Science.gov

Sample records for air dispersion models

  1. Air modeling: Air dispersion models; regulatory applications and technological advances

    SciTech Connect

    Miller, M.; Liles, R.

    1995-09-01

    Air dispersion models are a useful and practical tool for both industry and regulatory agencies. They serve as tools for engineering, permitting, and regulations development. Their cost effectiveness and ease of implementation compared to ambient monitoring is perhaps their most-appealing trait. Based on the current momentum within the U.S. EPA to develop better models and contain regulatory burdens on industry, it is likely that air dispersion modeling will be a major player in future air regulatory initiatives.

  2. Dispersion modeling of air pollutants in the atmosphere: a review

    NASA Astrophysics Data System (ADS)

    Leelőssy, Ádám; Molnár, Ferenc; Izsák, Ferenc; Havasi, Ágnes; Lagzi, István; Mészáros, Róbert

    2014-09-01

    Modeling of dispersion of air pollutants in the atmosphere is one of the most important and challenging scientific problems. There are several natural and anthropogenic events where passive or chemically active compounds are emitted into the atmosphere. The effect of these chemical species can have serious impacts on our environment and human health. Modeling the dispersion of air pollutants can predict this effect. Therefore, development of various model strategies is a key element for the governmental and scientific communities. We provide here a brief review on the mathematical modeling of the dispersion of air pollutants in the atmosphere. We discuss the advantages and drawbacks of several model tools and strategies, namely Gaussian, Lagrangian, Eulerian and CFD models. We especially focus on several recent advances in this multidisciplinary research field, like parallel computing using graphical processing units, or adaptive mesh refinement.

  3. Dispersion modeling of selected PAHs in urban air: A new approach combining dispersion model with GIS and passive air sampling

    NASA Astrophysics Data System (ADS)

    Sáňka, Ondřej; Melymuk, Lisa; Čupr, Pavel; Dvorská, Alice; Klánová, Jana

    2014-10-01

    This study introduces a new combined air concentration measurement and modeling approach that we propose can be useful in medium and long term air quality assessment. A dispersion study was carried out for four high molecular weight polycyclic aromatic hydrocarbons (PAHs) in an urban area with industrial, traffic and domestic heating sources. A geographic information system (GIS) was used both for processing of input data as well as visualization of the modeling results. The outcomes of the dispersion model were compared to the results of passive air sampling (PAS). Despite discrepancies between measured and modeled concentrations, an approach combining the two techniques is promising for future air quality assessment. Differences between measured and modeled concentrations, in particular when measured values exceed the modeled concentrations, are indicative of undocumented, sporadic pollutant sources. Thus, these differences can also be useful for assessing and refining emission inventories.

  4. Air Dispersion Modeling for Building 3026C/D Demolition

    SciTech Connect

    Ward, Richard C; Sjoreen, Andrea L; Eckerman, Keith F

    2010-06-01

    This report presents estimates of dispersion coefficients and effective dose for potential air dispersion scenarios of uncontrolled releases from Oak Ridge National Laboratory (ORNL) buildings 3026C, 3026D, and 3140 prior to or during the demolition of the 3026 Complex. The Environmental Protection Agency (EPA) AERMOD system1-6 was used to compute these estimates. AERMOD stands for AERMIC Model, where AERMIC is the American Meteorological Society-EPA Regulatory Model Improvement Committee. Five source locations (three in building 3026D and one each in building 3026C and the filter house 3140) and associated source characteristics were determined with the customer. In addition, the area of study was determined and building footprints and intake locations of air-handling systems were obtained. In addition to the air intakes, receptor sites consisting of ground level locations on four polar grids (50 m, 100 m, 200 m, and 500 m) and two intersecting lines of points (50 m separation), corresponding to sidewalks along Central Avenue and Fifth Street. Three years of meteorological data (2006 2008) were used each consisting of three datasets: 1) National Weather Service data; 2) upper air data for the Knoxville-Oak Ridge area; and 3) local weather data from Tower C (10 m, 30 m and 100 m) on the ORNL reservation. Annual average air concentration, highest 1 h average and highest 3 h average air concentrations were computed using AERMOD for the five source locations for the three years of meteorological data. The highest 1 h average air concentrations were converted to dispersion coefficients to characterize the atmospheric dispersion as the customer was interested in the most significant response and the highest 1 h average data reflects the best time-averaged values available from the AERMOD code. Results are presented in tabular and graphical form. The results for dose were obtained using radionuclide activities for each of the buildings provided by the customer.7

  5. Uncertainty, ensembles and air quality dispersion modeling: applications and challenges

    NASA Astrophysics Data System (ADS)

    Dabberdt, Walter F.; Miller, Erik

    The past two decades have seen significant advances in mesoscale meteorological modeling research and applications, such as the development of sophisticated and now widely used advanced mesoscale prognostic models, large eddy simulation models, four-dimensional data assimilation, adjoint models, adaptive and targeted observational strategies, and ensemble and probabilistic forecasts. Some of these advances are now being applied to urban air quality modeling and applications. Looking forward, it is anticipated that the high-priority air quality issues for the near-to-intermediate future will likely include: (1) routine operational forecasting of adverse air quality episodes; (2) real-time high-level support to emergency response activities; and (3) quantification of model uncertainty. Special attention is focused here on the quantification of model uncertainty through the use of ensemble simulations. Application to emergency-response dispersion modeling is illustrated using an actual event that involved the accidental release of the toxic chemical oleum. Both surface footprints of mass concentration and the associated probability distributions at individual receptors are seen to provide valuable quantitative indicators of the range of expected concentrations and their associated uncertainty.

  6. INTEGRATING DISPERSION MODELING, RECEPTOR MODELING AND AIR MONITORING TO APPORTION INCINERATOR IMPACTS FOR EXPOSURE ASSESSMENT

    EPA Science Inventory

    An approach combining air quality measurements, GIS, receptor and dispersion modeling to apportion the impact of incinerator sources to individuals living in surrounding neighborhoods was presented. his technique wall applied to a Health and Clean Air Study investigating the resp...

  7. Air pollution dispersion models for human exposure predictions in London.

    PubMed

    Beevers, Sean D; Kitwiroon, Nutthida; Williams, Martin L; Kelly, Frank J; Ross Anderson, H; Carslaw, David C

    2013-01-01

    The London household survey has shown that people travel and are exposed to air pollutants differently. This argues for human exposure to be based upon space-time-activity data and spatio-temporal air quality predictions. For the latter, we have demonstrated the role that dispersion models can play by using two complimentary models, KCLurban, which gives source apportionment information, and Community Multi-scale Air Quality Model (CMAQ)-urban, which predicts hourly air quality. The KCLurban model is in close agreement with observations of NO(X), NO(2) and particulate matter (PM)(10/2.5), having a small normalised mean bias (-6% to 4%) and a large Index of Agreement (0.71-0.88). The temporal trends of NO(X) from the CMAQ-urban model are also in reasonable agreement with observations. Spatially, NO(2) predictions show that within 10's of metres of major roads, concentrations can range from approximately 10-20 p.p.b. up to 70 p.p.b. and that for PM(10/2.5) central London roadside concentrations are approximately double the suburban background concentrations. Exposure to different PM sources is important and we predict that brake wear-related PM(10) concentrations are approximately eight times greater near major roads than at suburban background locations. Temporally, we have shown that average NO(X) concentrations close to roads can range by a factor of approximately six between the early morning minimum and morning rush hour maximum periods. These results present strong arguments for the hybrid exposure model under development at King's and, in future, for in-building models and a model for the London Underground. PMID:23443237

  8. Urban compaction or dispersion? An air quality modelling study

    NASA Astrophysics Data System (ADS)

    Martins, Helena

    2012-07-01

    Urban sprawl is altering the landscape, with current trends pointing to further changes in land use that will, in turn, lead to changes in population, energy consumption, atmospheric emissions and air quality. Urban planners have debated on the most sustainable urban structure, with arguments in favour and against urban compaction and dispersion. However, it is clear that other areas of expertise have to be involved. Urban air quality and human exposure to atmospheric pollutants as indicators of urban sustainability can contribute to the discussion, namely through the study of the relation between urban structure and air quality. This paper addresses the issue by analysing the impacts of alternative urban growth patterns on the air quality of Porto urban region in Portugal, through a 1-year simulation with the MM5-CAMx modelling system. This region has been experiencing one of the highest European rates of urban sprawl, and at the same time presents a poor air quality. As part of the modelling system setup, a sensitivity study was conducted regarding different land use datasets and spatial distribution of emissions. Two urban development scenarios were defined, SPRAWL and COMPACT, together with their new land use and emission datasets; then meteorological and air quality simulations were performed. Results reveal that SPRAWL land use changes resulted in an average temperature increase of 0.4 °C, with local increases reaching as high as 1.5 °C. SPRAWL results also show an aggravation of PM10 annual average values and an increase in the exceedances to the daily limit value. For ozone, differences between scenarios were smaller, with SPRAWL presenting larger concentration differences than COMPACT. Finally, despite the higher concentrations found in SPRAWL, population exposure to the pollutants is higher for COMPACT because more inhabitants are found in areas of highest concentration levels.

  9. Air-dispersion modeling and the real world

    SciTech Connect

    Beychok, M.T.

    1996-06-01

    Use of computerized programs to model stack-gas dispersion mathematically has grown immensely in the last 15 years. In most dispersion models, determining ground-level pollutant concentrations beneath an elevated, buoyant plume of dispersing stack gas involves two major steps. First, the height to which the plume rises at a given downward distance from the plume source is calculated. The calculated plume rise is added to the height of the source stack, or emission point, to determine the effective stack height, also called the plume centerline height. Second, ground-level concentrations beneath the plume are predicted using the Gaussian dispersion equation.

  10. Dispersion Modeling.

    ERIC Educational Resources Information Center

    Budiansky, Stephen

    1980-01-01

    This article discusses the need for more accurate and complete input data and field verification of the various models of air pollutant dispension. Consideration should be given to changing the form of air quality standards based on enhanced dispersion modeling techniques. (Author/RE)

  11. AIR DISPERSION MODELING AT THE WASTE ISOLATION PILOT PLANT

    SciTech Connect

    Rucker, D.F.

    2000-08-01

    One concern at the Waste Isolation Pilot Plant (WIPP) is the amount of alpha-emitting radionuclides or hazardous chemicals that can become airborne at the facility and reach the Exclusive Use Area boundary as the result of a release from the Waste Handling Building (WHB) or from the underground during waste emplacement operations. The WIPP Safety Analysis Report (SAR), WIPP RCRA Permit, and WIPP Emergency Preparedness Hazards Assessments include air dispersion calculations to address this issue. Meteorological conditions at the WIPP facility will dictate direction, speed, and dilution of a contaminant plume of respirable material due to chronic releases or during an accident. Due to the paucity of meteorological information at the WIPP site prior to September 1996, the Department of Energy (DOE) reports had to rely largely on unqualified climatic data from the site and neighboring Carlsbad, which is situated approximately 40 km (26 miles) to the west of the site. This report examines the validity of the DOE air dispersion calculations using new meteorological data measured and collected at the WIPP site since September 1996. The air dispersion calculations in this report include both chronic and acute releases. Chronic release calculations were conducted with the EPA-approved code, CAP88PC and the calculations showed that in order for a violation of 40 CFR61 (NESHAPS) to occur, approximately 15 mCi/yr of 239Pu would have to be released from the exhaust stack or from the WHB. This is an extremely high value. Hence, it is unlikely that NESHAPS would be violated. A site-specific air dispersion coefficient was evaluated for comparison with that used in acute dose calculations. The calculations presented in Section 3.2 and 3.3 show that one could expect a slightly less dispersive plume (larger air dispersion coefficient) given greater confidence in the meteorological data, i.e. 95% worst case meteorological conditions. Calculations show that dispersion will decrease

  12. a Mesoscale Atmospheric Dispersion Modeling System for Simulations of Topographically Induced Atmospheric Flow and Air Pollution Dispersion.

    NASA Astrophysics Data System (ADS)

    Boybeyi, Zafer

    A mesoscale atmospheric dispersion modeling system has been developed to investigate mesoscale circulations and associated air pollution dispersion, including effects of terrain topography, large water bodies and urban areas. The system is based on a three-dimensional mesoscale meteorological model coupled with two dispersion models (an Eulerian dispersion model and a Lagrangian particle dispersion model). The mesoscale model is hydrostatic and based on primitive equations formulated in a terrain-following coordinate system with a E-varepsilon turbulence closure scheme. The Eulerian dispersion model is based on numerical solution of the advection-diffusion equation to allow one to simulate releases of non-buoyant pollutants (especially from area and volume sources). The Lagrangian particle dispersion model allows one to simulate releases of buoyant pollutants from arbitrary sources (particularly from point and line sources). The air pollution dispersion models included in the system are driven by the meteorological information provided by the mesoscale model. Mesoscale atmospheric circulations associated with sea and lake breezes have been examined using the mesoscale model. A series of model sensitivity studies were performed to investigate the effects of different environmental parameters on these circulations. It was found that the spatial and temporal variation of the sea and lake breeze convergence zones and the associated convective activities depend to a large extent on the direction and the magnitude of the ambient wind. Dispersion of methyl isocyanate gas from the Bhopal accident was investigated using the mesoscale atmospheric dispersion modeling system. A series of numerical experiments were performed to investigate the possible role of the mesoscale circulations on this industrial gas episode. The temporal and spatial variations of the wind and turbulence fields were simulated with the mesoscale model. The dispersion characteristics of the accidental

  13. Modeling CO2 air dispersion from gas driven lake eruptions

    NASA Astrophysics Data System (ADS)

    Chiodini, Giovanni; Costa, Antonio; Rouwet, Dmitri; Tassi, Franco

    2016-04-01

    The most tragic event of gas driven lake eruption occurred at Lake Nyos (Cameroon) on 21 August 1986, when a dense cloud of CO2 suffocated more than 1700 people and an uncounted number of animals in just one night. The event stimulated a series of researches aimed to understand gas origins, gas release mechanisms and strategies for gas hazard mitigation. Very few studies have been carried out for describing the transport of dense CO2 clouds in the atmosphere. Although from a theoretical point of view, gas dispersion can be fully studied by solving the complete equations system for mass, momentum and energy transport, in actual practice, different simplified models able to describe only specific phases or aspects have to be used. In order to simulate dispersion of a heavy gas and to assess the consequent hazard we used a model based on a shallow layer approach (TWODEE2). This technique which uses depth-averaged variables to describe the flow behavior of dense gas over complex topography represents a good compromise between the complexity of computational fluid dynamic models and the simpler integral models. Recently the model has been applied for simulating CO2 dispersion from natural gas emissions in Central Italy. The results have shown how the dispersion pattern is strongly affected by the intensity of gas release, the topography and the ambient wind speed. Here for the first time we applied TWODEE2 code to simulate the dispersion of the large CO2 clouds released by limnic eruptions. An application concerns the case of the 1986 event at lake Nyos. Some difficulties for the simulations were related to the lack of quantitative information: gas flux estimations are not well constrained, meteorological conditions are only qualitatively known, the digital model of the terrain is of poor quality. Different scenarios were taken into account in order to reproduce the qualitative observations available for such episode. The observations regard mainly the effects of gas on

  14. Developments in EPA`s air dispersion modeling for hazardous/toxic releases

    SciTech Connect

    Touma, J.S.

    1995-12-31

    Title 3 of the 1990 Clean Air Act Amendments (CAAA) lists many chemicals as hazardous air pollutants and requires establishing regulations to prevent their accidental release, and to minimize the consequence, if any such releases occur. With the large number of potential release scenarios that are associated with these chemicals, there is a need for a systematic approach for applying air dispersion models to estimate impact. Because some chemicals may form dense gas clouds upon release, and dispersion models that can simulate these releases are complex, EPA has paid attention to the development of modeling tools and guidance on the use of models that can address these types of releases.

  15. ANALYSIS OF AIR QUALITY DATA NEAR ROADWAYS USING A DISPERSION MODEL

    EPA Science Inventory

    A dispersion model was used to analyze measurements made during a field study conducted by the U.S. EPA in July and August 2006, to estimate the impact of highway emissions on air quality at distances of tens of meters from an eight-lane highway. The air quality measurements con...

  16. (AMD) ANALYSIS OF AIR QUALITY DATA NEAR ROADWAYS USING A DISPERSION MODEL

    EPA Science Inventory

    We used a dispersion model to analyze measurements made during a field study conducted by the U.S. EPA in July-August 2006, to estimate the impact of traffic emissions on air quality at distances of tens of meters from an 8 lane highway located in Raleigh, North Carolina. The air...

  17. Analysis of air pollution from swine production by using air dispersion model and GIS in Quebec.

    PubMed

    Sarr, Joachim H; Goïta, Kalifa; Desmarais, Camille

    2010-01-01

    Swine production, the second most important contributor to Quebec's agricultural revenue, faces many problems. Intensive piggeries, with up to 599 animal units, are used to raise finishing pigs for slaughter. Among the great number of gaseous species emitted to the atmospheric environment from livestock buildings and manure storage units is NH3, which is one of the most important and most offensive with respect to human health. Under appropriate meteorological and topographical conditions, gaseous contaminants can spread and cause a public nuisance--up to a 1-km radius around the farm. To mitigate these effects, the Quebec Government adopted regulations that set minimum buffer distances to be observed by any expansion of an existing or new pig farm. The objectives of this study were (i) to assess the efficiency of the current buffer distance prescriptions in Quebec in mitigating effects of air pollution from swine units and (ii) to identify potential areas for establishing pig farm operations that will not be offensive to people. The air dispersion American Meteorological Society/Environmental Protection Agency Regulatory Model (AERMOD) with receptors distributed at 1.6 km around each source was used first, followed by a spatial geographic information system (GIS) model. Results from the dispersion model showed that the highest hourly concentration with a 99.5% compliance frequency for a single farm was 3078.1 microg/m3 and exceeded the NH3 odor criterion hourly standard set by the Quebec Government at 183.4 microg/m3. Thus, for public safety, densely populated areas like housing developments must be located >1300 m from a pig farm. This distance is in the range of setback distances (723 to 1447 m) obtained by using abacuses defined in the L'Erable Regional County Municipality. That is why we can say the current rules established by the Quebec Government, if rigorously applied, can prevent odor nuisance, due to NH3 emission, from swine farms. In the spatial model

  18. Far-field dispersal modeling for fuel-air-explosive devices

    SciTech Connect

    Glass, M.W.

    1990-05-01

    A computer model for simulating the explosive dispersal of a fuel agent in the far-field regime is described and is applied to a wide variety of initial conditions to judge their effect upon the resulting fuel/air cloud. This work was directed toward modeling the dispersal process associated with Fuel-Air-Explosives devices. The far-field dispersal regime is taken to be that time after the initial burster charge detonation in which the shock forces no longer dominate the flow field and initial canister and fuel mass breakup has occurred. The model was applied to a low vapor pressure fuel, a high vapor pressure fuel and a solid fuel. A strong dependence of the final cloud characteristics upon the initial droplet size distribution was demonstrated. The predicted fuel-air clouds were highly non-uniform in concentration. 18 refs., 86 figs., 4 tabs.

  19. An air dispersion model for the city of Toronto, Ontario, Canada.

    PubMed

    Sylvestre-Williams, Barbara; Mehrvar, Mehrab

    2012-01-01

    Air quality is a major concern for the public; therefore, the reliability of accurate models in predicting the air quality is of a major interest. In this study, a Gaussian air dispersion model, known as the Air dispersion model for Road Sources in Urban areaS (ARSUS), was developed to predict the ground level concentrations for a contaminant of interest. It was demonstrated that this model could be used successfully in place of or in conjunction with ambient air monitoring stations in determining the local Air Quality Index (AQI). The ARSUS model was validated against the US EPA ISC3 model before it was used to conduct two studies in this investigation. These two studies simulated weekday morning rush-hour tailpipe emissions of CO and predicted ground level concentrations. The first study used the ARSUS model to predict ground level concentrations of CO from the tailpipe emissions for roads and highways located in the vicinity of the Toronto West ambient air monitoring station. The second study involved an expansion of the domain to predict ground level concentrations of CO from tailpipe emissions from highways in the City of Toronto, Ontario, Canada. The predicted concentrations were then compared to the data collected from the Toronto West ambient air monitoring station. The results of the ARSUS model indicated that the air quality in the immediate vicinity of roads or highways is highly impacted by the tailpipe emissions. Higher concentrations were observed for the areas adjacent to the road and highway sources. The tailpipe emissions of CO from highways had a higher contribution to the local air quality. The predicted ground level concentrations from the ARSUS model under-predicted when compared to the observed data from the monitoring station; however, despite this, the predictive model is viable. PMID:22506705

  20. Off-site air monitoring following methyl bromide chamber and building fumigations and evaluation of the ISCST air dispersion model

    SciTech Connect

    Barry, T.; Swgawa, R.; Wofford, P.

    1995-12-31

    The Department of Pesticide Regulation`s preliminary risk characterization of methyl bromide indicated an inadequate margin of safety for several exposure scenarios. Characterization of the air concentrations associated with common methyl bromide use patterns was necessary to determine specific scenarios that result in an unacceptable margin of safety. Field monitoring data were used in conjunction with the Industrial Source Complex, Short Tenn (ISCST) air dispersion model to characterize air concentrations associated with various types of methyl bromide applications. Chamber and building fumigations were monitored and modelled. For each fumigation the emission rates, chamber or building specifications and on-site meteorological data were input into the ISCST model. The model predicted concentrations were compared to measured air concentrations. The concentrations predicted by the ISCST model reflect both the pattern and magnitude of the measured concentrations. Required buffer zones were calculated using the ISCST output.

  1. Development and testing of meteorology and air dispersion models for Mexico City

    NASA Astrophysics Data System (ADS)

    Williams, M. D.; Brown, M. J.; Cruz, X.; Sosa, G.; Streit, G.

    Los Alamos National Laboratory and Instituto Mexicano del Petróleo are completing a joint study of options for improving air quality in Mexico City. We have modified a three-dimensional, prognostic, higher-order turbulence model for atmospheric circulation (HOTMAC) and a Monte Carlo dispersion and transport model (RAPTAD) to treat domains that include an urbanized area. We used the meteorological model to drive models which describe the photochemistry and air transport and dispersion. The photochemistry modeling is described in a separate paper. We tested the model against routine measurements and those of a major field program. During the field program, measurements included: (1) lidar measurements of aerosol transport and dispersion, (2) aircraft measurements of winds, turbulence, and chemical species aloft, (3) aircraft measurements of skin temperatures, and (4) Tethersonde measurements of winds and ozone. We modified the meteorological model to include provisions for time-varying synoptic-scale winds, adjustments for local wind effects, and detailed surface-coverage descriptions. We developed a new method to define mixing-layer heights based on model outputs. The meteorology and dispersion models were able to provide reasonable representations of the measurements and to define the sources of some of the major uncertainties in the model-measurement comparisons.

  2. Temperature, humidity and air flow in the emplacement drifts using convection and dispersion transport models

    SciTech Connect

    Danko, G.; Birkholzer, J.T.; Bahrami, D.; Halecky, N.

    2009-10-01

    A coupled thermal-hydrologic-airflow model is developed, solving for the transport processes within a waste emplacement drift and the surrounding rockmass together at the proposed nuclear waste repository at Yucca Mountain. Natural, convective air flow as well as heat and mass transport in a representative emplacement drift during post-closure are explicitly simulated, using the MULTIFLUX model. The conjugate, thermal-hydrologic transport processes in the rockmass are solved with the TOUGH2 porous-media simulator in a coupled way to the in-drift processes. The new simulation results show that large-eddy turbulent flow, as opposed to small-eddy flow, dominate the drift air space for at least 5000 years following waste emplacement. The size of the largest, longitudinal eddy is equal to half of the drift length, providing a strong axial heat and moisture transport mechanism from the hot to the cold drift sections. The in-drift results are compared to those from simplified models using a surrogate, dispersive model with an equivalent dispersion coefficient for heat and moisture transport. Results from the explicit, convective velocity simulation model provide higher axial heat and moisture fluxes than those estimated from the previously published, simpler, equivalent-dispersion models, in addition to showing differences in temperature, humidity and condensation rate distributions along the drift length. A new dispersive model is also formulated, giving a time- and location-variable function that runs generally about ten times higher in value than the highest dispersion coefficient currently used in the Yucca Mountain Project as an estimate for the equivalent dispersion coefficient in the emplacement drift. The new dispersion coefficient variation, back-calculated from the convective model, can adequately describe the heat and mass transport processes in the emplacement drift example.

  3. STEMS-Air: a simple GIS-based air pollution dispersion model for city-wide exposure assessment.

    PubMed

    Gulliver, John; Briggs, David

    2011-05-15

    Current methods of air pollution modelling do not readily meet the needs of air pollution mapping for short-term (i.e. daily) exposure studies. The main limiting factor is that for those few models that couple with a GIS there are insufficient tools for directly mapping air pollution both at high spatial resolution and over large areas (e.g. city wide). A simple GIS-based air pollution model (STEMS-Air) has been developed for PM(10) to meet these needs with the option to choose different exposure averaging periods (e.g. daily and annual). STEMS-Air uses the grid-based FOCALSUM function in ArcGIS in conjunction with a fine grid of emission sources and basic information on meteorology to implement a simple Gaussian plume model of air pollution dispersion. STEMS-Air was developed and validated in London, UK, using data on concentrations of PM(10) from routinely available monitoring data. Results from the validation study show that STEMS-Air performs well in predicting both daily (at four sites) and annual (at 30 sites) concentrations of PM(10). For daily modelling, STEMS-Air achieved r(2) values in the range 0.19-0.43 (p<0.001) based solely on traffic-related emissions and r(2) values in the range 0.41-0.63 (p<0.001) when adding information on 'background' levels of PM(10). For annual modelling of PM(10), the model returned r(2) in the range 0.67-0.77 (P<0.001) when compared with monitored concentrations. The model can thus be used for rapid production of daily or annual city-wide air pollution maps either as a screening process in urban air quality planning and management, or as the basis for health risk assessment and epidemiological studies. PMID:21458028

  4. Comparison of stationary and personal air sampling with an air dispersion model for children's ambient exposure to manganese.

    PubMed

    Fulk, Florence; Haynes, Erin N; Hilbert, Timothy J; Brown, David; Petersen, Dan; Reponen, Tiina

    2016-09-01

    Manganese (Mn) is ubiquitous in the environment and essential for normal growth and development, yet excessive exposure can lead to impairments in neurological function. This study modeled ambient Mn concentrations as an alternative to stationary and personal air sampling to assess exposure for children enrolled in the Communities Actively Researching Exposure Study in Marietta, OH. Ambient air Mn concentration values were modeled using US Environmental Protection Agency's Air Dispersion Model AERMOD based on emissions from the ferromanganese refinery located in Marietta. Modeled Mn concentrations were compared with Mn concentrations from a nearby stationary air monitor. The Index of Agreement for modeled versus monitored data was 0.34 (48 h levels) and 0.79 (monthly levels). Fractional bias was 0.026 for 48 h levels and -0.019 for monthly levels. The ratio of modeled ambient air Mn to measured ambient air Mn at the annual time scale was 0.94. Modeled values were also time matched to personal air samples for 19 children. The modeled values explained a greater degree of variability in personal exposures compared with time-weighted distance from the emission source. Based on these results modeled Mn concentrations provided a suitable approach for assessing airborne Mn exposure in this cohort. PMID:27168393

  5. A site-specific screening comparison of modeled and monitored air dispersion and deposition for perfluorooctanoate.

    PubMed

    Barton, Catherine A; Zarzecki, Charles J; Russell, Mark H

    2010-04-01

    This work assessed the usefulness of a current air quality model (American Meteorological Society/Environmental Protection Agency Regulatory Model [AERMOD]) for predicting air concentrations and deposition of perfluorooctanoate (PFO) near a manufacturing facility. Air quality models play an important role in providing information for verifying permitting conditions and for exposure assessment purposes. It is important to ensure traditional modeling approaches are applicable to perfluorinated compounds, which are known to have unusual properties. Measured field data were compared with modeling predictions to show that AERMOD adequately located the maximum air concentration in the study area, provided representative or conservative air concentration estimates, and demonstrated bias and scatter not significantly different than that reported for other compounds. Surface soil/grass concentrations resulting from modeled deposition flux also showed acceptable bias and scatter compared with measured concentrations of PFO in soil/grass samples. Errors in predictions of air concentrations or deposition may be best explained by meteorological input uncertainty and conservatism in the PRIME algorithm used to account for building downwash. In general, AERMOD was found to be a useful screening tool for modeling the dispersion and deposition of PFO in air near a manufacturing facility. PMID:20437775

  6. Wind Direction Bias in Generating Wind Roses and Conducting Sector-Based Air-Dispersion Modeling

    SciTech Connect

    Droppo, James G.; Napier, Bruce A.

    2008-07-01

    Certain widely used wind rose programs and air dispersion models use an overly-simple data-transfer algorithm that induces a directional bias in their output products. The purpose of this paper is to provide a revised algorithm that corrects the aliasing bias that occurs when the internals in reported wind direction data are on the same order of magnitude, but not equal to the intervals used in the wind direction summaries. The directional bias issue arises when output products in 22.5-degree sectors are produced from 10-degree wind direction data, which affects the results of simulations of air and surface concentrations using widely applied air-dispersion models. Datasets or models with the bias discussed here give consistent positive biases (approximately 30%) for cardinal direction sectors (north, south, east, and west) and consistent negative biases for all the other sectors (approximately -10%). Data summary and air dispersion programs providing outputs in directions sectors that do not match the observational sectors need to be checked for this bias. A revised data-transfer algorithm is provided that corrects the aliasing bias that can occur in transferring wind direction data between different sectors widths.

  7. Assessment of the Impact of Spatial Data on the Results of Air Pollution Dispersion Modeling

    NASA Astrophysics Data System (ADS)

    Oleniacz, Robert; Rzeszutek, Mateusz

    2014-12-01

    Advanced dispersion models, taking into account information on the relief and land cover, as well as temporal and spatial variability of meteorological conditions, are beginning to play an increasingly important role in the assessment of the impact on the air quality. There are numerous spatial databases which can be used in this type of a calculation process, however, there is no answer to the question of how the use of appropriate data set of terrain characteristics affects the results of the distribution of air pollutant concentrations at the surface of the ground. This paper presents two different sets of spatial data of the relief and land cover. Then, their impact on the results of modeling the propagation of pollutants in the ambient air was characterized, using the meteorological processor CALMET and the dispersion model CALPUFF. The obtained results of concentrations in the adopted calculation area were compared on the basis of statistical indicators used to assess pollution dispersion models contained in the statistical package BOOT Statistical Model Evaluation Software Package Version 2.0. The obtained results of calculations of the maximum 1-hour concentrations, the maximum 24-hour mean concentrations and annual mean concentrations for the prepared computational grids with a resolution of 1×1 km were analyzed.

  8. A particle grid air quality modeling approach. 1: The dispersion aspect

    SciTech Connect

    Chock, D.P.; Winkler, S.L. )

    1994-01-01

    A particle grid air quality modeling approach that can incorporate chemistry is proposed an an alternative to the conventional partial differential equation (PDE) grid air quality modeling approach. In this approach, each particle is tagged with different species masses and particles in the same grid participate in chemical reactions. The approach is flexible and removes the advection and point source problems encountered in the PDE approach. For a typical grid size of 5 km x 5 km x 50 m used in the lowest layer of an urban air quality model, use of 2000-3000 particles of unequal masses per grid cell will yield a highly accurate grid-averaged instantaneous concentration field that undergoes eddy diffusion for a period of about 1 day. Use of an hourly averaged concentration reduces the demand of particle per cell to about 500. Increasing the grid size also reduces the demand on the number of particles per cell. For the choice of our Lagrangian integral time scales, the time step must be small (10 s) for vertical dispersion simulation but can be large (200 s) for horizontal dispersion simulation. To reduce computation time, a time-splitting scheme is proposed to simulate the horizontal and vertical dispersion simulations in an alternating sequence. The present study also shows that the oft-used second-order-accurate finite difference scheme for solving the diffusion equation tends to overpredict the peak of a sharply peaked concentration.

  9. Analytical dispersion model for the chain of primary and secondary air pollutants released from point source

    NASA Astrophysics Data System (ADS)

    Juodis, Laurynas; Filistovič, Vitold; Maceika, Evaldas; Remeikis, Vidmantas

    2016-03-01

    An analytical model for dispersion of air pollutants released from a point source forming a secondary pollutant (e.g. chemical transformation or parent-daughter radionuclide chain) is formulated considering the constant wind speed and eddy diffusivities as an explicit function of downwind distance from the source in Cauchy (reflection-deposition type) boundary conditions. The dispersion of pollutants has been investigated by using the Gaussian plume dispersion parameters σy and σz instead of the diffusivity parameters Ky and Kz. For primary pollutant it was proposed to use the derived dry deposition factor instead of the source depletion alternative. An analytical solution for steady-state two-dimensional pollutant transport in the atmosphere is presented. Derived formulas include dependency from effective release height, gravitational and dry deposition velocities of primary and secondary pollutants, advection, surface roughness length and empirical dispersion parameters σy and σz. Demonstration of analytical solution application is provided by calculation of 135Xe and 135C air activity concentrations and the applicability of the model for the solution of atmospheric pollution transport problems.

  10. Spatially-varying surface roughness and ground-level air quality in an operational dispersion model.

    PubMed

    Barnes, M J; Brade, T K; MacKenzie, A R; Whyatt, J D; Carruthers, D J; Stocker, J; Cai, X; Hewitt, C N

    2014-02-01

    Urban form controls the overall aerodynamic roughness of a city, and hence plays a significant role in how air flow interacts with the urban landscape. This paper reports improved model performance resulting from the introduction of variable surface roughness in the operational air-quality model ADMS-Urban (v3.1). We then assess to what extent pollutant concentrations can be reduced solely through local reductions in roughness. The model results suggest that reducing surface roughness in a city centre can increase ground-level pollutant concentrations, both locally in the area of reduced roughness and downwind of that area. The unexpected simulation of increased ground-level pollutant concentrations implies that this type of modelling should be used with caution for urban planning and design studies looking at ventilation of pollution. We expect the results from this study to be relevant for all atmospheric dispersion models with urban-surface parameterisations based on roughness. PMID:24212233

  11. Modeling the air-soil transport pathway of perfluorooctanoic acid in the mid-Ohio Valley using linked air dispersion and vadose zone models

    NASA Astrophysics Data System (ADS)

    Shin, Hyeong-Moo; Ryan, P. Barry; Vieira, Verónica M.; Bartell, Scott M.

    2012-05-01

    As part of an extensive modeling effort on the air-soil-groundwater transport pathway of perfluorooctanoic acid (PFOA), this study was designed to compare the performance of different air dispersion modeling systems (AERMOD vs. ISCST3), and different approaches to handling incomplete meteorological data using a data set with substantial soil measurements and a well characterized point source for air emissions. Two of the most commonly used EPA air dispersion models, AERMOD and ISCST3, were linked with the EPA vadose zone model PRZM-3. Predicted deposition rates from the air dispersion model were used as input values for the vadose zone model to estimate soil concentrations of PFOA at different depths. We applied 34 years of meteorological data including hourly surface measurements from Parkersburg Airport and 5 years of onsite wind direction and speed to the air dispersion models. We compared offsite measured soil concentrations to predictions made for the corresponding sampling depths, focusing on soil rather than air measurements because the offsite soil samples were less likely to be influenced by short-term variability in emission rates and meteorological conditions. PFOA concentrations in surface soil (0-30 cm depth) were under-predicted and those in subsurface soil (>30 cm depth) were over-predicted compared to observed concentrations by both linked air and vadose zone model. Overall, the simulated values from the linked modeling system were positively correlated with those observed in surface soil (Spearman's rho, Rsp = 0.59-0.70) and subsurface soil (Rsp = 0.46-0.48). This approach provides a useful modeling scheme for similar exposure and risk analyses where the air-soil-groundwater transport is a primary contamination pathway.

  12. Estimating domestic wood burning emissions in Nordic countries using ambient air observations, receptor and dispersion modelling

    NASA Astrophysics Data System (ADS)

    Denby, B.; Karl, M.; Laupsa, H.; Johansson, C.; Pohjola, M.; Karppinen, A.; Kukkonen, J.; Ketzel, M.; Wåhlin, P.

    2009-04-01

    One of the major emission sources of primary PM2.5 in Nordic countries during winter is wood burning from domestic heating. In Norway alone it is estimated that 80% of PM2.5 is emitted through this source. Though direct measurements of wood burning emissions are possible under controlled conditions, emission inventories for domestic heating are difficult to calculate. Emissions vary from stove to stove as well as wood type, wood condition and burning habits. The consumption rate of wood burning is also strongly dependent on meteorological as well as societal conditions. As a result the uncertainty in wood burning emission inventories used in dispersion modelling is considered to be quite high. As an alternative method for estimating the emissions resulting from wood burning for domestic heating this paper combines ambient air measurements, chemical analysis of filter samples, receptor models, dispersion models, and simple inverse modelling methods to infer emission strengths. The methodology is applied in three Nordic cities, notably Oslo (Norway), Helsinki (Finland) and Lycksele (Sweden). In these cities daily filter samples over several months have been collected. The filter samples have been chemically analysed for a range of elemental and specific markers including OC/EC and Levoglucosan. The chemical analysis has been used as input for a range of receptor models, including UNMIX, PMF, PMF-2 and COPREM. From these calculations the source contributions at the measurement sites, with particular emphasis on wood burning, have been estimated. Though the receptor models have a common basis their application method varies, and as a result the number of identifiable sources and their contributions may differ. For the application here the contribution of wood burning was not found to vary significantly, irrespective of the model or user. It was also found that Levoglucosan as a wood burning tracer was essential for the identification of the wood burning sources. Source

  13. CFD modelling of the aerodynamic effect of trees on urban air pollution dispersion.

    PubMed

    Amorim, J H; Rodrigues, V; Tavares, R; Valente, J; Borrego, C

    2013-09-01

    The current work evaluates the impact of urban trees over the dispersion of carbon monoxide (CO) emitted by road traffic, due to the induced modification of the wind flow characteristics. With this purpose, the standard flow equations with a kε closure for turbulence were extended with the capability to account for the aerodynamic effect of trees over the wind field. Two CFD models were used for testing this numerical approach. Air quality simulations were conducted for two periods of 31h in selected areas of Lisbon and Aveiro, in Portugal, for distinct relative wind directions: approximately 45° and nearly parallel to the main avenue, respectively. The statistical evaluation of modelling performance and uncertainty revealed a significant improvement of results with trees, as shown by the reduction of the NMSE from 0.14 to 0.10 in Lisbon, and from 0.14 to 0.04 in Aveiro, which is independent from the CFD model applied. The consideration of the plant canopy allowed to fulfil the data quality objectives for ambient air quality modelling established by the Directive 2008/50/EC, with an important decrease of the maximum deviation between site measurements and CFD results. In the non-aligned wind situation an average 12% increase of the CO concentrations in the domain was observed as a response to the aerodynamic action of trees over the vertical exchange rates of polluted air with the above roof-level atmosphere; while for the aligned configuration an average 16% decrease was registered due to the enhanced ventilation of the street canyon. These results show that urban air quality can be optimised based on knowledge-based planning of green spaces. PMID:23751336

  14. Near-field dispersal modeling for liquid fuel-air explosives

    SciTech Connect

    Gardner, D.R.

    1990-07-01

    The near-field, explosive dispersal of a liquid into air has been explored using a combination of analytical and numerical models. The near-field flow regime is transient, existing only as long as the explosive forces produced by the detonation of the burster charge dominate or are approximately equal in magnitude to the aerodynamic drag forces on the liquid. The near-field model provides reasonable initial conditions for the far-field model, which is described in a separate report. The near-field model consists of the CTH hydrodynamics code and a film instability model. In particular, the CTH hydrodynamics code is used to provide initial temperature, pressure, and velocity fields, and bulk material distribution for the far-field model. The film instability model is a linear stability model for a radially expanding fluid film, and is used to provide a lower bound on the breakup time and an upper and lower bound on the initial average drop diameter for the liquid following breakup. Predictions of the liquid breakup time and the initial arithmetic average drop diameter from the model compare favorably with the sparse experimental data. 26 refs., 20 figs., 8 tabs.

  15. Air Dispersion Modeling of Mine Waste in the Southeast Missouri Old Lead Belt

    SciTech Connect

    Abbott, Michael Lehman

    1999-10-01

    Past lead ore processing conducted in the Southeast Missouri Old Lead Belt since the 1700s has left numerous large areas of lead contamination in elevated piles of fine gravel waste called “chat” and dried-out tailings ponds. Wind suspension and atmospheric dispersion are known to transport these materials to the surrounding communities where the lead could pose a human health threat through inhalation or ingestion of the deposited contamination. The purpose of this study was to estimate potential wind suspension rates, perform dispersion modeling of the tailings and chat sources, and determine ground surface deposition rates and potential soil concentrations of lead in the surrounding areas. The results can be used to prioritize soil sampling locations, site air monitors, help identify the source of soil lead contamination, and to help develop remediation plans. Numerous, large complex sources in the region were parameterized into 33 area sources with the aid of digital aerial photos, digitized typographic maps, Geographic Information Systems (GIS) software, and site inspections. An AP-42 particulate emission model was used to estimate lower- and upper-bound hourly emission rates using six years of hourly wind speed data obtained from the St. Louis Airport. The emissions model accounted for wind speed, precipitation, source-specific aggregate size, fraction of vegetation cover, and site-specific lead concentrations. An alternative simplified method to calculate emissions from elevated chat piles was developed. The Fugitive Dust Model (FDM) was then used to calculate long-term average and maximum 24-hour deposition rates of lead over a 200 km2 region. Soil concentrations were estimated from modeled deposition rates, time of deposition (80 y) and an assumed surface (0-5.08 cm) mixing depth. Model performance was evaluated by comparing lower- and upper- bound modeled predictions to both air and soil sampling data obtained at two sites. The predicted

  16. Loose-coupling an air dispersion model and a geographic information system (GIS) for studying air pollution and asthma in the Bronx, New York City.

    PubMed

    Maantay, Juliana A; Tu, Jun; Maroko, Andrew R

    2009-02-01

    This study developed new procedures to loosely integrate an air dispersion model, AERMOD, and a geographic information system (GIS) package, ArcGIS, to simulate air dispersion from stationary sources in the Bronx, New York City, for five pollutants: PM(10), PM(2.5), NO(x), CO, and SO(2). Plume buffers created from the model results were used as proxies of human exposure to the pollution from the sources and they modified the commonly used fixed-distance proximity buffers by considering the realities of air dispersion. The application of the plume buffers confirmed that the higher asthma hospitalization rates were associated with the higher potential exposure to local air pollution. The air dispersion modeling exhibited advantages over proximity analysis and geostatistical methods for environmental health research. The loose integration provides a relatively simple and feasible method for health scientists to take advantage of both air dispersion modeling and GIS by avoiding the need for intensive programming and substantial GIS expertise. PMID:19241247

  17. A discussion of regulatory requirements and air dispersion modeling approaches applicable to U.S. chemical demilitarization facilities.

    PubMed

    Higgins, B W; Robbins, L B; Litynski, J

    1998-09-01

    Owners of hazardous waste treatment, storage, and disposal facilities, and certain major air pollution sources, must conduct several separate ambient air dispersion modeling analyses before beginning construction of new facilities or modifying existing facilities. These analyses are critical components of the environmental permitting and facility certification processes and must be completed to the satisfaction of federal, state, and local regulatory authorities. The U.S. Army has conducted air dispersion modeling for its proposed chemical agent disposal facilities to fulfill the following environmental regulatory and risk management requirements: (1) Resource Conservation and Recovery Act human health and ecological risk assessment analysis for the hazardous waste treatment and storage permit applications, (2) Quantitative Risk Assessment to support the site-specific risk management programs, and (3) Prevention of Significant Deterioration ambient air impact analysis for the air permit applications. The purpose of these air dispersion modeling studies is to show that the potential impacts on human health and the environment, due to operation of the chemical agent disposal facilities, are acceptable. This paper describes and compares the types of air dispersion models, modeling input data requirements, modeling algorithms, and approaches used to satisfy the three environmental regulatory and risk management requirements listed above. Although this paper discusses only one industry (i.e., chemical demilitarization), the information it contains could help those in other industries who need to communicate to the public the purpose and objectives of each modeling analysis. It may also be useful in integrating the results of each analysis into an overarching summary of compliance and potential risks. PMID:9775760

  18. A review of methods for predicting air pollution dispersion

    NASA Technical Reports Server (NTRS)

    Mathis, J. J., Jr.; Grose, W. L.

    1973-01-01

    Air pollution modeling, and problem areas in air pollution dispersion modeling were surveyed. Emission source inventory, meteorological data, and turbulent diffusion are discussed in terms of developing a dispersion model. Existing mathematical models of urban air pollution, and highway and airport models are discussed along with their limitations. Recommendations for improving modeling capabilities are included.

  19. Dispersion Modeling of Traffic-Related Air Pollutant Exposures and Health Effects Among Children with Asthma in Detroit, Michigan

    PubMed Central

    Batterman, Stuart; Ganguly, Rajiv; Isakov, Vlad; Burke, Janet; Arunachalam, Saravanan; Snyder, Michelle; Robins, Thomas; Lewis, Toby

    2015-01-01

    Vehicular traffic is a major source of ambient air pollution in urban areas. Traffic-related air pollutants, including carbon monoxide, nitrogen oxides, particulate matter less than 2.5 μm in diameter, and diesel exhaust emissions, have been associated with adverse human health effects, especially in areas near major roads. In addition to emissions from vehicles, ambient concentrations of air pollutants include contributions from stationary sources and background (or regional) sources. Although dispersion models have been widely used to evaluate air quality strategies and policies and can represent the spatial and temporal variation in environments near roads, the use of these models in health studies to estimate air pollutant exposures has been relatively limited. This paper summarizes the modeling system used to estimate exposures in the Near-Roadway Exposure and Urban Air Pollutant Study, an epidemiological study that examined 139 children with asthma or symptoms consistent with asthma, most of whom lived near major roads in Detroit, Michigan. Air pollutant concentrations were estimated with a hybrid modeling framework that included detailed inventories of mobile and stationary sources on local and regional scales; the RLINE, AERMOD, and CMAQ dispersion models; and monitored observations of pollutant concentrations. The temporal and spatial variability in emissions and exposures over the 2.5-year study period and at more than 300 home and school locations was characterized. The paper highlights issues with the development and understanding of the significance of traffic-related exposures through the use of dispersion models in urban-scale exposure assessments and epidemiology studies. PMID:26139957

  20. A microscale model for air pollutant dispersion simulation in urban areas: Presentation of the model and performance over a single building

    NASA Astrophysics Data System (ADS)

    Zhang, Ning; Du, Yunsong; Miao, Shiguang

    2016-02-01

    A microscale air pollutant dispersion model system is developed for emergency response purposes. The model includes a diagnostic wind field model to simulate the wind field and a random-walk air pollutant dispersion model to simulate the pollutant concentration through consideration of the influence of urban buildings. Numerical experiments are designed to evaluate the model's performance, using CEDVAL (Compilation of Experimental Data for Validation of Microscale Dispersion Models) wind tunnel experiment data, including wind fields and air pollutant dispersion around a single building. The results show that the wind model can reproduce the vortexes triggered by urban buildings and the dispersion model simulates the pollutant concentration around buildings well. Typically, the simulation errors come from the determination of the key zones around a building or building cluster. This model has the potential for multiple applications; for example, the prediction of air pollutant dispersion and the evaluation of environmental impacts in emergency situations; urban planning scenarios; and the assessment of microscale air quality in urban areas.

  1. Use of Source Term and Air Dispersion Modeling in Planning Demolition of Highly Alpha-Contaminated Buildings

    SciTech Connect

    Droppo, James G.; Napier, Bruce A.; Rishel, Jeremy P.; Bloom, Richard W.

    2011-06-22

    The current cleanup of structures related to cold-war production of nuclear materials includes the need to demolish a number of highly alpha-contaminated structures. The process of planning for the demolition of such structures includes unique challenges related to ensuring the protection of both workers and the public. Pre-demolition modeling analyses were conducted to evaluate potential exposures resulting from the proposed demolition of a number of these structures. Estimated emission rates of transuranic materials during demolition are used as input to an air-dispersion model. The climatological frequencies of occurrence of peak air and surface exposures at locations of interest are estimated based on years of hourly meteorological records. The modeling results indicate that downwind deposition is the main operational limitation for demolition of a highly alpha-contaminated building. The pre-demolition modeling directed the need for better contamination characterization and/or different demolition methods—and in the end, provided a basis for proceeding with the planned demolition activities. Post-demolition modeling was also conducted for several contaminated structures, based on the actual demolition schedule and conditions. Comparisons of modeled and monitoring results are shown. Recent monitoring data from the demolition of a UO3 plant shows increments in concentrations that were previously identified in the pre-demolition modeling predictions; these comparisons confirm the validity and value of the pre-demolition source-term and air dispersion computations for planning demolition activities for other buildings with high levels of radioactive contamination.

  2. Comparison of air dispersion modeling results with ambient air sampling data: A case study at Tacoma Landfill, a National Priorities List Site

    SciTech Connect

    Griffin, L.R. ); Rutherford, T.L. )

    1994-08-01

    Air dispersion modeling, ambient air sampling, and emissions testing of landfill sources have been performed to evaluate the effects of remedial activities on ambient air surrounding the Tacoma Landfill. In 1983, the Tacoma Landfill was placed on the National Priorities List (NPL) as part of the Commencement Bay/South Tacoma Channel Superfund site. Remedial activities completed, or near completion, at the 190 acre (768,903 m[sup 2]) Tacoma Landfill include a groundwater extraction system and air stripping units used to remove volatile organic compounds (VOCs) from groundwater, landfill gas extraction and flare system to control gas migration from the landfill, landfill liner and leachate collection system for an active section of the landfill, and a landfill cap that covers the inactive portions of the landfill. Dispersion modeling was performed with measured stack emission data using Industrial Source Complex (ISC) to determine the groundlevel concentrations of VOCs from the air stripper, flares, and active portion of the landfill for comparison with the measured ambient air data collected during 1992. 9 refs., 3 figs., 6 tabs.

  3. An experimental verification of a theoretical model for the dispersion of a stack plume heavier than air

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Yun; Leijdens, H.; Ooms, G.

    Experiments were carried out in a windtunnel to test the theoretical model for the dispersion of a stack plume heavier than air developed by Ooms et al. (1974, First Int. Symp. on Loss Prevention and Safety Promotion in the Process Industries, The Hague). Particular attention was paid to the initial conditions which have to be supplied in order to make model calculations possible. A good agreement between experimental results and model predictions was found for the plume path and the density distribution along the plume axis. The velocity distribution inside the plume was less well predicted.

  4. Air Dispersion Modeling for the INL Application for a Synthetic Minor Sitewide Air Quality Permit to Construct with a Facility Emission Cap Component

    SciTech Connect

    Sondrup, Andrus Jeffrey

    2015-10-01

    The Department of Energy Idaho Operations Office (DOE-ID) is applying for a synthetic minor, Sitewide, air quality permit to construct (PTC) with a facility emission cap (FEC) component from the Idaho Department of Environmental Quality (DEQ) for Idaho National Laboratory (INL) to limit its potential to emit to less than major facility limits for criteria air pollutants (CAPs) and hazardous air pollutants (HAPs) regulated under the Clean Air Act. This document is supplied as an appendix to the application, Idaho National Laboratory Application for a Synthetic Minor Sitewide Air Quality Permit to Construct with a Facility Emissions Cap Component, hereafter referred to as “permit application” (DOE-ID 2015). Air dispersion modeling was performed as part of the permit application process to demonstrate pollutant emissions from the INL will not cause a violation of any ambient air quality standards. This report documents the modeling methodology and results for the air dispersion impact analysis. All CAPs regulated under Section 109 of the Clean Air Act were modeled with the exception of lead (Pb) and ozone, which are not required to be modeled by DEQ. Modeling was not performed for toxic air pollutants (TAPs) as uncontrolled emissions did not exceed screening emission levels for carcinogenic and non-carcinogenic TAPs. Modeling for CAPs was performed with the EPA approved AERMOD dispersion modeling system (Version 14134) (EPA 2004a) and five years (2000-2004) of meteorological data. The meteorological data set was produced with the companion AERMET model (Version 14134) (EPA 2004b) using surface data from the Idaho Falls airport, and upper-air data from Boise International Airport supplied by DEQ. Onsite meteorological data from the Grid 3 Mesonet tower located near the center of the INL (north of INTEC) and supplied by the local National Oceanic and Atmospheric Administration (NOAA) office was used for surface wind directions and wind speeds. Surface data (i

  5. Comparison of stationary and personal air sampling with an air dispersion model for children’s ambient exposure to manganese

    EPA Science Inventory

    Manganese (Mn) is ubiquitous in the environment and essential for normal growth and development, yet excessive exposure can lead to impairments in neurological function. This study modeled ambient Mn concentrations as an alternative to stationary and personal air sampling to asse...

  6. Numerical simulation of high pressure release and dispersion of hydrogen into air with real gas model

    NASA Astrophysics Data System (ADS)

    Khaksarfard, R.; Kameshki, M. R.; Paraschivoiu, M.

    2010-06-01

    Hydrogen is a renewable and clean source of energy, and it is a good replacement for the current fossil fuels. Nevertheless, hydrogen should be stored in high-pressure reservoirs to have sufficient energy. An in-house code is developed to numerically simulate the release of hydrogen from a high-pressure tank into ambient air with more accuracy. Real gas models are used to simulate the flow since high-pressure hydrogen deviates from ideal gas law. Beattie-Bridgeman and Abel Noble equations are applied as real gas equation of state. A transport equation is added to the code to calculate the concentration of the hydrogen-air mixture after release. The uniqueness of the code is to simulate hydrogen in air release with the real gas model. Initial tank pressures of up to 70 MPa are simulated.

  7. An update to the ambient ratio method for 1-h NO2 air quality standards dispersion modeling

    NASA Astrophysics Data System (ADS)

    Podrez, Mark

    2015-02-01

    Nitrogen oxide (NOX) gases are typically emitted by fuel combustion sources in the form of nitric oxide (NO), which then reacts with ozone and other oxidants in the atmosphere to convert a portion of the NO to nitrogen dioxide (NO2). EPA has promulgated a 1-h average National Ambient Air Quality Standard (NAAQS) for NO2, and major sources of NOX emissions must estimate their NO2 air quality impacts as part of EPA's air quality permitting programs. The AERMOD dispersion model has been developed by EPA for these air quality impact analyses, and AERMOD contains three different NO to NO2 conversion methods for estimating the ambient concentrations of NO2. This paper describes a refinement to one of the methods, the Ambient Ratio Method version 2 (ARM2). ARM2 is an empirical approach that uses a variable conversion factor, based on an analysis of ambient air measurements of NO and NO2, to estimate the portion of the AERMOD predicted air concentration of total NOX species that is in the form of NO2. The performance of ARM2 has been evaluated and found to compare well to actual ambient measurements and to other more complex EPA conversion methods. EPA has included ARM2 as a "beta-testing" option in AERMOD version 14134, and provided guidance on the use of ARM2 for regulatory modeling analyses in a September 2014 memorandum. This paper also discusses this recent EPA guidance.

  8. Modeling CO2 air dispersion from gas driven lake eruptions (Invited)

    NASA Astrophysics Data System (ADS)

    Chiodini, G.; Costa, A.; Rouwet, D.; Tassi, F.

    2010-12-01

    The most tragic event of gas driven lake eruption occurred at Lake Nyos (Cameroon) on 21 August 1986, when a dense cloud of CO2 suffocated more than 1700 people and an uncounted number of animals in just one night. The event stimulated a series of researches aimed to understand gas origins, gas release mechanisms and strategies for gas hazard mitigation. Very few studies have been carried out for describing the transport of dense CO2 clouds in the atmosphere. Although from a theoretical point of view, gas dispersion can be fully studied by solving the complete equations system for mass, momentum and energy transport, in actual practice, different simplified models able to describe only specific phases or aspects have to be used. In order to simulate dispersion of a heavy gas and to assess the consequent hazard we used a model based on a shallow layer approach (TWODEE2). This technique which uses depth-averaged variables to describe the flow behavior of dense gas over complex topography represents a good compromise between the complexity of computational fluid dynamic models and the simpler integral models. Recently the model has been applied for simulating CO2 dispersion from natural gas emissions in Central Italy. The results have shown how the dispersion pattern is strongly affected by the intensity of gas release, the topography and the ambient wind speed. Here for the first time we applied TWODEE2 code to simulate the dispersion of the large CO2 clouds released by limnic eruptions. An application concerns the case of the 1986 event at lake Nyos. Some difficulties for the simulations were related to the lack of quantitative information: gas flux estimations are not well constrained, meteorological conditions are only qualitatively known, the digital model of the terrain is of poor quality. Different scenarios were taken into account in order to reproduce the qualitative observations available for such episode. The observations regard mainly the effects of gas on

  9. Coupling field observations, soil modeling, and air dispersion algorithms to estimate 1,3-dichloropropene and chloropicrin flux and exposure.

    PubMed

    Cryer, S A; van Wesenbeeck, I J

    2011-01-01

    Soil fumigants are volatile compounds applied to agricultural land to control nematode populations, weeds, and crop diseases. Field trials used for measuring fumigant loss from soil to the atmosphere encompass only a small proportion of the near semi-infinite parameter combinations of environmental, agronomic, and meteorological conditions. One approach to supplement field observations uses a soil physics model for fumigant emission predictions. A model is first validated against existing field study observations and then used to extrapolate results to a wider range of edaphic and climatic conditions. This work compares field observations of 1,3-dichloropropene and chloropicrin emissions to predictions from the USDA soil model CHAIN_2D. Comparison between model predictions and field observations for a Florida and California study had values between 0.62 to 0.81 and 0.99 to 1.0 for discrete and cumulative emission flux, respectively. CHAIN_2D emission rates were then coupled to several USEPA air dispersion models (ISCST3, CALPUFF6) to extend emission estimates to near field air concentrations. CALPUFF6 predicted slightly higher 1-h maximum air concentrations than ISCST3 for the same source strength (26.2-36.0% for setbacks between 1 and 250 m from the field edge, respectively). A sensitivity analysis for the CHAIN_2D/ISCST3 coupled numerical system is provided, with several soil and irrigation parameters consistently the most sensitive. Changes in the depth of incorporation, tarp material, and initial soil water content illustrate the predicted impact to emission strength and resulting near-field air concentrations with reductions of cumulative emission loss from 8.1 to 71% and average 1-h maximum air concentration reductions between 6.2 and 41% depending on the mitigation strategy chosen. Additionally, a stochastic framework based on the published SOFEA system that couples variability in experiment, model sensitivity, and site specific attributes is outlined should

  10. Statistical evaluation of a new air dispersion model against AERMOD using the Prairie Grass data set.

    PubMed

    Armani, Fernando Augusto Silveira; de Almeida, Ricardo Carvalho; Dias, Nelson Luís da Costa

    2014-02-01

    In this work, the authors present a statistical assessment of two atmospheric dispersion models. One of them, AERMOD (American Meteorological Society/Environmental Protection Agency Regulatory Model), adopted by the US. Environmental Protection Agency, is widely used in many countries and here is taken as a baseline to assess the performance of a newly proposed model, MODELAR (Modelo Regulatório de Qualidade do Ar). In terms of parameterizations and modeling options, MODELAR is a somewhat simple model. It is currently being considered for adoption as the regulatory model in Paraná State, Brazil. The well-known Prairie Grass data set, already used in earlier evaluations of the same version of AERMOD analyzed here, was used to perform model assessment. The evaluations employed well-established statistical performance descriptors and techniques. The results indicate that MODELAR is a slightly better predictor, for the Prairie Grass data set, of concentrations under unstable conditions, whereas AERMOD has a better performance under near-neutral and stable conditions. Moreover cases of severe overestimation and underestimation, as detected by the Factor of Two index, are clearly associated with extreme stability conditions (both unstable and stable), stressing the need for better parameterizations under these conditions. PMID:24654389

  11. FINE SCALE AIR QUALITY MODELING USING DISPERSION AND CMAQ MODELING APPROACHES: AN EXAMPLE APPLICATION IN WILMINGTON, DE

    EPA Science Inventory

    Characterization of spatial variability of air pollutants in an urban setting at fine scales is critical for improved air toxics exposure assessments, for model evaluation studies and also for air quality regulatory applications. For this study, we investigate an approach that su...

  12. Characterizing Emissions from Prescribed Fires and Assessing Impacts to Air Quality in the Lake Tahoe Basin Using Dispersion Modeling

    NASA Astrophysics Data System (ADS)

    Malamakal, Tom M.

    A PM2.5 monitoring network was established around Lake Tahoe during fall 2011, which, in conjunction with measurements at prescribed burns and smoke dispersion modeling based on the Fire Emission Production Simulator and the Hybrid Single Particle Lagrangian Integrated Trajectory (FEPS-HYSPLIT) Model, served to evaluate the prescribed burning impacts on air quality. Emissions from pile and understory prescribed burns were characterized using a mobile air monitoring system. In field PM2.5 emission factors showed ranges consistent with laboratory combustion of wet and dry fuels. Measurements in the smoke plume showed progression from flaming to smoldering phase consistent with FEPS and PM2.5 emission factors generally increased with decreasing combustion efficiency. Model predicted smoke contributions are consistent with elevated ambient PM2.5 concentrations in three case studies, and high meteorological model resolution (2km x 2 km) seems to produce accurate smoke arriving times. In other cases, the model performance is difficult to evaluate due to low predicted smoke contributions relative to the typical ambient PM2.5 level. Synergistic assessment of modeling and measurement can be used to determine basin air quality impact. The findings from this study will help land management agencies better understand the implications of managing fire at the wildland-urban interface.

  13. Engineering Strategies and Methods for Avoiding Air-Quality Externalities: Dispersion Modeling, Home Energy Conservation, and Scenario Planning

    NASA Astrophysics Data System (ADS)

    Knox, Andrew James

    Energy conservation can improve air quality by reducing emissions from fuel combustion. The human health value retained through better air quality can then offset the cost of energy conservation. Through this thesis' innovative yet widely-accessible combination of air pollution dispersion modeling and atmospheric chemistry, it is estimated that the health value retained by avoiding emissions from Ontario's former coal-fired generating stations is 5.74/MWh (using an upper-bound value of 265,000 per year of life lost). This value is combined with energy modeling of homes in the first-ever assessment of the air-quality health benefits of low-energy buildings. It is shown that avoided health damages can equal 7% of additional construction costs of energy efficient buildings in Ontario. At 7%, health savings are a significant item in the cost analysis of efficient buildings. Looking to energy efficiency in the context of likely future low-resource natural gas scenarios, building efficient buildings today is shown to be more economically efficient than any building retrofit option. Considering future natural gas scarcity in the context of Ontario's Long-Term Energy Plan reveals that Ontario may be forced to return to coal-fired electricity. Projected coal use would result in externalities greater than $600 million/year; 80% more than air-quality externalities from Ontario's electricity in 1985. Radically aggressive investment in electricity conservation (75% reduction per capita by 2075) is one promising path forward that keeps air-quality externalities below 1985 levels. Non-health externalities are an additional concern, the quantification, and ultimately monetization, of which could be practical using emerging air pollution monitoring technologies. Energy, conservation, energy planning, and energy's externalities form a complex situation in which today's decisions are critical to a successful future. It is clear that reducing the demand for energy is essential and

  14. Data-driven nonlinear optimisation of a simple air pollution dispersion model generating high resolution spatiotemporal exposure

    NASA Astrophysics Data System (ADS)

    Yuval; Bekhor, Shlomo; Broday, David M.

    2013-11-01

    Spatially detailed estimation of exposure to air pollutants in the urban environment is needed for many air pollution epidemiological studies. To benefit studies of acute effects of air pollution such exposure maps are required at high temporal resolution. This study introduces nonlinear optimisation framework that produces high resolution spatiotemporal exposure maps. An extensive traffic model output, serving as proxy for traffic emissions, is fitted via a nonlinear model embodying basic dispersion properties, to high temporal resolution routine observations of traffic-related air pollutant. An optimisation problem is formulated and solved at each time point to recover the unknown model parameters. These parameters are then used to produce a detailed concentration map of the pollutant for the whole area covered by the traffic model. Repeating the process for multiple time points results in the spatiotemporal concentration field. The exposure at any location and for any span of time can then be computed by temporal integration of the concentration time series at selected receptor locations for the durations of desired periods. The methodology is demonstrated for NO2 exposure using the output of a traffic model for the greater Tel Aviv area, Israel, and the half-hourly monitoring and meteorological data from the local air quality network. A leave-one-out cross-validation resulted in simulated half-hourly concentrations that are almost unbiased compared to the observations, with a mean error (ME) of 5.2 ppb, normalised mean error (NME) of 32%, 78% of the simulated values are within a factor of two (FAC2) of the observations, and the coefficient of determination (R2) is 0.6. The whole study period integrated exposure estimations are also unbiased compared with their corresponding observations, with ME of 2.5 ppb, NME of 18%, FAC2 of 100% and R2 that equals 0.62.

  15. Indirect estimation of emission factors for phosphate surface mining using air dispersion modeling.

    PubMed

    Tartakovsky, Dmitry; Stern, Eli; Broday, David M

    2016-06-15

    To date, phosphate surface mining suffers from lack of reliable emission factors. Due to complete absence of data to derive emissions factors, we developed a methodology for estimating them indirectly by studying a range of possible emission factors for surface phosphate mining operations and comparing AERMOD calculated concentrations to concentrations measured around the mine. We applied this approach for the Khneifiss phosphate mine, Syria, and the Al-Hassa and Al-Abyad phosphate mines, Jordan. The work accounts for numerous model unknowns and parameter uncertainties by applying prudent assumptions concerning the parameter values. Our results suggest that the net mining operations (bulldozing, grading and dragline) contribute rather little to ambient TSP concentrations in comparison to phosphate processing and transport. Based on our results, the common practice of deriving the emission rates for phosphate mining operations from the US EPA emission factors for surface coal mining or from the default emission factor of the EEA seems to be reasonable. Yet, since multiple factors affect dispersion from surface phosphate mines, a range of emission factors, rather than only a single value, was found to satisfy the model performance. PMID:26971219

  16. Global source identification of Arctic air pollution using statistical analysis of particle dispersion model output and measurement data

    NASA Astrophysics Data System (ADS)

    Hirdman, D. A.; Burkhart, J. F.; Eckhardt, S.; Sodemann, H.; Stohl, A.

