Science.gov

Sample records for air distribution ducting

  1. Advanced Strategy Guideline: Air Distribution Basics and Duct Design

    SciTech Connect

    Burdick, A.

    2011-12-01

    This report discusses considerations for designing an air distribution system for an energy efficient house that requires less air volume to condition the space. Considering the HVAC system early in the design process will allow adequate space for equipment and ductwork and can result in cost savings. Principles discussed that will maximize occupant comfort include delivery of the proper amount of conditioned air for appropriate temperature mixing and uniformity without drafts, minimization of system noise, the impacts of pressure loss, efficient return air duct design, and supply air outlet placement, as well as duct layout, materials, and sizing.

  2. Advanced Strategy Guideline. Air Distribution Basics and Duct Design

    SciTech Connect

    Burdick, Arlan

    2011-12-01

    This report discusses considerations for designing an air distribution system for an energy efficient house that requires less air volume to condition the space. Considering the HVAC system early in the design process will allow adequate space for equipment and ductwork and can result in cost savings.

  3. SENSITIVITY OF THE HOUSE PRESSURE TEST FOR DUCT LEAKAGE TO VARIATIONS IN THE DISTRIBUTION OF AIR LEAKAGE IN THE HOUSE ENVELOPE

    SciTech Connect

    ANDREWS,J.W.

    1998-12-01

    The house pressure test for air leakage in ducts calculates the signed difference between the supply and return leakage from the response of the air pressure in the house to operation of the system fan. The currently accepted version of this calculation was based on particular assumptions about how the house envelope leakage is distributed between the walls, ceiling, and floor. This report generalizes the equation to account for an arbitrary distribution of envelope leakage. It concludes that the currently accepted equation is usually accurate to within {+-}5%, but in a small proportion of cases the results may diverge by 50% or more.

  4. Sensitivity of the house pressure test for duct leakage to variations in the distribution of air leakage in the house envelope

    SciTech Connect

    Andrews, J.W.

    1998-12-01

    The house pressure test for air leakage in ducts calculates the signed difference between the supply and return leakage from the response of the air pressure in the house to operation of the system fan. The currently accepted version of this calculation was based on particular assumptions about how the house envelope leakage is distributed between the walls, ceiling, and floor. This report generalizes the equation to account for an arbitrary distribution of envelope leakage. It concludes that the currently accepted equation is usually accurate to within {+-}5%, but in a small proportion of cases the results may diverge by 50% or more.

  5. 14 CFR 29.1103 - Induction systems ducts and air duct systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Induction systems ducts and air duct... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Induction System § 29.1103 Induction systems ducts and air duct systems. (a) Each induction system duct upstream of the...

  6. Longevity of duct tape in residential air distribution systems: 1-D, 2-D, and 3-D joints

    SciTech Connect

    Abushakra, Bass

    2002-05-30

    The aging tests conducted so far showed that duct tape tends to degrade in its performance as the joint it is applied to requires a geometrical description of a higher number of space dimensions (1-D, 2-D, 3-D). One-dimensional joints are the easiest to seal with duct tape, and thus the least to experience failure. Two-dimensional joints, such as the flexible duct core-to-collar joints tested in this study, are less likely to fail than three-dimensional collar-to-plenum joints, as the shrinkage could have a positive effect in tightening the joint. Three-dimensional joints are the toughest to seal and the most likely to experience failure. The 2-D flexible duct core-to-collar joints passed the six-month period of the aging test in terms of leakage, but with the exception of the foil-butyl tape, showed degradation in terms hardening, brittleness, partial peeling, shrinkage, wrinkling, delamination of the tape layers, flaking, cracking, bubbling, oozing and discoloration. The baking test results showed that the failure in the duct tape joints could be attributed to the type of combination of the duct tape and the material it is applied to, as the duct tape behaves differently with different substrates. Overall, the foil-butyl tape (Tape 4) had the best results, while the film tape (Tape 3) showed the most deterioration. The conventional duct tapes tested (Tape 1 and Tape 2) were between these two extremes, with Tape 2 performing better than Tape 1. Lastly, we found that plastic straps became discolored and brittle during the tests, and a couple of straps broke completely. Therefore, we recommend that clamping the duct-taped flexible core-to-collar joints should be done with metallic adjustable straps.

  7. 14 CFR 29.1103 - Induction systems ducts and air duct systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Induction systems ducts and air duct systems. 29.1103 Section 29.1103 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Induction System § 29.1103 Induction systems ducts and air...

  8. 14 CFR 25.1103 - Induction system ducts and air duct systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... between the air duct source and the airplane unit served by the air. (e) Each auxiliary power unit... other compartment or area of the airplane in which a hazard would be created resulting from the entry...

  9. 14 CFR 25.1103 - Induction system ducts and air duct systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... between the air duct source and the airplane unit served by the air. (e) Each auxiliary power unit... other compartment or area of the airplane in which a hazard would be created resulting from the entry...

  10. AIR DUCTS STAND NEXT TO (AND OUTSIDE OF) REACTOR CABINET ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    AIR DUCTS STAND NEXT TO (AND OUTSIDE OF) REACTOR CABINET AT THE SOUTHWEST AND NORTHEAST CORNERS OF THE REACTOR'S THERMAL SHIELD. THEY WILL BE ENVELOPED IN BIOLOGICAL CONCRETE SHIELD. IN THE SUB-BASEMENT, THE TWO DUCTS WILL JOIN TOGETHER AND EXIT THE BUILDING TO THE FAN HOUSE. CAMERA FACING NORTH. INL NEGATIVE NO. 1625. Unknown Photographer, 3/6/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  11. Low-noise flow valve for air ducts

    NASA Technical Reports Server (NTRS)

    Gallo, E. A.

    1970-01-01

    Valve assembly controls air flow from feeder into main duct, with minimum of turbulence, friction, pressure differential, and noise. Valve consists of damper, deflector, and spring. Streamlining of damper and deflector merges flow smoothly, while spring keeps damper and deflector in contact and eliminates valve chatter and damping vibrations.

  12. Cooling air recycling for gas turbine transition duct end frame and related method

    DOEpatents

    Cromer, Robert Harold; Bechtel, William Theodore; Sutcu, Maz

    2002-01-01

    A method of cooling a transition duct end frame in a gas turbine includes the steps of a) directing cooling air into the end frame from a region external of the transition duct and the impingement cooling sleeve; and b) redirecting the cooling air from the end frame into the annulus between the transition duct and the impingement cooling sleeve.

  13. Strategy Guideline. Compact Air Distribution Systems

    SciTech Connect

    Burdick, Arlan

    2013-06-01

    This guideline discusses the benefits and challenges of using a compact air distribution system to handle the reduced loads and reduced air volume needed to condition the space within an energy efficient home. The decision criteria for a compact air distribution system must be determined early in the whole-house design process, considering both supply and return air design. However, careful installation of a compact air distribution system can result in lower material costs from smaller equipment, shorter duct runs, and fewer outlets; increased installation efficiencies, including ease of fitting the system into conditioned space; lower loads on a better balanced HVAC system, and overall improved energy efficiency of the home.

  14. Strategy Guideline: Compact Air Distribution Systems

    SciTech Connect

    Burdick, A.

    2013-06-01

    This Strategy Guideline discusses the benefits and challenges of using a compact air distribution system to handle the reduced loads and reduced air volume needed to condition the space within an energy efficient home. Traditional systems sized by 'rule of thumb' (i.e., 1 ton of cooling per 400 ft2 of floor space) that 'wash' the exterior walls with conditioned air from floor registers cannot provide appropriate air mixing and moisture removal in low-load homes. A compact air distribution system locates the HVAC equipment centrally with shorter ducts run to interior walls, and ceiling supply outlets throw the air toward the exterior walls along the ceiling plane; alternatively, high sidewall supply outlets throw the air toward the exterior walls. Potential drawbacks include resistance from installing contractors or code officials who are unfamiliar with compact air distribution systems, as well as a lack of availability of low-cost high sidewall or ceiling supply outlets to meet the low air volumes with good throw characteristics. The decision criteria for a compact air distribution system must be determined early in the whole-house design process, considering both supply and return air design. However, careful installation of a compact air distribution system can result in lower material costs from smaller equipment, shorter duct runs, and fewer outlets; increased installation efficiencies, including ease of fitting the system into conditioned space; lower loads on a better balanced HVAC system, and overall improved energy efficiency of the home.

  15. Numerical characterization of the hydrodynamics and thermal behavior of air flow in flexible air distribution system

    NASA Astrophysics Data System (ADS)

    Gharehdaghi, Samad; Moujaes, Samir

    2013-10-01

    Flexible duct air distribution systems are used in a large percentage of residential and small commercial buildings in the United States . Very few empirical or predictive data are available though to help provide the HVAC design engineer with reliable information . Moreover, because of the ducts flexibility, the shapes of these ducts offer a different set of operating fluid flow and thermal conditions from traditional smooth metal ducts. Hence, both the flow field and heat transfer through this kind of ducts are much more complex and merit to be analyzed from a numerical predictive approach. The aim of this research paper is to compute some of the hydrodynamic and heat transfer characteristics of the air flow inside these ducts over a range of Re numbers commonly used in the flow conditions of these air distribution systems. The information resulting from this CFD simulation, where a κ-ɛ turbulent model is used to predict the flow conditions, provide pressure drop and average convective heat transfer coefficients that exist in these ducts and was compared to previously found data. Circulation zones in the depressions of these ducts are found to exist which are suspected of influencing the pressured drop and heat transfer coefficients as compared to smooth ducts. The results show that fully developed conditions exist much earlier with regard to the inlet for both hydrodynamic and thermal entrance regions than what would be expected in smooth ducts under the same turbulent conditions.

  16. Numerical simulation of flow in a circular duct fitted with air-jet vortex generators

    NASA Astrophysics Data System (ADS)

    Küpper, Christoph; Henry, Frank S.

