated in such a way that a substantially planar two-dimensional arrangement of microfluidic channels will produce a three-dimensional core/sheath flow geometry. The microreactor system can comprise one or more coaxial mixing stages that can be arranged singly, in series, in parallel or nested concentrically in parallel.

  4. Note: Cryogenic coaxial microwave filters

    SciTech Connect

    Tancredi, G.; Meeson, P. J.; Schmidlin, S.

    2014-02-15

    The careful filtering of microwave electromagnetic radiation is critical for controlling the electromagnetic environment for experiments in solid-state quantum information processing and quantum metrology at millikelvin temperatures. We describe the design and fabrication of a coaxial filter assembly and demonstrate that its performance is in excellent agreement with theoretical modelling. We further perform an indicative test of the operation of the filters by making current-voltage measurements of small, underdamped Josephson junctions at 15 mK.

  5. Machine learning aided diagnosis of hepatic malignancies through in vivo dielectric measurements with microwaves

    NASA Astrophysics Data System (ADS)

    Yilmaz, Tuba; Alp Kılıç, Mahmut; Erdoğan, Melike; Çayören, Mehmet; Tunaoğlu, Doruk; Kurtoğlu, İsmail; Yaslan, Yusuf; Çayören, Hüseyin; Enes Arıkan, Akif; Teksöz, Serkan; Cancan, Gülden; Kepil, Nuray; Erdamar, Sibel; Özcan, Murat; Akduman, İbrahim; Kalkan, Tunaya

    2016-07-01

    In the past decade, extensive research on dielectric properties of biological tissues led to characterization of dielectric property discrepancy between the malignant and healthy tissues. Such discrepancy enabled the development of microwave therapeutic and diagnostic technologies. Traditionally, dielectric property measurements of biological tissues is performed with the well-known contact probe (open-ended coaxial probe) technique. However, the technique suffers from limited accuracy and low loss resolution for permittivity and conductivity measurements, respectively. Therefore, despite the inherent dielectric property discrepancy, a rigorous measurement routine with open-ended coaxial probes is required for accurate differentiation of malignant and healthy tissues. In this paper, we propose to eliminate the need for multiple measurements with open-ended coaxial probe for malignant and healthy tissue differentiation by applying support vector machine (SVM) classification algorithm to the dielectric measurement data. To do so, first, in vivo malignant and healthy rat liver tissue dielectric property measurements are collected with open-ended coaxial probe technique between 500 MHz to 6 GHz. Cole–Cole functions are fitted to the measured dielectric properties and measurement data is verified with the literature. Malign tissue classification is realized by applying SVM to the open-ended coaxial probe measurements where as high as 99.2% accuracy (F1 Score) is obtained.

  6. Coaxial fundus camera for opthalmology

    NASA Astrophysics Data System (ADS)

    de Matos, Luciana; Castro, Guilherme; Castro Neto, Jarbas C.

    2015-09-01

    A Fundus Camera for ophthalmology is a high definition device which needs to meet low light illumination of the human retina, high resolution in the retina and reflection free image1. Those constraints make its optical design very sophisticated, but the most difficult to comply with is the reflection free illumination and the final alignment due to the high number of non coaxial optical components in the system. Reflection of the illumination, both in the objective and at the cornea, mask image quality, and a poor alignment make the sophisticated optical design useless. In this work we developed a totally axial optical system for a non-midriatic Fundus Camera. The illumination is performed by a LED ring, coaxial with the optical system and composed of IR of visible LEDs. The illumination ring is projected by the objective lens in the cornea. The Objective, LED illuminator, CCD lens are coaxial making the final alignment easily to perform. The CCD + capture lens module is a CCTV camera with autofocus and Zoom built in, added to a 175 mm focal length doublet corrected for infinity, making the system easily operated and very compact.

  7. Dielectric properties of marsh vegetation

    NASA Astrophysics Data System (ADS)

    Kochetkova, Tatiana D.; Suslyaev, Valentin I.; Shcheglova, Anna S.

    2015-10-01

    The present work is devoted to the measurement of the dielectric properties of mosses and lichens in the frequency range from 500 MHz to 18 GHz. Subjects of this research were three species of march vegetation - moss (Dicranum polysetum Michx), groundcedar (Diphasiastrum complanatum (L.) Holub) and lichen (Cladonia stellaris). Samples of vegetation were collected in Tomsk region, Western Siberia, Russia. Complex dielectric permittivity was measured in coaxial section by Agilent Technologies vector network analyzer E8363B. Green samples was measured for some moisture contents from 100% to 3-5 % during a natural drying. The measurements were performed at room temperature, which remained within 21 ÷ 23 ° C. The frequency dependence of the dielectric constant for the three species of marsh vegetation differ markedly. Different parts of the complex permittivity dependency on moisture were fitted by line for all frequency points. Two break point were observed corresponding to the transition of water in the vegetation in various phase states. The complex permittivity spectra of water in the vegetation allow determining the most likely corresponding dielectric model of water in the vegetation by the method of hypothesis testing. It is the Debye's model. Parameters of Debye's model were obtained by numerical methods for all of three states of water. This enables to calculate the dielectric constant of water at any frequency range from 500 MHz to 18 GHz and to find the parameters of the dielectric model of the vegetation.

  8. CFD simulation of coaxial injectors

    NASA Technical Reports Server (NTRS)

    Landrum, D. Brian

    1993-01-01

    The development of improved performance models for the Space Shuttle Main Engine (SSME) is an important, ongoing program at NASA MSFC. These models allow prediction of overall system performance, as well as analysis of run-time anomalies which might adversely affect engine performance or safety. Due to the complexity of the flow fields associated with the SSME, NASA has increasingly turned to Computational Fluid Dynamics (CFD) techniques as modeling tools. An important component of the SSME system is the fuel preburner, which consists of a cylindrical chamber with a plate containing 264 coaxial injector elements at one end. A fuel rich mixture of gaseous hydrogen and liquid oxygen is injected and combusted in the chamber. This process preheats the hydrogen fuel before it enters the main combustion chamber, powers the hydrogen turbo-pump, and provides a heat dump for nozzle cooling. Issues of interest include the temperature and pressure fields at the turbine inlet and the thermal compatibility between the preburner chamber and injector plate. Performance anomalies can occur due to incomplete combustion, blocked injector ports, etc. The performance model should include the capability to simulate the effects of these anomalies. The current approach to the numerical simulation of the SSME fuel preburner flow field is to use a global model based on the MSFC sponsored FNDS code. This code does not have the capabilities of modeling several aspects of the problem such as detailed modeling of the coaxial injectors. Therefore, an effort has been initiated to develop a detailed simulation of the preburner coaxial injectors and provide gas phase boundary conditions just downstream of the injector face as input to the FDNS code. This simulation should include three-dimensional geometric effects such as proximity of injectors to baffles and chamber walls and interaction between injectors. This report describes an investigation into the numerical simulation of GH2/LOX coaxial

  9. Removal of formaldehyde by a pulsed dielectric barrier discharge in dry air in the 20 °C to 300 °C temperature range

    NASA Astrophysics Data System (ADS)

    Blin-Simiand, N.; Pasquiers, S.; Magne, L.

    2016-05-01

    The influence of the gas mixture temperature, from 20 °C up to 300 °C, on the removal of formaldehyde, diluted at low concentration (less than 800 ppm) in dry air at atmospheric pressure, by a pulsed dielectric barrier discharge (DBD) is studied by means of Fourier transform infrared spectroscopy and micro gas chromatography. Efficient removal of CH2O is obtained and it is found that the characteristic energy, less than 200 J l‑1, is a decreasing function of the temperature over the whole range of concentration values under consideration. Byproducts issued from the removal are identified and quantified (CO, CO2, HCOOH, HNO3). Experimental results are analysed using a zero-dimensional simplified DBD-reactor model in order to gain insights on the chemical processes involved. It is shown that the dissociation of the molecule competes with oxidation reactions at low temperature, whereas at high temperature oxidation processes dominate.

  10. Uniform and non-uniform modes of nanosecond-pulsed dielectric barrier discharge in atmospheric air: fast imaging and spectroscopic measurements of electric field

    PubMed Central

    Liu, Chong; Dobrynin, Danil; Fridman, Alexander

    2014-01-01

    In this study, we report experimental results on fast ICCD imaging of development of nanosecond-pulsed dielectric barrier discharge (DBD) in atmospheric air and spectroscopic measurements of electric field in the discharge. Uniformity of the discharge images obtained with nanosecond exposure times were analyzed using chi-square test. The results indicate that DBD uniformity strongly depends on applied (global) electric field in the discharge gap, and is a threshold phenomenon. We show that in the case of strong overvoltage on the discharge gap (provided by fast rise times), there is transition from filamentary to uniform DBD mode which correlates to the corresponding decrease of maximum local electric field in the discharge. PMID:25071294

  11. Assessing Chicken Meat Freshness through Measurement of Radio-Frequency Dielectric Properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Change in freshness of chicken meat was assessed through measurement of the dielectric properties with a vector network analyzer and an open-ended coaxial-line probe between 200 MHz and 20 GHz at 23 oC. Chicken meat samples were stored in a refrigerator for 8 days at 4 oC. Changes in dielectric cons...

  12. Investigating the influence of aging on radiofreuqncy dielectric properties of chicken meat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Changes in quality attributes of aging chicken meat were tracked through measurement of the dielectric properties with an open-ended coaxial probe between 200 MHz and 20 GHz at 23 °C. The chicken meat was stored in a refrigerator for 8 days at 4 °C. Changes in dielectric constant and loss factor wer...

  13. Investigating the influence of aging on radiofrequency dielectric properties of chicken meat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Changes in quality attributes of aging chicken meat were tracked through measurement of the dielectric properties with an open-ended coaxial probe between 200 MHz and 20 GHz at 23 degree C. The chicken meat was stored in a refrigerator for 8 days at 4 degree C. Changes in dielectric constant and los...

  14. Use of Dielectric Spectroscoy for Determining Quality Attributes of Poultry Meat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Use of dielectric spectroscopy for determining quality attributes of poultry meat was investigated at frequencies between 200 MHz and 20 GHz and temperatures ranging from -16 oC to 70 oC. Dielectric measurements were performed with an open-ended coaxial-line probe and a vector network analyzer. Sa...

  15. Dielectric Properties of Uncooked Chicken Breast Muscles from 10 to 1800 MHz

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The dielectric properties, consisting of the dielectric constant and loss factor, were measured (by using an open-ended coaxial-line probe) for uncooked chicken breast muscle Pectoralis major and Pectoralis minor, deboned at 2 and 24 h postmortem, over the frequency range from 10 to 1800 MHz at tem...

  16. Microwave dielectric properties of ground and whole-muscle chicken meat and correlations with quality attributes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dielectric spectra of whole-muscle and ground chicken meat samples were obtained with an open-ended coaxial-line probe between 0.5 GHz and 50 GHz at 23 oC. The spectra show a dielectric behavior consistent with that expected for materials with high water content with differences between the whole-mu...

  17. Dielectric properties of almond shells in the development of radio frequency and microwave pasteurization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To develop pasteurization treatments based on radio frequency (RF) or microwave energy, dielectric properties of almond shells were determined using an open-ended coaxial-probe with an impedance analyzer over a frequency range of 10 to 1800 MHz. Both the dielectric constant and loss factor of almond...

  18. Excilamp with a coaxial feedline

    NASA Astrophysics Data System (ADS)

    Schitz, D. V.; Nekhoroshev, V. O.; Savin, V. V.

    2016-02-01

    We describe a mathematical model of electrophysical processes occurring in the system consisting of a transistor inverter, an oscillatory circuit, a step-up transformer, a long feedline, and a barrier-discharge lamp. We propose and test a method for effective transmission of a high-frequency voltage from a power supply to the barrier-discharge lamp via a long coaxial line in which the voltage was applied to the electrodes of the lamp in the form of harmonic voltage bursts at a frequency close to the self-resonant frequency of the excitation system.

  19. Integrated microwave resonant device for dielectric analysis of microfluidic systems

    NASA Astrophysics Data System (ADS)

    Rowe, D. J.; Porch, A.; Barrow, D. A.; Allender, C. J.

    2011-08-01

    Herein we present a device for performing non-contact dielectric spectroscopy upon liquids in a microfluidic environment. The device is comprised of a compression-sealed polytetrafluoroethylene (PTFE) chip with an embedded coaxial resonator, which is overmoded for dielectric measurements at six discrete frequencies between 1 and 8 GHz. A novel capacitive coupling structure allows transmission measurements to be taken from one end of the resonator, and an optimised microchannel design maximises sensitivity and repeatability. The use of a PTFE substrate and a non-contact measurement gives excellent chemical and biological compatibility. A simple 'fingerprint' method for identifying solvents is demonstrated, whereby a sample is characterised by air-referenced changes in complex frequency. Complex permittivity values are also obtained via a perturbation theory-based inversion. A combination of experimental and simulated results is used to characterise the device behaviour, limits of operation and measurement uncertainty. The high stability of temporal measurements, coupled with the robustness of the design, make this device ideal for analytical chemistry and industrial process control.

  20. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  1. Gas Filled Coaxial Accelerator with Compression Coil

    NASA Technical Reports Server (NTRS)

    Espy, Patrick N. (Inventor)

    1976-01-01

    A self-energized plasma compressor which compresses plasma discharged from a coaxial plasma generator. The device includes a helical shaped coil which is coaxially aligned with the center axis of the coaxial plasma generator. The plasma generator creates a current through the helical coil which, in turn, generates a time varying magnetic field that generates a force which acts radially upon the plasma. A seal is carried on the end of the coaxial plasma generator for containing gas therein. As the plasma is accelerated out the outer end of the generator, it forces the gas outwardly also compressing such. Beads are carried adjacent the small end of the helical shaped coil for being accelerated to hypervelocities by the plasma and gas. As a result of utilizing gas in the coaxial plasma generator, such minimizes ablation of the beads as well as accelerates such to higher velocities.

  2. Downhole transmission system comprising a coaxial capacitor

    DOEpatents

    Hall, David R.; Pixton, David S.; Johnson, Monte L.; Bartholomew, David B.; Hall, Jr., H. Tracy; Rawle, Michael

    2011-05-24

    A transmission system in a downhole component comprises a plurality of data transmission elements. A coaxial cable having an inner conductor and an outer conductor is disposed within a passage in the downhole component such that at least one capacitor is disposed in the passage and having a first terminal coupled to the inner conductor and a second terminal coupled to the outer conductor. Preferably the transmission element comprises an electrically conducting coil. Preferably, within the passage a connector is adapted to electrically connect the inner conductor of the coaxial cable and the lead wire. The coaxial capacitor may be disposed between and in electrically communication with the connector and the passage. In another embodiment a connector is adapted to electrical connect a first and a second portion of the inner conductor of the coaxial cable and a coaxial capacitor is in electrical communication with the connector and the passage.

  3. DIELECTRIC-LOADED WAVE-GUIDES

    DOEpatents

    Robertson-Shersby-Harvie, R.B.; Mullett, L.B.

    1957-04-23

    This patent presents a particular arrangement for delectric loading of a wave-guide carrying an electromagnetic wave in the E or TM mode of at least the second order, to reduce the power dissipated as the result of conduction loss in the wave-guide walls. To achieve this desirabie result, the effective dielectric constants in the radial direction of adjacent coaxial tubular regions bounded approximateiy by successive nodai surfaces within the electromagnetic field are of two different values alternating in the radial direction, the intermost and outermost regions being of the lower value, and the dielectric constants between nodes are uniform.

  4. Dielectric Properties of Honeydew Melons and Correlation with Quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dielectric properties of three honeydew melon cultivars, grown and harvested to provide a range of maturities, were measured with an open-ended coaxial-line probe and impedance analyzer over the frequency range from 10 MHz to 1.8 GHz. Probe measurements were made on the external surface of the melo...

  5. Dielectric Properties of Watermelons and Correlation with Soluble Solids Content

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dielectric properties of four small-sized watermelon cultivars, grown and harvested to provide a range of maturities, were measured with an open-ended coaxial-line probe and impedance analyzer over the frequency range from 10 MHz to 1.8 GHz. Probe measurements were made on the external surface of t...

  6. Microwave dielectric spectrum of vegetation. I - Experimental observations. II - Dual-dispersion model

    NASA Technical Reports Server (NTRS)

    El-Rayes, Mohamed A.; Ulaby, Fawwaz T.

    1987-01-01

    The microwave dielectric behavior of vegetation materials is examined as a function of water content, microwave frequency, and temperature. Dielectric spectra for various types of vegetation, such as leaves, stalks, and trunks at various moisture conditions, were measured using a coaxial probe technique. The basic features and operation of the coaxial probe system are described. Examples of dielectric measurements for the vegetation materials are presented, and the relation between temperature and the dielectric constant is studied. The development of a dual-dispersion model that accounts for the dielectric properties of water in both free and bound conditions is described. The applicability of the model is evaluated by comparing it with the dielectric data; good correlation is observed between the model and the data over a wide range of moisture conditions and over the 0.2-20 GHz range.

  7. Prediction of the dielectric strength for c-C4F8 mixtures with CF4, CO2, N2, O2 and air by Boltzmann equation analysis

    NASA Astrophysics Data System (ADS)

    Li, Xingwen; Zhao, Hu; Jia, Shenli; Murphy, Anthony B.

    2014-10-01

    The dielectric strength of c-C4F8, and mixtures of c-C4F8 with CF4, CO2, N2, O2 and air, is studied through solution of the Boltzmann equation. The reduced ionization coefficient α/N and reduced attachment coefficient η/N are calculated, allowing the reduced effective ionization coefficient (α-η)/N and the critical reduced electric field strength (E/N)cr (the reduced electric field for which (α-η)/N = 0), to be determined. A high value of (E/N)cr for an electronegative gas, such as those considered here, indicates good insulating properties. It is found that c-C4F8-N2 and c-C4F8-air have very similar (E/N)cr values, higher than those of the other three mixtures, and superior even to that of pure SF6 for c-C4F8 concentrations above 80%. Comparison of the results obtained for c-C4F8 and c-C4F8-N2 with experimental values from the literature supports the validity of the approach taken here and the parameters used.

  8. Dielectric spectroscopy of watermelons for quality sensing

    NASA Astrophysics Data System (ADS)

    Nelson, Stuart O.; Guo, Wen-chuan; Trabelsi, Samir; Kays, Stanley J.

    2007-07-01

    Dielectric properties of four small-sized watermelon cultivars, grown and harvested to provide a range of maturities, were measured with an open-ended coaxial-line probe and an impedance analyser over the frequency range from 10 MHz to 1.8 GHz. Probe measurements were made on the external surface of the melons and also on tissue samples from the edible internal tissue. Moisture content and soluble solids content (SSC) were measured for internal tissue samples, and SSC (sweetness) was used as the quality factor for correlation with the dielectric properties. Individual dielectric constant and loss factor correlations with SSC were low, but a high correlation was obtained between the SSC and permittivity from a complex-plane plot of dielectric constant and loss factor, each divided by SSC. However, SSC prediction from the dielectric properties by this relationship was not as high as expected (coefficient of determination about 0.4). Permittivity data (dielectric constant and loss factor) for the melons are presented graphically to show their relationships with frequency for the four melon cultivars and for external surface and internal tissue measurements. A dielectric relaxation for the external surface measurements, which may be attributable to a combination of bound water, Maxwell-Wagner, molecular cluster or ion-related effects, is also illustrated. Coefficients of determination for complex-plane plots, moisture content and SSC relationship, and penetration depth are also shown graphically. Further studies are needed for determining the practicality of sensing melon quality from their dielectric properties.

  9. Coaxial charged particle energy analyzer

    NASA Technical Reports Server (NTRS)

    Kelly, Michael A. (Inventor); Bryson, III, Charles E. (Inventor); Wu, Warren (Inventor)

    2011-01-01

    A non-dispersive electrostatic energy analyzer for electrons and other charged particles having a generally coaxial structure of a sequentially arranged sections of an electrostatic lens to focus the beam through an iris and preferably including an ellipsoidally shaped input grid for collimating a wide acceptance beam from a charged-particle source, an electrostatic high-pass filter including a planar exit grid, and an electrostatic low-pass filter. The low-pass filter is configured to reflect low-energy particles back towards a charged particle detector located within the low-pass filter. Each section comprises multiple tubular or conical electrodes arranged about the central axis. The voltages on the lens are scanned to place a selected energy band of the accepted beam at a selected energy at the iris. Voltages on the high-pass and low-pass filters remain substantially fixed during the scan.

  10. Investigation of nanosecond pulse dielectric barrier discharges in still air and in transonic flow by optical methods

    NASA Astrophysics Data System (ADS)

    Peschke, P.; Goekce, S.; Leyland, P.; Ott, P.

    2016-01-01

    In the present study the interaction of nanosecond pulsed dielectric barrier discharge (ns-DBD) actuators with aerodynamic flow up to transonic velocities was investigated. The primary focus was on the influence of the flow on the discharge and the effects of the discharge itself. In addition, the influence of the ns-DBD on a shock-wave was studied. The aim was to improve the understanding of the plasma-flow interaction, a topic that is not yet fully understood, in particular for ns-DBD. The actuator was integrated in two different models, a NACA 3506 compressor blade profile and a bump geometry at the bottom of the wind tunnel. The effect of the rapid energy deposition close to the discharge was examined with the phase-locked schlieren visualisation technique. Images of the plasma acquired with short exposure times revealed information on the discharge evolution. The results show a significant effect of the flow on the discharge characteristics, in particular due to the drop of static pressure. On the other hand, no significant effect of the ns-DBD on the flow was observed due to unfavourable flow conditions, which underlines the importance of the actuator’s placement.

  11. Improved instrumentation for monitoring the diurnal and seasonal cycles in the dielectric properties of forest canopies

    NASA Technical Reports Server (NTRS)

    Guerra, Abel G.; Mcdonald, Kyle C.; Way, Jobea

    1992-01-01

    The design and implementation of a dielectric measurement system that facilitates the automated and continuous in situ monitoring of the dielectric properties of several canopy constituents is presented. This system utilizes the same coaxial line reflection coefficient measurement technique as the portable dielectric probe (PDP) while incorporating several features that facilitate the automated monitoring of canopy dielectric properties. The new system is capable of continuously monitoring the dielectric properties of the canopy constituents in a near-simultaneous fashion. The implementation of a data logger as a user interface has increased the number of measurements that the instrument is able to store in memory while significantly improving system reliability.

  12. Plasma arc torch with coaxial wire feed

    DOEpatents

    Hooper, Frederick M

    2002-01-01

    A plasma arc welding apparatus having a coaxial wire feed. The apparatus includes a plasma arc welding torch, a wire guide disposed coaxially inside of the plasma arc welding torch, and a hollow non-consumable electrode. The coaxial wire guide feeds non-electrified filler wire through the tip of the hollow non-consumable electrode during plasma arc welding. Non-electrified filler wires as small as 0.010 inches can be used. This invention allows precision control of the positioning and feeding of the filler wire during plasma arc welding. Since the non-electrified filler wire is fed coaxially through the center of the plasma arc torch's electrode and nozzle, the wire is automatically aimed at the optimum point in the weld zone. Therefore, there is no need for additional equipment to position and feed the filler wire from the side before or during welding.

  13. Fast Pulses in a Coaxial Cable.

    ERIC Educational Resources Information Center

    Gray, Levi

    1985-01-01

    Describes an experiment designed to introduce physics majors to the triggered oscilloscope. The experiment uses an inexpensive, easily constructed generator which sends pulses down a long coaxial cable, thus providing useful waveforms. (DH)

  14. Arc Plasma Gun With Coaxial Powder Feed

    NASA Technical Reports Server (NTRS)

    Zaplatynsky, Isidor

    1988-01-01

    Redesigned plasma gun provides improved metallic and ceramic coatings. Particles injected directly through coaxial bore in cathode into central region of plasma jet. Introduced into hotter and faster region of plasma jet.

  15. High temperature co-axial winding transformers

    NASA Technical Reports Server (NTRS)

    Divan, Deepakraj M.; Novotny, Donald W.

    1993-01-01

    The analysis and design of co-axial winding transformers is presented. The design equations are derived and the different design approaches are discussed. One of the most important features of co-axial winding transformers is the fact that the leakage inductance is well controlled and can be made low. This is not the case in conventional winding transformers. In addition, the power density of co-axial winding transformers is higher than conventional ones. Hence, using co-axial winding transformers in a certain converter topology improves the power density of the converter. The design methodology used in meeting the proposed specifications of the co-axial winding transformer specifications are presented and discussed. The final transformer design was constructed in the lab. Co-axial winding transformers proved to be a good choice for high power density and high frequency applications. They have a more predictable performance compared with conventional transformers. In addition, the leakage inductance of the transformer can be controlled easily to suit a specific application. For space applications, one major concern is the extraction of heat from power apparatus to prevent excessive heating and hence damaging of these units. Because of the vacuum environment, the only way to extract heat is by using a cold plate. One advantage of co-axial winding transformers is that the surface area available to extract heat from is very large compared to conventional transformers. This stems from the unique structure of the co-axial transformer where the whole core surface area is exposed and can be utilized for cooling effectively. This is a crucial issue here since most of the losses are core losses.

  16. Femtosecond laser guiding of a high-voltage discharge and the restoration of dielectric strength in air and nitrogen

    SciTech Connect

    Leonov, S. B.; Firsov, A. A.; Shurupov, M. A.; Michael, J. B.; Shneider, M. N.; Miles, R. B.; Popov, N. A.

    2012-12-15

    The use of a low energy, high peak intensity (>100 TW/cm{sup 2}) femtosecond laser pulse is investigated for guiding and control of a sub-microsecond high voltage discharge. Study of the laser induced plasma channel and measurements of the field required for breakdown in air and nitrogen at atmospheric pressure are presented. Direct imaging of the dynamics of the discharge breakdown shows effective laser guiding. The effectiveness of laser guiding is shown to be critically dependent on the laser focusing geometry, timing, and location relative to the electrodes.

  17. Femtosecond laser guiding of a high-voltage discharge and the restoration of dielectric strength in air and nitrogen

    NASA Astrophysics Data System (ADS)

    Leonov, S. B.; Firsov, A. A.; Shurupov, M. A.; Michael, J. B.; Shneider, M. N.; Miles, R. B.; Popov, N. A.

    2012-12-01

    The use of a low energy, high peak intensity (>100 TW/cm2) femtosecond laser pulse is investigated for guiding and control of a sub-microsecond high voltage discharge. Study of the laser induced plasma channel and measurements of the field required for breakdown in air and nitrogen at atmospheric pressure are presented. Direct imaging of the dynamics of the discharge breakdown shows effective laser guiding. The effectiveness of laser guiding is shown to be critically dependent on the laser focusing geometry, timing, and location relative to the electrodes.

  18. Microwave dielectric behavior of vegetation material

    NASA Technical Reports Server (NTRS)

    Elrayes, Mohamed A.; Ulaby, Fawwaz T.

    1987-01-01

    The microwave dielectric behavior of vegetation was examined through the development of theoretical models involving dielectric dispersion by both bound and free water and supported by extensive dielectric measurements conducted over a wide range of conditions. The experimental data were acquired using an open-ended coaxial probe that was developed for sensing the dielectric constant of thin layers of materials, such as leaves, from measurements of the complex reflection coefficient using a network analyzer. The probe system was successfully used to record the spectral variation of the dielectric constant over a wide frequency range extending from 0.5 to 20.4 GHz at numerous temperatures between -40 to +40 C. The vegetation samples were measured over a wide range of moisture conditions. To model the dielectric spectrum of the bound water component of the water included in vegetation, dielectric measurements were made for several sucrose-water solutions as analogs for the situation in vegetation. The results were used in conjunction with the experimental data for leaves to determine some of the constant coefficients in the theoretical models. Two models, both of which provide good fit to the data, are proposed.

  19. The Aeroacoustics of Supersonic Coaxial Jets

    NASA Technical Reports Server (NTRS)

    Dahl, Milo D.

    1994-01-01

    Instability waves have been established as the dominant source of mixing noise radiating into the downstream arc of a supersonic jet when the waves have phase velocities that are supersonic relative to ambient conditions. Recent theories for supersonic jet noise have used the concepts of growing and decaying linear instability waves for predicting radiated noise. This analysis is extended to the prediction of noise radiation from supersonic coaxial jets. Since the analysis requires a known mean flow and the coaxial jet mean flow is not described easily in terms of analytic functions, a numerical prediction is made for its development. The Reynolds averaged, compressible, boundary layer equations are solved using a mixing length turbulence model. Empirical correlations are developed for the effects of velocity and temperature ratios and Mach number. Both normal and inverted velocity profile coaxial jets are considered. Comparisons with measurements for both single and coaxial jets show good agreement. The results from mean flow and stability calculations are used to predict the noise radiation from coaxial jets with different operating conditions. Comparisons are made between different coaxial jets and a single equivalent jet with the same total thrust, mass flow, and exit area. Results indicate that normal velocity profile jets can have noise reductions compared to the single equivalent jet. No noise reductions are found for inverted velocity profile jets operated at the minimum noise condition compared to the single equivalent jet. However, it is inferred that changes in area ratio may provide noise reduction benefits for inverted velocity profile jets.

  20. Operating manual for coaxial injection combustion model. [for the space shuttle main engine

    NASA Technical Reports Server (NTRS)

    Sutton, R. D.; Schuman, M. D.; Chadwick, W. D.

    1974-01-01

    An operating manual for the coaxial injection combustion model (CICM) is presented as the final report for an eleven month effort designed to provide improvement, to verify, and to document the comprehensive computer program for analyzing the performance of thrust chamber operation with gas/liquid coaxial jet injection. The effort culminated in delivery of an operation FORTRAN IV computer program and associated documentation pertaining to the combustion conditions in the space shuttle main engine. The computer program is structured for compatibility with the standardized Joint Army-Navy-NASA-Air Force (JANNAF) performance evaluation procedure. Use of the CICM in conjunction with the JANNAF procedure allows the analysis of engine systems using coaxial gas/liquid injection.

  1. Measurements of admittances and characteristic combustion times of reactive gaseous propellant coaxial injectors

    NASA Technical Reports Server (NTRS)

    Janardan, B. A.; Daniel, B. R.; Zinn, B. T.

    1979-01-01

    The results of an experimental investigation that was concerned with the quantitative determination of the capabilities of combustion processes associated with coaxial injectors to amplify and sustain combustor oscillations was described. The driving provided by the combustion process was determined by employing the modified standing-wave method utilizing coaxial injectors and air-acetylene mixtures. Analyses of the measured data indicate that the investigated injectors are capable of initiating and amplifying combustion instabilities under favorable conditions of injector-combustion coupling and over certain frequency ranges. These frequency ranges and the frequency at which an injector's driving capacity is maximum are observed to depend upon the equivalence ratio, the pressure drop across the injector orifices and the number of injector elements. The characteristic combustion times of coaxial injectors were determined from steady state temperature measurements.

  2. Laboratory measurement of the complex dielectric constant of soils

    NASA Technical Reports Server (NTRS)

    Wiebe, M. L.

    1971-01-01

    The dielectric constant of a material is an extremely important parameter when considering passive radiometric remote sensing applications. This is because the emitted energy measured by a microwave radiometer is dependent on the dielectric constant of the surface being scanned. Two techniques of measuring dielectric constants are described. The first method involves a dielectric located in air. The second method uses basically the same theoretical approach, but the dielectric under consideration is located inside a section of waveguide.

  3. Coaxial Cables for Martian Extreme Temperature Environments

    NASA Technical Reports Server (NTRS)

    Ramesham, Rajeshuni; Harvey, Wayne L.; Valas, Sam; Tsai, Michael C.

    2011-01-01

    Work was conducted to validate the use of the rover external flexible coaxial cabling for space under the extreme environments to be encountered during the Mars Science Laboratory (MSL) mission. The antennas must survive all ground operations plus the nominal 670-Martian-day mission that includes summer and winter seasons of the Mars environment. Successful development of processes established coaxial cable hardware fatigue limits, which were well beyond the expected in-flight exposures. In keeping with traditional qualification philosophy, this was accomplished by subjecting flight-representative coaxial cables to temperature cycling of the same depth as expected in-flight, but for three times the expected number of in-flight thermal cycles. Insertion loss and return loss tests were performed on the coaxial cables during the thermal chamber breaks. A vector network analyzer was calibrated and operated over the operational frequency range 7.145 to 8.450 GHz. Even though some of the exposed cables function only at UHF frequencies (approximately 400 MHz), the testing was more sensitive, and extending the test range down to 400 MHz would have cost frequency resolution. The Gore flexible coaxial cables, which were the subject of these tests, proved to be robust and displayed no sign of degradation due to the 3X exposure to the punishing Mars surface operations cycles.

  4. Long-term effects of multiply pulsed dielectric barrier discharges in air on thin water layers over tissue: stationary and random streamers

    NASA Astrophysics Data System (ADS)

    Tian, Wei; Kushner, Mark J.

    2015-12-01

    Tissue covered by thin liquid layers treated by atmospheric pressure plasmas for biomedical applications ultimately requires a reproducible protocol for human healthcare. The desired outcomes of wet tissue treatment by dielectric barrier discharges (DBDs) depend on the plasma dose which determines the integral fluence of radicals, ions, electric fields and UV/VUV photons incident onto the tissue. These fluences are controlled by power, frequency and treatment time. To first order, these parameters determine the energy deposition (J cm-2) onto the tissue. However, energy deposition may not be the only parameter that determines the fluences of reactants to the underlying tissue. In this paper, we report on a computational investigation of multipulse DBDs interacting with wet tissue. The DBDs were simulated for 100 pulses at different repetition rates and liquid thicknesses followed by 10 s or more of afterglow. Two schemes were investigated—stationary and random. In the stationary scheme, the DBD plasma streamer continues to strike at the same location on the liquid layer, whereas in the random scheme the plasma streamer strikes at random locations on the liquid layer. These differences in streamer locations strongly affect the spatial distribution of solvated species such as OHaq and H2O2aq (‘aq’ represents an aqueous species), which have high rates of solvation. The spatial distribution of species such as NOaq, which have low rates of solvation, are less affected by the location of the streamer due to the remediating effects of diffusion in the air. The end result is that fluences to the tissue are sensitive to the spatial location of the streamer due to the ensuing reactions in the liquid between species that have low and high rates of solvation. These reactions can be controlled not only through location of the streamer, but also by repetition rate and thickness of the liquid layer.

  5. Coaxial cavity vircator with enhanced efficiency

    NASA Astrophysics Data System (ADS)

    Liu, G. Z.; Shao, H.; Yang, Z. F.; Song, Z. M.; Chen, C. H.; Sun, J.; Zhang, Y. P.

    2008-04-01

    A vircator with a coaxial cavity has the potential to increase the beam-microwave conversion efficiency. According to the E-field distribution pattern of the modes in the anode cavity of a coaxial vircator, the resonant frequency band of the injected electron beam and the lowest two operating modes are derived. The main frequency of the virtual cathode is also deduced. The optimal operating frequency and high-efficiency designing method of a coaxial cavity vircator is discussed. An experimental setup is designed and built to test the high-power microwave (HPM) generation mechanism described by theoretical analysis as well as increase the power efficiency. HPM frequency obtained in the experiment is in good agreement with the analysis. The power and energy efficiencies obtained in the experiment are, respectively, 8.7% and 6.8% with 50 ns pulse width. Frequency and phase stable HPM radiation is observed as well as pulse shortening is evidently depressed.

  6. Neural networks for broad-band evaluation of complex permittivity using a coaxial discontinuity

    NASA Astrophysics Data System (ADS)

    Acikgoz, H.; Le Bihan, Y.; Meyer, O.; Pichon, L.

    2007-08-01

    The aim of this study is to determine the complex permittivity of dielectric materials using a coaxial discontinuity and the combination of neural networks (NN) with the finite element method. Two types of measurement cells are used. One is for solid samples and the other one for liquids. Data sets used to train neural networks are created using the finite element method. The number of hidden neurons of the NN is determined by the split-sample method. The designed NN are used for the estimation of the permittivity of several materials and their results compared with the ones obtained with a gradient inversion method.

  7. Experimental investigation of a coaxial gyrotron oscillator

    NASA Astrophysics Data System (ADS)

    Advani, Rahul N.

    1999-09-01

    This thesis presents experimental results of a megawatt power level, 140 GHz coaxial gyrotron oscillator. The coaxial gyrotron has the potential to transport very high power electron beams and thus achieve higher microwave output power levels than conventional gyrotrons. A TE21,13 coaxial gyrotron was designed to operate at 95 kV, 76 A. This tube was tested to high power with the first high power Inverted Magnetron Injection Gun (IMIG). The IMIG electron gun was tested to 10 MW (105 kV, 93 A), which is the highest power level for a non-relativistic gyrotron gun. Operation of the coaxial gyrotron oscillator yielded power levels of greater than 1 MW in two different configurations: with the coaxial conductor (at 92kV, 70 A, and 16% efficiency) and without the coaxial conductor (85 kV, 65 A, and 18% efficiency). We also successfully operated this tube in three configurations (empty cavity, radial output, and axial output) with no beam interception. We observed regimes of dominant single mode and multi-mode operation. We also identified electron beam asymmetries and tube alignment as two major issues, which can limit the performance of a coaxial gyrotron. An unexpected source of magnetic field error was found in the magnetization of the stainless steel parts. All these results have led to techniques for improving not only coaxial gyrotrons but also other gyrotron tubes. We also investigated a ferroelectric cathode, which has the potential to achieve higher currents than thermionic cathodes in a simpler, low cost gun. We report the first results on a ferroelectric cathode gun in a magnetron injection gun configuration suitable for use in a gyrotron. It had an annular emitter shape with a diameter of 11.4 cm and a width of 0.25 cm and operated at currents of up to 10 A (1.1 A/cm2) at 8 kV, in 5 μs flat-top pulses. This result (along with the kiloampere beam obtained at Integrated Applied Physics) demonstrate the scalability of ferroelectric cathodes to large diameter

  8. Transient response of coaxial pulse coils

    NASA Astrophysics Data System (ADS)

    Clifton, S.; Mongeau, P.

    1984-03-01

    Of central importance in designing coaxial launcher systems is understanding the mechanical response and structural limits of the magnetic pulse coils. In normal operation the driving frequency can vary from static conditions through the lowest natural modes to well beyond the highest frequencies. By using a lumped parameter model the transient behavior of a magnetic pulse coil can be readily characterized. In an effort to understand the failure mechanism of coaxial pulse coils the results of this model are compared to the experimental performance of several thin build coils.

  9. Improved performance in coaxial holographic data recording.

    PubMed

    Tanaka, Kenji; Hara, Masaaki; Tokuyama, Kazutatsu; Hirooka, Kazuyuki; Ishioka, Koji; Fukumoto, Atsushi; Watanabe, Kenjiro

    2007-11-26

    We describe a coaxial holographic recording system for achieving high recording density. We implement several techniques, such as an objective lens with high numerical aperture (NA), high capacity page data format, a random binary phase mask, and an optical noise reduction element. Our system successfully realizes a hologram recording/retrieving at a low diffraction efficiency less than 2.0 x 10(-3) and achieves a raw data density of 180 Gbit/in.(2), thus demonstrating the potential of a coaxial holographic system for high-density optical storage systems. PMID:19550907

  10. Coaxial plasma thrusters for high specific impulse propulsion

    NASA Technical Reports Server (NTRS)

    Schoenberg, Kurt F.; Gerwin, Richard A.; Barnes, Cris W.; Henins, Ivars; Mayo, Robert; Moses, Ronald, Jr.; Scarberry, Richard; Wurden, Glen

    1991-01-01

    A fundamental basis for coaxial plasma thruster performance is presented and the steady-state, ideal MHD properties of a coaxial thruster using an annular magnetic nozzle are discussed. Formulas for power usage, thrust, mass flow rate, and specific impulse are acquired and employed to assess thruster performance. The performance estimates are compared with the observed properties of an unoptimized coaxial plasma gun. These comparisons support the hypothesis that ideal MHD has an important role in coaxial plasma thruster dynamics.

  11. WO3 nanotubes prepared by a coaxial electrospinning method.

    PubMed

    Cao, Xingxing; Zhang, Xuebin; Hu, Jixiang; Wang, Yang; Liu, Jia; Wu, Haijun; Feng, Yi

    2014-08-01

    In this paper, WO3 nanotubes were prepared by a coaxial electrospinning method. Firstly, core-shell structured composite fibers were fabricated via coaxial electrospinning under the optimal electro-spinning parameters to get the best composite fibers with uniform diameters and smooth surface, which pure PVA being the core solution and PVA/AMT/alcohol being the shell one, respectively. Secondly, the composite fibers were calcined in air at 600 °C for 4 h to wipe out the pure PVA, leading to the formation of nanotubes. After sintering, the obtained WO3 nanotubes were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM) and high-resolution transmission electron microscopy (HRTEM). The XRD show that the resultant materials consist of pure tungsten trioxide (WO3) with good crystallinity, while FESEM and HRTEM images indicate that the materials are nanotubes with rough surface and consist of nanoparticles. The inner diameter and the wall thickness of nanotubes were calculated to be around 100 and 50 nm, respectively. PMID:25936119

  12. CIAXE: co-axial achromatic interferential coronagraph: first laboratory results

    NASA Astrophysics Data System (ADS)

    Allouche, Fatmé; Gay, Jean; Rabbia, Yves; Assus, Pierre

    2010-07-01

    In 1996, Jean Gay and Yves Rabbia presented their Achromatic Interferential Coronagraph (AIC) for detecting and imaging faint companions (ultimately exoplanets) in the neighboring of a star. As presented then, the Michleson-like Interferometer configuration of the AIC hardens its insertion into an existing (coaxial) optical train, the output beam of the AIC being delivered at right angle from the input beam. To overcome this, they reconfigured the AIC into a compact and fully axial coronagraph, the CIAXE, which main feature consists of using two thick lenses machined in the same optical material. For the CIAXE to deliver the output beam along the same axis as the input beam, the two lenses are coaxially disposed on the optical axis and are separated, at their common spherical contact surface by a thin air gap acting like a beam splitter. We have set up a laboratory experiment aiming at validating the principle of the concept. Our first step was to equalize the thicknesses of the two lenses, so as to make zero the optical path difference between both arms. For this, the (residual) value of the OPD has been evaluated and then the lenses have been re-machined so as to decrease as far as technologically possible, the thicknesses mismatch. As a second step, a micro-controlled rotation around the common curvature center of the spherical surfaces of the lenses is applied. This allows a fine tuning of the residual OPD at the required accuracy level. Are presented here test bench, steps and results.

  13. Rocket engine coaxial injector liquid/gas interface flow phenomena

    SciTech Connect

    Mayer, W.; Kruelle, G.