    2008-12-01

    Arctic air pollution has received renewed interest recently because of its contribution to climate change in the Arctic. Nevertheless, its sources are still not known with sufficient accuracy. Most of our understanding of Arctic air pollution sources is based on model simulations, analysis of air pollution episodes or, at best, statistical analysis of air mass back-trajectories. Here, we present a new approach, namely combining the output of a Lagrangian particle dispersion model, FLEXPART, with measurement data from Arctic air pollution monitoring sites (Alert, Barrow, Summit, Zeppelin). This approach is similar to existing statistical methods for analyzing back-trajectories in conjunction with air pollution monitoring data. However, it has the advantage that the underlying model calculations also take into account turbulence and convection in the atmosphere, which are ignored by ordinary trajectory calculations. FLEXPART is run 20 days backward in time from each of the stations and every three hours, for several years. With every calculation, a so-called potential emission sensitivity (PES) field is obtained, which identifies where the measured air mass has come into contact with the Earth's surface. It quantitatively measures the sensitivity of the signal obtained at the station, to emissions occurring at or near the surface. By combining these PES fields with measured concentrations of several trace species e.g., carbon monoxide, sulphate, black carbon, and ozone. By performing a statistical analysis, we identify where the measured species most likely originate. Statistical analyses are performed both for average concentrations as well as the 10th and 90th percentiles of the measured frequency distribution. We implement a bootstrap resampling procedure to verify the statistical significance of the patterns observed in our retrieved PES maps. Some of our findings are: carbon monoxide and sulphate measured at Zeppelin originate from the Eurasian continent

  17. A model for dispersion from area sources in convective turbulence. [for air pollution

    NASA Technical Reports Server (NTRS)

    Crane, G.; Panofsky, H. A.; Zeman, O.

    1977-01-01

    Four independent estimates of the vertical distribution of the eddy coefficient for dispersion of a passive contaminant from an extensive area source in a convective layer have been presented. The estimates were based on the following methods: (1) a second-order closure prediction, (2) field data of pollutant concentrations over Los Angeles, (3) lab measurements of particle dispersion, and (4) assumption of equality between momentum and mass transfer coefficients in the free convective limit. It is suggested that K-values estimated both from second-order closure theory and from Los Angeles measurements are systematically underestimated.

  18. A comparison of methods for the assessment of odor impacts on air quality: Field inspection (VDI 3940) and the air dispersion model CALPUFF

    NASA Astrophysics Data System (ADS)

    Ranzato, Laura; Barausse, Alberto; Mantovani, Alice; Pittarello, Alberto; Benzo, Maurizio; Palmeri, Luca

    2012-12-01

    Unpleasant odors are a major cause of public complaints concerning air quality and represent a growing social problem in industrialized countries. However, the assessment of odor pollution is still regarded as a difficult task, because olfactory nuisance can be caused by many different chemical compounds, often found in hard-to-detect concentrations, and the perception of odors is influenced by subjective thresholds; moreover, the impact of odor sources on air quality is mediated by complex atmospheric dispersion processes. The development of standardized assessment approaches to odor pollution and proper international regulatory tools are urgently needed. In particular, comparisons of the methodologies commonly used nowadays to assess odor impacts on air quality are required. Here, we assess the olfactory nuisance caused by an anaerobic treatment plant for municipal solid waste by means of two alternative techniques: the field inspection procedure and the atmospheric dispersion model CALPUFF. Our goal was to compare rigorously their estimates of odor nuisance, both qualitatively (spatial extent of odor impact) and quantitatively (intensity of odor nuisance). To define the impact of odors, we referred to the German standards, based on the frequency of odor episodes in terms of odor hours. We report a satisfying, although not perfect agreement between the estimates provided by the two techniques. For example, they assessed similar spatial extents of odor pollution, but different frequencies of odor episodes in locations where the odor nuisance was highest. The comparison highlights strengths and weaknesses for both approaches. CALPUFF is a cheaper methodology which can be used predictively, but fugitive emissions are difficult to model reliably, because of uncertainty regarding timing, location and emission rate. Field inspection takes into account the role of human perception, but unlike the model it does not always characterize precisely the extent of the odor

  19. A REVIEW OF REGIONAL-SCALE AIR QUALITY MODELS FOR LONG DISTANCE DISPERSION MODELING IN THE FOUR CORNERS REGION

    EPA Science Inventory

    This document presents a review (ca. April 1977) of available air quality simulation models that are appropriate to long-range transport (e.g., 100-1000 km) of atmospheric pollutants. This review has been prepared as part of an effort to select, modify and apply long-range atmosp...

  20. Evaluation of the TUPOS air-quality dispersion model using data from the EPRI Kincaid field study

    SciTech Connect

    Turner, D.B.; Bender, L.W.; Paumier, J.O.; Boone, P.F.

    1991-01-01

    Data from SF6 tracer studies conducted at the Kincaid power plant in central Illinois by the Electric Power Research Institute in 1980 and 1981 have been used to evaluate the TUPOS air quality dispersion model. Most of the 96 hours' data are from periods representing daytime convective conditions when the impact of an elevated buoyant source would be expected to be greatest at ground level. Since on the order of 200 tracer measurement stations on four to six arcs were in operation during each hour of the study, a reasonable estimate of the maximum concentration along each arc could be made. The maximum concentration on each arc was the principal value used for purposes of comparing tracer measurements with model estimates. In addition to making comparisons between tracer and TUPOS estimates, comparisons were also made using the model MPTER. Although the means of residuals from the hourly maxima are not statistically different at the 95% confidence level for these two models, the TUPOS shows subjective improvement. The performance results were used to suggest further changes to the TUPOS model. These consisted primarily of determining the fluctuation statistics and wind speed and direction for a height midway between effective plume height and ground-level rather than at plume height. These changes were implemented and shown to provide improvement when tested on the dependent data set used to evaluate the original model. The mean of the residuals (model concentration minus tracer concentration) of 7.9 ppt (parts per trillion) for the revised model was found using a t test to be significantly different at the 95% confidence level from the mean of residuals for the original model of -13.1 ppt. This was from using all data for all arcs for all hours (580 data pairs).

  1. Performance evaluation of AERMOD, CALPUFF, and legacy air dispersion models using the Winter Validation Tracer Study dataset

    NASA Astrophysics Data System (ADS)

    Rood, Arthur S.

    2014-06-01

    The performance of the steady-state air dispersion models AERMOD and Industrial Source Complex 2 (ISC2), and Lagrangian puff models CALPUFF and RATCHET were evaluated using the Winter Validation Tracer Study dataset. The Winter Validation Tracer Study was performed in February 1991 at the former Rocky Flats Environmental Technology Site near Denver, Colorado. Twelve, 11-h tests were conducted where a conservative tracer was released and measured hourly at 140 samplers in concentric rings 8 km and 16 km from the release point. Performance objectives were unpaired maximum one- and nine-hour average concentration, location of plume maximum, plume impact area, arc-integrated concentration, unpaired nine-hour average concentration, and paired ensemble means. Performance objectives were aimed at addressing regulatory compliance, and dose reconstruction assessment questions. The objective of regulatory compliance is not to underestimate maximum concentrations whereas for dose reconstruction, the objective is an unbiased estimate of concentration in space and time. Performance measures included the fractional bias, normalized mean square error, geometric mean, geometric mean variance, correlation coefficient, and fraction of observations within a factor of two. The Lagrangian puff models tended to exhibit the smallest variance, highest correlation, and highest number of predictions within a factor of two compared to the steady-state models at both the 8-km and 16-km distance. Maximum one- and nine-hour average concentrations were less likely to be under-predicted by the steady-state models compared to the Lagrangian puff models. The characteristic of the steady-state models not to under-predict maximum concentrations make them well suited for regulatory compliance demonstration, whereas the Lagrangian puff models are better suited for dose reconstruction and long range transport.

  2. Air Dispersion Modeling of Radioactive Releases During Proposed PFP Complex Demolition Activities

    SciTech Connect

    Napier, Bruce A.; Droppo, James G.; Rishel, Jeremy P.

    2011-01-11

    This report is part of the planning process for the demolition of the 234-5Z, 236-Z, 242-Z, and 291-Z-1 structures at the Plutonium Finishing Plant (PFP) on the Hanford Site. Pacific Northwest National Laboratory (PNNL) supports the U.S. Department of Energy (DOE) and the CH2M HILL Plateau Remediation Company (CHPRC) demolition planning effort by making engineering estimates of potential releases for various potential demolition alternatives. This report documents an analysis considering open-air demolition using standard techniques. It does not document any decisions about the decommissioning approaches; it is expected that this report will be revisited as the final details of the demolition are developed.

  3. Uranium Dispersion & Dosimetry Model.

    SciTech Connect

    MICHAEL,; MOMENI, H.

    2002-03-22

    The Uranium Dispersion and Dosimetry (UDAD) program provides estimates of potential radiation exposure to individuals and to the general population in the vicinity of a uranium processing facility such as a uranium mine or mill. Only transport through the air is considered. Exposure results from inhalation, external irradiation from airborne and ground-deposited activity, and ingestion of foodstuffs. Individual dose commitments, population dose commitments, and environmental dose commitments are computed. The program was developed for application to uranium mining and milling; however, it may be applied to dispersion of any other pollutant.

  4. Uranium Dispersion & Dosimetry Model.

    2002-03-22

    The Uranium Dispersion and Dosimetry (UDAD) program provides estimates of potential radiation exposure to individuals and to the general population in the vicinity of a uranium processing facility such as a uranium mine or mill. Only transport through the air is considered. Exposure results from inhalation, external irradiation from airborne and ground-deposited activity, and ingestion of foodstuffs. Individual dose commitments, population dose commitments, and environmental dose commitments are computed. The program was developed for applicationmore » to uranium mining and milling; however, it may be applied to dispersion of any other pollutant.« less

  5. Calibration of the U.S. EPA`s landfill air emissions estimation model for dispersion modelling of vinyl chloride at municipal landfills

    SciTech Connect

    Alberico, J.J.; Handy, B.; Chadder, D.S.

    1997-12-31

    Ambient air quality monitoring programs of vinyl chloride have been conducted at two municipal landfills -- Eastview and Britannia -- in Ontario, Canada. These programs were designed to provide actual data as a basis for better estimating impacts of vinyl chloride emitted from the landfills on the surrounding environment. Dispersion modelling was conducted to replicate vinyl chloride levels measured during the sampling programs. This was accomplished by using the vinyl chloride emission rates determined by the US EPA`s Landfill Air Emissions Estimation Model and modelling the same meteorological conditions and sampling locations recorded during the monitoring program. This emissions model is known to produce conservative estimates of gas emissions from landfills. Predicted vinyl chloride levels were generally much higher than the measured values at both landfill sites. Based on statistical comparisons of the data sets, it was found that predicted vinyl chloride levels were 4 and 51 times higher than levels measured at the Eastview and Britannia Landfill sites, respectively. These reduction factors were applied to the emission rates estimated by the emissions model and the predicted impacts were re-assessed. These reduction factors ensure a more realistic prediction of vinyl chloride levels but still ensure that the predicted levels were generally higher than the measured levels. The air quality impact, when generated using the adjusted model, indicated no need for mitigation measures such as landfill gas collection and destruction.

  6. A LAGRANGIAN APPROACH TO MODELING AIR POLLUTANT DISPERSION: DEVELOPMENT AND TESTING IN THE VICINITY OF A ROADWAY

    EPA Science Inventory

    A microscale roadway dispersion model based on Lagrangian diffusion theory has been developed and tested. The model incorporates similarity expressions for the mean wind and turbulence energy in the atmospheric boundary layer, through which the effects of wind shear and atmospher...

  7. (FRANCE) USING THE QUIC MODEL (QUICK URBAN AND INDUSTRIAL COMPLEX) TO STUDY AIR FLOW AND DISPERSION PATTERNS IN DESERTS

    EPA Science Inventory

    As part of its continuing development and evaluation, the QUIC model (Quick Urban & Industrial Complex) was used to study flow and dispersion in complex terrain for two cases. First, for a small area of lower Manhattan near the World Trade Center site, comparisons were made bet...

  8. USING THE QUIC MODEL (QUICK URBAN AND INDUSTRIAL COMPLEX) TO STUDY AIR FLOW AND DISPERSION PATTERNS IN DESERTS

    EPA Science Inventory

    As part of its continuing development and evaluation, the QUIC model (Quick Urban & Industrial Complex) was used to study flow and dispersion in complex terrain for two cases. First, for a small area of lower Manhattan near the World Trade Center site, comparisons were made bet...

  9. Some Observational and Modeling Studies of the Atmospheric Boundary Layer at Mississippi Gulf Coast for Air Pollution Dispersion Assessment

    PubMed Central

    Yerramilli, Anjaneyulu; Challa, Venkata Srinivas; Indracanti, Jayakumar; Dasari, Hariprasad; Baham, Julius; Patrick, Chuck; Young, John; Hughes, Robert; White, Lorren D.; Hardy, Mark G.; Swanier, Shelton

    2008-01-01

    Coastal atmospheric conditions widely vary from those over inland due to the land-sea interface, temperature contrast and the consequent development of local circulations. In this study a field meteorological experiment was conducted to measure vertical structure of boundary layer during the period 25–29 June, 2007 at three locations Seabee base, Harrison and Wiggins sites in the Mississippi coast. A GPS Sonde along with slow ascent helium balloon and automated weather stations equipped with slow and fast response sensors were used in the experiment. GPS sonde were launched at three specific times (0700 LT, 1300 LT and 1800 LT) during the experiment days. The observations indicate shallow boundary layer near the coast which gradually develops inland. The weather research and forecasting (WRF) meso-scale atmospheric model and a Lagrangian particle dispersion model (HYSPLIT) are used to simulate the lower atmospheric flow and dispersion in a range of 100 km from the coast for 28–30 June, 2007. The simulated meteorological parameters were compared with the experimental observations. The meso-scale model results show significant temporal and spatial variations in the meteorological fields as a result of development of sea breeze flow, its coupling with the large scale flow field and the ensuing alteration in the mixing depth across the coast. Simulated ground-level concentrations of SO2 from four elevated point sources located along the coast indicate diurnal variation and impact of the local sea-land breeze on the direction of the plume. Model concentration levels were highest during the stable morning condition and during the sea-breeze time in the afternoon. The highest concentrations were found up to 40 km inland during sea breeze time. The study illustrates the application of field meteorological observations for the validation of WRF which is coupled to HYSPLIT for dispersion assessment in the coastal region. PMID:19151446

  10. Impact assessment of PM10 cement plants emissions on urban air quality using the SCIPUFF dispersion model.

    PubMed

    Leone, Vincenzo; Cervone, Guido; Iovino, Pasquale

    2016-09-01

    The Second-order Closure Integrated Puff (SCIPUFF) model was used to study the impact on urban air quality caused by two cement plants emissions located near the city of Caserta, Italy, during the entire year of 2015. The simulated and observed PM10 concentrations were compared using three monitoring stations located in urban and sub-urban area of Caserta city. Both simulated and observed concentrations are shown to be highest in winter, lower in autumn and spring and lowest in summer. Model results generally follow the pattern of the observed concentrations but have a systematic under-prediction of the concentration values. Measures of the bias, NMSE and RMSE indicate a good correlation between observed and estimated values. The SCIPUFF model data analysis suggest that the cement plants are major sources for the measured PM10 values and are responsible for the deterioration of the urban air quality in the city of Caserta. PMID:27485615

  11. Using soil records with atmospheric dispersion modeling to investigate the effects of clean air regulations on 60 years of manganese deposition in Marietta, Ohio (USA).

    PubMed

    Carter, Megan R; Gaudet, Brian J; Stauffer, David R; White, Timothy S; Brantley, Susan L

    2015-05-15

    Atmospheric emissions of metals from anthropogenic activities have led to deposition and contamination of soils worldwide. We quantified addition of manganese (Mn) to soils around the largest emitter of Mn in the United States (U.S.) using chemical analyses and atmospheric dispersion modeling (Second-Order Closure Integrated Puff (SCIPUFF)). Concentrations of soil-surface Mn were enriched by 9-fold relative to that of the parent material within 1 km of the facility. Elevated concentrations of Mn and chromium (Cr), another potentially toxic element that was emitted, document contamination only within 1 m of the soil surface. Total mass of Mn added per unit land area integrated over 1 m, mMn, equals ~80 mg Mn cm(-2) near the facility. Values of mMn remained above background up to tens of kilometers from the source. Air concentrations of Mn particles of 7.5-micron diameter simulated with SCIPUFF using available data for the emission rate and local meteorological conditions for 2006 were consistent with measured air concentrations. However, the Mn deposition calculated for 2006 with SCIPUFF yielded a cumulative value over the lifetime of the refinery (60 years) that is a factor of 15 lower than the Mn observed to have been added to the soils. This discrepancy can be easily explained if Mn deposition rates before 1988 were more than an order of magnitude greater than today. Such higher emissions are probable, given the changes in metal production with time and the installation of emission controls after the Clean Air Act (1970). This work shows that atmospheric dispersion models can be used with soil profiles to understand the changes in metal emissions over decadal timescales. In addition, the calculations are consistent with the Clean Air Act accounting for a 15-fold decrease in the Mn deposition to soils around the refinery per metric ton of Mn alloy produced. PMID:25698519

  12. Simulating near-road reactive dispersion of gaseous air pollutants using a three-dimensional Eulerian model.

    PubMed

    Kota, Sri Harsha; Ying, Qi; Zhang, Yunlong

    2013-06-01

    In this study, the TAMNROM-3D model, a 3D Eulerian near-road air quality model with vehicle induced turbulence parameterization and a MOVES based emission preprocessor, is tested using near-road gaseous pollutants data collected near a rural freeway with 34% heavy duty vehicle traffic. Exhaust emissions of gasses from the vehicles are estimated using a lumped vehicle classification scheme based on the number of vehicle axles and the default county-level MOVES vehicle fleet database. The predicted dilution of CO and NOx in the downwind direction agrees well with observation, although the total NOx emission has to be scaled to 85% of its original emission rate estimated by the MOVES model. Using the atmospheric turbulent diffusion coefficient parameterization of Degrazia et al. (2000) with variable horizontal turbulent diffusion coefficient (Kxx) leads to slightly better predictions than a traditional non-height-dependent Kxx parameterization. The NO2 concentrations can be better predicted when emission of total NOx is split into NO and NO2 using the NO2 to NOx ratio of 29% measured near the road. Simulations using the SAPRC99 photochemical mechanism do not show significant changes in the predicted NO and NO2 concentrations near the road compared to simulations using a simple three-reaction mechanism that involves only NOx and O3. A regional air quality simulation in Houston, Texas during a high O3 episode in August 2000 shows that using the NO2 to NOx ratio of 29% instead of the traditional 5% leads to as much as 6ppb increase in 8-h O3 predictions. PMID:23562687

  13. One way coupling of CMAQ and a road source dispersion model for fine scale air pollution predictions

    PubMed Central

    Beevers, Sean D.; Kitwiroon, Nutthida; Williams, Martin L.; Carslaw, David C.

    2012-01-01

    In this paper we have coupled the CMAQ and ADMS air quality models to predict hourly concentrations of NOX, NO2 and O3 for London at a spatial scale of 20 m × 20 m. Model evaluation has demonstrated reasonable agreement with measurements from 80 monitoring sites in London. For NO2 the model evaluation statistics gave 73% of the hourly concentrations within a factor of two of observations, a mean bias of −4.7 ppb and normalised mean bias of −0.17, a RMSE value of 17.7 and an r value of 0.58. The equivalent results for O3 were 61% (FAC2), 2.8 ppb (MB), 0.15 (NMB), 12.1 (RMSE) and 0.64 (r). Analysis of the errors in the model predictions by hour of the week showed the need for improvements in predicting the magnitude of road transport related NOX emissions as well as the hourly emissions scaling in the model. These findings are consistent with recent evidence of UK road transport NOX emissions, reported elsewhere. The predictions of wind speed using the WRF model also influenced the model results and contributed to the daytime over prediction of NOX concentrations at the central London background site at Kensington and Chelsea. An investigation of the use of a simple NO–NO2–O3 chemistry scheme showed good performance close to road sources, and this is also consistent with previous studies. The coupling of the two models raises an issue of emissions double counting. Here, we have put forward a pragmatic solution to this problem with the result that a median double counting error of 0.42% exists across 39 roadside sites in London. Finally, whilst the model can be improved, the current results show promise and demonstrate that the use of a combination of regional scale and local scale models can provide a practical modelling tool for policy development at intergovernmental, national and local authority level, as well as for use in epidemiological studies. PMID:23471172

  14. One way coupling of CMAQ and a road source dispersion model for fine scale air pollution predictions.

    PubMed

    Beevers, Sean D; Kitwiroon, Nutthida; Williams, Martin L; Carslaw, David C

    2012-11-01

    In this paper we have coupled the CMAQ and ADMS air quality models to predict hourly concentrations of NO X , NO2 and O3 for London at a spatial scale of 20 m × 20 m. Model evaluation has demonstrated reasonable agreement with measurements from 80 monitoring sites in London. For NO2 the model evaluation statistics gave 73% of the hourly concentrations within a factor of two of observations, a mean bias of -4.7 ppb and normalised mean bias of -0.17, a RMSE value of 17.7 and an r value of 0.58. The equivalent results for O3 were 61% (FAC2), 2.8 ppb (MB), 0.15 (NMB), 12.1 (RMSE) and 0.64 (r). Analysis of the errors in the model predictions by hour of the week showed the need for improvements in predicting the magnitude of road transport related NO X emissions as well as the hourly emissions scaling in the model. These findings are consistent with recent evidence of UK road transport NO X emissions, reported elsewhere. The predictions of wind speed using the WRF model also influenced the model results and contributed to the daytime over prediction of NO X concentrations at the central London background site at Kensington and Chelsea. An investigation of the use of a simple NO-NO2-O3 chemistry scheme showed good performance close to road sources, and this is also consistent with previous studies. The coupling of the two models raises an issue of emissions double counting. Here, we have put forward a pragmatic solution to this problem with the result that a median double counting error of 0.42% exists across 39 roadside sites in London. Finally, whilst the model can be improved, the current results show promise and demonstrate that the use of a combination of regional scale and local scale models can provide a practical modelling tool for policy development at intergovernmental, national and local authority level, as well as for use in epidemiological studies. PMID:23471172

  15. Comparison of the performances of land use regression modelling and dispersion modelling in estimating small-scale variations in long-term air pollution concentrations in a Dutch urban area

    NASA Astrophysics Data System (ADS)

    Beelen, Rob; Voogt, Marita; Duyzer, Jan; Zandveld, Peter; Hoek, Gerard

    2010-11-01

    The performance of a Land Use Regression (LUR) model and a dispersion model (URBIS - URBis Information System) was compared in a Dutch urban area. For the Rijnmond area, i.e. Rotterdam and surroundings, nitrogen dioxide (NO 2) concentrations for 2001 were estimated for nearly 70 000 centroids of a regular grid of 100 × 100 m. A LUR model based upon measurements carried out on 44 sites from the Dutch national monitoring network and upon Geographic Information System (GIS) predictor variables including traffic intensity, industry, population and residential land use was developed. Interpolation of regional background concentration measurements was used to obtain the regional background. The URBIS system was used to estimate NO 2 concentrations using dispersion modelling. URBIS includes the CAR model (Calculation of Air pollution from Road traffic) to calculate concentrations of air pollutants near urban roads and Gaussian plume models to calculate air pollution levels near motorways and industrial sources. Background concentrations were accounted for using 1 × 1 km maps derived from monitoring and model calculations. Moderate agreement was found between the URBIS and LUR in calculating NO 2 concentrations ( R = 0.55). The predictions agreed well for the central part of the concentration distribution but differed substantially for the highest and lowest concentrations. The URBIS dispersion model performed better than the LUR model ( R = 0.77 versus R = 0.47 respectively) in the comparison between measured and calculated concentrations on 18 validation sites. Differences can be understood because of the use of different regional background concentrations, inclusion of rather coarse land use category industry as a predictor variable in the LUR model and different treatment of conversion of NO to NO 2. Moderate agreement was found between a dispersion model and a land use regression model in calculating annual average NO 2 concentrations in an area with multiple

  16. Modeling volcanic ash dispersal

    ScienceCinema

    None

    2011-10-06

    Explosive volcanic eruptions inject into the atmosphere large amounts of volcanic material (ash, blocks and lapilli). Blocks and larger lapilli follow ballistic and non-ballistic trajectories and fall rapidly close to the volcano. In contrast, very fine ashes can remain entrapped in the atmosphere for months to years, and may affect the global climate in the case of large eruptions. Particles having sizes between these two end-members remain airborne from hours to days and can cover wide areas downwind. Such volcanic fallout entails a serious threat to aircraft safety and can create many undesirable effects to the communities located around the volcano. The assessment of volcanic fallout hazard is an important scientific, economic, and political issue, especially in densely populated areas. From a scientific point of view, considerable progress has been made during the last two decades through the use of increasingly powerful computational models and capabilities. Nowadays, models are used to quantify hazard scenarios and/or to give short-term forecasts during emergency situations. This talk will be focused on the main aspects related to modeling volcanic ash dispersal and fallout with application to the well known problem created by the Eyjafjöll volcano in Iceland. Moreover, a short description of the main volcanic monitoring techniques is presented.

  17. Modeling volcanic ash dispersal

    SciTech Connect

    2010-10-22

    Explosive volcanic eruptions inject into the atmosphere large amounts of volcanic material (ash, blocks and lapilli). Blocks and larger lapilli follow ballistic and non-ballistic trajectories and fall rapidly close to the volcano. In contrast, very fine ashes can remain entrapped in the atmosphere for months to years, and may affect the global climate in the case of large eruptions. Particles having sizes between these two end-members remain airborne from hours to days and can cover wide areas downwind. Such volcanic fallout entails a serious threat to aircraft safety and can create many undesirable effects to the communities located around the volcano. The assessment of volcanic fallout hazard is an important scientific, economic, and political issue, especially in densely populated areas. From a scientific point of view, considerable progress has been made during the last two decades through the use of increasingly powerful computational models and capabilities. Nowadays, models are used to quantify hazard scenarios and/or to give short-term forecasts during emergency situations. This talk will be focused on the main aspects related to modeling volcanic ash dispersal and fallout with application to the well known problem created by the Eyjafjöll volcano in Iceland. Moreover, a short description of the main volcanic monitoring techniques is presented.

  18. A review of recent field tests and mathematical modelling of atmospheric dispersion of large spills of Denser-than-air gases

    NASA Astrophysics Data System (ADS)

    Koopman, Ronald P.; Ermak, Donald L.; Chan, Stevens T.

    Large-scale spills of hazardous materials often produce gas clouds which are denser than air. The dominant physical processes which occur during dense-gas dispersion are very different from those recognized for trace gas releases in the atmosphere. Most important among these processes are stable stratification and gravity flow. Dense-gas flows displace the ambient atmospheric flow and modify ambient turbulent mixing. Thermodynamic and chemical reactions can also contribute to dense-gas effects. Some materials flash to aerosol and vapor when released and the aerosol can remain airborne, evaporating as it moves downwind, causing the cloud to remain cold and dense for long distances downwind. Dense-gas dispersion models, which include phase change and terrain effects have been developed and are capable of simulating many possible accidental releases. A number of large-scale field tests with hazardous materials such as liquefied natural gas (LNG), ammonia (NH 3), hydrofluoric acid(HF) and nitrogen tetroxide(N 2O 4) have been performed and used to evaluate models. The tests have shown that gas concentrations up to ten times higher than those predicted by trace gas models can occur due to aerosols and other dense-gas effects. A methodology for model evaluation has been developed which is based on the important physical characteristics of dense-gas releases.

  19. Dispersion Modeling of Traffic-Related Air Pollutant Exposures and Health Effects among Children with Asthma in Detroit, Michigan

    EPA Science Inventory

    Vehicular traffic is a major source of ambient air pollution in urban areas, and traffic-related air pollutants, including carbon monoxide, nitrogen oxides, particulate matter under 2.5 microns in diameter (PM2.5) and diesel exhaust emissions, have been associated with...

  20. A comparison of air dispersion models for estimating PM2.5 and dry deposition to urban trees

    NASA Astrophysics Data System (ADS)

    Game, Ibrahim Paguedame

    Many cities have public health issues linked to air pollution; various tools are used to assess pollutant distribution and removal by urban trees to help alleviate some of these issues. This research compares the predicted PM2.5 concentrations from the US EPA's AERMOD, the USDA Forest Service's i-Tree-Eco-D, the US EPA's Fused HBM data to short- and long-term monitors in New York City. AERMOD generally performs better than the US EPA's Fuse and i-Tree-Eco-D. On days with lower PM2.5 concentrations, Fuse appears to better capture the spatial distribution of PM2.5 than the other models, though on days with high PM2.5, Fuse had a larger negative bias. i-Tree-Eco-D was improved by raising the height of mobile emissions. Predictions from Fuse lead to higher estimates of PM2.5 removal and human health benefits, while AERMOD produced the lowest; and the removal varied across boroughs in NYC.

  1. Source term estimation using air concentration measurements and a Lagrangian dispersion model - Experiments with pseudo and real cesium-137 observations from the Fukushima nuclear accident

    NASA Astrophysics Data System (ADS)

    Chai, Tianfeng; Draxler, Roland; Stein, Ariel

    2015-04-01

    A transfer coefficient matrix (TCM) was created in a previous study using a Lagrangian dispersion model to provide plume predictions under different emission scenarios. The TCM estimates the contribution of each emission period to all sampling locations and can be used to estimate source terms by adjusting emission rates to match the model prediction with the measurements. In this paper, the TCM is used to formulate a cost functional that measures the differences between the model predictions and the actual air concentration measurements. The cost functional also includes a background term which adds the differences between a first guess and the updated emission estimates. Uncertainties of the measurements, as well as those for the first guess of source terms are both considered in the cost functional. In addition, a penalty term is added to create a smooth temporal change in the release rate. The method is first tested with pseudo observations generated using the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model at the same location and time as the actual observations. The inverse estimation system is able to accurately recover the release rates and performs better than a direct solution using singular value decomposition (SVD). It is found that computing ln(c) differences between model and observations is better than using the original concentration c differences in the cost functional. The inverse estimation results are not sensitive to artificially introduced observational errors or different first guesses. To further test the method, daily average cesium-137 air concentration measurements around the globe from the Fukushima nuclear accident are used to estimate the release of the radionuclide. Compared with the latest estimates by Katata et al. (2014), the recovered release rates successfully capture the main temporal variations. When using subsets of the measured data, the inverse estimation method still manages to identify most of the

  2. Comparison of the complex terrain algorithms incorporated into two commonly used local-scale air pollution dispersion models (ADMS and AERMOD) using a hybrid model.

    PubMed

    Carruthers, David J; Seaton, Martin D; McHugh, Christine A; Sheng, Xiangyu; Solazzo, Efisio; Vanvyve, Emilie

    2011-11-01

    ADMS and AERMOD are the two most widely used dispersion models for regulatory purposes. It is, therefore, important to understand the differences in the predictions of the models and the causes of these differences. The treatment by the models of flat terrain has been discussed previously; in this paper the focus is on their treatment of complex terrain. The paper includes a discussion of the impacts of complex terrain on airflow and dispersion and how these are treated in ADMS and AERMOD, followed by calculations for two distinct cases: (i) sources above a deep valley within a relatively flat plateau area (Clifty Creek power station, USA); (ii) sources in a valley in hilly terrain where the terrain rises well above the stack tops (Ribblesdale cement works, England). In both cases the model predictions are markedly different. At Clifty Creek, ADMS suggests that the terrain markedly increases maximum surface concentrations, whereas the AERMOD complex terrain module has little impact. At Ribblesdale, AERMOD predicts very large increases (a factor of 18) in the maximum hourly average surface concentrations due to plume impaction onto the neighboring hill; although plume impaction is predicted by ADMS, the increases in concentration are much less marked as the airflow model in ADMS predicts some lateral deviation of the streamlines around the hill. PMID:22168106

  3. Industrial Source Complex (ISC) dispersion model. Software

    SciTech Connect

    Schewe, G.; Sieurin, E.

    1980-01-01

    The model updates various EPA dispersion model algorithms and combines them in two computer programs that can be used to assess the air quality impact of emissions from the wide variety of source types associated with an industrial source complex. The ISC Model short-term program ISCST, an updated version of the EPA Single Source (CRSTER) Model uses sequential hourly meteorological data to calculate values of average concentration or total dry deposition for time periods of 1, 2, 3, 4, 6, 8, 12 and 24 hours. Additionally, ISCST may be used to calculate 'N' is 366 days. The ISC Model long-term computer program ISCLT, a sector-averaged model that updates and combines basic features of the EPA Air Quality Display Model (AQDM) and the EPA Climatological Dispersion Model (CDM), uses STAR Summaries to calculate seasonal and/or annual average concentration or total deposition values. Both the ISCST and ISCLT programs make the same basic dispersion-model assumptions. Additionally, both the ISCST and ISCLT programs use either a polar or a Cartesian receptor grid...Software Description: The programs are written in the FORTRAN IV programming language for implementation on a UNIVAC 1110 computer and also on medium-to-large IBM or CDC systems. 65,000k words of core storage are required to operate the model.

  4. Pollen Forecast and Dispersion Modelling

    NASA Astrophysics Data System (ADS)

    Costantini, Monica; Di Giuseppe, Fabio; Medaglia, Carlo Maria; Travaglini, Alessandro; Tocci, Raffaella; Brighetti, M. Antonia; Petitta, Marcello

    2014-05-01

    The aim of this study is monitoring, mapping and forecast of pollen distribution for the city of Rome using in-situ measurements of 10 species of common allergenic pollens and measurements of PM10. The production of daily concentration maps, associated to a mobile phone app, are innovative compared to existing dedicated services to people who suffer from respiratory allergies. The dispersal pollen is one of the most well-known causes of allergic disease that is manifested by disorders of the respiratory functions. Allergies are the third leading cause of chronic disease and it is estimated that tens millions of people in Italy suffer from it. Recent works reveal that during the last few years there was a progressive increase of affected subjects, especially in urban areas. This situation may depend: on the ability to transport of pollutants, on the ability to react between pollutants and pollen and from a combination of other irritants, existing in densely populated and polluted urban areas. The methodology used to produce maps is based on in-situ measurements time series relative to 2012, obtained from networks of air quality and pollen stations in the metropolitan area of Rome. The monitoring station aerobiological of University of Rome "Tor Vergata" is located at the Department of Biology. The instrument used to pollen monitoring is a volumetric sampler type Hirst (Hirst 1952), Model 2000 VPPS Lanzoni; the data acquisition is carried out as reported in Standard UNI 11008:2004 - "Qualità dell'aria - Metodo di campionamento e conteggio dei granuli pollinici e delle spore fungine aerodisperse" - the protocol that describes the procedure for measuring of the concentration of pollen grains and fungal spores dispersed into the atmosphere, and reported in the "Manuale di gestione e qualità della R.I.M.A" (Travaglini et. al. 2009). All 10 allergenic pollen are monitored since 1996. At Tor Vergata university is also operating a meteorological station (SP2000, CAE

  5. Accurate astronomical atmospheric dispersion models in ZEMAX

    NASA Astrophysics Data System (ADS)

    Spanò, P.

    2014-07-01

    ZEMAX provides a standard built-in atmospheric model to simulate atmospheric refraction and dispersion. This model has been compared with other ones to assess its intrinsic accuracy, critical for very demanding application like ADCs for AO-assisted extremely large telescopes. A revised simple model, based on updated published data of the air refractivity, is proposed by using the "Gradient 5" surface of Zemax. At large zenith angles (65 deg), discrepancies up to 100 mas in the differential refraction are expected near the UV atmospheric transmission cutoff. When high-accuracy modeling is required, the latter model should be preferred.

  6. Air pollution modeling and its application III

    SciTech Connect

    De Wispelaere, C.

    1984-01-01

    This book focuses on the Lagrangian modeling of air pollution. Modeling cooling tower and power plant plumes, modeling the dispersion of heavy gases, remote sensing as a tool for air pollution modeling, dispersion modeling including photochemistry, and the evaluation of model performances in practical applications are discussed. Specific topics considered include dispersion in the convective boundary layer, the application of personal computers to Lagrangian modeling, the dynamic interaction of cooling tower and stack plumes, the diffusion of heavy gases, correlation spectrometry as a tool for mesoscale air pollution modeling, Doppler acoustic sounding, tetroon flights, photochemical air quality simulation modeling, acid deposition of photochemical oxidation products, atmospheric diffusion modeling, applications of an integral plume rise model, and the estimation of diffuse hydrocarbon leakages from petrochemical factories. This volume constitutes the proceedings of the Thirteenth International Technical Meeting on Air Pollution Modeling and Its Application held in France in 1982.

  7. Pollutant Dispersion in a Developing Valley Cold-Air Pool

    NASA Astrophysics Data System (ADS)

    Chemel, Charles; Burns, Paul

    2015-03-01

    Pollutants are trapped and accumulate within cold-air pools, thereby affecting air quality. A numerical model is used to quantify the role of cold-air-pooling processes in the dispersion of air pollution in a developing region of enhanced cooling within an Alpine valley under decoupled stable conditions. Results indicate that the negatively buoyant downslope flows transport and mix pollutants into the valley to depths that depend on the temperature deficit of the flow and the ambient temperature structure inside the valley. Along the slopes, pollutants are generally entrained above the region of enhanced cooling and detrained within the region of enhanced cooling largely above the ground-based inversion layer. The ability of the region of enhanced cooling to dilute pollutants is quantified. The analysis shows that the downslope flows fill the valley with air from above, which is then largely trapped within the region of enhanced cooling and that dilution depends on where the pollutants are emitted with respect to the positions of the top of the ground-based inversion layer and region of enhanced cooling, and on the slope wind speeds. Over the lower part of the slopes, the concentrations averaged across the region of enhanced cooling are proportional to the slope wind speeds where the pollutants are emitted, and diminish as the region of enhanced cooling deepens. Pollutants emitted within the ground-based inversion layer are largely trapped there. Pollutants emitted farther up the slopes detrain within the region of enhanced cooling above the ground-based inversion layer, although some fraction, increasing with distance from the top of the slopes, penetrates into the ground-based inversion layer.

  8. Modeling pollutant dispersion within a tornadic thunderstorm

    SciTech Connect

    Pepper, D.W.

    1981-01-01

    A three-dimensional numerical model was developed to calculate ground-level air concentration and deposition of particles entrained in a tornadic thunderstorm. The rotational characteristics of the tornadic storm are within the larger mesoscale flow of the storm system and transported with the vortex. Turbulence exchange coefficients are based on empirical values. The quasi-Lagrangian method of moments is used to model the transport of concentration within a grid cell volume. Results indicate that updrafts and downdrafts, coupled with scavenging of particles by precipitation, account for most of the material being deposited closer to the site than anticipated. Approximately 5% of the pollutant is dispersed into the stratosphere.

  9. Dispersion relation for air via Kramers-Kronig analysis.

    PubMed

    Alvarez, Fernando J; Kuc, Roman

    2008-08-01

    A general expression for the dispersion of acoustic waves in air is obtained by combining the attenuation coefficient given by the ISO:9613-1 standard and the twice-subtracted Kramers-Kronig relation. Good agreement is found with published data of sound velocity at different frequencies and relative humidities. The resulting expression is used to investigate changes in local dispersion with temperature and humidity. PMID:18681503

  10. Integrated Urban Dispersion Modeling Capability

    SciTech Connect

    Kosovic, B; Chan, S T

    2003-11-03

    Numerical simulations represent a unique predictive tool for developing a detailed understanding of three-dimensional flow fields and associated concentration distributions from releases in complex urban settings (Britter and Hanna 2003). The accurate and timely prediction of the atmospheric dispersion of hazardous materials in densely populated urban areas is a critical homeland and national security need for emergency preparedness, risk assessment, and vulnerability studies. The main challenges in high-fidelity numerical modeling of urban dispersion are the accurate prediction of peak concentrations, spatial extent and temporal evolution of harmful levels of hazardous materials, and the incorporation of detailed structural geometries. Current computational tools do not include all the necessary elements to accurately represent hazardous release events in complex urban settings embedded in high-resolution terrain. Nor do they possess the computational efficiency required for many emergency response and event reconstruction applications. We are developing a new integrated urban dispersion modeling capability, able to efficiently predict dispersion in diverse urban environments for a wide range of atmospheric conditions, temporal and spatial scales, and release event scenarios. This new computational fluid dynamics capability includes adaptive mesh refinement and it can simultaneously resolve individual buildings and high-resolution terrain (including important vegetative and land-use features), treat complex building and structural geometries (e.g., stadiums, arenas, subways, airplane interiors), and cope with the full range of atmospheric conditions (e.g. stability). We are developing approaches for seamless coupling with mesoscale numerical weather prediction models to provide realistic forcing of the urban-scale model, which is critical to its performance in real-world conditions.

  11. Air parcel trajectory dispersion near the tropical tropopause

    NASA Astrophysics Data System (ADS)

    Bergman, John W.; Jensen, Eric J.; Pfister, Leonhard; Bui, Thaopaul V.

    2016-04-01

    Dispersion of backward air parcel trajectories that are initially tightly grouped near the tropical tropopause is examined using three ensemble approaches: "RANWIND," in which different ensemble members use identical resolved wind fluctuations but different realizations of stochastic, multifractal simulations of unresolved winds; "PERTLOC," in which members use identical resolved wind fields but initial locations are perturbed 2° in latitude and longitude; and a multimodel ensemble ("MULTIMODEL") that uses identical initial conditions but different resolved wind fields and/or trajectory formulations. Comparisons among the approaches distinguish, to some degree, physical dispersion from that due to data uncertainty and the impacts of unresolved wind fluctuations from those of resolved variability. Dispersion rates are robust properties of trajectories near the tropical tropopause. Horizontal dispersion rates are typically ~3°/d, which is large enough to spread parcels throughout the tropics within typical tropical tropopause layer transport times (30-60 days) and underscores the importance of averaging large collections of trajectories to obtain reliable parcel source and pathway distributions. Vertical dispersion rates away from convection are ~2-3 hPa/d. Dispersion is primarily carried out by the resolved flow, and the RANWIND approach provides a plausible representation of actual trajectory dispersion rates, while PERTLOC provides a reasonable and inexpensive alternative to RANWIND. In contrast, dispersion from the MULTIMODEL calculations is important because it reflects systematic differences in resolved wind fields from different reanalysis data sets.

  12. Performance of Desiccant Particle Dispersion Type Air Conditioning System

    NASA Astrophysics Data System (ADS)

    Hatano, Hiroyuki; Suzuki, Koichi; Kojima, Hiromitsu

    An investigation of desiccant air conditioning system is performed to demonstrate its performance in a dispersed desiccant particle systems, based on its higher gas solid contacting efficiency and isothermal dehumidification. Particle dispersion is achieved using the risers of a circulating fluidized bed, CFB, or of a pneumatic conveyer. The risers used for dehumidification are 1390 mm in height and 22 mm in diameter. The former is used to evaluate the overall dehumidification performance and the latter is used to measure the axial humidity distribution under 0.88 m/s of a superficial air velocity. Based on the results of the overall performance by changing solid loading rates, Gs, from 0.4 kg/m2s up to 6 kg/m2s, desiccant particle dispersion shows higher performance in dehumidification, while axial humidity distribution shows very rapid adsorption rate in the entrance zone of the riser. Removal of adsorption heat accelerates dehumidification rate compared to the adiabatic process.

  13. Modelling Hot Air Balloons.

    ERIC Educational Resources Information Center

    Brimicombe, M. W.

    1991-01-01

    A macroscopic way of modeling hot air balloons using a Newtonian approach is presented. Misleading examples using a car tire and the concept of hot air rising are discussed. Pressure gradient changes in the atmosphere are used to explain how hot air balloons work. (KR)

  14. Adaptive Urban Dispersion Integrated Model

    SciTech Connect

    Wissink, A; Chand, K; Kosovic, B; Chan, S; Berger, M; Chow, F K

    2005-11-03

    Numerical simulations represent a unique predictive tool for understanding the three-dimensional flow fields and associated concentration distributions from contaminant releases in complex urban settings (Britter and Hanna 2003). Utilization of the most accurate urban models, based on fully three-dimensional computational fluid dynamics (CFD) that solve the Navier-Stokes equations with incorporated turbulence models, presents many challenges. We address two in this work; first, a fast but accurate way to incorporate the complex urban terrain, buildings, and other structures to enforce proper boundary conditions in the flow solution; second, ways to achieve a level of computational efficiency that allows the models to be run in an automated fashion such that they may be used for emergency response and event reconstruction applications. We have developed a new integrated urban dispersion modeling capability based on FEM3MP (Gresho and Chan 1998, Chan and Stevens 2000), a CFD model from Lawrence Livermore National Lab. The integrated capability incorporates fast embedded boundary mesh generation for geometrically complex problems and full three-dimensional Cartesian adaptive mesh refinement (AMR). Parallel AMR and embedded boundary gridding support are provided through the SAMRAI library (Wissink et al. 2001, Hornung and Kohn 2002). Embedded boundary mesh generation has been demonstrated to be an automatic, fast, and efficient approach for problem setup. It has been used for a variety of geometrically complex applications, including urban applications (Pullen et al. 2005). The key technology we introduce in this work is the application of AMR, which allows the application of high-resolution modeling to certain important features, such as individual buildings and high-resolution terrain (including important vegetative and land-use features). It also allows the urban scale model to be readily interfaced with coarser resolution meso or regional scale models. This talk

  15. A model for dispersion of contaminants in the subway environment

    SciTech Connect

    Coke, L. R.; Sanchez, J. G.; Policastro, A. J.

    2000-05-03

    Although subway ventilation has been studied extensively, very little has been published on dispersion of contaminants in the subway environment. This paper presents a model that predicts dispersion of contaminants in a complex subway system. It accounts for the combined transient effects of train motion, station airflows, train car air exchange rates, and source release properties. Results are presented for a range of typical subway scenarios. The effects of train piston action and train car air exchange are discussed. The model could also be applied to analyze the environmental impact of hazardous materials releases such as chemical and biological agents.

  16. Atmospheric Dispersion Model Validation in Low Wind Conditions

    SciTech Connect

    Sawyer, Patrick

    2007-11-01

    Atmospheric plume dispersion models are used for a variety of purposes including emergency planning and response to hazardous material releases, determining force protection actions in the event of a Weapons of Mass Destruction (WMD) attack and for locating sources of pollution. This study provides a review of previous studies that examine the accuracy of atmospheric plume dispersion models for chemical releases. It considers the principles used to derive air dispersion plume models and looks at three specific models currently in use: Aerial Location of Hazardous Atmospheres (ALOHA), Emergency Prediction Information Code (EPIcode) and Second Order Closure Integrated Puff (SCIPUFF). Results from this study indicate over-prediction bias by the EPIcode and SCIPUFF models and under-prediction bias by the ALOHA model. The experiment parameters were for near field dispersion (less than 100 meters) in low wind speed conditions (less than 2 meters per second).

  17. Dispersion model maps spread of Fukushima radiation

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2013-01-01

    When water flooded the Japanese Fukushima Daiichi nuclear power plant on 11 March 2011, killing power to the plant and destroying its backup generators, the earthquake-triggered disaster resulted in a major nuclear accident, with the plant pouring radioactive material into the air and the water. Research into the effects of the radiation on humans and the environment has been ongoing, but to ensure the accuracy of these aftermath investigations requires understanding the precise concentrations, distribution patterns, and timing of the radionuclide emissions. To provide such an assessment for the marine environment, Estournel et al. used an ocean and atmosphere dispersion model to simulate the movements of radioactive cesium-137 throughout the Japanese coastal waters for 3.5 months following the earthquake.

  18. Dispersal and air entrainment in unconfined dilute pyroclastic density currents

    NASA Astrophysics Data System (ADS)

    Andrews, Benjamin J.

    2014-09-01

    Unconfined scaled laboratory experiments show that 3D structures control the behavior of dilute pyroclastic density currents (PDCs) during and after liftoff. Experiments comprise heated and ambient temperature 20 μm talc powder turbulently suspended in air to form density currents within an unobstructed 8.5 × 6 × 2.6-m chamber. Comparisons of Richardson, thermal Richardson, Froude, Stokes, and settling numbers and buoyant thermal to kinetic energy densities show good agreement between experimental currents and dilute PDCs. The experimental Reynolds numbers are lower than those of PDCs, but the experiments are fully turbulent; thus, the large-scale dynamics are similar between the two systems. High-frequency, simultaneous observation in three orthogonal planes shows that the currents behave very differently than previous 2D (i.e., confined) currents. Specifically, whereas ambient temperature currents show radial dispersal patterns, buoyancy reversal, and liftoff of heated currents focuses dispersal along narrow axes beneath the rising plumes. The aspect ratios, defined as the current length divided by a characteristic width, are typically 2.5-3.5 in heated currents and 1.5-2.5 in ambient temperature currents, reflecting differences in dispersal between the two types of currents. Mechanisms of air entrainment differ greatly between the two currents: entrainment occurs primarily behind the heads and through the upper margins of ambient temperature currents, but heated currents entrain air through their lateral margins. That lateral entrainment is much more efficient than the vertical entrainment, >0.5 compared to ˜0.1, where entrainment is defined as the ratio of cross-stream to streamwise velocity. These experiments suggest that generation of coignimbrite plumes should focus PDCs along narrow transport axes, resulting in elongate rather than radial deposits.

  19. REGULATORY AIR QUALITY MODELS

    EPA Science Inventory

    Appendix W to 40CFR Part 51 (Guideline on Air Quality Models) specifies the models to be used for purposes of permitting, PSD, and SIPs. Through a formal regulatory process this modeling guidance is periodically updated to reflect current science. In the most recent action, thr...

  20. Development and evaluation of the offshore and coastal dispersion model

    SciTech Connect

    Hanna, S.R.; Schulman, L.L.; Paine, R.J.; Pleim, J.E.; Baer, M.

    1985-10-01

    The Offshore and Coastal Dispersion (OCD) model has been developed for the Minerals Management Service (MMS) to determine the impact of offshore and onshore emissions from point sources on the air quality of coastal regions. Constructed on the framework of the EPA guideline model MPTER, the OCD model incorporates overwater plume transport and dispersion as well as changes that occur as the plume crosses the shoreline. Hourly meteorological data are needed from both offshore and onshore locations, including wind direction and speed, mixing height, overwater air temperature and relative humidity, and the sea surface temperature. Observed turbulence intensities are preferred by the model but are not mandatory. Dispersion coefficients are proportional to turbulence intensities. A virtual source technique is used to change the rate of plume growth as the overwater plume intercepts the overland internal boundary layer. The continuous shoreline fumigation case is treated using an approach suggested by Deardorff and Willis. Calculation of plume reflection from elevated terrain follows the Rough Terrain Dispersion Model (RTDM). The OCD model and the modified EPA model used as an interim model for overwater applications by the MMS were tested with measurements from three offshore tracer experiments. The OCD model was shown to be a clear improvement over the EPA model and was officially approved by the MMS in March 1985.

  1. A review of dispersion modelling and its application to the dispersion of particles: An overview of different dispersion models available

    NASA Astrophysics Data System (ADS)

    Holmes, N. S.; Morawska, L.

    This paper provides the first review of the application of atmospheric models for particle dispersion. The different types of dispersion models available, from simple box type models to complex fluid dynamics models are outlined and the suitability of the different approaches to dispersion modelling within different environments, in regards to scale, complexity of the environment and concentration parameters is assessed. Finally, several major commercial and non-commercial particle dispersion packages are reviewed, detailing which processes are included and advantages and limitations of their use to modelling particle dispersion. The models reviewed included: Box models (AURORA, CPB and PBM), Gaussian models (CALINE4, HIWAY2, CAR-FMI, OSPM, CALPUFF, AEROPOL, AERMOD, UK-ADMS and SCREEN3), Lagrangian/Eulerian Models (GRAL, TAPM, ARIA Regional), CFD models (ARIA Local, MISKAM, MICRO-CALGRID) and models which include aerosol dynamics (GATOR, MONO32, UHMA, CIT, AERO, RPM, AEROFOR2, URM-1ATM, MADRID, CALGRID and UNI-AERO).

  2. Wind tunnel modeling of heavy gas dispersion

    NASA Astrophysics Data System (ADS)

    König-Langlo, G.; Schatzmann, M.

    Assessment of risk attending the manufacturing, storing and transportation of flammable and toxic gases involves the quantification of the ensuing dispersion in case of an accidental release. Worst case considerations have to be applied in order to obtain conservative estimates The paper describes a method for the determination of lower flammability distances for gases heavier than air under unfavorable atmospheric conditions. The method is based on the results of a wind tunnel study investigating the dispersion of instantaneous as well as continuous releases into a boundary-layer shear flow disturbed and undisturbed by surface obstacles. Thermodynamic effects on the dispersing cloud have been taken into account through modification of source parameters. The results have been compared with those from corresponding field trials. The agreement is generally fair. The method has now been converted into a detailed guideline for dispersion calculations within risk assessment studies for flammable and toxic heavy gases (VDI 3783, Part 2, Beuth Verlag, Berlin, 1990).

  3. MODELED MESOSCALE METEOROLOGICAL FIELDS WITH FOUR-DIMENSIONAL DATA ASSIMILATION IN REGIONAL SCALE AIR QUALITY MODELS

    EPA Science Inventory

    This paper addresses the need to increase the temporal and spatial resolution of meteorological data currently used in air quality simulation models, AQSMs. ransport and diffusion parameters including mixing heights and stability used in regulatory air quality dispersion models a...

  4. "Dispersion modeling approaches for near road

    EPA Science Inventory

    Roadway design and roadside barriers can have significant effects on the dispersion of traffic-generated pollutants, especially in the near-road environment. Dispersion models that can accurately simulate these effects are needed to fully assess these impacts for a variety of app...

  5. AIR Model Preflight Analysis

    NASA Technical Reports Server (NTRS)

    Tai, H.; Wilson, J. W.; Maiden, D. L.

    2003-01-01

    The atmospheric ionizing radiation (AIR) ER-2 preflight analysis, one of the first attempts to obtain a relatively complete measurement set of the high-altitude radiation level environment, is described in this paper. The primary thrust is to characterize the atmospheric radiation and to define dose levels at high-altitude flight. A secondary thrust is to develop and validate dosimetric techniques and monitoring devices for protecting aircrews. With a few chosen routes, we can measure the experimental results and validate the AIR model predictions. Eventually, as more measurements are made, we gain more understanding about the hazardous radiation environment and acquire more confidence in the prediction models.

  6. Physical models of polarization mode dispersion

    SciTech Connect

    Menyuk, C.R.; Wai, P.K.A.

    1995-12-31

    The effect of randomly varying birefringence on light propagation in optical fibers is studied theoretically in the parameter regime that will be used for long-distance communications. In this regime, the birefringence is large and varies very rapidly in comparison to the nonlinear and dispersive scale lengths. We determine the polarization mode dispersion, and we show that physically realistic models yield the same result for polarization mode dispersion as earlier heuristic models that were introduced by Poole. We also prove an ergodic theorem.

  7. Modeling dispersion of traffic-related pollutants in the NEXUS health study

    EPA Science Inventory

    Dispersion modeling tools have traditionally provided critical information for air quality management decisions, but have been used recently to provide exposure estimates to support health studies. However, these models can be challenging to implement, particularly in near-road s...

  8. Free-air CO2 enrichment (face): model analysis of gaseous dispersion arrays for studying rising atmospheric CO2 effects on vegetation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Atmospheric carbon dioxide (CO2) has risen from about 280 to 380 micromol/mol since the beginning of the industrial revolution due mainly to burning of fossil fuels. Free-Air CO2 Enrichment (FACE) arrays have been devised with large areas and undisturbed aerial conditions that allow secondary soil o...

  9. Numerical Modelling of Mesoscale Atmospheric Dispersion.

    NASA Astrophysics Data System (ADS)

    Moran, Michael D.

    Mesoscale atmospheric dispersion is more complicated than smaller-scale dispersion because the mean wind field can no longer be considered steady or horizontally homogeneous over mesoscale time and space scales. Wind shear also plays a more important role on the mesoscale, and horizontal dispersion can be enhanced and even dominated by vertical wind shear through either the simultaneous or delayed interaction of horizontal differential advection and vertical mixing over one or two diurnal periods. The CSU mesoscale atmospheric dispersion modelling system has been used in this study to simulate the transport and diffusion of a perfluorocarbon gas for episodic releases made during two North American mesoscale dispersion field experiments, the 1980 Great Plains tracer experiment and the 1983 Cross-Appalachian Tracer Experiment (CAPTEX). Ground -level and elevated tracer concentrations were measured out to distances of 600 km from the source in the first experiment and 1100 km in the second. The physiography of the two experimental domains was quite different, permitting isolation and examination of the roles of terrain forcing and differential advection in mesoscale atmospheric dispersion. Suites of numerical experiments of increasing complexity were carried out for both case studies. The experiments differed in the realism of their representation of both the synoptic-scale flow and the underlying terrain. The Great Plains nocturnal low-level jet played an important role in the first case while temporal changes in the synoptic -scale flow were very significant in the second case. The contributions of differential advection and mesoscale deformation to mesoscale dispersion dominated those of small-scale turbulent diffusion for both cases, and Pasquill's (1962) delayed-shear-enhancement mechanism for lateral dispersion was found to be particularly important. This study was also the first quantitative evaluation of the CSU mesoscale dispersion modelling system with

  10. Dispersal

    USGS Publications Warehouse

    2001-01-01

    The ability of species to migrate and disperse is a trait that has interested ecologists for many years. Now that so many species and ecosystems face major environmental threats from habitat fragmentation and global climate change, the ability of species to adapt to these changes by dispersing, migrating, or moving between patches of habitat can be crucial to ensuring their survival. This book provides a timely and wide-ranging overview of the study of dispersal and incorporates much of the latest research. The causes, mechanisms, and consequences of dispersal at the individual, population, species and community levels are considered. The potential of new techniques and models for studying dispersal, drawn from molecular biology and demography, is also explored. Perspectives and insights are offered from the fields of evolution, conservation biology and genetics. Throughout the book, theoretical approaches are combined with empirical data, and care has been taken to include examples from as wide a range of species as possible.

  11. Analytic models of warm plasma dispersion relations

    SciTech Connect

    Seough, J. J.; Yoon, P. H.

    2009-09-15

    The present paper is concerned with analytic models of warm plasma dispersion relations for electromagnetic waves propagating parallel to the ambient magnetic field. Specifically, effects of finite betas on two slow modes, namely, the left-hand circularly polarized ion-cyclotron mode and the right-hand circularly polarized whistler mode, are investigated. Analytic models of the warm plasma dispersion relations are constructed on the basis of conjecture and upon comparisons with numerically found roots. It is shown that the model solutions are good substitutes for actual roots. The significance of the present work in the context of nonlinear plasma research is discussed.

  12. DISPERSION OF POLLUTANTS NEAR HIGHWAYS. DATA ANALYSIS AND MODEL EVALUATION

    EPA Science Inventory

    The validity of various assumptions underlying mathematical modeling of pollutant dispersion near at-grade highways was examined and the simulation capability of various dispersion models determined. The data base generated during the Long Island Dispersion Experiment is used to ...

  13. MODELING DISPERSANT INTERACTIONS WITH OIL SPILLS

    EPA Science Inventory

    EPA is developing a model called the EPA Research Object-Oriented Oil Spill Model (ERO3S) and associated databases to simulate the impacts of dispersants on oil slicks. Because there are features of oil slicks that align naturally with major concepts of object-oriented programmi...

  14. Spatially varying dispersion to model breakthrough curves.

    PubMed

    Li, Guangquan

    2011-01-01

    Often the water flowing in a karst conduit is a combination of contaminated water entering at a sinkhole and cleaner water released from the limestone matrix. Transport processes in the conduit are controlled by advection, mixing (dilution and dispersion), and retention-release. In this article, a karst transport model considering advection, spatially varying dispersion, and dilution (from matrix seepage) is developed. Two approximate Green's functions are obtained using transformation of variables, respectively, for the initial-value problem and for the boundary-value problem. A numerical example illustrates that mixing associated with strong spatially varying conduit dispersion can cause strong skewness and long tailing in spring breakthrough curves. Comparison of the predicted breakthrough curve against that measured from a dye-tracing experiment between Ames Sink and Indian Spring, Northwest Florida, shows that the conduit dispersivity can be as large as 400 m. Such a large number is believed to imply strong solute interaction between the conduit and the matrix and/or multiple flow paths in a conduit network. It is concluded that Taylor dispersion is not dominant in transport in a karst conduit, and the complicated retention-release process between mobile- and immobile waters may be described by strong spatially varying conduit dispersion. PMID:21143474

  15. The Role and Modeling of Dispersive Stresses

    NASA Astrophysics Data System (ADS)

    Shavit, U.; Moltchanov, S.

    2012-12-01

    Dispersive stresses represent momentum fluxes that are induced by the spatial heterogeneity of flow environments such as forest canopies, river vegetation and coral reefs. When deriving the average momentum equation for such flow environments, these dispersive stresses resemble the Reynolds stresses but instead of correlations of temporal fluctuations they represent correlations of spatial fluctuations. Surprisingly, these stresses are ignored in flow models and very few studies attempted to provide a physical interpretation, let alone a closure model. Typical arguments that justify such modeling are that these stresses are small and negligible; however, recent studies have shown that they may be important. In a recent study we showed that dispersive stresses at the inlet to obstructed region (made of glass cylinders) are larger than the Reynolds stresses and their contribution to the momentum balance is as important as the pressure and the drag forces. In this presentation we will try to explain what they are, provide some intuitive physical interoperation and show that closure models can be developed. Our results are based on highly detailed particle image velocimeter (PIV) measurements that were obtained inside a canopy model made of vertical thin glass plates. Forty nine vertical cross sections were obtained 1000 times generating a huge dataset of more than 250 million data points for each flow conditions. A careful spatial averaging procedure was developed and both temporal and spatial correlations were obtained. An order of magnitude analysis will be presented and the role of each of the terms in the momentum equation will be evaluated. It will be shown that the dispersive stresses are large and significant within the area of the canopy leading edge. Since dispersive stresses do not exist upstream from the canopy they are expected to grow once the flow enters the canopy. Our PIV data shows an initial fast growth up to about one length scale into the patch

  16. URBAN MORPHOLOGICAL ANALYSIS FOR MESOSCALE METEOROLOGICAL AND DISPERSION MODELING APPLICATIONS: CURRENT ISSUES

    EPA Science Inventory

    Representing urban terrain characteristics in mesoscale meteorological and dispersion models is critical to produce accurate predictions of wind flow and temperature fields, air quality, and contaminant transport. A key component of the urban terrain representation is the charac...

  17. Eulerian network modeling of longitudinal dispersion

    NASA Astrophysics Data System (ADS)

    Mehmani, Yashar; Balhoff, Matthew T.

    2015-10-01

    A novel Eulerian network model that incorporates "shear dispersion," the stretching of solute due to nonuniform velocity profiles within pore throats is developed. The superposing transport method (STM) is nonlocal in time (i.e., uses information from several previous time steps) and is equivalent to performing network-wide time convolutions of elementary throat response functions. Predicted macroscopic longitudinal dispersion coefficients for disordered sphere packs are in good agreement with published experimental data. We further investigate the impact of mixing assumptions within pores on macroscopic longitudinal dispersion and find the dependence to be weak for disordered sphere packs. Limitations of Eulerian network models as a whole are also discussed, and their inappropriateness for ordered porous media concluded.

  18. OCD: The offshore and coastal dispersion model. Volume 2. Appendices

    SciTech Connect

    DiCristofaro, D.C.; Hanna, S.R.

    1989-11-01

    The Offshore and Coastal Dispersion (OCD) Model has been developed to simulate the effect of offshore emissions from point, area, or line sources on the air quality of coastal regions. The OCD model was adapted from the EPA guideline model MPTER (EPA, 1980). Modifications were made to incorporate overwater plume transport and dispersion as well as changes that occur as the plume crosses the shoreline. This is a revised OCD model, the fourth version to date. The volume is an appendices for the OCD documentation, included are three appendices: Appendix A the OCD computer program, Appendix B an Analysis Post-processor, Appendix C Offshore Meteorological data Collection Instrumentation, also included are general References.

  19. Intercomparison of atmospheric dispersion models

    NASA Astrophysics Data System (ADS)

    Caputo, Marcelo; Giménez, Marcelo; Schlamp, Miguel

    An intercomparison between Gaussian, Gaussian segmented plumes and Lagrangian codes is presented. The codes chosen for the simulation of a gaseous emission under real meteorological conditions were AERMOD, HPDM, PCCOSYMA and HYSPLIT. The emission source was located at 37.35°N and 78.24°W in a flat terrain. The meteorological data were obtained from RAMS code output. The AERMOD and HPDM meteorological preprocessors results were analyzed. The main differences found are originated in the sensible heat flux (SHTF) and u* (friction velocity) computation, whose values impact directly on the Monin-Obukov length and mixing height calculation. These differences and the strong dependence of the results on them indicate that more development should still be done in order to improve the algorithms for the meteorological variables calculations, mainly during stable conditions. A more realistic description is performed by the segmented Gaussian plume model (PCCOSYMA) respect to the Gaussian ones (AERMOD, HPDM) because it limits the plume length along the wind direction. It also predicts reasonably well the contaminant cloud rotation respect to the Lagrangian code (HYSPLIT) as no major difference between the wind field and the wind at the source location is present in the analyzed case. During the stable hours, HPDM calculates the most stable situation and the lowest mixing heights. Because of this there is a considerable discrepancy in the maximum ground level concentration respect to the other codes. While during the unstable hours HPDM calculates the most unstable situation, nevertheless the maximum ground level concentrations predicted by all the Gaussian and Lagrangian codes are comparable.

  20. Dispersion of air pollutants downwind of a highway

    NASA Astrophysics Data System (ADS)

    Gordon, M.; Staebler, R. M.; Liggio, J.; Makar, P.; Brook, J. R.; Li, S.; Wentzell, J. J.; Lu, G.; Lee, P. K.

