Science.gov

Sample records for air dispersion models

  1. Air modeling: Air dispersion models; regulatory applications and technological advances

    SciTech Connect

    Miller, M.; Liles, R.

    1995-09-01

    Air dispersion models are a useful and practical tool for both industry and regulatory agencies. They serve as tools for engineering, permitting, and regulations development. Their cost effectiveness and ease of implementation compared to ambient monitoring is perhaps their most-appealing trait. Based on the current momentum within the U.S. EPA to develop better models and contain regulatory burdens on industry, it is likely that air dispersion modeling will be a major player in future air regulatory initiatives.

  2. Dispersion modeling of selected PAHs in urban air: A new approach combining dispersion model with GIS and passive air sampling

    NASA Astrophysics Data System (ADS)

    Sáňka, Ondřej; Melymuk, Lisa; Čupr, Pavel; Dvorská, Alice; Klánová, Jana

    2014-10-01

    This study introduces a new combined air concentration measurement and modeling approach that we propose can be useful in medium and long term air quality assessment. A dispersion study was carried out for four high molecular weight polycyclic aromatic hydrocarbons (PAHs) in an urban area with industrial, traffic and domestic heating sources. A geographic information system (GIS) was used both for processing of input data as well as visualization of the modeling results. The outcomes of the dispersion model were compared to the results of passive air sampling (PAS). Despite discrepancies between measured and modeled concentrations, an approach combining the two techniques is promising for future air quality assessment. Differences between measured and modeled concentrations, in particular when measured values exceed the modeled concentrations, are indicative of undocumented, sporadic pollutant sources. Thus, these differences can also be useful for assessing and refining emission inventories.

  3. Air pollution dispersion models for human exposure predictions in London.

    PubMed

    Beevers, Sean D; Kitwiroon, Nutthida; Williams, Martin L; Kelly, Frank J; Ross Anderson, H; Carslaw, David C

    2013-01-01

    The London household survey has shown that people travel and are exposed to air pollutants differently. This argues for human exposure to be based upon space-time-activity data and spatio-temporal air quality predictions. For the latter, we have demonstrated the role that dispersion models can play by using two complimentary models, KCLurban, which gives source apportionment information, and Community Multi-scale Air Quality Model (CMAQ)-urban, which predicts hourly air quality. The KCLurban model is in close agreement with observations of NO(X), NO(2) and particulate matter (PM)(10/2.5), having a small normalised mean bias (-6% to 4%) and a large Index of Agreement (0.71-0.88). The temporal trends of NO(X) from the CMAQ-urban model are also in reasonable agreement with observations. Spatially, NO(2) predictions show that within 10's of metres of major roads, concentrations can range from approximately 10-20 p.p.b. up to 70 p.p.b. and that for PM(10/2.5) central London roadside concentrations are approximately double the suburban background concentrations. Exposure to different PM sources is important and we predict that brake wear-related PM(10) concentrations are approximately eight times greater near major roads than at suburban background locations. Temporally, we have shown that average NO(X) concentrations close to roads can range by a factor of approximately six between the early morning minimum and morning rush hour maximum periods. These results present strong arguments for the hybrid exposure model under development at King's and, in future, for in-building models and a model for the London Underground.

  4. Urban compaction or dispersion? An air quality modelling study

    NASA Astrophysics Data System (ADS)

    Martins, Helena

    2012-07-01

    Urban sprawl is altering the landscape, with current trends pointing to further changes in land use that will, in turn, lead to changes in population, energy consumption, atmospheric emissions and air quality. Urban planners have debated on the most sustainable urban structure, with arguments in favour and against urban compaction and dispersion. However, it is clear that other areas of expertise have to be involved. Urban air quality and human exposure to atmospheric pollutants as indicators of urban sustainability can contribute to the discussion, namely through the study of the relation between urban structure and air quality. This paper addresses the issue by analysing the impacts of alternative urban growth patterns on the air quality of Porto urban region in Portugal, through a 1-year simulation with the MM5-CAMx modelling system. This region has been experiencing one of the highest European rates of urban sprawl, and at the same time presents a poor air quality. As part of the modelling system setup, a sensitivity study was conducted regarding different land use datasets and spatial distribution of emissions. Two urban development scenarios were defined, SPRAWL and COMPACT, together with their new land use and emission datasets; then meteorological and air quality simulations were performed. Results reveal that SPRAWL land use changes resulted in an average temperature increase of 0.4 °C, with local increases reaching as high as 1.5 °C. SPRAWL results also show an aggravation of PM10 annual average values and an increase in the exceedances to the daily limit value. For ozone, differences between scenarios were smaller, with SPRAWL presenting larger concentration differences than COMPACT. Finally, despite the higher concentrations found in SPRAWL, population exposure to the pollutants is higher for COMPACT because more inhabitants are found in areas of highest concentration levels.

  5. Air-dispersion modeling and the real world

    SciTech Connect

    Beychok, M.T.

    1996-06-01

    Use of computerized programs to model stack-gas dispersion mathematically has grown immensely in the last 15 years. In most dispersion models, determining ground-level pollutant concentrations beneath an elevated, buoyant plume of dispersing stack gas involves two major steps. First, the height to which the plume rises at a given downward distance from the plume source is calculated. The calculated plume rise is added to the height of the source stack, or emission point, to determine the effective stack height, also called the plume centerline height. Second, ground-level concentrations beneath the plume are predicted using the Gaussian dispersion equation.

  6. Dispersion Modeling.

    ERIC Educational Resources Information Center

    Budiansky, Stephen

    1980-01-01

    This article discusses the need for more accurate and complete input data and field verification of the various models of air pollutant dispension. Consideration should be given to changing the form of air quality standards based on enhanced dispersion modeling techniques. (Author/RE)

  7. AIR DISPERSION MODELING AT THE WASTE ISOLATION PILOT PLANT

    SciTech Connect

    Rucker, D.F.

    2000-08-01

    One concern at the Waste Isolation Pilot Plant (WIPP) is the amount of alpha-emitting radionuclides or hazardous chemicals that can become airborne at the facility and reach the Exclusive Use Area boundary as the result of a release from the Waste Handling Building (WHB) or from the underground during waste emplacement operations. The WIPP Safety Analysis Report (SAR), WIPP RCRA Permit, and WIPP Emergency Preparedness Hazards Assessments include air dispersion calculations to address this issue. Meteorological conditions at the WIPP facility will dictate direction, speed, and dilution of a contaminant plume of respirable material due to chronic releases or during an accident. Due to the paucity of meteorological information at the WIPP site prior to September 1996, the Department of Energy (DOE) reports had to rely largely on unqualified climatic data from the site and neighboring Carlsbad, which is situated approximately 40 km (26 miles) to the west of the site. This report examines the validity of the DOE air dispersion calculations using new meteorological data measured and collected at the WIPP site since September 1996. The air dispersion calculations in this report include both chronic and acute releases. Chronic release calculations were conducted with the EPA-approved code, CAP88PC and the calculations showed that in order for a violation of 40 CFR61 (NESHAPS) to occur, approximately 15 mCi/yr of 239Pu would have to be released from the exhaust stack or from the WHB. This is an extremely high value. Hence, it is unlikely that NESHAPS would be violated. A site-specific air dispersion coefficient was evaluated for comparison with that used in acute dose calculations. The calculations presented in Section 3.2 and 3.3 show that one could expect a slightly less dispersive plume (larger air dispersion coefficient) given greater confidence in the meteorological data, i.e. 95% worst case meteorological conditions. Calculations show that dispersion will decrease

  8. a Mesoscale Atmospheric Dispersion Modeling System for Simulations of Topographically Induced Atmospheric Flow and Air Pollution Dispersion.

    NASA Astrophysics Data System (ADS)

    Boybeyi, Zafer

    A mesoscale atmospheric dispersion modeling system has been developed to investigate mesoscale circulations and associated air pollution dispersion, including effects of terrain topography, large water bodies and urban areas. The system is based on a three-dimensional mesoscale meteorological model coupled with two dispersion models (an Eulerian dispersion model and a Lagrangian particle dispersion model). The mesoscale model is hydrostatic and based on primitive equations formulated in a terrain-following coordinate system with a E-varepsilon turbulence closure scheme. The Eulerian dispersion model is based on numerical solution of the advection-diffusion equation to allow one to simulate releases of non-buoyant pollutants (especially from area and volume sources). The Lagrangian particle dispersion model allows one to simulate releases of buoyant pollutants from arbitrary sources (particularly from point and line sources). The air pollution dispersion models included in the system are driven by the meteorological information provided by the mesoscale model. Mesoscale atmospheric circulations associated with sea and lake breezes have been examined using the mesoscale model. A series of model sensitivity studies were performed to investigate the effects of different environmental parameters on these circulations. It was found that the spatial and temporal variation of the sea and lake breeze convergence zones and the associated convective activities depend to a large extent on the direction and the magnitude of the ambient wind. Dispersion of methyl isocyanate gas from the Bhopal accident was investigated using the mesoscale atmospheric dispersion modeling system. A series of numerical experiments were performed to investigate the possible role of the mesoscale circulations on this industrial gas episode. The temporal and spatial variations of the wind and turbulence fields were simulated with the mesoscale model. The dispersion characteristics of the accidental

  9. Modeling CO2 air dispersion from gas driven lake eruptions

    NASA Astrophysics Data System (ADS)

    Chiodini, Giovanni; Costa, Antonio; Rouwet, Dmitri; Tassi, Franco

    2016-04-01

    The most tragic event of gas driven lake eruption occurred at Lake Nyos (Cameroon) on 21 August 1986, when a dense cloud of CO2 suffocated more than 1700 people and an uncounted number of animals in just one night. The event stimulated a series of researches aimed to understand gas origins, gas release mechanisms and strategies for gas hazard mitigation. Very few studies have been carried out for describing the transport of dense CO2 clouds in the atmosphere. Although from a theoretical point of view, gas dispersion can be fully studied by solving the complete equations system for mass, momentum and energy transport, in actual practice, different simplified models able to describe only specific phases or aspects have to be used. In order to simulate dispersion of a heavy gas and to assess the consequent hazard we used a model based on a shallow layer approach (TWODEE2). This technique which uses depth-averaged variables to describe the flow behavior of dense gas over complex topography represents a good compromise between the complexity of computational fluid dynamic models and the simpler integral models. Recently the model has been applied for simulating CO2 dispersion from natural gas emissions in Central Italy. The results have shown how the dispersion pattern is strongly affected by the intensity of gas release, the topography and the ambient wind speed. Here for the first time we applied TWODEE2 code to simulate the dispersion of the large CO2 clouds released by limnic eruptions. An application concerns the case of the 1986 event at lake Nyos. Some difficulties for the simulations were related to the lack of quantitative information: gas flux estimations are not well constrained, meteorological conditions are only qualitatively known, the digital model of the terrain is of poor quality. Different scenarios were taken into account in order to reproduce the qualitative observations available for such episode. The observations regard mainly the effects of gas on

  10. (AMD) ANALYSIS OF AIR QUALITY DATA NEAR ROADWAYS USING A DISPERSION MODEL

    EPA Science Inventory

    We used a dispersion model to analyze measurements made during a field study conducted by the U.S. EPA in July-August 2006, to estimate the impact of traffic emissions on air quality at distances of tens of meters from an 8 lane highway located in Raleigh, North Carolina. The air...

  11. Analysis of air pollution from swine production by using air dispersion model and GIS in Quebec.

    PubMed

    Sarr, Joachim H; Goïta, Kalifa; Desmarais, Camille

    2010-01-01

    Swine production, the second most important contributor to Quebec's agricultural revenue, faces many problems. Intensive piggeries, with up to 599 animal units, are used to raise finishing pigs for slaughter. Among the great number of gaseous species emitted to the atmospheric environment from livestock buildings and manure storage units is NH3, which is one of the most important and most offensive with respect to human health. Under appropriate meteorological and topographical conditions, gaseous contaminants can spread and cause a public nuisance--up to a 1-km radius around the farm. To mitigate these effects, the Quebec Government adopted regulations that set minimum buffer distances to be observed by any expansion of an existing or new pig farm. The objectives of this study were (i) to assess the efficiency of the current buffer distance prescriptions in Quebec in mitigating effects of air pollution from swine units and (ii) to identify potential areas for establishing pig farm operations that will not be offensive to people. The air dispersion American Meteorological Society/Environmental Protection Agency Regulatory Model (AERMOD) with receptors distributed at 1.6 km around each source was used first, followed by a spatial geographic information system (GIS) model. Results from the dispersion model showed that the highest hourly concentration with a 99.5% compliance frequency for a single farm was 3078.1 microg/m3 and exceeded the NH3 odor criterion hourly standard set by the Quebec Government at 183.4 microg/m3. Thus, for public safety, densely populated areas like housing developments must be located >1300 m from a pig farm. This distance is in the range of setback distances (723 to 1447 m) obtained by using abacuses defined in the L'Erable Regional County Municipality. That is why we can say the current rules established by the Quebec Government, if rigorously applied, can prevent odor nuisance, due to NH3 emission, from swine farms. In the spatial model

  12. Off-site air monitoring following methyl bromide chamber and building fumigations and evaluation of the ISCST air dispersion model

    SciTech Connect

    Barry, T.; Swgawa, R.; Wofford, P.

    1995-12-31

    The Department of Pesticide Regulation`s preliminary risk characterization of methyl bromide indicated an inadequate margin of safety for several exposure scenarios. Characterization of the air concentrations associated with common methyl bromide use patterns was necessary to determine specific scenarios that result in an unacceptable margin of safety. Field monitoring data were used in conjunction with the Industrial Source Complex, Short Tenn (ISCST) air dispersion model to characterize air concentrations associated with various types of methyl bromide applications. Chamber and building fumigations were monitored and modelled. For each fumigation the emission rates, chamber or building specifications and on-site meteorological data were input into the ISCST model. The model predicted concentrations were compared to measured air concentrations. The concentrations predicted by the ISCST model reflect both the pattern and magnitude of the measured concentrations. Required buffer zones were calculated using the ISCST output.

  13. Development and testing of meteorology and air dispersion models for Mexico City

    NASA Astrophysics Data System (ADS)

    Williams, M. D.; Brown, M. J.; Cruz, X.; Sosa, G.; Streit, G.

    Los Alamos National Laboratory and Instituto Mexicano del Petróleo are completing a joint study of options for improving air quality in Mexico City. We have modified a three-dimensional, prognostic, higher-order turbulence model for atmospheric circulation (HOTMAC) and a Monte Carlo dispersion and transport model (RAPTAD) to treat domains that include an urbanized area. We used the meteorological model to drive models which describe the photochemistry and air transport and dispersion. The photochemistry modeling is described in a separate paper. We tested the model against routine measurements and those of a major field program. During the field program, measurements included: (1) lidar measurements of aerosol transport and dispersion, (2) aircraft measurements of winds, turbulence, and chemical species aloft, (3) aircraft measurements of skin temperatures, and (4) Tethersonde measurements of winds and ozone. We modified the meteorological model to include provisions for time-varying synoptic-scale winds, adjustments for local wind effects, and detailed surface-coverage descriptions. We developed a new method to define mixing-layer heights based on model outputs. The meteorology and dispersion models were able to provide reasonable representations of the measurements and to define the sources of some of the major uncertainties in the model-measurement comparisons.

  14. Temperature, humidity and air flow in the emplacement drifts using convection and dispersion transport models

    SciTech Connect

    Danko, G.; Birkholzer, J.T.; Bahrami, D.; Halecky, N.

    2009-10-01

    A coupled thermal-hydrologic-airflow model is developed, solving for the transport processes within a waste emplacement drift and the surrounding rockmass together at the proposed nuclear waste repository at Yucca Mountain. Natural, convective air flow as well as heat and mass transport in a representative emplacement drift during post-closure are explicitly simulated, using the MULTIFLUX model. The conjugate, thermal-hydrologic transport processes in the rockmass are solved with the TOUGH2 porous-media simulator in a coupled way to the in-drift processes. The new simulation results show that large-eddy turbulent flow, as opposed to small-eddy flow, dominate the drift air space for at least 5000 years following waste emplacement. The size of the largest, longitudinal eddy is equal to half of the drift length, providing a strong axial heat and moisture transport mechanism from the hot to the cold drift sections. The in-drift results are compared to those from simplified models using a surrogate, dispersive model with an equivalent dispersion coefficient for heat and moisture transport. Results from the explicit, convective velocity simulation model provide higher axial heat and moisture fluxes than those estimated from the previously published, simpler, equivalent-dispersion models, in addition to showing differences in temperature, humidity and condensation rate distributions along the drift length. A new dispersive model is also formulated, giving a time- and location-variable function that runs generally about ten times higher in value than the highest dispersion coefficient currently used in the Yucca Mountain Project as an estimate for the equivalent dispersion coefficient in the emplacement drift. The new dispersion coefficient variation, back-calculated from the convective model, can adequately describe the heat and mass transport processes in the emplacement drift example.

  15. Comparison of stationary and personal air sampling with an air dispersion model for children's ambient exposure to manganese.

    PubMed

    Fulk, Florence; Haynes, Erin N; Hilbert, Timothy J; Brown, David; Petersen, Dan; Reponen, Tiina

    2016-09-01

    Manganese (Mn) is ubiquitous in the environment and essential for normal growth and development, yet excessive exposure can lead to impairments in neurological function. This study modeled ambient Mn concentrations as an alternative to stationary and personal air sampling to assess exposure for children enrolled in the Communities Actively Researching Exposure Study in Marietta, OH. Ambient air Mn concentration values were modeled using US Environmental Protection Agency's Air Dispersion Model AERMOD based on emissions from the ferromanganese refinery located in Marietta. Modeled Mn concentrations were compared with Mn concentrations from a nearby stationary air monitor. The Index of Agreement for modeled versus monitored data was 0.34 (48 h levels) and 0.79 (monthly levels). Fractional bias was 0.026 for 48 h levels and -0.019 for monthly levels. The ratio of modeled ambient air Mn to measured ambient air Mn at the annual time scale was 0.94. Modeled values were also time matched to personal air samples for 19 children. The modeled values explained a greater degree of variability in personal exposures compared with time-weighted distance from the emission source. Based on these results modeled Mn concentrations provided a suitable approach for assessing airborne Mn exposure in this cohort. PMID:27168393

  16. Comparison of stationary and personal air sampling with an air dispersion model for children's ambient exposure to manganese.

    PubMed

    Fulk, Florence; Haynes, Erin N; Hilbert, Timothy J; Brown, David; Petersen, Dan; Reponen, Tiina

    2016-09-01

    Manganese (Mn) is ubiquitous in the environment and essential for normal growth and development, yet excessive exposure can lead to impairments in neurological function. This study modeled ambient Mn concentrations as an alternative to stationary and personal air sampling to assess exposure for children enrolled in the Communities Actively Researching Exposure Study in Marietta, OH. Ambient air Mn concentration values were modeled using US Environmental Protection Agency's Air Dispersion Model AERMOD based on emissions from the ferromanganese refinery located in Marietta. Modeled Mn concentrations were compared with Mn concentrations from a nearby stationary air monitor. The Index of Agreement for modeled versus monitored data was 0.34 (48 h levels) and 0.79 (monthly levels). Fractional bias was 0.026 for 48 h levels and -0.019 for monthly levels. The ratio of modeled ambient air Mn to measured ambient air Mn at the annual time scale was 0.94. Modeled values were also time matched to personal air samples for 19 children. The modeled values explained a greater degree of variability in personal exposures compared with time-weighted distance from the emission source. Based on these results modeled Mn concentrations provided a suitable approach for assessing airborne Mn exposure in this cohort.

  17. Wind Direction Bias in Generating Wind Roses and Conducting Sector-Based Air-Dispersion Modeling

    SciTech Connect

    Droppo, James G.; Napier, Bruce A.

    2008-07-01

    Certain widely used wind rose programs and air dispersion models use an overly-simple data-transfer algorithm that induces a directional bias in their output products. The purpose of this paper is to provide a revised algorithm that corrects the aliasing bias that occurs when the internals in reported wind direction data are on the same order of magnitude, but not equal to the intervals used in the wind direction summaries. The directional bias issue arises when output products in 22.5-degree sectors are produced from 10-degree wind direction data, which affects the results of simulations of air and surface concentrations using widely applied air-dispersion models. Datasets or models with the bias discussed here give consistent positive biases (approximately 30%) for cardinal direction sectors (north, south, east, and west) and consistent negative biases for all the other sectors (approximately -10%). Data summary and air dispersion programs providing outputs in directions sectors that do not match the observational sectors need to be checked for this bias. A revised data-transfer algorithm is provided that corrects the aliasing bias that can occur in transferring wind direction data between different sectors widths.

  18. Assessment of the Impact of Spatial Data on the Results of Air Pollution Dispersion Modeling

    NASA Astrophysics Data System (ADS)

    Oleniacz, Robert; Rzeszutek, Mateusz

    2014-12-01

    Advanced dispersion models, taking into account information on the relief and land cover, as well as temporal and spatial variability of meteorological conditions, are beginning to play an increasingly important role in the assessment of the impact on the air quality. There are numerous spatial databases which can be used in this type of a calculation process, however, there is no answer to the question of how the use of appropriate data set of terrain characteristics affects the results of the distribution of air pollutant concentrations at the surface of the ground. This paper presents two different sets of spatial data of the relief and land cover. Then, their impact on the results of modeling the propagation of pollutants in the ambient air was characterized, using the meteorological processor CALMET and the dispersion model CALPUFF. The obtained results of concentrations in the adopted calculation area were compared on the basis of statistical indicators used to assess pollution dispersion models contained in the statistical package BOOT Statistical Model Evaluation Software Package Version 2.0. The obtained results of calculations of the maximum 1-hour concentrations, the maximum 24-hour mean concentrations and annual mean concentrations for the prepared computational grids with a resolution of 1×1 km were analyzed.

  19. Analytical dispersion model for the chain of primary and secondary air pollutants released from point source

    NASA Astrophysics Data System (ADS)

    Juodis, Laurynas; Filistovič, Vitold; Maceika, Evaldas; Remeikis, Vidmantas

    2016-03-01

    An analytical model for dispersion of air pollutants released from a point source forming a secondary pollutant (e.g. chemical transformation or parent-daughter radionuclide chain) is formulated considering the constant wind speed and eddy diffusivities as an explicit function of downwind distance from the source in Cauchy (reflection-deposition type) boundary conditions. The dispersion of pollutants has been investigated by using the Gaussian plume dispersion parameters σy and σz instead of the diffusivity parameters Ky and Kz. For primary pollutant it was proposed to use the derived dry deposition factor instead of the source depletion alternative. An analytical solution for steady-state two-dimensional pollutant transport in the atmosphere is presented. Derived formulas include dependency from effective release height, gravitational and dry deposition velocities of primary and secondary pollutants, advection, surface roughness length and empirical dispersion parameters σy and σz. Demonstration of analytical solution application is provided by calculation of 135Xe and 135C air activity concentrations and the applicability of the model for the solution of atmospheric pollution transport problems.

  20. CFD modelling of the aerodynamic effect of trees on urban air pollution dispersion.

    PubMed

    Amorim, J H; Rodrigues, V; Tavares, R; Valente, J; Borrego, C

    2013-09-01

    The current work evaluates the impact of urban trees over the dispersion of carbon monoxide (CO) emitted by road traffic, due to the induced modification of the wind flow characteristics. With this purpose, the standard flow equations with a kε closure for turbulence were extended with the capability to account for the aerodynamic effect of trees over the wind field. Two CFD models were used for testing this numerical approach. Air quality simulations were conducted for two periods of 31h in selected areas of Lisbon and Aveiro, in Portugal, for distinct relative wind directions: approximately 45° and nearly parallel to the main avenue, respectively. The statistical evaluation of modelling performance and uncertainty revealed a significant improvement of results with trees, as shown by the reduction of the NMSE from 0.14 to 0.10 in Lisbon, and from 0.14 to 0.04 in Aveiro, which is independent from the CFD model applied. The consideration of the plant canopy allowed to fulfil the data quality objectives for ambient air quality modelling established by the Directive 2008/50/EC, with an important decrease of the maximum deviation between site measurements and CFD results. In the non-aligned wind situation an average 12% increase of the CO concentrations in the domain was observed as a response to the aerodynamic action of trees over the vertical exchange rates of polluted air with the above roof-level atmosphere; while for the aligned configuration an average 16% decrease was registered due to the enhanced ventilation of the street canyon. These results show that urban air quality can be optimised based on knowledge-based planning of green spaces.

  1. Near-field dispersal modeling for liquid fuel-air explosives

    SciTech Connect

    Gardner, D.R.

    1990-07-01

    The near-field, explosive dispersal of a liquid into air has been explored using a combination of analytical and numerical models. The near-field flow regime is transient, existing only as long as the explosive forces produced by the detonation of the burster charge dominate or are approximately equal in magnitude to the aerodynamic drag forces on the liquid. The near-field model provides reasonable initial conditions for the far-field model, which is described in a separate report. The near-field model consists of the CTH hydrodynamics code and a film instability model. In particular, the CTH hydrodynamics code is used to provide initial temperature, pressure, and velocity fields, and bulk material distribution for the far-field model. The film instability model is a linear stability model for a radially expanding fluid film, and is used to provide a lower bound on the breakup time and an upper and lower bound on the initial average drop diameter for the liquid following breakup. Predictions of the liquid breakup time and the initial arithmetic average drop diameter from the model compare favorably with the sparse experimental data. 26 refs., 20 figs., 8 tabs.

  2. A review of methods for predicting air pollution dispersion

    NASA Technical Reports Server (NTRS)

    Mathis, J. J., Jr.; Grose, W. L.

    1973-01-01

    Air pollution modeling, and problem areas in air pollution dispersion modeling were surveyed. Emission source inventory, meteorological data, and turbulent diffusion are discussed in terms of developing a dispersion model. Existing mathematical models of urban air pollution, and highway and airport models are discussed along with their limitations. Recommendations for improving modeling capabilities are included.

  3. A microscale model for air pollutant dispersion simulation in urban areas: Presentation of the model and performance over a single building

    NASA Astrophysics Data System (ADS)

    Zhang, Ning; Du, Yunsong; Miao, Shiguang

    2016-02-01

    A microscale air pollutant dispersion model system is developed for emergency response purposes. The model includes a diagnostic wind field model to simulate the wind field and a random-walk air pollutant dispersion model to simulate the pollutant concentration through consideration of the influence of urban buildings. Numerical experiments are designed to evaluate the model's performance, using CEDVAL (Compilation of Experimental Data for Validation of Microscale Dispersion Models) wind tunnel experiment data, including wind fields and air pollutant dispersion around a single building. The results show that the wind model can reproduce the vortexes triggered by urban buildings and the dispersion model simulates the pollutant concentration around buildings well. Typically, the simulation errors come from the determination of the key zones around a building or building cluster. This model has the potential for multiple applications; for example, the prediction of air pollutant dispersion and the evaluation of environmental impacts in emergency situations; urban planning scenarios; and the assessment of microscale air quality in urban areas.

  4. Dispersion Modeling of Traffic-Related Air Pollutant Exposures and Health Effects Among Children with Asthma in Detroit, Michigan

    PubMed Central

    Batterman, Stuart; Ganguly, Rajiv; Isakov, Vlad; Burke, Janet; Arunachalam, Saravanan; Snyder, Michelle; Robins, Thomas; Lewis, Toby

    2015-01-01

    Vehicular traffic is a major source of ambient air pollution in urban areas. Traffic-related air pollutants, including carbon monoxide, nitrogen oxides, particulate matter less than 2.5 μm in diameter, and diesel exhaust emissions, have been associated with adverse human health effects, especially in areas near major roads. In addition to emissions from vehicles, ambient concentrations of air pollutants include contributions from stationary sources and background (or regional) sources. Although dispersion models have been widely used to evaluate air quality strategies and policies and can represent the spatial and temporal variation in environments near roads, the use of these models in health studies to estimate air pollutant exposures has been relatively limited. This paper summarizes the modeling system used to estimate exposures in the Near-Roadway Exposure and Urban Air Pollutant Study, an epidemiological study that examined 139 children with asthma or symptoms consistent with asthma, most of whom lived near major roads in Detroit, Michigan. Air pollutant concentrations were estimated with a hybrid modeling framework that included detailed inventories of mobile and stationary sources on local and regional scales; the RLINE, AERMOD, and CMAQ dispersion models; and monitored observations of pollutant concentrations. The temporal and spatial variability in emissions and exposures over the 2.5-year study period and at more than 300 home and school locations was characterized. The paper highlights issues with the development and understanding of the significance of traffic-related exposures through the use of dispersion models in urban-scale exposure assessments and epidemiology studies. PMID:26139957

  5. Use of Source Term and Air Dispersion Modeling in Planning Demolition of Highly Alpha-Contaminated Buildings

    SciTech Connect

    Droppo, James G.; Napier, Bruce A.; Rishel, Jeremy P.; Bloom, Richard W.

    2011-06-22

    The current cleanup of structures related to cold-war production of nuclear materials includes the need to demolish a number of highly alpha-contaminated structures. The process of planning for the demolition of such structures includes unique challenges related to ensuring the protection of both workers and the public. Pre-demolition modeling analyses were conducted to evaluate potential exposures resulting from the proposed demolition of a number of these structures. Estimated emission rates of transuranic materials during demolition are used as input to an air-dispersion model. The climatological frequencies of occurrence of peak air and surface exposures at locations of interest are estimated based on years of hourly meteorological records. The modeling results indicate that downwind deposition is the main operational limitation for demolition of a highly alpha-contaminated building. The pre-demolition modeling directed the need for better contamination characterization and/or different demolition methods—and in the end, provided a basis for proceeding with the planned demolition activities. Post-demolition modeling was also conducted for several contaminated structures, based on the actual demolition schedule and conditions. Comparisons of modeled and monitoring results are shown. Recent monitoring data from the demolition of a UO3 plant shows increments in concentrations that were previously identified in the pre-demolition modeling predictions; these comparisons confirm the validity and value of the pre-demolition source-term and air dispersion computations for planning demolition activities for other buildings with high levels of radioactive contamination.

  6. Comparison of air dispersion modeling results with ambient air sampling data: A case study at Tacoma Landfill, a National Priorities List Site

    SciTech Connect

    Griffin, L.R. ); Rutherford, T.L. )

    1994-08-01

    Air dispersion modeling, ambient air sampling, and emissions testing of landfill sources have been performed to evaluate the effects of remedial activities on ambient air surrounding the Tacoma Landfill. In 1983, the Tacoma Landfill was placed on the National Priorities List (NPL) as part of the Commencement Bay/South Tacoma Channel Superfund site. Remedial activities completed, or near completion, at the 190 acre (768,903 m[sup 2]) Tacoma Landfill include a groundwater extraction system and air stripping units used to remove volatile organic compounds (VOCs) from groundwater, landfill gas extraction and flare system to control gas migration from the landfill, landfill liner and leachate collection system for an active section of the landfill, and a landfill cap that covers the inactive portions of the landfill. Dispersion modeling was performed with measured stack emission data using Industrial Source Complex (ISC) to determine the groundlevel concentrations of VOCs from the air stripper, flares, and active portion of the landfill for comparison with the measured ambient air data collected during 1992. 9 refs., 3 figs., 6 tabs.

  7. Air Dispersion Modeling for the INL Application for a Synthetic Minor Sitewide Air Quality Permit to Construct with a Facility Emission Cap Component

    SciTech Connect

    Sondrup, Andrus Jeffrey

    2015-10-01

    The Department of Energy Idaho Operations Office (DOE-ID) is applying for a synthetic minor, Sitewide, air quality permit to construct (PTC) with a facility emission cap (FEC) component from the Idaho Department of Environmental Quality (DEQ) for Idaho National Laboratory (INL) to limit its potential to emit to less than major facility limits for criteria air pollutants (CAPs) and hazardous air pollutants (HAPs) regulated under the Clean Air Act. This document is supplied as an appendix to the application, Idaho National Laboratory Application for a Synthetic Minor Sitewide Air Quality Permit to Construct with a Facility Emissions Cap Component, hereafter referred to as “permit application” (DOE-ID 2015). Air dispersion modeling was performed as part of the permit application process to demonstrate pollutant emissions from the INL will not cause a violation of any ambient air quality standards. This report documents the modeling methodology and results for the air dispersion impact analysis. All CAPs regulated under Section 109 of the Clean Air Act were modeled with the exception of lead (Pb) and ozone, which are not required to be modeled by DEQ. Modeling was not performed for toxic air pollutants (TAPs) as uncontrolled emissions did not exceed screening emission levels for carcinogenic and non-carcinogenic TAPs. Modeling for CAPs was performed with the EPA approved AERMOD dispersion modeling system (Version 14134) (EPA 2004a) and five years (2000-2004) of meteorological data. The meteorological data set was produced with the companion AERMET model (Version 14134) (EPA 2004b) using surface data from the Idaho Falls airport, and upper-air data from Boise International Airport supplied by DEQ. Onsite meteorological data from the Grid 3 Mesonet tower located near the center of the INL (north of INTEC) and supplied by the local National Oceanic and Atmospheric Administration (NOAA) office was used for surface wind directions and wind speeds. Surface data (i

  8. Comparison of stationary and personal air sampling with an air dispersion model for children’s ambient exposure to manganese

    EPA Science Inventory

    Manganese (Mn) is ubiquitous in the environment and essential for normal growth and development, yet excessive exposure can lead to impairments in neurological function. This study modeled ambient Mn concentrations as an alternative to stationary and personal air sampling to asse...

  9. Numerical simulation of high pressure release and dispersion of hydrogen into air with real gas model

    NASA Astrophysics Data System (ADS)

    Khaksarfard, R.; Kameshki, M. R.; Paraschivoiu, M.

    2010-06-01

    Hydrogen is a renewable and clean source of energy, and it is a good replacement for the current fossil fuels. Nevertheless, hydrogen should be stored in high-pressure reservoirs to have sufficient energy. An in-house code is developed to numerically simulate the release of hydrogen from a high-pressure tank into ambient air with more accuracy. Real gas models are used to simulate the flow since high-pressure hydrogen deviates from ideal gas law. Beattie-Bridgeman and Abel Noble equations are applied as real gas equation of state. A transport equation is added to the code to calculate the concentration of the hydrogen-air mixture after release. The uniqueness of the code is to simulate hydrogen in air release with the real gas model. Initial tank pressures of up to 70 MPa are simulated.

  10. An update to the ambient ratio method for 1-h NO2 air quality standards dispersion modeling

    NASA Astrophysics Data System (ADS)

    Podrez, Mark

    2015-02-01

    Nitrogen oxide (NOX) gases are typically emitted by fuel combustion sources in the form of nitric oxide (NO), which then reacts with ozone and other oxidants in the atmosphere to convert a portion of the NO to nitrogen dioxide (NO2). EPA has promulgated a 1-h average National Ambient Air Quality Standard (NAAQS) for NO2, and major sources of NOX emissions must estimate their NO2 air quality impacts as part of EPA's air quality permitting programs. The AERMOD dispersion model has been developed by EPA for these air quality impact analyses, and AERMOD contains three different NO to NO2 conversion methods for estimating the ambient concentrations of NO2. This paper describes a refinement to one of the methods, the Ambient Ratio Method version 2 (ARM2). ARM2 is an empirical approach that uses a variable conversion factor, based on an analysis of ambient air measurements of NO and NO2, to estimate the portion of the AERMOD predicted air concentration of total NOX species that is in the form of NO2. The performance of ARM2 has been evaluated and found to compare well to actual ambient measurements and to other more complex EPA conversion methods. EPA has included ARM2 as a "beta-testing" option in AERMOD version 14134, and provided guidance on the use of ARM2 for regulatory modeling analyses in a September 2014 memorandum. This paper also discusses this recent EPA guidance.

  11. FINE SCALE AIR QUALITY MODELING USING DISPERSION AND CMAQ MODELING APPROACHES: AN EXAMPLE APPLICATION IN WILMINGTON, DE

    EPA Science Inventory

    Characterization of spatial variability of air pollutants in an urban setting at fine scales is critical for improved air toxics exposure assessments, for model evaluation studies and also for air quality regulatory applications. For this study, we investigate an approach that su...

  12. Engineering Strategies and Methods for Avoiding Air-Quality Externalities: Dispersion Modeling, Home Energy Conservation, and Scenario Planning

    NASA Astrophysics Data System (ADS)

    Knox, Andrew James

    Energy conservation can improve air quality by reducing emissions from fuel combustion. The human health value retained through better air quality can then offset the cost of energy conservation. Through this thesis' innovative yet widely-accessible combination of air pollution dispersion modeling and atmospheric chemistry, it is estimated that the health value retained by avoiding emissions from Ontario's former coal-fired generating stations is 5.74/MWh (using an upper-bound value of 265,000 per year of life lost). This value is combined with energy modeling of homes in the first-ever assessment of the air-quality health benefits of low-energy buildings. It is shown that avoided health damages can equal 7% of additional construction costs of energy efficient buildings in Ontario. At 7%, health savings are a significant item in the cost analysis of efficient buildings. Looking to energy efficiency in the context of likely future low-resource natural gas scenarios, building efficient buildings today is shown to be more economically efficient than any building retrofit option. Considering future natural gas scarcity in the context of Ontario's Long-Term Energy Plan reveals that Ontario may be forced to return to coal-fired electricity. Projected coal use would result in externalities greater than $600 million/year; 80% more than air-quality externalities from Ontario's electricity in 1985. Radically aggressive investment in electricity conservation (75% reduction per capita by 2075) is one promising path forward that keeps air-quality externalities below 1985 levels. Non-health externalities are an additional concern, the quantification, and ultimately monetization, of which could be practical using emerging air pollution monitoring technologies. Energy, conservation, energy planning, and energy's externalities form a complex situation in which today's decisions are critical to a successful future. It is clear that reducing the demand for energy is essential and

  13. Data-driven nonlinear optimisation of a simple air pollution dispersion model generating high resolution spatiotemporal exposure

    NASA Astrophysics Data System (ADS)

    Yuval; Bekhor, Shlomo; Broday, David M.

    2013-11-01

    Spatially detailed estimation of exposure to air pollutants in the urban environment is needed for many air pollution epidemiological studies. To benefit studies of acute effects of air pollution such exposure maps are required at high temporal resolution. This study introduces nonlinear optimisation framework that produces high resolution spatiotemporal exposure maps. An extensive traffic model output, serving as proxy for traffic emissions, is fitted via a nonlinear model embodying basic dispersion properties, to high temporal resolution routine observations of traffic-related air pollutant. An optimisation problem is formulated and solved at each time point to recover the unknown model parameters. These parameters are then used to produce a detailed concentration map of the pollutant for the whole area covered by the traffic model. Repeating the process for multiple time points results in the spatiotemporal concentration field. The exposure at any location and for any span of time can then be computed by temporal integration of the concentration time series at selected receptor locations for the durations of desired periods. The methodology is demonstrated for NO2 exposure using the output of a traffic model for the greater Tel Aviv area, Israel, and the half-hourly monitoring and meteorological data from the local air quality network. A leave-one-out cross-validation resulted in simulated half-hourly concentrations that are almost unbiased compared to the observations, with a mean error (ME) of 5.2 ppb, normalised mean error (NME) of 32%, 78% of the simulated values are within a factor of two (FAC2) of the observations, and the coefficient of determination (R2) is 0.6. The whole study period integrated exposure estimations are also unbiased compared with their corresponding observations, with ME of 2.5 ppb, NME of 18%, FAC2 of 100% and R2 that equals 0.62.

  14. Brownfields and health risks--air dispersion modeling and health risk assessment at landfill redevelopment sites.

    PubMed

    Ofungwu, Joseph; Eget, Steven

    2006-07-01

    Redevelopment of landfill sites in the New Jersey-New York metropolitan area for recreational (golf courses), commercial, and even residential purposes seems to be gaining acceptance among municipal planners and developers. Landfill gas generation, which includes methane and potentially toxic nonmethane compounds usually continues long after closure of the landfill exercise phase. It is therefore prudent to evaluate potential health risks associated with exposure to gas emissions before redevelopment of the landfill sites as recreational, commercial, and, especially, residential properties. Unacceptably high health risks would call for risk management measures such as limiting the development to commercial/recreational rather than residential uses, stringent gas control mechanisms, interior air filtration, etc. A methodology is presented for applying existing models to estimate residual landfill hazardous compounds emissions and to quantify associated health risks. Besides the toxic gas constituents of landfill emissions, other risk-related issues concerning buried waste, landfill leachate, and explosive gases were qualitatively evaluated. Five contiguously located landfill sites in New Jersey intended for residential and recreational redevelopment were used to exemplify the approach.

  15. A model for dispersion from area sources in convective turbulence. [for air pollution

    NASA Technical Reports Server (NTRS)

    Crane, G.; Panofsky, H. A.; Zeman, O.

    1977-01-01

    Four independent estimates of the vertical distribution of the eddy coefficient for dispersion of a passive contaminant from an extensive area source in a convective layer have been presented. The estimates were based on the following methods: (1) a second-order closure prediction, (2) field data of pollutant concentrations over Los Angeles, (3) lab measurements of particle dispersion, and (4) assumption of equality between momentum and mass transfer coefficients in the free convective limit. It is suggested that K-values estimated both from second-order closure theory and from Los Angeles measurements are systematically underestimated.

  16. Air Pollution and Lung Function in Dutch Children: A Comparison of Exposure Estimates and Associations Based on Land Use Regression and Dispersion Exposure Modeling Approaches

    PubMed Central

    Gehring, Ulrike; Hoek, Gerard; Keuken, Menno; Jonkers, Sander; Beelen, Rob; Eeftens, Marloes; Postma, Dirkje S.; Brunekreef, Bert

    2015-01-01

    Background There is limited knowledge about the extent to which estimates of air pollution effects on health are affected by the choice for a specific exposure model. Objectives We aimed to evaluate the correlation between long-term air pollution exposure estimates using two commonly used exposure modeling techniques [dispersion and land use regression (LUR) models] and, in addition, to compare the estimates of the association between long-term exposure to air pollution and lung function in children using these exposure modeling techniques. Methods We used data of 1,058 participants of a Dutch birth cohort study with measured forced expiratory volume in 1 sec (FEV1), forced vital capacity (FVC), and peak expiratory flow (PEF) measurements at 8 years of age. For each child, annual average outdoor air pollution exposure [nitrogen dioxide (NO2), mass concentration of particulate matter with diameters ≤ 2.5 and ≤ 10 μm (PM2.5, PM10), and PM2.5 soot] was estimated for the current addresses of the participants by a dispersion and a LUR model. Associations between exposures to air pollution and lung function parameters were estimated using linear regression analysis with confounder adjustment. Results Correlations between LUR- and dispersion-modeled pollution concentrations were high for NO2, PM2.5, and PM2.5 soot (R = 0.86–0.90) but low for PM10 (R = 0.57). Associations with lung function were similar for air pollutant exposures estimated using LUR and dispersion modeling, except for associations of PM2.5 with FEV1 and FVC, which were stronger but less precise for exposures based on LUR compared with dispersion model. Conclusions Predictions from LUR and dispersion models correlated very well for PM2.5, NO2, and PM2.5 soot but not for PM10. Health effect estimates did not depend on the type of model used to estimate exposure in a population of Dutch children. Citation Wang M, Gehring U, Hoek G, Keuken M, Jonkers S, Beelen R, Eeftens M, Postma DS, Brunekreef B

  17. Three-dimensional modeling of air flow and pollutant dispersion in an urban street canyon with thermal effects.

    PubMed

    Tsai, Mong-Yu; Chen, Kang-Shin; Wu, Chung-Hsing

    2005-08-01

    Effects of excess ground and building temperatures on airflow and dispersion of pollutants in an urban street canyon with an aspect ratio of 0.8 and a length-to-width ratio of 3 were investigated numerically. Three-dimensional governing equations of mass, momentum, energy, and species were modeled using the RNG k-epsilon turbulence model and Boussinesq approximation, which were solved using the finite volume method. Vehicle emissions were estimated from the measured traffic flow rates and modeled as banded line sources, with a street length and bandwidths equal to typical vehicle widths. Both measurements and simulations reveal that pollutant concentrations typically follow the traffic flow rate; they decline as the height increases and are higher on the leeward side than on the windward side. Three-dimensional simulations reveal that the vortex line, joining the centers of cross-sectional vortexes of the street canyon, meanders between street buildings and shifts toward the windward side when heating strength is increased. Thermal boundary layers are very thin. Entrainment of outside air increases, and pollutant concentration decreases with increasing heating condition. Also, traffic-produced turbulence enhances the turbulent kinetic energy and the mixing of temperature and admixtures in the canyon. Factors affecting the inaccuracy of the simulations are addressed. PMID:16187587

  18. Air Dispersion Modeling of Radioactive Releases During Proposed PFP Complex Demolition Activities

    SciTech Connect

    Napier, Bruce A.; Droppo, James G.; Rishel, Jeremy P.

    2011-01-11

    This report is part of the planning process for the demolition of the 234-5Z, 236-Z, 242-Z, and 291-Z-1 structures at the Plutonium Finishing Plant (PFP) on the Hanford Site. Pacific Northwest National Laboratory (PNNL) supports the U.S. Department of Energy (DOE) and the CH2M HILL Plateau Remediation Company (CHPRC) demolition planning effort by making engineering estimates of potential releases for various potential demolition alternatives. This report documents an analysis considering open-air demolition using standard techniques. It does not document any decisions about the decommissioning approaches; it is expected that this report will be revisited as the final details of the demolition are developed.

  19. Uranium Dispersion & Dosimetry Model.

    SciTech Connect

    MICHAEL,; MOMENI, H.

    2002-03-22

    The Uranium Dispersion and Dosimetry (UDAD) program provides estimates of potential radiation exposure to individuals and to the general population in the vicinity of a uranium processing facility such as a uranium mine or mill. Only transport through the air is considered. Exposure results from inhalation, external irradiation from airborne and ground-deposited activity, and ingestion of foodstuffs. Individual dose commitments, population dose commitments, and environmental dose commitments are computed. The program was developed for application to uranium mining and milling; however, it may be applied to dispersion of any other pollutant.

  20. Uranium Dispersion & Dosimetry Model.

    2002-03-22

    The Uranium Dispersion and Dosimetry (UDAD) program provides estimates of potential radiation exposure to individuals and to the general population in the vicinity of a uranium processing facility such as a uranium mine or mill. Only transport through the air is considered. Exposure results from inhalation, external irradiation from airborne and ground-deposited activity, and ingestion of foodstuffs. Individual dose commitments, population dose commitments, and environmental dose commitments are computed. The program was developed for applicationmore » to uranium mining and milling; however, it may be applied to dispersion of any other pollutant.« less

  1. Ensemble Atmospheric Dispersion Modeling

    SciTech Connect

    Addis, R.P.

    2002-06-24

    Prognostic atmospheric dispersion models are used to generate consequence assessments, which assist decision-makers in the event of a release from a nuclear facility. Differences in the forecast wind fields generated by various meteorological agencies, differences in the transport and diffusion models, as well as differences in the way these models treat the release source term, result in differences in the resulting plumes. Even dispersion models using the same wind fields may produce substantially different plumes. This talk will address how ensemble techniques may be used to enable atmospheric modelers to provide decision-makers with a more realistic understanding of how both the atmosphere and the models behave.

  2. Interaction between air pollution dispersion and residential heating demands

    SciTech Connect

    Lipfert, F.W.; Moskowitz, P.D.; Dungan, J.; Tichler, J.; Carney, T.

    1983-03-01

    The effect of the short-term correlation of a specific emission (sulfur dioxide) from residential space heating, with air pollution dispersion rates on the accuracy of model estimates of urban air pollution on a seasonal or annual basis is analyzed. Hourly climatological and residential emission estimates for six U.S. cities and a simplified area source-dispersion model based on a circular receptor grid are used. The effect on annual average concentration estimations is found to be slight (approximately + or - 12 percent), while the maximum hourly concentrations are shown to vary considerably more, since maximum heat demand and worst-case dispersion are not coincident. Accounting for the correlations between heating demand and dispersion makes possible a differentiation in air pollution potential between coastal and interior cities.

  3. (FRANCE) USING THE QUIC MODEL (QUICK URBAN AND INDUSTRIAL COMPLEX) TO STUDY AIR FLOW AND DISPERSION PATTERNS IN DESERTS

    EPA Science Inventory

    As part of its continuing development and evaluation, the QUIC model (Quick Urban & Industrial Complex) was used to study flow and dispersion in complex terrain for two cases. First, for a small area of lower Manhattan near the World Trade Center site, comparisons were made bet...

  4. USING THE QUIC MODEL (QUICK URBAN AND INDUSTRIAL COMPLEX) TO STUDY AIR FLOW AND DISPERSION PATTERNS IN DESERTS

    EPA Science Inventory

    As part of its continuing development and evaluation, the QUIC model (Quick Urban & Industrial Complex) was used to study flow and dispersion in complex terrain for two cases. First, for a small area of lower Manhattan near the World Trade Center site, comparisons were made bet...

  5. Characterizing near-road air pollution using local-scale emission and dispersion models and validation against in-situ measurements

    NASA Astrophysics Data System (ADS)

    Wang, An; Fallah-Shorshani, Masoud; Xu, Junshi; Hatzopoulou, Marianne

    2016-10-01

    Near-road concentrations of nitrogen dioxide (NO2), a known marker of traffic-related air pollution, were simulated along a busy urban corridor in Montreal, Quebec using a combination of microscopic traffic simulation, instantaneous emission modeling, and air pollution dispersion. In order to calibrate and validate the model, a data collection campaign was designed. For this purpose, measurements of NO2 were conducted mid-block along four segments of the corridor throughout a four-week campaign conducted between March and April 2015. The four segments were chosen to be consecutive and yet exhibiting variability in road configuration and built environment characteristics. Roadside NO2 measurements were also paired with on-site and fixed-station meteorological data. In addition, traffic volumes, composition, and routing decisions were collected using video-cameras located at upstream and downstream intersections. Dispersion of simulated emissions was conducted for eight time slots and under a range of meteorological conditions using three different models with vastly different dispersion algorithms (OSPM, CALINE 4, and SIRANE). The three models exhibited poor correlation with near-road NO2 concentrations and were better able to simulate average concentrations occurring along the roadways rather than the range of concentrations measured under diverse meteorological and traffic conditions. As hypothesized, the model SIRANE that can handle a street canyon configuration was the most sensitive to the built environment especially to the presence of tall buildings around the road. In contrast, CALINE exhibited the lowest sensitivity to the built environment.

  6. Some Observational and Modeling Studies of the Atmospheric Boundary Layer at Mississippi Gulf Coast for Air Pollution Dispersion Assessment

    PubMed Central

    Yerramilli, Anjaneyulu; Challa, Venkata Srinivas; Indracanti, Jayakumar; Dasari, Hariprasad; Baham, Julius; Patrick, Chuck; Young, John; Hughes, Robert; White, Lorren D.; Hardy, Mark G.; Swanier, Shelton

    2008-01-01

    Coastal atmospheric conditions widely vary from those over inland due to the land-sea interface, temperature contrast and the consequent development of local circulations. In this study a field meteorological experiment was conducted to measure vertical structure of boundary layer during the period 25–29 June, 2007 at three locations Seabee base, Harrison and Wiggins sites in the Mississippi coast. A GPS Sonde along with slow ascent helium balloon and automated weather stations equipped with slow and fast response sensors were used in the experiment. GPS sonde were launched at three specific times (0700 LT, 1300 LT and 1800 LT) during the experiment days. The observations indicate shallow boundary layer near the coast which gradually develops inland. The weather research and forecasting (WRF) meso-scale atmospheric model and a Lagrangian particle dispersion model (HYSPLIT) are used to simulate the lower atmospheric flow and dispersion in a range of 100 km from the coast for 28–30 June, 2007. The simulated meteorological parameters were compared with the experimental observations. The meso-scale model results show significant temporal and spatial variations in the meteorological fields as a result of development of sea breeze flow, its coupling with the large scale flow field and the ensuing alteration in the mixing depth across the coast. Simulated ground-level concentrations of SO2 from four elevated point sources located along the coast indicate diurnal variation and impact of the local sea-land breeze on the direction of the plume. Model concentration levels were highest during the stable morning condition and during the sea-breeze time in the afternoon. The highest concentrations were found up to 40 km inland during sea breeze time. The study illustrates the application of field meteorological observations for the validation of WRF which is coupled to HYSPLIT for dispersion assessment in the coastal region. PMID:19151446

  7. Some observational and modeling studies of the atmospheric boundary layer at Mississippi gulf coast for air pollution dispersion assessment.

    PubMed

    Yerramilli, Anjaneyulu; Challa, Venkata Srinivas; Indracanti, Jayakumar; Dasari, Hariprasad; Baham, Julius; Patrick, Chuck; Young, John; Hughes, Robert; White, Lorren D; Hardy, Mark G; Swanier, Shelton

    2008-12-01

    Coastal atmospheric conditions widely vary from those over inland due to the land-sea interface, temperature contrast and the consequent development of local circulations. In this study a field meteorological experiment was conducted to measure vertical structure of boundary layer during the period 25-29 June, 2007 at three locations Seabee base, Harrison and Wiggins sites in the Mississippi coast. A GPS Sonde along with slow ascent helium balloon and automated weather stations equipped with slow and fast response sensors were used in the experiment. GPS sonde were launched at three specific times (0700 LT, 1300 LT and 1800 LT) during the experiment days. The observations indicate shallow boundary layer near the coast which gradually develops inland. The weather research and forecasting (WRF) meso-scale atmospheric model and a Lagrangian particle dispersion model (HYSPLIT) are used to simulate the lower atmospheric flow and dispersion in a range of 100 km from the coast for 28-30 June, 2007. The simulated meteorological parameters were compared with the experimental observations. The meso-scale model results show significant temporal and spatial variations in the meteorological fields as a result of development of sea breeze flow, its coupling with the large scale flow field and the ensuing alteration in the mixing depth across the coast. Simulated ground-level concentrations of SO2 from four elevated point sources located along the coast indicate diurnal variation and impact of the local sea-land breeze on the direction of the plume. Model concentration levels were highest during the stable morning condition and during the sea-breeze time in the afternoon. The highest concentrations were found up to 40 km inland during sea breeze time. The study illustrates the application of field meteorological observations for the validation of WRF which is coupled to HYSPLIT for dispersion assessment in the coastal region.

  8. Using soil records with atmospheric dispersion modeling to investigate the effects of clean air regulations on 60 years of manganese deposition in Marietta, Ohio (USA).

    PubMed

    Carter, Megan R; Gaudet, Brian J; Stauffer, David R; White, Timothy S; Brantley, Susan L

    2015-05-15

    Atmospheric emissions of metals from anthropogenic activities have led to deposition and contamination of soils worldwide. We quantified addition of manganese (Mn) to soils around the largest emitter of Mn in the United States (U.S.) using chemical analyses and atmospheric dispersion modeling (Second-Order Closure Integrated Puff (SCIPUFF)). Concentrations of soil-surface Mn were enriched by 9-fold relative to that of the parent material within 1 km of the facility. Elevated concentrations of Mn and chromium (Cr), another potentially toxic element that was emitted, document contamination only within 1 m of the soil surface. Total mass of Mn added per unit land area integrated over 1 m, mMn, equals ~80 mg Mn cm(-2) near the facility. Values of mMn remained above background up to tens of kilometers from the source. Air concentrations of Mn particles of 7.5-micron diameter simulated with SCIPUFF using available data for the emission rate and local meteorological conditions for 2006 were consistent with measured air concentrations. However, the Mn deposition calculated for 2006 with SCIPUFF yielded a cumulative value over the lifetime of the refinery (60 years) that is a factor of 15 lower than the Mn observed to have been added to the soils. This discrepancy can be easily explained if Mn deposition rates before 1988 were more than an order of magnitude greater than today. Such higher emissions are probable, given the changes in metal production with time and the installation of emission controls after the Clean Air Act (1970). This work shows that atmospheric dispersion models can be used with soil profiles to understand the changes in metal emissions over decadal timescales. In addition, the calculations are consistent with the Clean Air Act accounting for a 15-fold decrease in the Mn deposition to soils around the refinery per metric ton of Mn alloy produced.

  9. Simulating near-road reactive dispersion of gaseous air pollutants using a three-dimensional Eulerian model.

    PubMed

    Kota, Sri Harsha; Ying, Qi; Zhang, Yunlong

    2013-06-01

    In this study, the TAMNROM-3D model, a 3D Eulerian near-road air quality model with vehicle induced turbulence parameterization and a MOVES based emission preprocessor, is tested using near-road gaseous pollutants data collected near a rural freeway with 34% heavy duty vehicle traffic. Exhaust emissions of gasses from the vehicles are estimated using a lumped vehicle classification scheme based on the number of vehicle axles and the default county-level MOVES vehicle fleet database. The predicted dilution of CO and NOx in the downwind direction agrees well with observation, although the total NOx emission has to be scaled to 85% of its original emission rate estimated by the MOVES model. Using the atmospheric turbulent diffusion coefficient parameterization of Degrazia et al. (2000) with variable horizontal turbulent diffusion coefficient (Kxx) leads to slightly better predictions than a traditional non-height-dependent Kxx parameterization. The NO2 concentrations can be better predicted when emission of total NOx is split into NO and NO2 using the NO2 to NOx ratio of 29% measured near the road. Simulations using the SAPRC99 photochemical mechanism do not show significant changes in the predicted NO and NO2 concentrations near the road compared to simulations using a simple three-reaction mechanism that involves only NOx and O3. A regional air quality simulation in Houston, Texas during a high O3 episode in August 2000 shows that using the NO2 to NOx ratio of 29% instead of the traditional 5% leads to as much as 6ppb increase in 8-h O3 predictions.

  10. Modeling volcanic ash dispersal

    ScienceCinema

    None

    2016-07-12

    Explosive volcanic eruptions inject into the atmosphere large amounts of volcanic material (ash, blocks and lapilli). Blocks and larger lapilli follow ballistic and non-ballistic trajectories and fall rapidly close to the volcano. In contrast, very fine ashes can remain entrapped in the atmosphere for months to years, and may affect the global climate in the case of large eruptions. Particles having sizes between these two end-members remain airborne from hours to days and can cover wide areas downwind. Such volcanic fallout entails a serious threat to aircraft safety and can create many undesirable effects to the communities located around the volcano. The assessment of volcanic fallout hazard is an important scientific, economic, and political issue, especially in densely populated areas. From a scientific point of view, considerable progress has been made during the last two decades through the use of increasingly powerful computational models and capabilities. Nowadays, models are used to quantify hazard scenarios and/or to give short-term forecasts during emergency situations. This talk will be focused on the main aspects related to modeling volcanic ash dispersal and fallout with application to the well known problem created by the Eyjafjöll volcano in Iceland. Moreover, a short description of the main volcanic monitoring techniques is presented.

  11. Modeling volcanic ash dispersal

    SciTech Connect

    2010-10-22

    Explosive volcanic eruptions inject into the atmosphere large amounts of volcanic material (ash, blocks and lapilli). Blocks and larger lapilli follow ballistic and non-ballistic trajectories and fall rapidly close to the volcano. In contrast, very fine ashes can remain entrapped in the atmosphere for months to years, and may affect the global climate in the case of large eruptions. Particles having sizes between these two end-members remain airborne from hours to days and can cover wide areas downwind. Such volcanic fallout entails a serious threat to aircraft safety and can create many undesirable effects to the communities located around the volcano. The assessment of volcanic fallout hazard is an important scientific, economic, and political issue, especially in densely populated areas. From a scientific point of view, considerable progress has been made during the last two decades through the use of increasingly powerful computational models and capabilities. Nowadays, models are used to quantify hazard scenarios and/or to give short-term forecasts during emergency situations. This talk will be focused on the main aspects related to modeling volcanic ash dispersal and fallout with application to the well known problem created by the Eyjafjöll volcano in Iceland. Moreover, a short description of the main volcanic monitoring techniques is presented.

  12. Modeling the Emission, Transport, and Dispersion of Post-wildfire Dust from Western Sagebrush Landscapes within a Regional Air Quality Framework

    NASA Astrophysics Data System (ADS)

    Chung, S. H.; Wagenbrenner, N. S.; Lamb, B. K.

    2014-12-01

    Millions of hectares are burned by wildfires each year in the western US. The resulting burn scars are extremely wind erodible surfaces with high loadings of easily entrained ash and soil. Previous work has demonstrated that wind erosion from these burn scars can release large amounts of dust and ash as particulate matter (PM) into the atmosphere, resulting in large impacts on downwind air quality and visibility. Sagebrush-dominated landscapes, where often essentially all vegetation is consumed by the fire, appear to be particularly vulnerable. Climate change predictions indicate more wildfire activity in the western US and, hence, more potential for wind erosion from burn scars. However, these PM sources are not yet accounted for in regional air quality models. Here we describe a modification to the AIRPACT regional air quality modeling framework for simulating the emission, transport and dispersion of PM from post-wildfire burn scars. We present results from a 2012 sagebrush fire in southeast Oregon as a case study. Modeled PM emission rates and downwind concentrations are compared against observations for two major dust events, one which resulted in exceedances of the PM10 National Ambient Air Quality Standard in Boise, Idaho the month after the fire and another which resulted in a significant dust on snow event and subsequent snowmelt in the Owyhee Mountains of southwest Idaho the following spring. Additionally, we present model estimates of annual emissions from all wildfires that occurred in sagebrush landscapes of the western US during the 2012 fire year as an estimate of annual post-fire PM loading potential.

  13. Dispersion Modeling of Traffic-Related Air Pollutant Exposures and Health Effects among Children with Asthma in Detroit, Michigan

    EPA Science Inventory

    Vehicular traffic is a major source of ambient air pollution in urban areas, and traffic-related air pollutants, including carbon monoxide, nitrogen oxides, particulate matter under 2.5 microns in diameter (PM2.5) and diesel exhaust emissions, have been associated with...

  14. A comparison of air dispersion models for estimating PM2.5 and dry deposition to urban trees

    NASA Astrophysics Data System (ADS)

    Game, Ibrahim Paguedame

    Many cities have public health issues linked to air pollution; various tools are used to assess pollutant distribution and removal by urban trees to help alleviate some of these issues. This research compares the predicted PM2.5 concentrations from the US EPA's AERMOD, the USDA Forest Service's i-Tree-Eco-D, the US EPA's Fused HBM data to short- and long-term monitors in New York City. AERMOD generally performs better than the US EPA's Fuse and i-Tree-Eco-D. On days with lower PM2.5 concentrations, Fuse appears to better capture the spatial distribution of PM2.5 than the other models, though on days with high PM2.5, Fuse had a larger negative bias. i-Tree-Eco-D was improved by raising the height of mobile emissions. Predictions from Fuse lead to higher estimates of PM2.5 removal and human health benefits, while AERMOD produced the lowest; and the removal varied across boroughs in NYC.

  15. Source term estimation using air concentration measurements and a Lagrangian dispersion model - Experiments with pseudo and real cesium-137 observations from the Fukushima nuclear accident

    NASA Astrophysics Data System (ADS)

    Chai, Tianfeng; Draxler, Roland; Stein, Ariel

    2015-04-01

    A transfer coefficient matrix (TCM) was created in a previous study using a Lagrangian dispersion model to provide plume predictions under different emission scenarios. The TCM estimates the contribution of each emission period to all sampling locations and can be used to estimate source terms by adjusting emission rates to match the model prediction with the measurements. In this paper, the TCM is used to formulate a cost functional that measures the differences between the model predictions and the actual air concentration measurements. The cost functional also includes a background term which adds the differences between a first guess and the updated emission estimates. Uncertainties of the measurements, as well as those for the first guess of source terms are both considered in the cost functional. In addition, a penalty term is added to create a smooth temporal change in the release rate. The method is first tested with pseudo observations generated using the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model at the same location and time as the actual observations. The inverse estimation system is able to accurately recover the release rates and performs better than a direct solution using singular value decomposition (SVD). It is found that computing ln(c) differences between model and observations is better than using the original concentration c differences in the cost functional. The inverse estimation results are not sensitive to artificially introduced observational errors or different first guesses. To further test the method, daily average cesium-137 air concentration measurements around the globe from the Fukushima nuclear accident are used to estimate the release of the radionuclide. Compared with the latest estimates by Katata et al. (2014), the recovered release rates successfully capture the main temporal variations. When using subsets of the measured data, the inverse estimation method still manages to identify most of the

  16. Comparison of the complex terrain algorithms incorporated into two commonly used local-scale air pollution dispersion models (ADMS and AERMOD) using a hybrid model.

    PubMed

    Carruthers, David J; Seaton, Martin D; McHugh, Christine A; Sheng, Xiangyu; Solazzo, Efisio; Vanvyve, Emilie

    2011-11-01

    ADMS and AERMOD are the two most widely used dispersion models for regulatory purposes. It is, therefore, important to understand the differences in the predictions of the models and the causes of these differences. The treatment by the models of flat terrain has been discussed previously; in this paper the focus is on their treatment of complex terrain. The paper includes a discussion of the impacts of complex terrain on airflow and dispersion and how these are treated in ADMS and AERMOD, followed by calculations for two distinct cases: (i) sources above a deep valley within a relatively flat plateau area (Clifty Creek power station, USA); (ii) sources in a valley in hilly terrain where the terrain rises well above the stack tops (Ribblesdale cement works, England). In both cases the model predictions are markedly different. At Clifty Creek, ADMS suggests that the terrain markedly increases maximum surface concentrations, whereas the AERMOD complex terrain module has little impact. At Ribblesdale, AERMOD predicts very large increases (a factor of 18) in the maximum hourly average surface concentrations due to plume impaction onto the neighboring hill; although plume impaction is predicted by ADMS, the increases in concentration are much less marked as the airflow model in ADMS predicts some lateral deviation of the streamlines around the hill.

  17. Pollen Forecast and Dispersion Modelling

    NASA Astrophysics Data System (ADS)

    Costantini, Monica; Di Giuseppe, Fabio; Medaglia, Carlo Maria; Travaglini, Alessandro; Tocci, Raffaella; Brighetti, M. Antonia; Petitta, Marcello

    2014-05-01

    The aim of this study is monitoring, mapping and forecast of pollen distribution for the city of Rome using in-situ measurements of 10 species of common allergenic pollens and measurements of PM10. The production of daily concentration maps, associated to a mobile phone app, are innovative compared to existing dedicated services to people who suffer from respiratory allergies. The dispersal pollen is one of the most well-known causes of allergic disease that is manifested by disorders of the respiratory functions. Allergies are the third leading cause of chronic disease and it is estimated that tens millions of people in Italy suffer from it. Recent works reveal that during the last few years there was a progressive increase of affected subjects, especially in urban areas. This situation may depend: on the ability to transport of pollutants, on the ability to react between pollutants and pollen and from a combination of other irritants, existing in densely populated and polluted urban areas. The methodology used to produce maps is based on in-situ measurements time series relative to 2012, obtained from networks of air quality and pollen stations in the metropolitan area of Rome. The monitoring station aerobiological of University of Rome "Tor Vergata" is located at the Department of Biology. The instrument used to pollen monitoring is a volumetric sampler type Hirst (Hirst 1952), Model 2000 VPPS Lanzoni; the data acquisition is carried out as reported in Standard UNI 11008:2004 - "Qualità dell'aria - Metodo di campionamento e conteggio dei granuli pollinici e delle spore fungine aerodisperse" - the protocol that describes the procedure for measuring of the concentration of pollen grains and fungal spores dispersed into the atmosphere, and reported in the "Manuale di gestione e qualità della R.I.M.A" (Travaglini et. al. 2009). All 10 allergenic pollen are monitored since 1996. At Tor Vergata university is also operating a meteorological station (SP2000, CAE

  18. Air pollution modeling and its application III

    SciTech Connect

    De Wispelaere, C.