    1995-05-01

    Coaxial injectors are used for the injection and mixing of propellants H2/O2 in cryogenic rocket engines. The aim of the theoretical and experimental investigations presented here is to elucidate some of the physical processes in coaxial injector flow with respect to their significance for atomization and mixing. Experiments with the simulation fluids H2O and air were performed under ambient conditions and at elevated counter pressures up to 20 bar. This article reports on phenomenological studies of spray generation under a broad variation of parameters using nanolight photography and high-speed cinematography (up to 3 x 10(exp 4) frames/s). Detailed theoretical and experimental studies of the surface evolution of turbulent jets were performed. Proof was obtained of the impact of internal fluid jet motions on surface deformation. The m = 1 nonaxisymmetric instability of the liquid jet seems to be superimposed onto the small-scale atomization process. A model is presented that calculates droplet atomization quantities as frequency, droplet diameter, and liquid core shape. The overall procedure for implementing this model as a global spray model is also described and an example calculation is presented. 15 refs.

  14. Calculation of a coaxial microwave torch

    SciTech Connect

    Gritsinin, S. I.; Kossyi, I. A.; Kulumbaev, E. B.; Lelevkin, V. M.

    2006-10-15

    Parameters of an equilibrium microwave discharge in an atmospheric-pressure argon flow in a coaxial waveguide with a truncated inner electrode are calculated numerically by using a self-consistent two-dimensional MHD model. The results obtained agree satisfactorily with the experimental data.

  15. Three-Dimensional Coaxial Weld Monitoring

    NASA Technical Reports Server (NTRS)

    Gordon, Stephen S.

    1989-01-01

    Optical system for coaxial-viewing welding torch enables perception or measurement of depth. Light from welding area passes through beam splitter into two optical trains forming two images, each viewed along line making small angle with axis of torch. Two lines of sight intersect at weld pool. Parallax between two views provides sensation of depth over entire field view.

  16. Electromagnetic properties of large-grain materials measured with large coaxial sensors

    NASA Astrophysics Data System (ADS)

    Otto, Gregory P.; Chew, Weng C.

    Two large coaxial sensors for measuring the effective electromagnetic properties of large-grain inhomogeneous materials are described. The measurements of inhomogeneous samples show that the dielectric constant is related to the constitutive components via mixing formulas, while the electrical conductivity is sensitive to the presence of salts. The dielectric enhancement in setting concretes is shown to indicate electromechanical activity. It is shown that an open-ended probe can measure small thicknesses in a layered medium when properly calibrated. It is argued that any absolute measurement of the physical properties requires a calibration procedure involving experimental and possibly theoretical data. Hence, the electromagnetic measurements can be useful for nondestructive in situ quality control of concretes.

  17. A Survey of Theoretical and Experimental Coaxial Rotor Aerodynamic Research

    NASA Technical Reports Server (NTRS)

    Coleman, Colin P.

    1997-01-01

    The recent appearance of the Kamov Ka-50 helicopter and the application of coaxial rotors to unmanned aerial vehicles have renewed international interest in the coaxial rotor configuration. This report addresses the aerodynamic issues peculiar to coaxial rotors by surveying American, Russian, Japanese, British, and German research. (Herein, 'coaxial rotors' refers to helicopter, not propeller, rotors. The intermeshing rotor system was not investigated.) Issues addressed are separation distance, load sharing between rotors, wake structure, solidity effects, swirl recovery, and the effects of having no tail rotor. A general summary of the coaxial rotor configuration explores the configuration's advantages and applications.

  18. Modelling Subsea Coaxial Cable as FIR Filter on MATLAB

    NASA Astrophysics Data System (ADS)

    Kanisin, D.; Nordin, M. S.; Hazrul, M. H.; Kumar, E. A.

    2011-05-01

    The paper presents the modelling of subsea coaxial cable as a FIR filter on MATLAB. The subsea coaxial cables are commonly used in telecommunication industry and, oil and gas industry. Furthermore, this cable is unlike a filter circuit, which is a "lumped network" as individual components appear as discrete items. Therefore, a subsea coaxial network can be represented as a digital filter. In overall, the study has been conducted using MATLAB to model the subsea coaxial channel model base on primary and secondary parameters of subsea coaxial cable.

  19. Dielectric coated wire antennas

    NASA Technical Reports Server (NTRS)

    Richmond, J. H.; Newman, E. H.

    1976-01-01

    An electrically thin dielectric insulating shell on an antenna composed of electrically thin circular cylindrical wires is examined. A moment method solution is obtained, and the insulating shell is modeled by equivalent volume polarization currents. These polarization currents are related in a simple manner to the surface charge density on the wire antenna. In this way the insulating shell causes no new unknowns to be introduced, and the size of the impedance matrix is the same as for the uninsulated wires. The insulation is accounted for entirely through a modification of the symmetric impedance matrix. This modification influences the current distribution, impedance, efficiency, field patterns, and scattering properties. The theory is compared with measurement for dielectric coated antennas in air.

  20. The characteristics of sprays produced by coaxial airblast atomisers

    NASA Technical Reports Server (NTRS)

    Hardalupas, Y.; Whitelaw, J. H.

    1993-01-01

    Measurements of droplet size, velocity, liquid flux and concentration were made in sprays produced by a coaxial airblast atomizer using a phase Doppler anemometer. The atomizer comprised a liquid jet with exit diameter varied between 1.1 and 2.3 mm positioned in the center of a gaseous annular stream. The characteristics of the preburner sprays of the main engine of the space shuttle were simulated by using water and air respectively replacing liquid oxygen and hydrogen. Reduction of the diameter of the liquid tube was found to improve the atomization and reduce the rate of spread of sprays with similar gas-to-liquid velocity ratio. The presence of a converging nozzle at the exit of the gaseous jet improved the atomization and increased the rate of spread of sprays with gas-to-liquid velocity ratio up to around 45, but had no effect for higher velocity ratios.

  1. High-Q 3D coaxial resonators for cavity QED

    NASA Astrophysics Data System (ADS)

    Yoon, Taekwan; Owens, John C.; Naik, Ravi; Lachapelle, Aman; Ma, Ruichao; Simon, Jonathan; Schuster, David I.

    Three-dimensional microwave resonators provide an alternative approach to transmission-line resonators used in most current circuit QED experiments. Their large mode volume greatly reduces the surface dielectric losses that limits the coherence of superconducting circuits, and the well-isolated and controlled cavity modes further suppress coupling to the environment. In this work, we focus on unibody 3D coaxial cavities which are only evanescently coupled and free from losses due to metal-metal interfaces, allowing us to reach extremely high quality-factors. We achieve quality-factor of up to 170 million using 4N6 Aluminum at superconducting temperatures, corresponding to an energy ringdown time of ~4ms. We extend our methods to other materials including Niobium, NbTi, and copper coated with Tin-Lead solder. These cavities can be further explored to study their properties under magnetic field or upon coupling to superconducting Josephson junction qubits, e.g. 3D transmon qubits. Such 3D cavity QED system can be used for quantum information applications, or quantum simulation in coupled cavity arrays.

  2. The efficiency of coaxial KrCl* excilamps

    NASA Astrophysics Data System (ADS)

    Zhuang, Xiaobo; Han, Qiuyi; Zhang, Haojun; Feng, Xiangfen; Roth, Markus; Rosier, Oliver; Zhu, Shaolong; Zhang, Shanduan

    2010-05-01

    The spectrum, input power and 222 nm radiant efficiency were measured for coaxial KrCl* excilamps based on a dielectric barrier discharge. The inner tubes of the lamps have an inner/outer diameter (ID/OD) of 14/16 mm. The OD of the outer tubes is 40 mm with wall thicknesses of 1.2, 1.5 or 2.0 mm. The lamps were driven by sinusoidal, rectangular and pulsed electronic control gears (ECGs). The 222 nm radiant power is derived from irradiance, according to the Keitz formula. The input electric power is measured with an oscilloscope, combined with a voltage probe and a current probe. The results show that the maximum efficiency of the 222 nm radiation is 9.2% for a KrCl* excilamp with a wall thickness of 1.2 mm, filled with krypton (198 mbar) and chlorine (2 mbar), driven by a pulsed ECG. The effects of waveform, frequency, wall temperature and transmittance of the tube are discussed. We observe that the filament configuration of the micro-discharges changes for different voltage waveforms. The results of gas composition and pressure show an optimum pressure at 200 mbar and an optimum chlorine percentage around 0.4-1.0%.

  3. Method to characterize dielectric properties of powdery substances

    NASA Astrophysics Data System (ADS)

    Tuhkala, M.; Juuti, J.; Jantunen, H.

    2013-07-01

    An open ended coaxial cavity method for dielectric characterization of powdery substance operating at 4.5 GHz in TEM mode is presented. Classical mixing rules and electromagnetic modeling were utilized with measured effective permittivities and Q factors to determine the relative permittivity and dielectric loss tangent of different powders with ɛr up to 30. The modeling enabled determination of the correction factor for the simplified equation for the relative permittivity of an open ended coaxial resonator and mixing rules having the best correlation with experiments. SiO2, Al2O3, LTCC CT 2000, ZrO2, and La2O3 powders were used in the experiments. Based on the measured properties and Bruggeman symmetric and Looyenga mixing rules, the determined dielectric characteristics of the powders exhibited good correlation with values in the literature. The presented characterization method enabled the determination of dielectric properties of powdery substances within the presented range, and therefore could be applied to various research fields and applications where dielectric properties of powders need to be known and controlled.

  4. Grating-flanked plasmonic coaxial apertures for efficient fiber optical tweezers.

    PubMed

    Saleh, Amr A E; Sheikhoelislami, Sassan; Gastelum, Steven; Dionne, Jennifer A

    2016-09-01

    Subwavelength plasmonic apertures have been foundational for direct optical manipulation of nanoscale specimens including sub-100 nm polymeric beads, metallic nanoparticles and proteins. While most plasmonic traps result in two-dimensional localization, three-dimensional manipulation has been demonstrated by integrating a plasmonic aperture on an optical fiber tip. However, such 3D traps are usually inefficient since the optical mode of the fiber and the subwavelength aperture only weakly couple. In this paper we design more efficient optical-fiber-based plasmonic tweezers combining a coaxial plasmonic aperture with a plasmonic grating coupler at the fiber tip facet. Using full-field finite difference time domain analysis, we optimize the grating design for both gold and silver fiber-based coaxial tweezers such that the optical transmission through the apertures is maximized. With the optimized grating, we show that the maximum transmission efficiency increases from 2.5% to 19.6% and from 1.48% to 16.7% for the gold and silver structures respectively. To evaluate their performance as optical tweezers, we calculate the optical forces and the corresponding trapping potential on dielectric particles interacting with the apertures. We demonstrate that the enahncement in the transmission translates into an equivalent increase in the optical forces. Consequently, the optical power required to achieve stable optical trapping is significantly reduced allowing for efficient localization and 3D manipulation of sub-30 nm dielectric particles. PMID:27607663

  5. BOREAS RSS-17 Dielectric Constant Profile Measurements

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Nickeson, Jaime (Editor); McDonald, Kyle C.; Zimmerman, Reiner; Way, JoBea

    2000-01-01

    The BOREAS RSS-17 team acquired and analyzed imaging radar data from the ESA's ERS-1 over a complete annual cycle at the BOREAS sites in Canada in 1994 to detect shifts in radar backscatter related to varying environmental conditions. This data set consists of dielectric constant profile measurements from selected trees at various BOREAS flux tower sites. The relative dielectric constant was measured at C-band (frequency = 5 GHz) as a function of depth into the trunk of three trees at each site, Measurements were made during April 1994 with an Applied Microwave Corporation field PDP fitted with a 0.358-cm (0.141-inch) diameter coaxial probe tip. The data are available in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  6. Fluorescence Spectroscopy with Metal-Dielectric Waveguides

    PubMed Central

    Badugu, Ramachandram; Szmacinski, Henryk; Ray, Krishanu; Descrovi, Emiliano; Ricciardi, Serena; Zhang, Douguo; Chen, Junxue; Huo, Yiping; Lakowicz, Joseph R.

    2015-01-01

    We describe a hybrid metal-dielectric waveguide structures (MDWs) with numerous potential applications in the biosciences. These structures consist of a thin metal film coated with a dielectric layer. Depending on the thickness of the dielectric layer, the modes can be localized near the metal, within the dielectric, or at the top surface of the dielectric. The optical modes in a metal-dielectric waveguide can have either S (TE) or P (TM) polarization. The dielectric spacer avoids the quenching, which usually occurs for fluorophores within about 5 nm from the metal. Additionally, the resonances display a sharp angular dependence and can exhibit several hundred-fold increases in intensity (E2) at the silica-air interface relative to the incident intensity. Fluorophores placed on top of the silica layer couple efficiently with the metal, resulting in a sharp angular distribution of emission through the metal and down from the bottom of the structure. This coupling occurs over large distances to several hundred nm away from the metal and was found to be consistent with simulations of the reflectivity of the metal-dielectric waveguides. Remarkably, for some silica thicknesses, the emission is almost completely coupled through the structure with little free-space emission away from the metal-dielectric waveguide. The efficiency of fluorophore coupling is related to the quality of the resonant modes sustained by the metal-dielectric waveguide, resulting in coupling of most of the emission through the metal into the underlying glass substrates. Metal-dielectric waveguides also provide a method to resolve the emission from surface-bound fluorophores from the bulk-phase fluorophores. Metal-dielectric waveguides are simple to fabricate for large surface areas, the resonance wavelength can be adjusted by the dielectric thickness, and the silica surface is suitable for coupling to biomolecules. Metal-dielectric waveguides can have numerous applications in diagnostics and high

  7. Radio Frequency (RF) dielectric properties of honeydew melon and watermelon juice and correlations with sugar content

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dielectric properties of juice of three honeydew melon cultivars and four watermelon cultivars of different maturities were measured with an open-ended coaxial-line probe and impedance analyzer over the frequency range from 10 MHz to 1.8 GHz. Soluble solids content (SSC) of fruit juice and moisture ...

  8. 3D coaxial out-of-plane metallic antennas for filtering and multi-spectral imaging in the infrared range

    PubMed Central

    Jacassi, Andrea; Bozzola, Angelo; Zilio, Pierfrancesco; Tantussi, Francesco; De Angelis, Francesco

    2016-01-01

    We fabricated and investigated a new configuration of 3D coaxial metallic antennas working in the infrared which combines the strong lateral light scattering of vertical plasmonic structures with the selective spectral transmission of 2D arrays of coaxial apertures. The coaxial structures are fabricated with a top-down method based on a template of hollow 3D antennas. Each antenna has a multilayer radial structure consisting of dielectric and metallic materials not achievable in a 2D configuration. A planar metallic layer is inserted normally to the antennas. The outer dielectric shell of the antenna defines a nanometric gap between the horizontal plane and the vertical walls. Thanks to this aperture, light can tunnel to the other side of the plane, and be transmitted to the far field in a set of resonances. These are investigated with finite-elements electromagnetic calculations and with Fourier-transform infrared spectroscopy measurements. The spectral position of the resonances can be tuned by changing the lattice period and/or the antenna length. Thanks to the strong scattering provided by the 3D geometry, the transmission peaks possess a high signal-to-noise ratio even when the illuminated area is less than 2 × 2 times the operation wavelength. This opens new possibilities for multispectral imaging in the IR with wavelength-scale spatial resolution. PMID:27345517

  9. 3D coaxial out-of-plane metallic antennas for filtering and multi-spectral imaging in the infrared range

    NASA Astrophysics Data System (ADS)

    Jacassi, Andrea; Bozzola, Angelo; Zilio, Pierfrancesco; Tantussi, Francesco; de Angelis, Francesco

    2016-06-01

    We fabricated and investigated a new configuration of 3D coaxial metallic antennas working in the infrared which combines the strong lateral light scattering of vertical plasmonic structures with the selective spectral transmission of 2D arrays of coaxial apertures. The coaxial structures are fabricated with a top-down method based on a template of hollow 3D antennas. Each antenna has a multilayer radial structure consisting of dielectric and metallic materials not achievable in a 2D configuration. A planar metallic layer is inserted normally to the antennas. The outer dielectric shell of the antenna defines a nanometric gap between the horizontal plane and the vertical walls. Thanks to this aperture, light can tunnel to the other side of the plane, and be transmitted to the far field in a set of resonances. These are investigated with finite-elements electromagnetic calculations and with Fourier-transform infrared spectroscopy measurements. The spectral position of the resonances can be tuned by changing the lattice period and/or the antenna length. Thanks to the strong scattering provided by the 3D geometry, the transmission peaks possess a high signal-to-noise ratio even when the illuminated area is less than 2 × 2 times the operation wavelength. This opens new possibilities for multispectral imaging in the IR with wavelength-scale spatial resolution.

  10. 3D coaxial out-of-plane metallic antennas for filtering and multi-spectral imaging in the infrared range.

    PubMed

    Jacassi, Andrea; Bozzola, Angelo; Zilio, Pierfrancesco; Tantussi, Francesco; De Angelis, Francesco

    2016-01-01

    We fabricated and investigated a new configuration of 3D coaxial metallic antennas working in the infrared which combines the strong lateral light scattering of vertical plasmonic structures with the selective spectral transmission of 2D arrays of coaxial apertures. The coaxial structures are fabricated with a top-down method based on a template of hollow 3D antennas. Each antenna has a multilayer radial structure consisting of dielectric and metallic materials not achievable in a 2D configuration. A planar metallic layer is inserted normally to the antennas. The outer dielectric shell of the antenna defines a nanometric gap between the horizontal plane and the vertical walls. Thanks to this aperture, light can tunnel to the other side of the plane, and be transmitted to the far field in a set of resonances. These are investigated with finite-elements electromagnetic calculations and with Fourier-transform infrared spectroscopy measurements. The spectral position of the resonances can be tuned by changing the lattice period and/or the antenna length. Thanks to the strong scattering provided by the 3D geometry, the transmission peaks possess a high signal-to-noise ratio even when the illuminated area is less than 2 × 2 times the operation wavelength. This opens new possibilities for multispectral imaging in the IR with wavelength-scale spatial resolution. PMID:27345517

  11. Dielectric ridge waveguide gas laser apparatus

    SciTech Connect

    DeMaria, A.J.; Bridges, W.

    1989-03-14

    A dielectric ridged waveguide flowing gas laser apparatus is described, comprising in combination; a dielectric substrate having a predetermined number of the grooves formed theron, the grooves extending along the longitudinal axis of the dielectric substrate, an electrically conductive member in parallel alignment with the grooved side of the dielectric substrate such that an air gasp is formed therebetween the air gap containing an active laser gas medium, electrically conductive strips disposed on the outside of the dielectric substrate forming electrodes, the conductive strips being aligned with the grooves and having the same length and width as the grooves, and an excitation source connected between the conductive member and the conductive strips, to provide lasing in the ridged waveguide.

  12. A coaxial thermocouple for shock tunnel applications.

    PubMed

    Menezes, Viren; Bhat, Sandeep

    2010-10-01

    A chromel-constantan coaxial surface junction thermocouple has been designed, fabricated, calibrated, and tested to measure the temperature-time history on the surface of a body in a hypersonic freestream of Mach 8 in a shock tunnel. The coaxial thermocouple with a diameter of 3.25 mm was flush mounted in the surface of a hemisphere of 25 mm diameter. The hypersonic freestream was of a very low temperature and density, and had a flow time of about a millisecond. Preliminary test results indicate that the thermocouple is quite sensitive to low temperature-rarefied freestreams, and also has a response time of a few microseconds (≈5 μs) to meet the requirements of short duration transient measurements. The sensor developed is accurate, robust, reproducible, and is highly inexpensive. PMID:21034112

  13. Smaller Coaxial-View Welding Torch

    NASA Technical Reports Server (NTRS)

    Gangl, Kenneth J.

    1991-01-01

    Coaxial-view torch for gas/tungsten arc welding has only two-thirds length and width of its predecessor. Shape and size similar to that of commercial arc-welding torch (Linde HW-27 or equivalent), even though it contains lens system. Collet that holds electrode has unique design allowing greater passage of light. Used in small spaces previously inaccessible, also introduced into production welding operations with minimum of disturbance.

  14. Coaxial microwave electrothermal thruster performance in hydrogen

    NASA Technical Reports Server (NTRS)

    Richardson, W.; Asmussen, J.; Hawley, M.

    1994-01-01

    The microwave electro thermal thruster (MET) is an electric propulsion concept that offers the promise of high performance combined with a long lifetime. A unique feature of this electric propulsion concept is its ability to create a microwave plasma discharge separated or floating away from any electrodes or enclosing walls. This allows propellant temperatures that are higher than those in resistojets and reduces electrode and wall erosion. It has been demonstrated that microwave energy is coupled into discharges very efficiently at high input power levels. As a result of these advantages, the MET concept has been identified as a future high power electric propulsion possibility. Recently, two additional improvements have been made to the coaxial MET. The first was concerned with improving the microwave matching. Previous experiments were conducted with 10-30 percent reflected power when incident power was in excess of 600 W(exp 6). Power was reflected back to the generator because the impedance of the MET did not match the 50 ohm impedance of the microwave circuit. To solve this problem, a double stub tuning system has been inserted between the MET and the microwave power supply. The addition of the double stub tuners reduces the reflected power below 1 percent. The other improvement has prepared the coaxial MET for hydrogen experiments. To operate with hydrogen, the vacuum window which separates the coaxial line from the discharge chamber has been changed from teflon to boron nitride. All the microwave energy delivered to the plasma discharge passes through this vacuum window. This material change had caused problems in the past because of the increased microwave reflection coefficients associated with the electrical properties of boron nitride. However, by making the boron nitride window electrically one-half of a wavelength long, power reflection in the window has been eliminated. This technical note summarizes the experimental performance of the improved

  15. Coaxial Propellant Injectors With Faceplate Annulus Control

    NASA Technical Reports Server (NTRS)

    Horn, Mark D.; Miyata, Shinjiro; Farhangi, Shahram

    2010-01-01

    An improved design concept for coaxial propellant injectors for a rocket engine (or perhaps for a non-rocket combustion chamber) offers advantages of greater robustness, less complexity, fewer parts, lower cost, and less bulk, relative to prior injectors of equivalent functionality. This design concept is particularly well suited to small, tight-tolerance injectors, for which prior designs are not suitable because the practical implementation of those designs entails very high costs and difficulty in adhering to the tolerances.

  16. Coaxial (tubular) glow discharge in electronegative gases

    NASA Astrophysics Data System (ADS)

    Golovitskii, A. P.

    2016-07-01

    The positive-column plasma of a low- and medium-pressure electronegative glow discharge initiated in the gap between two coaxial cylindrical tubes has been considered (the current is directed along the tube axis). It is assumed that the gas mixture contains halogens, and ion diffusion is not negligibly weak. It is found that the coaxial discharge is characterized by plasma separation into three coaxial regions with different compositions in the direction transverse to the current. It has been shown that the ionization and excitation frequencies of atoms are higher than in the purely cylindrical case, even for a small (0.05-0.15) ratio of the radii of the inner and outer walls. An asymptotic analysis of the continuity equations yields analytic expressions that make it possible to rapidly and easily estimate the geometrical parameters of the spatial distributions of charge particle concentrations, as well as energy parameters of the plasma for the radii ratio that exceed 0.3. The conditions for the applicability of analytic relations and their accuracy are established from a comparison of the results of analytic and numerical calculations.

  17. Shielded Coaxial Optrode Arrays for Neurophysiology

    PubMed Central

    Naughton, Jeffrey R.; Connolly, Timothy; Varela, Juan A.; Lundberg, Jaclyn; Burns, Michael J.; Chiles, Thomas C.; Christianson, John P.; Naughton, Michael J.

    2016-01-01

    Recent progress in the study of the brain has been greatly facilitated by the development of new tools capable of minimally-invasive, robust coupling to neuronal assemblies. Two prominent examples are the microelectrode array (MEA), which enables electrical signals from large numbers of neurons to be detected and spatiotemporally correlated, and optogenetics, which enables the electrical activity of cells to be controlled with light. In the former case, high spatial density is desirable but, as electrode arrays evolve toward higher density and thus smaller pitch, electrical crosstalk increases. In the latter, finer control over light input is desirable, to enable improved studies of neuroelectronic pathways emanating from specific cell stimulation. Here, we introduce a coaxial electrode architecture that is uniquely suited to address these issues, as it can simultaneously be utilized as an optical waveguide and a shielded electrode in dense arrays. Using optogenetically-transfected cells on a coaxial MEA, we demonstrate the utility of the architecture by recording cellular currents evoked from optical stimulation. We also show the capability for network recording by radiating an area of seven individually-addressed coaxial electrode regions with cultured cells covering a section of the extent. PMID:27375415

  18. Coaxial-Flow System for Chemical Cytometry

    PubMed Central

    Marc, Paul J.; Sims, Christopher E.; Allbritton, Nancy L.

    2008-01-01

    Over the past decade, chemical cytometry performed by capillary electrophoresis (CE) has become increasingly valuable as a bio-analytical tool to quantify analytes from single cells. However, extensive use of CE-based chemical cytometry has been hindered by the relatively low throughput for the analysis of single adherent cells. In order to overcome the low throughput of CE-based analysis of adherent cells and increase its utility in evaluating cellular attributes, new higher throughput methods are needed. Integration of a coaxial buffer exchange system with CE-based chemical cytometry increased the rate of serial analyses of cells. In the designed system, fluid flow through a tube coaxial to the separation capillary was used to supply electrophoretic buffer to the capillary. This sheath or coaxial fluid was turned off between analysis of cells and on during cell sampling and electrophoresis. Thus, living cells were not exposed to the nonphysiologic electrophoretic buffer prior to lysis. Key parameters of the system such as the relative capillary-sheath positions, buffer flow velocities, and the cell chamber design were optimized. To demonstrate the utility of the system, rat basophilic leukemic cells loaded with Oregon Green and fluorescein were serially lysed and loaded into a capillary. Separation of the contents of 20 cells at a rate of 0.5 cells/min was demonstrated. PMID:17979298

  19. Coaxial jets with and without swirl

    NASA Astrophysics Data System (ADS)

    Ribeiro, M. M.; Whitelaw, J. H.

    1980-02-01

    Measured values of mean velocity, Reynolds stresses and probability density distributions of fluctuating velocity are reported for the turbulent coaxial jets, with and without swirl, emerging into stagnant surroundings from a long pipe and an annulus concentric with the pipe. They were obtained using hot-wire anemometry and on-line data processing with the aid of a mini-computer. The results show that non-swirling coaxial flow configurations approach a self-similar state in a much smaller distance than that of the round jet, for velocity ratios ranging between 0.65 to 1.5; this is due to the mixing layer and vortex shedding that occur in the region downstream of the separation wall between the two streams. In the presence of swirl, the coaxial jet was found to develop at a faster rate. An assessment of turbulence models, based on Reynolds stress closures, suggests that previous assumptions for turbulent diffusion of turbulent kinetic energy are in error.

  20. Coaxial line configuration for microwave power transmission study of YBa2Cu3O(7-delta) thin films

    NASA Technical Reports Server (NTRS)

    Chorey, C. M.; Miranda, F. A.; Bhasin, K. B.

    1991-01-01

    Microwave transmission measurements through YBa2Cu3O(7-delta) (YBCO) high-transition-temperature superconducting thin films on lanthanum aluminate (LaAlO3) have been performed in a coaxial line at 10 GHz. LaAlO3 substrates were ultrasonically machined into washer-shaped discs, polished, and coated with laser-ablated YBCO. These samples were mounted in a 50-ohm coaxial air line to form a short circuit. The power transmitted through the films as a function of temperature was used to calculate the normal state conductivity and the magnetic penetration depth for the films.

  1. Development of GOX/Hydrocarbon Multi-Element Swirl Coaxial Injector Technology

    NASA Astrophysics Data System (ADS)

    Johnson, C. W.; Muss, J.; Cheng, G. C.; Davis, R.; Cohn, R. K.

    2002-11-01

    In developing the advanced liquid rocket engine, injector design is critical to obtaining the dual goals of long engine life as well as providing high-energy release efficiency in the main combustion chamber. Introducing a swirl component in the injector flow can enhance the propellant mixing and thus improve engine performance. Therefore, swirl coaxial injectors, which swirl liquid fuel around a gaseous oxygen core, show promise for the next generation of high performance staged combustion rocket engines utilizing hydrocarbon fuels. Understanding the mixing and combustion characteristics of the swirl coaxial flow provides the insight of optimizing the injector design. A joint effort of Sierra Engineering (Sierra) and the Propulsion Directorate of the Air Force Research Lab (AFRL) was conducted to develop a design methodology, utilizing both high-pressure cold-flow testing and uni-element hot-fire testing, to create a high performing, long life swirl coaxial injector for multi-element combustor use. Several swirl coax injector configurations designed and fabricated by Sierra have been tested at AFRL. The cold-flow tests and numerical simulations have been conducted. The cold flow result provided valuable information of flow characteristics of swirl coaxial injectors. However, there are two important flow features of liquid rocket engines missed from the cold flow test: (1) the effect of combustion on the propellant mixing, and (2) the interaction of multiple injectors. The present work studies the hot flow environment specifically the multiple element swirl coaxial injector. Numerical simulations were performed with a pressure-based computational fluid dynamics (CFD) code, FDNS. CFD results produced loading environments for an ANSYS finite element thermal/structural model. Since the fuels are injected at temperature below its critical temperature, the effect of phase change and chemical reactions needs to be accounted for in the CFD model.

  2. Coaxial electrospray of microparticles and nanoparticles for biomedical applications

    PubMed Central

    Zhang, Leilei; Huang, Jiwei; Si, Ting; Xu, Ronald X

    2013-01-01

    Coaxial electrospray is an electrohydrodynamic process that produces multilayer microparticles and nanoparticles by introducing coaxial electrified jets. In comparison with other microencapsulation/nanoencapsulation processes, coaxial electrospray has several potential advantages such as high encapsulation efficiency, effective protection of bioactivity and uniform size distribution. However, process control in coaxial electrospray is challenged by the multiphysical nature of the process and the complex interplay of multiple design, process and material parameters. This paper reviews the previous works and the recent advances in design, modeling and control of a coaxial electrospray process. The review intends to provide general guidance for coaxial electrospray and stimulate further research and development interests in this promising microencapsulation/nanoencapsulation process. PMID:23249155

  3. Coaxial connector for use with printed circuit board edge connector

    DOEpatents

    Howard, Donald R.; MacGill, Robert A.

    1989-01-01

    A coaxial cable connector for interfacing with an edge connector for a printed circuit board whereby a coaxial cable can be interconnected with a printed circuit board through the edge connector. The coaxial connector includes a body having two leg portions extending from one side for receiving the edge connector therebetween, and a tubular portion extending from an opposing side for receiving a coaxial cable. A cavity within the body receives a lug of the edge connector and the center conductor of the coaxial cable. Adjacent lugs of the edge connector can be bend around the edge connector housing to function as spring-loaded contacts for receiving the coaxial connector. The lugs also function to facilitate shielding of the center conductor where fastened to the edge connector lug.

  4. Nonlinear theory of the free-electron laser based upon a coaxial hybrid wiggler

    NASA Astrophysics Data System (ADS)

    Freund, H. P.; Jackson, R. H.; Pershing, D. E.; Taccetti, J. M.

    1994-04-01

    A three-dimensional nonlinear formulation of a free-electron laser based upon a coaxial hybrid iron (CHI) wiggler is described. The CHI wiggler is created by insertion of a central rod and an outer ring [composed of alternating ferrite and dielectric spacers in which the ferrite (dielectric) spacer on the central rod is opposite to the dielectric (ferrite) spacer on the outer ring] along the axis of a solenoidal. An analytic model of the CHI wiggler is developed which is in good agreement with the Poisson/Superfish group of codes. The free-electron laser (FEL) formulation is a slow-time-scale analysis of the interaction of an annular electron beam with the CHI wiggler in a coaxial waveguide. The electromagnetic field is represented as the superposition of the vacuum transverse electric (TE), transverse magnetic (TM), and transverse electromagnetic (TEM) modes of the waveguide, and a set of nonlinear second-order differential equations is derived for the amplitudes and phases of these modes. These equations are solved simultaneously with the three-dimensional Lorentz force equations for the combined magnetostatic and electromagnetic fields. An adiabatic taper is used to model the injection of the beam, and an amplitude taper is included for efficiency enhancement. Simulations are presented for Ka-, Ku- and W-band operation. Multimode operation is also studied. The results indicate that operation over a wide bandwidth is practical with the CHI wiggler, and that the bandwidth in the tapered-wiggler cases is comparable to that for a uniform wiggler. Therefore, relatively high field strengths can be achieved with the CHI wiggler at shorter wiggler periods than is possible in many other conventional wiggler designs.

  5. Coaxial cavity for measuring level of liquid in a container

    DOEpatents

    Booman, Glenn L.; Phelps, Frank R.

    1979-01-01

    A method and means for measuring the level of a liquid in a container. A coaxial cavity having a perforated outer conductor is partially submerged in the liquid in the container wherein the liquid enters and terminates the annular region of the coaxial cavity. The fundamental resonant frequency of the portion of the coaxial cavity which does not contain liquid is determined experimentally and is used to calculate the length of the liquid-free portion of the coaxial cavity and thereby the level of liquid in the container.

  6. Differential and double-differential dielectric spectroscopy to measure complex permittivity in transmission lines

    NASA Astrophysics Data System (ADS)

    Lanzi, Leandro; Carla, Marcello; M. C. Gambi, Cecilia; Lanzi, Leonardo

    2002-08-01

    This article presents and compares two differential methods for measuring the complex permittivity of dielectric materials: In the first method, two measuring cells built as coaxial transmission lines of identical cross section and terminations but different lengths are filled with a sample of the dielectric material. The complex dielectric permittivity is determined from the scattering parameter measurements and the length difference between the two cells, neglecting the resistive losses due to the cells. The second method is a double-differential one: Repeating measurements on the same cells empty, no other knowledge or limiting assumption is required.

  7. Dielectric Spectroscopy of Grape Juice at Microwave Frequencies

    NASA Astrophysics Data System (ADS)

    Vijay, Ravika; Jain, Ritu; Sharma, Krishna S.

    2015-04-01

    The complex permittivity of fresh juice of two cultivars of grapes, Sultania (green grapes) and Black Monukka (black grapes) was measured in terms of the dielectric constant and dielectric loss factor over the frequency range from 1 to 50 GHz and at temperatures ranging from 30 to 60°C, by using the PNA network analyzer model E8364C and open ended coaxial probe 85070E. The Cole-Cole plots and dielectric constant vs. (angular frequency) dielectric loss factor and dielectric constant vs. dielectric loss factor/(angular frequency) regression lines at different temperatures were used in Debye approximation to predict relaxation frequency of molecules for the two cultivars of grapes in the low frequency and high frequency limits, respectively. It was observed that the acidic character of green grapes is responsible for the large amplitude vibrational peaks in dielectric loss factor - frequency curves, in the high frequency region at higher temperatures. On the other hand, excess of sugar in black grapes suppresses the activity of water molecules, thereby suppressing the vibrational peaks at higher frequencies. Different relaxation frequencies found for the two cultivars of grapes suggest that they have different molecular structure.

  8. The University of Maryland coaxial gyroklystron experiment

    NASA Astrophysics Data System (ADS)

    Lawson, Wes; Granatstein, Victor; Reiser, Martin; Hogan, Bart; Xu, Xiaoxi; Castle, Mike

    1999-05-01

    We have recently begun hot-testing of a number of high power coaxial gyroklystron tubes, which are being evaluated as potential drivers for future linear colliders. In a 3 cavity first-harmonic tube, we have produced over 75 MW of peak power in a 1.7 microsecond pulse with an efficiency near 32% and a gain near 30 dB. In this paper we will detail the results of this tube and the results for a second harmonic tube which is currently being installed on our test bed.

  9. Testing of coaxial railguns in high vacuum

    NASA Astrophysics Data System (ADS)

    Upshaw, J. L.

    1986-11-01

    Design features and test results with 0.5 and 5 m long coaxial EM launchers (EML) are reported. Decisions made regarding the EML designs after literature review of available technology to build EMLs capable of firing 0.1-1.0 g projectiles to 100 km/sec are discussed, along with the off-the-shelf components which were eventually used for the railguns. Although velocities of 37 km/sec were attained, only low-mass plasmas were accelerated with the railguns. No coherent patterns were achieved in the plasmas which were launched.

  10. A Coaxial Cable Fabry-Perot Interferometer for Sensing Applications

    PubMed Central

    Huang, Jie; Wang, Tao; Hua, Lei; Fan, Jun; Xiao, Hai; Luo, Ming

    2013-01-01

    This paper reports a novel coaxial cable Fabry-Perot interferometer for sensing applications. The sensor is fabricated by drilling two holes half-way into a coaxial cable. The device physics was described. The temperature and strain responses of the sensor were tested. The measurement error was calculated and analyzed. PMID:24212121

  11. 3D integration with coaxial through silicon vias

    NASA Astrophysics Data System (ADS)

    Adamshick, Stephen

    3D integration using through-silicon-vias (TSVs) is gaining considerable attention due to its superior packaging efficiency resulting in higher functionality, improved performance and a reduction in power consumption. In order to implement 3D chip designs with TSV technology, robust TSV electrical models are required. Specifically, due to the increase of signal speeds into the gigahertz (GHz) spectrum, a high frequency electrical characterization best describes TSV behavior. This thesis focuses on coaxial TSV technology due to its superior performance compared to the current existing TSV technology at high frequencies. By confining signal propagation within the coaxial TSV shield, power losses to the silicon substrate are eliminated and unintentional signal coupling is avoided. To the best of our knowledge, coaxial TSV technology has only been characterized using finite element modeling. The work presented by this thesis focuses on fabricating coaxial TSVs within the confines of standard poly gate CMOS processing. In addition, we perform a high frequency electrical characterization using s-parameters and a thermal stress characterization using micro-Raman Spectroscopy. Furthermore, we investigate applications in SPICE modeling and antenna on chip (AoC) applications utilizing coaxial TSV technology. Our results indicate the coaxial TSV reduces signal attenuation by 35% and time delay by 25% compared to the standard non-shielded TSV technology. Coaxial TSV is consistent with previous TSV results regarding induced silicon stress. Lastly, we propose a 60 GHz antenna design using the coaxial TSV that significantly improves antenna gain compared to previous literature examples.

  12. Leapfrogging of multiple coaxial viscous vortex rings

    SciTech Connect

    Cheng, M. Lou, J.; Lim, T. T.

    2015-03-15

    A recent theoretical study [Borisov, Kilin, and Mamaev, “The dynamics of vortex rings: Leapfrogging, choreographies and the stability problem,” Regular Chaotic Dyn. 18, 33 (2013); Borisov et al., “The dynamics of vortex rings: Leapfrogging in an ideal and viscous fluid,” Fluid Dyn. Res. 46, 031415 (2014)] shows that when three coaxial vortex rings travel in the same direction in an incompressible ideal fluid, each of the vortex rings alternately slips through (or leapfrogs) the other two ahead. Here, we use a lattice Boltzmann method to simulate viscous vortex rings with an identical initial circulation, radius, and separation distance with the aim of studying how viscous effect influences the outcomes of the leapfrogging process. For the case of two identical vortex rings, our computation shows that leapfrogging can be achieved only under certain favorable conditions, which depend on Reynolds number, vortex core size, and initial separation distance between the two rings. For the case of three coaxial vortex rings, the result differs from the inviscid model and shows that the second vortex ring always slips through the leading ring first, followed by the third ring slipping through the other two ahead. A simple physical model is proposed to explain the observed behavior.

  13. Coaxial prime focus feeds for paraboloidal reflectors

    NASA Technical Reports Server (NTRS)

    Collin, R. E.; Schilling, H.; Hebert, L.

    1982-01-01

    A TE11 - TM11 dual mode coaxial feed for use in prime focus paraboloidal antenna systems is investigated. The scattering matrix parameters of the internal bifurcation junction was determined by the residue calculus technique. The scattering parameters and radiation fields of the aperture were found from the Weinstein solution. The optimum modeing ratio for minimum cross-polarization was determined along with the corresponding optimum feed dimensions. A peak cross-polarization level of -58 dB is predicted. The frequency characteristics were also investigated and a bandwidth of 5% is predicted over which the cross-polarization remains below -30 dB, the input VSWR is below 1.15, and the phase error is less than 10 deg. Theoretical radiation patterns and efficiency curves for a paraboloidal reflector illuminated by this feed were computed. The predicted sidelobe level is below -30 dB and aperture efficiencies greater than 70% are possible. Experimental results are also presented that substantiates the theoretical results. In addition, experimental results for a 'short-cup' coaxial feed are given. The report includes extensive design data for the dual-mode feed along with performance curves showing cross-polarization as a function of feed parameters. The feed is useful for low-cost ground based receiving antennas for use in direct television satellite broadcasting service.

  14. Principle of a coaxial Achromatic Interfero Coronagraph

    NASA Astrophysics Data System (ADS)

    Gay, J.; Fressin, F.; Rivet, J.-P.

    We describe here the principle of a new type of coronagraph, based on the incident flux division with pupil reversal and phase shift on one beam, then recombination with destructive interferences at the center orf the field. This concept of nulling has already been used in the Interferometrical Achromatic Interfero-Coronagraph (AIC, Gay & Rabbia [CITE]), which lies on a Michelson interferometer interferomùetry which does not allow an easy insertion in the focal facility of a telescope. The variant under consideration has a completely coaxial design with an original and very compact optical combination. It is based upon two coaxial thick lenses in the same medium, stuck one to each other with a very narrow gap in between and a proper coating of the interfaces. The very geometry of the device ensures moreover the permanent and rigorous cophasing of the interferometer. The optical combination which fulfills this problem is unique and presents a range of properties which ease its insertion in the focal instrumentation of existing telescopes or next generation ones.

  15. Investigation of the feasibility of in-situ dielectric property measurements on neutron-irradiated ceramic insulators

    SciTech Connect

    Goulding, R.H.; Zinkle, S.J.

    1996-04-01

    Computer modeling and experimental benchtop tests have demonstrated that a capacitively loaded resonant coaxial cavity can produce accurate in-situ measurements of the loss tangent and dielectric constant of ceramic insulators at a frequency of {approx}80 MHZ during fission reactor irradiation. The start of the reactor irradiations has been postponed indefinitely due to budgetary constraints.

  16. The Electrical Characteristics of a Filamentary Dielectric Barrier Discharge

    SciTech Connect

    Tay, W. H.; Yap, S. L.; Wong, C. S.

    2010-07-07

    The electrical characteristics of a filamentary dielectric barrier discharge using parallel-plate electrodes geometry were statistically studied. The DBD's system was powered by a 50 Hz power supply and operated at atmospheric pressure. The influence of the air gap and position of dielectric on the discharge had been investigated. It was found that the air gap distance and position of dielectric had significant influence on the discharge current pulse. The results showed that discharge with large distance between the high voltage electrode and the dielectric would generate higher current pulses during the positive cycle. The discharge energy of single pulse was also determined.