    2011-12-01

    This paper presents results from a study of the evolution of aerosols and gases downwind of a highway (FEVER; Fast Evolution of Vehicle Emissions from Roadways), which was conducted in the Toronto area in the summer of 2010. A mobile laboratory was used to measure the concentration gradient of the emissions at perpendicular distances from the highway up to 1 km from the road, as well as the physical and chemical evolution of UFP, black carbon (BC), CO, CO2, NO, NO2, and NOy. Hourly gradients of pollutants demonstrate good agreement with exponential fits and show a strong diurnal pattern. Before sunrise, the gradients are steep and elevated pollutant levels extend far from the road. After sunrise, as the boundary layer becomes unstable, gradients are less steep and the extend of the pollutant is much less. In the afternoon and early evening, levels remain low, and there is a slow increase in the persistence of pollution downwind of the highway. The results are compared to a dispersion model to estimate hourly vehicle emission rates. The model shows good agreement with the measurements. Emission rates calculated from the model fits demonstrate good agreement with the Mobile 6.2C inventory for CO2 and NOx, an underestimation of the inventory values for CO, and a factor of 6 overestimation of BC.

  1. Integration of an atmospheric dispersion model with a dynamic multimedia fate model: development and illustration.

    PubMed

    Morselli, Melissa; Ghirardello, Davide; Semplice, Matteo; Raspa, Giuseppe; Di Guardo, Antonio

    2012-05-01

    Growing attention is devoted to understand the influence of the short-term variations in air concentrations on the environmental fate of semivolatile organic compounds (SVOCs) such as polycyclic aromatic hydrocarbons (PAHs). These variations are ascribable to factors such as temperature-mediated air-surface exchange and variability of planetary boundary layer (PBL) height and structure. But when investigating the fate of SVOCs at a local scale, further variability can derive from specific point source contributions. In this context, a new modeling approach (AirPlus) which integrates a previously developed model (AirFug) with an air dispersion model (AERMOD) is presented. The integrated model is illustrated for two PAHs in a Northern Italy scenario. Results show how chemical contributions deriving from background advective inflows, local emissions and a point source interact in an hourly-varying meteorological scenario to determine air concentration rapid changes and the consequent response of the soil compartment. PMID:22366346

  2. Debris Dispersion Model Using Java 3D

    NASA Technical Reports Server (NTRS)

    Thirumalainambi, Rajkumar; Bardina, Jorge

    2004-01-01

    This paper describes web based simulation of Shuttle launch operations and debris dispersion. Java 3D graphics provides geometric and visual content with suitable mathematical model and behaviors of Shuttle launch. Because the model is so heterogeneous and interrelated with various factors, 3D graphics combined with physical models provides mechanisms to understand the complexity of launch and range operations. The main focus in the modeling and simulation covers orbital dynamics and range safety. Range safety areas include destruct limit lines, telemetry and tracking and population risk near range. If there is an explosion of Shuttle during launch, debris dispersion is explained. The shuttle launch and range operations in this paper are discussed based on the operations from Kennedy Space Center, Florida, USA.

  3. Mesoscale constitutive modeling of magnetic dispersions.

    PubMed

    Bhandar, Anand S; Wiest, John M

    2003-01-15

    A constitutive model for dispersions of acicular magnetic particles has been developed by modeling the particles as rigid dumbbells dispersed in a solvent. The effects of Brownian motion, anisotropic hydrodynamic drag, a steric force in the form of the Maier-Saupe potential, and, most importantly, a mean-field magnetic potential are included in the model. The development is similar to previous models for liquid-crystalline polymers. The model predicts multiple orientational states for the dispersion, and this phase behavior is described in terms of an orientational order parameter S and an average alignment parameter J; the latter is introduced because the magnetic particles have distinguishable direction due to polarity. A transition from isotropic to nematic phases at equilibrium is predicted. Multiple nematic phases-both prolate and oblate-are predicted in the presence of steady shear flow and external magnetic field parallel to the flow. The effect of increasing magnetic interparticle interactions and particle concentration is also presented. Comparisons with experimental data for the steady shear viscosity show very good agreement. PMID:16256493

  4. Emission rates, survival and modeled dispersal of viable pollen of creeping bentgrass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dispersal and deposition of pollen of Agrostis stolonifera was estimated through the use of CALPUFF, a complex model originally developed to simulate dispersal of particulates and other air pollutants. Rate and diurnal pattern of pollen emission, as well as pollen survival characteristics, were det...

  5. Modeling of Building Scale Flow and Dispersion

    SciTech Connect

    Lee, R L; Calhoun, R J; Chan, S T; Leone, J; Stevens, D E

    2001-07-10

    Predictions of airflows around buildings and the associated thermal and dispersion phenomena continue to be challenging because of the presence of extremely heterogeneous surface structures within urban areas. Atmospheric conditions can induce local winds to flow around structures rather than over them. Thus pollutants that are released at or near the ground tend to persist at relatively low levels with only minimal ventilation of the airborne material away from the ground surface. While flow and dispersion phenomena can be studied within wind tunnel settings, recent advances in numerical modeling have enabled computational fluid dynamics (CFD) to evolve into an important tool in the simulation of building scale flows. They are developing numerical models to simulate the flow and dispersion of releases around multi-building complexes. These models will be used to assess the transport and fate of releases of hazardous agents within urban areas and to support emergency response activities. There are already a number of models that have been developed to simulate flow and dispersion around urban settings. A recent collection of these papers can be found in the Proceedings of the International Workshop on CFD for Wind Climate in Cities. Most of the simulation studies presented in the literature are based on single buildings with a few of these results compared with wind tunnel experiments. As the applications become more advanced, the influence of multiple buildings, vegetation, surface heating and atmospheric stability on flow and dispersion has begun to be incorporated into recent CFD models. The focus of this paper is to describe LLNL's effort in the development of a high-performance CFD model for simulating transport and diffusion of hazardous releases around buildings and building complexes. A number of new physics features have been implemented in order to customize the CFD model for the urban application. These include surface heating, vegetation canopy, heat

  6. Multiscale analysis of compartment models with dispersal

    PubMed Central

    Kang, Yun; Castillo-Chavez, Carlos

    2014-01-01

    Dispersal, minimally defined as the movement or spatial displacement of organisms, links the dynamics of local population within and across regions. Landscape-population interactions responsible for driving co-evolutionary processes that on the long run shape communities of organisms, determine the outcomes of biological invasions, or alter the dynamics and evolution of infectious agents, are connected via dispersal. A generalized modeling framework is introduced derived from our interests in characterizing the dynamics of animal populations and trade in the presence of disease. We explore the impact of dispersal on systems that include disease, Allee effects, and host mobility. The emphasis is on disease, a selective force, that often plays a fundamental role on the life-history dynamics of a population. The models incorporate disease-driven effects on, often excluded, interactions like individual’s competitive ability to acquire resources. The framework makes use of deterministic and stochastic models that account for features often ignored or rarely included like (a) induced Allee effects; (b) disease dynamics; and (c) spatial heterogeneity. Preliminary results highlight the role of initial conditions, patch quality, and “topological” or connectivity landscape structure (the physical space where individuals move, reproduce, get sick, die, or compete for resources) on the dynamics of populations when disease is an important selective force. We dedicate this article to our grand mentor Simon Levin. PMID:22934939

  7. Uncertainty and dispersion in air parcel trajectories near the tropical tropopause

    NASA Astrophysics Data System (ADS)

    Bergman, John; Jensen, Eric; Pfister, Leonhard; Bui, Thoapaul

    2016-04-01

    The Tropical Tropopause Layer (TTL) is important as the gateway to the stratosphere for chemical constituents produced at the Earth's surface. As such, understanding the processes that transport air through the upper tropical troposphere is important for a number of current scientific issues such as the impact of stratospheric water vapor on the global radiative budget and the depletion of ozone by both anthropogenically- and naturally-produced halocarbons. Compared to the lower troposphere, transport in the TTL is relatively unaffected by turbulent motion. Consequently, Lagrangian particle models are thought to provide reasonable estimates of parcel pathways through the TTL. However, there are complications that make trajectory analyses difficult to interpret; uncertainty in the wind data used to drive these calculations and trajectory dispersion being among the most important. These issues are examined using ensembles of backward air parcel trajectories that are initially tightly grouped near the tropical tropopause using three approaches: A Monte Carlo ensemble, in which different members use identical resolved wind fluctuations but different realizations of stochastic, multi-fractal simulations of unresolved winds, perturbed initial location ensembles, in which members use identical resolved wind fields but initial locations are displaced 2° in latitude and longitude, and a multi-model ensemble that uses identical initial conditions but different resolved wind fields and/or trajectory formulations. Comparisons among the approaches distinguish, to some degree, physical dispersion from that due to data uncertainty and the impact of unresolved wind fluctuations from that of resolved variability.

  8. The NET effect of dispersants - a critical review of testing and modelling of surface oil dispersion.

    PubMed

    Zeinstra-Helfrich, Marieke; Koops, Wierd; Murk, Albertinka J

    2015-11-15

    Application of chemical dispersants or mechanical dispersion on surface oil is a trade-off between surface effects (impact of floating oil) and sub-surface effects (impact of suspended oil). Making an informed decision regarding such response, requires insight in the induced change in fate and transport of the oil. We aim to identify how natural, chemical and mechanical dispersion could be quantified in oil spill models. For each step in the dispersion process, we review available experimental data in order to identify overall trends and propose an algorithm or calculation method. Additionally, the conditions for successful mechanical and chemical dispersion are defined. Two commonly identified key parameters in surface oil dispersion are: oil properties (viscosity and presence of dispersants) and mixing energy (often wind speed). Strikingly, these parameters play a different role in several of the dispersion sub-processes. This may explain difficulties in simply relating overall dispersion effectiveness to the individual parameters. PMID:26412415

  9. Performance Evaluation of Dense Gas Dispersion Models.

    NASA Astrophysics Data System (ADS)

    Touma, Jawad S.; Cox, William M.; Thistle, Harold; Zapert, James G.

    1995-03-01

    This paper summarizes the results of a study to evaluate the performance of seven dense gas dispersion models using data from three field experiments. Two models (DEGADIS and SLAB) are in the public domain and the other five (AIRTOX, CHARM, FOCUS, SAFEMODE, and TRACE) are proprietary. The field data used are the Desert Tortoise pressurized ammonia releases, Burro liquefied natural gas spill tests, and the Goldfish anhydrous hydrofluoric acid spill experiments. Desert Tortoise and Goldfish releases were simulated as horizontal jet releases, and Burro as a liquid pool. Performance statistics were used to compare maximum observed concentrations and plume half-width to those predicted by each model. Model performance varied and no model exhibited consistently good performance across all three databases. However, when combined across the three databases, all models performed within a factor of 2. Problems encountered are discussed in order to help future investigators.

  10. Optimisation of dispersion parameters of Gaussian plume model for CO₂ dispersion.

    PubMed

    Liu, Xiong; Godbole, Ajit; Lu, Cheng; Michal, Guillaume; Venton, Philip

    2015-11-01

    The carbon capture and storage (CCS) and enhanced oil recovery (EOR) projects entail the possibility of accidental release of carbon dioxide (CO2) into the atmosphere. To quantify the spread of CO2 following such release, the 'Gaussian' dispersion model is often used to estimate the resulting CO2 concentration levels in the surroundings. The Gaussian model enables quick estimates of the concentration levels. However, the traditionally recommended values of the 'dispersion parameters' in the Gaussian model may not be directly applicable to CO2 dispersion. This paper presents an optimisation technique to obtain the dispersion parameters in order to achieve a quick estimation of CO2 concentration levels in the atmosphere following CO2 blowouts. The optimised dispersion parameters enable the Gaussian model to produce quick estimates of CO2 concentration levels, precluding the necessity to set up and run much more complicated models. Computational fluid dynamics (CFD) models were employed to produce reference CO2 dispersion profiles in various atmospheric stability classes (ASC), different 'source strengths' and degrees of ground roughness. The performance of the CFD models was validated against the 'Kit Fox' field measurements, involving dispersion over a flat horizontal terrain, both with low and high roughness regions. An optimisation model employing a genetic algorithm (GA) to determine the best dispersion parameters in the Gaussian plume model was set up. Optimum values of the dispersion parameters for different ASCs that can be used in the Gaussian plume model for predicting CO2 dispersion were obtained. PMID:26374541

  11. Convective boundary layer and modeling of dispersion

    NASA Astrophysics Data System (ADS)

    Ahmed, Nizam Uddin

    Looping, bifurcation, and meandering of a plume are generally observed in a convective field. The blobby or puffy concentration patterns associated with these plumes are marked deviations from what is expected from either conventional K-theory or Gaussian distribution formulae. A numerical model was developed for material dispersion in a convective boundary layer from both elevated and ground sources. Mechanistic formulation, rather than parameterization, or statistical behavior of planetary boundary layer (PBL) phenomena, was used as a basis. The dispersion mechanism is considered to be due to mixing between the updraft and the downdraft. This model uses two universal constants, (turbulent entrainment constant, a, and decay constant A) and a mixing scheme directly supported by observations. Researchers examined the dispersion pattern from the elevated and ground sources. For elevated sources, the maximum concentration descends first to the ground level at some distance downwind, and then rises, depending on the inversion height, the mean wind and height at which material is released. The updrafts have a higher velocity than the downdrafts and consequently the downdrafts occupy a larger horizontal area. In some cases the updrafts and downdrafts are comparable and materials are caught equally in the updrafts and downdrafts. The concentration of materials is split into two parts, one moving downward and the other upward. It is shown using the same mechanistic principles, that different convective situations cause different concentration patterns (for example, looping, bifurcating of a plume, and ascending of center line).

  12. Urban dispersion : challenges for fast response modeling

    SciTech Connect

    Brown, M. J.

    2004-01-01

    There is renewed interest in urban dispersion modeling due to the need for tools that can be used for responding to, planning for, and assessing the consequences of an airborne release of toxic materials. Although not an everyday phenomenon, releases of hazardous gases and aerosols have occurred in populated urban environments and are potentially threatening to human life. These releases may stem from on-site accidents as in the case of industrial chemical releases, may result during transport of hazardous chemicals as in tanker truck or railroad spills, or may be premeditated as in a chemical, biological, or radiological (CBR) agent terrorist attack. Transport and dispersion in urban environments is extremely complicated. Buildings alter the flow fields and deflect the wind, causing updrafts and downdrafts, channeling between buildings, areas of calm winds adjacent to strong winds, and horizontally and vertically rotating-eddies between buildings, at street corners, and other places within the urban canopy (see review by Hosker, 1984). Trees, moving vehicles, and exhaust vents among other things further complicate matters. The distance over which chemical, biological, or radiological releases can be harmful varies from tens of meters to many kilometers depending on the amount released, the toxicity of the agent, and the atmospheric conditions. As we will show later, accounting for the impacts of buildings on the transport and dispersion is crucial in estimating the travel direction, the areal extent, and the toxicity levels of the contaminant plume, and ultimately for calculating exposures to the population.

  13. Volcanic ash forecast transport and dispersion (VAFTAD) model

    SciTech Connect

    Heffter, J.L.; Stunder, B.J.B.

    1993-12-01

    The National Oceanic and Atmospheric Administration (NOAA) Air Resources Laboratory (ARL) has developed a Volcanic Ash Forecast Transport And Dispersion (VAFTAD) model for emergency response use focusing on hazards to aircraft flight operations. The model is run on a workstation at ARL. Meteorological input for the model is automatically downloaded from the NOAA National Meteorological Center (NMC) twice-daily forecast model runs to ARL. Additional input for VAFTAD ragarding the volcanic eruption is supplied by the user guided by monitor prompts. The model calculates transport and dispersion of volcanic ash from an initial ash cloud that has reached its maximum height within 3 h of eruption time. The model assumes that spherical ash particles of diameters ranging from 0.3 to 30 micrometers are distributed throughout the initial cloud with a particle number distribution based on Mount St. Helens and Redoubt Volcano eruptions. Particles are advected horizontally and vertically by the winds and fall according to Stoke`s law with a slip correction. A bivariate-normal distribution is used for horizontally diffusing the cloud and determining ash concentrations. Model output gives maps with symbols representing relative concentrations in three flight layers, and throughout the entire ash cloud, for sequential 6- and 12-h time intervals. A verification program for VAFTAD has been started. Results subjectively comparing model ash cloud forecasts with satellite imagery for three separate 1992 eruptions of Mount Spurr in Alaska have been most encouraging.

  14. Sensitivity Analysis of Dispersion Model Results in the NEXUS Health Study Due to Uncertainties in Traffic-Related Emissions Inputs

    EPA Science Inventory

    Dispersion modeling tools have traditionally provided critical information for air quality management decisions, but have been used recently to provide exposure estimates to support health studies. However, these models can be challenging to implement, particularly in near-road s...

  15. National Atmospheric Release Advisory Center dispersion modeling of the Full-scale Radiological Dispersal device (FSRDD) field trials

    DOE PAGESBeta

    Neuscamman, Stephanie J.; Yu, Kristen L.

    2016-05-01

    The results of the National Atmospheric Release Advisory Center (NARAC) model simulations are compared to measured data from the Full-Scale Radiological Dispersal Device (FSRDD) field trials. The series of explosive radiological dispersal device (RDD) experiments was conducted in 2012 by Defence Research and Development Canada (DRDC) and collaborating organizations. During the trials, a wealth of data was collected, including a variety of deposition and air concentration measurements. The experiments were conducted with one of the stated goals being to provide measurements to atmospheric dispersion modelers. These measurements can be used to facilitate important model validation studies. For this study, meteorologicalmore » observations recorded during the tests are input to the diagnostic meteorological model, ADAPT, which provides 3–D, time-varying mean wind and turbulence fields to the LODI dispersion model. LODI concentration and deposition results are compared to the measured data, and the sensitivity of the model results to changes in input conditions (such as the particle activity size distribution of the source) and model physics (such as the rise of the buoyant cloud of explosive products) is explored. The NARAC simulations predicted the experimentally measured deposition results reasonably well considering the complexity of the release. Lastly, changes to the activity size distribution of the modeled particles can improve the agreement of the model results to measurement.« less

  16. National Atmospheric Release Advisory Center Dispersion Modeling of the Full-scale Radiological Dispersal Device (FSRDD) Field Trials.

    PubMed

    Neuscamman, Stephanie; Yu, Kristen

    2016-05-01

    The results of the National Atmospheric Release Advisory Center (NARAC) model simulations are compared to measured data from the Full-Scale Radiological Dispersal Device (FSRDD) field trials. The series of explosive radiological dispersal device (RDD) experiments was conducted in 2012 by Defence Research and Development Canada (DRDC) and collaborating organizations. During the trials, a wealth of data was collected, including a variety of deposition and air concentration measurements. The experiments were conducted with one of the stated goals being to provide measurements to atmospheric dispersion modelers. These measurements can be used to facilitate important model validation studies. For this study, meteorological observations recorded during the tests are input to the diagnostic meteorological model, ADAPT, which provides 3-D, time-varying mean wind and turbulence fields to the LODI dispersion model. LODI concentration and deposition results are compared to the measured data, and the sensitivity of the model results to changes in input conditions (such as the particle activity size distribution of the source) and model physics (such as the rise of the buoyant cloud of explosive products) is explored. The NARAC simulations predicted the experimentally measured deposition results reasonably well considering the complexity of the release. Changes to the activity size distribution of the modeled particles can improve the agreement of the model results to measurement. PMID:27023036

  17. INEEL AIR MODELING PROTOCOL ext

    SciTech Connect

    C. S. Staley; M. L. Abbott; P. D. Ritter

    2004-12-01

    Various laws stemming from the Clean Air Act of 1970 and the Clean Air Act amendments of 1990 require air emissions modeling. Modeling is used to ensure that air emissions from new projects and from modifications to existing facilities do not exceed certain standards. For radionuclides, any new airborne release must be modeled to show that downwind receptors do not receive exposures exceeding the dose limits and to determine the requirements for emissions monitoring. For criteria and toxic pollutants, emissions usually must first exceed threshold values before modeling of downwind concentrations is required. This document was prepared to provide guidance for performing environmental compliance-driven air modeling of emissions from Idaho National Engineering and Environmental Laboratory facilities. This document assumes that the user has experience in air modeling and dose and risk assessment. It is not intended to be a "cookbook," nor should all recommendations herein be construed as requirements. However, there are certain procedures that are required by law, and these are pointed out. It is also important to understand that air emissions modeling is a constantly evolving process. This document should, therefore, be reviewed periodically and revised as needed. The document is divided into two parts. Part A is the protocol for radiological assessments, and Part B is for nonradiological assessments. This document is an update of and supersedes document INEEL/INT-98-00236, Rev. 0, INEEL Air Modeling Protocol. This updated document incorporates changes in some of the rules, procedures, and air modeling codes that have occurred since the protocol was first published in 1998.

  18. Longitudinal dispersion modeling in small streams

    NASA Astrophysics Data System (ADS)

    Pekarova, Pavla; Pekar, Jan; Miklanek, Pavol

    2014-05-01

    The environmental problems caused by the increasing of pollutant loads discharged into natural water bodies are very complex. For that reason the cognition of transport mechanism and mixing characteristics in natural streams is very important. The mathematical and numerical models have become very useful tools for solving the water management problems. The mathematical simulations based on numerical models of pollution mixing in streams can be used (for example) for prediction of spreading of accidental contaminant waves in rivers. The paper deals with the estimation of the longitudinal dispersion coefficients and with the numerical simulation of transport and transformation of accidental pollution in the small natural streams. There are different ways of solving problems of pollution spreading in open channels, in natural rivers. One of them is the hydrodynamic approach, which endeavours to understand and quantify the spreading phenomenon in a stream. The hydrodynamic models are based on advection-diffusion equation and the majority of them are one-dimensional models. Their disadvantage is inability to simulate the spread of pollution until complete dispersion of pollutant across the stream section is finished. Two-dimensional mixing models do not suffer from these limitations. On the other hand, the one-dimensional models are simpler than two-dimensional ones, they need not so much input data and they are often swifter. Three-dimensional models under conditions of natural streams are applicable with difficulties (or inapplicable) for their complexity and demands on accuracy and amount of input data. As there was mentioned above the two-dimensional models can be used also until complete dispersion of pollutant across the stream section is not finished, so we decided to apply the two-dimensional model SIRENIE. Experimental microbasin Rybarik is the part of the experimental Mostenik brook basin of IH SAS Bratislava. It was established as a Field Hydrological

  19. Dispersal kernel estimation: A comparison of empirical and modelled particle dispersion in a coastal marine system

    NASA Astrophysics Data System (ADS)

    Hrycik, Janelle M.; Chassé, Joël; Ruddick, Barry R.; Taggart, Christopher T.

    2013-11-01

    Early life-stage dispersal influences recruitment and is of significance in explaining the distribution and connectivity of marine species. Motivations for quantifying dispersal range from biodiversity conservation to the design of marine reserves and the mitigation of species invasions. Here we compare estimates of real particle dispersion in a coastal marine environment with similar estimates provided by hydrodynamic modelling. We do so by using a system of magnetically attractive particles (MAPs) and a magnetic-collector array that provides measures of Lagrangian dispersion based on the time-integration of MAPs dispersing through the array. MAPs released as a point source in a coastal marine location dispersed through the collector array over a 5-7 d period. A virtual release and observed (real-time) environmental conditions were used in a high-resolution three-dimensional hydrodynamic model to estimate the dispersal of virtual particles (VPs). The number of MAPs captured throughout the collector array and the number of VPs that passed through each corresponding model location were enumerated and compared. Although VP dispersal reflected several aspects of the observed MAP dispersal, the comparisons demonstrated model sensitivity to the small-scale (random-walk) particle diffusivity parameter (Kp). The one-dimensional dispersal kernel for the MAPs had an e-folding scale estimate in the range of 5.19-11.44 km, while those from the model simulations were comparable at 1.89-6.52 km, and also demonstrated sensitivity to Kp. Variations among comparisons are related to the value of Kp used in modelling and are postulated to be related to MAP losses from the water column and (or) shear dispersion acting on the MAPs; a process that is constrained in the model. Our demonstration indicates a promising new way of 1) quantitatively and empirically estimating the dispersal kernel in aquatic systems, and 2) quantitatively assessing and (or) improving regional hydrodynamic

  20. Comparison of regional air dispersion simulation and ambient air monitoring data for the soil fumigant 1,3-dichloropropene.

    PubMed

    van Wesenbeeck, I J; Cryer, S A; de Cirugeda Helle, O; Li, C; Driver, J H

    2016-11-01

    SOFEA v2.0 is an air dispersion modeling tool used to predict acute and chronic pesticide concentrations in air for large air sheds resulting from agronomic practices. A 1,3-dichloropropene (1,3-D) air monitoring study in high use townships in Merced County, CA, logged 3-day average air concentrations at nine locations over a 14.5month period. SOFEA, using weather data measured at the site, and using a historical CDPR regulatory assumption of a constant 320m mixing height, predicted the general pattern and correct order of magnitude for 1,3-D air concentrations as a function of time, but failed to estimate the highest observed 1,3-D concentrations of the monitoring study. A time series and statistical comparison of the measured and modeled data indicated that the model underestimated 1,3-D concentrations during calm periods (wind speed <1m/s), such that the annual average concentration was under predicted by approximately 4.7-fold, and the variability was not representative of the measured data. Calm periods are associated with low mixing heights (MHs) and are more prevalent in the Central Valley of CA during the winter months, and thus the assumption of a constant 320m mixing height is not appropriate. An algorithm was developed to calculate the MH using the air temperature in the weather file when the wind speed was <1m/s. When the model was run using the revised MHs, the average of the modeled 1,3-D concentration Probability Distribution Function (PDF) was within 5% of the measured PDF, and the variability in modeled concentrations more closely matched the measured dataset. Use of the PCRAMMET processed weather data from the site (including PCRAMMET MH) resulted in the global annual average concentration within 2-fold of measured data. Receptor density was also found to have an effect on the modeled 1,3-D concentration PDF, and a 50×50 receptor grid in the nine township domain captured the measured 1,3-D concentration distribution much better than a 3×3

  1. Vlasov multi-dimensional model dispersion relation

    SciTech Connect

    Lushnikov, Pavel M.; Rose, Harvey A.; Silantyev, Denis A.; Vladimirova, Natalia

    2014-07-15

    A hybrid model of the Vlasov equation in multiple spatial dimension D > 1 [H. A. Rose and W. Daughton, Phys. Plasmas 18, 122109 (2011)], the Vlasov multi dimensional model (VMD), consists of standard Vlasov dynamics along a preferred direction, the z direction, and N flows. At each z, these flows are in the plane perpendicular to the z axis. They satisfy Eulerian-type hydrodynamics with coupling by self-consistent electric and magnetic fields. Every solution of the VMD is an exact solution of the original Vlasov equation. We show approximate convergence of the VMD Langmuir wave dispersion relation in thermal plasma to that of Vlasov-Landau as N increases. Departure from strict rotational invariance about the z axis for small perpendicular wavenumber Langmuir fluctuations in 3D goes to zero like θ{sup N}, where θ is the polar angle and flows are arranged uniformly over the azimuthal angle.

  2. Some Effects of Air and Fuel Oil Temperatures on Spray Penetration and Dispersion

    NASA Technical Reports Server (NTRS)

    Gelalles, A G

    1930-01-01

    Presented here are experimental results obtained from a brief investigation of the appearance, penetration, and dispersion of oil sprays injected into a chamber of highly heated air at atmospheric pressure. The development of single sprays injected into a chamber containing air at room temperature and at high temperature was recorded by spray photography equipment. A comparison of spray records showed that with the air at the higher temperature, the spray assumed the appearance of thin, transparent cloud, the greatest part of which rapidly disappeared from view. With the chamber air at room temperature, a compact spray with an opaque core was obtained. Measurements of the records showed a decrease in penetration and an increase in the dispersion of the spray injected into the heated air. No ignition of the fuel injected was observed or recorded until the spray particles came in contact with the much hotter walls of the chamber about 0.3 second after the start of injection.

  3. VALMET-A valley air pollution model

    SciTech Connect

    Whiteman, C.D.; Allwine, K.J.

    1983-09-01

    Following a thorough analysis of meteorological data obtained from deep valleys of western Colorado, a modular air-pollution model has been developed to simulate the transport and diffusion of pollutants released from an elevated point source in a well-defined mountain valley during the nighttime and morning transition periods. This initial version of the model, named VALMET, operates on a valley cross section at an arbitrary distance down-valley from a continuous point source. The model has been constructed to include parameterizations of the major physical processes that act to disperse pollution during these time periods. The model has not been fully evaluated. Further testing, evaluations, and development of the model are needed. Priorities for further development and testing are provided.

  4. Oil and air dispersion in a simulated fermentation broth as a function of mycelial morphology.

    PubMed

    Lucatero, Savidra; Larralde-Corona, Claudia Patricia; Corkidi, Gabriel; Galindo, Enrique

    2003-01-01

    The culture conditions of a multiphase fermentation involving morphologically complex mycelia were simulated in order to investigate the influence of mycelial morphology (Trichoderma harzianum) on castor oil and air dispersion. Measurements of oil drops and air bubbles were obtained using an image analysis system coupled to a mixing tank. Complex interactions of the phases involved could be clearly observed. The Sauter diameter and the size distributions of drops and bubbles were affected by the morphological type of biomass (pellets or dispersed mycelia) added to the system. Larger oil drop sizes were obtained with dispersed mycelia than with pellets, as a result of the high apparent viscosity of the broth, which caused a drop in the power drawn, reducing oil drop break-up. Unexpectedly, bubble sizes observed with dispersed mycelia were smaller than with pellets, a phenomenon which can be explained by the segregation occurring at high biomass concentrations with the dispersed mycelia. Very complex oil drops were produced, containing air bubbles and a high number of structures likely consisting of small water droplets. Bubble location was influenced by biomass morphology. The percentage (in volume) of oil-trapped bubbles increased (from 32 to 80%) as dispersed mycelia concentration increased. A practically constant (32%) percentage of oil-trapped bubbles was observed with pelleted morphology at all biomass concentrations. The results evidenced the high complexity of phases interactions and the importance of mycelial morphology in such processes. PMID:12675561

  5. A CFD Model for Simulating Urban Flow and Dispersion.

    NASA Astrophysics Data System (ADS)

    Baik, Jong-Jin; Kim, Jae-Jin; Fernando, Harindra J. S.

    2003-11-01

    A three-dimensional computational fluid dynamics (CFD) model is developed to simulate urban flow and dispersion, to understand fluid dynamical processes therein, and to provide practical solutions to some emerging problems of urban air pollution. The governing equations are the Reynolds-averaged equations of momentum, mass continuity, heat, and other scalar (here, passive pollutant) under the Boussinesq approximation. The Reynolds stresses and turbulent fluxes are parameterized using the eddy diffusivity approach. The turbulent diffusivities of momentum, heat, and pollutant concentration are calculated using the prognostic equations of turbulent kinetic energy and its dissipation rate. The set of governing equations is solved numerically on a staggered, nonuniform grid system using a finite-volume method with the semi-implicit method for pressure-linked equation (SIMPLE) algorithm. The CFD model is tested for three different building configurations: infinitely long canyon, long canyon of finite length, and orthogonally intersecting canyons. In each case, the CFD model is shown to simulate urban street-canyon flow and pollutant dispersion well.

  6. OCD: The offshore and coastal dispersion model. Volume 1. User's guide

    SciTech Connect

    DiCristofaro, D.C.; Hanna, S.R.

    1989-11-01

    The Offshore and Coastal Dispersion (OCD) Model has been developed to simulate the effect of offshore emissions from point, area, or line sources on the air quality of coastal regions. The OCD model was adapted from the EPA guideline model MPTER (EPA, 1980). Modifications were made to incorporate overwater plume transport and dispersion as well as changes that occur as the plume crosses the shoreline. This is a revised OCD model, the fourth version to date. The volume is the User's Guide which includes a Model overview, technical description, user's instructions, and notes on model evaluation and results.

  7. Comparison of AERMOD and WindTrax dispersion models in determining PM10 emission rates from beef cattle feedlots

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reverse dispersion modeling has been used to determine air emission fluxes from ground-level area sources, including open-lot beef cattle feedlots. This research compared AERMOD, a Gaussian-based and currently the U.S. Environmental Protection Agency (EPA) preferred regulatory dispersion model, and ...

  8. AERMOD: A DISPERSION MODEL FOR INDUSTRIAL SOURCE APPLICATIONS PART II: MODEL PERFORMANCE AGAINST 17 FIELD STUDY DATABASES

    EPA Science Inventory

    The formulations of the AMS/EPA Regulatory Model Improvement Committee's applied air dispersion model (AERMOD) are described. This is the second in a series of three articles. Part I describes the model's methods for characterizing the atmospheric boundary layer and complex ter...

  9. Coastal and synoptic recirculation affecting air pollutants dispersion: A numerical study

    NASA Astrophysics Data System (ADS)

    Levy, Ilan; Mahrer, Yizhak; Dayan, Uri

    This study examines the spatial distribution of potential recirculation over the East Mediterranean Sea, and the combined effect of synoptic and meso-scale recirculations on plume dispersion in the region. For this purpose, three case studies are performed by the RAMS-HYPACT modeling system, each for a different synoptic scale flow pattern. Both a quantitative measure of the recirculation potential at each grid cell and particle dispersion are calculated. Although the recirculation index is an Eulerian quantity for the wind field and plume dispersion is a manifestation of the Lagrangian behavior of the wind, good correlation is found between the two. Several locations are identified as having high recirculation potential, including southern Cyprus, the coasts of Israel and Lebanon, the eastern slopes of the Judean Mountains and the Haifa Bay in particular. In the latter location, high recirculation potential could be explained by strong interaction between the land-sea surfaces, curvature of the bay and proximity of the Carmel ridge. It is shown that the synoptic and meso-scale recirculations may, under certain conditions, act together and at the same time in determining particle distribution. Under weak synoptic scale flows, particles are recirculated over the entire East Mediterranean Sea basin, returning onshore after a period of 2-3 days to join freshly emitted particles. At the same time, near-shore land-sea breeze effects cause particles to recirculate on smaller time scales of less then one day, sometimes passing as much as three times over the same airshed. A single elevated emission source is shown to have the potential to impair air quality at a coastal strip as long as 100-200 km upon returning onshore.

  10. Modeling human judgments of urban visual air quality

    NASA Astrophysics Data System (ADS)

    Middleton, Paulette; Stewart, Thomas R.; Dennis, Robin L.

    The overall approach to establishing a complete predictive model link between pollutant emissions and human judgments of urban visual air quality (UVAQ) is presented. The field study design and data analysis procedures developed for analyzing the human components of visual air quality assessment are outlined. The air quality simulation model which relates pollutant emissions to human judgments of visual cues which comprise visual air quality judgments is described. Measured and modeled cues are compared for five typical visual air quality days in the winter of 1981 for Denver, Colorado. The comparisons suggest that the perceptual cue model, based on dispersion and radiative transfer theory, does not adequately predict human judgments of UVAQ cues. Analysis of the limits of predictability of the human judgments and the predictive capability of the model components indicates that the greatest improvements toward achieving a predictive UVAQ model lie in a reformulation of the theoretical descriptions of visual cues.

  11. Using empirical data to model transgene dispersal.

    PubMed Central

    Meagher, T R; Belanger, F C; Day, P R

    2003-01-01

    One element of the current public debate about genetically modified crops is that gene flow from transgenic cultivars into surrounding weed populations will lead to more problematic weeds, particularly for traits such as herbicide resistance. Evolutionary biologists can inform this debate by providing accurate estimates of gene flow potential and subsequent ecological performance of resulting hybrids. We develop a model for gene flow incorporating exponential distance and directional effects to be applied to windpollinated species. This model is applied to previously published data on gene flow in experimental plots of Agrostis stolonifera L. (creeping bentgrass), which assessed gene flow from transgenic plants resistant to the herbicide glufosinate to surrounding non-transgenic plants. Our results show that although pollen dispersal can be limited in some sites, it may be extensive in others, depending on local conditions such as exposure to wind. Thus, hybridization under field conditions is likely to occur. Given the nature of the herbicide resistance trait, we regard this trait as unlikely to persist in the absence of herbicide, and suggest that the ecological consequences of such gene flow are likely to be minimal. PMID:12831482

  12. Large-Eddy Simulations os PM Dispersion to Quantify the Effects of Windbreaks on Air Quality around CAFOs

    NASA Astrophysics Data System (ADS)

    Kenny, W.; Bohrer, G.; Garrity, S. R.; Wyslouzil, B.; Zhao, L.; Eichinger, W. E.

    2011-12-01

    We model dispersion of an arbitrary scalar over a vegetated windbreak. We compare the results of a vegetation-resolving large-eddy simulation model (RAFLES) with a state-of-the-art Gaussian plume model (AERMOD). Observations from sonic anemometers, dust-tracks and Particulate Matter-sensing Lidar during a week-long field campaign around a large-scale poultry farm are used to evaluate the simulation results. The large-eddy simulation results suggest a potential uplift of the dispersing plume due to interactions with the windbreak. However, the observations indicate that large uplift already occurs near the source due to heat flux from the facility, and that interactions between the dispersing scalar plume (in this case, small radius particulate matter) and the windbreak are rather limited. These results suggest that gaussian plume models, which cannot resolve interactions with vegetation, can be easily improved in cases where the plume is uplifted near the source. This can be achieved by prescribing a strong heat flux at the scalar emission point, or by prescribing the emission at a high effective release height. Typically, Gaussian plume models such as AERMOD are used to relate point measurements to general rates of emission and air quality around sources of air pollution.

  13. Physical modeling of gas dispersion over urban area

    NASA Astrophysics Data System (ADS)

    Michálek, Petr; Zacho, David

    2016-06-01

    Experimental study of gas dispersion over urban area model was conducted in boundary layer wind tunnel in VZLU Prague. A scale model of urban area near the Centre of Liberec was made and dispersion of gas emissions from nearby heating plant was measured. The measurements included velocity field and concentration field by means of hot wire anemometer and flame ionization detector. The purpose of this work was to validate and verify a new computational dispersion model, which was developed in VZLU.

  14. Hgsystem: Dispersion models for ideal gases (version 3.0) (for microcomputers). Data file

    SciTech Connect

    1995-12-01

    As a result of many years in-house research, the gas dispersion group at Shell Research Ltd. Thornton (United Kingdom) has developed a package of mathematical models, called HGSYSTEM, to study the atmospheric dispersion of accidental pollutant releases with emphasis on denser-than-air materials. HGSYSTEM can simulate different dispersion scenarios (jet dispersion, heavy gas dispersion, passive dispersion). HGSYSTEM can model the full HF chemistry and thermodynamics. Most of the modules in the HGSYSTEM package can also be used for more general, non-reactive (ideal gas) releases as well. Validation of the HF-related simulations has been done with the well-known Goldfish Test Series. HGSYSTEM is in wide use for simulation of atmospheric dispersion scanarios for HF and other pollutant releases. It has been assessed against other models and found to rank amongst the best available atmospheric dispersion models in the world. HGSYSTEM sets the standard for HF dispersion calculations. The following major changes have been made to HGSYSTEM 1.0 to obtain HGSYSTEM 3.0.: The thermodynamical models available in HGSYSTEM have been extended. The full HF chemistry and thermodynamical model is now suitable for mixtures of HF, water, and an inert ideal gas. The non-reactive ideal gas description has been extended to multi-compound liquid-vapor mixtures (aerosols). A database containing physical properties for some 30 compounds has been added to HGSTSTEM. This database is needed when using the new two-phase, multi-compound thermodynamical model; the PLUME model for pressurized releases has been extended to model jet dispersion of multi-compound, two-phase mixtures; A new model describing the initial phase of instantaneous releases has been added.

  15. Central California coastal air-quality model validation study: Data analysis and model evaluation

    SciTech Connect

    Dabberdt, W.F.; Johnson, W.B.; Brodzinsky, R.; Ruff, R.E.

    1984-08-01

    The objectives of the study were: to obtain a comprehensive experimental data base of overwater and inland dispersion along the central California coast; to evaluate air-quality models presently being used by MMS for determining air-quality impacts from offshore emission sources; to evaluate various schemes for determining atmospheric stability and methods of determining atmospheric stability and methods of determining dispersion parameters (sigma-y and sigma-z) overwater; and to provide data needed for an overwater dispersion model presently under development by MMS.

  16. Modelling Aerosol Dispersion in Urban Street Canyons

    NASA Astrophysics Data System (ADS)

    Tay, B. K.; Jones, D. P.; Gallagher, M. W.; McFiggans, G. B.; Watkins, A. P.

    2009-04-01

    Flow patterns within an urban street canyon are influenced by various micrometeorological factors. It also represents an environment where pollutants such as aerosols accumulate to high levels due to high volumes of traffic. As adverse health effects are being attributed to exposure to aerosols, an investigation of the dispersion of aerosols within such environments is of growing importance. In particular, one is concerned with the vertical structure of the aerosol concentration, the ventilation characteristics of the street canyon and the influence of aerosol microphysical processes. Due to the inherent heterogeneity of the aerosol concentrations within the street canyon and the lack of spatial resolution of measurement campaigns, these issues are an on-going debate. Therefore, a modelling tool is required to represent aerosol dispersion patterns to provide insights to results of past measurement campaigns. Computational Fluid Dynamics (CFD) models are able to predict detailed airflow patterns within urban geometries. This capability may be further extended to include aerosol dispersion, by an Euler-Euler multiphase approach. To facilitate the investigation, a two-dimensional, multiphase CFD tool coupled with the k-epsilon turbulence model and with the capability of modelling mixed convection flow regimes arising from both wind driven flows and buoyancy effects from heated walls was developed. Assuming wind blowing perpendicularly to the canyon axis and treating aerosols as a passive scalar, an attempt will be made to assess the sensitivities of aerosol vertical structure and ventilation characteristics to the various flow conditions. Numerical studies were performed using an idealized 10m by 10m canyon to represent a regular canyon and 10m by 5m to represent a deep one. An aerosol emission source was assigned on the centerline of the canyon to represent exhaust emissions. The vertical structure of the aerosols would inform future directives regarding the

  17. Hybrid regional air pollution models

    SciTech Connect

    Drake, R.L.

    1980-03-01

    This discussion deals with a family of air quality models for predicting and analyzing the fine particulate loading in the atmosphere, for assessing the extent and degree of visibility impairment, and for determining the potential of pollutants for increasing the acidity of soils and water. The major horizontal scales of interest are from 400km to 2000km; and the time scales may vary from several hours, to days, weeks, and a few months or years, depending on the EPA regulations being addressed. First the role air quality models play in the general family of atmospheric simulation models is described. Then, the characteristics of a well-designed, comprehensive air quality model are discussed. Following this, the specific objectives of this workshop are outlined, and their modeling implications are summarized. There are significant modeling differences produced by the choice of the coordinate system, whether it be the fixed Eulerian system, the moving Lagrangian system, or some hybrid of the two. These three systems are briefly discussed, and a list of hybrid models that are currently in use are given. Finally, the PNL regional transport model is outlined and a number of research needs are listed.

  18. Industrial Source Complex (ISC) Dispersion Model User's Guide. Second edition. Volume 1 (revised). Final report

    SciTech Connect

    Wagner, C.P.

    1987-12-01

    The Second Edition (Revised) of the Industrial Source Complex Dispersion (ISC) Model User's Guide provides a detailed technical discussion of the updated ISC Model. The ISC Model was designed in response to the need for a comprehensive set of dispersion-model computer programs that could be used to evaluate the air-quality impact of emissions from large industrial source complexes. Air-quality impact analyses for source complexes often require consideration of factors such as fugitive emissions, aerodynamic building-wake effects, time-dependent exponential decay of pollutants, gravitational settling, and dry deposition. The ISC Model consists of two computer programs that are designed to consider these and other factors so as to meet the dispersion modeling needs of air-pollution-control agencies and others responsible for performing dispersion-modeling analyses. Major features in the revised model code include: (1) a regulatory default option; (2) a CALMS processing procedure; (3) a new Urban Mode 3; (4) revised sets of wind-speed profile exponents for rural and urban scenarios.

  19. AERMOD: A DISPERSION MODEL FOR INDUSTRIAL SOURCE APPLICATIONS PART I: GENERAL MODEL FORMULATION AND BOUNDARY LAYER CHARACTERIZATION

    EPA Science Inventory

    The formulations of the AMS/EPA Regulatory Model Improvement Committee's applied air dispersion model (AERMOD) as related to the characterization of the planetary boundary layer are described. This is the first in a series of three articles. Part II describes the formulation of...

  20. Air Dispersion Characteristics and Thermal Comparison of Traditional and Fabric Ductwork using Computational Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    Andreopoulou, Areti

    This thesis research compares the air dispersion and thermal comfort characteristics of conventional diffuser and fabric-based ductwork systems. Heating, ventilation, and air-conditioning (HVAC) systems in buildings produce and regulate airflow traveling through ductwork. The performance characteristics of conventional ductwork are compared with recent advancements in fabric-based ductwork. Using computational fluid dynamics (CFD) analysis, thermal and air distribution flow patterns are compared between the two types of ductwork and preliminary thermal comfort and efficiency conclusions are drawn. Results of the Air Distribution Performance Index (ADPI) for both ducting systems reflect that, under the given test conditions, the fabric duct system is approximately 23% more comfortable than the traditional diffuser system in terms of air speed flow uniformity into the space, while staying within the Effective Draft Temperature comfort zone of -3 to +2°F.

  1. AIR TOXICS HUMAN EXPOSURE MODELING

    EPA Science Inventory

    This project aims to improve the scientific basis for the Environmental Protection Agency's (EPA's) assessments of human exposures to air toxics by developing improved human exposure models. The research integrates the major components of the exposure paradigm, i.e., sources, tr...

  2. Community Multiscale Air Quality Model

    EPA Science Inventory

    The U.S. EPA developed the Community Multiscale Air Quality (CMAQ) system to apply a “one atmosphere” multiscale and multi-pollutant modeling approach based mainly on the “first principles” description of the atmosphere. The multiscale capability is supported by the governing di...

  3. Development of Gridded Fields of Urban Canopy Parameters for Advanced Urban Meteorological and Air Quality Models

    EPA Science Inventory

    Urban dispersion and air quality simulation models applied at various horizontal scales require different levels of fidelity for specifying the characteristics of the underlying surfaces. As the modeling scales approach the neighborhood level (~1 km horizontal grid spacing), the...

  4. Air Conditioner Compressor Performance Model

    SciTech Connect

    Lu, Ning; Xie, YuLong; Huang, Zhenyu

    2008-09-05

    During the past three years, the Western Electricity Coordinating Council (WECC) Load Modeling Task Force (LMTF) has led the effort to develop the new modeling approach. As part of this effort, the Bonneville Power Administration (BPA), Southern California Edison (SCE), and Electric Power Research Institute (EPRI) Solutions tested 27 residential air-conditioning units to assess their response to delayed voltage recovery transients. After completing these tests, different modeling approaches were proposed, among them a performance modeling approach that proved to be one of the three favored for its simplicity and ability to recreate different SVR events satisfactorily. Funded by the California Energy Commission (CEC) under its load modeling project, researchers at Pacific Northwest National Laboratory (PNNL) led the follow-on task to analyze the motor testing data to derive the parameters needed to develop a performance models for the single-phase air-conditioning (SPAC) unit. To derive the performance model, PNNL researchers first used the motor voltage and frequency ramping test data to obtain the real (P) and reactive (Q) power versus voltage (V) and frequency (f) curves. Then, curve fitting was used to develop the P-V, Q-V, P-f, and Q-f relationships for motor running and stalling states. The resulting performance model ignores the dynamic response of the air-conditioning motor. Because the inertia of the air-conditioning motor is very small (H<0.05), the motor reaches from one steady state to another in a few cycles. So, the performance model is a fair representation of the motor behaviors in both running and stalling states.

  5. Dispersion modelling approaches for near road applications involving noise barriers

    EPA Science Inventory

    The talk will present comparisons with two datasets of the barrier algorithms implemented in two different dispersion models: US EPA’s R-LINE (a research dispersion modelling tool under development by the US EPA’s Office of Research and Development) and CERC’s A...

  6. Air modeling of industrial area in India

    SciTech Connect

    Kumar, A.

    1996-12-31

    With privatization of power sector to fulfill power demand in India, fossil based power projects are proposed at different locations by Indian and foreign companies. As power industry occupies key role in the economic liberalization, the siting and technology for power plant are relevant in the Indian context, and modeling exercise is wanted for the design of stacks and pollution control measures. A case history is included to demonstrate the use of air quality modeling in prediction, and to delineate mitigation measures. Study has been conducted with Gaussian dispersion model to assess the incremental 24 hour maximum Ground Level Concentrations (GLCs) of SO{sub 2}, NO{sub x}, SPM due to proposed power plant. Stack and emission data, wind velocity, wind direction, temperature, mixing height, and stability classes are used as input parameters to the dispersion model. Maximum 24 hour GLCs of SO{sub 2}, NO{sub x}, and SPM are 30, 53, 2.5 {mu}g/m at 2 km east as down wind direction is from west (35%), south-southwest (25%), and west-northwest (15%). Northeast is the most affected quadrant during summer. Plume loopings are assessed from southeast to northeast directions, with maximum concentration in the east with respect to the site. First plume loop is assessed at 2 km distance, and subsequent loops are assessed with less pollutants concentration under atmospheric stability classes (B-E). High concentration of NO{sub x} has been assessed, which may cause hazardous effect like dense fog, particulate droplets, whereas SO{sub 2} concentration may cause acid raining, acid deposition to the surrounding. Proper air pollution control measures are required to minimize NO{sub x} levels.

  7. Advances in Analytical and Numerical Dispersion Modeling of Pollutants Releasing from an Area-source

    NASA Astrophysics Data System (ADS)

    Nimmatoori, Praneeth

    The air quality near agricultural activities such as tilling, plowing, harvesting, and manure application is of main concern because they release fine particulate matter into the atmosphere. These releases are modeled as area-sources in the air quality modeling research. None of the currently available dispersion models relate and incorporate physical characteristics and meteorological conditions for modeling the dispersion and deposition of particulates emitting from such area-sources. This knowledge gap was addressed by developing the advanced analytical and numerical methods for modeling the dispersion of particulate matter. The development, application, and evaluation of new dispersion modeling methods are discussed in detail in this dissertation. In the analytical modeling, a ground-level area source analytical dispersion model known as particulate matter deposition -- PMD was developed for predicting the concentrations of different particle sizes. Both the particle dynamics (particle physical characteristics) and meteorological conditions which have significant effect on the dispersion of particulates were related and incorporated in the PMD model using the formulations of particle gravitational settling and dry deposition velocities. The modeled particle size concentrations of the PMD model were evaluated statistically after applying it to particulates released from a biosolid applied agricultural field. The evaluation of the PMD model using the statistical criteria concluded effective and successful inclusion of dry deposition theory for modeling particulate matter concentrations. A comprehensive review of analytical area-source dispersion models, which do not account for dry deposition and treat pollutants as gases, was conducted and determined three models -- the Shear, the Parker, and the Smith. A statistical evaluation of these dispersion models was conducted after applying them to two different field data sets and the statistical results concluded that

  8. Dispersion analysis with inverse dielectric function modelling.

    PubMed

    Mayerhöfer, Thomas G; Ivanovski, Vladimir; Popp, Jürgen

    2016-11-01

    We investigate how dispersion analysis can profit from the use of a Lorentz-type description of the inverse dielectric function. In particular at higher angles of incidence, reflectance spectra using p-polarized light are dominated by bands from modes that have their transition moments perpendicular to the surface. Accordingly, the spectra increasingly resemble inverse dielectric functions. A corresponding description can therefore eliminate the complex dependencies of the dispersion parameters, allow their determination and facilitate a more accurate description of the optical properties of single crystals. PMID:27294550

  9. Guideline on air-quality models (revised). Supplement A

    SciTech Connect

    Not Available

    1987-07-01

    This guideline recommends air quality modeling techniques that may be applied to air-pollution-control strategy evaluations and new source reviews, including prevention of significant deterioration. It is intended for use by EPA Regional Offices in judging the adequacy of modeling analyses performed by EPA, by State and local agencies, and by industry and its consultants. It also identifies modeling techniques and data bases that EPA considers acceptable. The guideline makes specific recommendations concerning air-quality models, data bases, and general requirements for concentration estimates. This is Supplement A to the guideline. It contains: (1) addition of a specific version of the Rough Terrain Diffusion Model (RTDM) as a screening model; (2) modification of the downwash algorithm in the Industrial Source Complex (ISC) model; (3) addition of the Offshore and Coastal Dispersion (OCD) model to Appendix A; and, (4) addition of the AVACTA II model to Appendix B.

  10. Modelling Nitrogen Oxides in Los Angeles Using a Hybrid Dispersion/Land Use Regression Model

    NASA Astrophysics Data System (ADS)

    Wilton, Darren C.

    The goal of this dissertation is to develop models capable of predicting long term annual average NOx concentrations in urban areas. Predictions from simple meteorological dispersion models and seasonal proxies for NO2 oxidation were included as covariates in a land use regression (LUR) model for NOx in Los Angeles, CA. The NO x measurements were obtained from a comprehensive measurement campaign that is part of the Multi-Ethnic Study of Atherosclerosis Air Pollution Study (MESA Air). Simple land use regression models were initially developed using a suite of GIS-derived land use variables developed from various buffer sizes (R²=0.15). Caline3, a simple steady-state Gaussian line source model, was initially incorporated into the land-use regression framework. The addition of this spatio-temporally varying Caline3 covariate improved the simple LUR model predictions. The extent of improvement was much more pronounced for models based solely on the summer measurements (simple LUR: R²=0.45; Caline3/LUR: R²=0.70), than it was for models based on all seasons (R²=0.20). We then used a Lagrangian dispersion model to convert static land use covariates for population density, commercial/industrial area into spatially and temporally varying covariates. The inclusion of these covariates resulted in significant improvement in model prediction (R²=0.57). In addition to the dispersion model covariates described above, a two-week average value of daily peak-hour ozone was included as a surrogate of the oxidation of NO2 during the different sampling periods. This additional covariate further improved overall model performance for all models. The best model by 10-fold cross validation (R²=0.73) contained the Caline3 prediction, a static covariate for length of A3 roads within 50 meters, the Calpuff-adjusted covariates derived from both population density and industrial/commercial land area, and the ozone covariate. This model was tested against annual average NOx

  11. Application of inverse dispersion model for estimating volatile organic compounds emitted from the offshore industrial park

    NASA Astrophysics Data System (ADS)

    Tsai, M.; Lee, C.; Yu, H.

    2013-12-01

    In the last 20 years, the Yunlin offshore industrial park has significantly contributed to the economic development of Taiwan. Its annual production value has reached almost 12 % of Taiwan's GDP in 2012. The offshore industrial park also balanced development of urban and rural in areas. However, the offshore industrial park is considered the major source of air pollution to nearby counties, especially, the emission of Volatile Organic Compounds(VOCs). Studies have found that exposures to high level of some VOCs have caused adverse health effects on both human and ecosystem. Since both health and ecological effects of air pollution have been the subject of numerous studies in recent years, it is a critical issue in estimating VOCs emissions. Nowadays emission estimation techniques are usually used emissions factors in calculation. Because the methodology considered totality of equipment activities based on statistical assumptions, it would encounter great uncertainty between these coefficients. This study attempts to estimate VOCs emission of the Yunlin Offshore Industrial Park using an inverse atmospheric dispersion model. The inverse modeling approach will be applied to the combination of dispersion modeling result which input a given one-unit concentration and observations at air quality stations in Yunlin. The American Meteorological Society-Environmental Protection Agency Regulatory Model (AERMOD) is chosen as the tool for dispersion modeling in the study. Observed concentrations of VOCs are collected by the Taiwanese Environmental Protection Administration (TW EPA). In addition, the study also analyzes meteorological data including wind speed, wind direction, pressure and temperature etc. VOCs emission estimations from the inverse atmospheric dispersion model will be compared to the official statistics released by Yunlin Offshore Industrial Park. Comparison of estimated concentration from inverse dispersion modeling and official statistical concentrations will

  12. Numerical modelling of mesoscale atmospheric dispersion. (Volumes I and II)

    SciTech Connect

    Moran, M.D.

    1992-01-01

    Mesoscale atmospheric dispersion is more complicated than smaller-scale dispersion because the mean wind field can no longer be considered steady or horizontally homogeneous over mesoscale time and space scales. Wind shear also plays an important role on the mesoscale, and horizontal dispersion can be enhanced and even dominated by vertical wind shear through either the simultaneous or delayed interaction of horizontal differential advection and vertical mixing. The CSU mesoscale atmospheric dispersion modelling system has been used in this study to simulate the transport and diffusion of a perfluorocarbon gas for episodic releases made during two mesoscale dispersion field experiments. The physiography of the two experimental domains was quite different, permitting isolation and examination of the roles of terrain forcing and differential advection in mesoscale atmospheric dispersion. Suites of numerical experiments of increasing complexity were carried out for both case studies. The experiments differed in the realism of their representation of both the synoptic-scale flow and the underlying terrain. The contributions of differential advection and mesoscale deformation to mesoscale dispersion dominated those of small-scale turbulent diffusion for both cases, and Pasquill's (1962) delayed-shear-enhancement mechanism for lateral dispersion was found to be particularly important. This study was also the first quantitative evaluation of the CSU mesoscale dispersion modelling system with episodic mesoscale dispersion field data. The modelling system showed considerable skill in predicting quantitative tracer-cloud characteristics such as peak concentration, maximum cloud width, arrival time, transit time, and crosswind integrated exposure. Model predictions also compared favorably with predictions made by a number of other mesoscale dispersion models for the same two case studies.

  13. A dynamic model for the Lagrangian stochastic dispersion coefficient

    SciTech Connect

    Pesmazoglou, I.; Navarro-Martinez, S.; Kempf, A. M.

    2013-12-15

    A stochastic sub-grid model is often used to accurately represent particle dispersion in turbulent flows using large eddy simulations. Models of this type have a free parameter, the dispersion coefficient, which is not universal and is strongly grid-dependent. In the present paper, a dynamic model for the evaluation of the coefficient is proposed and validated in decaying homogeneous isotropic turbulence. The grid dependence of the static coefficient is investigated in a turbulent mixing layer and compared to the dynamic model. The dynamic model accurately predicts dispersion statistics and resolves the grid-dependence. Dispersion statistics of the dynamically calculated constant are more accurate than any static coefficient choice for a number of grid spacings. Furthermore, the dynamic model produces less numerical artefacts than a static model and exhibits smaller sensitivity in the results predicted for different particle relaxation times.

  14. Future climate impact on unfavorable meteorological conditions for the dispersion of air pollution in Brussels

    NASA Astrophysics Data System (ADS)

    De Troch, Rozemien; Berckmans, Julie; Giot, Olivier; Hamdi, Rafiq; Termonia, Piet

    2015-04-01

    Belgium is one of the several countries in Europe where air quality levels of different pollutants such as ozone, NOx, and Particulate Matter (PM) still exceed the prescribed European norms multiple times a year (EEA, 2014). These pollution peaks have a great impact on health and environment, in particular in large cities and urban environments. It is well known that observed concentrations of air pollutants are strongly influenced by emissions and meteorological conditions and therefore is sensitive to climate change. As the effects of global climate change are increasingly felt in Belgium, policy makers express growing interest in quantifying its effect on air pollution and the effort required to meet the air quality targets in the next years and decennia (Lauwaet et al., 2014). In this study, two different stability indices are calculated for a 9-year period using present (1991-1999) and future (2047-2055) climate data that has been obtained from a dynamically downscaling of Global Climate Model data from the Arpège model using the ALARO model at 4 km spatial resolution. The ALARO model is described in detail in previous validation studies from De Troch et al. (2013) and Hamdi et al. (2013). The first index gives a measure of the horizontal and vertical transport of nonreactive pollutants in stable atmospheric conditions and has been proposed and tested by Termonia and Quinet (2004). It gives a characteristic length scale l which is the ratio of the mean horizontal wind speed and the Brunt-Väisälä frequency. In this way low values for l in the lower part of the boundary layer during an extended time span of 12 hours, correspond to calm situations and a stable atmosphere and thus indicate unfavorable conditions for the dispersion of air pollution. This transport index is similar to an index used in an old Pasquill-type scheme but is more convenient to use to detect the strongest pollution peaks. The well known Pasquill classes are also calculated in order to

  15. Evaluation of an efficient statistical transport model for turbulent droplet dispersion in dilute combusting sprays

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Jeng, San-Mou

    1991-01-01

    Evaluation of an efficient statistical transport model for turbulent droplet dispersion is made for a dilute spray of methanol droplets injected into a turbulent, axisymmnetric methane-fuelled diffusion flame burning in stagnant air. In the dispersion model, a computational parcel representing a group of physical particles (droplets) is considered to have a normal probability density function (pdf) in space. The mean is determined by Lagrangian tracking through a sequence of stochastically generated turbulent eddies and the variance is evaluated from a statistical formulation based on the linearized particle equations of motion. The basic validity of this model is established through comparison with available experimental data and with theoretical predictions using a conventional stochastic direct modeling approach. The conclusion of the evaluation is that the proposed dispersion model compares favorably with experimental data and provides a valid technique for simulating turbulent combusting sprays with significant computational savings over conventional methods.

  16. Dispersion of a liquid drop under the effect of an air shock wave with an intensity of 0.2-42 atm

    NASA Astrophysics Data System (ADS)

    Nevmerzhitsky, N. V.; Sotskov, E. A.; Sen'kovsky, E. D.; Lyapebi, E.; Nikulin, A. A.; Krivonos, O. L.; Abakumov, S. A.

    2010-12-01

    In this paper, we present the results of our experiments on the study of the dispersion of a liquid drop (Ø=2 mm, tributyl phosphate) under the influence of an air shock wave (SW) with an intensity of 0.2-42 atm. The experiments were performed using an air shock tube. The SW was created by exploding a C2H2+2.5O2 mixture, compressed air or compressed helium. Recording of the dispersion process was performed by using high-speed macro- and microfilming (the Schlieren method and traditional filming). Macrofilming allowed us to register an integral picture of the process of drop dispersion and to determine the time of drop evaporation. Microfilming allowed us to resolve fragments of the liquid with sizes >=2 μm and to obtain the distribution of the spectrum of drop fragments, which is necessary for calibrating the analytical models.

  17. Modelling non-symmetric collagen fibre dispersion in arterial walls

    PubMed Central

    Holzapfel, Gerhard A.; Niestrawska, Justyna A.; Ogden, Ray W.; Reinisch, Andreas J.; Schriefl, Andreas J.

    2015-01-01

    New experimental results on collagen fibre dispersion in human arterial layers have shown that the dispersion in the tangential plane is more significant than that out of plane. A rotationally symmetric dispersion model is not able to capture this distinction. For this reason, we introduce a new non-symmetric dispersion model, based on the bivariate von Mises distribution, which is used to construct a new structure tensor. The latter is incorporated in a strain-energy function that accommodates both the mechanical and structural features of the material, extending our rotationally symmetric dispersion model (Gasser et al. 2006 J. R. Soc. Interface 3, 15–35. (doi:10.1098/rsif.2005.0073)). We provide specific ranges for the dispersion parameters and show how previous models can be deduced as special cases. We also provide explicit expressions for the stress and elasticity tensors in the Lagrangian description that are needed for a finite-element implementation. Material and structural parameters were obtained by fitting predictions of the model to experimental data obtained from human abdominal aortic adventitia. In a finite-element example, we analyse the influence of the fibre dispersion on the homogeneous biaxial mechanical response of aortic strips, and in a final example the non-homogeneous stress distribution is obtained for circumferential and axial strips under fixed extension. It has recently become apparent that this more general model is needed for describing the mechanical behaviour of a variety of fibrous tissues. PMID:25878125

  18. Modelling long-distance seed dispersal in heterogeneous landscapes.

    SciTech Connect

    Levey, Douglas, J.; Tewlsbury, Joshua, J.; Bolker, Benjamin, M.

    2008-01-01

    1. Long-distance seed dispersal is difficult to measure, yet key to understanding plant population dynamics and community composition. 2. We used a spatially explicit model to predict the distribution of seeds dispersed long distances by birds into habitat patches of different shapes. All patches were the same type of habitat and size, but varied in shape. They occurred in eight experimental landscapes, each with five patches of four different shapes, 150 m apart in a matrix of mature forest. The model was parameterized with smallscale movement data collected from field observations of birds. In a previous study we validated the model by testing its predictions against observed patterns of seed dispersal in real landscapes with the same types and spatial configuration of patches as in the model. 3. Here we apply the model more broadly, examining how patch shape influences the probability of seed deposition by birds into patches, how dispersal kernels (distributions of dispersal distances) vary with patch shape and starting location, and how movement of seeds between patches is affected by patch shape. 4. The model predicts that patches with corridors or other narrow extensions receive higher numbers of seeds than patches without corridors or extensions. This pattern is explained by edgefollowing behaviour of birds. Dispersal distances are generally shorter in heterogeneous landscapes (containing patchy habitat) than in homogeneous landscapes, suggesting that patches divert the movement of seed dispersers, ‘holding’ them long enough to increase the probability of seed defecation in the patches. Dispersal kernels for seeds in homogeneous landscapes were smooth, whereas those in heterogenous landscapes were irregular. In both cases, long-distance (> 150 m) dispersal was surprisingly common, usually comprising approximately 50% of all dispersal events. 5. Synthesis . Landscape heterogeneity has a large influence on patterns of long-distance seed dispersal. Our

  19. Transport of pollutants; Summary review of physical dispersion models

    SciTech Connect

    Yadigaroglu, G. ); Munera, H.A. )

    1987-05-01

    The physical processes taking place during the dispersion of releases of pollutants into the atmosphere and the hydrosphere (surface as well as groundwaters) can be mathematically modeled. The analytical methods available for tracking pollutants in the atmosphere include local and mesoscale models (mostly based on Gaussian-plume dispersion), as well as regional and global models, where either more sophisticated numerical techniques or box modeling is used. Various removal processes such as physicochemical transformations, wet and dry deposition, resuspension, and plume rise affect aerial dispersion. The mechanisms of transport in surface waters include mass transport by the waters themselves, dispersion, sedimentation, boundary exchange processes, and various forms of depletion. The models vary according to the type of surface waters considered: rivers, estuaries and tidal rivers, small lakes, open-coast water bodies, etc.

  20. Modeling, Monitoring and Fault Diagnosis of Spacecraft Air Contaminants

    NASA Technical Reports Server (NTRS)

    Ramirez, W. Fred; Skliar, Mikhail; Narayan, Anand; Morgenthaler, George W.; Smith, Gerald J.