    2002-04-01

    Most of the fundamental studies of the use of air-jet vortex generators (AJVGs) have concentrated on their potential ability to inhibit boundary layer separation on aerofoils. However, AJVGs may be of use in controlling or enhancing certain features of internal duct flows. For example, they may be of use in controlling the boundary layer at the entrance to engine air intakes, or as a means of increasing mixing and heat transfer. The objective of this paper is to analyse the flow field in the proximity of an air-jet vortex generator array in a duct by using two local numerical models, i.e. a simple flat plate model and a more geometrically faithful sector model. The sector model mirrors the circular nature of the duct's cross-section and the centre line conditions on the upper boundary. The flow was assumed fully turbulent and was solved using the finite volume, Navier-Stokes Code CFX 4 (CFDS, AEA Technology, Harwell) on a non-orthogonal, body-fitted, grid using the k- turbulence model and standard wall functions. Streamwise, vertical and cross-stream velocity profiles, circulation and peak vorticity decay, peak vorticity paths in cross-stream and streamwise direction, cross-stream vorticity profiles and cross-stream wall shear stress distributions were predicted. Negligible difference in results was observed between the flat plate and the sector model, since the produced vortices were small relative to the duct diameter and close to the surface. The flow field was most enhanced, i.e. maximum thinning of the boundary layer, with a configuration of 30° pitch and 75° skew angle. No significant difference in results could be observed between co- and counter-rotating vortex arrays. Copyright

  17. The influence of air duct geometry on air jet direction in aircraft cabin ventilated by mixing ventilation.

    NASA Astrophysics Data System (ADS)

    Fišer, J.; Jícha, M.

    2013-04-01

    The paper deals with instigation of influence of air duct geometry on air jet direction in aircraft cabin ventilated by mixing ventilation. CFD approach was used for investigation and model geometry was based on small aircraft cabin mock-up geometry. Model was also equipped by nine seats and five manikins that represent passengers. The air jet direction was observed for selected ambient environment parameters and several types of air duct geometry and influence of main air duct geometry on jets direction is discussed. The model was created in StarCCM+ ver. 6.04.014 software and polyhedral mesh was used.

  18. 14 CFR 25.1103 - Induction system ducts and air duct systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... the auxiliary power unit must be capable of resisting the maximum heat conditions likely to occur. (f) Each auxiliary power unit induction system duct must be constructed of materials that will not...

  19. 14 CFR 25.1103 - Induction system ducts and air duct systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... the auxiliary power unit must be capable of resisting the maximum heat conditions likely to occur. (f) Each auxiliary power unit induction system duct must be constructed of materials that will not...

  20. 14 CFR 29.1103 - Induction systems ducts and air duct systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... resisting the maximum heat conditions likely to occur. (f) Each auxiliary power unit induction system duct must be constructed of materials that will not absorb or trap hazardous quantities of flammable...

  1. 14 CFR 29.1103 - Induction systems ducts and air duct systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... resisting the maximum heat conditions likely to occur. (f) Each auxiliary power unit induction system duct must be constructed of materials that will not absorb or trap hazardous quantities of flammable...

  2. 14 CFR 25.1103 - Induction system ducts and air duct systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... the auxiliary power unit must be capable of resisting the maximum heat conditions likely to occur. (f) Each auxiliary power unit induction system duct must be constructed of materials that will not...

  3. 14 CFR 29.1103 - Induction systems ducts and air duct systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... resisting the maximum heat conditions likely to occur. (f) Each auxiliary power unit induction system duct must be constructed of materials that will not absorb or trap hazardous quantities of flammable...

  4. Acoustic radiation from lined, unflanged ducts: Acoustic source distribution program

    NASA Technical Reports Server (NTRS)

    Beckemeyer, R. J.; Sawdy, D. T.

    1971-01-01

    An acoustic radiation analysis was developed to predict the far-field characteristics of fan noise radiated from an acoustically lined unflanged duct. This analysis is comprised of three modular digital computer programs which together provide a capability of accounting for the impedance mismatch at the duct exit plane. Admissible duct configurations include circular or annular, with or without an extended centerbody. This variation in duct configurations provides a capability of modeling inlet and fan duct noise radiation. The computer programs are described in detail.

  5. Experimental study on the flame behaviors of premixed methane/air mixture in horizontal rectangular ducts

    NASA Astrophysics Data System (ADS)

    Chen, Dongliang; Sun, Jinhua; Chen, Sining; Liu, Yi; Chu, Guanquan

    2007-01-01

    In order to explore the flame propagation characteristics and tulip flame formation mechanism of premixed methane/air mixture in horizontal rectangular ducts, the techniques of Schlieren and high-speed video camera are used to study the flame behaviors of the premixed gases in a closed duct and opened one respectively, and the propagation characteristics in both cases and the formation mechanism of the tulip flame are analyzed. The results show that, the propagation flame in a closed duct is prior to form a tulip flame structure than that in an opened duct, and the tulip flame structure formation in a closed duct is related to the flame propagation velocity decrease. The sharp decrease of the flame propagation velocity is one of the reasons to the tulip flame formation, and the decrease of the flame propagation velocity is due to the decrease of the burned product flow velocity mainly.

  6. Should You Have the Air Ducts in Your Home Cleaned?

    MedlinePlus

    ... heat exchangers) may improve the efficiency of your system, resulting in a longer operating life, as well as some energy and maintenance ... spraying or otherwise introducing these materials into the operating duct system may cause much of the material to be ...

  7. Thermionic nuclear reactor with internal heat distribution and multiple duct cooling

    DOEpatents

    Fisher, C.R.; Perry, L.W. Jr.

    1975-11-01

    A Thermionic Nuclear Reactor is described having multiple ribbon-like coolant ducts passing through the core, intertwined among the thermionic fuel elements to provide independent cooling paths. Heat pipes are disposed in the core between and adjacent to the thermionic fuel elements and the ribbon ducting, for the purpose of more uniformly distributing the heat of fission among the thermionic fuel elements and the ducts.

  8. Stabilization of buoyancy-driven unstable vortex flow in mixed convection of air in a rectangular duct by tapering its top plate

    SciTech Connect

    Tseng, W.S.; Lin, W.L.; Yin, C.P.; Lin, C.L.; Lin, T.F.

    2000-02-01

    At high buoyancy-to-inertia ratio frequently encountered in various heat transfer equipment, the buoyancy-driven secondary vortex flow in a forced laminar flow through a bottom heated rectangular duct is rather unstable. Heat transfer augmentation associated with the buoyancy-driven vortex flow is desirable and welcome in many technological applications in which the efficient energy transport is of major concern. Here, stabilization of the buoyancy-driven unstable mixed convective vortex air flow in a bottom heated rectangular duct by tapering its top plate is investigated experimentally. Specifically, the duct is tapered so that its aspect ratio at the duct inlet is 4 and gradually raised to 12 at the exit of the duct. In the study the secondary flow in the duct is visualized and the steady and transient thermal characteristics of the flow are examined by measuring the spanwise distributions of the time-average temperature. The effects of the Reynolds and Grashof numbers on the vortex flow structure are studied in detail. Moreover, the spanwise-averaged Nusselt numbers for the horizontal rectangular and tapering ducts are also measured and compared. Furthermore, the time records of the air temperature are obtained to further detect the temporal stability of the flow. Over the ranges of the Re and Gr investigated for 5 {le} Re {le} 102 and 1.0 x 10{sup 4} {le} Gr {le} 1.7 x 10{sup 5}, the vortex flow induced in the rectangular duct exhibits temporal transition from a steady laminar to time periodic and then to chaotic state at increasing buoyancy-to-inertia ratio. Substantial change in the spatial structure of the vortex flow is also noted to accompany this temporal transition. The results for the tapering duct indicate that more vortex rolls can be induced due to the increase in the aspect ratio of the duct with the axial distance. But the vortex rolls are weaker and are completely stabilized by the tapering of the top plate.

  9. Air-sea interaction and spatial variability of the surface evaporation duct in a coastal environment

    NASA Astrophysics Data System (ADS)

    Brooks, Ian M.

    Aircraft observations are presented of the horizontal variability in the depth of the surface evaporation duct and the relationship with the mesoscale structure of air-sea interaction processes. The 2-dimensional fields of near-surface wind, stress, wind-stress curl, air and sea-surface temperature are measured directly for flow around a headland. The sea surface temperature field indicates cold upwelling driven by the wind-stress curl. Boundary-layer stability responds rapidly to the spatial changes in surface temperature. These changes result in modification of the evaporation duct, which decreases significantly in depth over the cooler upwelling water.

  10. Development of an ultrasonic airflow measurement device for ducted air.

    PubMed

    Raine, Andrew B; Aslam, Nauman; Underwood, Christopher P; Danaher, Sean

    2015-01-01

    In this study, an in-duct ultrasonic airflow measurement device has been designed, developed and tested. The airflow measurement results for a small range of airflow velocities and temperatures show that the accuracy was better than 3.5% root mean square (RMS) when it was tested within a round or square duct compared to the in-line Venturi tube airflow meter used for reference. This proof of concept device has provided evidence that with further development it could be a low-cost alternative to pressure differential devices such as the orifice plate airflow meter for monitoring energy efficiency performance and reliability of ventilation systems. The design uses a number of techniques and design choices to provide solutions to lower the implementation cost of the device compared to traditional airflow meters. The design choices that were found to work well are the single sided transducer arrangement for a "V" shaped reflective path and the use of square wave transmitter pulses ending with the necessary 180° phase changed pulse train to suppress transducer ringing. The device is also designed so that it does not have to rely on high-speed analogue to digital converters (ADC) and intensive digital signal processing, so could be implemented using voltage comparators and low-cost microcontrollers. PMID:25954952

  11. Development of an Ultrasonic Airflow Measurement Device for Ducted Air

    PubMed Central

    Raine, Andrew B.; Aslam, Nauman; Underwood, Christopher P.; Danaher, Sean

    2015-01-01

    In this study, an in-duct ultrasonic airflow measurement device has been designed, developed and tested. The airflow measurement results for a small range of airflow velocities and temperatures show that the accuracy was better than 3.5% root mean square (RMS) when it was tested within a round or square duct compared to the in-line Venturi tube airflow meter used for reference. This proof of concept device has provided evidence that with further development it could be a low-cost alternative to pressure differential devices such as the orifice plate airflow meter for monitoring energy efficiency performance and reliability of ventilation systems. The design uses a number of techniques and design choices to provide solutions to lower the implementation cost of the device compared to traditional airflow meters. The design choices that were found to work well are the single sided transducer arrangement for a “V” shaped reflective path and the use of square wave transmitter pulses ending with the necessary 180° phase changed pulse train to suppress transducer ringing. The device is also designed so that it does not have to rely on high-speed analogue to digital converters (ADC) and intensive digital signal processing, so could be implemented using voltage comparators and low-cost microcontrollers. PMID:25954952

  12. Duct System Flammability and Air Sealing Fire Separation Assemblies in the International Residential Code

    SciTech Connect

    Rudd, A.; Prahl, D.