  17. Dielectric investigation of some woven fabrics

    NASA Astrophysics Data System (ADS)

    Cerovic, Dragana D.; Dojcilovic, Jablan R.; Asanovic, Koviljka A.; Mihajlidi, Tatjana A.

    2009-10-01

    In this paper, we have investigated the temperature dependence of dielectric properties (relative dielectric permeabilities and dielectric tangents of losses) for woven fabrics of hemp, jute, flax, cotton, polyester (PES), cotton-PES mixture, and wool. The measurements have been carried out at a temperature range from -50 to 50 °C in the electric periodic field at a frequency 1 MHz in vacuum. For the same specimens, the values of the dielectric properties have also been measured at an air temperature of 21 °C and at relative humidities of 40%, 60%, and 80%. At different frequencies from 80 kHz to 5 MHz, the dielectric properties have been measured at a relative humidity of 40% and at a temperature of 21 °C. An investigation of the dielectric properties of woven fabrics can provide a better understanding of the relation between the dielectric properties of woven fabrics and the different raw material compositions, temperatures, relative air humidities, and frequencies for specimens. Hence, this investigation helps to improve textile material properties.

  18. An Internal Coaxial Cable Electrical Connector For Use In Downhole Tools

    DOEpatents

    Hall, David R.; Hall, Jr., H. Tracy; Pixton, David S.; Dahlgren, Scott; Fox, Joe; Sneddon, Cameron; Briscoe, Michael

    2005-11-29

    A coaxial cable electrical connector more specifically an internal coaxial cable connector placed within a coaxial cable and its constituent components. A coaxial cable connector is in electrical communcation with an inductive transformer and a coaxial cable. The connector is in electrical communication with the outer housing of the inductive transfonner. A generally coaxial center conductor, a portion of which could be the coil in the inductive transformer, passes through the connector, is electrically insulated from the connector, and is in electrical communication with the conductive care of the coaxial cable. A plurality of bulbous pliant tabs on the coaxial cable connector mechanically engage the inside diameter of the coaxial cable thus grounding the transformer to the coaxial cable. The coaxial cable and inductive transformer are disposed within downhole tools to transmit electrical signals between downhole tools within a drill string.

  19. Computer Modeling for Microwave Ablation in Breast Cancer Using a Coaxial Slot Antenna

    NASA Astrophysics Data System (ADS)

    Cepeda Rubio, Mario Francisco Jesus; Guerrero López, Geshel David; Valdés Perezgasga, Francisco; Flores García, Francisco; Vera Hernández, Arturo; Leija Salas, Lorenzo

    2015-11-01

    The use of breast cancer mammography screening has allowed detection of a greater number of small carcinomas, and this has facilitated treatment by minimally invasive techniques. Microwave energy is a promising alternative treatment because it can preferentially heat and damage high-water-content breast carcinomas. In order to evaluate the feasibility of using this technique to treat breast cancer, a coaxial slot antenna computer simulation based on an axisymmetric finite element method (FEM) model was used to compare heating differences between cancer and normal breast tissue. Three FEM computer models were developed: in one of them, the coaxial slot antenna was immersed only in homogeneous breast tissue; for the second one, the antenna was immersed only in cancer tissue; for the third one, the antenna was inserted into malignant tissue surrounded by breast tissue. According to the results, the computer modeling demonstrated that the difference in dielectric properties and thermal parameters between malignant and normal adipose-dominated tissue was able to cause preferential heating of tumors during microwave ablation. Furthermore, the ablation zone radius was 42 % larger in the tumor than in low-water-content adipose tissue. Even though this technique requires further research, it is a promising minimally invasive modality for the local treatment of breast cancer.

  20. Design and development of a high-voltage coaxial-hydrogen switch

    NASA Astrophysics Data System (ADS)

    Burger, Jeffrey W.; Baum, Carl E.; Prather, William D.; Torres, Roger J.; Abdalla, Michael D.; Skipper, Mike C.; Cockreham, B. C.; McLemore, Donald

    2002-06-01

    The high power microwave program at the Air Force Research Lab (AFRL) includes high power source development in narrow band and wideband technologies. The H2 source is an existing wideband source that was developed at the AFRL. A recent AFRL requirement for a wideband impulse generator to use in materials tests has provided the need to update the H2 source for the current test requirements. The H2 source is composed of a dual resonant transformer that charges a short length of coaxial transmission line. The transmission line is then discharged into an output coaxial transmission line with a self-break Hydrogen switch. The dual resonant transformer is driven by a low inductance primary capacitor bank operating through a sel-break gas switch. The upgrade of the coaxial Hydrogen output switch is the focus of this paper. The Hydrogen output switch was developed through extensive electrical and mechanical simulations. The switch insulator is made of Ultem 2300 and is designed to operate with a mechanical factor of safety equal to 4.0 at 1,000 psi. The design criteria, design data and operational data will be presented.

  1. Microwave dielectric measurements of erythrocyte suspensions.

    PubMed

    Bao, J Z; Davis, C C; Swicord, M L

    1994-06-01

    Complex dielectric constants of human erythrocyte suspensions over a frequency range from 45 MHz to 26.5 GHz and a temperature range from 5 to 40 degrees C have been determined with the open-ended coaxial probe technique using an automated vector network analyzer (HP 8510). The spectra show two separate major dispersions (beta and gamma) and a much smaller dispersion between them. The two major dispersions are analyzed with a dispersion equation containing two Cole-Cole functions by means of a complex nonlinear least squares technique. The parameters of the equation at different temperatures have been determined. The low frequency behavior of the spectra suggests that the dielectric constant of the cell membrane increases when the temperature is above 35 degrees C. The real part of the dielectric constant at approximately 3.4 GHz remains almost constant when the temperature changes. The dispersion shifts with temperature in the manner of a thermally activated process, and the thermal activation enthalpies for the beta- and gamma-dispersions are 9.87 +/- 0.42 kcal/mol and 4.80 +/- 0.06 kcal/mol, respectively. PMID:8075351

  2. Nanoscale devices based on plasmonic coaxial waveguide resonators

    NASA Astrophysics Data System (ADS)

    Mahigir, A.; Dastmalchi, P.; Shin, W.; Fan, S.; Veronis, G.

    2015-02-01

    Waveguide-resonator systems are particularly useful for the development of several integrated photonic devices, such as tunable filters, optical switches, channel drop filters, reflectors, and impedance matching elements. In this paper, we introduce nanoscale devices based on plasmonic coaxial waveguide resonators. In particular, we investigate threedimensional nanostructures consisting of plasmonic coaxial stub resonators side-coupled to a plasmonic coaxial waveguide. We use coaxial waveguides with square cross sections, which can be fabricated using lithography-based techniques. The waveguides are placed on top of a silicon substrate, and the space between inner and outer coaxial metals is filled with silica. We use silver as the metal. We investigate structures consisting of a single plasmonic coaxial resonator, which is terminated either in a short or an open circuit, side-coupled to a coaxial waveguide. We show that the incident waveguide mode is almost completely reflected on resonance, while far from the resonance the waveguide mode is almost completely transmitted. We also show that the properties of the waveguide systems can be accurately described using a single-mode scattering matrix theory. The transmission and reflection coefficients at waveguide junctions are either calculated using the concept of the characteristic impedance or are directly numerically extracted using full-wave three-dimensional finite-difference frequency-domain simulations.

  3. Coaxial tube array space transmission line characterization

    NASA Technical Reports Server (NTRS)

    Switzer, Colleen A.; Bents, David J.

    1987-01-01

    The coaxial tube array tether/transmission line used to connect an SP-100 nuclear power system to the space station was characterized over the range of reactor-to-platform separation distances of 1 to 10 km. Characterization was done with respect to array performance, physical dimensions and masses. Using a fixed design procedure, a family of designs was generated for the same power level (300 kWe), power loss (1.5 percent), and meteoroid survival probability (99.5 percent over 10 yr). To differentiate between vacuum insulated and gas insulated lines, two different maximum values of the E field were considered: 20 kV/cm (appropriate to vacuum insulation) and 50 kV/cm (compressed SF6). Core conductor, tube, bumper, standoff, spacer and bumper support dimensions, and masses were also calculated. The results of the characterization show mainly how transmission line size and mass scale with reactor-to-platform separation distance.

  4. Coaxial tube array space transmission line characterization

    NASA Astrophysics Data System (ADS)

    Switzer, Colleen A.; Bents, David J.

    The coaxial tube array tether/transmission line used to connect an SP-100 nuclear power system to the space station was characterized over the range of reactor-to-platform separation distances of 1 to 10 km. Characterization was done with respect to array performance, physical dimensions and masses. Using a fixed design procedure, a family of designs was generated for the same power level (300 kWe), power loss (1.5 percent), and meteoroid survival probability (99.5 percent over 10 yr). To differentiate between vacuum insulated and gas insulated lines, two different maximum values of the E field were considered: 20 kV/cm (appropriate to vacuum insulation) and 50 kV/cm (compressed SF6). Core conductor, tube, bumper, standoff, spacer and bumper support dimensions, and masses were also calculated. The results of the characterization show mainly how transmission line size and mass scale with reactor-to-platform separation distance.

  5. Fast cooldown coaxial pulse tube microcooler

    NASA Astrophysics Data System (ADS)

    Nast, T.; Olson, J. R.; Champagne, P.; Roth, E.; Kaldas, G.; Saito, E.; Loung, V.; McCay, B. S.; Kenton, A. C.; Dobbins, C. L.

    2016-05-01

    We report the development and initial testing of the Lockheed Martin first-article, single-stage, compact, coaxial, Fast Cooldown Pulse Tube Microcryocooler (FC-PTM). The new cryocooler supports cooling requirements for emerging large, high operating temperature (105-150K) infrared focal plane array sensors with nominal cooling loads of ~300 mW @105K @293K ambient. This is a sequel development that builds on our inline and coaxial pulse tube microcryocoolers reported at CEC 20137, ICC188,9, and CEC201510. The new FC-PTM and the prior units all share our long life space technology attributes, which typically have 10 year life requirements1. The new prototype microcryocooler builds on the previous development by incorporating cold head design improvements in two key areas: 1) reduced cool-down time and 2) novel repackaging that greatly reduces envelope. The new coldhead and Dewar were significantly redesigned from the earlier versions in order to achieve a cooldown time of 2-3 minutes-- a projected requirement for tactical applications. A design approach was devised to reduce the cold head length from 115mm to 55mm, while at the same time reducing cooldown time. We present new FC-PTM performance test measurements with comparisons to our previous pulse-tube microcryocooler measurements and design predictions. The FC-PTM exhibits attractive small size, volume, weight, power and cost (SWaP-C) features with sufficient cooling capacity over required ambient conditions that apply to an increasing variety of space and tactical applications.

  6. A compact, coaxial shunt current diagnostic for X pinches

    NASA Astrophysics Data System (ADS)

    Wang, Liangping; Zhang, Jinhai; Li, Mo; Zhang, Xinjun; Zhao, Chen; Zhang, Shaoguo

    2015-08-01

    A compact coaxial shunt was applied in X-pinches experiments on Qiangguang pulsed power generator. The coaxial shunt was designed to have a compact construction for smaller inductance and more, for conveniently assembling upon the X pinch load structure. The coaxial shunt is also a cheap current probe and was easily built by research groups. The shunt can monitor a 100 kA high current with a 100 ns rise time. The calibration results showed that the probe used in the experiments has a resistance of 3.2 mΩ with an uncertainty of 3%, and its response time to the step signal is less than 7 ns.

  7. Homodyne readout on dc-removed coaxial holographic data storage.

    PubMed

    Yasuda, Shin; Ogasawara, Yasuhiro; Minabe, Jiro; Kawano, Katsunori; Hayashi, Kazuhiro

    2009-12-20

    Multiplexing characteristics of a dc-removed coaxial holographic storage system were evaluated for what is believed to be the first time. Our dc-removed coaxial system achieved 3.5 times higher raw data density than a conventional coaxial system that involved dc recording. The increase of the data density was due not only to less M/# consumption but also to the effects of signal amplification and noise reduction by use of the positive and negative images reconstructed from the same holograms. PMID:20029586

  8. Heat and mass transfer intensification in coaxial reactor

    NASA Astrophysics Data System (ADS)

    Ananyev, D. V.; Halitova, G. R.

    2014-04-01

    The work considers heat and mass transfer in the homophasic polymerization reactor. The reactor is a coaxial channel with internal tube in the form of a channel of confusor-diffuser type. The authors compared the degree of polymer transformation in the intensified coaxial reactor with internal tube of confusor-diffuser type and the reactor with constant rectilinear longitudinal section. It was found that in coaxial channels with internal tube of confusor-diffuser type, it is possible to reach high values of the transformation degree and to improve the quality of the obtained polymer.

  9. Testing and optimizing MST coaxial collinear arrays, part 6.4A

    NASA Technical Reports Server (NTRS)

    Warnock, J. M.; Green, J. L.

    1984-01-01

    Many clear-air VHF wind profiles use coaxial collinear (COCO) arrays for their antenna. A COCO array is composed of long lines of half-wave dipoles spaced one-half wavelength apart. An inexpensive method of checking a COCO array is described and its performance is optimized by measuring and then correcting the relative rf phase among its lines at their feed point. This method also gives an estimate of the rf current amplitude among the lines. The strength and location of the sidelobes in the H-plane of the array can be estimated.

  10. Hierarchically mesoporous carbon nanofiber/Mn3O4 coaxial nanocables as anodes in lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Park, Seok-Hwan; Lee, Wan-Jin

    2015-05-01

    Carbon nanofiber/Mn3O4 (CNF/Mn3O4) coaxial nanocables with a three-dimensional (3D) structure are prepared for lithium ion batteries by electrophoretic deposition on an electrospun CNF cathode followed by heat treatment in air. The bark-like Mn3O4 shell with a thickness of 30 nm surrounds the CNFs with a diameter of 200 nm; this hierarchically mesoporous Mn3O4 shell consisted of interconnected nanoparticles grows radially toward the CNF core when viewed from the cross-section of the coaxial cables. The charge transfer resistance of the CNF/Mn3O4 is much smaller than that of the Mn3O4 powder, because of (i) the abundant inner spaces provided via the formation of the 3D coaxial core/shell nanocables, (ii) the high electric pathway for the Mn3O4 nanoparticles attained with the 1D CNFs, and (iii) the structural stability obtained through the cushioning effect created by the CNF/Mn3O4 coaxial morphology. These unique characteristics contribute to achieving a high capacity, excellent cyclic stability, and good rate capability. The CNF/Mn3O4 nanocables deliver an initial capacity of 1690 mAh g-1 at a current density of 100 mA g-1 and maintain a high reversible capacity of 760 mAh g-1 even after 50 charge-discharge cycles without showing any obvious decay.

  11. Atmospheric air diffuse array-needles dielectric barrier discharge excited by positive, negative, and bipolar nanosecond pulses in large electrode gap

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Yang, De-zheng; Wang, Wen-chun; Liu, Zhi-jie; Wang, Sen; Jiang, Peng-chao; Zhang, Shuai

    2014-09-01

    In this paper, positive, negative, and bipolar nanosecond pulses are employed to generate stable and diffuse discharge plasma using array needles-plate electrode configuration at atmospheric pressure. A comparison study of discharge images, electrical characteristics, optical emission spectra, and plasma vibrational temperature and rotational temperatures in three pulsed polarity discharges is carried on under different discharge conditions. It is found that bipolar pulse is beneficial to the excitation of diffuse dielectric barrier discharge, which can generate a room temperature plasma with more homogeneous and higher discharge intensity compared with unipolar discharges. Under the condition of 6 mm electrode gap distance, 26 kV pulse peak voltage, and 150 Hz pulse repetition rate, the emission intensity of N2 (C3Πu → B3Πg) of the bipolar pulsed discharge is 4 times higher than the unipolar discharge (both positive and negative), while the plasma gas temperature is kept at 300 K, which is about 10-20 K lower than the unipolar discharge plasma.

  12. Separation of Particles in Swirling Flow in Coaxial Channel

    NASA Astrophysics Data System (ADS)

    Vasilevsky, Michail; Zyatikov, Pavel; Deeva, Vera; Kozyrev, Ilya

    2016-02-01

    Cyclones are widely used devices to separate a dispersed phase (e.g. particles or droplets) from a continuous phase. The separation of particles in coaxial channels with different length is considered in paper. In this study we show that as coaxial channels length grows, the efficiency increases. In addition we demonstrate that as a gap between cylinder components is reduced, the aerosol spray efficiency is reduced also in turbulent flow.

  13. Design and experimental results of coaxial circuits for gyroklystron amplifiers

    SciTech Connect

    Flaherty, M.K.E.; Lawson, W.; Cheng, J.; Calame, J.P.; Hogan, B.; Latham, P.E.; Granatstein, V.L.

    1994-12-31

    At the University of Maryland high power microwave source development for use in linear accelerator applications continues with the design and testing of coaxial circuits for gyroklystron amplifiers. This presentation will include experimental results from a coaxial gyroklystron that was tested on the current microwave test bed, and designs for second harmonic coaxial circuits for use in the next generation of the gyroklystron program. The authors present test results for a second harmonic coaxial circuit. Similar to previous second harmonic experiments the input cavity resonated at 9.886 GHz and the output frequency was 19.772 GHz. The coaxial insert was positioned in the input cavity and drift region. The inner conductor consisted of a tungsten rod with copper and ceramic cylinders covering its length. Two tungsten rods that bridged the space between the inner and outer conductors supported the whole assembly. The tube produced over 20 MW of output power with 17% efficiency. Beam interception by the tungsten rods resulted in minor damage. Comparisons with previous non-coaxial circuits showed that the coaxial configuration increased the parameter space over which stable operation was possible. Future experiments will feature an upgraded modulator and beam formation system capable of producing 300 MW of beam power. The fundamental frequency of operation is 8.568 GHz. A second harmonic coaxial gyroklystron circuit was designed for use in the new system. A scattering matrix code predicts a resonant frequency of 17.136 GHz and Q of 260 for the cavity with 95% of the outgoing microwaves in the desired TE032 mode. Efficiency studies of this second harmonic output cavity show 20% expected efficiency. Shorter second harmonic output cavity designs are also being investigated with expected efficiencies near 34%.

  14. A research program in magnetogasdynamics utilizing hypervelocity coaxial plasma generators

    NASA Technical Reports Server (NTRS)

    Spight, C.

    1976-01-01

    A broadly-gauged research program in magnetogasdynamics utilizing hypervelocity coaxial plasma generators is presented. A complete hypervelocity coaxial plasma generator facility was assembled and tested. Significant progress was made in the direction of understanding the important processes in the interaction of hypervelocity MGD flow with transverse applied fields. It is now proposed to utilize the accumulated experimental capability and theoretical analysis in application to the analysis and design parameterization of pulsed magnetogasdynamic direct energy convertor configurations.

  15. Surface Plasmons in Coaxial Metamaterial Cables

    NASA Astrophysics Data System (ADS)

    Kushwaha, Manvir S.; Djafari-Rouhani, Bahram

    2013-07-01

    Thanks to Victor Veselago for his hypothesis of negative index of refraction, meta-materials — engineered composites — can be designed to have properties difficult or impossible to find in nature: they can have both electrical permittivity (ɛ) and magnetic permeability (μ) simultaneously negative. The metamaterials — henceforth negative-index materials (NIMs) — owe their properties to subwavelength structure rather than to their chemical composition. The tailored electromagnetic response of the NIMs has had a dramatic impact on classical optics: they are becoming known to have changed many basic notions related with electromagnetism. The present article is focused on gathering and reviewing fundamental characteristics of plasmon propagation in coaxial cables fabricated of the right-handed medium (RHM) (with ɛ > 0, μ > 0) and the left-handed medium (LHM) (with ɛ < 0, μ < 0) in alternate shells starting from the innermost cable. Such structures as conceived here may pave the way to some interesting effects in relation to, for example, optical science exploiting the cylindrical symmetry of coaxial waveguides that make it possible to perform all major functions of an optical fiber communication system in which the light is born, manipulated, and transmitted without ever leaving the fiber environment, with precise control over the polarization rotation and pulse broadening. This review also covers briefly the nomenclature, classification, potential applications, and the limitations (related, for example, to the inherent losses) of the NIMs and their impact on classical electrodynamics in general, and in designing the cloaking devices in particular. A recent surge in efforts on invisibility and the cloaking devices seems to have spoiled the researchers worldwide: proposals include not only a way to hide an object without having to wrap the cloak around it, but also to replace a given object with another, thus adding to the deception even further! All this

  16. Electrospun Composite Nanofibers of Semiconductive Polymers for Coaxial PN Junctions

    NASA Astrophysics Data System (ADS)

    Serrano, William; Thomas, Sylvia

    The objective of this research is to investigate the conditions under P3HT and Activink, semiconducting polymers, form 1 dimension (1D) coaxial p-n junctions and to characterize their behavior in the presence of UV radiation and organic gases. For the first time, fabrication and characterization of semiconductor polymeric single fiber coaxial arrangements will be studied. Electrospinning, a low cost, fast and reliable method, with a coaxial syringe arrangement will be used to fabricate these fibers. With the formation of fiber coaxial arrangements, there will be investigations of dimensionality crossovers e.g., from one-dimensional (1D) to two-dimensional (2D). Coaxial core/shell fibers have been realized as seen in a recent publication on an electrospun nanofiber p-n heterojunction of oxides (BiFeO3 and TiO2, respectively) using the electrospinning technique with hydrothermal method. In regards to organic semiconducting coaxial p-n junction nanofibers, no reported studies have been conducted, making this study fundamental and essential for organic semiconducting nano devices for flexible electronics and multi-dimensional integrated circuits.

  17. ''Theta gun,'' a multistage, coaxial, magnetic induction projectile accelerator

    SciTech Connect

    Burgess, T.J.; Duggin, B.W.; Cowan, M. Jr.

    1985-11-01

    We experimentally and theoretically studied a multistage coaxial magnetic induction projectile accelerator. We call this system a ''theta gun'' to differentiate it from other coaxial accelerator concepts such as the mass driver. We conclude that this system can theoretically attain railgun performance only for large caliber or very high injection velocity and, even then, only for long coil geometry. Our experiments with a three-stage, capactor bank-driven accelerator are described. The experiments are modeled with a 1-1/2 dimensional equivalent circuit-hydrodynamics code which is also described. We derive an expression for the conditions of coaxial accelerator-railgun ''velocity breakeven'' in the absence of ohmic and hydrodynamic effects. This, in conjunction with an expression for the magnetic coupling coefficient, defines a set of geometric relations which the coaxial system must simultaneously satisfy. Conclusions concerning both the existence and configuration of a breakeven coaxial system follow from this requirement. The relative advantages and disadvantages of the coaxial induction projectile accelerator, previously cited in the literature, are critiqued from the viewpoint of our analysis and experimental results. We find that the advantages vis-a-vis the railgun have been overstated. 13 refs., 17 figs.

  18. Hydrodynamics of shear coaxial liquid rocket injectors

    NASA Astrophysics Data System (ADS)

    Tsohas, John

    Hydrodynamic instabilities within injector passages can couple to chamber acoustic modes and lead to unacceptable levels of combustion instabilities inside liquid rocket engines. The instability of vena-contracta regions and mixing between fuel and oxidizer can serve as a fundamental source of unsteadiness produced by the injector, even in the absence of upstream or downstream pressure perturbations. This natural or "unforced" response can provide valuable information regarding frequencies where the element could conceivably couple to chamber modes. In particular, during throttled conditions the changes in the injector response may lead to an alignment of the injector and chamber modes. For these reasons, the basic unforced response of the injector element is of particular interest when developing a new engine. The Loci/Chem code was used to perform single-element, 2-D unsteady CFD computations on the Hydrogen/Oxygen Multi-Element Experiment (HOMEE) injector which was hot-fire tested at Purdue University. The Loci/Chem code was used to evaluate the effects of O/F ratio, LOX post thickness, recess length and LOX tube length on the hydrodynamics of shear co-axial rocket injectors.

  19. Dielectric properties of emulsions and suspensions: mixture equations and measurement comparisons.

    PubMed

    Erle, U; Regier, M; Persch, C; Schubert, H

    2000-01-01

    Dielectric properties of water-in-oil emulsions, oil in water emulsions and limestone-in-water suspensions have been measured at 2.45 GHz by an open-ended coaxial-line probe. The results were compared to various equations for the dielectric properties of mixtures. The equation by Fricke and Mudgett describes best the behavior of oil-in-water emulsions and limestone in water suspensions. For water-in-oil emulsions the equation by Lichtenecker and Rother gives the best results. PMID:11098444

  20. Update on the development of externally powered dielectric-loaded accelerating structures.

    SciTech Connect

    Jing, C.; Gai, W.; Konecny, R.; Power, J. G.; Liu, W.; Kanareykin, A.; Gold, S.; Kinkead, A. K.; High Energy Physics; EuclidTechlabs,; Naval Research Lab.; Icarus Research

    2009-01-01

    We report on recent progress in a program to develop an RF-driven Dielectric-Loaded Accelerating (DLA) structure, capable of supporting high gradient acceleration. Previous high power tests revealed that the earlier DLA structures suffered from multipactor and arcing at the dielectric joint. A few new DLA structures have been designed to alleviate this limitation including the coaxial coupler based DLA structure and the clamped DLA structure. These structures were recently fabricated and high power tested at the NRL X-band Magnicon facility. Results show the multipactor can be reduced by the TiN coating on the dielectric surface. Gradient of 15 MV/m has also been tested without dielectric breakdown in the test of the clamped DLA structure. Detailed results are reported, and future plans discussed.

  1. Progress toward externally powered x-band dielectric-loaded accelerating structures.

    SciTech Connect

    Gai, W.; Power, J. G.; Liu, W.; Jing, C.; Gold, S. H.; Kinead, A. K.; Tantawi, S. G.; Dolgashev, V.; Kanareykin, A.; Konecny, R.; Wanming, L.

    2010-06-01

    We summarize recent progress in a program to develop externally powered dielectric-loaded accelerating (DLA) structures that can sustain high accelerating gradients. High-power RF tests of earlier structures showed strong multipactor loading. In addition, arcing at dielectric joints between the uniform DLA structure and matching sections at either end limited the achievable gradient. In this paper, we study the onset of multipactor in a DLA structure. We also study the effect of thin-film TiN coatings applied by atomic layer deposition and the effect of a reduction in the inner diameter of the structure. Test results of these structures show significant decreases in multipactor loading. We also test new structure designs that eliminate separate dielectric matching sections and, thus, the requirement for dielectric joints, including a DLA structure using a coaxial coupler and a clamped DLA structure. The clamped structure demonstrated a significantly improved gradient without breakdown.

  2. Update on the Development of Externally Powered Dielectric-Loaded Accelerating Structures

    SciTech Connect

    Jing, C.; Kanareykin, A.; Gai, W.; Konecny, R.; Power, J. G.; Liu, W.; Gold, S. H.; Kinkead, A. K.

    2009-01-22

    We report on recent progress in a program to develop an RF-driven Dielectric-Loaded Accelerating (DLA) structure, capable of supporting high gradient acceleration. Previous high power tests revealed that the earlier DLA structures suffered from multipactor and arcing at the dielectric joint. A few new DLA structures have been designed to alleviate this limitation including the coaxial coupler based DLA structure and the clamped DLA structure. These structures were recently fabricated and high power tested at the NRL X-band Magnicon facility. Results show the multipactor can be reduced by the TiN coating on the dielectric surface. Gradient of 15 MV/m has also been tested without dielectric breakdown in the test of the clamped DLA structure. Detailed results are reported, and future plans discussed.

  3. Changes in the dielectric properties of rat tissue as a function of age at microwave frequencies

    NASA Astrophysics Data System (ADS)

    Peyman, A.; Rezazadeh, A. A.; Gabriel, C.

    2001-06-01

    The dielectric properties of ten rat tissues at six different ages were measured at 37 °C in the frequency range of 130 MHz to 10 GHz using an open-ended coaxial probe and a computer controlled network analyser. The results show a general decrease of the dielectric properties with age. The trend is more apparent for brain, skull and skin tissues and less noticeable for abdominal tissues. The variation in the dielectric properties with age is due to the changes in the water content and the organic composition of tissues. The percentage decrease in the dielectric properties of certain tissues in the 30 to 70 day old rats at cellular phone frequencies have been tabulated. These data provide an important input in the provision of rigorous dosimetry in lifetime-exposure animal experiments. The results provide some insight into possible differences in the assessment of exposure for children and adults.

  4. Direct correlation and strong reduction of native point defects and microwave dielectric loss in air-annealed (Ba,Sr)TiO{sub 3}

    SciTech Connect

    Zeng, Z. Q.; Podpirka, A.; Kirchoefer, S. W.; Asel, T. J.; Brillson, L. J.

    2015-05-04

    We report on the native defect and microwave properties of 1 μm thick Ba{sub 0.50}Sr{sub 0.50}TiO{sub 3} (BST) films grown on MgO (100) substrates by molecular beam epitaxy (MBE). Depth-resolved cathodoluminescence spectroscopy (DRCLS) showed high densities of native point defects in as-deposited BST films, causing strong subgap emission between 2.0 eV and 3.0 eV due to mixed cation V{sub C} and oxygen Vo vacancies. Post growth air anneals reduce these defects with 2.2, 2.65, and 3.0 eV V{sub O} and 2.4 eV V{sub C} intensities decreasing with increasing anneal temperature and by nearly two orders of magnitude after 950 °C annealing. These low-defect annealed BST films exhibited high quality microwave properties, including room temperature interdigitated capacitor tunability of 13% under an electric bias of 40 V and tan δ of 0.002 at 10 GHz and 40 V bias. The results provide a feasible route to grow high quality BST films by MBE through post-air annealing guided by DRCLS.

  5. Computational Study of Flow Interactions in Coaxial Rotors

    NASA Technical Reports Server (NTRS)

    Yoon, Seokkwan; Lee, Henry C.; Pulliam, Thomas H.

    2016-01-01

    Although the first idea of coaxial rotors appeared more than 150 years ago, most helicopters have used single main-rotor/tail-rotor combination. Since reactive moments of coaxial rotors are canceled by contra-rotation, no tail rotor is required to counter the torque generated by the main rotor. Unlike the single main rotor design that distributes power to both main and tail rotors, all of the power for coaxial rotors is used for vertical thrust. Thus, no power is wasted for anti-torque or directional control. The saved power helps coaxial rotors reach a higher hover ceiling than single rotor helicopters. Another advantage of coaxial rotors is that the overall rotor diameter can be reduced for a given vehicle gross weight because each rotor provides a maximum contribution to vertical thrust to overcome vehicle weight. However, increased mechanical complexity of the hub has been one of the challenges for manufacturing coaxial rotorcraft. Only the Kamov Design Bureau of Russia had been notably successful in production of coaxial helicopters until Sikorsky built X2, an experimental compound helicopter. Recent developments in unmanned aircraft systems and high-speed rotorcraft have renewed interest in the coaxial configuration. Multi-rotors are frequently used for small electric unmanned rotorcraft partly due to mechanical simplicity. The use of multiple motors provides redundancy as well as cost-efficiency. The multi-rotor concept has rarely been used until recently because of its inherent stability and control problems. However, advances in inexpensive electronic flight control systems have opened the floodgates for small drones using multirotors. Coaxial rotors have started to appear in some multi-rotor configurations. Small coaxial rotors have often been designed using a hundred year old approach that is "sketch, build, fly, and iterate." In that approach, there is no systematic way to explore trade-offs or determine logical next steps. It is neither possible to

  6. Dielectric measurement method for real-time monitoring of initial hardening of backfill materials used for underground construction

    NASA Astrophysics Data System (ADS)

    Karlovšek, Jurij; Schwing, Moritz; Chen, Zhen; Wagner, Norman; Williams, David J.; Scheuermann, Alexander

    2016-04-01

    The broadband dielectric measurement method based on the vector network analysis technique, in combination with an open-ended coaxial probe, was applied to the determination of the dielectric relaxation behaviour of one- and two-component backfilling grout materials in the frequency range from 40 MHz to 2 GHz. The cement hydration process and the gelling of commercial grouts was monitored in real-time to investigate the application of non-destructive testing methods in the tunnelling industry. It was found that the time-dependent dielectric relaxation behaviour can accurately reveal the different stages of the hydration process and delineate the start of gel hardening. These measurement results demonstrate the practicability of the real-time dielectric measurement method to determine the broadband dielectric parameters of conventional backfill materials used in underground construction to determine construction integrity using non-destructive testing methods.

  7. Coaxial electrospun fibers: applications in drug delivery and tissue engineering.

    PubMed

    Lu, Yang; Huang, Jiangnan; Yu, Guoqiang; Cardenas, Romel; Wei, Suying; Wujcik, Evan K; Guo, Zhanhu

    2016-09-01

    Coelectrospinning and emulsion electrospinning are two main methods for preparing core-sheath electrospun nanofibers in a cost-effective and efficient manner. Here, physical phenomena and the effects of solution and processing parameters on the coaxial fibers are introduced. Coaxial fibers with specific drugs encapsulated in the core can exhibit a sustained and controlled release. Their exhibited high surface area and three-dimensional nanofibrous network allows the electrospun fibers to resemble native extracellular matrices. These features of the nanofibers show that they have great potential in drug delivery and tissue engineering applications. Proteins, growth factors, antibiotics, and many other agents have been successfully encapsulated into coaxial fibers for drug delivery. A main advantage of the core-sheath design is that after the process of electrospinning and release, these drugs remain bioactive due to the protection of the sheath. Applications of coaxial fibers as scaffolds for tissue engineering include bone, cartilage, cardiac tissue, skin, blood vessels and nervous tissue, among others. A synopsis of novel coaxial electrospun fibers, discussing their applications in drug delivery and tissue engineering, is covered pertaining to proteins, growth factors, antibiotics, and other drugs and applications in the fields of bone, cartilage, cardiac, skin, blood vessel, and nervous tissue engineering, respectively. WIREs Nanomed Nanobiotechnol 2016, 8:654-677. doi: 10.1002/wnan.1391 For further resources related to this article, please visit the WIREs website. PMID:26848106

  8. Coaxial extraction of RF power from a traveling wave amplifier

    SciTech Connect

    Naqvi, S.; Kerslick, G.S.; Nation, J.A.; Schaecter, L.

    1996-12-31

    The authors present new results from a high-power relativistic traveling wave tube amplifier experiment in which the RF power is extracted in a coaxial output section. The amplifier consists of two slow-wave structures separated by a resistive sever. The first stage imparts a small modulation to the beam. The second stage consists of an iris-loaded circular waveguide which is tapered from both ends by an adiabatic increase in the iris aperture with each successive period. The periodic length and the external cavity radius are kept constant. This provides a low-reflection transition from the slow-wave structure to the empty circular waveguide. A coaxial inner conductor is inserted into the output tapered section of the slow-wave structure and its` position and radius chosen to minimize reflections and maximize extracted RF power. It is shown both experimentally and through MAGIC simulations that a fairly low reflection circular TM{sub 01} to coaxial TEM mode transition can be made this way. Any small reflections form the output end travel backwards and are absorbed in the sever. In contrast to the traditional transverse extraction of power into a rectangular waveguide, the coaxial extraction is fairly broadband and exhibits much lower sensitivity to dimensions. The beam is dumped through an aperture in the inner conductor. Presently, the power is extracted into the coaxial waveguide and absorbed into a tapered resistive load. This will be later converted to the TE{sub 10} mode of a rectangular waveguide.

  9. Low energy spread ion source with a coaxial magnetic filter

    DOEpatents

    Leung, Ka-Ngo; Lee, Yung-Hee Yvette

    2000-01-01

    Multicusp ion sources are capable of producing ions with low axial energy spread which are necessary in applications such as ion projection lithography (IPL) and radioactive ion beam production. The addition of a radially extending magnetic filter consisting of a pair of permanent magnets to the multicusp source reduces the energy spread considerably due to the improvement in the uniformity of the axial plasma potential distribution in the discharge region. A coaxial multicusp ion source designed to further reduce the energy spread utilizes a cylindrical magnetic filter to achieve a more uniform axial plasma potential distribution. The coaxial magnetic filter divides the source chamber into an outer annular discharge region in which the plasma is produced and a coaxial inner ion extraction region into which the ions radially diffuse but from which ionizing electrons are excluded. The energy spread in the coaxial source has been measured to be 0.6 eV. Unlike other ion sources, the coaxial source has the capability of adjusting the radial plasma potential distribution and therefore the transverse ion temperature (or beam emittance).

  10. Resonant dielectric metamaterials

    SciTech Connect

    Loui, Hung; Carroll, James; Clem, Paul G; Sinclair, Michael B

    2014-12-02

    A resonant dielectric metamaterial comprises a first and a second set of dielectric scattering particles (e.g., spheres) having different permittivities arranged in a cubic array. The array can be an ordered or randomized array of particles. The resonant dielectric metamaterials are low-loss 3D isotropic materials with negative permittivity and permeability. Such isotropic double negative materials offer polarization and direction independent electromagnetic wave propagation.

  11. Dielectrically loaded horns

    NASA Astrophysics Data System (ADS)

    Tun, S. M.; Bustamante, R.; Williams, N.

    Dielectrically loaded horns have been proposed as alternatives to conical corrugated horns in high-performance primary feeds in virtue both of their lower cost and theoretical indications of superior operational bandwidth performance, while retaining circularly symmetric radiation, low sidelobes, and low cross-polarization. A prototype dielectric core-loaded horn, and a dual-band transmit/receive horn antenna incorporating a dielectric rod inside a small corrugated horn, have been developed and tested; the dielectric used for the rod is Rexolite. The high performance obtainable by this inexpensive technology has been experimentally demonstrated.

  12. Structure of ordered coaxial and scroll nanotubes: general approach.

    PubMed

    Khalitov, Zufar; Khadiev, Azat; Valeeva, Diana; Pashin, Dmitry

    2016-01-01

    The explicit formulas for atomic coordinates of multiwalled coaxial and cylindrical scroll nanotubes with ordered structure are developed on the basis of a common oblique lattice. According to this approach, a nanotube is formed by transfer of its bulk analogue structure onto a cylindrical surface (with a circular or spiral cross section) and the chirality indexes of the tube are expressed in the number of unit cells. The monoclinic polytypic modifications of ordered coaxial and scroll nanotubes are also discussed and geometrical conditions of their formation are analysed. It is shown that tube radii of ordered multiwalled coaxial nanotubes are multiples of the layer thickness, and the initial turn radius of the orthogonal scroll nanotube is a multiple of the same parameter or its half. PMID:26697865

  13. High Power Coaxial Ubitron Oscillator: Theory and Design

    NASA Astrophysics Data System (ADS)

    Balkcum, A. J.; McDermott Luhmann, D. B., Jr.; Phillips, R. M.

    1997-11-01

    The coaxial ubitron is ideally suited for producing high power microwaves. It utilizes an annular beam of electrons which interact with the rf breakdown resistant TE_01 mode in a coaxial circuit. Because the periodic permanent magnetic (PPM) focusing of the device is capable of propagating extremely high currents without an axial guide field, high power operation with high overall efficiency can be achieved. The PPM rings also produce the quiver velocity for the ubitron. The linear theory for the ubitron oscillator and a simple fast timescale particle tracing nonlinear simulation code are presented. These have been used to develop a design for an S-band coaxial cavity oscillator capable of producing 1 GW of power with 21% efficiency. Verification of the design has been achieved using MAGIC, a 2-1/2 dimensional particle-in-cell (PIC) code.

  14. Microencapsulation of curcumin in PLGA microcapsules by coaxial flow focusing

    NASA Astrophysics Data System (ADS)

    Lei, Fan; Si, Ting; Luo, Xisheng; Xu, Ronald X.

    2014-03-01

    Curcumin-loaded PLGA microcapsules are fabricated by a liquid-driving coaxial flow focusing device. In the process, a stable coaxial cone-jet configuration is formed under the action of a coflowing liquid stream and the coaxial liquid jet eventually breaks up into microcapsules because of flow instability. This process can be well controlled by adjusting the flow rates of three phases including the driving PVA water solution, the outer PLGA ethyl acetate solution and the inner curcumin propylene glycol solution. Confocal and SEM imaging methods clearly indicate the core-shell structure of the resultant microcapsules. The encapsulation rate of curcumin in PLGA is measured to be more than 70%, which is much higher than the tranditional methods such as emulsion. The size distribution of resultant microcapsules under different conditions is presented and compared. An in vitro release simulation platform is further developed to verify the feasibility and reliability of the method.

  15. Primary simulation and experimental results of a coaxial plasma accelerator

    NASA Astrophysics Data System (ADS)

    Chen, Z.; Huang, J.; Han, J.; Zhang, Z.; Quan, R.; Wang, L.; Yang, X.; Feng, C.

    A coaxial plasma accelerator with a compressing coil is developed to simulate the impacting and erosion effect of space debris on exposed materials of spacecrafts During its adjustment operation some measurements are conducted including discharging current by Rogowski coil average plasma speed in the coaxial gun by magnetic coils and ejected particle speed by piezoelectric sensor etc In concert with the experiment a primary physical model is constructed in which only the coaxial gun is taken into account with the compressor coil not considered for its unimportant contribution to the plasma ejection speed The calculation results by the model agree well with the diagnostic results considering some assumptions for simplification Based on the simulation result some important suggestions for optimum design and adjustment of the accelerator are obtained for its later operation

  16. MHD Simulations of Thermal Plasma Jets in Coaxial Plasma Accelerators

    NASA Astrophysics Data System (ADS)

    Subramaniam, Vivek; Raja, Laxminarayan

    2015-09-01

    The development of a magneto-hydrodynamics (MHD) numerical tool to study high energy density thermal plasma in coaxial plasma accelerators is presented. The coaxial plasma accelerator is a device used simulate the conditions created at the confining wall of a thermonuclear fusion reactor during an edge localized mode (ELM) disruption event. This is achieved by creating magnetized thermal plasma in a coaxial volume which is then accelerated by the Lorentz force to form a high velocity plasma jet. The simulation tool developed solves the resistive MHD equation using a finite volume method (FVM) framework. The acceleration and subsequent demagnetization of the plasma as it travels down the length of the accelerator is simulated and shows good agreement with experiments. Additionally, a model to study the thermalization of the plasma at the inlet is being developed in order to give self-consistent initial conditions to the MHD solver.

  17. Dielectric ribbon waveguide - An optimum configuration for ultra-low-loss millimeter/submillimeter dielectric waveguide

    NASA Astrophysics Data System (ADS)

    Yeh, C.; Chu, J.; Shimabukuro, Fred I.

    1990-06-01

    Dielectric ribbon waveguide supporting the eHE11 dominant mode can be made to yield an attenuation constant for this mode of less than 20 dB/km in the millimeter/submillimeter-wavelength range. The waveguide is made with a high-dielectric-constant, low-loss material such as alumina or sapphire. It takes the form of thin dielectric ribbon surrounded by lossless dry air. A detailed theoretical analysis of the attenuation and field extent characteristics for the low-loss dominant eHE11 mode along a ribbon dielectric waveguide was performed using the exact finite-element technique as well as two approximate techniques. Analytical predictions were then verified by measurements on ribbon guides made with rexolite using the highly sensitive cavity resonator method. Excellent agreement was found.