    1996-01-01

    Progress and results in the development of an integrated air quality modeling, monitoring, fault detection, and isolation system are presented. The focus was on development of distributed models of the air contaminants transport, the study of air quality monitoring techniques based on the model of transport process and on-line contaminant concentration measurements, and sensor placement. Different approaches to the modeling of spacecraft air contamination are discussed, and a three-dimensional distributed parameter air contaminant dispersion model applicable to both laminar and turbulent transport is proposed. A two-dimensional approximation of a full scale transport model is also proposed based on the spatial averaging of the three dimensional model over the least important space coordinate. A computer implementation of the transport model is considered and a detailed development of two- and three-dimensional models illustrated by contaminant transport simulation results is presented. The use of a well established Kalman filtering approach is suggested as a method for generating on-line contaminant concentration estimates based on both real time measurements and the model of contaminant transport process. It is shown that high computational requirements of the traditional Kalman filter can render difficult its real-time implementation for high-dimensional transport model and a novel implicit Kalman filtering algorithm is proposed which is shown to lead to an order of magnitude faster computer implementation in the case of air quality monitoring.

  1. A modeling framework for characterizing near-road air pollutant concentration at community scales

    EPA Science Inventory

    In this study, we combine information from transportation network, traffic emissions, and dispersion model to develop a framework to inform exposure estimates for traffic-related air pollutants (TRAPs) with a high spatial resolution. A Research LINE source dispersion model (R-LIN...

  2. Recent developments on the FEM3 and SLAB atmospheric dispersion models

    SciTech Connect

    Ermak, D.L.; Chan, S.T.

    1986-08-01

    Lawrence Livermore National Laboratory, under the sponsorship of the US Department of Energy and other agencies, has been conducting research in the area of atmospheric dispersion of heavier-than-air gases over the past eight years. This research has successfully produced a number of field scale test series and two state-of-the-art dense gas dispersion models called FEM3 (a fully three-dimensional model) and SLAB (a quasi three-dimensional model). Over the past few years, the predictions from both models have been compared with the data obtained from a variety of field scale experiments. In this paper, we further evaluate the entrainment submodel in SLAB and present an improved turbulence submodel for FEM3, which is assessed via using the data obtained from two laboratory-scale dense gas dispersion experiments conducted by McQuaid.

  3. Utilization of near real-time satellite data in atmospheric transport and dispersion modeling applications

    NASA Astrophysics Data System (ADS)

    Nair, U. S.; Christopher, S. A.; Wu, Y.; Yang, E.; Keiser, K.

    2010-12-01

    Prior studies show that satellite derived land and aerosols products may be utilized to improve numerical model predictions of atmospheric transport and dispersion. Satellite derived smoke emissions can be effectively utilized in numerical modeling of smoke transport. Satellite derived aerosol optical thickness (AOT) provide an effective constraint for the column loading in aerosol transport models. Land surface heterogeneity has substantial impact on mesoscale and small scale atmospheric dispersion. Satellite derived land products such as albedo and leaf area index provide an effective constraint for land surface heterogeneity. Utilization of NASA MODIS land and aerosol products in multiple applications related to atmospheric dispersion, nutrient deposition and air quality modeling will be discussed. These applications are developed for near-real time use in a decision support related to emergency and environmental management in the State of Alabama. Experiences and lessons learned form the development of these applications will also be discussed.

  4. Modelling dispersion of traffic pollution in a deep street canyon: Application of CFD and operational models

    NASA Astrophysics Data System (ADS)

    Murena, Fabio; Favale, Giuseppe; Vardoulakis, Sotiris; Solazzo, Efisio

    In this study, numerical modelling of the flow and concentration fields has been undertaken for a deep street canyon in Naples (Italy), having aspect ratio (i.e. ratio of the building height H to the street width W) H/ W = 5.7. Two different modelling techniques have been employed: computational fluid dynamics (CFD) and operational dispersion modelling. The CFD simulations have been carried out by using the RNG k- ɛ turbulence model included in the commercial suite FLUENT, while operational modelling has been conducted by means of the WinOSPM model. Concentration fields obtained from model simulations have been compared with experimental data of CO concentrations measured at two vertical locations within the canyon. The CFD results are in good agreement with the experimental data, while poor agreement is observed for the WinOSPM results. This is because WinOSPM was originally developed and tested for street canyons with aspect ratio H/ W ≌ 1. Large discrepancies in wind profiles simulated within the canyon are observed between CFD and OSPM models. Therefore, a modification of the wind profile within the canyon is introduced in WinOSPM for extending its applicability to deeper canyons, leading to an improved agreement between modelled and experimental data. Further development of the operational dispersion model is required in order to reproduce the distinct air circulation patterns within deep street canyons.

  5. Modeling the Dispersal and Deposition of Radionuclides: Lessons from Chernobyl.

    ERIC Educational Resources Information Center

    ApSimon, H. M.; And Others

    1988-01-01

    Described are theoretical models that simulate the dispersion of radionuclides on local and global scales following the accident at the Chernobyl nuclear power plant. Discusses the application of these results to nuclear weapons fallout. (CW)

  6. Modelling of air pollution impacts from power stations in Kuwait

    SciTech Connect

    Al-Ajmi, D.N.; Abdal, Y. )

    1987-01-01

    Kuwait is undergoing rapid development with fast growth of both urban and industrial areas. The environmental impact of such activities is already noticeable. Conditions are therefore favorable for the use of air pollution models to supply adequate tools for effective air quality management in Kuwait. The Industrial Source Complex Long Term (ISCLT) dispersion model was developed by the U.S. Environmental Protection Agency in response to the need for comprehensive analytical techniques that can be used to evaluate the air quality impact of emissions from industrial sources. This model was used to predict the air quality impact of SO{sub 2} emissions from the Doha East and West Power Stations in Kuwait. The meteorological and emissions data and the seasonal and annual SO{sub 2} concentrations emitted from the power stations are described.

  7. Offshore and coastal dispersion (OCD) model. Users guide

    SciTech Connect

    Hanna, S.R.; Schulman, L.L.; Paine, R.J.; Pleim, J.E.

    1984-09-01

    The Offshore and Coastal Dispersion (OCD) model was adapted from the EPA guideline model MPTER to simulate the effect of offshore emissions from point sources in coastal regions. Modifications were made to incorporate overwater plume transport and dispersion as well as changes that occur as the plume crosses the shoreline. Hourly meteorological data are needed from overwater and overland locations. Turbulence intensities are used but are not mandatory. For overwater dispersion, the turbulence intensities are parameterized from boundary-layer similarity relationships if they are not measured. Specifications of emission characteristics and receptor locations are the same as for MPTER; 250 point sources and 180 receptors may be used.

  8. Offshore and coastal dispersion (OCD) model. User's guide

    SciTech Connect

    Hanna, S.R.; Schulman, L.L.; Paine, R.J.; Pleim, J.E.

    1984-09-01

    The Offshore Coastal Dispersion (OCD) model was adapted from the EPA guideline model MPTER to simulate the effect of offshore emissions from point sources in coastal regions. Modifications were made to incorporate overwater plume transport and dispersion as well as changes that occur as the plume crosses the shoreline. Hourly meteorological data are needed from overwater and overland locations. For overwater dispersion, the turbulence intensities are parameterized from boundary layer similarity relationships if they are not measured. A virtual source technique is used to change the rate of plume growth as the overwater plume intercepts the overland internal boundary layer.

  9. Source apportionment of particulate matter (PM 2.5) in an urban area using dispersion, receptor and inverse modelling

    NASA Astrophysics Data System (ADS)

    Laupsa, Herdis; Denby, Bruce; Larssen, Steinar; Schaug, Jan

    Air pollution emission inventories are the basis for air quality assessment and management strategies. The quality of the inventories is of great importance since these data are essential for air pollution impact assessments using dispersion models. In this study, the quality of the emission inventory for fine particulates (PM 2.5) is assessed: first, using the calculated source contributions from a receptor model; second, using source apportionment from a dispersion model; and third, by applying a simple inverse modelling technique which utilises multiple linear regression of the dispersion model source contributions together with the observed PM 2.5 concentrations. For the receptor modelling the chemical composition of PM 2.5 filter samples from a measurement campaign performed between January 2004 and April 2005 are analysed. Positive matrix factorisation is applied as the receptor model to detect and quantify the various source contributions. For the same observational period and site, dispersion model calculations using the Air Quality Management system, AirQUIS, are performed. The results identify significant differences between the dispersion and receptor model source apportionment, particularly for wood burning and traffic induced suspension. For wood burning the receptor model calculations are lower, by a factor of 0.54, but for the traffic induced suspension they are higher, by a factor of 7.1. Inverse modelling, based on regression of the dispersion model source contributions and the PM 2.5 concentrations, indicates similar discrepancies in the emissions inventory. In order to assess if the differences found at the one site are generally applicable throughout Oslo, the individual source category emissions are rescaled according to the receptor modelling results. These adjusted PM 2.5 concentrations are compared with measurements at four independent stations to evaluate the updated inventory. Statistical analysis shows improvement in the estimated

  10. Dispersive processes in models of regional radionuclide migration. Technical memorandum

    SciTech Connect

    Evenson, D.E.; Dettinger, M.D.

    1980-05-01

    Three broad areas of concern in the development of aquifer scale transport models will be local scale diffusion and dispersion processes, regional scale dispersion processes, and numerical problems associated with the advection-dispersion equation. Local scale dispersion processes are fairly well understood and accessible to observation. These processes will generally be dominated in large scale systems by regional processes, or macro-dispersion. Macro-dispersion is primarily the result of large scale heterogeneities in aquifer properties. In addition, the effects of many modeling approximations are often included in the process. Because difficulties arise in parameterization of this large scale phenomenon, parameterization should be based on field measurements made at the same scale as the transport process of interest or else partially circumvented through the application of a probabilistic advection model. Other problems associated with numerical transport models include difficulties with conservation of mass, stability, numerical dissipation, overshoot, flexibility, and efficiency. We recommend the random-walk model formulation for Lawrence Livermore Laboratory's purposes as the most flexible, accurate and relatively efficient modeling approach that overcomes these difficulties.

  11. A continuum solvent model of the multipolar dispersion solvation energy.

    PubMed

    Duignan, Timothy T; Parsons, Drew F; Ninham, Barry W

    2013-08-15

    The dispersion energy is an important contribution to the total solvation energies of ions and neutral molecules. Here, we present a new continuum model calculation of these energies, based on macroscopic quantum electrodynamics. The model uses the frequency dependent multipole polarizabilities of molecules in order to accurately calculate the dispersion interaction of a solute particle with surrounding water molecules. It includes the dipole, quadrupole, and octupole moment contributions. The water is modeled via a bulk dielectric susceptibility with a spherical cavity occupied by the solute. The model invokes damping functions to account for solute-solvent wave function overlap. The assumptions made are very similar to those used in the Born model. This provides consistency and additivity of electrostatic and dispersion (quantum mechanical) interactions. The energy increases in magnitude with cation size, but decreases slightly with size for the highly polarizable anions. The higher order multipole moments are essential, making up more than 50% of the dispersion solvation energy of the fluoride ion. This method provides an accurate and simple way of calculating the notoriously problematic dispersion contribution to the solvation energy. The result establishes the importance of using accurate calculations of the dispersion energy for the modeling of solvation. PMID:23837890

  12. Long-term SO2 dispersion modeling over a coastal region.

    PubMed

    Fisher, A L; Parsons, M C; Roberts, S E; Shea, P J; Khan, F L; Husain, T

    2003-04-01

    Air dispersion modeling over coastal regions has proven to be a remarkable challenge in the field of air quality. Many conventional plume dispersion models, such as ISC2 and HYSPLIT, are unable to model such dispersion with the precision that is necessary to accurately predict ground-level concentrations in coastal areas. Considering this, the present work was carried out with two primary objectives: i) to evaluate the effectiveness of currently available mathematical models in predicting plume dispersion over a coastal region and ii) to study the impact of sulfur dioxide emissions from a petroleum refinery over a different community located in the adjacent area. This study demonstrates that CALPUFF predictions are more reliable compared to those of the other models studied, however the operation of CALPUFF is highly data intensive and in many instances, it is difficult to obtain all required input data. This is a particular problem for regions outside ofthe United States of America where sufficient data is difficult to obtain. In addition, the study concluded that the predicted annual average SO2 concentrations in the nearby communities are well within regulatory limits. PMID:12755441

  13. Stabilized Alumina/Ethanol Colloidal Dispersion for Seeding High Temperature Air Flows

    NASA Technical Reports Server (NTRS)

    Wernet, Judith H.; Wernet, Mark P.

    1994-01-01

    Seeding air flows with particles to enable measurements of gas velocities via laser anemometry and/or particle image velocimetry techniques can be quite exasperating. The seeding requirements are compounded when high temperature environments are encountered and special care must be used in selecting a refractory seed material. The pH stabilization techniques commonly employed in ceramic processing are used to obtain stable dispersions for generating aerosols of refractory seed material. By adding submicron alumina particles to a preadjusted pH solution of ethanol, a stable dispersion is obtained which when atomized produces a high quality aerosol. Commercial grade alumina powder is used with a moderate size distribution. The technique is not limited to alumina/ethanol and is also demonstrated with an alumina/H2O system. Other ceramic powders in various polar solvents could also be used once the point of zero charge (pH(sub pzc)) of the powder in the solvent has been determined.

  14. Modeling interpopulation dispersal by banner-tailed kangaroo rats

    USGS Publications Warehouse

    Skvarla, J.L.; Nichols, J.D.; Hines, J.E.; Waser, P.M.

    2004-01-01

    Many metapopulation models assume rules of population connectivity that are implicitly based on what we know about within-population dispersal, but especially for vertebrates, few data exist to assess whether interpopulation dispersal is just within-population dispersal "scaled up." We extended existing multi-stratum mark-release-recapture models to incorporate the robust design, allowing us to compare patterns of within- and between-population movement in the banner-tailed kangaroo rat (Dipodomys spectabilis). Movement was rare among eight populations separated by only a few hundred meters: seven years of twice-annual sampling captured >1200 individuals but only 26 interpopulation dispersers. We developed a program that implemented models with parameters for capture, survival, and interpopulation movement probability and that evaluated competing hypotheses in a model selection framework. We evaluated variants of the island, stepping-stone, and isolation-by-distance models of interpopulation movement, incorporating effects of age, season, and habitat (short or tall grass). For both sexes, QAICc values clearly favored isolation-by-distance models, or models combining the effects of isolation by distance and habitat. Models with probability of dispersal expressed as linear-logistic functions of distance and as negative exponentials of distance fit the data equally well. Interpopulation movement probabilities were similar among sexes (perhaps slightly biased toward females), greater for juveniles than adults (especially for females), and greater before than during the breeding season (especially for females). These patterns resemble those previously described for within-population dispersal in this species, which we interpret as indicating that the same processes initiate both within- and between-population dispersal.

  15. Model Comparison for Abiotic versus Biotic Pollen Dispersal.

    PubMed

    Foster, Erich L; Chan, David M; Dyer, Rodney J

    2016-10-01

    An agent-based model with a correlated random walk is used to explore pollination within a forest. For abiotic dispersal, say via the wind, we use a purely random walk where there is no correlation between consecutive steps and for biotic dispersal, say via insect, we use a moderate or highly correlated random walk. In particular, we examine the differences in a number of biological measurement between a purely random walk and a correlated random walk in terms of gene dispersal in low and high plant densities. PMID:27550704

  16. Dispersion Modeling in Complex Urban Systems

    EPA Science Inventory

    Models are used to represent real systems in an understandable way. They take many forms. A conceptual model explains the way a system works. In environmental studies, for example, a conceptual model may delineate all the factors and parameters for determining how a particle move...

  17. Modeling the dispersion effects of contractile fibers in smooth muscles

    NASA Astrophysics Data System (ADS)

    Murtada, Sae-Il; Kroon, Martin; Holzapfel, Gerhard A.

    2010-12-01

    Micro-structurally based models for smooth muscle contraction are crucial for a better understanding of pathological conditions such as atherosclerosis, incontinence and asthma. It is meaningful that models consider the underlying mechanical structure and the biochemical activation. Hence, a simple mechanochemical model is proposed that includes the dispersion of the orientation of smooth muscle myofilaments and that is capable to capture available experimental data on smooth muscle contraction. This allows a refined study of the effects of myofilament dispersion on the smooth muscle contraction. A classical biochemical model is used to describe the cross-bridge interactions with the thin filament in smooth muscles in which calcium-dependent myosin phosphorylation is the only regulatory mechanism. A novel mechanical model considers the dispersion of the contractile fiber orientations in smooth muscle cells by means of a strain-energy function in terms of one dispersion parameter. All model parameters have a biophysical meaning and may be estimated through comparisons with experimental data. The contraction of the middle layer of a carotid artery is studied numerically. Using a tube the relationships between the internal pressure and the stretches are investigated as functions of the dispersion parameter, which implies a strong influence of the orientation of smooth muscle myofilaments on the contraction response. It is straightforward to implement this model in a finite element code to better analyze more complex boundary-value problems.

  18. The model SIRANE for atmospheric urban pollutant dispersion; part I, presentation of the model

    NASA Astrophysics Data System (ADS)

    Soulhac, Lionel; Salizzoni, Pietro; Cierco, F.-X.; Perkins, Richard

    2011-12-01

    In order to control and manage urban air quality, public authorities require an integrated approach that incorporates direct measurements and modelling of mean pollutant concentrations. These have to be performed by means of operational modelling tools, that simulate the transport of pollutants within and above the urban canopy over a large number of streets. The operational models must be able to assess rapidly a large variety of situations and with limited computing resources. SIRANE is an operational urban dispersion model based on a simplified description of the urban geometry that adopts parametric relations for the pollutant transfer phenomena within and out of the urban canopy. The streets in a city district are modelled as a network of connected street segments. The flow within each street is driven by the component of the external wind parallel to the street, and the pollutant is assumed to be uniformly mixed within the street. The model contains three main mechanisms for transport in and out of a street: advection along the street axis, diffusion across the interface between the street and the overlying air flow and exchanges with other streets at street intersections. The dispersion of pollutants advected or diffused out of the streets is taken into account using a Gaussian plume model, with the standard deviations σ y and σ z parameterised by the similarity theory. The input data for the final model are the urban geometry, the meteorological parameters, the background concentration of pollutants advected into the model domain by the wind and the emissions within each street in the network.

  19. A model for simulating airflow and pollutant dispersion around buildings

    SciTech Connect

    Chan, S T; Lee, R L

    1999-02-24

    A three-dimensional, numerical mode1 for simulating airflow and pollutant dispersion around buildings is described. The model is based on an innovative finite element approach and fully implicit time integration techniques. Linear and nonlinear eddy viscosity/diffusivity submodels are provided for turbulence parameterization. Mode1 predictions for the flow-field and dispersion patterns around a surface-mounted cube are compared with measured data from laboratory experiments.

  20. Numerical modelling of mesoscale atmospheric dispersion, volumes 1 and 2

    NASA Astrophysics Data System (ADS)

    Moran, Michael D.

    Mesoscale atmospheric dispersion is more complicated than smaller scale dispersion because the mean wind field can no longer be considered steady or horizontally homogeneous over mesoscale time and space scales. Wind shear also plays a more important role on the mesoscale and horizontal dispersion can be enhanced and even dominated by vertical wind shear through either the simultaneous or delayed interaction of horizontal differential advection and vertical mixing over one or two diurnal periods. The CSU mesoscale atmospheric dispersion modeling system was used to simulate the transport and diffusion of a perfluorocarbon gas for episodic releases made during two North American mesoscale dispersion field experiments, the 1980 Great Plains tracer experiment and the 1983 Cross-Appalachian Tracer Experiment (CAPTEX). Ground-level and elevated tracer concentrations were measured out to distances of 600 km from the source in the first experiment and 1100 km in the second. The physiography of the two experimental domains was quite different, permitting isolation and examination of the roles of terrain forcing and differential advection in mesoscale atmospheric dispersion. Suites of numerical experiments of increasing complexity were carried out for both case studies. The experiments differed in the realism of their representation of both the synoptic-scale flow and the underlying terrain. The Great Plains nocturnal low-level jet played an important role in the first case while temporal changes in the synoptic-scale flow were very significant in the second case. The contributions of differential advection and mesoscale deformation to mesoscale dispersion dominated those of small-scale turbulent diffusion for both cases, and Pasquills delayed-shear-enhancement mechanism for lateral dispersion was found to be particularly important. The first quantitative evaluation of the CSU mesoscale dispersion modeling system with episodic mesoscale dispersion field data was presented

  1. DUSTRAN – AN ATMOSPHERIC DISPERSION MODEL FOR CONSEQUENCE ASSESSMENT APPLICATIONS IN EMERGENCY OPERATIONS CENTERS

    SciTech Connect

    Rishel, Jeremy P.; Glantz, Clifford S.

    2008-09-30

    A new atmospheric dispersion modeling system is being tested for consequence assessment applications in emergency response operations. DUSTRAN is an operational, fully documented atmospheric dispersion modeling system designed originally to allow U.S. Department of Defense personnel to rapidly predict and assess the potential air quality impacts of military maneuvers at military training and testing ranges. This model also can be applied at emergency operations centers where it can fill the niche between on-site, plume-based modeling systems and the National Atmospheric Release Advisory Center off-site, particle-based modeling system. DUSTRAN offers a user-friendly graphical user interface based on the Environmental Systems Research Institute ArcMap geographic information system software that allows DUSTRAN to be easily customized to operate at any location in the world. DUSTRAN employs the U.S. Environmental Protection Agency regulatory CALPUFF modeling system to create a three-dimensional wind field and simulate downwind plume transport and diffusion. Other dispersion models also can be integrated into the DUSTRAN componentized architecture, allowing the user to choose the appropriate dispersion modeling engine for a given application. The DUSTRAN architecture also supports the development and integration of a variety of source-term models.

  2. Non-equilibrium magnetic colloidal dispersions at liquid-air interfaces: dynamic patterns, magnetic order and self-assembled swimmers.

    SciTech Connect

    Snezhko, A.

    2011-04-20

    Colloidal dispersions of interacting particles subjected to an external periodic forcing often develop nontrivial self-assembled patterns and complex collective behavior. A fundamental issue is how collective ordering in such non-equilibrium systems arises from the dynamics of discrete interacting components. In addition, from a practical viewpoint, by working in regimes far from equilibrium new self-organized structures which are generally not available through equilibrium thermodynamics can be created. In this review spontaneous self-assembly phenomena in magnetic colloidal dispersions suspended at liquid-air interfaces and driven out of equilibrium by an alternating magnetic field are presented. Experiments reveal a new type of nontrivially ordered self-assembled structures emerging in such systems in a certain range of excitation parameters. These dynamic structures emerge as a result of the competition between magnetic and hydrodynamic forces and have complex unconventional magnetic ordering. Nontrivial self-induced hydrodynamic fields accompany each out-of-equilibrium pattern. Spontaneous symmetry breaking of the self-induced surface flows leading to a formation of self-propelled microstructures has been discovered. Some features of the self-localized structures can be understood in the framework of the amplitude equation (Ginzburg-Landau type equation) for parametric waves coupled to the conservation law equation describing the evolution of the magnetic particle density and the Navier-Stokes equation for hydrodynamic flows. To understand the fundamental microscopic mechanisms governing self-assembly processes in magnetic colloidal dispersions at liquid-air interfaces a first-principle model for a non-equilibrium self-assembly is presented. The latter model allows us to capture in detail the entire process of out-of-equilibrium self-assembly in the system and reproduces most of the observed phenomenology.

  3. Evaluation of air pollution modelling tools as environmental engineering courseware.

    PubMed

    Souto González, J A; Bello Bugallo, P M; Casares Long, J J

    2004-01-01

    The study of phenomena related to the dispersion of pollutants usually takes advantage of the use of mathematical models based on the description of the different processes involved. This educational approach is especially important in air pollution dispersion, when the processes follow a non-linear behaviour so it is difficult to understand the relationships between inputs and outputs, and in a 3D context where it becomes hard to analyze alphanumeric results. In this work, three different software tools, as computer solvers for typical air pollution dispersion phenomena, are presented. Each software tool developed to be implemented on PCs, follows approaches that represent three generations of programming languages (Fortran 77, VisualBasic and Java), applied over three different environments: MS-DOS, MS-Windows and the world wide web. The software tools were tested by students of environmental engineering (undergraduate) and chemical engineering (postgraduate), in order to evaluate the ability of these software tools to improve both theoretical and practical knowledge of the air pollution dispersion problem, and the impact of the different environment in the learning process in terms of content, ease of use and visualization of results. PMID:15193095

  4. Dispersion modelling during particulate matter episode events in Golden, British Columbia

    NASA Astrophysics Data System (ADS)

    Abel, Tyler

    The CALPUFF modeling system was used to investigate two episodes of high particulate matter (PM) during December 2005 and February 2006. During this time, Golden was a British Columbia Ministry of Environment (BC MOE) intensive observation site for air quality research specific to PM. Observations from 4 meteorological stations were used to characterize the winds and dispersion parameters within CALMET. Emission rates were determined from the existing Golden Emissions Inventory and receptor modelling commissioned by the BC MOE. Statistical comparison of model predicted and observed PM concentrations show that model performance compares well to similar CALPUFF studies at two of the air quality monitoring stations in Golden. The source apportionment of the CALPUFF results identified the major contributors to degraded air quality levels during the two episodes under investigation as space heating, road dust and, intermittently, Louisiana Pacific operations.

  5. Modeling studies of ammonia dispersion and dry deposition at some hog farms in North Carolina.

    PubMed

    Bajwa, Kanwardeep S; Arya, S Pal; Aneja, Viney P

    2008-09-01

    A modeling study was conducted on dispersion and dry deposition of ammonia taking one hog farm as a unit. The ammonia emissions used in this study were measured under our OPEN (Odor, Pathogens, and Emissions of Nitrogen) project over a waste lagoon and from hog barns. Meteorological data were also collected at the farm site. The actual layout of barns and lagoons on the farms was used to simulate dry deposition downwind of the farm. Dry deposition velocity, dispersion, and dry deposition of ammonia were studied over different seasons and under different stability conditions using the short-range dispersion/air quality model, AERMOD. Dry deposition velocities were highest under near-neutral conditions and lowest under stable conditions. The highest deposition at short range occurred under nighttime stable conditions and the lowest occurred during daytime unstable conditions. Significant differences in deposition over crop and grass surfaces were observed under stable conditions. PMID:18817112

  6. Modeling and Impacts of Traffic Emissions on Air Toxics Concentrations near Roadways

    EPA Science Inventory

    The dispersion formulation incorporated in the U.S. Environmental Protection Agency’s AERMOD regulatory dispersion model is used to estimate the contribution of traffic-generated emissions of select VOCs – benzene, 1,3-butadiene, toluene – to ambient air concentrations at downwin...

  7. Mathematical Modeling and Experimental Investigation of Heavier-Than Gas Dispersion in the Atmosphere

    NASA Astrophysics Data System (ADS)

    Spicer, Thomas O.

    The mathematical modeling methods which have been proposed for prediction of dispersion of heavier-than-air gases (HTAG) are reviewed. The phenomenology of atmospheric dispersion of HTAG is described, and the general HTAG dispersion scenario is considered to involve three phases: (1) Negative buoyancy-dominated flow; (2) Stably stratified shear flow; (3) Passive diffusion due to atmospheric turbulence. Modeling concepts based on investigations of laboratory experiments are used to describe the flow and dilution processes that characterize the negative buoyancy regime. Laboratory measurements of the spreading and dilution of HTAG volumes released suddenly in calm air have demonstrated scaling methods for small releases from 35 to 530 liters, and the scaled laboratory releases are in good agreement with the experimental data from the Thorney Island 2000 m('3) releases. The laboratory releases are modeled using a radial momentum balance and a box model approach with dilution during the gravity spreading phase represented by a frontal entrainment velocity. Experimental laboratory data on stratified shear flow mixing from McQuaid (1976), Kantha et al. (1977), and Lofquist (1960) are used to model the vertical diffusion of HTAG in the atmospheric constant stress layer. The approach is consistent with the limiting passive dispersion behavior of demonstrated air pollution models. An interactive computer model (DEGADIS) is developed which can be used to simulate a wide variety of HTAG release scenarios including instantaneous releases, time-varying releases, and continuous releases on a flat, obstacle-free surface. The model accounts for the three regimes of dispersion stated above and provides for effects due to energy exchange between the dispersing cloud and the underlying surface. DEGADIS -predicted maximum concentration as a function of distance is compared to the maximum reported concentration for field scale releases of liquefied natural gas (LNG), liquefied

  8. Mesoscale models of dispersions stabilized by surfactants and colloids.

    PubMed

    van der Sman, R G M; Meinders, M B J

    2014-09-01

    In this paper we discuss and give an outlook on numerical models describing dispersions, stabilized by surfactants and colloidal particles. Examples of these dispersions are foams and emulsions. In particular, we focus on the potential of the diffuse interface models based on a free energy approach, which describe dispersions with the surface-active agent soluble in one of the bulk phases. The free energy approach renders thermodynamic consistent models with realistic sorption isotherms and adsorption kinetics. The free energy approach is attractive because of its ability to describe highly complex dispersions, such as emulsions stabilized by ionic surfactants, or surfactant mixtures and dispersions with surfactant micelles. We have classified existing numerical methods into classes, using either a Eulerian or a Lagrangian representation for fluid and for the surfactant/colloid. A Eulerian representation gives a more coarse-grained, mean field description of the surface-active agent, while a Lagrangian representation can deal with steric effects and larger complexity concerning geometry and (amphiphilic) wetting properties of colloids and surfactants. However, the similarity between the description of wetting properties of both Eulerian and Lagrangian models allows for the development of hybrid Eulerian/Lagrangian models having advantages of both representations. PMID:24980050

  9. A particle-grid air quality modeling approach

    SciTech Connect

    Chock, D.P.; Winkler, S.L.

    1996-12-31

    A particle-grid air quality modeling approach that can incorporate chemistry is proposed as an alternative to the conventional PDF-grid air quality modeling. The particle trajectory model can accurately describe advection of air pollutants without introducing artificial diffusion, generating negative concentrations or distorting the concentration distributions. It also accurately describes the dispersion of emissions from point sources and is capable of retaining subgrid-scale information. Inhomogeneous turbulence necessitates use of a small timestep, say, 10 s to describe vertical dispersion of particles in convective conditions. A timestep as large as 200 s can be used to simulate horizontal dispersion. A time-splitting scheme can be used to couple the horizontal and vertical dispersion in a 3D simulation, and about 2000-3000 particles per cell of size 5 km x 5 km X 50 m is sufficient to yield a highly accurate simulation of 3D dispersion. Use of an hourly-averaged concentration further reduces the demand of particle per cell to 500. The particle-grid method is applied to a system of ten reacting chemical species in a two-dimensional rotating flow field with and without diffusion. A chemistry grid within which reactions are assumed to take place can be decoupled from the grid describing the flow field. Two types of chemistry grids are used to describe the chemical reactions: a fixed coarse grid and a moving (the advection case) or stationary (the advection plus diffusion case) fine grid. Two particle-number densities are also used: 256 and 576 particles per fixed coarse grid cell. The species mass redistributed back to the particle after each reaction step is assumed to be proportional to the species mass in the particle before the reaction. The simulation results are very accurate, especially in the advection-chemistry case. Accuracy improves with the use of a fine grid.

  10. Modeling the Mechanism of Coagulum Formation in Dispersions

    PubMed Central

    2014-01-01

    The stability of colloidal dispersions is of crucial importance because the properties of dispersions are strongly affected by the degree of coagulation. Whereas the coagulation kinetics for quiescent (i.e., nonstirred) and diluted systems is well-established, the behavior of concentrated dispersions subjected to shear is still not fully understood. We employ the discrete element method (DEM) for the simulation of coagulation of concentrated colloidal dispersions. Normal forces between interacting particles are described by a combination of the Derjaguin, Landau, Verwey, and Overbeek (DLVO) and Johnson, Kendall, and Roberts (JKR) theories. We show that, in accordance with the expectations, the coagulation behavior depends strongly on the particle volume fraction, the surface potential, and the shear rate. Moreover, we demonstrate that the doublet formation rate is insufficient for the description of the coagulation kinetics and that the detailed DEM model is able to explain the autocatalytic nature of the coagulation of stabilized dispersions subjected to shear. With no adjustable parameters we are able to provide semiquantitative predictions of the coagulation behavior in the high-shear regions for a broad range of particle volume fractions. The results obtained using the DEM model can provide valuable guidelines for the operation of industrial dispersion processes. PMID:24564707

  11. Modeling Airborne Beryllium Concentrations From Open Air Dynamic Testing

    NASA Astrophysics Data System (ADS)

    Becker, N. M.

    2003-12-01

    A heightened awareness of airborne beryllium contamination from industrial activities was reestablished during the late 1980's and early 1990's when it became recognized that Chronic Beryllium Disease (CBD) had not been eradicated, and that the Occupational Health and Safety Administration standards for occupational air exposure to beryllium may not be sufficiently protective. This was in response to the observed CBD increase in multiple industrial settings where beryllium was manufactured and/or machined, thus producing beryllium particulates which are then available for redistribution by airborne transport. Sampling and modeling design activities were expanded at Los Alamos National Laboratory in New Mexico to evaluate potential airborne beryllium exposure to workers who might be exposed during dynamic testing activities associated with nuclear weapons Stockpile Stewardship. Herein is presented the results of multiple types of collected air measurements that were designed to characterize the production and dispersion of beryllium used in components whose performance is evaluated during high explosive detonation at open air firing sites. Data from fallout, high volume air, medium volume air, adhesive film, particle size impactor, and fine-particulate counting techniques will be presented, integrated, and applied in dispersion modeling to assess potential onsite and offsite personal exposures resulting from dynamic testing activities involving beryllium.

  12. Computer Models Simulate Fine Particle Dispersion

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Through a NASA Seed Fund partnership with DEM Solutions Inc., of Lebanon, New Hampshire, scientists at Kennedy Space Center refined existing software to study the electrostatic phenomena of granular and bulk materials as they apply to planetary surfaces. The software, EDEM, allows users to import particles and obtain accurate representations of their shapes for modeling purposes, such as simulating bulk solids behavior, and was enhanced to be able to more accurately model fine, abrasive, cohesive particles. These new EDEM capabilities can be applied in many industries unrelated to space exploration and have been adopted by several prominent U.S. companies, including John Deere, Pfizer, and Procter & Gamble.

  13. Estimation of 85Kr dispersion from the spent nuclear fuel reprocessing plant in Rokkasho, Japan, using an atmospheric dispersion model.

    PubMed

    Abe, K; Iyogi, T; Kawabata, H; Chiang, J H; Suwa, H; Hisamatsu, S

    2015-11-01

    The spent nuclear fuel reprocessing plant of Japan Nuclear Fuel Limited (JNFL) located in Rokkasho, Japan, discharged small amounts of (85)Kr into the atmosphere during final tests of the plant with actual spent fuel from 31 March 2006 to October 2008. During this period, the gamma-ray dose rates due to discharged (85)Kr were higher than the background rates measured at the Institute for Environmental Sciences and at seven monitoring stations of the Aomori prefectural government and JNFL. The dispersion of (85)Kr was simulated by means of the fifth-generation Penn State/NCAR Mesoscale Model and the CG-MATHEW/ADPIC models (ver. 5.0) with a vertical terrain-following height coordinate. Although the simulated gamma-ray dose rates due to discharged (85)Kr agreed fairly well with measured rates, the agreement between the estimated monthly mean (85)Kr concentrations and the observed concentrations was poor. Improvement of the vertical flow of air may lead to better estimation of (85)Kr dispersion. PMID:25948824

  14. Nonsmooth feedback controls of nonlocal dispersal models

    NASA Astrophysics Data System (ADS)

    Malaguti, Luisa; Rubbioni, Paola

    2016-03-01

    The paper deals with a nonlocal diffusion equation which is a model for biological invasion and disease spread. A nonsmooth feedback control term is included and the existence of controlled dynamics is proved, satisfying different kinds of nonlocal condition. Jump discontinuities appear in the process. The existence of optimal control strategies is also shown, under suitably regular control functionals. The investigation makes use of techniques of multivalued analysis and is based on the degree theory for condensing operators in Hilbert spaces.

  15. USE OF RECEPTOR AND DISPERSION MODELING PRINCIPLES IN ASSESSING PRE- AND POST-ABATEMENT CONDITIONS OF AN EMISSION SOURCE

    EPA Science Inventory

    Wind sector analyses, chemical mass balances (CMB) and dispersion modeling have been used to estimate the impacts of emission sources on receptor sites. his paper presents the use of these models in assessing possible changes in the ambient air impact of a biomedical waste combus...

  16. Comparison of CFD and operational dispersion models in an urban-like environment

    NASA Astrophysics Data System (ADS)

    Antonioni, G.; Burkhart, S.; Burman, J.; Dejoan, A.; Fusco, A.; Gaasbeek, R.; Gjesdal, T.; Jäppinen, A.; Riikonen, K.; Morra, P.; Parmhed, O.; Santiago, J. L.

    2012-02-01

    Chemical plants, refineries, transportation of hazardous materials are some of the most attractive facilities for external attacks aimed at the release of toxic substances. Dispersion of these substances into the atmosphere forms a concentration distribution of airborne pollutants with severe consequences for exposed individuals. For emergency preparedness and management, the availability of assessed/validated dispersion models, which can be able to predict concentration distribution and thus dangerous zones for exposed individuals, is of primary importance. Air quality models, integral models and analytical models predict the transport and the turbulent dispersion of gases or aerosols after their release without taking into account in detail the presence of obstacles. Obstacles can modify the velocity field and in turn the concentration field. The Computational Fluid Dynamics (CFD) models on the other hand are able to describe such phenomena, but they need to be correctly set up, tested and validated in order to obtain reliable results. Within the project Europa-ERG1 TA 113.034 "NBC Modelling and Simulation" several different approaches in CFD modelling of turbulent dispersion in closed, semi-confined and urban-like environment were adopted and compared with experimental data and with operational models. In this paper the results of a comparison between models describing the dispersion of a neutral gas in an idealized urban-like environment are presented and discussed. Experimental data available in the literature have been used as a benchmark for assessing statistical performance for each model. Selected experimental trials include some water channel tests, that were performed by Coanda at 1:205 scale, and one full-scale case that was tested in the fall of 2001 at the Dugway Proving Grounds in Utah, using an array of shipping containers. The paper also suggests the adoption of improved statistical parameters in order to better address differences between models

  17. Electrokinetic induced solute dispersion in porous media; pore network modeling

    NASA Astrophysics Data System (ADS)

    Li, Shuai; Schotting, Ruud; Raoof, Amir

    2013-04-01

    Electrokinetic flow plays an important role in remediation process, separation technique, and chromatography. The solute dispersion is a key parameter to determine transport efficiency. In this study, we present the electrokinetic effects on solute dispersion in porous media at the pore scale, using a pore network model. The analytical solution of the electrokinetic coupling coefficient was obtained to quantity the fluid flow velocity in a cylinder capillary. The effect of electrical double layer on the electrokinetic coupling coefficient was investigated by applying different ionic concentration. By averaging the velocity over cross section within a single pore, the average flux was obtained. Applying such single pore relationships, in the thin electrical double layer limit, to each and every pore within the pore network, potential distribution and the induced fluid flow was calculated for the whole domain. The resulting pore velocities were used to simulate solute transport within the pore network. By averaging the results, we obtained the breakthrough curve (BTC) of the average concentration at the outlet of the pore network. Optimizing the solution of continuum scale advection-dispersion equation to such a BTC, solute dispersion coefficient was estimated. We have compared the dispersion caused by electrokinetic flow and pure pressure driven flow under different Peclet number values. In addition, the effect of microstructure and topological properties of porous media on fluid flow and solute dispersion is presented, mainly based on different pore coordination numbers.

  18. Effects of air pollution on thermal structure and dispersion in an urban planetary boundary layer

    NASA Technical Reports Server (NTRS)

    Viskanta, R.; Johnson, R. O.; Bergstrom, R. W.

    1977-01-01

    The short-term effects of urbanization and air pollution on the transport processes in the urban planetary boundary layer (PBL) are studied. The investigation makes use of an unsteady two-dimensional transport model which has been developed by Viskanta et al., (1976). The model predicts pollutant concentrations and temperature in the PBL. The potential effects of urbanization and air pollution on the thermal structure in the urban PBL are considered, taking into account the results of numerical simulations modeling the St. Louis, Missouri metropolitan area.

  19. Atmospheric dispersion of ammonia: an ammonia fog model

    SciTech Connect

    Kansa, E.J.; Rodean, H.C.; Chan, S.T.; Ermak, D.L.

    1983-01-01

    A simplification to the two-phase ammonia vapor-droplet fog problem has been implemented to study the dispersion of a spill of 40 tons of ammonia. We have circumvented the necessity of adding the partial differential equations for mass, momentum, and energy for the ammonia in the liquid phase by certain assumptions. It is assumed that the ammonia fog behaves as an ideal gas including the droplets. A temperature-dependent molecular weight was introduced to simulate the transition from a vapor-droplet cloud to a pure vapor cloud of ammonia. Likewise, the vaporization of ammonia was spread out over a temperature range. Mass, momentum, energy, and total ammonia is conserved rigorously. The observed features of the ammonia spill simulation have pointed out phenomena that could not be predicted in simpler calculations. Perhaps the most obvious feature is the cloud bifurcation due to the strength of the gravity current relative to the ambient wind. The gravity spreading of the denser ammonia fog significantly perturbs the unidirectional windfield in the vicinity of the spill, setting up complex eddy patterns in the cloud which are enhanced by ground heating and warm dry air entrainment. The lower concentrations appear to lift off by a buoyancy-induced flow. The ammonia cloud, rather than being cigar shaped as assumed in simpler models, ranges from pancake shaped to pear shaped, depending upon the ambient windfield. The fact that the ammonia cloud remains cold, very low, and wide is in qualitative agreement with some of the large-scale ammonia spill accidents. 14 figures.

  20. Dairy farm methane emissions using a dispersion model.

    PubMed

    McGinn, S M; Beauchemin, K A

    2012-01-01

    There is a need to know whole-farm methane (CH(4)) emissions since confined animal facilities such as beef cattle feedlots and dairy farms are emission "hot spots" in the landscape. However, measurements of whole-farm CH(4) emissions can differ between farms because of differences in contributing sources such as manure handling, number of lactating and nonlactating cows, and diet. Such differences may limit the usefulness of whole-farm emissions for national inventories and mitigation purposes unless the variance between farms is taken into account or a large number of farms can be examined. Our study describes the application of a dispersion model used in conjunction with field measurements of CH(4) concentration and stability of the air to calculate whole-farm emissions of CH(4) from three dairy farms in Alberta, Canada, during three sequential campaigns conducted in November 2004 and May and July 2005. The dairy farms ranged in herd size from 208 to 351 cows (102 to 196 lactating cows) and had different manure handling operations. The results indicate that the average CH(4) emission per cow (mixture of lactating and nonlactating) from the three dairy farms was 336 g d(-1), which was reduced to 271 g d(-1) when the emission (estimated) from the manure storage was removed. Further separation of source strength yielded an average CH(4) (enteric) emission of 363 g d(-1) for a lactating cow. The estimated CH(4) emission intensities were approximately 15 g CH(4) kg(-1) dry matter intake and 16.7 L CH(4) L(-1) of milk produced. The approach of understanding the farm-to-farm differences in CH(4) emissions as affected by diet, animal type, and manure management is essential when utilizing whole-farm emission measurements for mitigation and inventory applications. PMID:22218175

  1. Simulation modeling of anthrax spore dispersion in a bioterrorism incident.

    PubMed

    Reshetin, Vladimir P; Regens, James L

    2003-12-01

    Recent events have increased awareness of the risk posed by terrorist attacks. Bacillus anthracis has resurfaced in the 21st century as a deadly agent of bioterrorism because of its potential for causing massive civilian casualties. This analysis presents the results of a computer simulation of the dispersion of anthrax spores in a typical 50-story, high-rise building after an intentional release during a bioterrorist incident. The model simulates aerosol dispersion in the case of intensive, small-scale convection, which equalizes the concentration of anthrax spores over the building volume. The model can be used to predict the time interval required for spore dispersion throughout a building after a terrorist attack in a high-rise building. The analysis reveals that an aerosol release of even a relatively small volume of anthrax spores during a terrorist incident has the potential to quickly distribute concentrations that are infectious throughout the building. PMID:14641889

  2. A computationally efficient model for turbulent droplet dispersion in spray combustion

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Jeng, San-Mou

    1990-01-01

    A novel model for turbulent droplet dispersion is formulated having significantly improved computational efficiency in comparison to the conventional point source stochastic sampling methodology. In the proposed model, a computational parcel representing a group of physical particles is considered to have a normal (Gaussian) probability density function (PDF) in three-dimensional space. The mean of each PDF is determined by Lagrangian tracking of each computational parcel, either deterministically or stochastically. The variance is represented by a turbulence-induced mean squared dispersion which is based on statistical inferences from the linearized direct modeling formulation for particle/eddy interactions. Convolution of the computational parcel PDF's produces a single PDF for the physical particle distribution profile. The validity of the new model is established by comparison with the conventional stochastic sampling method, where in each parcel is represented by a delta function distribution, for non-evaporating particles injected into simple turbulent air flows.

  3. The Lagrangian particle dispersion model FLEXPART-WRF VERSION 3.1

    SciTech Connect

    Brioude, J.; Arnold, D.; Stohl, A.; Cassiani, M.; Morton, Don; Seibert, P.; Angevine, W. M.; Evan, S.; Dingwell, A.; Fast, Jerome D.; Easter, Richard C.; Pisso, I.; Bukhart, J.; Wotawa, G.

    2013-11-01

    The Lagrangian particle dispersion model FLEXPART was originally designed for cal- culating long-range and mesoscale dispersion of air pollutants from point sources, such as after an accident in a nuclear power plant. In the meantime FLEXPART has evolved into a comprehensive tool for atmospheric transport modeling and analysis at different scales. This multiscale need from the modeler community has encouraged new developments in FLEXPART. In this document, we present a version that works with the Weather Research and Forecasting (WRF) mesoscale meteoro- logical model. Simple procedures on how to run FLEXPART-WRF are presented along with special options and features that differ from its predecessor versions. In addition, test case data, the source code and visualization tools are provided to the reader as supplementary material.

  4. Using prognostic model-generated meteorological output in the AERMOD dispersion model: an illustrative application in Philadelphia, PA.

    PubMed

    Touma, Jawad S; Isakov, Vlad; Cimorelli, Alan J; Brode, Roger W; Anderson, Bret

    2007-05-01

    In this study, we introduce the prospect of using prognostic model-generated meteorological output as input to steady-state dispersion models by identifying possible advantages and disadvantages and by presenting a comparative analysis. Because output from prognostic meteorological models is now routinely available and is used for Eulerian and Lagrangian air quality modeling applications, we explore the possibility of using such data in lieu of traditional National Weather Service (NWS) data for dispersion models. We apply these data in an urban application where comparisons can be made between the two meteorological input data types. Using the U.S. Environment Protection Agency's American Meteorological Society/U.S. Environmental Protection Agency Regulatory Model (AERMOD) air quality dispersion model, hourly and annual average concentrations of benzene are estimated for the Philadelphia, PA, area using both hourly MM5 model-generated meteorological output and meteorological data taken from the NWS site at the Philadelphia International Airport. Our intent is to stimulate a discussion of the relevant issues and inspire future work that examines many of the questions raised in this paper. PMID:17518224

  5. Characteristics of air pollutant dispersion around a high-rise building.

    PubMed

    Zhang, Y; Kwok, K C S; Liu, X-P; Niu, J-L

    2015-09-01

    A numerical wind tunnel model was proposed. The computed results of the pollutant diffusion around a typical Hong Kong high-rise building model (at a linear scale of 1:30), were found to show a similar trend to the outcomes of self-conducted experimental measurements that the pathways of pollutant migration for windward and leeward pollutant emission are different. For the case with windward pollutant emission at the 3rd floor within a re-entry, the pollutant migrated downwards due to the downwash created by the wind. In contrast, for the case with leeward pollution emission, dispersion is dominated by intense turbulent mixing in the near wake and characterized by the upward migration of the pollutant in the leeward re-entry. The simulated results of haze-fog (HF) studies confirm that the pathway of pollutant migration is dominated by wind-structure interaction and buoyancy effect only plays a minor role in the dispersion process. PMID:25989454

  6. Spatial capture-recapture models allowing Markovian transience or dispersal

    USGS Publications Warehouse

    Royle, J. Andrew; Fuller, Angela K.; Sutherland, Chris

    2016-01-01

    Spatial capture–recapture (SCR) models are a relatively recent development in quantitative ecology, and they are becoming widely used to model density in studies of animal populations using camera traps, DNA sampling and other methods which produce spatially explicit individual encounter information. One of the core assumptions of SCR models is that individuals possess home ranges that are spatially stationary during the sampling period. For many species, this assumption is unlikely to be met and, even for species that are typically territorial, individuals may disperse or exhibit transience at some life stages. In this paper we first conduct a simulation study to evaluate the robustness of estimators of density under ordinary SCR models when dispersal or transience is present in the population. Then, using both simulated and real data, we demonstrate that such models can easily be described in the BUGS language providing a practical framework for their analysis, which allows us to evaluate movement dynamics of species using capture–recapture data. We find that while estimators of density are extremely robust, even to pathological levels of movement (e.g., complete transience), the estimator of the spatial scale parameter of the encounter probability model is confounded with the dispersal/transience scale parameter. Thus, use of ordinary SCR models to make inferences about density is feasible, but interpretation of SCR model parameters in relation to movement should be avoided. Instead, when movement dynamics are of interest, such dynamics should be parameterized explicitly in the model.

  7. Design of hybrid photonic crystal fiber with elliptical and circular air holes analyzed for large flattened dispersion and high birefringence

    NASA Astrophysics Data System (ADS)

    Sharma, Varshali; Sharma, Ritu

    2016-04-01

    A design of two-dimensional hybrid photonic crystal fiber (PCF) with elliptical and circular air holes and its analyses for large flattened dispersion and high birefringence is presented. The PCF has hexagonal layout with triangular lattice. There are five rings around the solid core. The inner three rings around the core have elliptical air holes while the outer two rings have circular air holes. Three such layouts are designed, analyzed, and compared with the layout having only circular air hole using full-vector finite difference time domain method. The layout with hybrid structure having combined elliptical and circular air hole gives a large flattened dispersion of the order of 4.88 ps/nm/km for the wavelength range of 1.2 to 1.8 μm and magnitude of modal birefringence is 1.238×10-3 at 1.55-μm wavelength.

  8. Validation of a novel air toxic risk model with air monitoring.

    PubMed

    Pratt, Gregory C; Dymond, Mary; Ellickson, Kristie; Thé, Jesse

    2012-01-01

    Three modeling systems were used to estimate human health risks from air pollution: two versions of MNRiskS (for Minnesota Risk Screening), and the USEPA National Air Toxics Assessment (NATA). MNRiskS is a unique cumulative risk modeling system used to assess risks from multiple air toxics, sources, and pathways on a local to a state-wide scale. In addition, ambient outdoor air monitoring data were available for estimation of risks and comparison with the modeled estimates of air concentrations. Highest air concentrations and estimated risks were generally found in the Minneapolis-St. Paul metropolitan area and lowest risks in undeveloped rural areas. Emissions from mobile and area (nonpoint) sources created greater estimated risks than emissions from point sources. Highest cancer risks were via ingestion pathway exposures to dioxins and related compounds. Diesel particles, acrolein, and formaldehyde created the highest estimated inhalation health impacts. Model-estimated air concentrations were generally highest for NATA and lowest for the AERMOD version of MNRiskS. This validation study showed reasonable agreement between available measurements and model predictions, although results varied among pollutants, and predictions were often lower than measurements. The results increased confidence in identifying pollutants, pathways, geographic areas, sources, and receptors of potential concern, and thus provide a basis for informing pollution reduction strategies and focusing efforts on specific pollutants (diesel particles, acrolein, and formaldehyde), geographic areas (urban centers), and source categories (nonpoint sources). The results heighten concerns about risks from food chain exposures to dioxins and PAHs. Risk estimates were sensitive to variations in methodologies for treating emissions, dispersion, deposition, exposure, and toxicity. PMID:21651597

  9. Development of a GIS Based Dust Dispersion Modeling System.

    SciTech Connect

    Rutz, Frederick C.; Hoopes, Bonnie L.; Crandall, Duard W.; Allwine, K Jerry

    2004-08-12

    With residential areas moving closer to military training sites, the effects upon the environment and neighboring civilians due to dust generated by training exercises has become a growing concern. Under a project supported by the Strategic Environmental Research and Development Program (SERDP) of the Department of Defense, a custom application named DUSTRAN is currently under development that integrates a system of EPA atmospheric dispersion models with the ArcGIS application environment in order to simulate the dust dispersion generated by a planned training maneuver. This integration between modeling system and GIS application allows for the use of real world geospatial data such as terrain, land-use, and domain size as input by the modeling system. Output generated by the modeling system, such as concentration and deposition plumes, can then be displayed upon accurate maps representing the training site. This paper discusses the development of this integration between modeling system and Arc GIS application.

  10. Model hydrocracking reactions over monometallic and bimetallic dispersed catalysts

    SciTech Connect

    Schmidt, E.; Song, C.

    1994-12-31

    Coal liquefaction involves the cleavage of methylene and dimethylene bridges connecting polycyclic aromatic units. The selected compound for model reactions is 4-(1-naphthylmethyl)bibenzyl (NMBB). This work describes the synthesis and screening of several metallic complex precursors as dispersed catalysts for hydrocracking of NMBB.

  11. Fuel dispersal modeling for aircraft-runway impact scenarios

    SciTech Connect

    Tieszen, S.R.

    1995-11-01

    A fuel dispersal model for C-141 transport accidents was developed for the Defense Nuclear Agency`s Fuel Fire Technology Base Program to support Weapon System Safety Assessments. The spectrum of accidents resulting from aircraft impact on a runway was divided into three fuel dispersal regimes: low, intermediate, and high-velocity impact. Sufficient data existed in the accident, crash test, and fuel-filled bomb literature to support development of a qualitative framework for dispersal models, but not quantitative models for all regimes. Therefore, a test series at intermediate scale was conducted to generate data on which to base the model for the high-velocity regime. Tests were conducted over an impact velocity range from 12 m/s to 91 m/s and angles of impact from 22.5{degrees} to 67.5{degrees}. Dependent variables were area covered by dispersed fuel, amount of mass in that area, and location of the area relative to the impact line. Test results showed that no liquid pooling occurred for impact velocities greater than 61 m/s, independent of the angle of impact. Some pooling did occur at lower velocities, but in no test was the liquid-layer thickness greater than 5.25 mm.

  12. PHYSICAL AND NUMERICAL MODELING OF ASD EXHAUST DISPERSION AROUND HOUSES

    EPA Science Inventory

    The report discusses the use of a wind tunnel to physically model the dispersion of exhaust plumes from active soil depressurization (ASD) radon mitigation systems in houses. he testing studied the effects of exhaust location (grade level vs. above the eave), as house height, roo...

  13. Evaluation study of building-resolved urban dispersion models

    SciTech Connect

    Flaherty, Julia E.; Allwine, K Jerry; Brown, Mike J.; Coirier, WIlliam J.; Ericson, Shawn C.; Hansen, Olav R.; Huber, Alan H.; Kim, Sura; Leach, Martin J.; Mirocha, Jeff D.; Newsom, Rob K.; Patnaik, Gopal; Senocak, Inanc

    2007-09-10

    For effective emergency response and recovery planning, it is critically important that building-resolved urban dispersion models be evaluated using field data. Several full-physics computational fluid dynamics (CFD) models and semi-empirical building-resolved (SEB) models are being advanced and applied to simulating flow and dispersion in urban areas. To obtain an estimate of the current state-of-readiness of these classes of models, the Department of Homeland Security (DHS) funded a study to compare five CFD models and one SEB model with tracer data from the extensive Midtown Manhattan field study (MID05) conducted during August 2005 as part of the DHS Urban Dispersion Program (UDP; Allwine and Flaherty 2007). Six days of tracer and meteorological experiments were conducted over an approximately 2-km-by-2-km area in Midtown Manhattan just south of Central Park in New York City. A subset of these data was used for model evaluations. The study was conducted such that an evaluation team, independent of the six modeling teams, provided all the input data (e.g., building data, meteorological data and tracer release rates) and run conditions for each of four experimental periods simulated. Tracer concentration data for two of the four experimental periods were provided to the modeling teams for their own evaluation of their respective models to ensure proper setup and operation. Tracer data were not provided for the second two experimental periods to provide for an independent evaluation of the models. The tracer concentrations resulting from the model simulations were provided to the evaluation team in a standard format for consistency in inter-comparing model results. An overview of the model evaluation approach will be given followed by a discussion on the qualitative comparison of the respective models with the field data. Future model developments efforts needed to address modeling gaps identified from this study will also be discussed.

  14. Microcomputer pollution model for civilian airports and Air Force Bases. Model application and background

    SciTech Connect

    Segal, H.M.

    1988-08-01

    This is one of three reports describing the Emissions and Dispersion Modeling System (EDMS). All reports use the same main title--A MICROCOMPUTER MODEL FOR CIVILIAN AIRPORTS AND AIR FORCE BASES--but different subtitles. The subtitles are: (1) USER'S GUIDE - ISSUE 2 (FAA-EE-88-3/ESL-TR-88-54); (2) MODEL DESCRIPTION (FAA-EE-88-4/ESL-TR-88-53); (S) MODEL APPLICATION AND BACKGROUND (FAA-EE-88-5/ESL-TR-88-55). The first and second reports above describe the EDMS model and provide instructions for its use. This is the third report. IT consists of an accumulation of five key documents describing the development and use of the EDMS model. This report is prepared in accordance with discussions with the EPA and requirements outlined in the March 27, 1980 Federal Register for submitting air-quality models to the EPA. Contents: Model Development and Use - Its Chronology and Reports; Monitoring Concorde EMissions; The Influence of Aircraft Operations on Air Quality at Airports; Simplex A - A simplified Atmospheric Dispersion Model for Airport Use -(User's Guide); Microcomputer Graphics in Atmospheric Dispersion Modeling; Pollution from Motor Vehicles and Aircraft at Stapleton International Airport (Abbreviated Report).

  15. Efficiency of a statistical transport model for turbulent particle dispersion

    NASA Astrophysics Data System (ADS)

    Litchford, Ron J.; Jeng, San-Mou

    1992-05-01

    In developing its theory for turbulent dispersion transport, the Litchford and Jeng (1991) statistical transport model for turbulent particle dispersion took a generalized approach in which the perturbing influence of each turbulent eddy on consequent interactions was transported through all subsequent eddies. Nevertheless, examinations of this transport relation shows it to be able to decay rapidly: this implies that additional computational efficiency may be obtained via truncation of unneccessary transport terms. Attention is here given to the criterion for truncation, as well as to expected efficiency gains.

  16. Efficiency of a statistical transport model for turbulent particle dispersion

    SciTech Connect

    Litchford, R.J.; Jeng, San-Mou )

    1992-05-01

    In developing its theory for turbulent dispersion transport, the Litchford and Jeng (1991) statistical transport model for turbulent particle dispersion took a generalized approach in which the perturbing influence of each turbulent eddy on consequent interactions was transported through all subsequent eddies. Nevertheless, examinations of this transport relation shows it to be able to decay rapidly: this implies that additional computational efficiency may be obtained via truncation of unneccessary transport terms. Attention is here given to the criterion for truncation, as well as to expected efficiency gains. 2 refs.

  17. Efficiency of a statistical transport model for turbulent particle dispersion

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Jeng, San-Mou

    1992-01-01

    In developing its theory for turbulent dispersion transport, the Litchford and Jeng (1991) statistical transport model for turbulent particle dispersion took a generalized approach in which the perturbing influence of each turbulent eddy on consequent interactions was transported through all subsequent eddies. Nevertheless, examinations of this transport relation shows it to be able to decay rapidly: this implies that additional computational efficiency may be obtained via truncation of unneccessary transport terms. Attention is here given to the criterion for truncation, as well as to expected efficiency gains.

  18. Exposure estimates using urban plume dispersion and traffic microsimulation models

    SciTech Connect

    Brown, M.J.; Mueller, C.; Bush, B.; Stretz, P.

    1997-12-01

    The goal of this research effort was to demonstrate a capability for analyzing emergency response issues resulting from accidental or mediated airborne toxic releases in an urban setting. In the first year of the program, the authors linked a system of fluid dynamics, plume dispersion, and vehicle transportation models developed at Los Alamos National Laboratory to study the dispersion of a plume in an urban setting and the resulting exposures to vehicle traffic. This research is part of a larger laboratory-directed research and development project for studying the relationships between urban infrastructure elements and natural systems.

  19. Coupling of the Weather Research and Forecasting Model with AERMOD for pollutant dispersion modeling. A case study for PM10 dispersion over Pune, India

    NASA Astrophysics Data System (ADS)

    Kesarkar, Amit P.; Dalvi, Mohit; Kaginalkar, Akshara; Ojha, Ajay

    The prediction of spatial variation of the concentration of a pollutant governed by various sources and sinks is a complex problem. Gaussian air pollutant dispersion models such as AERMOD of the United States Environmental Protection Agency (USEPA) can be used for this purpose. AERMOD requires steady and horizontally homogeneous hourly surface and upper air meteorological observations. However, observations with such frequency are not easily available for most locations in India. To overcome this limitation, the planetary boundary layer and surface layer parameters required by AERMOD were computed using the Weather Research and Forecasting (WRF) Model (version 2.1.1) developed by the National Center for Atmospheric Research (NCAR). We have developed a preprocessor for offline coupling of WRF with AERMOD. Using this system, the dispersion of respirable particulate matter (RSPM/PM10) over Pune, India has been simulated. Data from the emissions inventory development and field-monitoring campaign (13-17 April 2005) conducted under the Pune Air Quality Management Program of the Ministry of Environment and Forests (MoEF), India and USEPA, have been used to drive and validate AERMOD. Comparison between the simulated and observed temperature and wind fields shows that WRF is capable of generating reliable meteorological inputs for AERMOD. The comparison of observed and simulated concentrations of PM10 shows that the model generally underestimates the concentrations over the city. However, data from this single case study would not be sufficient to conclude on suitability of regionally averaged meteorological parameters for driving Gaussian models like AERMOD and additional simulations with different WRF parameterizations along with an improved pollutant source data will be required for enhancing the reliability of the WRF-AERMOD modeling system.

  20. Modelling of Air Bubble Rising in Water and Polymeric Solution

    NASA Astrophysics Data System (ADS)

    Hassan, N. M. S.; Khan, M. M. K.; Rasul, M. G.; Subaschandar, N.

    2010-06-01

    This study investigates a Computational Fluid Dynamics (CFD) model for a single air bubble rising in water and xanthan gum solution. The bubble rise characteristics through the stagnant water and 0.05% xanthan gum solution in a vertical cylindrical column is modelled using the CFD code Fluent. Single air bubble rise dispersed into the continuous liquid phase has been considered and modelled for two different bubble sizes. Bubble velocity and vorticity magnitudes were captured through a surface-tracking technique i.e. Volume of Fluid (VOF) method by solving a single set of momentum equations and tracking the volume fraction of each fluid throughout the domain. The simulated results of the bubble flow contours at two different heights of the cylindrical column were validated by the experimental results and literature data. The model developed is capable of predicting the entire flow characteristics of different sizes of bubble inside the liquid column.

  1. Revisiting the radionuclide atmospheric dispersion event of the Chernobyl disaster - modelling sensitivity and data assimilation

    NASA Astrophysics Data System (ADS)

    Roustan, Yelva; Duhanyan, Nora; Bocquet, Marc; Winiarek, Victor

    2013-04-01

    A sensitivity study of the numerical model, as well as, an inverse modelling approach applied to the atmospheric dispersion issues after the Chernobyl disaster are both presented in this paper. On the one hand, the robustness of the source term reconstruction through advanced data assimilation techniques was tested. On the other hand, the classical approaches for sensitivity analysis were enhanced by the use of an optimised forcing field which otherwise is known to be strongly uncertain. The POLYPHEMUS air quality system was used to perform the simulations of radionuclide dispersion. Activity concentrations in air and deposited to the ground of iodine-131, caesium-137 and caesium-134 were considered. The impact of the implemented parameterizations of the physical processes (dry and wet depositions, vertical turbulent diffusion), of the forcing fields (meteorology and source terms) and of the numerical configuration (horizontal resolution) were investigated for the sensitivity study of the model. A four dimensional variational scheme (4D-Var) based on the approximate adjoint of the chemistry transport model was used to invert the source term. The data assimilation is performed with measurements of activity concentrations in air extracted from the Radioactivity Environmental Monitoring (REM) database. For most of the investigated configurations (sensitivity study), the statistics to compare the model results to the field measurements as regards the concentrations in air are clearly improved while using a reconstructed source term. As regards the ground deposited concentrations, an improvement can only be seen in case of satisfactorily modelled episode. Through these studies, the source term and the meteorological fields are proved to have a major impact on the activity concentrations in air. These studies also reinforce the use of reconstructed source term instead of the usual estimated one. A more detailed parameterization of the deposition process seems also to be

  2. Atomization and Dispersion of a Liquid Jet Injected Into a Crossflow of Air

    NASA Technical Reports Server (NTRS)

    Seay, J. E.; Samuelson, G. S.

    1996-01-01

    In recent years, environmental regulations have become more stringent, requiring lower emissions of mainly nitrogen oxides (NOx), as well as carbon monoxide (CO) and unburned hydrocarbons (UHC). These regulations have forced the gas turbine industry to examine non-conventional combustion strategies, such as the lean burn approach. The reasoning behind operating under lean conditions is to maintain the temperature of combustion near and below temperatures required for the formation of thermal nitric oxide (NO). To be successful, however, the lean processes require careful preparation of the fuel/air mixture to preclude formation of either locally rich reaction zones, which may give rise to NO formation, or locally lean reaction zones, which may give rise to inefficient fuel processing. As a result fuel preparation is crucial to the development and success of new aeroengine combustor technologies. A key element of the fuel preparation process is the fuel nozzle. As nozzle technologies have developed, airblast atomization has been adopted for both industrial and aircraft gas turbine applications. However, the majority of the work to date has focused on prefilming nozzles, which despite their complexity and high cost have become an industry standard for conventional combustion strategies. It is likely that the new strategies required to meet future emissions goals will utilize novel fuel injector approaches, such as radial injection. This thesis proposes and demonstrates an experiment to examine, on a mechanistic level (i.e., the physics of the action), the processes associated with the atomization, evaporation, and dispersion of a liquid jet introduced, from a radial, plain-jet airblast injector, into a crossflow of air. This understanding requires the knowledge not only of what factors influence atomization, but also the underlying mechanism associated with liquid breakup and dispersion. The experimental data acquired identify conditions and geometries for improved

  3. The use of dispersion modeling to determine the feasibility of vegetative environmental buffers (VEBS) at controlling odor dispersion

    NASA Astrophysics Data System (ADS)

    Weber, Eric E.