    2014-12-01

    IBACOS identified two barriers that limit the ability of builders to cost-effectively achieve higher energy efficiency levels in housing. These are (1) the use of duct system materials that inherently achieve airtightness and are appropriately sized for low-load houses and (2) the ability to air seal fire separation assemblies. The issues identified fall into a gray area of the codes.

  13. Duct System Flammability and Air Sealing Fire Separation Assemblies in the International Residential Code

    SciTech Connect

    Rudd, A.; Prahl, D.

    2014-12-01

    IBACOS identified two barriers that limit the ability of builders to cost-effectively achieve higher energy efficiency levels in housing. These are the use of duct system materials that inherently achieve airtightness and are appropriately sized for low-load houses and the ability to air seal fire separation assemblies. The issues identified fall into a gray area of the codes.

  14. Velocity distributions on two-dimensional wing-duct inlets by conformal mapping

    NASA Technical Reports Server (NTRS)

    Perl, W; Moses, H E

    1948-01-01

    The conformal-mapping method of the Cartesian mapping function is applied to the determination of the velocity distribution on arbitrary two-dimensional duct-inlet shapes such as are used in wing installations. An idealized form of the actual wing-duct inlet is analyzed. The effects of leading edge stagger, inlet-velocity ratio, and section lift coefficients on the velocity distribution are included in the analysis. Numerical examples are given and, in part, compared with experimental data.

  15. ANALYSIS OF MEASUREMENT UNCERTAINTIES IN THE NULLING TEST FOR AIR LEAKAGE FROM RESIDENTIAL DUCTS.

    SciTech Connect

    ANDREWS,J.W.

    2001-04-01

    An analysis of measurement uncertainties in a recently proposed method of measuring air leakage in residential duct systems has been carried out. The uncertainties in supply and return leakage rates are expressed in terms of the value of the envelope leakage flow coefficient and the uncertainties in measured pressures and air flow rates. Results of the analysis are compared with data published by two research groups.

  16. FIELD EVALUATION OF IMPROVED METHODS FOR MEASURING THE AIR LEAKAGE OF DUCT SYSTEMS UNDER NORMAL OPERATING CONDITIONS IN 51 HOMES

    SciTech Connect

    Paul W. Francisco; Larry Palmiter; Erin Kruse; Bob Davis

    2003-10-18

    Duct leakage in forced-air distribution systems has been recognized for years as a major source of energy losses in residential buildings. Unfortunately, the distribution of leakage across homes is far from uniform, and measuring duct leakage under normal operating conditions has proven to be difficult. Recently, two new methods for estimating duct leakage at normal operating conditions have been devised. These are called the nulling test and the Delta-Q test. Small exploratory studies have been done to evaluate these tests, but previously no large-scale study on a broad variety of homes has been performed to determine the accuracy of these new methods in the field against an independent benchmark of leakage. This sort of study is important because it is difficult in a laboratory setting to replicate the range of leakage types found in real homes. This report presents the results of a study on 51 homes to evaluate these new methods relative to an independent benchmark and a method that is currently used. An evaluation of the benchmark procedure found that it worked very well for supply-side leakage measurements, but not as well on the return side. The nulling test was found to perform well, as long as wind effects were minimal. Unfortunately, the time and difficulty of setup can be prohibitive, and it is likely that this method will not be practical for general use by contractors except in homes with no return ducts. The Delta-Q test was found to have a bias resulting in overprediction of the leakage, which qualitatively confirms the results of previous laboratory, simulation, and small-scale field studies. On average the bias was only a few percent of the air handler flow, but in about 20% of the homes the bias was large. A primary flaw with the Delta-Q test is the assumption that the pressure between the ducts and the house remain constant during the test, as this assumption does not hold true. Various modifications to the Delta-Q method were evaluated as

  17. Retrofitting Air Conditioning and Duct Systems in Hot, Dry Climates

    SciTech Connect

    Shapiro, Carl; Aldrich, Robb; Arena, Lois

    2012-07-01

    This technical report describes CARB's work with Clark County Community Resources Division in Las Vegas, Nevada, to optimize procedures for upgrading cooling systems on existing homes in the area to implement health, safety, and energy improvements. Detailed monitoring of five AC systems showed that three of the five systems met or exceeded air flow rate goals.

  18. Angular distributions of photon stimulated desorption in a vacuum duct observed by using a unidirectional detector

    SciTech Connect

    Kobayashi, M.; Matumoto, M.; Ueda, S.

    1987-07-01

    Pressures in the vacuum duct of the electron storage rings depend on photodesorption. A multicapillary-type mass spectrometer was applied to observe local outgassing rates in the duct, in which the duct surfaces were irradiated by directly incident photons and/or by scattered photons. Local outgassing rates were nonuniform along the periphery of the duct. The desorption rates at the directly incident point were higher than at the other surfaces when photon dose was less than 200 mA h. At over 9000 mA h the rates at that point decreased more, while the desorption rates at the other surfaces decreased less. Angular distributions of photocurrent were also measured. The distributions were almost uniform except near the directly incident point.

  19. Dual fan, dual-duct system meets air quality, energy-efficiency needs

    SciTech Connect

    Schuler, M.

    1996-03-01

    Canada`s Space Centre in Saint-Hubert Quebec is a 300,000 ft{sup 2} (27,871 m{sup 2}) complex that houses the headquarters of the Canadian Space Agency, the Canadian Astronaut Training Centre, mission ground control installations, research facilities, offices and the required support facilities. A comfortable, pleasant research environment was a primary concern for the Space Centre, given its elite clientele. The objectives were high indoor-air quality, design flexibility, energy efficiency and low capital costs. Dual duct systems which are the heart of the mechanical concept allowed the designers to meet these objectives. The Space Centre`s offices, laboratories and conference center are all served by dual-duct systems. All operate using an air economizer cycle. Gas boilers provide them with hot water for heating and steam for humidification while centrifugal chillers provide chilled water for cooling. This article describes the design.

  20. Whole house particle removal and clean air delivery rates for in-duct and portable ventilation systems.

    PubMed

    Macintosh, David L; Myatt, Theodore A; Ludwig, Jerry F; Baker, Brian J; Suh, Helen H; Spengler, John D

    2008-11-01

    A novel method for determining whole house particle removal and clean air delivery rates attributable to central and portable ventilation/air cleaning systems is described. The method is used to characterize total and air-cleaner-specific particle removal rates during operation of four in-duct air cleaners and two portable air-cleaning devices in a fully instrumented test home. Operation of in-duct and portable air cleaners typically increased particle removal rates over the baseline rates determined in the absence of operating a central fan or an indoor air cleaner. Removal rates of 0.3- to 0.5-microm particles ranged from 1.5 hr(-1) during operation of an in-duct, 5-in. pleated media filter to 7.2 hr(-1) for an in-duct electrostatic air cleaner in comparison to a baseline rate of 0 hr(-1) when the air handler was operating without a filter. Removal rates for total particulate matter less than 2.5 microm in aerodynamic diameter (PM2.5) mass concentrations were 0.5 hr(-1) under baseline conditions, 0.5 hr(-1) during operation of three portable ionic air cleaners, 1 hr(-1) for an in-duct 1-in. media filter, 2.4 hr(-1) for a single high-efficiency particle arrestance (HEPA) portable air cleaner, 4.6 hr(-1) for an in-duct 5-in. media filter, 4.7 hr(-1) during operation of five portable HEPA filters, 6.1 hr(-1) for a conventional in-duct electronic air cleaner, and 7.5 hr(-1) for a high efficiency in-duct electrostatic air cleaner. Corresponding whole house clean air delivery rates for PM2.5 attributable to the air cleaner independent of losses within the central ventilation system ranged from 2 m3/min for the conventional media filter to 32 m3/min for the high efficiency in-duct electrostatic device. Except for the portable ionic air cleaner, the devices considered here increased particle removal indoors over baseline deposition rates. PMID:19044163

  1. Flame behaviors of propane/air premixed flame propagation in a closed rectangular duct with a 90-deg bend

    NASA Astrophysics Data System (ADS)

    He, Xuechao; Sun, Jinhua; Yuen, K. K.; Ding, Yibin; Chen, Sining

    2008-11-01

    Experiments of flame propagation in a small, closed rectangular duct with a 90° bend were performed for a propane-air mixture. The high speed camera and Schlieren techniques were used to record images of flame propagation process in the combustion pipe. Meanwhile, the fine thermocouples and ion current probes were applied to measure the temperature distribution and reaction intensity of combustion. The characteristics of propane-air flame and its microstructure were analyzed in detail by the experimental results. In the test, the special tulip flame formation was observed. Around the bend, the flame tip proceeded more quickly at the lower side with the flame front elongated toward the axial direction. And transition to turbulent flame occurred. It was suggested that fluctuations of velocity, ion current and temperature were mainly due to the comprehensive effects of multi-wave and the intense of turbulent combustion.