  18. Swirl Coaxial Injector Testing with LOX/RP-J

    NASA Technical Reports Server (NTRS)

    Greene, Sandra Elam; Casiano, Matt

    2013-01-01

    Testing was conducted at NASA fs Marshall Space Flight Center (MSFC) in the fall of 2012 to evaluate the operation and performance of liquid oxygen (LOX) and kerosene (RP ]1) in an existing swirl coaxial injector. While selected Russian engines use variations of swirl coaxial injectors, component level performance data has not been readily available, and all previously documented component testing at MSFC with LOX/RP ]1 had been performed using a variety of impinging injector designs. Impinging injectors have been adequate for specific LOX/RP ]1 engine applications, yet swirl coaxial injectors offer easier fabrication efforts, providing cost and schedule savings for hardware development. Swirl coaxial elements also offer more flexibility for design changes. Furthermore, testing with LOX and liquid methane propellants at MSFC showed that a swirl coaxial injector offered improved performance compared to an impinging injector. So, technical interest was generated to see if similar performance gains could be achieved with LOX/RP ]1 using a swirl coaxial injector. Results would allow such injectors to be considered for future engine concepts that require LOX/RP ]1 propellants. Existing injector and chamber hardware was used in the test assemblies. The injector had been tested in previous programs at MSFC using LOX/methane and LOX/hydrogen propellants. Minor modifications were made to the injector to accommodate the required LOX/RP ]1 flows. Mainstage tests were performed over a range of chamber pressures and mixture ratios. Additional testing included detonated gbombs h for stability data. Test results suggested characteristic velocity, C*, efficiencies for the injector were 95 ]97%. The injector also appeared dynamically stable with quick recovery from the pressure perturbations generated in the bomb tests.

  19. Local Heat Flux Measurements with Single Element Coaxial Injectors

    NASA Technical Reports Server (NTRS)

    Jones, Gregg; Protz, Christopher; Bullard, Brad; Hulka, James

    2006-01-01

    To support the mission for the NASA Vision for Space Exploration, the NASA Marshall Space Flight Center conducted a program in 2005 to improve the capability to predict local thermal compatibility and heat transfer in liquid propellant rocket engine combustion devices. The ultimate objective was to predict and hence reduce the local peak heat flux due to injector design, resulting in a significant improvement in overall engine reliability and durability. Such analyses are applicable to combustion devices in booster, upper stage, and in-space engines, as well as for small thrusters with few elements in the injector. In this program, single element and three-element injectors were hot-fire tested with liquid oxygen and ambient temperature gaseous hydrogen propellants at The Pennsylvania State University Cryogenic Combustor Laboratory from May to August 2005. Local heat fluxes were measured in a 1-inch internal diameter heat sink combustion chamber using Medtherm coaxial thermocouples and Gardon heat flux gauges. Injectors were tested with shear coaxial and swirl coaxial elements, including recessed, flush and scarfed oxidizer post configurations, and concentric and non-concentric fuel annuli. This paper includes general descriptions of the experimental hardware, instrumentation, and results of the hot-fire testing for three of the single element injectors - recessed-post shear coaxial with concentric fuel, flush-post swirl coaxial with concentric fuel, and scarfed-post swirl coaxial with concentric fuel. Detailed geometry and test results will be published elsewhere to provide well-defined data sets for injector development and model validatation.

  20. Numerical analysis of coaxial swirl injectors

    NASA Astrophysics Data System (ADS)

    Canino, James Vincent

    A growing recognition exists in the United States that injector dynamics play a pivotal role in the combustion instabilities of some Liquid Rocket Engines (LREs). Russian researchers believe injector dynamics can lead to unsteady mass flow from the injector to the combustion chamber resulting in unsteady heat release. Unsteady heat release coupled with the chamber modes, could cause combustion instability and the destruction of the rocket. The research described herein focused on the use of computational fluid dynamics to describe the frequency and amplitude of unsteady mass flow rate from a gas-centered coaxial swirl injector with varying geometries and fluid properties. An incompressible model, therefore, was utilized to investigate the effects of density ratio, liquid swirl velocity, liquid film thickness, collar thickness, and recess length. Present findings showed that the frequency at which the liquid film oscillates increases as the density ratio and collar thickness increase, decreases as the film thickness and liquid swirl velocity increases, and is unaffected by the recess length. Thus, the frequency seems dependent on the behavior of the vortex shedding/reattachment from the collar and the dynamic pressure imbalance on the liquid surface. The vortex behavior has been included as an important parameter for determining the behavior of the film given that the collar thickness affects the frequency. Since these studies lead to the belief that the vortex dynamics aft of the collar are important, a more fundamental study concerning the vortex dynamics behind a splitter plate/post was undertaken. For this study a compressible model was utilized to investigate the effects of momentum ratio, axisymmetry, the presence of a wall near the splitter, and swirl. Shedding frequency was found to increase as the momentum ratio varies from unity. Furthermore, axisymmetry reduced the shedding frequency over all momentum ratios. The presence of a wall near the splitter, in

  1. Experimental study of coaxial nozzle exhaust noise. [acoustic measurements

    NASA Technical Reports Server (NTRS)

    Goodykoontz, J. H.; Stone, J. R.

    1979-01-01

    Experimental results are presented for static acoustic model tests of various geometrical configurations of coaxial nozzles operating over a range of flow conditions. The geometrical configurations consisted of nozzles with coplanar and non-coplanar exit planes and various exhaust area ratios. Primary and secondary nozzle flows were varied independently over a range of nozzle pressure ratios from 1.4 to 3.0 and gas temperatures from 280 to 1100 K. Acoustic data are presented for the conventional mode of coaxial nozzle operation as well as for the inverted velocity profile mode. Comparisons are presented to show the effect of configuration and flow changes on the acoustic characteristics of the nozzles.

  2. Mitigating ground clutter effects with lightweight artificial dielectrics

    NASA Astrophysics Data System (ADS)

    Rappaport, Carey M.; Beihold, Fred; Linnehan, Robert

    2001-10-01

    The problem of scattered and transmitted electromagnetic wave distortion by random rough ground surfaces can be reduced by using a lightweight dielectric matching layer. For mine detection applications, it is essential for this layer to be lightweight, low loss, readily conformable, and adaptable to different soil types. Arrays of metal-coated plastic spheres act as lossless artificial dielectrics with impedance determined by the volume packing fraction. By controlling the thickness of insulator surrounding each sphere, a close-packed array with the dielectric properties of soil can be created inside a compliant rolling bag that will conform to the rough surface of the ground. Since this artificial dielectric is matched to the soil, the ground surface interface is 'softened', without an abrupt transition from soil to air. Signals transmitted and received by GPR antennas immersed in the artificial dielectric within the bag will not be corrupted by ground surface clutter. Alternatively, an artificial dielectric layer on the ground with a planar air interface could be used to ensure that the surface reflection is a constant, well-calibrated signal. Computational models indicate complete removal of the ground clutter, even with occasional gaps between the artificial dielectric and the ground. Experimental studies with swept-frequency measurements and impulse GPR indicate that using this dielectric layer matching to a rough loamy soil ground surface is results in signals that are practically indistinguishable from those of an equivalent layer of the same type of soil.

  3. Gaseous dielectrics V

    SciTech Connect

    Christophorou, L.G.; Bouldin, D.W.

    1987-01-01

    This symposium represents a transdisciplinary and comprehensive approach to the study of gaseous dielectrics. The goal of the symposium was to demonstrate the effective coupling between basic and applied research and modern technology achieved in this area, and to guide future research and development and industrial use of gaseous dielectrics. Separate abstracts were prepared for 85 papers in these proceedings. (DWL)

  4. Terahertz Artificial Dielectric Lens

    NASA Astrophysics Data System (ADS)

    Mendis, Rajind; Nagai, Masaya; Wang, Yiqiu; Karl, Nicholas; Mittleman, Daniel M.

    2016-03-01

    We have designed, fabricated, and experimentally characterized a lens for the THz regime based on artificial dielectrics. These are man-made media that mimic properties of naturally occurring dielectric media, or even manifest properties that cannot generally occur in nature. For example, the well-known dielectric property, the refractive index, which usually has a value greater than unity, can have a value less than unity in an artificial dielectric. For our lens, the artificial-dielectric medium is made up of a parallel stack of 100 μm thick metal plates that form an array of parallel-plate waveguides. The convergent lens has a plano-concave geometry, in contrast to conventional dielectric lenses. Our results demonstrate that this lens is capable of focusing a 2 cm diameter beam to a spot size of 4 mm, at the design frequency of 0.17 THz. The results further demonstrate that the overall power transmission of the lens can be better than certain conventional dielectric lenses commonly used in the THz regime. Intriguingly, we also observe that under certain conditions, the lens boundary demarcated by the discontinuous plate edges actually resembles a smooth continuous surface. These results highlight the importance of this artificial-dielectric technology for the development of future THz-wave devices.

  5. Composite dielectric waveguides

    NASA Astrophysics Data System (ADS)

    Yamashita, E.; Atsuki, K.; Kuzuya, R.

    1980-09-01

    The modal analysis of a composite circular dielectric waveguide (CCDW) is presented. Computed values of the propagation constant of a CCDW are compared with those of the homogeneous circular dielectric waveguides (HCDW). Microwave experiments concerning the propagation constant of a CCDW of Teflon and Rexolite are described.

  6. Terahertz Artificial Dielectric Lens

    PubMed Central

    Mendis, Rajind; Nagai, Masaya; Wang, Yiqiu; Karl, Nicholas; Mittleman, Daniel M.

    2016-01-01

    We have designed, fabricated, and experimentally characterized a lens for the THz regime based on artificial dielectrics. These are man-made media that mimic properties of naturally occurring dielectric media, or even manifest properties that cannot generally occur in nature. For example, the well-known dielectric property, the refractive index, which usually has a value greater than unity, can have a value less than unity in an artificial dielectric. For our lens, the artificial-dielectric medium is made up of a parallel stack of 100 μm thick metal plates that form an array of parallel-plate waveguides. The convergent lens has a plano-concave geometry, in contrast to conventional dielectric lenses. Our results demonstrate that this lens is capable of focusing a 2 cm diameter beam to a spot size of 4 mm, at the design frequency of 0.17 THz. The results further demonstrate that the overall power transmission of the lens can be better than certain conventional dielectric lenses commonly used in the THz regime. Intriguingly, we also observe that under certain conditions, the lens boundary demarcated by the discontinuous plate edges actually resembles a smooth continuous surface. These results highlight the importance of this artificial-dielectric technology for the development of future THz-wave devices. PMID:26973294

  7. Terahertz Artificial Dielectric Lens.

    PubMed

    Mendis, Rajind; Nagai, Masaya; Wang, Yiqiu; Karl, Nicholas; Mittleman, Daniel M

    2016-01-01

    We have designed, fabricated, and experimentally characterized a lens for the THz regime based on artificial dielectrics. These are man-made media that mimic properties of naturally occurring dielectric media, or even manifest properties that cannot generally occur in nature. For example, the well-known dielectric property, the refractive index, which usually has a value greater than unity, can have a value less than unity in an artificial dielectric. For our lens, the artificial-dielectric medium is made up of a parallel stack of 100 μm thick metal plates that form an array of parallel-plate waveguides. The convergent lens has a plano-concave geometry, in contrast to conventional dielectric lenses. Our results demonstrate that this lens is capable of focusing a 2 cm diameter beam to a spot size of 4 mm, at the design frequency of 0.17 THz. The results further demonstrate that the overall power transmission of the lens can be better than certain conventional dielectric lenses commonly used in the THz regime. Intriguingly, we also observe that under certain conditions, the lens boundary demarcated by the discontinuous plate edges actually resembles a smooth continuous surface. These results highlight the importance of this artificial-dielectric technology for the development of future THz-wave devices. PMID:26973294

  8. Hierarchically mesoporous CuO/carbon nanofiber coaxial shell-core nanowires for lithium ion batteries

    PubMed Central

    Park, Seok-Hwan; Lee, Wan-Jin

    2015-01-01

    Hierarchically mesoporous CuO/carbon nanofiber coaxial shell-core nanowires (CuO/CNF) as anodes for lithium ion batteries were prepared by coating the Cu2(NO3)(OH)3 on the surface of conductive and elastic CNF via electrophoretic deposition (EPD), followed by thermal treatment in air. The CuO shell stacked with nanoparticles grows radially toward the CNF core, which forms hierarchically mesoporous three-dimensional (3D) coaxial shell-core structure with abundant inner spaces in nanoparticle-stacked CuO shell. The CuO shells with abundant inner spaces on the surface of CNF and high conductivity of 1D CNF increase mainly electrochemical rate capability. The CNF core with elasticity plays an important role in strongly suppressing radial volume expansion by inelastic CuO shell by offering the buffering effect. The CuO/CNF nanowires deliver an initial capacity of 1150 mAh g−1 at 100 mA g−1 and maintain a high reversible capacity of 772 mAh g−1 without showing obvious decay after 50 cycles. PMID:25944615

  9. Coaxial carbon@boron nitride nanotube arrays with enhanced thermal stability and compressive mechanical properties.

    PubMed

    Jing, Lin; Tay, Roland Yingjie; Li, Hongling; Tsang, Siu Hon; Huang, Jingfeng; Tan, Dunlin; Zhang, Bowei; Teo, Edwin Hang Tong; Tok, Alfred Iing Yoong

    2016-06-01

    Vertically aligned carbon nanotube (CNT) arrays have aroused considerable interest because of their remarkable mechanical properties. However, the mechanical behaviour of as-synthesized CNT arrays could vary drastically at a macro-scale depending on their morphologies, dimensions and array density, which are determined by the synthesis method. Here, we demonstrate a coaxial carbon@boron nitride nanotube (C@BNNT) array with enhanced compressive strength and shape recoverability. CNT arrays are grown using a commercially available thermal chemical vapor deposition (TCVD) technique and an outer BNNT with a wall thickness up to 1.37 nm is introduced by a post-growth TCVD treatment. Importantly, compared to the as-grown CNT arrays which deform almost plastically upon compression, the coaxial C@BNNT arrays exhibit an impressive ∼4-fold increase in compressive strength with nearly full recovery after the first compression cycle at a 50% strain (76% recovery maintained after 10 cycles), as well as a significantly high and persistent energy dissipation ratio (∼60% at a 50% strain after 100 cycles), attributed to the synergistic effect between the CNT and outer BNNT. Additionally, the as-prepared C@BNNT arrays show an improved structural stability in air at elevated temperatures, attributing to the outstanding thermal stability of the outer BNNT. This work provides new insights into tailoring the mechanical and thermal behaviours of arbitrary CNT arrays which enables a broader range of applications. PMID:27227818

  10. Hierarchically mesoporous CuO/carbon nanofiber coaxial shell-core nanowires for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Park, Seok-Hwan; Lee, Wan-Jin

    2015-05-01

    Hierarchically mesoporous CuO/carbon nanofiber coaxial shell-core nanowires (CuO/CNF) as anodes for lithium ion batteries were prepared by coating the Cu2(NO3)(OH)3 on the surface of conductive and elastic CNF via electrophoretic deposition (EPD), followed by thermal treatment in air. The CuO shell stacked with nanoparticles grows radially toward the CNF core, which forms hierarchically mesoporous three-dimensional (3D) coaxial shell-core structure with abundant inner spaces in nanoparticle-stacked CuO shell. The CuO shells with abundant inner spaces on the surface of CNF and high conductivity of 1D CNF increase mainly electrochemical rate capability. The CNF core with elasticity plays an important role in strongly suppressing radial volume expansion by inelastic CuO shell by offering the buffering effect. The CuO/CNF nanowires deliver an initial capacity of 1150 mAh g-1 at 100 mA g-1 and maintain a high reversible capacity of 772 mAh g-1 without showing obvious decay after 50 cycles.

  11. Modeling of ac dielectric barrier discharge

    SciTech Connect

    Shang, J. S.; Huang, P. G.

    2010-06-15

    The qualitative electrodynamic field of the dielectric barrier discharge in air is studied by a three-component, drift-diffusion plasma model including the Poisson equation of plasmadynamics. The critical media interface boundary conditions independent of the detailed mechanisms of surface absorption, diffusion, recombination, and charge accumulation on electrode or dielectrics are developed from the theory of electromagnetics. The computational simulation duplicates the self-limiting feature of dielectric barrier discharge for preventing corona-to-spark transition, and the numerical results of the breakdown voltage are compared very well with data. According to the present modeling, the periodic electrodynamic force due to charge separation over the electrodes also exerts on alternative directions from the exposed to encapsulated electrodes over a complete ac cycle as experimental observations.

  12. Coaxial rings and H2 knots in Hubble 12

    NASA Astrophysics Data System (ADS)

    Hsia, Chih-Hao; Kwok, Sun; Chau, Wayne; Zhang, Yong

    2016-07-01

    Hubble 12 (Hb 12) is a young planetary nebula (PN) exhibiting nested shells. We present new near-infrared narrow-band imaging observations of Hb 12 using the Canada-France- Hawaii Telescope (CFHT). A number of co-axial rings aligned with the bipolar lobes and two pairs of separate H2 knots with different orientations are detected.

  13. Modal analysis applied to circular, rectangular, and coaxial waveguides

    NASA Technical Reports Server (NTRS)

    Hoppe, D. J.

    1988-01-01

    Recent developments in the analysis of various waveguide components and feedhorns using Modal Analysis (Mode Matching Method) are summarized. A brief description of the theory is presented, and the important features of the method are pointed out. Specific examples in circular, rectangular, and coaxial waveguides are included, with comparisons between the theory and experimental measurements. Extensions to the methods are described.

  14. Review of Combustion Stability Characteristics of Swirl Coaxial Element Injectors

    NASA Technical Reports Server (NTRS)

    Hulka, J. R.; Casiano, M. J.

    2013-01-01

    Liquid propellant rocket engine injectors using coaxial elements where the center liquid is swirled have become more common in the United States over the past several decades, although primarily for technology or advanced development programs. Currently, only one flight engine operates with this element type in the United States (the RL10 engine), while the element type is very common in Russian (and ex-Soviet) liquid propellant rocket engines. In the United States, the understanding of combustion stability characteristics of swirl coaxial element injectors is still very limited, despite the influx of experimental and theoretical information from Russia. The empirical and theoretical understanding is much less advanced than for the other prevalent liquid propellant rocket injector element types, the shear coaxial and like-on-like paired doublet. This paper compiles, compares and explores the combustion stability characteristics of swirl coaxial element injectors tested in the United States, dating back to J-2 and RL-10 development, and extending to very recent programs at the NASA MSFC using liquid oxygen and liquid methane and kerosene propellants. Included in this study are several other relatively recent design and test programs, including the Space Transportation Main Engine (STME), COBRA, J-2X, and the Common Extensible Cryogenic Engine (CECE). A presentation of the basic data characteristics is included, followed by an evaluation by several analysis techniques, including those included in Rocket Combustor Interactive Design and Analysis Computer Program (ROCCID), and methodologies described by Hewitt and Bazarov.

  15. What's in the Walls: Copper, Fiber, or Coaxial Wiring?

    ERIC Educational Resources Information Center

    Weiss, Andrew M.

    1995-01-01

    Presents planning guidelines for wiring specifications for K-12 schools by reviewing advantages and disadvantages of using copper, fiber-optic, and coaxial wire. Addresses the future of network wiring and educational technology, and makes recommendations. A sidebar describes the physical appearance of different types of wire and a table compares…

  16. Design of a low cost spinneret assembly for coaxial electrospinning

    NASA Astrophysics Data System (ADS)

    Raheja, Anant; Chandra, T. S.; Natarajan, T. S.

    2015-06-01

    Coaxial electrospinning makes use of a concentric arrangement of spinneret orifices for synthesis of core-shell polymer nanofibers. Most laboratories purchase the spinneret from commercial manufacturers at a significant expense, or design it indigenously to save costs but compromise on manufacturing precision. Therefore, the present work suggests the use of a relatively lower priced McIntyre cannula needle, conventionally used for ophthalmic surgeries, as a coaxial spinneret for electrospinning. The McIntyre cannula needle was modified to synthesize hollow fibers of nylon 6, which acted as sheath with hydrogen peroxide as core during electrospinning. In addition, encapsulation of bioactives, viz., red blood cells, bacterial cells, and lysozyme (enzyme protein) was attempted, using their aqueous suspensions as core, with polycaprolactone solution as sheath. Resulting fibers had an integral core-shell structure with the bioactives encapsulated in the core. This indicated that the modified McIntyre cannula functions suitably as a spinneret for coaxial electrospinning. Thus, apart from being a clinical device, the modified McIntyre cannula needle provides an economic alternative to conventional coaxial spinneret assemblies.

  17. Noise from Supersonic Coaxial Jets. Part 1; Mean Flow Predictions

    NASA Technical Reports Server (NTRS)

    Dahl, Milo D.; Morris, Philip J.

    1997-01-01

    Recent theories for supersonic jet noise have used an instability wave noise generation model to predict radiated noise. This model requires a known mean flow that has typically been described by simple analytic functions for single jet mean flows. The mean flow of supersonic coaxial jets is not described easily in terms of analytic functions. To provide these profiles at all axial locations, a numerical scheme is developed to calculate the mean flow properties of a coaxial jet. The Reynolds-averaged, compressible, parabolic boundary layer equations are solved using a mixing length turbulence model. Empirical correlations are developed to account for the effects of velocity and temperature ratios and Mach number on the shear layer spreading. Both normal velocity profile and inverted velocity profile coaxial jets are considered. The mixing length model is modified in each case to obtain reasonable results when the two stream jet merges into a single fully developed jet. The mean flow calculations show both good qualitative and quantitative agreement with measurements in single and coaxial jet flows.

  18. Initial Results from Coaxial Helicity Injection Experiments in NSTX

    SciTech Connect

    Raman, R.; Jarboe, T.R.; Mueller, D.; Schaffer, M.J.; Maqueda, R.; Nelson, B.A.; Sabbagh, S.; Bell, M.; Ewig, R.; Fredrickson, E.; Gates, D.; Hosea, J.; Ji, H.; Kaita, R.; Kaye, S.M.; Kugel, H.; Maingi, R.; Menard, J.; Ono, M.; Orvis, D.; Paolette, F.; Paul, S.; Peng, M.; Skinner, C.H.; Wilgen, W.; Zweben, S.; and the NSTX Research Team

    2001-05-10

    Coaxial Helicity Injection (CHI) has been investigated on the National Spherical Torus Experiment (NSTX). Initial experiments produced 130 kA of toroidal current without the use of the central solenoid. The corresponding injector current was 20 kA. Discharges with pulse lengths up to 130 ms have been produced.

  19. Dielectric parameter estimation of novel magneto-dielectric substrate based microstrip antenna

    NASA Astrophysics Data System (ADS)

    Saini, Ashish; Kumar, P.; Ravelo, B.; Thakur, Atul; Thakur, Preeti

    2016-05-01

    The effective relative permittivity and effective relative permeability of magneto-dielectric materials when used as substrate for microstrip antenna shows interdependency. This dependency was analyzed through simulation and verified by synthesizing nano composite ferrite. The 40nm nano crystallite size particles were synthesized using a co- precipitation method. Matching values of complex permittivity (ɛ* = 4.2-0.1j) and complex permeability (μ* = 4.3-0.2j) at 1 GHz were obtained from the electromagnetic characterization. The microstrip antenna with coaxial feed was fabricated and the interdependence of relative permittivity and relative permeability was verified. An error of 7% in the drawn length was observed for ɛr and μr of the order of 4. The magneto-dielectric material with composition Mn0.5Zn0.3Co0.2Fe2O4+BaFe12O19 proposed in this paper definitely can be proposed as a substrate material for miniaturized antenna. The antenna with desired resonant frequency can be fabricated by calculating the effective medium parameters as discussed in the paper.

  20. Influence of the dielectric background on the quality factors of metallo-dielectric photonic crystals

    NASA Astrophysics Data System (ADS)

    Ustyantsev, M. A.; Marsal, L. F.; Ferré-Borrull, J.; Pallarès, J.

    2007-06-01

    The effect of varying the dielectric background on the quality factor of two-dimensional metallo-dielectric photonic crystals is theoretically studied. The studied metallo-dielectric photonic crystal consists of a square lattice of circular metallic rods embedded into a dielectric background with a defect rod on the center that creates resonant modes within the photonic band gap. The metal is modeled with the Drude dispersion relation. A combination of the finite-difference time-domain method together with a frequency filtering technique is used to estimate accurately the resonant frequencies and their quality factors. The results show that the quality factors increase with increasing background dielectric constant. If a dielectric background material such as Silicon is used instead of air, an enhancement in the quality factor of up to eight times can be achieved, depending on the resonant mode. We also show that, depending on the modes, there exists an optimal size for the defect rod that gives the maximum quality factor.

  1. The dielectric properties of granular media saturated with DNAPL/water mixtures

    NASA Astrophysics Data System (ADS)

    Ajo-Franklin, J. B.; Geller, J. T.; Harris, J. M.

    2004-09-01

    We present the results of five experiments investigating the dielectric properties of granular materials partially saturated with trichloroethylene (TCE), a common dense non-aqueous contaminant. Previous research has investigated the radar signatures of similar solvents in controlled field experiments but no core-scale measurements have verified the appropriate petrophysical model. Broadband dielectric measurements were performed using a time domain reflectometry (TDR) system coupled to a solvent-compatible coaxial transmission line. Two synthetic samples and three natural aquifer samples were fully saturated with water and then subjected to an axial TCE injection until breakthrough was observed. The resulting dielectric measurements show good agreement with the empirical complex refractive index model (CRIM) allowing a reasonable prediction of the radar reflectivities and transmission velocities expected in field surveys targeting pools of similar non-aqueous contaminants.

  2. Radio frequency atmospheric pressure glow discharge in α and γ modes between two coaxial electrodes

    NASA Astrophysics Data System (ADS)

    Shang, Wanli; Wang, Dezhen; Zhang, Yuantao

    2008-09-01

    The discharge in pure helium and the influence of small nitrogen impurities at atmospheric pressure are investigated based on a one-dimensional self-consistent fluid model controlled by a dielectric barrier between two coaxial electrodes. The simulation of the radiofrequency (rf) discharge is based on the one-dimensional continuity equations for electrons, ions, metastable atoms, and molecules, with the much simpler current conservation law replacing the Poisson equation for electric field. Through a computational study of rf atmospheric glow discharges over a wide range of current density, this paper presents evidence of at least two glow discharge modes, namely the α mode and the γ mode. The simulation results show the asymmetry of the discharge set exercises great influence on the discharge mechanisms compared to that with parallel-plane electrodes. It is shown that the particle densities are not uniform in the discharge region but increase gradually from the outer to the inner electrode in both modes. The contrasting dynamic behaviors of the two glow modes are studied. Secondary electron emission strongly influences gas ionization in the γ mode yet matters little in the α mode.

  3. Preliminary Characterization of a Coaxial DBD Plasma-Catalytic Converter for Methane Partial Oxidation

    NASA Astrophysics Data System (ADS)

    Coulombe, Sylvain; Diaz Gomez Maqueo, Pablo; Evans, Mathew; Sainct, Florent; Bergthorson, Jeff

    2015-09-01

    This contribution discusses the development and characteristics of a coaxial dielectric barrier discharge (DBD) using a methane-oxygen mixture at atmospheric conditions of temperature and pressure. A sinusoidal voltage waveform of 12 kVp-p at 20 kHz produces discharges in a 1.15 mm gap. Power is estimated using a Lissajous figure method while optical emission spectroscopy (OES) is used to estimate the rotational and vibrational temperatures of the gas. Obtained OES spectra are similar, differing mainly on the intensity of their CH and OH bands, tending towards a more intense OH band as oxygen availability increased. CH bands show the strongest emission intensities of which, CH(C-X) seems to be the most intense of all, followed by CH(A-X) and lastly by CH(B-X). The spectra of CH(A-X) and CH(C-X) were uploaded into a simulation software to estimate the plasma temperatures. For the CH(A-X) bands, a simulation with a Trot = 600 K and a Tvib = 6000 K matched the experimental spectra. In the case of the CH(C-X) band, a Trot = 800 K and a Tvib = 4000 K were determined. The vibrational temperatures are especially high, a result which is particularly important for the development of a plasma-catalysis reactor. The authors acknowledge the financial support provided by NSERC, FRQNT as well as McGill University through the McGill Engineering Doctoral Award program.

  4. Cast dielectric composite linear accelerator

    DOEpatents

    Sanders, David M.; Sampayan, Stephen; Slenes, Kirk; Stoller, H. M.

    2009-11-10

    A linear accelerator having cast dielectric composite layers integrally formed with conductor electrodes in a solventless fabrication process, with the cast dielectric composite preferably having a nanoparticle filler in an organic polymer such as a thermosetting resin. By incorporating this cast dielectric composite the dielectric constant of critical insulating layers of the transmission lines of the accelerator are increased while simultaneously maintaining high dielectric strengths for the accelerator.

  5. Metal-dielectric interactions

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1979-01-01

    There is a wide variety of situations wherein metals are in solid state contact with dielectric materials. The paper reviews some of the factors that influence solid state interactions for metals in contact with dielectric surfaces. Since surfaces play an important part in these reactions, the use of analytical tools in characterizing surfaces is discussed. Adhesion, friction, and wear are utilized as indicators of the nature of interfacial bonding between metals and dielectrics can be effectively determined with adhesion and friction force measurements. Films present on the surface, such as oxygen or water vapor, markedly alter adhesive bond strength which in turn affects friction force and interfacial fracture when attempts are made to separate the contact regions. Analytical surface tools such as the field ion microscope, Auger emission spectroscopy, and X-ray photoelectron spectroscopy are very effective in providing insight into the effect of contact on the surfaces of metals and dielectrics.

  6. Plasma polymerized high energy density dielectric films for capacitors

    NASA Technical Reports Server (NTRS)

    Yamagishi, F. G.

    1983-01-01

    High energy density polymeric dielectric films were prepared by plasma polymerization of a variety of gaseous monomers. This technique gives thin, reproducible, pinhole free, conformable, adherent, and insoluble coatings and overcomes the processing problems found in the preparation of thin films with bulk polymers. Thus, devices are prepared completely in a vacuum environment. The plasma polymerized films prepared all showed dielectric strengths of greater than 1000 kV/cm and in some cases values of greater than 4000 kV/cm were observed. The dielectric loss of all films was generally less than 1% at frequencies below 10 kHz, but this value increased at higher frequencies. All films were self healing. The dielectric strength was a function of the polymerization technique, whereas the dielectric constant varied with the structure of the starting material. Because of the thin films used (thickness in the submicron range) surface smoothness of the metal electrodes was found to be critical in obtaining high dielectric strengths. High dielectric strength graft copolymers were also prepared. Plasma polymerized ethane was found to be thermally stable up to 150 C in the presence of air and 250 C in the absence of air. No glass transitions were observed for this material.

  7. Preparation of Coaxial-Line and Hollow Mn2O3 Nanofibers by Single-Nozzle Electrospinning and Their Catalytic Performances for Thermal Decomposition of Ammonium Perchlorate.

    PubMed

    Liang, Jiyuan; Yang, Jie; Cao, Weiguo; Guo, Xiangke; Guo, Xuefeng; Ding, Weiping

    2015-09-01

    Coaxial-line and hollow Mn2O3 nanofibers have been synthesized by a simple single-nozzle electrospinning method without using a complicated coaxial jet head, combined with final calcination. The crystal structure and morphology of the Mn2O3 nanofibers were investigated by using the X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The results indicate that the electrospinning distance has important influence on the morphology and structure of the obtained Mn2O3 nanofibers, which changes from hollow fibers for short electrospinning distance to coaxial-line structure for long electrospinning distance after calcination in the air. The formation mechanisms of different structured Mn2O3 fibers are discussed in detail. This facile and effective method is easy to scale up and may be versatile for constructing coaxial-line and hollow fibers of other metal oxides. The catalytic activity of the obtained Mn2O3 nanofibers on thermal decomposition of ammonium perchlorate (AP) was studied by differential scanning calorimetry (DSC). The results show that the hollow Mn2O3 nanofibers have good catalytic activity to promote the thermal decomposition of AP. PMID:26716314

  8. Negative refraction of complex lattices of dielectric cylinders

    NASA Astrophysics Data System (ADS)

    Jin, Yi; He, Sailing

    2007-01-01

    Some photonic crystals (PCs) consisting of complex lattices of dielectric cylinders can have an effective refraction index (n) of -1. Subwavelength imaging by a slab of a honeycomb PC of dielectric cylinders with n=-1 is investigated and an open resonator with a quality factor higher than 3000 is designed with the same PC. Air PC interfaces with low reflection are also used for the slab lens and open resonator.

  9. Aperture excited dielectric antennas

    NASA Technical Reports Server (NTRS)

    Crosswell, W. F.; Chatterjee, J. S.; Mason, V. B.; Tai, C. T.

    1974-01-01

    The results of a comprehensive experimental and theoretical study of the effect of placing dielectric objects over the aperture of waveguide antennas are presented. Experimental measurements of the radiation patterns, gain, impedance, near-field amplitude, and pattern and impedance coupling between pairs of antennas are given for various Plexiglas shapes, including the sphere and the cube, excited by rectangular, circular, and square waveguide feed apertures. The waveguide excitation of a dielectric sphere is modeled using the Huygens' source, and expressions for the resulting electric fields, directivity, and efficiency are derived. Calculations using this model show good overall agreement with experimental patterns and directivity measurements. The waveguide under an infinite dielectric slab is used as an impedance model. Calculations using this model agree qualitatively with the measured impedance data. It is concluded that dielectric loaded antennas such as the waveguide excited sphere, cube, or sphere-cylinder can produce directivities in excess of that obtained by a uniformly illuminated aperture of the same cross section, particularly for dielectric objects with dimensions of 2 wavelengths or less. It is also shown that for certain configurations coupling between two antennas of this type is less than that for the same antennas without dielectric loading.

  10. Dielectric spectroscopy in agrophysics

    NASA Astrophysics Data System (ADS)

    Skierucha, W.; Wilczek, A.; Szypłowska, A.

    2012-04-01

    The paper presents scientific foundation and some examples of agrophysical applications of dielectric spectroscopy techniques. The aim of agrophysics is to apply physical methods and techniques for studies of materials and processes which occur in agriculture. Dielectric spectroscopy, which describes the dielectric properties of a sample as a function of frequency, may be successfully used for examinations of properties of various materials. Possible test materials may include agrophysical objects such as soil, fruit, vegetables, intermediate and final products of the food industry, grain, oils, etc. Dielectric spectroscopy techniques enable non-destructive and non-invasive measurements of the agricultural materials, therefore providing tools for rapid evaluation of their water content and quality. There is a limited number of research in the field of dielectric spectroscopy of agricultural objects, which is caused by the relatively high cost of the respective measurement equipment. With the fast development of modern technology, especially in high frequency applications, dielectric spectroscopy has great potential of expansion in agrophysics, both in cognitive and utilitarian aspects.

  11. Development of Dielectric-Based High Gradient Accelerating Structures

    SciTech Connect

    Jing, C.; Gai, W.; Konecny, R.; Power, J.; Liu, W.; Gold, S. H.; Kinkead, A. K.; Kanareykin, A.; Kazakov, S.

    2006-11-27

    High gradient accelerating structures using dielectric-lined circular waveguides have been developed for a number of years at Argonne National Laboratory. In this article, we first report the experimental results of high power rf testing on the quartz based Dielectric-Loaded Accelerating (DLA) structure carried out on Feb. 2006 at the Naval Research Laboratory. The motivation for this experiment is to test the multipactor effect on different materials under high power and high vacuum condition. Up to 12 MW pulsed rf went through the tube without breakdown. Multipactor appeared during the experiment but with different features compared to other materials like alumina. Photomultiplier Tube (PMT) measurements were introduced into the experiment for the first time to observe the light emission time and intensity. In the second part of this paper, ways to achieve higher gradient for DLA structures are proposed: 1) smaller ID and longitudinal gap free DLA structures to reduce multipactor and obtain higher gradient; 2) new coaxial type coupler to avoid dielectric gap and improve impedance matching; 3) double layered DLA structure to reduce rf loss and enhance shunt impedance as well.

  12. Ngas Multi-Stage Coaxial High Efficiency Cooler (hec)

    NASA Astrophysics Data System (ADS)

    Nguyen, T.; Toma, G.; Jaco, C.; Raab, J.

    2010-04-01

    This paper presents the performance data of the single and two-stage High Efficiency Cooler (HEC) tested with coaxial cold heads. The single stage coaxial cold head has been optimized to operate at temperatures of 40 K and above. The two-stage parallel cold head configuration has been optimized to operate at 30 K and above and provides a long-life, low mass and efficient two-stage version of the Northrop Grumman Aerospace Systems (NGAS) flight qualified single stage HEC cooler. The HEC pulse tube cryocoolers are the latest generation of flight coolers with heritage to the 12 Northrop Grumman Aerospace Systems (NGAS) coolers currently on orbit with 2 operating for more than 11.5 years. This paper presents the performance data of the one and two-stage versions of this cooler under a wide range of heat rejection temperature, cold head temperature and input power.

  13. A comparison of lightwave, microwave, and coaxial transmission technologies

    NASA Astrophysics Data System (ADS)

    Jones, J. R.

    1982-10-01

    The relative performance, complexity, and cost for three digital transmission technologies - microwave, coaxial, and lightwave - are compared from the point of view of the lightwave technologist. It is found that lightwave systems are inherently noisier than the others. However, its bandwidth advantage can be exploited through bandwidth expansion techniques to overcome the noise disadvantage. It is further found that lightwave systems are potentially less complex than their radio and wireline counterparts given the advancement expected in the near future. Lastly, it is found that present-day lightwave systems can be less costly than the other technologies. Furthermore, it is found that anticipated near-term improvements to the technology will make lightwave systems even more attractive from the cost point of view. It is concluded that digital lightwave and microwave systems will continue to grow in usage - each has its own unique advantages relative to the other - and that digital coaxial systems will decline in usage.

  14. Non-coaxial superposition of vector vortex beams.

    PubMed

    Aadhi, A; Vaity, Pravin; Chithrabhanu, P; Reddy, Salla Gangi; Prabakar, Shashi; Singh, R P

    2016-02-10

    Vector vortex beams are classified into four types depending upon spatial variation in their polarization vector. We have generated all four of these types of vector vortex beams by using a modified polarization Sagnac interferometer with a vortex lens. Further, we have studied the non-coaxial superposition of two vector vortex beams. It is observed that the superposition of two vector vortex beams with same polarization singularity leads to a beam with another kind of polarization singularity in their interaction region. The results may be of importance in ultrahigh security of the polarization-encrypted data that utilizes vector vortex beams and multiple optical trapping with non-coaxial superposition of vector vortex beams. We verified our experimental results with theory. PMID:26906384

  15. Initial Operation of the Maryland Coaxial Gyroklystron Experiment

    NASA Astrophysics Data System (ADS)

    Lawson, W.; Castle, M.; Cheng, J.; Hogan, B.; Saraph, G. P.; Granatstein, V. L.; Reiser, M.

    1997-05-01

    We describe results from the initial operation of our coaxial gyroklystron experiment, which is being evaluated as a potential driver for future linear colliders. The interaction is designed to occur between a 500 kV, 500-700 A beam and a series of coaxial TE_0n1 microwave cavities. Output powers in excess of 100 MW at 8.568 GHz are expected with an efficiency of about 40%. We detail performance of our single anode magnetron injection gun in addition to the stability and amplification properties of our preliminary microwave circuit. We also discuss our designs of near-term future tubes which are expected to have comparable performance at 17.136 GHz. ^* G.P. Saraph, W. Lawson, M. Castle, J. Cheng, J.P. Calame, and G.S. Nusinovich, IEEE Trans. Plasma Sci. 24 (1996) \\underline671.

  16. Method and apparatus for a substantially coaxial injector element

    NASA Technical Reports Server (NTRS)

    Horn, Mark D. (Inventor); Miyata, Shinjiro (Inventor); Farhangi, Shahram (Inventor)

    2006-01-01

    A system to provide a two piece robust fluid injector. According to various embodiments, the fluid injector is a fuel injector for a combustion engine. The injector includes two coaxially formed annuluses. One annulus is formed in a face plate and the second annulus or hole is defined by a tube extending through the face plate. The tube extends through the face plate in a portion of a through bore which also is used to define the second annulus. The second annulus is formed using a throughbore through which the tube extends. This allows the second annulus to always be formed inherently and precisely substantially coaxial with the first annulus. Moreover, the second annulus can be formed with a much greater tolerance than if other independent components needed to be added.

  17. Study of a coaxial thermoacoustic-Stirling cooler

    NASA Astrophysics Data System (ADS)

    Tijani, M. E. H.; Spoelstra, S.

    2008-01-01

    A coaxial thermoacoustic-Stirling cooler is built and performance measurements are performed. The cooler uses the acoustic power produced by a linear motor to pump heat through a regenerator from a cold heat exchanger to an ambient one. The cooler incorporates a compact acoustic network to create the traveling-wave phasing necessary for the operation in a Stirling cycle. The network has a coaxial geometry instead of the toroidal one usually used in such systems. The design, construction and performance measurements of the cooler are presented. A measured coefficient of performance relative to Carnot of 25% and a low temperature of -54 °C are achieved by the cooler. This efficiency surpasses the performance of the most efficient standing-wave cooler by almost a factor of two.

  18. Enhanced broadband absorption in gold by plasmonic tapered coaxial holes.

    PubMed

    Mo, Lei; Yang, Liu; Nadzeyka, Achim; Bauerdick, Sven; He, Sailing

    2014-12-29

    Gold absorbers based on plasmonic tapered coaxial holes (PTCHs) are demonstrated theoretically and experimentally. An average absorption of over 0.93 is obtained theoretically in a broad wavelength range from 300 nm to 900 nm without polarization sensitivity due to the structural symmetry. Strong scattering of the incident light by the tapered coaxial holes is the main reason for the high absorption in the short wavelength range below about 550 nm, while gap surface plasmon polaritons propagating along the taper dominate the resonance-induced high absorption in the long wavelength range. Combining two PTCHs with different structural parameters can further enhance the absorption and thus increase the spectral bandwidth, which is verified by a sample fabricated by focused ion beam milling. This design is promising to be extended to other metals to realize effective and efficient light harvesting and absorption. PMID:25607189

  19. Effect of swirl on mixing of co-axial jets

    NASA Astrophysics Data System (ADS)

    Singh, S. N.; Agrawal, D. P.; Malhotra, R. C.; Raghava, A. K.

    1991-03-01

    The imposition of swirl on coaxial jets exhausting into confined space, akin to a combustor model, has far reaching effects on their mixing and flow development. In the present paper, the influence of swirl on both the jets has been determined in terms of velocity and pressure distributions in the confined space. It has been shown that swirl in the central jet leads to faster mixing whereas higher swirl in the annular jet improves both mixing and development.