    Concentrated animal feeding operations (CAFOs) have been experiencing increased resistance from surrounding residents making construction of new facilities or expansion of existing ones increasingly limited (Jacobson et al., 2002). Such concerns often include the impact of nuisance odor on peoples’ lives and on the environment (Huang and Miller, 2006). Vegetative environmental buffers (VEBs) have been suggested as a possible odor control technology. They have been found to impact odor plume dispersion and have shown the possibility of being an effective tool for odor abatement when used alone or in combination with other technologies (Lin et al., 2006). The main objective of this study was to use Gaussian-type dispersion modeling to determine the feasibility of use and the effectiveness of a VEB at controlling the spread of odor from a swine feeding operation. First, wind tunnel NH3 dispersion trends were compared to model generated dispersion trends to determine the accuracy of the model at handling VEB dispersion. Next, facility-scale (northern Missouri specific) model simulations with and without a VEB were run to determine its viability as an option for dispersion reduction. Finally, dispersion forecasts that integrated numerical weather forecasts were developed and compared to collected concentration data to determine forecast accuracy. The results of this study found that dispersion models can be used to simulate dispersion around a VEB. AERMOD-generated dispersion trends were found to follow similar patterns of decreasing downwind concentration to those of both wind tunnel simulations and previous research. This shows that a VEB can be incorporated into AERMOD and that the model can be used to determine its effectiveness as an odor control option. The results of this study also showed that a VEB has an effect on odor dispersion by reducing downwind concentrations. This was confirmed by both wind tunnel and AERMOD simulations of dispersion displaying

  4. Dependence of charge transfer phenomena during solid-air two-phase flow on particle disperser

    NASA Astrophysics Data System (ADS)

    Tanoue, Ken-ichiro; Suedomi, Yuuki; Honda, Hirotaka; Furutani, Satoshi; Nishimura, Tatsuo; Masuda, Hiroaki

    2012-12-01

    An experimental investigation of the tribo-electrification of particles has been conducted during solid-air two-phase turbulent flow. The current induced in a metal plate by the impact of polymethylmethacrylate (PMMA) particles in a high-speed air flow was measured for two different plate materials. The results indicated that the contact potential difference between the particles and a stainless steel plate was positive, while for a nickel plate it was negative. These results agreed with theoretical contact charge transfer even if not only the particle size but also the kind of metal plate was changed. The specific charge of the PMMA particles during solid-air two-phase flow using an ejector, a stainless steel branch pipe, and a stainless steel straight pipe was measured using a Faraday cage. Although the charge was negative in the ejector, the particles had a positive specific charge at the outlet of the branch pipe, and this positive charge increased in the straight pipe. The charge decay along the flow direction could be reproduced by the charging and relaxation theory. However, the proportional coefficients in the theory changed with the particle size and air velocity. Therefore, an unexpected charge transfer occurred between the ejector and the branch pipe, which could not be explained solely by the contact potential difference. In the ejector, an electrical current in air might have been produced by self-discharge of particles with excess charge between the nickel diffuser in the ejector and the stainless steel nozzle or the stainless steel pipe due to a reversal in the contact potential difference between the PMMA and the stainless steel. The sign of the current depended on the particle size, possibly because the position where the particles impacted depended on their size. When dual coaxial glass pipes were used as a particle disperser, the specific charge of the PMMA particles became more positive along the particle flow direction due to the contact

  5. Diagnostic Mass-Consistent Wind Field Monte Carlo Dispersion Model

    1991-01-01

    MATHEW generates a diagnostic mass-consistent, three-dimensional wind field based on point measurements of wind speed and direction. It accounts for changes in topography within its calculational domain. The modeled wind field is used by the Langrangian ADPIC dispersion model. This code is designed to predict the atmospheric boundary layer transport and diffusion of neutrally bouyant, non-reactive species as well as first-order chemical reactions and radioactive decay (including daughter products).

  6. Water wave model with accurate dispersion and vertical vorticity

    NASA Astrophysics Data System (ADS)

    Bokhove, Onno

    2010-05-01

    Cotter and Bokhove (Journal of Engineering Mathematics 2010) derived a variational water wave model with accurate dispersion and vertical vorticity. In one limit, it leads to Luke's variational principle for potential flow water waves. In the another limit it leads to the depth-averaged shallow water equations including vertical vorticity. Presently, focus will be put on the Hamiltonian formulation of the variational model and its boundary conditions.

  7. Simulation model air-to-air plate heat exchanger

    SciTech Connect

    Wetter, Michael

    1999-01-01

    A simple simulation model of an air-to-air plate heat exchanger is presented. The model belongs to a collection of simulation models that allows the eflcient computer simulation of heating, ventilation, and air-conditioning (HVAC) systems. The main emphasis of the models is to shorten computation time and to use only input data that are known in the design process of an HVAC system. The target of the models is to describe the behavior of HVAC components in the part-load operation mode, which is becoming increasingly important in energy eficient HVAC systems. The models are intended to be used for yearly energy calculations or load calculations with time steps of about 10 minutes or larger. Short- time dynamic effects, which are of interest for different aspects of control theory, are neglected. The part-load behavior is expressed in terms of the nominal condition and the dimensionless variation of the heat transfer with change of mass flow and temperature. The effectiveness- NTU relations are used to parametrize the convective heat transfer at nominal conditions and to compute the part-load condition. If the heat transfer coefficients on the two exchanger sides are not equal (i. e. due to partial bypassing of air), their ratio can be easily calculated and set as a parameter. The model is static and uses explicit equations only. The explicit model formulation ensures short computation time and numerical stability, which allows using the model with sophisticated engineering methods like automatic system optimization. This paper fully outlines the algorithm description and its simplifications. It is not tailored for any particular simulation program to ensure easy implementation in any simulation program.

  8. Risk assessment for the Waste Technologies Industries (WTI) hazardous waste incinerator facility (east Liverpool, Ohio). Volume 4. Atmospheric dispersion and deposition modeling of emissions. Draft report

    SciTech Connect

    1995-11-01

    The report constitutes a comprehensive site-specific risk assessment for the WTI incineration facility located in East Liverpool, OH. Volume IV describes the air dispersion model used to estimate air concentrations and particle deposition, as well as the results of the modeling exercise.

  9. Effects of vertical shear in modelling horizontal oceanic dispersion

    NASA Astrophysics Data System (ADS)

    Lanotte, A. S.; Corrado, R.; Palatella, L.; Pizzigalli, C.; Schipa, I.; Santoleri, R.

    2016-02-01

    The effect of vertical shear on the horizontal dispersion properties of passive tracer particles on the continental shelf of the South Mediterranean is investigated by means of observation and model data. In situ current measurements reveal that vertical gradients of horizontal velocities in the upper mixing layer decorrelate quite fast ( ˜ 1 day), whereas an eddy-permitting ocean model, such as the Mediterranean Forecasting System, tends to overestimate such decorrelation time because of finite resolution effects. Horizontal dispersion, simulated by the Mediterranean sea Forecasting System, is mostly affected by: (1) unresolved scale motions, and mesoscale motions that are largely smoothed out at scales close to the grid spacing; (2) poorly resolved time variability in the profiles of the horizontal velocities in the upper layer. For the case study we have analysed, we show that a suitable use of deterministic kinematic parametrizations is helpful to implement realistic statistical features of tracer dispersion in two and three dimensions. The approach here suggested provides a functional tool to control the horizontal spreading of small organisms or substance concentrations, and is thus relevant for marine biology, pollutant dispersion as well as oil spill applications.

  10. Modelling dispersion processes of hypothetical nuclear accidental release on different scales

    NASA Astrophysics Data System (ADS)

    Mészáros, R.; Lagzi, I.; Molnár, F., Jr.; Vincze, Cs.; Leelőssy, Á.; Kovács, T.

    2010-09-01

    An increased attention of anthropogenic effects on the environment was observable in the last decades. As more nuclear, biological and industrial accidents occurred in the different part of the world, there is an increased demand both on the part of population and scientific society for the understanding and effective prediction of the environmental, social or economical effects of continuous or a possible accidental release. On the basis of sophisticated dispersion model calculations, the decision makers could make important arrangements, which can save human lives. For this purpose, accidental release models for different spatial and time scales were developed. Model estimations of radionuclide dispersions from the Paks Nuclear Power Plant (Hungary) were also carried out from regional to local scales. With the TREX-Euler, multi-layered, Eulerian passive tracer dispersion model, the transport and deposition of air pollutants over the Central European region were simulated under different weather conditions. For mesoscale simulation of accidental release, the stochastic TREX-Lagrangian particle model was chosen and developed. Both hypothetical accidental releases and continuous environmental loads were simulated. Additionally, near the point source, CFD simulations with A2C model were evaluated. Model estimations on different scales and their sensitivity analyses are presented in this study.

  11. Simulations of pollutant dispersion within idealised urban-type geometries with CFD and integral models

    NASA Astrophysics Data System (ADS)

    Di Sabatino, Silvana; Buccolieri, Riccardo; Pulvirenti, Beatrice; Britter, Rex

    Until recently, urban air quality modelling has been based on operational models of an integral nature. The use of computational fluid dynamics (CFD) models to address the same problems is increasing rapidly. Operational models e.g. OSPM, AERMOD, ADMS-Urban have undergone many comprehensive formal evaluations as to their "fitness for purpose" while CFD models do not have such an evaluation record in the urban air quality context. This paper looks at the application of both approaches to common problems. In particular, pollutant dispersion from point and line sources in the simplest neutral atmospheric boundary layer and line sources placed within different regular building geometries is studied with the CFD code FLUENT and the atmospheric dispersion model ADMS-Urban. Both the effect of street canyons of different aspect ratios and various obstacle array configurations consisting of cubical buildings are investigated. The standard k-ɛ turbulence model and the advection-diffusion (AD) method (in contrast to the Lagrangian particle tracking method) are used for the CFD simulations. Results from the two approaches are compared. Overall CFD simulations with the appropriate choice of coefficients produce similar concentration fields to those predicted by the integral approach. However, some quantitative differences are observed. These differences can be explained by investigating the role of the Schmidt number in the CFD simulations. A further interpretation of the differences between the two approaches is given by quantifying the exchange velocities linked to the mass fluxes between the in-canopy and above-canopy layers.

  12. Measuring odours in the environment vs. dispersion modelling: A review

    NASA Astrophysics Data System (ADS)

    Capelli, Laura; Sironi, Selena; Del Rosso, Renato; Guillot, Jean-Michel

    2013-11-01

    Source characterization alone is not sufficient to account for the effective impact of odours on citizens, which would require to quantify odours directly at receptors. However, despite a certain simplicity of odour measurement at the emission source, odour measurement in the field is a quite more complicated task. This is one of the main reasons for the spreading of odour impact assessment approaches based on odour dispersion modelling. Currently, just a very limited number of reports discussing the use of tracer gas dispersion experiments both in the field and in wind tunnels for model validation purposes can be found in literature. However, when dealing with odour emissions, it is not always possible to identify a limited number of tracer compounds, nor to relate analytical concentrations to odour properties, thus giving that considering single odorous compounds might be insufficient to account for effective odour perception. For these reasons, the possibility of measuring of odours in the field, both as a way for directly assessing odour annoyance or for verifying that modelled odour concentrations correspond to the effective odour perception by humans, is still an important objective. The present work has the aim to review the techniques that can be adopted for measuring odours in the field, particularly discussing how such techniques can be used in alternative or in combination with odour dispersion models for odour impact assessment purposes, and how the results of field odour measurements and model outputs can be related and compared to each other.

  13. Network models of frugivory and seed dispersal: Challenges and opportunities

    NASA Astrophysics Data System (ADS)

    Carlo, Tomás A.; Yang, Suann

    2011-11-01

    Network analyses have emerged as a new tool to study frugivory and seed dispersal (FSD) mutualisms because networks can model and simplify the complexity of multiple community-wide species interactions. Moreover, network theory suggests that structural properties, such as the presence of highly generalist species, are linked to the stability of mutualistic communities. However, we still lack empirical validation of network model predictions. Here we outline new research avenues to connect network models to FSD processes, and illustrate the challenges and opportunities of this tool with a field study. We hypothesized that generalist frugivores would be important for forest stability by dispersing seeds into deforested areas and initiating reforestation. We then constructed a network of plant-frugivore interactions using published data and identified the most generalist frugivores. To test the importance of generalists we measured: 1) the frequency with which frugivores moved between pasture and forest, 2) the bird-generated seed rain under perches in the pasture, and 3) the perching frequency of birds above seed traps. The generalist frugivores in the forest network were not important for seed dispersal into pastures, and thus for forest recovery, because the forest network excluded habitat heterogeneities, frugivore behavior, and movements. More research is needed to develop ways to incorporate relevant FSD processes into network models in order for these models to be more useful to community ecology and conservation. The network framework can serve to spark and renew interest in FSD and further our understanding of plant-animal communities.

  14. Thermal conductivity modeling of U-Mo/Al dispersion fuel

    NASA Astrophysics Data System (ADS)

    Kim, Yeon Soo; Cho, Byoung Jin; Sohn, Dong-Seong; Park, Jong Man

    2015-11-01

    A dataset for the thermal conductivity of U-Mo/Al dispersion fuel made available by KAERI was reanalyzed. Using this dataset, an analytical model was obtained by expanding the Bruggeman model. The newly developed model incorporates thermal resistances at the interface between the U-Mo particles and the Al matrix and the defects within the Al matrix (grain boundaries, cracks, and dislocations). The interfacial resistances are expressed as functions of U-Mo particle size and Al grain size obtained empirically by fitting to measured data from KAERI. The model was then validated against an independently measured dataset from ANL.

  15. Using meteorological ensembles for atmospheric dispersion modelling of the Fukushima nuclear accident

    NASA Astrophysics Data System (ADS)

    Périllat, Raphaël; Korsakissok, Irène; Mallet, Vivien; Mathieu, Anne; Sekiyama, Thomas; Didier, Damien; Kajino, Mizuo; Igarashi, Yasuhito; Adachi, Kouji

    2016-04-01

    Dispersion models are used in response to an accidental release of radionuclides of the atmosphere, to infer mitigation actions, and complement field measurements for the assessment of short and long term environmental and sanitary impacts. However, the predictions of these models are subject to important uncertainties, especially due to input data, such as meteorological fields or source term. This is still the case more than four years after the Fukushima disaster (Korsakissok et al., 2012, Girard et al., 2014). In the framework of the SAKURA project, an MRI-IRSN collaboration, a meteorological ensemble of 20 members designed by MRI (Sekiyama et al. 2013) was used with IRSN's atmospheric dispersion models. Another ensemble, retrieved from ECMWF and comprising 50 members, was also used for comparison. The MRI ensemble is 3-hour assimilated, with a 3-kilometers resolution, designed to reduce the meteorological uncertainty in the Fukushima case. The ECMWF is a 24-hour forecast with a coarser grid, representative of the uncertainty of the data available in a crisis context. First, it was necessary to assess the quality of the ensembles for our purpose, to ensure that their spread was representative of the uncertainty of meteorological fields. Using meteorological observations allowed characterizing the ensembles' spread, with tools such as Talagrand diagrams. Then, the uncertainty was propagated through atmospheric dispersion models. The underlying question is whether the output spread is larger than the input spread, that is, whether small uncertainties in meteorological fields can produce large differences in atmospheric dispersion results. Here again, the use of field observations was crucial, in order to characterize the spread of the ensemble of atmospheric dispersion simulations. In the case of the Fukushima accident, gamma dose rates, air activities and deposition data were available. Based on these data, selection criteria for the ensemble members were

  16. CFD Modeling of LNG Spill: Humidity Effect on Vapor Dispersion

    NASA Astrophysics Data System (ADS)

    Giannissi, S. G.; Venetsanos, A. G.; Markatos, N.

    2015-09-01

    The risks entailed by an accidental spill of Liquefied Natural Gas (LNG) should be indentified and evaluated, in order to design measures for prevention and mitigation in LNG terminals. For this purpose, simulations are considered a useful tool to study LNG spills and to understand the mechanisms that influence the vapor dispersion. In the present study, the ADREA-HF CFD code is employed to simulate the TEEX1 experiment. The experiment was carried out at the Brayton Fire Training Field, which is affiliated with the Texas A&M University system and involves LNG release and dispersion over water surface in open- obstructed environment. In the simulation the source was modeled as a two-phase jet enabling the prediction of both the vapor dispersion and the liquid pool spreading. The conservation equations for the mixture are solved along with the mass fraction for natural gas. Due to the low prevailing temperatures during the spill ambient humidity condenses and this might affect the vapor dispersion. This effect was examined in this work by solving an additional conservation equation for the water mass fraction. Two different models were tested: the hydrodynamic equilibrium model which assumes kinetic equilibrium between the phases and the non hydrodynamic equilibrium model, in order to assess the effect of slip velocity on the prediction. The slip velocity is defined as the difference between the liquid phase and the vapor phase and is calculated using the algebraic slip model. Constant droplet diameter of three different sizes and a lognormal distribution of the droplet diameter were applied and the results are discussed and compared with the measurements.

  17. A simple model for calculating air pollution within street canyons

    NASA Astrophysics Data System (ADS)

    Venegas, Laura E.; Mazzeo, Nicolás A.; Dezzutti, Mariana C.

    2014-04-01

    This paper introduces the Semi-Empirical Urban Street (SEUS) model. SEUS is a simple mathematical model based on the scaling of air pollution concentration inside street canyons employing the emission rate, the width of the canyon, the dispersive velocity scale and the background concentration. Dispersive velocity scale depends on turbulent motions related to wind and traffic. The parameterisations of these turbulent motions include two dimensionless empirical parameters. Functional forms of these parameters have been obtained from full scale data measured in street canyons at four European cities. The sensitivity of SEUS model is studied analytically. Results show that relative errors in the evaluation of the two dimensionless empirical parameters have less influence on model uncertainties than uncertainties in other input variables. The model estimates NO2 concentrations using a simple photochemistry scheme. SEUS is applied to estimate NOx and NO2 hourly concentrations in an irregular and busy street canyon in the city of Buenos Aires. The statistical evaluation of results shows that there is a good agreement between estimated and observed hourly concentrations (e.g. fractional bias are -10.3% for NOx and +7.8% for NO2). The agreement between the estimated and observed values has also been analysed in terms of its dependence on wind speed and direction. The model shows a better performance for wind speeds >2 m s-1 than for lower wind speeds and for leeward situations than for others. No significant discrepancies have been found between the results of the proposed model and that of a widely used operational dispersion model (OSPM), both using the same input information.

  18. ARAC dispersion modeling of the July 26, 1993 oleum tank car spill in Richmond, California

    SciTech Connect

    Baskett, R.L.; Vogt, P.J.; Schalk, W.W. III; Pobanz, B.M.

    1994-02-03

    This report presents the results from the real-time response on the day of the spill followed by a re-assessment of the spill. Worst-case source terms and readily available meteorological data (met data) were used for the real-time response. ARAC employs a three-dimensional, diagnostic, finite-difference dispersion modeling system for estimating the consequences from accidental atmospheric releases. MATHEW (Mass-Adjusted Three- Dimensional Wind field), a Eulerian wind field code, and ADPIC (Atmospheric Diffusion by Particle-In-Cell), a hybrid Eulerian-Lagrangian dispersion model, from the core of the system. For a particular incident a model grid is selected to encompass the area of concern and is generated using underlying terrain from on-line data. Meteorological data from multiple surface and upper air stations are automatically acquired in real time primarily from local airports and formatted to initialize the wind field model. Dispersion parameters are determined from meteorological data and the source term from available information. The system is designed to simulate releases from single or multiple radioactive releases, such as ventings, spills, fires, or explosions. Solid and liquid aerosols and neutrally-buoyant gases are modeled. Particle size distributions are input for each aerosol source and modeled using gravitational settling and wet and dry deposition, if applicable. The system can be readily applied to neutrally-bouyant, nonradioactive chemical releases which do not undergo significant physical or chemical conversion processes.

  19. The Lagrangian particle dispersion model FLEXPART-WRF version 3.1

    NASA Astrophysics Data System (ADS)

    Brioude, J.; Arnold, D.; Stohl, A.; Cassiani, M.; Morton, D.; Seibert, P.; Angevine, W.; Evan, S.; Dingwell, A.; Fast, J. D.; Easter, R. C.; Pisso, I.; Burkhart, J.; Wotawa, G.

    2013-11-01

    The Lagrangian particle dispersion model FLEXPART was originally designed for calculating long-range and mesoscale dispersion of air pollutants from point sources, such that occurring after an accident in a nuclear power plant. In the meantime, FLEXPART has evolved into a comprehensive tool for atmospheric transport modeling and analysis at different scales. A need for further multiscale modeling and analysis has encouraged new developments in FLEXPART. In this paper, we present a FLEXPART version that works with the Weather Research and Forecasting (WRF) mesoscale meteorological model. We explain how to run this new model and present special options and features that differ from those of the preceding versions. For instance, a novel turbulence scheme for the convective boundary layer has been included that considers both the skewness of turbulence in the vertical velocity as well as the vertical gradient in the air density. To our knowledge, FLEXPART is the first model for which such a scheme has been developed. On a more technical level, FLEXPART-WRF now offers effective parallelization, and details on computational performance are presented here. FLEXPART-WRF output can either be in binary or Network Common Data Form (NetCDF) format, both of which have efficient data compression. In addition, test case data and the source code are provided to the reader as a Supplement. This material and future developments will be accessible at http://www.flexpart.eu.

  20. Validation of Two CFD Urban Dispersion Models using High Resolution Wind Tunnel Data

    SciTech Connect

    Chan, S; Stevens, D E; Smith, W S

    2001-07-13

    Numerical modeling of air flow and pollutant dispersion around buildings in the urban environment is a challenging task due to the geometrical variations of buildings and the extremely complex flow created by such surface-mounted obstacles. Building-scale air flows inevitably involve flow impingement, stagnation, separation, a multiple vortex system, and jetting effects in street canyons. Lawrence Livermore National Laboratory (LLNL) and Los Alamos National Laboratory (LANL) have developed two complementary, robust computational fluid dynamics (CFD) models, FEM3MP by LLNL and HIGRAD by LANL, for such purposes. Our primary goal is to support emergency response planning, vulnerability analysis, and development of mitigation strategies for chem-bio agents released in the urban environment. Model validation is vitally important in establishing the credibility of CFD models. We have, in the past, performed model validation studies involving simpler geometries, such as flow and dispersion past a cubical building [1] and flow around a 2-D building array [2]. In this study, wind tunnel data for a 7 x 11 array of cubical buildings [3] are used to further validate our models.

  1. NASA/Air Force Cost Model: NAFCOM

    NASA Technical Reports Server (NTRS)

    Winn, Sharon D.; Hamcher, John W. (Technical Monitor)

    2002-01-01

    The NASA/Air Force Cost Model (NAFCOM) is a parametric estimating tool for space hardware. It is based on historical NASA and Air Force space projects and is primarily used in the very early phases of a development project. NAFCOM can be used at the subsystem or component levels.

  2. COMMUNITY SCALE AIR TOXICS MODELING WITH CMAQ

    EPA Science Inventory

    Consideration and movement for an urban air toxics control strategy is toward a community, exposure and risk-based modeling approach, with emphasis on assessments of areas that experience high air toxic concentration levels, the so-called "hot spots". This strategy will requir...

  3. Incorporating a Full-Physics Meteorological Model into an Applied Atmospheric Dispersion Modeling System

    SciTech Connect

    Berg, Larry K.; Allwine, K Jerry; Rutz, Frederick C.

    2004-08-23

    A new modeling system has been developed to provide a non-meteorologist with tools to predict air pollution transport in regions of complex terrain. This system couples the Penn State/NCAR Mesoscale Model 5 (MM5) with Earth Tech’s CALMET-CALPUFF system using a unique Graphical User Interface (GUI) developed at Pacific Northwest National Laboratory. This system is most useful in data-sparse regions, where there are limited observations to initialize the CALMET model. The user is able to define the domain of interest, provide details about the source term, and enter a surface weather observation through the GUI. The system then generates initial conditions and time constant boundary conditions for use by MM5. MM5 is run and the results are piped to CALPUFF for the dispersion calculations. Contour plots of pollutant concentration are prepared for the user. The primary advantages of the system are the streamlined application of MM5 and CALMET, limited data requirements, and the ability to run the coupled system on a desktop or laptop computer. In comparison with data collected as part of a field campaign, the new modeling system shows promise that a full-physics mesoscale model can be used in an applied modeling system to effectively simulate locally thermally-driven winds with minimal observations as input. An unexpected outcome of this research was how well CALMET represented the locally thermally-driven flows.

  4. Experimental and Numerical Modelling of CO2 Atmospheric Dispersion in Hazardous Gas Emission Sites.

    NASA Astrophysics Data System (ADS)

    Gasparini, A.; sainz Gracia, A. S.; Grandia, F.; Bruno, J.

    2015-12-01

    Under stable atmospheric conditions and/or in presence of topographic depressions, CO2 concentrations can reach high values resulting in lethal effect to living organisms. The distribution of denser than air gases released from the underground is governed by gravity, turbulence and dispersion. Once emitted, the gas distribution is initially driven by buoyancy and a gas cloud accumulates on the ground (gravitational phase); with time the density gradient becomes less important due to dispersion or mixing and gas distribution is mainly governed by wind and atmospheric turbulence (passive dispersion phase). Natural analogues provide evidences of the impact of CO2 leakage. Dangerous CO2 concentration in atmosphere related to underground emission have been occasionally reported although the conditions favouring the persistence of such a concentration are barely studied.In this work, the dynamics of CO2 in the atmosphere after ground emission is assessed to quantify their potential risk. Two approaches have been followed: (1) direct measurement of air concentration in a natural emission site, where formation of a "CO2 lake" is common and (2) numerical atmospheric modelling. Two sites with different morphology were studied: (a) the Cañada Real site, a flat terrain in the Volcanic Field of Campo de Calatrava (Spain); (b) the Solforata di Pomezia site, a rough terrain in the Alban Hills Volcanic Region (Italy). The comparison between field data and model calculations reveal that numerical dispersion models are capable of predicting the formation of CO2 accumulation over the ground as a consequence of underground gas emission. Therefore, atmospheric modelling could be included as a valuable methodology in the risk assessment of leakage in natural degassing systems and in CCS projects. Conclusions from this work provide clues on whether leakage may be a real risk for humans and under which conditions this risk needs to be included in the risk assessment.

  5. Modeling neutron scattering in disperse, nonuniformly labeled commercial polyolefins

    NASA Astrophysics Data System (ADS)

    Habersberger, Brian; Hart, Kyle; Gillespie, David; Huang, Tianzi

    In spite of their chemically simple monomer elements, understanding of many structural, thermodynamic, and other aspects of polyolefins has remained elusive. Scattering studies on polyolefins are challenged by their nearly identical density in the melt, requiring the use of deuterium-labeling to provide contrast for small-angle neutron scattering (SANS). Until recently, labeling of commercial polyolefins has been prohibitively costly, leading SANS investigations on polyolefins to focus on non-disperse model systems. Commercial polyolefins often have broad molecular weight and composition distributions, and such dispersity plays an important role in their rheology, crystallization, and mechanical properties. Recent reports have described facile hydrogen-deuterium exchange reactions that preserve the chain architecture of polyolefins. However, such exchange is not uniformly distributed across the chain population. Here, we report a generalized application of the Random Phase Approximation prediction for SANS from homogeneous polymer blends to account for such dispersity. A Monte-Carlo method is used to calculate the deuterium distribution that corresponds to SANS measurements. These methods provide powerful tools for probing the structure of disperse polymer architectures.

  6. Joint space-time geostatistical model for air quality surveillance

    NASA Astrophysics Data System (ADS)

    Russo, A.; Soares, A.; Pereira, M. J.

    2009-04-01

    Air pollution and peoples' generalized concern about air quality are, nowadays, considered to be a global problem. Although the introduction of rigid air pollution regulations has reduced pollution from industry and power stations, the growing number of cars on the road poses a new pollution problem. Considering the characteristics of the atmospheric circulation and also the residence times of certain pollutants in the atmosphere, a generalized and growing interest on air quality issues led to research intensification and publication of several articles with quite different levels of scientific depth. As most natural phenomena, air quality can be seen as a space-time process, where space-time relationships have usually quite different characteristics and levels of uncertainty. As a result, the simultaneous integration of space and time is not an easy task to perform. This problem is overcome by a variety of methodologies. The use of stochastic models and neural networks to characterize space-time dispersion of air quality is becoming a common practice. The main objective of this work is to produce an air quality model which allows forecasting critical concentration episodes of a certain pollutant by means of a hybrid approach, based on the combined use of neural network models and stochastic simulations. A stochastic simulation of the spatial component with a space-time trend model is proposed to characterize critical situations, taking into account data from the past and a space-time trend from the recent past. To identify near future critical episodes, predicted values from neural networks are used at each monitoring station. In this paper, we describe the design of a hybrid forecasting tool for ambient NO2 concentrations in Lisbon, Portugal.

  7. A multi-model approach to tephra dispersal forecast: The Mt. Etna’s case

    NASA Astrophysics Data System (ADS)

    Neri, A.; Barsotti, S.; Coltelli, M.; Costa, A.; Folch, A.; Macedonio, G.; Nannipieri, L.; Prestifilippo, M.; Scollo, S.; Spata, G.

    2009-12-01

    Since 1979, Mt. Etna has produced several explosive events that are of concern to civil aviation, especially since it is located close to the Catania International Airport. During the 2006 crisis, there was persistent explosive activity for several months. This disrupted airport operations several times, causing discomfort to the population and resulting in severe economic losses. These and many other examples worldwide highlight the importance to know in advance the volcanic cloud movements and its dispersion in the atmosphere. However, atmospheric transport dynamics are complex as they depend on: the nature of air-borne particles; the type of explosive activity, and the transient, 3D structure of the atmosphere. Numerical modelling is a powerful tool to quantitatively describe such phenomena and today several numerical codes exist to simulate an explosive eruption and its associated tephra dispersal. The fundamental aim of this work is to analyze, and possibly improve, the tephra dispersal forecasts by using a multi-model approach. In fact the use of different codes, based on different physical and mathematical formulations, allows to gain crucial insight on the strengths and weaknesses of different models as well as produce quantitative comparisons on key model outputs. In detail, each day an automatic web-based procedure produces ash concentration maps of FALL3D, PUFF, and VOL-CALPUFF models and ground deposition maps of TEPHRA, PUFF, FALL3D, VOL-CALPUFF, and HAZMAP models for two eruptive scenarios. These maps are then synthesised to establish the spatial regions that have air and mass loadings that are higher than fixed thresholds. Results of different models are compared allowing to produce a first estimate of the model-dependent uncertainty also as a function of eruptive and atmospheric conditions.

  8. Air Quality Modeling in Support of the Near-Road Exposures and Effects of Urban Air Pollutants Study (NEXUS)

    PubMed Central

    Isakov, Vlad; Arunachalam, Saravanan; Batterman, Stuart; Bereznicki, Sarah; Burke, Janet; Dionisio, Kathie; Garcia, Val; Heist, David; Perry, Steve; Snyder, Michelle; Vette, Alan

    2014-01-01

    A major challenge in traffic-related air pollution exposure studies is the lack of information regarding pollutant exposure characterization. Air quality modeling can provide spatially and temporally varying exposure estimates for examining relationships between traffic-related air pollutants and adverse health outcomes. A hybrid air quality modeling approach was used to estimate exposure to traffic-related air pollutants in support of the Near-Road Exposures and Effects of Urban Air Pollutants Study (NEXUS) conducted in Detroit (Michigan, USA). Model-based exposure metrics, associated with local variations of emissions and meteorology, were estimated using a combination of the American Meteorological Society/Environmental Protection Agency Regulatory Model (AERMOD) and Research LINE-source dispersion model for near-surface releases (RLINE) dispersion models, local emission source information from the National Emissions Inventory, detailed road network locations and traffic activity, and meteorological data from the Detroit City Airport. The regional background contribution was estimated using a combination of the Community Multi-scale Air Quality (CMAQ) and the Space-Time Ordinary Kriging (STOK) models. To capture the near-road pollutant gradients, refined “mini-grids” of model receptors were placed around participant homes. Exposure metrics for CO, NOx, PM2.5 and its components (elemental and organic carbon) were predicted at each home location for multiple time periods including daily and rush hours. The exposure metrics were evaluated for their ability to characterize the spatial and temporal variations of multiple ambient air pollutants compared to measurements across the study area. PMID:25166917

  9. Air quality modeling in support of the Near-Road Exposures and Effects of Urban Air Pollutants Study (NEXUS).

    PubMed

    Isakov, Vlad; Arunachalam, Saravanan; Batterman, Stuart; Bereznicki, Sarah; Burke, Janet; Dionisio, Kathie; Garcia, Val; Heist, David; Perry, Steve; Snyder, Michelle; Vette, Alan

    2014-09-01

    A major challenge in traffic-related air pollution exposure studies is the lack of information regarding pollutant exposure characterization. Air quality modeling can provide spatially and temporally varying exposure estimates for examining relationships between traffic-related air pollutants and adverse health outcomes. A hybrid air quality modeling approach was used to estimate exposure to traffic-related air pollutants in support of the Near-Road Exposures and Effects of Urban Air Pollutants Study (NEXUS) conducted in Detroit (Michigan, USA). Model-based exposure metrics, associated with local variations of emissions and meteorology, were estimated using a combination of the American Meteorological Society/Environmental Protection Agency Regulatory Model (AERMOD) and Research LINE-source dispersion model for near-surface releases (RLINE) dispersion models, local emission source information from the National Emissions Inventory, detailed road network locations and traffic activity, and meteorological data from the Detroit City Airport. The regional background contribution was estimated using a combination of the Community Multi-scale Air Quality (CMAQ) and the Space-Time Ordinary Kriging (STOK) models. To capture the near-road pollutant gradients, refined "mini-grids" of model receptors were placed around participant homes. Exposure metrics for CO, NOx, PM2.5 and its components (elemental and organic carbon) were predicted at each home location for multiple time periods including daily and rush hours. The exposure metrics were evaluated for their ability to characterize the spatial and temporal variations of multiple ambient air pollutants compared to measurements across the study area. PMID:25166917

  10. Carbon fiber dispersion models used for risk analysis calculations

    NASA Technical Reports Server (NTRS)

    1979-01-01

    For evaluating the downwind, ground level exposure contours from carbon fiber dispersion, two fiber release scenarios were chosen. The first is the fire and explosion release in which all of the fibers are released instantaneously. This model applies to accident scenarios where an explosion follows a short-duration fire in the aftermath of the accident. The second is the plume release scenario in which the total mass of fibers is released into the fire plume. This model applies to aircraft accidents where only a fire results. These models are described in detail.

  11. Modelling future impacts of air pollution using the multi-scale UK Integrated Assessment Model (UKIAM).

    PubMed

    Oxley, Tim; Dore, Anthony J; ApSimon, Helen; Hall, Jane; Kryza, Maciej

    2013-11-01

    Integrated assessment modelling has evolved to support policy development in relation to air pollutants and greenhouse gases by providing integrated simulation tools able to produce quick and realistic representations of emission scenarios and their environmental impacts without the need to re-run complex atmospheric dispersion models. The UK Integrated Assessment Model (UKIAM) has been developed to investigate strategies for reducing UK emissions by bringing together information on projected UK emissions of SO2, NOx, NH3, PM10 and PM2.5, atmospheric dispersion, criteria for protection of ecosystems, urban air quality and human health, and data on potential abatement measures to reduce emissions, which may subsequently be linked to associated analyses of costs and benefits. We describe the multi-scale model structure ranging from continental to roadside, UK emission sources, atmospheric dispersion of emissions, implementation of abatement measures, integration with European-scale modelling, and environmental impacts. The model generates outputs from a national perspective which are used to evaluate alternative strategies in relation to emissions, deposition patterns, air quality metrics and ecosystem critical load exceedance. We present a selection of scenarios in relation to the 2020 Business-As-Usual projections and identify potential further reductions beyond those currently being planned. PMID:24096039

  12. Offshore and Coastal Dispersion (OCD) Model, Version 3. 0 (revised 1988). Model-Simulation

    SciTech Connect

    Baer, M.

    1985-08-01

    The Offshore and Coastal Dispersion Model was adapted from the EPA guideline model MPTER to simulate the effect of offshore emissions from point sources in coastal regions. Modifications were made to incorporate overwater plume transport, dispersion, and changes that occur as the plume crosses the shoreline. Modifications included the use of turbulence intensities to define dispersion regimes, use of the RTDM Model to treat plume reflection in elevated terrain, use of the BLP Model to incorporate building downwash and plume rise to the model. The model is written in the FORTRAN programming language for implementation on a AMDAHL V7 Computer using the VSV7 operating system.

  13. Instantaneous and time-averaged dispersion and measurement models for estimation theory applications with elevated point source plumes

    NASA Technical Reports Server (NTRS)

    Diamante, J. M.; Englar, T. S., Jr.; Jazwinski, A. H.

    1977-01-01

    Estimation theory, which originated in guidance and control research, is applied to the analysis of air quality measurements and atmospheric dispersion models to provide reliable area-wide air quality estimates. A method for low dimensional modeling (in terms of the estimation state vector) of the instantaneous and time-average pollutant distributions is discussed. In particular, the fluctuating plume model of Gifford (1959) is extended to provide an expression for the instantaneous concentration due to an elevated point source. Individual models are also developed for all parameters in the instantaneous and the time-average plume equations, including the stochastic properties of the instantaneous fluctuating plume.

  14. Modeling, Monitoring and Fault Diagnosis of Spacecraft Air Contaminants

    NASA Technical Reports Server (NTRS)

    Ramirez, W. Fred; Skliar, Mikhail; Narayan, Anand; Morgenthaler, George W.; Smith, Gerald J.

    1998-01-01

    Control of air contaminants is a crucial factor in the safety considerations of crewed space flight. Indoor air quality needs to be closely monitored during long range missions such as a Mars mission, and also on large complex space structures such as the International Space Station. This work mainly pertains to the detection and simulation of air contaminants in the space station, though much of the work is easily extended to buildings, and issues of ventilation systems. Here we propose a method with which to track the presence of contaminants using an accurate physical model, and also develop a robust procedure that would raise alarms when certain tolerance levels are exceeded. A part of this research concerns the modeling of air flow inside a spacecraft, and the consequent dispersal pattern of contaminants. Our objective is to also monitor the contaminants on-line, so we develop a state estimation procedure that makes use of the measurements from a sensor system and determines an optimal estimate of the contamination in the system as a function of time and space. The real-time optimal estimates in turn are used to detect faults in the system and also offer diagnoses as to their sources. This work is concerned with the monitoring of air contaminants aboard future generation spacecraft and seeks to satisfy NASA's requirements as outlined in their Strategic Plan document (Technology Development Requirements, 1996).

  15. Evaluation of the Regional Atmospheric Modeling System in the Eastern Range Dispersion Assessment System

    NASA Technical Reports Server (NTRS)

    Case, Jonathan

    2000-01-01

    The Applied Meteorology Unit is conducting an evaluation of the Regional Atmospheric Modeling System (RAMS) contained within the Eastern Range Dispersion Assessment System (ERDAS). ERDAS provides emergency response guidance for operations at the Cape Canaveral Air Force Station and the Kennedy Space Center in the event of an accidental hazardous material release or aborted vehicle launch. The prognostic data from RAMS is available to ERDAS for display and is used to initialize the 45th Range Safety (45 SW/SE) dispersion model. Thus, the accuracy of the 45 SW/SE dispersion model is dependent upon the accuracy of RAMS forecasts. The RAMS evaluation task consists of an objective and subjective component for the Florida warm and cool seasons of 1999-2000. The objective evaluation includes gridded and point error statistics at surface and upper-level observational sites, a comparison of the model errors to a coarser grid configuration of RAMS, and a benchmark of RAMS against the widely accepted Eta model. The warm-season subjective evaluation involves a verification of the onset and movement of the Florida east coast sea breeze and RAMS forecast precipitation. This interim report provides a summary of the RAMS objective and subjective evaluation for the 1999 Florida warm season only.

  16. Air Tightness of US Homes: Model Development

    SciTech Connect

    Sherman, Max H.

    2006-05-01

    Air tightness is an important property of building envelopes. It is a key factor in determining infiltration and related wall-performance properties such as indoor air quality, maintainability and moisture balance. Air leakage in U.S. houses consumes roughly 1/3 of the HVAC energy but provides most of the ventilation used to control IAQ. The Lawrence Berkeley National Laboratory has been gathering residential air leakage data from many sources and now has a database of more than 100,000 raw measurements. This paper uses that database to develop a model for estimating air leakage as a function of climate, building age, floor area, building height, floor type, energy-efficiency and low-income designations. The model developed can be used to estimate the leakage distribution of populations of houses.

  17. Modeling dispersion at distances of meters from urban sources

    NASA Astrophysics Data System (ADS)

    Venkatram, Akula; Isakov, Vlad; Yuan, Jing; Pankratz, David

    This paper describes the evaluation and improvement of dispersion models for estimating ground-level concentrations in the vicinity of small sources located in urban areas. The models were evaluated with observations from a tracer study conducted at the University of California, Riverside. This experiment simulated a non-buoyant release from the top of a small source in an urban area. The tracer, SF 6, was sampled at several receptors within 20 m from the source. Several receptors were located upwind of the dominant westerly wind direction. Model estimates from ISC-PRIME and AERMOD-PRIME were evaluated with hourly observed concentrations. The evaluation indicated that the highest concentrations were overestimated by these models. At the same time, the lower range of concentrations was underestimated. A diagnostic study with a simple Gaussian dispersion model that incorporated site specific meteorology indicated that these errors could be reduced by accounting for the lateral meandering caused by increased horizontal turbulence in urban areas. While AERMOD incorporates lateral meandering, it switches it off in the near field affected by PRIME estimates. This study found that using onsite turbulence information in a simple model for meandering can lead to adequate estimates of observed concentrations even when downwash effects are not modeled explicitly.

  18. Cloud rise model for radiological dispersal devices events

    NASA Astrophysics Data System (ADS)

    Sharon, Avi; Halevy, Itzhak; Sattinger, Daniel; Yaar, Ilan

    2012-07-01

    As a part of the preparedness and response to possible radiological terror events, it is important to model the evolution of the radioactive cloud immediately after its formation, as a function of time, explosive quantity and local meteorological conditions. One of the major outputs of a cloud rise models is the evaluation of cloud top height, which is an essential input for most of the succeeding atmospheric dispersion models. This parameter strongly affects the radiological consequences of the event. Most of the cloud rise models used today, have been developed according to experiments were large quantities of explosives were used, within the range of hundreds of kilograms of TNT. The majority of these models, however, fail to address Radiological Dispersion Devices (RDD) events, which are typically characterized by smaller amounts of TNT. In this paper, a new, semi-empirical model that describes the vertical evolution of the cloud up to its effective height as a function of time, explosive quantity, atmospheric stability and horizontal wind speed, is presented. The database for this model is taken from five sets of experiments done in Israel during 2006-2009 under the "Green Field" (GF) project, using 0.25-100 kg of TNT.

  19. Dispersion modeling of thermal power plant emissions on stochastic space

    NASA Astrophysics Data System (ADS)

    Gorle, J. M. R.; Sambana, N. R.

    2016-05-01

    This study aims to couple a deterministic atmospheric dispersion solver based on Gaussian model with a nonintrusive stochastic model to quantify the propagation of multiple uncertainties. The nonintrusive model is based on probabilistic collocation framework. The advantage of nonintrusive nature is to retain the existing deterministic plume dispersion model without missing the accuracy in extracting the statistics of stochastic solution. The developed model is applied to analyze the SO2 emission released from coal firing unit in the second stage of the National Thermal Power Corporation (NTPC) in Dadri, India using "urban" conditions. The entire application is split into two cases, depending on the source of uncertainty. In case 1, the uncertainties in stack gas exit conditions are used to construct the stochastic space while in case 2, meteorological conditions are considered as the sources of uncertainty. Both cases develop 2D uncertain random space in which the uncertainty propagation is quantified in terms of plume rise and pollutant concentration distribution under slightly unstable atmospheric stability conditions. Starting with deterministic Gaussian plume model demonstration and its application, development of stochastic collocation model, convergence study, error analysis, and uncertainty quantification are presented in this paper.

  20. Propagation of Source Grain-size Distribution Uncertainty by Using a Lagrangian Volcanic Particle Dispersal Model

    NASA Astrophysics Data System (ADS)

    Neri, A.; De'Michieli Vitturi, M.; Pardini, F.; Salvetti, M. V.; Spanu, A.

    2014-12-01

    Lagrangian particle dispersal models are commonly used for tracking ash particles emitted from volcanic plumes and transported under the action of atmospheric wind fields. In this work, we adopted a Lagrangian particle model to carry out an uncertainty quantification analysis of volcanic ash dispersal in the atmosphere focused on the uncertainties affecting particle source conditions. To this aim the Eulerian fully compressible mesoscale non-hydrostatic model WRF was used to generate the driving wind field. The Lagrangian particle model LPAC (de'Michieli Vitturi et al., JGR 2010) was then used to simulate the transport of mass particles under the action of atmospheric conditions. The particle motion equations were derived by expressing the Lagrangian particle acceleration as the sum of the forces acting along its trajectory, with drag forces calculated as a function of particle diameter, density, shape and Reynolds number. The simulations were representative of weak plume events of Mt. Etna and aimed to quantify the effect on the dispersal process of the uncertainty in the mean and variance of a Gaussian density function describing the grain-size distribution of the mixture and in the particle sphericity. In order to analyze the sensitivity of particle dispersal to these uncertain parameters with a reasonable number of simulations, and therefore with affordable computational costs, response surfaces in the parameter space were built by using the generalized polynomial chaos technique. The uncertainty analysis allowed to quantify the most probable values, as well as their pdf, of the number of particles as well as of the mean and variance of the grain size distribution at various distances from the source, both in air and on the ground. In particular, results highlighted the strong reduction of the uncertainty ranges of the mean and variance of the grain-size distribution with increasing distance from source and the significant control of particle sphericity on the

  1. Comparison of the industrial source complex and AERMOD dispersion models: case study for human health risk assessment.

    PubMed

    Silverman, Keith C; Tell, Joan G; Sargent, Edward V; Qiu, Zeyuan

    2007-12-01

    Air quality models are typically used to predict the fate and transport of air emissions from industrial sources to comply with federal and state regulatory requirements and environmental standards, as well as to determine pollution control requirements. For many years, the U.S. Environmental Protection Agency (EPA) widely used the Industrial Source Complex (ISC) model because of its broad applicability to multiple source types. Recently, EPA adopted a new rule that replaces ISC with AERMOD, a state-of-the-practice air dispersion model, in many air quality impact assessments. This study compared the two models as well as their enhanced versions that incorporate the Plume Rise Model Enhancements (PRIME) algorithm. PRIME takes into account the effects of building downwash on plume dispersion. The comparison used actual point, area, and volume sources located on two separate facilities in conjunction with site-specific terrain and meteorological data. The modeled maximum total period average ground-level air concentrations were used to calculate potential health effects for human receptors. The results show that the switch from ISC to AERMOD and the incorporation of the PRIME algorithm tend to generate lower concentration estimates at the point of maximum ground-level concentration. However, the magnitude of difference varies from insignificant to significant depending on the types of the sources and the site-specific conditions. The differences in human health effects, predicted using results from the two models, mirror the concentrations predicted by the models. PMID:18200928

  2. On the coalescence-dispersion modeling of turbulent molecular mixing

    NASA Technical Reports Server (NTRS)

    Givi, Peyman; Kosaly, George

    1987-01-01

    The general coalescence-dispersion (C/D) closure provides phenomenological modeling of turbulent molecular mixing. The models of Curl and Dopazo and O'Brien appear as two limiting C/D models that bracket the range of results one can obtain by various models. This finding is used to investigate the sensitivtiy of the results to the choice of the model. Inert scalar mixing is found to be less model-sensitive than mixing accompanied by chemical reaction. Infinitely fast chemistry approximation is used to relate the C/D approach to Toor's earlier results. Pure mixing and infinite rate chemistry calculations are compared to study further a recent result of Hsieh and O'Brien who found that higher concentration moments are not sensitive to chemistry.

  3. Simulation of the dispersion of nuclear contamination using an adaptive Eulerian grid model.

    PubMed

    Lagzi, I; Kármán, D; Turányi, T; Tomlin, A S; Haszpra, L

    2004-01-01

    Application of an Eulerian model using layered adaptive unstructured grids coupled to a meso-scale meteorological model is presented for modelling the dispersion of nuclear contamination following the accidental release from a single but strong source to the atmosphere. The model automatically places a finer resolution grid, adaptively in time, in regions were high spatial numerical error is expected. The high-resolution grid region follows the movement of the contaminated air over time. Using this method, grid resolutions of the order of 6 km can be achieved in a computationally effective way. The concept is illustrated by the simulation of hypothetical nuclear accidents at the Paks NPP, in Central Hungary. The paper demonstrates that the adaptive model can achieve accuracy comparable to that of a high-resolution Eulerian model using significantly less grid points and computer simulation time. PMID:15149762

  4. FEM numerical model study of electrosurgical dispersive electrode design parameters.

    PubMed

    Pearce, John A

    2015-08-01

    Electrosurgical dispersive electrodes must safely carry the surgical current in monopolar procedures, such as those used in cutting, coagulation and radio frequency ablation (RFA). Of these, RFA represents the most stringent design constraint since ablation currents are often more than 1 to 2 Arms (continuous) for several minutes depending on the size of the lesion desired and local heat transfer conditions at the applicator electrode. This stands in contrast to standard surgical activations, which are intermittent, and usually less than 1 Arms, but for several seconds at a time. Dispersive electrode temperature rise is also critically determined by the sub-surface skin anatomy, thicknesses of the subcutaneous and supra-muscular fat, etc. Currently, we lack fundamental engineering design criteria that provide an estimating framework for preliminary designs of these electrodes. The lack of a fundamental design framework means that a large number of experiments must be conducted in order to establish a reasonable design. Previously, an attempt to correlate maximum temperatures in experimental work with the average current density-time product failed to yield a good match. This paper develops and applies a new measure of an electrode stress parameter that correlates well with both the previous experimental data and with numerical models of other electrode shapes. The finite element method (FEM) model work was calibrated against experimental RF lesions in porcine skin to establish the fundamental principle underlying dispersive electrode performance. The results can be used in preliminary electrode design calculations, experiment series design and performance evaluation. PMID:26736814

  5. Implications of ASOS winds on regulatory dispersion modeling applications

    SciTech Connect

    Jones, W.B.; Brower, R.P.

    1998-12-31

    With the advent of the Automated Surface Observing System (ASOS) throughout the United States during the 1990`s, an unprecedented level of meteorological data is now available. For the first time, observations of standard meteorological variables are available on a minute-by-minute basis. As a result, ASOS has tremendously increased the real-time data available for both weather forecasting and aviation purposes. However, the affect of the ASOS method of data collection on the dispersion modeling community is less clear. Because the hourly data now being reported at most stations across the country are being gathered in a fundamentally different way than previously, it is prudent to examine the differences between hourly meteorological observations gathered before and after ASOS. This paper scrutinizes wind speed and direction data gathered at Baltimore-Washington International Airport and Washington Dulles International Airport and quantifies the differences. Wind data are critical in determining the transport and dispersion of pollutant plumes. Relationships between manually gathered wind data and ASOS wind data are examined. Finally, potential ramifications on dispersion modeling applications are discussed.

  6. Dispersion and phase shifts of torsional waves in forward models

    NASA Astrophysics Data System (ADS)

    Cox, G. A.; Livermore, P. W.; Mound, J. E.

    2013-12-01

    Torsional Alfvén waves have been thought to exist in the Earth's core since their theoretical prediction by Braginsky in 1970. More recently, they have been inferred from observations of secular variation and length of day, and also observed in geodynamo simulations. These inferences from geophysical data have provided an important means of estimating core properties such as viscosity and internal magnetic field strength. We produce 1D forward models of torsional waves in the Earth's core, also known as torsional oscillations, and study their evolution in a cylinder, a full sphere and an equatorially symmetric spherical shell. The key features of torsional waves in our models are: geometric dispersion, phase shifts and internal reflections. In all three core geometries, we find that travelling torsional waves undergo significant geometric dispersion that increases with successive reflections from the boundaries such that an initial wave pulse becomes unidentifiable within three transits of the core. This dispersion partly arises due to low amplitude wakes trailing behind sharply defined pulses during propagation, a phenomenon that is linked to the failure of Huygens' principle in the geometric setting of torsional waves. We investigate the relationship between geometric dispersion and wavelength, concluding that long wavelength features are more dispersive than short wavelength features. This result is particularly important because torsional waves inferred from secular variation are relatively long wavelength, and are therefore likely to undergo significant dispersion within the Earth's core. Torsional waves in all three geometries are reflected at the equator of the core-mantle boundary with the same sign as the incident wave, but display more complicated behaviour at the rotation axis. In a cylindrical core, the analytic solutions to the torsional wave equation are known. We use these to derive an expression for the phase shift that torsional waves undergo upon

  7. AERMOD: A Dispersion Model for Industrial Source Applications. Part II: Model Performance against 17 Field Study Databases.

    NASA Astrophysics Data System (ADS)

    Perry, Steven G.; Cimorelli, Alan J.; Paine, Robert J.; Brode, Roger W.; Weil, Jeffrey C.; Venkatram, Akula; Wilson, Robert B.; Lee, Russell F.; Peters, Warren D.

    2005-05-01

    The performance of the American Meteorological Society (AMS) and U.S. Environmental Protection Agency (EPA) Regulatory Model (AERMOD) Improvement Committee's applied air dispersion model against 17 field study databases is described. AERMOD is a steady-state plume model with significant improvements over commonly applied regulatory models. The databases are characterized, and the performance measures are described. Emphasis is placed on statistics that demonstrate the model's abilities to reproduce the upper end of the concentration distribution. This is most important for applied regulatory modeling. The field measurements are characterized by flat and complex terrain, urban and rural conditions, and elevated and surface releases with and without building wake effects. As is indicated by comparisons of modeled and observed concentration distributions, with few exceptions AERMOD's performance is superior to that of the other applied models tested. This is the second of two articles, with the first describing the model formulations.

  8. High-resolution pollutant dispersion modelling in contaminated coastal sites.

    PubMed

    Ramšak, Vanja; Malačič, Vlado; Ličer, Matjaž; Kotnik, Jože; Horvat, Milena; Žagar, Dušan

    2013-08-01

    The recent developments in pollutant measurement methods and techniques necessitate improvements in modelling approaches. The models used so far have been based on seasonally averaged data, which is insufficient for making short-term predictions. We have improved the existing modelling tools for pollutant transport and dispersion on three levels. We significantly refined the numerical grid; we used temporally and spatially non-uniform meteorological parameters for predicting pollutant dispersion and transformation processes; we used grid nesting in order to improve the open boundary condition. We worked on a typical contaminated site (The Gulf of Trieste), where mercury poses a significant environmental threat and where an oil-spill is a realistic possibility. By calculating evasion we improved the mass balance of mercury in the Gulf. We demonstrated that the spreading of river plumes under typical wind conditions is different than has so far been indicated by model simulations. We also simulated an oil-spill in real time. The improved modelling approaches and the upgraded models are now suitable for use with the state-of-the-art measurements technology and can represent an important contribution to the decision-making process. PMID:23477567

  9. Universal quantum criticality in Hubbard models with massless Dirac dispersion

    NASA Astrophysics Data System (ADS)

    Otsuka, Yuichi; Yunoki, Seiji; Sorella, Sandro

    We investigate the metal-insulator transition of two-dimensional interacting electrons with massless Dirac-like dispersion, describe by the Hubbard models on two geometrically different lattices: honeycomb and π-flux square lattices. By performing large-scale quantum Monte Carlo simulations followed by careful finite-size scaling analyses, we find that the transition from semi-metallic to antiferromagnetic insulating phases is continuous and evaluate the critical exponents with a high degree of accuracy for the corresponding universality class, which is described in the continuous limit by the Gross-Neveu model. We furthermore discuss the fate of the quasiparticle weight and the Fermi velocity across this transition.

  10. A Flexible Spatio-Temporal Model for Air Pollution with Spatial and Spatio-Temporal Covariates

    PubMed Central

    Lindström, Johan; Szpiro, Adam A; Sampson, Paul D; Oron, Assaf P; Richards, Mark; Larson, Tim V; Sheppard, Lianne

    2013-01-01

    The development of models that provide accurate spatio-temporal predictions of ambient air pollution at small spatial scales is of great importance for the assessment of potential health effects of air pollution. Here we present a spatio-temporal framework that predicts ambient air pollution by combining data from several different monitoring networks and deterministic air pollution model(s) with geographic information system (GIS) covariates. The model presented in this paper has been implemented in an R package, SpatioTemporal, available on CRAN. The model is used by the EPA funded Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air) to produce estimates of ambient air pollution; MESA Air uses the estimates to investigate the relationship between chronic exposure to air pollution and cardiovascular disease. In this paper we use the model to predict long-term average concentrations of NOx in the Los Angeles area during a ten year period. Predictions are based on measurements from the EPA Air Quality System, MESA Air specific monitoring, and output from a source dispersion model for traffic related air pollution (Caline3QHCR). Accuracy in predicting long-term average concentrations is evaluated using an elaborate cross-validation setup that accounts for a sparse spatio-temporal sampling pattern in the data, and adjusts for temporal effects. The predictive ability of the model is good with cross-validated R2 of approximately 0.7 at subject sites. Replacing four geographic covariate indicators of traffic density with the Caline3QHCR dispersion model output resulted in very similar prediction accuracy from a more parsimonious and more interpretable model. Adding traffic-related geographic covariates to the model that included Caline3QHCR did not further improve the prediction accuracy. PMID:25264424

  11. A Flexible Spatio-Temporal Model for Air Pollution with Spatial and Spatio-Temporal Covariates.

    PubMed

    Lindström, Johan; Szpiro, Adam A; Sampson, Paul D; Oron, Assaf P; Richards, Mark; Larson, Tim V; Sheppard, Lianne

    2014-09-01

    The development of models that provide accurate spatio-temporal predictions of ambient air pollution at small spatial scales is of great importance for the assessment of potential health effects of air pollution. Here we present a spatio-temporal framework that predicts ambient air pollution by combining data from several different monitoring networks and deterministic air pollution model(s) with geographic information system (GIS) covariates. The model presented in this paper has been implemented in an R package, SpatioTemporal, available on CRAN. The model is used by the EPA funded Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air) to produce estimates of ambient air pollution; MESA Air uses the estimates to investigate the relationship between chronic exposure to air pollution and cardiovascular disease. In this paper we use the model to predict long-term average concentrations of NOx in the Los Angeles area during a ten year period. Predictions are based on measurements from the EPA Air Quality System, MESA Air specific monitoring, and output from a source dispersion model for traffic related air pollution (Caline3QHCR). Accuracy in predicting long-term average concentrations is evaluated using an elaborate cross-validation setup that accounts for a sparse spatio-temporal sampling pattern in the data, and adjusts for temporal effects. The predictive ability of the model is good with cross-validated R (2) of approximately 0.7 at subject sites. Replacing four geographic covariate indicators of traffic density with the Caline3QHCR dispersion model output resulted in very similar prediction accuracy from a more parsimonious and more interpretable model. Adding traffic-related geographic covariates to the model that included Caline3QHCR did not further improve the prediction accuracy. PMID:25264424

  12. Measuring and modeling multidimensional dispersion in a meandering river

    NASA Astrophysics Data System (ADS)

    Logan, B. L.; Nelson, J. M.; Runkel, R. L.; McDonald, R. R.

    2009-04-01

    As part of a study to separate and characterize the active and passive components of sturgeon larval dispersal in a large river, we made detailed measurements of the dispersion of a large pulse of Rhodamine dye injected at a single upstream point. The study occurred on the Kootenai River, USA, a 200m-wide meandering river with an unusually low gradient, 2x10-5, and an average depth of 5 m at the moderate study flow of 271 m3/s. For the first 14 river kilometers downstream from the injection site, a detailed concentration data set describing the spatial and temporal evolution of the dye pulse was obtained using GPS receivers and high-accuracy fluorometers mounted on several boats. Beyond this initial reach, the dye was predominantly well-mixed in the cross-stream direction except near the leading and trailing edges of the pulse, and only longitudinal dispersion was measured. These measurements were made at a series of 11 fixed locations for an additional 45 river kilometers downstream, at which point peak dye concentrations were near the detection limit. Even for a relatively simple channel, the data indicate that local topography and bank irregularity exert a strong influence on the distribution of dye. While most of the dye pulse was apparently well mixed in the cross-stream and vertical directions, deep pools and lateral separation zones produced complex 3-dimensional structure in the concentration field, especially at the leading edge of the dye pulse. The dispersion data show that travel times in different reaches were more variable than predicted by a simple 1-dimensional model. Comparisons of the field data with results from multidimensional computational models indicate that uncommon channel features play a disproportionately important role in determining the storage and subsequent release of constituents that are passively advected and diffused.

  13. Modelling air quality in street canyons: a review

    NASA Astrophysics Data System (ADS)

    Vardoulakis, Sotiris; Fisher, Bernard E. A.; Pericleous, Koulis; Gonzalez-Flesca, Norbert

    High pollution levels have been often observed in urban street canyons due to the increased traffic emissions and reduced natural ventilation. Microscale dispersion models with different levels of complexity may be used to assess urban air quality and support decision-making for pollution control strategies and traffic planning. Mathematical models calculate pollutant concentrations by solving either analytically a simplified set of parametric equations or numerically a set of differential equations that describe in detail wind flow and pollutant dispersion. Street canyon models, which might also include simplified photochemistry and particle deposition-resuspension algorithms, are often nested within larger-scale urban dispersion codes. Reduced-scale physical models in wind tunnels may also be used for investigating atmospheric processes within urban canyons and validating mathematical models. A range of monitoring techniques is used to measure pollutant concentrations in urban streets. Point measurement methods (continuous monitoring, passive and active pre-concentration sampling, grab sampling) are available for gaseous pollutants. A number of sampling techniques (mainly based on filtration and impaction) can be used to obtain mass concentration, size distribution and chemical composition of particles. A combination of different sampling/monitoring techniques is often adopted in experimental studies. Relatively simple mathematical models have usually been used in association with field measurements to obtain and interpret time series of pollutant concentrations at a limited number of receptor locations in street canyons. On the other hand, advanced numerical codes have often been applied in combination with wind tunnel and/or field data to simulate small-scale dispersion within the urban canopy.

  14. Biomonitoring of airborne particulate matter emitted from a cement plant and comparison with dispersion modelling results

    NASA Astrophysics Data System (ADS)

    Abril, Gabriela A.; Wannaz, Eduardo D.; Mateos, Ana C.; Pignata, María L.

    2014-01-01

    The influence of a cement plant that incinerates industrial waste on the air quality of a region in the province of Córdoba, Argentina, was assessed by means of biomonitoring studies (effects of immission) and atmospheric dispersion (effects of emission) of PM10 with the application of the ISC3 model (Industrial Source Complex) developed by the USEPA (Environmental Protection Agency). For the biomonitoring studies, samples from the epiphyte plant Tillandsia capillaris Ruíz & Pav. f. capillaris were transplanted to the vicinities of the cement plant in order to determine the physiological damage and heavy metal accumulation (Ca, Mn, Fe, Co, Ni, Cu, Zn, Cd and Pb). For the application of the ISC3 model, point and area sources from the cement plant were considered to obtain average PM10 concentration results from the biomonitoring exposure period. This model permitted it to be determined that the emissions from the cement plant (point and area sources) were confined to the vicinities, without significant dispersion in the study area. This was also observed in the biomonitoring study, which identified Ca, Cd and Pb, pH and electric conductivity (EC) as biomarkers of this cement plant. Vehicular traffic emissions and soil re-suspension could be observed in the biomonitors, giving a more complete scenario. In this study, biomonitoring studies along with the application of atmospheric dispersion models, allowed the atmospheric pollution to be assessed in more detail.

  15. The Evaluation of the Regional Atmospheric Modeling System in the Eastern Range Dispersion Assessment System

    NASA Technical Reports Server (NTRS)

    Case, Jonathan

    2001-01-01

    The Applied Meteorology Unit (AMU) evaluated the Regional Atmospheric Modeling System (RAMS) contained within the Eastern Range Dispersion Assessment System (ERDAS). ERDAS provides emergency response guidance for Cape Canaveral Air Force Station and Kennedy Space Center operations in the event of an accidental hazardous material release or aborted vehicle launch. The RAMS prognostic data are available to ERDAS for display and are used to initialize the 45th Space Wing/Range Safety dispersion model. Thus, the accuracy of the dispersion predictions is dependent upon the accuracy of RAMS forecasts. The RAMS evaluation consisted of an objective and subjective component for the 1999 and 2000 Florida warm seasons, and the 1999-2000 cool season. In the objective evaluation, the AMU generated model error statistics at surface and upper-level observational sites, compared RAMS errors to a coarser RAMS grid configuration, and benchmarked RAMS against the nationally-used Eta model. In the subjective evaluation, the AMU compared forecast cold fronts, low-level temperature inversions, and precipitation to observations during the 1999-2000 cool season, verified the development of the RAMS forecast east coast sea breeze during both warm seasons, and examined the RAMS daily thunderstorm initiation and precipitation patterns during the 2000 warm season. This report summarizes the objective and subjective verification for all three seasons.

  16. INDOOR AIR QUALITY MODELING (CHAPTER 58)

    EPA Science Inventory

    The chapter discussses indoor air quality (IAQ) modeling. Such modeling provides a way to investigate many IAQ problems without the expense of large field experiments. Where experiments are planned, IAQ models can be used to help design experiments by providing information on exp...