  2. High-speed Tests of a Ducted Body with Various Air-outlet Openings

    NASA Technical Reports Server (NTRS)

    Becker, John V.; Baals, Donald D.

    1942-01-01

    Test of a ducted body with Internal flow were made in the 8-foot high-speed wind tunnel for the purpose of studying the effects on external drag and an critical speed of the addition of efficient inlet and outlet openings to a basic streamline shape. Drag tests of a 13.6- inch-diameter streamline body of fineness ratio 6.14 were made at Mach numbers ranging from 0.20 to 0.75. The model was centrally mounted on a 9-percent-thick airfoil and was designed to have an efficient airfoil-body juncture and a high critical speed. An air inlet at the nose and various outlets at the tail were added: drag and internal-flow data were obtained over the given speed range. The critical speed of the ducted bodies was found to be as high as that of the streamline body. The external - drag with air flow through the body did not exceed the drag of the basic streamline shape. No appreciable variation in the efficiency of the diffuser section of the internal duct occurred throughout the Mach number range of the tests.

  3. Evaluation of mixing downstream of tees in duct systems with respect to single point representative air sampling.

    PubMed

    Kim, Taehong; O'Neal, Dennis L; Ortiz, Carlos

    2006-09-01

    Air duct systems in nuclear facilities must be monitored with continuous sampling in case of an accidental release of airborne radionuclides. The purpose of this work is to identify the air sampling locations where the velocity and contaminant concentrations fall below the 20% coefficient of variation required by the American National Standards Institute/Health Physics Society N13.1-1999. Experiments of velocity and tracer gas concentration were conducted on a generic "T" mixing system which included combinations of three sub ducts, one main duct, and air velocities from 0.5 to 2 m s (100 to 400 fpm). The experimental results suggest that turbulent mixing provides the accepted velocity coefficients of variation after 6 hydraulic diameters downstream of the T-junction. About 95% of the cases achieved coefficients of variation below 10% by 6 hydraulic diameters. However, above a velocity ratio (velocity in the sub duct/velocity in the main duct) of 2, velocity profiles were uniform in a shorter distance downstream of the T-junction as the velocity ratio went up. For the tracer gas concentration, the distance needed for the coefficients of variation to drop 20% decreased with increasing velocity ratio due to the sub duct airflow momentum. The results may apply to other duct systems with similar geometries and, ultimately, be a basis for selecting a proper sampling location under the requirements of single point representative sampling. PMID:16891896

  4. BTS Fact Sheet: Improving the efficiency of your duct system

    SciTech Connect

    BNL

    1999-12-28

    The duct system, used in air heating and air cooling your home, is a collection of tubes that distributes the heated or cooled air to the various rooms. The duct system can have an important effect on health of the occupants through the distribution of indoor air pollution. Changes and repairs to a duct system should always be performed by a qualified professional. This brochure is meant to help you understand the problems that can affect the duct system and how you can save money, improve comfort, and protect against potential health hazards.

  5. Simulation Analysis of Air Flow and Turbulence Statistics in a Rib Grit Roughened Duct

    PubMed Central

    Vogiatzis, I. I.; Denizopoulou, A. C.; Ntinas, G. K.; Fragos, V. P.

    2014-01-01

    The implementation of variable artificial roughness patterns on a surface is an effective technique to enhance the rate of heat transfer to fluid flow in the ducts of solar air heaters. Different geometries of roughness elements investigated have demonstrated the pivotal role that vortices and associated turbulence have on the heat transfer characteristics of solar air heater ducts by increasing the convective heat transfer coefficient. In this paper we investigate the two-dimensional, turbulent, unsteady flow around rectangular ribs of variable aspect ratios by directly solving the transient Navier-Stokes and continuity equations using the finite elements method. Flow characteristics and several aspects of turbulent flow are presented and discussed including velocity components and statistics of turbulence. The results reveal the impact that different rib lengths have on the computed mean quantities and turbulence statistics of the flow. The computed turbulence parameters show a clear tendency to diminish downstream with increasing rib length. Furthermore, the applied numerical method is capable of capturing small-scale flow structures resulting from the direct solution of Navier-Stokes and continuity equations. PMID:25057511

  6. Room-temperature thermal-resistance measurements of new and existing materials for shipboard air-duct systems

    SciTech Connect

    Zarr, R.R.; Somers, T.A.

    1988-10-01

    Thermal resistance measurements of conventional and composite-material insulation for shipboard air duct systems are described. Conventional shipboard air ducts are constructed of metal walls insulated externally with fibrous-glass board. Composite materials are being considered as replacements for these duct walls. Thermal measurements were conducted using the National Bureau of Standards 1-meter Guarded Hot Plate at a mean temperature of 23.9/sup 0/C (75/sup 0/F). Measurements of the fibrous-glass board specimens were within 3% of certified values of NBS SRM 1450a, fibrous-glass board. Measurements of two aramid-fiber honeycomb specimens were approximately one-half the thermal resistance of the fibrous-glass board specimens.

  7. Reducing Uncertainty for the DeltaQ Duct Leakage Test

    SciTech Connect

    Walker, Iain S.; Sherman, Max H.; Dickerhoff, Darryl J.

    2004-05-01

    The thermal distribution system couples the HVAC components to the building envelope, and shares many properties of the buildings envelope including moisture, conduction and most especially air leakage performance. Duct leakage has a strong influence on air flow rates through building envelopes (usually resulting in much greater flows than those due to natural infiltration) because unbalanced duct air flows and leaks result in building pressurization and depressurization. As a tool to estimate this effect, the DeltaQ duct leakage test has been developed over the past several years as an improvement to existing duct pressurization tests. It focuses on measuring the air leakage flows to outside at operating conditions that are required for envelope infiltration impacts and energy loss calculations for duct systems. The DeltaQ test builds on the standard envelope tightness blower door measurement techniques by repeating the tests with the system air handler off and on. The DeltaQ test requires several assumptions to be made about duct leakage and its interaction with the duct system and building envelope in order to convert the blower door results into duct leakage at system operating conditions. This study examined improvements to the DeltaQ test that account for some of these assumptions using a duct system and building envelope in a test laboratory. The laboratory measurements used a purpose-built test chamber coupled to a duct system typical of forced air systems in US homes. Special duct leaks with controlled air-flow were designed and installed into an airtight duct system. This test apparatus allowed the systematic variation of the duct and envelope leakage and accurate measurement of the duct leakage flows for comparison to DeltaQ test results. This paper will discuss the laboratory test apparatus design, construction and operation, the various analysis techniques applied to the calculation procedure and present estimates of uncertainty in measured duct

  8. Duct joining system

    DOEpatents

    Proctor, John P.; deKieffer, Robert C.

    2001-01-01

    A duct joining system for providing an air-tight seal and mechanical connection for ducts and fittings is disclosed. The duct joining system includes a flexible gasket affixed to a male end of a duct or fitting. The flexible gasket is affixed at an angle relative to normal of the male end of the duct. The female end of the other duct includes a raised bead in which the flexible gasket is seated when the ducts are properly joined. The angled flexible gasket seated in the raised bead forms an air-tight seal as well as fastens or locks the male end to the female end. Alternatively, when a flexible duct is used, a band clamp with a raised bead is clamped over the female end of the flexible duct and over the male end of a fitting to provide an air tight seal and fastened connection.

  9. Duct Joining System

    DOEpatents

    Proctor, John P.

    2001-02-27

    A duct joining system for providing an air-tight seal and mechanical connection for ducts and fittings is disclosed. The duct joining system includes a flexible gasket affixed to a male end of a duct or fitting. The flexible gasket is affixed at an angle relative to normal of the male end of the duct. The female end of the other duct includes a raised bead in which the flexible gasket is seated when the ducts are properly joined. The angled flexible gasket seated in the raised bead forms an air-tight seal as well as fastens or locks the male end to the female end. Alternatively, when a flexible duct is used, a band clamp with a raised bead is clamped over the female end of the flexible duct and over the male end of a fitting to provide an air tight seal and fastened connection.

  10. High accuracy acoustic relative humidity measurement in duct flow with air.

    PubMed

    van Schaik, Wilhelm; Grooten, Mart; Wernaart, Twan; van der Geld, Cees

    2010-01-01

    An acoustic relative humidity sensor for air-steam mixtures in duct flow is designed and tested. Theory, construction, calibration, considerations on dynamic response and results are presented. The measurement device is capable of measuring line averaged values of gas velocity, temperature and relative humidity (RH) instantaneously, by applying two ultrasonic transducers and an array of four temperature sensors. Measurement ranges are: gas velocity of 0-12 m/s with an error of ± 0.13 m/s, temperature 0-100 °C with an error of ± 0.07 °C and relative humidity 0-100% with accuracy better than 2 % RH above 50 °C. Main advantage over conventional humidity sensors is the high sensitivity at high RH at temperatures exceeding 50 °C, with accuracy increasing with increasing temperature. The sensors are non-intrusive and resist highly humid environments. PMID:22163610

  11. High Accuracy Acoustic Relative Humidity Measurement in Duct Flow with Air

    PubMed Central

    van Schaik, Wilhelm; Grooten, Mart; Wernaart, Twan; van der Geld, Cees

    2010-01-01

    An acoustic relative humidity sensor for air-steam mixtures in duct flow is designed and tested. Theory, construction, calibration, considerations on dynamic response and results are presented. The measurement device is capable of measuring line averaged values of gas velocity, temperature and relative humidity (RH) instantaneously, by applying two ultrasonic transducers and an array of four temperature sensors. Measurement ranges are: gas velocity of 0–12 m/s with an error of ±0.13 m/s, temperature 0–100 °C with an error of ±0.07 °C and relative humidity 0–100% with accuracy better than 2 % RH above 50 °C. Main advantage over conventional humidity sensors is the high sensitivity at high RH at temperatures exceeding 50 °C, with accuracy increasing with increasing temperature. The sensors are non-intrusive and resist highly humid environments. PMID:22163610

  12. STS-56 inflight maintenance (IFM) air duct routing on OV-103's middeck

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-56 inflight maintenance (IFM) repair on Discovery's, Orbiter Vehicle (OV) 103's, middeck was required to offset overheating problems with one of the onboard experiments -- Detailed Supplementary Objective (DSO) 322, Human lymphocyte locomotion in microgravity. This 'elephant's trunk' fix was rigged from the airlock's air recirculation duct to DSO 322's forward locker location by Commander Kenneth Cameron. The 'elephant's trunk' was fashioned from trash bags and other plastic items to extend an airline to the troubled area. DSO 322 is collecting data on the locomotion and migration of human lymphocytes through intercellular matrix and is testing the rotating wall vessel and the specimen temperature controller. In the background is the port side wall with the side hatch, middeck accomodations rack (MAR), and shuttle orbiter repackaged galley (SORG) visible.