    1984-01-01

    This book focuses on the Lagrangian modeling of air pollution. Modeling cooling tower and power plant plumes, modeling the dispersion of heavy gases, remote sensing as a tool for air pollution modeling, dispersion modeling including photochemistry, and the evaluation of model performances in practical applications are discussed. Specific topics considered include dispersion in the convective boundary layer, the application of personal computers to Lagrangian modeling, the dynamic interaction of cooling tower and stack plumes, the diffusion of heavy gases, correlation spectrometry as a tool for mesoscale air pollution modeling, Doppler acoustic sounding, tetroon flights, photochemical air quality simulation modeling, acid deposition of photochemical oxidation products, atmospheric diffusion modeling, applications of an integral plume rise model, and the estimation of diffuse hydrocarbon leakages from petrochemical factories. This volume constitutes the proceedings of the Thirteenth International Technical Meeting on Air Pollution Modeling and Its Application held in France in 1982.

  19. Modeling pollutant dispersion within a tornadic thunderstorm

    SciTech Connect

    Pepper, D.W.

    1981-01-01

    A three-dimensional numerical model was developed to calculate ground-level air concentration and deposition of particles entrained in a tornadic thunderstorm. The rotational characteristics of the tornadic storm are within the larger mesoscale flow of the storm system and transported with the vortex. Turbulence exchange coefficients are based on empirical values. The quasi-Lagrangian method of moments is used to model the transport of concentration within a grid cell volume. Results indicate that updrafts and downdrafts, coupled with scavenging of particles by precipitation, account for most of the material being deposited closer to the site than anticipated. Approximately 5% of the pollutant is dispersed into the stratosphere.

  20. Dispersion relation for air via Kramers-Kronig analysis.

    PubMed

    Alvarez, Fernando J; Kuc, Roman

    2008-08-01

    A general expression for the dispersion of acoustic waves in air is obtained by combining the attenuation coefficient given by the ISO:9613-1 standard and the twice-subtracted Kramers-Kronig relation. Good agreement is found with published data of sound velocity at different frequencies and relative humidities. The resulting expression is used to investigate changes in local dispersion with temperature and humidity. PMID:18681503

  1. Integrated Urban Dispersion Modeling Capability

    SciTech Connect

    Kosovic, B; Chan, S T

    2003-11-03

    Numerical simulations represent a unique predictive tool for developing a detailed understanding of three-dimensional flow fields and associated concentration distributions from releases in complex urban settings (Britter and Hanna 2003). The accurate and timely prediction of the atmospheric dispersion of hazardous materials in densely populated urban areas is a critical homeland and national security need for emergency preparedness, risk assessment, and vulnerability studies. The main challenges in high-fidelity numerical modeling of urban dispersion are the accurate prediction of peak concentrations, spatial extent and temporal evolution of harmful levels of hazardous materials, and the incorporation of detailed structural geometries. Current computational tools do not include all the necessary elements to accurately represent hazardous release events in complex urban settings embedded in high-resolution terrain. Nor do they possess the computational efficiency required for many emergency response and event reconstruction applications. We are developing a new integrated urban dispersion modeling capability, able to efficiently predict dispersion in diverse urban environments for a wide range of atmospheric conditions, temporal and spatial scales, and release event scenarios. This new computational fluid dynamics capability includes adaptive mesh refinement and it can simultaneously resolve individual buildings and high-resolution terrain (including important vegetative and land-use features), treat complex building and structural geometries (e.g., stadiums, arenas, subways, airplane interiors), and cope with the full range of atmospheric conditions (e.g. stability). We are developing approaches for seamless coupling with mesoscale numerical weather prediction models to provide realistic forcing of the urban-scale model, which is critical to its performance in real-world conditions.

  2. Air parcel trajectory dispersion near the tropical tropopause

    NASA Astrophysics Data System (ADS)

    Bergman, John W.; Jensen, Eric J.; Pfister, Leonhard; Bui, Thaopaul V.

    2016-04-01

    Dispersion of backward air parcel trajectories that are initially tightly grouped near the tropical tropopause is examined using three ensemble approaches: "RANWIND," in which different ensemble members use identical resolved wind fluctuations but different realizations of stochastic, multifractal simulations of unresolved winds; "PERTLOC," in which members use identical resolved wind fields but initial locations are perturbed 2° in latitude and longitude; and a multimodel ensemble ("MULTIMODEL") that uses identical initial conditions but different resolved wind fields and/or trajectory formulations. Comparisons among the approaches distinguish, to some degree, physical dispersion from that due to data uncertainty and the impacts of unresolved wind fluctuations from those of resolved variability. Dispersion rates are robust properties of trajectories near the tropical tropopause. Horizontal dispersion rates are typically ~3°/d, which is large enough to spread parcels throughout the tropics within typical tropical tropopause layer transport times (30-60 days) and underscores the importance of averaging large collections of trajectories to obtain reliable parcel source and pathway distributions. Vertical dispersion rates away from convection are ~2-3 hPa/d. Dispersion is primarily carried out by the resolved flow, and the RANWIND approach provides a plausible representation of actual trajectory dispersion rates, while PERTLOC provides a reasonable and inexpensive alternative to RANWIND. In contrast, dispersion from the MULTIMODEL calculations is important because it reflects systematic differences in resolved wind fields from different reanalysis data sets.

  3. Adaptive Urban Dispersion Integrated Model

    SciTech Connect

    Wissink, A; Chand, K; Kosovic, B; Chan, S; Berger, M; Chow, F K

    2005-11-03

    Numerical simulations represent a unique predictive tool for understanding the three-dimensional flow fields and associated concentration distributions from contaminant releases in complex urban settings (Britter and Hanna 2003). Utilization of the most accurate urban models, based on fully three-dimensional computational fluid dynamics (CFD) that solve the Navier-Stokes equations with incorporated turbulence models, presents many challenges. We address two in this work; first, a fast but accurate way to incorporate the complex urban terrain, buildings, and other structures to enforce proper boundary conditions in the flow solution; second, ways to achieve a level of computational efficiency that allows the models to be run in an automated fashion such that they may be used for emergency response and event reconstruction applications. We have developed a new integrated urban dispersion modeling capability based on FEM3MP (Gresho and Chan 1998, Chan and Stevens 2000), a CFD model from Lawrence Livermore National Lab. The integrated capability incorporates fast embedded boundary mesh generation for geometrically complex problems and full three-dimensional Cartesian adaptive mesh refinement (AMR). Parallel AMR and embedded boundary gridding support are provided through the SAMRAI library (Wissink et al. 2001, Hornung and Kohn 2002). Embedded boundary mesh generation has been demonstrated to be an automatic, fast, and efficient approach for problem setup. It has been used for a variety of geometrically complex applications, including urban applications (Pullen et al. 2005). The key technology we introduce in this work is the application of AMR, which allows the application of high-resolution modeling to certain important features, such as individual buildings and high-resolution terrain (including important vegetative and land-use features). It also allows the urban scale model to be readily interfaced with coarser resolution meso or regional scale models. This talk

  4. A model for dispersion of contaminants in the subway environment

    SciTech Connect

    Coke, L. R.; Sanchez, J. G.; Policastro, A. J.

    2000-05-03

    Although subway ventilation has been studied extensively, very little has been published on dispersion of contaminants in the subway environment. This paper presents a model that predicts dispersion of contaminants in a complex subway system. It accounts for the combined transient effects of train motion, station airflows, train car air exchange rates, and source release properties. Results are presented for a range of typical subway scenarios. The effects of train piston action and train car air exchange are discussed. The model could also be applied to analyze the environmental impact of hazardous materials releases such as chemical and biological agents.

  5. Atmospheric Dispersion Model Validation in Low Wind Conditions

    SciTech Connect

    Sawyer, Patrick

    2007-11-01

    Atmospheric plume dispersion models are used for a variety of purposes including emergency planning and response to hazardous material releases, determining force protection actions in the event of a Weapons of Mass Destruction (WMD) attack and for locating sources of pollution. This study provides a review of previous studies that examine the accuracy of atmospheric plume dispersion models for chemical releases. It considers the principles used to derive air dispersion plume models and looks at three specific models currently in use: Aerial Location of Hazardous Atmospheres (ALOHA), Emergency Prediction Information Code (EPIcode) and Second Order Closure Integrated Puff (SCIPUFF). Results from this study indicate over-prediction bias by the EPIcode and SCIPUFF models and under-prediction bias by the ALOHA model. The experiment parameters were for near field dispersion (less than 100 meters) in low wind speed conditions (less than 2 meters per second).

  6. Modeling the dispersion in electromechanically coupled myocardium

    PubMed Central

    Eriksson, Thomas S. E.; Prassl, Anton J.; Plank, Gernot; Holzapfel, Gerhard A.

    2014-01-01

    SUMMARY We present an approach to model the dispersion of fiber and sheet orientations in the myocardium. By utilizing structure parameters, an existing orthotropic and invariant-based constitutive model developed to describe the passive behavior of the myocardium is augmented. Two dispersion parameters are fitted to experimentally observed angular dispersion data of the myocardial tissue. Computations are performed on a unit myocardium tissue cube and on a slice of the left ventricle indicating that the dispersion parameter has an effect on the myocardial deformation and stress development. The use of fiber dispersions relating to a pathological myocardium had a rather big effect. The final example represents an ellipsoidal model of the left ventricle indicating the influence of fiber and sheet dispersions upon contraction over a cardiac cycle. Although only a minor shift in the pressure–volume (PV) loops between the cases with no dispersions and with fiber and sheet dispersions for a healthy myocardium was observed, a remarkably different behavior is obtained with a fiber dispersion relating to a diseased myocardium. In future simulations, this dispersion model for myocardial tissue may advantageously be used together with models of, for example, growth and remodeling of various cardiac diseases. PMID:23868817

  7. Dispersal and air entrainment in unconfined dilute pyroclastic density currents

    NASA Astrophysics Data System (ADS)

    Andrews, Benjamin J.

    2014-09-01

    Unconfined scaled laboratory experiments show that 3D structures control the behavior of dilute pyroclastic density currents (PDCs) during and after liftoff. Experiments comprise heated and ambient temperature 20 μm talc powder turbulently suspended in air to form density currents within an unobstructed 8.5 × 6 × 2.6-m chamber. Comparisons of Richardson, thermal Richardson, Froude, Stokes, and settling numbers and buoyant thermal to kinetic energy densities show good agreement between experimental currents and dilute PDCs. The experimental Reynolds numbers are lower than those of PDCs, but the experiments are fully turbulent; thus, the large-scale dynamics are similar between the two systems. High-frequency, simultaneous observation in three orthogonal planes shows that the currents behave very differently than previous 2D (i.e., confined) currents. Specifically, whereas ambient temperature currents show radial dispersal patterns, buoyancy reversal, and liftoff of heated currents focuses dispersal along narrow axes beneath the rising plumes. The aspect ratios, defined as the current length divided by a characteristic width, are typically 2.5-3.5 in heated currents and 1.5-2.5 in ambient temperature currents, reflecting differences in dispersal between the two types of currents. Mechanisms of air entrainment differ greatly between the two currents: entrainment occurs primarily behind the heads and through the upper margins of ambient temperature currents, but heated currents entrain air through their lateral margins. That lateral entrainment is much more efficient than the vertical entrainment, >0.5 compared to ˜0.1, where entrainment is defined as the ratio of cross-stream to streamwise velocity. These experiments suggest that generation of coignimbrite plumes should focus PDCs along narrow transport axes, resulting in elongate rather than radial deposits.

  8. Uncertainty in spatially explicit animal dispersal models

    USGS Publications Warehouse

    Mooij, Wolf M.; DeAngelis, Donald L.

    2003-01-01

    Uncertainty in estimates of survival of dispersing animals is a vexing difficulty in conservation biology. The current notion is that this uncertainty decreases the usefulness of spatially explicit population models in particular. We examined this problem by comparing dispersal models of three levels of complexity: (1) an event-based binomial model that considers only the occurrence of mortality or arrival, (2) a temporally explicit exponential model that employs mortality and arrival rates, and (3) a spatially explicit grid-walk model that simulates the movement of animals through an artificial landscape. Each model was fitted to the same set of field data. A first objective of the paper is to illustrate how the maximum-likelihood method can be used in all three cases to estimate the means and confidence limits for the relevant model parameters, given a particular set of data on dispersal survival. Using this framework we show that the structure of the uncertainty for all three models is strikingly similar. In fact, the results of our unified approach imply that spatially explicit dispersal models, which take advantage of information on landscape details, suffer less from uncertainly than do simpler models. Moreover, we show that the proposed strategy of model development safeguards one from error propagation in these more complex models. Finally, our approach shows that all models related to animal dispersal, ranging from simple to complex, can be related in a hierarchical fashion, so that the various approaches to modeling such dispersal can be viewed from a unified perspective.

  9. "Dispersion modeling approaches for near road

    EPA Science Inventory

    Roadway design and roadside barriers can have significant effects on the dispersion of traffic-generated pollutants, especially in the near-road environment. Dispersion models that can accurately simulate these effects are needed to fully assess these impacts for a variety of app...

  10. AIR Model Preflight Analysis

    NASA Technical Reports Server (NTRS)

    Tai, H.; Wilson, J. W.; Maiden, D. L.

    2003-01-01

    The atmospheric ionizing radiation (AIR) ER-2 preflight analysis, one of the first attempts to obtain a relatively complete measurement set of the high-altitude radiation level environment, is described in this paper. The primary thrust is to characterize the atmospheric radiation and to define dose levels at high-altitude flight. A secondary thrust is to develop and validate dosimetric techniques and monitoring devices for protecting aircrews. With a few chosen routes, we can measure the experimental results and validate the AIR model predictions. Eventually, as more measurements are made, we gain more understanding about the hazardous radiation environment and acquire more confidence in the prediction models.

  11. Physical models of polarization mode dispersion

    SciTech Connect

    Menyuk, C.R.; Wai, P.K.A.

    1995-12-31

    The effect of randomly varying birefringence on light propagation in optical fibers is studied theoretically in the parameter regime that will be used for long-distance communications. In this regime, the birefringence is large and varies very rapidly in comparison to the nonlinear and dispersive scale lengths. We determine the polarization mode dispersion, and we show that physically realistic models yield the same result for polarization mode dispersion as earlier heuristic models that were introduced by Poole. We also prove an ergodic theorem.

  12. Analysis of dispersal effects in metapopulation models.

    PubMed

    Ruiz-Herrera, Alfonso

    2016-02-01

    The interplay between local dynamics and dispersal rates in discrete metapopulation models for homogeneous landscapes is studied. We introduce an approach based on scalar dynamics to study global attraction of equilibria and periodic orbits. This approach applies for any number of patches, dispersal rates, or landscape structure. The existence of chaos in metapopulation models is also discussed. We analyze issues such as sensitive dependence on the initial conditions or short/intermediate/long term behaviours of chaotic orbits. PMID:26032652

  13. Modeling dispersion of traffic-related pollutants in the NEXUS health study

    EPA Science Inventory

    Dispersion modeling tools have traditionally provided critical information for air quality management decisions, but have been used recently to provide exposure estimates to support health studies. However, these models can be challenging to implement, particularly in near-road s...

  14. Free-air CO2 enrichment (face): model analysis of gaseous dispersion arrays for studying rising atmospheric CO2 effects on vegetation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Atmospheric carbon dioxide (CO2) has risen from about 280 to 380 micromol/mol since the beginning of the industrial revolution due mainly to burning of fossil fuels. Free-Air CO2 Enrichment (FACE) arrays have been devised with large areas and undisturbed aerial conditions that allow secondary soil o...

  15. Advances in parallel computer technology for desktop atmospheric dispersion models

    SciTech Connect

    Bian, X.; Ionescu-Niscov, S.; Fast, J.D.; Allwine, K.J.

    1996-12-31

    Desktop models are those models used by analysts with varied backgrounds, for performing, for example, air quality assessment and emergency response activities. These models must be robust, well documented, have minimal and well controlled user inputs, and have clear outputs. Existing coarse-grained parallel computers can provide significant increases in computation speed in desktop atmospheric dispersion modeling without considerable increases in hardware cost. This increased speed will allow for significant improvements to be made in the scientific foundations of these applied models, in the form of more advanced diffusion schemes and better representation of the wind and turbulence fields. This is especially attractive for emergency response applications where speed and accuracy are of utmost importance. This paper describes one particular application of coarse-grained parallel computer technology to a desktop complex terrain atmospheric dispersion modeling system. By comparing performance characteristics of the coarse-grained parallel version of the model with the single-processor version, we will demonstrate that applying coarse-grained parallel computer technology to desktop atmospheric dispersion modeling systems will allow us to address critical issues facing future requirements of this class of dispersion models.

  16. Dispersal

    USGS Publications Warehouse

    Clobert, J.; Danchin, E.; Dhondt, A.A.; Nichols, J.D.

    2001-01-01

    The ability of species to migrate and disperse is a trait that has interested ecologists for many years. Now that so many species and ecosystems face major environmental threats from habitat fragmentation and global climate change, the ability of species to adapt to these changes by dispersing, migrating, or moving between patches of habitat can be crucial to ensuring their survival. This book provides a timely and wide-ranging overview of the study of dispersal and incorporates much of the latest research. The causes, mechanisms, and consequences of dispersal at the individual, population, species and community levels are considered. The potential of new techniques and models for studying dispersal, drawn from molecular biology and demography, is also explored. Perspectives and insights are offered from the fields of evolution, conservation biology and genetics. Throughout the book, theoretical approaches are combined with empirical data, and care has been taken to include examples from as wide a range of species as possible.

  17. MODELING DISPERSANT INTERACTIONS WITH OIL SPILLS

    EPA Science Inventory

    EPA is developing a model called the EPA Research Object-Oriented Oil Spill Model (ERO3S) and associated databases to simulate the impacts of dispersants on oil slicks. Because there are features of oil slicks that align naturally with major concepts of object-oriented programmi...

  18. Spatially varying dispersion to model breakthrough curves.

    PubMed

    Li, Guangquan

    2011-01-01

    Often the water flowing in a karst conduit is a combination of contaminated water entering at a sinkhole and cleaner water released from the limestone matrix. Transport processes in the conduit are controlled by advection, mixing (dilution and dispersion), and retention-release. In this article, a karst transport model considering advection, spatially varying dispersion, and dilution (from matrix seepage) is developed. Two approximate Green's functions are obtained using transformation of variables, respectively, for the initial-value problem and for the boundary-value problem. A numerical example illustrates that mixing associated with strong spatially varying conduit dispersion can cause strong skewness and long tailing in spring breakthrough curves. Comparison of the predicted breakthrough curve against that measured from a dye-tracing experiment between Ames Sink and Indian Spring, Northwest Florida, shows that the conduit dispersivity can be as large as 400 m. Such a large number is believed to imply strong solute interaction between the conduit and the matrix and/or multiple flow paths in a conduit network. It is concluded that Taylor dispersion is not dominant in transport in a karst conduit, and the complicated retention-release process between mobile- and immobile waters may be described by strong spatially varying conduit dispersion. PMID:21143474

  19. URBAN MORPHOLOGICAL ANALYSIS FOR MESOSCALE METEOROLOGICAL AND DISPERSION MODELING APPLICATIONS: CURRENT ISSUES

    EPA Science Inventory

    Representing urban terrain characteristics in mesoscale meteorological and dispersion models is critical to produce accurate predictions of wind flow and temperature fields, air quality, and contaminant transport. A key component of the urban terrain representation is the charac...

  20. Integration of an atmospheric dispersion model with a dynamic multimedia fate model: development and illustration.

    PubMed

    Morselli, Melissa; Ghirardello, Davide; Semplice, Matteo; Raspa, Giuseppe; Di Guardo, Antonio

    2012-05-01

    Growing attention is devoted to understand the influence of the short-term variations in air concentrations on the environmental fate of semivolatile organic compounds (SVOCs) such as polycyclic aromatic hydrocarbons (PAHs). These variations are ascribable to factors such as temperature-mediated air-surface exchange and variability of planetary boundary layer (PBL) height and structure. But when investigating the fate of SVOCs at a local scale, further variability can derive from specific point source contributions. In this context, a new modeling approach (AirPlus) which integrates a previously developed model (AirFug) with an air dispersion model (AERMOD) is presented. The integrated model is illustrated for two PAHs in a Northern Italy scenario. Results show how chemical contributions deriving from background advective inflows, local emissions and a point source interact in an hourly-varying meteorological scenario to determine air concentration rapid changes and the consequent response of the soil compartment.

  1. Comparison of regional air dispersion simulation and ambient air monitoring data for the soil fumigant 1,3-dichloropropene.

    PubMed

    van Wesenbeeck, I J; Cryer, S A; de Cirugeda Helle, O; Li, C; Driver, J H

    2016-11-01

    SOFEA v2.0 is an air dispersion modeling tool used to predict acute and chronic pesticide concentrations in air for large air sheds resulting from agronomic practices. A 1,3-dichloropropene (1,3-D) air monitoring study in high use townships in Merced County, CA, logged 3-day average air concentrations at nine locations over a 14.5month period. SOFEA, using weather data measured at the site, and using a historical CDPR regulatory assumption of a constant 320m mixing height, predicted the general pattern and correct order of magnitude for 1,3-D air concentrations as a function of time, but failed to estimate the highest observed 1,3-D concentrations of the monitoring study. A time series and statistical comparison of the measured and modeled data indicated that the model underestimated 1,3-D concentrations during calm periods (wind speed <1m/s), such that the annual average concentration was under predicted by approximately 4.7-fold, and the variability was not representative of the measured data. Calm periods are associated with low mixing heights (MHs) and are more prevalent in the Central Valley of CA during the winter months, and thus the assumption of a constant 320m mixing height is not appropriate. An algorithm was developed to calculate the MH using the air temperature in the weather file when the wind speed was <1m/s. When the model was run using the revised MHs, the average of the modeled 1,3-D concentration Probability Distribution Function (PDF) was within 5% of the measured PDF, and the variability in modeled concentrations more closely matched the measured dataset. Use of the PCRAMMET processed weather data from the site (including PCRAMMET MH) resulted in the global annual average concentration within 2-fold of measured data. Receptor density was also found to have an effect on the modeled 1,3-D concentration PDF, and a 50×50 receptor grid in the nine township domain captured the measured 1,3-D concentration distribution much better than a 3×3

  2. Debris Dispersion Model Using Java 3D

    NASA Technical Reports Server (NTRS)

    Thirumalainambi, Rajkumar; Bardina, Jorge

    2004-01-01

    This paper describes web based simulation of Shuttle launch operations and debris dispersion. Java 3D graphics provides geometric and visual content with suitable mathematical model and behaviors of Shuttle launch. Because the model is so heterogeneous and interrelated with various factors, 3D graphics combined with physical models provides mechanisms to understand the complexity of launch and range operations. The main focus in the modeling and simulation covers orbital dynamics and range safety. Range safety areas include destruct limit lines, telemetry and tracking and population risk near range. If there is an explosion of Shuttle during launch, debris dispersion is explained. The shuttle launch and range operations in this paper are discussed based on the operations from Kennedy Space Center, Florida, USA.

  3. Uncertainty and dispersion in air parcel trajectories near the tropical tropopause

    NASA Astrophysics Data System (ADS)

    Bergman, John; Jensen, Eric; Pfister, Leonhard; Bui, Thoapaul

    2016-04-01

    The Tropical Tropopause Layer (TTL) is important as the gateway to the stratosphere for chemical constituents produced at the Earth's surface. As such, understanding the processes that transport air through the upper tropical troposphere is important for a number of current scientific issues such as the impact of stratospheric water vapor on the global radiative budget and the depletion of ozone by both anthropogenically- and naturally-produced halocarbons. Compared to the lower troposphere, transport in the TTL is relatively unaffected by turbulent motion. Consequently, Lagrangian particle models are thought to provide reasonable estimates of parcel pathways through the TTL. However, there are complications that make trajectory analyses difficult to interpret; uncertainty in the wind data used to drive these calculations and trajectory dispersion being among the most important. These issues are examined using ensembles of backward air parcel trajectories that are initially tightly grouped near the tropical tropopause using three approaches: A Monte Carlo ensemble, in which different members use identical resolved wind fluctuations but different realizations of stochastic, multi-fractal simulations of unresolved winds, perturbed initial location ensembles, in which members use identical resolved wind fields but initial locations are displaced 2° in latitude and longitude, and a multi-model ensemble that uses identical initial conditions but different resolved wind fields and/or trajectory formulations. Comparisons among the approaches distinguish, to some degree, physical dispersion from that due to data uncertainty and the impact of unresolved wind fluctuations from that of resolved variability.

  4. The NET effect of dispersants - a critical review of testing and modelling of surface oil dispersion.

    PubMed

    Zeinstra-Helfrich, Marieke; Koops, Wierd; Murk, Albertinka J

    2015-11-15

    Application of chemical dispersants or mechanical dispersion on surface oil is a trade-off between surface effects (impact of floating oil) and sub-surface effects (impact of suspended oil). Making an informed decision regarding such response, requires insight in the induced change in fate and transport of the oil. We aim to identify how natural, chemical and mechanical dispersion could be quantified in oil spill models. For each step in the dispersion process, we review available experimental data in order to identify overall trends and propose an algorithm or calculation method. Additionally, the conditions for successful mechanical and chemical dispersion are defined. Two commonly identified key parameters in surface oil dispersion are: oil properties (viscosity and presence of dispersants) and mixing energy (often wind speed). Strikingly, these parameters play a different role in several of the dispersion sub-processes. This may explain difficulties in simply relating overall dispersion effectiveness to the individual parameters. PMID:26412415

  5. The NET effect of dispersants - a critical review of testing and modelling of surface oil dispersion.

    PubMed

    Zeinstra-Helfrich, Marieke; Koops, Wierd; Murk, Albertinka J

    2015-11-15

    Application of chemical dispersants or mechanical dispersion on surface oil is a trade-off between surface effects (impact of floating oil) and sub-surface effects (impact of suspended oil). Making an informed decision regarding such response, requires insight in the induced change in fate and transport of the oil. We aim to identify how natural, chemical and mechanical dispersion could be quantified in oil spill models. For each step in the dispersion process, we review available experimental data in order to identify overall trends and propose an algorithm or calculation method. Additionally, the conditions for successful mechanical and chemical dispersion are defined. Two commonly identified key parameters in surface oil dispersion are: oil properties (viscosity and presence of dispersants) and mixing energy (often wind speed). Strikingly, these parameters play a different role in several of the dispersion sub-processes. This may explain difficulties in simply relating overall dispersion effectiveness to the individual parameters.

  6. Dense-gas dispersion advection-diffusion model

    SciTech Connect

    Ermak, D.L.

    1992-07-01

    A dense-gas version of the ADPIC particle-in-cell, advection- diffusion model was developed to simulate the atmospheric dispersion of denser-than-air releases. In developing the model, it was assumed that the dense-gas effects could be described in terms of the vertically-averaged thermodynamic properties and the local height of the cloud. The dense-gas effects were treated as a perturbation to the ambient thermodynamic properties (density and temperature), ground level heat flux, turbulence level (diffusivity), and windfield (gravity flow) within the local region of the dense-gas cloud. These perturbations were calculated from conservation of energy and conservation of momentum principles along with the ideal gas law equation of state for a mixture of gases. ADPIC, which is generally run in conjunction with a mass-conserving wind flow model to provide the advection field, contains all the dense-gas modifications within it. This feature provides the versatility of coupling the new dense-gas ADPIC with alternative wind flow models. The new dense-gas ADPIC has been used to simulate the atmospheric dispersion of ground-level, colder-than-ambient, denser-than-air releases and has compared favorably with the results of field-scale experiments.

  7. Urban dispersion : challenges for fast response modeling

    SciTech Connect

    Brown, M. J.

    2004-01-01

    There is renewed interest in urban dispersion modeling due to the need for tools that can be used for responding to, planning for, and assessing the consequences of an airborne release of toxic materials. Although not an everyday phenomenon, releases of hazardous gases and aerosols have occurred in populated urban environments and are potentially threatening to human life. These releases may stem from on-site accidents as in the case of industrial chemical releases, may result during transport of hazardous chemicals as in tanker truck or railroad spills, or may be premeditated as in a chemical, biological, or radiological (CBR) agent terrorist attack. Transport and dispersion in urban environments is extremely complicated. Buildings alter the flow fields and deflect the wind, causing updrafts and downdrafts, channeling between buildings, areas of calm winds adjacent to strong winds, and horizontally and vertically rotating-eddies between buildings, at street corners, and other places within the urban canopy (see review by Hosker, 1984). Trees, moving vehicles, and exhaust vents among other things further complicate matters. The distance over which chemical, biological, or radiological releases can be harmful varies from tens of meters to many kilometers depending on the amount released, the toxicity of the agent, and the atmospheric conditions. As we will show later, accounting for the impacts of buildings on the transport and dispersion is crucial in estimating the travel direction, the areal extent, and the toxicity levels of the contaminant plume, and ultimately for calculating exposures to the population.

  8. Volcanic ash forecast transport and dispersion (VAFTAD) model

    SciTech Connect

    Heffter, J.L.; Stunder, B.J.B.

    1993-12-01

    The National Oceanic and Atmospheric Administration (NOAA) Air Resources Laboratory (ARL) has developed a Volcanic Ash Forecast Transport And Dispersion (VAFTAD) model for emergency response use focusing on hazards to aircraft flight operations. The model is run on a workstation at ARL. Meteorological input for the model is automatically downloaded from the NOAA National Meteorological Center (NMC) twice-daily forecast model runs to ARL. Additional input for VAFTAD ragarding the volcanic eruption is supplied by the user guided by monitor prompts. The model calculates transport and dispersion of volcanic ash from an initial ash cloud that has reached its maximum height within 3 h of eruption time. The model assumes that spherical ash particles of diameters ranging from 0.3 to 30 micrometers are distributed throughout the initial cloud with a particle number distribution based on Mount St. Helens and Redoubt Volcano eruptions. Particles are advected horizontally and vertically by the winds and fall according to Stoke`s law with a slip correction. A bivariate-normal distribution is used for horizontally diffusing the cloud and determining ash concentrations. Model output gives maps with symbols representing relative concentrations in three flight layers, and throughout the entire ash cloud, for sequential 6- and 12-h time intervals. A verification program for VAFTAD has been started. Results subjectively comparing model ash cloud forecasts with satellite imagery for three separate 1992 eruptions of Mount Spurr in Alaska have been most encouraging.

  9. Atmospheric dispersion modelling over complex terrain at small scale

    NASA Astrophysics Data System (ADS)

    Nosek, S.; Janour, Z.; Kukacka, L.; Jurcakova, K.; Kellnerova, R.; Gulikova, E.

    2014-03-01

    Previous study concerned of qualitative modelling neutrally stratified flow over open-cut coal mine and important surrounding topography at meso-scale (1:9000) revealed an important area for quantitative modelling of atmospheric dispersion at small-scale (1:3300). The selected area includes a necessary part of the coal mine topography with respect to its future expansion and surrounding populated areas. At this small-scale simultaneous measurement of velocity components and concentrations in specified points of vertical and horizontal planes were performed by two-dimensional Laser Doppler Anemometry (LDA) and Fast-Response Flame Ionization Detector (FFID), respectively. The impact of the complex terrain on passive pollutant dispersion with respect to the prevailing wind direction was observed and the prediction of the air quality at populated areas is discussed. The measured data will be used for comparison with another model taking into account the future coal mine transformation. Thus, the impact of coal mine transformation on pollutant dispersion can be observed.

  10. Model of tritium dispersion by ground water

    NASA Astrophysics Data System (ADS)

    Golubev, A. V.; Mavrin, S. V.; Sten'gach, A. V.

    2000-07-01

    A three-dimensional model of ground-water contamination in the zone of a steady source of tritium is presented. The model is oriented toward long-term modeling of contamination (for up to several decades) on a large area (of up to several hundred square kilometers) where the contaminant arrives through the roof of the aquiferous stratum by infiltration. The three-dimensional equation of convective diffusion is solved numerically by the method of splitting. The convective component is calculated by the method of particles. The dispersion component of the transfer is calculated using the finite-difference method. A transformation of the vertical coordinate is introduced. A solution of the model problem is presented and an interpretation of the results is given.

  11. Sensitivity Analysis of Dispersion Model Results in the NEXUS Health Study Due to Uncertainties in Traffic-Related Emissions Inputs

    EPA Science Inventory

    Dispersion modeling tools have traditionally provided critical information for air quality management decisions, but have been used recently to provide exposure estimates to support health studies. However, these models can be challenging to implement, particularly in near-road s...

  12. National Atmospheric Release Advisory Center Dispersion Modeling of the Full-scale Radiological Dispersal Device (FSRDD) Field Trials.

    PubMed

    Neuscamman, Stephanie; Yu, Kristen

    2016-05-01

    The results of the National Atmospheric Release Advisory Center (NARAC) model simulations are compared to measured data from the Full-Scale Radiological Dispersal Device (FSRDD) field trials. The series of explosive radiological dispersal device (RDD) experiments was conducted in 2012 by Defence Research and Development Canada (DRDC) and collaborating organizations. During the trials, a wealth of data was collected, including a variety of deposition and air concentration measurements. The experiments were conducted with one of the stated goals being to provide measurements to atmospheric dispersion modelers. These measurements can be used to facilitate important model validation studies. For this study, meteorological observations recorded during the tests are input to the diagnostic meteorological model, ADAPT, which provides 3-D, time-varying mean wind and turbulence fields to the LODI dispersion model. LODI concentration and deposition results are compared to the measured data, and the sensitivity of the model results to changes in input conditions (such as the particle activity size distribution of the source) and model physics (such as the rise of the buoyant cloud of explosive products) is explored. The NARAC simulations predicted the experimentally measured deposition results reasonably well considering the complexity of the release. Changes to the activity size distribution of the modeled particles can improve the agreement of the model results to measurement. PMID:27023036

  13. National Atmospheric Release Advisory Center dispersion modeling of the Full-scale Radiological Dispersal device (FSRDD) field trials

    DOE PAGES

    Neuscamman, Stephanie J.; Yu, Kristen L.

    2016-05-01

    The results of the National Atmospheric Release Advisory Center (NARAC) model simulations are compared to measured data from the Full-Scale Radiological Dispersal Device (FSRDD) field trials. The series of explosive radiological dispersal device (RDD) experiments was conducted in 2012 by Defence Research and Development Canada (DRDC) and collaborating organizations. During the trials, a wealth of data was collected, including a variety of deposition and air concentration measurements. The experiments were conducted with one of the stated goals being to provide measurements to atmospheric dispersion modelers. These measurements can be used to facilitate important model validation studies. For this study, meteorologicalmore » observations recorded during the tests are input to the diagnostic meteorological model, ADAPT, which provides 3–D, time-varying mean wind and turbulence fields to the LODI dispersion model. LODI concentration and deposition results are compared to the measured data, and the sensitivity of the model results to changes in input conditions (such as the particle activity size distribution of the source) and model physics (such as the rise of the buoyant cloud of explosive products) is explored. The NARAC simulations predicted the experimentally measured deposition results reasonably well considering the complexity of the release. Lastly, changes to the activity size distribution of the modeled particles can improve the agreement of the model results to measurement.« less

  14. National Atmospheric Release Advisory Center Dispersion Modeling of the Full-scale Radiological Dispersal Device (FSRDD) Field Trials.

    PubMed

    Neuscamman, Stephanie; Yu, Kristen

    2016-05-01

    The results of the National Atmospheric Release Advisory Center (NARAC) model simulations are compared to measured data from the Full-Scale Radiological Dispersal Device (FSRDD) field trials. The series of explosive radiological dispersal device (RDD) experiments was conducted in 2012 by Defence Research and Development Canada (DRDC) and collaborating organizations. During the trials, a wealth of data was collected, including a variety of deposition and air concentration measurements. The experiments were conducted with one of the stated goals being to provide measurements to atmospheric dispersion modelers. These measurements can be used to facilitate important model validation studies. For this study, meteorological observations recorded during the tests are input to the diagnostic meteorological model, ADAPT, which provides 3-D, time-varying mean wind and turbulence fields to the LODI dispersion model. LODI concentration and deposition results are compared to the measured data, and the sensitivity of the model results to changes in input conditions (such as the particle activity size distribution of the source) and model physics (such as the rise of the buoyant cloud of explosive products) is explored. The NARAC simulations predicted the experimentally measured deposition results reasonably well considering the complexity of the release. Changes to the activity size distribution of the modeled particles can improve the agreement of the model results to measurement.

  15. Evaluating plume dispersion models: Expanding the practice to include the model physics

    SciTech Connect

    Weil, J.C.

    1994-12-31

    Plume dispersion models are used in a variety of air-quality applications including the determination of source emission limits, new source sites, etc. The cost of pollution control and siting has generated much interest in model evaluation and accuracy. Two questions are of primary concern: (1) How well does a model predict the high ground-level concentrations (GLCs) that are necessary in assessing compliance with air-quality regulations? This prompts an operational performance evaluation; (2) Is the model based on sound physical principles and does it give good predictions for the {open_quotes}right{close_quotes} reasons? This prompts a model physics evaluation. Although air-quality managers are interested primarily in operational performance, model physics should be an equally important issue. The purpose in establishing good physics is to build confidence in model predictions beyond the limited experimental range, i.e., for new source applications.

  16. Dispersive wave processing: a model-based solution

    SciTech Connect

    Candy, J.V.; Chambers, D.C.

    1996-10-01

    Wave propagation through various media represents a significant problem in many applications in acoustics and electromagnetics especially when the medium is dispersive. We post a general dispersive wave propagation model that could easily represent many classes of dispersive waves and proceed to develop a model-based processor employing this underlying structure. The general solution to the model-based dispersive wave estimation problem is developed using the Bayesian maximum a posteriori approach which leads to the nonlinear extended Kalman filter processor.

  17. INEEL AIR MODELING PROTOCOL ext

    SciTech Connect

    C. S. Staley; M. L. Abbott; P. D. Ritter

    2004-12-01

    Various laws stemming from the Clean Air Act of 1970 and the Clean Air Act amendments of 1990 require air emissions modeling. Modeling is used to ensure that air emissions from new projects and from modifications to existing facilities do not exceed certain standards. For radionuclides, any new airborne release must be modeled to show that downwind receptors do not receive exposures exceeding the dose limits and to determine the requirements for emissions monitoring. For criteria and toxic pollutants, emissions usually must first exceed threshold values before modeling of downwind concentrations is required. This document was prepared to provide guidance for performing environmental compliance-driven air modeling of emissions from Idaho National Engineering and Environmental Laboratory facilities. This document assumes that the user has experience in air modeling and dose and risk assessment. It is not intended to be a "cookbook," nor should all recommendations herein be construed as requirements. However, there are certain procedures that are required by law, and these are pointed out. It is also important to understand that air emissions modeling is a constantly evolving process. This document should, therefore, be reviewed periodically and revised as needed. The document is divided into two parts. Part A is the protocol for radiological assessments, and Part B is for nonradiological assessments. This document is an update of and supersedes document INEEL/INT-98-00236, Rev. 0, INEEL Air Modeling Protocol. This updated document incorporates changes in some of the rules, procedures, and air modeling codes that have occurred since the protocol was first published in 1998.

  18. Longitudinal dispersion modeling in small streams

    NASA Astrophysics Data System (ADS)

    Pekarova, Pavla; Pekar, Jan; Miklanek, Pavol

    2014-05-01

    The environmental problems caused by the increasing of pollutant loads discharged into natural water bodies are very complex. For that reason the cognition of transport mechanism and mixing characteristics in natural streams is very important. The mathematical and numerical models have become very useful tools for solving the water management problems. The mathematical simulations based on numerical models of pollution mixing in streams can be used (for example) for prediction of spreading of accidental contaminant waves in rivers. The paper deals with the estimation of the longitudinal dispersion coefficients and with the numerical simulation of transport and transformation of accidental pollution in the small natural streams. There are different ways of solving problems of pollution spreading in open channels, in natural rivers. One of them is the hydrodynamic approach, which endeavours to understand and quantify the spreading phenomenon in a stream. The hydrodynamic models are based on advection-diffusion equation and the majority of them are one-dimensional models. Their disadvantage is inability to simulate the spread of pollution until complete dispersion of pollutant across the stream section is finished. Two-dimensional mixing models do not suffer from these limitations. On the other hand, the one-dimensional models are simpler than two-dimensional ones, they need not so much input data and they are often swifter. Three-dimensional models under conditions of natural streams are applicable with difficulties (or inapplicable) for their complexity and demands on accuracy and amount of input data. As there was mentioned above the two-dimensional models can be used also until complete dispersion of pollutant across the stream section is not finished, so we decided to apply the two-dimensional model SIRENIE. Experimental microbasin Rybarik is the part of the experimental Mostenik brook basin of IH SAS Bratislava. It was established as a Field Hydrological

  19. Comparison of regional air dispersion simulation and ambient air monitoring data for the soil fumigant 1,3-dichloropropene.

    PubMed

    van Wesenbeeck, I J; Cryer, S A; de Cirugeda Helle, O; Li, C; Driver, J H

    2016-11-01

    SOFEA v2.0 is an air dispersion modeling tool used to predict acute and chronic pesticide concentrations in air for large air sheds resulting from agronomic practices. A 1,3-dichloropropene (1,3-D) air monitoring study in high use townships in Merced County, CA, logged 3-day average air concentrations at nine locations over a 14.5month period. SOFEA, using weather data measured at the site, and using a historical CDPR regulatory assumption of a constant 320m mixing height, predicted the general pattern and correct order of magnitude for 1,3-D air concentrations as a function of time, but failed to estimate the highest observed 1,3-D concentrations of the monitoring study. A time series and statistical comparison of the measured and modeled data indicated that the model underestimated 1,3-D concentrations during calm periods (wind speed <1m/s), such that the annual average concentration was under predicted by approximately 4.7-fold, and the variability was not representative of the measured data. Calm periods are associated with low mixing heights (MHs) and are more prevalent in the Central Valley of CA during the winter months, and thus the assumption of a constant 320m mixing height is not appropriate. An algorithm was developed to calculate the MH using the air temperature in the weather file when the wind speed was <1m/s. When the model was run using the revised MHs, the average of the modeled 1,3-D concentration Probability Distribution Function (PDF) was within 5% of the measured PDF, and the variability in modeled concentrations more closely matched the measured dataset. Use of the PCRAMMET processed weather data from the site (including PCRAMMET MH) resulted in the global annual average concentration within 2-fold of measured data. Receptor density was also found to have an effect on the modeled 1,3-D concentration PDF, and a 50×50 receptor grid in the nine township domain captured the measured 1,3-D concentration distribution much better than a 3×3

  20. Dispersal kernel estimation: A comparison of empirical and modelled particle dispersion in a coastal marine system

    NASA Astrophysics Data System (ADS)

    Hrycik, Janelle M.; Chassé, Joël; Ruddick, Barry R.; Taggart, Christopher T.

    2013-11-01

    Early life-stage dispersal influences recruitment and is of significance in explaining the distribution and connectivity of marine species. Motivations for quantifying dispersal range from biodiversity conservation to the design of marine reserves and the mitigation of species invasions. Here we compare estimates of real particle dispersion in a coastal marine environment with similar estimates provided by hydrodynamic modelling. We do so by using a system of magnetically attractive particles (MAPs) and a magnetic-collector array that provides measures of Lagrangian dispersion based on the time-integration of MAPs dispersing through the array. MAPs released as a point source in a coastal marine location dispersed through the collector array over a 5-7 d period. A virtual release and observed (real-time) environmental conditions were used in a high-resolution three-dimensional hydrodynamic model to estimate the dispersal of virtual particles (VPs). The number of MAPs captured throughout the collector array and the number of VPs that passed through each corresponding model location were enumerated and compared. Although VP dispersal reflected several aspects of the observed MAP dispersal, the comparisons demonstrated model sensitivity to the small-scale (random-walk) particle diffusivity parameter (Kp). The one-dimensional dispersal kernel for the MAPs had an e-folding scale estimate in the range of 5.19-11.44 km, while those from the model simulations were comparable at 1.89-6.52 km, and also demonstrated sensitivity to Kp. Variations among comparisons are related to the value of Kp used in modelling and are postulated to be related to MAP losses from the water column and (or) shear dispersion acting on the MAPs; a process that is constrained in the model. Our demonstration indicates a promising new way of 1) quantitatively and empirically estimating the dispersal kernel in aquatic systems, and 2) quantitatively assessing and (or) improving regional hydrodynamic

  1. Molecular diversity reveals previously undetected air-dispersed protist colonists in a Mediterranean area.

    PubMed

    Genitsaris, Savvas; Kormas, Konstantinos Ar; Christaki, Urania; Monchy, Sebastien; Moustaka-Gouni, Maria

    2014-04-15

    The molecular diversity of air-dispersed protists was examined through the 18S rRNA gene clone library construction in air samples and samples from experimental water containers passively collecting air-dispersed microorganisms, from July 2007 till October 2008 in three different sites of Northern Greece. The majority of the samplings took place in an urban industrialized coastal city (Thessaloniki). In all the samples, a total of 29 unique phylotypes were detected belonging to 10 known major taxonomic groups. The most abundant phylotypes were affiliated to known taxa of Ciliophora and Chlorophyceae, commonly found in various habitats. Additionally, various previously unnoticed and under-studied taxa, such as Bicosoecida, Oomycetes and Labyrinthulomycetes, were detected. These taxa are potentially important in ecological processes, through dispersal and colonization of various habitats. Multivariate statistical analysis associated the most abundant phylotypes with rainfall, suggesting that rain is a favorable means for reposition of air-dispersed protists. This is the first study investigating the molecular diversity of air-dispersed protists, including algae and heterotrophic protists.

  2. Parallelization of the Lagrangian Particle Dispersion Model

    SciTech Connect

    Buckley, R.L.; O`Steen, B.L.

    1997-08-01

    An advanced stochastic Lagrangian Particle Dispersion Model (LPDM) is used by the Atmospheric Technologies Group (ATG) to simulate contaminant transport. The model uses time-dependent three-dimensional fields of wind and turbulence to determine the location of individual particles released into the atmosphere. This report describes modifications to LPDM using the Message Passing Interface (MPI) which allows for execution in a parallel configuration on the Cray Supercomputer facility at the SRS. Use of a parallel version allows for many more particles to be released in a given simulation, with little or no increase in computational time. This significantly lowers (greater than an order of magnitude) the minimum resolvable concentration levels without ad hoc averaging schemes and/or without reducing spatial resolution. The general changes made to LPDM are discussed and a series of tests are performed comparing the serial (single processor) and parallel versions of the code.

  3. Vlasov multi-dimensional model dispersion relation

    SciTech Connect

    Lushnikov, Pavel M.; Rose, Harvey A.; Silantyev, Denis A.; Vladimirova, Natalia

    2014-07-15

    A hybrid model of the Vlasov equation in multiple spatial dimension D > 1 [H. A. Rose and W. Daughton, Phys. Plasmas 18, 122109 (2011)], the Vlasov multi dimensional model (VMD), consists of standard Vlasov dynamics along a preferred direction, the z direction, and N flows. At each z, these flows are in the plane perpendicular to the z axis. They satisfy Eulerian-type hydrodynamics with coupling by self-consistent electric and magnetic fields. Every solution of the VMD is an exact solution of the original Vlasov equation. We show approximate convergence of the VMD Langmuir wave dispersion relation in thermal plasma to that of Vlasov-Landau as N increases. Departure from strict rotational invariance about the z axis for small perpendicular wavenumber Langmuir fluctuations in 3D goes to zero like θ{sup N}, where θ is the polar angle and flows are arranged uniformly over the azimuthal angle.

  4. Some Effects of Air and Fuel Oil Temperatures on Spray Penetration and Dispersion

    NASA Technical Reports Server (NTRS)

    Gelalles, A G

    1930-01-01

    Presented here are experimental results obtained from a brief investigation of the appearance, penetration, and dispersion of oil sprays injected into a chamber of highly heated air at atmospheric pressure. The development of single sprays injected into a chamber containing air at room temperature and at high temperature was recorded by spray photography equipment. A comparison of spray records showed that with the air at the higher temperature, the spray assumed the appearance of thin, transparent cloud, the greatest part of which rapidly disappeared from view. With the chamber air at room temperature, a compact spray with an opaque core was obtained. Measurements of the records showed a decrease in penetration and an increase in the dispersion of the spray injected into the heated air. No ignition of the fuel injected was observed or recorded until the spray particles came in contact with the much hotter walls of the chamber about 0.3 second after the start of injection.

  5. Gas dispersion and immobile gas volume in solid and porous particle biofilter materials at low air flow velocities.

    PubMed

    Sharma, Prabhakar; Poulsen, Tjalfe G

    2010-07-01

    Gas-phase dispersion in granular biofilter materials with a wide range of particle sizes was investigated using atmospheric air and nitrogen as tracer gases. Two types of materials were used: (1) light extended clay aggregates (LECA), consisting of highly porous particles, and (2) gravel, consisting of solid particles. LECA is a commercial material that is used for insulation, as a soil conditioner, and as a carrier material in biofilters for air cleaning. These two materials were selected to have approximately the same particle shape. Column gas transport experiments were conducted for both materials using different mean particle diameters, different particle size ranges, and different gas flow velocities. Measured breakthrough curves were modeled using the advection-dispersion equation modified for mass transfer between mobile and immobile gas phases. The results showed that gas dispersivity increased with increasing mean particle diameter for LECA but was independent of mean particle diameter for gravel. Gas dispersivity also increased with increasing particle size range for both media. Dispersivities in LECA were generally higher than for gravel. The mobile gas content in both materials increased with increasing gas flow velocity but it did not show any strong dependency on mean particle diameter or particle size range. The relative fraction of mobile gas compared with total porosity was highest for gravel and lowest for LECA likely because of its high internal porosity. PMID:20681430

  6. Gas dispersion and immobile gas volume in solid and porous particle biofilter materials at low air flow velocities.

    PubMed

    Sharma, Prabhakar; Poulsen, Tjalfe G

    2010-07-01

    Gas-phase dispersion in granular biofilter materials with a wide range of particle sizes was investigated using atmospheric air and nitrogen as tracer gases. Two types of materials were used: (1) light extended clay aggregates (LECA), consisting of highly porous particles, and (2) gravel, consisting of solid particles. LECA is a commercial material that is used for insulation, as a soil conditioner, and as a carrier material in biofilters for air cleaning. These two materials were selected to have approximately the same particle shape. Column gas transport experiments were conducted for both materials using different mean particle diameters, different particle size ranges, and different gas flow velocities. Measured breakthrough curves were modeled using the advection-dispersion equation modified for mass transfer between mobile and immobile gas phases. The results showed that gas dispersivity increased with increasing mean particle diameter for LECA but was independent of mean particle diameter for gravel. Gas dispersivity also increased with increasing particle size range for both media. Dispersivities in LECA were generally higher than for gravel. The mobile gas content in both materials increased with increasing gas flow velocity but it did not show any strong dependency on mean particle diameter or particle size range. The relative fraction of mobile gas compared with total porosity was highest for gravel and lowest for LECA likely because of its high internal porosity.

  7. Oil and air dispersion in a simulated fermentation broth as a function of mycelial morphology.

    PubMed

    Lucatero, Savidra; Larralde-Corona, Claudia Patricia; Corkidi, Gabriel; Galindo, Enrique

    2003-01-01

    The culture conditions of a multiphase fermentation involving morphologically complex mycelia were simulated in order to investigate the influence of mycelial morphology (Trichoderma harzianum) on castor oil and air dispersion. Measurements of oil drops and air bubbles were obtained using an image analysis system coupled to a mixing tank. Complex interactions of the phases involved could be clearly observed. The Sauter diameter and the size distributions of drops and bubbles were affected by the morphological type of biomass (pellets or dispersed mycelia) added to the system. Larger oil drop sizes were obtained with dispersed mycelia than with pellets, as a result of the high apparent viscosity of the broth, which caused a drop in the power drawn, reducing oil drop break-up. Unexpectedly, bubble sizes observed with dispersed mycelia were smaller than with pellets, a phenomenon which can be explained by the segregation occurring at high biomass concentrations with the dispersed mycelia. Very complex oil drops were produced, containing air bubbles and a high number of structures likely consisting of small water droplets. Bubble location was influenced by biomass morphology. The percentage (in volume) of oil-trapped bubbles increased (from 32 to 80%) as dispersed mycelia concentration increased. A practically constant (32%) percentage of oil-trapped bubbles was observed with pelleted morphology at all biomass concentrations. The results evidenced the high complexity of phases interactions and the importance of mycelial morphology in such processes. PMID:12675561

  8. Gas phase dispersion in compost as a function of different water contents and air flow rates

    NASA Astrophysics Data System (ADS)

    Sharma, Prabhakar; Poulsen, Tjalfe G.

    2009-07-01

    Gas phase dispersion in a natural porous medium (yard waste compost) was investigated as a function of gas flow velocity and compost volumetric water content using oxygen and nitrogen as tracer gases. The compost was chosen because it has a very wide water content range and because it represents a wide range of porous media, including soils and biofilter media. Column breakthrough curves for oxygen and nitrogen were measured at relatively low pore gas velocities, corresponding to those observed in for instance soil vapor extraction systems or biofilters for air cleaning at biogas plants or composting facilities. Total gas mechanical dispersion-molecular diffusion coefficients were fitted from the breakthrough curves using a one-dimensional numerical solution to the advection-dispersion equation and used to determine gas dispersivities at different volumetric gas contents. The results showed that gas mechanical dispersion dominated over molecular diffusion with mechanical dispersion for all water contents and pore gas velocities investigated. Importance of mechanical dispersion increased with increasing pore gas velocity and compost water content. The results further showed that gas dispersivity was relatively constant at high values of compost gas-filled porosity but increased with decreasing gas-filled porosity at lower values of gas-filled porosity. Results finally showed that measurement uncertainty in gas dispersivity is generally highest at low values of pore gas velocity.

  9. Comparison of AERMOD and WindTrax dispersion models in determining PM10 emission rates from beef cattle feedlots

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reverse dispersion modeling has been used to determine air emission fluxes from ground-level area sources, including open-lot beef cattle feedlots. This research compared AERMOD, a Gaussian-based and currently the U.S. Environmental Protection Agency (EPA) preferred regulatory dispersion model, and ...

  10. AERMOD: A DISPERSION MODEL FOR INDUSTRIAL SOURCE APPLICATIONS PART II: MODEL PERFORMANCE AGAINST 17 FIELD STUDY DATABASES

    EPA Science Inventory

    The formulations of the AMS/EPA Regulatory Model Improvement Committee's applied air dispersion model (AERMOD) are described. This is the second in a series of three articles. Part I describes the model's methods for characterizing the atmospheric boundary layer and complex ter...

  11. Using empirical data to model transgene dispersal.

    PubMed Central

    Meagher, T R; Belanger, F C; Day, P R

    2003-01-01

    One element of the current public debate about genetically modified crops is that gene flow from transgenic cultivars into surrounding weed populations will lead to more problematic weeds, particularly for traits such as herbicide resistance. Evolutionary biologists can inform this debate by providing accurate estimates of gene flow potential and subsequent ecological performance of resulting hybrids. We develop a model for gene flow incorporating exponential distance and directional effects to be applied to windpollinated species. This model is applied to previously published data on gene flow in experimental plots of Agrostis stolonifera L. (creeping bentgrass), which assessed gene flow from transgenic plants resistant to the herbicide glufosinate to surrounding non-transgenic plants. Our results show that although pollen dispersal can be limited in some sites, it may be extensive in others, depending on local conditions such as exposure to wind. Thus, hybridization under field conditions is likely to occur. Given the nature of the herbicide resistance trait, we regard this trait as unlikely to persist in the absence of herbicide, and suggest that the ecological consequences of such gene flow are likely to be minimal. PMID:12831482

  12. Physical modeling of gas dispersion over urban area

    NASA Astrophysics Data System (ADS)

    Michálek, Petr; Zacho, David

    2016-06-01

    Experimental study of gas dispersion over urban area model was conducted in boundary layer wind tunnel in VZLU Prague. A scale model of urban area near the Centre of Liberec was made and dispersion of gas emissions from nearby heating plant was measured. The measurements included velocity field and concentration field by means of hot wire anemometer and flame ionization detector. The purpose of this work was to validate and verify a new computational dispersion model, which was developed in VZLU.

  13. Hgsystem: Dispersion models for ideal gases (version 3.0) (for microcomputers). Data file

    SciTech Connect

    1995-12-01

    As a result of many years in-house research, the gas dispersion group at Shell Research Ltd. Thornton (United Kingdom) has developed a package of mathematical models, called HGSYSTEM, to study the atmospheric dispersion of accidental pollutant releases with emphasis on denser-than-air materials. HGSYSTEM can simulate different dispersion scenarios (jet dispersion, heavy gas dispersion, passive dispersion). HGSYSTEM can model the full HF chemistry and thermodynamics. Most of the modules in the HGSYSTEM package can also be used for more general, non-reactive (ideal gas) releases as well. Validation of the HF-related simulations has been done with the well-known Goldfish Test Series. HGSYSTEM is in wide use for simulation of atmospheric dispersion scanarios for HF and other pollutant releases. It has been assessed against other models and found to rank amongst the best available atmospheric dispersion models in the world. HGSYSTEM sets the standard for HF dispersion calculations. The following major changes have been made to HGSYSTEM 1.0 to obtain HGSYSTEM 3.0.: The thermodynamical models available in HGSYSTEM have been extended. The full HF chemistry and thermodynamical model is now suitable for mixtures of HF, water, and an inert ideal gas. The non-reactive ideal gas description has been extended to multi-compound liquid-vapor mixtures (aerosols). A database containing physical properties for some 30 compounds has been added to HGSTSTEM. This database is needed when using the new two-phase, multi-compound thermodynamical model; the PLUME model for pressurized releases has been extended to model jet dispersion of multi-compound, two-phase mixtures; A new model describing the initial phase of instantaneous releases has been added.

  14. A new mathematical model of pollutant dispersion near a building

    SciTech Connect

    Genikhovich, E.L.; Snyder, W.H.

    1994-12-31

    Regulatory models of air pollution in the USA usually account for building effects using a Gaussian description of the pollutant distribution with enhanced vertical and horizontal dispersion coefficients to incorporate the influence of turbulence near clusters of buildings. On the local scale, however, buildings cause dramatic distortions of the mean flow field. These effects are not so important for the description of pollutant distributions from sources located far from buildings, because of the uniformity of the concentration fields. But for sources and receptors located in the vicinity of the buildings, an evaluation of pollutant concentration fields is necessary as a basis for designing of industrial ventilation systems and decision making to protect the environment.

  15. The cold air drainage model KLAM_21

    NASA Astrophysics Data System (ADS)

    Kossmann, M.

    2010-09-01

    A brief description of the physics and numerical techniques of the cold air drainage model KLAM_21 is presented. The model has been developed by the Deutscher Wetterdienst (Sievers, 2005) for simulations of nocturnal airflow in hilly and mountainous terrain under dry fair weather conditions. The model has been widely used as an environmental consultancy tool. Typical model applications include frost protection (cold air ponding) and air quality (nocturnal ventilation). The single-layer model calculates the depth and the mean wind of a surface based stable layer that evolves from a neutrally stratified atmosphere during nighttime. The prediction of the velocity and direction of the cold air drainage is based on vertically averaged momentum tendency equations. Temporal changes in the total heat deficit in the cold air layer are calculated from a prescribed local heat loss rate (describing turbulent and radiative cooling) and advection (donor-cell algorithm). The depth of the cold air layer (depth of the surface based temperature inversion) is calculated diagnostically from the total heat loss deficit. The model is initialised with neutral stratification at sunset (onset time of nocturnal cooling). Optionally, effects of an ambient (regional) wind and/or the dispersion of a passive tracer can be simulated. Integration over time is carried out on a regular Arakawa C grid using dynamically calculated time steps. Spatial gradients are discretised using centred differential quotients. The standard size of the computational domains can reach up to 1500 x 1500 grid cells. Grid resolutions usually range between 10 m and 500 m. High resolution simulation can be limited to a nested inner grid domain, while the courser outer domain is covering the entire airshed of interest. A friendly user interface allows easy setup, control, and evaluation of model simulations. Some selected examples of KLAM_21 applications are shown to illustrate the features and capabilities of the model

  16. Air-quality-model update

    SciTech Connect

    Penner, J.E.; Walton, J.J.

    1982-01-15

    The Livermore Regional Air Quality Model (LIRAQ) has been updated and improved. This report describes the changes that have been made in chemistry, species treatment, and boundary conditions. The results of smog chamber simulations that were used to verify the chemistry as well as simulations of the entire air quality model for two prototype days in the Bay Area are reported. The results for the prototype day simulations are preliminary due to the need for improvement in meteorology fields, but they show the dependence and sensitivity of high hour ozone to changes in selected boundary and initial conditions.

  17. Modelling Aerosol Dispersion in Urban Street Canyons

    NASA Astrophysics Data System (ADS)

    Tay, B. K.; Jones, D. P.; Gallagher, M. W.; McFiggans, G. B.; Watkins, A. P.

    2009-04-01

    Flow patterns within an urban street canyon are influenced by various micrometeorological factors. It also represents an environment where pollutants such as aerosols accumulate to high levels due to high volumes of traffic. As adverse health effects are being attributed to exposure to aerosols, an investigation of the dispersion of aerosols within such environments is of growing importance. In particular, one is concerned with the vertical structure of the aerosol concentration, the ventilation characteristics of the street canyon and the influence of aerosol microphysical processes. Due to the inherent heterogeneity of the aerosol concentrations within the street canyon and the lack of spatial resolution of measurement campaigns, these issues are an on-going debate. Therefore, a modelling tool is required to represent aerosol dispersion patterns to provide insights to results of past measurement campaigns. Computational Fluid Dynamics (CFD) models are able to predict detailed airflow patterns within urban geometries. This capability may be further extended to include aerosol dispersion, by an Euler-Euler multiphase approach. To facilitate the investigation, a two-dimensional, multiphase CFD tool coupled with the k-epsilon turbulence model and with the capability of modelling mixed convection flow regimes arising from both wind driven flows and buoyancy effects from heated walls was developed. Assuming wind blowing perpendicularly to the canyon axis and treating aerosols as a passive scalar, an attempt will be made to assess the sensitivities of aerosol vertical structure and ventilation characteristics to the various flow conditions. Numerical studies were performed using an idealized 10m by 10m canyon to represent a regular canyon and 10m by 5m to represent a deep one. An aerosol emission source was assigned on the centerline of the canyon to represent exhaust emissions. The vertical structure of the aerosols would inform future directives regarding the

  18. Hybrid regional air pollution models

    SciTech Connect

    Drake, R.L.

    1980-03-01

    This discussion deals with a family of air quality models for predicting and analyzing the fine particulate loading in the atmosphere, for assessing the extent and degree of visibility impairment, and for determining the potential of pollutants for increasing the acidity of soils and water. The major horizontal scales of interest are from 400km to 2000km; and the time scales may vary from several hours, to days, weeks, and a few months or years, depending on the EPA regulations being addressed. First the role air quality models play in the general family of atmospheric simulation models is described. Then, the characteristics of a well-designed, comprehensive air quality model are discussed. Following this, the specific objectives of this workshop are outlined, and their modeling implications are summarized. There are significant modeling differences produced by the choice of the coordinate system, whether it be the fixed Eulerian system, the moving Lagrangian system, or some hybrid of the two. These three systems are briefly discussed, and a list of hybrid models that are currently in use are given. Finally, the PNL regional transport model is outlined and a number of research needs are listed.

  19. AERMOD: A DISPERSION MODEL FOR INDUSTRIAL SOURCE APPLICATIONS PART I: GENERAL MODEL FORMULATION AND BOUNDARY LAYER CHARACTERIZATION

    EPA Science Inventory

    The formulations of the AMS/EPA Regulatory Model Improvement Committee's applied air dispersion model (AERMOD) as related to the characterization of the planetary boundary layer are described. This is the first in a series of three articles. Part II describes the formulation of...

  20. Air Dispersion Characteristics and Thermal Comparison of Traditional and Fabric Ductwork using Computational Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    Andreopoulou, Areti

    This thesis research compares the air dispersion and thermal comfort characteristics of conventional diffuser and fabric-based ductwork systems. Heating, ventilation, and air-conditioning (HVAC) systems in buildings produce and regulate airflow traveling through ductwork. The performance characteristics of conventional ductwork are compared with recent advancements in fabric-based ductwork. Using computational fluid dynamics (CFD) analysis, thermal and air distribution flow patterns are compared between the two types of ductwork and preliminary thermal comfort and efficiency conclusions are drawn. Results of the Air Distribution Performance Index (ADPI) for both ducting systems reflect that, under the given test conditions, the fabric duct system is approximately 23% more comfortable than the traditional diffuser system in terms of air speed flow uniformity into the space, while staying within the Effective Draft Temperature comfort zone of -3 to +2°F.

  1. Development of Gridded Fields of Urban Canopy Parameters for Advanced Urban Meteorological and Air Quality Models

    EPA Science Inventory

    Urban dispersion and air quality simulation models applied at various horizontal scales require different levels of fidelity for specifying the characteristics of the underlying surfaces. As the modeling scales approach the neighborhood level (~1 km horizontal grid spacing), the...

  2. Heavy gas dispersion: integral models and shallow layer models.

    PubMed

    Hankin, Robin K S

    2003-10-01

    Integral models for heavy gas dispersion approximate a dispersing cloud in terms of a small number of variables; each of these is ultimately a function of an independent variable which is usually time (instantaneous releases) or downwind distance (continuous releases). This type of model is used almost exclusively in risk assessment [HSE's risk assessment tool, RISKAT, in: Major Hazards: Onshore and Offshore, October 1992, pp. 607-638; Ann. Rev. Fluid Mech. 21 (1989) 317], but many distinct integral models exist. The code comparison exercise of Mercer et al. [CEA/AEA exchange agreement on external event. Comparison of heavy gas dispersion models for instantaneous releases: final report, Technical Report IR/L/HA/91/6, Health and Safety Laboratory, Sheffield, June 1991; J. Hazard. Mater. 36 (1994) 193] presented the results from a number of integral models in a common format; Mercer found that the range of predictions for some scenarios exceeded three orders of magnitude. Here, the TWODEE shallow layer model [J. Hazard. Mater. 66 (3) (1999) 211; J. Hazard. Mater. 66 (3) (1999) 227; J. Hazard. Mater. 66 (3) (1999) 239] is added to Mercer's code comparison exercise. The physical assumptions used in shallow layer models differ profoundly from those used in integral models and the implications of these differences for risk assessment are discussed. TWODEE was used to simulate four representative cases considered by Mercer. In terms of cloud averaged concentration (CAC) vs. centroid position, the present model gave predictions that were consistent with the integral models used by Mercer. As the model neglects horizontal diffusion for passive clouds, overprediction at large downwind distances was expected, but not generally observed.

  3. Complex terrain dispersion model plus algorithms for unstable situations (CTDMPLUS) (for microcomputers) (re-announcement). Model-Simulation

    SciTech Connect

    1990-12-31

    The Complex Terrain Dispersion Model Plus (CTDMPLUS) is a refined air quality model for use in all stability conditions for complex terrain applications. It contains the technology of the original Complex Terrain Dispersion Model (CTDM) for stable and neutral conditions, but also models daytime, unstable conditions. The model makes use of considerable detail in the terrain and meteorological data (as compared to current EPA regulatory models) and requires the parameterization of individual terrain features, thus considering the three-dimensional nature of the interaction of the plume and terrain.