  17. The Lagrangian particle dispersion model FLEXPART-WRF version 3.0

    NASA Astrophysics Data System (ADS)

    Brioude, J.; Arnold, D.; Stohl, A.; Cassiani, M.; Morton, D.; Seibert, P.; Angevine, W.; Evan, S.; Dingwell, A.; Fast, J. D.; Easter, R. C.; Pisso, I.; Burkhart, J.; Wotawa, G.

    2013-07-01

    The Lagrangian particle dispersion model FLEXPART was originally designed for calculating long-range and mesoscale dispersion of air pollutants from point sources, such as after an accident in a nuclear power plant. In the meantime FLEXPART has evolved into a comprehensive tool for atmospheric transport modeling and analysis at different scales. This multiscale need has encouraged new developments in FLEXPART. In this document, we present a FLEXPART version that works with the Weather Research and Forecasting (WRF) mesoscale meteorological model. We explain how to run and present special options and features that differ from its predecessor versions. For instance, a novel turbulence scheme for the convective boundary layer has been included that considers both the skewness of turbulence in the vertical velocity as well as the vertical gradient in the air density. To our knowledge, FLEXPART is the first model for which such a scheme has been developed. On a more technical level, FLEXPART-WRF now offers effective parallelization and details on computational performance are presented here. FLEXPART-WRF output can either be in binary or Network Common Data Form (NetCDF) format with efficient data compression. In addition, test case data and the source code are provided to the reader as Supplement. This material and future developments will be accessible at http://www.flexpart.eu.

  18. ARAC dispersion modeling of the August 1998 Tracy, California tire fire

    SciTech Connect

    Aluzzi, F J; Baskett, R L; Bowen, B M; Foster, C S; Pace, J C; Pobanz, B; Vogt, P J

    1998-08-28

    At about 4:30 pm PDT on Friday, August 7, 1998 a fire ignited the large tire disposal pit of Royster Tire Co. on Macarthur Drive about 5 km (3 miles) south of downtown Tracy, California. While providing on-scene mutual aid late Friday night, the LLNL Fire Department called and requested that the Atmospheric Release Advisory Capability (ARAC) make a plume forecast for Saturday. The response team in the field was interested in the forecasted location as well as an estimate of potential health effects on the following day. Not having any previous experience with tire fire source terms, ARAC assessors used a constant unit source rate (1 g/s) of particulate and produced plots showing only the location of the ground-level normalized time-integrated air concentrations from the smoke plume. Very early Saturday morning the assessors faxed plots of ground-level smoke air concentrations forecasted for Saturday from 6 am through 6 pm PDT to the Tracy Fire Emergency Operations Center. (As a part of standard procedure, before delivering the plots, the assessors notified ARAC's DOE sponsor.) Fortunately due to the intense heat from the fire, the dense black smoke immediately lofted into the air preventing high ground-level concentrations close to the tire dump. Later on Saturday morning ARAC forecasted a second set of plume integrated air concentrations for Sunday. By Monday the intensity of the fire lessened, and ARAC's support was no longer requested. Following ARAC's response, we made a third calculation on a large scale of the continuous smoke dispersion for 3 days after the fire. A newspaper photograph showed the plume initially rising toward the northeast and the upper part of the smoke cloud turning counterclockwise toward the north. Winds from ARAC's mesoscale prognostic model reproduced this plume structure, while data from the Friday afternoon sounding from Oakland did not. On the 250 km scale, using gridded wind outputs from our mesoscale forecast model to initialize

  19. Evaluation of source model coupled computational fluid dynamics (CFD) simulation of the dispersion of airborne contaminants in a work environment.

    PubMed

    Salim, S M; Viswanathan, Shekar; Ray, Madhumita Bhowmick

    2006-12-01

    Dispersion of airborne contaminants in indoor air was evaluated employing physical measurement, empirical models, and computer simulation methods. Field data collected from a tray of evaporating solvent in the laboratory were compared with computational fluid dynamics (CFD) simulations coupled with evaporation models. The results indicated that mathematical models of evaporation can be coupled with CFD simulations to produce reasonable qualitative predictions of airborne contaminant levels. The airflow pattern within a room is primarily determined by the room layout and the position of the air supply diffusers. Variations in ventilation rate did not alter the airflow pattern, thus generating a characteristic concentration profile of the airborne contaminants. PMID:17050350

  20. An Improved Operational Volcanic Ash Dispersion Modelling System for the Wellington VAAC

    NASA Astrophysics Data System (ADS)

    Shucksmith, Paul; Davis, Cory; Soltanzadeh, Iman; Bernard, Matthieu; Rye, Graham

    2015-04-01

    The Meteorological Service of New Zealand's (MetService's) responsibilities as a Volcanic Ash Advisory Centre (VAAC) require the operational use of volcanic ash dispersion and transport models to provide guidance for issuing Volcanic Ash Advisories in the event of volcanic eruptions. The operational volcanic ash dispersion modelling system currently in use at MetService is based on the PUFF model (Searcy et al., 1998) driven by GFS NWP data. This system possesses several shortcomings, most notably the lack of quantitative concentration output for quantitative comparison with satellite observations, no accounting for wet deposition of ash and the use of low resolution NWP input from a single model. To overcome these shortcomings, a new modelling system has been developed, built around the HYSPLIT model (developed by NOAA's Air Resources Laboratory) driven with NWP from three different models: IFS, GFS and WRF. Eruption parameters (duration, plume height and mass eruption rate) are provided from a set of defaults, spanning a range of eruption sizes, for each volcano -- at present taken from the USGS eruption parameter database (Mastin et al., 2009) -- until observations of the eruption become available to specify these. The system is operated through a web interface which allows simulations to be triggered by forecasters simply and quickly and also provides graphical output of mass loading. Further visualization is provided through integration with IBL's Visual Weather product which allows easy comparison with satellite observations as well as the editing and publishing of Volcanic Ash Advisories and Volcanic Ash Graphics. Early results indicate that in general, differences between ash dispersion forecasts from the two global models are slight in comparison to the differences between the global models and the limited area WRF. A number of eruption case studies will be presented, demonstrating the multi-model/multi-parameter ensemble output and assessment of model

  1. Langevin equation model of dispersion in the convective boundary layer

    SciTech Connect

    Nasstrom, J S

    1998-08-01

    This dissertation presents the development and evaluation of a Lagrangian stochastic model of vertical dispersion of trace material in the convective boundary layer (CBL). This model is based on a Langevin equation of motion for a fluid particle, and assumes the fluid vertical velocity probability distribution is skewed and spatially homogeneous. This approach can account for the effect of large-scale, long-lived turbulent structures and skewed vertical velocity distributions found in the CBL. The form of the Langevin equation used has a linear (in velocity) deterministic acceleration and a skewed randomacceleration. For the case of homogeneous fluid velocity statistics, this ""linear-skewed" Langevin equation can be integrated explicitly, resulting in a relatively efficient numerical simulation method. It is shown that this approach is more efficient than an alternative using a "nonlinear-Gaussian" Langevin equation (with a nonlinear deterministic acceleration and a Gaussian random acceleration) assuming homogeneous turbulence, and much more efficient than alternative approaches using Langevin equation models assuming inhomogeneous turbulence. "Reflection" boundary conditions for selecting a new velocity for a particle that encounters a boundary at the top or bottom of the CBL were investigated. These include one method using the standard assumption that the magnitudes of the particle incident and reflected velocities are positively correlated, and two alternatives in which the magnitudes of these velocities are negatively correlated and uncorrelated. The constraint that spatial and velocity distributions of a well-mixed tracer must be the same as those of the fluid, was used to develop the Langevin equation models and the reflection boundary conditions. The two Langevin equation models and three reflection methods were successfully tested using cases for which exact, analytic statistical properties of particle velocity and position are known, including well

  2. A comparison of operational Lagrangian particle and adaptive puff models for plume dispersion forecasting

    NASA Astrophysics Data System (ADS)

    Souto, M. J.; Souto, J. A.; Pérez-Muñuzuri, V.; Casares, J. J.; Bermúdez, J. L.

    Transport and dispersion of pollutants in the lower atmosphere are predicted by using both a Lagrangian particle model (LPM) and an adaptive puff model (APM2) coupled to the same mesoscale meteorological prediction model PMETEO. LPM and APM2 apply the same numerical solutions for plume rise; but, for advection and plume growth, LPM uses a stochastic surrogate to the pollutant conservation equation, and APM2 applies interpolated winds and standard deviations from the meteorological model, using a step-wise Gaussian approach. The results of both models in forecasting the SO 2 ground level concentration (glc) around the 1400 MWe coal-fired As Pontes Power Plant are compared under unstable conditions. In addition, meteorological and SO 2 glc numerical results are compared to field measurements provided by 17 fully automated SO 2 glc remote stations, nine meteorological towers and one Remtech PA-3 SODAR, from a meteorological and air quality monitoring network located 30 km around the power plant.

  3. A capture-recapture model of amphidromous fish dispersal.

    PubMed

    Smith, W E; Kwak, T J

    2014-04-01

    Adult movement scale was quantified for two tropical Caribbean diadromous fishes, bigmouth sleeper Gobiomorus dormitor and mountain mullet Agonostomus monticola, using passive integrated transponders (PITs) and radio-telemetry. Large numbers of fishes were tagged in Río Mameyes, Puerto Rico, U.S.A., with PITs and monitored at three fixed locations over a 2·5 year period to estimate transition probabilities between upper and lower elevations and survival probabilities with a multistate Cormack-Jolly-Seber model. A sub-set of fishes were tagged with radio-transmitters and tracked at weekly intervals to estimate fine-scale dispersal. Changes in spatial and temporal distributions of tagged fishes indicated that neither G. dormitor nor A. monticola moved into the lowest, estuarine reaches of Río Mameyes during two consecutive reproductive periods, thus demonstrating that both species follow an amphidromous, rather than catadromous, migratory strategy. Further, both species were relatively sedentary, with restricted linear ranges. While substantial dispersal of these species occurs at the larval stage during recruitment to fresh water, the results indicate minimal dispersal in spawning adults. Successful conservation of diadromous fauna on tropical islands requires management at both broad basin and localized spatial scales. PMID:24673127

  4. Applying dispersive changes to Lagrangian particles in groundwater transport models

    USGS Publications Warehouse

    Konikow, Leonard F.

    2010-01-01

    Method-of-characteristics groundwater transport models require that changes in concentrations computed within an Eulerian framework to account for dispersion be transferred to moving particles used to simulate advective transport. A new algorithm was developed to accomplish this transfer between nodal values and advecting particles more precisely and realistically compared to currently used methods. The new method scales the changes and adjustments of particle concentrations relative to limiting bounds of concentration values determined from the population of adjacent nodal values. The method precludes unrealistic undershoot or overshoot for concentrations of individual particles. In the new method, if dispersion causes cell concentrations to decrease during a time step, those particles in the cell having the highest concentration will decrease the most, and those with the lowest concentration will decrease the least. The converse is true if dispersion is causing concentrations to increase. Furthermore, if the initial concentration on a particle is outside the range of the adjacent nodal values, it will automatically be adjusted in the direction of the acceptable range of values. The new method is inherently mass conservative.

  5. Applying Dispersive Changes to Lagrangian Particles in Groundwater Transport Models

    USGS Publications Warehouse

    Konikow, L.F.

    2010-01-01

    Method-of-characteristics groundwater transport models require that changes in concentrations computed within an Eulerian framework to account for dispersion be transferred to moving particles used to simulate advective transport. A new algorithm was developed to accomplish this transfer between nodal values and advecting particles more precisely and realistically compared to currently used methods. The new method scales the changes and adjustments of particle concentrations relative to limiting bounds of concentration values determined from the population of adjacent nodal values. The method precludes unrealistic undershoot or overshoot for concentrations of individual particles. In the new method, if dispersion causes cell concentrations to decrease during a time step, those particles in the cell having the highest concentration will decrease the most, and those with the lowest concentration will decrease the least. The converse is true if dispersion is causing concentrations to increase. Furthermore, if the initial concentration on a particle is outside the range of the adjacent nodal values, it will automatically be adjusted in the direction of the acceptable range of values. The new method is inherently mass conservative. ?? US Government 2010.

  6. A capture-recapture model of amphidromous fish dispersal

    USGS Publications Warehouse

    Smith, W.; Kwak, Thomas J.

    2014-01-01

    Adult movement scale was quantified for two tropical Caribbean diadromous fishes, bigmouth sleeper Gobiomorus dormitor and mountain mullet Agonostomus monticola, using passive integrated transponders (PITs) and radio-telemetry. Large numbers of fishes were tagged in Rio Mameyes, Puerto Rico, U.S.A., with PITs and monitored at three fixed locations over a 2-5 year period to estimate transition probabilities between upper and lower elevations and survival probabilities with a multistate Cormack-Jolly-Seber model. A sub-set of fishes were tagged with radio-transmitters and tracked at weekly intervals to estimate fine-scale dispersal. Changes in spatial and temporal distributions of tagged fishes indicated that neither G. dormitor nor A. monticola moved into the lowest, estuarine reaches of Rio Mameyes during two consecutive reproductive periods, thus demonstrating that both species follow an amphidromous, rather than catadromous, migratory strategy. Further, both species were relatively sedentary, with restricted linear ranges. While substantial dispersal of these species occurs at the larval stage during recruitment to fresh water, the results indicate minimal dispersal in spawning adults. Successful conservation of diadromous fauna on tropical islands requires management at both broad basin and localized spatial scales.

  7. Web Interface for Modeling Fog Oil Dispersion During Training

    NASA Astrophysics Data System (ADS)

    Lozar, Robert C.

    2002-08-01

    Predicting the dispersion of military camouflage training materials-Smokes and Obscurants (SO)-is a rapidly improving science. The Defense Threat Reduction Agency (DTRA) developed the Hazard Prediction and Assessment Capability (HPAC), a software package that allows the modeling of the dispersion of several potentially detrimental materials. ERDC/CERL characterized the most commonly used SO material, fog oil in HPAC terminology, to predict the SO dispersion characteristics in various training scenarios that might have an effect on Threatened and Endangered Species (TES) at DoD installations. To make the configuration more user friendly, the researchers implemented an initial web-interface version of HPAC with a modifiable fog-oil component that can be applied at any installation in the world. By this method, an installation SO trainer can plan the location and time of fog oil training activities and is able to predict the degree to which various areas will be effected, particularly important in ensuring the appropriate management of TES on a DoD installation.

  8. Model Validation of Flow and Dispersion Around a Cube

    SciTech Connect

    Lee, R.L.; Chan, S.T.

    2000-01-20

    This paper compares results for flow over a cube between laboratory experiments and two numerical simulations. One of the simulations is a Reynolds-averaged Navier-Stokes (RANS) calculation, the other a large eddy simulation (LES). Both the structure of the flow and dispersion of a source behind the cube are compared. It was found that both simulations performed well when mean flows are compared. For dispersion, the LES performed better than the RANS simulation in that it was able to capture the effect of vortex shedding and produce a wider dispersion pattern. The plume in the RANS simulation is very similar to instantaneous realizations of the plume in the LES. Near the cube, the results were very similar. This model validation study suggests that the high cost of LES computations may be warranted when detailed time-varying solutions are of high interest, However the high fidelity RANS approach is a cost-effective alternative to LES in obtaining time-average mean field results.

  9. MAFALDA: An early warning modeling tool to forecast volcanic ash dispersal and deposition

    NASA Astrophysics Data System (ADS)

    Barsotti, S.; Nannipieri, L.; Neri, A.

    2008-12-01

    Forecasting the dispersal of ash from explosive volcanoes is a scientific challenge to modern volcanology. It also represents a fundamental step in mitigating the potential impact of volcanic ash on urban areas and transport routes near explosive volcanoes. To this end we developed a Web-based early warning modeling tool named MAFALDA (Modeling and Forecasting Ash Loading and Dispersal in the Atmosphere) able to quantitatively forecast ash concentrations in the air and on the ground. The main features of MAFALDA are the usage of (1) a dispersal model, named VOL-CALPUFF, that couples the column ascent phase with the ash cloud transport and (2) high-resolution weather forecasting data, the capability to run and merge multiple scenarios, and the Web-based structure of the procedure that makes it suitable as an early warning tool. MAFALDA produces plots for a detailed analysis of ash cloud dynamics and ground deposition, as well as synthetic 2-D maps of areas potentially affected by dangerous concentrations of ash. A first application of MAFALDA to the long-lasting weak plumes produced at Mt. Etna (Italy) is presented. A similar tool can be useful to civil protection authorities and volcanic observatories in reducing the impact of the eruptive events. MAFALDA can be accessed at http://mafalda.pi.ingv.it.

  10. A 15-year Climatology of Deep Stratosphere-troposphere Exchange With A Lagrangian Particle Dispersion Model

    NASA Astrophysics Data System (ADS)

    James, P.; Stohl, A.; Forster, C.; Eckhardt, S.

    Stratosphere-Troposphere Exchange (STE) is a key element of the global atmospheric circulation, impacting on mean atmospheric chemistry budgets in both stratosphere and troposphere. A comprehensive study of deep STE, based on ECMWF global at- mospheric re-analysis data, has been carried out for the EU-project STACCATO with the Lagrangian particle dispersion model FLEXPART. The model was initialised with half a million particles, distributed randomly throughout the atmosphere, and inte- grated continually for 15 years, providing the basis for a climatology of STE, showing its typical timescales, seasonality, and spatial and interannual variability. A major ad- vantage of FLEXPART is enabling one to distinguish between short-term STE, during which air parcels rapidly return to the stratosphere, and deep and/or long-term STE, in which air parcels have subsequently long residence times in the troposphere, thus having a greater impact on atmospheric chemistry. STE distributions relate closely to global circulation features. Stratospheric intrusions occur most frequently in the mid- latitude storm track regions. Much of this air returns to the stratosphere within synop- tic timescales. The more deeply intruded air which remains is subsequently imbedded into the large-scale meridional circulation, resulting in the greatest proportion of old stratospheric air in the tropics and the polar boundary layer, as revealed by age spec- tra. Circulation anomalies (eg. NAO) influence the tropospheric distribution of young stratospheric air in particular. Concentrations of stratospheric air in the troposphere show a distinct winter maximum for deep STE intrusions, especially for cases of rapid descent. The often quoted 'spring maximum' of STE, typically derived by just fo- cussing on cross-tropopause fluxes, applies only in the upper troposphere and thus to shallow STE events alone. Cross-tropopause mass flux is shown to be an inadequate measure for many aspects of STE.

  11. Volcanic ash cloud forecasting: combining satellite observations and dispersion modelling

    NASA Astrophysics Data System (ADS)

    Wilkins, Kate; Watson, Matthew; Webster, Helen; Thomson, David; Dacre, Helen; Mackie, Shona; Harvey, Natalie

    2014-05-01

    During the eruption of Eyjafjallajökull in April and May 2010, the London Volcanic Ash Advisory Centre demonstrated the importance of InfraRed satellite imagery for monitoring volcanic ash in the atmosphere and in validating NAME, the UK Met Office operational model used to forecast ash dispersion and to advise Civil Aviation. Significant effort has gone into researching inversion modelling using NAME and satellite retrievals of volcanic ash to infer an optimal model source term, elements of which are often unknown or highly uncertain. This presentation poses a possible alternative method for combining the two by assimilating satellite observations of downwind ash clouds into the model to create effective, virtual sources in order to constrain some of the uncertainty in the source term.

  12. Lithospheric Thickness Modeled From Long Period Surface Wave Dispersion

    NASA Astrophysics Data System (ADS)

    Pasyanos, M. E.

    2007-12-01

    The behavior of surface waves at long periods is indicative of subcrustal velocity structure. Using recently published dispersion models, we invert surface wave group velocities for lithospheric structure, including lid velocity and lithospheric thickness, over much of the Eastern Hemisphere, encompassing Eurasia, Africa, and the Indian Ocean. Thicker lithosphere keels and faster upper mantle velocities under Precambrian shields and platforms are clearly observed, not only under the large cratons (West African Craton, Congo Craton, Baltic Shield, Russian Platform, Siberian Platform, Indian Shield, Kalahari Craton), but also under smaller blocks like the Tarim Basin and Yangtze Craton. There are also interesting variations within cratons like the Congo Craton. As expected, the thinnest lithospheric thickness is found under oceanic and continental rifts, and also along convergence zones. We compare our results to thermal lithospheric models of the continents, lithospheric cooling models of oceanic lithosphere, lithosphere-asthenosphere boundary (LAB) estimates from S-wave receiver functions, and velocity variations of global tomography models.

  13. Dynamics of the flammable plumes resulting from the convective dispersion of a fixed mass of the buoyant gaseous fuel, methane, into air.

    PubMed

    Fardisi, S; Karim, Ghazi A

    2009-08-15

    The dynamics of the dispersion of a fixed mass of the buoyant fuel, methane, when exposed with a negligible pressure difference to overlaying air within vertical cylindrical enclosures open to the atmosphere is investigated. Features of the formation and dispersion of flammable mixtures created by the gas dissipation were examined using a 3D CFD model. For the cases considered, the lean-flammable mixture boundary appears to travel mainly at a near constant rate while the rich limit front shows a more chaotic behaviour. The corresponding simulation using an axis-symmetrical 2D model tended to under-predict the dynamics of the lean and rich boundaries, for the cases considered. PMID:19237243

  14. 78 FR 20148 - Reporting Procedure for Mathematical Models Selected To Predict Heated Effluent Dispersion in...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-03

    ... COMMISSION Reporting Procedure for Mathematical Models Selected To Predict Heated Effluent Dispersion in... Mathematical Models Selected to Predict Heated Effluent Dispersion in Natural Water Bodies.'' The guide is... mathematical modeling methods used in predicting the dispersion of heated effluent in natural water bodies....

  15. Parallelisation of the Lagrangian atmospheric dispersion model NAME

    NASA Astrophysics Data System (ADS)

    Müller, Eike H.; Ford, Rupert; Hort, Matthew C.; Huggett, Lois; Riley, Graham; Thomson, David J.

    2013-12-01

    The NAME Atmospheric Dispersion Model is a Lagrangian particle model used by the Met Office to predict the propagation and spread of pollutants in the atmosphere. The model is routinely used in emergency response applications, where it is important to obtain results as quickly as possible. This requirement for a short runtime and the increase in core number of commonly available CPUs, such as the Intel Xeon series, has motivated the parallelisation of NAME in the OPENMP shared memory framework. In this work we describe the implementation of this parallelisation strategy in NAME and discuss the performance of the model for different setups. Due to the independence of the model particles, the parallelisation of the main compute intensive loops is relatively straightforward. The random number generator for modelling sub-grid scale turbulent motion needs to be adapted to ensure that different particles use independent sets of random numbers. We find that on Intel Xeon X5680 CPUs the model shows very good strong scaling up to 12 cores in a realistic emergency response application for predicting the dispersion of volcanic ash in the North Atlantic airspace. We implemented a mechanism for asynchronous reading of meteorological data from disk and demonstrate how this can reduce the runtime if disk access plays a significant role in a model run. To explore the performance on different chip architectures we also ported the part of the code which is used for calculating the gamma dose from a cloud of radioactive particles to a graphics processing unit (GPU) using CUDA-C. We were able to demonstrate a significant speedup of around one order of magnitude relative to the serial CPU version.

  16. Modeling tidal exchange and dispersion in Boston Harbor

    USGS Publications Warehouse

    Signell, Richard P.; Butman, Bradford

    1992-01-01

    Tidal dispersion and the horizontal exchange of water between Boston Harbor and the surrounding ocean are examined with a high-resolution (200 m) depth-averaged numerical model. The strongly varying bathymetry and coastline geometry of the harbor generate complex spatial patterns in the modeled tidal currents which are verified by shipboard acoustic Doppler surveys. Lagrangian exchange experiments demonstrate that tidal currents rapidly exchange and mix material near the inlets of the harbor due to asymmetry in the ebb/flood response. This tidal mixing zone extends roughly a tidal excursion from the inlets and plays an important role in the overall flushing of the harbor. Because the tides can only efficiently mix material in this limited region, however, harbor flushing must be considered a two step process: rapid exchange in the tidal mixing zone, followed by flushing of the tidal mixing zone by nontidal residual currents. Estimates of embayment flushing based on tidal calculations alone therefore can significantly overestimate the flushing time that would be expected under typical environmental conditions. Particle-release simulations from point sources also demonstrate that while the tides efficiently exchange material in the vicinity of the inlets, the exact nature of dispersion from point sources is extremely sensitive to the timing and location of the release, and the distribution of particles is streaky and patchlike. This suggests that high-resolution modeling of dispersion from point sources in these regions must be performed explicitly and cannot be parameterized as a plume with Gaussian-spreading in a larger scale flow field.

  17. DUSTRAN 1.0 User’s Guide: A GIS-Based Atmospheric Dust Dispersion Modeling System

    SciTech Connect

    Allwine, K Jerry; Rutz, Frederick C.; Shaw, William J.; Rishel, Jeremy P.; Fritz, Brad G.; Chapman, Elaine G.; Hoopes, Bonnie L.; Seiple, Timothy E.

    2006-09-22

    The U.S. Department of Energy’s Pacific Northwest National Laboratory just completed a multi-year project to develop a fully tested and documented atmospheric dispersion modeling system (DUST TRANsport or DUSTRAN) to assist the U.S. Department of Defense in addressing particulate air quality issues at military training and testing ranges. This manual documents the DUSTRAN modeling system and includes installation instructions, a user’s guide, and detailed example tutorials.

  18. Modeling of dispersion of heavy gases. [Executive summary

    SciTech Connect

    Knox, J.B.

    1982-07-01

    The phenomenology and/or the evolution of a heavy gas spill are considered from the early times of release to when it is diluted below a prescribed level of toxicity or lower flamability limit (LFL). To the extent the processes contributing to this phenomenology are known, they are described. From this discussion, salient processes emerge whose quantification leads to the structuring of models for heavy gas dispersion. Matters dealt with in this executive summary will be covered in more detail in the full presentation.

  19. Modeling monthly mean air temperature for Brazil

    NASA Astrophysics Data System (ADS)

    Alvares, Clayton Alcarde; Stape, José Luiz; Sentelhas, Paulo Cesar; de Moraes Gonçalves, José Leonardo

    2013-08-01

    Air temperature is one of the main weather variables influencing agriculture around the world. Its availability, however, is a concern, mainly in Brazil where the weather stations are more concentrated on the coastal regions of the country. Therefore, the present study had as an objective to develop models for estimating monthly and annual mean air temperature for the Brazilian territory using multiple regression and geographic information system techniques. Temperature data from 2,400 stations distributed across the Brazilian territory were used, 1,800 to develop the equations and 600 for validating them, as well as their geographical coordinates and altitude as independent variables for the models. A total of 39 models were developed, relating the dependent variables maximum, mean, and minimum air temperatures (monthly and annual) to the independent variables latitude, longitude, altitude, and their combinations. All regression models were statistically significant ( α ≤ 0.01). The monthly and annual temperature models presented determination coefficients between 0.54 and 0.96. We obtained an overall spatial correlation higher than 0.9 between the models proposed and the 16 major models already published for some Brazilian regions, considering a total of 3.67 × 108 pixels evaluated. Our national temperature models are recommended to predict air temperature in all Brazilian territories.

  20. AERMOD: A Dispersion Model for Industrial Source Applications. Part I: General Model Formulation and Boundary Layer Characterization.

    NASA Astrophysics Data System (ADS)

    Cimorelli, Alan J.; Perry, Steven G.; Venkatram, Akula; Weil, Jeffrey C.; Paine, Robertj.; Wilson, Robert B.; Lee, Russell F.; Peters, Warren D.; Brode, Roger W.

    2005-05-01

    The formulation of the American Meteorological Society (AMS) and U.S. Environmental Protection Agency (EPA) Regulatory Model (AERMOD) Improvement Committee's applied air dispersion model is described. This is the first of two articles describing the model and its performance. Part I includes AERMOD's characterization of the boundary layer with computation of the Monin-Obukhov length, surface friction velocity, surface roughness length, sensible heat flux, convective scaling velocity, and both the shear- and convection-driven mixing heights. These parameters are used in conjunction with meteorological measurements to characterize the vertical structure of the wind, temperature, and turbulence. AERMOD's method for considering both the vertical inhomogeneity of the meteorological characteristics and the influence of terrain are explained. The model's concentration estimates are based on a steady-state plume approach with significant improvements over commonly applied regulatory dispersion models. Complex terrain influences are provided by combining a horizontal plume state and a terrain-following state. Dispersion algorithms are specified for convective and stable conditions, urban and rural areas, and in the influence of buildings and other structures. Part II goes on to describe the performance of AERMOD against 17 field study databases.

  1. Modelling plume dispersion pattern from a point source using spatial auto-correlational analysis

    NASA Astrophysics Data System (ADS)

    Ujoh, F.; Kwabe, D.

    2014-02-01

    The main objective of the study is to estimate the rate and model the pattern of plume rise from Dangote Cement Plc. A handheld Garmin GPS was employed for collection of coordinates at a single kilometre graduation from the centre of the factory to 10 kilometres. Plume rate was estimated using the Gaussian model while Kriging, using ArcGIS, was adopted for modelling the pattern of plume dispersion over a 10 kilometre radius around the factory. ANOVA test was applied for statistical analysis of the plume coefficients. The results indicate that plume dispersion is generally high with highest values recorded for the atmospheric stability classes A and B, while the least values are recorded for the atmospheric stability classes F and E. The variograms derived from the Kriging reveal that the pattern of plume dispersion is outwardly radial and omni-directional. With the exception of 3 stability sub-classes (DH, EH and FH) out of a total of 12, the 24-hour average of particulate matters (PM10 and PM2.5) within the study area is outrageously higher (highest value at 21392.3) than the average safety limit of 150 ug/m3 - 230 ug/m3 prescribed by the 2006 WHO guidelines. This indicates the presence of respirable and non-respirable pollutants that create poor ambient air quality. The study concludes that the use of geospatial technology can be adopted in modelling dispersion of pollutants from a point source. The study recommends ameliorative measures to reduce the rate of plume emission at the factory.

  2. Modeling of the dispersion of depleted uranium aerosol.

    PubMed

    Mitsakou, C; Eleftheriadis, K; Housiadas, C; Lazaridis, M

    2003-04-01

    Depleted uranium is a low-cost radioactive material that, in addition to other applications, is used by the military in kinetic energy weapons against armored vehicles. During the Gulf and Balkan conflicts concern has been raised about the potential health hazards arising from the toxic and radioactive material released. The aerosol produced during impact and combustion of depleted uranium munitions can potentially contaminate wide areas around the impact sites or can be inhaled by civilians and military personnel. Attempts to estimate the extent and magnitude of the dispersion were until now performed by complex modeling tools employing unclear assumptions and input parameters of high uncertainty. An analytical puff model accommodating diffusion with simultaneous deposition is developed, which can provide a reasonable estimation of the dispersion of the released depleted uranium aerosol. Furthermore, the period of the exposure for a given point downwind from the release can be estimated (as opposed to when using a plume model). The main result is that the depleted uranium mass is deposited very close to the release point. The deposition flux at a couple of kilometers from the release point is more than one order of magnitude lower than the one a few meters near the release point. The effects due to uncertainties in the key input variables are addressed. The most influential parameters are found to be atmospheric stability, height of release, and wind speed, whereas aerosol size distribution is less significant. The output from the analytical model developed was tested against the numerical model RPM-AERO. Results display satisfactory agreement between the two models. PMID:12705453

  3. Essays on pricing dynamics, price dispersion, and nested logit modelling

    NASA Astrophysics Data System (ADS)

    Verlinda, Jeremy Alan

    The body of this dissertation comprises three standalone essays, presented in three respective chapters. Chapter One explores the possibility that local market power contributes to the asymmetric relationship observed between wholesale costs and retail prices in gasoline markets. I exploit an original data set of weekly gas station prices in Southern California from September 2002 to May 2003, and take advantage of highly detailed station and local market-level characteristics to determine the extent to which spatial differentiation influences price-response asymmetry. I find that brand identity, proximity to rival stations, bundling and advertising, operation type, and local market features and demographics each influence a station's predicted asymmetric relationship between prices and wholesale costs. Chapter Two extends the existing literature on the effect of market structure on price dispersion in airline fares by modeling the effect at the disaggregate ticket level. Whereas past studies rely on aggregate measures of price dispersion such as the Gini coefficient or the standard deviation of fares, this paper estimates the entire empirical distribution of airline fares and documents how the shape of the distribution is determined by market structure. Specifically, I find that monopoly markets favor a wider distribution of fares with more mass in the tails while duopoly and competitive markets exhibit a tighter fare distribution. These findings indicate that the dispersion of airline fares may result from the efforts of airlines to practice second-degree price discrimination. Chapter Three adopts a Bayesian approach to the problem of tree structure specification in nested logit modelling, which requires a heavy computational burden in calculating marginal likelihoods. I compare two different techniques for estimating marginal likelihoods: (1) the Laplace approximation, and (2) reversible jump MCMC. I apply the techniques to both a simulated and a travel mode

  4. Simulating industrial emissions using atmospheric dispersion modeling system: model performance and source emission factors.

    PubMed

    El-Fadel, M; Abi-Esber, L

    2012-03-01

    In this paper, the Gaussian Atmospheric Dispersion Modeling System (ADMS4) was coupled with field observations of surface meteorology and concentrations of several air quality indicators (nitrogen oxides (NOx), carbon monoxide (CO), fine particulate matter (PM10) and sulfur dioxide (SO2)) to test the applicability of source emission factors set by the European Environment Agency (EEA) and the United States Environmental Protection Agency (USEPA) at an industrial complex. Best emission factors and data groupings based on receptor location, type of terrain and wind speed, were relied upon to examine model performance using statistical analyses of simulated and observed data. The model performance was deemed satisfactory for several scenarios when receptors were located at downwind sites with index of agreement 'd' values reaching 0.58, fractional bias 'FB' and geometric mean bias 'MG' values approaching 0 and 1, respectively, and normalized mean square error 'NMSE' values as low as 2.17. However, median ratios of predicted to observed concentrations 'Cp/Co' at variable downstream distances were 0.01, 0.36, 0.76 and 0.19 for NOx, CO, PM10 and SO2, respectively, and the fraction of predictions within a factor of two of observations 'FAC2' values were lower than 0.5, indicating that the model could not adequately replicate all observed variations in emittant concentrations. Also, the model was found to be significantly sensitive to the input emission factor bringing into light the deficiency in regulatory compliance modeling which often uses internationally reported emission factors without testing their applicability. PMID:22482291

  5. Backward fractional advection dispersion model for contaminant source prediction

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Meerschaert, Mark M.; Neupauer, Roseanna M.

    2016-04-01

    The forward Fractional Advection Dispersion Equation (FADE) provides a useful model for non-Fickian transport in heterogeneous porous media. The space FADE captures the long leading tail, skewness, and fast spreading typically seen in concentration profiles from field data. This paper develops the corresponding backward FADE model, to identify source location and release time. The backward method is developed from the theory of inverse problems, and then explained from a stochastic point of view. The resultant backward FADE differs significantly from the traditional backward Advection Dispersion Equation (ADE) because the fractional derivative is not self-adjoint and the probability density function for backward locations is highly skewed. Finally, the method is validated using tracer data from a well-known field experiment, where the peak of the backward FADE curve predicts source release time, while the median or a range of percentiles can be used to determine the most likely source location for the observed plume. The backward ADE cannot reliably identify the source in this application, since the forward ADE does not provide an adequate fit to the concentration data.

  6. Sensitivity of numerical dispersion modeling to explosive source parameters

    SciTech Connect

    Baskett, R.L. ); Cederwall, R.T. )

    1991-02-13

    The calculation of downwind concentrations from non-traditional sources, such as explosions, provides unique challenges to dispersion models. The US Department of Energy has assigned the Atmospheric Release Advisory Capability (ARAC) at the Lawrence Livermore National Laboratory (LLNL) the task of estimating the impact of accidental radiological releases to the atmosphere anywhere in the world. Our experience includes responses to over 25 incidents in the past 16 years, and about 150 exercises a year. Examples of responses to explosive accidents include the 1980 Titan 2 missile fuel explosion near Damascus, Arkansas and the hydrogen gas explosion in the 1986 Chernobyl nuclear power plant accident. Based on judgment and experience, we frequently estimate the source geometry and the amount of toxic material aerosolized as well as its particle size distribution. To expedite our real-time response, we developed some automated algorithms and default assumptions about several potential sources. It is useful to know how well these algorithms perform against real-world measurements and how sensitive our dispersion model is to the potential range of input values. In this paper we present the algorithms we use to simulate explosive events, compare these methods with limited field data measurements, and analyze their sensitivity to input parameters. 14 refs., 7 figs., 2 tabs.

  7. ECONOMICS AND PERFORMANCE MODELING (AIR POLLUTION TECHNOLOGY BRANCH, AIR POLLUTION PREVENTION AND CONTROL DIVISION, NRMRL)

    EPA Science Inventory

    NRMRL's Air Pollution Prevention and Control Division's Air Pollution Technology Branch (APTB) is active in the development, refinement, and maintenance of economic and performance evaluation models that provide agency-wide support for estimating costs for air pollution preventio...

  8. Models of Inflammation: Carrageenan Air Pouch.

    PubMed

    Duarte, Djane B; Vasko, Michael R; Fehrenbacher, Jill C

    2016-01-01

    The subcutaneous air pouch is an in vivo model that can be used to study the components of acute and chronic inflammation, the resolution of the inflammatory response, the oxidative stress response, and potential therapeutic targets for treating inflammation. Injection of irritants into an air pouch in rats or mice induces an inflammatory response that can be quantified by the volume of exudate produced, the infiltration of cells, and the release of inflammatory mediators. The model presented in this unit has been extensively used to identify potential anti-inflammatory drugs. © 2016 by John Wiley & Sons, Inc. PMID:26995549

  9. Asymmetric Dispersal Can Maintain Larval Polymorphism: A Model Motivated by Streblospio benedicti

    PubMed Central

    Zakas, Christina; Hall, David W.

    2012-01-01

    Polymorphism in traits affecting dispersal occurs in a diverse variety of taxa. Typically, the maintenance of a dispersal polymorphism is attributed to environmental heterogeneity where parental bet-hedging can be favored. There are, however, examples of dispersal polymorphisms that occur across similar environments. For example, the estuarine polychaete Streblospio benedicti has a highly heritable offspring dimorphism that affects larval dispersal potential. We use analytical models of dispersal to determine the conditions necessary for a stable dispersal polymorphism to exist. We show that in asexual haploids, sexual haploids, and in sexual diploids in the absence of overdominance, asymmetric dispersal is required in order to maintain a dispersal polymorphism when patches do not vary in intrinsic quality. Our study adds an additional factor, dispersal asymmetry, to the short list of mechanisms that can maintain polymorphism in nature. The region of the parameter space in which polymorphism is possible is limited, suggesting why dispersal polymorphisms within species are rare. PMID:22576818

  10. Influence Analysis of Air Flow Momentum on Concentrate Dispersion and Combustion in Copper Flash Smelting Furnace by CFD Simulation

    NASA Astrophysics Data System (ADS)

    Zhou, Jun; Zhou, Jieming; Chen, Zhuo; Mao, Yongning

    2014-09-01

    The Outokumpu flash smelting process is a very successful technology for copper extraction from sulfide concentrate. Numerical simulation has been used for several decades in the analysis and evaluation of the smelting process. However, significant delay in the particle ignition was found in computations of flash furnaces that had great expansion in their productivity. A study was thereafter carried out to investigate how the gaseous flows influence the particle dispersion and combustion. A momentum ratio was defined to describe the effective portion of the pressure forces caused by the lateral and the vertical gaseous flows. Simulations were carried out with Fluent 6.3 (Fluent Inc. The software package is now known as Ansys Fluent of Ansys Inc.) for cases with different momentum ratios as well as of the same momentum value. A detailed analysis and discussion of influences of the gaseous momentum on the particle dispersion are presented. The result reveals that a large momentum ratio combined with large amount of distribution air is helpful for good particle dispersions and thus quicker combustions. Also the process air is found to perform a constraint influence on the particle dispersions, particularly for those of medium and small sizes.

  11. Atmospheric dispersion modeling: Challenges of the Fukushima Daiichi response

    SciTech Connect

    Sugiyama, Gayle; Nasstrom, John; Pobanz, Brenda; Foster, Kevin; Simpson, Matthew; Vogt, Phil; Aluzzi, Fernando; Homann, Steve

    2012-05-01

    In this research, the U.S. Department of Energy’s (DOE) National Atmospheric Release Advisory Center (NARAC) provided a wide range of predictions and analyses as part of the response to the Fukushima Daiichi Nuclear Power Plant accident including: daily Japanese weather forecasts and atmospheric transport predictions to inform planning for field monitoring operations and to provide U.S. government agencies with ongoing situational awareness of meteorological conditions; estimates of possible dose in Japan based on hypothetical U.S. Nuclear Regulatory Commission scenarios of potential radionuclide releases to support protective action planning for U.S. citizens; predictions of possible plume arrival times and dose levels at U.S. locations; and source estimation and plume model refinement based on atmospheric dispersion modeling and available monitoring data.

  12. Uncertainty in Regional Air Quality Modeling

    NASA Astrophysics Data System (ADS)

    Digar, Antara

    Effective pollution mitigation is the key to successful air quality management. Although states invest millions of dollars to predict future air quality, the regulatory modeling and analysis process to inform pollution control strategy remains uncertain. Traditionally deterministic ‘bright-line’ tests are applied to evaluate the sufficiency of a control strategy to attain an air quality standard. A critical part of regulatory attainment demonstration is the prediction of future pollutant levels using photochemical air quality models. However, because models are uncertain, they yield a false sense of precision that pollutant response to emission controls is perfectly known and may eventually mislead the selection of control policies. These uncertainties in turn affect the health impact assessment of air pollution control strategies. This thesis explores beyond the conventional practice of deterministic attainment demonstration and presents novel approaches to yield probabilistic representations of pollutant response to emission controls by accounting for uncertainties in regional air quality planning. Computationally-efficient methods are developed and validated to characterize uncertainty in the prediction of secondary pollutant (ozone and particulate matter) sensitivities to precursor emissions in the presence of uncertainties in model assumptions and input parameters. We also introduce impact factors that enable identification of model inputs and scenarios that strongly influence pollutant concentrations and sensitivity to precursor emissions. We demonstrate how these probabilistic approaches could be applied to determine the likelihood that any control measure will yield regulatory attainment, or could be extended to evaluate probabilistic health benefits of emission controls, considering uncertainties in both air quality models and epidemiological concentration-response relationships. Finally, ground-level observations for pollutant (ozone) and precursor

  13. Sensitivity analysis of a short distance atmospheric dispersion model applied to the Fukushima disaster

    NASA Astrophysics Data System (ADS)

    Périllat, Raphaël; Girard, Sylvain; Korsakissok, Irène; Mallet, Vinien

    2015-04-01

    In a previous study, the sensitivity of a long distance model was analyzed on the Fukushima Daiichi disaster case with the Morris screening method. It showed that a few variables, such as horizontal diffusion coefficient or clouds thickness, have a weak influence on most of the chosen outputs. The purpose of the present study is to apply a similar methodology on the IRSN's operational short distance atmospheric dispersion model, called pX. Atmospheric dispersion models are very useful in case of accidental releases of pollutant to minimize the population exposure during the accident and to obtain an accurate assessment of short and long term environmental and sanitary impact. Long range models are mostly used for consequences assessment while short range models are more adapted to the early phases of the crisis and are used to make prognosis. The Morris screening method was used to estimate the sensitivity of a set of outputs and to rank the inputs by their influences. The input ranking is highly dependent on the considered output, but a few variables seem to have a weak influence on most of them. This first step revealed that interactions and non-linearity are much more pronounced with the short range model than with the long range one. Afterward, the Sobol screening method was used to obtain more quantitative results on the same set of outputs. Using this method was possible for the short range model because it is far less computationally demanding than the long range model. The study also confronts two parameterizations, Doury's and Pasquill's models, to contrast their behavior. The Doury's model seems to excessively inflate the influence of some inputs compared to the Pasquill's model, such as the altitude of emission and the air stability which do not have the same role in the two models. The outputs of the long range model were dominated by only a few inputs. On the contrary, in this study the influence is shared more evenly between the inputs.

  14. Web-Based Toxic Gas Dispersion Model for Shuttle Launch Operations

    NASA Technical Reports Server (NTRS)

    Bardina, Jorge; Thirumalainambi, Rajkumar

    2004-01-01

    During the launch of the Space Shuttle vehicle, the burning of liquid hydrogen fuel with liquid oxygen at extreme high temperatures inside the three space shuttle main engines, and the burning of the solid propellant mixture of ammonium perchlorate oxidizer, aluminum fuel, iron oxide catalyst, polymer binder, and epoxy curing agent in the two solid rocket boosters result in the formation of a large cloud of hot, buoyant toxic exhaust gases near the ground level which subsequently rises and entrains into ambient air until the temperature and density of the cloud reaches an approximate equilibrium with ambient conditions. In this paper, toxic gas dispersion for various gases are simulated over the web for varying environmental conditions which is provided by rawinsonde data. The model simulates chemical concentration at ground level up to 10 miles (1 KM grids) in downrange up to an hour after launch. The ambient concentration of the gas dispersion and the deposition of toxic particles are used as inputs for a human health risk assessment model. The advantage of the present model is the accessibility and dissemination of model results to other NASA centers over the web. The model can be remotely operated and various scenarios can be analyzed.

  15. Web-based toxic gas dispersion model for shuttle launch operations

    NASA Astrophysics Data System (ADS)

    Bardina, Jorge; Thirumalainambi, Rajkumar

    2004-09-01

    During the launch of the Space Shuttle vehicle, the burning of liquid hydrogen fuel with liquid oxygen at extreme high temperatures inside the three space shuttle main engines, and the burning of the solid propellant mixture of ammonium perchlorate oxidizer, aluminum fuel, iron oxide catalyst, polymer binder, and epoxy curing agent in the two solid rocket boosters result in the formation of a large cloud of hot, buoyant toxic exhaust gases near the ground level which subsequently rises and entrains into ambient air until the temperature and density of the cloud reaches an approximate equilibrium with ambient conditions. In this paper, toxic gas dispersion for various gases are simulated over the web for varying environmental conditions which is provided by rawinsonde data. The model simulates chemical concentration at ground level up to 10 miles (1 KM grids) in downrange up to an hour after launch. The ambient concentration of the gas dispersion and the deposition of toxic particles are used as inputs for a human health risk assessment model. The advantage of the present model is the accessibility and dissemination of model results to other NASA centers over the web. The model can be remotely operated and various scenarios can be analyzed.

  16. Modeling Potential Tephra Dispersal at Yucca Mountain, Nevada

    NASA Astrophysics Data System (ADS)

    Hooper, D.; Franklin, N.; Adams, N.; Basu, D.

    2006-12-01

    Quaternary basaltic volcanoes exist within 20 km [12 mi] of the potential radioactive waste repository at Yucca Mountain, Nevada, and future basaltic volcanism at the repository is considered a low-probability, potentially high-consequence event. If radioactive waste was entrained in the conduit of a future volcanic event, tephra and waste could be transported in the resulting eruption plume. During an eruption, basaltic tephra would be dispersed primarily according to the height of the eruption column, particle-size distribution, and structure of the winds aloft. Following an eruption, contaminated tephra-fall deposits would be affected by surface redistribution processes. The Center for Nuclear Waste Regulatory Analyses developed the computer code TEPHRA to calculate atmospheric dispersion and subsequent deposition of tephra and spent nuclear fuel from a potential eruption at Yucca Mountain and to help prepare the U.S. Nuclear Regulatory Commission to review a potential U.S. Department of Energy license application. The TEPHRA transport code uses the Suzuki model to simulate the thermo-fluid dynamics of atmospheric tephra dispersion. TEPHRA models the transport of airborne pyroclasts based on particle diffusion from an eruption column, horizontal diffusion of particles by atmospheric and plume turbulence, horizontal advection by atmospheric circulation, and particle settling by gravity. More recently, TEPHRA was modified to calculate potential tephra deposit distributions using stratified wind fields based on upper atmosphere data from the Nevada Test Site. Wind data are binned into 1-km [0.62-mi]-high intervals with coupled distributions of wind speed and direction produced for each interval. Using this stratified wind field and discretization with respect to height, TEPHRA calculates particle fall and lateral displacement for each interval. This implementation permits modeling of split wind fields. We use a parallel version of the code to calculate expected

  17. Modelling of air pollution on a military airfield

    NASA Astrophysics Data System (ADS)

    Brzozowski, Krzysztof; Kotlarz, Wojciech

    The paper presents a numerical study of exhaust emission and pollutant dispersion of carbon monoxide on a military airfield. Investigations have been carried out for typical conditions of aircraft usage in the Polish Air Force Academy in Dęblin. Two different types of aircraft have been taken into account. One of them is an MI-2 helicopter, the second is a TS-11 plane. Both are used in military pilot education in Poland. Exhaust emission of CO from those aircrafts has been obtained in an experiment carried out on an engine test stand. CO concentrations have been calculated for different meteorological conditions (averaged from 5 years observations) and selected conditions of aircraft use. The finite volume method has been used to discretise the equation describing the process of pollutant dispersion. In addition, the two-cycle decomposition method has been employed to solve the set of ordinary differential equations of the first order obtained after discretisation of the advection-diffusion equation. A meteorological pre-processor, based on relationships resulting from the Monin-Obukhov theory, is used to define eddy diffusivity and the profile of air speed in the lower layer of the atmosphere. In the paper, the computer model and calculated average concentration of CO in the Dęblin airfield during typical flights are presented. The goal of the computational analysis is to predict CO pollution level in the workplace of aircraft service personnel.

  18. AIR LAND WATER ANALYSIS SYSTEM (ALEAS): A MULTI-MEDIA MODEL FOR TOXIC SUBSTANCES

    EPA Science Inventory

    The Air Land Water Analysis System (ALWAS) is a multi-media environmental model for describing the atmospheric dispersion of toxicants, the surface runoff of deposited toxicants, and the subsequent fate of these materials in surface water bodies. ALWAS dipicts the spatial and tem...

  19. EVALUATION AND ASSESSMENT OF UNAMAP (USER'S NETWORK FOR APPLIED MODELING OF AIR POLLUTION)

    EPA Science Inventory

    The Evaluation and Assessment of UNAMAP is a study to determine how best to improve the usefulness and availability of the UNAMAP air pollution dispersion models. The report describes a plan for implementing a series of recommended improvements to the UNAMAP program. It also desc...

  20. CFD Modeling For Urban Air Quality Studies

    SciTech Connect

    Lee, R L; Lucas, L J; Humphreys, T D; Chan, S T

    2003-10-27

    The computational fluid dynamics (CFD) approach has been increasingly applied to many atmospheric applications, including flow over buildings and complex terrain, and dispersion of hazardous releases. However there has been much less activity on the coupling of CFD with atmospheric chemistry. Most of the atmospheric chemistry applications have been focused on the modeling of chemistry on larger spatial scales, such as global or urban airshed scale. However, the increased attentions to terrorism threats have stimulated the need of much more detailed simulations involving chemical releases within urban areas. This motivated us to develop a new CFD/coupled-chemistry capability as part of our modeling effort.

  1. TESTING U.S. EPA'S ISCST -VERSION 3 MODEL ON DIOXINS: A COMPARISON OF PREDICTED AND OBSERVED AIR AND SOIL CONCENTRATIONS

    EPA Science Inventory

    The central purpose of our study was to examine the performance of the United States Environmental Protection Agency's (EPA) nonreactive Gaussian air quality dispersion model, the Industrial Source Complex Short Term Model (ISCST3) Version 98226, in predicting polychlorinated dib...

  2. MESOILT2, a Lagrangian trajectory climatological dispersion model

    SciTech Connect

    Ramsdell, J.V. Jr.; Burk, K.W.

    1991-03-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation dose that individuals could have received as a result of emissions from nuclear operations at the Hanford Site. An independent Technical Steering Panel (TSP) directs the project, which is conducted by the Pacific Northwest Laboratory (PNL). The TSP directed PNL to demonstrate that its recommended approach for dose reconstruction is technically feasible and practical. This demonstration was Phase 1 of the project. This report is specifically concerned with the approach that PNL recommends for dealing with the atmospheric pathway. The TSP established a model domain for the atmospheric pathway for Phase 1 that includes 10 counties in Washington and Oregon and covers several thousand square miles. It is unrealistic to assume that atmospheric models which estimate transport and diffusion based on the meteorological conditions near the point of release of material at the time of release are adequate for a region this large. As a result, PNL recommended use of a Lagrangian trajectory, puff dispersion model for the Phase I study. This report describes the MESOILT2 computer code and the atmospheric transport, diffusion, deposition, and depletion models used in Phase I. The contents of the report include a technical description of the models, a user's guide for the codes, and descriptions of the individual code elements. 53 refs., 17 figs., 5 tabs.

  3. A complex terrain dispersion model for regulatory applications at the Westvaco luke mill

    NASA Astrophysics Data System (ADS)

    Hanna, Steven R.; Egan, Bruce A.; Vaudo, Cosmo J.; Curreri, Anthony J.

    A data set for studying transport and dispersion in complex terrain was collected at the Westvaco Corporation's Luke Mill, located in the Potomac River valley in western Maryland. Meteorological analyses indicate very strong channeling of winds and the presence of strong inversions and wind shears in a shallow layer at the height of the surrounding mountaintops (300 m above the valley floor). Wind velocities observed near the valley floor are unrepresentative of wind velocities at plume height. Observed turbulence intensities at plume height are about twice as large as those observed over flat terrain. Standard stability classification schemes generally underestimate plume dispersion at this site. When high 3-h and 24-h average SO 2 concentrations are observed, winds are usually light and an inversion is present. These instances of relatively high concentrations are often associated with periods when the wind shifts direction 180° from up-valley to down-valley or vice versa, and the nearly stagnant polluted air mass blows against the mountainsides. A dispersion model was developed that is Gaussian in form but uses observed meteorological data to the maximum extent possible. For example, observed turbulence intensities at plume height are used to estimate dispersion. Plume impaction on terrain is calculated if the plume height is below a critical height dependent on the Hill Froude number. Evaluation of the model with the full 2-y data set shows that it can estimate the second highest 3-h and 24-h average concentrations (of regulatory significance) with a mean bias of less than 7%.

  4. Offshore and coastal dispersion (OCD) model. Version 3. 0 (revised 1988) (for microcomputers). Model-Simulation

    SciTech Connect

    Not Available

    1990-08-23

    The Offshore and Coastal Dispersion Model was adapted from the EPA guideline model MPTER to simulate the effect of offshore emissions from point sources in coastal regions. Modifications were made to incorporate overwater plume transport, dispersion and changes that occur as the plume crosses the shoreline. Modifications included the use of turbulence intensities to define dispersion regimes, use of the RTDM Model to treat plume reflection in elevated terrain, use of the BLP Model to incorporate building downwash and plume rise to the model, partial plume penetration into elevated inversions, a virtual source to describe plume growth as the plume intercepts the overland internal boundary layer, and a continuous fumigation modular. The model is written in the FORTRAN programming language for implementation on an IBM PC or compatible microcomputer using MS DOS 3.0 operating system. A math coprocessor is required to run the program.

  5. Proceedings of the first SRL model validation workshop. [Comparison and evaluation of atmospheric dispersion models using data for Kr-85

    SciTech Connect

    Buckner, M.R.

    1981-10-01

    The Clean Air Act and its amendments have added importance to knowing the accuracy of mathematical models used to assess transport and diffusion of environmental pollutants. These models are the link between air quality standards and emissions. To test the accuracy of a number of these models, a Model Validation Workshop was held. The meteorological, source-term, and Kr-85 concentration data bases for emissions from the separations areas of the Savannah River Plant during 1975 through 1977 were used to compare calculations from various atmospheric dispersion models. The results of statistical evaluation of the models show a degradation in the ability to predict pollutant concentrations as the time span over which the calculations are made is reduced. Forecasts for annual time periods were reasonably accurate. Weighted-average squared correlation coefficients (R/sup 2/) were 0.74 for annual, 0.28 for monthly, 0.21 for weekly, and 0.18 for twice-daily predictions. Model performance varied within each of these four categories; however, the results indicate that the more complex, three-dimensional models provide only marginal increases in accuracy. The increased costs of running these codes is not warranted for long-term releases or for conditions of relatively simple terrain and meteorology. The overriding factor in the calculational accuracy is the accurate description of the wind field. Further improvements of the numerical accuracy of the complex models is not nearly as important as accurate calculations of the meteorological transport conditions.

  6. Evaluation of US and UK Models in Simulating the Impact of Barriers on Near-Road Air Quality

    EPA Science Inventory

    The possibility that roadside noise barriers can act to mitigate traffic-related air pollution exposures for people living and working near major roadways is being considered in the context of public health protection. Air pollution dispersion models that can accurately simulate ...

  7. The Sensitivity of Atmospheric Dispersion Calculations in Near-field Applications: Modeling of the Full Scale RDD Experiments with Operational Models in Canada, Part I.

    PubMed

    Lebel, Luke; Bourgouin, Pierre; Chouhan, Sohan; Ek, Nils; Korolevych, Volodymyr; Malo, Alain; Bensimon, Dov; Erhardt, Lorne

    2016-05-01

    Three radiological dispersal devices were detonated in 2012 under controlled conditions at Defence Research and Development Canada's Experimental Proving Grounds in Suffield, Alberta. Each device comprised a 35-GBq source of (140)La. The dataset obtained is used in this study to assess the MLCD, ADDAM, and RIMPUFF atmospheric dispersion models. As part one of a two-part study, this paper focuses on examining the capabilities of the above three models and evaluating how well their predictions of air concentration and ground deposition match observations from the full-scale RDD experiments. PMID:27023037

  8. Air freight demand models: An overview

    NASA Technical Reports Server (NTRS)

    Dajani, J. S.; Bernstein, G. W.

    1978-01-01

    A survey is presented of some of the approaches which have been considered in freight demand estimation. The few existing continuous time computer simulations of aviation systems are reviewed, with a view toward the assessment of this approach as a tool for structuring air freight studies and for relating the different components of the air freight system. The variety of available data types and sources, without which the calibration, validation and the testing of both modal split and simulation models would be impossible are also reviewed.

  9. A Generalized Brownian Motion Model for Turbulent Relative Particle Dispersion

    NASA Astrophysics Data System (ADS)

    Shivamoggi, Bhimsen

    2015-11-01

    A generalized Brownian motion model has been applied to the turbulent relative particle dispersion problem (Shivamoggi). The fluctuating pressure forces acting on a fluid particle are taken to follow an Uhlenbeck-Ornstein process while it appears plausible to take their correlation time to have a power-law dependence on the flow Reynolds number Re. This ansatz provides an insight into the result that the Richardson-Obukhov scaling holds only in the infinite-Re limit and disappears otherwise. It provides a determination of the Richardson-Obukhov constant g as a function of Re, with an asymptotic constant value in the infinite-Re limit. This ansatz is further shown to be in quantitative agreement, in the small-Re limit, with the Batchelor-Townsend ansatz for the rate of change of the mean square interparticle separation in 3D FDT. My thanks to The Netherlands Organization for Scientific Research for Support.

  10. Near Real{time Data Assimilation for the HYSPLIT Aerosol Dispersion Model

    NASA Astrophysics Data System (ADS)

    Kalpakis, K.; Yang, S.; Yesha, Y.

    2010-12-01

    Konstantinos Kalpakis, Shiming Yang, and Yaacov Yesha Department of Computer Science and Electrical Engineering University of Maryland Baltimore County 1000 Hilltop Circle, Baltimore, MD, U.S.A. {kalpakis, shiming1, yayeshag}@csee.umbc.edu ABSTRACT We are working on an IBM-funded project seeking to develop a prototype system for real-time plume dispersion and fire and smoke detection and monitoring. Our prototype system utilizes HYSPLIT and observation data from various sources. HYSPLIT is a model developed by NOAA's Air Resources Laboratory for forecasting aerosol trajectories, dispersion, and concentration from emission sources. It is used extensively by NOAA to routinely provide a number of data products. We develop a data assimilation system for assimilating observational data into the forecasting model in order to improve its forecasting accuracy. Our system is based on the Local Ensemble Transform Kalman Filter (LETKF) algorithm and it is computationally efficient. We evaluate our data assimilation system with real in-situ observational data, and find that our system improves upon HYSPLIT's forecast by reducing the normalized mean squared error and the bias. We are also experimenting with assimilating MODIS data with HYSPLIT model forecasts. To this end, we extrapolate ground concentrations from MODIS Aerosol Optical Depth (AOD) data. Our extrapolation approach relies on spatially localized linear regressions of aerosol concentrations from ground stations in the Air Quality System (AQS) network and MODIS AOD data. We expect that assimilating the extrapolated concentrations leads into further improvements of HYSPLIT forecasts. Furthermore, we are investigating using additional sources of in-situ and remotely sensed observations, such as GOES AOD 30-minute data, and UAV data from the Ikhana AMS fire missions. These sources provide higher spatial resolution and more frequent temporal coverage. Moreover, GOES and UAVs provide near-real time data which should be

  11. AIR QUALITY MODELING OF AMMONIA: A REGIONAL MODELING PERSPECTIVE

    EPA Science Inventory

    The talk will address the status of modeling of ammonia from a regional modeling perspective, yet the observations and comments should have general applicability. The air quality modeling system components that are central to modeling ammonia will be noted and a perspective on ...

  12. COMPUTATIONAL MODELING ISSUES IN NEXT GENERATION AIR QUALITY MODELS

    EPA Science Inventory

    EPA's Atmospheric Research and Exposure Assessment Laboratory is leading a major effort to advance urban/regional multi-pollutant air quality modeling through development of a third-generation modeling system, Models-3. he Models-3 system is being developed within a high-performa...

  13. Integrated engineering modeling for air breathing rockets

    NASA Astrophysics Data System (ADS)

    Chitilappilly, Lazar T.; Subramanyam, J. D. A.

    An innovative aerodynamic-propulsion-flight integrated modeling is carried out for airbreathing rockets, the propulsion of which has primary dependence on flight conditions. The integrated modeling is highly beneficial for design and analysis of accelerating air breathing rockets characterized by continuously varying flight conditions. The details of the modeling is described; the force accounting, trajectory analysis, solving the flow in the sub-systems (air intake, primary rocket, secondary combustion chamber and secondary nozzle), matching the subsystem flow fields and determining the mode of operation. Operational features are listed of the computer software developed, air breathing integrated design and analysis engineering software. It gives all the propulsion and flight parameters from take-off of the rocket to end of flight and has been instrumental in the design of the research air breathing rocket ABR-200(I). The hundreds of flight performance analyses required for design is possible by the engineering approach adopted for solving the propulsor flow field. The software results are compared with ejector mode and connected pipe mode static tests. The overall validation of the software is achieved by flight tests; the performance predictions have matched exactly with that measured during thee first and second flights of the ABR-200(I).

  14. Lithospheric Thickness Modeled from Long Period Surface Wave Dispersion

    SciTech Connect

    Pasyanos, M E

    2008-05-15

    The behavior of surface waves at long periods is indicative of subcrustal velocity structure. Using recently published dispersion models, we invert surface wave group velocities for lithospheric structure, including lithospheric thickness, over much of the Eastern Hemisphere, encompassing Eurasia, Africa, and the Indian Ocean. Thicker lithosphere under Precambrian shields and platforms are clearly observed, not only under the large cratons (West Africa, Congo, Baltic, Russia, Siberia, India), but also under smaller blocks like the Tarim Basin and Yangtze craton. In contrast, it is found that remobilized Precambrian structures like the Saharan Shield and Sino-Korean Paraplatform do not have well-established lithospheric keels. The thinnest lithospheric thickness is found under oceanic and continental rifts, as well as along convergence zones. We compare our results to thermal models of continental lithosphere, lithospheric cooling models of oceanic lithosphere, lithosphere-asthenosphere boundary (LAB) estimates from S-wave receiver functions, and velocity variations of global tomography models. In addition to comparing results for the broad region, we examine in detail the regions of Central Africa, Siberia, and Tibet. While there are clear differences in the various estimates, overall the results are generally consistent. Inconsistencies between the estimates may be due to a variety of reasons including lateral and depth resolution differences and the comparison of what may be different lithospheric features.

  15. Lithospheric thickness modeled from long-period surface wave dispersion

    NASA Astrophysics Data System (ADS)

    Pasyanos, Michael E.

    2010-01-01

    The behavior of surface waves at long periods is indicative of subcrustal velocity structure. Using recently published dispersion models, we invert surface wave group velocities for lithospheric structure, including lithospheric thickness, over much of the Eastern Hemisphere, encompassing Eurasia, Africa, and the Indian Ocean. Thicker lithospheres under Precambrian shields and platforms are clearly observed, not only under the large cratons (West Africa, Congo, Baltic, Russia, Siberia, India), but also under smaller blocks like the Tarim Basin and Yangtze craton. In contrast, it is found that remobilized Precambrian structures like the Saharan Shield and Sino-Korean Paraplatform do not have well-established lithospheric keels. The thinnest lithospheric thickness is found under oceanic and continental rifts, as well as along convergence zones. We compare our results to thermal models of continental lithosphere, lithospheric cooling models of oceanic lithosphere, lithosphere-asthenosphere boundary (LAB) estimates from S-wave receiver functions, and velocity variations of global tomography models. In addition to comparing results for the broad region, we examine in detail the regions of Central Africa, Siberia, and Tibet. While there are clear differences in the various estimates, overall the results are generally consistent. Inconsistencies between the estimates may be due to a variety of reasons including lateral and depth resolution differences and the comparison of what may be different lithospheric features.

  16. Comparison of RIMPUFF, HYSPLIT, ADMS atmospheric dispersion model outputs, using emergency response procedures, with (85)Kr measurements made in the vicinity of nuclear reprocessing plant.

    PubMed

    Connan, Olivier; Smith, Kilian; Organo, Catherine; Solier, Luc; Maro, Denis; Hébert, Didier

    2013-10-01

    The Institut de Radioprotection et de Sureté Nucléaire (IRSN) performed a series of (85)Kr air sampling campaigns at mesoscale distances (18-50 km) from the AREVA NC La Hague nuclear reprocessing plant (North West France) between 2007 and 2009. The samples were collected in order to test and optimise a technique to measure low krypton-85 ((85)Kr) air concentrations and to investigate the performance of three atmospheric dispersion models (RIMPUFF, HYSPLIT, and ADMS), This paper presents the (85)Kr air concentrations measured at three sampling locations which varied from 2 to 8000 Bq m(-3), along with the (85)Kr air concentrations output by the dispersion models. The dispersion models made reasonable estimates of the mean concentrations of (85)Kr field measurements during steady wind conditions. In contrast, the models failed to accurately predict peaks in (85)Kr air concentration during periods of rapid and large changes in wind speed and/or wind direction. At distances where we made the comparisons (18-50 km), in all cases, the models underestimated the air concentration activities. PMID:23850583

  17. Comparison of surface meteorological data representativeness for the Weldon Spring transport and dispersion modeling analysis

    SciTech Connect

    Lazaro, M.