  13. Sound transmission loss of double plates with an air cavity between them in a rigid duct.

    PubMed

    Kim, Hyun-Sil; Kim, Sang-Ryul; Lee, Seong-Hyun; Seo, Yun-Ho; Ma, Pyung-Sik

    2016-05-01

    In this paper, the sound transmission loss (STL) of thin double plates with an air cavity between them in a rigid duct is considered using an analytical approach. The vibration motion of the plate and sound pressure field are expanded in terms of an infinite series of the modal functions. Under the plane wave condition, a low frequency solution is derived by including the first few symmetric modes. It is determined that the peak frequencies of the double plates coincide with those of each single plate. When the two plates are identical, the STL becomes zero at the natural frequencies of the single plate. However, when the two plates are not identical, the STL is always greater than zero. The location and amplitude of the dips are investigated using an approximate solution when the cavity depth is very small. It is observed that dividing the single plate into two plates with an air cavity in between degrades the STL in the low frequency range, while the equivalent surface mass density is preserved. However, when the cavity depth is not small, the STL of the single plate can be smaller than that of the double plates. PMID:27250128

  14. Cornice Duct System

    SciTech Connect

    Wayne Place; Chuck Ladd

    2004-10-29

    SYNERGETICS, INC., has designed, developed, and tested an air handling duct system that integrates the air duct with the cornice trim of interior spaces. The device has the advantage that the normal thermal losses from ducts into unconditioned attics and crawl spaces can be totally eliminated by bringing the ducts internal to the conditioned space. The following report details work conducted in the second budget period to develop the Cornice Duct System into a viable product for use in a variety of residential or small commercial building settings. A full-scale prototype has been fabricated and tested in a laboratory test building at the Daylighting Facility at North Carolina State University., Based on the results of that testing, the prototype design as been refined, fabricated, installed, and extensively tested in a residential laboratory house. The testing indicates that the device gives substantially superior performance to a standard air distribution system in terms of energy performance and thermal comfort. Patent Number US 6,511,373 B2 has been granted on the version of the device installed and tested in the laboratory house. (A copy of that patent is attached.) Refinements to the device have been carried through two additional design iterations, with a particular focus on reducing installation time and cost and refining the air control system. These new designs have been fabricated and tested and show substantial promise. Based on these design and testing iterations, a final design is proposed as part of this document. That final design is the basis for a continuation in part currently being filed with the U.5, Patent office.

  15. Autoignition in a premixing-prevaporizing fuel duct using 3 different fuel injection systems at inlet air temperatures to 1250 K

    NASA Technical Reports Server (NTRS)

    Tacina, R. R.

    1983-01-01

    Conditions were determined in a continuous-flow, premixing-prevaporizing duct at which autoignition occurred. Test conditions were representative of an advanced, regenerative-cycle, automotive gas turbine. The test conditions inlet air temperatures from 600 to 1250 K (a vitiated preheater was used), pressures from 170 to 600 kPa, air velocities of 10 to 30 m/sec, equivalence ratios from 0.3 to 1.0, mixing lengths from 10 to 60 cm, and residence times of 2 to 100 ms. The fuel was diesel number 2. The duct was insulated and had an inside diameter of 12 cm. Three different fuel injection systems were used: One was a single simplex pressure atomizer, and the other two were multiple-source injectors. The data obtained with the simplex and one of the multiple-source injectors agreed satisfactorily with the references and correlated with an Arrenhius expression. The data obtained with the other multiple source injector, which used multiple cones to improve the fuel-air distribution, did not correlate well with residence time.

  16. Air Distribution Retrofit Strategies for Affordable Housing

    SciTech Connect

    Dentz, J.; Conlin, F.; Holloway, P.; Podorson, D.; Varshney, K.

    2014-03-01

    In multifamily and attached buildings, traditional duct sealing methods are often impractical or costly and disruptive because of the difficulty in accessing leakage sites. In this project, two retrofit duct sealing techniques -- manually-applied sealants and injecting a spray sealant, were implemented in several low-rise multi-unit buildings. An analysis on the cost and performance of the two methods are presented. Each method was used in twenty housing units: approximately half of each group of units are single story and the remainder two-story. Results show that duct leakage to the outside was reduced by an average of 59% through the use of manual methods, and by 90% in the units where the injected spray sealant was used. It was found that 73% of the leakage reduction in homes that were treated with injected spray sealant was attributable to the manual sealing done at boots, returns and the air handler. The cost of manually-applying sealant ranged from $275 to $511 per unit and for the injected spray sealant the cost was $700 per unit. Modeling suggests a simple payback of 2.2 years for manual sealing and 4.7 years for the injected spray sealant system. Utility bills were collected for one year before and after the retrofits. Utility bill analysis shows 14% and 16% energy savings using injected spray sealant system and hand sealing procedure respectively in heating season whereas in cooling season, energy savings using injected spray sealant system and hand sealing were both 16%.

  17. Air Distribution Retrofit Strategies for Affordable Housing

    SciTech Connect

    Dentz, J.; Conlin, F.; Holloway, Parker; Podorson, David; Varshney, Kapil

    2014-03-01

    In multifamily and attached buildings, traditional duct sealing methods are often impractical or costly and disruptive because of the difficulty in accessing leakage sites. In this project, two retrofit duct sealing techniques, manually-applied sealants and injecting a spray sealant, were implemented in several low-rise multiunit buildings. An analysis on the cost and performance of the two methods are presented. Each method was used in twenty housing units: approximately half of each group of units are single story and the remainder are two story. Results show that duct leakage to the outside was reduced by an average of 59% through the use of manual methods, and by 90% in the units where the injected spray sealant was used. It was found that 73% of the leakage reduction in homes that were treated with injected spray sealant was attributable to the manual sealing done at boots, returns and the air handler. The cost of manually-applying sealant ranged from $275 to $511 per unit and for the injected spray sealant the cost was $700 per unit. Modeling suggests a simple payback of 2.2 years for manual sealing and 4.7 years for the injected spray sealant system. Utility bills were collected for one year before and after the retrofits. Utility bill analysis shows 14% and 16% energy savings using injected spray sealant system and hand sealing procedure respectively in heating season whereas in cooling season, energy savings using injected spray sealant system and hand sealing were both 16%.

  18. Building America Top Innovations 2012: Integration of HVAC System Design with Simplified Duct Distribution

    SciTech Connect

    none,

    2013-01-01

    This Building America Top Innovations profile describes work by Building America research teams who field tested simplified duct designs in hundreds of homes, confirming the performance of short compact duct runs, with supply registers near interior walls.

  19. Measurement of Field Aligned Electron Density Distribution, Ducts, and Z-mode Cavities from the Ducted and Nonducted Fast Z-mode Echoes Observed on IMAGE

    NASA Astrophysics Data System (ADS)

    Mayank, K.; Sonwalkar, V. S.

    2012-12-01

    We present a method to measure geomagnetic field(B0) aligned electron density(Ne) distribution, ducts, and Z-mode(ZM) cavities from the ducted and nonducted fast ZM echoes observed from radio sounding at 50-1000 kHz by RPI/IMAGE. Roughly 2000 cases of fast ZM echoes have been observed on the IMAGE satellite in the altitude range of ˜800-10,000 km, invariant latitude range of 30° - 70°, and at all MLTs. In this paper we present two case studies: (1) nonducted C-D type fast ZM echoes observed on 19 June 2004 (L=3.81, Altitude=5340km, MLT=18.7), and (2) ducted C-D type fast ZM echoes observed on 10 July 2001 (L = 2.68, Altitude˜4100 km, MLT = 17.7). Nonducted fast ZM C(D) trace is obtained when the ZM signal is reflected at an altitude below(above) the satellite altitude, when the satellite is within the ZM cavities, at which fZ ˜ f, where fZ is the ZM cutoff frequency and f is the wave frequency. In the case of nonducted echoes, (1) the lower(upper) cutoff frequency of C-trace is less(more) than that of D-trace, (2) no higher trace (e.g., C+D, C+2D) exists, and (3) C and D traces are discrete i.e,. the echoes, at each frequency, are limited to 2-3 bins. From ray tracing calculations, we obtain four nonducted fast ZM echoes, each reflecting from locations where fZ ˜ f. Three of the echoes retrace their paths after reflection and one forms a loop. The shape of fZ contours in the magnetic meridional plane, the injected wave frequency(f), the location of the satellite with respect to fZ contours, the change in the size of the refractive index surfaces with altitude, and the Snell's law explains the generation of retracing and looping echoes. From the inversion of tg-f dispersion we obtain the field aligned Ne distribution both above and below the satellite from an altitude of ˜1500 km-10,000 km. The ducted echoes, obtained when the satellite is within a ZM cavity, are characterized by (1) integral relationship of echo time-delays (tg) of lower time delay traces (e

  20. Distribution and Room Air Mixing Risks to Retrofitted Homes

    SciTech Connect

    Burdick, A.