  4. Air Conditioner Compressor Performance Model

    SciTech Connect

    Lu, Ning; Xie, YuLong; Huang, Zhenyu

    2008-09-05

    During the past three years, the Western Electricity Coordinating Council (WECC) Load Modeling Task Force (LMTF) has led the effort to develop the new modeling approach. As part of this effort, the Bonneville Power Administration (BPA), Southern California Edison (SCE), and Electric Power Research Institute (EPRI) Solutions tested 27 residential air-conditioning units to assess their response to delayed voltage recovery transients. After completing these tests, different modeling approaches were proposed, among them a performance modeling approach that proved to be one of the three favored for its simplicity and ability to recreate different SVR events satisfactorily. Funded by the California Energy Commission (CEC) under its load modeling project, researchers at Pacific Northwest National Laboratory (PNNL) led the follow-on task to analyze the motor testing data to derive the parameters needed to develop a performance models for the single-phase air-conditioning (SPAC) unit. To derive the performance model, PNNL researchers first used the motor voltage and frequency ramping test data to obtain the real (P) and reactive (Q) power versus voltage (V) and frequency (f) curves. Then, curve fitting was used to develop the P-V, Q-V, P-f, and Q-f relationships for motor running and stalling states. The resulting performance model ignores the dynamic response of the air-conditioning motor. Because the inertia of the air-conditioning motor is very small (H<0.05), the motor reaches from one steady state to another in a few cycles. So, the performance model is a fair representation of the motor behaviors in both running and stalling states.

  5. Dispersion modelling approaches for near road applications involving noise barriers

    EPA Science Inventory

    The talk will present comparisons with two datasets of the barrier algorithms implemented in two different dispersion models: US EPA’s R-LINE (a research dispersion modelling tool under development by the US EPA’s Office of Research and Development) and CERC’s A...

  6. Advances in Analytical and Numerical Dispersion Modeling of Pollutants Releasing from an Area-source

    NASA Astrophysics Data System (ADS)

    Nimmatoori, Praneeth

    The air quality near agricultural activities such as tilling, plowing, harvesting, and manure application is of main concern because they release fine particulate matter into the atmosphere. These releases are modeled as area-sources in the air quality modeling research. None of the currently available dispersion models relate and incorporate physical characteristics and meteorological conditions for modeling the dispersion and deposition of particulates emitting from such area-sources. This knowledge gap was addressed by developing the advanced analytical and numerical methods for modeling the dispersion of particulate matter. The development, application, and evaluation of new dispersion modeling methods are discussed in detail in this dissertation. In the analytical modeling, a ground-level area source analytical dispersion model known as particulate matter deposition -- PMD was developed for predicting the concentrations of different particle sizes. Both the particle dynamics (particle physical characteristics) and meteorological conditions which have significant effect on the dispersion of particulates were related and incorporated in the PMD model using the formulations of particle gravitational settling and dry deposition velocities. The modeled particle size concentrations of the PMD model were evaluated statistically after applying it to particulates released from a biosolid applied agricultural field. The evaluation of the PMD model using the statistical criteria concluded effective and successful inclusion of dry deposition theory for modeling particulate matter concentrations. A comprehensive review of analytical area-source dispersion models, which do not account for dry deposition and treat pollutants as gases, was conducted and determined three models -- the Shear, the Parker, and the Smith. A statistical evaluation of these dispersion models was conducted after applying them to two different field data sets and the statistical results concluded that

  7. Dispersion analysis with inverse dielectric function modelling.

    PubMed

    Mayerhöfer, Thomas G; Ivanovski, Vladimir; Popp, Jürgen

    2016-11-01

    We investigate how dispersion analysis can profit from the use of a Lorentz-type description of the inverse dielectric function. In particular at higher angles of incidence, reflectance spectra using p-polarized light are dominated by bands from modes that have their transition moments perpendicular to the surface. Accordingly, the spectra increasingly resemble inverse dielectric functions. A corresponding description can therefore eliminate the complex dependencies of the dispersion parameters, allow their determination and facilitate a more accurate description of the optical properties of single crystals.

  8. Dispersion analysis with inverse dielectric function modelling

    NASA Astrophysics Data System (ADS)

    Mayerhöfer, Thomas G.; Ivanovski, Vladimir; Popp, Jürgen

    2016-11-01

    We investigate how dispersion analysis can profit from the use of a Lorentz-type description of the inverse dielectric function. In particular at higher angles of incidence, reflectance spectra using p-polarized light are dominated by bands from modes that have their transition moments perpendicular to the surface. Accordingly, the spectra increasingly resemble inverse dielectric functions. A corresponding description can therefore eliminate the complex dependencies of the dispersion parameters, allow their determination and facilitate a more accurate description of the optical properties of single crystals.

  9. Exhaled Air Dispersion during Coughing with and without Wearing a Surgical or N95 Mask

    PubMed Central

    Hui, David S.; Chow, Benny K.; Chu, Leo; Ng, Susanna S.; Lee, Nelson; Gin, Tony; Chan, Matthew T. V.

    2012-01-01

    Objectives We compared the expelled air dispersion distances during coughing from a human patient simulator (HPS) lying at 45° with and without wearing a surgical mask or N95 mask in a negative pressure isolation room. Methods Airflow was marked with intrapulmonary smoke. Coughing bouts were generated by short bursts of oxygen flow at 650, 320, and 220L/min to simulate normal, mild and poor coughing efforts, respectively. The coughing jet was revealed by laser light-sheet and images were captured by high definition video. Smoke concentration in the plume was estimated from the light scattered by smoke particles. Significant exposure was arbitrarily defined where there was ≥ 20% of normalized smoke concentration. Results During normal cough, expelled air dispersion distances were 68, 30 and 15 cm along the median sagittal plane when the HPS wore no mask, a surgical mask and a N95 mask, respectively. In moderate lung injury, the corresponding air dispersion distances for mild coughing efforts were reduced to 55, 27 and 14 cm, respectively, p < 0.001. The distances were reduced to 30, 24 and 12 cm, respectively during poor coughing effort as in severe lung injury. Lateral dispersion distances during normal cough were 0, 28 and 15 cm when the HPS wore no mask, a surgical mask and a N95 mask, respectively. Conclusions Normal cough produced a turbulent jet about 0.7 m towards the end of the bed from the recumbent subject. N95 mask was more effective than surgical mask in preventing expelled air leakage during coughing but there was still significant sideway leakage. PMID:23239991

  10. Evaluation of an efficient statistical transport model for turbulent droplet dispersion in dilute combusting sprays

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Jeng, San-Mou

    1991-01-01

    Evaluation of an efficient statistical transport model for turbulent droplet dispersion is made for a dilute spray of methanol droplets injected into a turbulent, axisymmnetric methane-fuelled diffusion flame burning in stagnant air. In the dispersion model, a computational parcel representing a group of physical particles (droplets) is considered to have a normal probability density function (pdf) in space. The mean is determined by Lagrangian tracking through a sequence of stochastically generated turbulent eddies and the variance is evaluated from a statistical formulation based on the linearized particle equations of motion. The basic validity of this model is established through comparison with available experimental data and with theoretical predictions using a conventional stochastic direct modeling approach. The conclusion of the evaluation is that the proposed dispersion model compares favorably with experimental data and provides a valid technique for simulating turbulent combusting sprays with significant computational savings over conventional methods.

  11. Uncertainty in Air Quality Modeling.

    NASA Astrophysics Data System (ADS)

    Fox, Douglas G.

    1984-01-01

    Under the direction of the AMS Steering Committee for the EPA Cooperative Agreement on Air Quality Modeling, a small group of scientists convened to consider the question of uncertainty in air quality modeling. Because the group was particularly concerned with the regulatory use of models, its discussion focused on modeling tall stack, point source emissions.The group agreed that air quality model results should be viewed as containing both reducible error and inherent uncertainty. Reducible error results from improper or inadequate meteorological and air quality data inputs, and from inadequacies in the models. Inherent uncertainty results from the basic stochastic nature of the turbulent atmospheric motions that are responsible for transport and diffusion of released materials. Modelers should acknowledge that all their predictions to date contain some associated uncertainty and strive also to quantify uncertainty.How can the uncertainty be quantified? There was no consensus from the group as to precisely how uncertainty should be calculated. One subgroup, which addressed statistical procedures, suggested that uncertainty information could be obtained from comparisons of observations and predictions. Following recommendations from a previous AMS workshop on performance evaluation (Fox. 1981), the subgroup suggested construction of probability distribution functions from the differences between observations and predictions. Further, they recommended that relatively new computer-intensive statistical procedures be considered to improve the quality of uncertainty estimates for the extreme value statistics of interest in regulatory applications.A second subgroup, which addressed the basic nature of uncertainty in a stochastic system, also recommended that uncertainty be quantified by consideration of the differences between observations and predictions. They suggested that the average of the difference squared was appropriate to isolate the inherent uncertainty that

  12. Modeling, Monitoring and Fault Diagnosis of Spacecraft Air Contaminants

    NASA Technical Reports Server (NTRS)

    Ramirez, W. Fred; Skliar, Mikhail; Narayan, Anand; Morgenthaler, George W.; Smith, Gerald J.

    1996-01-01

    Progress and results in the development of an integrated air quality modeling, monitoring, fault detection, and isolation system are presented. The focus was on development of distributed models of the air contaminants transport, the study of air quality monitoring techniques based on the model of transport process and on-line contaminant concentration measurements, and sensor placement. Different approaches to the modeling of spacecraft air contamination are discussed, and a three-dimensional distributed parameter air contaminant dispersion model applicable to both laminar and turbulent transport is proposed. A two-dimensional approximation of a full scale transport model is also proposed based on the spatial averaging of the three dimensional model over the least important space coordinate. A computer implementation of the transport model is considered and a detailed development of two- and three-dimensional models illustrated by contaminant transport simulation results is presented. The use of a well established Kalman filtering approach is suggested as a method for generating on-line contaminant concentration estimates based on both real time measurements and the model of contaminant transport process. It is shown that high computational requirements of the traditional Kalman filter can render difficult its real-time implementation for high-dimensional transport model and a novel implicit Kalman filtering algorithm is proposed which is shown to lead to an order of magnitude faster computer implementation in the case of air quality monitoring.

  13. A modeling framework for characterizing near-road air pollutant concentration at community scales

    EPA Science Inventory

    In this study, we combine information from transportation network, traffic emissions, and dispersion model to develop a framework to inform exposure estimates for traffic-related air pollutants (TRAPs) with a high spatial resolution. A Research LINE source dispersion model (R-LIN...

  14. Modelling long-distance seed dispersal in heterogeneous landscapes.

    SciTech Connect

    Levey, Douglas, J.; Tewlsbury, Joshua, J.; Bolker, Benjamin, M.

    2008-01-01

    1. Long-distance seed dispersal is difficult to measure, yet key to understanding plant population dynamics and community composition. 2. We used a spatially explicit model to predict the distribution of seeds dispersed long distances by birds into habitat patches of different shapes. All patches were the same type of habitat and size, but varied in shape. They occurred in eight experimental landscapes, each with five patches of four different shapes, 150 m apart in a matrix of mature forest. The model was parameterized with smallscale movement data collected from field observations of birds. In a previous study we validated the model by testing its predictions against observed patterns of seed dispersal in real landscapes with the same types and spatial configuration of patches as in the model. 3. Here we apply the model more broadly, examining how patch shape influences the probability of seed deposition by birds into patches, how dispersal kernels (distributions of dispersal distances) vary with patch shape and starting location, and how movement of seeds between patches is affected by patch shape. 4. The model predicts that patches with corridors or other narrow extensions receive higher numbers of seeds than patches without corridors or extensions. This pattern is explained by edgefollowing behaviour of birds. Dispersal distances are generally shorter in heterogeneous landscapes (containing patchy habitat) than in homogeneous landscapes, suggesting that patches divert the movement of seed dispersers, ‘holding’ them long enough to increase the probability of seed defecation in the patches. Dispersal kernels for seeds in homogeneous landscapes were smooth, whereas those in heterogenous landscapes were irregular. In both cases, long-distance (> 150 m) dispersal was surprisingly common, usually comprising approximately 50% of all dispersal events. 5. Synthesis . Landscape heterogeneity has a large influence on patterns of long-distance seed dispersal. Our

  15. Modeling the Dispersal and Deposition of Radionuclides: Lessons from Chernobyl.

    ERIC Educational Resources Information Center

    ApSimon, H. M.; And Others

    1988-01-01

    Described are theoretical models that simulate the dispersion of radionuclides on local and global scales following the accident at the Chernobyl nuclear power plant. Discusses the application of these results to nuclear weapons fallout. (CW)

  16. A continuum solvent model of the multipolar dispersion solvation energy.

    PubMed

    Duignan, Timothy T; Parsons, Drew F; Ninham, Barry W

    2013-08-15

    The dispersion energy is an important contribution to the total solvation energies of ions and neutral molecules. Here, we present a new continuum model calculation of these energies, based on macroscopic quantum electrodynamics. The model uses the frequency dependent multipole polarizabilities of molecules in order to accurately calculate the dispersion interaction of a solute particle with surrounding water molecules. It includes the dipole, quadrupole, and octupole moment contributions. The water is modeled via a bulk dielectric susceptibility with a spherical cavity occupied by the solute. The model invokes damping functions to account for solute-solvent wave function overlap. The assumptions made are very similar to those used in the Born model. This provides consistency and additivity of electrostatic and dispersion (quantum mechanical) interactions. The energy increases in magnitude with cation size, but decreases slightly with size for the highly polarizable anions. The higher order multipole moments are essential, making up more than 50% of the dispersion solvation energy of the fluoride ion. This method provides an accurate and simple way of calculating the notoriously problematic dispersion contribution to the solvation energy. The result establishes the importance of using accurate calculations of the dispersion energy for the modeling of solvation. PMID:23837890

  17. Stabilized Alumina/Ethanol Colloidal Dispersion for Seeding High Temperature Air Flows

    NASA Technical Reports Server (NTRS)

    Wernet, Judith H.; Wernet, Mark P.

    1994-01-01

    Seeding air flows with particles to enable measurements of gas velocities via laser anemometry and/or particle image velocimetry techniques can be quite exasperating. The seeding requirements are compounded when high temperature environments are encountered and special care must be used in selecting a refractory seed material. The pH stabilization techniques commonly employed in ceramic processing are used to obtain stable dispersions for generating aerosols of refractory seed material. By adding submicron alumina particles to a preadjusted pH solution of ethanol, a stable dispersion is obtained which when atomized produces a high quality aerosol. Commercial grade alumina powder is used with a moderate size distribution. The technique is not limited to alumina/ethanol and is also demonstrated with an alumina/H2O system. Other ceramic powders in various polar solvents could also be used once the point of zero charge (pH(sub pzc)) of the powder in the solvent has been determined.

  18. Modeling interpopulation dispersal by banner-tailed kangaroo rats

    USGS Publications Warehouse

    Skvarla, J.L.; Nichols, J.D.; Hines, J.E.; Waser, P.M.

    2004-01-01

    Many metapopulation models assume rules of population connectivity that are implicitly based on what we know about within-population dispersal, but especially for vertebrates, few data exist to assess whether interpopulation dispersal is just within-population dispersal "scaled up." We extended existing multi-stratum mark-release-recapture models to incorporate the robust design, allowing us to compare patterns of within- and between-population movement in the banner-tailed kangaroo rat (Dipodomys spectabilis). Movement was rare among eight populations separated by only a few hundred meters: seven years of twice-annual sampling captured >1200 individuals but only 26 interpopulation dispersers. We developed a program that implemented models with parameters for capture, survival, and interpopulation movement probability and that evaluated competing hypotheses in a model selection framework. We evaluated variants of the island, stepping-stone, and isolation-by-distance models of interpopulation movement, incorporating effects of age, season, and habitat (short or tall grass). For both sexes, QAICc values clearly favored isolation-by-distance models, or models combining the effects of isolation by distance and habitat. Models with probability of dispersal expressed as linear-logistic functions of distance and as negative exponentials of distance fit the data equally well. Interpopulation movement probabilities were similar among sexes (perhaps slightly biased toward females), greater for juveniles than adults (especially for females), and greater before than during the breeding season (especially for females). These patterns resemble those previously described for within-population dispersal in this species, which we interpret as indicating that the same processes initiate both within- and between-population dispersal.

  19. Model Comparison for Abiotic versus Biotic Pollen Dispersal.

    PubMed

    Foster, Erich L; Chan, David M; Dyer, Rodney J

    2016-10-01

    An agent-based model with a correlated random walk is used to explore pollination within a forest. For abiotic dispersal, say via the wind, we use a purely random walk where there is no correlation between consecutive steps and for biotic dispersal, say via insect, we use a moderate or highly correlated random walk. In particular, we examine the differences in a number of biological measurement between a purely random walk and a correlated random walk in terms of gene dispersal in low and high plant densities. PMID:27550704

  20. Model Comparison for Abiotic versus Biotic Pollen Dispersal.

    PubMed

    Foster, Erich L; Chan, David M; Dyer, Rodney J

    2016-10-01

    An agent-based model with a correlated random walk is used to explore pollination within a forest. For abiotic dispersal, say via the wind, we use a purely random walk where there is no correlation between consecutive steps and for biotic dispersal, say via insect, we use a moderate or highly correlated random walk. In particular, we examine the differences in a number of biological measurement between a purely random walk and a correlated random walk in terms of gene dispersal in low and high plant densities.

  1. Dispersion Modeling in Complex Urban Systems

    EPA Science Inventory

    Models are used to represent real systems in an understandable way. They take many forms. A conceptual model explains the way a system works. In environmental studies, for example, a conceptual model may delineate all the factors and parameters for determining how a particle move...

  2. The model SIRANE for atmospheric urban pollutant dispersion; part I, presentation of the model

    NASA Astrophysics Data System (ADS)

    Soulhac, Lionel; Salizzoni, Pietro; Cierco, F.-X.; Perkins, Richard

    2011-12-01

    In order to control and manage urban air quality, public authorities require an integrated approach that incorporates direct measurements and modelling of mean pollutant concentrations. These have to be performed by means of operational modelling tools, that simulate the transport of pollutants within and above the urban canopy over a large number of streets. The operational models must be able to assess rapidly a large variety of situations and with limited computing resources. SIRANE is an operational urban dispersion model based on a simplified description of the urban geometry that adopts parametric relations for the pollutant transfer phenomena within and out of the urban canopy. The streets in a city district are modelled as a network of connected street segments. The flow within each street is driven by the component of the external wind parallel to the street, and the pollutant is assumed to be uniformly mixed within the street. The model contains three main mechanisms for transport in and out of a street: advection along the street axis, diffusion across the interface between the street and the overlying air flow and exchanges with other streets at street intersections. The dispersion of pollutants advected or diffused out of the streets is taken into account using a Gaussian plume model, with the standard deviations σ y and σ z parameterised by the similarity theory. The input data for the final model are the urban geometry, the meteorological parameters, the background concentration of pollutants advected into the model domain by the wind and the emissions within each street in the network.

  3. Evaluation of air pollution modelling tools as environmental engineering courseware.

    PubMed

    Souto González, J A; Bello Bugallo, P M; Casares Long, J J

    2004-01-01

    The study of phenomena related to the dispersion of pollutants usually takes advantage of the use of mathematical models based on the description of the different processes involved. This educational approach is especially important in air pollution dispersion, when the processes follow a non-linear behaviour so it is difficult to understand the relationships between inputs and outputs, and in a 3D context where it becomes hard to analyze alphanumeric results. In this work, three different software tools, as computer solvers for typical air pollution dispersion phenomena, are presented. Each software tool developed to be implemented on PCs, follows approaches that represent three generations of programming languages (Fortran 77, VisualBasic and Java), applied over three different environments: MS-DOS, MS-Windows and the world wide web. The software tools were tested by students of environmental engineering (undergraduate) and chemical engineering (postgraduate), in order to evaluate the ability of these software tools to improve both theoretical and practical knowledge of the air pollution dispersion problem, and the impact of the different environment in the learning process in terms of content, ease of use and visualization of results. PMID:15193095

  4. Non-equilibrium magnetic colloidal dispersions at liquid-air interfaces: dynamic patterns, magnetic order and self-assembled swimmers.

    PubMed

    Snezhko, Alexey

    2011-04-20

    Colloidal dispersions of interacting particles subjected to an external periodic forcing often develop nontrivial self-assembled patterns and complex collective behavior. A fundamental issue is how collective ordering in such non-equilibrium systems arises from the dynamics of discrete interacting components. In addition, from a practical viewpoint, by working in regimes far from equilibrium new self-organized structures which are generally not available through equilibrium thermodynamics can be created. In this review spontaneous self-assembly phenomena in magnetic colloidal dispersions suspended at liquid-air interfaces and driven out of equilibrium by an alternating magnetic field are presented. Experiments reveal a new type of nontrivially ordered self-assembled structures emerging in such systems in a certain range of excitation parameters. These dynamic structures emerge as a result of the competition between magnetic and hydrodynamic forces and have complex unconventional magnetic ordering. Nontrivial self-induced hydrodynamic fields accompany each out-of-equilibrium pattern. Spontaneous symmetry breaking of the self-induced surface flows leading to a formation of self-propelled microstructures has been discovered. Some features of the self-localized structures can be understood in the framework of the amplitude equation (Ginzburg-Landau type equation) for parametric waves coupled to the conservation law equation describing the evolution of the magnetic particle density and the Navier-Stokes equation for hydrodynamic flows. To understand the fundamental microscopic mechanisms governing self-assembly processes in magnetic colloidal dispersions at liquid-air interfaces a first-principle model for a non-equilibrium self-assembly is presented. The latter model allows us to capture in detail the entire process of out-of-equilibrium self-assembly in the system and reproduces most of the observed phenomenology.

  5. Modeling and Impacts of Traffic Emissions on Air Toxics Concentrations near Roadways

    EPA Science Inventory

    The dispersion formulation incorporated in the U.S. Environmental Protection Agency’s AERMOD regulatory dispersion model is used to estimate the contribution of traffic-generated emissions of select VOCs – benzene, 1,3-butadiene, toluene – to ambient air concentrations at downwin...

  6. Semi-empirical stochastic model of aerosol bolus dispersion in the human lung.

    PubMed

    Hofmann, Werner; Pawlak, Elzbieta; Sturm, Robert

    2008-09-01

    Aerosol bolus dispersion, that is, the broadening of an inhaled narrow aerosol bolus upon exhalation, was simulated by Monte Carlo methods using a stochastic, asymmetric morphometric model of the human lung. Physical mechanisms considered to contribute to bolus dispersion were (1) axial diffusion in conductive airways, approximated by effective diffusivities, (2) convective mixing at airway bifurcation sites, (3) differences in inspiratory and expiratory velocity profiles, (4) mixing with residual air in alveoli, and (5) inhomogeneous ventilation of the lung lobes due to asymmetric flow spitting at bifurcations and asymmetric and asynchronous filling of the five lung lobes. Theoretical predictions of the bolus dispersion model were compared to experimental data for 79 healthy volunteers, which provide detailed information on statistical bolus parameters (half-width, standard deviation, skewness, and mode shift) and total bolus deposition as a function of the depth of bolus penetration into the airway system. Predicted bolus dispersion and deposition data show excellent agreement with the published experimental data, suggesting that axial diffusion in conductive airways and convective mixing in alveoli, resulting in irreversible particle transport, are the major determinants of bolus dispersion. The variability and asymmetry of the branching airway network, leading to asymmetric flow splitting at airway bifurcations, greatly enhances the effect of irreversibility and the resulting dispersion of the inhaled bolus.

  7. Modeling Airborne Beryllium Concentrations From Open Air Dynamic Testing

    NASA Astrophysics Data System (ADS)

    Becker, N. M.

    2003-12-01

    A heightened awareness of airborne beryllium contamination from industrial activities was reestablished during the late 1980's and early 1990's when it became recognized that Chronic Beryllium Disease (CBD) had not been eradicated, and that the Occupational Health and Safety Administration standards for occupational air exposure to beryllium may not be sufficiently protective. This was in response to the observed CBD increase in multiple industrial settings where beryllium was manufactured and/or machined, thus producing beryllium particulates which are then available for redistribution by airborne transport. Sampling and modeling design activities were expanded at Los Alamos National Laboratory in New Mexico to evaluate potential airborne beryllium exposure to workers who might be exposed during dynamic testing activities associated with nuclear weapons Stockpile Stewardship. Herein is presented the results of multiple types of collected air measurements that were designed to characterize the production and dispersion of beryllium used in components whose performance is evaluated during high explosive detonation at open air firing sites. Data from fallout, high volume air, medium volume air, adhesive film, particle size impactor, and fine-particulate counting techniques will be presented, integrated, and applied in dispersion modeling to assess potential onsite and offsite personal exposures resulting from dynamic testing activities involving beryllium.

  8. Estimation of 85Kr dispersion from the spent nuclear fuel reprocessing plant in Rokkasho, Japan, using an atmospheric dispersion model.

    PubMed

    Abe, K; Iyogi, T; Kawabata, H; Chiang, J H; Suwa, H; Hisamatsu, S

    2015-11-01

    The spent nuclear fuel reprocessing plant of Japan Nuclear Fuel Limited (JNFL) located in Rokkasho, Japan, discharged small amounts of (85)Kr into the atmosphere during final tests of the plant with actual spent fuel from 31 March 2006 to October 2008. During this period, the gamma-ray dose rates due to discharged (85)Kr were higher than the background rates measured at the Institute for Environmental Sciences and at seven monitoring stations of the Aomori prefectural government and JNFL. The dispersion of (85)Kr was simulated by means of the fifth-generation Penn State/NCAR Mesoscale Model and the CG-MATHEW/ADPIC models (ver. 5.0) with a vertical terrain-following height coordinate. Although the simulated gamma-ray dose rates due to discharged (85)Kr agreed fairly well with measured rates, the agreement between the estimated monthly mean (85)Kr concentrations and the observed concentrations was poor. Improvement of the vertical flow of air may lead to better estimation of (85)Kr dispersion.

  9. Estimation of 85Kr dispersion from the spent nuclear fuel reprocessing plant in Rokkasho, Japan, using an atmospheric dispersion model.

    PubMed

    Abe, K; Iyogi, T; Kawabata, H; Chiang, J H; Suwa, H; Hisamatsu, S

    2015-11-01

    The spent nuclear fuel reprocessing plant of Japan Nuclear Fuel Limited (JNFL) located in Rokkasho, Japan, discharged small amounts of (85)Kr into the atmosphere during final tests of the plant with actual spent fuel from 31 March 2006 to October 2008. During this period, the gamma-ray dose rates due to discharged (85)Kr were higher than the background rates measured at the Institute for Environmental Sciences and at seven monitoring stations of the Aomori prefectural government and JNFL. The dispersion of (85)Kr was simulated by means of the fifth-generation Penn State/NCAR Mesoscale Model and the CG-MATHEW/ADPIC models (ver. 5.0) with a vertical terrain-following height coordinate. Although the simulated gamma-ray dose rates due to discharged (85)Kr agreed fairly well with measured rates, the agreement between the estimated monthly mean (85)Kr concentrations and the observed concentrations was poor. Improvement of the vertical flow of air may lead to better estimation of (85)Kr dispersion. PMID:25948824

  10. Computer Models Simulate Fine Particle Dispersion

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Through a NASA Seed Fund partnership with DEM Solutions Inc., of Lebanon, New Hampshire, scientists at Kennedy Space Center refined existing software to study the electrostatic phenomena of granular and bulk materials as they apply to planetary surfaces. The software, EDEM, allows users to import particles and obtain accurate representations of their shapes for modeling purposes, such as simulating bulk solids behavior, and was enhanced to be able to more accurately model fine, abrasive, cohesive particles. These new EDEM capabilities can be applied in many industries unrelated to space exploration and have been adopted by several prominent U.S. companies, including John Deere, Pfizer, and Procter & Gamble.

  11. Comparison of CFD and operational dispersion models in an urban-like environment

    NASA Astrophysics Data System (ADS)

    Antonioni, G.; Burkhart, S.; Burman, J.; Dejoan, A.; Fusco, A.; Gaasbeek, R.; Gjesdal, T.; Jäppinen, A.; Riikonen, K.; Morra, P.; Parmhed, O.; Santiago, J. L.

    2012-02-01

    Chemical plants, refineries, transportation of hazardous materials are some of the most attractive facilities for external attacks aimed at the release of toxic substances. Dispersion of these substances into the atmosphere forms a concentration distribution of airborne pollutants with severe consequences for exposed individuals. For emergency preparedness and management, the availability of assessed/validated dispersion models, which can be able to predict concentration distribution and thus dangerous zones for exposed individuals, is of primary importance. Air quality models, integral models and analytical models predict the transport and the turbulent dispersion of gases or aerosols after their release without taking into account in detail the presence of obstacles. Obstacles can modify the velocity field and in turn the concentration field. The Computational Fluid Dynamics (CFD) models on the other hand are able to describe such phenomena, but they need to be correctly set up, tested and validated in order to obtain reliable results. Within the project Europa-ERG1 TA 113.034 "NBC Modelling and Simulation" several different approaches in CFD modelling of turbulent dispersion in closed, semi-confined and urban-like environment were adopted and compared with experimental data and with operational models. In this paper the results of a comparison between models describing the dispersion of a neutral gas in an idealized urban-like environment are presented and discussed. Experimental data available in the literature have been used as a benchmark for assessing statistical performance for each model. Selected experimental trials include some water channel tests, that were performed by Coanda at 1:205 scale, and one full-scale case that was tested in the fall of 2001 at the Dugway Proving Grounds in Utah, using an array of shipping containers. The paper also suggests the adoption of improved statistical parameters in order to better address differences between models

  12. Nonsmooth feedback controls of nonlocal dispersal models

    NASA Astrophysics Data System (ADS)

    Malaguti, Luisa; Rubbioni, Paola

    2016-03-01

    The paper deals with a nonlocal diffusion equation which is a model for biological invasion and disease spread. A nonsmooth feedback control term is included and the existence of controlled dynamics is proved, satisfying different kinds of nonlocal condition. Jump discontinuities appear in the process. The existence of optimal control strategies is also shown, under suitably regular control functionals. The investigation makes use of techniques of multivalued analysis and is based on the degree theory for condensing operators in Hilbert spaces.

  13. Electrokinetic induced solute dispersion in porous media; pore network modeling

    NASA Astrophysics Data System (ADS)

    Li, Shuai; Schotting, Ruud; Raoof, Amir

    2013-04-01

    Electrokinetic flow plays an important role in remediation process, separation technique, and chromatography. The solute dispersion is a key parameter to determine transport efficiency. In this study, we present the electrokinetic effects on solute dispersion in porous media at the pore scale, using a pore network model. The analytical solution of the electrokinetic coupling coefficient was obtained to quantity the fluid flow velocity in a cylinder capillary. The effect of electrical double layer on the electrokinetic coupling coefficient was investigated by applying different ionic concentration. By averaging the velocity over cross section within a single pore, the average flux was obtained. Applying such single pore relationships, in the thin electrical double layer limit, to each and every pore within the pore network, potential distribution and the induced fluid flow was calculated for the whole domain. The resulting pore velocities were used to simulate solute transport within the pore network. By averaging the results, we obtained the breakthrough curve (BTC) of the average concentration at the outlet of the pore network. Optimizing the solution of continuum scale advection-dispersion equation to such a BTC, solute dispersion coefficient was estimated. We have compared the dispersion caused by electrokinetic flow and pure pressure driven flow under different Peclet number values. In addition, the effect of microstructure and topological properties of porous media on fluid flow and solute dispersion is presented, mainly based on different pore coordination numbers.

  14. Continuum modeling of diffusion and dispersion in dense granular flows

    NASA Astrophysics Data System (ADS)

    Christov, Ivan C.; Stone, Howard A.

    2014-03-01

    Continuum modeling of granular flows remains a challenge of modern statistical physics. Granular materials do not perform Brownian motion, yet diffusion and shear dispersion can be observed in such systems when agitation causes inelastic collisions between particles. In a number of canonical flow regimes (e.g., in a rotating container or down an incline), granular materials can behave like fluids. We formulate and solve the granular counterparts to two basic fluid mechanics problems: diffusion of a pulse and shear dispersion of a pulse for dense granular materials in rapid flow. We provide a theory to account for the concentration-dependent diffusivity of bidisperse granular mixtures, and we give an asymptotic argument for the self-similar behavior of such a diffusion process for which an exact self-similar analytical solution does not exist. For shear dispersion, we show that the effective dispersivity of the depth-averaged concentration of the dispersing powder varies as the Péclet number squared, as in classical Taylor-Aris dispersion of molecular solutes. The calculation is extended to generic shear profiles, showing a significant enhancement for convex profiles due to the shear-rate dependence of the diffusivity of granular materials. ICC was supported by NSF Grant DMS-1104047 and the U.S. DOE through the LANL/LDRD Program; HAS was supported by NSF Grant CBET-1234500.

  15. Continuum modeling of diffusion and dispersion in dense granular flows

    NASA Astrophysics Data System (ADS)

    Christov, Ivan C.; Stone, Howard A.

    2014-11-01

    Continuum modeling of granular flows remains a challenge of modern statistical physics. Granular materials do not perform Brownian motion, yet diffusion and shear dispersion can be observed in such systems when agitation causes inelastic collisions between particles. In a number of canonical flow regimes (e.g., in a rotating container or down an incline), granular materials can behave like fluids. We formulate and solve the granular counterparts to two basic fluid mechanics problems: diffusion of a pulse and shear dispersion of a pulse for dense granular materials in rapid flow. We provide a theory to account for the concentration-dependent diffusivity of bidisperse granular mixtures, and we give an asymptotic argument for the self-similar behavior of such a diffusion process for which an exact self-similar analytical solution does not exist. For shear dispersion, we show that the effective dispersivity of the depth-averaged concentration of the dispersing powder varies as the Péclet number squared, as in classical Taylor-Aris dispersion of molecular solutes. The calculation is extended to generic shear profiles, showing a significant enhancement for convex profiles due to the shear-rate dependence of the diffusivity of granular materials. ICC was supported by NSF Grant DMS-1104047 and the U.S. DOE through the LANL/LDRD Program; HAS was supported by NSF Grant CBET-1234500.

  16. Application of dispersion modeling to indoor gas release scenarios.

    PubMed

    Rasouli, F; Williams, T A

    1995-03-01

    Many complex models are available to study the dispersion of contaminants or ventilation effectiveness in indoor spaces. Because of the computationally complex numerical schemes employed, most of these models require mainframe computers or workstations. However, simple design tools or guidelines are needed, in addition to complicated models. A dispersion model based on the basic governing equations was developed and uses an analytical solution. Because the concentration is expressed by an analytical solution, the grid size and time steps are user definable. A computer program was used to obtain numerical results and to obtain release history from a thermodynamic source model. The model can be used to estimate three-dimensional spatial and temporal variations in concentrations resulting from transient gas releases in an enclosure. The model was used to study a gas release scenario from a pressurized cylinder into a large ventilated building, in this case, a transit parking and fueling facility. PMID:15658159

  17. Effects of air pollution on thermal structure and dispersion in an urban planetary boundary layer

    NASA Technical Reports Server (NTRS)

    Viskanta, R.; Johnson, R. O.; Bergstrom, R. W.

    1977-01-01

    The short-term effects of urbanization and air pollution on the transport processes in the urban planetary boundary layer (PBL) are studied. The investigation makes use of an unsteady two-dimensional transport model which has been developed by Viskanta et al., (1976). The model predicts pollutant concentrations and temperature in the PBL. The potential effects of urbanization and air pollution on the thermal structure in the urban PBL are considered, taking into account the results of numerical simulations modeling the St. Louis, Missouri metropolitan area.

  18. Dispersive models describing mosquitoes’ population dynamics

    NASA Astrophysics Data System (ADS)

    Yamashita, W. M. S.; Takahashi, L. T.; Chapiro, G.

    2016-08-01

    The global incidences of dengue and, more recently, zica virus have increased the interest in studying and understanding the mosquito population dynamics. Understanding this dynamics is important for public health in countries where climatic and environmental conditions are favorable for the propagation of these diseases. This work is based on the study of nonlinear mathematical models dealing with the life cycle of the dengue mosquito using partial differential equations. We investigate the existence of traveling wave solutions using semi-analytical method combining dynamical systems techniques and numerical integration. Obtained solutions are validated through numerical simulations using finite difference schemes.

  19. Atmospheric dispersion of ammonia: an ammonia fog model

    SciTech Connect

    Kansa, E.J.; Rodean, H.C.; Chan, S.T.; Ermak, D.L.

    1983-01-01

    A simplification to the two-phase ammonia vapor-droplet fog problem has been implemented to study the dispersion of a spill of 40 tons of ammonia. We have circumvented the necessity of adding the partial differential equations for mass, momentum, and energy for the ammonia in the liquid phase by certain assumptions. It is assumed that the ammonia fog behaves as an ideal gas including the droplets. A temperature-dependent molecular weight was introduced to simulate the transition from a vapor-droplet cloud to a pure vapor cloud of ammonia. Likewise, the vaporization of ammonia was spread out over a temperature range. Mass, momentum, energy, and total ammonia is conserved rigorously. The observed features of the ammonia spill simulation have pointed out phenomena that could not be predicted in simpler calculations. Perhaps the most obvious feature is the cloud bifurcation due to the strength of the gravity current relative to the ambient wind. The gravity spreading of the denser ammonia fog significantly perturbs the unidirectional windfield in the vicinity of the spill, setting up complex eddy patterns in the cloud which are enhanced by ground heating and warm dry air entrainment. The lower concentrations appear to lift off by a buoyancy-induced flow. The ammonia cloud, rather than being cigar shaped as assumed in simpler models, ranges from pancake shaped to pear shaped, depending upon the ambient windfield. The fact that the ammonia cloud remains cold, very low, and wide is in qualitative agreement with some of the large-scale ammonia spill accidents. 14 figures.

  20. The Lagrangian particle dispersion model FLEXPART-WRF VERSION 3.1

    SciTech Connect

    Brioude, J.; Arnold, D.; Stohl, A.; Cassiani, M.; Morton, Don; Seibert, P.; Angevine, W. M.; Evan, S.; Dingwell, A.; Fast, Jerome D.; Easter, Richard C.; Pisso, I.; Bukhart, J.; Wotawa, G.

    2013-11-01

    The Lagrangian particle dispersion model FLEXPART was originally designed for cal- culating long-range and mesoscale dispersion of air pollutants from point sources, such as after an accident in a nuclear power plant. In the meantime FLEXPART has evolved into a comprehensive tool for atmospheric transport modeling and analysis at different scales. This multiscale need from the modeler community has encouraged new developments in FLEXPART. In this document, we present a version that works with the Weather Research and Forecasting (WRF) mesoscale meteoro- logical model. Simple procedures on how to run FLEXPART-WRF are presented along with special options and features that differ from its predecessor versions. In addition, test case data, the source code and visualization tools are provided to the reader as supplementary material.

  1. Hybrid Plume Dispersion Model (HPDM) development and evaluation

    SciTech Connect

    Hanna, S.R.; Paine, R.J.

    1989-03-01

    The Hybrid Plume Dispersion Model (HPDM) was developed for application to tall stack plumes dispersing over nearly flat terrain. Emphasis is on convective and high-wind conditions. The meteorological component is based on observational and modeling studies of the planetary boundary layer. The dispersion estimates for the convective boundary layer (CBL) were developed from laboratory experiments and field studies and incorporate convecting scaling, i.e., the convective velocity scale w/sub */, and the CBL height, h, which are the relevant velocity and length scales of the turbulence. The model has a separate component to handle the dispersion of highly buoyant plumes that remain near the top of the CBL and resist downward mixing. For convective conditions, the vertical concentration distribution is non-Gaussian, but for neutral and stable conditions it is assumed to be Gaussian. The HPDM performance is assessed with extensive ground-level concentration measurements around the Kincaid, Illinois, and Bull Run, Tennessee, power plants. It was also tested with limited data during high-winded conditions at five other power plants. The model is found to be an improvement over the standard regulatory model, MPTER, during light-wind convective conditions and high-wind neutral conditions.

  2. A simple model for the dispersion of pollutants from a road tunnel portal

    NASA Astrophysics Data System (ADS)

    Oettl, Dietmar; Sturm, Peter Johann; Bacher, Michael; Pretterhofer, Gerhard; Almbauer, Raimund Alfons

    The dispersion of pollutants from a roadway tunnel portal is mainly determined by the interaction between the ambient wind and the jet stream from the tunnel portal. In principal, Eulerian microscale models by solving the conservation equations for mass, momentum, and energy, are thus able to simulate effects such as buoyancy etc. properly. However, for engineering applications such models need too much CPU time, and are not easy to handle by non-scientific personnel. Only a few dispersion models, applicable for regulatory purposes, have so far appeared in the literature. These models are either empirical models not always applicable for different sites, or they do not capture important physical effects like buoyancy phenomena. Here, a rather simple model is presented, which takes into account most of the important processes considered to govern the dispersion of a jet stream from portals. These are the exit velocity, the buoyancy, the influence of ambient wind direction fluctuations on the position of the jet stream, and traffic induced turbulence. Although the model contains some heuristic elements, it was successfully tested against tracer experiments taken near a motorway tunnel portal in Austria. The model requires relatively little CPU time. Current limitations of the model include the neglect of terrain, building, and vehicle effects on the dispersion, and the neglect of the horizontal dispersion arising from entrainment of ambient air in the jet stream. The latter could lead to an underestimation of plume spreads for higher wind speeds. The validation of the model will be the focus of future research. The experimental data set is also available for the scientific community.

  3. Validation of a novel air toxic risk model with air monitoring.

    PubMed

    Pratt, Gregory C; Dymond, Mary; Ellickson, Kristie; Thé, Jesse

    2012-01-01

    Three modeling systems were used to estimate human health risks from air pollution: two versions of MNRiskS (for Minnesota Risk Screening), and the USEPA National Air Toxics Assessment (NATA). MNRiskS is a unique cumulative risk modeling system used to assess risks from multiple air toxics, sources, and pathways on a local to a state-wide scale. In addition, ambient outdoor air monitoring data were available for estimation of risks and comparison with the modeled estimates of air concentrations. Highest air concentrations and estimated risks were generally found in the Minneapolis-St. Paul metropolitan area and lowest risks in undeveloped rural areas. Emissions from mobile and area (nonpoint) sources created greater estimated risks than emissions from point sources. Highest cancer risks were via ingestion pathway exposures to dioxins and related compounds. Diesel particles, acrolein, and formaldehyde created the highest estimated inhalation health impacts. Model-estimated air concentrations were generally highest for NATA and lowest for the AERMOD version of MNRiskS. This validation study showed reasonable agreement between available measurements and model predictions, although results varied among pollutants, and predictions were often lower than measurements. The results increased confidence in identifying pollutants, pathways, geographic areas, sources, and receptors of potential concern, and thus provide a basis for informing pollution reduction strategies and focusing efforts on specific pollutants (diesel particles, acrolein, and formaldehyde), geographic areas (urban centers), and source categories (nonpoint sources). The results heighten concerns about risks from food chain exposures to dioxins and PAHs. Risk estimates were sensitive to variations in methodologies for treating emissions, dispersion, deposition, exposure, and toxicity.

  4. Assembling spatially explicit landscape models of pollen and spore dispersal by wind for risk assessment.

    PubMed

    Shaw, M W; Harwood, T D; Wilkinson, M J; Elliott, L

    2006-07-01

    Models of windblown pollen or spore movement are required to predict gene flow from genetically modified (GM) crops and the spread of fungal diseases. We suggest a simple form for a function describing the distance moved by a pollen grain or fungal spore, for use in generic models of dispersal. The function has power-law behaviour over sub-continental distances. We show that air-borne dispersal of rapeseed pollen in two experiments was inconsistent with an exponential model, but was fitted by power-law models, implying a large contribution from distant fields to the catches observed. After allowance for this 'background' by applying Fourier transforms to deconvolve the mixture of distant and local sources, the data were best fit by power-laws with exponents between 1.5 and 2. We also demonstrate that for a simple model of area sources, the median dispersal distance is a function of field radius and that measurement from the source edge can be misleading. Using an inverse-square dispersal distribution deduced from the experimental data and the distribution of rapeseed fields deduced by remote sensing, we successfully predict observed rapeseed pollen density in the city centres of Derby and Leicester (UK).

  5. Assembling spatially explicit landscape models of pollen and spore dispersal by wind for risk assessment.

    PubMed

    Shaw, M W; Harwood, T D; Wilkinson, M J; Elliott, L

    2006-07-01

    Models of windblown pollen or spore movement are required to predict gene flow from genetically modified (GM) crops and the spread of fungal diseases. We suggest a simple form for a function describing the distance moved by a pollen grain or fungal spore, for use in generic models of dispersal. The function has power-law behaviour over sub-continental distances. We show that air-borne dispersal of rapeseed pollen in two experiments was inconsistent with an exponential model, but was fitted by power-law models, implying a large contribution from distant fields to the catches observed. After allowance for this 'background' by applying Fourier transforms to deconvolve the mixture of distant and local sources, the data were best fit by power-laws with exponents between 1.5 and 2. We also demonstrate that for a simple model of area sources, the median dispersal distance is a function of field radius and that measurement from the source edge can be misleading. Using an inverse-square dispersal distribution deduced from the experimental data and the distribution of rapeseed fields deduced by remote sensing, we successfully predict observed rapeseed pollen density in the city centres of Derby and Leicester (UK). PMID:16769644

  6. Characteristics of air pollutant dispersion around a high-rise building.

    PubMed

    Zhang, Y; Kwok, K C S; Liu, X-P; Niu, J-L

    2015-09-01

    A numerical wind tunnel model was proposed. The computed results of the pollutant diffusion around a typical Hong Kong high-rise building model (at a linear scale of 1:30), were found to show a similar trend to the outcomes of self-conducted experimental measurements that the pathways of pollutant migration for windward and leeward pollutant emission are different. For the case with windward pollutant emission at the 3rd floor within a re-entry, the pollutant migrated downwards due to the downwash created by the wind. In contrast, for the case with leeward pollution emission, dispersion is dominated by intense turbulent mixing in the near wake and characterized by the upward migration of the pollutant in the leeward re-entry. The simulated results of haze-fog (HF) studies confirm that the pathway of pollutant migration is dominated by wind-structure interaction and buoyancy effect only plays a minor role in the dispersion process. PMID:25989454

  7. Spatial capture-recapture models allowing Markovian transience or dispersal

    USGS Publications Warehouse

    Royle, J. Andrew; Fuller, Angela K.; Sutherland, Chris

    2016-01-01

    Spatial capture–recapture (SCR) models are a relatively recent development in quantitative ecology, and they are becoming widely used to model density in studies of animal populations using camera traps, DNA sampling and other methods which produce spatially explicit individual encounter information. One of the core assumptions of SCR models is that individuals possess home ranges that are spatially stationary during the sampling period. For many species, this assumption is unlikely to be met and, even for species that are typically territorial, individuals may disperse or exhibit transience at some life stages. In this paper we first conduct a simulation study to evaluate the robustness of estimators of density under ordinary SCR models when dispersal or transience is present in the population. Then, using both simulated and real data, we demonstrate that such models can easily be described in the BUGS language providing a practical framework for their analysis, which allows us to evaluate movement dynamics of species using capture–recapture data. We find that while estimators of density are extremely robust, even to pathological levels of movement (e.g., complete transience), the estimator of the spatial scale parameter of the encounter probability model is confounded with the dispersal/transience scale parameter. Thus, use of ordinary SCR models to make inferences about density is feasible, but interpretation of SCR model parameters in relation to movement should be avoided. Instead, when movement dynamics are of interest, such dynamics should be parameterized explicitly in the model.

  8. Development of a GIS Based Dust Dispersion Modeling System.

    SciTech Connect

    Rutz, Frederick C.; Hoopes, Bonnie L.; Crandall, Duard W.; Allwine, K Jerry

    2004-08-12

    With residential areas moving closer to military training sites, the effects upon the environment and neighboring civilians due to dust generated by training exercises has become a growing concern. Under a project supported by the Strategic Environmental Research and Development Program (SERDP) of the Department of Defense, a custom application named DUSTRAN is currently under development that integrates a system of EPA atmospheric dispersion models with the ArcGIS application environment in order to simulate the dust dispersion generated by a planned training maneuver. This integration between modeling system and GIS application allows for the use of real world geospatial data such as terrain, land-use, and domain size as input by the modeling system. Output generated by the modeling system, such as concentration and deposition plumes, can then be displayed upon accurate maps representing the training site. This paper discusses the development of this integration between modeling system and Arc GIS application.

  9. Fuel dispersal modeling for aircraft-runway impact scenarios

    SciTech Connect

    Tieszen, S.R.

    1995-11-01

    A fuel dispersal model for C-141 transport accidents was developed for the Defense Nuclear Agency`s Fuel Fire Technology Base Program to support Weapon System Safety Assessments. The spectrum of accidents resulting from aircraft impact on a runway was divided into three fuel dispersal regimes: low, intermediate, and high-velocity impact. Sufficient data existed in the accident, crash test, and fuel-filled bomb literature to support development of a qualitative framework for dispersal models, but not quantitative models for all regimes. Therefore, a test series at intermediate scale was conducted to generate data on which to base the model for the high-velocity regime. Tests were conducted over an impact velocity range from 12 m/s to 91 m/s and angles of impact from 22.5{degrees} to 67.5{degrees}. Dependent variables were area covered by dispersed fuel, amount of mass in that area, and location of the area relative to the impact line. Test results showed that no liquid pooling occurred for impact velocities greater than 61 m/s, independent of the angle of impact. Some pooling did occur at lower velocities, but in no test was the liquid-layer thickness greater than 5.25 mm.

  10. Modeling neolithic dispersal in central Europe: demographic implications.

    PubMed

    Galeta, Patrik; Sládek, Vladimír; Sosna, Daniel; Bruzek, Jaroslav

    2011-09-01

    On the basis of new examination of ancient DNA and craniometric analyses, Neolithic dispersal in Central Europe has been recently explained as reflecting colonization or at least a major influx of near eastern farmers. Given the fact that Neolithic dispersal in Central Europe was very rapid and extended into a large area, colonization would have to be associated with high population growth and fertility rates of an expanding Neolithic population. We built three demographic models to test whether the growth and fertility rates of Neolithic farmers were high enough to allow them to colonize Central Europe without admixture with foragers. The principle of the models is based on stochastic population projections. Our results demonstrate that colonization is an unlikely explanation for the Neolithic dispersal in Central Europe, as the majority of fertility and growth rate estimates obtained in all three models are higher than levels expected in the early Neolithic population. On the basis of our models, we derived that colonization would be possible only if (1) more than 37% of women survived to mean age at childbearing, (2) Neolithic expansion in Central Europe lasted more than 150 years, and (3) the population of farmers grew in the entire settled area. These settings, however, represent very favorable demographic conditions that seem unlikely given current archaeological and demographic evidence. Therefore, our results support the view that Neolithic dispersal in Central Europe involved admixture of expanding farmers with local foragers. We estimate that the admixture contribution from foragers may have been between 55% and 72%.

  11. PHYSICAL AND NUMERICAL MODELING OF ASD EXHAUST DISPERSION AROUND HOUSES

    EPA Science Inventory

    The report discusses the use of a wind tunnel to physically model the dispersion of exhaust plumes from active soil depressurization (ASD) radon mitigation systems in houses. he testing studied the effects of exhaust location (grade level vs. above the eave), as house height, roo...

  12. Evaluation study of building-resolved urban dispersion models

    SciTech Connect

    Flaherty, Julia E.; Allwine, K Jerry; Brown, Mike J.; Coirier, WIlliam J.; Ericson, Shawn C.; Hansen, Olav R.; Huber, Alan H.; Kim, Sura; Leach, Martin J.; Mirocha, Jeff D.; Newsom, Rob K.; Patnaik, Gopal; Senocak, Inanc

    2007-09-10

    For effective emergency response and recovery planning, it is critically important that building-resolved urban dispersion models be evaluated using field data. Several full-physics computational fluid dynamics (CFD) models and semi-empirical building-resolved (SEB) models are being advanced and applied to simulating flow and dispersion in urban areas. To obtain an estimate of the current state-of-readiness of these classes of models, the Department of Homeland Security (DHS) funded a study to compare five CFD models and one SEB model with tracer data from the extensive Midtown Manhattan field study (MID05) conducted during August 2005 as part of the DHS Urban Dispersion Program (UDP; Allwine and Flaherty 2007). Six days of tracer and meteorological experiments were conducted over an approximately 2-km-by-2-km area in Midtown Manhattan just south of Central Park in New York City. A subset of these data was used for model evaluations. The study was conducted such that an evaluation team, independent of the six modeling teams, provided all the input data (e.g., building data, meteorological data and tracer release rates) and run conditions for each of four experimental periods simulated. Tracer concentration data for two of the four experimental periods were provided to the modeling teams for their own evaluation of their respective models to ensure proper setup and operation. Tracer data were not provided for the second two experimental periods to provide for an independent evaluation of the models. The tracer concentrations resulting from the model simulations were provided to the evaluation team in a standard format for consistency in inter-comparing model results. An overview of the model evaluation approach will be given followed by a discussion on the qualitative comparison of the respective models with the field data. Future model developments efforts needed to address modeling gaps identified from this study will also be discussed.

  13. Exposure estimates using urban plume dispersion and traffic microsimulation models

    SciTech Connect

    Brown, M.J.; Mueller, C.; Bush, B.; Stretz, P.

    1997-12-01

    The goal of this research effort was to demonstrate a capability for analyzing emergency response issues resulting from accidental or mediated airborne toxic releases in an urban setting. In the first year of the program, the authors linked a system of fluid dynamics, plume dispersion, and vehicle transportation models developed at Los Alamos National Laboratory to study the dispersion of a plume in an urban setting and the resulting exposures to vehicle traffic. This research is part of a larger laboratory-directed research and development project for studying the relationships between urban infrastructure elements and natural systems.

  14. Revisiting the radionuclide atmospheric dispersion event of the Chernobyl disaster - modelling sensitivity and data assimilation

    NASA Astrophysics Data System (ADS)

    Roustan, Yelva; Duhanyan, Nora; Bocquet, Marc; Winiarek, Victor

    2013-04-01

    A sensitivity study of the numerical model, as well as, an inverse modelling approach applied to the atmospheric dispersion issues after the Chernobyl disaster are both presented in this paper. On the one hand, the robustness of the source term reconstruction through advanced data assimilation techniques was tested. On the other hand, the classical approaches for sensitivity analysis were enhanced by the use of an optimised forcing field which otherwise is known to be strongly uncertain. The POLYPHEMUS air quality system was used to perform the simulations of radionuclide dispersion. Activity concentrations in air and deposited to the ground of iodine-131, caesium-137 and caesium-134 were considered. The impact of the implemented parameterizations of the physical processes (dry and wet depositions, vertical turbulent diffusion), of the forcing fields (meteorology and source terms) and of the numerical configuration (horizontal resolution) were investigated for the sensitivity study of the model. A four dimensional variational scheme (4D-Var) based on the approximate adjoint of the chemistry transport model was used to invert the source term. The data assimilation is performed with measurements of activity concentrations in air extracted from the Radioactivity Environmental Monitoring (REM) database. For most of the investigated configurations (sensitivity study), the statistics to compare the model results to the field measurements as regards the concentrations in air are clearly improved while using a reconstructed source term. As regards the ground deposited concentrations, an improvement can only be seen in case of satisfactorily modelled episode. Through these studies, the source term and the meteorological fields are proved to have a major impact on the activity concentrations in air. These studies also reinforce the use of reconstructed source term instead of the usual estimated one. A more detailed parameterization of the deposition process seems also to be

  15. Atomization and Dispersion of a Liquid Jet Injected Into a Crossflow of Air

    NASA Technical Reports Server (NTRS)

    Seay, J. E.; Samuelson, G. S.

    1996-01-01

    In recent years, environmental regulations have become more stringent, requiring lower emissions of mainly nitrogen oxides (NOx), as well as carbon monoxide (CO) and unburned hydrocarbons (UHC). These regulations have forced the gas turbine industry to examine non-conventional combustion strategies, such as the lean burn approach. The reasoning behind operating under lean conditions is to maintain the temperature of combustion near and below temperatures required for the formation of thermal nitric oxide (NO). To be successful, however, the lean processes require careful preparation of the fuel/air mixture to preclude formation of either locally rich reaction zones, which may give rise to NO formation, or locally lean reaction zones, which may give rise to inefficient fuel processing. As a result fuel preparation is crucial to the development and success of new aeroengine combustor technologies. A key element of the fuel preparation process is the fuel nozzle. As nozzle technologies have developed, airblast atomization has been adopted for both industrial and aircraft gas turbine applications. However, the majority of the work to date has focused on prefilming nozzles, which despite their complexity and high cost have become an industry standard for conventional combustion strategies. It is likely that the new strategies required to meet future emissions goals will utilize novel fuel injector approaches, such as radial injection. This thesis proposes and demonstrates an experiment to examine, on a mechanistic level (i.e., the physics of the action), the processes associated with the atomization, evaporation, and dispersion of a liquid jet introduced, from a radial, plain-jet airblast injector, into a crossflow of air. This understanding requires the knowledge not only of what factors influence atomization, but also the underlying mechanism associated with liquid breakup and dispersion. The experimental data acquired identify conditions and geometries for improved

  16. Physical modeling of air flow during air sparging remediation.

    PubMed

    Hu, Liming; Wu, Xiaofeng; Liu, Yan; Meegoda, Jay N; Gao, Shengyan

    2010-05-15

    Air sparging (AS) is one of the most efficient techniques for remediating saturated soils and groundwater contaminated with volatile organic compounds. A series of physical modeling tests for different sizes of porous media under varied injection pressure were conducted to investigate the effect of particle size and air injection pressure on size and shape of the zone of influence (ZOI). The test results show that ZOI can be expressed by two components: the horizontal expansion due to pneumatic fracture or preferential intrusion around the injection point and the angle of ZOI which is the angle between the vertical line and the boundary of ZOI. There exists a limited angle of ZOI for each type of porous media. The measured minimum and maximum air injection pressures in 1g tests are compared with corresponding theoretical values, and it is found that the measured minimum injection pressure is slightly lower than the theoretical value, while the measured maximum injection pressure is much higher than the theoretical maximum injection pressure. Centrifugal test results confirmed nonapplicability of theoretical maximum injection pressure to air sparging design. All of the above provide valuable information for design and theoretical modeling of air sparging for groundwater remediation.

  17. Dependence of charge transfer phenomena during solid-air two-phase flow on particle disperser

    NASA Astrophysics Data System (ADS)

    Tanoue, Ken-ichiro; Suedomi, Yuuki; Honda, Hirotaka; Furutani, Satoshi; Nishimura, Tatsuo; Masuda, Hiroaki

    2012-12-01

    An experimental investigation of the tribo-electrification of particles has been conducted during solid-air two-phase turbulent flow. The current induced in a metal plate by the impact of polymethylmethacrylate (PMMA) particles in a high-speed air flow was measured for two different plate materials. The results indicated that the contact potential difference between the particles and a stainless steel plate was positive, while for a nickel plate it was negative. These results agreed with theoretical contact charge transfer even if not only the particle size but also the kind of metal plate was changed. The specific charge of the PMMA particles during solid-air two-phase flow using an ejector, a stainless steel branch pipe, and a stainless steel straight pipe was measured using a Faraday cage. Although the charge was negative in the ejector, the particles had a positive specific charge at the outlet of the branch pipe, and this positive charge increased in the straight pipe. The charge decay along the flow direction could be reproduced by the charging and relaxation theory. However, the proportional coefficients in the theory changed with the particle size and air velocity. Therefore, an unexpected charge transfer occurred between the ejector and the branch pipe, which could not be explained solely by the contact potential difference. In the ejector, an electrical current in air might have been produced by self-discharge of particles with excess charge between the nickel diffuser in the ejector and the stainless steel nozzle or the stainless steel pipe due to a reversal in the contact potential difference between the PMMA and the stainless steel. The sign of the current depended on the particle size, possibly because the position where the particles impacted depended on their size. When dual coaxial glass pipes were used as a particle disperser, the specific charge of the PMMA particles became more positive along the particle flow direction due to the contact

  18. Simulation model air-to-air plate heat exchanger

    SciTech Connect

    Wetter, Michael

    1999-01-01

    A simple simulation model of an air-to-air plate heat exchanger is presented. The model belongs to a collection of simulation models that allows the eflcient computer simulation of heating, ventilation, and air-conditioning (HVAC) systems. The main emphasis of the models is to shorten computation time and to use only input data that are known in the design process of an HVAC system. The target of the models is to describe the behavior of HVAC components in the part-load operation mode, which is becoming increasingly important in energy eficient HVAC systems. The models are intended to be used for yearly energy calculations or load calculations with time steps of about 10 minutes or larger. Short- time dynamic effects, which are of interest for different aspects of control theory, are neglected. The part-load behavior is expressed in terms of the nominal condition and the dimensionless variation of the heat transfer with change of mass flow and temperature. The effectiveness- NTU relations are used to parametrize the convective heat transfer at nominal conditions and to compute the part-load condition. If the heat transfer coefficients on the two exchanger sides are not equal (i. e. due to partial bypassing of air), their ratio can be easily calculated and set as a parameter. The model is static and uses explicit equations only. The explicit model formulation ensures short computation time and numerical stability, which allows using the model with sophisticated engineering methods like automatic system optimization. This paper fully outlines the algorithm description and its simplifications. It is not tailored for any particular simulation program to ensure easy implementation in any simulation program.

  19. The use of dispersion modeling to determine the feasibility of vegetative environmental buffers (VEBS) at controlling odor dispersion

    NASA Astrophysics Data System (ADS)

    Weber, Eric E.

    Concentrated animal feeding operations (CAFOs) have been experiencing increased resistance from surrounding residents making construction of new facilities or expansion of existing ones increasingly limited (Jacobson et al., 2002). Such concerns often include the impact of nuisance odor on peoples’ lives and on the environment (Huang and Miller, 2006). Vegetative environmental buffers (VEBs) have been suggested as a possible odor control technology. They have been found to impact odor plume dispersion and have shown the possibility of being an effective tool for odor abatement when used alone or in combination with other technologies (Lin et al., 2006). The main objective of this study was to use Gaussian-type dispersion modeling to determine the feasibility of use and the effectiveness of a VEB at controlling the spread of odor from a swine feeding operation. First, wind tunnel NH3 dispersion trends were compared to model generated dispersion trends to determine the accuracy of the model at handling VEB dispersion. Next, facility-scale (northern Missouri specific) model simulations with and without a VEB were run to determine its viability as an option for dispersion reduction. Finally, dispersion forecasts that integrated numerical weather forecasts were developed and compared to collected concentration data to determine forecast accuracy. The results of this study found that dispersion models can be used to simulate dispersion around a VEB. AERMOD-generated dispersion trends were found to follow similar patterns of decreasing downwind concentration to those of both wind tunnel simulations and previous research. This shows that a VEB can be incorporated into AERMOD and that the model can be used to determine its effectiveness as an odor control option. The results of this study also showed that a VEB has an effect on odor dispersion by reducing downwind concentrations. This was confirmed by both wind tunnel and AERMOD simulations of dispersion displaying

  20. Diagnostic Mass-Consistent Wind Field Monte Carlo Dispersion Model

    1991-01-01

    MATHEW generates a diagnostic mass-consistent, three-dimensional wind field based on point measurements of wind speed and direction. It accounts for changes in topography within its calculational domain. The modeled wind field is used by the Langrangian ADPIC dispersion model. This code is designed to predict the atmospheric boundary layer transport and diffusion of neutrally bouyant, non-reactive species as well as first-order chemical reactions and radioactive decay (including daughter products).

  1. A multiscale model for bioimpedance dispersion of liver tissue.

    PubMed

    Huang, W H; Chui, C K; Teoh, S H; Chang, S K Y

    2012-06-01

    Radio-frequency ablation (RFA) has been used in liver surgery to minimize blood loss during tissue division. However, the current RFA tissue division method lacks an effective way of determining the stoppage of blood flow. There is limitation on the current state-of-the-art laser Doppler flow sensor due to its small sensing area. A new technique was proposed to use bioimpedance for blood flow sensing. This paper discusses a new geometrical multiscale model of the liver bioimpedance incorporating blood flow impedance. This model establishes correlation between the physical tissue structure and bioimpedance measurement. The basic Debye structure within a multilevel framework is used in the model to account for bioimpedance dispersion. This dispersion is often explained by the Cole-Cole model that includes a constant phase element without physical explanation. Our model is able to account for reduced blood flow in its output with changes in permittivity in gamma dispersion that is mainly due to the polarization of water molecules. This study demonstrates the potential of a multiscale model in determining the stoppage of blood flow during surgery.

  2. AQA - Air Quality model for Austria - Evaluation and Developments

    NASA Astrophysics Data System (ADS)

    Hirtl, M.; Krüger, B. C.; Baumann-Stanzer, K.; Skomorowski, P.

    2009-04-01

    The regional weather forecast model ALADIN of the Central Institute for Meteorology and Geodynamics (ZAMG) is used in combination with the chemical transport model CAMx (www.camx.com) to conduct forecasts of gaseous and particulate air pollution over Europe. The forecasts which are done in cooperation with the University of Natural Resources and Applied Life Sciences in Vienna (BOKU) are supported by the regional governments since 2005 with the main interest on the prediction of tropospheric ozone. The daily ozone forecasts are evaluated for the summer 2008 with the observations of about 150 air quality stations in Austria. In 2008 the emission-model SMOKE was integrated into the modelling system to calculate the biogenic emissions. The anthropogenic emissions are based on the newest EMEP data set as well as on regional inventories for the core domain. The performance of SMOKE is shown for a summer period in 2007. In the frame of the COST-action 728 „Enhancing mesoscale meteorological modelling capabilities for air pollution and dispersion applications", multi-model ensembles are used to conduct an international model evaluation. The model calculations of meteorological- and concentration fields are compared to measurements on the ensemble platform at the Joint Research Centre (JRC) in Ispra. The results for 2 episodes in 2006 show the performance of the different models as well as of the model ensemble.

  3. Effects of vertical shear in modelling horizontal oceanic dispersion

    NASA Astrophysics Data System (ADS)

    Lanotte, A. S.; Corrado, R.; Palatella, L.; Pizzigalli, C.; Schipa, I.; Santoleri, R.

    2016-02-01

    The effect of vertical shear on the horizontal dispersion properties of passive tracer particles on the continental shelf of the South Mediterranean is investigated by means of observation and model data. In situ current measurements reveal that vertical gradients of horizontal velocities in the upper mixing layer decorrelate quite fast ( ˜ 1 day), whereas an eddy-permitting ocean model, such as the Mediterranean Forecasting System, tends to overestimate such decorrelation time because of finite resolution effects. Horizontal dispersion, simulated by the Mediterranean sea Forecasting System, is mostly affected by: (1) unresolved scale motions, and mesoscale motions that are largely smoothed out at scales close to the grid spacing; (2) poorly resolved time variability in the profiles of the horizontal velocities in the upper layer. For the case study we have analysed, we show that a suitable use of deterministic kinematic parametrizations is helpful to implement realistic statistical features of tracer dispersion in two and three dimensions. The approach here suggested provides a functional tool to control the horizontal spreading of small organisms or substance concentrations, and is thus relevant for marine biology, pollutant dispersion as well as oil spill applications.

  4. Fractal model of consolidation of weakly aggregated colloidal dispersions

    NASA Astrophysics Data System (ADS)

    Potanin, A. A.; Russel, W. B.