  20. Starting current of coaxial relative backward wave oscillator

    SciTech Connect

    Teng Yan; Xiao Renzhen; Liu Guozhi; Chen Changhua; Shao Hao; Tang Chuanxiang

    2010-06-15

    This paper is devoted to study the starting current of the coaxial relativistic backward wave oscillator (CRBWO) using a simple physical model that employs the eigenmodes of the enclosed resonant cavity and the external quality factor of the open cavity Q. The agreement between the theoretical and simulation results is presented. It is found that CRBWO is suffering from the mode competition during the startup of the oscillation due to the wide interaction region over the range of the longitudinal wavenumbers.

  1. 41. Perimeter acquisition radar building radar element and coaxial display, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    41. Perimeter acquisition radar building radar element and coaxial display, with drawing of typical antenna section. Drawing, from left to right, shows element, aluminum ground plane, cable connectors and hardware, cable, and back-up ring. Grey area is the concrete wall - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  2. Conversion of methane in a coaxial microwave torch

    SciTech Connect

    Gritsinin, S. I.; Gushchin, P. A.; Davydov, A. M.; Ivanov, E. V.; Kossyi, I. A.; Misakyan, M. A.

    2009-11-15

    A microwave coaxial plasmatron (microwave torch) is used as a plasmachemical converter of methane into hydrogen and hydrocarbons. The measured energy cost of methane decomposition is close to its minimum theoretical value. Such a low energy cost is unsurpassed for reactors operating at atmospheric pressure. A model of the plasmachemical converter is constructed. The results of calculations in the frame-work of this model agree well with experimental data.

  3. Optimum design of space storable gas/liquid coaxial injectors.

    NASA Technical Reports Server (NTRS)

    Burick, R. J.

    1972-01-01

    Review of the results of a program of single-element, cold-flow/hot-fire experiments performed for the purpose of establishing design criteria for a high-performance gas/liquid (FLOX/CH4) coaxial injector. The approach and the techniques employed resulted in the direct design of an injector that met or exceeded the performance and chamber compatibility goals of the program without any need for the traditional 'cut-and-try' development methods.

  4. Plasma gun with coaxial powder feed and adjustable cathode

    NASA Technical Reports Server (NTRS)

    Zaplatynsky, Isidor (Inventor)

    1991-01-01

    An improved plasma gun coaxially injects particles of ceramic materials having high melting temperatures into the central portion of a plasma jet. This results in a more uniform and higher temperature and velocity distribution of the sprayed particles. The position of the cathode is adjustable to facilitate optimization of the performance of the gun wherein grains of the ceramic material are melted at lower power input levels.

  5. Fabrication techniques for reverse electrode coaxial germanium nuclear radiation detectors

    SciTech Connect

    Hansen, W.L.; Haller, E.E.

    1980-11-01

    Germanium detectors with reverse polarity coaxial electrodes have been shown to exhibit improved resistance to radiation damage as compared with conventional electrode devices. However, the production of reverse electrode devices involves the development of new handling and fabrication techniques which has limited their wider application. We have developed novel techniques which lead to a device which is simple to fabricate, environmentally passivated and surface state adjusted.

  6. PREFACE: Dielectrics 2011

    NASA Astrophysics Data System (ADS)

    Vaughan, Alun; Lewin, Paul

    2011-08-01

    In 2011, the biennial meeting of the Dielectrics Group of the IOP, Dielectrics 2011, was held for the first time in a number of years at the University of Kent at Canterbury. This conference represents the most recent in a long standing series that can trace its roots back to a two-day meeting that was held in the spring of 1968 at Gregynog Hall of the University of Wales. In the intervening 43 years, this series of meetings has addressed many topics, including dielectric relaxation, high field phenomena, biomaterials and even molecular electronics, and has been held at many different venues within the UK. However, in the early 1990s, a regular venue was established at the University of Kent at Canterbury and, it this respect, this year's conference can be considered as "Dielectrics coming home". The format for the 2011 meeting followed that established at Dielectrics 2009, in breaking away from the concept of a strongly themed event that held sway during the mid 2000s. Rather, we again adopted a general, inclusive approach that was based upon four broad technical areas: Theme 1: Insulation/HV Materials Theme 2: Dielectric Spectroscopy Theme 3: Modelling Dielectric Response Theme 4: Functional Materials The result was a highly successful conference that attracted more than 60 delegates from eight countries, giving the event a truly international flavour, and which included both regular and new attendees; it was particularly pleasing to see the number of early career researchers at the meeting. Consequently, the organizing committee would like to thank our colleagues at the IOP, the invited speakers, our sponsors and all the delegates for making the event such a success. Finally, we look forward to convening again in 2013, when we will be returning to The University of Reading. Prof Alun Vaughan and Prof Paul Lewin, Editors

  7. Coaxial additive manufacture of biomaterial composite scaffolds for tissue engineering.

    PubMed

    Cornock, R; Beirne, S; Thompson, B; Wallace, G G

    2014-06-01

    An inherent difficulty associated with the application of suitable bioscaffolds for tissue engineering is the incorporation of adequate mechanical characteristics into the materials which recapitulate that of the native tissue, whilst maintaining cell proliferation and nutrient transfer qualities. Biomaterial composites fabricated using rapid prototyping techniques can potentially improve the functionality and patient-specific processing of tissue engineering scaffolds. In this work, a technique for the coaxial melt extrusion printing of core-shell scaffold structures was designed, implemented and assessed with respect to the repeatability, cell efficacy and scaffold porosity obtainable. Encapsulated alginate hydrogel/thermoplastic polycaprolactone (Alg-PCL) cofibre scaffolds were fabricated. Selective laser melting was used to produce a high resolution stainless steel 316 L coaxial extrusion nozzle, exhibiting diameters of 300 μm/900 μm for the inner and outer nozzles respectively. We present coaxial melt extrusion printed scaffolds of Alg-PCL cofibres with ~0.4 volume fraction alginate, with total fibre diameter as low as 600 μm and core material offset as low as 10% of the total diameter. Furthermore the tuneability of scaffold porosity, pore size and interconnectivity, as well as the preliminary inclusion, compatibility and survival of an L-929 mouse fibroblast cell-line within the scaffolds were explored. This preliminary cell work highlighted the need for optimal material selection and further design reiteration in future research. PMID:24658021

  8. Noise from Supersonic Coaxial Jets. Part 2; Normal Velocity Profile

    NASA Technical Reports Server (NTRS)

    Dahl, M. D.; Morris, P. J.

    1997-01-01

    Instability waves have been established as noise generators in supersonic jets. Recent analysis of these slowly diverging jets has shown that these instability waves radiate noise to the far field when the waves have components with phase velocities that are supersonic relative to the ambient speed of sound. This instability wave noise generation model has been applied to supersonic jets with a single shear layer and is now applied to supersonic coaxial jets with two initial shear layers. In this paper the case of coaxial jets with normal velocity profiles is considered, where the inner jet stream velocity is higher than the outer jet stream velocity. To provide mean flow profiles at all axial locations, a numerical scheme is used to calculate the mean flow properties. Calculations are made for the stability characteristics in the coaxial jet shear layers and the noise radiated from the instability waves for different operating conditions with the same total thrust, mass flow and exit area as a single reference jet. The effects of changes in the velocity ratio, the density ratio and the area ratio are each considered independently.

  9. Characteristics of Solution Plasma Generated with Coaxial DBD

    NASA Astrophysics Data System (ADS)

    Nishimoto, Kentaro; Tanaka, Kenji; Shirafuji, Tatsuru; Imai, Shin-Ichi

    2015-09-01

    Recently, solution plasma processing, or plasma processing in or in contact with an aqueous solution, has attracted much attention because of its various possible applications. Although different types of plasma generation methods have been proposed, most of them do not cover a wide range of electrical conductivity of the water to be treated. Since the water subjected to the plasma treatment can have any values of electrical conductivity depending on the purposes of treatments, we must develop methods that cover a wide range of electrical conductivity of water. The conventional solution plasma has shown a strong dependence on the electrical conductivity of water, in which stable discharge is available only in the water with an electrical conductivity of 100 +/- 50 μS/cm. The coaxial-type DBD in contrast has shown intense discharge within the conductivity range of 0.5-160 μS/cm. This result indicates that the coaxial type DBD has more ``robust'' dependence on the electrical conductivity of water. Furthermore, the coaxial type DBD has shown 3-fold higher energy efficiency in indigo carmine degradation than the conventional solution plasma.

  10. LOX/Hydrogen Coaxial Injector Atomization Test Program

    NASA Technical Reports Server (NTRS)

    Zaller, M.

    1990-01-01

    Quantitative information about the atomization of injector sprays is needed to improve the accuracy of computational models that predict the performance and stability margin of liquid propellant rocket engines. To obtain this data, a facility for the study of spray atomization is being established at NASA-Lewis to determine the drop size and velocity distributions occurring in vaporizing liquid sprays at supercritical pressures. Hardware configuration and test conditions are selected to make the cold flow simulant testing correspond as closely as possible to conditions in liquid oxygen (LOX)/gaseous H2 rocket engines. Drop size correlations from the literature, developed for liquid/gas coaxial injector geometries, are used to make drop size predictions for LOX/H2 coaxial injectors. The mean drop size predictions for a single element coaxial injector range from 0.1 to 2000 microns, emphasizing the need for additional studies of the atomization process in LOX/H2 engines. Selection of cold flow simulants, measured techniques, and hardware for LOX/H2 atomization simulations are discussed.

  11. Development and research of a coaxial microwave plasma thruster

    SciTech Connect

    Yang Juan; Xu Yingqiao; Tang Jinlan; Mao Genwang; Yang Tielian; Tan Xiaoquen

    2008-08-15

    An overview of the research on a coaxial microwave plasma thruster at Northwestern Polytechnic University is presented. Emphasis is put on the development and research on key components of the thruster system, a microthrust balance, plasma plume diagnostics, and a numerical simulation of the plasma flow field inside the thruster cavity. The developed thruster cavity is chosen from a coaxial resonant cavity with concentrated capacitance, which can operate well in atmosphere and vacuum conditions. The development of a microwave source shows that a magnetron powered by a switch power supply has advantages in the power level and efficiency, but a solid state microwave source synthesized from the arsenide field effect transistor is superior in weight and volume. Through elimination of the effect of large gravity and resistance force induced by a gas pipe line and a microwave transmitting line on the microthrust, 15 mN and 340 s in the performance of the microwave plasma thruster at 70 W and with helium gas are measured. Diagnosing experiment shows that the plasma plume density is in the range of (1-7.2)x10{sup 16}/m{sup 3}. Numerical simulation of the plasma flow field inside the coaxial thruster cavity shows that there is a good match between the microwave power and gas flow rate.

  12. Development and research of a coaxial microwave plasma thruster.

    PubMed

    Yang, Juan; Xu, Yingqiao; Tang, Jinlan; Mao, Genwang; Yang, Tielian; Tan, Xiaoquen

    2008-08-01

    An overview of the research on a coaxial microwave plasma thruster at Northwestern Polytechnic University is presented. Emphasis is put on the development and research on key components of the thruster system, a microthrust balance, plasma plume diagnostics, and a numerical simulation of the plasma flow field inside the thruster cavity. The developed thruster cavity is chosen from a coaxial resonant cavity with concentrated capacitance, which can operate well in atmosphere and vacuum conditions. The development of a microwave source shows that a magnetron powered by a switch power supply has advantages in the power level and efficiency, but a solid state microwave source synthesized from the arsenide field effect transistor is superior in weight and volume. Through elimination of the effect of large gravity and resistance force induced by a gas pipe line and a microwave transmitting line on the microthrust, 15 mN and 340 s in the performance of the microwave plasma thruster at 70 W and with helium gas are measured. Diagnosing experiment shows that the plasma plume density is in the range of (1-7.2)x10(16)m(3). Numerical simulation of the plasma flow field inside the coaxial thruster cavity shows that there is a good match between the microwave power and gas flow rate. PMID:19044345

  13. Noise from Supersonic Coaxial Jets. Part 3; Inverted Velocity Profile

    NASA Technical Reports Server (NTRS)

    Dahl, Milo D.; Morris, Philip J.

    1997-01-01

    The instability wave noise generation model is used to study the instability waves in the two shear layers of an inverted velocity profile, supersonic, coaxial jet and the noise radiated from the dominant wave. The inverted velocity profile jet has a high speed outer stream surrounding a low speed inner stream and the outer shear layer is always larger than the inner shear layer. The jet mean flows are calculated numerically. The operating conditions are chosen to exemplify the effect of the coaxial jet outer shear layer initial spreading rates. Calculations are made for the stability characteristics in the coaxial jet shear layers and the noise radiated from the instability waves for different operating conditions with the same total thrust, mass flow and exit area as a single reference jet. Results for inverted velocity profile jets indicate that relative maximum instability wave amplitudes and far field peak noise levels can be reduced from that of the reference jet by having higher spreading rates for the outer shear layer, low velocity ratios, and outer streams hotter than the inner stream.

  14. Design and Optimization of the Coaxial Pulse-Tube Cooler

    NASA Astrophysics Data System (ADS)

    van de Groep, W.; Mullié, J.; Benschop, T.; van Wordragen, F.; Willems, D.

    2008-03-01

    Since 2005 Thales Cryogenics has been producing coaxial pulse-tube coolers under CEA license for applications that are very sensitive for mechanical vibrations and require a long lifetime. In order to optimize the existing baseline design of the coaxial pulse tube to its customers needs, Thales Cryogenics has been working on several of the critical elements inside the pulse tube. This optimization should lead to a wider application of these pulse-tube coolers into high-end civil applications. This paper describes the work carried out on the optimization of the heat exchangers at the cold tip, the warm end and the buffer including irreversible heat losses caused by disruptions of the gas flow. Moreover, the heat exchange of warm end gas to the surroundings has been investigated. Also, the sensitivity to internal contamination has been tested. Results will enable a design optimization of the whole range of coaxial pulse-tube coolers, varying from 1 and 4 W at 80 K to pulse-tube coolers of more than 12 W cooling power at 80 K. In this paper, test result, trade-offs and benefits of the new design will be discussed and evaluated.

  15. LOX/hydrogen coaxial injector atomization test program

    NASA Technical Reports Server (NTRS)

    Zaller, M.

    1990-01-01

    Quantitative information about the atomization of injector sprays is needed to improve the accuracy of computational models that predict the performance and stability margin of liquid propellant rocket engines. To obtain this data, a facility for the study of spray atomization is being established at NASA-Lewis to determine the drop size and velocity distributions occurring in vaporizing liquid sprays at supercritical pressures. Hardware configuration and test conditions are selected to make the cold flow simulant testing correspond as closely as possible to conditions in liquid oxygen (LOX)/gaseous H2 rocket engines. Drop size correlations from the literature, developed for liquid/gas coaxial injector geometries, are used to make drop size predictions for LOX/H2 coaxial injectors. The mean drop size predictions for a single element coaxial injector range from 0.1 to 2000 microns, emphasizing the need for additional studies of the atomization process in LOX/H2 engines. Selection of cold flow simulants, measurement techniques, and hardware for LOX/H2 atomization simulations are discussed.

  16. Coaxial carbon@boron nitride nanotube arrays with enhanced thermal stability and compressive mechanical properties

    NASA Astrophysics Data System (ADS)

    Jing, Lin; Tay, Roland Yingjie; Li, Hongling; Tsang, Siu Hon; Huang, Jingfeng; Tan, Dunlin; Zhang, Bowei; Teo, Edwin Hang Tong; Tok, Alfred Iing Yoong

    2016-05-01

    Vertically aligned carbon nanotube (CNT) arrays have aroused considerable interest because of their remarkable mechanical properties. However, the mechanical behaviour of as-synthesized CNT arrays could vary drastically at a macro-scale depending on their morphologies, dimensions and array density, which are determined by the synthesis method. Here, we demonstrate a coaxial carbon@boron nitride nanotube (C@BNNT) array with enhanced compressive strength and shape recoverability. CNT arrays are grown using a commercially available thermal chemical vapor deposition (TCVD) technique and an outer BNNT with a wall thickness up to 1.37 nm is introduced by a post-growth TCVD treatment. Importantly, compared to the as-grown CNT arrays which deform almost plastically upon compression, the coaxial C@BNNT arrays exhibit an impressive ~4-fold increase in compressive strength with nearly full recovery after the first compression cycle at a 50% strain (76% recovery maintained after 10 cycles), as well as a significantly high and persistent energy dissipation ratio (~60% at a 50% strain after 100 cycles), attributed to the synergistic effect between the CNT and outer BNNT. Additionally, the as-prepared C@BNNT arrays show an improved structural stability in air at elevated temperatures, attributing to the outstanding thermal stability of the outer BNNT. This work provides new insights into tailoring the mechanical and thermal behaviours of arbitrary CNT arrays which enables a broader range of applications.Vertically aligned carbon nanotube (CNT) arrays have aroused considerable interest because of their remarkable mechanical properties. However, the mechanical behaviour of as-synthesized CNT arrays could vary drastically at a macro-scale depending on their morphologies, dimensions and array density, which are determined by the synthesis method. Here, we demonstrate a coaxial carbon@boron nitride nanotube (C@BNNT) array with enhanced compressive strength and shape recoverability

  17. Energy deposition characteristics of nanosecond dielectric barrier discharge plasma actuators: Influence of dielectric material

    NASA Astrophysics Data System (ADS)

    Correale, G.; Winkel, R.; Kotsonis, M.

    2015-08-01

    An experimental study aimed at the characterization of energy deposition of nanosecond Dielectric Barrier Discharge (ns-DBD) plasma actuators was carried out. Special attention was given on the effect of the thickness and material used for dielectric barrier. The selected materials for this study were polyimide film (Kapton), polyamide based nylon (PA2200), and silicone rubber. Schlieren measurements were carried out in quiescent air conditions in order to observe density gradients induced by energy deposited. Size of heated area was used to qualify the energy deposition coupled with electrical power measurements performed using the back-current shunt technique. Additionally, light intensity measurements showed a different nature of discharge based upon the material used for barrier, for a fixed thickness and frequency of discharge. Finally, a characterisation study was performed for the three tested materials. Dielectric constant, volume resistivity, and thermal conductivity were measured. Strong trends between the control parameters and the energy deposited into the fluid during the discharge were observed. Results indicate that efficiency of energy deposition mechanism relative to the thickness of the barrier strongly depends upon the material used for the dielectric barrier itself. In general, a high dielectric strength and a low volumetric resistivity are preferred for a barrier, together with a high heat capacitance and a low thermal conductivity coefficient in order to maximize the efficiency of the thermal energy deposition induced by an ns-DBD plasma actuator.

  18. Controlling birefringence in dielectrics

    NASA Astrophysics Data System (ADS)

    Danner, Aaron J.; Tyc, Tomáš; Leonhardt, Ulf

    2011-06-01

    Birefringence, from the very essence of the word itself, refers to the splitting of light rays into two parts. In natural birefringent materials, this splitting is a beautiful phenomenon, resulting in the perception of a double image. In optical metamaterials, birefringence is often an unwanted side effect of forcing a device designed through transformation optics to operate in dielectrics. One polarization is usually implemented in dielectrics, and the other is sacrificed. Here we show, with techniques beyond transformation optics, that this need not be the case, that both polarizations can be controlled to perform useful tasks in dielectrics, and that rays, at all incident angles, can even follow different trajectories through a device and emerge together as if the birefringence did not exist at all. A number of examples are shown, including a combination Maxwell fisheye/Luneburg lens that performs a useful task and is achievable with current fabrication materials.

  19. Dielectric assist accelerating structure

    NASA Astrophysics Data System (ADS)

    Satoh, D.; Yoshida, M.; Hayashizaki, N.

    2016-01-01

    A higher-order TM02 n mode accelerating structure is proposed based on a novel concept of dielectric loaded rf cavities. This accelerating structure consists of ultralow-loss dielectric cylinders and disks with irises which are periodically arranged in a metallic enclosure. Unlike conventional dielectric loaded accelerating structures, most of the rf power is stored in the vacuum space near the beam axis, leading to a significant reduction of the wall loss, much lower than that of conventional normal-conducting linac structures. This allows us to realize an extremely high quality factor and a very high shunt impedance at room temperature. A simulation of a 5 cell prototype design with an existing alumina ceramic indicates an unloaded quality factor of the accelerating mode over 120 000 and a shunt impedance exceeding 650 M Ω /m at room temperature.

  20. Dielectric Constant of Suspensions

    NASA Astrophysics Data System (ADS)

    Mendelson, Kenneth S.; Ackmann, James J.

    1997-03-01

    We have used a finite element method to calculate the dielectric constant of a cubic array of spheres. Extensive calculations support preliminary conclusions reported previously (K. Mendelson and J. Ackmann, Bull. Am. Phys. Soc. 41), 657 (1996).. At frequencies below 100 kHz the real part of the dielectric constant (ɛ') shows oscillations as a function of the volume fraction of suspension. These oscillations disappear at low conductivities of the suspending fluid. Measurements of the dielectric constant (J. Ackmann, et al., Ann. Biomed. Eng. 24), 58 (1996). (H. Fricke and H. Curtis, J. Phys. Chem. 41), 729 (1937). are not sufficiently sensitive to show oscillations but appear to be consistent with the theoretical results.

  1. PREFACE: Dielectrics 2013

    NASA Astrophysics Data System (ADS)

    Hadjiloucas, Sillas; Blackburn, John

    2013-11-01

    This volume records the 42nd Dielectrics Group Proceedings of the Dielectrics Conference that took place at the University of Reading UK from 10-12 April 2013. The meeting is part of the biennial Dielectrics series of the Dielectrics Group, and formerly Dielectrics Society, and is organised by the Institute of Physics. The conference proceedings showcase some of the diversity and activity of the Dielectrics community worldwide, and bring together contributions from academics and industrial researchers with a diverse background and experiences from the Physics, Chemistry and Engineering communities. It is interesting to note some continuing themes such as Insulation/HV Materials, Dielectric Spectroscopy, Dielectric Measurement Techniques and Ferroelectric materials have a growing importance across a range of technologically important areas from the Energy sector to Materials research, Semiconductor and Electronics industries, and Metrology. We would like to thank all of our colleagues and friends in the Dielectrics community who have supported this event by contributing manuscripts and participating in the event. The conference has provided excellent networking opportunities for all delegates. Our thanks go also to our theme chairs: Dr Stephen Dodd (University of Leicester) on Insulation/HV Materials, Professor Darryl Almond (University of Bath) on Dielectric Spectroscopy, Dr John Blackburn (NPL) on Dielectric Measurement Techniques and Professor Anthony R West (University of Sheffield) on Ferroelectric Materials. We would also like to thank the other members of the Technical Programme Committee for their support, and refereeing the submitted manuscripts. Our community would also like to wish a full recovery to our plenary speaker Prof John Fothergill (City University London) who was unexpectedly unable to give his talk as well as thank Professor Alun Vaughan for stepping in and giving an excellent plenary lecture in his place at such very short notice. We are also

  2. Multilayer dielectric diffraction gratings

    DOEpatents

    Perry, Michael D.; Britten, Jerald A.; Nguyen, Hoang T.; Boyd, Robert; Shore, Bruce W.

    1999-01-01

    The design and fabrication of dielectric grating structures with high diffraction efficiency used in reflection or transmission is described. By forming a multilayer structure of alternating index dielectric materials and placing a grating structure on top of the multilayer, a diffraction grating of adjustable efficiency, and variable optical bandwidth can be obtained. Diffraction efficiency into the first order in reflection varying between 1 and 98 percent has been achieved by controlling the design of the multilayer and the depth, shape, and material comprising the grooves of the grating structure. Methods for fabricating these gratings without the use of ion etching techniques are described.

  3. Multilayer dielectric diffraction gratings

    DOEpatents

    Perry, M.D.; Britten, J.A.; Nguyen, H.T.; Boyd, R.; Shore, B.W.

    1999-05-25

    The design and fabrication of dielectric grating structures with high diffraction efficiency used in reflection or transmission is described. By forming a multilayer structure of alternating index dielectric materials and placing a grating structure on top of the multilayer, a diffraction grating of adjustable efficiency, and variable optical bandwidth can be obtained. Diffraction efficiency into the first order in reflection varying between 1 and 98 percent has been achieved by controlling the design of the multilayer and the depth, shape, and material comprising the grooves of the grating structure. Methods for fabricating these gratings without the use of ion etching techniques are described. 7 figs.

  4. Thermally switchable dielectrics

    DOEpatents

    Dirk, Shawn M.; Johnson, Ross S.

    2013-04-30

    Precursor polymers to conjugated polymers, such as poly(phenylene vinylene), poly(poly(thiophene vinylene), poly(aniline vinylene), and poly(pyrrole vinylene), can be used as thermally switchable capacitor dielectrics that fail at a specific temperature due to the non-conjugated precursor polymer irreversibly switching from an insulator to the conjugated polymer, which serves as a bleed resistor. The precursor polymer is a good dielectric until it reaches a specific temperature determined by the stability of the leaving groups. Conjugation of the polymer backbone at high temperature effectively disables the capacitor, providing a `built-in` safety mechanism for electronic devices.

  5. Dielectric behaviour of polycarbonate

    NASA Astrophysics Data System (ADS)

    El-Shabasy, M.; Riad, A. S.

    1996-05-01

    The dielectric constant and the dielectric loss of polycarbonate are investigated in the frequency range 30-10 5 Hz and at temperature from 297 to 365 K. The frequency dependence of the impedance spectra plotted in the complex plane shows semicircles. The system could be represented by an equivalent circuit of a bulk resistance in series with a parallel surface resistance-capacitance combination. The Cole-Cole diagrams have been used to determine the molecular relaxation time τ. The temperature dependence of τ is expressed by a thermally activated process. Analysis of the AC conductivity reveals semiconducting features based predominantly on a hopping mechanism.

  6. Self-energized plasma compressor. [for compressing plasma discharged from coaxial plasma generator

    NASA Technical Reports Server (NTRS)

    Shriver, E. L.; Igenbergs, E. B. (Inventor)

    1974-01-01

    The self-energized plasma compressor is described which compresses plasma discharged from a coaxial plasma generator. The device includes a helically shaped coil which is coaxially aligned with the center axis of the coaxial plasma generator. The plasma generator creates a current through the helical coil which, in turn, generates a time varying magnetic field that creates a force which acts radially upon the plasma. The coaxial plasma generator and helical coil move the plasma under high pressure and temperature to the narrow end of the coil. Positioned adjacent to the narrow end of the coil are beads which are engaged by the plasma to be accelerated to hypervelocities for simulating meteoroids.

  7. An Internal Coaxial Cable Electrical Connector For Use In Downhole Tools

    DOEpatents

    Hall, David R.; Hall, Jr., H. Tracy; Pixton, David S.; Dahlgren, Scott; Fox, Joe; Sneddon, Cameron; Briscoe, Michael

    2005-09-20

    A seal for a coaxial cable electrical connector more specifically an internal seal for a coaxial cable connector placed within a coaxial cable and its constituent components. A coaxial cable connector is in electrical communcation with an inductive transformer and a coaxial cable. The connector is in electrical communication with the outer housing of the inductive transformer. A generally coaxial center conductor, a portion of which could be the coil in the inductive transformer, passes through the connector, is electrically insulated from the connector, and is in electrical communication with the conductive core of the coaxial cable. The electrically insulating material also doubles as a seal to safegaurd against penetration of fluid, thus protecting against shorting out of the electrical connection. The seal is a multi-component seal, which is pre-compressed to a desired pressure rating. The coaxial cable and inductive transformer are disposed within downhole tools to transmit electrical signals between downhole tools within a drill string. The internal coaxial cable connector and its attendant seal can be used in a plurality of downhole tools, such as sections of pipe in a drill string, drill collars, heavy weight drill pipe, and jars.

  8. Broad band invisibility cloak made of normal dielectric multilayer

    NASA Astrophysics Data System (ADS)

    Xu, Xiaofei; Feng, Yijun; Xiong, Shuai; Fan, Jinlong; Zhao, Jun-Ming; Jiang, Tian

    2011-10-01

    We present the design, fabrication, and performance test of a quasi three-dimensional carpet cloak made of normal dielectric in the microwave regime. Taking advantage of a simple linear coordinate transformation, we design a carpet cloak with homogeneous anisotropic medium and then practically realize the device with multilayer of alternating normal dielectric slabs based on the effective medium theory. As a proof-of-concept example, we fabricate the carpet cloak with multilayer of FR4 dielectric slabs with air spacing. The performance of the fabricated design is verified through full-wave numerical simulation and measurement of the far-field scattering electromagnetic waves in a microwave anechoic chamber. Experimental results have demonstrated pronounced cloaking effect in a very broad band from 8 GHz to 18 GHz (whole X and Ku band) due to the low loss, non-dispersive feature of the multilayer dielectric structure.

  9. Ultralow loss dielectric ribbon waveguide for millimeter/submillimeter waves

    NASA Astrophysics Data System (ADS)

    Yeh, C.; Shimabukuro, F. I.; Chu, J.

    1989-03-01

    By using high dielectric constant and low-loss dielectric material such as quartz, alumina, or sapphire and by specifically configuring the waveguide structure, a waveguide was designed for the millimeter/submillimeter wavelength range, which yields an attenuation constant for the dominant mode that is more than 100 times below that for an equivalent circular dielectric rod with identical cross-sectional area. This waveguide takes the form of a thin dielectric ribbon surrounded by lossless dry air and possess an attenuation constant as low as 20 dB/km. Analytical results on the attenuation constant and field extent of the dominant mode on this ribbon structure for several promising materials are given. Experiments have also been performed on ribbon guides made with rexolite. Excellent agreement was found between predicted and measured results.

  10. Molds for cable dielectrics

    DOEpatents

    Roose, L.D.

    1996-12-10

    Molds for use in making end moldings for high-voltage cables are described wherein the dielectric insulator of a cable is heated and molded to conform to a desired shape. As a consequence, high quality substantially bubble-free cable connectors suitable for mating to premanufactured fittings are made. 5 figs.

  11. Molds for cable dielectrics

    DOEpatents

    Roose, Lars D.

    1996-01-01

    Molds for use in making end moldings for high-voltage cables are described wherein the dielectric insulator of a cable is heated and molded to conform to a desired shape. As a consequence, high quality substantially bubble-free cable connectors suitable for mating to premanufactured fittings are made.

  12. Interfaces: nanometric dielectrics

    NASA Astrophysics Data System (ADS)

    Lewis, T. J.

    2005-01-01

    The incorporation of nanometric size particles in a matrix to form dielectric composites shows promise of materials (nanodielectrics) with new and improved properties. It is argued that the properties of the interfaces between the particles and the matrix, which will themselves be of nanometric dimensions, will have an increasingly dominant role in determining dielectric performance as the particle size decreases. The forces that determine the electrical and dielectric properties of interfaces are considered, with emphasis on the way in which they might influence composite behaviour. A number of examples are given in which interfaces at the nanometric level exercise both passive and active control over dielectric, optical and conductive properties. Electromechanical properties are also considered, and it is shown that interfaces have important electrostrictive and piezoelectric characteristics. It is demonstrated that the process of poling, namely subjecting macroscopic composite materials to electrical stress and raised temperatures to create piezoelectric materials, can be explained in terms of optimizing the collective response of the nanometric interfaces involved. If the electrical and electromechanical features are coupled to the long-established electrochemical properties, interfaces represent highly versatile active elements with considerable potential in nanotechnology.

  13. Dielectric elastomer memory

    NASA Astrophysics Data System (ADS)

    O'Brien, Benjamin M.; McKay, Thomas G.; Xie, Sheng Q.; Calius, Emilio P.; Anderson, Iain A.

    2011-04-01

    Life shows us that the distribution of intelligence throughout flexible muscular networks is a highly successful solution to a wide range of challenges, for example: human hearts, octopi, or even starfish. Recreating this success in engineered systems requires soft actuator technologies with embedded sensing and intelligence. Dielectric Elastomer Actuator(s) (DEA) are promising due to their large stresses and strains, as well as quiet flexible multimodal operation. Recently dielectric elastomer devices were presented with built in sensor, driver, and logic capability enabled by a new concept called the Dielectric Elastomer Switch(es) (DES). DES use electrode piezoresistivity to control the charge on DEA and enable the distribution of intelligence throughout a DEA device. In this paper we advance the capabilities of DES further to form volatile memory elements. A set reset flip-flop with inverted reset line was developed based on DES and DEA. With a 3200V supply the flip-flop behaved appropriately and demonstrated the creation of dielectric elastomer memory capable of changing state in response to 1 second long set and reset pulses. This memory opens up applications such as oscillator, de-bounce, timing, and sequential logic circuits; all of which could be distributed throughout biomimetic actuator arrays. Future work will include miniaturisation to improve response speed, implementation into more complex circuits, and investigation of longer lasting and more sensitive switching materials.

  14. Dielectric non destructive testing for rock characterization in natural stone industry and cultural heritage

    NASA Astrophysics Data System (ADS)

    López-Buendía, Angel M.; García-Baños, Beatriz; Mar Urquiola, M.; Gutiérrez, José D.; Catalá-Civera, José M.

    2016-04-01

    Dielectric constant measurement has been used in rocks characterization, mainly for exploration objective in geophysics, particularly related to ground penetration radar characterization in ranges of 10 MHz to 1 GHz. However, few data have been collected for loss factor. Complex permittivity (dielectric constant and loss factor) characterization in rock provide information about mineralogical composition as well as other petrophysic parameters related to the quality, such as fabric parameters, mineralogical distribution, humidity. A study was performed in the frequency of 2,45GHz by using a portable kit for dielectric device based on an open coaxial probe. In situ measurements were made of natural stone marble and granite on selected industrial slabs and building stone. A mapping of their complex permittivity was performed and evaluated, and variations in composition and textures were identified, showing the variability with the mineral composition, metal ore minerals content and fabric. Dielectric constant was a parameter more sensible to rock forming minerals composition, particularly in granites for QAPF-composition (quartz-alkali feldspar-plagioclases-feldspathoids) and in marbles for calcite-dolomite-silicates. Loss factor shown a high sensibility to fabric and minerals of alteration. Results showed that the dielectric properties can be used as a powerful tool for petrographic characterization of building stones in two areas of application: a) in cultural heritage diagnosis to estimate the quality and alteration of the stone, an b) in industrial application for quality control and industrial microwave processing.

  15. Self-sustained criterion with photoionization for positive dc corona plasmas between coaxial cylinders

    SciTech Connect

    Zheng, Yuesheng; Zhang, Bo He, Jinliang

    2015-06-15

    The positive dc corona plasmas between coaxial cylinders in air under the application of a self-sustained criterion with photoionization are investigated in this paper. A photon absorption function suitable for cylindrical electrode, which can characterize the total photons within the ionization region, is proposed on the basis of the classic corona onset criteria. Based on the general fluid model with the self-sustained criterion, the role of photoionization in the ionization region is clarified. It is found that the surface electric field keeps constant under a relatively low corona current, while it is slightly weakened with the increase of the corona current. Similar tendencies can be found under different conductor radii and relative air densities. The small change of the surface electric field will become more significant for the electron density distribution as well as the ionization activity under a high corona current, compared with the results under the assumption of a constant surface field. The assumption that the surface electric field remains constant should be corrected with the increase of the corona current when the energetic electrons with a distance from the conductor surface are concerned.

  16. Review of coaxial flow gas core nuclear rocket fluid mechanics

    NASA Technical Reports Server (NTRS)

    Weinstein, H.

    1976-01-01

    Almost all of the fluid mechanics research associated with the coaxial flow gas core reactor ended abruptly with the interruption of NASA's space nuclear program because of policy and budgetary considerations in 1973. An overview of program accomplishments is presented through a review of the experiments conducted and the analyses performed. Areas are indicated where additional research is required for a fuller understanding of cavity flow and of the factors which influence cold and hot flow containment. A bibliography is included with graphic material.

  17. Plasma-filled diode based on the coaxial gun.

    PubMed

    Zherlitsyn, A A; Kovalchuk, B M; Pedin, N N

    2012-10-01

    The paper presents the results of studies of a coaxial gun for a plasma-filled electron diode. Effects of the discharge channel diameter and gun current on characteristics of the plasma and pulse generated in the diode were investigated. The electron beam with maximum energy of ≥1 MeV at the current of ≈100 kA was obtained in the experiments with a plasma-filled diode. The energy of ≈5 kJ with the peak power of ≥100 GW dissipated in the diode. PMID:23126788

  18. Fabrication of Nonwoven Coaxial Fiber Meshes by Electrospinning

    PubMed Central

    Saraf, Anita; Lozier, Genevieve; Haesslein, Andrea; Kasper, F. Kurtis; Raphael, Robert M.; Baggett, L. Scott

    2009-01-01

    There is a great need for biodegradable polymer scaffolds that can regulate the delivery of bioactive factors such as drugs, plasmids, and proteins. Coaxial electrospinning is a novel technique that is currently being explored to create such polymer scaffolds by embedding within them aqueous-based biological molecules. In this study, we evaluated the influence of various processing parameters such as sheath polymer concentration, core polymer concentration and molecular weight, and salt ions within the core polymer on coaxial fiber morphology. The sheath polymer used in this study was poly(ɛ-caprolactone) (PCL), and the core polymer was poly(ethylene glycol) (PEG). We examined the effects of the various processing parameters on core diameters, total fiber diameters, and sheath thicknesses of coaxial microfibers using a 24 full factorial statistical model. The maximum increase in total fiber diameter was observed with increase in sheath polymer (PCL) concentration from 9 to 11 wt% (0.49 ± 0.03 μm) and salt concentration within the core from 0 to 500 mM (0.38 ± 0.03 μm). The core fiber diameter was most influenced by the sheath and core polymer (PCL and PEG, respectively) concentrations, the latter of which increased from 200 to 400 mg/mL (0.40 ± 0.01 μm and 0.36 ± 0.01 μm, respectively). The core polymer (PEG) concentration had a maximal negative effect on sheath thickness (0.40 ± 0.03 μm), while salt concentration had the maximal positive effect (0.28 ± 0.03 μm). Molecular weight increases in core polymer (PEG) from 1.0 to 4.6 kDa caused moderate increases in total and sheath fiber diameters and sheath thicknesses. These experiments provide important information that lays the foundation required for the synthesis of coaxial fibers with tunable dimensions. PMID:19196125

  19. Update on multipactoring in coaxial waveguides using CST Particle Studio

    SciTech Connect

    Romanov, Gennady; /Fermilab

    2011-03-01

    CST Particle Studio combines electromagnetic field simulation, multi-particle tracking, adequate post-processing and advanced probabilistic emission model, which is the most important new capability in multipactor simulation. The emission model includes in simulation the stochastic properties of emission and adds primary electron elastic and inelastic reflection from the surfaces. The simulation of multipactor in coaxial waveguides have been performed to study the effects of the innovations on the multipactor threshold and the range over which multipactor can occur. The results compared with available previous experiments and simulations as well as the technique of MP simulation with CST PS are presented and discussed.

  20. Space-charge waves in a coaxial plasma waveguide

    SciTech Connect

    Hwang, U.; Willett, J.E.; Mehdian, H.

    1998-01-01

    The propagation of space-charge waves through a coaxial waveguide containing an annular plasma in an axial magnetic field is investigated. Both plasma and cyclotron types of waves are analyzed in the electrostatic approximation. Equations for the determination of the dispersion relations are derived from the Poisson equation and the electron continuity and momentum transfer equations. A numerical study of the dispersion curves for azimuthally symmetrical waves is presented. A significant departure from the dispersion characteristics of a cylindrical plasma waveguide are found to occur unless the inner radius of the waveguide is small compared to the outer radius. {copyright} {ital 1998 American Institute of Physics.}

  1. Modeling and simulation of coaxial helicopter rotor aerodynamics

    NASA Astrophysics Data System (ADS)

    Gecgel, Murat

    A framework is developed for the computational fluid dynamics (CFD) analyses of a series of helicopter rotor flowfields in hover and in forward flight. The methodology is based on the unsteady solutions of the three-dimensional, compressible Navier-Stokes equations recast in a rotating frame of reference. The simulations are carried out by solving the developed mathematical model on hybrid meshes that aim to optimally exploit the benefits of both the structured and the unstructured grids around complex configurations. The computer code is prepared for parallel processing with distributed memory utilization in order to significantly reduce the computational time and the memory requirements. The developed model and the simulation methodology are validated for single-rotor-in-hover flowfields by comparing the present results with the published experimental data. The predictive merit of different turbulence models for complex helicopter aerodynamics are tested extensively. All but the kappa-o and LES results demonstrate acceptable agreement with the experimental data. It was deemed best to use the one-equation Spalart-Allmaras turbulence model for the subsequent rotor flowfield computations. First, the flowfield around a single rotor in forward flight is simulated. These time---accurate computations help to analyze an adverse effect of increasing the forward flight speed. A dissymmetry of the lift on the advancing and the retreating blades is observed for six different advance ratios. Since the coaxial rotor is proposed to mitigate the dissymmetry, it is selected as the next logical step of the present investigation. The time---accurate simulations are successfully obtained for the flowfields generated by first a hovering then a forward-flying coaxial rotor. The results for the coaxial rotor in forward flight verify the aerodynamic balance proposed by the previously published advancing blade concept. The final set of analyses aims to investigate if the gap between the

  2. Space charge effects for multipactor in coaxial lines

    SciTech Connect

    Sorolla, E.

    2015-03-15

    Multipactor is a hazardous vacuum discharge produced by secondary electron emission within microwave devices of particle accelerators and telecommunication satellites. This work analyzes the dynamics of the multipactor discharge within a coaxial line for the mono-energetic electron emission model taking into account the space charge effects. The steady-state is predicted by the proposed model and an analytical expression for the maximum number of electrons released by the discharge presented. This could help to link simulations to experiments and define a multipactor onset criterion.

  3. Coaxial radio frequency (RF) diathermy in anterior segment surgery.

    PubMed

    Savage, J A; Simmons, R J

    1985-05-01

    Modern ophthalmic microsurgery, particularly cataract extraction, trabeculectomy, and other forms of glaucoma filtration surgery, has been characterized by ever increasing precision. The use of radio frequency (RF) currents for cautery of blood vessels in anterior segment microsurgery has several advantages over other methods widely employed, including the bipolar cautery. A coaxial monopolar underwater diathermy probe, which operates with RF current has been specifically developed for anterior segment microsurgery and has proved vastly superior in cataract surgery, trabeculectomy, and full thickness glaucoma filtration procedures. PMID:4011123

  4. Fabrication of modulated vanes for a split-coaxial RFQ

    NASA Astrophysics Data System (ADS)

    Fujino, T.; Arai, S.; Fukushima, T.; Sakamoto, N.; Tojyo, E.