    2014-12-01

    ​Energy efficiency upgrades reduce heating and cooling loads on a house. With enough load reduction and if the HVAC system warrants replacement, the HVAC system is often upgraded with a more efficient, lower capacity system that meets the loads of the upgraded house. For a single-story house with ceiling supply air diffusers, ducts are often removed and upgraded. For houses with ducts that are embedded in walls, the cost of demolition precludes the replacement of ducts. The challenge with the use of existing ducts is that the reduced airflow creates a decreased throw at the supply registers, and the supply air and room air do not mix well, leading to potential thermal comfort complaints. This project investigates this retrofit scenario. The issues and solutions discussed here are relevant to all climate zones, with emphasis on climates that require cooling.

  1. Distribution and Room Air Mixing Risks to Retrofitted Homes

    SciTech Connect

    Burdick, A.

    2014-12-01

    Energy efficiency upgrades reduce heating and cooling loads on a house. With enough load reduction and if the HVAC system warrants replacement, the HVAC system is often upgraded with a more efficient, lower capacity system that meets the loads of the upgraded house. For a single-story house with ceiling supply air diffusers, ducts are often removed and upgraded. For houses with ducts that are embedded in walls, the cost of demolition precludes the replacement of ducts. The challenge with the use of existing ducts is that the reduced airflow creates a decreased throw at the supply registers, and the supply air and room air do not mix well, leading to potential thermal comfort complaints. This project investigates this retrofit scenario. The issues and solutions discussed here are relevant to all climate zones, with emphasis on climates that require cooling.

  2. INTERIOR DUCT SYSTEM DESIGN, CONSTRUCTION, AND PERFORMANCE

    SciTech Connect

    Janet E.R. Mcllvaine; David Beal; Philip Fairey

    2001-10-10

    By removing air distribution and conditioning equipment from unconditioned spaces, homeowners stand to benefit substantially with respect to both energy savings and indoor air quality. Duct leakage introduces: Greater heating and cooling loads from air at extreme temperatures and humidity levels; Outside air and air from unconditioned spaces that may contain air borne contaminants, combustion gases, pollen, mold spores, and/or particles of building materials; and Higher whole-house infiltration/exfiltration rates. Exemplary studies conducted since 1990 have demonstrated the prevalence of duct leakage throughout the United States and measured energy savings of approximately 20% during both heating and cooling seasons from leakage reduction. These all dealt with duct leakage to and/or from unconditioned spaces. In the building science community, leakage within the conditioned space is generally presumed to eliminate the negative consequences of duct leakage with the exception of possibly creating pressure imbalances in the house which relates to higher infiltration and/or exfiltration. The practical challenges of isolating ducts and air handlers from unconditioned spaces require builders to construct an air-tight environment for the ducts. Florida Solar Energy Center researchers worked with four builders in Texas, North Carolina, and Florida who build a furred-down chase located either in a central hallway or at the edges of rooms as an architectural detail. Some comparison homes with duct systems in attics and crawl spaces were included in the test group of more than 20 homes. Test data reveals that all of the duct/AHU systems built inside the conditioned space had lower duct leakage to unconditioned spaces than their conventional counterparts; however, none of the homes was completely free of duct leakage to unconditioned spaces. Common problems included wiring and plumbing penetrations of the chase, failure to treat the chase as an air tight space, and misguided

  3. Numerical simulation of duct flow with fog droplets

    NASA Astrophysics Data System (ADS)

    Suryan, Abhilash; Lee, J. K.; Kim, D. S.; Kim, H. D.

    2010-12-01

    Evaporative cooling is a widely used air cooling technique. In this method, evaporation of a liquid in the surrounding air cools the air in contact with it. In the current investigation, numerical simulations are carried out to visualize the evaporation and dynamics of tiny water droplets of different diameters in a long air duct. The effect of initial droplet size on the temperature and relative humidity distribution of the air stream in the duct is investigated. Three different initial conditions of air are considered to verify the influence of ambient conditions. Droplet spray patterns are also analyzed to identify the suitable locations for the spray nozzles within the duct. The results obtained are displayed in a series of plots to provide a clear understanding of the evaporative cooling process as well as the droplet dynamics within the ducts.

  4. Ignition of lean fuel-air mixtures in a premixing-prevaporizing duct at temperatures up to 1000 K

    NASA Technical Reports Server (NTRS)

    Tacina, R. R.

    1980-01-01

    Conditions were determined in a premixing prevaporizing fuel preparation duct at which ignition occurred. An air blast type fuel injector with nineteen fuel injection points was used to provide a uniform spatial fuel air mixture. The range of inlet conditions where ignition occurred were: inlet air temperatures of 600 to 1000 K air pressures of 180 to 660 kPa, equivalence ratios (fuel air ratio divided by stoichiometric fuel air ratio) from 0.12 to 1.05, and velocities from 3.5 to 30 m/s. The duct was insulated and the diameter was 12 cm. Mixing lengths were varied from 16.5 to 47.6 and residence times ranged from 4.6 to 107 ms. The fuel was no. 2 diesel. Results show a strong effect of equivalence ratio, pressure and temperature on the conditions where ignition occurred. The data did not fit the most commonly used model of auto-ignition. A correlation of the conditions where ignition would occur which apply to this test apparatus over the conditions tested is (p/V) phi to the 1.3 power = 0.62 e to the 2804/T power where p is the pressure in kPa, V is the velocity in m/e, phi is the equivalence ratio, and T is the temperature in K. The data scatter was considerable, varying by a maximum value of 5 at a given temperature and equivalence ratio. There was wide spread in the autoignition data contained in the references.

  5. Laboratory evaluation of welder's exposure and efficiency of air duct ventilation for welding work in a confined space.

    PubMed

    Ojima, J; Shibata, N; Iwasaki, T

    2000-01-01

    CO2 arc welding in a confined space was simulated in a laboratory by manipulating a welding robot which worked in a small chamber to experimentally evaluate the welder's exposure to welding fumes, ozone and carbon monoxide (CO). The effects of the welding arc on the air temperature rise and oxygen (O2) concentration in the chamber were also investigated. The measuring points for these items were located in the presumed breathing zone of a welder in a confined space. The time averaged concentrations of welding fumes, ozone and CO during the arcing time were 83.55 mg/m3, 0.203 ppm and 0.006%, respectively, at a welding current of 120A-200A. These results suggest serious exposure of a welder who operates in a confined space. Air temperature in the chamber rose remarkably due to the arc heat and the increase in the welding current. No clear decrease in the O2 concentration in the chamber was recognized during this welding operation. A model of air duct ventilation was constructed in the small chamber to investigate the strategy of effective ventilation for hazardous welding contaminants in a confined space. With this model we examined ventilation efficiency with a flow rate of 1.08-1.80 m3/min (ventilation rate for 0.40-0.67 air exchanges per minute) in the chamber, and proved that the exposure level was not drastically reduced during arcing time by this air duct ventilation, but the residual contaminants were rapidly exhausted after the welding operation. PMID:10680307

  6. Comparison of air distribution system alternatives serving a classroom-office portion of a school building

    NASA Astrophysics Data System (ADS)

    Jordan, Stillman D., III

    An effective air distribution design accomplishes both comfort and ventilation requirements while consuming as little energy as possible. This paper analyzes four different air distribution systems and technologies including single duct variable air volume air handlers, chilled beam cooling systems, total energy recovery wheels, displacement ventilation, and dedicated outside air systems in an effort to compare air distribution systems for a representative section of a school in hot and humid climate. Distribution effectiveness and energy consumption are weighed against considerations such as system complexity and cost. Energy modeling calculations show that the Energy Utilization Index (EUI) of all of the analyzed designs are significantly less than the median EUI of schools in south Texas. Chilled beams are not well suited for schools because of the large amount of outside air required by the space and the sophisticated design and operation needed to prevent condensation from occurring at the chilled beam. Payback calculations show that even though new technologies like displacement ventilation and dedicated outside air systems reduce total energy consumption, they are not realistic design solutions because they have paybacks that exceed 100 years. The calculations also show the total energy recovery wheels result in a 16% energy savings over a baseline central variable air volume distribution system because of the large amount of outside air required in school buildings.

  7. Better Duct Systems for Home Heating and Cooling

    SciTech Connect

    Not Available

    2004-11-01

    Duct systems used in forced-air space-conditioning systems are a vital element in home energy efficiency. How well a system works makes a big difference in the cost and the effectiveness of heating and cooling a home. At the same time, a duct system that is poorly designed or maintained can have a detrimental effect on the health of the people who live in the house, through the unintended distribution of indoor air pollution.

  8. Loft duct project report

    SciTech Connect

    Reed, J.R.

    1993-06-01

    On October 16, 1992, during a routine examination of the loft of Building 332, the Building Coordinator observed cracks in the welds of the duct work that services the fume hoods for Rooms 1313, 1321, and 1329. Further examination revealed cracks in the weld of the duct work that services the gloveboxes in Rooms 1321 and 1329. Upon discovery of the cracked welds, facility management immediately took the following two actions: Because one crack in the fume hood exhaust extended 70% around the duct circumference, a 1-ton chain fall was used to secure the duct to the roof support structure to prevent the duct from falling if the duct completely fractured. The Facility Manager suspended plutonium handling operations in the gloveboxes and work in the fume hoods in the affected rooms until the situation could be thoroughly investigated. Building 332 is ventilated by drawing conditioned air from the building hallways into the laboratories, hoods, and gloveboxes. This air is filtered through two sets of high-efficiency particulate air (HEPA) filters before being exhausted from the facility. Figure 1 is a schematic of the typical air flow pattern for the facility. All affected duct work is located in the loft of the facility or pressure zone 4. This ducting is fabricated from 12-, 14- and 16-gauge, 304 stainless-steel sheet stock and joined by the Gas Tungsten Arc Welding (GTAW) process.

  9. Vortex generator induced heat transfer augmentation past a rib in a heated duct air flow

    SciTech Connect

    Myrum, T.A.; Acharya, S.; Inamdar, S.; Mehrotra, A. )

    1992-02-01

    The present investigation represents the initial phase of a comprehensive experimental program designed to study the potential for increasing the heat transfer per unit pressure drop in a ribbed duct by positioning vortex generators at key locations in the flow. In particular, the present investigation consists of a rib positioned at the inlet to a rectangular test section with uniform heating at its bottom wall. Local and average Nusselt number results are obtained for a circular rod positioned either immediately above or just downstream of the rib.