    1996-04-01

    A microrheological model for the consolidation of aggregated colloidal dispersion is presented. Interparticle forces are responsible for the formation of the fractal-like network of particles chains. Aggregation is supposed to be weak in that the chains are gradually created and annihilated. In the framework of this model a constitutive equation is proposed which includes linear dependence of the normal stress upon consolidation rate at low stresses and yieldlike behavior as the stress reaches critical value. Our constitutive equation thus generalizes earlier models based on the compressive yield stress concept by taking into account the deformation in the low-compression limit (analog to the Newtonian flow in the low-shear limit). The constitutive equation is employed to calculate numerically concentration profiles of consolidating samples in better agreement with the experimental data for weakly aggregated alumina dispersions.

  5. Network models of frugivory and seed dispersal: Challenges and opportunities

    NASA Astrophysics Data System (ADS)

    Carlo, Tomás A.; Yang, Suann

    2011-11-01

    Network analyses have emerged as a new tool to study frugivory and seed dispersal (FSD) mutualisms because networks can model and simplify the complexity of multiple community-wide species interactions. Moreover, network theory suggests that structural properties, such as the presence of highly generalist species, are linked to the stability of mutualistic communities. However, we still lack empirical validation of network model predictions. Here we outline new research avenues to connect network models to FSD processes, and illustrate the challenges and opportunities of this tool with a field study. We hypothesized that generalist frugivores would be important for forest stability by dispersing seeds into deforested areas and initiating reforestation. We then constructed a network of plant-frugivore interactions using published data and identified the most generalist frugivores. To test the importance of generalists we measured: 1) the frequency with which frugivores moved between pasture and forest, 2) the bird-generated seed rain under perches in the pasture, and 3) the perching frequency of birds above seed traps. The generalist frugivores in the forest network were not important for seed dispersal into pastures, and thus for forest recovery, because the forest network excluded habitat heterogeneities, frugivore behavior, and movements. More research is needed to develop ways to incorporate relevant FSD processes into network models in order for these models to be more useful to community ecology and conservation. The network framework can serve to spark and renew interest in FSD and further our understanding of plant-animal communities.

  6. Thermal conductivity modeling of U-Mo/Al dispersion fuel

    NASA Astrophysics Data System (ADS)

    Kim, Yeon Soo; Cho, Byoung Jin; Sohn, Dong-Seong; Park, Jong Man

    2015-11-01

    A dataset for the thermal conductivity of U-Mo/Al dispersion fuel made available by KAERI was reanalyzed. Using this dataset, an analytical model was obtained by expanding the Bruggeman model. The newly developed model incorporates thermal resistances at the interface between the U-Mo particles and the Al matrix and the defects within the Al matrix (grain boundaries, cracks, and dislocations). The interfacial resistances are expressed as functions of U-Mo particle size and Al grain size obtained empirically by fitting to measured data from KAERI. The model was then validated against an independently measured dataset from ANL.

  7. Using meteorological ensembles for atmospheric dispersion modelling of the Fukushima nuclear accident

    NASA Astrophysics Data System (ADS)

    Périllat, Raphaël; Korsakissok, Irène; Mallet, Vivien; Mathieu, Anne; Sekiyama, Thomas; Didier, Damien; Kajino, Mizuo; Igarashi, Yasuhito; Adachi, Kouji

    2016-04-01

    Dispersion models are used in response to an accidental release of radionuclides of the atmosphere, to infer mitigation actions, and complement field measurements for the assessment of short and long term environmental and sanitary impacts. However, the predictions of these models are subject to important uncertainties, especially due to input data, such as meteorological fields or source term. This is still the case more than four years after the Fukushima disaster (Korsakissok et al., 2012, Girard et al., 2014). In the framework of the SAKURA project, an MRI-IRSN collaboration, a meteorological ensemble of 20 members designed by MRI (Sekiyama et al. 2013) was used with IRSN's atmospheric dispersion models. Another ensemble, retrieved from ECMWF and comprising 50 members, was also used for comparison. The MRI ensemble is 3-hour assimilated, with a 3-kilometers resolution, designed to reduce the meteorological uncertainty in the Fukushima case. The ECMWF is a 24-hour forecast with a coarser grid, representative of the uncertainty of the data available in a crisis context. First, it was necessary to assess the quality of the ensembles for our purpose, to ensure that their spread was representative of the uncertainty of meteorological fields. Using meteorological observations allowed characterizing the ensembles' spread, with tools such as Talagrand diagrams. Then, the uncertainty was propagated through atmospheric dispersion models. The underlying question is whether the output spread is larger than the input spread, that is, whether small uncertainties in meteorological fields can produce large differences in atmospheric dispersion results. Here again, the use of field observations was crucial, in order to characterize the spread of the ensemble of atmospheric dispersion simulations. In the case of the Fukushima accident, gamma dose rates, air activities and deposition data were available. Based on these data, selection criteria for the ensemble members were

  8. A simple model for calculating air pollution within street canyons

    NASA Astrophysics Data System (ADS)

    Venegas, Laura E.; Mazzeo, Nicolás A.; Dezzutti, Mariana C.

    2014-04-01

    This paper introduces the Semi-Empirical Urban Street (SEUS) model. SEUS is a simple mathematical model based on the scaling of air pollution concentration inside street canyons employing the emission rate, the width of the canyon, the dispersive velocity scale and the background concentration. Dispersive velocity scale depends on turbulent motions related to wind and traffic. The parameterisations of these turbulent motions include two dimensionless empirical parameters. Functional forms of these parameters have been obtained from full scale data measured in street canyons at four European cities. The sensitivity of SEUS model is studied analytically. Results show that relative errors in the evaluation of the two dimensionless empirical parameters have less influence on model uncertainties than uncertainties in other input variables. The model estimates NO2 concentrations using a simple photochemistry scheme. SEUS is applied to estimate NOx and NO2 hourly concentrations in an irregular and busy street canyon in the city of Buenos Aires. The statistical evaluation of results shows that there is a good agreement between estimated and observed hourly concentrations (e.g. fractional bias are -10.3% for NOx and +7.8% for NO2). The agreement between the estimated and observed values has also been analysed in terms of its dependence on wind speed and direction. The model shows a better performance for wind speeds >2 m s-1 than for lower wind speeds and for leeward situations than for others. No significant discrepancies have been found between the results of the proposed model and that of a widely used operational dispersion model (OSPM), both using the same input information.

  9. COMMUNITY SCALE AIR TOXICS MODELING WITH CMAQ

    EPA Science Inventory

    Consideration and movement for an urban air toxics control strategy is toward a community, exposure and risk-based modeling approach, with emphasis on assessments of areas that experience high air toxic concentration levels, the so-called "hot spots". This strategy will requir...

  10. NASA/Air Force Cost Model: NAFCOM

    NASA Technical Reports Server (NTRS)

    Winn, Sharon D.; Hamcher, John W. (Technical Monitor)

    2002-01-01

    The NASA/Air Force Cost Model (NAFCOM) is a parametric estimating tool for space hardware. It is based on historical NASA and Air Force space projects and is primarily used in the very early phases of a development project. NAFCOM can be used at the subsystem or component levels.

  11. CFD Modeling of LNG Spill: Humidity Effect on Vapor Dispersion

    NASA Astrophysics Data System (ADS)

    Giannissi, S. G.; Venetsanos, A. G.; Markatos, N.

    2015-09-01

    The risks entailed by an accidental spill of Liquefied Natural Gas (LNG) should be indentified and evaluated, in order to design measures for prevention and mitigation in LNG terminals. For this purpose, simulations are considered a useful tool to study LNG spills and to understand the mechanisms that influence the vapor dispersion. In the present study, the ADREA-HF CFD code is employed to simulate the TEEX1 experiment. The experiment was carried out at the Brayton Fire Training Field, which is affiliated with the Texas A&M University system and involves LNG release and dispersion over water surface in open- obstructed environment. In the simulation the source was modeled as a two-phase jet enabling the prediction of both the vapor dispersion and the liquid pool spreading. The conservation equations for the mixture are solved along with the mass fraction for natural gas. Due to the low prevailing temperatures during the spill ambient humidity condenses and this might affect the vapor dispersion. This effect was examined in this work by solving an additional conservation equation for the water mass fraction. Two different models were tested: the hydrodynamic equilibrium model which assumes kinetic equilibrium between the phases and the non hydrodynamic equilibrium model, in order to assess the effect of slip velocity on the prediction. The slip velocity is defined as the difference between the liquid phase and the vapor phase and is calculated using the algebraic slip model. Constant droplet diameter of three different sizes and a lognormal distribution of the droplet diameter were applied and the results are discussed and compared with the measurements.

  12. The Lagrangian particle dispersion model FLEXPART-WRF version 3.1

    NASA Astrophysics Data System (ADS)

    Brioude, J.; Arnold, D.; Stohl, A.; Cassiani, M.; Morton, D.; Seibert, P.; Angevine, W.; Evan, S.; Dingwell, A.; Fast, J. D.; Easter, R. C.; Pisso, I.; Burkhart, J.; Wotawa, G.

    2013-11-01

    The Lagrangian particle dispersion model FLEXPART was originally designed for calculating long-range and mesoscale dispersion of air pollutants from point sources, such that occurring after an accident in a nuclear power plant. In the meantime, FLEXPART has evolved into a comprehensive tool for atmospheric transport modeling and analysis at different scales. A need for further multiscale modeling and analysis has encouraged new developments in FLEXPART. In this paper, we present a FLEXPART version that works with the Weather Research and Forecasting (WRF) mesoscale meteorological model. We explain how to run this new model and present special options and features that differ from those of the preceding versions. For instance, a novel turbulence scheme for the convective boundary layer has been included that considers both the skewness of turbulence in the vertical velocity as well as the vertical gradient in the air density. To our knowledge, FLEXPART is the first model for which such a scheme has been developed. On a more technical level, FLEXPART-WRF now offers effective parallelization, and details on computational performance are presented here. FLEXPART-WRF output can either be in binary or Network Common Data Form (NetCDF) format, both of which have efficient data compression. In addition, test case data and the source code are provided to the reader as a Supplement. This material and future developments will be accessible at http://www.flexpart.eu.

  13. ARAC dispersion modeling of the July 26, 1993 oleum tank car spill in Richmond, California

    SciTech Connect

    Baskett, R.L.; Vogt, P.J.; Schalk, W.W. III; Pobanz, B.M.

    1994-02-03

    This report presents the results from the real-time response on the day of the spill followed by a re-assessment of the spill. Worst-case source terms and readily available meteorological data (met data) were used for the real-time response. ARAC employs a three-dimensional, diagnostic, finite-difference dispersion modeling system for estimating the consequences from accidental atmospheric releases. MATHEW (Mass-Adjusted Three- Dimensional Wind field), a Eulerian wind field code, and ADPIC (Atmospheric Diffusion by Particle-In-Cell), a hybrid Eulerian-Lagrangian dispersion model, from the core of the system. For a particular incident a model grid is selected to encompass the area of concern and is generated using underlying terrain from on-line data. Meteorological data from multiple surface and upper air stations are automatically acquired in real time primarily from local airports and formatted to initialize the wind field model. Dispersion parameters are determined from meteorological data and the source term from available information. The system is designed to simulate releases from single or multiple radioactive releases, such as ventings, spills, fires, or explosions. Solid and liquid aerosols and neutrally-buoyant gases are modeled. Particle size distributions are input for each aerosol source and modeled using gravitational settling and wet and dry deposition, if applicable. The system can be readily applied to neutrally-bouyant, nonradioactive chemical releases which do not undergo significant physical or chemical conversion processes.

  14. Experimental and Numerical Modelling of CO2 Atmospheric Dispersion in Hazardous Gas Emission Sites.

    NASA Astrophysics Data System (ADS)

    Gasparini, A.; sainz Gracia, A. S.; Grandia, F.; Bruno, J.

    2015-12-01

    Under stable atmospheric conditions and/or in presence of topographic depressions, CO2 concentrations can reach high values resulting in lethal effect to living organisms. The distribution of denser than air gases released from the underground is governed by gravity, turbulence and dispersion. Once emitted, the gas distribution is initially driven by buoyancy and a gas cloud accumulates on the ground (gravitational phase); with time the density gradient becomes less important due to dispersion or mixing and gas distribution is mainly governed by wind and atmospheric turbulence (passive dispersion phase). Natural analogues provide evidences of the impact of CO2 leakage. Dangerous CO2 concentration in atmosphere related to underground emission have been occasionally reported although the conditions favouring the persistence of such a concentration are barely studied.In this work, the dynamics of CO2 in the atmosphere after ground emission is assessed to quantify their potential risk. Two approaches have been followed: (1) direct measurement of air concentration in a natural emission site, where formation of a "CO2 lake" is common and (2) numerical atmospheric modelling. Two sites with different morphology were studied: (a) the Cañada Real site, a flat terrain in the Volcanic Field of Campo de Calatrava (Spain); (b) the Solforata di Pomezia site, a rough terrain in the Alban Hills Volcanic Region (Italy). The comparison between field data and model calculations reveal that numerical dispersion models are capable of predicting the formation of CO2 accumulation over the ground as a consequence of underground gas emission. Therefore, atmospheric modelling could be included as a valuable methodology in the risk assessment of leakage in natural degassing systems and in CCS projects. Conclusions from this work provide clues on whether leakage may be a real risk for humans and under which conditions this risk needs to be included in the risk assessment.

  15. Joint space-time geostatistical model for air quality surveillance

    NASA Astrophysics Data System (ADS)

    Russo, A.; Soares, A.; Pereira, M. J.

    2009-04-01

    Air pollution and peoples' generalized concern about air quality are, nowadays, considered to be a global problem. Although the introduction of rigid air pollution regulations has reduced pollution from industry and power stations, the growing number of cars on the road poses a new pollution problem. Considering the characteristics of the atmospheric circulation and also the residence times of certain pollutants in the atmosphere, a generalized and growing interest on air quality issues led to research intensification and publication of several articles with quite different levels of scientific depth. As most natural phenomena, air quality can be seen as a space-time process, where space-time relationships have usually quite different characteristics and levels of uncertainty. As a result, the simultaneous integration of space and time is not an easy task to perform. This problem is overcome by a variety of methodologies. The use of stochastic models and neural networks to characterize space-time dispersion of air quality is becoming a common practice. The main objective of this work is to produce an air quality model which allows forecasting critical concentration episodes of a certain pollutant by means of a hybrid approach, based on the combined use of neural network models and stochastic simulations. A stochastic simulation of the spatial component with a space-time trend model is proposed to characterize critical situations, taking into account data from the past and a space-time trend from the recent past. To identify near future critical episodes, predicted values from neural networks are used at each monitoring station. In this paper, we describe the design of a hybrid forecasting tool for ambient NO2 concentrations in Lisbon, Portugal.

  16. Modeling neutron scattering in disperse, nonuniformly labeled commercial polyolefins

    NASA Astrophysics Data System (ADS)

    Habersberger, Brian; Hart, Kyle; Gillespie, David; Huang, Tianzi

    In spite of their chemically simple monomer elements, understanding of many structural, thermodynamic, and other aspects of polyolefins has remained elusive. Scattering studies on polyolefins are challenged by their nearly identical density in the melt, requiring the use of deuterium-labeling to provide contrast for small-angle neutron scattering (SANS). Until recently, labeling of commercial polyolefins has been prohibitively costly, leading SANS investigations on polyolefins to focus on non-disperse model systems. Commercial polyolefins often have broad molecular weight and composition distributions, and such dispersity plays an important role in their rheology, crystallization, and mechanical properties. Recent reports have described facile hydrogen-deuterium exchange reactions that preserve the chain architecture of polyolefins. However, such exchange is not uniformly distributed across the chain population. Here, we report a generalized application of the Random Phase Approximation prediction for SANS from homogeneous polymer blends to account for such dispersity. A Monte-Carlo method is used to calculate the deuterium distribution that corresponds to SANS measurements. These methods provide powerful tools for probing the structure of disperse polymer architectures.

  17. Modelling future impacts of air pollution using the multi-scale UK Integrated Assessment Model (UKIAM).

    PubMed

    Oxley, Tim; Dore, Anthony J; ApSimon, Helen; Hall, Jane; Kryza, Maciej

    2013-11-01

    Integrated assessment modelling has evolved to support policy development in relation to air pollutants and greenhouse gases by providing integrated simulation tools able to produce quick and realistic representations of emission scenarios and their environmental impacts without the need to re-run complex atmospheric dispersion models. The UK Integrated Assessment Model (UKIAM) has been developed to investigate strategies for reducing UK emissions by bringing together information on projected UK emissions of SO2, NOx, NH3, PM10 and PM2.5, atmospheric dispersion, criteria for protection of ecosystems, urban air quality and human health, and data on potential abatement measures to reduce emissions, which may subsequently be linked to associated analyses of costs and benefits. We describe the multi-scale model structure ranging from continental to roadside, UK emission sources, atmospheric dispersion of emissions, implementation of abatement measures, integration with European-scale modelling, and environmental impacts. The model generates outputs from a national perspective which are used to evaluate alternative strategies in relation to emissions, deposition patterns, air quality metrics and ecosystem critical load exceedance. We present a selection of scenarios in relation to the 2020 Business-As-Usual projections and identify potential further reductions beyond those currently being planned.

  18. Plutonium explosive dispersal modeling using the MACCS2 computer code

    SciTech Connect

    Steele, C.M.; Wald, T.L.; Chanin, D.I.

    1998-11-01

    The purpose of this paper is to derive the necessary parameters to be used to establish a defensible methodology to perform explosive dispersal modeling of respirable plutonium using Gaussian methods. A particular code, MACCS2, has been chosen for this modeling effort due to its application of sophisticated meteorological statistical sampling in accordance with the philosophy of Nuclear Regulatory Commission (NRC) Regulatory Guide 1.145, ``Atmospheric Dispersion Models for Potential Accident Consequence Assessments at Nuclear Power Plants``. A second advantage supporting the selection of the MACCS2 code for modeling purposes is that meteorological data sets are readily available at most Department of Energy (DOE) and NRC sites. This particular MACCS2 modeling effort focuses on the calculation of respirable doses and not ground deposition. Once the necessary parameters for the MACCS2 modeling are developed and presented, the model is benchmarked against empirical test data from the Double Tracks shot of project Roller Coaster (Shreve 1965) and applied to a hypothetical plutonium explosive dispersal scenario. Further modeling with the MACCS2 code is performed to determine a defensible method of treating the effects of building structure interaction on the respirable fraction distribution as a function of height. These results are related to the Clean Slate 2 and Clean Slate 3 bunkered shots of Project Roller Coaster. Lastly a method is presented to determine the peak 99.5% sector doses on an irregular site boundary in the manner specified in NRC Regulatory Guide 1.145 (1983). Parametric analyses are performed on the major analytic assumptions in the MACCS2 model to define the potential errors that are possible in using this methodology.

  19. Study of a mixed dispersal population dynamics model

    SciTech Connect

    Chugunova, Marina; Jadamba, Baasansuren; Kao, Chiu -Yen; Klymko, Christine F.; Thomas, Evelyn; Zhao, Bingyu

    2015-07-10

    In this study, we consider a mixed dispersal model with periodic and Dirichlet boundary conditions and its corresponding linear eigenvalue problem. This model describes the time evolution of a population which disperses both locally and non-locally. We investigate how long time dynamics depend on the parameter values. Furthermore, we study the minimization of the principal eigenvalue under the constraints that the resource function is bounded from above and below, and with a fixed total integral. Biologically, this minimization problem is motivated by the question of determining the optimal spatial arrangement of favorable and unfavorable regions for the species to die out more slowly or survive more easily. Our numerical simulations indicate that the optimal favorable region tends to be a simply-connected domain. Numerous results are shown to demonstrate various scenarios of optimal favorable regions for periodic and Dirichlet boundary conditions.

  20. Study of a mixed dispersal population dynamics model

    DOE PAGES

    Chugunova, Marina; Jadamba, Baasansuren; Kao, Chiu -Yen; Klymko, Christine F.; Thomas, Evelyn; Zhao, Bingyu

    2016-08-27

    In this study, we consider a mixed dispersal model with periodic and Dirichlet boundary conditions and its corresponding linear eigenvalue problem. This model describes the time evolution of a population which disperses both locally and non-locally. We investigate how long time dynamics depend on the parameter values. Furthermore, we study the minimization of the principal eigenvalue under the constraints that the resource function is bounded from above and below, and with a fixed total integral. Biologically, this minimization problem is motivated by the question of determining the optimal spatial arrangement of favorable and unfavorable regions for the species to diemore » out more slowly or survive more easily. Our numerical simulations indicate that the optimal favorable region tends to be a simply-connected domain. Numerous results are shown to demonstrate various scenarios of optimal favorable regions for periodic and Dirichlet boundary conditions.« less

  1. Dispersion relations for electroweak observables in composite Higgs models

    NASA Astrophysics Data System (ADS)

    Contino, Roberto; Salvarezza, Matteo

    2015-12-01

    We derive dispersion relations for the electroweak oblique observables measured at LEP in the context of S O (5 )/S O (4 ) composite Higgs models. We show how these relations can be used and must be modified when modeling the spectral functions through a low-energy effective description of the strong dynamics. We then use the dispersion relation for the parameter ɛ3 to estimate the contribution from spin-1 resonances at the one-loop level. Finally, we show that the sign of the contribution to the S ^ parameter from the lowest-lying spin-1 states is not necessarily positive definite but depends on the energy scale at which the asymptotic behavior of current correlators is attained.

  2. Modeling, Monitoring and Fault Diagnosis of Spacecraft Air Contaminants

    NASA Technical Reports Server (NTRS)

    Ramirez, W. Fred; Skliar, Mikhail; Narayan, Anand; Morgenthaler, George W.; Smith, Gerald J.

    1998-01-01

    Control of air contaminants is a crucial factor in the safety considerations of crewed space flight. Indoor air quality needs to be closely monitored during long range missions such as a Mars mission, and also on large complex space structures such as the International Space Station. This work mainly pertains to the detection and simulation of air contaminants in the space station, though much of the work is easily extended to buildings, and issues of ventilation systems. Here we propose a method with which to track the presence of contaminants using an accurate physical model, and also develop a robust procedure that would raise alarms when certain tolerance levels are exceeded. A part of this research concerns the modeling of air flow inside a spacecraft, and the consequent dispersal pattern of contaminants. Our objective is to also monitor the contaminants on-line, so we develop a state estimation procedure that makes use of the measurements from a sensor system and determines an optimal estimate of the contamination in the system as a function of time and space. The real-time optimal estimates in turn are used to detect faults in the system and also offer diagnoses as to their sources. This work is concerned with the monitoring of air contaminants aboard future generation spacecraft and seeks to satisfy NASA's requirements as outlined in their Strategic Plan document (Technology Development Requirements, 1996).

  3. Air Tightness of US Homes: Model Development

    SciTech Connect

    Sherman, Max H.

    2006-05-01

    Air tightness is an important property of building envelopes. It is a key factor in determining infiltration and related wall-performance properties such as indoor air quality, maintainability and moisture balance. Air leakage in U.S. houses consumes roughly 1/3 of the HVAC energy but provides most of the ventilation used to control IAQ. The Lawrence Berkeley National Laboratory has been gathering residential air leakage data from many sources and now has a database of more than 100,000 raw measurements. This paper uses that database to develop a model for estimating air leakage as a function of climate, building age, floor area, building height, floor type, energy-efficiency and low-income designations. The model developed can be used to estimate the leakage distribution of populations of houses.

  4. A Atmospheric Dispersion Model for the Sudbury, Ontario, Area.

    NASA Astrophysics Data System (ADS)

    Huhn, Frank Jones

    1982-03-01

    A mathematical model was developed and tested to predict the relationship between sulphur oxide and trace metal emissions from smelters in the Sudbury, Ontario area, and atmospheric, precipitation, lake water and sediment chemistry. The model consists of atmospheric and lake chemistry portions. The atmospheric model is a Gaussian crosswind concentration distribution modification to a box model with a uniform vertical concentration gradient limited by a mixing height. In the near-field Briggs' plume rise and vertical dispersion terms are utilized. Oxidation, wet and dry deposition mechanisms are included to account for the gas, liquid and solid phases separately. Important improvements over existing models include (1) near- and far-field conditions treated in a single model; (2) direct linkage of crosswind dispersion to hourly meteorological observations; (3) utilization of maximum to minimum range of input parameters to realistically model the range of outputs; (4) direct linkage of the atmospheric model to a lake model. Precipitation chemistry as calculated by the atmospheric model is related to lake water and sediment chemistry utilizing a mass balance approach and assuming a continuously stirred reactor (CSTR) model to describe lake circulation. All inputs are atmospheric, modified by hydrology, soil chemistry and sedimentation. Model results were tested by comparison with existing atmospheric and precipitation chemistry measurements, supplemented with analyses of lake water and sediment chemistry collected in a field program. Eight pollutant species were selected for modeling: sulphur dioxide, sulphate ion, hydrogen ion, copper, nickel, lead, zinc, and iron. The model effectively predicts precipitation chemistry within 150 km of Sudbury, with an average prediction to measurement ratio of 90 percent. Atmospheric concentrations are effectively predicted within 80 km, with an average prediction to measurement ratio of 81 percent. Lake chemistry predictions are

  5. Validation and optimization of SST k-ω turbulence model for pollutant dispersion within a building array

    NASA Astrophysics Data System (ADS)

    Yu, Hesheng; Thé, Jesse

    2016-11-01

    The prediction of the dispersion of air pollutants in urban areas is of great importance to public health, homeland security, and environmental protection. Computational Fluid Dynamics (CFD) emerges as an effective tool for pollutant dispersion modelling. This paper reports and quantitatively validates the shear stress transport (SST) k-ω turbulence closure model and its transitional variant for pollutant dispersion under complex urban environment for the first time. Sensitivity analysis is performed to establish recommendation for the proper use of turbulence models in urban settings. The current SST k-ω simulation is validated rigorously by extensive experimental data using hit rate for velocity components, and the "factor of two" of observations (FAC2) and fractional bias (FB) for concentration field. The simulation results show that current SST k-ω model can predict flow field nicely with an overall hit rate of 0.870, and concentration dispersion with FAC2 = 0.721 and FB = 0.045. The flow simulation of the current SST k-ω model is slightly inferior to that of a detached eddy simulation (DES), but better than that of standard k-ε model. However, the current study is the best among these three model approaches, when validated against measurements of pollutant dispersion in the atmosphere. This work aims to provide recommendation for proper use of CFD to predict pollutant dispersion in urban environment.

  6. Ensemble Volcanic Aerosol Forecasting in Hawaii using a Parallelized version of the Hysplit Dispersion Model

    NASA Astrophysics Data System (ADS)

    Pattantyus, A.; Businger, S.

    2013-12-01

    A transition from deterministic to probabilistic forecasts of the dispersion of emissions from the Kilauea Volcano on the Island of Hawaii is under way. Operational forecasts of volcanic smog (vog) have been produced for 3 years by a custom version of NOAA's Hysplit dispersion model (vog model hereafter), a Lagrangian transport model that uses high-resolution WRF-ARW model output for initial conditions run at the University of Hawaii at Manoa. The vog model has been successful in predicting which locations in the State of Hawaii will be impacted by the vog plume. Initial concentrations of emissions from the volcano are set empirically based on downstream observations provided by the Hawaiian Volcano Observatory. Fast changing meteorological conditions and/or rapid variations in emissions rates cause forecast errors to increase. Recent efforts aim to leverage the parallelism of Hysplit to run ensemble forecasts with various initial condition configurations to better quantify the forecast uncertainty. The ensemble will contain 28 members each with perturbed heights and locations of initial aerosol concentrations. Forecast sulfur dioxide and sulfate aerosol concentrations follow Air Resources Laboratory's Air Quality Index (AQI). The resulting probabilistic forecasts will provide probability of exceedance plots and concentration-probability plots for each AQI level. Because some people are extremely sensitive to low concentrations of sulfate aerosols, the lowest AQI levels will be distinguished in the exceedance map output. Downstream observations at Pahala and Kona will be used to validate the ensemble results, which will also be compared to the results of deterministic forecasts.

  7. Evaluation of the Regional Atmospheric Modeling System in the Eastern Range Dispersion Assessment System

    NASA Technical Reports Server (NTRS)

    Case, Jonathan

    2000-01-01

    The Applied Meteorology Unit is conducting an evaluation of the Regional Atmospheric Modeling System (RAMS) contained within the Eastern Range Dispersion Assessment System (ERDAS). ERDAS provides emergency response guidance for operations at the Cape Canaveral Air Force Station and the Kennedy Space Center in the event of an accidental hazardous material release or aborted vehicle launch. The prognostic data from RAMS is available to ERDAS for display and is used to initialize the 45th Range Safety (45 SW/SE) dispersion model. Thus, the accuracy of the 45 SW/SE dispersion model is dependent upon the accuracy of RAMS forecasts. The RAMS evaluation task consists of an objective and subjective component for the Florida warm and cool seasons of 1999-2000. The objective evaluation includes gridded and point error statistics at surface and upper-level observational sites, a comparison of the model errors to a coarser grid configuration of RAMS, and a benchmark of RAMS against the widely accepted Eta model. The warm-season subjective evaluation involves a verification of the onset and movement of the Florida east coast sea breeze and RAMS forecast precipitation. This interim report provides a summary of the RAMS objective and subjective evaluation for the 1999 Florida warm season only.

  8. Dispersion modeling of thermal power plant emissions on stochastic space

    NASA Astrophysics Data System (ADS)

    Gorle, J. M. R.; Sambana, N. R.

    2016-05-01

    This study aims to couple a deterministic atmospheric dispersion solver based on Gaussian model with a nonintrusive stochastic model to quantify the propagation of multiple uncertainties. The nonintrusive model is based on probabilistic collocation framework. The advantage of nonintrusive nature is to retain the existing deterministic plume dispersion model without missing the accuracy in extracting the statistics of stochastic solution. The developed model is applied to analyze the SO2 emission released from coal firing unit in the second stage of the National Thermal Power Corporation (NTPC) in Dadri, India using "urban" conditions. The entire application is split into two cases, depending on the source of uncertainty. In case 1, the uncertainties in stack gas exit conditions are used to construct the stochastic space while in case 2, meteorological conditions are considered as the sources of uncertainty. Both cases develop 2D uncertain random space in which the uncertainty propagation is quantified in terms of plume rise and pollutant concentration distribution under slightly unstable atmospheric stability conditions. Starting with deterministic Gaussian plume model demonstration and its application, development of stochastic collocation model, convergence study, error analysis, and uncertainty quantification are presented in this paper.

  9. A Flexible Spatio-Temporal Model for Air Pollution with Spatial and Spatio-Temporal Covariates

    PubMed Central

    Lindström, Johan; Szpiro, Adam A; Sampson, Paul D; Oron, Assaf P; Richards, Mark; Larson, Tim V; Sheppard, Lianne

    2013-01-01

    The development of models that provide accurate spatio-temporal predictions of ambient air pollution at small spatial scales is of great importance for the assessment of potential health effects of air pollution. Here we present a spatio-temporal framework that predicts ambient air pollution by combining data from several different monitoring networks and deterministic air pollution model(s) with geographic information system (GIS) covariates. The model presented in this paper has been implemented in an R package, SpatioTemporal, available on CRAN. The model is used by the EPA funded Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air) to produce estimates of ambient air pollution; MESA Air uses the estimates to investigate the relationship between chronic exposure to air pollution and cardiovascular disease. In this paper we use the model to predict long-term average concentrations of NOx in the Los Angeles area during a ten year period. Predictions are based on measurements from the EPA Air Quality System, MESA Air specific monitoring, and output from a source dispersion model for traffic related air pollution (Caline3QHCR). Accuracy in predicting long-term average concentrations is evaluated using an elaborate cross-validation setup that accounts for a sparse spatio-temporal sampling pattern in the data, and adjusts for temporal effects. The predictive ability of the model is good with cross-validated R2 of approximately 0.7 at subject sites. Replacing four geographic covariate indicators of traffic density with the Caline3QHCR dispersion model output resulted in very similar prediction accuracy from a more parsimonious and more interpretable model. Adding traffic-related geographic covariates to the model that included Caline3QHCR did not further improve the prediction accuracy. PMID:25264424

  10. Simulation of the dispersion of nuclear contamination using an adaptive Eulerian grid model.

    PubMed

    Lagzi, I; Kármán, D; Turányi, T; Tomlin, A S; Haszpra, L

    2004-01-01

    Application of an Eulerian model using layered adaptive unstructured grids coupled to a meso-scale meteorological model is presented for modelling the dispersion of nuclear contamination following the accidental release from a single but strong source to the atmosphere. The model automatically places a finer resolution grid, adaptively in time, in regions were high spatial numerical error is expected. The high-resolution grid region follows the movement of the contaminated air over time. Using this method, grid resolutions of the order of 6 km can be achieved in a computationally effective way. The concept is illustrated by the simulation of hypothetical nuclear accidents at the Paks NPP, in Central Hungary. The paper demonstrates that the adaptive model can achieve accuracy comparable to that of a high-resolution Eulerian model using significantly less grid points and computer simulation time. PMID:15149762

  11. On the coalescence-dispersion modeling of turbulent molecular mixing

    NASA Technical Reports Server (NTRS)

    Givi, Peyman; Kosaly, George

    1987-01-01

    The general coalescence-dispersion (C/D) closure provides phenomenological modeling of turbulent molecular mixing. The models of Curl and Dopazo and O'Brien appear as two limiting C/D models that bracket the range of results one can obtain by various models. This finding is used to investigate the sensitivtiy of the results to the choice of the model. Inert scalar mixing is found to be less model-sensitive than mixing accompanied by chemical reaction. Infinitely fast chemistry approximation is used to relate the C/D approach to Toor's earlier results. Pure mixing and infinite rate chemistry calculations are compared to study further a recent result of Hsieh and O'Brien who found that higher concentration moments are not sensitive to chemistry.

  12. SIS and SIR epidemic models under virtual dispersal

    PubMed Central

    Bichara, Derdei; Kang, Yun; Castillo-Chavez, Carlos; Horan, Richard; Perrings, Charles

    2015-01-01

    We develop a multi-group epidemic framework via virtual dispersal where the risk of infection is a function of the residence time and local environmental risk. This novel approach eliminates the need to define and measure contact rates that are used in the traditional multi-group epidemic models with heterogeneous mixing. We apply this approach to a general n-patch SIS model whose basic reproduction number R0 is computed as a function of a patch residence-times matrix ℙ. Our analysis implies that the resulting n-patch SIS model has robust dynamics when patches are strongly connected: there is a unique globally stable endemic equilibrium when R0 > 1 while the disease free equilibrium is globally stable when R0 ≤ 1. Our further analysis indicates that the dispersal behavior described by the residence-times matrix ℙ has profound effects on the disease dynamics at the single patch level with consequences that proper dispersal behavior along with the local environmental risk can either promote or eliminate the endemic in particular patches. Our work highlights the impact of residence times matrix if the patches are not strongly connected. Our framework can be generalized in other endemic and disease outbreak models. As an illustration, we apply our framework to a two-patch SIR single outbreak epidemic model where the process of disease invasion is connected to the final epidemic size relationship. We also explore the impact of disease prevalence driven decision using a phenomenological modeling approach in order to contrast the role of constant versus state dependent ℙ on disease dynamics. PMID:26489419

  13. Physiologically Based Absorption Modeling for Amorphous Solid Dispersion Formulations.

    PubMed

    Mitra, Amitava; Zhu, Wei; Kesisoglou, Filippos

    2016-09-01

    Amorphous solid dispersion (ASD) formulations are routinely used to enable the delivery of poorly soluble compounds. This type of formulations can enhance bioavailability due to higher kinetic solubility of the drug substance and increased dissolution rate of the formulation, by the virtue of the fact that the drug molecule exists in the formulation in a high energy amorphous state. In this article we report the application of physiologically based absorption models to mechanistically understand the clinical pharmacokinetics of solid dispersion formulations. Three case studies are shown here to cover a wide range of ASD bioperformance in human and modeling to retrospectively understand their in vivo behavior. Case study 1 is an example of fairly linear PK observed with dose escalation and the use of amorphous solubility to predict bioperformance. Case study 2 demonstrates the development of a model that was able to accurately predict the decrease in fraction absorbed (%Fa) with dose escalation thus demonstrating that such model can be used to predict the clinical bioperformance in the scenario where saturation of absorption is observed. Finally, case study 3 shows the development of an absorption model with the intent to describe the observed incomplete and low absorption in clinic with dose escalation. These case studies highlight the utility of physiologically based absorption modeling in gaining a thorough understanding of ASD performance and the critical factors impacting performance to drive design of a robust drug product that would deliver the optimal benefit to the patients. PMID:27442959

  14. Averaged model for momentum and dispersion in hierarchical porous media

    NASA Astrophysics Data System (ADS)

    Chabanon, Morgan; David, Bertrand; Goyeau, Benoît.

    2015-08-01

    Hierarchical porous media are multiscale systems, where different characteristic pore sizes and structures are encountered at each scale. Focusing the analysis to three pore scales, an upscaling procedure based on the volume-averaging method is applied twice, in order to obtain a macroscopic model for momentum and diffusion-dispersion. The effective transport properties at the macroscopic scale (permeability and dispersion tensors) are found to be explicitly dependent on the mesoscopic ones. Closure problems associated to these averaged properties are numerically solved at the different scales for two types of bidisperse porous media. Results show a strong influence of the lower-scale porous structures and flow intensity on the macroscopic effective transport properties.

  15. Lagrangian Particle Method for Local Scale Dispersion Modeling

    NASA Astrophysics Data System (ADS)

    Sunarko; ZakiSu'ud

    2016-08-01

    A deterministic model is developed for radioactive dispersion analysis based on random-walk Lagrangian Particle Dispersion Method (LPDM). A diagnostic 3dimensional mass-consistent wind-field with a capability to handle complex topography can be used to provide input for particle advection. Turbulent diffusion process of particles is determined based on empirical lateral and linear vertical relationships. Surface-level concentration is calculated for constant unit release from elevated point source. A series of 60-second segmented groups of particles are released in 3600 seconds total duration. Averaged surface-level concentration within a 5 meter surface layer is obtained and compared with available analytical solution. Results from LPDM shows good agreement with the analytical result for vertically constant and varying wind field with the same atmospheric stability.

  16. Modelling air quality in street canyons: a review

    NASA Astrophysics Data System (ADS)

    Vardoulakis, Sotiris; Fisher, Bernard E. A.; Pericleous, Koulis; Gonzalez-Flesca, Norbert

    High pollution levels have been often observed in urban street canyons due to the increased traffic emissions and reduced natural ventilation. Microscale dispersion models with different levels of complexity may be used to assess urban air quality and support decision-making for pollution control strategies and traffic planning. Mathematical models calculate pollutant concentrations by solving either analytically a simplified set of parametric equations or numerically a set of differential equations that describe in detail wind flow and pollutant dispersion. Street canyon models, which might also include simplified photochemistry and particle deposition-resuspension algorithms, are often nested within larger-scale urban dispersion codes. Reduced-scale physical models in wind tunnels may also be used for investigating atmospheric processes within urban canyons and validating mathematical models. A range of monitoring techniques is used to measure pollutant concentrations in urban streets. Point measurement methods (continuous monitoring, passive and active pre-concentration sampling, grab sampling) are available for gaseous pollutants. A number of sampling techniques (mainly based on filtration and impaction) can be used to obtain mass concentration, size distribution and chemical composition of particles. A combination of different sampling/monitoring techniques is often adopted in experimental studies. Relatively simple mathematical models have usually been used in association with field measurements to obtain and interpret time series of pollutant concentrations at a limited number of receptor locations in street canyons. On the other hand, advanced numerical codes have often been applied in combination with wind tunnel and/or field data to simulate small-scale dispersion within the urban canopy.

  17. INDOOR AIR QUALITY MODELING (CHAPTER 58)

    EPA Science Inventory

    The chapter discussses indoor air quality (IAQ) modeling. Such modeling provides a way to investigate many IAQ problems without the expense of large field experiments. Where experiments are planned, IAQ models can be used to help design experiments by providing information on exp...

  18. The Lagrangian particle dispersion model FLEXPART-WRF version 3.0

    NASA Astrophysics Data System (ADS)

    Brioude, J.; Arnold, D.; Stohl, A.; Cassiani, M.; Morton, D.; Seibert, P.; Angevine, W.; Evan, S.; Dingwell, A.; Fast, J. D.; Easter, R. C.; Pisso, I.; Burkhart, J.; Wotawa, G.

    2013-07-01

    The Lagrangian particle dispersion model FLEXPART was originally designed for calculating long-range and mesoscale dispersion of air pollutants from point sources, such as after an accident in a nuclear power plant. In the meantime FLEXPART has evolved into a comprehensive tool for atmospheric transport modeling and analysis at different scales. This multiscale need has encouraged new developments in FLEXPART. In this document, we present a FLEXPART version that works with the Weather Research and Forecasting (WRF) mesoscale meteorological model. We explain how to run and present special options and features that differ from its predecessor versions. For instance, a novel turbulence scheme for the convective boundary layer has been included that considers both the skewness of turbulence in the vertical velocity as well as the vertical gradient in the air density. To our knowledge, FLEXPART is the first model for which such a scheme has been developed. On a more technical level, FLEXPART-WRF now offers effective parallelization and details on computational performance are presented here. FLEXPART-WRF output can either be in binary or Network Common Data Form (NetCDF) format with efficient data compression. In addition, test case data and the source code are provided to the reader as Supplement. This material and future developments will be accessible at http://www.flexpart.eu.

  19. Universal quantum criticality in Hubbard models with massless Dirac dispersion

    NASA Astrophysics Data System (ADS)

    Otsuka, Yuichi; Yunoki, Seiji; Sorella, Sandro

    We investigate the metal-insulator transition of two-dimensional interacting electrons with massless Dirac-like dispersion, describe by the Hubbard models on two geometrically different lattices: honeycomb and π-flux square lattices. By performing large-scale quantum Monte Carlo simulations followed by careful finite-size scaling analyses, we find that the transition from semi-metallic to antiferromagnetic insulating phases is continuous and evaluate the critical exponents with a high degree of accuracy for the corresponding universality class, which is described in the continuous limit by the Gross-Neveu model. We furthermore discuss the fate of the quasiparticle weight and the Fermi velocity across this transition.

  20. Biomonitoring of airborne particulate matter emitted from a cement plant and comparison with dispersion modelling results

    NASA Astrophysics Data System (ADS)

    Abril, Gabriela A.; Wannaz, Eduardo D.; Mateos, Ana C.; Pignata, María L.

    2014-01-01

    The influence of a cement plant that incinerates industrial waste on the air quality of a region in the province of Córdoba, Argentina, was assessed by means of biomonitoring studies (effects of immission) and atmospheric dispersion (effects of emission) of PM10 with the application of the ISC3 model (Industrial Source Complex) developed by the USEPA (Environmental Protection Agency). For the biomonitoring studies, samples from the epiphyte plant Tillandsia capillaris Ruíz & Pav. f. capillaris were transplanted to the vicinities of the cement plant in order to determine the physiological damage and heavy metal accumulation (Ca, Mn, Fe, Co, Ni, Cu, Zn, Cd and Pb). For the application of the ISC3 model, point and area sources from the cement plant were considered to obtain average PM10 concentration results from the biomonitoring exposure period. This model permitted it to be determined that the emissions from the cement plant (point and area sources) were confined to the vicinities, without significant dispersion in the study area. This was also observed in the biomonitoring study, which identified Ca, Cd and Pb, pH and electric conductivity (EC) as biomarkers of this cement plant. Vehicular traffic emissions and soil re-suspension could be observed in the biomonitors, giving a more complete scenario. In this study, biomonitoring studies along with the application of atmospheric dispersion models, allowed the atmospheric pollution to be assessed in more detail.

  1. The Evaluation of the Regional Atmospheric Modeling System in the Eastern Range Dispersion Assessment System

    NASA Technical Reports Server (NTRS)

    Case, Jonathan

    2001-01-01

    The Applied Meteorology Unit (AMU) evaluated the Regional Atmospheric Modeling System (RAMS) contained within the Eastern Range Dispersion Assessment System (ERDAS). ERDAS provides emergency response guidance for Cape Canaveral Air Force Station and Kennedy Space Center operations in the event of an accidental hazardous material release or aborted vehicle launch. The RAMS prognostic data are available to ERDAS for display and are used to initialize the 45th Space Wing/Range Safety dispersion model. Thus, the accuracy of the dispersion predictions is dependent upon the accuracy of RAMS forecasts. The RAMS evaluation consisted of an objective and subjective component for the 1999 and 2000 Florida warm seasons, and the 1999-2000 cool season. In the objective evaluation, the AMU generated model error statistics at surface and upper-level observational sites, compared RAMS errors to a coarser RAMS grid configuration, and benchmarked RAMS against the nationally-used Eta model. In the subjective evaluation, the AMU compared forecast cold fronts, low-level temperature inversions, and precipitation to observations during the 1999-2000 cool season, verified the development of the RAMS forecast east coast sea breeze during both warm seasons, and examined the RAMS daily thunderstorm initiation and precipitation patterns during the 2000 warm season. This report summarizes the objective and subjective verification for all three seasons.

  2. Measuring and modeling multidimensional dispersion in a meandering river

    NASA Astrophysics Data System (ADS)

    Logan, B. L.; Nelson, J. M.; Runkel, R. L.; McDonald, R. R.

    2009-04-01

    As part of a study to separate and characterize the active and passive components of sturgeon larval dispersal in a large river, we made detailed measurements of the dispersion of a large pulse of Rhodamine dye injected at a single upstream point. The study occurred on the Kootenai River, USA, a 200m-wide meandering river with an unusually low gradient, 2x10-5, and an average depth of 5 m at the moderate study flow of 271 m3/s. For the first 14 river kilometers downstream from the injection site, a detailed concentration data set describing the spatial and temporal evolution of the dye pulse was obtained using GPS receivers and high-accuracy fluorometers mounted on several boats. Beyond this initial reach, the dye was predominantly well-mixed in the cross-stream direction except near the leading and trailing edges of the pulse, and only longitudinal dispersion was measured. These measurements were made at a series of 11 fixed locations for an additional 45 river kilometers downstream, at which point peak dye concentrations were near the detection limit. Even for a relatively simple channel, the data indicate that local topography and bank irregularity exert a strong influence on the distribution of dye. While most of the dye pulse was apparently well mixed in the cross-stream and vertical directions, deep pools and lateral separation zones produced complex 3-dimensional structure in the concentration field, especially at the leading edge of the dye pulse. The dispersion data show that travel times in different reaches were more variable than predicted by a simple 1-dimensional model. Comparisons of the field data with results from multidimensional computational models indicate that uncommon channel features play a disproportionately important role in determining the storage and subsequent release of constituents that are passively advected and diffused.

  3. ARAC dispersion modeling of the August 1998 Tracy, California tire fire

    SciTech Connect

    Aluzzi, F J; Baskett, R L; Bowen, B M; Foster, C S; Pace, J C; Pobanz, B; Vogt, P J

    1998-08-28

    At about 4:30 pm PDT on Friday, August 7, 1998 a fire ignited the large tire disposal pit of Royster Tire Co. on Macarthur Drive about 5 km (3 miles) south of downtown Tracy, California. While providing on-scene mutual aid late Friday night, the LLNL Fire Department called and requested that the Atmospheric Release Advisory Capability (ARAC) make a plume forecast for Saturday. The response team in the field was interested in the forecasted location as well as an estimate of potential health effects on the following day. Not having any previous experience with tire fire source terms, ARAC assessors used a constant unit source rate (1 g/s) of particulate and produced plots showing only the location of the ground-level normalized time-integrated air concentrations from the smoke plume. Very early Saturday morning the assessors faxed plots of ground-level smoke air concentrations forecasted for Saturday from 6 am through 6 pm PDT to the Tracy Fire Emergency Operations Center. (As a part of standard procedure, before delivering the plots, the assessors notified ARAC's DOE sponsor.) Fortunately due to the intense heat from the fire, the dense black smoke immediately lofted into the air preventing high ground-level concentrations close to the tire dump. Later on Saturday morning ARAC forecasted a second set of plume integrated air concentrations for Sunday. By Monday the intensity of the fire lessened, and ARAC's support was no longer requested. Following ARAC's response, we made a third calculation on a large scale of the continuous smoke dispersion for 3 days after the fire. A newspaper photograph showed the plume initially rising toward the northeast and the upper part of the smoke cloud turning counterclockwise toward the north. Winds from ARAC's mesoscale prognostic model reproduced this plume structure, while data from the Friday afternoon sounding from Oakland did not. On the 250 km scale, using gridded wind outputs from our mesoscale forecast model to initialize

  4. Effects of ozone and peroxone on algal separation via dispersed air flotation.

    PubMed

    Nguyen, Truc Linh; Lee, D J; Chang, J S; Liu, J C

    2013-05-01

    Effects of pre-oxidation on algal separation by dispersed air flotation were examined. Ozone (O3) and peroxone (O3 and H2O2) could induce cell lysis, release of intracellular organic matter (IOM), and mineralization of organic substances. Separation efficiency of algal cells improved when pre-oxidized. Total of 76.4% algal cells was separated at 40 mg/L of N-cetyl-N-N-N-trimethylammonium bromide (CTAB), while 95% were separated after 30-min ozonation. Pre-oxidation by ozone and peroxone also enhanced flotation separation efficiency of dissolved organic carbon (DOC), polysaccharide, and protein, in which peroxone process exerted more significantly than O3. Two main mechanisms were involved in flotation separation of unoxidized algal suspension, namely hydrophobic cell surface and cell flocculation resulting from CTAB adsorption. However, flocculation by CTAB was hindered for pre-oxidized algal suspensions. It implied that the compositional changes in extracellular organic matter (EOM) by pre-oxidation were more determined for flotation separation of pre-oxidized cells.

  5. CFD modeling of reactive pollutant dispersion in simplified urban configurations with different chemical mechanisms

    NASA Astrophysics Data System (ADS)

    Sanchez, Beatriz; Santiago, Jose-Luis; Martilli, Alberto; Palacios, Magdalena; Kirchner, Frank

    2016-09-01

    An accurate understanding of urban air quality requires considering a coupled behavior between the dispersion of reactive pollutants and atmospheric dynamics. Currently, urban air pollution is mostly dominated by traffic emission, where nitrogen oxides (NOx) and volatile organic compounds (VOCs) are the primary emitted pollutants. However, modeling reactive pollutants with a large set of chemical reactions, using a computational fluid dynamic (CFD) model, requires a large amount of computational (CPU) time. In this sense, the selection of the chemical reactions needed in different atmospheric conditions becomes essential in finding the best compromise between CPU time and accuracy. The purpose of this work is to assess the differences in NO and NO2 concentrations by considering three chemical approaches: (a) passive tracers (non-reactive), (b) the NOx-O3 photostationary state and (c) a reduced complex chemical mechanism based on 23 species and 25 reactions. The appraisal of the effects of chemical reactions focuses on studying the NO and NO2 dispersion in comparison with the tracer behavior within the street. In turn, the effect of including VOC reactions is also analyzed taking into account several VOC / NOx ratios of traffic emission. Given that the NO and NO2 dispersion can also be affected by atmospheric conditions, such as wind flow or the background concentration from season-dependent pollutants, in this work the influence of wind speeds and background O3 concentrations are studied. The results show that the presence of ozone in the street plays an important role in NO and NO2 concentrations. Therefore, greater differences linked to the chemical approach used are found with higher O3 concentrations and faster wind speeds. This bears relation to the vertical flux as a function of ambient wind speed since it increases the pollutant exchange between the street and the overlying air. This detailed study allows one to ascertain under which atmospheric conditions

  6. LANDSCAPE MODELING OF CHARACTERISTIC HABITAT SCALES, DISPERSAL, AND CONNECTIVITY FROM THE PERSPECTIVE OF THE ORGANISM

    EPA Science Inventory

    A modeling framework was developed to investigate the interactive effects of life history characteristics and landscape heterogeneity on dispersal success. An individual-based model was used to examine how dispersal between resource patches is affected by four landscape characte...

  7. The importance of being dispersed: A ranking of diffusion MRI models for fibre dispersion using in vivo human brain data.

    PubMed

    Ferizi, Uran; Schneider, Torben; Tariq, Maira; Wheeler-Kingshott, Claudia A M; Zhang, Hui; Alexander, Daniel C

    2013-01-01

    In this work we compare parametric diffusion MRI models which explicitly seek to explain fibre dispersion in nervous tissue. These models aim at providing more specific biomarkers of disease by disentangling these structural contributions to the signal. Some models are drawn from recent work in the field; others have been constructed from combinations of existing compartments that aim to capture both intracellular and extracellular diffusion. To test these models we use a rich dataset acquired in vivo on the corpus callosum of a human brain, and then compare the models via the Bayesian Information Criteria. We test this ranking via bootstrapping on the data sets, and cross-validate across unseen parts of the protocol. We find that models that capture fibre dispersion are preferred. The results show the importance of modelling dispersion, even in apparently coherent fibres.

  8. Using stochastic NWP ensembles for volcanic ash transport and dispersion model outcomes

    NASA Astrophysics Data System (ADS)

    Patra, A. K.; Bursik, M. I.; Stefanescu, E.; Pitman, E.; Singh, T.; Singla, P.

    2012-12-01

    Ash clouds ejected into the atmosphere by volcanic eruption extend over large areas and can travel thousands of kilometers from the source volcano, disrupting air traffic and posing a significant hazard to air travel. Volcanic ash transport and dispersion models like the PUFF model simulate the ash transport and dispersion. An important input parameter for such simulations are wind fields. They represent one of the major sources for uncertainties in ash transport and dispersion simulations. Ensemble methods are considered to be an effective way to estimate the probability density function of future states of the atmosphere by addressing uncertainties present in initial conditions and in model approximations. To generate localized wind ensemble we are using the Weather Research and Forecast (WRF) model with various initial conditions. We examine the spatial variability of the wind fields as well as their uncertainty by using two methods to simulate uncertainty on initial conditions. First method was developed by National Centers for Environmental Prediction (NCEP) and it is based on breeding vectors [2], while the second method was proposed by [1] and uses a distribution of the initial conditions to describe the confidence in the knowledge of the initial state of the atmosphere. PUFF runs are performed with the above wind fields for the eruption of Eyjafjallajokull, Iceland which had a peak ash emission in the period 15-20 April 2010.. A variety of model outputs are compiled, including snapshots of airborne-ash concentration (relative to the number of particles released at the start of the simulation) and particle location color-coded by height which shows the sensitivity of these outputs to wind fields. [1] E. Constantinescu, V. Zavala, M. Rocklin, S. Lee, and M. Anitescu. A com- putational framework for uncertainty quantification and stochastic optimiza- tion in unit commitment with wind power generation. IEEE Transactions on Power Systems, 2010. [2] Z. Toth and E

  9. Langevin equation model of dispersion in the convective boundary layer

    SciTech Connect

    Nasstrom, J S

    1998-08-01

    This dissertation presents the development and evaluation of a Lagrangian stochastic model of vertical dispersion of trace material in the convective boundary layer (CBL). This model is based on a Langevin equation of motion for a fluid particle, and assumes the fluid vertical velocity probability distribution is skewed and spatially homogeneous. This approach can account for the effect of large-scale, long-lived turbulent structures and skewed vertical velocity distributions found in the CBL. The form of the Langevin equation used has a linear (in velocity) deterministic acceleration and a skewed randomacceleration. For the case of homogeneous fluid velocity statistics, this ""linear-skewed" Langevin equation can be integrated explicitly, resulting in a relatively efficient numerical simulation method. It is shown that this approach is more efficient than an alternative using a "nonlinear-Gaussian" Langevin equation (with a nonlinear deterministic acceleration and a Gaussian random acceleration) assuming homogeneous turbulence, and much more efficient than alternative approaches using Langevin equation models assuming inhomogeneous turbulence. "Reflection" boundary conditions for selecting a new velocity for a particle that encounters a boundary at the top or bottom of the CBL were investigated. These include one method using the standard assumption that the magnitudes of the particle incident and reflected velocities are positively correlated, and two alternatives in which the magnitudes of these velocities are negatively correlated and uncorrelated. The constraint that spatial and velocity distributions of a well-mixed tracer must be the same as those of the fluid, was used to develop the Langevin equation models and the reflection boundary conditions. The two Langevin equation models and three reflection methods were successfully tested using cases for which exact, analytic statistical properties of particle velocity and position are known, including well

  10. A capture-recapture model of amphidromous fish dispersal.

    PubMed

    Smith, W E; Kwak, T J

    2014-04-01

    Adult movement scale was quantified for two tropical Caribbean diadromous fishes, bigmouth sleeper Gobiomorus dormitor and mountain mullet Agonostomus monticola, using passive integrated transponders (PITs) and radio-telemetry. Large numbers of fishes were tagged in Río Mameyes, Puerto Rico, U.S.A., with PITs and monitored at three fixed locations over a 2·5 year period to estimate transition probabilities between upper and lower elevations and survival probabilities with a multistate Cormack-Jolly-Seber model. A sub-set of fishes were tagged with radio-transmitters and tracked at weekly intervals to estimate fine-scale dispersal. Changes in spatial and temporal distributions of tagged fishes indicated that neither G. dormitor nor A. monticola moved into the lowest, estuarine reaches of Río Mameyes during two consecutive reproductive periods, thus demonstrating that both species follow an amphidromous, rather than catadromous, migratory strategy. Further, both species were relatively sedentary, with restricted linear ranges. While substantial dispersal of these species occurs at the larval stage during recruitment to fresh water, the results indicate minimal dispersal in spawning adults. Successful conservation of diadromous fauna on tropical islands requires management at both broad basin and localized spatial scales. PMID:24673127

  11. A capture-recapture model of amphidromous fish dispersal.

    PubMed

    Smith, W E; Kwak, T J

    2014-04-01

    Adult movement scale was quantified for two tropical Caribbean diadromous fishes, bigmouth sleeper Gobiomorus dormitor and mountain mullet Agonostomus monticola, using passive integrated transponders (PITs) and radio-telemetry. Large numbers of fishes were tagged in Río Mameyes, Puerto Rico, U.S.A., with PITs and monitored at three fixed locations over a 2·5 year period to estimate transition probabilities between upper and lower elevations and survival probabilities with a multistate Cormack-Jolly-Seber model. A sub-set of fishes were tagged with radio-transmitters and tracked at weekly intervals to estimate fine-scale dispersal. Changes in spatial and temporal distributions of tagged fishes indicated that neither G. dormitor nor A. monticola moved into the lowest, estuarine reaches of Río Mameyes during two consecutive reproductive periods, thus demonstrating that both species follow an amphidromous, rather than catadromous, migratory strategy. Further, both species were relatively sedentary, with restricted linear ranges. While substantial dispersal of these species occurs at the larval stage during recruitment to fresh water, the results indicate minimal dispersal in spawning adults. Successful conservation of diadromous fauna on tropical islands requires management at both broad basin and localized spatial scales.

  12. Applying Dispersive Changes to Lagrangian Particles in Groundwater Transport Models

    USGS Publications Warehouse

    Konikow, L.F.

    2010-01-01

    Method-of-characteristics groundwater transport models require that changes in concentrations computed within an Eulerian framework to account for dispersion be transferred to moving particles used to simulate advective transport. A new algorithm was developed to accomplish this transfer between nodal values and advecting particles more precisely and realistically compared to currently used methods. The new method scales the changes and adjustments of particle concentrations relative to limiting bounds of concentration values determined from the population of adjacent nodal values. The method precludes unrealistic undershoot or overshoot for concentrations of individual particles. In the new method, if dispersion causes cell concentrations to decrease during a time step, those particles in the cell having the highest concentration will decrease the most, and those with the lowest concentration will decrease the least. The converse is true if dispersion is causing concentrations to increase. Furthermore, if the initial concentration on a particle is outside the range of the adjacent nodal values, it will automatically be adjusted in the direction of the acceptable range of values. The new method is inherently mass conservative. ?? US Government 2010.

  13. Applying dispersive changes to Lagrangian particles in groundwater transport models

    USGS Publications Warehouse

    Konikow, Leonard F.

    2010-01-01

    Method-of-characteristics groundwater transport models require that changes in concentrations computed within an Eulerian framework to account for dispersion be transferred to moving particles used to simulate advective transport. A new algorithm was developed to accomplish this transfer between nodal values and advecting particles more precisely and realistically compared to currently used methods. The new method scales the changes and adjustments of particle concentrations relative to limiting bounds of concentration values determined from the population of adjacent nodal values. The method precludes unrealistic undershoot or overshoot for concentrations of individual particles. In the new method, if dispersion causes cell concentrations to decrease during a time step, those particles in the cell having the highest concentration will decrease the most, and those with the lowest concentration will decrease the least. The converse is true if dispersion is causing concentrations to increase. Furthermore, if the initial concentration on a particle is outside the range of the adjacent nodal values, it will automatically be adjusted in the direction of the acceptable range of values. The new method is inherently mass conservative.

  14. A capture-recapture model of amphidromous fish dispersal

    USGS Publications Warehouse

    Smith, W.; Kwak, Thomas J.

    2014-01-01

    Adult movement scale was quantified for two tropical Caribbean diadromous fishes, bigmouth sleeper Gobiomorus dormitor and mountain mullet Agonostomus monticola, using passive integrated transponders (PITs) and radio-telemetry. Large numbers of fishes were tagged in Rio Mameyes, Puerto Rico, U.S.A., with PITs and monitored at three fixed locations over a 2-5 year period to estimate transition probabilities between upper and lower elevations and survival probabilities with a multistate Cormack-Jolly-Seber model. A sub-set of fishes were tagged with radio-transmitters and tracked at weekly intervals to estimate fine-scale dispersal. Changes in spatial and temporal distributions of tagged fishes indicated that neither G. dormitor nor A. monticola moved into the lowest, estuarine reaches of Rio Mameyes during two consecutive reproductive periods, thus demonstrating that both species follow an amphidromous, rather than catadromous, migratory strategy. Further, both species were relatively sedentary, with restricted linear ranges. While substantial dispersal of these species occurs at the larval stage during recruitment to fresh water, the results indicate minimal dispersal in spawning adults. Successful conservation of diadromous fauna on tropical islands requires management at both broad basin and localized spatial scales.

  15. DUSTRAN 1.0 User’s Guide: A GIS-Based Atmospheric Dust Dispersion Modeling System

    SciTech Connect

    Allwine, K Jerry; Rutz, Frederick C.; Shaw, William J.; Rishel, Jeremy P.; Fritz, Brad G.; Chapman, Elaine G.; Hoopes, Bonnie L.; Seiple, Timothy E.

    2006-09-22

    The U.S. Department of Energy’s Pacific Northwest National Laboratory just completed a multi-year project to develop a fully tested and documented atmospheric dispersion modeling system (DUST TRANsport or DUSTRAN) to assist the U.S. Department of Defense in addressing particulate air quality issues at military training and testing ranges. This manual documents the DUSTRAN modeling system and includes installation instructions, a user’s guide, and detailed example tutorials.

  16. Parallelisation of the Lagrangian atmospheric dispersion model NAME

    NASA Astrophysics Data System (ADS)

    Müller, Eike H.; Ford, Rupert; Hort, Matthew C.; Huggett, Lois; Riley, Graham; Thomson, David J.

    2013-12-01

    The NAME Atmospheric Dispersion Model is a Lagrangian particle model used by the Met Office to predict the propagation and spread of pollutants in the atmosphere. The model is routinely used in emergency response applications, where it is important to obtain results as quickly as possible. This requirement for a short runtime and the increase in core number of commonly available CPUs, such as the Intel Xeon series, has motivated the parallelisation of NAME in the OPENMP shared memory framework. In this work we describe the implementation of this parallelisation strategy in NAME and discuss the performance of the model for different setups. Due to the independence of the model particles, the parallelisation of the main compute intensive loops is relatively straightforward. The random number generator for modelling sub-grid scale turbulent motion needs to be adapted to ensure that different particles use independent sets of random numbers. We find that on Intel Xeon X5680 CPUs the model shows very good strong scaling up to 12 cores in a realistic emergency response application for predicting the dispersion of volcanic ash in the North Atlantic airspace. We implemented a mechanism for asynchronous reading of meteorological data from disk and demonstrate how this can reduce the runtime if disk access plays a significant role in a model run. To explore the performance on different chip architectures we also ported the part of the code which is used for calculating the gamma dose from a cloud of radioactive particles to a graphics processing unit (GPU) using CUDA-C. We were able to demonstrate a significant speedup of around one order of magnitude relative to the serial CPU version.

  17. Modeling tidal exchange and dispersion in Boston Harbor

    USGS Publications Warehouse

    Signell, Richard P.; Butman, Bradford

    1992-01-01

    Tidal dispersion and the horizontal exchange of water between Boston Harbor and the surrounding ocean are examined with a high-resolution (200 m) depth-averaged numerical model. The strongly varying bathymetry and coastline geometry of the harbor generate complex spatial patterns in the modeled tidal currents which are verified by shipboard acoustic Doppler surveys. Lagrangian exchange experiments demonstrate that tidal currents rapidly exchange and mix material near the inlets of the harbor due to asymmetry in the ebb/flood response. This tidal mixing zone extends roughly a tidal excursion from the inlets and plays an important role in the overall flushing of the harbor. Because the tides can only efficiently mix material in this limited region, however, harbor flushing must be considered a two step process: rapid exchange in the tidal mixing zone, followed by flushing of the tidal mixing zone by nontidal residual currents. Estimates of embayment flushing based on tidal calculations alone therefore can significantly overestimate the flushing time that would be expected under typical environmental conditions. Particle-release simulations from point sources also demonstrate that while the tides efficiently exchange material in the vicinity of the inlets, the exact nature of dispersion from point sources is extremely sensitive to the timing and location of the release, and the distribution of particles is streaky and patchlike. This suggests that high-resolution modeling of dispersion from point sources in these regions must be performed explicitly and cannot be parameterized as a plume with Gaussian-spreading in a larger scale flow field.

  18. Modeling monthly mean air temperature for Brazil

    NASA Astrophysics Data System (ADS)

    Alvares, Clayton Alcarde; Stape, José Luiz; Sentelhas, Paulo Cesar; de Moraes Gonçalves, José Leonardo

    2013-08-01

    Air temperature is one of the main weather variables influencing agriculture around the world. Its availability, however, is a concern, mainly in Brazil where the weather stations are more concentrated on the coastal regions of the country. Therefore, the present study had as an objective to develop models for estimating monthly and annual mean air temperature for the Brazilian territory using multiple regression and geographic information system techniques. Temperature data from 2,400 stations distributed across the Brazilian territory were used, 1,800 to develop the equations and 600 for validating them, as well as their geographical coordinates and altitude as independent variables for the models. A total of 39 models were developed, relating the dependent variables maximum, mean, and minimum air temperatures (monthly and annual) to the independent variables latitude, longitude, altitude, and their combinations. All regression models were statistically significant ( α ≤ 0.01). The monthly and annual temperature models presented determination coefficients between 0.54 and 0.96. We obtained an overall spatial correlation higher than 0.9 between the models proposed and the 16 major models already published for some Brazilian regions, considering a total of 3.67 × 108 pixels evaluated. Our national temperature models are recommended to predict air temperature in all Brazilian territories.

  19. Modeling of dispersion of heavy gases. [Executive summary

    SciTech Connect

    Knox, J.B.

    1982-07-01

    The phenomenology and/or the evolution of a heavy gas spill are considered from the early times of release to when it is diluted below a prescribed level of toxicity or lower flamability limit (LFL). To the extent the processes contributing to this phenomenology are known, they are described. From this discussion, salient processes emerge whose quantification leads to the structuring of models for heavy gas dispersion. Matters dealt with in this executive summary will be covered in more detail in the full presentation.