    1989-06-01

    The US Department of Energy is conducting the Weldon Spring Site Remedial Action Project under the Surplus Facilities Management Program (SFMP). The major goals of the SFMP are to eliminate potential hazards to the public and the environment that associated with contamination at SFMP sites and to make surplus property available for other uses to the extent possible. This report presents the results of analysis of available meteorological data from stations near the Weldon Spring site. Data that are most representative of site conditions are needed to accurately model the transport and dispersion of air pollutants associated with remedial activities. Such modeling will assist the development of mitigative measures. 17 refs., 12 figs., 6 tabs.

  18. Modeling the impacts of traffic emissions on air toxics concentrations near roadways

    NASA Astrophysics Data System (ADS)

    Venkatram, Akula; Isakov, Vlad; Seila, Robert; Baldauf, Richard

    The dispersion formulation incorporated in the U.S. Environmental Protection Agency's AERMOD regulatory dispersion model is used to estimate the contribution of traffic-generated emissions of select VOCs - benzene, 1,3-butadiene, toluene - to ambient air concentrations at downwind receptors ranging from 10-m to 100-m from the edge of a major highway in Raleigh, North Carolina. The contributions are computed using the following steps: 1) Evaluate dispersion model estimates with 10-min averaged NO data measured at 7 m and 17 m from the edge of the road during a field study conducted in August, 2006; this step determines the uncertainty in model estimates. 2) Use dispersion model estimates and their uncertainties, determined in step 1, to construct pseudo-observations. 3) Fit pseudo-observations to actual observations of VOC concentrations measured during five periods of the field study. This provides estimates of the contributions of traffic emissions to the VOC concentrations at the receptors located from 10 m to 100 m from the road. In addition, it provides estimates of emission factors and background concentrations of the VOCs, which are supported by independent estimates from motor vehicle emissions models and regional air quality measurements. The results presented in the paper demonstrate the suitability of the formulation in AERMOD for estimating concentrations associated with mobile source emissions near roadways. This paper also presents an evaluation of the key emissions and dispersion modeling inputs necessary for conducting assessments of local-scale impacts from traffic emissions.

  19. Final Technical Report: Development of the DUSTRAN GIS-Based Complex Terrain Model for Atmospheric Dust Dispersion

    SciTech Connect

    Allwine, K Jerry; Rutz, Frederick C.; Shaw, William J.; Rishel, Jeremy P.; Fritz, Brad G.; Chapman, Elaine G.; Hoopes, Bonnie L.; Seiple, Timothy E.

    2007-05-01

    Activities at U.S. Department of Defense (DoD) training and testing ranges can be sources of dust in local and regional airsheds governed by air-quality regulations. The U.S. Department of Energy’s Pacific Northwest National Laboratory just completed a multi-year project to develop a fully tested and documented atmospheric dispersion modeling system (DUST TRANsport or DUSTRAN) to assist the DoD in addressing particulate air-quality issues at military training and testing ranges.

  20. Offshore and Coastal Dispersion (OCD) Model, Version 3. 0. Model-Simulation

    SciTech Connect

    Marshall, C.

    1985-08-01

    The Offshore and Coastal Dispersion Model was adapted from the EPA guideline model MPTER to simulate the effect of offshore emissions from point sources in coastal regions. Modifications were made to incorporate overwater plume transport and dispersion and changes that occur as the plume crosses the shoreline. Modifications included the use of turbulence intensities to define dispersion regimes, use of the RTD Model to treat plume reflection in elevated terrain, use of the BLP Model to incorporate building downwash and plume rise to the model, partial plume penetration into elevated inversions, a virtual source to describe plume growth as the plume intercepts the overland internal boundary layer, and a continuous fumigation modular. Software Description: The system is written in the FORTRAN programming language for implementation on a AMDAHL V7 computer using the VSV7 operating system. 500K bytes of core storage are required to operate the system.

  1. Modeling the fallout from stabilized nuclear clouds using the HYSPLIT atmospheric dispersion model.

    PubMed

    Rolph, G D; Ngan, F; Draxler, R R

    2014-10-01

    The Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model, developed by the National Oceanic and Atmospheric Administration's Air Resources Laboratory, has been configured to simulate the dispersion and deposition of nuclear materials from a surface-based nuclear detonation using publicly available information on nuclear explosions. Much of the information was obtained from "The Effects of Nuclear Weapons" by Glasstone and Dolan (1977). The model was evaluated against the measurements of nuclear fallout from six nuclear tests conducted between 1951 and 1957 at the Nevada Test Site using the global NCEP/NCAR Reanalysis Project (NNRP) and the Weather Research and Forecasting (WRF) meteorological data as input. The model was able to reproduce the general direction and deposition patterns using the coarse NNRP data with Figure of Merit in Space (FMS - the percent overlap between predicted and measured deposition patterns) scores in excess of 50% for four of six simulations for the smallest dose rate contour, with FMS scores declining for higher dose rate contours. When WRF meteorological data were used the FMS scores were 5-20% higher in five of the six simulations, especially at the higher dose rate contours. The one WRF simulation where the scores declined slightly (10-30%) was also the best scoring simulation when using the NNRP data. When compared with measurements of dose rate and time of arrival from the Town Data Base (Thompson et al., 1994), similar results were found with the WRF simulations providing better results for four of six simulations. The overall result was that the different plume simulations using WRF data had more consistent performance than the plume simulations using NNRP data fields. PMID:24878719

  2. Urban scale air quality modelling using detailed traffic emissions estimates

    NASA Astrophysics Data System (ADS)

    Borrego, C.; Amorim, J. H.; Tchepel, O.; Dias, D.; Rafael, S.; Sá, E.; Pimentel, C.; Fontes, T.; Fernandes, P.; Pereira, S. R.; Bandeira, J. M.; Coelho, M. C.

    2016-04-01

    The atmospheric dispersion of NOx and PM10 was simulated with a second generation Gaussian model over a medium-size south-European city. Microscopic traffic models calibrated with GPS data were used to derive typical driving cycles for each road link, while instantaneous emissions were estimated applying a combined Vehicle Specific Power/Co-operative Programme for Monitoring and Evaluation of the Long-range Transmission of Air Pollutants in Europe (VSP/EMEP) methodology. Site-specific background concentrations were estimated using time series analysis and a low-pass filter applied to local observations. Air quality modelling results are compared against measurements at two locations for a 1 week period. 78% of the results are within a factor of two of the observations for 1-h average concentrations, increasing to 94% for daily averages. Correlation significantly improves when background is added, with an average of 0.89 for the 24 h record. The results highlight the potential of detailed traffic and instantaneous exhaust emissions estimates, together with filtered urban background, to provide accurate input data to Gaussian models applied at the urban scale.

  3. A Study of the Effects of Different Urban Wind Models on Dispersion Patterns Using Joint Urban 2003 Data

    SciTech Connect

    Gowardhan, A A; Brown, M J

    2012-02-21

    The Quick Urban & Industrial Complex (QUIC) Dispersion Modeling System has been developed to rapidly compute the transport and dispersion of toxic agent releases in the vicinity of buildings. It is composed of a wind solver, an 'urbanized' Lagrangian random-walk model, and a graphical user interface. QUIC has two different wind models: (a) The QUIC-URB wind solver, an empirically-based diagnostic wind model and (b) The QUIC-CFD (RANS) solver, based on the 3D Reynolds-Averaged Navier-Stokes (RANS) equations. In this paper, we discuss the effect of different wind models on dispersion patterns in dense built-up areas. The model-computed wind from the two urban wind models- QUIC-URB and QUIC-CFD are used to drive the dispersion model. The concentration fields are then compared to measurements from the Oklahoma City Joint Urban 2003 field experiment. QUIC produces high-resolution 3-D mean wind and concentration fields around buildings, in addition to deposition on the ground and building surfaces. It has options for different release types, including point, moving point, line, area, and volumetric sources, as well as dense gas, explosive buoyant rise, multi-particle size, bioslurry, and two-phase releases. Other features include indoor infiltration, a pressure solver, outer grid simulations, vegetative canopies, and population exposure calculations. It has been used for biological agent sensor siting in cities, vulnerability assessments for heavier-than-air chemical releases at industrial facilities, and clean-up assessments for radiological dispersal device (RDD) releases in cities (e.g., see Linger et al., 2005; Brown, 2006a, b). QUIC has also been used for dust transport studies (Bowker et al., 2007a) and for the impact of highway sound barriers on the transport and dispersion of vehicle emissions (Bowker et al., 2007b).

  4. A Model Evaluation of Long-Distance Dispersal of Boll Weevils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Boll weevil eradication programs have progressed toward eradication within each zone, but concerns remain about the possibility of weevil dispersal between eradication zones. In this study, the HYSPLIT atmospheric dispersion model was used to simulate daily wind-aided dispersal of weevils from the ...

  5. NOx dispersion modelling around roundabout in a small city, example from Hungary

    NASA Astrophysics Data System (ADS)

    Farkas, Orsolya; Rákai, Anikó; Czáder, Károly; Török, Ákos

    2013-04-01

    The present paper focuses on the modelling of pollutant distribution and dispersion in an urban region that is located in a moderately industrialized town of Hungary, Székesfehérvár, with a population of 100,000. The study area is located close to the city centre, with different housing styles and different building elevations. High-rise buildings with 10 floors to small houses with gardens are found in the modelled area. The roundabout has 5 access roads; three major ones and two minor ones with different geometries and traffic load. The traffic load of the roads was defined by traffic count, while for the meteorological characteristics wind-statistics were created. Additional input parameters were the ground plan and the elevation of buildings. To simulate the airflow and the dispersion of pollutants a Computational Fluid Dynamics code called MISKAM was used. The background concentration was taken from the dataset of a nearby air quality monitoring station. According to vehicle counting the 5 roads of the roundabout have very different loads from 12 vehicles to more than 412 vehicles/hour. Three different grid systems were applied ranging from half million to 5 million cells. The difference in the results related to grid density was also evaluated. Wind speed distribution, wind turbulence and building wake flow patterns were identified by using the model. With the help of the simulation the NOx flow and dispersion of pollutants around the roundabout can be estimated and the critical locations with higher pollution concentration are presented. The results of the modelling can be more generalized and used in the design of the layout, development, traffic-control and environmental aspects of roundabouts located in small urban areas.

  6. Uncertainty propagation analysis applied to volcanic ash dispersal at Mt. Etna by using a Lagrangian model

    NASA Astrophysics Data System (ADS)

    de'Michieli Vitturi, Mattia; Pardini, Federica; Spanu, Antonio; Neri, Augusto; Vittoria Salvetti, Maria

    2015-04-01

    variance of the grain size distribution at various distances from the source, both in air and on the ground. In particular, results highlighted the strong reduction of the uncertainty ranges of the mean and variance of the grain-size distribution with increasing distance from source and the significant control of particle sphericity on the dispersal process. References M de'Michieli Vitturi, A Neri, T Esposti Ongaro, S Lo Savio, and E Boschi. Lagrangian modeling of large volcanic particles: Application to Vulcanian explosions. Journal of Geophysical Research: Solid Earth (1978-2012), 115(B8), 2010.

  7. DESCRIPTION OF ATMOSPHERIC TRANSPORT PROCESSES IN EULERIAN AIR QUALITY MODELS

    EPA Science Inventory

    Key differences among many types of air quality models are the way atmospheric advection and turbulent diffusion processes are treated. Gaussian models use analytical solutions of the advection-diffusion equations. Lagrangian models use a hypothetical air parcel concept effecti...

  8. NARAC Dispersion Model Product Integration With RadResponder

    SciTech Connect

    Aluzzi, Fernando

    2015-09-30

    Work on enhanced cooperation and interoperability of Nuclear Incident Response Teams (NIRT) is a joint effort between DHS/FEMA, DOE/NNSA and EPA. One such effort was the integration between the RadResponder Network, a resource sponsored by FEMA for the management of radiological data during an emergency, and the National Atmospheric Advisory Center (NARAC), a DOE/NNSA modeling resource whose predictions are used to aid radiological emergency preparedness and response. Working together under a FEMA-sponsored project these two radiological response assets developed a capability to read and display plume model prediction results from the NARAC computer system in the RadResponder software tool. As a result of this effort, RadResponder users have been provided with NARAC modeling predictions of contamination areas, radiological dose levels, and protective action areas (e.g., areas warranting worker protection or sheltering/evacuation) to help guide protective action decisions and field monitoring surveys, and gain key situation awareness following a radiological/nuclear accident or incident (e.g., nuclear power plant accident, radiological dispersal device incident, or improvised nuclear detonation incident). This document describes the details of this integration effort.

  9. Modelling the dispersion of particle numbers in five European cities

    NASA Astrophysics Data System (ADS)

    Kukkonen, J.; Karl, M.; Keuken, M. P.; Denier van der Gon, H. A. C.; Denby, B. R.; Singh, V.; Douros, J.; Manders, A.; Samaras, Z.; Moussiopoulos, N.; Jonkers, S.; Aarnio, M.; Karppinen, A.; Kangas, L.; Lützenkirchen, S.; Petäjä, T.; Vouitsis, I.; Sokhi, R. S.

    2016-02-01

    We present an overview of the modelling of particle number concentrations (PNCs) in five major European cities, namely Helsinki, Oslo, London, Rotterdam, and Athens, in 2008. Novel emission inventories of particle numbers have been compiled both on urban and European scales. We used atmospheric dispersion modelling for PNCs in the five target cities and on a European scale, and evaluated the predicted results against available measured concentrations. In all the target cities, the concentrations of particle numbers (PNs) were mostly influenced by the emissions originating from local vehicular traffic. The influence of shipping and harbours was also significant for Helsinki, Oslo, Rotterdam, and Athens, but not for London. The influence of the aviation emissions in Athens was also notable. The regional background concentrations were clearly lower than the contributions originating from urban sources in Helsinki, Oslo, and Athens. The regional background was also lower than urban contributions in traffic environments in London, but higher or approximately equal to urban contributions in Rotterdam. It was numerically evaluated that the influence of coagulation and dry deposition on the predicted PNCs was substantial for the urban background in Oslo. The predicted and measured annual average PNCs in four cities agreed within approximately ≤ 26 % (measured as fractional biases), except for one traffic station in London. This study indicates that it is feasible to model PNCs in major cities within a reasonable accuracy, although major challenges remain in the evaluation of both the emissions and atmospheric transformation of PNCs.

  10. Modeling flow around bluff bodies and predicting urban dispersion using large eddy simulation.

    PubMed

    Tseng, Yu-Heng; Meneveau, Charles; Parlange, Marc B

    2006-04-15

    Modeling air pollutant transport and dispersion in urban environments is especially challenging due to complex ground topography. In this study, we describe a large eddy simulation (LES) tool including a new dynamic subgrid closure and boundary treatment to model urban dispersion problems. The numerical model is developed, validated, and extended to a realistic urban layout. In such applications fairly coarse grids must be used in which each building can be represented using relatively few grid-points only. By carrying out LES of flow around a square cylinder and of flow over surface-mounted cubes, the coarsest resolution required to resolve the bluff body's cross section while still producing meaningful results is established. Specifically, we perform grid refinement studies showing that at least 6-8 grid points across the bluff body are required for reasonable results. The performance of several subgrid models is also compared. Although effects of the subgrid models on the mean flow are found to be small, dynamic Lagrangian models give a physically more realistic subgrid-scale (SGS) viscosity field. When scale-dependence is taken into consideration, these models lead to more realistic resolved fluctuating velocities and spectra. These results set the minimum grid resolution and subgrid model requirements needed to apply LES in simulations of neutral atmospheric boundary layer flow and scalar transport over a realistic urban geometry. The results also illustrate the advantages of LES over traditional modeling approaches, particularly its ability to take into account the complex boundary details and the unsteady nature of atmospheric boundary layer flow. Thus LES can be used to evaluate probabilities of extreme events (such as probabilities of exceeding threshold pollutant concentrations). Some comments about computer resources required for LES are also included. PMID:16683605

  11. A radioiodine speciation, deposition, and dispersion model with uncertainty propagation for the Oak Ridge dose reconstruction.

    PubMed

    Nair, S K; Apostoaei, A I; Hoffman, F O

    2000-04-01

    Between 1944 and 1956, radioactive 131I was released into the atmosphere from operations at the Oak Ridge National Laboratory in Oak Ridge, TN. The releases occurred from stacks and from building vents and openings in three different chemical forms: elemental, organic, and particulate. During their transport in the atmosphere, different forms of iodine react differently with other atmospheric chemicals and moisture, and are removed from the plume at different rates by the processes of dry and wet deposition. A modified Gaussian plume model was developed to address the processes of radioiodine speciation, deposition, depletion, and dispersion in the atmosphere, and to propagate uncertainties in input parameter values through to the ground-level concentrations of 131I in air. A unique approach was used to develop an implicitly correlated set of hourly meteorological parameters for any day of a month for each month of the year from ten years of available data between 1987 and 1996. The model was validated for both annual average and short-term releases. For the annual average releases, the predictions of ground-level concentrations of 131I from the model were within a factor of 2 of measured field data. For two of the three sets of available weekly data, the measurements fell within the 95% subjective confidence interval of model predictions. Predictions of ground-level air concentrations were made on an annual average basis for the entire period of release and on a short-term, episodic basis for a 1954 accident. PMID:10749523

  12. A radioiodine speciation, deposition, and dispersion model with uncertainty propagation for the Oak Ridge dose reconstruction

    SciTech Connect

    Nair, S.K.; Apostoaei, A.I.; Hoffman, F.O.

    2000-04-01

    Between 1944 and 1956, radioactive {sup 131}I was released into the atmosphere from operations at the Oak Ridge National Laboratory in Oak Ridge, TN. The releases occurred from stacks and from building vents and openings in three different chemical forms: elemental, organic, and particulate. During their transport in the atmosphere, different forms of iodine react differently with other atmospheric chemicals and moisture, and are removed from the plume at different rates by the processes of dry and wet deposition. A modified Gaussian plume model was developed to address the processes of radioiodine speciation, deposition, depletion, and dispersion in the atmosphere, and to propagate uncertainties in input parameter values through to the ground-level concentrations of {sup 131}I in air. A unique approach was used to develop an implicitly correlated set of hourly meteorological parameters for any day of a month for each month of the year from ten years of available data between 1987 and 1996. The model was validated for both annual average and short-term releases. For the annual average releases, the predictions of ground-level concentrations of {sup 131}I from the model were within a factor of 2 of measured field data. For two of the three sets of available weekly data, the measurements fell within the 95% subjective confidence interval of model predictions. Predictions of ground-level air concentrations were made on an annual average basis for the entire period of release and on a short-term, episodic basis for a 1954 accident.

  13. Aerothermal modeling program, phase 2. Element C: Fuel injector-air swirl characterization

    NASA Technical Reports Server (NTRS)

    Mostafa, A. A.; Mongia, H. C.; Mcdonnell, V. G.; Samuelsen, G. S.

    1986-01-01

    The main objectives of the NASA-sponsored Aerothermal Modeling Program, Phase 2--Element C, are experimental evaluation of the air swirler interaction with a fuel injector in a simulated combustor chamber, assessment of the current two-phase models, and verification of the improved spray evaporation/dispersion models. This experimental and numerical program consists of five major tasks. Brief descriptions of the five tasks are given.

  14. Analysis of the effects of meteorology on aircraft exhaust dispersion and deposition using a Lagrangian particle model.

    PubMed

    Pecorari, Eliana; Mantovani, Alice; Franceschini, Chiara; Bassano, Davide; Palmeri, Luca; Rampazzo, Giancarlo

    2016-01-15

    The risk of air quality degradation is of considerable concern particularly for those airports that are located near urban areas. The ability to quantitatively predict the effects of air pollutants originated by airport operations is important for assessing air quality and the related impacts on human health. Current emission regulations have focused on local air quality in the proximity of airports. However, an integrated study should consider the effects of meteorological events, at both regional and local level, that can affect the dispersion and the deposition of exhausts. Rigorous scientific studies and extensive experimental data could contribute to the analysis of the impacts of airports expansion plans. This paper is focused on the analysis of the effects of meteorology on aircraft emission for the Marco Polo Airport in Venice. This is the most important international airport in the eastern part of the Po' Valley, one of the most polluted area in Europe. Air pollution is exacerbated by meteorology that is a combination of large and local scale effects that do not allow significant dispersion. Moreover, the airport is located near Venice, a city of noteworthy cultural and architectural relevance, and nearby the lagoon that hosts several areas of outstanding ecological importance at European level (Natura 2000 sites). Dispersion and deposit of the main aircraft exhausts (NOx, HC and CO) have been evaluated by using a Lagrangian particle model. Spatial and temporal aircraft exhaust dispersion has been analyzed for LTO cycle. Aircraft taxiing resulted to be the most impacting aircraft operation especially for the airport working area and its surroundings, however occasionally peaks may be observed even at high altitudes when cruise mode starts. Mixing height can affect concentrations more significantly than the concentrations in the exhausts themselves. An increase of HC and CO concentrations (15-50%) has been observed during specific meteorological events

  15. On the role of nighttime meteorology in modeling dispersion of near surface emissions in urban areas

    NASA Astrophysics Data System (ADS)

    Venkatram, Akula; Cimorelli, Alan J.

    This paper examines the role of meteorology in linking near surface emissions of particulate matter and associated ambient concentrations in urban areas. The examination is conducted with two models: a steady state model based on urban dispersion models developed earlier, and an unsteady state model that accounts for time varying meteorological and emission inputs. After conducting sensitivity studies with the models, they are applied in Pune, India to (a) check consistency between estimates of surface emissions of particulate matter (with aerodynamic diameters of less than 10μm, referred to as PM 10) and observed ambient concentrations and (b) identify the variables that govern air quality. Results from the modeling exercise indicate that (1) nighttime meteorology governs both hourly as well as 24 h averaged concentrations and (2) because the wind speeds in urban areas are typically low, concentration estimates from the steady state model differ substantially from those of the unsteady state model during the nighttime hours both in magnitude and in timing of the peaks; however, the difference between the 24 h averaged concentrations from the two models is less than 5% for the cases considered here. Because our understanding of nighttime meteorology in urban areas is limited, there is a need for experimental programs to relate the diurnal variation of concentrations with associated meteorology, especially during the night.

  16. On the use of numerical modelling for near-field pollutant dispersion in urban environments--A review.

    PubMed

    Lateb, M; Meroney, R N; Yataghene, M; Fellouah, H; Saleh, F; Boufadel, M C

    2016-01-01

    This article deals with the state-of-the-art of experimental and numerical studies carried out regarding air pollutant dispersion in urban environments. Since the simulation of the dispersion field around buildings depends strongly on the correct simulation of the wind-flow structure, the studies performed during the past years on the wind-flow field around buildings are reviewed. This work also identifies errors that can produce poor results when numerically modelling wind flow and dispersion fields around buildings in urban environments. Finally, particular attention is paid to the practical guidelines developed by researchers to establish a common methodology for verification and validation of numerical simulations and/or to assist and support the users for a better implementation of the computational fluid dynamics (CFD) approach. PMID:26282585

  17. RESIDENTIAL AIR EXCHANGE RATES FOR USE IN INDOOR AIR AND EXPOSURE MODELING STUDIES

    EPA Science Inventory

    Data on air exchange rates are important inputs to indoor air quality models. ndoor air models, in turn, are incorporated into the structure of total human exposure models. ragmentary data on residential ventilation rates are available in various governmental reports, journal art...

  18. Modeling of SO2 dispersion from the 2014 Holuhraun eruption in Iceland using WRF-Chem

    NASA Astrophysics Data System (ADS)

    Rognvaldsson, Olafur; Arnason, Gylfi; Palsson, Thorgeir; Eliasson, Jonas; Weber, Konradin; Böhlke, Christoph; Thorsteinsson, Throstur; Tirpitz, Lukas; Platt, Ulrich; Smith, Paul D.; Jones, Roderic L.

    2015-04-01

    The fissure eruption in Holuhraun in central Iceland is the country's largest lava and gas eruption since 1783 but has produced very little volcanic ash. The eruption started in late August 2014 and is still ongoing as of January 2015. The main threat from this event has been atmospheric pollution of SO2 that is carried by wind to all parts of the country and produces elevated concentrations of SO2 that have frequently violated National Air Quality Standards (NAQS) in many population centers. The Volcanic Ash Research (VAR) group in Iceland is focused on airborne measurement of ash contamination to support safe air travel, as well as various gas concentrations. In relation to the Holuhraun eruption the VAR group has organized an investigation campaign including 10 measurement flights and performed measurements of both the source emissions and the plume distribution. SO2 concentrations measured at the source showed clear potential for creating pollution events in the toxic range and contamination of surface waters. The data obtained in the measurement campaign was used for calibration of the WRF-chem model of the dispersion of SO2 and volcanic ash concentration. The model has both been run in operational forecast mode (since mid October) as well as in a dynamical downscaling mode, to estimate the dispersion and fallout of SO2 from the plume. The model results indicate that a large part of the sulphur was precipitated in the Icelandic highlands. The first melt waters during the spring thaw are likely to contain acid sulphur compounds that can be harmful for vegetation, with the highland vegetation being the most vulnerable. These results will be helpful to estimate the pollution load on farmlands and pastures of farmers.

  19. INDOOR AIR QUALITY MODELING (INDOOR ENVIRONMENT MANAGEMENT BRANCH, AIR POLLUTION PREVENTION AND CONTROL DIVISION, NRMRL)

    EPA Science Inventory

    The Indoor Environment Management Branch of NRMRL's Air Pollution Prevention and Control Division in Research Triangle Park, NC, has developed an indoor air quality (IAQ) model for analyzing the impact of sources, sinks, ventilation, and air cleaners on indoor air quality. Early ...

  20. Microscale obstacle resolving air quality model evaluation with the Michelstadt case.

    PubMed

    Rakai, Anikó; Kristóf, Gergely

    2013-01-01

    Modelling pollutant dispersion in cities is challenging for air quality models as the urban obstacles have an important effect on the flow field and thus the dispersion. Computational Fluid Dynamics (CFD) models with an additional scalar dispersion transport equation are a possible way to resolve the flowfield in the urban canopy and model dispersion taking into consideration the effect of the buildings explicitly. These models need detailed evaluation with the method of verification and validation to gain confidence in their reliability and use them as a regulatory purpose tool in complex urban geometries. This paper shows the performance of an open source general purpose CFD code, OpenFOAM for a complex urban geometry, Michelstadt, which has both flow field and dispersion measurement data. Continuous release dispersion results are discussed to show the strengths and weaknesses of the modelling approach, focusing on the value of the turbulent Schmidt number, which was found to give best statistical metric results with a value of 0.7. PMID:24027450

  1. Microscale Obstacle Resolving Air Quality Model Evaluation with the Michelstadt Case

    PubMed Central

    Rakai, Anikó; Kristóf, Gergely

    2013-01-01

    Modelling pollutant dispersion in cities is challenging for air quality models as the urban obstacles have an important effect on the flow field and thus the dispersion. Computational Fluid Dynamics (CFD) models with an additional scalar dispersion transport equation are a possible way to resolve the flowfield in the urban canopy and model dispersion taking into consideration the effect of the buildings explicitly. These models need detailed evaluation with the method of verification and validation to gain confidence in their reliability and use them as a regulatory purpose tool in complex urban geometries. This paper shows the performance of an open source general purpose CFD code, OpenFOAM for a complex urban geometry, Michelstadt, which has both flow field and dispersion measurement data. Continuous release dispersion results are discussed to show the strengths and weaknesses of the modelling approach, focusing on the value of the turbulent Schmidt number, which was found to give best statistical metric results with a value of 0.7. PMID:24027450

  2. Simulation of radioactive plume gamma dose over a complex terrain using Lagrangian particle dispersion model.

    PubMed

    Rakesh, P T; Venkatesan, R; Hedde, Thierry; Roubin, Pierre; Baskaran, R; Venkatraman, B

    2015-07-01

    FLEXPART-WRF is a versatile model for the simulation of plume dispersion over a complex terrain in a mesoscale region. This study deals with its application to the dispersion of a hypothetical air borne gaseous radioactivity over a topographically complex nuclear site in southeastern France. A computational method for calculating plume gamma dose to the ground level receptor is introduced in FLEXPART using the point kernel method. Comparison with another similar dose computing code SPEEDI is carried out. In SPEEDI the dose is calculated for specific grid sizes, the lowest available being 250 m, whereas in FLEXPART it is grid independent. Spatial distribution of dose by both the models is analyzed. Due to the ability of FLEXPART to utilize the spatio-temporal variability of meteorological variables as input, particularly the height of the PBL, the simulated dose values were higher than SPEEDI estimates. The FLEXPART-WRF in combination with point kernel dose module gives a more realistic picture of plume gamma dose distribution in a complex terrain, a situation likely under accidental release of radioactivity in a mesoscale range. PMID:25863323

  3. Detailed source term estimation of the atmospheric release for the Fukushima Daiichi Nuclear Power Station accident by coupling simulations of an atmospheric dispersion model with an improved deposition scheme and oceanic dispersion model

    NASA Astrophysics Data System (ADS)

    Katata, G.; Chino, M.; Kobayashi, T.; Terada, H.; Ota, M.; Nagai, H.; Kajino, M.; Draxler, R.; Hort, M. C.; Malo, A.; Torii, T.; Sanada, Y.

    2015-01-01

    Temporal variations in the amount of radionuclides released into the atmosphere during the Fukushima Daiichi Nuclear Power Station (FNPS1) accident and their atmospheric and marine dispersion are essential to evaluate the environmental impacts and resultant radiological doses to the public. In this paper, we estimate the detailed atmospheric releases during the accident using a reverse estimation method which calculates the release rates of radionuclides by comparing measurements of air concentration of a radionuclide or its dose rate in the environment with the ones calculated by atmospheric and oceanic transport, dispersion and deposition models. The atmospheric and oceanic models used are WSPEEDI-II (Worldwide version of System for Prediction of Environmental Emergency Dose Information) and SEA-GEARN-FDM (Finite difference oceanic dispersion model), both developed by the authors. A sophisticated deposition scheme, which deals with dry and fog-water depositions, cloud condensation nuclei (CCN) activation, and subsequent wet scavenging due to mixed-phase cloud microphysics (in-cloud scavenging) for radioactive iodine gas (I2 and CH3I) and other particles (CsI, Cs, and Te), was incorporated into WSPEEDI-II to improve the surface deposition calculations. The results revealed that the major releases of radionuclides due to the FNPS1 accident occurred in the following periods during March 2011: the afternoon of 12 March due to the wet venting and hydrogen explosion at Unit 1, midnight of 14 March when the SRV (safety relief valve) was opened three times at Unit 2, the morning and night of 15 March, and the morning of 16 March. According to the simulation results, the highest radioactive contamination areas around FNPS1 were created from 15 to 16 March by complicated interactions among rainfall, plume movements, and the temporal variation of release rates. The simulation by WSPEEDI-II using the new source term reproduced the local and regional patterns of cumulative

  4. Statistical detection and modeling of the over-dispersion of winter storm occurrence

    NASA Astrophysics Data System (ADS)

    Raschke, M.

    2015-08-01

    In this communication, I improve the detection and modeling of the over-dispersion of winter storm occurrence. For this purpose, the generalized Poisson distribution and the Bayesian information criterion are introduced; the latter is used for statistical model selection. Moreover, I replace the frequently used dispersion statistics by an over-dispersion parameter which does not depend on the considered return period of storm events. These models and methods are applied in order to properly detect the over-dispersion in winter storm data for Germany, carrying out a joint estimation of the distribution models for different samples.

  5. A CFD-based wind solver for a fast response transport and dispersion model

    SciTech Connect

    Gowardhan, Akshay A; Brown, Michael J; Pardyjak, Eric R; Senocak, Inanc

    2010-01-01

    In many cities, ambient air quality is deteriorating leading to concerns about the health of city inhabitants. In urban areas with narrow streets surrounded by clusters of tall buildings, called street canyons, air pollution from traffic emissions and other sources is difficult to disperse and may accumulate resulting in high pollutant concentrations. For various situations, including the evacuation of populated areas in the event of an accidental or deliberate release of chemical, biological and radiological agents, it is important that models should be developed that produce urban flow fields quickly. For these reasons it has become important to predict the flow field in urban street canyons. Various computational techniques have been used to calculate these flow fields, but these techniques are often computationally intensive. Most fast response models currently in use are at a disadvantage in these cases as they are unable to correlate highly heterogeneous urban structures with the diagnostic parameterizations on which they are based. In this paper, a fast and reasonably accurate computational fluid dynamics (CFD) technique that solves the Navier-Stokes equations for complex urban areas has been developed called QUIC-CFD (Q-CFD). This technique represents an intermediate balance between fast (on the order of minutes for a several block problem) and reasonably accurate solutions. The paper details the solution procedure and validates this model for various simple and complex urban geometries.

  6. Lamb wave dispersion and anisotropy profiling of composite plates via non-contact air-coupled and laser ultrasound

    NASA Astrophysics Data System (ADS)

    Harb, M. S.; Yuan, F. G.

    2015-03-01

    Conventional ultrasound inspection has been a standard non-destructive testing method for providing an in-service evaluation and noninvasive means of probing the interior of a structure. In particular, measurement of the propagation characteristics of Lamb waves allows inspection of plates that are typical components in aerospace industry. A rapid, complete non-contact hybrid approach for excitation and detection of Lamb waves is presented and applied for non-destructive evaluation of composites. An air-coupled transducer (ACT) excites ultrasonic waves on the surface of a composite plate, generating different propagating Lamb wave modes and a laser Doppler vibrometer (LDV) is used to measure the out-of-plane velocity of the plate. This technology, based on direct waveform imaging, focuses on measuring dispersive curves for A0 mode in a composite laminate and its anisotropy. A two-dimensional fast Fourier transform (2D-FFT) is applied to out-of-plane velocity data captured experimentally using LDV to go from the time-spatial domain to frequency-wavenumber domain. The result is a 2D array of amplitudes at discrete frequencies and wavenumbers for A0 mode in a given propagation direction along the composite. The peak values of the curve are then used to construct frequency wavenumber and phase velocity dispersion curves, which are also obtained directly using Snell's law and the incident angle of the excited ultrasonic waves. A high resolution and strong correlation between numerical and experimental results are observed for dispersive curves with Snell's law method in comparison to 2D-FFT method. Dispersion curves as well as velocity curves for the composite plate along different directions of wave propagation are measured. The visual read-out of the dispersion curves at different propagation directions as well as the phase velocity curves provide profiling and measurements of the composite anisotropy. The results proved a high sensitivity of the air-coupled and laser

  7. Application of zonal model on indoor air sensor network design

    NASA Astrophysics Data System (ADS)

    Chen, Y. Lisa; Wen, Jin

    2007-04-01

    Growing concerns over the safety of the indoor environment have made the use of sensors ubiquitous. Sensors that detect chemical and biological warfare agents can offer early warning of dangerous contaminants. However, current sensor system design is more informed by intuition and experience rather by systematic design. To develop a sensor system design methodology, a proper indoor airflow modeling approach is needed. Various indoor airflow modeling techniques, from complicated computational fluid dynamics approaches to simplified multi-zone approaches, exist in the literature. In this study, the effects of two airflow modeling techniques, multi-zone modeling technique and zonal modeling technique, on indoor air protection sensor system design are discussed. Common building attack scenarios, using a typical CBW agent, are simulated. Both multi-zone and zonal models are used to predict airflows and contaminant dispersion. Genetic Algorithm is then applied to optimize the sensor location and quantity. Differences in the sensor system design resulting from the two airflow models are discussed for a typical office environment and a large hall environment.

  8. A comparison between monitoring and dispersion modeling approaches to assess the impact of aviation on concentrations of black carbon and nitrogen oxides at Los Angeles International Airport.

    PubMed

    Penn, Stefani L; Arunachalam, Saravanan; Tripodis, Yorghos; Heiger-Bernays, Wendy; Levy, Jonathan I

    2015-09-15

    Aircraft activity and airport operations can increase combustion-related air pollutant concentrations, but it is difficult to distinguish aviation emissions from traffic and other local sources. Emission inventories are uncertain and dispersion models may not capture aircraft plume complexity; ambient monitoring data require detailed statistical analyses to extract aviation signals. The goal of this study is to compare two modeling approaches including monitoring-based regression models and the EDMS/AERMOD dispersion model, informing improvements and allowing quantitation of aviation impacts on air quality through multi-pollutant sensitivity and multi-monitor fate/transport analyses. Aggregate concentration comparisons are similar, though diurnal patterns show potential weaknesses in near-field dispersion, treatment of overnight conditions, and emission inventory accuracy. PMID:25956147

  9. Parameterizing Urban Canopy Layer transport in an Lagrangian Particle Dispersion Model

    NASA Astrophysics Data System (ADS)

    Stöckl, Stefan; Rotach, Mathias W.

    2016-04-01

    The percentage of people living in urban areas is rising worldwide, crossed 50% in 2007 and is even higher in developed countries. High population density and numerous sources of air pollution in close proximity can lead to health issues. Therefore it is important to understand the nature of urban pollutant dispersion. In the last decades this field has experienced considerable progress, however the influence of large roughness elements is complex and has as of yet not been completely described. Hence, this work studied urban particle dispersion close to source and ground. It used an existing, steady state, three-dimensional Lagrangian particle dispersion model, which includes Roughness Sublayer parameterizations of turbulence and flow. The model is valid for convective and neutral to stable conditions and uses the kernel method for concentration calculation. As most Lagrangian models, its lower boundary is the zero-plane displacement, which means that roughly the lower two-thirds of the mean building height are not included in the model. This missing layer roughly coincides with the Urban Canopy Layer. An earlier work "traps" particles hitting the lower model boundary for a recirculation period, which is calculated under the assumption of a vortex in skimming flow, before "releasing" them again. The authors hypothesize that improving the lower boundary condition by including Urban Canopy Layer transport could improve model predictions. This was tested herein by not only trapping the particles, but also advecting them with a mean, parameterized flow in the Urban Canopy Layer. Now the model calculates the trapping period based on either recirculation due to vortex motion in skimming flow regimes or vertical velocity if no vortex forms, depending on incidence angle of the wind on a randomly chosen street canyon. The influence of this modification, as well as the model's sensitivity to parameterization constants, was investigated. To reach this goal, the model was

  10. AIR INGRESS ANALYSIS: COMPUTATIONAL FLUID DYNAMIC MODELS

    SciTech Connect

    Chang H. Oh; Eung S. Kim; Richard Schultz; Hans Gougar; David Petti; Hyung S. Kang

    2010-08-01

    The Idaho National Laboratory (INL), under the auspices of the U.S. Department of Energy, is performing research and development that focuses on key phenomena important during potential scenarios that may occur in very high temperature reactors (VHTRs). Phenomena Identification and Ranking Studies to date have ranked an air ingress event, following on the heels of a VHTR depressurization, as important with regard to core safety. Consequently, the development of advanced air ingress-related models and verification and validation data are a very high priority. Following a loss of coolant and system depressurization incident, air will enter the core of the High Temperature Gas Cooled Reactor through the break, possibly causing oxidation of the in-the core and reflector graphite structure. Simple core and plant models indicate that, under certain circumstances, the oxidation may proceed at an elevated rate with additional heat generated from the oxidation reaction itself. Under postulated conditions of fluid flow and temperature, excessive degradation of the lower plenum graphite can lead to a loss of structural support. Excessive oxidation of core graphite can also lead to the release of fission products into the confinement, which could be detrimental to a reactor safety. Computational fluid dynamic model developed in this study will improve our understanding of this phenomenon. This paper presents two-dimensional and three-dimensional CFD results for the quantitative assessment of the air ingress phenomena. A portion of results of the density-driven stratified flow in the inlet pipe will be compared with results of the experimental results.

  11. Phenomenological model of nuclear primary air showers

    NASA Technical Reports Server (NTRS)

    Tompkins, D. R., Jr.; Saterlie, S. F.

    1976-01-01

    The development of proton primary air showers is described in terms of a model based on a hadron core plus an electromagnetic cascade. The muon component is neglected. The model uses three parameters: a rate at which hadron core energy is converted into electromagnetic cascade energy and a two-parameter sea-level shower-age function. By assuming an interaction length for the primary nucleus, the model is extended to nuclear primaries. Both models are applied over the energy range from 10 to the 13th power to 10 to the 21st power eV. Both models describe the size and age structure (neglecting muons) from a depth of 342 to 2052 g/sq cm.

  12. USE OF PLUME DISPERSION MODELLING FOR VIABLE AEROSOLS FROM AN ACTIVATED SLUDGE SEWAGE TREATMENT PLANT

    EPA Science Inventory

    Predictions of the emissions of airborne total viable particle (TVP) concentrations from sewage are of concern due to possible adverse human health effects. Two types of modelling approaches were explored: dispersion modelling such as the Gaussian plume dispersion model and stati...

  13. Estimating near-road pollutant dispersion: a model inter-comparison

    EPA Science Inventory

    A model inter-comparison study to assess the abilities of steady-state Gaussian dispersion models to capture near-road pollutant dispersion has been carried out with four models (AERMOD, run with both the area-source and volume-source options to represent roadways, CALINE, versio...

  14. A Multi-Clade Test Supports the Intermediate Dispersal Model of Biogeography

    PubMed Central

    Agnarsson, Ingi; Cheng, Ren-Chung; Kuntner, Matjaž

    2014-01-01

    Background Biogeography models typically focus on explaining patterns through island properties, such as size, complexity, age, and isolation. Such models explain variation in the richness of island biotas. Properties of the organisms themselves, such as their size, age, and dispersal abilities, in turn may explain which organisms come to occupy, and diversify across island archipelagos. Here, we restate and test the intermediate dispersal model (IDM) predicting peak diversity in clades of relatively intermediate dispersers. Methodology We test the model through a review of terrestrial and freshwater organisms in the western Indian Ocean examining the correlation among species richness and three potential explanatory variables: dispersal ability quantified as the number of estimated dispersal events, average body size for animals, and clade age. Conclusions Our study supports the IDM with dispersal ability being the best predictor of regional diversity among the explored variables. We find a weaker relationship between diversity and clade age, but not body size. Principally, we find that richness strongly and positively correlates with dispersal ability in poor to good dispersers while a prior study found a strong decrease in richness with increased dispersal ability among excellent dispersers. Both studies therefore support the intermediate dispersal model, especially when considered together. We note that many additional variables not here considered are at play. For example, some taxa may lose dispersal ability subsequent to island colonization and some poor dispersers have reached high diversity through within island radiations. Nevertheless, our findings highlight the fundamental importance of dispersal ability in explaining patterns of biodiversity generation across islands. PMID:24466238

  15. Impact of Blow/Fill/Seal process variables in determining rate of vial contamination by air dispersed microorganisms.

    PubMed

    Leo, Frank; Poisson, Patrick; Sinclair, Colin S; Tallentire, Alan

    2005-01-01

    Controlled challenges of air dispersed spores of Bacillus subtilis NCIMB 8649 have been generated in a custom-built challenge room housing a Blow/Fill/Seal machine filling filter-sterilized trypticase soy broth into 5.5 cm3 low density polyethylene vials. The effects on the rate of vial contamination of systematic changes in the process variables, rate of provision of ballooning air, delay in the application of mould vacuum and duration of transfer of the open vial, have been examined. Overall, the findings show that the conditions of vial formation can affect appreciably the rate of vial contamination from airborne spores. The indications are that heat lethality, associated with the elevated temperature required for polymer extrusion and vial formation, has a role in determining such contamination. PMID:16316067

  16. Computed tomography and optical remote sensing: Development for the study of indoor air pollutant transport and dispersion

    SciTech Connect

    Drescher, A.C.

    1995-06-01

    This thesis investigates the mixing and dispersion of indoor air pollutants under a variety of conditions using standard experimental methods. It also extensively tests and improves a novel technique for measuring contaminant concentrations that has the potential for more rapid, non-intrusive measurements with higher spatial resolution than previously possible. Experiments conducted in a sealed room support the hypothesis that the mixing time of an instantaneously released tracer gas is inversely proportional to the cube root of the mechanical power transferred to the room air. One table-top and several room-scale experiments are performed to test the concept of employing optical remote sensing (ORS) and computed tomography (CT) to measure steady-state gas concentrations in a horizontal plane. Various remote sensing instruments, scanning geometries and reconstruction algorithms are employed. Reconstructed concentration distributions based on existing iterative CT techniques contain a high degree of unrealistic spatial variability and do not agree well with simultaneously gathered point-sample data.

  17. Modeling the effects of a solid barrier on pollutant dispersion under various atmospheric stability conditions

    NASA Astrophysics Data System (ADS)

    Steffens, Jonathan T.; Heist, David K.; Perry, Steven G.; Zhang, K. Max

    2013-04-01

    There is a growing need for developing mitigation strategies for near-road air pollution. Roadway design is being considered as one of the potential options. Particularly, it has been suggested that sound barriers, erected to reduce noise, may prove effective at decreasing pollutant concentrations. However, there is still a lack of mechanistic understanding of how solid barriers affect pollutant transport, especially under a variety of meteorological conditions. In this study, we utilized the Comprehensive Turbulent Aerosol Dynamics and Gas Chemistry (CTAG) model to simulate the spatial gradients of SF6 concentrations behind a solid barrier under a variety of atmospheric stability conditions collected during the Near Road Tracer Study (NRTS08). We employed two different CFD models, RANS and LES. A recirculation zone, characterized by strong mixing, forms in the wake of a barrier. It is found that this region is important for accurately predicting pollutant dispersion, but is often insufficiently resolved by the less complex RANS model. The RANS model was found to perform adequately away from the leading edge of the barrier. The LES model, however, performs consistently well at all flow locations. Therefore, the LES model will make a significant improvement compared to the RANS model in regions of strong recirculating flow or edge effects. Our study suggests that advanced simulation tools can potentially provide a variety of numerical experiments that may prove useful for roadway design communities to intelligently design roadways, making effective use of roadside barriers.

  18. Modelling competition and dispersal in a statistical phylogeographic framework.

    PubMed

    Ranjard, Louis; Welch, David; Paturel, Marie; Guindon, Stéphane

    2014-09-01

    Competition between organisms influences the processes governing the colonization of new habitats. As a consequence, species or populations arriving first at a suitable location may prevent secondary colonization. Although adaptation to environmental variables (e.g., temperature, altitude, etc.) is essential, the presence or absence of certain species at a particular location often depends on whether or not competing species co-occur. For example, competition is thought to play an important role in structuring mammalian communities assembly. It can also explain spatial patterns of low genetic diversity following rapid colonization events or the "progression rule" displayed by phylogenies of species found on archipelagos. Despite the potential of competition to maintain populations in isolation, past quantitative analyses have largely ignored it because of the difficulty in designing adequate methods for assessing its impact. We present here a new model that integrates competition and dispersal into a Bayesian phylogeographic framework. Extensive simulations and analysis of real data show that our approach clearly outperforms the traditional Mantel test for detecting correlation between genetic and geographic distances. But most importantly, we demonstrate that competition can be detected with high sensitivity and specificity from the phylogenetic analysis of genetic variation in space. PMID:24929898

  19. Characterization and dispersion modeling of odors from a piggery facility.

    PubMed

    Karageorgos, Petros; Latos, Manolis; Mpasiakos, Christos; Chalarakis, Elefterios; Dimitrakakis, Emmanuel; Daskalakis, Charis; Psillakis, Elefteria; Lazaridis, Mihalis; Kalogerakis, Nicolas

    2010-01-01

    Piggeries are known for their nuisance odors, creating problems for workers and nearby residents. Chemical substances that contribute to these odors include sulfurous organic compounds, hydrogen sulfide, phenols and indoles, ammonia, volatile amines, and volatile fatty acids. In this work, daily mean concentrations of ammonia (NH3) and hydrogen sulfide (H2S) were measured by hand-held devices. Measurements were taken in several places within the facility (farrowing to finishing rooms). Hydrogen sulfide concentration was found to be 40 to 50 times higher than the human odor threshold value in the nursery and fattening room, resulting in strong nuisance odors. Ammonia concentrations ranged from 2 to 18 mL m(-3) and also contributed to the total odor nuisance. Emission data from various chambers of the pig farm were used with the dispersion model AERMOD to determine the odor nuisance caused due to the presence of H2S and NH3 to receptors at various distances from the facility. Because just a few seconds of exposure can cause an odor nuisance, a "peak-to-mean" ratio was used to predict the maximum odor concentrations. Several scenarios were examined using the modified AERMOD program, taking into account the complex terrain around the pig farm. PMID:21284315

  20. Measuring and modeling the magnetic settling of superparamagnetic nanoparticle dispersions.

    PubMed

    Prigiobbe, Valentina; Ko, Saebom; Huh, Chun; Bryant, Steven L

    2015-06-01

    In this paper, we present settling experiments and mathematical modeling to study the magnetic separation of superparamagnetic iron-oxide nanoparticles (SPIONs) from a brine. The experiments were performed using SPIONs suspensions of concentration between 3 and 202g/L dispersed in water and separated from the liquid under the effect of a permanent magnet. A 1D model was developed in the framework of the sedimentation theory with a conservation law for SPIONs and a mass flux function based on the Newton's law for motion in a magnetic field. The model describes both the hindering effect of suspension concentration (n) during settling due to particle collisions and the increase in settling rate due to the attraction of the SPIONs towards the magnet. The flux function was derived from the settling experiments and the numerical model validated against the analytical solution and the experimental data. Suspensions of SPIONs were of 2.8cm initial height, placed on a magnet, and monitored continuously with a digital camera. Applying a magnetic field of 0.5T of polarization, the SPION's velocity was of approximately 3·10(-5)m/s close to the magnet and decreases of two orders of magnitude across the domain. The process was characterized initially by a classical sedimentation behavior, i.e., an upper interface between the clear water and the suspension slowly moving towards the magnet and a lower interface between the sediment layer and the suspension moving away from the magnet. Subsequently, a rapid separation of nanoparticle occured suggesting a non-classical settling phenomenon induced by magnetic forces which favor particle aggregation and therefore faster settling. The rate of settling decreased with n and an optimal condition for fast separation was found for an initial n of 120g/L. The model agrees well with the measurements in the early stage of the settling, but it fails to describe the upper interface movement during the later stage, probably because of particle

  1. Evaluation of two pollutant dispersion models over continental scales

    NASA Astrophysics Data System (ADS)

    Rodriguez, D.; Walker, H.; Klepikova, N.; Kostrikov, A.; Zhuk, Y.

    Two long-range, emergency response models—one based on the particle-in-cell method of pollutant representation (ADPIC/U.S.) the other based on the superposition of Gaussian puffs released periodically in time (EXPRESS/Russia)—are evaluated using perfluorocarbon tracer data from the Across North America Tracer Experiment (ANATEX). The purpose of the study is to assess our current capabilities for simulating continental-scale dispersion processes and to use these assessments as a means to improve our modeling tools. The criteria for judging model performance are based on protocols devised by the Environmental Protection Agency and on other complementary tests. Most of these measures require the formation and analysis of surface concentration footprints (the surface manifestations of tracer clouds, which are sampled over 24-h intervals), whose dimensions, center-of-mass coordinates and integral characteristics provide a basis for comparing observed and calculated concentration distributions. Generally speaking, the plumes associated with the 20 releases of perfluorocarbon (10 each from sources at Glasgow, MT and St. Cloud, MN) in January 1987, are poorly resolved by the sampling network when the source-to-receptor distances are less than about 1000 km. Within this undersampled region, both models chronically overpredict the sampler concentrations. Given this tendency, the computed areas of the surface footprints and their integral concentrations are likewise excessive. When the actual plumes spread out sufficiently for reasonable resolution, the observed ( O) and calculated ( C) footprint areas are usually within a factor of two of one another, thereby suggesting that the models possess some skill in the prediction of long-range diffusion. Deviations in the O and C plume trajectories, as measured by the distances of separation between the plume centroids, are on the other of 125 km d -1 for both models. It appears that the inability of the models to simulate large

  2. An automobile air conditioner design model

    SciTech Connect

    Kyle, D M; Mei, V C; Chen, F C

    1992-12-01

    A computer program has been developed to predict the steady-state performance of vapor compression automobile air conditioners and heat pumps. The code is based on the residential heat pump model developed at the Oak Ridge National Laboratory (ORNL). Most calculations are based on fundamental physical principles, in conjunction with generalized correlations available in the research literature. Automobile air conditioning components that can be specified as input to the program include open and hermetic compressors; finned tube condensers; finned tube and plate-fin style evaporators; thermostatic expansion valves (TXV), capillary tube, and short tube expansion devices; refrigerant mass; and evaporator pressure regulator and all interconnecting tubing. Pressure drop, heat transfer rates, and latent capacity ratio for the new plate-fin evaporator submodel are shown to agree well with laboratory data. The program can be used with a variety of refrigerants, including R-134a.

  3. Regional source identification using Lagrangian stochastic particle dispersion and HYSPLIT backward-trajectory models.

    PubMed

    Koracin, Darko; Vellore, Ramesh; Lowenthal, Douglas H; Watson, John G; Koracin, Julide; McCord, Travis; DuBois, David W; Chen, L W Antony; Kumar, Naresh; Knipping, Eladio M; Wheeler, Neil J M; Craig, Kenneth; Reid, Stephen

    2011-06-01

    The main objective of this study was to investigate the capabilities of the receptor-oriented inverse mode Lagrangian Stochastic Particle Dispersion Model (LSPDM) with the 12-km resolution Mesoscale Model 5 (MM5) wind field input for the assessment of source identification from seven regions impacting two receptors located in the eastern United States. The LSPDM analysis was compared with a standard version of the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) single-particle backward-trajectory analysis using inputs from MM5 and the Eta Data Assimilation System (EDAS) with horizontal grid resolutions of 12 and 80 km, respectively. The analysis included four 7-day summertime events in 2002; residence times in the modeling domain were computed from the inverse LSPDM runs and HYPSLIT-simulated backward trajectories started from receptor-source heights of 100, 500, 1000, 1500, and 3000 m. Statistics were derived using normalized values of LSPDM- and HYSPLIT-predicted residence times versus Community Multiscale Air Quality model-predicted sulfate concentrations used as baseline information. From 40 cases considered, the LSPDM identified first- and second-ranked emission region influences in 37 cases, whereas HYSPLIT-MM5 (HYSPLIT-EDAS) identified the sources in 21 (16) cases. The LSPDM produced a higher overall correlation coefficient (0.89) compared with HYSPLIT (0.55-0.62). The improvement of using the LSPDM is also seen in the overall normalized root mean square error values of 0.17 for LSPDM compared with 0.30-0.32 for HYSPLIT. The HYSPLIT backward trajectories generally tend to underestimate near-receptor sources because of a lack of stochastic dispersion of the backward trajectories and to overestimate distant sources because of a lack of treatment of dispersion. Additionally, the HYSPLIT backward trajectories showed a lack of consistency in the results obtained from different single vertical levels for starting the backward trajectories. To

  4. ARAC dispersion modeling support for January-March 1995 Vandenberg AFB launches

    NASA Astrophysics Data System (ADS)

    Baskett, R. L.; Pace, J. C.

    1995-05-01

    The Glory Trip (GT) 17-PA Peacekeeper launch originally scheduled at Vandenberg Air Force Base (VAFB) between 15 and 20 November 1994 was cancelled based on modeled toxic exhaust cloud calculations. The Missile Flight Control Branch, 30th Space Wing Safety Office (30 SW/SEY), made several successive 'No Go' decisions using Version 7.05 Rocket Exhaust Effluent Dispersion Model (REEDM) with forecasted meteorological conditions. REEDM runs made from T-14 hours to T-30 minutes predicted that ground-level concentrations of hydrogen chloride (HCl) gas from the catastrophic abort case would exceed 5 ppM, the 'instantaneous' ambient air concentration 'Tier 2' limit at that time, modeled as a peak 1-minute cloud centerline concentration. Depending on the forecasted wind direction and speed at launch time, this limit was predicted to be exceeded sometimes at Base Housing, approximately 10 km southeast of the launch, and during other launch windows at the town of Casmalia, about 5 km east- southeast. In late December 1994, the LLNL Atmospheric Release Advisory Capability (ARAC) program modeled the aborted November 1994 Peacekeeper launch and compared its results with REEDM. This initial comparison showed that the ARAC model predicted values about 1/3 as large as REEDM for the limiting case at Base Housing. Subsequently ARAC was asked to provide real-time modeling support to 30 SW/SEY during the rescheduled Peacekeeper GT 17-PA launch in January 1995 and two Minuteman launches in February and March. This report first briefly discusses the model differences and then summarizes the results of the three supported launches.

  5. Model of optical nonlinearity of air in the mid-IR wavelength range

    SciTech Connect

    Geints, Yu E; Zemlyanov, A A

    2014-09-30

    A model of optical nonlinearity of air (atmospheric nitrogen and oxygen) is developed. This model can be used to calculate numerically the propagation of radiation with a wavelength close to 10 μm. It takes into account the electronic Kerr effect, higher order nonlinearities, ionisation of a gas medium by electron impact, and pulse group-velocity dispersion. The applicability limits of the Drude approximation for calculating the impact-ionisation rate are also considered. (nonlinear optical phenomena)

  6. A generalized Brownian motion model for turbulent relative particle dispersion

    NASA Astrophysics Data System (ADS)

    Shivamoggi, B. K.

    2016-08-01

    There is speculation that the difficulty in obtaining an extended range with Richardson-Obukhov scaling in both laboratory experiments and numerical simulations is due to the finiteness of the flow Reynolds number Re in these situations. In this paper, a generalized Brownian motion model has been applied to describe the relative particle dispersion problem in more realistic turbulent flows and to shed some light on this issue. The fluctuating pressure forces acting on a fluid particle are taken to be a colored noise and follow a stationary process and are described by the Uhlenbeck-Ornstein model while it appears plausible to take their correlation time to have a power-law dependence on Re, thus introducing a bridge between the Lagrangian quantities and the Eulerian parameters for this problem. This ansatz is in qualitative agreement with the possibility of a connection speculated earlier by Corrsin [26] between the white-noise representation for the fluctuating pressure forces and the large-Re assumption in the Kolmogorov [4] theory for the 3D fully developed turbulence (FDT) as well as a similar argument of Monin and Yaglom [23] and a similar result of Sawford [13] and Borgas and Sawford [24]. It also provides an insight into the result that the Richardson-Obukhov scaling holds only in the infinite-Re limit and disappears otherwise. This ansatz further provides a determination of the Richardson-Obukhov constant g as a function of Re, with an asymptotic constant value in the infinite-Re limit. It is shown to lead to full agreement, in the small-Re limit as well, with the Batchelor-Townsend [27] scaling for the rate of change of the mean square interparticle separation in 3D FDT, hence validating its soundness further.

  7. Experiences in evaluating regional air quality models

    NASA Astrophysics Data System (ADS)

    Liu, Mei-Kao; Greenfield, Stanley M.

    Any area of the world concerned with the health and welfare of its people and the viability of its ecological system must eventually address the question of the control of air pollution. This is true in developed countries as well as countries that are undergoing a considerable degree of industrialization. The control or limitation of the emissions of a pollutant can be very costly. To avoid ineffective or unnecessary control, the nature of the problem must be fully understood and the relationship between source emissions and ambient concentrations must be established. Mathematical models, while admittedly containing large uncertainties, can be used to examine alternatives of emission restrictions for achieving safe ambient concentrations. The focus of this paper is to summarize our experiences with modeling regional air quality in the United States and Western Europe. The following modeling experiences have been used: future SO 2 and sulfate distributions and projected acidic deposition as related to coal development in the northern Great Plains in the U.S.; analysis of regional ozone and sulfate episodes in the northeastern U.S.; analysis of the regional ozone problem in western Europe in support of alternative emission control strategies; analysis of distributions of toxic chemicals in the Southeast Ohio River Valley in support of the design of a monitoring network human exposure. Collectively, these prior modeling analyses can be invaluable in examining a similar problem in other parts of the world as well, such as the Pacific rim in Asia.

  8. Demonstration of a stabilized alumina/ethanol colloidal dispersion technique for seeding high temperature air flows

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.; Skoch, Gary J.; Wernet, Judith H.

    1995-01-01

    Laser anemometry enables the measurement of complex flow fields via the light scattered from small particles entrained in the flow. In the study of turbomachinery, refractory seed materials are required for seeding the flow due to the high temperatures encountered. In this work we present a pH stabilization technique commonly employed in ceramic processing to obtain stable dispersions for generating aerosols of refractory seed material. By adding submicron alumina particles to a preadjusted pH solution of ethanol, a stable dispersion is obtained which when atomized, produces a high quality aerosol. Commercial grade alumina powder is used with a moderate size distribution. Other metal oxide powders in various polar solvents could also be used once the point of zero charge (pH(pzc)) of the powder in the solvent has been determined. Laser anemometry measurements obtained using the new seeding technique are compared to measurements obtained using Polystyrene Latex (PSL) spheres as the seed material.

  9. Demonstration of a stabilized alumina/ethanol colloidal dispersion technique for seeding high temperature air flows

    NASA Astrophysics Data System (ADS)

    Wernet, Mark P.; Skoch, Gary J.; Wernet, Judith H.

    1995-06-01

    Laser anemometry enables the measurement of complex flow fields via the light scattered from small particles entrained in the flow. In the study of turbomachinery, refractory seed materials are required for seeding the flow due to the high temperatures encountered. In this work we present a pH stabilization technique commonly employed in ceramic processing to obtain stable dispersions for generating aerosols of refractory seed material. By adding submicron alumina particles to a preadjusted pH solution of ethanol, a stable dispersion is obtained which when atomized, produces a high quality aerosol. Commercial grade alumina powder is used with a moderate size distribution. Other metal oxide powders in various polar solvents could also be used once the point of zero charge (pH(pzc)) of the powder in the solvent has been determined. Laser anemometry measurements obtained using the new seeding technique are compared to measurements obtained using Polystyrene Latex (PSL) spheres as the seed material.

  10. DISPLAY-2: a two-dimensional shallow layer model for dense gas dispersion including complex features.

    PubMed

    Venetsanos, A G; Bartzis, J G; Würtz, J; Papailiou, D D

    2003-04-25

    A two-dimensional shallow layer model has been developed to predict dense gas dispersion, under realistic conditions, including complex features such as two-phase releases, obstacles and inclined ground. The model attempts to predict the time and space evolution of the cloud formed after a release of a two-phase pollutant into the atmosphere. The air-pollutant mixture is assumed ideal. The cloud evolution is described mathematically through the Cartesian, two-dimensional, shallow layer conservation equations for mixture mass, mixture momentum in two horizontal directions, total pollutant mass fraction (vapor and liquid) and mixture internal energy. Liquid mass fraction is obtained assuming phase equilibrium. Account is taken in the conservation equations for liquid slip and eventual liquid rainout through the ground. Entrainment of ambient air is modeled via an entrainment velocity model, which takes into account the effects of ground friction, ground heat transfer and relative motion between cloud and surrounding atmosphere. The model additionally accounts for thin obstacles effects in three ways. First a stepwise description of the obstacle is generated, following the grid cell faces, taking into account the corresponding area blockage. Then obstacle drag on the passing cloud is modeled by adding flow resistance terms in the momentum equations. Finally the effect of extra vorticity generation and entrainment enhancement behind obstacles is modeled by adding locally into the entrainment formula without obstacles, a characteristic velocity scale defined from the obstacle pressure drop and the local cloud height.The present model predictions have been compared against theoretical results for constant volume and constant flux gravity currents. It was found that deviations of the predicted cloud footprint area change with time from the theoretical were acceptably small, if one models the frictional forces between cloud and ambient air, neglecting the Richardson

  11. Air quality modeling`s brave new world

    SciTech Connect

    Appleton, E.L.

    1996-05-01

    Since 1992, EPA has been creating a new generation of software - Models-3 - that is widely regarded as the next-generation air quality modeling system. The system has a modular framework that allows users to integrate a broad variety of air quality models. In the future, users will also be able to plug in economic decision support tools. A prototype version of Models-3 already exists in the Atmospheric Modeling Division of EPA`s National Exposure Research Laboratory in Research Triangle Park. EDSS was developed as a raid prototype of Models-3 under a three-year, $7.8 million cooperative agreement with EPA. An operational version of Models-3 may be in the hands of scientists and state air quality regulators by late 1997. Developers hope the new, more user-friendly system will make it easier to run models and present information to policy makers in graphical ways that are easy to understand. In addition, Models-3 will ultimately become a so-called `comprehensive modeling system` that enables users to simulate pollutants in other media, such as water. EPA also plans to include models that simulate health effects and other pollution consequences. 6 refs.

  12. Simulation of Population-Based Commuter Exposure to NO2 Using Different Air Pollution Models

    PubMed Central

    Ragettli, Martina S.; Tsai, Ming-Yi; Braun-Fahrländer, Charlotte; de Nazelle, Audrey; Schindler, Christian; Ineichen, Alex; Ducret-Stich, Regina E.; Perez, Laura; Probst-Hensch, Nicole; Künzli, Nino; Phuleria, Harish C.