  10. Lateral distribution of electrons of air showers

    NASA Technical Reports Server (NTRS)

    Asakimori, K.; Maeda, T.; Kameda, T.; Mizushima, K.; Misaki, Y.

    1985-01-01

    The lateral distribution of electrons (LDE) of the air showers of size 10 to the 5th power to 10 to the 6th power was studied within one MU. It was found that the LDE of the air showers observed is well represented by NKG function except for vicinity of the core. It was also found that LDE measured by thin scintillators does not differ from that measured by thick ones of 50mm thickness.

  11. Alternative Air Conditioning Technologies: Underfloor AirDistribution (UFAD)

    SciTech Connect

    Webster, Tom

    2004-06-01

    Recent trends in today's office environment make it increasingly more difficult for conventional centralized HVAC systems to satisfy the environmental preferences of individual officer workers using the standardized approach of providing a single uniform thermal and ventilation environment. Since its original introduction in West Germany during the 1950s, the open plan office containing modular workstation furniture and partitions is now the norm. Thermostatically controlled zones in open plan offices typically encompass relatively large numbers of workstations in which a diverse work population having a wide range of preferred temperatures must be accommodated. Modern office buildings are also being impacted by a large influx of heat-generating equipment (computers, printers, etc.) whose loads may vary considerably from workstation to workstation. Offices are often reconfigured during the building's lifetime to respond to changing tenant needs, affecting the distribution of within-space loads and the ventilation pathways among and over office partitions. Compounding this problem, there has been a growing awareness of the importance of the comfort, health, and productivity of individual office workers, giving rise to an increased demand among employers and employees for a high-quality work environment. During recent years an increasing amount of attention has been paid to air distribution systems that individually condition the immediate environments of office workers within their workstations to address the issues outlined above. As with task/ambient lighting systems, the controls for the ''task'' components of these systems are partially or entirely decentralized and under the control of the occupants. Typically, the occupant has control over the speed and direction, and in some cases the temperature, of the incoming air supply. Variously called ''task/ambient conditioning,'' ''localized thermal distribution,'' and ''personalized air conditioning'' systems, these

  12. Particle deposition in ventilation ducts

    SciTech Connect

    Sippola, Mark R.

    2002-09-01

    Exposure to airborne particles is detrimental to human health and indoor exposures dominate total exposures for most people. The accidental or intentional release of aerosolized chemical and biological agents within or near a building can lead to exposures of building occupants to hazardous agents and costly building remediation. Particle deposition in heating, ventilation and air-conditioning (HVAC) systems may significantly influence exposures to particles indoors, diminish HVAC performance and lead to secondary pollutant release within buildings. This dissertation advances the understanding of particle behavior in HVAC systems and the fates of indoor particles by means of experiments and modeling. Laboratory experiments were conducted to quantify particle deposition rates in horizontal ventilation ducts using real HVAC materials. Particle deposition experiments were conducted in steel and internally insulated ducts at air speeds typically found in ventilation ducts, 2-9 m/s. Behaviors of monodisperse particles with diameters in the size range 1-16 {micro}m were investigated. Deposition rates were measured in straight ducts with a fully developed turbulent flow profile, straight ducts with a developing turbulent flow profile, in duct bends and at S-connector pieces located at duct junctions. In straight ducts with fully developed turbulence, experiments showed deposition rates to be highest at duct floors, intermediate at duct walls, and lowest at duct ceilings. Deposition rates to a given surface increased with an increase in particle size or air speed. Deposition was much higher in internally insulated ducts than in uninsulated steel ducts. In most cases, deposition in straight ducts with developing turbulence, in duct bends and at S-connectors at duct junctions was higher than in straight ducts with fully developed turbulence. Measured deposition rates were generally higher than predicted by published models. A model incorporating empirical equations based on

  13. Study of Air Ingress Across the Duct During the Accident Conditions

    SciTech Connect

    Hassan, Yassin

    2013-05-06

    The goal of this project is to study the fundamental physical phenomena associated with air ingress in very high temperature reactors (VHTRs). Air ingress may occur due to a rupture of primary piping and a subsequent breach in the primary pressure boundary in helium-cooled and graphite-moderated VHTRs. Significant air ingress is a concern because it introduces potential to expose the fuel, graphite support rods, and core to a risk of severe graphite oxidation. Two of the most probable air ingress scenarios involve rupture of a control rod or fuel access standpipe, and rupture in the main coolant pipe on the lower part of the reactor pressure vessel. Therefore, establishing a fundamental understanding of air ingress phenomena is critical in order to rationally evaluate safety of existing VHTRs and develop new designs that minimize these risks. But despite this importance, progress toward development these predictive capabilities has been slowed by the complex nature of the underlying phenomena. The combination of inter-diffusion among multiple species, molecular diffusion, natural convection, and complex geometries, as well as the multiple chemical reactions involved, impose significant roadblocks to both modeling and experiment design. The project team will employ a coordinated experimental and computational effort that will help gain a deeper understanding of multiphased air ingress phenomena. This project will enhance advanced modeling and simulation methods, enabling calculation of nuclear power plant transients and accident scenarios with a high degree of confidence. The following are the project tasks: Perform particle image velocimetry measurement of multiphase air ingresses; and, Perform computational fluid dynamics analysis of air ingress phenomena.

  14. FRACTIONAL AEROSOL FILTRATION EFFICIENCY OF IN-DUCT VENTILATION AIR CLEANERS

    EPA Science Inventory

    The filtration efficiency of ventilation air cleaners is highly particle-size dependent over the 0.01 to 3 μm diameter size range. Current standardized test methods, which determine only overall efficiencies for ambient aerosol or other test aerosols, provide data of limited util...

  15. Advanced Duct Sealing Testing

    SciTech Connect

    Sherman, Max H.; Walker, Iain S.

    2003-08-01

    Duct leakage has been identified as a major source of energy loss in residential buildings. Most duct leakage occurs at the connections to registers, plenums or branches in the duct system. At each of these connections a method of sealing the duct system is required. Typical sealing methods include tapes or mastics applied around the joints in the system. Field examinations of duct systems have typically shown that these seals tend to fail over extended periods of time. The Lawrence Berkeley National Laboratory has been testing sealant durability for several years. Typical duct tape (i.e. fabric backed tapes with natural rubber adhesives) was found to fail more rapidly than all other duct sealants. This report summarizes the results of duct sealant durability testing of five UL 181B-FX listed duct tapes (three cloth tapes, a foil tape and an Oriented Polypropylene (OPP) tape). One of the cloth tapes was specifically developed in collaboration with a tape manufacturer to perform better in our durability testing. The first test involved the aging of common ''core-to-collar joints'' of flexible duct to sheet metal collars, and sheet metal ''collar-to-plenum joints'' pressurized with 200 F (93 C) air. The second test consisted of baking duct tape specimens in a constant 212 F (100 C) oven following the UL 181B-FX ''Temperature Test'' requirements. Additional tests were also performed on only two tapes using sheet metal collar-to-plenum joints. Since an unsealed flexible duct joint can have a variable leakage depending on the positioning of the flexible duct core, the durability of the flexible duct joints could not be based on the 10% of unsealed leakage criteria. Nevertheless, the leakage of the sealed specimens prior to testing could be considered as a basis for a failure criteria. Visual inspection was also documented throughout the tests. The flexible duct core-to-collar joints were inspected monthly, while the sheet metal collar-to-plenum joints were inspected

  16. EFFECT OF AIRFLOW AND HEAT INPUT RATES ON DUCT EFFICIENCY.

    SciTech Connect

    ANDREWS,J.W.

    2003-05-28

    Reducing the airflow and heat input rates of a furnace that is connected to a duct system in thermal contact with unconditioned spaces can significantly reduce thermal distribution efficiency. This is a straightforward theoretical calculation based on the increased residence time of the air in the duct at the lower flow rate, which results in greater conduction losses. Experimental tests in an instrumented residential-size duct system have confirmed this prediction. Results are compared with the heat-loss algorithm in ASHRAE Standid 152P. The paper concludes with a discussion of possible remedies for this loss of efficiency in existing systems and optional design strategies in new construction.

  17. Lensing duct

    DOEpatents

    Beach, R.J.; Benett, W.J.

    1994-04-26

    A lensing duct to condense (intensify) light using a combination of front surface lensing and reflective waveguiding is described. The duct tapers down from a wide input side to a narrow output side, with the input side being lens-shaped and coated with an antireflective coating for more efficient transmission into the duct. The four side surfaces are uncoated, preventing light from escaping by total internal reflection as it travels along the duct (reflective waveguiding). The duct has various applications for intensifying light, such as in the coupling of diode array pump light to solid state lasing materials, and can be fabricated from inexpensive glass and plastic. 3 figures.

  18. Lensing duct

    DOEpatents

    Beach, Raymond J. , Benett

    1994-01-01

    A lensing duct to condense (intensify) light using a combination of front surface lensing and reflective waveguiding. The duct tapers down from a wide input side to a narrow output side, with the input side being lens-shaped and coated with an antireflective coating for more efficient transmission into the duct. The four side surfaces are uncoated, preventing light from escaping by total internal reflection as it travels along the duct (reflective waveguiding). The duct has various applications for intensifying light, such as in the coupling of diode array pump light to solid state lasing materials, and can be fabricated from inexpensive glass and plastic.

  19. Building America Case Study: Duct in Conditioned Space in a Dropped Ceiling or Fur-down, Gainesville, Florida (Fact Sheet)

    SciTech Connect

    Not Available

    2014-09-01

    Forced air distribution systems (duct systems) typically are installed out of sight for aesthetic reasons, most often in unconditioned areas such as an attic or crawlspace. Any leakage of air to or from the duct system (duct leakage) in unconditioned space not only loses energy, but impacts home and equipment durability and indoor air quality. An obvious solution to this problem is to bring the duct system into the interior of the house, either by sealing the area where the ducts are installed (sealed attic or crawlspace) or by building an interior cavity or chase above the ceiling plane (raised ceiling or fur-up chase) or below the ceiling plane (dropped ceiling or fur-down) for the duct system. This case study examines one Building America builder partner's implementation of an inexpensive, quick and effective method of building a fur-down or dropped ceiling chase.