  20. CFD model simulation of LPG dispersion in urban areas

    NASA Astrophysics Data System (ADS)

    Pontiggia, Marco; Landucci, Gabriele; Busini, Valentina; Derudi, Marco; Alba, Mario; Scaioni, Marco; Bonvicini, Sarah; Cozzani, Valerio; Rota, Renato

    2011-08-01

    There is an increasing concern related to the releases of industrial hazardous materials (either toxic or flammable) due to terrorist attacks or accidental events in congested industrial or urban areas. In particular, a reliable estimation of the hazardous cloud footprint as a function of time is required to assist emergency response decision and planning as a primary element of any Decision Support System. Among the various hazardous materials, the hazard due to the road and rail transportation of liquefied petroleum gas (LPG) is well known since large quantities of LPG are commercialized and the rail or road transportation patterns are often close to downtown areas. Since it is well known that the widely-used dispersion models do not account for the effects of any obstacle like buildings, tanks, railcars, or trees, in this paper a CFD model has been applied to simulate the reported consequences of a recent major accident involving an LPG railcar rupture in a congested urban area (Viareggio town, in Italy), showing both the large influence of the obstacles on LPG dispersion as well as the potentials of CFD models to foresee such an influence.

  1. Modeling of the dispersion of depleted uranium aerosol.

    PubMed

    Mitsakou, C; Eleftheriadis, K; Housiadas, C; Lazaridis, M

    2003-04-01

    Depleted uranium is a low-cost radioactive material that, in addition to other applications, is used by the military in kinetic energy weapons against armored vehicles. During the Gulf and Balkan conflicts concern has been raised about the potential health hazards arising from the toxic and radioactive material released. The aerosol produced during impact and combustion of depleted uranium munitions can potentially contaminate wide areas around the impact sites or can be inhaled by civilians and military personnel. Attempts to estimate the extent and magnitude of the dispersion were until now performed by complex modeling tools employing unclear assumptions and input parameters of high uncertainty. An analytical puff model accommodating diffusion with simultaneous deposition is developed, which can provide a reasonable estimation of the dispersion of the released depleted uranium aerosol. Furthermore, the period of the exposure for a given point downwind from the release can be estimated (as opposed to when using a plume model). The main result is that the depleted uranium mass is deposited very close to the release point. The deposition flux at a couple of kilometers from the release point is more than one order of magnitude lower than the one a few meters near the release point. The effects due to uncertainties in the key input variables are addressed. The most influential parameters are found to be atmospheric stability, height of release, and wind speed, whereas aerosol size distribution is less significant. The output from the analytical model developed was tested against the numerical model RPM-AERO. Results display satisfactory agreement between the two models.

  2. Essays on pricing dynamics, price dispersion, and nested logit modelling

    NASA Astrophysics Data System (ADS)

    Verlinda, Jeremy Alan

    The body of this dissertation comprises three standalone essays, presented in three respective chapters. Chapter One explores the possibility that local market power contributes to the asymmetric relationship observed between wholesale costs and retail prices in gasoline markets. I exploit an original data set of weekly gas station prices in Southern California from September 2002 to May 2003, and take advantage of highly detailed station and local market-level characteristics to determine the extent to which spatial differentiation influences price-response asymmetry. I find that brand identity, proximity to rival stations, bundling and advertising, operation type, and local market features and demographics each influence a station's predicted asymmetric relationship between prices and wholesale costs. Chapter Two extends the existing literature on the effect of market structure on price dispersion in airline fares by modeling the effect at the disaggregate ticket level. Whereas past studies rely on aggregate measures of price dispersion such as the Gini coefficient or the standard deviation of fares, this paper estimates the entire empirical distribution of airline fares and documents how the shape of the distribution is determined by market structure. Specifically, I find that monopoly markets favor a wider distribution of fares with more mass in the tails while duopoly and competitive markets exhibit a tighter fare distribution. These findings indicate that the dispersion of airline fares may result from the efforts of airlines to practice second-degree price discrimination. Chapter Three adopts a Bayesian approach to the problem of tree structure specification in nested logit modelling, which requires a heavy computational burden in calculating marginal likelihoods. I compare two different techniques for estimating marginal likelihoods: (1) the Laplace approximation, and (2) reversible jump MCMC. I apply the techniques to both a simulated and a travel mode

  3. Using advanced dispersion models and mobile monitoring to characterize spatial patterns of ultrafine particles in an urban area

    NASA Astrophysics Data System (ADS)

    Zwack, Leonard M.; Hanna, Steven R.; Spengler, John D.; Levy, Jonathan I.

    2011-09-01

    In urban settings with elevated bridges, buildings, and other complex terrain, the relationship between traffic and air pollution can be highly variable and difficult to accurately characterize. Atmospheric dispersion models are often used in this context, but incorporating background concentrations and characterizing emissions at high spatiotemporal resolution is challenging, especially for ultrafine particles (UFPs). Ambient pollutant monitoring can characterize this relationship, especially when using continuous real-time monitoring. However, it is challenging to quantify local source contributions over background or to characterize spatial patterns across a neighborhood. The goal of this study is to evaluate contributions of traffic to neighborhood-scale air pollution using a combination of regression models derived from mobile UFP monitoring observations collected in Brooklyn, NY and outputs from the Quick Urban & Industrial Complex (QUIC) model. QUIC is a dispersion model that can explicitly take into account the three-dimensional shapes of buildings. The monitoring-based regression model characterized concentration gradients from a major elevated roadway, controlling for real-time traffic volume, meteorological variables, and other local sources. QUIC was applied to simulate dispersion from this same major roadway. The relative concentration decreases with distance from the roadway estimated by the monitoring-based regression model after removal of background and by QUIC were similar. Horizontal contour plots with both models demonstrated non-uniform patterns related to building configuration and source heights. We used the best-fit relationship between the monitoring-based regression model after removal of background and the QUIC outputs ( R2 = 0.80) to estimate a UFP emissions factor of 5.7 × 10 14 particles/vehicle-km, which was relatively consistent across key model assumptions. Our joint applications of novel techniques for analyzing mobile monitoring

  4. Sensitivity of numerical dispersion modeling to explosive source parameters

    SciTech Connect

    Baskett, R.L. ); Cederwall, R.T. )

    1991-02-13

    The calculation of downwind concentrations from non-traditional sources, such as explosions, provides unique challenges to dispersion models. The US Department of Energy has assigned the Atmospheric Release Advisory Capability (ARAC) at the Lawrence Livermore National Laboratory (LLNL) the task of estimating the impact of accidental radiological releases to the atmosphere anywhere in the world. Our experience includes responses to over 25 incidents in the past 16 years, and about 150 exercises a year. Examples of responses to explosive accidents include the 1980 Titan 2 missile fuel explosion near Damascus, Arkansas and the hydrogen gas explosion in the 1986 Chernobyl nuclear power plant accident. Based on judgment and experience, we frequently estimate the source geometry and the amount of toxic material aerosolized as well as its particle size distribution. To expedite our real-time response, we developed some automated algorithms and default assumptions about several potential sources. It is useful to know how well these algorithms perform against real-world measurements and how sensitive our dispersion model is to the potential range of input values. In this paper we present the algorithms we use to simulate explosive events, compare these methods with limited field data measurements, and analyze their sensitivity to input parameters. 14 refs., 7 figs., 2 tabs.

  5. Explosive particle soil surface dispersion model for detonated military munitions.

    PubMed

    Hathaway, John E; Rishel, Jeremy P; Walsh, Marianne E; Walsh, Michael R; Taylor, Susan

    2015-07-01

    The accumulation of high explosive mass residue from the detonation of military munitions on training ranges is of environmental concern because of its potential to contaminate the soil, surface water, and groundwater. The US Department of Defense wants to quantify, understand, and remediate high explosive mass residue loadings that might be observed on active firing ranges. Previously, efforts using various sampling methods and techniques have resulted in limited success, due in part to the complicated dispersion pattern of the explosive particle residues upon detonation. In our efforts to simulate particle dispersal for high- and low-order explosions on hypothetical firing ranges, we use experimental particle data from detonations of munitions from a 155-mm howitzer, which are common military munitions. The mass loadings resulting from these simulations provide a previously unattained level of detail to quantify the explosive residue source-term for use in soil and water transport models. In addition, the resulting particle placements can be used to test, validate, and optimize particle sampling methods and statistical models as applied to firing ranges. Although the presented results are for a hypothetical 155-mm howitzer firing range, the method can be used for other munition types once the explosive particle characteristics are known.

  6. Backward fractional advection dispersion model for contaminant source prediction

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Meerschaert, Mark M.; Neupauer, Roseanna M.

    2016-04-01

    The forward Fractional Advection Dispersion Equation (FADE) provides a useful model for non-Fickian transport in heterogeneous porous media. The space FADE captures the long leading tail, skewness, and fast spreading typically seen in concentration profiles from field data. This paper develops the corresponding backward FADE model, to identify source location and release time. The backward method is developed from the theory of inverse problems, and then explained from a stochastic point of view. The resultant backward FADE differs significantly from the traditional backward Advection Dispersion Equation (ADE) because the fractional derivative is not self-adjoint and the probability density function for backward locations is highly skewed. Finally, the method is validated using tracer data from a well-known field experiment, where the peak of the backward FADE curve predicts source release time, while the median or a range of percentiles can be used to determine the most likely source location for the observed plume. The backward ADE cannot reliably identify the source in this application, since the forward ADE does not provide an adequate fit to the concentration data.

  7. A Lagrangian stochastic model of surf zone drifter dispersion

    NASA Astrophysics Data System (ADS)

    Spydell, Matthew S.; Feddersen, Falk

    2012-03-01

    Drifter-derived cross-shore and alongshore surf zone diffusivities were previously estimated on an alongshore uniform beach over 1000 s for five Huntington Beach, California, 2006 (HB06) experiment release days. The cross-shore diffusivity Kx had a nonmonotonic time dependence, potentially due to the shoreline or to weaker diffusivity seaward of the surf zone. The alongshore diffusivities Ky were qualitatively consistent with shear dispersion but differed from the classic Taylor laminar theory. Here, modeled and analytic diffusivities for the five release days are derived from a Lagrangian stochastic model (LSM) that uses the drifter-derived bulk (cross-shore averaged) velocity variance and cross-shore-dependent mean alongshore current. The LSM modeled and analytic cross-shore diffusivities are nonmonotonic due to the shoreline and strongly suggest that the observed cross-shore diffusivity is shoreline affected. The LSM typically reproduce well the observed Kx with Lagrangian time scale between 75 and 200 s, consistent with surf zone eddy time scales. HB06 drifter trajectories were too short to observe the analytic long-time Kx limit, and weaker diffusivity seaward of the surf zone may be important at longer times (>1000 s). On all release days, the LSM model and analytic alongshore diffusivity reproduce well the observed Ky with alongshore Lagrangian time scales between 95 and 155 s. The isolated shear-induced diffusivity is very well represented by an analytic theory which incorporates a nonzero Lagrangian time scale. Many of the stochastic model parameters can be specified a priori with reasonable assumptions to predict surf zone dispersion of an initial value problem pollution spill.

  8. Asymmetric Dispersal Can Maintain Larval Polymorphism: A Model Motivated by Streblospio benedicti

    PubMed Central

    Zakas, Christina; Hall, David W.

    2012-01-01

    Polymorphism in traits affecting dispersal occurs in a diverse variety of taxa. Typically, the maintenance of a dispersal polymorphism is attributed to environmental heterogeneity where parental bet-hedging can be favored. There are, however, examples of dispersal polymorphisms that occur across similar environments. For example, the estuarine polychaete Streblospio benedicti has a highly heritable offspring dimorphism that affects larval dispersal potential. We use analytical models of dispersal to determine the conditions necessary for a stable dispersal polymorphism to exist. We show that in asexual haploids, sexual haploids, and in sexual diploids in the absence of overdominance, asymmetric dispersal is required in order to maintain a dispersal polymorphism when patches do not vary in intrinsic quality. Our study adds an additional factor, dispersal asymmetry, to the short list of mechanisms that can maintain polymorphism in nature. The region of the parameter space in which polymorphism is possible is limited, suggesting why dispersal polymorphisms within species are rare. PMID:22576818

  9. Modeling population exposures to outdoor sources of hazardous air pollutants.

    PubMed

    Ozkaynak, Halûk; Palma, Ted; Touma, Jawad S; Thurman, James

    2008-01-01

    Accurate assessment of human exposures is an important part of environmental health effects research. However, most air pollution epidemiology studies rely upon imperfect surrogates of personal exposures, such as information based on available central-site outdoor concentration monitoring or modeling data. In this paper, we examine the limitations of using outdoor concentration predictions instead of modeled personal exposures for over 30 gaseous and particulate hazardous air pollutants (HAPs) in the US. The analysis uses the results from an air quality dispersion model (the ASPEN or Assessment System for Population Exposure Nationwide model) and an inhalation exposure model (the HAPEM or Hazardous Air Pollutant Exposure Model, Version 5), applied by the US. Environmental protection Agency during the 1999 National Air Toxic Assessment (NATA) in the US. Our results show that the total predicted chronic exposure concentrations of outdoor HAPs from all sources are lower than the modeled ambient concentrations by about 20% on average for most gaseous HAPs and by about 60% on average for most particulate HAPs (mainly, due to the exclusion of indoor sources from our modeling analysis and lower infiltration of particles indoors). On the other hand, the HAPEM/ASPEN concentration ratio averages for onroad mobile source exposures were found to be greater than 1 (around 1.20) for most mobile-source related HAPs (e.g. 1, 3-butadiene, acetaldehyde, benzene, formaldehyde) reflecting the importance of near-roadway and commuting environments on personal exposures to HAPs. The distribution of the ratios of personal to ambient concentrations was found to be skewed for a number of the VOCs and reactive HAPs associated with major source emissions, indicating the importance of personal mobility factors. We conclude that the increase in personal exposures from the corresponding predicted ambient levels tends to occur near locations where there are either major emission sources of HAPs

  10. Uncertainty in Regional Air Quality Modeling

    NASA Astrophysics Data System (ADS)

    Digar, Antara

    Effective pollution mitigation is the key to successful air quality management. Although states invest millions of dollars to predict future air quality, the regulatory modeling and analysis process to inform pollution control strategy remains uncertain. Traditionally deterministic ‘bright-line’ tests are applied to evaluate the sufficiency of a control strategy to attain an air quality standard. A critical part of regulatory attainment demonstration is the prediction of future pollutant levels using photochemical air quality models. However, because models are uncertain, they yield a false sense of precision that pollutant response to emission controls is perfectly known and may eventually mislead the selection of control policies. These uncertainties in turn affect the health impact assessment of air pollution control strategies. This thesis explores beyond the conventional practice of deterministic attainment demonstration and presents novel approaches to yield probabilistic representations of pollutant response to emission controls by accounting for uncertainties in regional air quality planning. Computationally-efficient methods are developed and validated to characterize uncertainty in the prediction of secondary pollutant (ozone and particulate matter) sensitivities to precursor emissions in the presence of uncertainties in model assumptions and input parameters. We also introduce impact factors that enable identification of model inputs and scenarios that strongly influence pollutant concentrations and sensitivity to precursor emissions. We demonstrate how these probabilistic approaches could be applied to determine the likelihood that any control measure will yield regulatory attainment, or could be extended to evaluate probabilistic health benefits of emission controls, considering uncertainties in both air quality models and epidemiological concentration-response relationships. Finally, ground-level observations for pollutant (ozone) and precursor

  11. Atmospheric dispersion modeling: Challenges of the Fukushima Daiichi response

    SciTech Connect

    Sugiyama, Gayle; Nasstrom, John; Pobanz, Brenda; Foster, Kevin; Simpson, Matthew; Vogt, Phil; Aluzzi, Fernando; Homann, Steve

    2012-05-01

    In this research, the U.S. Department of Energy’s (DOE) National Atmospheric Release Advisory Center (NARAC) provided a wide range of predictions and analyses as part of the response to the Fukushima Daiichi Nuclear Power Plant accident including: daily Japanese weather forecasts and atmospheric transport predictions to inform planning for field monitoring operations and to provide U.S. government agencies with ongoing situational awareness of meteorological conditions; estimates of possible dose in Japan based on hypothetical U.S. Nuclear Regulatory Commission scenarios of potential radionuclide releases to support protective action planning for U.S. citizens; predictions of possible plume arrival times and dose levels at U.S. locations; and source estimation and plume model refinement based on atmospheric dispersion modeling and available monitoring data.

  12. Simulation and modeling for military air operations

    NASA Astrophysics Data System (ADS)

    Kreichauf, Ruth D.; Bedros, Saad; Ateskan, Yusuf; Hespanha, Joao; Kizilocak, Hakan

    2001-09-01

    The Joint Forces Air Component Commander (JFACC) in military air operations controls the allocation of resources (wings, squadrons, air defense systems, AWACS) to different geographical locations in the theater of operations. The JFACC mission is to define a sequence of tasks for the aerospace systems at each location, and providing feedback control for the execution of these tasks in the presence of uncertainties and a hostile enemy. Honeywell Labs has been developing an innovative method for control of military air operations. The novel model predictive control (MPC) method extends the models and optimization algorithms utilized in traditional model predictive control systems. The enhancements include a tasking controller and, in a joint effort with USC, a probabilistic threat/survival map indicating high threat regions for aircraft and suggesting optimal routes to avoid these regions. A simulation/modeling environment using object-oriented methodologies has been developed to serve as an aide to demonstrate the value of MPC and facilitate its development. The simulation/modeling environment is based on an open architecture that enables the integration, evaluation, and implementation of different control approaches. The simulation offers a graphical user interface displaying the battlefield, the control performance, and a probability map displaying high threat regions. This paper describes the features of the different control approaches and their integration into the simulation environment.

  13. 75 FR 53371 - Liquefied Natural Gas Facilities: Obtaining Approval of Alternative Vapor-Gas Dispersion Models

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-31

    ... Pipeline and Hazardous Materials Safety Administration Liquefied Natural Gas Facilities: Obtaining Approval of Alternative Vapor-Gas Dispersion Models AGENCY: Pipeline and Hazardous Materials Safety... provides guidance on the requirements for obtaining approval of alternative vapor-gas dispersion...

  14. Modeling distribution of dispersal distances in male white-tailed deer

    USGS Publications Warehouse

    Diefenbach, D.R.; Long, E.S.; Rosenberry, C.S.; Wallingford, B.D.; Smith, D.R.

    2008-01-01

    Dispersal distances and their distribution pattern are important to understanding such phenomena as disease spread and gene flow, but oftentimes dispersal characteristics are modeled as a fixed trait for a given species. We found that dispersal distributions differ for spring and autumn dispersals of yearling male white-tailed deer (Odocoileus virginianus) but that combined data can be adequately modeled based on a log-normal distribution. We modeled distribution of dispersal distances from 3 distinct populations in Pennsylvania and Maryland, USA, based on the relationship between percent forest cover and mean dispersal distance and the relationship between mean and variance of dispersal distances. Our results suggest distributions of distances for dispersing yearling male white-tailed deer can be modeled by simply measuring a readily obtained landscape metric, percent forest cover, which could be used to create generalized spatially explicit disease or gene.

  15. A long-range dispersion model evaluation study with Chernobyl data

    NASA Astrophysics Data System (ADS)

    Desiato, Franco

    The Chernobyl accident outlined the need for improving the capability of the real-time estimate of long-range atmospheric dispersion and provided an opportunity to test numerical models against the radiological data collected over Europe. The APOLLO model, which became recently operational in the Accidental Release Impact Evaluation System (ARIES) at ENEA-DISP, has been tested based on meteorological and radiological data made available during and after the joint IAEA/CEC/WMO Atmospheric Transport Model Evaluation Study (ATMES). In the present paper a model evaluation and a sensitivity test with respect to the mixing depth and horizontal diffusion parameterizations are presented. The quantities involved in the validation are Cs-137 air concentrations paired in space and time, time-integrated concentrations and time of arrival of the cloud at each locality. The results show that the treatment of space and time variability of the mixing depth improves the model estimates, and that a linear trend in time of the horizontal dispersion coefficient gives better results than a square-root trend in terms of scattering between observed and computed values.

  16. Web-Based Toxic Gas Dispersion Model for Shuttle Launch Operations

    NASA Technical Reports Server (NTRS)

    Bardina, Jorge; Thirumalainambi, Rajkumar

    2004-01-01

    During the launch of the Space Shuttle vehicle, the burning of liquid hydrogen fuel with liquid oxygen at extreme high temperatures inside the three space shuttle main engines, and the burning of the solid propellant mixture of ammonium perchlorate oxidizer, aluminum fuel, iron oxide catalyst, polymer binder, and epoxy curing agent in the two solid rocket boosters result in the formation of a large cloud of hot, buoyant toxic exhaust gases near the ground level which subsequently rises and entrains into ambient air until the temperature and density of the cloud reaches an approximate equilibrium with ambient conditions. In this paper, toxic gas dispersion for various gases are simulated over the web for varying environmental conditions which is provided by rawinsonde data. The model simulates chemical concentration at ground level up to 10 miles (1 KM grids) in downrange up to an hour after launch. The ambient concentration of the gas dispersion and the deposition of toxic particles are used as inputs for a human health risk assessment model. The advantage of the present model is the accessibility and dissemination of model results to other NASA centers over the web. The model can be remotely operated and various scenarios can be analyzed.

  17. Modelling of air pollution on a military airfield

    NASA Astrophysics Data System (ADS)

    Brzozowski, Krzysztof; Kotlarz, Wojciech

    The paper presents a numerical study of exhaust emission and pollutant dispersion of carbon monoxide on a military airfield. Investigations have been carried out for typical conditions of aircraft usage in the Polish Air Force Academy in Dęblin. Two different types of aircraft have been taken into account. One of them is an MI-2 helicopter, the second is a TS-11 plane. Both are used in military pilot education in Poland. Exhaust emission of CO from those aircrafts has been obtained in an experiment carried out on an engine test stand. CO concentrations have been calculated for different meteorological conditions (averaged from 5 years observations) and selected conditions of aircraft use. The finite volume method has been used to discretise the equation describing the process of pollutant dispersion. In addition, the two-cycle decomposition method has been employed to solve the set of ordinary differential equations of the first order obtained after discretisation of the advection-diffusion equation. A meteorological pre-processor, based on relationships resulting from the Monin-Obukhov theory, is used to define eddy diffusivity and the profile of air speed in the lower layer of the atmosphere. In the paper, the computer model and calculated average concentration of CO in the Dęblin airfield during typical flights are presented. The goal of the computational analysis is to predict CO pollution level in the workplace of aircraft service personnel.

  18. Modeling Potential Tephra Dispersal at Yucca Mountain, Nevada

    NASA Astrophysics Data System (ADS)

    Hooper, D.; Franklin, N.; Adams, N.; Basu, D.

    2006-12-01

    Quaternary basaltic volcanoes exist within 20 km [12 mi] of the potential radioactive waste repository at Yucca Mountain, Nevada, and future basaltic volcanism at the repository is considered a low-probability, potentially high-consequence event. If radioactive waste was entrained in the conduit of a future volcanic event, tephra and waste could be transported in the resulting eruption plume. During an eruption, basaltic tephra would be dispersed primarily according to the height of the eruption column, particle-size distribution, and structure of the winds aloft. Following an eruption, contaminated tephra-fall deposits would be affected by surface redistribution processes. The Center for Nuclear Waste Regulatory Analyses developed the computer code TEPHRA to calculate atmospheric dispersion and subsequent deposition of tephra and spent nuclear fuel from a potential eruption at Yucca Mountain and to help prepare the U.S. Nuclear Regulatory Commission to review a potential U.S. Department of Energy license application. The TEPHRA transport code uses the Suzuki model to simulate the thermo-fluid dynamics of atmospheric tephra dispersion. TEPHRA models the transport of airborne pyroclasts based on particle diffusion from an eruption column, horizontal diffusion of particles by atmospheric and plume turbulence, horizontal advection by atmospheric circulation, and particle settling by gravity. More recently, TEPHRA was modified to calculate potential tephra deposit distributions using stratified wind fields based on upper atmosphere data from the Nevada Test Site. Wind data are binned into 1-km [0.62-mi]-high intervals with coupled distributions of wind speed and direction produced for each interval. Using this stratified wind field and discretization with respect to height, TEPHRA calculates particle fall and lateral displacement for each interval. This implementation permits modeling of split wind fields. We use a parallel version of the code to calculate expected

  19. A simulation study of dispersion of air borne radionuclides from a nuclear power plant under a hypothetical accidental scenario at a tropical coastal site

    NASA Astrophysics Data System (ADS)

    Srinivas, C. V.; Venkatesan, R.

    Meteorological condition in coastal regions is diurnally variable and spatially heterogeneous due to complex topography, land-sea interface, etc. A wide range of dispersion conditions is possible on a given day in the coastal regions. In case of inadvertent accidental situations, though unlikely, it would be necessary to examine the potentially severe case among different dynamically occurring local atmospheric conditions for dispersion and its range of impact around a nuclear power plant for safety analysis. In this context, dispersion of air borne radioactive effluents during a hypothetical accidental scenario from a proposed prototype fast breeder reactor (PFBR) at an Indian coastal site, Kalpakkam, is simulated using a 3-D meso-scale atmospheric model MM5 and a random walk particle dispersion model FLEXPART. A simulation carried out for a typical summer day predicted the development of land-sea breeze circulation and thermal internal boundary layer (TIBL) formation, which have been confirmed by meteorological observations. Analysis of dose distribution shows that the maximum dose for releases from a 100 m stack occurs at two places within 4 km distance during sea breeze/TIBL fumigation hours. Maximum dose also occurred during nighttime stable conditions. Results indicate that, on the day of present study, the highest concentrations occurred during periods of TIBL fumigation rather than during stable atmospheric conditions. Further, the area of impact (plume width at the surface) spreads up to a down wind distance of 4 km during fumigation condition. Simulation over a range of 25 km has shown turning of plume at the incidence of sea breeze circulation and two different dispersion patterns across the sea breeze front. These results are significant in comparison to the expected pattern shown by Gaussian plume model used for routine analysis.

  20. TESTING U.S. EPA'S ISCST -VERSION 3 MODEL ON DIOXINS: A COMPARISON OF PREDICTED AND OBSERVED AIR AND SOIL CONCENTRATIONS

    EPA Science Inventory

    The central purpose of our study was to examine the performance of the United States Environmental Protection Agency's (EPA) nonreactive Gaussian air quality dispersion model, the Industrial Source Complex Short Term Model (ISCST3) Version 98226, in predicting polychlorinated dib...

  1. Evaluation of US and UK Models in Simulating the Impact of Barriers on Near-Road Air Quality

    EPA Science Inventory

    The possibility that roadside noise barriers can act to mitigate traffic-related air pollution exposures for people living and working near major roadways is being considered in the context of public health protection. Air pollution dispersion models that can accurately simulate ...

  2. MESOILT2, a Lagrangian trajectory climatological dispersion model

    SciTech Connect

    Ramsdell, J.V. Jr.; Burk, K.W.

    1991-03-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation dose that individuals could have received as a result of emissions from nuclear operations at the Hanford Site. An independent Technical Steering Panel (TSP) directs the project, which is conducted by the Pacific Northwest Laboratory (PNL). The TSP directed PNL to demonstrate that its recommended approach for dose reconstruction is technically feasible and practical. This demonstration was Phase 1 of the project. This report is specifically concerned with the approach that PNL recommends for dealing with the atmospheric pathway. The TSP established a model domain for the atmospheric pathway for Phase 1 that includes 10 counties in Washington and Oregon and covers several thousand square miles. It is unrealistic to assume that atmospheric models which estimate transport and diffusion based on the meteorological conditions near the point of release of material at the time of release are adequate for a region this large. As a result, PNL recommended use of a Lagrangian trajectory, puff dispersion model for the Phase I study. This report describes the MESOILT2 computer code and the atmospheric transport, diffusion, deposition, and depletion models used in Phase I. The contents of the report include a technical description of the models, a user's guide for the codes, and descriptions of the individual code elements. 53 refs., 17 figs., 5 tabs.

  3. Intraurban-scale dispersion modelling of particulate matter concentrations: Applications for exposure estimates in cohort studies

    NASA Astrophysics Data System (ADS)

    Gaines Wilson, J.; Zawar-Reza, Peyman

    Epidemiological studies relating air pollution to health effects often estimate personal exposure to particulate matter using values from a central ambient monitoring site as a proxy. However, when there is a significant amount of variation in particulate concentrations across an urban area, the use of central sites may result in exposure misclassification that induces error in long-term cohort epidemiological study designs. When spatially dense monitoring data are not available, advanced dispersion models may offer one solution to the problem of accurately characterising intraurban particulate concentrations across an area. This study presents results from an intraurban assessment of The Air Pollution Model (TAPM)—an Integrated Meteorological-Emission (IME) Model. Particles less than 10 μm in aerodynamic diameter (PM 10) were modelled and compared with a dense intraurban monitoring network in Christchurch, New Zealand, a city with high winter levels of particulate air pollution. Despite the area's high intraurban concentration variability, and meteorological and topographical complexity, the model performed satisfactorily overall, with mean observed and modelled concentrations of 42.9 and 43.4 μg m -3, respectively, while the mean Index of Agreement (IOA) between individual sites was 0.60 and the mean systematic RMSE was 16.9 μg m -3. Most of the systematic error in the model was due to coarse spatial resolution of the local emission inventory and complex meteorology attributed to localised convergence of drainage flows, especially on the western and southern fringes of the urban area. Given further improvements in site-specific estimates within urban areas, IME models such as TAPM may be a viable alternative to central sites for estimating personal exposure in longer-term (monthly or annual) cohort epidemiological studies.

  4. Air freight demand models: An overview

    NASA Technical Reports Server (NTRS)

    Dajani, J. S.; Bernstein, G. W.

    1978-01-01

    A survey is presented of some of the approaches which have been considered in freight demand estimation. The few existing continuous time computer simulations of aviation systems are reviewed, with a view toward the assessment of this approach as a tool for structuring air freight studies and for relating the different components of the air freight system. The variety of available data types and sources, without which the calibration, validation and the testing of both modal split and simulation models would be impossible are also reviewed.

  5. The Sensitivity of Atmospheric Dispersion Calculations in Near-field Applications: Modeling of the Full Scale RDD Experiments with Operational Models in Canada, Part I.

    PubMed

    Lebel, Luke; Bourgouin, Pierre; Chouhan, Sohan; Ek, Nils; Korolevych, Volodymyr; Malo, Alain; Bensimon, Dov; Erhardt, Lorne

    2016-05-01

    Three radiological dispersal devices were detonated in 2012 under controlled conditions at Defence Research and Development Canada's Experimental Proving Grounds in Suffield, Alberta. Each device comprised a 35-GBq source of (140)La. The dataset obtained is used in this study to assess the MLCD, ADDAM, and RIMPUFF atmospheric dispersion models. As part one of a two-part study, this paper focuses on examining the capabilities of the above three models and evaluating how well their predictions of air concentration and ground deposition match observations from the full-scale RDD experiments.

  6. Proceedings of the first SRL model validation workshop. [Comparison and evaluation of atmospheric dispersion models using data for Kr-85

    SciTech Connect

    Buckner, M.R.

    1981-10-01

    The Clean Air Act and its amendments have added importance to knowing the accuracy of mathematical models used to assess transport and diffusion of environmental pollutants. These models are the link between air quality standards and emissions. To test the accuracy of a number of these models, a Model Validation Workshop was held. The meteorological, source-term, and Kr-85 concentration data bases for emissions from the separations areas of the Savannah River Plant during 1975 through 1977 were used to compare calculations from various atmospheric dispersion models. The results of statistical evaluation of the models show a degradation in the ability to predict pollutant concentrations as the time span over which the calculations are made is reduced. Forecasts for annual time periods were reasonably accurate. Weighted-average squared correlation coefficients (R/sup 2/) were 0.74 for annual, 0.28 for monthly, 0.21 for weekly, and 0.18 for twice-daily predictions. Model performance varied within each of these four categories; however, the results indicate that the more complex, three-dimensional models provide only marginal increases in accuracy. The increased costs of running these codes is not warranted for long-term releases or for conditions of relatively simple terrain and meteorology. The overriding factor in the calculational accuracy is the accurate description of the wind field. Further improvements of the numerical accuracy of the complex models is not nearly as important as accurate calculations of the meteorological transport conditions.

  7. Near Real{time Data Assimilation for the HYSPLIT Aerosol Dispersion Model

    NASA Astrophysics Data System (ADS)

    Kalpakis, K.; Yang, S.; Yesha, Y.

    2010-12-01

    Konstantinos Kalpakis, Shiming Yang, and Yaacov Yesha Department of Computer Science and Electrical Engineering University of Maryland Baltimore County 1000 Hilltop Circle, Baltimore, MD, U.S.A. {kalpakis, shiming1, yayeshag}@csee.umbc.edu ABSTRACT We are working on an IBM-funded project seeking to develop a prototype system for real-time plume dispersion and fire and smoke detection and monitoring. Our prototype system utilizes HYSPLIT and observation data from various sources. HYSPLIT is a model developed by NOAA's Air Resources Laboratory for forecasting aerosol trajectories, dispersion, and concentration from emission sources. It is used extensively by NOAA to routinely provide a number of data products. We develop a data assimilation system for assimilating observational data into the forecasting model in order to improve its forecasting accuracy. Our system is based on the Local Ensemble Transform Kalman Filter (LETKF) algorithm and it is computationally efficient. We evaluate our data assimilation system with real in-situ observational data, and find that our system improves upon HYSPLIT's forecast by reducing the normalized mean squared error and the bias. We are also experimenting with assimilating MODIS data with HYSPLIT model forecasts. To this end, we extrapolate ground concentrations from MODIS Aerosol Optical Depth (AOD) data. Our extrapolation approach relies on spatially localized linear regressions of aerosol concentrations from ground stations in the Air Quality System (AQS) network and MODIS AOD data. We expect that assimilating the extrapolated concentrations leads into further improvements of HYSPLIT forecasts. Furthermore, we are investigating using additional sources of in-situ and remotely sensed observations, such as GOES AOD 30-minute data, and UAV data from the Ikhana AMS fire missions. These sources provide higher spatial resolution and more frequent temporal coverage. Moreover, GOES and UAVs provide near-real time data which should be

  8. AIR QUALITY MODELING OF AMMONIA: A REGIONAL MODELING PERSPECTIVE

    EPA Science Inventory

    The talk will address the status of modeling of ammonia from a regional modeling perspective, yet the observations and comments should have general applicability. The air quality modeling system components that are central to modeling ammonia will be noted and a perspective on ...

  9. Comparison of RIMPUFF, HYSPLIT, ADMS atmospheric dispersion model outputs, using emergency response procedures, with (85)Kr measurements made in the vicinity of nuclear reprocessing plant.

    PubMed

    Connan, Olivier; Smith, Kilian; Organo, Catherine; Solier, Luc; Maro, Denis; Hébert, Didier

    2013-10-01

    The Institut de Radioprotection et de Sureté Nucléaire (IRSN) performed a series of (85)Kr air sampling campaigns at mesoscale distances (18-50 km) from the AREVA NC La Hague nuclear reprocessing plant (North West France) between 2007 and 2009. The samples were collected in order to test and optimise a technique to measure low krypton-85 ((85)Kr) air concentrations and to investigate the performance of three atmospheric dispersion models (RIMPUFF, HYSPLIT, and ADMS), This paper presents the (85)Kr air concentrations measured at three sampling locations which varied from 2 to 8000 Bq m(-3), along with the (85)Kr air concentrations output by the dispersion models. The dispersion models made reasonable estimates of the mean concentrations of (85)Kr field measurements during steady wind conditions. In contrast, the models failed to accurately predict peaks in (85)Kr air concentration during periods of rapid and large changes in wind speed and/or wind direction. At distances where we made the comparisons (18-50 km), in all cases, the models underestimated the air concentration activities.

  10. Final Technical Report: Development of the DUSTRAN GIS-Based Complex Terrain Model for Atmospheric Dust Dispersion

    SciTech Connect

    Allwine, K Jerry; Rutz, Frederick C.; Shaw, William J.; Rishel, Jeremy P.; Fritz, Brad G.; Chapman, Elaine G.; Hoopes, Bonnie L.; Seiple, Timothy E.

    2007-05-01

    Activities at U.S. Department of Defense (DoD) training and testing ranges can be sources of dust in local and regional airsheds governed by air-quality regulations. The U.S. Department of Energy’s Pacific Northwest National Laboratory just completed a multi-year project to develop a fully tested and documented atmospheric dispersion modeling system (DUST TRANsport or DUSTRAN) to assist the DoD in addressing particulate air-quality issues at military training and testing ranges.

  11. Lithospheric Thickness Modeled from Long Period Surface Wave Dispersion

    SciTech Connect

    Pasyanos, M E

    2008-05-15

    The behavior of surface waves at long periods is indicative of subcrustal velocity structure. Using recently published dispersion models, we invert surface wave group velocities for lithospheric structure, including lithospheric thickness, over much of the Eastern Hemisphere, encompassing Eurasia, Africa, and the Indian Ocean. Thicker lithosphere under Precambrian shields and platforms are clearly observed, not only under the large cratons (West Africa, Congo, Baltic, Russia, Siberia, India), but also under smaller blocks like the Tarim Basin and Yangtze craton. In contrast, it is found that remobilized Precambrian structures like the Saharan Shield and Sino-Korean Paraplatform do not have well-established lithospheric keels. The thinnest lithospheric thickness is found under oceanic and continental rifts, as well as along convergence zones. We compare our results to thermal models of continental lithosphere, lithospheric cooling models of oceanic lithosphere, lithosphere-asthenosphere boundary (LAB) estimates from S-wave receiver functions, and velocity variations of global tomography models. In addition to comparing results for the broad region, we examine in detail the regions of Central Africa, Siberia, and Tibet. While there are clear differences in the various estimates, overall the results are generally consistent. Inconsistencies between the estimates may be due to a variety of reasons including lateral and depth resolution differences and the comparison of what may be different lithospheric features.

  12. Urban scale air quality modelling using detailed traffic emissions estimates

    NASA Astrophysics Data System (ADS)

    Borrego, C.; Amorim, J. H.; Tchepel, O.; Dias, D.; Rafael, S.; Sá, E.; Pimentel, C.; Fontes, T.; Fernandes, P.; Pereira, S. R.; Bandeira, J. M.; Coelho, M. C.

    2016-04-01

    The atmospheric dispersion of NOx and PM10 was simulated with a second generation Gaussian model over a medium-size south-European city. Microscopic traffic models calibrated with GPS data were used to derive typical driving cycles for each road link, while instantaneous emissions were estimated applying a combined Vehicle Specific Power/Co-operative Programme for Monitoring and Evaluation of the Long-range Transmission of Air Pollutants in Europe (VSP/EMEP) methodology. Site-specific background concentrations were estimated using time series analysis and a low-pass filter applied to local observations. Air quality modelling results are compared against measurements at two locations for a 1 week period. 78% of the results are within a factor of two of the observations for 1-h average concentrations, increasing to 94% for daily averages. Correlation significantly improves when background is added, with an average of 0.89 for the 24 h record. The results highlight the potential of detailed traffic and instantaneous exhaust emissions estimates, together with filtered urban background, to provide accurate input data to Gaussian models applied at the urban scale.

  13. Modeling the fallout from stabilized nuclear clouds using the HYSPLIT atmospheric dispersion model.

    PubMed

    Rolph, G D; Ngan, F; Draxler, R R

    2014-10-01

    The Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model, developed by the National Oceanic and Atmospheric Administration's Air Resources Laboratory, has been configured to simulate the dispersion and deposition of nuclear materials from a surface-based nuclear detonation using publicly available information on nuclear explosions. Much of the information was obtained from "The Effects of Nuclear Weapons" by Glasstone and Dolan (1977). The model was evaluated against the measurements of nuclear fallout from six nuclear tests conducted between 1951 and 1957 at the Nevada Test Site using the global NCEP/NCAR Reanalysis Project (NNRP) and the Weather Research and Forecasting (WRF) meteorological data as input. The model was able to reproduce the general direction and deposition patterns using the coarse NNRP data with Figure of Merit in Space (FMS - the percent overlap between predicted and measured deposition patterns) scores in excess of 50% for four of six simulations for the smallest dose rate contour, with FMS scores declining for higher dose rate contours. When WRF meteorological data were used the FMS scores were 5-20% higher in five of the six simulations, especially at the higher dose rate contours. The one WRF simulation where the scores declined slightly (10-30%) was also the best scoring simulation when using the NNRP data. When compared with measurements of dose rate and time of arrival from the Town Data Base (Thompson et al., 1994), similar results were found with the WRF simulations providing better results for four of six simulations. The overall result was that the different plume simulations using WRF data had more consistent performance than the plume simulations using NNRP data fields. PMID:24878719

  14. Modeling the fallout from stabilized nuclear clouds using the HYSPLIT atmospheric dispersion model.

    PubMed

    Rolph, G D; Ngan, F; Draxler, R R

    2014-10-01

    The Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model, developed by the National Oceanic and Atmospheric Administration's Air Resources Laboratory, has been configured to simulate the dispersion and deposition of nuclear materials from a surface-based nuclear detonation using publicly available information on nuclear explosions. Much of the information was obtained from "The Effects of Nuclear Weapons" by Glasstone and Dolan (1977). The model was evaluated against the measurements of nuclear fallout from six nuclear tests conducted between 1951 and 1957 at the Nevada Test Site using the global NCEP/NCAR Reanalysis Project (NNRP) and the Weather Research and Forecasting (WRF) meteorological data as input. The model was able to reproduce the general direction and deposition patterns using the coarse NNRP data with Figure of Merit in Space (FMS - the percent overlap between predicted and measured deposition patterns) scores in excess of 50% for four of six simulations for the smallest dose rate contour, with FMS scores declining for higher dose rate contours. When WRF meteorological data were used the FMS scores were 5-20% higher in five of the six simulations, especially at the higher dose rate contours. The one WRF simulation where the scores declined slightly (10-30%) was also the best scoring simulation when using the NNRP data. When compared with measurements of dose rate and time of arrival from the Town Data Base (Thompson et al., 1994), similar results were found with the WRF simulations providing better results for four of six simulations. The overall result was that the different plume simulations using WRF data had more consistent performance than the plume simulations using NNRP data fields.

  15. A Study of the Effects of Different Urban Wind Models on Dispersion Patterns Using Joint Urban 2003 Data

    SciTech Connect

    Gowardhan, A A; Brown, M J

    2012-02-21

    The Quick Urban & Industrial Complex (QUIC) Dispersion Modeling System has been developed to rapidly compute the transport and dispersion of toxic agent releases in the vicinity of buildings. It is composed of a wind solver, an 'urbanized' Lagrangian random-walk model, and a graphical user interface. QUIC has two different wind models: (a) The QUIC-URB wind solver, an empirically-based diagnostic wind model and (b) The QUIC-CFD (RANS) solver, based on the 3D Reynolds-Averaged Navier-Stokes (RANS) equations. In this paper, we discuss the effect of different wind models on dispersion patterns in dense built-up areas. The model-computed wind from the two urban wind models- QUIC-URB and QUIC-CFD are used to drive the dispersion model. The concentration fields are then compared to measurements from the Oklahoma City Joint Urban 2003 field experiment. QUIC produces high-resolution 3-D mean wind and concentration fields around buildings, in addition to deposition on the ground and building surfaces. It has options for different release types, including point, moving point, line, area, and volumetric sources, as well as dense gas, explosive buoyant rise, multi-particle size, bioslurry, and two-phase releases. Other features include indoor infiltration, a pressure solver, outer grid simulations, vegetative canopies, and population exposure calculations. It has been used for biological agent sensor siting in cities, vulnerability assessments for heavier-than-air chemical releases at industrial facilities, and clean-up assessments for radiological dispersal device (RDD) releases in cities (e.g., see Linger et al., 2005; Brown, 2006a, b). QUIC has also been used for dust transport studies (Bowker et al., 2007a) and for the impact of highway sound barriers on the transport and dispersion of vehicle emissions (Bowker et al., 2007b).

  16. DESCRIPTION OF ATMOSPHERIC TRANSPORT PROCESSES IN EULERIAN AIR QUALITY MODELS

    EPA Science Inventory

    Key differences among many types of air quality models are the way atmospheric advection and turbulent diffusion processes are treated. Gaussian models use analytical solutions of the advection-diffusion equations. Lagrangian models use a hypothetical air parcel concept effecti...

  17. A Model Evaluation of Long-Distance Dispersal of Boll Weevils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Boll weevil eradication programs have progressed toward eradication within each zone, but concerns remain about the possibility of weevil dispersal between eradication zones. In this study, the HYSPLIT atmospheric dispersion model was used to simulate daily wind-aided dispersal of weevils from the ...

  18. Uncertainty propagation analysis applied to volcanic ash dispersal at Mt. Etna by using a Lagrangian model

    NASA Astrophysics Data System (ADS)

    de'Michieli Vitturi, Mattia; Pardini, Federica; Spanu, Antonio; Neri, Augusto; Vittoria Salvetti, Maria

    2015-04-01

    variance of the grain size distribution at various distances from the source, both in air and on the ground. In particular, results highlighted the strong reduction of the uncertainty ranges of the mean and variance of the grain-size distribution with increasing distance from source and the significant control of particle sphericity on the dispersal process. References M de'Michieli Vitturi, A Neri, T Esposti Ongaro, S Lo Savio, and E Boschi. Lagrangian modeling of large volcanic particles: Application to Vulcanian explosions. Journal of Geophysical Research: Solid Earth (1978-2012), 115(B8), 2010.

  19. A review and evaluation of intraurban air pollution exposure models.

    PubMed

    Jerrett, Michael; Arain, Altaf; Kanaroglou, Pavlos; Beckerman, Bernardo; Potoglou, Dimitri; Sahsuvaroglu, Talar; Morrison, Jason; Giovis, Chris

    2005-03-01

    The development of models to assess air pollution exposures within cities for assignment to subjects in health studies has been identified as a priority area for future research. This paper reviews models for assessing intraurban exposure under six classes, including: (i) proximity-based assessments, (ii) statistical interpolation, (iii) land use regression models, (iv) line dispersion models, (v) integrated emission-meteorological models, and (vi) hybrid models combining personal or household exposure monitoring with one of the preceding methods. We enrich this review of the modelling procedures and results with applied examples from Hamilton, Canada. In addition, we qualitatively evaluate the models based on key criteria important to health effects assessment research. Hybrid models appear well suited to overcoming the problem of achieving population representative samples while understanding the role of exposure variation at the individual level. Remote sensing and activity-space analysis will complement refinements in pre-existing methods, and with expected advances, the field of exposure assessment may help to reduce scientific uncertainties that now impede policy intervention aimed at protecting public health.

  20. Modelling the dispersion of particle numbers in five European cities

    NASA Astrophysics Data System (ADS)

    Kukkonen, J.; Karl, M.; Keuken, M. P.; Denier van der Gon, H. A. C.; Denby, B. R.; Singh, V.; Douros, J.; Manders, A.; Samaras, Z.; Moussiopoulos, N.; Jonkers, S.; Aarnio, M.; Karppinen, A.; Kangas, L.; Lützenkirchen, S.; Petäjä, T.; Vouitsis, I.; Sokhi, R. S.

    2016-02-01

    We present an overview of the modelling of particle number concentrations (PNCs) in five major European cities, namely Helsinki, Oslo, London, Rotterdam, and Athens, in 2008. Novel emission inventories of particle numbers have been compiled both on urban and European scales. We used atmospheric dispersion modelling for PNCs in the five target cities and on a European scale, and evaluated the predicted results against available measured concentrations. In all the target cities, the concentrations of particle numbers (PNs) were mostly influenced by the emissions originating from local vehicular traffic. The influence of shipping and harbours was also significant for Helsinki, Oslo, Rotterdam, and Athens, but not for London. The influence of the aviation emissions in Athens was also notable. The regional background concentrations were clearly lower than the contributions originating from urban sources in Helsinki, Oslo, and Athens. The regional background was also lower than urban contributions in traffic environments in London, but higher or approximately equal to urban contributions in Rotterdam. It was numerically evaluated that the influence of coagulation and dry deposition on the predicted PNCs was substantial for the urban background in Oslo. The predicted and measured annual average PNCs in four cities agreed within approximately ≤ 26 % (measured as fractional biases), except for one traffic station in London. This study indicates that it is feasible to model PNCs in major cities within a reasonable accuracy, although major challenges remain in the evaluation of both the emissions and atmospheric transformation of PNCs.

  1. NARAC Dispersion Model Product Integration With RadResponder

    SciTech Connect

    Aluzzi, Fernando

    2015-09-30

    Work on enhanced cooperation and interoperability of Nuclear Incident Response Teams (NIRT) is a joint effort between DHS/FEMA, DOE/NNSA and EPA. One such effort was the integration between the RadResponder Network, a resource sponsored by FEMA for the management of radiological data during an emergency, and the National Atmospheric Advisory Center (NARAC), a DOE/NNSA modeling resource whose predictions are used to aid radiological emergency preparedness and response. Working together under a FEMA-sponsored project these two radiological response assets developed a capability to read and display plume model prediction results from the NARAC computer system in the RadResponder software tool. As a result of this effort, RadResponder users have been provided with NARAC modeling predictions of contamination areas, radiological dose levels, and protective action areas (e.g., areas warranting worker protection or sheltering/evacuation) to help guide protective action decisions and field monitoring surveys, and gain key situation awareness following a radiological/nuclear accident or incident (e.g., nuclear power plant accident, radiological dispersal device incident, or improvised nuclear detonation incident). This document describes the details of this integration effort.

  2. Analysis of the effects of meteorology on aircraft exhaust dispersion and deposition using a Lagrangian particle model.

    PubMed

    Pecorari, Eliana; Mantovani, Alice; Franceschini, Chiara; Bassano, Davide; Palmeri, Luca; Rampazzo, Giancarlo

    2016-01-15

    The risk of air quality degradation is of considerable concern particularly for those airports that are located near urban areas. The ability to quantitatively predict the effects of air pollutants originated by airport operations is important for assessing air quality and the related impacts on human health. Current emission regulations have focused on local air quality in the proximity of airports. However, an integrated study should consider the effects of meteorological events, at both regional and local level, that can affect the dispersion and the deposition of exhausts. Rigorous scientific studies and extensive experimental data could contribute to the analysis of the impacts of airports expansion plans. This paper is focused on the analysis of the effects of meteorology on aircraft emission for the Marco Polo Airport in Venice. This is the most important international airport in the eastern part of the Po' Valley, one of the most polluted area in Europe. Air pollution is exacerbated by meteorology that is a combination of large and local scale effects that do not allow significant dispersion. Moreover, the airport is located near Venice, a city of noteworthy cultural and architectural relevance, and nearby the lagoon that hosts several areas of outstanding ecological importance at European level (Natura 2000 sites). Dispersion and deposit of the main aircraft exhausts (NOx, HC and CO) have been evaluated by using a Lagrangian particle model. Spatial and temporal aircraft exhaust dispersion has been analyzed for LTO cycle. Aircraft taxiing resulted to be the most impacting aircraft operation especially for the airport working area and its surroundings, however occasionally peaks may be observed even at high altitudes when cruise mode starts. Mixing height can affect concentrations more significantly than the concentrations in the exhausts themselves. An increase of HC and CO concentrations (15-50%) has been observed during specific meteorological events.

  3. Analysis of the effects of meteorology on aircraft exhaust dispersion and deposition using a Lagrangian particle model.

    PubMed

    Pecorari, Eliana; Mantovani, Alice; Franceschini, Chiara; Bassano, Davide; Palmeri, Luca; Rampazzo, Giancarlo

    2016-01-15

    The risk of air quality degradation is of considerable concern particularly for those airports that are located near urban areas. The ability to quantitatively predict the effects of air pollutants originated by airport operations is important for assessing air quality and the related impacts on human health. Current emission regulations have focused on local air quality in the proximity of airports. However, an integrated study should consider the effects of meteorological events, at both regional and local level, that can affect the dispersion and the deposition of exhausts. Rigorous scientific studies and extensive experimental data could contribute to the analysis of the impacts of airports expansion plans. This paper is focused on the analysis of the effects of meteorology on aircraft emission for the Marco Polo Airport in Venice. This is the most important international airport in the eastern part of the Po' Valley, one of the most polluted area in Europe. Air pollution is exacerbated by meteorology that is a combination of large and local scale effects that do not allow significant dispersion. Moreover, the airport is located near Venice, a city of noteworthy cultural and architectural relevance, and nearby the lagoon that hosts several areas of outstanding ecological importance at European level (Natura 2000 sites). Dispersion and deposit of the main aircraft exhausts (NOx, HC and CO) have been evaluated by using a Lagrangian particle model. Spatial and temporal aircraft exhaust dispersion has been analyzed for LTO cycle. Aircraft taxiing resulted to be the most impacting aircraft operation especially for the airport working area and its surroundings, however occasionally peaks may be observed even at high altitudes when cruise mode starts. Mixing height can affect concentrations more significantly than the concentrations in the exhausts themselves. An increase of HC and CO concentrations (15-50%) has been observed during specific meteorological events

  4. Using data from an encounter sampler to model fish dispersal

    USGS Publications Warehouse

    Obaza, A.; DeAngelis, D.L.; Trexler, J.C.

    2011-01-01

    A method to estimate speed of free-ranging fishes using a passive sampling device is described and illustrated with data from the Everglades, U.S.A. Catch per unit effort (CPUE) from minnow traps embedded in drift fences was treated as an encounter rate and used to estimate speed, when combined with an independent estimate of density obtained by use of throw traps that enclose 1 m2 of marsh habitat. Underwater video was used to evaluate capture efficiency and species-specific bias of minnow traps and two sampling studies were used to estimate trap saturation and diel-movement patterns; these results were used to optimize sampling and derive correction factors to adjust species-specific encounter rates for bias and capture efficiency. Sailfin mollies Poecilia latipinna displayed a high frequency of escape from traps, whereas eastern mosquitofish Gambusia holbrooki were most likely to avoid a trap once they encountered it; dollar sunfish Lepomis marginatus were least likely to avoid the trap once they encountered it or to escape once they were captured. Length of sampling and time of day affected CPUE; fishes generally had a very low retention rate over a 24 h sample time and only the Everglades pygmy sunfish Elassoma evergladei were commonly captured at night. Dispersal speed of fishes in the Florida Everglades, U.S.A., was shown to vary seasonally and among species, ranging from 0.05 to 0.15 m s-1 for small poeciliids and fundulids to 0.1 to 1.8 m s-1 for L. marginatus. Speed was generally highest late in the wet season and lowest in the dry season, possibly tied to dispersal behaviours linked to finding and remaining in dry-season refuges. These speed estimates can be used to estimate the diffusive movement rate, which is commonly employed in spatial ecological models.

  5. On the use of numerical modelling for near-field pollutant dispersion in urban environments--A review.

    PubMed

    Lateb, M; Meroney, R N; Yataghene, M; Fellouah, H; Saleh, F; Boufadel, M C

    2016-01-01

    This article deals with the state-of-the-art of experimental and numerical studies carried out regarding air pollutant dispersion in urban environments. Since the simulation of the dispersion field around buildings depends strongly on the correct simulation of the wind-flow structure, the studies performed during the past years on the wind-flow field around buildings are reviewed. This work also identifies errors that can produce poor results when numerically modelling wind flow and dispersion fields around buildings in urban environments. Finally, particular attention is paid to the practical guidelines developed by researchers to establish a common methodology for verification and validation of numerical simulations and/or to assist and support the users for a better implementation of the computational fluid dynamics (CFD) approach. PMID:26282585

  6. Predictions of plume dispersion in complex terrain: Eulerian versus Lagrangian models

    NASA Astrophysics Data System (ADS)

    Nguyen, K. C.; Noonan, J. A.; Galbally, I. E.; Physick, W. L.

    Simulations of dispersion from an elevated point source in complex terrain and non-stationary flow are presented using the Lagrangian atmospheric dispersion model (LADM, Physick et al., 1992, Air Pollution Modeling and its Applications, Vol. IX, pp. 725-729, Plenum Press, New York; 1994 CSIRO Division of Atmospheric Research Technical Paper No. 24) and the Eulerian grid-based model (CALGRID, Yamartino et al., 1989, CALGRID: a mesoscale photochemical grid model, Vol. I; model formation document, Report, Sacarmento, California). Both models use the same predicted windfields. We find that • the different algorithms used for release of pollutants into the model domains lead to initial concentrations at the release height in LADM one-third higher than in CALGRID. • The CALGRID plume spreads laterally over a larger region than does the LADM plume due to the finite-difference approach of CALGRID. The pollutant mass in the extra volume occupied by the CALGRID plume is less than 10% of that released. • The essentials of morning fumigation are simulated more realistically under the Lagrangian approach. In LADM the elevated plume is mixed down to the ground rapidly, causing a sharp increase in ground-level concentrations (glc), whereas, in CALGRID glc increase more gradually over a few hours. • The use of hourly averaged windfields in CALGRID compared to 10 min windfields in LADM leads to a relative separation of the two modelled plumes of 5 km at a distance of roughly 6 km downwind from the sources at 1500 LST. Consequently in complex terrain and non-stationary conditions, the plumes are subjected to different three-dimensional wind regimes. For the particular terrain studied, roughly 3% of the pollutant mass emitted into CALGRID during the day is transported above 3000 m after 1700 LST whereas only 0.8% is transported above this height in LADM. • During the daytime the CALGRID simulation produces maximum glc which are about 40% smaller than those predicted by LADM.

  7. Microscale Obstacle Resolving Air Quality Model Evaluation with the Michelstadt Case

    PubMed Central

    Rakai, Anikó; Kristóf, Gergely

    2013-01-01

    Modelling pollutant dispersion in cities is challenging for air quality models as the urban obstacles have an important effect on the flow field and thus the dispersion. Computational Fluid Dynamics (CFD) models with an additional scalar dispersion transport equation are a possible way to resolve the flowfield in the urban canopy and model dispersion taking into consideration the effect of the buildings explicitly. These models need detailed evaluation with the method of verification and validation to gain confidence in their reliability and use them as a regulatory purpose tool in complex urban geometries. This paper shows the performance of an open source general purpose CFD code, OpenFOAM for a complex urban geometry, Michelstadt, which has both flow field and dispersion measurement data. Continuous release dispersion results are discussed to show the strengths and weaknesses of the modelling approach, focusing on the value of the turbulent Schmidt number, which was found to give best statistical metric results with a value of 0.7. PMID:24027450

  8. Ammonia emissions from an anaerobic digestion plant estimated using atmospheric measurements and dispersion modelling.

    PubMed

    Bell, Michael W; Tang, Y Sim; Dragosits, Ulrike; Flechard, Chris R; Ward, Paul; Braban, Christine F

    2016-10-01

    Anaerobic digestion (AD) is becoming increasingly implemented within organic waste treatment operations. The storage and processing of large volumes of organic wastes through AD has been identified as a significant source of ammonia (NH3) emissions, however the totality of ammonia emissions from an AD plant have not been previously quantified. The emissions from an AD plant processing food waste were estimated through integrating ambient NH3 concentration measurements, atmospheric dispersion modelling, and comparison with published emission factors (EFs). Two dispersion models (ADMS and a backwards Lagrangian stochastic (bLS) model) were applied to calculate emission estimates. The bLS model (WindTrax) was used to back-calculate a total (top-down) emission rate for the AD plant from a point of continuous NH3 measurement downwind from the plant. The back-calculated emission rates were then input to the ADMS forward dispersion model to make predictions of air NH3 concentrations around the site, and evaluated against weekly passive sampler NH3 measurements. As an alternative approach emission rates from individual sources within the plant were initially estimated by applying literature EFs to the available site parameters concerning the chemical composition of waste materials, room air concentrations, ventilation rates, etc. The individual emission rates were input to ADMS and later tuned by fitting the simulated ambient concentrations to the observed (passive sampler) concentration field, which gave an excellent match to measurements after an iterative process. The total emission from the AD plant thus estimated by a bottom-up approach was 16.8±1.8mgs(-1), which was significantly higher than the back-calculated top-down estimate (7.4±0.78mgs(-1)). The bottom-up approach offered a more realistic treatment of the source distribution within the plant area, while the complexity of the site was not ideally suited to the bLS method, thus the bottom-up method is believed

  9. Ammonia emissions from an anaerobic digestion plant estimated using atmospheric measurements and dispersion modelling.

    PubMed

    Bell, Michael W; Tang, Y Sim; Dragosits, Ulrike; Flechard, Chris R; Ward, Paul; Braban, Christine F

    2016-10-01

    Anaerobic digestion (AD) is becoming increasingly implemented within organic waste treatment operations. The storage and processing of large volumes of organic wastes through AD has been identified as a significant source of ammonia (NH3) emissions, however the totality of ammonia emissions from an AD plant have not been previously quantified. The emissions from an AD plant processing food waste were estimated through integrating ambient NH3 concentration measurements, atmospheric dispersion modelling, and comparison with published emission factors (EFs). Two dispersion models (ADMS and a backwards Lagrangian stochastic (bLS) model) were applied to calculate emission estimates. The bLS model (WindTrax) was used to back-calculate a total (top-down) emission rate for the AD plant from a point of continuous NH3 measurement downwind from the plant. The back-calculated emission rates were then input to the ADMS forward dispersion model to make predictions of air NH3 concentrations around the site, and evaluated against weekly passive sampler NH3 measurements. As an alternative approach emission rates from individual sources within the plant were initially estimated by applying literature EFs to the available site parameters concerning the chemical composition of waste materials, room air concentrations, ventilation rates, etc. The individual emission rates were input to ADMS and later tuned by fitting the simulated ambient concentrations to the observed (passive sampler) concentration field, which gave an excellent match to measurements after an iterative process. The total emission from the AD plant thus estimated by a bottom-up approach was 16.8±1.8mgs(-1), which was significantly higher than the back-calculated top-down estimate (7.4±0.78mgs(-1)). The bottom-up approach offered a more realistic treatment of the source distribution within the plant area, while the complexity of the site was not ideally suited to the bLS method, thus the bottom-up method is believed

  10. Detailed source term estimation of the atmospheric release for the Fukushima Daiichi Nuclear Power Station accident by coupling simulations of an atmospheric dispersion model with an improved deposition scheme and oceanic dispersion model

    NASA Astrophysics Data System (ADS)

    Katata, G.; Chino, M.; Kobayashi, T.; Terada, H.; Ota, M.; Nagai, H.; Kajino, M.; Draxler, R.; Hort, M. C.; Malo, A.; Torii, T.; Sanada, Y.

    2015-01-01

    Temporal variations in the amount of radionuclides released into the atmosphere during the Fukushima Daiichi Nuclear Power Station (FNPS1) accident and their atmospheric and marine dispersion are essential to evaluate the environmental impacts and resultant radiological doses to the public. In this paper, we estimate the detailed atmospheric releases during the accident using a reverse estimation method which calculates the release rates of radionuclides by comparing measurements of air concentration of a radionuclide or its dose rate in the environment with the ones calculated by atmospheric and oceanic transport, dispersion and deposition models. The atmospheric and oceanic models used are WSPEEDI-II (Worldwide version of System for Prediction of Environmental Emergency Dose Information) and SEA-GEARN-FDM (Finite difference oceanic dispersion model), both developed by the authors. A sophisticated deposition scheme, which deals with dry and fog-water depositions, cloud condensation nuclei (CCN) activation, and subsequent wet scavenging due to mixed-phase cloud microphysics (in-cloud scavenging) for radioactive iodine gas (I2 and CH3I) and other particles (CsI, Cs, and Te), was incorporated into WSPEEDI-II to improve the surface deposition calculations. The results revealed that the major releases of radionuclides due to the FNPS1 accident occurred in the following periods during March 2011: the afternoon of 12 March due to the wet venting and hydrogen explosion at Unit 1, midnight of 14 March when the SRV (safety relief valve) was opened three times at Unit 2, the morning and night of 15 March, and the morning of 16 March. According to the simulation results, the highest radioactive contamination areas around FNPS1 were created from 15 to 16 March by complicated interactions among rainfall, plume movements, and the temporal variation of release rates. The simulation by WSPEEDI-II using the new source term reproduced the local and regional patterns of cumulative

  11. Simulation of radioactive plume gamma dose over a complex terrain using Lagrangian particle dispersion model.

    PubMed

    Rakesh, P T; Venkatesan, R; Hedde, Thierry; Roubin, Pierre; Baskaran, R; Venkatraman, B

    2015-07-01

    FLEXPART-WRF is a versatile model for the simulation of plume dispersion over a complex terrain in a mesoscale region. This study deals with its application to the dispersion of a hypothetical air borne gaseous radioactivity over a topographically complex nuclear site in southeastern France. A computational method for calculating plume gamma dose to the ground level receptor is introduced in FLEXPART using the point kernel method. Comparison with another similar dose computing code SPEEDI is carried out. In SPEEDI the dose is calculated for specific grid sizes, the lowest available being 250 m, whereas in FLEXPART it is grid independent. Spatial distribution of dose by both the models is analyzed. Due to the ability of FLEXPART to utilize the spatio-temporal variability of meteorological variables as input, particularly the height of the PBL, the simulated dose values were higher than SPEEDI estimates. The FLEXPART-WRF in combination with point kernel dose module gives a more realistic picture of plume gamma dose distribution in a complex terrain, a situation likely under accidental release of radioactivity in a mesoscale range. PMID:25863323

  12. Simulation of radioactive plume gamma dose over a complex terrain using Lagrangian particle dispersion model.

    PubMed

    Rakesh, P T; Venkatesan, R; Hedde, Thierry; Roubin, Pierre; Baskaran, R; Venkatraman, B

    2015-07-01

    FLEXPART-WRF is a versatile model for the simulation of plume dispersion over a complex terrain in a mesoscale region. This study deals with its application to the dispersion of a hypothetical air borne gaseous radioactivity over a topographically complex nuclear site in southeastern France. A computational method for calculating plume gamma dose to the ground level receptor is introduced in FLEXPART using the point kernel method. Comparison with another similar dose computing code SPEEDI is carried out. In SPEEDI the dose is calculated for specific grid sizes, the lowest available being 250 m, whereas in FLEXPART it is grid independent. Spatial distribution of dose by both the models is analyzed. Due to the ability of FLEXPART to utilize the spatio-temporal variability of meteorological variables as input, particularly the height of the PBL, the simulated dose values were higher than SPEEDI estimates. The FLEXPART-WRF in combination with point kernel dose module gives a more realistic picture of plume gamma dose distribution in a complex terrain, a situation likely under accidental release of radioactivity in a mesoscale range.

  13. A CFD-based wind solver for a fast response transport and dispersion model

    SciTech Connect

    Gowardhan, Akshay A; Brown, Michael J; Pardyjak, Eric R; Senocak, Inanc

    2010-01-01

    In many cities, ambient air quality is deteriorating leading to concerns about the health of city inhabitants. In urban areas with narrow streets surrounded by clusters of tall buildings, called street canyons, air pollution from traffic emissions and other sources is difficult to disperse and may accumulate resulting in high pollutant concentrations. For various situations, including the evacuation of populated areas in the event of an accidental or deliberate release of chemical, biological and radiological agents, it is important that models should be developed that produce urban flow fields quickly. For these reasons it has become important to predict the flow field in urban street canyons. Various computational techniques have been used to calculate these flow fields, but these techniques are often computationally intensive. Most fast response models currently in use are at a disadvantage in these cases as they are unable to correlate highly heterogeneous urban structures with the diagnostic parameterizations on which they are based. In this paper, a fast and reasonably accurate computational fluid dynamics (CFD) technique that solves the Navier-Stokes equations for complex urban areas has been developed called QUIC-CFD (Q-CFD). This technique represents an intermediate balance between fast (on the order of minutes for a several block problem) and reasonably accurate solutions. The paper details the solution procedure and validates this model for various simple and complex urban geometries.