    1988-09-01

    Modulated vanes installed in a split-coaxial RFQ were fabricated at the INS machine shop. Each modulated vane, 205 cm long, is assembled by connecting 11 short vane pieces. The pieces were machined with an NC lathe operated like a milling machine. A ball end mill is mounted in the rotor and a vane piece is fixed by a special vise attached at the tool post; the vise moves vertically, and the tool post dose two-dimensionally in the horizontal plane. In the report, the development of the vise attachment, the calculation of the vane-tip geometry, the NC program, the machining process are described.

  5. Operation of a frequency-doubling coaxial gyroklystron

    NASA Astrophysics Data System (ADS)

    Lawson, Wes; Castle, Mike; Spassovsky, Ivan; Hogan, Bart; Granatstein, Victor

    2000-10-01

    We present the results of our frequency-doubling coaxial gyroklystron system. The three-cavity circuit is designed to produce 80 MW of peak power at 17.136 GHz via the interaction with a 460 kV, 500 A electron beam. The simulated efficiency is about 34is estimated to be about 50 dB. Details of both the theoretical design and the experimental results will be given. We also present our plans to use the gyroklystron to energize a 17.136 accelerator section.

  6. Plasma-filled diode based on the coaxial gun

    SciTech Connect

    Zherlitsyn, A. A.; Kovalchuk, B. M.; Pedin, N. N.

    2012-10-15

    The paper presents the results of studies of a coaxial gun for a plasma-filled electron diode. Effects of the discharge channel diameter and gun current on characteristics of the plasma and pulse generated in the diode were investigated. The electron beam with maximum energy of {>=}1 MeV at the current of Almost-Equal-To 100 kA was obtained in the experiments with a plasma-filled diode. The energy of Almost-Equal-To 5 kJ with the peak power of {>=}100 GW dissipated in the diode.

  7. Plasma-filled diode based on the coaxial gun

    NASA Astrophysics Data System (ADS)

    Zherlitsyn, A. A.; Kovalchuk, B. M.; Pedin, N. N.

    2012-10-01

    The paper presents the results of studies of a coaxial gun for a plasma-filled electron diode. Effects of the discharge channel diameter and gun current on characteristics of the plasma and pulse generated in the diode were investigated. The electron beam with maximum energy of ≥1 MeV at the current of ≈100 kA was obtained in the experiments with a plasma-filled diode. The energy of ≈5 kJ with the peak power of ≥100 GW dissipated in the diode.

  8. Design of Matching Optics Unit (MOU) for coaxial ITER gyrotron

    SciTech Connect

    Jin, Jianbo; Gantenbein, Gerd; Kern, Stefan; Rzesnicki, Tomasz; Thumm, Manfred

    2011-07-01

    The paper presents the design of a MOU for the coaxial ITER gyrotron. Corrugated waveguides are used to transmit the high power mm-waves generated by gyrotrons to the plasma Electron Cyclotron Resonance Heating (ECRH) and Current Drive (CD). The MOU contains two focusing mirrors, which are used to convert the gyrotron output into a Gaussian distribution with optimal parameters to improve the coupling efficiency of the TEM{sub 00} Gaussian distribution to the HE{sub 11} mode of the corrugated wave guide. The calculation results reveal that the coupling efficiency of the Gaussian beam to the HE{sub 11} mode is approximately 96.33%. (author)

  9. Noninductive Current Generation in NSTX using Coaxial Helicity Injection

    SciTech Connect

    Raman, R.; Jarboe, T.R.; Mueller, D.; Schaffer, M.J.; Maqueda, R.; Nelson, B.A.; Sabbagh, S.; Bell, M.; Ewig, R.; Fredrickson, E.; Gates, D.; Hosea, J.; Jardin, S.; Ji, H.; Kaita, R.; Kaye, S.M.; Kugel, H.; Lao, L.; Maingi, R.; Menard, J.; Ono, M.; Orvis, D.; Paul, S.; Peng, M.; Skinner, C.H.; Wilgen, J.B.; Zweben, S.; and the NSTX Research Team

    2001-05-10

    Coaxial Helicity Injection (CHI) on the National Spherical Torus Experiment (NSTX) has produced 240 kA of toroidal current without the use of the central solenoid. Values of the current multiplication ratio (CHI produced toroidal current/injector current) up to 10 were obtained, in agreement with predictions. The discharges which lasted for up to 200 ms, limited only by the programmed waveform, are more than an order of magnitude longer in duration that any CHI discharges previously produced in a Spheromak or a Spherical Torus (ST).

  10. COAXIAL CONTROL ROD DRIVE MECHANISM FOR NEUTRONIC REACTORS

    DOEpatents

    Fox, R.J.; Oakes, L.C.

    1959-04-14

    A drive mechanism is presented for the control rod or a nuclear reactor. In this device the control rod is coupled to a drive shaft which extends coaxially through the rotor of an electric motor for relative rotation with respect thereto. A gear reduction mehanism is coupled between the rotor and the drive shaft to convert the rotary motion of the motor into linear motion of the shaft with a comparatively great reduction in speed, thereby providing relatively glow linear movement of the shaft and control rod for control purposes.

  11. Model of dissipative dielectric elastomers

    NASA Astrophysics Data System (ADS)

    Chiang Foo, Choon; Cai, Shengqiang; Jin Adrian Koh, Soo; Bauer, Siegfried; Suo, Zhigang

    2012-02-01

    The dynamic performance of dielectric elastomer transducers and their capability of electromechanical energy conversion are affected by dissipative processes, such as viscoelasticity, dielectric relaxation, and current leakage. This paper describes a method to construct a model of dissipative dielectric elastomers on the basis of nonequilibrium thermodynamics. We characterize the state of the dielectric elastomer with kinematic variables through which external loads do work, and internal variables that measure the progress of the dissipative processes. The method is illustrated with examples motivated by existing experiments of polyacrylate very-high-bond dielectric elastomers. This model predicts the dynamic response of the dielectric elastomer and the leakage current behavior. We show that current leakage can be significant under large deformation and for long durations. Furthermore, current leakage can result in significant hysteresis for dielectric elastomers under cyclic voltage.

  12. Coaxial Atmospheric Pressure Plasma Discharge for Treatment of Filaments and Yarns

    NASA Astrophysics Data System (ADS)

    Lee, Kyoung O.

    2007-12-01

    Characteristics of non-thermal atmospheric-pressure plasma generated in a coaxial cylindrical Dielectric-Barrier Discharge (DBD) were investigated for application in treatment of polymer and 100% un-mercerized cotton yarns. The discharge characteristics were investigated by measuring the electrical parameters and utilization of developed plasma circuit models to obtain plasma electron temperature, number density and the electron-neutral collision frequency. The experiments were conducted in helium and oxygenated helium plasma in absence and presence of yarns. The discharge is capacitively-coupled and is induced by an audio-frequency, 4.5 kHz, oscillating voltage. The electrical voltage-current (V-I) characteristics optimized for plasma processing, by the oxygen and helium flow rate ratio, was found to be about 40sccm for oxygen flow. Optical emission spectroscopy (OES) was used to determine the plasma composition and to evaluate plasma temperature and number density. The plasma electron number density decreased from 2.2 x 1016 to 1.4 x 1016 per cubic meter when oxygen flow rate was increased to 100sccm in a 10,000sccm helium flow, while the electron temperature increased from 0.15 to 0.4 eV for the same increase in oxygen flow rate. It was also found that the plasma experiences some streamers and that the streamers electron temperature has a wide range between 0.5 to 2 eV. The optimized oxygen flow rate for polymer yarn processing was found to be 40sccm in a 10,000sccm helium flow.

  13. Investigations into sub-ns pulse generation using ferrite-loaded coaxial lines

    NASA Astrophysics Data System (ADS)

    Bolton, H. R.; Dolan, J. E.; Shapland, A. J.; Parkes, D. M.; Trafford, K.; Kerr, B.

    1995-03-01

    Systems such as Pockels Cell drivers and UWB radar require electrical pulses of less than 200 ps rise-time and amplitude of 10 kV or greater into 50 ohms. Desired p.r.f.'s may be 50 kHz or higher in burst mode. The output rise-time of high power and p.r.f. capable pulsers is generally of the order 2-20 ns, and ferrite-loaded coaxial lines are one means of reducing the leading edge 10-90% rise-time to the order of 100-200 ps. The development of the fast-rising leading edge in ferrite lines is due to the non-linearity of the magnetic medium, and the consequent formation of an 'electromagnetic shock front' at the pulse leading edge. Over the past decade, the use of magnets to bias the ferrite has been found to improve output rise-time and amplitude characteristics considerably. Steady-state analyses made by Soviet analysts in the 1960's do not explain the magnet-biased ferrite line characteristics, and a numerical approach will be presented which shows how the microwave characteristics of the ferrite may be combined with the TEM transmission line equations to model electromagnetic shock wave propagation in such ferrite-loaded lines. It now appears reasonably clear that ferrite lines may be effectively modelled and designed in terms of parameters including the ferrite saturation magnetisation, and the dimensions of the line and the ferrite beads. Second order effects such as conductor and dielectric losses may also be taken into account if required.

  14. Electrospun Flexible Coaxial Nanoribbons Endowed With Tuned and Simultaneous Fluorescent Color-Electricity-Magnetism Trifunctionality.

    PubMed

    Shao, Hong; Ma, Qianli; Dong, Xiangting; Yu, Wensheng; Yang, Ming; Yang, Ying; Wang, Jinxian; Liu, Guixia

    2015-01-01

    In order to develop new-typed multifunctional nanocomposites, fluorescent-electrical-magnetic trifunctional coaxial nanoribbons with tunable fluorescent color, including white-light emission, have been successfully fabricated via coaxial electrospinning technology. Each stripe of coaxial nanoribbon is composed of a Fe3O4/PMMA core and a [Eu(BA)3phen+Dy(BA)3phen]/PANI/PMMA (PMMA = polymethyl methacrylate, BA = benzoic acid, phen = phenanthroline, polyaniline = PANI) shell. X-ray diffractometry (XRD), field emission scanning electron microscopy (FE-SEM), biological microscopy (BM), vibrating sample magnetometry (VSM), energy dispersive spectrometry (EDS), Hall effect measurement system and photoluminescence (PL) spectroscopy were employed to characterize the coaxial nanoribbons. Emitting color of the coaxial nanoribbons can be tuned by adjusting the contents of Dy(BA)3phen, Eu(BA)3phen, PANI and Fe3O4 in a wide color range of blue-white-orange under the excitation of 273-nm single-wavelength ultraviolet light. The coaxial nanoribbons simultaneously possess excellent luminescent performance, electrical conduction and magnetism compared with the counterpart composite nanoribbons. Furthermore, the electrical and magnetic performances of the coaxial nanoribbons also can be tunable by adding different quantities of PANI and Fe3O4 nanoparticles, respectively. The obtained coaxial nanoribbons have promising applications in many areas, such as electromagnetic interference shielding, microwave absorption, molecular electronics, biomedicine, future nanomechanics and display fields. PMID:26374611

  15. Electrospun Flexible Coaxial Nanoribbons Endowed With Tuned and Simultaneous Fluorescent Color-Electricity-Magnetism Trifunctionality

    NASA Astrophysics Data System (ADS)

    Shao, Hong; Ma, Qianli; Dong, Xiangting; Yu, Wensheng; Yang, Ming; Yang, Ying; Wang, Jinxian; Liu, Guixia

    2015-09-01

    In order to develop new-typed multifunctional nanocomposites, fluorescent-electrical-magnetic trifunctional coaxial nanoribbons with tunable fluorescent color, including white-light emission, have been successfully fabricated via coaxial electrospinning technology. Each stripe of coaxial nanoribbon is composed of a Fe3O4/PMMA core and a [Eu(BA)3phen+Dy(BA)3phen]/PANI/PMMA (PMMA = polymethyl methacrylate, BA = benzoic acid, phen = phenanthroline, polyaniline = PANI) shell. X-ray diffractometry (XRD), field emission scanning electron microscopy (FE-SEM), biological microscopy (BM), vibrating sample magnetometry (VSM), energy dispersive spectrometry (EDS), Hall effect measurement system and photoluminescence (PL) spectroscopy were employed to characterize the coaxial nanoribbons. Emitting color of the coaxial nanoribbons can be tuned by adjusting the contents of Dy(BA)3phen, Eu(BA)3phen, PANI and Fe3O4 in a wide color range of blue-white-orange under the excitation of 273-nm single-wavelength ultraviolet light. The coaxial nanoribbons simultaneously possess excellent luminescent performance, electrical conduction and magnetism compared with the counterpart composite nanoribbons. Furthermore, the electrical and magnetic performances of the coaxial nanoribbons also can be tunable by adding different quantities of PANI and Fe3O4 nanoparticles, respectively. The obtained coaxial nanoribbons have promising applications in many areas, such as electromagnetic interference shielding, microwave absorption, molecular electronics, biomedicine, future nanomechanics and display fields.

  16. Electrospun Flexible Coaxial Nanoribbons Endowed With Tuned and Simultaneous Fluorescent Color-Electricity-Magnetism Trifunctionality

    PubMed Central

    Shao, Hong; Ma, Qianli; Dong, Xiangting; Yu, Wensheng; Yang, Ming; Yang, Ying; Wang, Jinxian; Liu, Guixia

    2015-01-01

    In order to develop new-typed multifunctional nanocomposites, fluorescent-electrical-magnetic trifunctional coaxial nanoribbons with tunable fluorescent color, including white-light emission, have been successfully fabricated via coaxial electrospinning technology. Each stripe of coaxial nanoribbon is composed of a Fe3O4/PMMA core and a [Eu(BA)3phen+Dy(BA)3phen]/PANI/PMMA (PMMA = polymethyl methacrylate, BA = benzoic acid, phen = phenanthroline, polyaniline = PANI) shell. X-ray diffractometry (XRD), field emission scanning electron microscopy (FE-SEM), biological microscopy (BM), vibrating sample magnetometry (VSM), energy dispersive spectrometry (EDS), Hall effect measurement system and photoluminescence (PL) spectroscopy were employed to characterize the coaxial nanoribbons. Emitting color of the coaxial nanoribbons can be tuned by adjusting the contents of Dy(BA)3phen, Eu(BA)3phen, PANI and Fe3O4 in a wide color range of blue-white-orange under the excitation of 273-nm single-wavelength ultraviolet light. The coaxial nanoribbons simultaneously possess excellent luminescent performance, electrical conduction and magnetism compared with the counterpart composite nanoribbons. Furthermore, the electrical and magnetic performances of the coaxial nanoribbons also can be tunable by adding different quantities of PANI and Fe3O4 nanoparticles, respectively. The obtained coaxial nanoribbons have promising applications in many areas, such as electromagnetic interference shielding, microwave absorption, molecular electronics, biomedicine, future nanomechanics and display fields. PMID:26374611

  17. Antenna with Dielectric Having Geometric Patterns

    NASA Technical Reports Server (NTRS)

    Dudley, Kenneth L. (Inventor); Elliott, Holly A. (Inventor); Cravey, Robin L. (Inventor); Connell, John W. (Inventor); Ghose, Sayata (Inventor); Watson, Kent A. (Inventor); Smith, Jr., Joseph G. (Inventor)

    2013-01-01

    An antenna includes a ground plane, a dielectric disposed on the ground plane, and an electrically-conductive radiator disposed on the dielectric. The dielectric includes at least one layer of a first dielectric material and a second dielectric material that collectively define a dielectric geometric pattern, which may comprise a fractal geometry. The radiator defines a radiator geometric pattern, and the dielectric geometric pattern is geometrically identical, or substantially geometrically identical, to the radiator geometric pattern.

  18. Dielectric relaxation measurement and analysis of restricted water structure in rice kernels

    NASA Astrophysics Data System (ADS)

    Yagihara, Shin; Oyama, Mikio; Inoue, Akio; Asano, Megumi; Sudo, Seiichi; Shinyashiki, Naoki

    2007-04-01

    Dielectric relaxation measurements were performed for rice kernels by time domain reflectometry (TDR) with flat-end coaxial electrodes. Difficulties in good contact between the surfaces of the electrodes and the kernels are eliminated by a TDR set-up with a sample holder for a kernel, and the water content could be evaluated from relaxation curves. Dielectric measurements were performed for rice kernels, rice flour and boiled rice with various water contents, and the water amount and dynamic behaviour of water molecules were explained from restricted dynamics of water molecules and also from the τ-β (relaxation time versus the relaxation-time distribution parameter of the Cole-Cole equation) diagram. In comparison with other aqueous systems, the dynamic structure of water in moist rice is more similar to aqueous dispersion systems than to aqueous solutions.

  19. Accurate projector calibration method by using an optical coaxial camera.

    PubMed

    Huang, Shujun; Xie, Lili; Wang, Zhangying; Zhang, Zonghua; Gao, Feng; Jiang, Xiangqian

    2015-02-01

    Digital light processing (DLP) projectors have been widely utilized to project digital structured-light patterns in 3D imaging systems. In order to obtain accurate 3D shape data, it is important to calibrate DLP projectors to obtain the internal parameters. The existing projector calibration methods have complicated procedures or low accuracy of the obtained parameters. This paper presents a novel method to accurately calibrate a DLP projector by using an optical coaxial camera. The optical coaxial geometry is realized by a plate beam splitter, so the DLP projector can be treated as a true inverse camera. A plate having discrete markers on the surface is used to calibrate the projector. The corresponding projector pixel coordinate of each marker on the plate is determined by projecting vertical and horizontal sinusoidal fringe patterns on the plate surface and calculating the absolute phase. The internal parameters of the DLP projector are obtained by the corresponding point pair between the projector pixel coordinate and the world coordinate of discrete markers. Experimental results show that the proposed method can accurately calibrate the internal parameters of a DLP projector. PMID:25967789

  20. A Computational and Experimental Investigation of Shear Coaxial Jet Atomization

    NASA Technical Reports Server (NTRS)

    Ibrahim, Essam A.; Kenny, R. Jeremy; Walker, Nathan B.

    2006-01-01

    The instability and subsequent atomization of a viscous liquid jet emanated into a high-pressure gaseous surrounding is studied both computationally and experimentally. Liquid water issued into nitrogen gas at elevated pressures is used to simulate the flow conditions in a coaxial shear injector element relevant to liquid propellant rocket engines. The theoretical analysis is based on a simplified mathematical formulation of the continuity and momentum equations in their conservative form. Numerical solutions of the governing equations subject to appropriate initial and boundary conditions are obtained via a robust finite difference scheme. The computations yield real-time evolution and subsequent breakup characteristics of the liquid jet. The experimental investigation utilizes a digital imaging technique to measure resultant drop sizes. Data were collected for liquid Reynolds number between 2,500 and 25,000, aerodynamic Weber number range of 50-500 and ambient gas pressures from 150 to 1200 psia. Comparison of the model predictions and experimental data for drop sizes at gas pressures of 150 and 300 psia reveal satisfactory agreement particularly for lower values of investigated Weber number. The present model is intended as a component of a practical tool to facilitate design and optimization of coaxial shear atomizers.

  1. Contoured-gap coaxial guns for imploding plasma liner experiments

    NASA Astrophysics Data System (ADS)

    Witherspoon, F. D.; Case, A.; Brockington, S.; Cassibry, J. T.; Hsu, S. C.

    2014-10-01

    Arrays of supersonic, high momentum flux plasma jets can be used as standoff compression drivers for generating spherically imploding plasma liners for driving magneto-inertial fusion, hence the name plasma-jet-driven MIF (PJMIF). HyperV developed linear plasma jets for the Plasma Liner Experiment (PLX) at LANL where two guns were successfully tested. Further development at HyperV resulted in achieving the PLX goal of 8000 μg at 50 km/s. Prior work on contoured-gap coaxial guns demonstrated an approach to control the blowby instability and achieved substantial performance improvements. For future plasma liner experiments we propose to use contoured-gap coaxial guns with small Minirailgun injectors. We will describe such a gun for a 60-gun plasma liner experiment. Discussion topics will include impurity control, plasma jet symmetry and topology (esp. related to uniformity and compactness), velocity capability, and techniques planned for achieving gun efficiency of >50% using tailored impedance matched pulse forming networks. Mach2 and UAH SPH code simulations will be included. Work supported by US DOE DE-FG02-05ER54810.

  2. Space storable propellant performance program coaxial injector characterization

    NASA Technical Reports Server (NTRS)

    Burick, R. J.

    1972-01-01

    An experimental program was conducted to characterize the circular coaxial injector concept for application with the space-storable gas/liquid propellant combination FLOX(82.6% F2)/CH4(g) at high pressure. The primary goal of the program was to obtain high characteristic velocity efficiency in conjunction with acceptable injector/chamber compatibility. A series of subscale (single element) cold flow and hot fire experiments was employed to establish design criteria for a 3000-lbf (sea level) engine operating at 500 psia. The subscale experiments characterized both high performance core elements and peripheral elements with enhanced injector/chamber compatibility. The full-scale injector which evolved from the study demonstrated a performance level of 99 percent of the theoretical shifting characteristic exhaust velocity with low chamber heat flux levels. A 44-second-duration firing demonstrated the durability of the injector. Parametric data are presented that are applicable for the design of circular, coaxial injectors that operate with injection dynamics (fuel and oxidizer velocity, etc.) similar to those employed in the work reported.

  3. Coaxial nanocable composed by imogolite and carbon nanotubes

    SciTech Connect

    Ramírez, M.; González, R. I.; Munoz, F.; Valdivia, J. A.; Rogan, J.; Kiwi, M.

    2015-12-31

    The discovery and development of Carbon Nanotubes (CNTs) at the beginning of the 1990s has driven a major part of solid state research. The electronic properties of the CNTs have generated a large number of ideas, as building coaxial nanocables. In this work we propose a possible type of such nanocables, which is formed by three nanostructures: two conducting CNTs, where one of them is covered by an insulator (an inorganic oxide nanotube: the imogolite aluminosilicate). The theoretical calculations were carried out using the density functional tight-binding formalism, by means of the DFTB+ code. This formalism allows to calculate the band structure, which compares favorably with DFT calculations, but with a significantly lower computational cost. As a first step, we reproduce the calculations of already published results, where the formation of a nanocable composed by one CNT and the imogolite as an insulator. Afterwards, we simulate the band structure for the proposed structure to study the feasibility of the coaxial nanocable. Finally, using classical MD simulations, we study the possible mechanisms of formation of these nanocables.

  4. A contoured gap coaxial plasma gun with injected plasma armature

    NASA Astrophysics Data System (ADS)

    Witherspoon, F. Douglas; Case, Andrew; Messer, Sarah J.; Bomgardner, Richard; Phillips, Michael W.; Brockington, Samuel; Elton, Raymond

    2009-08-01

    A new coaxial plasma gun is described. The long term objective is to accelerate 100-200 μg of plasma with density above 1017 cm-3 to greater than 200 km/s with a Mach number above 10. Such high velocity dense plasma jets have a number of potential fusion applications, including plasma refueling, magnetized target fusion, injection of angular momentum into centrifugally confined mirrors, high energy density plasmas, and others. The approach uses symmetric injection of high density plasma into a coaxial electromagnetic accelerator having an annular gap geometry tailored to prevent formation of the blow-by instability. The injected plasma is generated by numerous (currently 32) radially oriented capillary discharges arranged uniformly around the circumference of the angled annular injection region of the accelerator. Magnetohydrodynamic modeling identified electrode profiles that can achieve the desired plasma jet parameters. The experimental hardware is described along with initial experimental results in which approximately 200 μg has been accelerated to 100 km/s in a half-scale prototype gun. Initial observations of 64 merging injector jets in a planar cylindrical testing array are presented. Density and velocity are presently limited by available peak current and injection sources. Steps to increase both the drive current and the injected plasma mass are described for next generation experiments.

  5. Coaxial nanocable composed by imogolite and carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Ramírez, M.; González, R. I.; Munoz, F.; Valdivia, J. A.; Rogan, J.; Kiwi, M.

    2015-12-01

    The discovery and development of Carbon Nanotubes (CNTs) at the beginning of the 1990s has driven a major part of solid state research. The electronic properties of the CNTs have generated a large number of ideas, as building coaxial nanocables. In this work we propose a possible type of such nanocables, which is formed by three nanostructures: two conducting CNTs, where one of them is covered by an insulator (an inorganic oxide nanotube: the imogolite aluminosilicate). The theoretical calculations were carried out using the density functional tight-binding formalism, by means of the DFTB+ code. This formalism allows to calculate the band structure, which compares favorably with DFT calculations, but with a significantly lower computational cost. As a first step, we reproduce the calculations of already published results, where the formation of a nanocable composed by one CNT and the imogolite as an insulator. Afterwards, we simulate the band structure for the proposed structure to study the feasibility of the coaxial nanocable. Finally, using classical MD simulations, we study the possible mechanisms of formation of these nanocables.

  6. A contoured gap coaxial plasma gun with injected plasma armature.

    PubMed

    Witherspoon, F Douglas; Case, Andrew; Messer, Sarah J; Bomgardner, Richard; Phillips, Michael W; Brockington, Samuel; Elton, Raymond

    2009-08-01

    A new coaxial plasma gun is described. The long term objective is to accelerate 100-200 microg of plasma with density above 10(17) cm(-3) to greater than 200 km/s with a Mach number above 10. Such high velocity dense plasma jets have a number of potential fusion applications, including plasma refueling, magnetized target fusion, injection of angular momentum into centrifugally confined mirrors, high energy density plasmas, and others. The approach uses symmetric injection of high density plasma into a coaxial electromagnetic accelerator having an annular gap geometry tailored to prevent formation of the blow-by instability. The injected plasma is generated by numerous (currently 32) radially oriented capillary discharges arranged uniformly around the circumference of the angled annular injection region of the accelerator. Magnetohydrodynamic modeling identified electrode profiles that can achieve the desired plasma jet parameters. The experimental hardware is described along with initial experimental results in which approximately 200 microg has been accelerated to 100 km/s in a half-scale prototype gun. Initial observations of 64 merging injector jets in a planar cylindrical testing array are presented. Density and velocity are presently limited by available peak current and injection sources. Steps to increase both the drive current and the injected plasma mass are described for next generation experiments. PMID:19725654

  7. Numerical modeling of deflagration mode in coaxial plasma guns

    NASA Astrophysics Data System (ADS)

    Sitaraman, Hariswaran; Raja, Laxminarayan

    2012-10-01

    Pulsed coaxial plasma guns have been used in several applications in the field of space propulsion, nuclear fusion and materials processing. These devices operate in two modes based on the delay between gas injection and breakdown initiation. Larger delay led to the plasma detonation mode where a compression wave in the form of a luminous front propagates from the breech to the muzzle. Shorter delay led to the more efficient deflagration mode characterized by a relatively diffuse plasma with higher resistivity. The overall physics of the discharge in the two modes of operation and in particular the latter remain relatively unexplored. Here we perform a computational modeling study by solving the non-ideal Magneto-hydrodynamics equations for the quasi-neutral plasma in the coaxial plasma gun. A finite volume formulation on an unstructured mesh framework with an implicit scheme is used to do stable computations. The final work will present details of important species in the plasma, particle energies and Mach number at the muzzle. A comparison of the plasma parameters will be made with the experiments reported in ref. [1]. [4pt] [1] F. R. Poehlmann et al., Phys. Plasmas 17, 123508 (2010)

  8. ALS LOX/H2 subscale coaxial injector testing

    NASA Technical Reports Server (NTRS)

    Dexter, Carol E.

    1991-01-01

    Tests of a 40K subscale LOX/H2 coaxial LOX swirl injector conducted without injector or chamber degradation are reported. Chamber pressures ranged from 1572 to 2355 psia with overall mixture ratios from 5.04 to 6.39. The highest characteristic velocities were measured when the mixture ratio across the injector face was uniform. Scarfing of the outer row LOX posts had the largest effect on chamber heating rates. As a result of the tests, the LSI design was modified to arrange the outer row LOX posts in a circular pattern, eliminate O/F biasing and fuel film cooling, and modify the interpropellant plate to allow for larger pressure differentials during the start and cutoff transients. Testing of a 100 K LOX/H2 coaxial LOX swirl injector involved chamber pressure ranging from 700 to 2500 psia with overall mixture ratios from 3.2 to 8.8. Stable combustion was observed to a fuel temperature of 90R and characteristic velocity efficiencies were good.

  9. Coaxial Coupling Scheme for TESLA/ILC-type Cavities

    SciTech Connect

    J.K. Sekutowicz, P. Kneisel

    2010-05-01

    This paper reports about our efforts to develop a flangeable coaxial coupler for both HOM and fundamental coupling for 9-cell TESLA/ILC-type cavities. The cavities were designed in early 90‘s for pulsed operation with a low duty factor, less than 1 %. The proposed design of the coupler has been done in a way, that the magnetic flux B at the flange connection is minimized and only a field of <5 mT would be present at the accelerating field Eacc of ~ 36 MV/m (B =150 mT in the cavity). Even though we achieved reasonably high Q-values at low field, the cavity/coupler combination was limited in the cw mode to only ~ 7 MV/m, where a thermally initiated degradation occurred. We have improved the cooling conditions by initially drilling radial channels every 30 degrees, then every 15 degrees into the shorting plate. The modified prototype performed well up to 9 MV/m in cw mode. This paper reports about our experiences with the further modified coaxial coupler and about test results in cw and low duty cycle pulsed mode, similar to the TESLA/ILC operation conditions.

  10. Analysis of Coaxial Soil Cell in Reflection and Transmission

    PubMed Central

    Pelletier, Mathew G.; Viera, Joseph A.; Schwartz, Robert C.; Evett, Steven R.; Lascano, Robert J.; McMichael, Robert L.

    2011-01-01

    Accurate measurement of moisture content is a prime requirement in hydrological, geophysical and biogeochemical research as well as for material characterization and process control. Within these areas, accurate measurements of the surface area and bound water content is becoming increasingly important for providing answers to many fundamental questions ranging from characterization of cotton fiber maturity, to accurate characterization of soil water content in soil water conservation research to bio-plant water utilization to chemical reactions and diffusions of ionic species across membranes in cells as well as in the dense suspensions that occur in surface films. In these bound water materials, the errors in the traditional time-domain-reflectometer, “TDR”, exceed the range of the full span of the material’s permittivity that is being measured. Thus, there is a critical need to re-examine the TDR system and identify where the errors are to direct future research. One promising technique to address the increasing demands for higher accuracy water content measurements is utilization of electrical permittivity characterization of materials. This technique has enjoyed a strong following in the soil-science and geological community through measurements of apparent permittivity via time-domain-reflectometery as well in many process control applications. Recent research however, is indicating a need to increase the accuracy beyond that available from traditional TDR. The most logical pathway then becomes a transition from TDR based measurements to network analyzer measurements of absolute permittivity that will remove the adverse effects that high surface area soils and conductivity impart onto the measurements of apparent permittivity in traditional TDR applications. This research examines the theoretical basis behind the coaxial probe, from which the modern TDR probe originated from, to provide a basis on which to perform absolute permittivity measurements. The

  11. Analysis of coaxial soil cell in reflection and transmission.

    PubMed

    Pelletier, Mathew G; Viera, Joseph A; Schwartz, Robert C; Evett, Steven R; Lascano, Robert J; McMichael, Robert L

    2011-01-01

    Accurate measurement of moisture content is a prime requirement in hydrological, geophysical and biogeochemical research as well as for material characterization and process control. Within these areas, accurate measurements of the surface area and bound water content is becoming increasingly important for providing answers to many fundamental questions ranging from characterization of cotton fiber maturity, to accurate characterization of soil water content in soil water conservation research to bio-plant water utilization to chemical reactions and diffusions of ionic species across membranes in cells as well as in the dense suspensions that occur in surface films. In these bound water materials, the errors in the traditional time-domain-reflectometer, "TDR", exceed the range of the full span of the material's permittivity that is being measured. Thus, there is a critical need to re-examine the TDR system and identify where the errors are to direct future research. One promising technique to address the increasing demands for higher accuracy water content measurements is utilization of electrical permittivity characterization of materials. This technique has enjoyed a strong following in the soil-science and geological community through measurements of apparent permittivity via time-domain-reflectometery as well in many process control applications. Recent research however, is indicating a need to increase the accuracy beyond that available from traditional TDR. The most logical pathway then becomes a transition from TDR based measurements to network analyzer measurements of absolute permittivity that will remove the adverse effects that high surface area soils and conductivity impart onto the measurements of apparent permittivity in traditional TDR applications. This research examines the theoretical basis behind the coaxial probe, from which the modern TDR probe originated from, to provide a basis on which to perform absolute permittivity measurements. The

  12. Broadband local dielectric spectroscopy

    NASA Astrophysics Data System (ADS)

    Labardi, M.; Lucchesi, M.; Prevosto, D.; Capaccioli, S.

    2016-05-01

    A route to extend the measurement bandwidth of local dielectric spectroscopy up to the MHz range has been devised. The method is based on a slow amplitude modulation at a frequency Ω of the excitation field oscillating at a frequency ω and the coherent detection of the modulated average electric force or force gradient at Ω. The cantilever mechanical response does not affect the measurement if Ω is well below its resonant frequency; therefore, limitations on the excitation field frequency are strongly reduced. Demonstration on a thin poly(vinyl acetate) film is provided, showing its structural relaxation spectrum on the local scale up to 45 °C higher than glass temperature, and nanoscale resolution dielectric relaxation imaging near conductive nanowires embedded in the polymer matrix was obtained up to 5 MHz frequency, with no physical reason to hinder further bandwidth extension.

  13. Temperature switchable polymer dielectrics.

    SciTech Connect

    Johnson, Ross Stefan

    2010-08-01

    Materials with switchable states are desirable in many areas of science and technology. The ability to thermally transform a dielectric material to a conductive state should allow for the creation of electronics with built-in safety features. Specifically, the non-desirable build-up and discharge of electricity in the event of a fire or over-heating would be averted by utilizing thermo-switchable dielectrics in the capacitors of electrical devices (preventing the capacitors from charging at elevated temperatures). We have designed a series of polymers that effectively switch from a non-conductive to a conductive state. The thermal transition is governed by the stability of the leaving group after it leaves as a free entity. Here, we present the synthesis and characterization of a series of precursor polymers that eliminate to form poly(p-phenylene vinylene) (PPV's).

  14. All-dielectric metamaterials

    NASA Astrophysics Data System (ADS)

    Jahani, Saman; Jacob, Zubin

    2016-01-01

    The ideal material for nanophotonic applications will have a large refractive index at optical frequencies, respond to both the electric and magnetic fields of light, support large optical chirality and anisotropy, confine and guide light at the nanoscale, and be able to modify the phase and amplitude of incoming radiation in a fraction of a wavelength. Artificial electromagnetic media, or metamaterials, based on metallic or polar dielectric nanostructures can provide many of these properties by coupling light to free electrons (plasmons) or phonons (phonon polaritons), respectively, but at the inevitable cost of significant energy dissipation and reduced device efficiency. Recently, however, there has been a shift in the approach to nanophotonics. Low-loss electromagnetic responses covering all four quadrants of possible permittivities and permeabilities have been achieved using completely transparent and high-refractive-index dielectric building blocks. Moreover, an emerging class of all-dielectric metamaterials consisting of anisotropic crystals has been shown to support large refractive index contrast between orthogonal polarizations of light. These advances have revived the exciting prospect of integrating exotic electromagnetic effects in practical photonic devices, to achieve, for example, ultrathin and efficient optical elements, and realize the long-standing goal of subdiffraction confinement and guiding of light without metals. In this Review, we present a broad outline of the whole range of electromagnetic effects observed using all-dielectric metamaterials: high-refractive-index nanoresonators, metasurfaces, zero-index metamaterials and anisotropic metamaterials. Finally, we discuss current challenges and future goals for the field at the intersection with quantum, thermal and silicon photonics, as well as biomimetic metasurfaces.

  15. All-dielectric metamaterials.

    PubMed

    Jahani, Saman; Jacob, Zubin

    2016-01-01

    The ideal material for nanophotonic applications will have a large refractive index at optical frequencies, respond to both the electric and magnetic fields of light, support large optical chirality and anisotropy, confine and guide light at the nanoscale, and be able to modify the phase and amplitude of incoming radiation in a fraction of a wavelength. Artificial electromagnetic media, or metamaterials, based on metallic or polar dielectric nanostructures can provide many of these properties by coupling light to free electrons (plasmons) or phonons (phonon polaritons), respectively, but at the inevitable cost of significant energy dissipation and reduced device efficiency. Recently, however, there has been a shift in the approach to nanophotonics. Low-loss electromagnetic responses covering all four quadrants of possible permittivities and permeabilities have been achieved using completely transparent and high-refractive-index dielectric building blocks. Moreover, an emerging class of all-dielectric metamaterials consisting of anisotropic crystals has been shown to support large refractive index contrast between orthogonal polarizations of light. These advances have revived the exciting prospect of integrating exotic electromagnetic effects in practical photonic devices, to achieve, for example, ultrathin and efficient optical elements, and realize the long-standing goal of subdiffraction confinement and guiding of light without metals. In this Review, we present a broad outline of the whole range of electromagnetic effects observed using all-dielectric metamaterials: high-refractive-index nanoresonators, metasurfaces, zero-index metamaterials and anisotropic metamaterials. Finally, we discuss current challenges and future goals for the field at the intersection with quantum, thermal and silicon photonics, as well as biomimetic metasurfaces. PMID:26740041

  16. Dielectric spectroscopy of polyaniline

    SciTech Connect

    Calleja, R.D.; Matveeva, E.M.

    1993-12-31

    Polyaniline films (PANI) are being considered as attractive new galvanic sources, electrochromic displays, chemical sensors, etc. So far much work has been done to study their optical, electrochemical and electrical properties. However, there are still doubts about the basic electric conductivity mechanisms of PANI. The aim of this paper is to study the influence of water molecules and acid anions on the properties of PANI films by dielectric spectroscopy.

  17. Low-k Dielectrics

    NASA Astrophysics Data System (ADS)

    Hayashi, Yoshihiro

    As CMOS transistors were scaled, interconnects to link them are also shrunk to reduce the line pitches [1-10]. As shown in Fig. 22.1, the interconnect pitches have been shrunk from 180 nm, 140 nm, and 100 nm for 65 [4], 45 [32], and 32 nm nodes [10] LSIs, respectively. To eliminate the interconnect parasitic capacitance, low-k dielectric films which have lower permittivity than the conventional silica (SiO2) dielectrics have been introduced. Figure 22.2 shows the technology trend of the k-value and the deposition process, in which the low-k films are deposited by spin-on-dielectric (SOD) method or plasma-enhanced CVD. In the case of SOD, precursor solution is poured on a rotated wafer, and the precursor film is heated to vaporize the solvent followed by reaction and densification to make a low-k film. In the case of PECVD [36, 42], on the other hand, precursor solution is vaporized with inert carrier gas such as He, and the precursor gas is introduced into PECVD chamber with RF power. The vaporized precursor gas is exited from plasma, depositing a low-k film on a wafer heated in high vacuum. The SOD method is advantageous to decrease the k-value, while PECVD method is superior in the adhesion strength due to the possibility of in-suite plasma surface treatment in vacuum just before the low-k deposition.

  18. Tunable Dielectric Properties of Ferrite-Dielectric Based Metamaterial

    PubMed Central

    Bi, K.; Huang, K.; Zeng, L. Y.; Zhou, M. H.; Wang, Q. M.; Wang, Y. G.; Lei, M.

    2015-01-01

    A ferrite-dielectric metamaterial composed of dielectric and ferrite cuboids has been investigated by experiments and simulations. By interacting with the electromagnetic wave, the Mie resonance can take place in the dielectric cuboids and the ferromagnetic precession will appear in the ferrite cuboids. The magnetic field distributions show the electric Mie resonance of the dielectric cuboids can be influenced by the ferromagnetic precession of ferrite cuboids when a certain magnetic field is applied. The effective permittivity of the metamaterial can be tuned by modifying the applied magnetic field. A good agreement between experimental and simulated results is demonstrated, which confirms that these metamaterials can be used for tunable microwave devices. PMID:25993433

  19. Tunable dielectric properties of ferrite-dielectric based metamaterial.

    PubMed

    Bi, K; Huang, K; Zeng, L Y; Zhou, M H; Wang, Q M; Wang, Y G; Lei, M

    2015-01-01

    A ferrite-dielectric metamaterial composed of dielectric and ferrite cuboids has been investigated by experiments and simulations. By interacting with the electromagnetic wave, the Mie resonance can take place in the dielectric cuboids and the ferromagnetic precession will appear in the ferrite cuboids. The magnetic field distributions show the electric Mie resonance of the dielectric cuboids can be influenced by the ferromagnetic precession of ferrite cuboids when a certain magnetic field is applied. The effective permittivity of the metamaterial can be tuned by modifying the applied magnetic field. A good agreement between experimental and simulated results is demonstrated, which confirms that these metamaterials can be used for tunable microwave devices. PMID:25993433

  20. New silicone dielectric elastomers with a high dielectric constant

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen; Liu, Liwu; Fan, Jiumin; Yu, Kai; Liu, Yanju; Shi, Liang; Leng, Jinsong

    2008-03-01

    Dielectric elastomers (Des) are a type of EAPs with unique electrical properties and mechanical properties: high actuation strains and stresses, fast response times, high efficiency, stability, reliability and durability. The excellent figures of merit possessed by dielectric elastomers make them the most performing materials which can be applied in many domains: biomimetics, aerospace, mechanics, medicals, etc. In this paper, we present a kind of electroactive polymer composites based on silicone Dielectric elastomers with a high dielectric constant. Novel high DEs could be realized by means of a composite approach. By filling an ordinary elastomer (e.g. silicone) with a component of functional ceramic filler having a greater dielectric permittivity, it is possible to obtain a resulting composite showing the fruitful combination of the matrix's advantageous elasticity and the filler's high permittivity. Here we add the ferroelectric relaxor ceramics (mainly BaTiO3) which has high dielectric constant (>3000) to the conventional silicone Dielectric elastomers, to get the dielectric elastomer which can exhibit high elastic energy densities induced by an electric field of about 15 MV/m. Tests of the physical and chemical properties of the dielectric elastomers are conducted, which verify our supposes and offer the experimental data supporting further researches.

  1. Segmentation of the Outer Contact on P-Type Coaxial Germanium Detectors

    SciTech Connect

    Hull, Ethan L.; Pehl, Richard H.; Lathrop, James R.; Martin, Gregory N.; Mashburn, R. B.; Miley, Harry S.; Aalseth, Craig E.; Hossbach, Todd W.