    2014-01-01

    We simulated commuter routes and long-term exposure to traffic-related air pollution during commute in a representative population sample in Basel (Switzerland), and evaluated three air pollution models with different spatial resolution for estimating commute exposures to nitrogen dioxide (NO2) as a marker of long-term exposure to traffic-related air pollution. Our approach includes spatially and temporally resolved data on actual commuter routes, travel modes and three air pollution models. Annual mean NO2 commuter exposures were similar between models. However, we found more within-city and within-subject variability in annual mean (±SD) NO2 commuter exposure with a high resolution dispersion model (40 ± 7 µg m−3, range: 21–61) than with a dispersion model with a lower resolution (39 ± 5 µg m−3; range: 24–51), and a land use regression model (41 ± 5 µg m−3; range: 24–54). Highest median cumulative exposures were calculated along motorized transport and bicycle routes, and the lowest for walking. For estimating commuter exposure within a city and being interested also in small-scale variability between roads, a model with a high resolution is recommended. For larger scale epidemiological health assessment studies, models with a coarser spatial resolution are likely sufficient, especially when study areas include suburban and rural areas. PMID:24823664

  13. Simulation of population-based commuter exposure to NO₂ using different air pollution models.

    PubMed

    Ragettli, Martina S; Tsai, Ming-Yi; Braun-Fahrländer, Charlotte; de Nazelle, Audrey; Schindler, Christian; Ineichen, Alex; Ducret-Stich, Regina E; Perez, Laura; Probst-Hensch, Nicole; Künzli, Nino; Phuleria, Harish C

    2014-05-01

    We simulated commuter routes and long-term exposure to traffic-related air pollution during commute in a representative population sample in Basel (Switzerland), and evaluated three air pollution models with different spatial resolution for estimating commute exposures to nitrogen dioxide (NO2) as a marker of long-term exposure to traffic-related air pollution. Our approach includes spatially and temporally resolved data on actual commuter routes, travel modes and three air pollution models. Annual mean NO2 commuter exposures were similar between models. However, we found more within-city and within-subject variability in annual mean (±SD) NO2 commuter exposure with a high resolution dispersion model (40 ± 7 µg m(-3), range: 21-61) than with a dispersion model with a lower resolution (39 ± 5 µg m(-3); range: 24-51), and a land use regression model (41 ± 5 µg m(-3); range: 24-54). Highest median cumulative exposures were calculated along motorized transport and bicycle routes, and the lowest for walking. For estimating commuter exposure within a city and being interested also in small-scale variability between roads, a model with a high resolution is recommended. For larger scale epidemiological health assessment studies, models with a coarser spatial resolution are likely sufficient, especially when study areas include suburban and rural areas. PMID:24823664

  14. Air Pollution Data for Model Evaluation and Application

    EPA Science Inventory

    One objective of designing an air pollution monitoring network is to obtain data for evaluating air quality models that are used in the air quality management process and scientific discovery.1.2 A common use is to relate emissions to air quality, including assessing ...

  15. QUANTIFYING SUBGRID POLLUTANT VARIABILITY IN EULERIAN AIR QUALITY MODELS

    EPA Science Inventory

    In order to properly assess human risk due to exposure to hazardous air pollutants or air toxics, detailed information is needed on the location and magnitude of ambient air toxic concentrations. Regional scale Eulerian air quality models are typically limited to relatively coar...

  16. Modeling Regional Air Quality Impacts from Indonesian Biomass Burning

    NASA Astrophysics Data System (ADS)

    Jumbam, L.; Raffuse, S. M.; Wiedinmyer, C.; Larkin, N.

    2012-12-01

    Smoke from thousands of forest-clearing burns in Indonesia cause widespread air quality impacts in cities across southeastern Asia. These fires, which can produce significant smoke due to peat burning, are readily detected by polar orbiting satellites. Widespread smoke can be seen in satellite imagery, and high concentrations of particulate matter are detected by ground based sensors. Here we present results of a pilot modeling study focusing on the September 2011 Indonesian smoke episode. In the study, fire location information was collected from the National Aeronautics and Space Administration's (NASA) Moderate Resolution Imaging Spectroradiometer (MODIS). The BlueSky modeling framework, which links information about fire locations with smoke emissions and meteorological models, was used to pass the fire location information from MODIS through the Fire INventories from NCAR (FINN) methodology to estimate emissions of aerosol and gaseous pollutants from the fires. These emissions were further directed by BlueSky through the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model, which predicted the dispersion and transport of PM2.5 from the fires. The resulting regional PM2.5 concentration maps from BlueSky were compared with satellite imagery and urban ground stations, where available. This work demonstrates the extension of a system developed for producing daily smoke predictions in the United States outside of North America for the first time. We discuss the implications of regional smoke impacts and possibilities for predictive smoke modeling to protect public health in southeastern Asia.

  17. Interfacing air pathway models with other media models for impact assessment

    SciTech Connect

    Drake, R.L.

    1980-10-01

    The assessment of the impacts/effects of a coal conversion industry on human health, ecological systems, property and aesthetics requires knowledge about effluent and fugitive emissions, dispersion of pollutants in abiotic media, chemical and physical transformations of pollutants during transport, and pollutant fate passing through biotic pathways. Some of the environmental impacts that result from coal conversion facility effluents are subtle, acute, subacute or chronic effects in humans and other ecosystem members, acute or chronic damage of materials and property, odors, impaired atmospheric visibility, and impacts on local, regional and global weather and climate. This great variety of impacts and effects places great demands on the abiotic and biotic numerical simulators (modelers) in terms of time and space scales, transformation rates, and system structure. This paper primarily addresses the demands placed on the atmospheric analyst. The paper considers the important air pathway processes, the interfacing of air pathway models with other media models, and the classes of air pathway models currently available. In addition, a strong plea is made for interaction and communication between all modeling groups to promote efficient construction of intermedia models that truly interface across pathway boundaries.

  18. Optimal weighted combinatorial forecasting model of QT dispersion of ECGs in Chinese adults

    NASA Astrophysics Data System (ADS)

    Wen, Zhang; Miao, Ge; Xinlei, Liu; Minyi, Cen

    2015-11-01

    This study aims to provide a scientific basis for unifying the reference value standard of QT dispersion of ECGs in Chinese adults. Three predictive models including regression model, principal component model, and artificial neural network model are combined to establish the optimal weighted combination model. The optimal weighted combination model and single model are verified and compared. Optimal weighted combinatorial model can reduce predicting risk of single model and improve the predicting precision. The reference value of geographical distribution of Chinese adults' QT dispersion was precisely made by using kriging methods. When geographical factors of a particular area are obtained, the reference value of QT dispersion of Chinese adults in this area can be estimated by using optimal weighted combinatorial model and reference value of the QT dispersion of Chinese adults anywhere in China can be obtained by using geographical distribution figure as well.

  19. Optimal weighted combinatorial forecasting model of QT dispersion of ECGs in Chinese adults

    NASA Astrophysics Data System (ADS)

    Wen, Zhang; Miao, Ge; Xinlei, Liu; Minyi, Cen

    2016-07-01

    This study aims to provide a scientific basis for unifying the reference value standard of QT dispersion of ECGs in Chinese adults. Three predictive models including regression model, principal component model, and artificial neural network model are combined to establish the optimal weighted combination model. The optimal weighted combination model and single model are verified and compared. Optimal weighted combinatorial model can reduce predicting risk of single model and improve the predicting precision. The reference value of geographical distribution of Chinese adults' QT dispersion was precisely made by using kriging methods. When geographical factors of a particular area are obtained, the reference value of QT dispersion of Chinese adults in this area can be estimated by using optimal weighted combinatorial model and reference value of the QT dispersion of Chinese adults anywhere in China can be obtained by using geographical distribution figure as well.

  20. NEW DEVELOPMENT IN DISPERSION EXPERIMENTS AND MODELS FOR THE CONVECTIVE BOUNDARY LAYER

    EPA Science Inventory

    We present recent experiments and modeling studies of dispersion in the convective boundary layer (CBL) with focus on highly-buoyant plumes that "loft" near the CBL top and resist downward mixing. Such plumes have been a significant problem in earlier dispersion models; they a...

  1. Mathematical Modeling of Photochemical Air Pollution.

    NASA Astrophysics Data System (ADS)

    McRae, Gregory John

    Air pollution is an environmental problem that is both pervasive and difficult to control. An important element of any rational control approach is a reliable means for evaluating the air quality impact of alternative abatement measures. This work presents such a capability, in the form of a mathematical description of the production and transport of photochemical oxidants within an urban airshed. The combined influences of advection, turbulent diffusion, chemical reaction, emissions and surface removal processes are all incorporated into a series of models that are based on the species continuity equations. A delineation of the essential assumptions underlying the formulation of a three-dimensional, a Lagrangian trajectory, a vertically integrated and single cell air quality model is presented. Since each model employs common components and input data the simpler forms can be used for rapid screening calculations and the more complex ones for detailed evaluations. The flow fields, needed for species transport, are constructed using inverse distance weighted polynomial interpolation techniques that map routine monitoring data onto a regular computational mesh. Variational analysis procedures are then employed to adjust the field so that mass is conserved. Initial concentration and mixing height distributions can be established with the same interpolation algorithms. Subgrid scale turbulent transport is characterized by a gradient diffusion hypothesis. Similarity solutions are used to model the surface layer fluxes. Above this layer different treatments of turbulent diffusivity are required to account for variations in atmospheric stability. Convective velocity scaling is utilized to develop eddy diffusivities for unstable conditions. The predicted mixing times are in accord with results obtained during sulfur hexafluoride (SF(,6)) tracer experiments. Conventional models are employed for neutral and stable conditions. A new formulation for gaseous deposition fluxes

  2. Continuous multichannel monitoring of cave air carbon dioxide using a pumped non-dispersive infrared analyser

    NASA Astrophysics Data System (ADS)

    Mattey, D.

    2012-04-01

    The concentration of CO2 in cave air is one of the main controls on the rate of degassing of dripwater and on the kinetics of calcite precipitation forming speleothem deposits. Measurements of cave air CO2reveal great complexity in the spatial distribution among interconnected cave chambers and temporal changes on synoptic to seasonal time scales. The rock of Gibraltar hosts a large number of caves distributed over a 300 meter range in altitude and monthly sampling and analysis of air and water combined with continuous logging of temperature, humidity and drip discharge rates since 2004 reveals the importance of density-driven seasonal ventilation which drives large-scale advection of CO2-rich air though the cave systems. Since 2008 we have deployed automatic CO2 monitoring systems that regularly sample cave air from up to 8 locations distributed laterally and vertically in St Michaels Cave located near the top of the rock at 275m asl and Ragged Staff Cave located in the heart of the rock near sea level. The logging system is controlled by a Campbell Scientific CR1000 programmable datalogger which controls an 8 port manifold connected to sampling lines leading to different parts of the cave over a distance of up to 250 meters. The manifold is pumped at a rate of 5l per minute drawing air through 6mm or 8mm id polythene tubing via a 1m Nafion loop to reduce humidity to local ambient conditions. The outlet of the primary pump leads to an open split which is sampled by a second low flow pump which delivers air at 100ml/minute to a Licor 820 CO2 analyser. The software selects the port to be sampled, flushes the line for 2 minutes and CO2 analysed as a set of 5 measurements averaged over 10 second intervals. The system then switches to the next port and when complete shuts down to conserve power after using 20 watts over a 30 minute period of analysis. In the absence of local mains power (eg from the show cave lighting system) two 12v car batteries will power the system

  3. A compressible two-phase model for dispersed particle flows with application from dense to dilute regimes

    NASA Astrophysics Data System (ADS)

    McGrath, Thomas P.; St. Clair, Jeffrey G.; Balachandar, S.

    2016-05-01

    Multiphase flows are present in many important fields ranging from multiphase explosions to chemical processing. An important subset of multiphase flow applications involves dispersed materials, such as particles, droplets, and bubbles. This work presents an Eulerian-Eulerian model for multiphase flows containing dispersed particles surrounded by a continuous media such as air or water. Following a large body of multiphase literature, the driving force for particle acceleration is modeled as a direct function of both the continuous-phase pressure gradient and the gradient of intergranular stress existing within the particle phase. While the application of these two components of driving force is well accepted in much of the literature, other models exist in which the particle-phase pressure gradient itself drives particle motion. The multiphase model treats all phases as compressible and is derived to ensure adherence to the 2nd Law of Thermodynamics. The governing equations are presented and discussed, and a characteristic analysis shows the model to be hyperbolic, with a degeneracy in the case that the intergranular stress, which is modeled as a configuration pressure, is zero. Finally, results from a two sample problems involving shock-induced particle dispersion are presented. The results agree well with experimental measurements, providing initial confidence in the proposed model.

  4. Hydrogen cyanide in ambient air near a gold heap leach field: Measured vs. modeled concentrations

    NASA Astrophysics Data System (ADS)

    Orloff, Kenneth G.; Kaplan, Brian; Kowalski, Peter

    To extract gold from low-grade ores, a solution of sodium cyanide is trickled over pads of crushed ore. During this operation, small quantities of hydrogen cyanide gas may escape to the ambient air. To assess these emissions, we collected air samples at monitoring stations located on opposite sides of a gold heap leach field at distances ranging from 1100 to 1500 ft from the center of the field. Hydrogen cyanide was detected in 6 of 18 ambient air samples at concentrations ranging from 0.26 to 1.86 parts per billion (ppb). Ambient air samples collected at residential properties located within 2600 ft of the leach field did not contain detectable concentrations of cyanide (detection level of 0.2 ppb). We used site-specific data and two steady-state air dispersion models, ISCST3 and AERMOD, to predict ambient air concentrations of cyanide at the sampling points. The ISCST3 model over-predicted the measured 8-h concentrations of hydrogen cyanide by a factor of 2.4, on average, and the AERMOD model under-predicted the air concentrations of hydrogen cyanide by a factor of 0.76, on average. The major sources of uncertainty in the model predictions were the complex terrain of the area and the uncertainty in the emission rates of cyanide from the leach field. The measured and predicted concentrations of cyanide in the air samples were not at levels that would pose a human health hazard for acute or chronic exposures.

  5. Quantifying the direct transfer costs of common brushtail possum dispersal using least-cost modelling: a combined cost-surface and accumulated-cost dispersal kernel approach.

    PubMed

    Etherington, Thomas R; Perry, George L W; Cowan, Phil E; Clout, Mick N

    2014-01-01

    Dispersal costs need to be quantified from empirical data and incorporated into dispersal models to improve our understanding of the dispersal process. We are interested in quantifying how landscape features affect the immediately incurred direct costs associated with the transfer of an organism from one location to another. We propose that least-cost modelling is one method that can be used to quantify direct transfer costs. By representing the landscape as a cost-surface, which describes the costs associated with traversing different landscape features, least-cost modelling is often applied to measure connectivity between locations in accumulated-cost units that are a combination of both the distance travelled and the costs traversed. However, we take an additional step by defining an accumulated-cost dispersal kernel, which describes the probability of dispersal in accumulated-cost units. This novel combination of cost-surface and accumulated-cost dispersal kernel enables the transfer stage of dispersal to incorporate the effects of landscape features by modifying the direction of dispersal based on the cost-surface and the distance of dispersal based on the accumulated-cost dispersal kernel. We apply this approach to the common brushtail possum (Trichosurus vulpecula) within the North Island of New Zealand, demonstrating how commonly collected empirical dispersal data can be used to calibrate a cost-surface and associated accumulated-cost dispersal kernel. Our results indicate that considerable improvements could be made to the modelling of the transfer stage of possum dispersal by using a cost-surface and associated accumulated-cost dispersal kernel instead of a more traditional straight-line distance based dispersal kernel. We envisage a variety of ways in which the information from this novel combination of a cost-surface and accumulated-cost dispersal kernel could be gainfully incorporated into existing dispersal models. This would enable more realistic

  6. Quantifying the Direct Transfer Costs of Common Brushtail Possum Dispersal using Least-Cost Modelling: A Combined Cost-Surface and Accumulated-Cost Dispersal Kernel Approach

    PubMed Central

    Etherington, Thomas R.; Perry, George L. W.; Cowan, Phil E.; Clout, Mick N.

    2014-01-01

    Dispersal costs need to be quantified from empirical data and incorporated into dispersal models to improve our understanding of the dispersal process. We are interested in quantifying how landscape features affect the immediately incurred direct costs associated with the transfer of an organism from one location to another. We propose that least-cost modelling is one method that can be used to quantify direct transfer costs. By representing the landscape as a cost-surface, which describes the costs associated with traversing different landscape features, least-cost modelling is often applied to measure connectivity between locations in accumulated-cost units that are a combination of both the distance travelled and the costs traversed. However, we take an additional step by defining an accumulated-cost dispersal kernel, which describes the probability of dispersal in accumulated-cost units. This novel combination of cost-surface and accumulated-cost dispersal kernel enables the transfer stage of dispersal to incorporate the effects of landscape features by modifying the direction of dispersal based on the cost-surface and the distance of dispersal based on the accumulated-cost dispersal kernel. We apply this approach to the common brushtail possum (Trichosurus vulpecula) within the North Island of New Zealand, demonstrating how commonly collected empirical dispersal data can be used to calibrate a cost-surface and associated accumulated-cost dispersal kernel. Our results indicate that considerable improvements could be made to the modelling of the transfer stage of possum dispersal by using a cost-surface and associated accumulated-cost dispersal kernel instead of a more traditional straight-line distance based dispersal kernel. We envisage a variety of ways in which the information from this novel combination of a cost-surface and accumulated-cost dispersal kernel could be gainfully incorporated into existing dispersal models. This would enable more realistic

  7. Ballooning dispersal using silk: world fauna, phylogenies, genetics and models.

    PubMed

    Bell, J R; Bohan, D A; Shaw, E M; Weyman, G S

    2005-04-01

    Aerial dispersal using silk ('ballooning') has evolved in spiders (Araneae), spider mites (Acari) and in the larvae of moths (Lepidoptera). Since the 17th century, over 500 observations of ballooning behaviours have been published, yet there is an absence of any evolutionary synthesis of these data. In this paper the literature is reviewed, extensively documenting the known world fauna that balloon and the principal behaviours involved. This knowledge is then incorporated into the current evolutionary phylogenies to examine how ballooning might have arisen. Whilst it is possible that ballooning co-evolved with silk and emerged as early as the Devonian (410-355 mya), it is arguably more likely that ballooning evolved in parallel with deciduous trees, herbaceous annuals and grasses in the Cretaceous (135-65 mya). During this period, temporal (e.g. bud burst, chlorophyll thresholds) and spatial (e.g. herbivory, trampling) heterogeneities in habitat structuring predominated and intensified into the Cenozoic (65 mya to the present). It is hypothesized that from the ancestral launch mechanism known as 'suspended ballooning', widely used by individuals in plant canopies, 'tip-toe' and 'rearing' take-off behaviours were strongly selected for as habitats changed. It is contended that ballooning behaviour in all three orders can be described as a mixed Evolutionary Stable Strategy. This comprises individual bet-hedging due to habitat unpredictability, giving an underlying randomness to individual ballooning, with adjustments to the individual ballooning probability being conferred by more predictable habitat changes or colonization strategies. Finally, current methods used to study ballooning, including modelling and genetic research, are illustrated and an indication of future prospects given. PMID:15877859

  8. Urban air quality simulation with community multi-scale air quality (CMAQ) modeling system

    SciTech Connect

    Byun, D.; Young, J.; Gipson, G.; Schere, K.; Godowitch, J.

    1998-11-01

    In an effort to provide a state-of-the-science air quality modeling capability, US EPA has developed a new comprehensive and flexible Models-3 Community Multi-scale Air Quality (CMAQ) modeling system. The authors demonstrate CMAQ simulations for a high ozone episode in the northeastern US during 12-15 July 1995 and discuss meteorological issues important for modeling of urban air quality.

  9. Modeling Smoke Plume-Rise and Dispersion from Southern United States Prescribed Burns with Daysmoke.

    SciTech Connect

    Achtemeier, Gary, L.; Goodrick, Scott, A.; Liu, Yongqiang; Garcia-Menendez, Fernando; Hu, Yongtao; Odman, Mehmet, Talat.

    2011-08-19

    We present Daysmoke, an empirical-statistical plume rise and dispersion model for simulating smoke from prescribed burns. Prescribed fires are characterized by complex plume structure including multiple-core updrafts which makes modeling with simple plume models difficult. Daysmoke accounts for plume structure in a three-dimensional veering/sheering atmospheric environment, multiple-core updrafts, and detrainment of particulate matter. The number of empirical coefficients appearing in the model theory is reduced through a sensitivity analysis with the Fourier Amplitude Sensitivity Test (FAST). Daysmoke simulations for 'bent-over' plumes compare closely with Briggs theory although the two-thirds law is not explicit in Daysmoke. However, the solutions for the 'highly-tilted' plume characterized by weak buoyancy, low initial vertical velocity, and large initial plume diameter depart considerably from Briggs theory. Results from a study of weak plumes from prescribed burns at Fort Benning GA showed simulated ground-level PM2.5 comparing favorably with observations taken within the first eight kilometers of eleven prescribed burns. Daysmoke placed plume tops near the lower end of the range of observed plume tops for six prescribed burns. Daysmoke provides the levels and amounts of smoke injected into regional scale air quality models. Results from CMAQ with and without an adaptive grid are presented.

  10. Downscaling modelling system for multi-scale air quality forecasting

    NASA Astrophysics Data System (ADS)

    Nuterman, R.; Baklanov, A.; Mahura, A.; Amstrup, B.; Weismann, J.

    2010-09-01

    Urban modelling for real meteorological situations, in general, considers only a small part of the urban area in a micro-meteorological model, and urban heterogeneities outside a modelling domain affect micro-scale processes. Therefore, it is important to build a chain of models of different scales with nesting of higher resolution models into larger scale lower resolution models. Usually, the up-scaled city- or meso-scale models consider parameterisations of urban effects or statistical descriptions of the urban morphology, whereas the micro-scale (street canyon) models are obstacle-resolved and they consider a detailed geometry of the buildings and the urban canopy. The developed system consists of the meso-, urban- and street-scale models. First, it is the Numerical Weather Prediction (HIgh Resolution Limited Area Model) model combined with Atmospheric Chemistry Transport (the Comprehensive Air quality Model with extensions) model. Several levels of urban parameterisation are considered. They are chosen depending on selected scales and resolutions. For regional scale, the urban parameterisation is based on the roughness and flux corrections approach; for urban scale - building effects parameterisation. Modern methods of computational fluid dynamics allow solving environmental problems connected with atmospheric transport of pollutants within urban canopy in a presence of penetrable (vegetation) and impenetrable (buildings) obstacles. For local- and micro-scales nesting the Micro-scale Model for Urban Environment is applied. This is a comprehensive obstacle-resolved urban wind-flow and dispersion model based on the Reynolds averaged Navier-Stokes approach and several turbulent closures, i.e. k -ɛ linear eddy-viscosity model, k - ɛ non-linear eddy-viscosity model and Reynolds stress model. Boundary and initial conditions for the micro-scale model are used from the up-scaled models with corresponding interpolation conserving the mass. For the boundaries a

  11. Dispersion modelling of a wintertime particulate pollution episode in Christchurch, New Zealand

    NASA Astrophysics Data System (ADS)

    Barna, Michael G.; Gimson, Neil R.

    This paper examines the inter-suburb dispersion of particulate air pollution in Christchurch, New Zealand, during a wintertime particulate pollution episode. The dispersion is simulated using the RAMS/CALMET/CALPUFF modelling system, with data from a detailed emissions inventory of home heating, motor vehicles and industry. During the period 27 July-1 August 1995, peak 1 h and 24 h PM 10 concentrations of 368 and 107 μg m -3, respectively, were observed. Peak concentrations occurred at night, when particulate emissions from wood- and coal-burning domestic heating appliances were at a maximum and emitted into a stable boundary layer. The model is generally able to reproduce the observed PM 10 time series recorded at surface monitors located throughout the urban area. For this simulation, the fractional gross error ranges between 0.69 and 0.99, and the fractional bias ranges between -0.17 and 0.30. Strong horizontal concentration gradients of 100 μg m -3 km -1, both in the observational record and model predictions, are apparent. Three emission reduction options, designed to reduce the severity of particulate pollution episodes in Christchurch, are simulated. When both domestic open-hearth fires and all coal burning are removed, the 24 h average peak concentration is reduced by 55%. The number of guideline exceedences of PM 10 in the modelled period is reduced from five to one. Removing open-hearth fires results in 42% reduction in PM 10 concentration, resulting in three exceedences of the guideline, and removing coal-burning fires yields a 32% reduction in PM 10, resulting in four exceedences of the guideline.

  12. An ecomorphological model of the initial hominid dispersal from Africa.

    PubMed

    Antón, S C; Leonard, W R; Robertson, M L

    2002-12-01

    We use new data on the timing and extent of the early Pleistocene dispersal of Homo erectus to estimate diffusion coefficients of early Homo from Africa. These diffusion coefficients indicate more rapid and efficient dispersals than those calculated for fossil Macaca sp., Theropithecus darti, and Mesopithecus pentelicus. Increases in home range size associated with changes in ecology, hominid body size, and possibly foraging strategy may underlay these differences in dispersal efficiency. Ecological data for extant primates and human foragers indicate a close relationship between body size, home range size, and diet quality. These data predict that evolutionary changes in body size and foraging behavior would have produced a 10-fold increase in the home range size of H. erectus compared with that of the australopithecines. These two independent datasets provide a means of quantifying aspects of the dispersal of early Homo and suggest that rapid rates of dispersal appear to have been promoted by changes in foraging strategy and body size in H. erectus facilitated by changes in ecosystem structure during the Plio-Pleistocene. PMID:12473483

  13. Accurate FDTD modelling for dispersive media using rational function and particle swarm optimisation

    NASA Astrophysics Data System (ADS)

    Chung, Haejun; Ha, Sang-Gyu; Choi, Jaehoon; Jung, Kyung-Young

    2015-07-01

    This article presents an accurate finite-difference time domain (FDTD) dispersive modelling suitable for complex dispersive media. A quadratic complex rational function (QCRF) is used to characterise their dispersive relations. To obtain accurate coefficients of QCRF, in this work, we use an analytical approach and a particle swarm optimisation (PSO) simultaneously. In specific, an analytical approach is used to obtain the QCRF matrix-solving equation and PSO is applied to adjust a weighting function of this equation. Numerical examples are used to illustrate the validity of the proposed FDTD dispersion model.

  14. An idealized transient model for melt dispersal from reactor cavities during pressurized melt ejection accident scenarios

    SciTech Connect

    Tutu, N.K.

    1991-06-01

    The direct Containment Heating (DCH) calculations require that the transient rate at which the melt is ejected from the reactor cavity during hypothetical pressurized melt ejection accident scenarios be calculated. However, at present no models, that are able to predict the available melt dispersal data from small scale reactor cavity models, are available. In this report, a simple idealized model of the melt dispersal process within a reactor cavity during a pressurized melt ejection accident scenario is presented. The predictions from the model agree reasonably well with the integral data obtained from the melt dispersal experiments using a small scale model of the Surry reactor cavity. 17 refs., 15 figs.

  15. Atmospheric dispersion of ammonia: an ammonia fog model

    SciTech Connect

    Kansa, E.J.; Ermak, D.L.

    1983-01-01

    Ammonia (NH/sub 3/), a by-product of many chemical processes, is widely used as a fertilizer and as a raw material for many chemical syntheses. The purpose of this paper is to discuss the atmospheric dispersion of ammonia resulting from a high pressure release. The resulting nature of the two-phase cloud of ammonia vapor and droplets has a significant effect on its dispersion characteristics. Our calculations of a 40 ton release show that even under moderately high wind conditions, the resulting ammonia cloud remains negatively buoyant for considerable distances downwind.

  16. Atmospheric dispersion of ammonia: an ammonia fog model

    SciTech Connect

    Kansa, E.J.; Ermak,D.L.

    1983-04-01

    Ammonia (NH/sub 3/), a by-product of many chemical processes, is widely used as a fertilizer and as a raw material for many chemical syntheses. The purpose of this paper is to discuss the atmospheric dispersion of ammonia resulting from a high pressure release. The resulting nature of the two-phase clouds of ammonia vapor and droplets has a significant effect on its dispersion characteristics. Our calculations of a 40 ton release show that even under moderately high wind conditions, the resulting ammonia cloud remains negatively buoyant for considerable distances downwind.

  17. Atmospheric dispersion of ammonia: an ammonia fog model

    SciTech Connect

    Kansa, E.J.; Ermak, D.L.; Chan, S.T.; Rodean, H.C.

    1983-07-01

    Ammonia (NH/sub 3/), a by-product of many chemical processes, is widely used as a fertilizer and as a raw material for many chemical syntheses. The purpose of this paper is to discuss the atmospheric dispersion of ammonia resulting from a high pressure release. The resulting nature of the two-phase cloud of ammonia vapor and droplets has a significant effect on its dispersion characteristics. Our calculations of a 40 ton release show that even under moderately high wind conditions, the resulting ammonia cloud remains negatively buoyant for considerable distances downwind. 10 references, 15 figures.

  18. Microscopic models for electromagnetic wave propagation in highly dispersive media

    NASA Astrophysics Data System (ADS)

    Defacio, Brian

    1990-06-01

    The purpose of this project was to advance the understanding of the propagation of ultrafast picosecond electromagnetic pulses in biological solutions and ultimately, in human tissue. Present day standards of the allowed electromagnetic doses do not include dispersion, modulation or envelope effects, memory or nonlinearity. It is well-known experimentally that biological solutions are highly dispersive. It is plausible, but not established, that modulation, memory, and nonlinearity may be important in biological solutions. Hence, this project represents a first step toward better standards.

  19. Assessing vanadium and arsenic exposure of people living near a petrochemical complex with two-stage dispersion models.

    PubMed

    Chio, Chia-Pin; Yuan, Tzu-Hsuen; Shie, Ruei-Hao; Chan, Chang-Chuan

    2014-04-30

    The goal of this study is to demonstrate that it is possible to construct a two-stage dispersion model empirically for the purpose of estimating air pollution levels in the vicinity of petrochemical plants. We studied oil refineries and coal-fired power plants in the No. 6 Naphtha Cracking Complex, an area of 2,603-ha situated on the central west coast of Taiwan. The pollutants targeted were vanadium (V) from oil refineries and arsenic (As) from coal-fired power plants. We applied a backward fitting method to determine emission rates of V and As, with 192 PM10 filters originally collected between 2009 and 2012. Our first-stage model estimated emission rates of V and As (median and 95% confidence intervals at 0.0202 (0.0040-0.1063) and 0.1368 (0.0398-0.4782) g/s, respectively. In our second stage model, the predicted zone-average concentrations showed a strong correlation with V, but a poor correlation with As. Our findings show that two-stage dispersion models are relatively precise for estimating V levels at residents' addresses near the petrochemical complex, but they did not work as well for As levels. In conclusion, our model-based approach can be widely used for modeling exposure to air pollution from industrial areas in countries with limited resources. PMID:24607528

  20. The treatment of uncertainties in reactive pollution dispersion models at urban scales.

    PubMed

    Tomlin, A S; Ziehn, T; Goodman, P; Tate, J E; Dixon, N S

    2016-07-18

    The ability to predict NO2 concentrations ([NO2]) within urban street networks is important for the evaluation of strategies to reduce exposure to NO2. However, models aiming to make such predictions involve the coupling of several complex processes: traffic emissions under different levels of congestion; dispersion via turbulent mixing; chemical processes of relevance at the street-scale. Parameterisations of these processes are challenging to quantify with precision. Predictions are therefore subject to uncertainties which should be taken into account when using models within decision making. This paper presents an analysis of mean [NO2] predictions from such a complex modelling system applied to a street canyon within the city of York, UK including the treatment of model uncertainties and their causes. The model system consists of a micro-scale traffic simulation and emissions model, and a Reynolds averaged turbulent flow model coupled to a reactive Lagrangian particle dispersion model. The analysis focuses on the sensitivity of predicted in-street increments of [NO2] at different locations in the street to uncertainties in the model inputs. These include physical characteristics such as background wind direction, temperature and background ozone concentrations; traffic parameters such as overall demand and primary NO2 fraction; as well as model parameterisations such as roughness lengths, turbulent time- and length-scales and chemical reaction rate coefficients. Predicted [NO2] is shown to be relatively robust with respect to model parameterisations, although there are significant sensitivities to the activation energy for the reaction NO + O3 as well as the canyon wall roughness length. Under off-peak traffic conditions, demand is the key traffic parameter. Under peak conditions where the network saturates, road-side [NO2] is relatively insensitive to changes in demand and more sensitive to the primary NO2 fraction. The most important physical parameter was

  1. Field Studies for Validation of Urban Dispersion Models - Current Status and Research Needs

    NASA Astrophysics Data System (ADS)

    Allwine, J.

    2007-12-01

    Urban dispersion models are important tools in addressing consequences from potential releases of harmful airborne materials in urban areas. These models are used by emergency management, law enforcement, and intelligence personnel to effectively plan for and respond to potential terrorist attacks and accidents. Field studies are vitally important for improving and validating these urban dispersion models which are used to simulate contaminant dispersion in and around cities. Over the past decade, three major urban field studies have been designed and conducted in the United States. The primary objectives of these studies have been to advance the state-of-science of understanding and modeling atmospheric flows and dispersion in and around cities, and to provide field observation for validation of urban dispersion models. The three major field studies (Salt Lake City, October 2000; Oklahoma City, July 2003; and New York City, August 2005) were conducted in cities of different sizes, in different geographic regions and during different times of the year. The tracer and meteorological data from these three field campaigns provide a rich dataset for validation of urban dispersion models over a range of conditions. The status and uses of the three urban dispersion datasets will be summarized, followed by a discussion of the current observational gaps and research needs in characterizing specific urban dispersion processes, such as outdoor-indoor coupling and outdoor-subway coupling.

  2. Advanced air revitalization system modeling and testing

    NASA Technical Reports Server (NTRS)

    Dall-Baumann, Liese; Jeng, Frank; Christian, Steve; Edeer, Marybeth; Lin, Chin

    1990-01-01

    To support manned lunar and Martian exploration, an extensive evaluation of air revitalization subsystems (ARS) is being conducted. The major operations under study include carbon dioxide removal and reduction; oxygen and nitrogen production, storage, and distribution; humidity and temperature control; and trace contaminant control. A comprehensive analysis program based on a generalized block flow model was developed to facilitate the evaluation of various processes and their interaction. ASPEN PLUS was used in modelling carbon dioxide removal and reduction. Several life support test stands were developed to test new and existing technologies for their potential applicability in space. The goal was to identify processes which use compact, lightweight equipment and maximize the recovery of oxygen and water. The carbon dioxide removal test stands include solid amine/vacuum desorption (SAVD), regenerative silver oxide chemisorption, and electrochemical carbon dioxide concentration (EDC). Membrane-based carbon dioxide removal and humidity control, catalytic reduction of carbon dioxide, and catalytic oxidation of trace contaminants were also investigated.

  3. Atmospheric Dispersion Modeling of the February 2014 Waste Isolation Pilot Plant Release

    SciTech Connect

    Nasstrom, John; Piggott, Tom; Simpson, Matthew; Lobaugh, Megan; Tai, Lydia; Pobanz, Brenda; Yu, Kristen

    2015-07-22

    This report presents the results of a simulation of the atmospheric dispersion and deposition of radioactivity released from the Waste Isolation Pilot Plant (WIPP) site in New Mexico in February 2014. These simulations were made by the National Atmospheric Release Advisory Center (NARAC) at Lawrence Livermore National Laboratory (LLNL), and supersede NARAC simulation results published in a previous WIPP report (WIPP, 2014). The results presented in this report use additional, more detailed data from WIPP on the specific radionuclides released, radioactivity release amounts and release times. Compared to the previous NARAC simulations, the new simulation results in this report are based on more detailed modeling of the winds, turbulence, and particle dry deposition. In addition, the initial plume rise from the exhaust vent was considered in the new simulations, but not in the previous NARAC simulations. The new model results show some small differences compared to previous results, but do not change the conclusions in the WIPP (2014) report. Presented are the data and assumptions used in these model simulations, as well as the model-predicted dose and deposition on and near the WIPP site. A comparison of predicted and measured radionuclide-specific air concentrations is also presented.

  4. CONCENTRATIONS OF TOXIC AIR POLLUTANTS IN THE U.S. SIMULATED BY AN AIR QUALITY MODEL

    EPA Science Inventory

    As part of the US National Air Toxics Assessment, we have applied the Community Multiscale Air Quality Model, CMAQ, to study the concentrations of twenty gas-phase, toxic, hazardous air pollutants (HAPs) in the atmosphere over the continental United States. We modified the Carbo...

  5. INTEGRATED AIR POLLUTION CONTROL SYSTEM (IAPCS) COST MODEL (AIR POLLUTION TECHNOLOGY BRANCH, AIR POLLUTION PREVENTION AND CONTROL DIVISION, NRMRL)

    EPA Science Inventory

    The Air Pollution Technology Branch's (APPCD, NRMRL) Integrated Air Pollution Control System Cost Model is a compiled model written in FORTRAN and C language that is designed to be used on an IBM or compatible PC with 640K or lower RAM and at least 1.5 Mb of hard drive space. It ...

  6. [Hyperspectral Detection Model for Soil Dispersion in Zhouqu Debris Flow Source Region].

    PubMed

    Wang, Qin-jun; Wei, Yong-ming; Chen, Yu; Chen, Jia-ge; Lin, Qi-zhong

    2016-02-01

    Sensitive band positions, models and the principles of soil dispersion detected by hyperspectral remote sensing were firstly discussed according to the results of soil dispersive hyperspectral remote sensing experiment. Results showed that, (1) signals and noises could be separated by Fourier transformation. A finely mineral identification system was developed to remove spectral noises and provide highly accurate data for establishing soil dispersive model; (2) Soil dispersive hyperspectral remote sensing model established by the multiple linear regression method was good at soil dispersion forecasting for the high correlation between sensitive bands and the soil dispersions. (3) According to mineral spectra, soil minerals and their absorbed irons were reflected by sensitive bands which revealed reasons causing soils to be dispersive. Sodium was the closest iron correlated with soil dispersion. The secondary was calcite, montmorillonite and illite. However, the correlation between soil dispersion and chlorite, kaolinite, PH value, quartz, potassium feldspar, plagioclase was weak. The main reason was probably that sodium was low in ionic valence, small ionic radius and strong hydration forces; calcite was high water soluble and illite was weak binding forces between two layers under high pH value. PMID:27209758

  7. Exposure Modeling of Residential Air Exchange Rates for NEXUS Participants.

    EPA Science Inventory

    Due to cost and participant burden of personal measurements, air pollution health studies often estimate exposures using local ambient air monitors. Since outdoor levels do not necessarily reflect personal exposures, we developed the Exposure Model for Individuals (EMI) to improv...

  8. Exposure Modeling of Residential Air Exchange Rates for NEXUS Participants

    EPA Science Inventory

    Due to cost and participant burden of personal measurements, air pollution health studies often estimate exposures using local ambient air monitors. Since outdoor levels do not necessarily reflect personal exposures, we developed the Exposure Model for Individuals (EMI) to improv...

  9. AIR QUALITY MODELING OF PM AND AIR TOXICS AT NEIGHBORHOOD SCALES

    EPA Science Inventory

    The current interest in fine particles and toxics pollutants provide an impetus for extending air quality modeling capability towards improving exposure modeling and assessments. Human exposure models require information on concentration derived from interpolation of observati...

  10. Mechanistic analytical models for long-distance seed dispersal by wind.

    PubMed

    Katul, G G; Porporato, A; Nathan, R; Siqueira, M; Soons, M B; Poggi, D; Horn, H S; Levin, S A

    2005-09-01

    We introduce an analytical model, the Wald analytical long-distance dispersal (WALD) model, for estimating dispersal kernels of wind-dispersed seeds and their escape probability from the canopy. The model is based on simplifications to well-established three-dimensional Lagrangian stochastic approaches for turbulent scalar transport resulting in a two-parameter Wald (or inverse Gaussian) distribution. Unlike commonly used phenomenological models, WALD's parameters can be estimated from the key factors affecting wind dispersal--wind statistics, seed release height, and seed terminal velocity--determined independently of dispersal data. WALD's asymptotic power-law tail has an exponent of -3/2, a limiting value verified by a meta-analysis for a wide variety of measured dispersal kernels and larger than the exponent of the bivariate Student t-test (2Dt). We tested WALD using three dispersal data sets on forest trees, heathland shrubs, and grassland forbs and compared WALD's performance with that of other analytical mechanistic models (revised versions of the tilted Gaussian Plume model and the advection-diffusion equation), revealing fairest agreement between WALD predictions and measurements. Analytical mechanistic models, such as WALD, combine the advantages of simplicity and mechanistic understanding and are valuable tools for modeling large-scale, long-term plant population dynamics. PMID:16224691

  11. Uncertainty characterization and quantification in air pollution models. Application to the ADMS-Urban model.

    NASA Astrophysics Data System (ADS)

    Debry, E.; Malherbe, L.; Schillinger, C.; Bessagnet, B.; Rouil, L.

    2009-04-01

    uncertainty analysis. We chose the Monte Carlo method which has already been applied to atmospheric dispersion models [2, 3, 4]. The main advantage of this method is to be insensitive to the number of perturbed parameters but its drawbacks are its computation cost and its slow convergence. In order to speed up this one we used the method of antithetic variable which takes adavantage of the symmetry of probability laws. The air quality model simulations were carried out by the Association for study and watching of Atmospheric Pollution in Alsace (ASPA). The output concentrations distributions can then be updated with a Bayesian method. This work is part of an INERIS Research project also aiming at assessing the uncertainty of the CHIMERE dispersion model used in the Prev'Air forecasting platform (www.prevair.org) in order to deliver more accurate predictions. (1) Rao, K.S. Uncertainty Analysis in Atmospheric Dispersion Modeling, Pure and Applied Geophysics, 2005, 162, 1893-1917. (2) Beekmann, M. and Derognat, C. Monte Carlo uncertainty analysis of a regional-scale transport chemistry model constrained by measurements from the Atmospheric Pollution Over the PAris Area (ESQUIF) campaign, Journal of Geophysical Research, 2003, 108, 8559-8576. (3) Hanna, S.R. and Lu, Z. and Frey, H.C. and Wheeler, N. and Vukovich, J. and Arunachalam, S. and Fernau, M. and Hansen, D.A. Uncertainties in predicted ozone concentrations due to input uncertainties for the UAM-V photochemical grid model applied to the July 1995 OTAG domain, Atmospheric Environment, 2001, 35, 891-903. (4) Romanowicz, R. and Higson, H. and Teasdale, I. Bayesian uncertainty estimation methodology applied to air pollution modelling, Environmetrics, 2000, 11, 351-371.

  12. Atmospheric Transport and Dispersion Modeling of the Okmok and Kasatochi Eruptions in Support of the Montreal VAAC Operations

    NASA Astrophysics Data System (ADS)

    Servranckx, R.; Malo, A.; Bensimon, D.; D'Amours, R.; Trudel, S.; Gauthier Bilodeau, J.

    2008-12-01

    The significant eruptions of Okmok and Kasatochi volcanoes in July and August 2008 produced large volcanic clouds consisting in a mixture ash, sulphur dioxide, sulphuric acid and sulphate aerosols that moved from the Aleutians over the North Pacific, North America, the Atlantic Ocean and eventually around the globe over a period of a few weeks. The three North American designated Volcanic Ash Advisory Centers (VAAC) and Meteorological Watch Offices worked in close collaboration with the Alaska Volcano Observatory to issue guidance and warnings (SIGMET) to the aviation community regarding the location and displacement of the volcanic clouds throughout this event. The Montreal VAAC was heavily involved in this coordination effort as the volcanic clouds approached and entered Canadian airspace. Atmospheric transport and dispersion modeling (ATDM) is an important tool in this process to help diagnose and predict the motion of volcanic clouds. This is even more important for long-lived events, as was the case here, given the complexity of atmospheric flows and dynamics in time and space which resulted in equally complex volcanic cloud dispersion patterns. In this study, we present the ATDM results for both eruptions using a lagrangian model called "Modele Lagrangien de Dispersion des Particules" (MLDP0) and developed at the Canadian Meteorological Centre. The model is the process of being implemented for the Montreal VAAC operations. The modeling results are compared with measurements and imagery from various satellites and sensors such as GOES, POES, AIRS and OMI.

  13. Dispersal of Aspergillus fumigatus from Sewage Sludge Compost Piles Subjected to Mechanical Agitation in Open Air

    PubMed Central

    Millner, Patricia D.; Bassett, David A.; Marsh, Paul B.

    1980-01-01

    Aerosolization of the thermophilous fungal opportunist Aspergillus fumigatus from mechanically agitated compost piles was examined at a pilot-scale sewage sludge composting facility and two other selected test sites. Aerosols of A. fumigatus downwind from stationary compost piles were insignificant in comparison with those downwind from agitated piles. These aerosols were generated by a front-end loader moving and dropping compost. Aerial concentrations of the fungus at distances downwind from the point of emission were used to determine an emission rate for A. fumigatus associated with the moving operations. The maximum emission rate, 4.6 × 106A. fumigatus particles per s, was used to calculate predicted concentrations in an unobstructed plume with restrictive, neutral, and dispersive atmospheric mixing conditions up to 1 km downwind from the emission source. PMID:16345563

  14. Modeling SF{sub 6} plume dispersion in complex terrain and meteorology with a limited data set

    SciTech Connect

    Schalk, W.W. III

    1996-10-01

    Early actions of emergency responders during hazardous material releases are intended to assess contamination and potential public exposure. As measurements are collected, an integration of model calculations and measurements can assist to better understand the situation. This study applied a high resolution version of the operational 3-D numerical models used by Lawrence Livermore National Laboratory to a limited meteorological and tracer data set to assist in the interpretation of the dispersion pattern on a 140 km scale. The data set was collected from a tracer release during the morning surface inversion and transition period in the complex terrain of the Snake River Plain near Idaho Falls, Idaho in November 1993 by the United States Air Force. Sensitivity studies were conducted to determine model input parameters that best represented the study environment. These studies showed that mixing and boundary layer heights, atmospheric stability, and rawinsonde data are the most important model input parameters affecting wind field generation and tracer dispersion. Numerical models and limited measurement data were used to interpret dispersion patterns through the use of data analysis, model input determination, and sensitivity studies. Comparison of the best-estimate calculation to measurement data showed that model results compared well with the aircraft data, but had moderate success with the few surface measurements taken. The moderate success of the surface measurement comparison, may be due to limited downward mixing of the tracer as a result of the model resolution determined by the domain size selected to study the overall plume dispersion. 8 refs., 40 figs., 7 tabs.

  15. Urban morphological analysis for mesoscale meteorological and dispersion modeling applications : current issues

    SciTech Connect

    Burian, S. J.; Brown, M. J.; Ching, J.; Cheuk, M. L.; Yuan, M.; McKinnon, A. T.; Han, W. S.

    2004-01-01

    Accurate predictions of air quality and atmospheric dispersion at high spatial resolution rely on high fidelity predictions of mesoscale meteorological fields that govern transport and turbulence in urban areas. However, mesoscale meteorological models do not have the spatial resolution to directly simulate the fluid dynamics and thermodynamics in and around buildings and other urban structures that have been shown to modify micro- and mesoscale flow fields (e.g., see review by Bornstein 1987). Mesoscale models therefore have been adapted using numerous approaches to incorporate urban effects into the simulations (e.g., see reviews by Brown 2000 and Bornstein and Craig 2002). One approach is to introduce urban canopy parameterizations to approximate the drag, turbulence production, heating, and radiation attenuation induced by sub-grid scale buildings and urban surface covers (Brown 2000). Preliminary results of mesoscale meteorological and air quality simulations for Houston (Dupont et al. 2004) demonstrated the importance of introducing urban canopy parameterizations to produce results with high spatial resolution that accentuates variability, highlights important differences, and identifies critical areas. Although urban canopy parameterizations may not be applicable to all meteorological and dispersion models, they have been successfully introduced and demonstrated in many of the current operational and research mode mesoscale models, e.g., COAMPS (Holt et al. 2002), HOTMAC (Brown and Williams 1998), MM5 (e.g., Otte and Lacser 2001; Lacser and Otte 2002; Dupont et al. 2004), and RAMS (Rozoff et al. 2003). The primary consequence of implementing an urban parameterization in a mesoscale meteorological model is the need to characterize the urban terrain in greater detail. In general, urban terrain characterization for mesoscale modeling may be described as the process of collecting datasets of urban surface cover physical properties (e.g., albedo, emissivity) and

  16. CHARACTERIZING THE DISPERSIVE STATE OF CONVECTIVE BOUNDARY LAYERS FOR APPLIED DISPERSION MODELING

    EPA Science Inventory

    Estimates from semiempirical models that characterize surface heat flux, mixing depth, and profiles of temperature, wind, and turbulence are compared with observations from atmospheric field Studies conducted in Colorado, Illinois, Indiana, and Minnesota. In addition, for wind an...

  17. AIR QUALITY MODELING FOR THE TWENTY-FIRST CENTURY

    EPA Science Inventory

    This presentation describes recent and evolving advances in the science of numerical air quality simulation modeling. Emphasis is placed on new developments in particulate matter modeling and atmospheric chemistry, diagnostic modeling tools, and integrated modeling systems. New...

  18. Atmospheric dispersion modeling and meteorological monitoring in support of emergency planning and response for the US Army's Chemical Stockpile Disposal Program

    SciTech Connect

    Miller, R.L.

    1990-08-01

    This technical memorandum examines the role of atmospheric dispersion modeling and meteorological monitoring in support of emergency planning and response for the US Army's Chemical Stockpile Disposal Program (CSDP). Air dispersion modeling and meteorological monitoring are expected to form key components in integrated accident assessment and warning systems at each of the eight CSDP installations. This report assesses the capabilities of operating state-of-the-art systems in order to establish a baseline for developing the requirements of the CSDP systems. A general tutorial on the types of atmospheric dispersion models currently available is provided, and the criteria for selection of emergency response models are developed. The requirements for meteorological monitoring are also described. In addition, the basic limitations of modeling and monitoring are discussed, and the importance of model verification is emphasized. Staffing requirements to operate an integrated modeling and monitoring system are characterized. The current state of modeling, monitoring, and staffing levels in support of emergency response at the eight US Army chemical stockpile depots involved in the CSDP is examined. Specific requirements appropriate to emergency planning and response at each of the eight sites are described. Recommendations are made for both the integrated system and the individual components of air dispersion modeling and meteorological monitoring. Finally, future work required to prepare for emergency response is discussed. 22 refs., 4 figs., 3 tabs.

  19. Modelling spatio-temporal patterns of long-distance Culicoides dispersal into northern Australia.

    PubMed

    Eagles, D; Walker, P J; Zalucki, M P; Durr, P A

    2013-07-01

    Novel arboviruses, including new serotypes of bluetongue virus, are isolated intermittently from cattle and insects in northern Australia. These viruses are thought to be introduced via windborne dispersal of Culicoides from neighbouring land masses to the north. We used the HYSPLIT particle dispersal model to simulate the spatio-temporal patterns of Culicoides dispersal into northern Australia from nine putative source sites across Indonesia, Timor-Leste and Papua New Guinea. Simulated dispersal was found to be possible from each site, with the islands of Timor and Sumba highlighted as the likely principal sources and February the predominant month of dispersal. The results of this study define the likely spatial extent of the source and arrival regions, the relative frequency of dispersal from the putative sources and the temporal nature of seasonal winds from source sites into arrival regions. Importantly, the methodology and results may be applicable to other insect and pathogen incursions into northern Australia. PMID:23642857

  20. NIRATAM-NATO infrared air target model

    NASA Astrophysics Data System (ADS)

    Noah, Meg A.; Kristl, Joseph; Schroeder, John W.; Sandford, B. P.

    1991-08-01

    NIRATAM (the NATO Infrared Air Target Model) was developed by the NATO AC 243, Panel IV, Research Study Group 6 (RSG-6). RSG-6 is composed of representatives from Denmark, France, Germany, Italy, the Netherlands, the United Kingdom, the United States of America, and Canada (as an observer). NIRATAM is based on theoretical studies, field measurements, and infrared data analysis performed over many years. The model encompasses all the major signature components required to simulate the infrared signature of an aircraft and the atmosphere. The vehicle fuselage, facet, model includes radiation due to aerodynamic heating, internal heat sources, reflected sky, earth, and solar radiation. Plume combustion gas emissions are calculated for H(subscript 2)O, CO(subscript 2), CO, and other gases as well as solid particles. Lowtran 7 is used for the atmospheric transmission and radiance. The software generates graphical outputs of the target wireframe, plume flowfield, atmospheric transmission, total signature, and plume signature. Imagery data can be used for system development and evaluation. NIRATAM can be used for many applications such as measurement planning, data analysis, systems design, and aircraft development. Ontar has agreed to assist the RSG-6 by being the NIRATAM distribution center in the United States for users approved by the national representatives. Arrangements have also been made to distribute a user-friendly NIRATAM interface. This paper describes the model, presents results, makes comparisons with measured field data, and describes the availability and procedure for obtaining the software.

  1. Evaluating the role of green infrastructures on near-road pollutant dispersion and removal: Modelling and measurement.

    PubMed

    Morakinyo, Tobi Eniolu; Lam, Yun Fat; Hao, Song

    2016-11-01

    To enhance the quality of human life in a rapidly urbanized world plagued with high transportation, the masterful contribution of improved urban and local air quality cannot be overemphasized. In order to reduce human exposure to near-road air pollution, several approaches including the installation of roadside structural barriers especially in open street areas, such as city entrances are being applied. In the present study, the air quality around real world and idealized green infrastructures was investigated by means of numerical simulation and a short field measurement campaign. Fair agreement was found between ENVI-met modelled and measured particulate matter's concentration data around a realistic vegetation barrier indicating a fair representation of reality in the model. Several numerical experiments were conducted to investigate the influence of barrier type (vegetation/hedge and green wall) and dimensions on near-road air quality. The results show different horizontal/vertical patterns and magnitudes of upwind and downwind relative concentration (with and without a barrier) depending on wind condition, barrier type and dimension. Furthermore, an integrated dispersion-deposition approach was employed to assess the impact on air quality of near-road vegetation barrier. At last, recommendations to city and urban planners on the implementation of roadside structural barriers were made. PMID:27544646

  2. Large Scale Numerical Modelling to Study the Dispersion of Persistent Toxic Substances Over Europe

    NASA Astrophysics Data System (ADS)

    Aulinger, A.; Petersen, G.

    2003-12-01

    For the past two decades environmental research at the GKSS Research Centre has been concerned with airborne pollutants with adverse effects on human health. The research was mainly focused on investigating the dispersion and deposition of heavy metals like lead and mercury over Europe by means of numerical modelling frameworks. Lead, in particular, served as a model substance to study the relationship between emissions and human exposition. The major source of airborne lead in Germany was fuel combustion until the 1980ies when its use as gasoline additive declined due to political decisions. Since then, the concentration of lead in ambient air and the deposition rates decreased in the same way as the consumption of leaded fuel. These observations could further be related to the decrease of lead concentrations in human blood measured during medical studies in several German cities. Based on the experience with models for heavy metal transport and deposition we have now started to turn our research focus to organic substances, e.g. PAHs. PAHs have been recognized as significant air borne carcinogens for several decades. However, it is not yet possible to precisely quantify the risk of human exposure to those compounds. Physical and chemical data, known from literature, describing the partitioning of the compounds between particle and gas phase and their degradation in the gas phase are implemented in a tropospheric chemistry module. In this way, the fate of PAHs in the atmosphere due to different particle type and size and different meteorological conditions is tested before carrying out large-scale and long-time studies. First model runs have been carried out for Benzo(a)Pyrene as one of the principal carcinogenic PAHs. Up to now, nearly nothing is known about degradation reactions of particle bound BaP. Thus, they could not be taken into account in the model so far. On the other hand, the proportion of BaP in the gas phase has to be considered at higher ambient

  3. PRELIMINARY STUDIES OF VIDEO IMAGES OF SMOKE DISPERSION IN THE NEAR WAKE OF A MODEL BUILDING

    EPA Science Inventory

    A scary of analyses of video images of smoke in a wind tunnel study of dispersion in the near wake of a model building is presented. The analyses provide information on both the instantaneous and the time- average patterns of dispersion. ince the images represent vertically-integ...

  4. Delay differential models in multimode laser dynamics: taking chromatic dispersion into account

    NASA Astrophysics Data System (ADS)

    Vladimirov, A. G.; Huyet, G.; Pimenov, A.

    2016-04-01

    A set of differential equations with distributed delay is derived for modeling of multimode ring lasers with intracavity chromatic dispersion. Analytical stability analysis of continuous wave regimes is performed and it is demonstrated that sufficiently strong anomalous dispersion can destabilize these regimes.

  5. Dispersal leads to spatial autocorrelation in species distributions: A simulation model

    USGS Publications Warehouse

    Bahn, V.; Krohn, W.B.; O'Connor, R.J.

    2008-01-01

    Compared to population growth regulated by local conditions, dispersal has been underappreciated as a central process shaping the spatial distribution of populations. This paper asks: (a) which conditions increase the importance of dispersers relative to local recruits in determining population sizes? and (b) how does dispersal influence the spatial distribution patterns of abundances among connected populations? We approached these questions with a simulation model of populations on a coupled lattice with cells of continuously varying habitat quality expressed as carrying capacities. Each cell contained a population with the basic dynamics of density-regulated growth, and was connected to other populations by immigration and emigration. The degree to which dispersal influenced the distribution of population sizes depended most strongly on the absolute amount of dispersal, and then on the potential population growth rate. Dispersal decaying in intensity with distance left close neighbours more alike in population size than distant populations, leading to an increase in spatial autocorrelation. The spatial distribution of species with low potential growth rates is more dependent on dispersal than that of species with high growth rates; therefore, distribution modelling for species with low growth rates requires particular attention to autocorrelation, and conservation management of these species requires attention to factors curtailing dispersal, such as fragmentation and dispersal barriers. ?? 2007 Elsevier B.V. All rights reserved.

  6. Model of Close Packing for Determination of the Major Characteristics of the Liquid Dispersions Components

    PubMed Central

    Kolikov, Kiril Hristov; Hristozov, Dimo Donchev; Koleva, Radka Paskova; Krustev, Georgi Aleksandrov

    2014-01-01

    We introduce a close packing model of the particles from the disperse phase of a liquid dispersion. With this model, we find the sediment volumes, the emergent, and the bound dispersion medium. We formulate a new approach for determining the equivalent radii of the particles from the sediment and the emergent (different from the Stokes method). We also describe an easy manner to apply algebraic method for determining the average volumetric mass densities of the ultimate sediment and emergent, as well as the free dispersion medium (without using any pycnometers or densitometers). The masses of the different components and the density of the dispersion phase in the investigated liquid dispersion are also determined by means of the established densities. We introduce for the first time a dimensionless scale for numeric characterization and therefore an index for predicting the sedimentation stability of liquid dispersions in case of straight and/or reverse sedimentation. We also find the quantity of the pure substance (without pouring out or drying) in the dispersion phase of the liquid dispersions. PMID:25136673

  7. A Lagrangian Monte Carlo model of turbulent dispersion in the convective planetary boundary layer

    NASA Astrophysics Data System (ADS)

    Liljegren, J. C.; Dunn, W. E.

    A Lagrangian Monte Carlo model for predicting the dispersion of a passive tracer in a convective boundary layer is presented. The stochastic model provides a more realistic treatment of convective turbulence than previous modeling approaches. Accurate input for the dispersion prediction is provided by extensive water-tank measurements of convective turbulence. The dispersion of a large number of passive tracer particles is computationally simulated by using the Langevin equation to model the Lagrangian velocities. The behavior of the autocorrelation of the modeled Lagrangian velocities closely matches the nonexponential form computed from balloon-borne measurements in the atmosphere. A kernel estimation technique is employed to efficiently recover mean concentrations from the trajectory simulations and reduce computational requirements. The predictions of the stochastic model are in close agreement with the dispersion trends and magnitudes observed in the data.

  8. DESIGN REQUIREMENTS FOR MULTISCALE AIR QUALITY MODELS

    EPA Science Inventory

    Society (as mandated by the clean Air Act) requires that we protect our environment and minimize human exposure to harmful air pollutants with National Ambient Air Quality Standards (NAAQS). e al:o seek to minimize the economic costs of the necessary pollution control to meet the...

  9. Mathematical modelling of dispersion-managed thulium/holmium fibre lasers

    SciTech Connect

    Yarutkina, I A; Shtyrina, O V

    2013-11-30

    The mathematical model of a dispersion-managed thulium/holmium fibre laser is described; the results of numerical calculations and their comparison with the experimental data are presented. Qualitative agreement of the results of the mathematical modelling with those of the experiment is obtained. Using the methods of mathematical modelling, the variation in the characteristics of the optical pulses due to the change in the average cavity dispersion is analysed. (control of laser radiation parameters)

  10. A dynamic approach for the impact of a toxic gas dispersion hazard considering human behaviour and dispersion modelling.

    PubMed

    Lovreglio, Ruggiero; Ronchi, Enrico; Maragkos, Georgios; Beji, Tarek; Merci, Bart

    2016-11-15

    The release of toxic gases due to natural/industrial accidents or terrorist attacks in populated areas can have tragic consequences. To prevent and evaluate the effects of these disasters different approaches and modelling tools have been introduced in the literature. These instruments are valuable tools for risk managers doing risk assessment of threatened areas. Despite the significant improvements in hazard assessment in case of toxic gas dispersion, these analyses do not generally include the impact of human behaviour and people movement during emergencies. This work aims at providing an approach which considers both modelling of gas dispersion and evacuation movement in order to improve the accuracy of risk assessment for disasters involving toxic gases. The approach is applied to a hypothetical scenario including a ship releasing Nitrogen dioxide (NO2) on a crowd attending a music festival. The difference between the results obtained with existing static methods (people do not move) and a dynamic approach (people move away from the danger) which considers people movement with different degrees of sophistication (either a simple linear path or more complex behavioural modelling) is discussed. PMID:27343142

  11. Analysis of the dispersion of air pollutants from a factory Asphalt in Nuevo Vallarta, Nay., Mex

    NASA Astrophysics Data System (ADS)

    Carrillo-Gonzalez, F. M.; Gaitán-Rodríguez, M.; Cornejo-López, V. M.; Morales-Hernández, J. C.

    2013-12-01

    An asphalt factory has operated intermittently near the urban area of Nuevo Vallarta on Banderas Bay, Nayarit, Mex. This factory has emissions that can affect the health of people living in the colonies nearest are Valle Dorado and San Vicente. The dispersion of emissions depends on the wind (sea breeze-land breeze) and the roof of the inversion, these phenomena determined by the density and temperature of the lower layers of the atmosphere. Asphalts are dark colored binder materials, formed by a complex non-volatile hydrocarbon chains and high molecular weight. Asphalts are produced from petroleum, but by a process of evaporation of the volatiles, leaving the asphalt alone. Therefore, the material emitted by the fireplace are mainly low molecular weight hydrocarbons known as polycyclic aromatic hydrocarbons (PAHs). The Emergency Response Guide 2008 developed by various agencies in Canada, U.S. and Mexico mentions that the hydrocarbon gas can have health effects. Animal studies have shown that PAHs can cause harmful effects to the skin, body fluids and some PAHs are carcinogenic. An analysis of the wind field, monthly and seasonal averages for the years 2010 and 2011, recorded in AWS administered by the CEMCO and other stations located near the study area.

  12. Modelling retention and dispersion mechanisms of bluefin tuna eggs and larvae in the northwest Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Mariani, Patrizio; MacKenzie, Brian R.; Iudicone, Daniele; Bozec, Alexandra

    2010-07-01

    Knowledge of early life history of most fish species in the Mediterranean Sea is sparse and processes affecting their recruitment are poorly understood. This is particularly true for bluefin tuna, Thunnus thynnus, even though this species is one of the world’s most valued fish species. Here we develop, apply and validate an individually based coupled biological-physical oceanographic model of fish early life history in the Mediterranean Sea. We first validate the general structure of the coupled model with a 12-day Lagrangian drift study of anchovy ( Engraulis encrasicolus) larvae in the Catalan Sea. The model reproduced the drift and growth of anchovy larvae as they drifted along the Catalan coast and yielded similar patterns as those observed in the field. We then applied the model to investigate transport and retention processes affecting the spatial distribution of bluefin tuna eggs and larvae during 1999-2003, and we compared modelled distributions with available field data collected in 2001 and 2003. Modelled and field distributions generally coincided and were patchy at mesoscales (10s-100s km); larvae were most abundant in eddies and along frontal zones. We also identified probable locations of spawning bluefin tuna using hydrographic backtracking procedures; these locations were situated in a major salinity frontal zone and coincided with distributions of an electronically tagged bluefin tuna and commercial bluefin tuna fishing vessels. Moreover, we hypothesized that mesoscale processes are responsible for the aggregation and dispersion mechanisms in the area and showed that these processes were significantly correlated to atmospheric forcing processes over the NW Mediterranean Sea. Interannual variations in average summer air temperature can reduce the intensity of ocean mesoscale processes in the Balearic area and thus potentially affect bluefin tuna larvae. These modelling approaches can increase understanding of bluefin tuna recruitment processes and

  13. Modeling VOC emissions and air concentrations from the Exxon Valdez oil spill

    SciTech Connect

    Hanna, S.R. ); Drivas, P.J. )

    1993-03-01

    During the two-week period following the Exxon Valdez oil spill in March 1989 in Prince William Sound, Alaska, toxic volatile organic compounds (VOCs) evaporated from the surface of the oil spill and were transported and dispersed throughout the region. To estimate the air concentrations of these VOCs, emissions and dispersion modeling was conducted for each hour during the first two weeks of the spill. A multicomponent evaporative emissions model was developed and applied to the oil spill; the model considered the evaporation of 15 specific compounds, including benzene and toluene. Both mass transfer from the surface of the spill and diffusion through the oil layer were considered in the emissions model. Maximum emissions of toluene were calculated to equal about 20,000 kg/hr, or about 5 g/m[sup 2] hr, at a time of eight hours after the initial oil spill. Meteorological data were acquired from sources and used to estimate hourly-averaged wind velocity over the spill. Air concentrations of specific components were calculated using the ATDL area source diffusion model and the Offshore and Coastal Dispersion (OCD) model. Maximum hourly-averaged concentrations were predicted not to exceed 10 ppmv for any compound. 24 refs., 6 figs., 4 tabs.

  14. Dispersion modelling of a tall stack plume in the spanish mediterranean coast by a particle model

    NASA Astrophysics Data System (ADS)

    Hernandez, J. F.; Cremades, L.; Baldasano, J. M.

    A Lagrangian particle model has been used to simulate the dispersion of a tall stack plume of a power plant located in a complex coastal site at the Spanish Mediterranean coast, under summer meteorological conditions: land and sea breezes and thermal low effects. These are responsible for a particular behavior of plume (rotations greater than 90°). The model is based on the numerical solution of Langevin's equation (Sawford, 1984; Thomson, 1984, 1987; de Baas et al., 1986) by following the trajectories of many particles. The displacement of these particles is governed by meteorological parameters resulting from Eulerian wind data adjusted by an objective analysis model based on variational calculus. The adjusted values should satisfy continuity as a strong constraint (Sherman, 1978; Mathur and Peters, 1990). The model allows to simulate the atmospheric dispersion both in homogeneous and nonhomogeneous turbulence according to de Baas et al. (1986) and Zannetti (1990) schemes. The numerical result