  14. Lamb wave dispersion and anisotropy profiling of composite plates via non-contact air-coupled and laser ultrasound

    NASA Astrophysics Data System (ADS)

    Harb, M. S.; Yuan, F. G.

    2015-03-01

    Conventional ultrasound inspection has been a standard non-destructive testing method for providing an in-service evaluation and noninvasive means of probing the interior of a structure. In particular, measurement of the propagation characteristics of Lamb waves allows inspection of plates that are typical components in aerospace industry. A rapid, complete non-contact hybrid approach for excitation and detection of Lamb waves is presented and applied for non-destructive evaluation of composites. An air-coupled transducer (ACT) excites ultrasonic waves on the surface of a composite plate, generating different propagating Lamb wave modes and a laser Doppler vibrometer (LDV) is used to measure the out-of-plane velocity of the plate. This technology, based on direct waveform imaging, focuses on measuring dispersive curves for A0 mode in a composite laminate and its anisotropy. A two-dimensional fast Fourier transform (2D-FFT) is applied to out-of-plane velocity data captured experimentally using LDV to go from the time-spatial domain to frequency-wavenumber domain. The result is a 2D array of amplitudes at discrete frequencies and wavenumbers for A0 mode in a given propagation direction along the composite. The peak values of the curve are then used to construct frequency wavenumber and phase velocity dispersion curves, which are also obtained directly using Snell's law and the incident angle of the excited ultrasonic waves. A high resolution and strong correlation between numerical and experimental results are observed for dispersive curves with Snell's law method in comparison to 2D-FFT method. Dispersion curves as well as velocity curves for the composite plate along different directions of wave propagation are measured. The visual read-out of the dispersion curves at different propagation directions as well as the phase velocity curves provide profiling and measurements of the composite anisotropy. The results proved a high sensitivity of the air-coupled and laser

  15. A comparison between monitoring and dispersion modeling approaches to assess the impact of aviation on concentrations of black carbon and nitrogen oxides at Los Angeles International Airport.

    PubMed

    Penn, Stefani L; Arunachalam, Saravanan; Tripodis, Yorghos; Heiger-Bernays, Wendy; Levy, Jonathan I

    2015-09-15

    Aircraft activity and airport operations can increase combustion-related air pollutant concentrations, but it is difficult to distinguish aviation emissions from traffic and other local sources. Emission inventories are uncertain and dispersion models may not capture aircraft plume complexity; ambient monitoring data require detailed statistical analyses to extract aviation signals. The goal of this study is to compare two modeling approaches including monitoring-based regression models and the EDMS/AERMOD dispersion model, informing improvements and allowing quantitation of aviation impacts on air quality through multi-pollutant sensitivity and multi-monitor fate/transport analyses. Aggregate concentration comparisons are similar, though diurnal patterns show potential weaknesses in near-field dispersion, treatment of overnight conditions, and emission inventory accuracy. PMID:25956147

  16. A comparison between monitoring and dispersion modeling approaches to assess the impact of aviation on concentrations of black carbon and nitrogen oxides at Los Angeles International Airport.

    PubMed

    Penn, Stefani L; Arunachalam, Saravanan; Tripodis, Yorghos; Heiger-Bernays, Wendy; Levy, Jonathan I

    2015-09-15

    Aircraft activity and airport operations can increase combustion-related air pollutant concentrations, but it is difficult to distinguish aviation emissions from traffic and other local sources. Emission inventories are uncertain and dispersion models may not capture aircraft plume complexity; ambient monitoring data require detailed statistical analyses to extract aviation signals. The goal of this study is to compare two modeling approaches including monitoring-based regression models and the EDMS/AERMOD dispersion model, informing improvements and allowing quantitation of aviation impacts on air quality through multi-pollutant sensitivity and multi-monitor fate/transport analyses. Aggregate concentration comparisons are similar, though diurnal patterns show potential weaknesses in near-field dispersion, treatment of overnight conditions, and emission inventory accuracy.

  17. AIR INGRESS ANALYSIS: COMPUTATIONAL FLUID DYNAMIC MODELS

    SciTech Connect

    Chang H. Oh; Eung S. Kim; Richard Schultz; Hans Gougar; David Petti; Hyung S. Kang

    2010-08-01

    The Idaho National Laboratory (INL), under the auspices of the U.S. Department of Energy, is performing research and development that focuses on key phenomena important during potential scenarios that may occur in very high temperature reactors (VHTRs). Phenomena Identification and Ranking Studies to date have ranked an air ingress event, following on the heels of a VHTR depressurization, as important with regard to core safety. Consequently, the development of advanced air ingress-related models and verification and validation data are a very high priority. Following a loss of coolant and system depressurization incident, air will enter the core of the High Temperature Gas Cooled Reactor through the break, possibly causing oxidation of the in-the core and reflector graphite structure. Simple core and plant models indicate that, under certain circumstances, the oxidation may proceed at an elevated rate with additional heat generated from the oxidation reaction itself. Under postulated conditions of fluid flow and temperature, excessive degradation of the lower plenum graphite can lead to a loss of structural support. Excessive oxidation of core graphite can also lead to the release of fission products into the confinement, which could be detrimental to a reactor safety. Computational fluid dynamic model developed in this study will improve our understanding of this phenomenon. This paper presents two-dimensional and three-dimensional CFD results for the quantitative assessment of the air ingress phenomena. A portion of results of the density-driven stratified flow in the inlet pipe will be compared with results of the experimental results.

  18. Parameterizing Urban Canopy Layer transport in an Lagrangian Particle Dispersion Model

    NASA Astrophysics Data System (ADS)

    Stöckl, Stefan; Rotach, Mathias W.

    2016-04-01

    The percentage of people living in urban areas is rising worldwide, crossed 50% in 2007 and is even higher in developed countries. High population density and numerous sources of air pollution in close proximity can lead to health issues. Therefore it is important to understand the nature of urban pollutant dispersion. In the last decades this field has experienced considerable progress, however the influence of large roughness elements is complex and has as of yet not been completely described. Hence, this work studied urban particle dispersion close to source and ground. It used an existing, steady state, three-dimensional Lagrangian particle dispersion model, which includes Roughness Sublayer parameterizations of turbulence and flow. The model is valid for convective and neutral to stable conditions and uses the kernel method for concentration calculation. As most Lagrangian models, its lower boundary is the zero-plane displacement, which means that roughly the lower two-thirds of the mean building height are not included in the model. This missing layer roughly coincides with the Urban Canopy Layer. An earlier work "traps" particles hitting the lower model boundary for a recirculation period, which is calculated under the assumption of a vortex in skimming flow, before "releasing" them again. The authors hypothesize that improving the lower boundary condition by including Urban Canopy Layer transport could improve model predictions. This was tested herein by not only trapping the particles, but also advecting them with a mean, parameterized flow in the Urban Canopy Layer. Now the model calculates the trapping period based on either recirculation due to vortex motion in skimming flow regimes or vertical velocity if no vortex forms, depending on incidence angle of the wind on a randomly chosen street canyon. The influence of this modification, as well as the model's sensitivity to parameterization constants, was investigated. To reach this goal, the model was

  19. Estimating near-road pollutant dispersion: a model inter-comparison

    EPA Science Inventory

    A model inter-comparison study to assess the abilities of steady-state Gaussian dispersion models to capture near-road pollutant dispersion has been carried out with four models (AERMOD, run with both the area-source and volume-source options to represent roadways, CALINE, versio...

  20. Computed tomography and optical remote sensing: Development for the study of indoor air pollutant transport and dispersion

    SciTech Connect

    Drescher, A.C.

    1995-06-01

    This thesis investigates the mixing and dispersion of indoor air pollutants under a variety of conditions using standard experimental methods. It also extensively tests and improves a novel technique for measuring contaminant concentrations that has the potential for more rapid, non-intrusive measurements with higher spatial resolution than previously possible. Experiments conducted in a sealed room support the hypothesis that the mixing time of an instantaneously released tracer gas is inversely proportional to the cube root of the mechanical power transferred to the room air. One table-top and several room-scale experiments are performed to test the concept of employing optical remote sensing (ORS) and computed tomography (CT) to measure steady-state gas concentrations in a horizontal plane. Various remote sensing instruments, scanning geometries and reconstruction algorithms are employed. Reconstructed concentration distributions based on existing iterative CT techniques contain a high degree of unrealistic spatial variability and do not agree well with simultaneously gathered point-sample data.

  1. Lagrangian particle modeling of air pollution transport in southwestern United States

    SciTech Connect

    Uliasz, M.; Stocker, R.A.; Pielke, R.A.

    1994-12-31

    Several modeling techniques of various complexity and accuracy are applied in a numerical modeling study of regional air pollution transport being performed within the Measurement Of Haze And Visual Effect (MOHAVE) project. The goal of this study is to assess the impact of the Mohave Power Project (MPP) and other potential sources of air pollution to specific Class I areas located in the desert southwest United States including the Grand Canyon National Park. The Colorado State University team is performing the daily meteorological and dispersion simulations for a year long study using a nonhydrostatic mesoscale meteorological model; the Regional Atmospheric Modeling System (RAMS) coupled with a Lagrangian particle dispersion (LPD) model. The modeling domain covers the southwestern United States with its extremely complex terrain. Two complementary dispersion modeling techniques: a traditional source-oriented approach and receptor-oriented approach are used to calculate concentration and influence function fields, respectively. All computations are performed on two IBM RISC-6000 workstations dedicated to the project. The goal of this paper is to present our design for daily dispersion simulations with an emphasis on influence function calculations using examples from the winter and summer intensive periods of the MOHAVE project.

  2. Modeling the effects of a solid barrier on pollutant dispersion under various atmospheric stability conditions

    NASA Astrophysics Data System (ADS)

    Steffens, Jonathan T.; Heist, David K.; Perry, Steven G.; Zhang, K. Max

    2013-04-01

    There is a growing need for developing mitigation strategies for near-road air pollution. Roadway design is being considered as one of the potential options. Particularly, it has been suggested that sound barriers, erected to reduce noise, may prove effective at decreasing pollutant concentrations. However, there is still a lack of mechanistic understanding of how solid barriers affect pollutant transport, especially under a variety of meteorological conditions. In this study, we utilized the Comprehensive Turbulent Aerosol Dynamics and Gas Chemistry (CTAG) model to simulate the spatial gradients of SF6 concentrations behind a solid barrier under a variety of atmospheric stability conditions collected during the Near Road Tracer Study (NRTS08). We employed two different CFD models, RANS and LES. A recirculation zone, characterized by strong mixing, forms in the wake of a barrier. It is found that this region is important for accurately predicting pollutant dispersion, but is often insufficiently resolved by the less complex RANS model. The RANS model was found to perform adequately away from the leading edge of the barrier. The LES model, however, performs consistently well at all flow locations. Therefore, the LES model will make a significant improvement compared to the RANS model in regions of strong recirculating flow or edge effects. Our study suggests that advanced simulation tools can potentially provide a variety of numerical experiments that may prove useful for roadway design communities to intelligently design roadways, making effective use of roadside barriers.

  3. Modeling of High-altitude Atmospheric Dispersion Using Climate and Meteorological Forecast Data

    SciTech Connect

    Glascoe, L G; Chin, H S

    2005-03-30

    The overall objective of this study is to provide a demonstration of capability for importing both high altitude meteorological forecast and climatological datasets from NRL into the NARAC modeling system to simulate high altitude atmospheric droplet release and dispersion. The altitude of release for the proposed study is between 60 and 100km altitude. As either standard climatological data (over a period of 40 years) or daily meteorological forecasts can drive the particle dispersion model, we did a limited comparison of simulations with meteorological data and simulations with climatological data. The modeling tools used to address this problem are the National Atmospheric Release Advisory Center (NARAC) modeling system at LLNL which are operationally employed to assist DOE/DHS/DOD emergency response to an atmospheric release of chemical, biological, and radiological contaminants. The interrelation of the various data feeds and codes at NARAC are illustrated in Figure 1. The NARAC scientific models are all verified to both analytic solutions and other codes; the models are validated to field data such as the Prairie Grass study (Barad, 1958). NARAC has multiple real-time meteorological data feeds from the National Weather Service, from the European Center for Medium range Weather Forecasting, from the US Navy, and from the US Air Force. NARAC also keeps a historical archive of meteorological data partially for research purposes. The codes used in this effort were the Atmospheric Data Assimilation and Parameterization Techniques (ADAPT) model (Sugiyama and Chan, 1998) and a development version of the Langrangian Operational Dispersion Integrator (LODI) model (Nasstrom et al., 2000). The use of the NASA GEOS-4 dataset required the use of a development version of the Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS) model (Hodur, 1997; Chin and Glascoe, 2004). The specific goals of this study are the following: (1) Confirm data compatibility of NRL

  4. Characterization and dispersion modeling of odors from a piggery facility.

    PubMed

    Karageorgos, Petros; Latos, Manolis; Mpasiakos, Christos; Chalarakis, Elefterios; Dimitrakakis, Emmanuel; Daskalakis, Charis; Psillakis, Elefteria; Lazaridis, Mihalis; Kalogerakis, Nicolas

    2010-01-01

    Piggeries are known for their nuisance odors, creating problems for workers and nearby residents. Chemical substances that contribute to these odors include sulfurous organic compounds, hydrogen sulfide, phenols and indoles, ammonia, volatile amines, and volatile fatty acids. In this work, daily mean concentrations of ammonia (NH3) and hydrogen sulfide (H2S) were measured by hand-held devices. Measurements were taken in several places within the facility (farrowing to finishing rooms). Hydrogen sulfide concentration was found to be 40 to 50 times higher than the human odor threshold value in the nursery and fattening room, resulting in strong nuisance odors. Ammonia concentrations ranged from 2 to 18 mL m(-3) and also contributed to the total odor nuisance. Emission data from various chambers of the pig farm were used with the dispersion model AERMOD to determine the odor nuisance caused due to the presence of H2S and NH3 to receptors at various distances from the facility. Because just a few seconds of exposure can cause an odor nuisance, a "peak-to-mean" ratio was used to predict the maximum odor concentrations. Several scenarios were examined using the modified AERMOD program, taking into account the complex terrain around the pig farm.

  5. Measuring and modeling the magnetic settling of superparamagnetic nanoparticle dispersions.

    PubMed

    Prigiobbe, Valentina; Ko, Saebom; Huh, Chun; Bryant, Steven L

    2015-06-01

    In this paper, we present settling experiments and mathematical modeling to study the magnetic separation of superparamagnetic iron-oxide nanoparticles (SPIONs) from a brine. The experiments were performed using SPIONs suspensions of concentration between 3 and 202g/L dispersed in water and separated from the liquid under the effect of a permanent magnet. A 1D model was developed in the framework of the sedimentation theory with a conservation law for SPIONs and a mass flux function based on the Newton's law for motion in a magnetic field. The model describes both the hindering effect of suspension concentration (n) during settling due to particle collisions and the increase in settling rate due to the attraction of the SPIONs towards the magnet. The flux function was derived from the settling experiments and the numerical model validated against the analytical solution and the experimental data. Suspensions of SPIONs were of 2.8cm initial height, placed on a magnet, and monitored continuously with a digital camera. Applying a magnetic field of 0.5T of polarization, the SPION's velocity was of approximately 3·10(-5)m/s close to the magnet and decreases of two orders of magnitude across the domain. The process was characterized initially by a classical sedimentation behavior, i.e., an upper interface between the clear water and the suspension slowly moving towards the magnet and a lower interface between the sediment layer and the suspension moving away from the magnet. Subsequently, a rapid separation of nanoparticle occured suggesting a non-classical settling phenomenon induced by magnetic forces which favor particle aggregation and therefore faster settling. The rate of settling decreased with n and an optimal condition for fast separation was found for an initial n of 120g/L. The model agrees well with the measurements in the early stage of the settling, but it fails to describe the upper interface movement during the later stage, probably because of particle

  6. Measuring and modeling the magnetic settling of superparamagnetic nanoparticle dispersions.

    PubMed

    Prigiobbe, Valentina; Ko, Saebom; Huh, Chun; Bryant, Steven L

    2015-06-01

    In this paper, we present settling experiments and mathematical modeling to study the magnetic separation of superparamagnetic iron-oxide nanoparticles (SPIONs) from a brine. The experiments were performed using SPIONs suspensions of concentration between 3 and 202g/L dispersed in water and separated from the liquid under the effect of a permanent magnet. A 1D model was developed in the framework of the sedimentation theory with a conservation law for SPIONs and a mass flux function based on the Newton's law for motion in a magnetic field. The model describes both the hindering effect of suspension concentration (n) during settling due to particle collisions and the increase in settling rate due to the attraction of the SPIONs towards the magnet. The flux function was derived from the settling experiments and the numerical model validated against the analytical solution and the experimental data. Suspensions of SPIONs were of 2.8cm initial height, placed on a magnet, and monitored continuously with a digital camera. Applying a magnetic field of 0.5T of polarization, the SPION's velocity was of approximately 3·10(-5)m/s close to the magnet and decreases of two orders of magnitude across the domain. The process was characterized initially by a classical sedimentation behavior, i.e., an upper interface between the clear water and the suspension slowly moving towards the magnet and a lower interface between the sediment layer and the suspension moving away from the magnet. Subsequently, a rapid separation of nanoparticle occured suggesting a non-classical settling phenomenon induced by magnetic forces which favor particle aggregation and therefore faster settling. The rate of settling decreased with n and an optimal condition for fast separation was found for an initial n of 120g/L. The model agrees well with the measurements in the early stage of the settling, but it fails to describe the upper interface movement during the later stage, probably because of particle

  7. Model of optical nonlinearity of air in the mid-IR wavelength range

    SciTech Connect

    Geints, Yu E; Zemlyanov, A A

    2014-09-30

    A model of optical nonlinearity of air (atmospheric nitrogen and oxygen) is developed. This model can be used to calculate numerically the propagation of radiation with a wavelength close to 10 μm. It takes into account the electronic Kerr effect, higher order nonlinearities, ionisation of a gas medium by electron impact, and pulse group-velocity dispersion. The applicability limits of the Drude approximation for calculating the impact-ionisation rate are also considered. (nonlinear optical phenomena)

  8. Regional source identification using Lagrangian stochastic particle dispersion and HYSPLIT backward-trajectory models.

    PubMed

    Koracin, Darko; Vellore, Ramesh; Lowenthal, Douglas H; Watson, John G; Koracin, Julide; McCord, Travis; DuBois, David W; Chen, L W Antony; Kumar, Naresh; Knipping, Eladio M; Wheeler, Neil J M; Craig, Kenneth; Reid, Stephen

    2011-06-01

    The main objective of this study was to investigate the capabilities of the receptor-oriented inverse mode Lagrangian Stochastic Particle Dispersion Model (LSPDM) with the 12-km resolution Mesoscale Model 5 (MM5) wind field input for the assessment of source identification from seven regions impacting two receptors located in the eastern United States. The LSPDM analysis was compared with a standard version of the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) single-particle backward-trajectory analysis using inputs from MM5 and the Eta Data Assimilation System (EDAS) with horizontal grid resolutions of 12 and 80 km, respectively. The analysis included four 7-day summertime events in 2002; residence times in the modeling domain were computed from the inverse LSPDM runs and HYPSLIT-simulated backward trajectories started from receptor-source heights of 100, 500, 1000, 1500, and 3000 m. Statistics were derived using normalized values of LSPDM- and HYSPLIT-predicted residence times versus Community Multiscale Air Quality model-predicted sulfate concentrations used as baseline information. From 40 cases considered, the LSPDM identified first- and second-ranked emission region influences in 37 cases, whereas HYSPLIT-MM5 (HYSPLIT-EDAS) identified the sources in 21 (16) cases. The LSPDM produced a higher overall correlation coefficient (0.89) compared with HYSPLIT (0.55-0.62). The improvement of using the LSPDM is also seen in the overall normalized root mean square error values of 0.17 for LSPDM compared with 0.30-0.32 for HYSPLIT. The HYSPLIT backward trajectories generally tend to underestimate near-receptor sources because of a lack of stochastic dispersion of the backward trajectories and to overestimate distant sources because of a lack of treatment of dispersion. Additionally, the HYSPLIT backward trajectories showed a lack of consistency in the results obtained from different single vertical levels for starting the backward trajectories. To

  9. Spectral dispersion modeling of virtually imaged phased array by using angular spectrum of plane waves.

    PubMed

    Hu, Xinrong; Sun, Qiang; Li, Jing; Li, Chun; Liu, Ying; Zhang, Jianzhong

    2015-01-12

    We present an analytical treatment for the relatively new spectral disperser termed virtually imaged phased array (VIPA). Angular spectrum representation of the input Gaussian beam helps us obtain an exact analytic dispersion model and a dispersion law for a general VIPA by using the principle of multiple-beam interference. The consideration of the optical aberrations caused by refractions makes our model more accurate and practical than previous models. The validity of the proposed dispersion law has been validated theoretically by comparing with previous results. Some considerations of using a VIPA are also provided.

  10. ARAC dispersion modeling support for January--March 1995 Vandenberg AFB launches

    SciTech Connect

    Baskett, R.L.; Pace, J.C.

    1995-05-01

    The Glory Trip (GT) 17-PA Peacekeeper launch originally scheduled at Vandenberg Air Force Base (VAFB) between 15 and 20 November 1994 was cancelled based on modeled toxic exhaust cloud calculations. The Missile Flight Control Branch, 30th Space Wing Safety Office (30 SW/SEY), made several successive ``No Go`` decisions using Version 7. 05 Rocket Exhaust Effluent Dispersion Model (REEDM) with forecasted meteorological conditions. REEDM runs made from T-14 hours to T-30 minutes predicted that ground-level concentrations of hydrogen chloride (HCl) gas from the catastrophic abort case would exceed 5 ppM, the ``instantaneous`` ambient air concentration ``Tier 2`` limit at that time, modeled as a peak 1-minute cloud centerline concentration. Depending on the forecasted wind direction and speed at launch time, this limit was predicted to be exceeded sometimes at Base Housing, approximately 10 km southeast of the launch, and during other launch windows at the town of Casmalia, about 5 km east- southeast. In late December 1994, the LLNL Atmospheric Release Advisory Capability (ARAC) program modeled the aborted November 1994 Peacekeeper launch and compared its results with REEDM. This initial comparison showed that the ARAC model predicted values about 1/3 as large as REEDM for the limiting case at Base Housing. Subsequently ARAC was asked to provide real-time modeling support to 30 SW/SEY during the rescheduled Peacekeeper GT 17-PA launch in January 1995 and two Minuteman launches in February and March. This report first briefly discusses the model differences and then summarizes the results of the three supported launches.

  11. A generalized Brownian motion model for turbulent relative particle dispersion

    NASA Astrophysics Data System (ADS)

    Shivamoggi, B. K.

    2016-08-01

    There is speculation that the difficulty in obtaining an extended range with Richardson-Obukhov scaling in both laboratory experiments and numerical simulations is due to the finiteness of the flow Reynolds number Re in these situations. In this paper, a generalized Brownian motion model has been applied to describe the relative particle dispersion problem in more realistic turbulent flows and to shed some light on this issue. The fluctuating pressure forces acting on a fluid particle are taken to be a colored noise and follow a stationary process and are described by the Uhlenbeck-Ornstein model while it appears plausible to take their correlation time to have a power-law dependence on Re, thus introducing a bridge between the Lagrangian quantities and the Eulerian parameters for this problem. This ansatz is in qualitative agreement with the possibility of a connection speculated earlier by Corrsin [26] between the white-noise representation for the fluctuating pressure forces and the large-Re assumption in the Kolmogorov [4] theory for the 3D fully developed turbulence (FDT) as well as a similar argument of Monin and Yaglom [23] and a similar result of Sawford [13] and Borgas and Sawford [24]. It also provides an insight into the result that the Richardson-Obukhov scaling holds only in the infinite-Re limit and disappears otherwise. This ansatz further provides a determination of the Richardson-Obukhov constant g as a function of Re, with an asymptotic constant value in the infinite-Re limit. It is shown to lead to full agreement, in the small-Re limit as well, with the Batchelor-Townsend [27] scaling for the rate of change of the mean square interparticle separation in 3D FDT, hence validating its soundness further.

  12. Demonstration of a stabilized alumina/ethanol colloidal dispersion technique for seeding high temperature air flows

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.; Skoch, Gary J.; Wernet, Judith H.

    1995-01-01

    Laser anemometry enables the measurement of complex flow fields via the light scattered from small particles entrained in the flow. In the study of turbomachinery, refractory seed materials are required for seeding the flow due to the high temperatures encountered. In this work we present a pH stabilization technique commonly employed in ceramic processing to obtain stable dispersions for generating aerosols of refractory seed material. By adding submicron alumina particles to a preadjusted pH solution of ethanol, a stable dispersion is obtained which when atomized, produces a high quality aerosol. Commercial grade alumina powder is used with a moderate size distribution. Other metal oxide powders in various polar solvents could also be used once the point of zero charge (pH(pzc)) of the powder in the solvent has been determined. Laser anemometry measurements obtained using the new seeding technique are compared to measurements obtained using Polystyrene Latex (PSL) spheres as the seed material.

  13. Dispersion modeling to compare alternative technologies for odor remediation at swine facilities.

    PubMed

    Schiffman, Susan S; Graham, Brevick G; Williams, C Mike

    2008-09-01

    The effectiveness of 18 alternative technologies for reducing odor dispersion at and beyond the boundary of swine facilities was assessed in conjunction with an initiative sponsored through agreements between the Attorney General of North Carolina and Smithfield Foods, Premium Standard Farms, and Frontline Farmers. The trajectory and spatial distribution of odor emitted at each facility were modeled at 200 and 400 m downwind from each site under two meteorological conditions (daytime and nighttime) using a Eulerian-Lagrangian model. To predict the dispersion of odor downwind, the geographical area containing the odorant sources at each facility was partitioned into 10-m2 grids on the basis of satellite photographs and architectural drawings. Relative odorant concentrations were assigned to each grid point on the basis of intensity measurements made by the trained odor panel at each facility using a 9-point rating scale. The results of the modeling indicated that odor did not extend significantly beyond 400 m downwind of any of the test sites during the daytime when the layer of air above the earth's surface is usually turbulent. However, modeling indicated that odor from all full-scale farms extended beyond 400 m onto neighboring property in the evenings when deep surface cooling through long-wave radiation to space produces a stable (nocturnal) boundary layer. The results also indicated that swine housing, independent of waste management type, plays a significant role in odor downwind, as do odor sources of moderate to moderately high intensity that emanate from a large surface area such as a lagoon. Human odor assessments were utilized for modeling rather than instrument measurements of volatile organic compounds (VOCs), hydrogen sulfide, ammonia, or particulates less than 10 microm in diameter (PM10) because these physical measurements obtained simultaneously with human panel ratings were not found to accurately predict human odor intensity in the field.

  14. QUANTIFYING SUBGRID POLLUTANT VARIABILITY IN EULERIAN AIR QUALITY MODELS

    EPA Science Inventory

    In order to properly assess human risk due to exposure to hazardous air pollutants or air toxics, detailed information is needed on the location and magnitude of ambient air toxic concentrations. Regional scale Eulerian air quality models are typically limited to relatively coar...

  15. Air Pollution Data for Model Evaluation and Application

    EPA Science Inventory

    One objective of designing an air pollution monitoring network is to obtain data for evaluating air quality models that are used in the air quality management process and scientific discovery.1.2 A common use is to relate emissions to air quality, including assessing ...

  16. Simulation of population-based commuter exposure to NO₂ using different air pollution models.

    PubMed

    Ragettli, Martina S; Tsai, Ming-Yi; Braun-Fahrländer, Charlotte; de Nazelle, Audrey; Schindler, Christian; Ineichen, Alex; Ducret-Stich, Regina E; Perez, Laura; Probst-Hensch, Nicole; Künzli, Nino; Phuleria, Harish C

    2014-05-12

    We simulated commuter routes and long-term exposure to traffic-related air pollution during commute in a representative population sample in Basel (Switzerland), and evaluated three air pollution models with different spatial resolution for estimating commute exposures to nitrogen dioxide (NO2) as a marker of long-term exposure to traffic-related air pollution. Our approach includes spatially and temporally resolved data on actual commuter routes, travel modes and three air pollution models. Annual mean NO2 commuter exposures were similar between models. However, we found more within-city and within-subject variability in annual mean (±SD) NO2 commuter exposure with a high resolution dispersion model (40 ± 7 µg m(-3), range: 21-61) than with a dispersion model with a lower resolution (39 ± 5 µg m(-3); range: 24-51), and a land use regression model (41 ± 5 µg m(-3); range: 24-54). Highest median cumulative exposures were calculated along motorized transport and bicycle routes, and the lowest for walking. For estimating commuter exposure within a city and being interested also in small-scale variability between roads, a model with a high resolution is recommended. For larger scale epidemiological health assessment studies, models with a coarser spatial resolution are likely sufficient, especially when study areas include suburban and rural areas.

  17. Simulation of Population-Based Commuter Exposure to NO2 Using Different Air Pollution Models

    PubMed Central

    Ragettli, Martina S.; Tsai, Ming-Yi; Braun-Fahrländer, Charlotte; de Nazelle, Audrey; Schindler, Christian; Ineichen, Alex; Ducret-Stich, Regina E.; Perez, Laura; Probst-Hensch, Nicole; Künzli, Nino; Phuleria, Harish C.

    2014-01-01

    We simulated commuter routes and long-term exposure to traffic-related air pollution during commute in a representative population sample in Basel (Switzerland), and evaluated three air pollution models with different spatial resolution for estimating commute exposures to nitrogen dioxide (NO2) as a marker of long-term exposure to traffic-related air pollution. Our approach includes spatially and temporally resolved data on actual commuter routes, travel modes and three air pollution models. Annual mean NO2 commuter exposures were similar between models. However, we found more within-city and within-subject variability in annual mean (±SD) NO2 commuter exposure with a high resolution dispersion model (40 ± 7 µg m−3, range: 21–61) than with a dispersion model with a lower resolution (39 ± 5 µg m−3; range: 24–51), and a land use regression model (41 ± 5 µg m−3; range: 24–54). Highest median cumulative exposures were calculated along motorized transport and bicycle routes, and the lowest for walking. For estimating commuter exposure within a city and being interested also in small-scale variability between roads, a model with a high resolution is recommended. For larger scale epidemiological health assessment studies, models with a coarser spatial resolution are likely sufficient, especially when study areas include suburban and rural areas. PMID:24823664

  18. Active-passive measurements and CFD based modelling for indoor radon dispersion study.

    PubMed

    Chauhan, Neetika; Chauhan, R P

    2015-06-01

    Computational fluid dynamics (CFD) play a significant role in indoor pollutant dispersion study. Radon is an indoor pollutant which is radioactive and inert gas in nature. The concentration level and spatial distribution of radon may be affected by the dwelling's ventilation conditions. Present work focus at the study of indoor radon gas distribution via measurement and CFD modeling in naturally ventilated living room. The need of the study is the prediction of activity level and to study the effect of natural ventilation on indoor radon. Two measurement techniques (Passive measurement using pin-hole dosimeters and active measurement using continuous radon monitor (SRM)) were used for the validation purpose of CFD results. The CFD simulation results were compared with the measurement results at 15 points, 3 XY planes at different heights along with the volumetric average concentration. The simulation results found to be comparable with the measurement results. The future scope of these CFD codes is to study the effect of varying inflow rate of air on the radon concentration level and dispersion pattern.

  19. Dispersal of exhaled air and personal exposure in displacement ventilated rooms.

    PubMed

    Bjørn, E; Nielsen, P V

    2002-09-01

    The influence of the human exhalation on flow fields, contaminant distributions, and personal exposure in displacement ventilated rooms is studied together with the effects of physical movement. Experiments are conducted in full-scale test rooms with life-sized breathing thermal manikins. Numerical simulations support the experiments. Air exhaled through the mouth can lock in a thermally stratified layer, if the vertical temperature gradient in breathing zone height is sufficiently large. With exhalation through the nose, exhaled air flows to the upper part of the room. The exhalation flow from both nose and mouth is able to penetrate the breathing zone of another person standing nearby. The stratification of exhaled air breaks down if there is physical movement in the room. As movement increases, the concentration distribution in the room will move towards a fully mixed situation. The protective effect of the boundary layer flow around the body of a moving person disappears at low speed, and is reduced for a seated person placed nearby due to horizontal air movements, which can also cause rebreathing of exhaled air for the seated person. The results indicate that the effect of the exhalation flow is no acute problem in most normal ventilation applications. However, exhalation and local effects caused by movement may be worth considering if one wishes to contain contaminants in certain areas, as in the case of tobacco smoking, in hospitals and clinics, or in certain industries.

  20. Interfacing air pathway models with other media models for impact assessment

    SciTech Connect

    Drake, R.L.

    1980-10-01

    The assessment of the impacts/effects of a coal conversion industry on human health, ecological systems, property and aesthetics requires knowledge about effluent and fugitive emissions, dispersion of pollutants in abiotic media, chemical and physical transformations of pollutants during transport, and pollutant fate passing through biotic pathways. Some of the environmental impacts that result from coal conversion facility effluents are subtle, acute, subacute or chronic effects in humans and other ecosystem members, acute or chronic damage of materials and property, odors, impaired atmospheric visibility, and impacts on local, regional and global weather and climate. This great variety of impacts and effects places great demands on the abiotic and biotic numerical simulators (modelers) in terms of time and space scales, transformation rates, and system structure. This paper primarily addresses the demands placed on the atmospheric analyst. The paper considers the important air pathway processes, the interfacing of air pathway models with other media models, and the classes of air pathway models currently available. In addition, a strong plea is made for interaction and communication between all modeling groups to promote efficient construction of intermedia models that truly interface across pathway boundaries.

  1. Optimal weighted combinatorial forecasting model of QT dispersion of ECGs in Chinese adults

    NASA Astrophysics Data System (ADS)

    Wen, Zhang; Miao, Ge; Xinlei, Liu; Minyi, Cen

    2016-07-01

    This study aims to provide a scientific basis for unifying the reference value standard of QT dispersion of ECGs in Chinese adults. Three predictive models including regression model, principal component model, and artificial neural network model are combined to establish the optimal weighted combination model. The optimal weighted combination model and single model are verified and compared. Optimal weighted combinatorial model can reduce predicting risk of single model and improve the predicting precision. The reference value of geographical distribution of Chinese adults' QT dispersion was precisely made by using kriging methods. When geographical factors of a particular area are obtained, the reference value of QT dispersion of Chinese adults in this area can be estimated by using optimal weighted combinatorial model and reference value of the QT dispersion of Chinese adults anywhere in China can be obtained by using geographical distribution figure as well.

  2. A compressible two-phase model for dispersed particle flows with application from dense to dilute regimes

    NASA Astrophysics Data System (ADS)

    McGrath, Thomas P.; St. Clair, Jeffrey G.; Balachandar, S.

    2016-05-01

    Multiphase flows are present in many important fields ranging from multiphase explosions to chemical processing. An important subset of multiphase flow applications involves dispersed materials, such as particles, droplets, and bubbles. This work presents an Eulerian-Eulerian model for multiphase flows containing dispersed particles surrounded by a continuous media such as air or water. Following a large body of multiphase literature, the driving force for particle acceleration is modeled as a direct function of both the continuous-phase pressure gradient and the gradient of intergranular stress existing within the particle phase. While the application of these two components of driving force is well accepted in much of the literature, other models exist in which the particle-phase pressure gradient itself drives particle motion. The multiphase model treats all phases as compressible and is derived to ensure adherence to the 2nd Law of Thermodynamics. The governing equations are presented and discussed, and a characteristic analysis shows the model to be hyperbolic, with a degeneracy in the case that the intergranular stress, which is modeled as a configuration pressure, is zero. Finally, results from a two sample problems involving shock-induced particle dispersion are presented. The results agree well with experimental measurements, providing initial confidence in the proposed model.

  3. Continuous multichannel monitoring of cave air carbon dioxide using a pumped non-dispersive infrared analyser

    NASA Astrophysics Data System (ADS)

    Mattey, D.

    2012-04-01

    The concentration of CO2 in cave air is one of the main controls on the rate of degassing of dripwater and on the kinetics of calcite precipitation forming speleothem deposits. Measurements of cave air CO2reveal great complexity in the spatial distribution among interconnected cave chambers and temporal changes on synoptic to seasonal time scales. The rock of Gibraltar hosts a large number of caves distributed over a 300 meter range in altitude and monthly sampling and analysis of air and water combined with continuous logging of temperature, humidity and drip discharge rates since 2004 reveals the importance of density-driven seasonal ventilation which drives large-scale advection of CO2-rich air though the cave systems. Since 2008 we have deployed automatic CO2 monitoring systems that regularly sample cave air from up to 8 locations distributed laterally and vertically in St Michaels Cave located near the top of the rock at 275m asl and Ragged Staff Cave located in the heart of the rock near sea level. The logging system is controlled by a Campbell Scientific CR1000 programmable datalogger which controls an 8 port manifold connected to sampling lines leading to different parts of the cave over a distance of up to 250 meters. The manifold is pumped at a rate of 5l per minute drawing air through 6mm or 8mm id polythene tubing via a 1m Nafion loop to reduce humidity to local ambient conditions. The outlet of the primary pump leads to an open split which is sampled by a second low flow pump which delivers air at 100ml/minute to a Licor 820 CO2 analyser. The software selects the port to be sampled, flushes the line for 2 minutes and CO2 analysed as a set of 5 measurements averaged over 10 second intervals. The system then switches to the next port and when complete shuts down to conserve power after using 20 watts over a 30 minute period of analysis. In the absence of local mains power (eg from the show cave lighting system) two 12v car batteries will power the system

  4. 78 FR 20148 - Reporting Procedure for Mathematical Models Selected To Predict Heated Effluent Dispersion in...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-03

    ... Natural Water Bodies AGENCY: Nuclear Regulatory Commission. ACTION: Withdrawal notice. SUMMARY: The U.S... Mathematical Models Selected to Predict Heated Effluent Dispersion in Natural Water Bodies.'' The guide is... mathematical modeling methods used in predicting the dispersion of heated effluent in natural water bodies....

  5. NEW DEVELOPMENT IN DISPERSION EXPERIMENTS AND MODELS FOR THE CONVECTIVE BOUNDARY LAYER

    EPA Science Inventory

    We present recent experiments and modeling studies of dispersion in the convective boundary layer (CBL) with focus on highly-buoyant plumes that "loft" near the CBL top and resist downward mixing. Such plumes have been a significant problem in earlier dispersion models; they a...

  6. Ballooning dispersal using silk: world fauna, phylogenies, genetics and models.

    PubMed

    Bell, J R; Bohan, D A; Shaw, E M; Weyman, G S

    2005-04-01

    Aerial dispersal using silk ('ballooning') has evolved in spiders (Araneae), spider mites (Acari) and in the larvae of moths (Lepidoptera). Since the 17th century, over 500 observations of ballooning behaviours have been published, yet there is an absence of any evolutionary synthesis of these data. In this paper the literature is reviewed, extensively documenting the known world fauna that balloon and the principal behaviours involved. This knowledge is then incorporated into the current evolutionary phylogenies to examine how ballooning might have arisen. Whilst it is possible that ballooning co-evolved with silk and emerged as early as the Devonian (410-355 mya), it is arguably more likely that ballooning evolved in parallel with deciduous trees, herbaceous annuals and grasses in the Cretaceous (135-65 mya). During this period, temporal (e.g. bud burst, chlorophyll thresholds) and spatial (e.g. herbivory, trampling) heterogeneities in habitat structuring predominated and intensified into the Cenozoic (65 mya to the present). It is hypothesized that from the ancestral launch mechanism known as 'suspended ballooning', widely used by individuals in plant canopies, 'tip-toe' and 'rearing' take-off behaviours were strongly selected for as habitats changed. It is contended that ballooning behaviour in all three orders can be described as a mixed Evolutionary Stable Strategy. This comprises individual bet-hedging due to habitat unpredictability, giving an underlying randomness to individual ballooning, with adjustments to the individual ballooning probability being conferred by more predictable habitat changes or colonization strategies. Finally, current methods used to study ballooning, including modelling and genetic research, are illustrated and an indication of future prospects given.

  7. Modeling Smoke Plume-Rise and Dispersion from Southern United States Prescribed Burns with Daysmoke.

    SciTech Connect

    Achtemeier, Gary, L.; Goodrick, Scott, A.; Liu, Yongqiang; Garcia-Menendez, Fernando; Hu, Yongtao; Odman, Mehmet, Talat.

    2011-08-19

    We present Daysmoke, an empirical-statistical plume rise and dispersion model for simulating smoke from prescribed burns. Prescribed fires are characterized by complex plume structure including multiple-core updrafts which makes modeling with simple plume models difficult. Daysmoke accounts for plume structure in a three-dimensional veering/sheering atmospheric environment, multiple-core updrafts, and detrainment of particulate matter. The number of empirical coefficients appearing in the model theory is reduced through a sensitivity analysis with the Fourier Amplitude Sensitivity Test (FAST). Daysmoke simulations for 'bent-over' plumes compare closely with Briggs theory although the two-thirds law is not explicit in Daysmoke. However, the solutions for the 'highly-tilted' plume characterized by weak buoyancy, low initial vertical velocity, and large initial plume diameter depart considerably from Briggs theory. Results from a study of weak plumes from prescribed burns at Fort Benning GA showed simulated ground-level PM2.5 comparing favorably with observations taken within the first eight kilometers of eleven prescribed burns. Daysmoke placed plume tops near the lower end of the range of observed plume tops for six prescribed burns. Daysmoke provides the levels and amounts of smoke injected into regional scale air quality models. Results from CMAQ with and without an adaptive grid are presented.

  8. Dispersion modelling of a wintertime particulate pollution episode in Christchurch, New Zealand

    NASA Astrophysics Data System (ADS)

    Barna, Michael G.; Gimson, Neil R.

    This paper examines the inter-suburb dispersion of particulate air pollution in Christchurch, New Zealand, during a wintertime particulate pollution episode. The dispersion is simulated using the RAMS/CALMET/CALPUFF modelling system, with data from a detailed emissions inventory of home heating, motor vehicles and industry. During the period 27 July-1 August 1995, peak 1 h and 24 h PM 10 concentrations of 368 and 107 μg m -3, respectively, were observed. Peak concentrations occurred at night, when particulate emissions from wood- and coal-burning domestic heating appliances were at a maximum and emitted into a stable boundary layer. The model is generally able to reproduce the observed PM 10 time series recorded at surface monitors located throughout the urban area. For this simulation, the fractional gross error ranges between 0.69 and 0.99, and the fractional bias ranges between -0.17 and 0.30. Strong horizontal concentration gradients of 100 μg m -3 km -1, both in the observational record and model predictions, are apparent. Three emission reduction options, designed to reduce the severity of particulate pollution episodes in Christchurch, are simulated. When both domestic open-hearth fires and all coal burning are removed, the 24 h average peak concentration is reduced by 55%. The number of guideline exceedences of PM 10 in the modelled period is reduced from five to one. Removing open-hearth fires results in 42% reduction in PM 10 concentration, resulting in three exceedences of the guideline, and removing coal-burning fires yields a 32% reduction in PM 10, resulting in four exceedences of the guideline.

  9. An ecomorphological model of the initial hominid dispersal from Africa.

    PubMed

    Antón, S C; Leonard, W R; Robertson, M L

    2002-12-01

    We use new data on the timing and extent of the early Pleistocene dispersal of Homo erectus to estimate diffusion coefficients of early Homo from Africa. These diffusion coefficients indicate more rapid and efficient dispersals than those calculated for fossil Macaca sp., Theropithecus darti, and Mesopithecus pentelicus. Increases in home range size associated with changes in ecology, hominid body size, and possibly foraging strategy may underlay these differences in dispersal efficiency. Ecological data for extant primates and human foragers indicate a close relationship between body size, home range size, and diet quality. These data predict that evolutionary changes in body size and foraging behavior would have produced a 10-fold increase in the home range size of H. erectus compared with that of the australopithecines. These two independent datasets provide a means of quantifying aspects of the dispersal of early Homo and suggest that rapid rates of dispersal appear to have been promoted by changes in foraging strategy and body size in H. erectus facilitated by changes in ecosystem structure during the Plio-Pleistocene. PMID:12473483

  10. An ecomorphological model of the initial hominid dispersal from Africa.

    PubMed

    Antón, S C; Leonard, W R; Robertson, M L

    2002-12-01

    We use new data on the timing and extent of the early Pleistocene dispersal of Homo erectus to estimate diffusion coefficients of early Homo from Africa. These diffusion coefficients indicate more rapid and efficient dispersals than those calculated for fossil Macaca sp., Theropithecus darti, and Mesopithecus pentelicus. Increases in home range size associated with changes in ecology, hominid body size, and possibly foraging strategy may underlay these differences in dispersal efficiency. Ecological data for extant primates and human foragers indicate a close relationship between body size, home range size, and diet quality. These data predict that evolutionary changes in body size and foraging behavior would have produced a 10-fold increase in the home range size of H. erectus compared with that of the australopithecines. These two independent datasets provide a means of quantifying aspects of the dispersal of early Homo and suggest that rapid rates of dispersal appear to have been promoted by changes in foraging strategy and body size in H. erectus facilitated by changes in ecosystem structure during the Plio-Pleistocene.

  11. Accurate FDTD modelling for dispersive media using rational function and particle swarm optimisation

    NASA Astrophysics Data System (ADS)

    Chung, Haejun; Ha, Sang-Gyu; Choi, Jaehoon; Jung, Kyung-Young

    2015-07-01

    This article presents an accurate finite-difference time domain (FDTD) dispersive modelling suitable for complex dispersive media. A quadratic complex rational function (QCRF) is used to characterise their dispersive relations. To obtain accurate coefficients of QCRF, in this work, we use an analytical approach and a particle swarm optimisation (PSO) simultaneously. In specific, an analytical approach is used to obtain the QCRF matrix-solving equation and PSO is applied to adjust a weighting function of this equation. Numerical examples are used to illustrate the validity of the proposed FDTD dispersion model.

  12. Is it Necessary to Consider Air Flow in Land Surface Models

    NASA Astrophysics Data System (ADS)

    Zeng, Y.; Su, Z.; Wan, L.; Wen, J.

    2011-12-01

    From a subsurface physical point of view, this paper discusses the necessity and feasibility of considering two-phase heat and mass transfer process in land surface models (LSMs). The potential-based equations of coupled mass and heat transport under constant air pressure are adopted as the basis. The proposed model is developed on this basis by considering dry air as a single phase, and including mechanical dispersion in the water vapor and dry air transfer. The adsorbed liquid flux due to thermal gradient is also taken into account. The set of equations for the two-phase heat and mass transfer is formulated fully considering diffusion, advection and dispersion. The advantage of the proposed model over the traditional equation system is discussed. The accuracy of the proposed model is assessed through comparison with analytical work for coupled mass and heat transfer and experimental work for isothermal two-phase flow (moisture/air transfer). Further investigation is carried out to elucidate how the coupled moisture and heat transfer is influenced by adding the air flow, and how the isothermal two-phase flow is affected by considering the heat flow. The importance of including the air flow in the coupled mass and heat transfer is clearly identified. Concerning the two-phase flow, the influence of heat flow is only significant if the air phase plays a significant role in solving the equations of the water phase. Based on a field experiment, the proposed model is compared with the measured soil moisture, temperature and evaporation rate, the results show clearly that it is necessary to consider the air flow mechanism for soil-atmosphere interaction studies.

  13. Fish dispersal in fragmented landscapes: a modeling framework for quantifying the permeability of structural barriers.

    PubMed

    Pépino, Marc; Rodríguez, Marco A; Magnan, Pierre

    2012-07-01

    Dispersal is a key determinant of the spatial distribution and abundance of populations, but human-made fragmentation can create barriers that hinder dispersal and reduce population viability. This study presents a modeling framework based on dispersal kernels (modified Laplace distributions) that describe stream fish dispersal in the presence of obstacles to passage. We used mark-recapture trials to quantify summer dispersal of brook trout (Salvelinus fontinalis) in four streams crossed by a highway. The analysis identified population heterogeneity in dispersal behavior, as revealed by the presence of a dominant sedentary component (48-72% of all individuals) characterized by short mean dispersal distance (<10 m), and a secondary mobile component characterized by longer mean dispersal distance (56-1086 m). We did not detect evidence of barrier effects on dispersal through highway crossings. Simulation of various plausible scenarios indicated that detectability of barrier effects was strongly dependent on features of sampling design, such as spatial configuration of the sampling area, barrier extent, and sample size. The proposed modeling framework extends conventional dispersal kernels by incorporating structural barriers. A major strength of the approach is that ecological process (dispersal model) and sampling design (observation model) are incorporated simultaneously into the analysis. This feature can facilitate the use of prior knowledge to improve sampling efficiency of mark-recapture trials in movement studies. Model-based estimation of barrier permeability and its associated uncertainty provides a rigorous approach for quantifying the effect of barriers on stream fish dispersal and assessing population dynamics of stream fish in fragmented landscapes.

  14. An idealized transient model for melt dispersal from reactor cavities during pressurized melt ejection accident scenarios

    SciTech Connect

    Tutu, N.K.

    1991-06-01

    The direct Containment Heating (DCH) calculations require that the transient rate at which the melt is ejected from the reactor cavity during hypothetical pressurized melt ejection accident scenarios be calculated. However, at present no models, that are able to predict the available melt dispersal data from small scale reactor cavity models, are available. In this report, a simple idealized model of the melt dispersal process within a reactor cavity during a pressurized melt ejection accident scenario is presented. The predictions from the model agree reasonably well with the integral data obtained from the melt dispersal experiments using a small scale model of the Surry reactor cavity. 17 refs., 15 figs.

  15. Assessing vanadium and arsenic exposure of people living near a petrochemical complex with two-stage dispersion models.

    PubMed

    Chio, Chia-Pin; Yuan, Tzu-Hsuen; Shie, Ruei-Hao; Chan, Chang-Chuan

    2014-04-30

    The goal of this study is to demonstrate that it is possible to construct a two-stage dispersion model empirically for the purpose of estimating air pollution levels in the vicinity of petrochemical plants. We studied oil refineries and coal-fired power plants in the No. 6 Naphtha Cracking Complex, an area of 2,603-ha situated on the central west coast of Taiwan. The pollutants targeted were vanadium (V) from oil refineries and arsenic (As) from coal-fired power plants. We applied a backward fitting method to determine emission rates of V and As, with 192 PM10 filters originally collected between 2009 and 2012. Our first-stage model estimated emission rates of V and As (median and 95% confidence intervals at 0.0202 (0.0040-0.1063) and 0.1368 (0.0398-0.4782) g/s, respectively. In our second stage model, the predicted zone-average concentrations showed a strong correlation with V, but a poor correlation with As. Our findings show that two-stage dispersion models are relatively precise for estimating V levels at residents' addresses near the petrochemical complex, but they did not work as well for As levels. In conclusion, our model-based approach can be widely used for modeling exposure to air pollution from industrial areas in countries with limited resources.

  16. Modelling the dispersion of vehicle-emitted pollutants

    SciTech Connect

    McCrae, I.S.; Hamilton, R.S.; Revitt, D.M. ); Harrop, D.O. )

    1988-01-01

    It is well known that certain vehicle-generated air pollutants may have adverse effects on human health, ecosystems and amenity. For many years, carbon monoxide and lead were the pollutants which received most attention. However, other problems have been identified, principally the role of nitrogen oxides in producing acid rain, the mutagenic and carcinogenic effects of polyaromatic hydrocarbons and the darkness of diesel-emitted smoke. The magnitude of some of the problems has been compounded by changes in engine design and fuel composition. An understanding of the impact of vehicle-emitted pollutants on the environment requires a knowledge of the processes which control their transport through the atmosphere. Short-range transport processes are best investigated using field data collected near to a rural motorway since in that situation the source is a well-defined line to which standard mathematical modelling techniques can be applied and non-vehicle sources of pollution are reduced to a minimum. This paper examines the use of desk-top and computer-based techniques to predict CO concentrations.

  17. Advanced air revitalization system modeling and testing

    NASA Technical Reports Server (NTRS)

    Dall-Baumann, Liese; Jeng, Frank; Christian, Steve; Edeer, Marybeth; Lin, Chin

    1990-01-01

    To support manned lunar and Martian exploration, an extensive evaluation of air revitalization subsystems (ARS) is being conducted. The major operations under study include carbon dioxide removal and reduction; oxygen and nitrogen production, storage, and distribution; humidity and temperature control; and trace contaminant control. A comprehensive analysis program based on a generalized block flow model was developed to facilitate the evaluation of various processes and their interaction. ASPEN PLUS was used in modelling carbon dioxide removal and reduction. Several life support test stands were developed to test new and existing technologies for their potential applicability in space. The goal was to identify processes which use compact, lightweight equipment and maximize the recovery of oxygen and water. The carbon dioxide removal test stands include solid amine/vacuum desorption (SAVD), regenerative silver oxide chemisorption, and electrochemical carbon dioxide concentration (EDC). Membrane-based carbon dioxide removal and humidity control, catalytic reduction of carbon dioxide, and catalytic oxidation of trace contaminants were also investigated.

  18. The treatment of uncertainties in reactive pollution dispersion models at urban scales.

    PubMed

    Tomlin, A S; Ziehn, T; Goodman, P; Tate, J E; Dixon, N S

    2016-07-18

    The ability to predict NO2 concentrations ([NO2]) within urban street networks is important for the evaluation of strategies to reduce exposure to NO2. However, models aiming to make such predictions involve the coupling of several complex processes: traffic emissions under different levels of congestion; dispersion via turbulent mixing; chemical processes of relevance at the street-scale. Parameterisations of these processes are challenging to quantify with precision. Predictions are therefore subject to uncertainties which should be taken into account when using models within decision making. This paper presents an analysis of mean [NO2] predictions from such a complex modelling system applied to a street canyon within the city of York, UK including the treatment of model uncertainties and their causes. The model system consists of a micro-scale traffic simulation and emissions model, and a Reynolds averaged turbulent flow model coupled to a reactive Lagrangian particle dispersion model. The analysis focuses on the sensitivity of predicted in-street increments of [NO2] at different locations in the street to uncertainties in the model inputs. These include physical characteristics such as background wind direction, temperature and background ozone concentrations; traffic parameters such as overall demand and primary NO2 fraction; as well as model parameterisations such as roughness lengths, turbulent time- and length-scales and chemical reaction rate coefficients. Predicted [NO2] is shown to be relatively robust with respect to model parameterisations, although there are significant sensitivities to the activation energy for the reaction NO + O3 as well as the canyon wall roughness length. Under off-peak traffic conditions, demand is the key traffic parameter. Under peak conditions where the network saturates, road-side [NO2] is relatively insensitive to changes in demand and more sensitive to the primary NO2 fraction. The most important physical parameter was

  19. The treatment of uncertainties in reactive pollution dispersion models at urban scales.

    PubMed

    Tomlin, A S; Ziehn, T; Goodman, P; Tate, J E; Dixon, N S

    2016-07-18

    The ability to predict NO2 concentrations ([NO2]) within urban street networks is important for the evaluation of strategies to reduce exposure to NO2. However, models aiming to make such predictions involve the coupling of several complex processes: traffic emissions under different levels of congestion; dispersion via turbulent mixing; chemical processes of relevance at the street-scale. Parameterisations of these processes are challenging to quantify with precision. Predictions are therefore subject to uncertainties which should be taken into account when using models within decision making. This paper presents an analysis of mean [NO2] predictions from such a complex modelling system applied to a street canyon within the city of York, UK including the treatment of model uncertainties and their causes. The model system consists of a micro-scale traffic simulation and emissions model, and a Reynolds averaged turbulent flow model coupled to a reactive Lagrangian particle dispersion model. The analysis focuses on the sensitivity of predicted in-street increments of [NO2] at different locations in the street to uncertainties in the model inputs. These include physical characteristics such as background wind direction, temperature and background ozone concentrations; traffic parameters such as overall demand and primary NO2 fraction; as well as model parameterisations such as roughness lengths, turbulent time- and length-scales and chemical reaction rate coefficients. Predicted [NO2] is shown to be relatively robust with respect to model parameterisations, although there are significant sensitivities to the activation energy for the reaction NO + O3 as well as the canyon wall roughness length. Under off-peak traffic conditions, demand is the key traffic parameter. Under peak conditions where the network saturates, road-side [NO2] is relatively insensitive to changes in demand and more sensitive to the primary NO2 fraction. The most important physical parameter was

  20. CONCENTRATIONS OF TOXIC AIR POLLUTANTS IN THE U.S. SIMULATED BY AN AIR QUALITY MODEL

    EPA Science Inventory

    As part of the US National Air Toxics Assessment, we have applied the Community Multiscale Air Quality Model, CMAQ, to study the concentrations of twenty gas-phase, toxic, hazardous air pollutants (HAPs) in the atmosphere over the continental United States. We modified the Carbo...

  1. Implications of small-scale flow features to modeling dispersion over complex terrain

    SciTech Connect

    Banta, R.M.; Olivier, L.D.

    1996-03-01

    Small-scale, topographically forced wind systems often have a strong influence on flow over complex terrain. These systems are very difficult to measure, because of their limited spatial and temporal extent. They can be important, however, in the atmospheric transport of hazardous materials. For example, a nocturnal exit jet - a narrow stream of cold air-which flowed from Eldorado Canyon at the interface between the Rocky Mountains and the Colorado plains near the Rocky Flats Plant (RFP), swept over RFP for about 3 h in the middle of the night of 4-5 February 1991. It extended in depth from a few tens of meters to approximately 800 m above the ground. Because the jet was so narrow (2 km wide), it was poorly sampled by the meteorological surface mesonet, but it did prove to have an effect on the dispersion of tracer material released from RFP, producing a secondary peak in measured concentration to the southeast of RFP. The existence and behavior of the jet was documented by Environmental Technology Laboratory`s Doppler lidar system, a scanning, active remote-sensing system that provides fine-resolution wind measurements. The lidar was deployed as a part of a wintertime study of flow and dispersion in the RFP vicinity during February 1993. The MATHEW-ADPIC atmospheric dispersion model was run using the case study data from this night. It consists of three major modules: an interpolation scheme; MATHEW, a diagnostic wind-flow algorithm that calculates a mass-consistent interpolated flow; and ADPIC, a diffusion algorithm. The model did an adequate job of representing the main lobe of the tracer transport, but the secondary lobe resulting from the Eldorado Canyon exit jet was absent from the model result. Because the jet was not adequately represented in the input data, it did not appear in the modeled wind field. Thus, the effects of the jet on the transport of tracer material were not properly simulated by the diagnostic model. 26 refs., 10 figs., 2 tabs.

  2. Field Studies for Validation of Urban Dispersion Models - Current Status and Research Needs

    NASA Astrophysics Data System (ADS)

    Allwine, J.

    2007-12-01

    Urban dispersion models are important tools in addressing consequences from potential releases of harmful airborne materials in urban areas. These models are used by emergency management, law enforcement, and intelligence personnel to effectively plan for and respond to potential terrorist attacks and accidents. Field studies are vitally important for improving and validating these urban dispersion models which are used to simulate contaminant dispersion in and around cities. Over the past decade, three major urban field studies have been designed and conducted in the United States. The primary objectives of these studies have been to advance the state-of-science of understanding and modeling atmospheric flows and dispersion in and around cities, and to provide field observation for validation of urban dispersion models. The three major field studies (Salt Lake City, October 2000; Oklahoma City, July 2003; and New York City, August 2005) were conducted in cities of different sizes, in different geographic regions and during different times of the year. The tracer and meteorological data from these three field campaigns provide a rich dataset for validation of urban dispersion models over a range of conditions. The status and uses of the three urban dispersion datasets will be summarized, followed by a discussion of the current observational gaps and research needs in characterizing specific urban dispersion processes, such as outdoor-indoor coupling and outdoor-subway coupling.

  3. Atmospheric Dispersion Modeling of the February 2014 Waste Isolation Pilot Plant Release

    SciTech Connect

    Nasstrom, John; Piggott, Tom; Simpson, Matthew; Lobaugh, Megan; Tai, Lydia; Pobanz, Brenda; Yu, Kristen

    2015-07-22

    This report presents the results of a simulation of the atmospheric dispersion and deposition of radioactivity released from the Waste Isolation Pilot Plant (WIPP) site in New Mexico in February 2014. These simulations were made by the National Atmospheric Release Advisory Center (NARAC) at Lawrence Livermore National Laboratory (LLNL), and supersede NARAC simulation results published in a previous WIPP report (WIPP, 2014). The results presented in this report use additional, more detailed data from WIPP on the specific radionuclides released, radioactivity release amounts and release times. Compared to the previous NARAC simulations, the new simulation results in this report are based on more detailed modeling of the winds, turbulence, and particle dry deposition. In addition, the initial plume rise from the exhaust vent was considered in the new simulations, but not in the previous NARAC simulations. The new model results show some small differences compared to previous results, but do not change the conclusions in the WIPP (2014) report. Presented are the data and assumptions used in these model simulations, as well as the model-predicted dose and deposition on and near the WIPP site. A comparison of predicted and measured radionuclide-specific air concentrations is also presented.

  4. Source apportionment based on an atmospheric dispersion model and multiple linear regression analysis

    NASA Astrophysics Data System (ADS)

    Fushimi, Akihiro; Kawashima, Hiroto; Kajihara, Hideo

    Understanding the contribution of each emission source of air pollutants to ambient concentrations is important to establish effective measures for risk reduction. We have developed a source apportionment method based on an atmospheric dispersion model and multiple linear regression analysis (MLR) in conjunction with ambient concentrations simultaneously measured at points in a grid network. We used a Gaussian plume dispersion model developed by the US Environmental Protection Agency called the Industrial Source Complex model (ISC) in the method. Our method does not require emission amounts or source profiles. The method was applied to the case of benzene in the vicinity of the Keiyo Central Coastal Industrial Complex (KCCIC), one of the biggest industrial complexes in Japan. Benzene concentrations were simultaneously measured from December 2001 to July 2002 at sites in a grid network established in the KCCIC and the surrounding residential area. The method was used to estimate benzene emissions from the factories in the KCCIC and from automobiles along a section of a road, and then the annual average contribution of the KCCIC to the ambient concentrations was estimated based on the estimated emissions. The estimated contributions of the KCCIC were 65% inside the complex, 49% at 0.5-km sites, 35% at 1.5-km sites, 20% at 3.3-km sites, and 9% at a 5.6-km site. The estimated concentrations agreed well with the measured values. The estimated emissions from the factories and the road were slightly larger than those reported in the first Pollutant Release and Transfer Register (PRTR). These results support the reliability of our method. This method can be applied to other chemicals or regions to achieve reasonable source apportionments.

  5. Exposure Modeling of Residential Air Exchange Rates for NEXUS Participants

    EPA Science Inventory

    Due to cost and participant burden of personal measurements, air pollution health studies often estimate exposures using local ambient air monitors. Since outdoor levels do not necessarily reflect personal exposures, we developed the Exposure Model for Individuals (EMI) to improv...

  6. Prediction Models are Basis for Rational Air Quality Control

    ERIC Educational Resources Information Center

    Daniels, Anders; Bach, Wilfrid

    1973-01-01

    An air quality control scheme employing meteorological diffusion, time averaging and frequency, and cost-benefit models is discussed. The methods outlined provide a constant feedback system for air quality control. Flow charts and maps are included. (BL)

  7. Exposure Modeling of Residential Air Exchange Rates for NEXUS Participants.

    EPA Science Inventory

    Due to cost and participant burden of personal measurements, air pollution health studies often estimate exposures using local ambient air monitors. Since outdoor levels do not necessarily reflect personal exposures, we developed the Exposure Model for Individuals (EMI) to improv...

  8. AIR QUALITY MODELING OF PM AND AIR TOXICS AT NEIGHBORHOOD SCALES

    EPA Science Inventory

    The current interest in fine particles and toxics pollutants provide an impetus for extending air quality modeling capability towards improving exposure modeling and assessments. Human exposure models require information on concentration derived from interpolation of observati...

  9. An atmospheric dispersion model for the environmental impact assessment of thermal power plants in Japan--a method for evaluating topographical effects.

    PubMed

    Ichikawa, Yoichi; Sada, Koichi

    2002-03-01

    An atmospheric dispersion model was developed for the environmental impact assessment of thermal power plants in Japan, and a method for evaluating topographical effects using this model was proposed. The atmospheric dispersion model consists of an airflow model with a turbulence closure model based on the algebraic Reynolds stress model and a Lagrangian particle dispersion model (LPDM). The evaluation of the maximum concentration of air pollutants such as SO2, NOx, and suspended particulate matter is usually considered of primary importance for environmental impact assessment. Three indices were therefore estimated by the atmospheric dispersion model: the ratios (alpha and beta, respectively) of the maximum concentration and the distance of the point of the maximum concentration from the source over topography to the respective values over a flat plane, and the relative concentration distribution [gamma(x)] along the ground surface projection of the plume axis normalized by the maximum concentration over a flat plane. The atmospheric dispersion model was applied to the topography around a power plant with a maximum elevation of more than 1,000 m. The values of alpha and beta evaluated by the atmospheric dispersion model varied between 1 and 3 and between 1 and 0.4, respectively, depending on the topographical features. These results and the calculated distributions of y(x) were highly similar to the results of the wind tunnel experiment. Therefore, when the slope of a hill or mountain is similar to the topography considered in this study, it is possible to evaluate topographical effects on exhaust gas dispersion with reasonable accuracy using the atmospheric dispersion model as well as wind tunnel experiments.

  10. Mechanistic analytical models for long-distance seed dispersal by wind.

    PubMed

    Katul, G G; Porporato, A; Nathan, R; Siqueira, M; Soons, M B; Poggi, D; Horn, H S; Levin, S A

    2005-09-01

    We introduce an analytical model, the Wald analytical long-distance dispersal (WALD) model, for estimating dispersal kernels of wind-dispersed seeds and their escape probability from the canopy. The model is based on simplifications to well-established three-dimensional Lagrangian stochastic approaches for turbulent scalar transport resulting in a two-parameter Wald (or inverse Gaussian) distribution. Unlike commonly used phenomenological models, WALD's parameters can be estimated from the key factors affecting wind dispersal--wind statistics, seed release height, and seed terminal velocity--determined independently of dispersal data. WALD's asymptotic power-law tail has an exponent of -3/2, a limiting value verified by a meta-analysis for a wide variety of measured dispersal kernels and larger than the exponent of the bivariate Student t-test (2Dt). We tested WALD using three dispersal data sets on forest trees, heathland shrubs, and grassland forbs and compared WALD's performance with that of other analytical mechanistic models (revised versions of the tilted Gaussian Plume model and the advection-diffusion equation), revealing fairest agreement between WALD predictions and measurements. Analytical mechanistic models, such as WALD, combine the advantages of simplicity and mechanistic understanding and are valuable tools for modeling large-scale, long-term plant population dynamics. PMID:16224691

  11. Mechanistic analytical models for long-distance seed dispersal by wind.

    PubMed

    Katul, G G; Porporato, A; Nathan, R; Siqueira, M; Soons, M B; Poggi, D; Horn, H S; Levin, S A

    2005-09-01

    We introduce an analytical model, the Wald analytical long-distance dispersal (WALD) model, for estimating dispersal kernels of wind-dispersed seeds and their escape probability from the canopy. The model is based on simplifications to well-established three-dimensional Lagrangian stochastic approaches for turbulent scalar transport resulting in a two-parameter Wald (or inverse Gaussian) distribution. Unlike commonly used phenomenological models, WALD's parameters can be estimated from the key factors affecting wind dispersal--wind statistics, seed release height, and seed terminal velocity--determined independently of dispersal data. WALD's asymptotic power-law tail has an exponent of -3/2, a limiting value verified by a meta-analysis for a wide variety of measured dispersal kernels and larger than the exponent of the bivariate Student t-test (2Dt). We tested WALD using three dispersal data sets on forest trees, heathland shrubs, and grassland forbs and compared WALD's performance with that of other analytical mechanistic models (revised versions of the tilted Gaussian Plume model and the advection-diffusion equation), revealing fairest agreement between WALD predictions and measurements. Analytical mechanistic models, such as WALD, combine the advantages of simplicity and mechanistic understanding and are valuable tools for modeling large-scale, long-term plant population dynamics.