    2006-09-21

    Germanium detector arrays are needed for low-level counting facilities. The practical applications of such user facilities include characterization of low-level radioactive samples. In addition, the same detector arrays can also perform important fundamental physics measurements including the search for rare events like neutrino-less double-beta decay. Coaxial germanium detectors having segmented outer contacts will provide the next level of sensitivity improvement in low background measurements. The segmented outer detector contact allows performance of advanced pulse shape analysis measurements that provide additional background reduction. Currently, n-type (reverse electrode) germanium coaxial detectors are used whenever a segmented coaxial detector is needed because the outer boron (electron barrier) contact is thin and can be segmented. Coaxial detectors fabricated from p-type germanium cost less, have better resolution, and are larger than n-type coaxial detectors. However, it is difficult to reliably segment p-type coaxial detectors because thick (~1 mm) lithium-diffused (hole barrier) contacts are the standard outside contact for p-type coaxial detectors. During this Phase 1 Small Business Innovation Research (SBIR) we have researched the possibility of using amorphous germanium contacts as a thin outer contact of p-type coaxial detectors that can be segmented. We have developed amorphous germanium contacts that provide a very high hole barrier on small planar detectors. These easily segmented amorphous germanium contacts have been demonstrated to withstand several thousand volts/cm electric fields with no measurable leakage current (<1 pA) from charge injection over the hole barrier. We have also demonstrated that the contact can be sputter deposited around and over the curved outside surface of a small p-type coaxial detector. The amorphous contact has shown good rectification properties on the outside of a small p-type coaxial detector. These encouraging

  2. Radio to microwave dielectric characterisation of constitutive electromagnetic soil properties using vector network analyses

    NASA Astrophysics Data System (ADS)

    Schwing, M.; Wagner, N.; Karlovsek, J.; Chen, Z.; Williams, D. J.; Scheuermann, A.

    2016-04-01

    The knowledge of constitutive broadband electromagnetic (EM) properties of porous media such as soils and rocks is essential in the theoretical and numerical modeling of EM wave propagation in the subsurface. This paper presents an experimental and numerical study on the performance EM measuring instruments for broadband EM wave in the radio-microwave frequency range. 3-D numerical calculations of a specific sensor were carried out using the Ansys HFSS (high frequency structural simulator) to further evaluate the probe performance. In addition, six different sensors of varying design, application purpose, and operational frequency range, were tested on different calibration liquids and a sample of fine-grained soil over a frequency range of 1 MHz-40 GHz using four vector network analysers. The resulting dielectric spectrum of the soil was analysed and interpreted using a 3-term Cole-Cole model under consideration of a direct current conductivity contribution. Comparison of sensor performances on calibration materials and fine-grained soils showed consistency in the measured dielectric spectra at a frequency range from 100 MHz-2 GHz. By combining open-ended coaxial line and coaxial transmission line measurements, the observable frequency window could be extended to a truly broad frequency range of 1 MHz-40 GHz.

  3. Fringe capacitance correction for a coaxial soil cell.

    PubMed

    Pelletier, Mathew G; Viera, Joseph A; Schwartz, Robert C; Lascano, Robert J; Evett, Steven R; Green, Tim R; Wanjura, John D; Holt, Greg A

    2011-01-01

    Accurate measurement of moisture content is a prime requirement in hydrological, geophysical and biogeochemical research as well as for material characterization and process control. Within these areas, accurate measurements of the surface area and bound water content is becoming increasingly important for providing answers to many fundamental questions ranging from characterization of cotton fiber maturity, to accurate characterization of soil water content in soil water conservation research to bio-plant water utilization to chemical reactions and diffusions of ionic species across membranes in cells as well as in the dense suspensions that occur in surface films. One promising technique to address the increasing demands for higher accuracy water content measurements is utilization of electrical permittivity characterization of materials. This technique has enjoyed a strong following in the soil-science and geological community through measurements of apparent permittivity via time-domain-reflectometry (TDR) as well in many process control applications. Recent research however, is indicating a need to increase the accuracy beyond that available from traditional TDR. The most logical pathway then becomes a transition from TDR based measurements to network analyzer measurements of absolute permittivity that will remove the adverse effects that high surface area soils and conductivity impart onto the measurements of apparent permittivity in traditional TDR applications.This research examines an observed experimental error for the coaxial probe, from which the modern TDR probe originated, which is hypothesized to be due to fringe capacitance. The research provides an experimental and theoretical basis for the cause of the error and provides a technique by which to correct the system to remove this source of error. To test this theory, a Poisson model of a coaxial cell was formulated to calculate the effective theoretical extra length caused by the fringe capacitance

  4. Fringe Capacitance Correction for a Coaxial Soil Cell

    PubMed Central

    Pelletier, Mathew G.; Viera, Joseph A.; Schwartz, Robert C.; Lascano, Robert J.; Evett, Steven R.; Green, Tim R.; Wanjura, John D.; Holt, Greg A.

    2011-01-01

    Accurate measurement of moisture content is a prime requirement in hydrological, geophysical and biogeochemical research as well as for material characterization and process control. Within these areas, accurate measurements of the surface area and bound water content is becoming increasingly important for providing answers to many fundamental questions ranging from characterization of cotton fiber maturity, to accurate characterization of soil water content in soil water conservation research to bio-plant water utilization to chemical reactions and diffusions of ionic species across membranes in cells as well as in the dense suspensions that occur in surface films. One promising technique to address the increasing demands for higher accuracy water content measurements is utilization of electrical permittivity characterization of materials. This technique has enjoyed a strong following in the soil-science and geological community through measurements of apparent permittivity via time-domain-reflectometry (TDR) as well in many process control applications. Recent research however, is indicating a need to increase the accuracy beyond that available from traditional TDR. The most logical pathway then becomes a transition from TDR based measurements to network analyzer measurements of absolute permittivity that will remove the adverse effects that high surface area soils and conductivity impart onto the measurements of apparent permittivity in traditional TDR applications. This research examines an observed experimental error for the coaxial probe, from which the modern TDR probe originated, which is hypothesized to be due to fringe capacitance. The research provides an experimental and theoretical basis for the cause of the error and provides a technique by which to correct the system to remove this source of error. To test this theory, a Poisson model of a coaxial cell was formulated to calculate the effective theoretical extra length caused by the fringe capacitance

  5. Applications of dielectric barrier discharges

    SciTech Connect

    Falkenstein, Z.

    1998-12-31

    Dielectric barrier discharges (DBDs) in oxygen and air are well established for the production of large quantities of ozone and are more recently being applied to a wider range of plasmachemical processes. Here, the application of DBDs for ozone synthesis, the non-thermal oxidation of volatile organic compounds (VOCs) in air, the generation of incoherent (V)UV radiation and surface processing (etching, ashing) is presented. The main plasmaphysical features of sinusoidally-driven DBDs (transient, filamented, non-thermal plasmas at atmospheric pressure) are described, and a simple plasmachemical reaction pathway for ozone synthesis are give. Experimental results on the degradation of VOCs (2-propanol, trichloroethylene, carbon tetrachloride), as well as byproduct formation is presented for stand-alone DBD treatment, as well as for simultaneous (V)UV illumination of the discharge. Illumination of the discharge with (V)UV can change the plasmachemistry by enhanced formation of certain species of radicals--and thereby change byproduct formation--but also can change the discharge physics, known as the Joshi effect. As an example for generation of excited dimers and exiplexes for the production of incoherent UV light, experimental results on a XeBr* excimer UV light source are presented. Effects of the total and partial pressure of a Xe/Br{sub 2} system, the gap spacing and the applied driving frequency on the UV radiant efficiency are shown. For the application of DBDs for surface processing, experimental results of photoresist ashing on Si wafers using DBDs in oxygen are shown function of gas pressure, gap spacing and applied frequency.

  6. Monitoring the desalting process of cod using dielectric spectroscopy.

    PubMed

    De los Reyes, Ruth; Balbastre, Juan V; Andrés, Ana; Fito, Pedro; De los Reyes, Elias

    2009-01-01

    The desalted cod industry needs a suitable and reliable control system to check the desalting point of cod in order to provide a safe and high-quality product. The growth of the industries that are interested in a non-contacting, real-time control, encourages the development of new methods based on low-power radiation, such as dielectric spectroscopy. These techniques use the modification of wave parameters at some specific frequencies to provide information of the compositional characteristics of foods. In this work, cod parallelepipeds were desalted at 5 degrees C by immersing them in distilled water for different desalting times (15 and 30 minutes and 1, 2, 4, 6, 8, 12, 24 and 48 hours). Dielectric Spectroscopy studies have been performed on cod samples in the frequency range 200 MHz-20 GHz. The dielectric properties were measured using a coaxial probe (Agilent 85070E) connected to a Network Analyzer (Agilent E8362B) immediately after removing the cod samples from their desalting solutions. After desalting, the cod samples were separated from their desalting solutions and kept in repose for 24 h at 5 degrees C after which some of their physical properties were measured. This experimental procedure ensures that those properties have already reached their final values. Good correlations were found between the quality properties of the cod samples (a(w), Xw, Z(NaCl) and xNaCl) after 24 h and their loss factor (epsilon") measured at 10 GHz just before leaving them in repose, showing the feasibility of an in-line control system for cod desalting process at that frequency. PMID:21384709

  7. Modal content of noise generated by a coaxial jet in a pipe

    NASA Technical Reports Server (NTRS)

    Kerschen, E. J.; Johnston, J. P.

    1978-01-01

    Noise generated by air flow through a coaxial obstruction in a long, straight pipe was investigated with concentration on the modal characteristics of the noise field inside the pipe and downstream of the restriction. Two measurement techniques were developed for separation of the noise into the acoustic duct modes. The instantaneous mode separation technique uses four microphones, equally spaced in the circumferential direction, at the same axial location. The time-averaged mode separation technique uses three microphones mounted at the same axial location. A matrix operation on time-averaged data produces the modal pressure levels. This technique requires the restrictive assumption that the acoustic modes are uncorrelated with each other. The measured modal pressure spectra were converted to modal power spectra and integrated over the frequency range 200-6000 Hz. The acoustic efficiency levels (acoustic power normalized by jet kinetic energy flow), when plotted vs. jet Mach number, showed a strong dependence on the ratio of restriction diameter to pipe diameter. The acoustic energy flow analyses based on the thermodynamic energy equation and on the results of Mohring both resulted in orthogonality properties for the eigenfunctions of the radial mode shape equation. These orthogonality relationships involve the eigenvalues and derivatives of the radial mode shape functions.

  8. Laser-optic Measurements of Velocity of Particles in the Powder Stream at Coaxial Laser Cladding

    NASA Astrophysics Data System (ADS)

    Sergachev, D. V.; Mikhal'chenko, A. A.; Kovalev, O. B.; Kuz'min, V. I.; Grachev, G. N.; Pinaev, P. A.

    The problems of particle velocity and temperature measurement can be solved with commonly-known methods of registration based on spectrometry and a complex of laser and optical means. The diagnostic technique combines two independent methods of particle velocity measurement, namely the passive way which is based on the intrinsic radiation of the heated particles in a gas flow, and the active one which utilizes the effect of the laser beam scattering. It is demonstrated that the laser radiation can affect significantly the particles velocity at the laser cladding. Presented bar charts of statistical distributions of the particles velocities illustrate two modes of the coaxial nozzle performance, with and without СО2-laser radiation. Different types of powders (Al2O3, Mo, Ni, Al) were used in tests, the particle size distributions were typical for the laser cladding; air, nitrogen, argon were used as working gases, continuous radiation of the СО2 laser reached 3 kW. It is shown that in the laser-radiation field, the powder particles undergo extra acceleration due to the laser evaporation and reactive force occurrence resulting from the recoil pressure vapors from the beamed part of particles' surfaces. The observed effect of particles acceleration depends on the particles concentration in the powder flow. Due to the laser acceleration, the velocities of individual particles may reach the values of about 80 - 100 m/s. The trichromatic pyrometry method was utilized to measure the particles temperature in the powder flow.

  9. Development of a Distributed Crack Sensor Using Coaxial Cable.

    PubMed

    Zhou, Zhi; Jiao, Tong; Zhao, Peng; Liu, Jia; Xiao, Hai

    2016-01-01

    Cracks, the important factor of structure failure, reflect structural damage directly. Thus, it is significant to realize distributed, real-time crack monitoring. To overcome the shortages of traditional crack detectors, such as the inconvenience of installation, vulnerability, and low measurement range, etc., an improved topology-based cable sensor with a shallow helical groove on the outside surface of a coaxial cable is proposed in this paper. The sensing mechanism, fabrication method, and performances are investigated both numerically and experimentally. Crack monitoring experiments of the reinforced beams are also presented in this paper, illustrating the utility of this sensor in practical applications. These studies show that the sensor can identify a minimum crack width of 0.02 mm and can measure multiple cracks with a spatial resolution of 3 mm. In addition, it is also proved that the sensor performs well to detect the initiation and development of cracks until structure failure. PMID:27483280

  10. Preliminary scoping studies for nozzle-based coaxial plasma thrusters

    SciTech Connect

    Gerwin, R.A.; Schoenberg, K.F.; Rej, D.J. )

    1991-01-05

    The ideal steady-state properties of nozzle-based coaxial plasma guns are modelled by means of a magnetic Bernoulli equation. Formulas for thrust, power usage, mass flow rate, and specific impulse using hydrogen are thereby obtained, and are used to approximately assess the mission performance capabilities of such thrusters. Parameters in the range of experience of the Los Alamos spheromak group are addressed within the context of orbit raising, slow (cargo) missions to mars, and fast missions to mars. The various internal atomic and plasma effects on hydrogen plasma thruster performance are approximately estimated or bounded. It is concluded that such devices may be relevant to mission performance at reasonable power levels.

  11. Numerical analysis of turbulent coaxial flow with internal heat generation

    NASA Technical Reports Server (NTRS)

    Lin, A.; Weinstein, H.

    1981-01-01

    A computational method with which to obtain a physical understanding of the turbulent field of two coaxial jets entering an axisymmetric chamber is developed. Even the laminar field of this flow is quite complicated. This is due to the many different domains which exist in the field especially in the entrance region. Physically, three regions may be identified: the wall region, the initial region near the axis of symmetry and the mixing region. Advancing downstream, these regions change relative size with the ratio of the two jets' mass fluxes as the main parameter. The turbulent field of these flows is much more complicated due to the difference in the effective transport coefficients and turbulence level from region to region. However, being aware beforehand of the complications and the different regions of this field, the appropriate turbulence model and numerical scheme can be adjusted to treat the problem.

  12. Acoustic measurements of a full-scale coaxial helicopter

    NASA Technical Reports Server (NTRS)

    Mosher, M.; Peterson, R. L.

    1983-01-01

    Acoustic data were obtained during a full-scale test of the XH-59A Advancing Blade Concept (ABC) Technology Demonstrator in the NASA Ames 40- by 80-Foot Wind Tunnel. The XH-59A is a research helicopter with two coaxial rotors and hingeless blades. Performance, vibration, noise at various forward speeds, rotor lift coefficients, and rotor shaft angles of attack were investigated. In general, the noise level is shown to increase with rotor lift coefficient except under certain operating conditions where it is increased by significant impulsive blade/vortex interactions. The impulsivity appears to depend upon how the lift is distributed between the two rotors. The noise levels measured are shown to be slightly higher than on a modern conventional rotor tested in the same facility.

  13. Ultra-wideband, omni-directional, low distortion coaxial antenna

    SciTech Connect

    Eubanks, Travis Wayne; Gibson, Christopher Lawrence

    2015-01-06

    An antenna for producing an omni-directional pattern, and using all frequencies of a frequency range simultaneously, is provided with first and second electrically conductive elements disposed coaxially relative to a central axis. The first element has a first surface of revolution about the axis, the first surface of revolution tapering radially outwardly while extending axially away from the second element to terminate at a first axial end of the first element. The second element has a second surface of revolution about the axis, the second surface of revolution tapering radially outwardly while extending axially toward the first element to terminate at a first axial end of the second element. The first and second surfaces of revolution overlap one another radially and axially, and are mutually non-conformal.

  14. Dynamics of a current bridge in a coaxial plasma accelerator

    NASA Astrophysics Data System (ADS)

    Voronin, A. V.; Gusev, V. K.; Kobyakov, S. V.

    2011-07-01

    The pioneering investigation of the behavior of a current bridge in a coaxial accelerator with pulsed delivery of a working gas liberated from titanium hydride by an electrical discharge is reported. A new method to trace the motion of the current bridge using LEDs is suggested. The behavior of the current bridge in accelerators with axial and radial gas injection is studied. The parameters of an accelerator generating a pure plasma jet with a high kinetic energy (such as the size and polarity of electrodes, gas flow direction, and time delay between the delivery of the gas to the accelerator and its ionization) are optimized. The applicability of an electrodynamic model to this type of accelerator is discussed. Good agreement between experimental data and calculation results is obtained.

  15. Measurement of rock mass deformation with grouted coaxial antenna cables

    NASA Astrophysics Data System (ADS)

    Dowding, C. H.; Su, M. B.; O'Connor, K.

    1989-01-01

    Techniques presented herein show how reflected voltage pulses from coaxial antenna cable grouted in rock masses can be employed to quantify the type and magnitude of rock mass deformation. This measurement is similar to that obtained from a combined full profile extensometer (to measure local extension) and inclinometer (to measure local shearing). Rock mass movements deform the grouted cable, which locally changes cable capacitance and thereby the reflected wave form of the voltage pulse. Thus, by monitoring changes in these reflection signatures, it is possible to monitor rock mass deformation. This paper presents laboratory measurements necessary to quantitatively interpret the reflected voltage signatures. Cables were sheared and extended to correlate measured cable deformation with reflected voltage signals. Laboratory testing included development of grout mixtures with optimum properties for field installation and performance of a TDR (Time Domain Reflectometry) monitoring system. Finally, the interpretive techniques developed through laboratory measurements were applied to previously collected field data to extract hitherto unrealized information.

  16. Theoretical study of reactive and nonreactive turbulent coaxial jets

    NASA Technical Reports Server (NTRS)

    Gupta, R. N.; Wakelyn, N. T.

    1976-01-01

    The hydrodynamic properties and the reaction kinetics of axisymmetric coaxial turbulent jets having steady mean quantities are investigated. From the analysis, limited to free turbulent boundary layer mixing of such jets, it is found that the two-equation model of turbulence is adequate for most nonreactive flows. For the reactive flows, where an allowance must be made for second order correlations of concentration fluctuations in the finite rate chemistry for initially inhomogeneous mixture, an equation similar to the concentration fluctuation equation of a related model is suggested. For diffusion limited reactions, the eddy breakup model based on concentration fluctuations is found satisfactory and simple to use. The theoretical results obtained from these various models are compared with some of the available experimental data.

  17. Multishell encapsulation using a triple coaxial electrospray system.

    PubMed

    Kim, Woojin; Kim, Sang Soo

    2010-06-01

    To overcome the limitations of the conventional encapsulation methods and improve the potential use of the electrospray method as a drug delivery system, an electrospray system using a triple coaxial nozzle was developed to generate multishell capsules. Two conducting fluids, ethylene glycol and 4-hydroxybutyl acrylate, and one nonconducting fluid, olive oil, were chosen to manufacture the multishell capsules. The capsules were solidified by a photopolymerization device. We investigated the size distributions and visualized the capsules changing fluid flow rates. Dispersive Raman spectra were also monitored to determine the chemical composition of the capsules. The multishell capsules were generated in the overlapped cone-jet mode regime of the conducting fluids, and the sizes and shell thicknesses were controlled by the flow rates and applied voltages. PMID:20459114

  18. Impedance characteristics of coaxial and planar magnetoplasma capacitors

    NASA Technical Reports Server (NTRS)

    Harker, K. J.; Crawford, F. W.

    1977-01-01

    A theory has been developed for the impedance of a homogeneous magnetoplasma enclosed between two specular reflecting coaxial electrodes, with a static magnetic field parallel to the electrode axes. The parallel-plate magnetoplasma capacitor is treated as a sub-case. Starting with the Vlasov equation, an integral equation is derived for the electric field. Solving this equation, and integrating to obtain the voltage, gives the capacitor impedance. This includes a capacitive component, and a resistive component expressing the Landau damping associated with the open orbits of electrons reflected at the electrodes. A direct numerical solution of the field integral equation has been carried out for a range of values of magnetic field, plasma density, and signal frequency. The values of impedance so obtained are compared with the predictions of macroscopic theory, and of an approximate microscopic theory in which open orbits are ignored and solutions are obtained using finite Fourier transform methods. The mathematical relations between these theories are demonstrated.

  19. Microfabrication of curcumin-loaded microparticles using coaxial electrohydrodynamic atomization

    NASA Astrophysics Data System (ADS)

    Yuan, Shuai; Si, Ting; Liu, Zhongfa; Xu, Ronald X.

    2014-03-01

    Encapsulation of curcumin in PLGA microparticles is performed by a coaxial electrohydrodynamic atomization device. To optimize the process, the effects of different control parameters on morphology and size distribution of resultant microparticles are studied systemically. Four main flow modes are identified as the applied electric field intensity increases. The stable cone-jet configuration is found to be available for fabricating monodisperse microparticles with core-shell structures. The results are compared with those observed in traditional emulsion. The drug-loading efficiency is also checked. The present system is advantageous for the enhancement of particle size distribution and drug-loading efficiency in various applications such as drug delivery, biomedicine and image-guided therapy.

  20. Extended State Observer based control for coaxial-rotor UAV.

    PubMed

    Rida Mokhtari, M; Choukchou Braham, Amal; Cherki, Brahim

    2016-03-01

    This paper considers the problem of controlling the position and the orientation of a Coaxial-Rotor Unmanned Aerial Vehicle -CRUAV- despite unknown aerodynamic efforts. A hierarchical flight controller is designed, allowing the trajectory tracking and the stabilization of the vehicle. The designed controller is build through a hierarchical approach yielding two control loops, an inner one to control the attitude and an outer one to control the translational trajectory of the rotorcraft. An Extended State Observer -ESO- is used to estimate the state and the unknown aerodynamic disturbances. The analysis further extends to the design of a control law that takes the disturbance estimation procedure into account. Numerical simulations are carried out to demonstrate the efficiency of the proposed control strategy. PMID:26708305

  1. Coaxial carbon plasma gun deposition of amorphous carbon films

    NASA Technical Reports Server (NTRS)

    Sater, D. M.; Gulino, D. A.; Rutledge, S. K.

    1984-01-01

    A unique plasma gun employing coaxial carbon electrodes was used in an attempt to deposit thin films of amorphous diamond-like carbon. A number of different structural, compositional, and electrical characterization techniques were used to characterize these films. These included scanning electron microscopy, scanning transmission electron microscopy, X ray diffraction and absorption, spectrographic analysis, energy dispersive spectroscopy, and selected area electron diffraction. Optical absorption and electrical resistivity measurements were also performed. The films were determined to be primarily amorphous, with poor adhesion to fused silica substrates. Many inclusions of particulates were found to be present as well. Analysis of these particulates revealed the presence of trace impurities, such as Fe and Cu, which were also found in the graphite electrode material. The electrodes were the source of these impurities. No evidence of diamond-like crystallite structure was found in any of the film samples. Details of the apparatus, experimental procedure, and film characteristics are presented.

  2. High Capacity Two-Stage Coaxial Pulse Tube Cooler

    NASA Astrophysics Data System (ADS)

    Jaco, C.; Nguyen, T.; Tward, E.

    2008-03-01

    The High Capacity Cryocooler Qualification unit (HCCQ) provides large capacity cooling at both 35 K and 85 K for space applications in which focal planes and optics require cooling. The compressor is scaled from the High Energy Cryocooler (HEC) compressor and is capable of using input powers up to 700 W. The two coaxial pulse tube cold heads are integrated with the compressor into an integral cryocooler. A thermal strap between the cold heads improves efficiency and can be positioned to provide cooling for a wide range of applied loads. The cooler will be acceptance tested at space qualification levels that include thermal performance mapping over a range of reject temperatures and power levels and launch vibration testing.

  3. Propellant Feed System for Swirl-Coaxial Injection

    NASA Technical Reports Server (NTRS)

    Reynolds, David Christopher (Inventor)

    2015-01-01

    A propellant feed system for swirl-coaxial injection of a liquid propellant includes a reservoir having a bottom plate and at least one tube originating in the bottom plate and extending therefrom. The tube has rectangular slits defined in and distributed tangentially and evenly about a portion of the tube that is disposed in the bottom plate. Drain holes are provided in the bottom plate and tunnels are defined in the bottom plate. Each tunnel fluidly couples one of the drain holes to a corresponding one of the rectangular slits. Each tunnel includes (i) a bend of at least 90.degree., and (ii) a straight portion leading to its corresponding rectangular slit wherein the straight portion is at least five times as long as a hydraulic diameter of the corresponding rectangular slit.

  4. Spatial properties of coaxial superposition of two coherent Gaussian beams.

    PubMed

    Boubaha, Boualem; Naidoo, Darryl; Godin, Thomas; Fromager, Michael; Forbes, Andrew; Aït-Ameur, Kamel

    2013-08-10

    In this paper, we explore theoretically and experimentally the laser beam shaping ability resulting from the coaxial superposition of two coherent Gaussian beams (GBs). This technique is classified under interferometric laser beam shaping techniques contrasting with the usual ones based on diffraction. The experimental setup does not involve the use of some two-wave interferometer but uses a spatial light modulator for the generation of the necessary interference term. This allows one to avoid the thermal drift occurring in interferometers and gives a total flexibility of the key parameter setting the beam transformation. In particular, we demonstrate the reshaping of a GB into a bottle beam or top-hat beam in the focal plane of a focusing lens. PMID:23938430

  5. Coaxial Mono-Energetic Gamma Generator for Active Interrogation

    NASA Astrophysics Data System (ADS)

    Ludewigt, B. A.; Antolak, A. J.; Henestroza, E.; Kwan, J. W.; Leitner, M.; Leung, K.-N.; Waldron, W.; Wilde, S.

    2009-03-01

    Compact mono-energetic photon sources are sought for active interrogation systems to detect shielded special nuclear materials in, for example, cargo containers, trucks and other vehicles. A prototype gamma interrogation source has been designed and built that utilizes the 11B(p,γ)12C reaction to produce 12 MeV gamma-rays which are near the peak of the photofission cross section. In particular, the 11B(p,γ)12C resonance at 163 kV allows the production of gammas at low proton acceleration voltages, thus keeping the design of a gamma generator comparatively small and simple. A coaxial design has been adopted with a toroidal-shaped plasma chamber surrounding a cylindrical gamma production target. The plasma discharge is driven by a 2 MHz rf-power supply (capable up to 50 kW) using a circular rf-antenna. Permanent magnets embedded in the walls of the plasma chamber generate a multi-cusp field that confines the plasma and allows higher plasma densities and lower gas pressures. About 100 proton beamlets are extracted through a slotted plasma electrode towards the target at the center of the device that is at a negative 180 kV. The target consists of LaB6 tiles that are brazed to a water-cooled cylindrical structure. The generator is designed to operate at 500 Hz with 20 μs long pulses, and a 1% duty factor by pulsing the ion source rf-power. A first-generation coaxial gamma source has been built for low duty factor experiments and testing.

  6. Coaxial Mono-Energetic Gamma Generator for Active Interrogation

    SciTech Connect

    Ludewigt, Bernhard A.; Antolak, A.J.; Henestroza, E.; Leitner, M.; Leung, K.-N.; Waldron, W.; Wilde, S.; Kwan, J.W.

    2008-08-01

    Compact mono-energetic photon sources are sought for active interrogation systems to detect shielded special nuclear materials in, for example, cargo containers, trucks and other vehicles. A prototype gamma interrogation source has been designed and built that utilizes the 11B(p,gamma)12C reaction to produce 12 MeV gamma-rays which are near the peak of the photofission cross section. In particular, the 11B(p,gamma)12C resonance at 163 kV allows the production of gammas at low proton acceleration voltages, thus keeping the design of a gamma generator comparatively small and simple. A coaxial design has been adopted with a toroidal-shaped plasma chamber surrounding a cylindrical gamma production target. The plasma discharge is driven by a 2 MHz rf-power supply (capable up to 50 kW) using a circular rf-antenna. Permanent magnets embedded in the walls of the plasma chamber generate a multi-cusp field that confines the plasma and allows higher plasma densities and lower gas pressures. About 100 proton beamlets are extracted through a slotted plasma electrode towards the target at the center of the device that is at a negative 180 kV. The target consists of LaB6 tiles that are brazed to a water-cooled cylindrical structure. The generator is designed to operate at 500 Hz with 20 mu s long pulses, and a 1percent duty factor by pulsing the ion source rf-power. A first-generation coaxial gamma source has been built for low duty factor experiments and testing.

  7. Coaxial Mono-Energetic Gamma Generator for Active Interrogation

    SciTech Connect

    Ludewigt, B. A.; Henestroza, E.; Kwan, J. W.; Leitner, M.; Leung, K.-N.; Waldron, W.; Wilde, S.; Antolak, A. J.

    2009-03-10

    Compact mono-energetic photon sources are sought for active interrogation systems to detect shielded special nuclear materials in, for example, cargo containers, trucks and other vehicles. A prototype gamma interrogation source has been designed and built that utilizes the {sup 11}B(p,{gamma}){sup 12}C reaction to produce 12 MeV gamma-rays which are near the peak of the photofission cross section. In particular, the {sup 11}B(p,{gamma}){sup 12}C resonance at 163 kV allows the production of gammas at low proton acceleration voltages, thus keeping the design of a gamma generator comparatively small and simple. A coaxial design has been adopted with a toroidal-shaped plasma chamber surrounding a cylindrical gamma production target. The plasma discharge is driven by a 2 MHz rf-power supply (capable up to 50 kW) using a circular rf-antenna. Permanent magnets embedded in the walls of the plasma chamber generate a multi-cusp field that confines the plasma and allows higher plasma densities and lower gas pressures. About 100 proton beamlets are extracted through a slotted plasma electrode towards the target at the center of the device that is at a negative 180 kV. The target consists of LaB{sub 6} tiles that are brazed to a water-cooled cylindrical structure. The generator is designed to operate at 500 Hz with 20 {mu}s long pulses, and a 1% duty factor by pulsing the ion source rf-power. A first-generation coaxial gamma source has been built for low duty factor experiments and testing.

  8. Microwave Dielectric Properties of Alfalfa Leaves From 0.3 to 18 GHz

    SciTech Connect

    Sokhansanj, Shahabaddine; Shrestha, Bijay; Wood, H.C.

    2011-01-01

    Dielectric properties (i.e., permittivity) are essential in designing, simulating, and modeling microwave applications. The permittivity of stacked leaves of alfalfa (Medicago sativa) were measured with a network analyzer and a coaxial probe, and the effect of moisture content (MC: 12% 73% wet basis), frequency (300 MHz to 18 GHz), bound water (Cole Cole dispersion equation), temperature ( 15 C and 30 C), leaf-orientation, and pressure (0 11 kPa) were investigated. The measured permittivity increased with MC. A critical moisture level (CML) of 23% was reported, below which the permittivity decreased with increasing frequency at 22 C. Above CML and up to 5 GHz, the dielectric constants followed the Cole Cole dispersion, and the dielectric loss factors consisted of ionic and bound water losses. Above 5 GHz, the behavior of the dielectric constant was similar to that of free water, and the polar losses became dominant. Above 0 C, the measured permittivity followed a trend similar to that of free saline water and was characterized by the Debye equation. Below 0 C, it was dominated by nonfreezing bound and unfrozen supercooled moistures. The relaxation parameters and the optimum pressure (9 kPa) for the leaf measurements were determined. The effects of variations among the samples, and their orientations had negligible effects on the measured permittivity.

  9. Square dielectric THz waveguides.

    PubMed

    Aflakian, N; Yang, N; LaFave, T; Henderson, R M; O, K K; MacFarlane, D L

    2016-06-27

    A holey cladding dielectric waveguide with square cross section is designed, simulated, fabricated and characterized. The TOPAS waveguide is designed to be single mode across the broad frequency range of 180 GHz to 360 GHz as shown by finite-difference time domain simulation and to robustly support simultaneous TE and TM mode propagation. The square fiber geometry is realized by pulling through a heat distribution made square by appropriate furnace design. The transmitted mode profile is imaged using a vector network analyzer with a pinhole at the receiver module. Good agreement between the measured mode distribution and the calculated mode distribution is demonstrated. PMID:27410645

  10. Low Dielectric Polymers

    NASA Technical Reports Server (NTRS)

    Venumbaka, Sreenivasulu R.; Cassidy, Patrick E.

    2002-01-01

    This report summarizes results obtained from research funded through Research Cooperative Agreement No. NCC-1-01033-"Low Dielectric Polymers" (from 5/10/01 through 5/09/02). Results are reported in three of the proposed research areas (Tasks 1-3 in the original proposal): (1) Repeat and confirm the preparation and properties of the new alkyl-substituted PEK, 6HC17-PEK, (2) Prepare and evaluate polymers derived from a highly fluorinated monomer, and (3) Prepare and evaluate new silicon and/or fluorine-containing polymers expected to retain useful properties at low temperature.

  11. Boron nitride as two dimensional dielectric: Reliability and dielectric breakdown

    NASA Astrophysics Data System (ADS)

    Ji, Yanfeng; Pan, Chengbin; Zhang, Meiyun; Long, Shibing; Lian, Xiaojuan; Miao, Feng; Hui, Fei; Shi, Yuanyuan; Larcher, Luca; Wu, Ernest; Lanza, Mario

    2016-01-01

    Boron Nitride (BN) is a two dimensional insulator with excellent chemical, thermal, mechanical, and optical properties, which make it especially attractive for logic device applications. Nevertheless, its insulating properties and reliability as a dielectric material have never been analyzed in-depth. Here, we present the first thorough characterization of BN as dielectric film using nanoscale and device level experiments complementing with theoretical study. Our results reveal that BN is extremely stable against voltage stress, and it does not show the reliability problems related to conventional dielectrics like HfO2, such as charge trapping and detrapping, stress induced leakage current, and untimely dielectric breakdown. Moreover, we observe a unique layer-by-layer dielectric breakdown, both at the nanoscale and device level. These findings may be of interest for many materials scientists and could open a new pathway towards two dimensional logic device applications.

  12. Relativistic solutions for one- and two-dimensional space-charge limited current in coaxial diode

    SciTech Connect

    Yang, Zhanfeng; Liu, Guozhi; Shao, Hao; Yan, Teng; Zhang, Yuchuan

    2013-05-15

    This paper reports the two-dimensional physics and space-charge limited current (SLC) of coaxial diodes with a finite-length emitter. A full-voltage and one-dimensional approximate solution is first obtained by matching the non-relativistic solution to the super-relativistic solution. Including the effects of fields induced by the anode current and the beam itself yields the pinch-limited current in the coaxial diode. The SLC of a practically applied coaxial diode with a finite length emitter is obtained by a semi-analytical method. The solutions well agree with numerical solutions and particle-in-cell simulations.

  13. Voltage sensor and dielectric material

    DOEpatents

    Yakymyshyn, Christopher Paul; Yakymyshyn, Pamela Jane; Brubaker, Michael Allen

    2006-10-17

    A voltage sensor is described that consists of an arrangement of impedance elements. The sensor is optimized to provide an output ratio that is substantially immune to changes in voltage, temperature variations or aging. Also disclosed is a material with a large and stable dielectric constant. The dielectric constant can be tailored to vary with position or direction in the material.

  14. Microwave Propagation in Dielectric Fluids.

    ERIC Educational Resources Information Center

    Lonc, W. P.

    1980-01-01

    Describes an undergraduate experiment designed to verify quantitatively the effect of a dielectric fluid's dielectric constant on the observed wavelength of microwave radiation propagating through the fluid. The fluid used is castor oil, and results agree with the expected behavior within 5 percent. (Author/CS)

  15. Ferroelectric-dielectric tunable composites

    NASA Astrophysics Data System (ADS)

    Sherman, Vladimir O.; Tagantsev, Alexander K.; Setter, Nava; Iddles, David; Price, Tim

    2006-04-01

    The dielectric response of ferroelectric-dielectric composites is theoretically addressed. Dielectric permittivity, tunability (relative change of the permittivity driven by dc electric field), and loss tangent are evaluated for various composite models. The analytical results for small dielectric concentration and relative tunability are obtained in terms of the traditional electrostatic consideration. The results for large tunability are obtained numerically. A method is proposed for the evaluation of the tunability and loss at large concentrations of the dielectric. The basic idea of the method is to reformulate the effective medium approach in terms of electrical energies stored and dissipated in the composite. The important practical conclusion of the paper is that, for random ferroelectric-dielectric composite, the addition of small amounts of a linear dielectric into the tunable ferroelectric results in an increase of the tunability of the mixture. The loss tangent of such composites is shown to be virtually unaffected by the addition of moderate amounts of the low-loss dielectric. The experimental data for (Ba,Sr)TiO3 based composites are analyzed in terms of the theory developed and shown to be in a reasonable agreement with the theoretical results.

  16. Degradation Of Reflectors And Dielectrics

    NASA Technical Reports Server (NTRS)

    Bouquet, Frank L.; Cuddihy, Edward F.; Maag, Carl R., Jr.

    1987-01-01

    Report describes important degrading effects of atmosphere and outer-space environments on reflective surfaces and dielectrics. For reflective surfaces, terrestrial effects include soiling on glass surfaces and changing with time. Space effects include ultraviolet enhancement of contamination and possible surface erosion due to solar radiation, impact of debris, and interactions with atomic oxygen. Dielectrics similarly affected in both environments.

  17. Low dielectric polyimide fibers

    NASA Technical Reports Server (NTRS)

    Dorogy, William E., Jr. (Inventor); St.clair, Anne K. (Inventor)

    1994-01-01

    A high temperature resistant polyimide fiber that has a dielectric constant of less than 3 is presented. The fiber was prepared by first reacting 2,2-bis (4-(4aminophenoxy)phenyl) hexafluoropropane with 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride in an aprotic solvent to form a polyamic acid resin solution. The polyamic acid resin solution is then extruded into a coagulation medium to form polyamic acid fibers. The fibers are thermally cured to their polyimide form. Alternatively, 2,2-bis(4-(4-aminophenoxy)phenyl) hexafluoropropane is reacted with 2,2-bis(3,4-dicarboxyphenyl) hexafluoropropane dianhydride to form a polyamic acid, and the polyamic acid is chemically converted to its polyimide form. The polyimide is then dissolved in a solvent to form a polyimide resin solution, and the polyimide resin is extruded into a coagulation medium to form a polyimide wet gel filament. In order to obtain polyimide fibers of increased tensile properties, the polyimide wet gel filaments are stretched at elevated temperatures. The tensile properties of the fibers were measured and found to be in the range of standard textile fibers. Polyimide fibers obtained by either method will have a dielectric constant similar to that of the corresponding polymer, viz., less than 3 at 10 GHz.

  18. Plasmonics without negative dielectrics

    NASA Astrophysics Data System (ADS)

    Della Giovampaola, Cristian; Engheta, Nader

    2016-05-01

    Plasmonic phenomena are exhibited in light-matter interaction involving materials whose real parts of permittivity functions attain negative values at operating wavelengths. However, such materials usually suffer from dissipative losses, thus limiting the performance of plasmon-based optical devices. Here, we utilize an alternative methodology that mimics a variety of plasmonic phenomena by exploiting the well-known structural dispersion of electromagnetic modes in bounded guided-wave structures filled with only materials with positive permittivity. A key issue in the design of such structures is prevention of mode coupling, which can be achieved by implementing thin metallic wires at proper interfaces. This method, which is more suitable for lower frequencies, allows designers to employ conventional dielectrics and highly conductive metals for which the loss is low at these frequencies, while achieving plasmonic features. We demonstrate, numerically and analytically, that this platform can provide surface plasmon polaritons, local plasmonic resonance, plasmonic cloaking, and epsilon-near-zero-based tunneling using conventional positive-dielectric materials.

  19. Dielectric laser accelerators

    NASA Astrophysics Data System (ADS)

    England, R. Joel; Noble, Robert J.; Bane, Karl; Dowell, David H.; Ng, Cho-Kuen; Spencer, James E.; Tantawi, Sami; Wu, Ziran; Byer, Robert L.; Peralta, Edgar; Soong, Ken; Chang, Chia-Ming; Montazeri, Behnam; Wolf, Stephen J.; Cowan, Benjamin; Dawson, Jay; Gai, Wei; Hommelhoff, Peter; Huang, Yen-Chieh; Jing, Chunguang; McGuinness, Christopher; Palmer, Robert B.; Naranjo, Brian; Rosenzweig, James; Travish, Gil; Mizrahi, Amit; Schachter, Levi; Sears, Christopher; Werner, Gregory R.; Yoder, Rodney B.

    2014-10-01

    The use of infrared lasers to power optical-scale lithographically fabricated particle accelerators is a developing area of research that has garnered increasing interest in recent years. The physics and technology of this approach is reviewed, which is referred to as dielectric laser acceleration (DLA). In the DLA scheme operating at typical laser pulse lengths of 0.1 to 1 ps, the laser damage fluences for robust dielectric materials correspond to peak surface electric fields in the GV /m regime. The corresponding accelerating field enhancement represents a potential reduction in active length of the accelerator between 1 and 2 orders of magnitude. Power sources for DLA-based accelerators (lasers) are less costly than microwave sources (klystrons) for equivalent average power levels due to wider availability and private sector investment. Because of the high laser-to-particle coupling efficiency, required pulse energies are consistent with tabletop microJoule class lasers. Combined with the very high (MHz) repetition rates these lasers can provide, the DLA approach appears promising for a variety of applications, including future high-energy physics colliders, compact light sources, and portable medical scanners and radiative therapy machines.

  20. Coaxial Microincision Cataract Surgery versus Standard Coaxial Small-Incision Cataract Surgery: A Meta-Analysis of Randomized Controlled Trials

    PubMed Central

    Shentu, Xingchao; Zhang, Xin; Tang, Xiajing; Yu, Xiaoning

    2016-01-01

    Background We conducted this meta-analysis to compare the outcomes of coaxial microincision cataract surgery (C-MICS) and standard coaxial small incision cataract surgery (C-SICS). Methods The outcomes of randomized controlled trials (RCTs) reporting C-MICS and C-SICS were collected from PubMed, Web of Science, and The Cochrane Library in May 2015. The final meta-analysis was conducted on the following intraoperative and postoperative outcomes: ultrasound time (UST), effective phacoemulsification time (EPT), balanced salt solution use (BSS use), cumulative dissipated energy (CDE), mean surgery time, endothelial cell loss percentage (ECL%), best corrected visual acuity (BCVA), increased central corneal thickness (CCT), laser flare photometry values and surgically induced astigmatism (SIA). Results A total of 15 RCTs, involving 1136 eyes, were included in the final meta-analysis. No significant between-group differences were detected in EPT, BSS use, CDE, BCVA, laser flare photometry values or increased CCT. However, the C-MICS group showed less SIA (at postoperative day 7: p<0.01; at postoperative day 30 or more: p<0.01) and greater ECL% (at postoperative day 60 or more: p<0.01), whereas the C-SICS group required a shorter UST (p<0.01). Conclusions The present meta-analysis suggested that the C-MICS technique was more advantageous than C-SICS in terms of SIA, but C-MICS required a longer UST and induced a higher ECL%. Further studies should be done to confirm our results. PMID:26745279

  1. Dielectric Actuation of Polymers

    NASA Astrophysics Data System (ADS)

    Niu, Xiaofan

    Dielectric polymers are widely used in a plurality of applications, such as electrical insulation, dielectric capacitors, and electromechanical actuators. Dielectric polymers with large strain deformations under an electric field are named dielectric elastomers (DE), because of their relative low modulus, high elongation at break, and outstanding resilience. Dielectric elastomer actuators (DEA) are superior to traditional transducers as a muscle-like technology: large strains, high energy densities, high coupling efficiency, quiet operation, and light weight. One focus of this dissertation is on the design of DE materials with high performance and easy processing. UV radiation curing of reactive species is studied as a generic synthesis methodology to provide a platform for material scientists to customize their own DE materials. Oligomers/monomers, crosslinkers, and other additives are mixed and cured at appropriate ratios to control the stress-strain response, suppress electromechanical instability of the resulting polymers, and provide stable actuation strains larger than 100% and energy densities higher than 1 J/g. The processing is largely simplified in the new material system by removal of the prestretching step. Multilayer stack actuators with 11% linear strain are demonstrated in a procedure fully compatible with industrial production. A multifunctional DE derivative material, bistable electroactive polymer (BSEP), is invented enabling repeatable rigid-to-rigid deformation without bulky external structures. Bistable actuation allows the polymer actuator to have two distinct states that can support external load without device failure. Plasticizers are used to lower the glass transition temperature to 45 °C. Interpenetrating polymer network structure is established inside the BSEP to suppress electromechanical instability, providing a breakdown field of 194 MV/m and a stable bistable strain as large as 228% with a 97% strain fixity. The application of BSEP

  2. Dielectric spectra of supercooled halogenobenzene-decalin solutions: A single particle site model for relaxation and resonant behaviors

    NASA Astrophysics Data System (ADS)

    Reid, C. J.; Vij, J. K.