  12. Urban morphological analysis for mesoscale meteorological and dispersion modeling applications : current issues

    SciTech Connect

    Burian, S. J.; Brown, M. J.; Ching, J.; Cheuk, M. L.; Yuan, M.; McKinnon, A. T.; Han, W. S.

    2004-01-01

    Accurate predictions of air quality and atmospheric dispersion at high spatial resolution rely on high fidelity predictions of mesoscale meteorological fields that govern transport and turbulence in urban areas. However, mesoscale meteorological models do not have the spatial resolution to directly simulate the fluid dynamics and thermodynamics in and around buildings and other urban structures that have been shown to modify micro- and mesoscale flow fields (e.g., see review by Bornstein 1987). Mesoscale models therefore have been adapted using numerous approaches to incorporate urban effects into the simulations (e.g., see reviews by Brown 2000 and Bornstein and Craig 2002). One approach is to introduce urban canopy parameterizations to approximate the drag, turbulence production, heating, and radiation attenuation induced by sub-grid scale buildings and urban surface covers (Brown 2000). Preliminary results of mesoscale meteorological and air quality simulations for Houston (Dupont et al. 2004) demonstrated the importance of introducing urban canopy parameterizations to produce results with high spatial resolution that accentuates variability, highlights important differences, and identifies critical areas. Although urban canopy parameterizations may not be applicable to all meteorological and dispersion models, they have been successfully introduced and demonstrated in many of the current operational and research mode mesoscale models, e.g., COAMPS (Holt et al. 2002), HOTMAC (Brown and Williams 1998), MM5 (e.g., Otte and Lacser 2001; Lacser and Otte 2002; Dupont et al. 2004), and RAMS (Rozoff et al. 2003). The primary consequence of implementing an urban parameterization in a mesoscale meteorological model is the need to characterize the urban terrain in greater detail. In general, urban terrain characterization for mesoscale modeling may be described as the process of collecting datasets of urban surface cover physical properties (e.g., albedo, emissivity) and

  13. AIR QUALITY MODELING FOR THE TWENTY-FIRST CENTURY

    EPA Science Inventory

    This presentation describes recent and evolving advances in the science of numerical air quality simulation modeling. Emphasis is placed on new developments in particulate matter modeling and atmospheric chemistry, diagnostic modeling tools, and integrated modeling systems. New...

  14. Reconstruction of Rayleigh-Lamb dispersion spectrum based on noise obtained from an air-jet forcing.

    PubMed

    Larose, Eric; Roux, Philippe; Campillo, Michel

    2007-12-01

    The time-domain cross correlation of incoherent and random noise recorded by a series of passive sensors contains the impulse response of the medium between these sensors. By using noise generated by a can of compressed air sprayed on the surface of a plexiglass plate, we are able to reconstruct not only the time of flight but the whole wave forms between the sensors. From the reconstruction of the direct A(0) and S(0) waves, we derive the dispersion curves of the flexural waves, thus estimating the mechanical properties of the material without a conventional electromechanical source. The dense array of receivers employed here allow a precise frequency-wavenumber study of flexural waves, along with a thorough evaluation of the rate of convergence of the correlation with respect to the record length, the frequency, and the distance between the receivers. The reconstruction of the actual amplitude and attenuation of the impulse response is also addressed in this paper.

  15. Atmospheric dispersion modeling and meteorological monitoring in support of emergency planning and response for the US Army's Chemical Stockpile Disposal Program

    SciTech Connect

    Miller, R.L.

    1990-08-01

    This technical memorandum examines the role of atmospheric dispersion modeling and meteorological monitoring in support of emergency planning and response for the US Army's Chemical Stockpile Disposal Program (CSDP). Air dispersion modeling and meteorological monitoring are expected to form key components in integrated accident assessment and warning systems at each of the eight CSDP installations. This report assesses the capabilities of operating state-of-the-art systems in order to establish a baseline for developing the requirements of the CSDP systems. A general tutorial on the types of atmospheric dispersion models currently available is provided, and the criteria for selection of emergency response models are developed. The requirements for meteorological monitoring are also described. In addition, the basic limitations of modeling and monitoring are discussed, and the importance of model verification is emphasized. Staffing requirements to operate an integrated modeling and monitoring system are characterized. The current state of modeling, monitoring, and staffing levels in support of emergency response at the eight US Army chemical stockpile depots involved in the CSDP is examined. Specific requirements appropriate to emergency planning and response at each of the eight sites are described. Recommendations are made for both the integrated system and the individual components of air dispersion modeling and meteorological monitoring. Finally, future work required to prepare for emergency response is discussed. 22 refs., 4 figs., 3 tabs.

  16. Evaluating the role of green infrastructures on near-road pollutant dispersion and removal: Modelling and measurement.

    PubMed

    Morakinyo, Tobi Eniolu; Lam, Yun Fat; Hao, Song

    2016-11-01

    To enhance the quality of human life in a rapidly urbanized world plagued with high transportation, the masterful contribution of improved urban and local air quality cannot be overemphasized. In order to reduce human exposure to near-road air pollution, several approaches including the installation of roadside structural barriers especially in open street areas, such as city entrances are being applied. In the present study, the air quality around real world and idealized green infrastructures was investigated by means of numerical simulation and a short field measurement campaign. Fair agreement was found between ENVI-met modelled and measured particulate matter's concentration data around a realistic vegetation barrier indicating a fair representation of reality in the model. Several numerical experiments were conducted to investigate the influence of barrier type (vegetation/hedge and green wall) and dimensions on near-road air quality. The results show different horizontal/vertical patterns and magnitudes of upwind and downwind relative concentration (with and without a barrier) depending on wind condition, barrier type and dimension. Furthermore, an integrated dispersion-deposition approach was employed to assess the impact on air quality of near-road vegetation barrier. At last, recommendations to city and urban planners on the implementation of roadside structural barriers were made.

  17. Evaluating the role of green infrastructures on near-road pollutant dispersion and removal: Modelling and measurement.

    PubMed

    Morakinyo, Tobi Eniolu; Lam, Yun Fat; Hao, Song

    2016-11-01

    To enhance the quality of human life in a rapidly urbanized world plagued with high transportation, the masterful contribution of improved urban and local air quality cannot be overemphasized. In order to reduce human exposure to near-road air pollution, several approaches including the installation of roadside structural barriers especially in open street areas, such as city entrances are being applied. In the present study, the air quality around real world and idealized green infrastructures was investigated by means of numerical simulation and a short field measurement campaign. Fair agreement was found between ENVI-met modelled and measured particulate matter's concentration data around a realistic vegetation barrier indicating a fair representation of reality in the model. Several numerical experiments were conducted to investigate the influence of barrier type (vegetation/hedge and green wall) and dimensions on near-road air quality. The results show different horizontal/vertical patterns and magnitudes of upwind and downwind relative concentration (with and without a barrier) depending on wind condition, barrier type and dimension. Furthermore, an integrated dispersion-deposition approach was employed to assess the impact on air quality of near-road vegetation barrier. At last, recommendations to city and urban planners on the implementation of roadside structural barriers were made. PMID:27544646

  18. Preliminary studies of video images of smoke dispersion in the near wake of a model building

    NASA Astrophysics Data System (ADS)

    Huber, Alan H.; Pal Arya, S.; Rajala, Sarah A.; Borek, James W.

    A summary of analyses of video images of smoke in a wind tunnel study of dispersion in the near wake of a model building is presented. The analyses provide information on both the instantaneous and time-average patterns of dispersion. Since the images represent vertically-integrated or crosswind-integrated smoke concentration, only the primary spatial and temporal scales of pollutant dispersion can be examined. Special graphic displays of the results are presented to assist in the data interpretation. The video image format is shown to have great potential as an easily quantifiable electronic medium for studying the dispersion of smoke.

  19. Comparison of Average Transport and Dispersion Among a Gaussian Model, a Two-Dimensional Model and a Three-Dimensional Model

    SciTech Connect

    Mitchell, J A; Molenkamp, C R; Bixler, N E; Morrow, C W; Ramsdell, Jr., J V

    2004-05-10

    The Nuclear Regulatory Commission uses MACCS2 (MELCOR Accident Consequence Code System, Version 2) for regulatory purposes such as planning for emergencies and cost-benefit analyses. MACCS2 uses a straight-line Gaussian model for atmospheric transport and dispersion. This model has been criticized as being overly simplistic, although only expected values of metrics of interest are used in the regulatory arena. To test the assumption that averaging numerous weather results adequately compensates for the loss of structure in the meteorology that occurs away from the point of release, average MACCS2 results have been compared with average results from a state-of-the-art, 3-dimensional LODI (Lagrangian Operational Dispersion Integrator)/ADAPT (Atmospheric Data Assimilation and Parameterization Technique) and a Lagrangian trajectory, Gaussian puff transport and dispersion model from RASCAL (Radiological Assessment System for consequence Analysis). The weather sample included 610 weather trials representing conditions for a hypothetical release at the Central Facility of the Department of Energy's Atmospheric Radiation Measurement site. The values compared were average ground concentrations and average surface-level air concentrations at several distances out to 100 miles (160.9 km) from the assumed release site.

  20. Large Scale Numerical Modelling to Study the Dispersion of Persistent Toxic Substances Over Europe

    NASA Astrophysics Data System (ADS)

    Aulinger, A.; Petersen, G.

    2003-12-01

    For the past two decades environmental research at the GKSS Research Centre has been concerned with airborne pollutants with adverse effects on human health. The research was mainly focused on investigating the dispersion and deposition of heavy metals like lead and mercury over Europe by means of numerical modelling frameworks. Lead, in particular, served as a model substance to study the relationship between emissions and human exposition. The major source of airborne lead in Germany was fuel combustion until the 1980ies when its use as gasoline additive declined due to political decisions. Since then, the concentration of lead in ambient air and the deposition rates decreased in the same way as the consumption of leaded fuel. These observations could further be related to the decrease of lead concentrations in human blood measured during medical studies in several German cities. Based on the experience with models for heavy metal transport and deposition we have now started to turn our research focus to organic substances, e.g. PAHs. PAHs have been recognized as significant air borne carcinogens for several decades. However, it is not yet possible to precisely quantify the risk of human exposure to those compounds. Physical and chemical data, known from literature, describing the partitioning of the compounds between particle and gas phase and their degradation in the gas phase are implemented in a tropospheric chemistry module. In this way, the fate of PAHs in the atmosphere due to different particle type and size and different meteorological conditions is tested before carrying out large-scale and long-time studies. First model runs have been carried out for Benzo(a)Pyrene as one of the principal carcinogenic PAHs. Up to now, nearly nothing is known about degradation reactions of particle bound BaP. Thus, they could not be taken into account in the model so far. On the other hand, the proportion of BaP in the gas phase has to be considered at higher ambient

  1. Modelling spatio-temporal patterns of long-distance Culicoides dispersal into northern Australia.

    PubMed

    Eagles, D; Walker, P J; Zalucki, M P; Durr, P A

    2013-07-01

    Novel arboviruses, including new serotypes of bluetongue virus, are isolated intermittently from cattle and insects in northern Australia. These viruses are thought to be introduced via windborne dispersal of Culicoides from neighbouring land masses to the north. We used the HYSPLIT particle dispersal model to simulate the spatio-temporal patterns of Culicoides dispersal into northern Australia from nine putative source sites across Indonesia, Timor-Leste and Papua New Guinea. Simulated dispersal was found to be possible from each site, with the islands of Timor and Sumba highlighted as the likely principal sources and February the predominant month of dispersal. The results of this study define the likely spatial extent of the source and arrival regions, the relative frequency of dispersal from the putative sources and the temporal nature of seasonal winds from source sites into arrival regions. Importantly, the methodology and results may be applicable to other insect and pathogen incursions into northern Australia.

  2. Delay differential models in multimode laser dynamics: taking chromatic dispersion into account

    NASA Astrophysics Data System (ADS)

    Vladimirov, A. G.; Huyet, G.; Pimenov, A.

    2016-04-01

    A set of differential equations with distributed delay is derived for modeling of multimode ring lasers with intracavity chromatic dispersion. Analytical stability analysis of continuous wave regimes is performed and it is demonstrated that sufficiently strong anomalous dispersion can destabilize these regimes.

  3. Model of Close Packing for Determination of the Major Characteristics of the Liquid Dispersions Components

    PubMed Central

    Kolikov, Kiril Hristov; Hristozov, Dimo Donchev; Koleva, Radka Paskova; Krustev, Georgi Aleksandrov

    2014-01-01

    We introduce a close packing model of the particles from the disperse phase of a liquid dispersion. With this model, we find the sediment volumes, the emergent, and the bound dispersion medium. We formulate a new approach for determining the equivalent radii of the particles from the sediment and the emergent (different from the Stokes method). We also describe an easy manner to apply algebraic method for determining the average volumetric mass densities of the ultimate sediment and emergent, as well as the free dispersion medium (without using any pycnometers or densitometers). The masses of the different components and the density of the dispersion phase in the investigated liquid dispersion are also determined by means of the established densities. We introduce for the first time a dimensionless scale for numeric characterization and therefore an index for predicting the sedimentation stability of liquid dispersions in case of straight and/or reverse sedimentation. We also find the quantity of the pure substance (without pouring out or drying) in the dispersion phase of the liquid dispersions. PMID:25136673

  4. Dispersal leads to spatial autocorrelation in species distributions: A simulation model

    USGS Publications Warehouse

    Bahn, V.; Krohn, W.B.; O'Connor, R.J.

    2008-01-01

    Compared to population growth regulated by local conditions, dispersal has been underappreciated as a central process shaping the spatial distribution of populations. This paper asks: (a) which conditions increase the importance of dispersers relative to local recruits in determining population sizes? and (b) how does dispersal influence the spatial distribution patterns of abundances among connected populations? We approached these questions with a simulation model of populations on a coupled lattice with cells of continuously varying habitat quality expressed as carrying capacities. Each cell contained a population with the basic dynamics of density-regulated growth, and was connected to other populations by immigration and emigration. The degree to which dispersal influenced the distribution of population sizes depended most strongly on the absolute amount of dispersal, and then on the potential population growth rate. Dispersal decaying in intensity with distance left close neighbours more alike in population size than distant populations, leading to an increase in spatial autocorrelation. The spatial distribution of species with low potential growth rates is more dependent on dispersal than that of species with high growth rates; therefore, distribution modelling for species with low growth rates requires particular attention to autocorrelation, and conservation management of these species requires attention to factors curtailing dispersal, such as fragmentation and dispersal barriers. ?? 2007 Elsevier B.V. All rights reserved.

  5. Critique of the equivalent air altitude model.

    PubMed

    Conkin, Johnny; Wessel, James H

    2008-10-01

    The adverse effects of hypoxic hypoxia include acute mountain sickness (AMS), high altitude pulmonary edema, and high altitude cerebral edema. It has long been assumed that those manifestations are directly related to reduction in the inspired partial pressure of oxygen (P(I)O2). This assumption underlies the equivalent air altitude (EAA) model, which holds that combinations of barometric pressure (P(B)) and inspired fraction of O2 (F(I)O2) that produce the same P(I)O2 will result in identical physiological responses. However, a growing body of evidence seems to indicate that different combinations of P(B) and P(I)O2 may produce different responses to the same P(I)O2. To investigate this question with respect to AMS, we conducted a search of the literature using the terms hypobaric hypoxia, normobaric hypoxia, and hypobaric normoxia. The results suggest that the EAA model provides only an approximate description of isohypoxia, and that P(B) has an independent effect on hypoxia and AMS. A historical report from 1956 and 15 reports from 1983 to 2005 compare the same hypoxic P(I)O2 at different P(B) with respect to the development of hypoxia and AMS. These data provide evidence for an independent effect of P(B) on hypoxia and AMS, and thereby invalidate EAA as an ideal model of isohypoxia. Refinement of the EAA model is needed, in particular for applications to high altitude where supplemental O2 is inadequate to prevent hypoxic hypoxia. Adjustment through probabilistic statistical modeling to match the current limited experimental observations is one approach to a better isohypoxic model. PMID:18856188

  6. TWODEE: the Health and Safety Laboratory's shallow layer model for heavy gas dispersion. Part 3: experimental validation (Thorney Island).

    PubMed

    Hankin, R K; Britter, R E

    1999-05-14

    Part 1 of this three-part paper described the mathematical and physical basis of TWODEE, the Health and Safety Laboratory's shallow layer model for heavy gas dispersion. In part 2, the numerical solution method used to simulate the TWODEE mathematical model was developed; the flux correction scheme of Zalesak [S.T. Zalesak, Fully multidimensional flux-corrected transport algorithms for fluids, Journal of Computational Physics, 31 (1979) 335-362.] was used in TWODEE. This paper compares results of the TWODEE model to the experimental results taken at Thorney Island [J. McQuaid, B. Roebuck, The dispersion of heavier-than-air gas from a fenced enclosure. Final report to the U.S. Coast Guard on contract with the Health and Safety Executive. Technical Report RPG 1185, Safety Engineering Laboratory, Research and Laboratory Services Division, Broad Lane, Sheffield S3 7HQ, UK, 1985.]. There is no evidence to suggest that TWODEE predictions could be improved by changing any of the entrainment parameters from generally accepted values [R.K.S. Hankin, Heavy gas dispersion over complex terrain, PhD thesis, Cambridge University, 1997.]. The TWODEE model was broadly insensitive to the exact values of the entrainment parameters.

  7. Mathematical modelling of dispersion-managed thulium/holmium fibre lasers

    SciTech Connect

    Yarutkina, I A; Shtyrina, O V

    2013-11-30

    The mathematical model of a dispersion-managed thulium/holmium fibre laser is described; the results of numerical calculations and their comparison with the experimental data are presented. Qualitative agreement of the results of the mathematical modelling with those of the experiment is obtained. Using the methods of mathematical modelling, the variation in the characteristics of the optical pulses due to the change in the average cavity dispersion is analysed. (control of laser radiation parameters)

  8. Extension of an atmospheric dispersion model to include building wake effects

    SciTech Connect

    Weil, J.C.; Brower, R.P.; Corio, L.A.

    1999-07-01

    A modification to a dispersion model for the convective boundary layer (CBL) is proposed to deal with stack sources located on or near buildings and affected by the turbulent wake of the building. Wake effects are greatest within the near wake or cavity region close to the building. The approach is to combine an earlier wake model with the CBL model such that the appropriate concentration and dispersion limits are satisfied at short, intermediate, and large downwind distances.

  9. A dynamic approach for the impact of a toxic gas dispersion hazard considering human behaviour and dispersion modelling.

    PubMed

    Lovreglio, Ruggiero; Ronchi, Enrico; Maragkos, Georgios; Beji, Tarek; Merci, Bart

    2016-11-15

    The release of toxic gases due to natural/industrial accidents or terrorist attacks in populated areas can have tragic consequences. To prevent and evaluate the effects of these disasters different approaches and modelling tools have been introduced in the literature. These instruments are valuable tools for risk managers doing risk assessment of threatened areas. Despite the significant improvements in hazard assessment in case of toxic gas dispersion, these analyses do not generally include the impact of human behaviour and people movement during emergencies. This work aims at providing an approach which considers both modelling of gas dispersion and evacuation movement in order to improve the accuracy of risk assessment for disasters involving toxic gases. The approach is applied to a hypothetical scenario including a ship releasing Nitrogen dioxide (NO2) on a crowd attending a music festival. The difference between the results obtained with existing static methods (people do not move) and a dynamic approach (people move away from the danger) which considers people movement with different degrees of sophistication (either a simple linear path or more complex behavioural modelling) is discussed.

  10. A dynamic approach for the impact of a toxic gas dispersion hazard considering human behaviour and dispersion modelling.

    PubMed

    Lovreglio, Ruggiero; Ronchi, Enrico; Maragkos, Georgios; Beji, Tarek; Merci, Bart

    2016-11-15

    The release of toxic gases due to natural/industrial accidents or terrorist attacks in populated areas can have tragic consequences. To prevent and evaluate the effects of these disasters different approaches and modelling tools have been introduced in the literature. These instruments are valuable tools for risk managers doing risk assessment of threatened areas. Despite the significant improvements in hazard assessment in case of toxic gas dispersion, these analyses do not generally include the impact of human behaviour and people movement during emergencies. This work aims at providing an approach which considers both modelling of gas dispersion and evacuation movement in order to improve the accuracy of risk assessment for disasters involving toxic gases. The approach is applied to a hypothetical scenario including a ship releasing Nitrogen dioxide (NO2) on a crowd attending a music festival. The difference between the results obtained with existing static methods (people do not move) and a dynamic approach (people move away from the danger) which considers people movement with different degrees of sophistication (either a simple linear path or more complex behavioural modelling) is discussed. PMID:27343142

  11. Modeling VOC emissions and air concentrations from the Exxon Valdez oil spill

    SciTech Connect

    Hanna, S.R. ); Drivas, P.J. )

    1993-03-01

    During the two-week period following the Exxon Valdez oil spill in March 1989 in Prince William Sound, Alaska, toxic volatile organic compounds (VOCs) evaporated from the surface of the oil spill and were transported and dispersed throughout the region. To estimate the air concentrations of these VOCs, emissions and dispersion modeling was conducted for each hour during the first two weeks of the spill. A multicomponent evaporative emissions model was developed and applied to the oil spill; the model considered the evaporation of 15 specific compounds, including benzene and toluene. Both mass transfer from the surface of the spill and diffusion through the oil layer were considered in the emissions model. Maximum emissions of toluene were calculated to equal about 20,000 kg/hr, or about 5 g/m[sup 2] hr, at a time of eight hours after the initial oil spill. Meteorological data were acquired from sources and used to estimate hourly-averaged wind velocity over the spill. Air concentrations of specific components were calculated using the ATDL area source diffusion model and the Offshore and Coastal Dispersion (OCD) model. Maximum hourly-averaged concentrations were predicted not to exceed 10 ppmv for any compound. 24 refs., 6 figs., 4 tabs.

  12. Analysis of the dispersion of air pollutants from a factory Asphalt in Nuevo Vallarta, Nay., Mex

    NASA Astrophysics Data System (ADS)

    Carrillo-Gonzalez, F. M.; Gaitán-Rodríguez, M.; Cornejo-López, V. M.; Morales-Hernández, J. C.

    2013-12-01

    An asphalt factory has operated intermittently near the urban area of Nuevo Vallarta on Banderas Bay, Nayarit, Mex. This factory has emissions that can affect the health of people living in the colonies nearest are Valle Dorado and San Vicente. The dispersion of emissions depends on the wind (sea breeze-land breeze) and the roof of the inversion, these phenomena determined by the density and temperature of the lower layers of the atmosphere. Asphalts are dark colored binder materials, formed by a complex non-volatile hydrocarbon chains and high molecular weight. Asphalts are produced from petroleum, but by a process of evaporation of the volatiles, leaving the asphalt alone. Therefore, the material emitted by the fireplace are mainly low molecular weight hydrocarbons known as polycyclic aromatic hydrocarbons (PAHs). The Emergency Response Guide 2008 developed by various agencies in Canada, U.S. and Mexico mentions that the hydrocarbon gas can have health effects. Animal studies have shown that PAHs can cause harmful effects to the skin, body fluids and some PAHs are carcinogenic. An analysis of the wind field, monthly and seasonal averages for the years 2010 and 2011, recorded in AWS administered by the CEMCO and other stations located near the study area.

  13. Long-distance aerial dispersal modelling of Culicoides biting midges: case studies of incursions into Australia

    PubMed Central

    2014-01-01

    Background Previous studies investigating long-distance, wind-borne dispersal of Culicoides have utilised outbreaks of clinical disease (passive surveillance) to assess the relationship between incursion and dispersal event. In this study, species of exotic Culicoides and isolates of novel bluetongue viruses, collected as part of an active arbovirus surveillance program, were used for the first time to assess dispersal into an endemic region. Results A plausible dispersal event was determined for five of the six cases examined. These include exotic Culicoides specimens for which a possible dispersal event was identified within the range of two days – three weeks prior to their collection and novel bluetongue viruses for which a dispersal event was identified between one week and two months prior to their detection in cattle. The source location varied, but ranged from Lombok, in eastern Indonesia, to Timor-Leste and southern Papua New Guinea. Conclusions Where bluetongue virus is endemic, the concurrent use of an atmospheric dispersal model alongside existing arbovirus and Culicoides surveillance may help guide the strategic use of limited surveillance resources as well as contribute to continued model validation and refinement. Further, the value of active surveillance systems in evaluating models for long-distance dispersal is highlighted, particularly in endemic regions where knowledge of background virus and vector status is beneficial. PMID:24943652

  14. Modelling surface radioactive spill dispersion in the Alborán Sea.

    PubMed

    Periáñez, R

    2006-01-01

    The Strait of Gibraltar and the Alborán Sea are the only connection between the Atlantic Ocean and the Mediterranean Sea. Intense shipping activities occur in the area, including transport of waste radionuclides and transit of nuclear submarines. Thus, it is relevant to have a dispersion model that can be used in an emergency situation after an accident, to help the decision-making process. Such dispersion model requires an appropriate description of the physical oceanography of the region of interest, with simulations of tides and residual (average) circulation. In this work, a particle-tracking dispersion model that can be used to simulate the dispersion of radionuclides in the system Strait of Gibraltar-Alborán Sea is described. Tides are simulated using a barotropic model and for the average circulation a reduced-gravity model is applied. This model is able to reproduce the main features of the Alborán circulation (the well known Western Alborán Gyre, WAG, and the coastal circulation mode). The dispersion model is run off-line, using previously computed tidal and residual currents. The contamination patch is simulated by a number of particles whose individual paths are computed; diffusion and decay being modelled using a Monte Carlo method. Radionuclide concentrations may be obtained from the density of particles per water volume unit. Results from the hydrodynamic models have been compared with observations in the area. Several examples of dispersion computations under different wind and circulation conditions are presented. PMID:16860913

  15. Regional model studies of the atmospheric dispersion of fine volcanic ash after the eruption of Eyjafjallajoekull

    NASA Astrophysics Data System (ADS)

    Langmann, B.; Hort, M. K.

    2010-12-01

    During the eruption of Eyjafjallajoekull on Iceland in April/May 2010 air traffic over Europe was repeatedly interrupted because of volcanic ash in the atmosphere. This completely unusual situation in Europe leads to the demand of improved crisis management, e.g. European wide regulations of volcanic ash thresholds and improved forecasts of theses thresholds. However, the quality of the forecast of fine volcanic ash concentrations in the atmosphere depends to a great extent on a realistic description of the erupted mass flux of fine ash particles, which is rather uncertain. Numerous aerosol measurements (ground based and satellite remote sensing, and in situ measurements) all over Europe have tracked the volcanic ash clouds during the eruption of Eyjafjallajoekull offering the possibility for an interdisciplinary effort between volcanologists and aerosol researchers to analyse the release and dispersion of fine volcanic ash in order to better understand the needs for realistic volcanic ash forecasts. This contribution describes the uncertainties related to the amount of fine volcanic ash released from Eyjafjallajoekull and its influence on the dispersion of volcanic ash over Europe by numerical modeling. We use the three-dimensional Eulerian atmosphere-chemistry/aerosol model REMOTE (Langmann et al., 2008) to simulate the distribution of volcanic ash as well as its deposition after the eruptions of Eyjafjallajoekull during April and May 2010. The model has been used before to simulate the fate of the volcanic ash after the volcanic eruptions of Kasatochi in 2008 (Langmann et al., 2010) and Mt. Pinatubo in 1991. Comparing our model results with available measurements for the Eyjafjallajoekull eruption we find a quite good agreement with available ash concentrations data measured over Europe as well as with the results from other models. Langmann, B., K. Zakšek and M. Hort, Atmospheric distribution and removal of volcanic ash after the eruption of Kasatochi volcano

  16. Safety Evaluation of Dry Powder Formulations by Direct Dispersion onto Air-Liquid Interface Cultured Cell Layer.

    PubMed

    Asai, Ayumu; Okuda, Tomoyuki; Yamauchi, Tomoyo; Sugiura, Yuka; Okamoto, Hirokazu

    2016-01-01

    Most safety evaluations of dry powder inhalers (DPIs) using cultured cells have been performed with dry powder formulations dissolved in a medium. However, this method is not considered to be suitable to evaluate the safety of inhaled dry powder formulations correctly since it cannot reflect the actual phenomenon on the respiratory epithelial surface. In this study, we established a novel in-vitro safety evaluation system suitable for DPIs by combining an air-liquid interface cultured cell layer and a device for dispersing dry powders, and evaluated the safety of candidate excipients of dry powders for inhalation. The safety of excipients (sugars, amino acids, cyclodextrins, and positive controls) in solutions was compared using submerged cell culture systems with a conventional 96-well plate and Transwell(®). The sensitivity of the cells grown in Transwell(®) was lower than that of those grown in the 96-well plate. Dry powders were prepared by spray-drying and we evaluated their safety with a novel in-vitro safety evaluation system using an air-liquid interface cultured cell layer. Dry powders decreased the cell viability with doses more than solutions. On the other hand, dissolving the dry powders attenuated their cytotoxicity. This suggested that the novel in-vitro safety evaluation system would be suitable to evaluate the safety of DPIs with high sensitivity.

  17. Modeling of an air-backed diaphragm in dynamic pressure sensors: Effects of the air cavity

    NASA Astrophysics Data System (ADS)

    Liu, Haijun; Olson, Douglas A.; Yu, Miao

    2014-12-01

    As the key structure of most dynamic pressure sensors, a diaphragm backed by an air cavity plays a critical role in the determination of sensor performance metrics. In this paper, we investigate the influence of air cavity length on the sensitivity and bandwidth. A continuum mechanics model neglecting the air viscous effect is first developed to capture the structural-acoustic coupling between a clamped circular diaphragm and a cylindrical backing air cavity. To facilitate sensor design, close-form approximations are obtained to calculate the static sensitivity and the fundamental natural frequency of the air-backed diaphragm. Parametric studies based on this analytical model show that the air cavity can change both the effective mass and the effective stiffness of the diaphragm. One new finding is that the natural frequency of the air-backed diaphragm behaves differently in three different cavity length ranges. In particular, due to the mass effect of the air cavity being dominant, it is shown for the first time that the natural frequency decreases when the cavity length decreases below a critical value in the short cavity range. Furthermore, a finite element method (FEM) model is developed to validate the continuum mechanics model and to study the damping effect of the air cavity. These results provide important design guidelines for dynamic pressure sensors with air-backed diaphragms.

  18. Evaluating NOx emission inventories for regulatory air quality modeling using satellite and air quality model data

    NASA Astrophysics Data System (ADS)

    Kemball-Cook, Susan; Yarwood, Greg; Johnson, Jeremiah; Dornblaser, Bright; Estes, Mark

    2015-09-01

    The purpose of this study was to assess the accuracy of NOx emissions in the Texas Commission on Environmental Quality's (TCEQ) State Implementation Plan (SIP) modeling inventories of the southeastern U.S. We used retrieved satellite tropospheric NO2 columns from the Ozone Monitoring Instrument (OMI) together with NO2 columns from the Comprehensive Air Quality Model with Extensions (CAMx) to make top-down NOx emissions estimates using the mass balance method. Two different top-down NOx emissions estimates were developed using the KNMI DOMINO v2.0 and NASA SP2 retrievals of OMI NO2 columns. Differences in the top-down NOx emissions estimates made with these two operational products derived from the same OMI radiance data were sufficiently large that they could not be used to constrain the TCEQ NOx emissions in the southeast. The fact that the two available operational NO2 column retrievals give such different top-down NOx emissions results is important because these retrievals are increasingly being used to diagnose air quality problems and to inform efforts to solve them. These results reflect the fact that NO2 column retrievals are a blend of measurements and modeled data and should be used with caution in analyses that will inform policy development. This study illustrates both benefits and challenges of using satellite NO2 data for air quality management applications. Comparison with OMI NO2 columns pointed the way toward improvements in the CAMx simulation of the upper troposphere, but further refinement of both regional air quality models and the NO2 column retrievals is needed before the mass balance and other emission inversion methods can be used to successfully constrain NOx emission inventories used in U.S. regulatory modeling.

  19. Include dispersion in quantum chemical modeling of enzymatic reactions: the case of isoaspartyl dipeptidase.

    PubMed

    Zhang, Hai-Mei; Chen, Shi-Lu

    2015-06-01

    The lack of dispersion in the B3LYP functional has been proposed to be the main origin of big errors in quantum chemical modeling of a few enzymes and transition metal complexes. In this work, the essential dispersion effects that affect quantum chemical modeling are investigated. With binuclear zinc isoaspartyl dipeptidase (IAD) as an example, dispersion is included in the modeling of enzymatic reactions by two different procedures, i.e., (i) geometry optimizations followed by single-point calculations of dispersion (approach I) and (ii) the inclusion of dispersion throughout geometry optimization and energy evaluation (approach II). Based on a 169-atom chemical model, the calculations show a qualitative consistency between approaches I and II in energetics and most key geometries, demonstrating that both approaches are available with the latter preferential since both geometry and energy are dispersion-corrected in approach II. When a smaller model without Arg233 (147 atoms) was used, an inconsistency was observed, indicating that the missing dispersion interactions are essentially responsible for determining equilibrium geometries. Other technical issues and mechanistic characteristics of IAD are also discussed, in particular with respect to the effects of Arg233.

  20. Tracking hazardous air pollutants from a refinery fire by applying on-line and off-line air monitoring and back trajectory modeling.

    PubMed

    Shie, Ruei-Hao; Chan, Chang-Chuan

    2013-10-15

    The air monitors used by most regulatory authorities are designed to track the daily emissions of conventional pollutants and are not well suited for measuring hazardous air pollutants that are released from accidents such as refinery fires. By applying a wide variety of air-monitoring systems, including on-line Fourier transform infrared spectroscopy, gas chromatography with a flame ionization detector, and off-line gas chromatography-mass spectrometry for measuring hazardous air pollutants during and after a fire at a petrochemical complex in central Taiwan on May 12, 2011, we were able to detect significantly higher levels of combustion-related gaseous and particulate pollutants, refinery-related hydrocarbons, and chlorinated hydrocarbons, such as 1,2-dichloroethane, vinyl chloride monomer, and dichloromethane, inside the complex and 10 km downwind from the fire than those measured during the normal operation periods. Both back trajectories and dispersion models further confirmed that high levels of hazardous air pollutants in the neighboring communities were carried by air mass flown from the 22 plants that were shut down by the fire. This study demonstrates that hazardous air pollutants from industrial accidents can successfully be identified and traced back to their emission sources by applying a timely and comprehensive air-monitoring campaign and back trajectory air flow models. PMID:23912073

  1. Modelling drivers of mangrove propagule dispersal and restoration of abandoned shrimp farms

    NASA Astrophysics Data System (ADS)

    Di Nitto, D.; Erftemeijer, P. L. A.; van Beek, J. K. L.; Dahdouh-Guebas, F.; Higazi, L.; Quisthoudt, K.; Jayatissa, L. P.; Koedam, N.

    2013-07-01

    Propagule dispersal of four mangrove species Rhizophora mucronata, R. apiculata, Ceriops tagal and Avicennia officinalis in the Pambala-Chilaw Lagoon Complex (Sri Lanka) was studied by combining a hydrodynamic model with species-specific knowledge on propagule dispersal behaviour. Propagule transport was simulated using a finite-volume advection-diffusion model to investigate the effect of dispersal vectors (tidal flow, freshwater discharge and wind), trapping agents (retention by vegetation) and seed characteristics (buoyancy) on propagule dispersal patterns. Sensitivity analysis showed that smaller propagules, like the oval-shaped propagules of Avicennia officinalis, dispersed over larger distances and were most sensitive to changing values of retention by mangrove vegetation compared to larger, torpedo-shaped propagules of Rhizophora spp. and C. tagal. Directional propagule dispersal in this semi-enclosed lagoon with a small tidal range was strongly concentrated towards the edges of the lagoon and channels. Short distance dispersal appeared to be the main dispersal strategy for all four studied species, with most of the propagules being retained within the vegetation. Only a small proportion (max. 5%) of propagules left the lagoon through a channel connecting the lagoon with the open sea. Wind significantly influenced dispersal distance and direction once propagules entered the lagoon or adjacent channels. Implications of these findings for mangrove restoration were tested by simulating partial removal in the model of dikes around abandoned shrimp ponds to restore tidal hydrology and facilitate natural recolonisation by mangroves. The specific location of dike removal, (with respect to the vicinity of mangroves and independently suitable hydrodynamic flows), was found to significantly affect the resultant quantities and species of inflowing propagules and hence the potential effectiveness of natural regeneration. These results demonstrate the value of propagule

  2. Modelling drivers of mangrove propagule dispersal and restoration of abandoned shrimp farms

    NASA Astrophysics Data System (ADS)

    Di Nitto, D.; Erftemeijer, P. L. A.; van Beek, J. K. L.; Dahdouh-Guebas, F.; Higazi, L.; Quisthoudt, K.; Jayatissa, L. P.; Koedam, N.

    2013-01-01

    Propagule dispersal of four mangrove species Rhizophora mucronata, R. apiculata, Ceriops tagal and Avicennia officinalis in the Pambala-Chilaw Lagoon Complex (Sri Lanka) was studied by combining a hydrodynamic model with species-specific knowledge on propagule dispersal behaviour. Propagule transport was simulated using a finite-volume advection-diffusion model to investigate the effect of dispersal vectors (tidal flow, freshwater discharge and wind), trapping agents (retention by vegetation) and seed characteristics (buoyancy) on propagule dispersal patterns. Sensitivity analysis showed that smaller propagules, like the oval-shaped propagules of Avicennia officinalis, dispersed over larger distances and were most sensitive to changing values of retention by mangrove vegetation compared to larger, torpedo-shaped propagules of Rhizophora spp. and C. tagal. Directional propagule dispersal in this semi-enclosed lagoon with a small tidal range was strongly concentrated towards the edges of the lagoon and channels. Short distance dispersal appeared to be the main dispersal strategy for all four studied species, with most of the propagules being retained within the vegetation. Only a small proportion (max. 5%) of propagules left the lagoon through a channel connecting the lagoon with the open sea. Wind significantly influenced dispersal distance and direction once propagules entered the lagoon or adjacent channels. Implications of these findings for mangrove restoration were tested by simulating partial removal in the model of dikes around abandoned shrimp ponds to restore tidal hydrology and facilitate natural recolonisation by mangroves. The specific location of dike removal, (with respect to the vicinity of mangroves and independently suitable hydrodynamic flows), was found to significantly affect the resultant quantities and species of inflowing of propagules and hence the potential effectiveness of natural regeneration. These results demonstrate the value of

  3. Determination of NH3 emissions from confined areas using backward Lagrangian stochastic dispersion modelling

    NASA Astrophysics Data System (ADS)

    Häni, Christoph; Neftel, Albrecht; Sintermann, Jörg

    2016-04-01

    a line integrated vertical concentration profile downwind of the source. The inclusion of the deposition process is necessary for a consistent interpretation of the measurements. References Flesch, T.K., Wilson, J.D., Harper, L.A., Crenna, B.P., Sharpe, R.R., 2004. Deducing ground-to-air emissions from observed trace gas concentrations: A field trial. J. Appl. Meteorol. 43 (3), 487-502. Wilson, J.D., Flesch, T.K., Crenna, B.P., 2012. Estimating Surface-Air Gas Fluxes by Inverse Dispersion Using a Backward Lagrangian Stochastic Trajectory Model, in: Lin, J., Brunner, D., Gerbig, C., Stohl, A., Luhar, A., Webley, P. (Eds.), Lagrangian Modeling of the Atmosphere. American Geophysical Union, Washington, D. C., pp. 149-162.

  4. Impact of inherent meteorology uncertainty on air quality model predictions

    EPA Science Inventory

    It is well established that there are a number of different classifications and sources of uncertainties in environmental modeling systems. Air quality models rely on two key inputs, namely, meteorology and emissions. When using air quality models for decision making, it is impor...

  5. Good manufacturing practice for modelling air pollution: Quality criteria for computer models to calculate air pollution

    NASA Astrophysics Data System (ADS)

    Dekker, C. M.; Sliggers, C. J.

    To spur on quality assurance for models that calculate air pollution, quality criteria for such models have been formulated. By satisfying these criteria the developers of these models and producers of the software packages in this field can assure and account for the quality of their products. In this way critics and users of such (computer) models can gain a clear understanding of the quality of the model. Quality criteria have been formulated for the development of mathematical models, for their programming—including user-friendliness, and for the after-sales service, which is part of the distribution of such software packages. The criteria have been introduced into national and international frameworks to obtain standardization.

  6. The Role of Dispersion in Radionuclide Transport - Data and Modeling Requirements: Revision No. 1

    SciTech Connect

    Stoller-Navarro Joint Venture

    2004-02-01

    This document is the collaborative effort of the members of an ad hoc subcommittee of the Underground Test Area Project Technical Working Group. This subcommittee was to answer questions and concerns raised by the Nevada Division of Environmental Protection to the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, regarding Pahute Mesa Corrective Action Units (CAUs) 101 and 102. The document attempts to synthesize the combined comments made by each member of this subcommittee into insights made in the role of dispersion in radionuclide transport data and modeling. Dispersion is one of many processes that control the concentration of radionuclides in groundwater beneath the Nevada Test Site where CAUs 101 and 102 are located. In order to understand the role of dispersion in radionuclide transport, there is a critical need for CAU- or site-specific data related to transport parameters which is currently lacking, particularly in the case of Western a nd Central Pahute Mesa. The purpose of this technical basis document is to: (1) define dispersion and its role in contaminant transport, (2) present a synopsis of field-scale dispersion measurements, (3) provide a literature review of theories to explain field-scale dispersion, (4) suggest approaches to account for dispersion in CAU-scale radionuclide modeling, and (5) to determine if additional dispersion measurements should be made at this time.

  7. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  8. A survey of air flow models for multizone structures

    SciTech Connect

    Feustel, H.E.; Dieris, J.

    1991-03-01

    Air flow models are used to simulate the rates of incoming and outgoing air flows for a building with known leakage under given weather and shielding conditions. Additional information about the flow paths and air-mass flows inside the building can only by using multizone air flow models. In order to obtain more information on multizone air flow models, a literature review was performed in 1984. A second literature review and a questionnaire survey performed in 1989, revealed the existence of 50 multizone air flow models, all developed since 1966, two of which are still under development. All these programs use similar flow equations for crack flow but differ in the versatility to describe the full range of flow phenomena and the algorithm provided for solving the set of nonlinear equations. This literature review was found that newer models are able to describe and simulate the ventilation systems and interrelation of mechanical and natural ventilation. 27 refs., 2 figs., 1 tab.

  9. A linear dispersion relation for the hybrid kinetic-ion/fluid-electron model of plasma physics

    NASA Astrophysics Data System (ADS)

    Told, D.; Cookmeyer, J.; Astfalk, P.; Jenko, F.

    2016-07-01

    A dispersion relation for a commonly used hybrid model of plasma physics is developed, which combines fully kinetic ions and a massless-electron fluid description. Although this model and variations of it have been used to describe plasma phenomena for about 40 years, to date there exists no general dispersion relation to describe the linear wave physics contained in the model. Previous efforts along these lines are extended here to retain arbitrary wave propagation angles, temperature anisotropy effects, as well as additional terms in the generalized Ohm’s law which determines the electric field. A numerical solver for the dispersion relation is developed, and linear wave physics is benchmarked against solutions of a full Vlasov-Maxwell dispersion relation solver. This work opens the door to a more accurate interpretation of existing and future wave and turbulence simulations using this type of hybrid model.

  10. THE NOAA/EPA FLUID MODELING FACILITY'S CONTRIBUTIONS TO THE UNDERSTANDING OF THE ATMOSPHERIC DISPERSION

    EPA Science Inventory

    Over the past thirty years, scientists at the Environmental Protection Agency's (EPA) Fluid Modeling Facility (FMF) have conducted laboratory studies of fluid flow and pollutant dispersion within three distinct experimental chambers: a meteorological wind tunnel, a water-channel ...

  11. [Problems in sampling the polycyclic aromatic hydrocarbons and air-dispersed particles].

    PubMed

    Pozzoli, L; Cottica, D

    1984-01-01

    Polynuclear aromatic hydrocarbons (PAH) are difficult to monitor and quantify. This study has been worked-out to evaluate various sampling methods for monitoring PAH in the work environment: the sampling devices were tested on the field in a carbon electrodes factory. During the field surveys we used the following sampling procedures that actually are the most adopted: Glass fiber filter, Silver membrane (Teflon, cellulosic esters), The over mentioned membrane filters followed by solid substrate (Amberlite XAD-2). For the analytical quantification we followed this procedure: PAH s extraction from membranes and resins by solvent in ultrasonic bath; quantification by GS-MS (single ion monitor, capillary column, on column injection). Results of field testing show that for completely retain PAHs during air sampling in work environment it is necessary to use a membrane filter followed by a back-up tube of Amberlite-XAD-2 resin: the use of this sampling device is particularly recommended during monitoring of work operations with temperature greater than or equal to 150 degrees C involving coke oven procedure, charcoal production, asphalt production, petroleum coking operations.

  12. Computational dispersion properties of horizontal staggered grids for atmospheric and ocean models

    NASA Technical Reports Server (NTRS)

    Fox-Rabinovitz, Michael S.

    1991-01-01

    The computational dispersion properties of horizontally and time-horizontally staggered grids utilizing corresponding centered-difference techniques for approximation of the adjustment, or gravity wave equations, are examined in terms of their group velocity characteristics. Results are acquired for oceanic and atmospheric models, the former being characterized by a much smaller Rossby radius of deformation. For all grids considered additional filtering is required to control and even eliminate waves with poor computational dispersion characteristics. Computational dispersion properties along with other computational characteristics and requirements give some guidance for an optimal selection of an appropriate grid for an ocean or atmospheric model.

  13. Highly dispersed buckybowls as model carbocatalysts for C–H bond activation

    SciTech Connect

    Soykal, I. Ilgaz; Wang, Hui; Park, Jewook; Li, An-Ping; Liang, Chengdu; Schwartz, Viviane

    2015-03-19

    Buckybowl fractions dispersed on mesoporous silica constitute an ideal model for studying the catalysis of graphitic forms of carbon since the dispersed carbon nanostructures contain a high ratio of edge defects and curvature induced by non-six-membered rings. Dispersion of the active centers on an easily accessible high surface area material allowed for high density of surface active sites associated with oxygenated structures. This report illustrates a facile method of creating model polycyclic aromatic nano-structures that are not only active for alkane C-H bond activation and oxidative dehydrogenation but also can be practical catalysts to be eventually used in industry.

  14. An On Line Atmospheric Dispersion Model (OLADMO) for the World Wide Web

    NASA Astrophysics Data System (ADS)

    Clegg, Adam J.

    2006-07-01

    This paper presents an overview of earlier and current methods of modelling atmospheric dispersion, and proposes and evaluates a screening model for operation over the World Wide Web. The On Line Atmospheric Dispersion Model (OLADMO) is a quasi boundary layer parameterised Gaussian plume model with additional algorithms to account for plume rise, building wake effects and deposition processes. The Monin-Obukhov length boundary layer parameter is utilised to define six stability classes in order to determine atmospheric turbulence and stability, whilst new equations, derived from an intercomparison study of old and next generation dispersion models, are used to calculate the horizontal and vertical dispersion coefficients σ y and σ z . Using data from two field experiments in Copenhagen, Denmark and Lillestrøm, Norway, the model results from OLADMO are found to compare favourably with the results from several old and next generation dispersion models. As a consequence of the unique nature of the meteorological and location factors of the Lillestrøm experiment, all models struggled to represent the concentrations observed during the field study adequately. However, OLADMO was the best performing model in this case, with a mean normalised crosswind integrated concentration 13% closer to the mean observed concentration than its nearest competitor. Because the evaluation of the model was conducted with a limited dataset, several limitations and improvements to both the model and experimental procedure are suggested.

  15. The Atmospheric Radionuclide Transport Model (ARTM) - Validation of a long-term atmospheric dispersion model

    NASA Astrophysics Data System (ADS)

    Hettrich, Sebastian; Wildermuth, Hans; Strobl, Christopher; Wenig, Mark

    2016-04-01

    In the last couple of years, the Atmospheric Radionuclide Transport Model (ARTM) has been developed by the German Federal Office for Radiation Protection (BfS) and the Society for Plant and Reactor Security (GRS). ARTM is an atmospheric dispersion model for continuous long-term releases of radionuclides into the atmosphere, based on the Lagrangian particle model. This model, developed in the first place as a more realistic replacement for the out-dated Gaussian plume models, is currently being optimised for further scientific purposes to study atmospheric dispersion in short-range scenarios. It includes a diagnostic wind field model, allows for the application of building structures and multiple sources (including linear, 2-and 3-dimensional source geometries), and considers orography and surface roughness. As an output it calculates the activity concentration, dry and wet deposition and can model also the radioactive decay of Rn-222. As such, ARTM requires to undergo an intense validation process. While for short-term and short-range models, which were mainly developed for examining nuclear accidents or explosions, a few measurement data-sets are available for validation, data-sets for validating long-term models are very sparse and the existing ones mostly prove to be not applicable for validation. Here we present a strategy for the validation of long-term Lagrangian particle models based on the work with ARTM. In our validation study, the first part we present is a comprehensive analysis of the model sensitivities on different parameters like e.g. (simulation grid size resolution, starting random number, amount of simulation particles, etc.). This study provides a good estimation for the uncertainties of the simulation results and consequently can be used to generate model outputs comparable to the available measurements data at various distances from the emission source. This comparison between measurement data from selected scenarios and simulation results

  16. Assessment of methods for creating a national building statistics database for atmospheric dispersion modeling

    SciTech Connect

    Velugubantla, S. P.; Burian, S. J.; Brown, M. J.; McKinnon, A. T.; McPherson, T. N.; Han, W. S.

    2004-01-01

    Mesoscale meteorological codes and transport and dispersion models are increasingly being applied in urban areas. Representing urban terrain characteristics in these models is critical for accurate predictions of air flow, heating and cooling, and airborne contaminant concentrations in cities. A key component of urban terrain characterization is the description of building morphology (e.g., height, plan area, frontal area) and derived properties (e.g., roughness length). Methods to determine building morphological statistics range from manual field surveys to automated processing of digital building databases. In order to improve the quality and consistency of mesoscale meteorological and atmospheric dispersion modeling, a national dataset of building morphological statistics is needed. Currently, due to the expense and logistics of conducting detailed field surveys, building statistics have been derived for only small sections of a few cities. In most other cities, modeling projects rely on building statistics estimated using intuition and best guesses. There has been increasing emphasis in recent years to derive building statistics using digital building data or other data sources as a proxy for those data. Although there is a current expansion in public and private sector development of digital building data, at present there is insufficient data to derive a national building statistics database using automated analysis tools. Too many cities lack digital data on building footprints and heights and many of the cities having such data do so for only small areas. Due to the lack of sufficient digital building data, other datasets are used to estimate building statistics. Land use often serves as means to provide building statistics for a model domain, but the strength and consistency of the relationship between land use and building morphology is largely uncertain. In this paper, we investigate whether building statistics can be correlated to the underlying land

  17. Parallel Implementation of Dispersive Tsunami Wave Modeling with a Nesting Algorithm for the 2011 Tohoku Tsunami

    NASA Astrophysics Data System (ADS)

    Baba, Toshitaka; Takahashi, Narumi; Kaneda, Yoshiyuki; Ando, Kazuto; Matsuoka, Daisuke; Kato, Toshihiro

    2015-12-01

    Because of improvements in offshore tsunami observation technology, dispersion phenomena during tsunami propagation have often been observed in recent tsunamis, for example the 2004 Indian Ocean and 2011 Tohoku tsunamis. The dispersive propagation of tsunamis can be simulated by use of the Boussinesq model, but the model demands many computational resources. However, rapid progress has been made in parallel computing technology. In this study, we investigated a parallelized approach for dispersive tsunami wave modeling. Our new parallel software solves the nonlinear Boussinesq dispersive equations in spherical coordinates. A variable nested algorithm was used to increase spatial resolution in the target region. The software can also be used to predict tsunami inundation on land. We used the dispersive tsunami model to simulate the 2011 Tohoku earthquake on the Supercomputer K. Good agreement was apparent between the dispersive wave model results and the tsunami waveforms observed offshore. The finest bathymetric grid interval was 2/9 arcsec (approx. 5 m) along longitude and latitude lines. Use of this grid simulated tsunami soliton fission near the Sendai coast. Incorporating the three-dimensional shape of buildings and structures led to improved modeling of tsunami inundation.

  18. Development of a Geographic Information System Based Dust Dispersion Modeling System for Use in the Planning Implementation of Military Training Exercises

    SciTech Connect

    Crandall, D.; Rutz, F.

    2004-01-01

    As residential areas continue to develop near military sites, possible impacts from military traffic and exercises become of greater concern. Of particular concern is the effect of particulate matter and atmospheric dust dispersion on air quality caused by such maneuvers. To aid this problem, Pacific Northwest National Laboratory proposed a plan to develop, document, and test a modeling system in support of dust dispersion reduction and management near government sites. To accomplish this task a model interface was developed that would be user friendly yet sophisticated enough to accommodate the varying needs of the client. One such need was for the modeling system to be capable of providing data for diverse locations and varying sites. To accomplish this task, the dust dispersion modeling system needed to be integrated with a geographic information system (GIS). Through use of the GIS application, data maps contained within the application could be used to create new sites. The GIS application would also allow the user to enter the point, area, or line source required to run the dispersion modeling system. Incorporating the GIS with the model would allow the user to view plume rise and expansion over actual data maps of the desired site. By using historical, current, and user defined data, near real-time dust dispersion models will aid in estimating and managing the effects of military exercises on the environment and nonmilitary personnel.

  19. AIR TOXICS MODELING RESEARCH PROGRAM: AN OVERVIEW

    EPA Science Inventory

    This product is a Microsoft Powerpoint slide presentation which was given at the joint EPA Region 3 - Mid-Atlantic Regional Air Management Association (MARAMA) Air Toxic Summit in Philadelphia, Pennsylvania held from October 18, 2005 through October 20, 2005. The slide presentat...

  20. Testing modern human out-of-Africa dispersal models and implications for modern human origins.

    PubMed

    Reyes-Centeno, Hugo; Hubbe, Mark; Hanihara, Tsunehiko; Stringer, Chris; Harvati, Katerina

    2015-10-01

    The modern human expansion process out of Africa has important implications for understanding the genetic and phenotypic structure of extant populations. While intensely debated, the primary hypotheses focus on either a single dispersal or multiple dispersals out of the continent. Here, we use the human fossil record from Africa and the Levant, as well as an exceptionally large dataset of Holocene human crania sampled from Asia, to model ancestor-descendant relationships along hypothetical dispersal routes. We test the spatial and temporal predictions of competing out-of-Africa models by assessing the correlation of geographical distances between populations and measures of population differentiation derived from quantitative cranial phenotype data. Our results support a model in which extant Australo-Melanesians are descendants of an initial dispersal out of Africa by early anatomically modern humans, while all other populations are descendants of a later migration wave. Our results have implications for understanding the complexity of modern human origins and diversity.

  1. Dispersion of radionuclides released into a stable planetary boundary layer using a Monte Carlo model.

    PubMed

    Basit, Abdul; Shoaib Raza, S; Irfan, Naseem

    2006-12-01

    In this paper a Monte Carlo model for describing the atmospheric dispersion of radionuclides (represented by Lagrangian particles/neutral tracers) continuously released into a stable planetary boundary layer is presented. The effect of variation in release height and wind directional shear on plume dispersion is studied. The resultant plume concentration and dose rate at the ground is also calculated. The turbulent atmospheric parameters, like vertical profiles of fluctuating wind velocity components and eddy lifetime, were calculated using empirical relations for a stable atmosphere. The horizontal and vertical dispersion coefficients calculated by a numerical Lagrangian model are compared with the original and modified Pasquill-Gifford and Briggs empirical sigmas. The comparison shows that the Monte Carlo model can successfully predict dispersion in a stable atmosphere using the empirical turbulent parameters. The predicted ground concentration and dose rate contours indicate a significant increase in the affected area when wind shear is accounted for in the calculations.

  2. Testing modern human out-of-Africa dispersal models and implications for modern human origins.

    PubMed

    Reyes-Centeno, Hugo; Hubbe, Mark; Hanihara, Tsunehiko; Stringer, Chris; Harvati, Katerina

    2015-10-01

    The modern human expansion process out of Africa has important implications for understanding the genetic and phenotypic structure of extant populations. While intensely debated, the primary hypotheses focus on either a single dispersal or multiple dispersals out of the continent. Here, we use the human fossil record from Africa and the Levant, as well as an exceptionally large dataset of Holocene human crania sampled from Asia, to model ancestor-descendant relationships along hypothetical dispersal routes. We test the spatial and temporal predictions of competing out-of-Africa models by assessing the correlation of geographical distances between populations and measures of population differentiation derived from quantitative cranial phenotype data. Our results support a model in which extant Australo-Melanesians are descendants of an initial dispersal out of Africa by early anatomically modern humans, while all other populations are descendants of a later migration wave. Our results have implications for understanding the complexity of modern human origins and diversity. PMID:26164107

  3. TWODEE: the Health and Safety Laboratory's shallow layer model for heavy gas dispersion. Part 1. Mathematical basis and physical assumptions.

    PubMed

    Hankin, R K; Britter, R E

    1999-05-14

    The Major Hazard Assessment Unit of the Health and Safety Executive (HSE) provides advice to local planning authorities on land use planning in the vicinity of major hazard sites. For sites with the potential for large scale releases of toxic heavy gases such as chlorine this advice is based on risk levels and is informed by use of the computerised risk assessment tool RISKAT [C. Nussey, M. Pantony, R. Smallwood, HSE's risk assessment tool RISKAT, Major Hazards: Onshore and Offshore, October, 1992]. At present RISKAT uses consequence models for heavy gas dispersion that assume flat terrain. This paper is the first part of a three part paper. Part 1 describes the mathematical basis of TWODEE, the Health and Safety Laboratory's shallow layer model for heavy gas dispersion. The shallow layer approach used by TWODEE is a compromise between the complexity of CFD models and the simpler integral models. Motivated by the low aspect ratio of typical heavy gas clouds, shallow layer models use depth-averaged variables to describe the flow behaviour. This approach is particularly well suited to assess the effect of complex terrain because the downslope buoyancy force is easily included. Entrainment may be incorporated into a shallow layer model by the use of empirical formulae. Part 2 of this paper presents the numerical scheme used to solve the TWODEE mathematical model, and validated against theoretical results. Part 3 compares the results of the TWODEE model with the experimental results taken at Thorney Island [J. McQuaid, B. Roebuck, The dispersion of heavier-than-air gas from a fenced enclosure. Final report to the US Coast Guard on contract with the Health and Safety Executive, Technical Report RPG 1185, Safety Engineering Laboratory, Research and Laboratory Services Division, Broad Lane, Sheffield S3 7HQ, UK, 1985].

  4. Project OPTEX: Field study at a petrochemical facility to assess optical remote sensing and dispersion modeling techniques

    SciTech Connect

    Paien, R.J.; Zwicker, J.O.; Feldman, H.

    1997-12-31

    The American Petroleum Inst. has conducted a field study at a petrochemical facility for the purpose of (1) testing the ability of optical remote sensing (ORS) techniques to characterize fugitive emissions, and (2) assembling ambient and tracer sampler data for evaluating air dispersion models. The study, referred to as the OPTEX (Operational Petrochemical Tracer Experiment) Project, took place during October 1996 at a Texas petrochemical facility. This paper reports on the design of the field study and summarizes the measurements that were obtained in the field. Several aspects of the field study are described in the paper: the types and locations of the emission releases and tracer gases that were used, the deployment of tracer samplers at various downwind distances, the use of open-path FTIR (OP-FTIR) equipment at the site to quantify tracer gas emissions, special short-term tracer gas emissions designed to test the ability of the ORS systems to detect accidental releases, and the use of a Doppler sodar to evaluate vertical profiles of wind and turbulence upwind and downwind of the facility. The data base for this study, as well as that from an earlier field study that took place at the Duke Forest green field site in North Carolina, will be used for evaluating air dispersion model performance and the ability of ORS measurements to quantify fugitive emissions.

  5. Civil aviation management during explosive volcanic eruptions: A survey on the stakeholders' perspective on the use of tephra dispersal models

    NASA Astrophysics Data System (ADS)

    Scaini, Chiara; Bolić, Tatjana; Folch, Arnau; Castelli, Lorenzo

    2015-03-01

    Impacts of explosive volcanic eruptions on civil aviation were reconsidered after the 2010 Eyjafjallajökull eruption in Iceland, which caused unprecedented disruptions of air traffic operations in Europe. During and after the aviation breakdown of April-May 2010, communication between the involved stakeholders was recognized as a major concern. Due to the complexity and multidisciplinary nature of the topic, a great number of actors are involved, which often have little interaction outside these exceptional events. In this work, we aim at identifying the relationships between the stakeholders involved in aviation management during eruptions, as well as their needs and priorities. We perform an anonymous on-line survey, focused mainly on the use of tephra dispersal models for civil aviation purposes. We collect feedback on recent developments including our current impact assessment research, which produced a GIS-based software tool to estimate impacts on aviation based on tephra dispersal forecasts. Answers allow identifying stakeholders' requirements on ash dispersal forecasts and their use for aviation management purposes. We underline the main differences between three homogeneous groups (aviation managers and employees, modellers and field scientists, other stakeholders) and identify main end-user requirements for developing tools similar to ours. This work provides useful insights for the development of tools to support aviation stakeholders during volcanic eruptions.

  6. Combining regional- and local-scale air quality models with exposure models for use in environmental health studies.

    PubMed

    Isakov, Vlad; Touma, Jawad S; Burke, Janet; Lobdell, Danelle T; Palma, Ted; Rosenbaum, Arlene; Ozkaynak, Halûk

    2009-04-01

    Population-based human exposure models predict the distribution of personal exposures to pollutants of outdoor origin using a variety of inputs, including air pollution concentrations; human activity patterns, such as the amount of time spent outdoors versus indoors, commuting, walking, and indoors at home; microenvironmental infiltration rates; and pollutant removal rates in indoor environments. Typically, exposure models rely upon ambient air concentration inputs from a sparse network of monitoring stations. Here we present a unique methodology for combining multiple types of air quality models (the Community Multi-Scale Air Quality [CMAQ] chemical transport model added to the AERMOD dispersion model) and linking the resulting hourly concentrations to population exposure models (the Hazardous Air Pollutant Exposure Model [HAPEM] or the Stochastic Human Exposure and Dose Simulation [SHEDS] model) to enhance estimates of air pollution exposures that vary temporally (annual and seasonal) and spatially (at census-block-group resolution) in an urban area. The results indicate that there is a strong spatial gradient in the predicted mean exposure concentrations near roadways and industrial facilities that can vary by almost a factor of 2 across the urban area studied. At the high end of the exposure distribution (95th percentile), exposures are higher in the central district than in the suburbs. This is mostly due to the importance of personal mobility factors whereby individuals living in the central area often move between microenvironments with high concentrations, as opposed to individuals residing at the outskirts of the city. Also, our results indicate 20-30% differences due to commuting patterns and almost a factor of 2 difference because of near-roadway effects. These differences are smaller for the median exposures, indicating the highly variable nature of the reflected ambient concentrations. In conjunction with local data on emission sources

  7. VALMET: a valley air pollution model. Final report. Revision 1

    SciTech Connect

    Whiteman, C.D.; Allwine, K.J.

    1985-04-01

    An air quality model is described for predicting air pollution concentrations in deep mountain valleys arising from nocturnal down-valley transport and diffusion of an elevated pollutant plume, and the fumigation of the plume on the valley floor and sidewalls after sunrise. Included is a technical description of the model, a discussion of the model's applications, the required model inputs, sample calculations and model outputs, and a full listing of the FORTRAN computer program. 55 refs., 27 figs., 6 tabs.

  8. Mechanistic models of plant seed dispersal by wind in heterogeneous landscapes

    NASA Astrophysics Data System (ADS)

    Trakhtenbrot, A.; Katul, G. G.; Nathan, R.

    2010-12-01

    Seed dispersal, and especially long-distance dispersal (LDD), is a key process in plant population survival, colonization, and gene flow. Its importance is amplified by the man-induced habitat fragmentation, climate change and invasions of exotic species. Mechanistic seed dispersal models are central to quantitative prediction of dispersal patterns and understanding their underlying mechanisms. For wind dispersal, most current mechanistic models assume homogenous environment. Although both topography and sharp transitions in vegetation stature profoundly affect wind flow, accounting for these effects via simplified models remains a vexing research problem. Such simplified models are needed to inform ecosystem managers about consequences of landscape fragmentation. We modified the Coupled Eulerian-Lagrangian closure (CELC) mechanistic dispersal model to represent scenarios of wind flow over a sharp transition from short to tall vegetation or over forested hilly terrain, and predicted the resulting dispersal distances and direction. We parameterized the wind and vegetation factors using measurements taken on a hill with short height Mediterranean shrubland and pine forest vegetation at Mt. Pithulim, Israel. For the short-to-tall vegetation transition scenario, the main feature of the modeled wind field is an exponential decay of the mean horizontal wind velocity, assuming that the mean momentum equation simplifies to a balance between the advective acceleration and the drag force terms. As a consequence of the incompressibility condition, this exponential decay leads to strong upward mean vertical velocity component. We found that for seed release downwind of the edge, the simulated median (short) and 99-th percentile (long) distances were longer than those for the homogeneous tall vegetation scenario. For seed release upwind of the edge the effect on dispersal distance was more complex and depended on the release height and he seed terminal velocity of the seeds

  9. EVALUATING THE USE OF OUTPUTS FROM COMPREHENSIVE METEOROLOGICAL MODELS IN AIR QUALITY MODELING APPLICATIONS

    EPA Science Inventory

    Currently used dispersion models, such as the AMS/EPA Regulatory Model (AERMOD), process routinely available meteorological observations to construct model inputs. Thus, model estimates of concentrations depend on the availability and quality of Meteorological observations, as we...

  10. Coupling dynamics and chemistry in the air pollution modelling of street canyons: A review.

    PubMed

    Zhong, Jian; Cai, Xiao-Ming; Bloss, William James

    2016-07-01

    Air pollutants emitted from vehicles in street canyons may be reactive, undergoing mixing and chemical processing before escaping into the overlying atmosphere. The deterioration of air quality in street canyons occurs due to combined effects of proximate emission sources, dynamical processes (reduced dispersion) and chemical processes (evolution of reactive primary and formation of secondary pollutants). The coupling between dynamics and chemistry plays a major role in determining street canyon air quality, and numerical model approaches to represent this coupling are reviewed in this article. Dynamical processes can be represented by Computational Fluid Dynamics (CFD) techniques. The choice of CFD approach (mainly the Reynolds-Averaged Navier-Stokes (RANS) and Large-Eddy Simulation (LES) models) depends on the computational cost, the accuracy required and hence the application. Simplified parameterisations of the overall integrated effect of dynamics in street canyons provide capability to handle relatively complex chemistry in practical applications. Chemical processes are represented by a chemical mechanism, which describes mathematically the chemical removal and formation of primary and secondary species. Coupling between these aspects needs to accommodate transport, dispersion and chemical reactions for reactive pollutants, especially fast chemical reactions with time scales comparable to or shorter than those of typical turbulent eddies inside the street canyon. Different approaches to dynamical and chemical coupling have varying strengths, costs and levels of accuracy, which must be considered in their use for provision of reference information concerning urban canopy air pollution to stakeholders considering traffic and urban planning policies. PMID:27149146

  11. Impact of air traffic emissions on airport air quality. Multi-scale modeling, test bed and field measurements

    NASA Astrophysics Data System (ADS)

    Ramaroson, R.; Vuillot, F.; Durand, Y.; Courbet, B.; Janin, F.; Copalle, A.; Guin, C.; Paux, E.; Vannier, F.; Talbaut, M.; Weill, M.

    2004-12-01

    Air traffic emissions are playing a significant role in airport air quality. Engine emissions contribute to the ozone and PM formation. There is an emergence of a need to develop advanced numerical tools and airport emission databases for air pollution studies. Field monitoring at airports necessary to support model assessment is still limited in time and space. The French ONERA AIRPUR project has focused on three objectives: emission inventories; dispersion models; field measurements. Results are presented and discussed in this paper. The ground spatial distribution of LTO emissions using realistic aircraft trajectories, aircraft-engine classification by ICAO, fuel flow methodology and diurnal variations of fleet number, is presented and discussed. Exhaust species time evolution is simulated using a chemical-dispersion model. Results show high emissions of NOx during LTO, and a maximum of CO and Hydrocarbons during taxi. Depending on seasons, the NOx lifetime is varying differently; lower concentration is calculated far away from LTO emissions. Longer-lived pollutants such as ozone are formed downstream and require the use of advanced dispersion models. For this reason, two interactive models coupling the micro and the regional scales are developed and used in this work. A 3D CFD model (CEDRE) simulates the flow characteristics around buildings and the dispersion of emissions. CEDRE boundary conditions are provided by the 3D nested dispersion model MEDIUM/MM5, which includes a surface boundary layer chemistry and calculates the concentration of pollutants from the local to the airport vicinities. The CFD results show a tracer accumulation calculated downstream beside terminals, consistent with observations at some mega-airports. Sensibility studies are conducted to highlight the impact of emissions on ozone formation with MEDIUM. Results show that longer-lived species are produced downstream, their concentration depending on NOx, aromatics and VOC released by

  12. What is Air? A Standard Model for Combustion Simulations

    SciTech Connect

    Cloutman, L D

    2001-08-01

    Most combustion devices utilize air as the oxidizer. Thus, reactive flow simulations of these devices require the specification of the composition of air as part of the physicochemical input. A mixture of only oxygen and nitrogen often is used, although in reality air is a more complex mixture of somewhat variable composition. We summarize some useful parameters describing a standard model of dry air. Then we consider modifications to include water vapor for creating the desired level of humidity. The ''minor'' constituents of air, especially argon and water vapor, can affect the composition by as much as about 5 percent in the mole fractions.

  13. Simulation of atmospheric dispersion of radionuclides using an Eulerian-Lagrangian modelling system.

    PubMed

    Basit, Abdul; Espinosa, Francisco; Avila, Ruben; Raza, S; Irfan, N

    2008-12-01

    In this paper we present an atmospheric dispersion scenario for a proposed nuclear power plant in Pakistan involving the hypothetical accidental release of radionuclides. For this, a concept involving a Lagrangian stochastic particle model (LSPM) coupled with an Eulerian regional atmospheric modelling system (RAMS) is used. The atmospheric turbulent dispersion of radionuclides (represented by non-buoyant particles/neutral traces) in the LSPM is modelled by applying non-homogeneous turbulence conditions. The mean wind velocities governed by the topography of the region and the surface fluxes of momentum and heat are calculated by the RAMS code. A moving least squares (MLS) technique is introduced to calculate the concentration of radionuclides at ground level. The numerically calculated vertical profiles of wind velocity and temperature are compared with observed data. The results obtained demonstrate that in regions of complex terrain it is not sufficient to model the atmospheric dispersion of particles using a straight-line Gaussian plume model, and that by utilising a Lagrangian stochastic particle model and regional atmospheric modelling system a much more realistic estimation of the dispersion in such a hypothetical scenario was ascertained. The particle dispersion results for a 12 h ground release show that a triangular area of about 400 km(2) situated in the north-west quadrant of release is under radiological threat. The particle distribution shows that the use of a Gaussian plume model (GPM) in such situations will yield quite misleading results.

  14. Particle dispersion in homogeneous turbulence using the one-dimensional turbulence model

    SciTech Connect

    Sun, Guangyuan Lignell, David O.; Hewson, John C.; Gin, Craig R.

    2014-10-15

    Lagrangian particle dispersion is studied using the one-dimensional turbulence (ODT) model in homogeneous decaying turbulence configurations. The ODT model has been widely and successfully applied to a number of reacting and nonreacting flow configurations, but only limited application has been made to multiphase flows. Here, we present a version of the particle implementation and interaction with the stochastic and instantaneous ODT eddy events. The model is characterized by comparison to experimental data of particle dispersion for a range of intrinsic particle time scales and body forces. Particle dispersion, velocity, and integral time scale results are presented. The particle implementation introduces a single model parameter β{sub p}, and sensitivity to this parameter and behavior of the model are discussed. Good agreement is found with experimental data and the ODT model is able to capture the particle inertial and trajectory crossing effects. These results serve as a validation case of the multiphase implementations of ODT for extensions to other flow configurations.

  15. Particle dispersion in homogeneous turbulence using the one-dimensional turbulence model

    SciTech Connect

    Sun, Guangyuan; Lignell, David O.; Hewson, John C.; Gin, Craig R.

    2014-10-09

    Lagrangian particle dispersion is studied using the one-dimensional turbulence (ODT) model in homogeneous decaying turbulence configurations. The ODT model has been widely and successfully applied to a number of reacting and nonreacting flow configurations, but only limited application has been made to multiphase flows. We present a version of the particle implementation and interaction with the stochastic and instantaneous ODT eddy events. The model is characterized by comparison to experimental data of particle dispersion for a range of intrinsic particle time scales and body forces. Particle dispersion, velocity, and integral time scale results are presented. Moreover, the particle implementation introduces a single model parameter β p , and sensitivity to this parameter and behavior of the model are discussed. Good agreement is found with experimental data and the ODT model is able to capture the particle inertial and trajectory crossing effects. Our results serve as a validation case of the multiphase implementations of ODT for extensions to other flow configurations.

  16. 77 FR 4808 - Conference on Air Quality Modeling

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-31

    ... AGENCY Conference on Air Quality Modeling AGENCY: U.S. Environmental Protection Agency (EPA). ACTION: Notice of conference. SUMMARY: The EPA will be hosting the Tenth Conference on Air Quality Modeling on...; suggest alternatives and substitute language for your requested changes. Describe any assumptions...

  17. THE ATMOSPHERIC MODEL EVALUATION TOOL (AMET); AIR QUALITY MODULE

    EPA Science Inventory

    This presentation reviews the development of the Atmospheric Model Evaluation Tool (AMET) air quality module. The AMET tool is being developed to aid in the model evaluation. This presentation focuses on the air quality evaluation portion of AMET. Presented are examples of the...

  18. DEVELOPMENT AND ANALYSIS OF AIR QUALITY MODELING SIMULATIONS FOR HAZARDOUS AIR POLLUTANTS

    EPA Science Inventory

    The concentrations of five hazardous air pollutants were simulated using the Community Multi Scale Air Quality (CMAQ) modeling system. Annual simulations were performed over the continental United States for the entire year of 2001 to support human exposure estimates. Results a...

  19. The contrast model method for the thermodynamical calculation of air-air wet heat exchanger

    NASA Astrophysics Data System (ADS)

    Yuan, Xiugan; Mei, Fang

    1989-02-01

    The 'contrast model' method thermodynamic calculation of air-air crossflow wet heat exchangers with initial air condensation is presented. Contrast-model equations are derived from the actual heat exchanger equations as well as imaginary ones; it is then possible to proceed to a proof that the enthalpy efficiency of the contrast model equations is similar to the temperature efficiency of the dry heat exchanger. Conditions are noted under which it becomes possible to unify thermodynamic calculations for wet and dry heat exchangers.

  20. Microscale anthropogenic pollution modelling in a small tropical island during weak trade winds: Lagrangian particle dispersion simulations using real nested LES meteorological fields

    NASA Astrophysics Data System (ADS)

    Cécé, Raphaël; Bernard, Didier; Brioude, Jérome; Zahibo, Narcisse

    2016-08-01

    Tropical islands are characterized by thermal and orographical forcings which may generate microscale air mass circulations. The Lesser Antilles Arc includes small tropical islands (width lower than 50 km) where a total of one-and-a-half million people live. Air quality over this region is affected by anthropogenic and volcanic emissions, or saharan dust. To reduce risks for the population health, the atmospheric dispersion of emitted pollutants must be predicted. In this study, the dispersion of anthropogenic nitrogen oxides (NOx) is numerically modelled over the densely populated area of the Guadeloupe archipelago under weak trade winds, during a typical case of severe pollution. The main goal is to analyze how microscale resolutions affect air pollution in a small tropical island. Three resolutions of domain grid are selected: 1 km, 333 m and 111 m. The Weather Research and Forecasting model (WRF) is used to produce real nested microscale meteorological fields. Then the weather outputs initialize the Lagrangian Particle Dispersion Model (FLEXPART). The forward simulations of a power plant plume showed good ability to reproduce nocturnal peaks recorded by an urban air quality station. The increase in resolution resulted in an improvement of model sensitivity. The nesting to subkilometer grids helped to reduce an overestimation bias mainly because the LES domains better simulate the turbulent motions governing nocturnal flows. For peaks observed at two air quality stations, the backward sensitivity outputs identified realistic sources of NOx in the area. The increase in resolution produced a sharper inverse plume with a more accurate source area. This study showed the first application of the FLEXPART-WRF model to microscale resolutions. Overall, the coupling model WRF-LES-FLEXPART is useful to simulate the pollutant dispersion during a real case of calm wind regime over a complex terrain area. The forward and backward simulation results showed clearly that the

  1. FEM3C, An improved three-dimensional heavy-gas dispersion model: User`s manual

    SciTech Connect

    Chan, S.T.

    1994-03-01

    FEM3C is another upgraded version of FEM3 (a three-dimensional Finite Element Model), which was developed primarily for simulating the atmospheric dispersion of heavier-than-air gas (or heavy gas) releases, based on solving the fully three-dimensional, time-dependent conservation equations of mass, momentum, energy, and species of an inert gas or a pollutant in the form of vapor/droplets. A generalized anelastic approximation, together with the ideal gas law for the density of the gas/air mixture, is invoked to preclude sound waves and allow large density variations in both space and time. Thee numerical algorithm utilizes a modified Galerkin finite element method to discretize spatially the time-dependent conservation equations of mass, momentum, energy, and species. A consistent pressure Poisson equation is formed and solved separately from the time-dependent equations, which are sequentially solved and integrated in time via a modified forward Euler method. The model can handle instantaneous source, finite-duration, and continuous releases. Also, it is capable of treating terrain and obstructions. Besides a K-theory model using similarity functions, an advanced turbulence model based on solving the k - {var_epsilon} transport equations is available as well. Imbedded in the code are also options for solving the Boussinesq equations. In this report, an overview of the model is given, user`s guides for using the model are provided, and example problems are presented to illustrate the usage of the model.

  2. Examining the influence of meteorological simulations forced by different initial and boundary conditions in volcanic ash dispersion modelling

    NASA Astrophysics Data System (ADS)

    Mulena, Gabriela C.; Allende, David G.; Puliafito, Salvador E.; Lakkis, Susan G.; Cremades, Pablo G.; Ulke, Ana G.

    2016-07-01

    The performance of the combination of the FALL3D ash dispersion model with the Weather Research and Forecast (WRF) meteorological model in the southern cone of South America under two initial and boundary conditions was evaluated. ERA-Interim and NCEP-GFS datasets were used as dynamic conditions by WRF to simulate meteorological fields for FALL3D. As a study case, we used the eruption of the Puyehue-Cordón Caulle Volcanic Complex occurred in Chile in June 2011. The simulated meteorological results were compared with the horizontal wind direction, meridional and zonal wind components, air and dew point temperatures of 7 radio sounding stations using a set of error indicators. In addition, the ash mass load simulated by FALL3D for a day of maximum dispersion of volcanic ash was evaluated using the Moderate Resolution Imaging Spectroradiometer (MODIS) data, on which the Prata algorithm was applied. As well as this, the WRF-dominant physical processes with both dynamic conditions were analyzed for that same date. Meteorological results indicated that the simulation performed with WRF and NCEP-GFS shows the lowest errors at levels between 925 and 300 hPa. Ash dispersion simulated with FALL3D and WRF in both dynamic conditions shows a different perfomance, which from the synoptic and dynamic viewpoint can be explained for the result of wind intensity and geopotential height. Moreover, WRF intiliazed with NCEP-GFS and FALL3D has a higher degree of concordance with the MODIS image. Based on the analysis and results, it was concluded that for the southern cone of South America, 1) it was not trivial for the simulation of volcanic ash dispersion to use one dynamic condition or another in WRF; 2) in that sense, meteorological variables that influenced the differences in volcanic ash dispersion were horizontal wind intensity and direction and geopotential heights; 3) the system generated from the combination of the WRF model initialized with NCEP-GFS and the FALL3D dispersion

  3. Bayesian Analysis of a Reduced-Form Air Quality Model

    EPA Science Inventory

    Numerical air quality models are being used for assessing emission control strategies for improving ambient pollution levels across the globe. This paper applies probabilistic modeling to evaluate the effectiveness of emission reduction scenarios aimed at lowering ground-level oz...

  4. INTERCOMPARISON OF ALTERNATIVE VEGETATION DATABASES FOR REGIONAL AIR QUALITY MODELING

    EPA Science Inventory

    Vegetation cover data are used to characterize several regional air quality modeling processes, including the calculation of heat, moisture, and momentum fluxes with the Mesoscale Meteorological Model (MM5) and the estimate of biogenic volatile organic compound and nitric oxide...

  5. Shortcomings of the standard Lennard-Jones dispersion term in water models, studied with force matching.

    PubMed

    Nicolini, Paolo; Guàrdia, Elvira; Masia, Marco

    2013-11-14

    In this work, ab initio parametrization of water force field is used to get insights into the functional form of empirical potentials to properly model the physics underlying dispersion interactions. We exploited the force matching algorithm to fit the interaction forces obtained with dispersion corrected density functional theory based molecular dynamics simulations. We found that the standard Lennard-Jones interaction potentials poorly reproduce the attractive character of dispersion forces. This drawback can be resolved by accounting for the distinctive short range behavior of dispersion interactions, multiplying the r(-6) term by a damping function. We propose two novel parametrizations of the force field using different damping functions. Structural and dynamical properties of the new models are computed and compared with the ones obtained from the non-damped force field, showing an improved agreement with reference first principle calculations.

  6. Shortcomings of the standard Lennard-Jones dispersion term in water models, studied with force matching

    NASA Astrophysics Data System (ADS)

    Nicolini, Paolo; Guàrdia, Elvira; Masia, Marco

    2013-11-01

    In this work, ab initio parametrization of water force field is used to get insights into the functional form of empirical potentials to properly model the physics underlying dispersion interactions. We exploited the force matching algorithm to fit the interaction forces obtained with dispersion corrected density functional theory based molecular dynamics simulations. We found that the standard Lennard-Jones interaction potentials poorly reproduce the attractive character of dispersion forces. This drawback can be resolved by accounting for the distinctive short range behavior of dispersion interactions, multiplying the r-6 term by a damping function. We propose two novel parametrizations of the force field using different damping functions. Structural and dynamical properties of the new models are computed and compared with the ones obtained from the non-damped force field, showing an improved agreement with reference first principle calculations.

  7. Modeling impacts of subscale heterogeneities on dispersive solute transport in subsurface systems.

    PubMed

    Vishal, Vikrant; Leung, Juliana Y

    2015-11-01

    Previous works in the literature demonstrated that dispersion increases with heterogeneities and travel distance in heterogeneous reservoirs. However, it remains challenging to quantify the effects of subscale heterogeneities on dispersion. Scale-up of input dispersivity and other reservoir attributes to the transport modeling scale should account for subscale heterogeneity and its variability. A method is proposed to quantify the uncertainties in reservoir attributes and dispersivity introduced by scale-up. A random walk particle tracking (RWPT) method, which is not prone to numerical dispersion, is used for transport modeling. First, to scale-up rock properties including porosity and permeability, volume variance at the transport modeling scale is computed corresponding to a given spatial correlation model; numerous sets of "conditioning data" are sampled from probability distributions whose mean is the block average of the actual measure values and the variance is the variance of block mean. Stochastic simulations are subsequently performed to generate multiple realizations at the transport modeling scale. Next, multiple sub-grid geostatistical realizations depicting detailed fine-scale heterogeneities and of the same physical sizes as the transport modeling grid block are subjected to RWPT simulation. Effective longitudinal and transverse (horizontal) dispersivities in two-dimensional models are determined simultaneously by matching the corresponding breakthrough concentration history for each realization with an equivalent medium consisting of averaged homogeneous rock properties. Aggregating results derived with all realizations, we generate probability distributions of scaled-up dispersivities conditional to particular averaged rock properties, from which values representative of the transport modeling scale are randomly drawn. The method is applied to model a tracer injection process. Results obtained from coarse-scale models, where reservoir properties and

  8. MAPPING DISSEMINATION OF CHEMICAL AFTER DISPERSIVE EVENTS USING AN AMBIENT-AIR, SURFACE SAMPLING TIME-OF-FLIGHT MASS SPECTROMETER

    EPA Science Inventory

    Chemicals are dispersed by numerous accidental, deliberate, or weather-related events. Often, rapid analyses are desired to identify dispersed chemicals and to delineate areas of contamination. Hundreds of wipe samples might be collected from outdoor surfaces or building interi...

  9. Estimation Of 137Cs Using Atmospheric Dispersion Models After A Nuclear Reactor Accident

    NASA Astrophysics Data System (ADS)

    Simsek, V.; Kindap, T.; Unal, A.; Pozzoli, L.; Karaca, M.

    2012-04-01

    Nuclear energy will continue to have an important role in the production of electricity in the world as the need of energy grows up. But the safety of power plants will always be a question mark for people because of the accidents happened in the past. Chernobyl nuclear reactor accident which happened in 26 April 1986 was the biggest nuclear accident ever. Because of explosion and fire large quantities of radioactive material was released to the atmosphere. The release of the radioactive particles because of accident affected not only its region but the entire Northern hemisphere. But much of the radioactive material was spread over west USSR and Europe. There are many studies about distribution of radioactive particles and the deposition of radionuclides all over Europe. But this was not true for Turkey especially for the deposition of radionuclides released after Chernobyl nuclear reactor accident and the radiation doses received by people. The aim of this study is to determine the radiation doses received by people living in Turkish territory after Chernobyl nuclear reactor accident and use this method in case of an emergency. For this purpose The Weather Research and Forecasting (WRF) Model was used to simulate meteorological conditions after the accident. The results of WRF which were for the 12 days after accident were used as input data for the HYSPLIT model. NOAA-ARL's (National Oceanic and Atmospheric Administration Air Resources Laboratory) dispersion model HYSPLIT was used to simulate the 137Cs distrubition. The deposition values of 137Cs in our domain after Chernobyl Nuclear Reactor Accident were between 1.2E-37 Bq/m2 and 3.5E+08 Bq/m2. The results showed that Turkey was affected because of the accident especially the Black Sea Region. And the doses were calculated by using GENII-LIN which is multipurpose health physics code.

  10. Rheological and solid-state NMR assessments of copovidone/clotrimazole model solid dispersions.

    PubMed

    Yang, Fengyuan; Su, Yongchao; Zhu, Lei; Brown, Chad D; Rosen, Lawrence A; Rosenberg, Kenneth J

    2016-03-16

    This study aims to assess several model solid dispersions by using dynamic oscillatory rheology, solid-state NMR and other solid phase characterization techniques, and correlate their viscoelastic responses with processing methods and microstructures. A model active pharmaceutical ingredient (API), clotrimazole, was compounded with copovidone to form solid dispersions via various techniques with different mixing capabilities. Physicochemical characterizations of the resulting solid dispersions demonstrated that simple physical mixing led to a poorly mixed blend manifested by existence of large API crystalline content and heterogeneous distribution. Cryogenic milling significantly improved mixing of two components as a result of reduced particle size and increased contact surface area, but produced limited amorphous content. In contrast, hot melt extrusion (HME) processing resulted in a homogenous amorphous solid dispersion because of its inherent mixing efficiency. Storage modulus and viscosities versus frequency of different solid dispersions indicated that the incorporation of API into the polymer matrix resulted in a plasticizing effect which reduced the viscosity. The crystalline/aggregated forms of API also exhibited more elastic response than its amorphous/dispersed counterpart. Temperature ramps of the physical mixture with high API concentration captured a critical temperature, at which a bump was observed in damping factor. This bump was attributed to the dissolution of crystalline API into the polymer. In addition, heating-cooling cycles of various solid dispersions suggested that cryomilling and HME processing could form a homogeneous solid dispersion at low API content, whereas high drug concentration led to a relatively unstable dispersion due to supersaturation of API in the polymer.

  11. World Meteorological Organization's model simulations of the radionuclide dispersion and deposition from the Fukushima Daiichi nuclear power plant accident.

    PubMed

    Draxler, Roland; Arnold, Dèlia; Chino, Masamichi; Galmarini, Stefano; Hort, Matthew; Jones, Andrew; Leadbetter, Susan; Malo, Alain; Maurer, Christian; Rolph, Glenn; Saito, Kazuo; Servranckx, René; Shimbori, Toshiki; Solazzo, Efisio; Wotawa, Gerhard

    2015-01-01

    Five different atmospheric transport and dispersion model's (ATDM) deposition and air concentration results for atmospheric releases from the Fukushima Daiichi nuclear power plant accident were evaluated over Japan using regional (137)Cs deposition measurements and (137)Cs and (131)I air concentration time series at one location about 110 km from the plant. Some of the ATDMs used the same and others different meteorological data consistent with their normal operating practices. There were four global meteorological analyses data sets available and two regional high-resolution analyses. Not all of the ATDMs were able to use all of the meteorological data combinations. The ATDMs were configured identically as much as possible with respect to the release duration, release height, concentration grid size, and averaging time. However, each ATDM retained its unique treatment of the vertical velocity field and the wet and dry deposition, one of the largest uncertainties in these calculations. There were 18 ATDM-meteorology combinations available for evaluation. The deposition results showed that even when using the same meteorological analysis, each ATDM can produce quite different deposition patterns. The better calculations in terms of both deposition and air concentration were associated with the smoother ATDM deposition patterns. The best model with respect to the deposition was not always the best model with respect to air concentrations. The use of high-resolution mesoscale analyses improved ATDM performance; however, high-resolution precipitation analyses did not improve ATDM predictions. Although some ATDMs could be identified as better performers for either deposition or air concentration calculations, overall, the ensemble mean of a subset of better performing members provided more consistent results for both types of calculations. PMID:24182910

  12. World Meteorological Organization's model simulations of the radionuclide dispersion and deposition from the Fukushima Daiichi nuclear power plant accident.

    PubMed

    Draxler, Roland; Arnold, Dèlia; Chino, Masamichi; Galmarini, Stefano; Hort, Matthew; Jones, Andrew; Leadbetter, Susan; Malo, Alain; Maurer, Christian; Rolph, Glenn; Saito, Kazuo; Servranckx, René; Shimbori, Toshiki; Solazzo, Efisio; Wotawa, Gerhard

    2015-01-01

    Five different atmospheric transport and dispersion model's (ATDM) deposition and air concentration results for atmospheric releases from the Fukushima Daiichi nuclear power plant accident were evaluated over Japan using regional (137)Cs deposition measurements and (137)Cs and (131)I air concentration time series at one location about 110 km from the plant. Some of the ATDMs used the same and others different meteorological data consistent with their normal operating practices. There were four global meteorological analyses data sets available and two regional high-resolution analyses. Not all of the ATDMs were able to use all of the meteorological data combinations. The ATDMs were configured identically as much as possible with respect to the release duration, release height, concentration grid size, and averaging time. However, each ATDM retained its unique treatment of the vertical velocity field and the wet and dry deposition, one of the largest uncertainties in these calculations. There were 18 ATDM-meteorology combinations available for evaluation. The deposition results showed that even when using the same meteorological analysis, each ATDM can produce quite different deposition patterns. The better calculations in terms of both deposition and air concentration were associated with the smoother ATDM deposition patterns. The best model with respect to the deposition was not always the best model with respect to air concentrations. The use of high-resolution mesoscale analyses improved ATDM performance; however, high-resolution precipitation analyses did not improve ATDM predictions. Although some ATDMs could be identified as better performers for either deposition or air concentration calculations, overall, the ensemble mean of a subset of better performing members provided more consistent results for both types of calculations.

  13. Finite-difference modeling and dispersion analysis of high-frequency love waves for near-surface applications

    USGS Publications Warehouse

    Luo, Y.; Xia, J.; Xu, Y.; Zeng, C.; Liu, J.

    2010-01-01

    Love-wave propagation has been a topic of interest to crustal, earthquake, and engineering seismologists for many years because it is independent of Poisson's ratio and more sensitive to shear (S)-wave velocity changes and layer thickness changes than are Rayleigh waves. It is well known that Love-wave generation requires the existence of a low S-wave velocity layer in a multilayered earth model. In order to study numerically the propagation of Love waves in a layered earth model and dispersion characteristics for near-surface applications, we simulate high-frequency (>5 Hz) Love waves by the staggered-grid finite-difference (FD) method. The air-earth boundary (the shear stress above the free surface) is treated using the stress-imaging technique. We use a two-layer model to demonstrate the accuracy of the staggered-grid modeling scheme. We also simulate four-layer models including a low-velocity layer (LVL) or a high-velocity layer (HVL) to analyze dispersive energy characteristics for near-surface applications. Results demonstrate that: (1) the staggered-grid FD code and stress-imaging technique are suitable for treating the free-surface boundary conditions for Love-wave modeling, (2) Love-wave inversion should be treated with extra care when a LVL exists because of a lack of LVL information in dispersions aggravating uncertainties in the inversion procedure, and (3) energy of high modes in a low-frequency range is very weak, so that it is difficult to estimate the cutoff frequency accurately, and "mode-crossing" occurs between the second higher and third higher modes when a HVL exists. ?? 2010 Birkh??user / Springer Basel AG.

  14. Models of Dispersal Evolution Highlight Several Important Issues in Evolutionary and Ecological Modeling.

    PubMed

    Bocedi, Greta; Travis, Justin M J

    2016-01-01

    Previous results showing that lack of information on local population density leads to higher emigration probabilities in unpredictable environments but to lower emigration probabilities in constant or highly predictable scenarios have recently been challenged by Poethke et al. By reimplementing both our model and that of Poethke and colleagues, we demonstrate that our original results indeed hold to the presented critiques and do not contradict previous findings. The comment by Poethke and colleagues does, however, present potentially intriguing results suggesting that negative density-dependent dispersal evolves under white noise for some model formulations. Here, through intermodel comparison, we seek to better understand the source of the differences in results obtained in our study and theirs. We conclude that the apparent negative density dependence reported by Poethke et al. is effectively density independence and that the shape of the reaction norm they obtain is a model artefact. Further, this response provides an opportunity to elaborate on some important issues in evolutionary and ecological modeling regarding (i) the importance of carefully considering different models' assumptions in comparisons among models, (ii) the need to consider the role of stochasticity and uncertainty when presenting and interpreting results from stochastic individual-based models, (iii) the adequate choice of the underlying ecological model that creates the selective pressures determining the evolution of behavioral reaction norms, and (iv) the appropriate choice of mutation models. PMID:27277411

  15. Finite difference time domain modeling of dispersion from heterogeneous ground properties in ground penetrating radar

    NASA Astrophysics Data System (ADS)

    Holt, Jennifer Jane

    Ground Penetrating Radar (GPR) is a common technique for locating buried objects in the near surface. The near surface is never perfectly homogeneous due to different moisture levels, grain packing, and types of material that influence the properties in the subsurface. This dissertation examines the influence of heterogeneity on GPR measurements, its influence on spatial dispersion, and defining the GPR response from a range of standard deviations of different numerical models. Most modeling in GPR concentrates on antenna patterns or dispersion caused by complex permittivity in homogeneous blocks of material. The forward model developed in this dissertation incorporates heterogeneity by replacing the traditional homogenous spatial regions with a distribution of physical properties. The models in this dissertation maintain the major spatial model boundaries, but the physical model values within each boundary are determined by a statistical distribution. Statistical approximations of heterogeneity of the physical property distributions can provide an approximation of the geologic noise that influences GPR measurements. This dissertation presents a numerical modeling analysis of random property variation, where the variations occur in one, two, and three directions. The models are developed for a half space and a two layered earth model where the input is a Ricker wavelet. Most of the visible spatial dispersion of the electrical field in both the half space and the layered earth models studied in this dissertation, occurred in the near region of the electromagnetic field. However, the largest average dispersion occurred in the far field at 1.0 m distance from a dipole source. The presence of horizontal layers increased the dispersive effects of the random distribution of electrical property values. There was also a measurable change in the dispersed field when the layers were vertical. There was more change with thin horizontal layers than with tubes or three

  16. A multi-scale urban atmospheric dispersion model for emergency management

    NASA Astrophysics Data System (ADS)

    Miao, Yucong; Liu, Shuhua; Zheng, Hui; Zheng, Yijia; Chen, Bicheng; Wang, Shu

    2014-11-01

    To assist emergency management planning and prevention in case of hazardous chemical release into the atmosphere, especially in densely built-up regions with large populations, a multi-scale urban atmospheric dispersion model was established. Three numerical dispersion experiments, at horizontal resolutions of 10 m, 50 m and 3000 m, were performed to estimate the adverse effects of toxic chemical release in densely built-up areas. The multi-scale atmospheric dispersion model is composed of the Weather Forecasting and Research (WRF) model, the Open Source Field Operation and Manipulation software package, and a Lagrangian dispersion model. Quantification of the adverse health effects of these chemical release events are given by referring to the U.S. Environmental Protection Agency's Acute Exposure Guideline Levels. The wind fields of the urban-scale case, with 3 km horizontal resolution, were simulated by the Beijing Rapid Update Cycle system, which were utilized by the WRF model. The sub-domain-scale cases took advantage of the computational fluid dynamics method to explicitly consider the effects of buildings. It was found that the multi-scale atmospheric dispersion model is capable of simulating the flow pattern and concentration distribution on different scales, ranging from several meters to kilometers, and can therefore be used to improve the planning of prevention and response programs.

  17. Intercomparisons of AIRS Observations with MERRA Reanalysis and Climate Models

    NASA Astrophysics Data System (ADS)

    Hearty, T. J.; Vollmer, B.; Theobald, M.; Savtchenko, A. K.; Ding, F.; Esfandiari, A. E.; Ostrenga, D.; Bosilovich, M. G.; Fetzer, E.; Tian, B.; Fishbein, E.; Manning, E.; Yue, Q.

    2012-12-01

    We perform intercomparisons among AIRS (Atmospheric Infrared Sounder) observations, MERRA (Modern-Era Retrospective Analysis for Research and Applications) reanalysis, and CMIP5 models. One of the greatest challenges of using satellite observations from Low Earth Orbit (LEO) to evaluate climate models is to account for differences in the sampling. Climate models are sampled on a regular grid with equal increments in time and space while LEO satellite observations are not. Since AIRS is an infrared instrument its sampling is also affected by clouds. Version 6 of the AIRS processing algorithm will have improved accuracy and increased sampling over the Version 5 algorithm. We compare AIRS and MERRA data with identical sampling to assess how well the satellite observations and reanalysis Water Vapor, Temperature, and Clouds agree when they have the same sampling. Since Version 6 of the AIRS processing algorithms also have improved sampling we use MERRA sampled like AIRS to estimate the improvement in the sampling bias between AIRS Version 5 and Version 6 Results. While the uncertainties in the current generation of climate models are larger than the sampling uncertainties, as the models improve more careful intercomparisons will be necessary. Therefore we compare the differences between AIRS observations and CMIP5 Climate Models to assess the significance of the sampling uncertainties.

  18. Modelling of air pressure effects in casting moulds

    NASA Astrophysics Data System (ADS)

    Attar, E.; Homayonifar, P.; Babaei, R.; Asgari, K.; Davami, P.

    2005-09-01

    In the casting process, as a mould is filled with molten metal, air escapes through the vents. Air pressure in the mould cavity has serious effects upon the filling behaviour such as surface profile of the molten metal and filling time. In this project a computational model was developed for calculation of air pressure during the mould filling. A 3D single phase code based on the SOLA-VOF algorithm was used for the prediction of the fluid flow. The ideal gas assumption, conservation of mass equation and Bernoulli law were used for the calculation of air pressure. A new algorithm was developed to interpolate air pressure on the surface cells. The creation of air pressure was correlated with the sizes of the vents and their locations. An experimental test was designed to verify the modelling results. Comparison between the experimental data and simulation results has shown a good agreement.

  19. A velocity-dissipation stochastic trajectory model for dispersal of heavy particles inside canopies

    NASA Astrophysics Data System (ADS)

    Duman, T.; Trakhtenbrot, A.; Poggi, D.; Cassiani, M.; Katul, G. G.

    2014-12-01

    While the importance of dispersal of windborne heavy particles such as seeds or pollen inside canopies is rarely disputed, the details needed to describe turbulent fluctuations in such applications continue to draw significant research attention. Turbulence and heavy-particle dispersal within canopies are sensitive to interactions between meteorological conditions and canopy structure as well as on particle shape and mass. In many applications, dispersal of heavy particles is required over a broad range of time scales ranging from hours to several decades thereby frustrating any attempt to resolve all aspects of turbulence. In recent years, Lagrangian stochastic trajectory models have been favored for predicting seed dispersal and are viewed as an acceptable compromise between empirical models with their ad-hoc parameterizations and computationally intensive Large Eddy Simulations. Here, an important feature of turbulence, namely the intermittency in dissipation rate, is incorporated into such trajectory models. Adding this effect has been recently shown to alter scalar dispersion patterns, especially in the far field. This method is applied here to heavy particles, where the long distance dispersal is deemed significant for many applications. This modeling approach was first evaluated using controlled laboratory experiments, where uniform-sized spheres were released within a canopy comprised of uniform cylinders inside a flume (see figure). The extended model that includes intermittency effects, as well as inertial drag forces on the particles, was shown to provide superior fit with the measured dispersal kernel than simpler models that add a constant settling velocity for each particle and/or do not include intermittency. The extended model results captured short distance dispersal and the heavy tails. Next the extended model was evaluated against a field experiment, where plant seeds were manually released inside a hardwood forest canopy (see figure). This

  20. Air pollution modeling at road sides using the operational street pollution model--a case study in Hanoi, Vietnam.

    PubMed

    Hung, Ngo Tho; Ketzel, Matthias; Jensen, Steen Solvang; Oanh, Nguyen Thi Kim

    2010-11-01

    In many metropolitan areas, traffic is the main source of air pollution. The high concentrations of pollutants in streets have the potential to affect human health. Therefore, estimation of air pollution at the street level is required for health impact assessment. This task has been carried out in many developed countries by a combination of air quality measurements and modeling. This study focuses on how to apply a dispersion model to cities in the developing world, where model input data and data from air quality monitoring stations are limited or of varying quality. This research uses the operational street pollution model (OSPM) developed by the National Environmental Research Institute in Denmark for a case study in Hanoi, the capital of Vietnam. OSPM predictions from five streets were evaluated against air pollution measurements of nitrogen oxides (NO(x)), sulfur dioxide (SO2), carbon monoxide (CO), and benzene (BNZ) that were available from previous studies. Hourly measurements and passive sample measurements collected over 3-week periods were compared with model outputs, applying emission factors from previous studies. In addition, so-called "backward calculations" were performed to adapt the emission factors for Hanoi conditions. The average fleet emission factors estimated can be used for emission calculations at other streets in Hanoi and in other locations in Southeast Asia with similar vehicle types. This study also emphasizes the need to further eliminate uncertainties in input data for the street-scale air pollution modeling in Vietnam, namely by providing reliable emission factors and hourly air pollution measurements of high quality.

  1. Eight Year Climatologies from Observational (AIRS) and Model (MERRA) Data

    NASA Technical Reports Server (NTRS)

    Hearty, Thomas; Savtchenko, Andrey; Won, Young-In; Theobalk, Mike; Vollmer, Bruce; Manning, Evan; Smith, Peter; Ostrenga, Dana; Leptoukh, Greg

    2010-01-01

    We examine climatologies derived from eight years of temperature, water vapor, cloud, and trace gas observations made by the Atmospheric Infrared Sounder (AIRS) instrument flying on the Aqua satellite and compare them to similar climatologies constructed with data from a global assimilation model, the Modern Era Retrospective-Analysis for Research and Applications (MERRA). We use the AIRS climatologies to examine anomalies and trends in the AIRS data record. Since sampling can be an issue for infrared satellites in low earth orbit, we also use the MERRA data to examine the AIRS sampling biases. By sampling the MERRA data at the AIRS space-time locations both with and without the AIRS quality control we estimate the sampling bias of the AIRS climatology and the atmospheric conditions where AIRS has a lower sampling rate. While the AIRS temperature and water vapor sampling biases are small at low latitudes, they can be more than a few degrees in temperature or 10 percent in water vapor at higher latitudes. The largest sampling biases are over desert. The AIRS and MERRA data are available from the Goddard Earth Sciences Data and Information Services Center (GES DISC). The AIRS climatologies we used are available for analysis with the GIOVANNI data exploration tool. (see, http://disc.gsfc.nasa.gov).

  2. Modeling the Complex Photochemistry of Biomass Burning Plumes in Plume-Scale, Regional, and Global Air Quality Models

    NASA Astrophysics Data System (ADS)

    Alvarado, M. J.; Lonsdale, C. R.; Yokelson, R. J.; Travis, K.; Fischer, E. V.; Lin, J. C.

    2014-12-01

    Forecasting the impacts of biomass burning (BB) plumes on air quality is difficult due to the complex photochemistry that takes place in the concentrated young BB plumes. The spatial grid of global and regional scale Eulerian models is generally too large to resolve BB photochemistry, which can lead to errors in predicting the formation of secondary organic aerosol (SOA) and O3, as well as the partitioning of NOyspecies. AER's Aerosol Simulation Program (ASP v2.1) can be used within plume-scale Lagrangian models to simulate this complex photochemistry. We will present results of validation studies of the ASP model against aircraft observations of young BB smoke plumes. We will also present initial results from the coupling of ASP v2.1 into the Lagrangian particle dispersion model STILT-Chem in order to better examine the interactions between BB plume chemistry and dispersion. In addition, we have used ASP to develop a sub-grid scale parameterization of the near-source chemistry of BB plumes for use in regional and global air quality models. The parameterization takes inputs from the host model, such as solar zenith angle, temperature, and fire fuel type, and calculates enhancement ratios of O3, NOx, PAN, aerosol nitrate, and other NOy species, as well as organic aerosol (OA). We will present results from the ASP-based BB parameterization as well as its implementation into the global atmospheric composition model GEOS-Chem for the SEAC4RS campaign.

  3. A model for long-distance dispersal of boll weevils (Coleoptera: Curculionidae)

    NASA Astrophysics Data System (ADS)

    Westbrook, John K.; Eyster, Ritchie S.; Allen, Charles T.

    2011-07-01

    The boll weevil, Anthonomus grandis (Boheman), has been a major insect pest of cotton production in the US, accounting for yield losses and control costs on the order of several billion US dollars since the introduction of the pest in 1892. Boll weevil eradication programs have eliminated reproducing populations in nearly 94%, and progressed toward eradication within the remaining 6%, of cotton production areas. However, the ability of weevils to disperse and reinfest eradicated zones threatens to undermine the previous investment toward eradication of this pest. In this study, the HYSPLIT atmospheric dispersion model was used to simulate daily wind-aided dispersal of weevils from the Lower Rio Grande Valley (LRGV) of southern Texas and northeastern Mexico. Simulated weevil dispersal was compared with weekly capture of weevils in pheromone traps along highway trap lines between the LRGV and the South Texas / Winter Garden zone of the Texas Boll Weevil Eradication Program. A logistic regression model was fit to the probability of capturing at least one weevil in individual pheromone traps relative to specific values of simulated weevil dispersal, which resulted in 60.4% concordance, 21.3% discordance, and 18.3% ties in estimating captures and non-captures. During the first full year of active eradication with widespread insecticide applications in 2006, the dispersal model accurately estimated 71.8%, erroneously estimated 12.5%, and tied 15.7% of capture and non-capture events. Model simulations provide a temporal risk assessment over large areas of weevil reinfestation resulting from dispersal by prevailing winds. Eradication program managers can use the model risk assessment information to effectively schedule and target enhanced trapping, crop scouting, and insecticide applications.

  4. A model for long-distance dispersal of boll weevils (Coleoptera: Curculionidae).

    PubMed

    Westbrook, John K; Eyster, Ritchie S; Allen, Charles T

    2011-07-01

    The boll weevil, Anthonomus grandis (Boheman), has been a major insect pest of cotton production in the US, accounting for yield losses and control costs on the order of several billion US dollars since the introduction of the pest in 1892. Boll weevil eradication programs have eliminated reproducing populations in nearly 94%, and progressed toward eradication within the remaining 6%, of cotton production areas. However, the ability of weevils to disperse and reinfest eradicated zones threatens to undermine the previous investment toward eradication of this pest. In this study, the HYSPLIT atmospheric dispersion model was used to simulate daily wind-aided dispersal of weevils from the Lower Rio Grande Valley (LRGV) of southern Texas and northeastern Mexico. Simulated weevil dispersal was compared with weekly capture of weevils in pheromone traps along highway trap lines between the LRGV and the South Texas/Winter Garden zone of the Texas Boll Weevil Eradication Program. A logistic regression model was fit to the probability of capturing at least one weevil in individual pheromone traps relative to specific values of simulated weevil dispersal, which resulted in 60.4% concordance, 21.3% discordance, and 18.3% ties in estimating captures and non-captures. During the first full year of active eradication with widespread insecticide applications in 2006, the dispersal model accurately estimated 71.8%, erroneously estimated 12.5%, and tied 15.7% of capture and non-capture events. Model simulations provide a temporal risk assessment over large areas of weevil reinfestation resulting from dispersal by prevailing winds. Eradication program managers can use the model risk assessment information to effectively schedule and target enhanced trapping, crop scouting, and insecticide applications.

  5. Three-dimensional model for simulating atmospheric dispersion of heavy-gases over complex terrain

    SciTech Connect

    Chan, S.T.

    1997-09-01

    To help understand heavy gas releases and simulate the resultant dispersion, we have developed a three-dimensional finite element model called FEM3 and an improved version names FEM3A for solving the time dependent conservation equations based on generalized anelastic approximation. Recent enhancements to the model to include the treatment of dispersion scenarios involving density variations much larger than the liquefied natural gas range and an advanced turbulence submodel based on the buoyancy-extended transport equations. This paper presents the main features of the present model FEM3C and numerical results from the simulations of a field-scale LNG spill experiment.

  6. Density-dependence across dispersal stages in a hermaphrodite land snail: insights from discrete choice models.

    PubMed

    Dahirel, Maxime; Vardakis, Michalis; Ansart, Armelle; Madec, Luc

    2016-08-01

    Dispersal movements, i.e. movements leading to gene flow, are key behaviours with important, but only partially understood, consequences for the dynamics and evolution of populations. In particular, density-dependent dispersal has been widely described, yet how it is determined by the interaction with individual traits, and whether density effects differ between the three steps of dispersal (departure, transience, and settlement), remains largely unknown. Using a semi-natural landscape, we studied dispersal choices of Cornu aspersum land snails, a species in which negative effects of crowding are well documented, and analysed them using dispersal discrete choice models, a new method allowing the analysis of dispersal decisions by explicitly considering the characteristics of all available alternatives and their interaction with individual traits. Subadults were more dispersive than adults, confirming existing results. In addition, departure and settlement were both density dependent: snails avoided crowded patches at both ends of the dispersal process, and subadults were more reluctant to settle into crowded patches than adults. Moreover, we found support for carry-over effects of release density on subsequent settlement decisions: snails from crowded contexts were more sensitive to density in their subsequent immigration choices. The fact that settlement decisions were informed indicates that costs of prospecting are not as important as previously thought in snails, and/or that snails use alternative ways to collect information, such as indirect social information (e.g. trail following). The observed density-dependent dispersal dynamics may play an important role in the ability of C. aspersum to successfully colonise frequently human-disturbed habitats around the world. PMID:27139427

  7. Urban Air Quality Modelling with AURORA: Prague and Bratislava

    NASA Astrophysics Data System (ADS)

    Veldeman, N.; Viaene, P.; De Ridder, K.; Peelaerts, W.; Lauwaet, D.; Muhammad, N.; Blyth, L.

    2012-04-01

    The European Commission, in its strategy to protect the health of the European citizens, states that in order to assess the impact of air pollution on public health, information on long-term exposure to air pollution should be available. Currently, indicators of air quality are often being generated using measured pollutant concentrations. While air quality monitoring stations data provide accurate time series information at specific locations, air quality models have the advantage of being able to assess the spatial variability of air quality (for different resolutions) and predict air quality in the future based on different scenarios. When running such air quality models at a high spatial and temporal resolution, one can simulate the actual situation as closely as possible, allowing for a detailed assessment of the risk of exposure to citizens from different pollutants. AURORA (Air quality modelling in Urban Regions using an Optimal Resolution Approach), a prognostic 3-dimensional Eulerian chemistry-transport model, is designed to simulate urban- to regional-scale atmospheric pollutant concentration and exposure fields. The AURORA model also allows to calculate the impact of changes in land use (e.g. planting of trees) or of emission reduction scenario's on air quality. AURORA is currently being applied within the ESA atmospheric GMES service, PASODOBLE (http://www.myair-eu.org), that delivers information on air quality, greenhouse gases, stratospheric ozone, … At present there are two operational AURORA services within PASODOBLE. Within the "Air quality forecast service" VITO delivers daily air quality forecasts for Belgium at a resolution of 5 km and for the major Belgian cities: Brussels, Ghent, Antwerp, Liege and Charleroi. Furthermore forecast services are provided for Prague, Czech Republic and Bratislava, Slovakia, both at a resolution of 1 km. The "Urban/regional air quality assessment service" provides urban- and regional-scale maps (hourly resolution

  8. Overview of the NAME model and its role as a VAAC atmospheric dispersion model during the Eyjafjallajökull Eruption April 2010

    NASA Astrophysics Data System (ADS)

    Leadbetter, Susan; Agnew, Paul; Burgin, Laura; Davis, Lucy; Hort, Matthew; Huggett, Lois; Jones, Andrew; Manning, Alistair; Redington, Alsion; Thomson, David; Webster, Helen

    2010-05-01

    The UK Met Office, in its role as one of nine Volcanic Ash Advisory Centres (VAACs) around the world, is responsible for advising international aviation authorities in all impacted countries of the location and movement of clouds of volcanic ash which originate from the London VAAC domain. VAACs only provide advice on extent of ash to the aviation regulators and it is the regulator's decision on whether to restrict air space. The Met Office delivers this capability through a world-leading atmospheric dispersion model, NAME. In addition to its role as an emergency response guidance tool the model is used for routine air quality forecasting and meteorological research activities. NAME is a Lagrangian particle model which calculates the dispersion of pollutants by tracking ‘particles' through a modelled atmosphere. Each model particle has its own characteristics, for example, particles can represent different chemical species and can represent real particulate sizes. NAME has the flexibility to specify sources at any location in the atmosphere. Once emitted, particles move in a manner determined by the meteorology obtained from the Met Office operational numerical weather prediction model, the Unified Model. Particles are advected according to three-dimensional winds with a random component used to represent the effects of atmospheric turbulence and can be removed from the model atmosphere by various processes. For modelling the dispersion of volcanic ash during the Eyjafjallajökull eruption, NAME is configured in the following manner. Material is released between the volcano summit and the plume rise height as estimated from observations taken by the Icelandic Met Office and measurements from radar and satellites. The particles are emitted following a prescribed size distribution with a density of 2300 kg/m3. The material is subjected to gravitational settling, and is deposited due to dry and wet deposition processes. There is no attempt in NAME to model volcano

  9. Toward a dispersion model for magnetic reconnection: lessons from quantum vortex dynamics

    NASA Astrophysics Data System (ADS)

    Narita, Yasuhito

    2015-04-01

    The phenomenon of quantum vortex reconnection as realized by a turbulent helium superfluid offers astrophysical plasma physicists a great amount of hints and ideas to extract the essence of collisionless magnetic reconnection. Based on the recent review of quantum vortex reconnection [Narita, Y. and Baumjohann, W., Lessons on collisionless reconnection from quantum fluids, Front. Phys., 2, 76, 2014], a scenario of dispersion model for magnetic reconnection is proposed here. In this scenario, the dispersion effect causing the wave packet broadening plays a more essential role in reconnection than other effects such as anomalous resistivity, electron pressure anisotropy and stress, or electron inertia. The nonlinearity is neglected in the weak magnetic field region of reconnection (i.e., diffusion region), and the reconnection dynamics is given as a linear dispersive picture. The dispersion effect can be found not only in quantum mechanics (the Schroedinger equation) but also in plasma physics as dispersive waves (whistler waves, for example). While magnetic reconnection is often associated with turbulence, the dispersion model suggests that reconnection be a smooth transition of magnetic field line topology.

  10. Time-space modeling of journey-time exposure to traffic-related air pollution using GIS.

    PubMed

    Gulliver, John; Briggs, David J

    2005-01-01

    Journey-time exposures represent an important, though as yet little-studied, component of human exposure to traffic-related air pollution, potentially with important health effects. Methods for assessing journey-time exposures, either as part of epidemiological studies or for policy assessment, are, however, poorly developed. This paper describes the development and testing of a GIS-based system for modeling human journey-time exposures to traffic-related air pollution: STEMS (Space-Time Exposure Modeling System). The model integrates data on source activity, pollutant dispersion, and travel behavior to derive individual- or group-level exposure measures to atmospheric pollution. The model, which is designed to simulate exposures of people as they move through a changing air pollution field, was developed, validated, and trialed in Northampton, UK. The system currently uses ArcInfo to couple four separate submodels: a source activity/emission model (SATURN), a proprietary atmospheric dispersion model (ADMS-Urban), an empirically derived background air pollution model, and a purposely designed time-activity-based exposure model (TOTEM). This paper describes the structure of the modeling system; presents results of field calibration, validation, and sensitivity analysis; and illustrates the use of the model to analyze journey-time exposures of schoolchildren.

  11. Improving Air-Conditioner and Heat Pump Modeling

    SciTech Connect

    Winkler, Jon

    2012-03-02

    This presentation describes a new approach to modeling residential air conditioners and heat pumps, which allows users to model systems by specifying only the more readily-available SEER/EER/HSPF-type metrics. Manufacturer data was used to generate full sets of model inputs for over 450 heat pumps and air conditioners. A sensitivity analysis identified which inputs can be safely defaulted “behind-the-scenes” without negatively impacting the reliability of energy simulations.

  12. Improving Air-Conditioner and Heat Pump Modeling (Presentation)

    SciTech Connect

    Winkler, J.

    2012-03-01

    A new approach to modeling residential air conditioners and heat pumps allows users to model systems by specifying only the more readily-available SEER/EER/HSPF-type metrics. Manufacturer data was used to generate full sets of model inputs for over 450 heat pumps and air conditioners. A sensitivity analysis identified which inputs can be safely defaulted 'behind-the-scenes' without negatively impacting the reliability of energy simulations.

  13. Dispersion modeling of accidental releases of toxic gases - Comparison of the models and their utility for the fire brigades.

    NASA Astrophysics Data System (ADS)

    Stenzel, S.; Baumann-Stanzer, K.

    2009-04-01

    Dispersion modeling of accidental releases of toxic gases - Comparison of the models and their utility for the fire brigades. Sirma Stenzel, Kathrin Baumann-Stanzer In the case of accidental release of hazardous gases in the atmosphere, the emergency responders need a reliable and fast tool to assess the possible consequences and apply the optimal countermeasures. For hazard prediction and simulation of the hazard zones a number of air dispersion models are available. The most model packages (commercial or free of charge) include a chemical database, an intuitive graphical user interface (GUI) and automated graphical output for display the results, they are easy to use and can operate fast and effective during stress situations. The models are designed especially for analyzing different accidental toxic release scenarios ("worst-case scenarios"), preparing emergency response plans and optimal countermeasures as well as for real-time risk assessment and management. There are also possibilities for model direct coupling to automatic meteorological stations, in order to avoid uncertainties in the model output due to insufficient or incorrect meteorological data. Another key problem in coping with accidental toxic release is the relative width spectrum of regulations and values, like IDLH, ERPG, AEGL, MAK etc. and the different criteria for their application. Since the particulate emergency responders and organizations require for their purposes unequal regulations and values, it is quite difficult to predict the individual hazard areas. There are a quite number of research studies and investigations coping with the problem, anyway the end decision is up to the authorities. The research project RETOMOD (reference scenarios calculations for toxic gas releases - model systems and their utility for the fire brigade) was conducted by the Central Institute for Meteorology and Geodynamics (ZAMG) in cooperation with the Vienna fire brigade, OMV Refining & Marketing GmbH and

  14. Modeling Dispersion of Chemical-Biological Agents in Three Dimensional Living Space

    SciTech Connect

    William S. Winters

    2002-02-01

    This report documents a series of calculations designed to demonstrate Sandia's capability in modeling the dispersal of chemical and biological agents in complex three-dimensional spaces. The transport of particles representing biological agents is modeled in a single room and in several connected rooms. The influence of particle size, particle weight and injection method are studied.

  15. RLINE: A Line Source Dispersion Model for Near-Surface Releases

    EPA Science Inventory

    This paper describes the formulation and evaluation of RLINE, a Research LINE source model for near surface releases. The model is designed to simulate mobile source pollutant dispersion to support the assessment of human exposures in near-roadway environments where a significant...

  16. INITIAL STUDY OF HPAC MODELED DISPERSION DRIVEN BY MM5 WITH AND WITHOUT URBAN CANOPY PARAMETERIZATIONS

    EPA Science Inventory

    Improving the accuracy and capability of transport and dispersion models in urban areas is essential for current and future urban applications. These models must reflect more realistically the presence and details of urban canopy features. Such features markedly influence the flo...

  17. Fractional Advective-Dispersive Equation as a Model of Solute Transport in Porous Media

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding and modeling transport of solutes in porous media is a critical issue in the environmental protection. The common model is the advective-dispersive equation (ADE) describing the superposition of the advective transport and the Brownian motion in water-filled pore space. Deviations from...

  18. A simulation of air pollution model parameter estimation using data from a ground-based LIDAR remote sensor

    NASA Technical Reports Server (NTRS)

    Kibler, J. F.; Suttles, J. T.

    1977-01-01

    One way to obtain estimates of the unknown parameters in a pollution dispersion model is to compare the model predictions with remotely sensed air quality data. A ground-based LIDAR sensor provides relative pollution concentration measurements as a function of space and time. The measured sensor data are compared with the dispersion model output through a numerical estimation procedure to yield parameter estimates which best fit the data. This overall process is tested in a computer simulation to study the effects of various measurement strategies. Such a simulation is useful prior to a field measurement exercise to maximize the information content in the collected data. Parametric studies of simulated data matched to a Gaussian plume dispersion model indicate the trade offs available between estimation accuracy and data acquisition strategy.

  19. An accurate and efficient Lagrangian sub-grid model for multi-particle dispersion

    NASA Astrophysics Data System (ADS)

    Toschi, Federico; Mazzitelli, Irene; Lanotte, Alessandra S.

    2014-11-01

    Many natural and industrial processes involve the dispersion of particle in turbulent flows. Despite recent theoretical progresses in the understanding of particle dynamics in simple turbulent flows, complex geometries often call for numerical approaches based on eulerian Large Eddy Simulation (LES). One important issue related to the Lagrangian integration of tracers in under-resolved velocity fields is connected to the lack of spatial correlations at unresolved scales. Here we propose a computationally efficient Lagrangian model for the sub-grid velocity of tracers dispersed in statistically homogeneous and isotropic turbulent flows. The model incorporates the multi-scale nature of turbulent temporal and spatial correlations that are essential to correctly reproduce the dynamics of multi-particle dispersion. The new model is able to describe the Lagrangian temporal and spatial correlations in clouds of particles. In particular we show that pairs and tetrads dispersion compare well with results from Direct Numerical Simulations of statistically isotropic and homogeneous 3d turbulence. This model may offer an accurate and efficient way to describe multi-particle dispersion in under resolved turbulent velocity fields such as the one employed in eulerian LES. This work is part of the research programmes FP112 of the Foundation for Fundamental Research on Matter (FOM), which is part of the Netherlands Organisation for Scientific Research (NWO). We acknowledge support from the EU COST Action MP0806.

  20. Recent Advances in WRF Modeling for Air Quality Applications

    EPA Science Inventory

    The USEPA uses WRF in conjunction with the Community Multiscale Air Quality (CMAQ) for air quality regulation and research. Over the years we have added physics options and geophysical datasets to the WRF system to enhance model capabilities especially for extended retrospective...

  1. A model for seed dispersion and vegetation growth

    NASA Astrophysics Data System (ADS)

    da Silva, Jaqueline Maria; Vieira Kritz, Maurício

    2016-08-01

    The study of processes associated with vegetation grow is very important to understand the dynamics of flooded ecosystems and their sustainable management. We present a cell-centered individual-based probabilistic model for the dynamics of tree-populations, that is further tailored towards the environmental conditions present in the Amazon floodplains.

  2. ATMOSPHERIC DISPERSION MODELING OF EMISSIONS FROM GROUND ZERO

    EPA Science Inventory

    Since September 11, 2001 the EPA National Exposure Research Laboratory (NERL) has applied meteorological measurements and modeling to support WTC recovery assessments. The local meteorology is observed to be a key factor in both the diurnal and day-to-day changes in the observ...

  3. Simulation of Smoke-Haze Dispersion from Wildfires in South East Asia with a Lagrangian Particle Model

    NASA Astrophysics Data System (ADS)

    Hertwig, D.; Burgin, L.; Gan, C.; Hort, M.; Jones, A. R.; Shaw, F.; Witham, C. S.; Zhang, K.

    2014-12-01

    Biomass burning, often related to agricultural deforestation, not only affects local pollution levels but periodically deteriorates air quality in many South East Asian megacities due to the transboundary transport of smoke-haze. In June 2013, Singapore experienced the worst wildfire related air-pollution event on record following from the escalation of peatland fires in Sumatra. An extended dry period together with anomalous westerly winds resulted in severe and unhealthy pollution levels in Singapore that lasted for more than two weeks. Reacting to this event, the Met Office and the Meteorological Service Singapore have explored how to adequately simulate haze-pollution dispersion, with the aim to provide a reliable operational forecast for Singapore. Simulations with the Lagrangian particle model NAME (Numerical Atmospheric-dispersion Modelling Environment), running on numerical weather prediction data from the Met Office and Meteorological Service Singapore and emission data derived from satellite observations of the fire radiative power, are validated against PM10 observations in South East Asia. Comparisons of simulated concentrations with hourly averages of PM10 measurements in Singapore show that the model captures well the severe smoke-haze event in June 2013 and a minor episode in March 2014. Different quantitative satellite-derived emissions have been tested, with one source demonstrating a consistent factor of two under-prediction for Singapore. Confidence in the skill of the model system has been substantiated by further comparisons with data from monitoring sites in Malaysia, Brunei and Thailand. Following the validation study, operational smoke-haze pollution forecasts with NAME were launched in Singapore, in time for the 2014 fire season. Real-time bias correction and verification of this forecast will be discussed.

  4. Numerical schemes for a model for nonlinear dispersive waves

    NASA Technical Reports Server (NTRS)

    Bona, J. L.; Pritchard, W. G.; Scott, L. R.

    1985-01-01

    A description is given of a number of numerical schemes to solve an evolution equation (Korteweg-deVries) that arises when modelling the propagation of water waves in a channel. The discussion also includes the results of numerical experiments made with each of the schemes. It is suggested, on the basis of these experiments, that one of the schemes may have (discrete) solitary-wave solutions.

  5. Atmospheric Dispersion Modeling: Challenges of the Fukushima Daiichi Response

    SciTech Connect

    Sugiyama, Gayle; Nasstrom, John; Pobanz, Brenda; Foster, Kevin; Simpson, Matthew; Vogt, Phil; Aluzzi, Fernando; Homann, Steve

    2012-05-01

    The U.S. Department of Energy’s (DOE) National Atmospheric Release Advisory Center (NARAC) provided a wide range of predictions and analyses as part of the response to the Fukushima Daiichi Nuclear Power Plant accident. This work encompassed: weather forecasts and atmospheric transport predictions, estimates of possible dose in Japan based on hypothetical U.S. Nuclear Regulatory Commission scenarios of potential radionuclide releases, predictions of possible plume arrival times and dose levels at U.S. locations, and source estimation and plume model refinement. An overview of NARAC response activities is provided, along with a more in-depth discussion of some of NARAC’s preliminary source reconstruction analyses. NARAC optimized the overall agreement of model predictions to dose rate measurements using statistical comparisons of data and model values paired in space and time. Estimated emission rates varied depending on the choice of release assumptions (e.g., time-varying vs. constant release rates), the radionuclide mix, meteorology, and/or the radiological data used in the analysis. Results were found to be consistent with other studies within expected uncertainties, despite the application of different source estimation methodologies and the use of significantly different radiological measurement data. A discussion of some of the operational and scientific challenges encountered during the response, along with recommendations for future work, is provided.

  6. Radiotherapy service delivery models for a dispersed patient population.

    PubMed

    Dunscombe, P; Roberts, G

    2001-01-01

    Access to health care interventions can be impeded when significant patient travel is required. In this economic evaluation we compare, from a societal perspective, three scenarios for the delivery of radiation treatment to an idealized population of 1,600 patients distributed between two urban nodes (1,200 + 400 patients each) separated by up to 500 km. As it is implicitly assumed that the clinical outcome for those patients who access the system is independent of the service delivery model, this study constitutes a cost minimization analysis from a societal perspective. The costs to the health care system are based on an activity costing model developed by us and consistent with recent Canadian studies. The costs to the patient are approximated by a formula that includes direct costs (travel and accommodation) and indirect (time) costs, with the latter based on a human capital approach. A sensitivity analysis has been performed to confirm the robustness of our conclusions both to uncertainties in the input data and to the inclusion of time costs, the estimation of which remains controversial. From a societal cost perspective only, we show that outreach radiotherapy (central comprehensive facility and satellite) is the economically superior service delivery model for separations between 30 km and 170 km. Beyond 170 km, a fully decentralized service would be warranted if the only consideration were societal economic advantage. PMID:11292133

  7. A Physically Based Model for Air-Lift Pumping

    NASA Astrophysics Data System (ADS)

    FrançOis, Odile; Gilmore, Tyler; Pinto, Michael J.; Gorelick, Steven M.

    1996-08-01

    A predictive, physically based model for pumping water from a well using air injection (air-lift pumping) was developed for the range of flow rates that we explored in a series of laboratory experiments. The goal was to determine the air flow rate required to pump a specific flow rate of water in a given well, designed for in-well air stripping of volatile organic compounds from an aquifer. The model was validated against original laboratory data as well as data from the literature. A laboratory air-lift system was constructed that consisted of a 70-foot-long (21-m-long) pipe, 5.5 inches (14 cm) inside diameter, in which an air line of 1.3 inches (3.3 cm) outside diameter was placed with its bottom at different elevations above the base of the long pipe. Experiments were conducted for different levels of submergence, with water-pumping rates ranging from 5 to 70 gallons/min (0.32-4.4 L/s), and air flow ranging from 7 to 38 standard cubic feet/min (0.2-1.1 m3 STP/min). The theoretical approach adopted in the model was based on an analysis of the system as a one-dimensional two-phase flow problem. The expression for the pressure gradient includes inertial energy terms, friction, and gas expansion versus elevation. Data analysis revealed that application of the usual drift-flux model to estimate the air void fraction is not adequate for the observed flow patterns: either slug or churn flow. We propose a modified drift-flux model that accurately predicts air-lift pumping requirements for a range of conditions representative of in-well air-stripping operations.

  8. Modeling air quality over China: Results from the Panda project

    NASA Astrophysics Data System (ADS)

    Katinka Petersen, Anna; Bouarar, Idir; Brasseur, Guy; Granier, Claire; Xie, Ying; Wang, Lili; Wang, Xuemei

    2015-04-01

    China faces strong air pollution problems related to rapid economic development in the past decade and increasing demand for energy. Air quality monitoring stations often report high levels of particle matter and ozone all over the country. Knowing its long-term health impacts, air pollution became then a pressing problem not only in China but also in other Asian countries. The PANDA project is a result of cooperation between scientists from Europe and China who joined their efforts for a better understanding of the processes controlling air pollution in China, improve methods for monitoring air quality and elaborate indicators in support of European and Chinese policies. A modeling system of air pollution is being setup within the PANDA project and include advanced global (MACC, EMEP) and regional (WRF-Chem, EMEP) meteorological and chemical models to analyze and monitor air quality in China. The poster describes the accomplishments obtained within the first year of the project. Model simulations for January and July 2010 are evaluated with satellite measurements (SCIAMACHY NO2 and MOPITT CO) and in-situ data (O3, CO, NOx, PM10 and PM2.5) observed at several surface stations in China. Using the WRF-Chem model, we investigate the sensitivity of the model performance to emissions (MACCity, HTAPv2), horizontal resolution (60km, 20km) and choice of initial and boundary conditions.

  9. Preliminary reactor cavity melt dispersal model for direct containment heating scenarios

    SciTech Connect

    Ginsberg, T.; Tutu, N.K.

    1989-01-01

    This paper presents the results of a series of experiments performed to study the effect of initial pressure vessel conditions on the extent of melt dispersal from scaled reactor cavities and describes progress in development of a mathematical model which is designed to predict the melt mass dispersed from reactor cavities as a function of reactor vessel initial conditions and on the vessel breach area. The model, which is being developed to also characterize the heat transfer and chemical reaction phenomena which would take place within the reactor cavity, is designed to be incorporated into a lumped-parameter containment analysis computer code.

  10. Dispersal, eviction, and conflict in meerkats (Suricata suricatta): an evolutionarily stable strategy model.

    PubMed

    Stephens, P A; Russell, A F; Young, A J; Sutherland, W J; Clutton-Brock, T H

    2005-01-01

    Decisions regarding immigration and emigration are crucial to understanding group dynamics in social animals, but