    1983-11-01

    Dielectric loss spectra for 10% V/V decalin solutions of PhBr, PhCl, and PhF have been measured using a precision, coaxial three-terminal cell at temperatures from 77 to 150 K and for a frequency range 200 Hz-5 MHz. These results which are in agreement and which extend previous measurements, are interpreted within the context of cosinal itinerant oscillation. Data for PhBr decalin are simulated using a model of a single Brownian particle rotating in the presence of a cosinal potential, which is a special case of the cosine itinerant oscillator model.

  3. Towards nanoscale multiplexing with parity-time-symmetric plasmonic coaxial waveguides

    NASA Astrophysics Data System (ADS)

    Alaeian, Hadiseh; Baum, Brian; Jankovic, Vladan; Lawrence, Mark; Dionne, Jennifer A.

    2016-05-01

    We theoretically investigate a nanoscale mode-division multiplexing scheme based on parity-time- (PT ) symmetric coaxial plasmonic waveguides. Coaxial waveguides support paired degenerate modes corresponding to distinct orbital angular momentum states. PT -symmetric inclusions of gain and loss break the degeneracy of the paired modes and create new hybrid modes without definite orbital angular momentum. This process can be made thresholdless by matching the mode order with the number of gain and loss sections within the coaxial ring. Using both a Hamiltonian formulation and degenerate perturbation theory, we show how the wave vectors and fields evolve with increased loss/gain and derive sufficient conditions for thresholdless transitions. As a multiplexing filter, this PT -symmetric coaxial waveguide could help double density rates in on-chip nanophotonic networks.

  4. Coaxial electrospinning for encapsulation and controlled release of fragile water-soluble bioactive agents.

    PubMed

    Jiang, Hongliang; Wang, Liqun; Zhu, Kangjie

    2014-11-10

    Coaxial electrospinning is a robust technique for one-step encapsulation of fragile, water-soluble bioactive agents, including growth factors, DNA and even living organisms, into core-shell nanofibers. The coaxial electrospinning process eliminates the damaging effects due to direct contact of the agents with organic solvents or harsh conditions during emulsification. The shell layer serves as a barrier to prevent the premature release of the water-soluble core contents. By varying the structure and composition of the nanofibers, it is possible to precisely modulate the release of the encapsulated agents. Promising work has been done with coaxially electrospun non-woven mats integrated with bioactive agents for use in tissue engineering, in local delivery and in wound healing, etc. This paper reviews the origins of the coaxial electrospinning method, its updated status and potential future developments for controlled release of the class of fragile, water-soluble bioactive agents. PMID:24780265

  5. Preliminary investigation of power flow and electrode phenomena in a multi-megawatt coaxial plasma thruster

    NASA Technical Reports Server (NTRS)

    Schoenberg, Kurt; Gerwin, Richard; Henins, Ivars; Mayo, Robert; Scheuer, Jay; Nurden, Glen

    1993-01-01

    This paper summarizes preliminary experimental and theoretical research that was directed towards the study of quasisteady-state power flow in a large, un-optimized, multi-megawatt coaxial plasma thruster. The report addresses large coaxial thruster operation and includes evaluation and interpretation of the experimental results with a view to the development of efficient, steady-state megawatt-class magnetoplasmadynamic (MPD) thrusters.

  6. Basic coaxial mass driver construction and testing. [for eventual moon-space manufacturing site magnetic transport

    NASA Technical Reports Server (NTRS)

    Fine, K.

    1977-01-01

    A basic coaxial mass driver has been constructed by a group of students to verify performance predictions in the acceleration range envisaged for the first lunar device. The bucket is guided by four copper tubes which also supply direct current excitation for its single aluminum coil, and is accelerated by twenty coaxial coils along a 2 m track, followed by a deceleration section. The coils are individually energized by electrolytic photoflash capacitors triggered by solid state switches on the basis of bucket position.

  7. The noise reduction potential of dual-stream coaxial rectangular improperly expanded jet flows

    NASA Technical Reports Server (NTRS)

    Dosanjh, Darshan; Spina, Eric F.

    1995-01-01

    The research performed began during Spring 1991 as a project to assess the noise reduction potential of rectangular coaxial nozzle configurations for improperly expanded jets. The research plan consisted of: (1) design of coaxial rectangular nozzle configuration by Syracuse graduate research assistant; (2) construction of nozzles by NASA Langley machinists; and (3) acquisition of preliminary acoustic and optical data for a variety of inner and outer jet pressure ratios.

  8. Low Dielectric Constant Materials from Hollow Fibers and Plant Oil

    NASA Astrophysics Data System (ADS)

    Hong, Chang K.; Wool, Richard P.

    2003-03-01

    A new low dielectric constant (k) material suited to electronic materials applications was developed using hollow keratin fibers (HF) and chemically modified soyoil. High-speed microelectronics are facilitated by preventing the ``rubber necking", or slow-down of electrons on the printed wires through the use of low-k dielectrics. The unusual low k-value of the HF composite material derives both from the air (k = 1) in the hollow microcrystalline keratin fibers (k = 1.6), and the triglyceride molecules (k = 2.3), and is in the range of 1.7 to 2.7 at 100 MHz, depending on the HF fraction. These values are lower than that of the conventional silicon dioxide, (k = 3.8 to 4.2) or epoxy dielectric insulators. Also, the HF dielectric is lightweight (SG < 1) and rigid (Modulus > 2 GPa), with fracture toughness (1.0 MPa m^1/2) (and approximates the shape and feel of a silicon dioxide insulator. Multi-Chip-Module circuit printing results suggest that the low-cost composite made with HF (from avian sources) and plant oil (from soybean) has the potential to replace the dielectric in microchips and circuit boards in the ever-growing electronic materials field, in addition to many applications as a new lightweight composite material. Supported by EPA and DoE

  9. Dielectric permittivity of suspensions

    SciTech Connect

    Sushko, M. Ya.

    2007-08-15

    A strict macroscopic analysis of the limiting long-wavelength permittivity of a model suspension is presented in which the suspension is considered as a finely dispersed system consisting of isotropic dielectric balls with piecewise-continuous radial permittivity profile. The analysis is performed within the framework of the notion of compact groups of inhomogeneities and the procedure of field averaging over volumes significantly exceeding the scale of these groups. The indicated value is described by the Lorentz-Lorenz formula. The effective polarizability of balls in the suspension is reconstructed from their parameters and the parameters of the medium by means of integration. The result is valid for any concentration of the balls at which the suspension remains macroscopically homogeneous and isotropic with respect to the field and for an arbitrary difference between the ball and medium permittivities.

  10. Multilayer optical dielectric coating

    DOEpatents

    Emmett, John L.

    1990-01-01

    A highly damage resistant, multilayer, optical reflective coating includes alternating layers of doped and undoped dielectric material. The doping levels are low enough that there are no distinct interfaces between the doped and undoped layers so that the coating has properties nearly identical to the undoped material. The coating is fabricated at high temperature with plasma-assisted chemical vapor deposition techniques to eliminate defects, reduce energy-absorption sites, and maintain proper chemical stoichiometry. A number of differently-doped layer pairs, each layer having a thickness equal to one-quarter of a predetermined wavelength in the material are combined to form a narrowband reflective coating for a predetermined wavelength. Broadband reflectors are made by using a number of narrowband reflectors, each covering a portion of the broadband.

  11. The Dielectric Wall Accelerator

    SciTech Connect

    Caporaso, George J.; Chen, Yu-Jiuan; Sampayan, Stephen E.

    2009-01-01

    The Dielectric Wall Accelerator (DWA), a class of induction accelerators, employs a novel insulating beam tube to impress a longitudinal electric field on a bunch of charged particles. The surface flashover characteristics of this tube may permit the attainment of accelerating gradients on the order of 100 MV/m for accelerating pulses on the order of a nanosecond in duration. A virtual traveling wave of excitation along the tube is produced at any desired speed by controlling the timing of pulse generating modules that supply a tangential electric field to the tube wall. Because of the ability to control the speed of this virtual wave, the accelerator is capable of handling any charge to mass ratio particle; hence it can be used for electrons, protons and any ion. The accelerator architectures, key technologies and development challenges will be described.

  12. Acoustic excitation of liquid fuel droplets and coaxial jets

    NASA Astrophysics Data System (ADS)

    Rodriguez, Juan Ignacio

    This experimental study focuses on two important problems relevant to acoustic coupling with condensed phase transport processes, with special relevance to liquid rocket engine and airbreathing engine combustion instabilities. The first part of this dissertation describes droplet combustion characteristics of various fuels during exposure to external acoustical perturbations. Methanol, ethanol, a liquid synthetic fuel derived from coal gasification via the Fischer-Tropsch process, and a blend of aviation fuel and the synthetic fuel are used. During acoustic excitation, the droplet is situated at or near a pressure node condition, where the droplet experiences the largest velocity perturbations, and at or near a pressure antinode condition, where the droplet is exposed to minimal velocity fluctuations. For unforced conditions, the values of the droplet burning rate constant K of the different fuels are consistent with data in the literature. The location of the droplet with respect to a pressure node or antinode also has a measurable effect on droplet burning rates, which are different for different fuels and in some cases are as high as 28% above the unforced burning rate value. Estimates of flame extinction due to acoustic forcing for different fuels are also obtained. The second part of this work consists of an experimental study on coaxial jet behavior under non-reactive, cryogenic conditions, with direct applications to flow mixing and unstable behavior characterization in liquid rocket engines. These experiments, conducted with nitrogen, span a range of outer to inner jet momentum flux ratios from 0.013 to 23, and explore subcritical, nearcritical and supercritical pressure conditions, with and without acoustic excitation, for two injector geometries. Acoustic forcing at 3 kHz is utilized to maximize the pressure fluctuations within the chamber acting on the jet, reaching maximum values of 4% of the mean chamber pressure. The effect of the magnitude and phase

  13. Numerical simulation of powder transport behavior in laser cladding with coaxial powder feeding

    NASA Astrophysics Data System (ADS)

    Liu, Hao; He, XiuLi; Yu, Gang; Wang, ZhongBin; Li, ShaoXia; Zheng, CaiYun; Ning, WeiJian

    2015-10-01

    Laser cladding with coaxial powder feeding is one of the new processes applied to produce well bonding coating on the component to improve performance of its surface. In the process, the clad material is transported by the carrying gas through the coaxial nozzle, generating gas-powder flow. The powder feeding process in the coaxial laser cladding has important influence on the clad qualities. A 3D numerical model was developed to study the powder stream structure of a coaxial feeding nozzle. The predicted powder stream structure was well agreed with the experimental one. The validated model was used to explore the collision behavior of particles in the coaxial nozzle, as well as powder concentration distribution. It was found that the particle diameter and restitution coefficient greatly affect the velocity vector at outlet of nozzle due to the collisions, as well as the powder stream convergence characteristics below the nozzle. The results indicated a practical approach to optimize the powder stream for the coaxial laser cladding.

  14. Analysis of the power capacity characteristics of coaxial slow-wave structures

    NASA Astrophysics Data System (ADS)

    Bai, Zhen; Zhang, Jun; Zhong, Huihuang; Zhang, Dian; Meng, Dong

    2016-06-01

    Coaxial O-type Cerenkov devices usually operate in the quasi-TEM or TM01 mode, but the power capacity characteristics of these modes in coaxial slow-wave structures (SWSs) have not been published thus far. This paper presents numerical studies of the power capacity characteristics of the quasi-TEM and TM01 modes in coaxial SWSs. The results suggest that the power capacity of the TM01 mode is not significantly higher than that of the quasi-TEM mode, unless the distance between the inner and outer conductors is less than a critical value. A comparison of the power capacities of the TM01 mode in coaxial and hollow SWSs is reported for the first time. When the distance between the inner and outer conductors of coaxial SWSs is small enough or the outer radius is large enough, the power capacity of the TM01 mode in coaxial SWSs is higher than that of the TM01 mode in hollow SWSs with the same outer radius.

  15. Electrospun Polyurethane-Core and Gelatin-Shell Coaxial Fibre Coatings for Miniature Implantable Biosensors

    PubMed Central

    Wang, Ning; Burugapalli, Krishna; Wijesuriya, Shavini; Far, Mahshid Yazdi; Song, Wenhui; Moussy, Francis; Zheng, Yudong; Ma, Yanxuan; Wu, Zhentao; Li, Kang

    2014-01-01

    The aim of this study was to introduce bioactivity to the electrospun coating for implantable glucose biosensors. Coaxial fibre membranes having polyurethane as the core and gelatin as the shell were produced using a range of polyurethane concentrations (2, 4, 6 & 8% wt/v) while keeping gelatin concentration (10% wt/v) constant in 2,2,2-trifluoroethanol. The gelatin shell was stabilized using glutaraldehyde vapour. The formation of core-shell structure was confirmed using TEM, SEM and FTIR. The coaxial fibre membranes showed uniaxial tensile properties intermediate to that of the pure polyurethane and the gelatin fibre membranes. The gelatin shell increased hydrophilicity and glucose transport flux across the coaxial fibre membranes. The coaxial fibre membranes having small fibre diameter (541 nm) and a thick gelatin shell (52%) did not affect the sensor sensitivity, but decreased sensor’s linearity in the long run. In contrast, thicker coaxial fibre membranes (1133 nm) having a thin gelatin shell (34%) maintained both sensitivity and linearity till 84 days of the study period. To conclude, polyurethane-gelatin co-axial fibre membranes, due to their faster permeability to glucose, tailorable mechanical properties and bioactivity are potential candidates for coatings to favourably modify the host responses to extend the reliable in vivo lifetime of implantable glucose biosensors. PMID:24346001

  16. Role of ambient dielectric in propagation of Ar atmospheric pressure nonequilibrium plasma jets

    SciTech Connect

    Song, Jian; Wang, Youyin; Yu, Daren; Tang, Jingfeng Wei, Liqiu; Ren, Chunsheng

    2015-05-15

    A single-electrode atmospheric pressure nonequilibrium plasma jet surrounded with different ambient dielectrics is investigated driven by AC power supply. Another three ambient dielectrics, distilled water, ethanol, and carbon tetrachloride, are adopted to compare with air. By examining electrical and optical characteristics, it was found that the molecular polarity of ambient dielectrics had its significant effect on the propagation of atmospheric pressure nonequilibrium plasma jets. When the polarization of molecules was enhanced, the discharge current and the bullet velocity were also increased. For nonpolar dielectric of carbon tetrachloride, this was mainly resulted from the electron polarization in the built-in electric field. For polar dielectrics of ethanol and distilled water, in addition to the electron polarization, orientation polarization was the main cause for the further increase in discharge current and bullet velocity.

  17. An efficient iterative algorithm for computation of scattering from dielectric objects.

    SciTech Connect

    Liao, L.; Gopalsami, N.; Venugopal, A.; Heifetz, A.; Raptis, A. C.

    2011-02-14

    We have developed an efficient iterative algorithm for electromagnetic scattering of arbitrary but relatively smooth dielectric objects. The algorithm iteratively adapts the equivalent surface currents until the electromagnetic fields inside and outside the dielectric objects match the boundary conditions. Theoretical convergence is analyzed for two examples that solve scattering of plane waves incident upon air/dielectric slabs of semi-infinite and finite thicknesses. We applied the iterative algorithm for simulation of sinusoidally-perturbed dielectric slab on one side and the method converged for such unsmooth surfaces. We next simulated the shift in radiation pattern of a 6-inch dielectric lens for different offsets of the feed antenna on the focal plane. The result is compared to that of the Geometrical Optics (GO).

  18. A soft compressive sensor using dielectric elastomers

    NASA Astrophysics Data System (ADS)

    Zhang, Hongying; Wang, Michael Yu; Li, Jisen; Zhu, Jian

    2016-03-01

    This paper proposes a methodology to design, analyze and fabricate a soft compressive sensor, made of dielectric elastomers that are able to recover from large strain. Each module of the compressive sensor is modeled as a capacitor, comprising a DE membrane sandwiched between two compliant electrodes. When the sensor modules aligned in an array were subject to a compressive load, the induced deformation on the corresponding module resulted in capacitance increase. By detecting the capacitance signal, not only the position but also the magnitude of the compressive load were obtained. We built an analytical model to simulate the mechanical-electrical responses of two common soft sensor structures, namely with and without an embedded air chamber. The simulation results showed that the air embedded prototype improved the sensitivity of the sensor significantly, which was consistent with the experimental results, where the sensitivity is enhanced from 0.05 N-1 to 0.91 N-1. Furthermore, the effect of the air chamber dimension on the sensitivity is also discussed theoretically and experimentally. It concluded that the detection range increased with the air chamber height over length ratio.

  19. Co-Axial pulse tube for oxygen liquifaction

    NASA Astrophysics Data System (ADS)

    Emery, Nick; Caughley, Alan; Glasson, Neil; Meier, J.

    2012-06-01

    Industrial Research Ltd (IRL) previously developed a single-stage, inline, pulse tube for use with their metallic-diaphragm pressure wave generator (PWG), achieving 45 W of cooling power at 77 K, with 19.5 % of Carnot efficiency (based on the PV input power). This paper describes the conversion of the inline pulse tube to a co-axial configuration that provides a more accessible cold finger. Sage pulse tube simulation software was used to model the modified pulse tube and predicted 105 W of cooling power at 90 K, with an indicated input power of 1350 W. The pulse tube operated at 50 Hz, with a mean helium working pressure of 2.5 MPa and was closely coupled to a 60 ml swept volume PWG. The experimental results yielded more than 100 W @ 90 K with 2.5 MPa of gas pressure, with a lowest no load temperature of 39.7 K with 1.4 MPa of gas pressure. Details of the development, experimental results and correlations to the Sage model are discussed

  20. Coaxial electrohydrodynamic atomization process for production of polymeric composite microspheres.

    PubMed

    Xu, Qingxing; Qin, Hao; Yin, Zhenyuan; Hua, Jinsong; Pack, Daniel W; Wang, Chi-Hwa

    2013-12-18

    Polymeric composite microspheres consisting of a poly(D,L-lactic-co-glycolic acid) (PLGA) core surrounded by a poly(D,L-lactic acid) (PDLLA) shell layer were successfully fabricated by coaxial electrohydrodynamic atomization (CEHDA) process. Process conditions, including nozzle voltage and polymer solution flow rates, as well as solution parameters, such as polymer concentrations, were investigated to ensure the formation of composite microspheres with a doxorubicin-loaded PLGA core surrounded by a relatively drug-free PDLLA shell layer. Various microsphere formulations were fabricated and characterized in terms of their drug distribution, encapsulation efficiency and in vitro release. Numerical simulation of CEHDA process was performed based on a computational fluid dynamics (CFD) model in Fluent by employing the process conditions and fluid properties used in the experiments. The simulation results were compared with the experimental work to illustrate the capability of the CFD model to predict the production of consistent compound droplets, and hence, the expected core-shell structured microspheres. PMID:24347672

  1. [Incisions for biaxial and coaxial microincision cataract surgery].

    PubMed

    Müller, M; Kohnen, T

    2010-02-01

    Microincision cataract surgery (MICS) represents a new level in the development of cataract surgery. Phacoemulsification with intraocular lens (IOL) implantation via incisions of coaxial approach, such as conventional phacoemulsification but with a smaller diameter of the phaco tip (C-MICS), or by the biaxial approach, with separation of the phaco tip and irrigation (B-MICS). Compared with standard small-incision cataract surgery, the advantages of MICS are less corneal astigmatism and fewer corneal surface irregularities, with favorable implications for visual quality and early rehabilitation. In the effort toward smaller incisions, special interest should be given to wound integrity, especially regarding the risk of endophthalmitis. With limited corneal elastic capacity, irreversible expansion of the incision with tissue laceration may occur. Smaller incisions are superior only if they cause less trauma. This requires an optimized relationship between incision size and manipulation during IOL implantation as well as attention to safety issues. MICS offers a platform for new benchmarks in phacoemulsification. PMID:20107810

  2. Test of a coaxial blade tuner at HTS FNAL

    SciTech Connect

    Pischalnikov, Y.; Barbanotti, S.; Harms, E.; Hocker, A.; Khabiboulline, T.; Schappert, W.; Bosotti, A.; Pagani, C.; Paparella, R.; /LASA, Segrate

    2011-03-01

    A coaxial blade tuner has been selected for the 1.3GHz SRF cavities of the Fermilab SRF Accelerator Test Facility. Results from tuner cold tests in the Fermilab Horizontal Test Stand are presented. Fermilab is constructing the SRF Accelerator Test Facility, a facility for accelerator physics research and development. This facility will contain a total of six cryomodules, each containing eight 1.3 GHz nine-cell elliptical cavities. Each cavity will be equipped with a Slim Blade Tuner designed by INFN Milan. The blade tuner incorporates both a stepper motor and piezo actuators to allow for both slow and fast cavity tuning. The stepper motor allows the cavity frequency to be statically tuned over a range of 500 kHz with an accuracy of several Hz. The piezos provide up to 2 kHz of dynamic tuning for compensation of Lorentz force detuning and variations in the He bath pressure. The first eight blade tuners were built at INFN Milan, but the remainder are being manufactured commercially following the INFN design. To date, more than 40 of the commercial tuners have been delivered.

  3. Low temperature high frequency coaxial pulse tube for space application

    SciTech Connect

    Charrier, Aurelia; Charles, Ivan; Rousset, Bernard; Duval, Jean-Marc

    2014-01-29

    The 4K stage is a critical step for space missions. The Hershel mission is using a helium bath, which is consumed day by day (after depletion, the space mission is over) while the Plank mission is equipped with one He4 Joule-Thomson cooler. Cryogenic chain without helium bath is a challenge for space missions and 4.2K Pulse-Tube working at high frequency (around 30Hz) is one option to take it up. A low temperature Pulse-Tube would be suitable for the ESA space mission EChO (Exoplanet Characterisation Observatory, expected launch in 2022), which requires around 30mW cooling power at 6K; and for the ESA space mission ATHENA (Advanced Telescope for High ENergy Astrophysics), to pre-cool the sub-kelvin cooler (few hundreds of mW at 15K). The test bench described in this paper combines a Gifford-McMahon with a coaxial Pulse-Tube. A thermal link is joining the intercept of the Pulse-Tube and the second stage of the Gifford-McMahon. This intercept is a separator between the hot and the cold regenerators of the Pulse-Tube. The work has been focused on the cold part of this cold finger. Coupled with an active phase shifter, this Pulse-Tube has been tested and optimized and temperatures as low as 6K have been obtained at 30Hz with an intercept temperature at 20K.

  4. Co-axial geometry electromagnetic launch to space

    SciTech Connect

    Turman, B.N.; Lipinski, R.J.; Palmer, M.R.; Leung, E.M.W.

    1994-09-01

    Small or moderate-weight space launches could significantly benefit from an electrically powered launch complex, based on an electromagnetic coil launcher. This paper presents results of studies to estimate the required launcher parameters, and estimate the cost of such a launch facility. This study is based on electromagnetic launch, or electromagnetic gun technology which is constrained to a coaxial geometry to take advantage of the efficiency of closely-coupled coils. This geometry, along with reasonable constraints on the length and power requirements for the launcher, match most naturally to relatively small satellites in low-earth orbits. The launcher energy and power requirements fall in the range of 60 - 260 GJ and 20 - 400 GW electric. Parametric evaluations have been conducted with a launcher length of 1-2 km, exit velocity of 1 - 6 km/s, and payloads of 100 - 1000 kg. The launch requires high acceleration, so the satellite package must be hardened. The EM launch complex could greatly reduce the amount of fuels handling, reduce the turnaround time between launches, allow more concurrence in launch preparation, reduce the manpower requirements for launch vehicle preparation and increase the reliability of launch by using more standardized vehicle preparations.

  5. Electrode support for gas arc welding torch having coaxial vision

    NASA Technical Reports Server (NTRS)

    Richardson, Richard W. (Inventor)

    1987-01-01

    An improved electrode mounting structure for a gas tungsten arc welding torch having a coaxial imaging system. The electrode mounting structure includes a support having a central hub and a plurality of spokes which extend from the hub generally radially with respect to the axis of the torch into supporting engagement with the interior walls of the torch. The spaces between the spokes are optical passages for transmission of light to form the image. A tubular collet holder is threadedly engaged at its upper end to the hub and extends downwardly toward the open end of the torch. The collet holder has an inwardly tapering constriction near its lower end. An electrode-retaining, tubular collet is mounted within the collet holder and has a longitudinally split and tapered end seating against the tapered constriction. A spring seats against the upper end of the collet and forces the split end against the tapered constriction to wedge the split end radially inwardly to grip the electrode within the collet.

  6. Effects of rarefaction in microflows between coaxial cylinders.

    PubMed

    Taheri, Peyman; Struchtrup, Henning

    2009-12-01

    Microscale gas flows between two rotating coaxial circular cylinders of infinite length with different temperatures are investigated. Navier-Stokes-Fourier (NSF) and regularized 13-moment (R13) equations in their linear form are used to independently analyze velocity and temperature fields in shear-driven rotary flows, i.e., cylindrical Couette flows. Knudsen boundary layers, which present non-Newtonian stress and non-Fourier heat flow, are predicted as the dominant rarefaction effects in the linear theory. We show that the R13 system yields more accurate results for this boundary value problem by predicting the Knudsen boundary layers, which are not accessible for NSF equations. Furthermore, a set of second-order boundary conditions for velocity slip and temperature jump are derived for the NSF system. It is shown that the proposed boundary conditions effectively improve the classical hydrodynamics. The accuracy of NSF and R13 equations is discussed based on their comparison with available direct simulation Monte Carlo data. PMID:20365277

  7. High Voltage Coaxial Vacuum Gap Breakdown for Pulsed Power Liners

    NASA Astrophysics Data System (ADS)

    Cordaro, Samuel; Bott-Suzuki, Simon; Caballero Bendixsen, Luis Sebastian

    2015-11-01

    The dynamics of Magnetized Liner Inertial Fusion (MagLIF)1, are presently under detailed study at Sandia National Laboratories. Alongside this, a comprehensive analysis of the influence of the specific liner design geometry in the MagLIF system on liner initiation is underway in the academic community. Recent work at UC San Diego utilizes a high voltage pulsed system (25kV, 150ns) to analyze the vacuum breakdown stage of liner implosion. Such experimental analyses are geared towards determining how the azimuthal symmetry of coaxial gap breakdown affect plasma initiation within the liner. The final aim of the experimental analysis is to assess to what scale symmetry remains important at high (MV) voltages. An analysis of the above will utilize plasma self-emission via optical MCP, current measurements, voltage measurements near the gap, exact location of breakdown via 2D b-dot probe triangulation, as well as measuring the evolution of the B-field along the length of the liner via b-dot array. Results will be discussed along with analytical calculations of breakdown mechanisms

  8. Large co-axial pulse tube preliminary results

    NASA Astrophysics Data System (ADS)

    Emery, N.; Caughley, A.; Meier, J.; Nation, M.; Tanchon, J.; Trollier, T.; Ravex, A.

    2014-01-01

    We report that Callaghan Innovation, formally known as Industrial Research Ltd (IRL), has designed and built its largest of three high frequency single-stage co-axial pulse tubes, closely coupled to a metal diaphragm pressure wave generator (PWG). The previous pulse tube achieved 110 W of cooling power @ 77 K, with an electrical input power of 3.1 kW from a 90 cc swept volume PWG. The pulse tubes have all been tuned to operate at 50 Hz, with a mean helium working pressure of 2.5 MPa. Sage pulse tube simulation software was used to model the latest pulse tube and predicted 280 W of cooling power @ 77 K. The nominal 250 W cryocooler was designed to be an intermediate step to up-scale pulse tube technology for our 1000 cc swept-volume PWG, to provide liquefaction of gases and cooling for HTS applications. Details of the modeling, design, development and preliminary experimental results are discussed.

  9. Thickness estimation of the subcutaneous fat using coaxial probe.

    PubMed

    Ramezani, Mohammad Hossein; Nadimi, Esmaeil S

    2016-03-01

    In this Letter, a non-invasive method for thickness estimation of the subcutaneous fat layer of abdominal wall is presented by using a coaxial probe. Fat layer has the highest impact on the averaged attenuation parameter of the abdominal wall due to its high thickness and low permittivity. The abdominal wall is modelled as a multi-layer medium and an analytical model for the probe is derived by calculation of its aperture admittance facing to this multi-layer medium. The performance of this model is then validated by a numerical simulation using finite-difference-time-domain (FDTD) analysis. Simulation results show the high impact of the probe dimension and fat layer thickness on the sensitivity of the measured permittivity. The authors further investigate this sensitivity by statistical analysis of the permittivity variations. Finally, measuring in different locations relative to the body surface is presented as a solution to estimate the fat layer thickness in the presence of uncertainty of model parameters. PMID:27222737

  10. Three-dimensional numerical simulation of detonations in coaxial tubes

    NASA Astrophysics Data System (ADS)

    Tsuboi, Nobuyuki; Daimon, Yu; Hayashi, A. Koichi

    2008-10-01

    Three-dimensional numerical simulation of detonations in both a circular tube and a coaxial tube are simulated to reveal characteristics of single spinning and two-headed detonations. The numerical results show a feature of a single spinning detonation which was discovered in 1926. Transverse detonations are observed in both tubes, however, the single spinning mode maintains the complex Mach reflection whereas the two-headed mode develops periodically from the single Mach reflection to the complex one. The calculated cell aspect ratio for the two-headed mode changes from 1.09 to 1.34 as the radius of axial insert increases from r 1/ R = 0.1 to 0.9. The calculated cell aspect ratio for r 1/ R = 0.1 is close to the experimental results without an axial insert. The formation of an unreacted gas pocket behind the detonation front was not observed in the single spinning mode; however, the two-headed mode has unreacted gas pocket behind the front near the axial insert.

  11. Properties of linear microwave plasma sustained by coaxial TEM waveguide

    NASA Astrophysics Data System (ADS)

    Han, Moon-Ki; Seo, Kwon-Sang; Kim, Dong Hyun; Lee, Hae June; Lee, Ho-Jun

    2013-09-01

    A linear 2.45GHz microwave plasma sustained by coaxial circular TEM waveguide has been developed for the low temperature large area plasma enhanced chemical vapor deposition application. TE-TEM microwave power coupling was achieved by copper rod located at λg/4 from short-end of TE10 waveguide. TEM waveguide consists of quartz tube surrounded by plasma and copper rod electrode. TEM waveguide is 60 cm in length and 3 cm in diameter, which is terminated with shorted metal cap. For the operation condition of 300 W input power and Ar pressure of 200 mTorr, a clear standing wave pattern with wavelength of 10 cm was observed. Measured plasma density and temperature at 5 cm from quartz wall was 1.2 × 1017/cm3 and 1.7 eV respectively. Density non-uniformity was less than 6% along quartz tube in spite of standing wave set-up. In addition, properties of the microwave source are also investigated through electromagnetic field simulation coupled with drift-diffusion approximation of plasma. Calculated and measured standing wave pattern was almost identical. Electron density and temperature distribution show similar behavior with experimental results. S11 value of input port of TE10 waveguide was calculated as 17dB.

  12. Prediction of turbulent coaxial streams of constant and variable density

    NASA Astrophysics Data System (ADS)

    Johnson, Richard W.

    1993-08-01

    The present study investigates the accuracy of well-known turbulence models in simulating the mean velocity, turbulence, and concentration fields for the cases of constant and variable density, turbulent, low Mach number, isothermal, confined coaxial streams of different bulk mean velocities, or axisymmetric mixing layers. The standard k-epsilon eddy viscosity model and an anisotropic thin shear algebraic stress model (ASM) are employed for the constant density case. Results for the k-epsilon model are determined to be qualitatively satisfactory and superior to those for the thin shear ASM, though both show excessive radial diffusion of axial momentum. Based on these conclusions, the k-epsilon model, extended for variable density, is used for numerical simulations of a similar flow where the inner stream gas has a density four times that of the outer stream gas. Simulations for the velocity using the k-epsilon model are again found to be qualitatively accurate. Predictions for the concentration field, however, are in good agreement with the data. The flow fields studied are idealizations of a particular configuration once proposed for a gas core reactor (GCR) nuclear propulsion engine. Nuclear propulsion for space travel, once considered in the 1960s and early 1970s, is being reconsidered, especially for manned interplanetary travel.

  13. Basic coaxial mass driver reference design. [electromagnetic lunar launch

    NASA Technical Reports Server (NTRS)

    Kolm, H. H.

    1977-01-01

    The reference design for a basic coaxial mass driver is developed to illustrate the principles and optimization procedures on the basis of numerical integration by programmable pocket calculators. The four inch caliber system uses a single-coil bucket and a single-phase propulsion track with discrete coils, separately energized by capacitors. An actual driver would use multiple-coil buckets and an oscillatory multi-phase drive system. Even the basic, table-top demonstration system should in principle be able to achieve accelerations in the 1,000 m/sq sec range. Current densities of the order of 25 ka/sq cm, continuously achievable only in superconductors, are carried by an ordinary aluminum bucket coil for a short period in order to demonstrate the calculated acceleration. Ultimately the system can be lengthened and provided with a magnetically levitated, superconducting bucket to study levitation dynamics under quasi-steady-state conditions, and to approach lunar escape velocity in an evacuated tube.

  14. Wave run-up on a coaxial perforated circular cylinder

    NASA Astrophysics Data System (ADS)

    Zhu, Da-Tong

    2011-06-01

    This paper describes a plane regular wave interaction with a combined cylinder which consists of a solid inner column and a coaxial perforated outer cylinder. The outer perforated surface is a thin porous cylinder with an annular gap between it and the inner cylinder. The non-linear boundary condition at the perforated wall is a prime focus in the study; energy dissipation at the perforated wall occurs through the resistance to the fluid across the perforated wall. Explicit analytical formulae are presented to calculate the wave run-up on the outer and inner surfaces of the perforated cylinder and the surface of the inner column. The theoretical results of the wave run-up are compared with previous experimental data. Numerical results have also been obtained: when the ratio of the annular gap between the two cylinders to incident wavelength ( b- a)/ L≤0.1, the wave run-up on the inner surface of the perforated cylinder and the surface of inner column can partially or completely exceed the incident wave height.

  15. Coaxial needle insertion assistant with enhanced force feedback.

    PubMed

    De Lorenzo, Danilo; Koseki, Yoshihiko; De Momi, Elena; Chinzei, Kiyoyuki; Okamura, Allison M

    2013-02-01

    Many medical procedures involving needle insertion into soft tissues, such as anesthesia, biopsy, brachytherapy, and placement of electrodes, are performed without image guidance. In such procedures, haptic detection of changing tissue properties at different depths during needle insertion is important for needle localization and detection of subsurface structures. However, changes in tissue mechanical properties deep inside the tissue are difficult for human operators to sense, because the relatively large friction force between the needle shaft and the surrounding tissue masks the smaller tip forces. A novel robotic coaxial needle insertion assistant, which enhances operator force perception, is presented. This one-degree-of-freedom cable-driven robot provides to the operator a scaled version of the force applied by the needle tip to the tissue, using a novel design and sensors that separate the needle tip force from the shaft friction force. The ability of human operators to use the robot to detect membranes embedded in artificial soft tissue was tested under the conditions of 1) tip force and shaft force feedback, and 2) tip force only feedback. The ratio of successful to unsuccessful membrane detections was significantly higher (up to 50%) when only the needle tip force was provided to the user. PMID:23193302

  16. Frequency scaling with miniature COmpact MIcrowave and Coaxial ion sources

    NASA Astrophysics Data System (ADS)

    Sortais, Pascal; André, Thomas; Angot, Julien; Bouat, Sophie; Jacob, Josua; Lamy, Thierry; Sole, Patrick

    2014-02-01

    We will present recent basic developments about possible extension of the COMIC (for COmpact MIcrowave and Coaxial) devices up to 5.8 GHz in place of the present 2.45 GHz operation [P. Sortais, T. Lamy, J. Médard, J. Angot, L. Latrasse, and T. Thuillier, Rev. Sci. Instrum. 81, 02B314 (2010)]. New applications associating multiple COMIC devices for thin film deposition will be described and we will explain why an increase of the current density delivered by each individual ion source could lead to the increase of the deposition rate. For this purpose, we will present results of about two devices working at 5.8 GHz. The first one is a tiny ion source, the world smallest microwave ion source, exactly similar to COMIC but operating at 5.8 GHz with a quarter wave cavity structure and a few watts microwave power consumption. We will show that the frequency scaling effect is effective inside such small machines. The second one is a more ambitious ion source designed around a three quarter wave structure that works with a few tens of watts at 5.8 GHz.

  17. Frequency scaling with miniature COmpact MIcrowave and Coaxial ion sources.

    PubMed

    Sortais, Pascal; André, Thomas; Angot, Julien; Bouat, Sophie; Jacob, Josua; Lamy, Thierry; Sole, Patrick

    2014-02-01

    We will present recent basic developments about possible extension of the COMIC (for COmpact MIcrowave and Coaxial) devices up to 5.8 GHz in place of the present 2.45 GHz operation [P. Sortais, T. Lamy, J. Médard, J. Angot, L. Latrasse, and T. Thuillier, Rev. Sci. Instrum. 81, 02B314 (2010)]. New applications associating multiple COMIC devices for thin film deposition will be described and we will explain why an increase of the current density delivered by each individual ion source could lead to the increase of the deposition rate. For this purpose, we will present results of about two devices working at 5.8 GHz. The first one is a tiny ion source, the world smallest microwave ion source, exactly similar to COMIC but operating at 5.8 GHz with a quarter wave cavity structure and a few watts microwave power consumption. We will show that the frequency scaling effect is effective inside such small machines. The second one is a more ambitious ion source designed around a three quarter wave structure that works with a few tens of watts at 5.8 GHz. PMID:24593653

  18. Numerical computation of transient coaxial entry tube flows

    NASA Technical Reports Server (NTRS)

    Wieber, P. R.; Dewitt, K. J.

    1976-01-01

    A numerical program was developed to compute transient laminar flows in two dimensions including multicomponent mixing and chemical reaction. The program can compute both incompressible flows and compressible flows at all speeds, and it is applied to describe transient and steady state solutions for low subsonic, coaxial entry, tue flows. Single component, nonreacting flows comprise most of the solutions, but one steady state solution is presented for trace concentration constituents engaging in a second order reaction. Numerical stability was obtained by adding at each calculation point a correction for numerical diffusion errors caused by truncation of the Taylor series used to finite difference the conservation equations. Transient computations were made for fluids initially at rest, then subjected to step velocity inputs that were uniform across each region of the entry plane and were held constant throughout the computation period. For center tube to annulus velocity ratios of 0.5 and 2.0, the bulk fluid in the tube initially moved in plug flow, but strong radial flows developed near the injection plane which moved the fluid into the high shear region between the jets and away from the tube wall.

  19. Coaxial electrohydrodynamic atomization process for production of polymeric composite microspheres

    PubMed Central

    Xu, Qingxing; Qin, Hao; Yin, Zhenyuan; Hua, Jinsong; Pack, Daniel W.; Wang, Chi-Hwa

    2013-01-01

    Polymeric composite microspheres consisting of a poly(D,L-lactic-co-glycolic acid) (PLGA) core surrounded by a poly(D,L-lactic acid) (PDLLA) shell layer were successfully fabricated by coaxial electrohydrodynamic atomization (CEHDA) process. Process conditions, including nozzle voltage and polymer solution flow rates, as well as solution parameters, such as polymer concentrations, were investigated to ensure the formation of composite microspheres with a doxorubicin-loaded PLGA core surrounded by a relatively drug-free PDLLA shell layer. Various microsphere formulations were fabricated and characterized in terms of their drug distribution, encapsulation efficiency and in vitro release. Numerical simulation of CEHDA process was performed based on a computational fluid dynamics (CFD) model in Fluent by employing the process conditions and fluid properties used in the experiments. The simulation results were compared with the experimental work to illustrate the capability of the CFD model to predict the production of consistent compound droplets, and hence, the expected core-shell structured microspheres. PMID:24347672

  20. Mass and Momentum Turbulent Transport Experiments with Confined Coaxial Jets

    NASA Technical Reports Server (NTRS)

    Johnson, B. V.; Bennett, J. C.

    1981-01-01

    Downstream mixing of coaxial jets discharging in an expanded duct was studied to obtain data for the evaluation and improvement of turbulent transport models currently used in a variety of computational procedures throughout the propulsion community for combustor flow modeling. Flow visualization studies showed four major shear regions occurring; a wake region immediately downstream of the inlet jet inlet duct; a shear region further downstream between the inner and annular jets; a recirculation zone; and a reattachment zone. A combination of turbulent momentum transport rate and two velocity component data were obtained from simultaneous measurements with a two color laser velocimeter (LV) system. Axial, radial and azimuthal velocities and turbulent momentum transport rate measurements in the r-z and r-theta planes were used to determine the mean value, second central moment (or rms fluctuation from mean), skewness and kurtosis for each data set probability density function (p.d.f.). A combination of turbulent mass transport rate, concentration and velocity data were obtained system. Velocity and mass transport in all three directions as well as concentration distributions were used to obtain the mean, second central moments, skewness and kurtosis for each p.d.f. These LV/LIF measurements also exposed the existence of a large region of countergradient turbulent axial mass transport in the region where the annular jet fluid was accelerating the inner jet fluid.