  20. Method and apparatus for duct sealing using a clog-resistant insertable injector

    DOEpatents

    Wang, Duo; Modera, Mark P.

    2010-12-14

    A method for forming a duct access region through one side of a previously installed air duct, wherein the air duct has an air flow with an air flow direction by inserting an aerosol injector into a previously installed air duct through the access region. The aerosol injector includes a liquid tube having a liquid tube orifice for ejecting a liquid to be atomized; and a propellant cap. The method is accomplished by aligning the aerosol injector with the direction of air flow in the duct; activating an air flow within the duct; and spraying a sealant through the aerosol injector to seal the duct in the direction of the air flow.

  1. Duct closure

    DOEpatents

    Vowell, Kennison L.

    1987-01-01

    A closure for an inclined duct having an open upper end and defining downwardly extending passageway. The closure includes a cap for sealing engagement with the open upper end of the duct. Associated with the cap are an array of vertically aligned plug members, each of which has a cross-sectional area substantially conforming to the cross-sectional area of the passageway at least adjacent the upper end of the passageway. The plug members are interconnected in a manner to provide for free movement only in the plane in which the duct is inclined. The uppermost plug member is attached to the cap means and the cap means is in turn connected to a hoist means which is located directly over the open end of the duct.

  2. Technology Solutions Case Study: Duct in Conditioned Space in a Dropped Ceiling or Fur-down, Gainesville, Florida

    SciTech Connect

    2014-09-01

    Forced-air distribution systems (duct systems) typically are installed out of sight for aesthetic reasons, most often in unconditioned areas such as attics or crawlspaces. Any leakage of air to or from the duct system in unconditioned space not only loses energy, but impacts home and equipment durability and indoor air quality. An obvious solution is to bring the duct system into the interior of the house, either by sealing the area where the ducts are installed (attic or crawlspace) or by building an interior cavity or chase above the ceiling plane (raised ceiling or fur-up chase) or below the ceiling plane (dropped ceiling or fur-down) for the duct system. In this project, Building America Partnership for Improved Residential Construction team partnered with Tommy Williams Homes to implement an inexpensive, quick, and effective method of building a fur-down chase.

  3. Ramjet bypass duct and preburner configuration

    NASA Technical Reports Server (NTRS)

    Orlando, Robert J. (Inventor)

    1994-01-01

    A combined turbofan and ramjet aircraft engine includes a forward bypass duct which allows the engine to operate more efficiently during the turbofan mode of operation. By mounting a ramjet preburner in the forward duct and isolating this duct from the turbofan bypass air, a transition from turbofan operation to ramjet operation can take place at lower flight Mach numbers without incurring pressure losses or blockage in the turbofan bypass air.

  4. Air velocity distributions from air-assisted five-port sprayer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Capability to control both liquid and air flow rates based on tree structures would be one of the advantages of future variable-rate orchard and nursery sprayers. Air jet velocity distributions from an air assisted, five-port sprayer which was under the development to achieve variable-rate functions...

  5. Air velocity distributions from a variable-rate air-assisted sprayer for tree applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A capability that implements tree structure to control liquid and air flow rates is the preferential design in the development of variable-rate orchard and nursery sprayers. Air jet velocity distributions from an air assisted, five-port sprayer which was under the development to achieve variable-rat...

  6. On the design of distributed air quality monitoring systems

    NASA Astrophysics Data System (ADS)

    Velasco, Alejandro; Ferrero, Renato; Gandino, Filippo; Montrucchio, Bartolomeo; Rebaudengo, Maurizio

    2015-12-01

    Nowadays, the air quality is considered a key point, and its monitoring is not only suggested but it is even required in many countries. Since traditional standard monitors for air quality are very expensive, the use of a low-cost distributed network of sensors represents a valid complementary approach. This paper discusses the benefits of a distributed approach and analyzes the main elements that should be taken into account during the design of a distributed system for the air quality monitoring. This paper aims at representing a valuable aid for researchers and practitioners interested in the topic.

  7. DUCT RETROFIT STRATEGY TO COMPLEMENT A MODULATING FURNACE.

    SciTech Connect

    ANDREWS,J.W.

    2002-10-02

    Some recent work (Walker 2001, Andrews 2002) has indicated that installing a modulating furnace in a conventional duct system may, in many cases, result in a significant degradation in thermal distribution efficiency. The fundamental mechanism was pointed out nearly two decades ago (Andrews and Krajewski 1985). The problem occurs in duct systems that are less-than-perfectly insulated (e.g., R-4 duct wrap) and are located outside the conditioned space. It stems from the fact that when the airflow rate is reduced, as it will be when the modulating furnace reduces its heat output rate, the supply air will have a longer residence time in the ducts and will therefore lose a greater percentage of its heat by conduction than it did at the higher airflow rate. The impact of duct leakage, on the other hand, is not expected to change very much under furnace modulation. The pressures in the duct system will be reduced when the airflow rate is reduced, thus reducing the leakage per unit time. This is balanced by the fact that the operating time will increase in order to meet the same heating load as with the conventional furnace operating at higher output and airflow rates. The balance would be exact if the exponent in the pressure vs. airflow equation were the same as that in the pressure vs. duct leakage equation. Since the pressure-airflow exponent is usually {approx}0.5 and the pressure-leakage exponent is usually {approx}0.6, the leakage loss as a fraction of the load should be slightly lower for the modulating furnace. The difference, however, is expected to be small, determined as it is by a function with an exponent equal to the difference between the above two exponents, or {approx}0.1. The negative impact of increased thermal conduction losses from the duct system may be partially offset by improved efficiency of the modulating furnace itself. Also, the modulating furnace will cycle on and off less often than a single-capacity model, and this may add a small amount

  8. Measure Guideline: Implementing a Plenum Truss for a Compact Air Distribution System

    SciTech Connect

    Burdick, A.

    2013-10-01

    This Measure Guideline presents the steps to implement a compact duct system inside an attic bulkhead (plenum truss) of a one-story, slab-on-grade home. In a compact duct design, ductwork runs are reduced in length to yield a smaller and more compact duct system. Less energy will be lost through ductwork if the ducts are contained within the thermal enclosure of the house. These measures are intended for the production builder working to meet the 2012 International Energy Conservation Code (IECC) requirements and keep the ductwork within the thermal enclosure of the house. This measure of bringing the heating, ventilation and air conditioning (HVAC) equipment and ductwork within the thermal enclosure of the house is appropriate for the builder wishing to avoid cathedralizing the insulation in the attic space (i.e., locating it at the underside of the roof deck rather than along the attic floor) or adding dropped soffits.

  9. Measure Guideline: Implementing a Plenum Truss for a Compact Air Distribution System

    SciTech Connect

    Burdick, A.

    2013-10-01

    This Measure Guideline presents the steps to implement a compact duct system inside an attic bulkhead (plenum truss) of a one-story, slab-on-grade (SOG) home. In a compact duct design, ductwork runs are reduced in length to yield a smaller and more compact duct system. Less energy will be lost through ductwork if the ducts are contained within the thermal enclosure of the house. These measures are intended for the production builder working to meet the 2012 International Energy Conservation Code (IECC) requirements and keep the ductwork within the thermal enclosure of the house. This measure of bringing the heating, ventilation and air conditioning (HVAC) equipment and ductwork within the thermal enclosure of the house is appropriate for the builder wishing to avoid cathedralizing the insulation in the attic space (i.e., locating it at the underside of the roof deck rather than along the attic floor) or adding dropped soffits.

  10. Aerosol and air pollution size distribution

    NASA Astrophysics Data System (ADS)

    Shani, Gad; Haccoun, A.; Kushelevsky, A.

    The size distribution of aerosols was measured in a moderately industrial city, in a semi-arid zone on the Negev desert border. The aerosols in the city of Beer Sheva are from two sources: the dust coming from the desert and urban pollution. The size measurements were done with a cascade impactor. The elemental content of the aerosols was investigated by neutron activation analysis and X-ray fluorescence. The main elements of the dust are: Ca, Si, Fe, Na and the trace elements are: Sc, Se, La, Sm, Hf and others. The main elements of the urban pollution are S, Br, Pb, Cl, Hg and others. It was found that the elements belonging to each group can easily be classified by the size distribution. The analytical consideration of the aerosol size distribution of each group are discussed and two corresponding analytical expressions are suggested. It is shown that aerosols originating in the dust have a hump shape distribution around ~ 4μm, and those originating in urban pollution have a distribution decreasing with increasing aerosol diameter. Many examples are given to prove the conclusions.

  11. Performance of underfloor air distribution: Results of a field study

    SciTech Connect

    Fisk, William; Faulkner, David; Sullivan, Douglas

    2004-09-02

    Underfloor air distribution (UFAD) is a new method of supplying heated or cooled air throughout a building. Reported advantages of UFAD include easy relocation of air supply diffusers, energy savings, and improved indoor air quality (IAQ). We measured several aspects of the performance of an UFAD system installed in a medium-size office building. The measured air change effectiveness was very close to unity, which is comparable to that measured in buildings with typical overhead air distribution. The pollutant removal efficiency for carbon dioxide was 13 percent higher than expected in a space with well-mixed air, suggesting a 13 percent reduction in exposures to occupant generated pollutants. The increase in indoor air temperatures with height above the floor was only 1 to 2 C (2-4 F). This amount of thermal stratification could reduce the sensible energy requirements for cooling of outdoor air by approximately 10 percent. The occupants level of satisfaction with thermal conditions w as well above average and this high satisfaction rating could possibly be due, in all or part, to the use of a UFAD system. The results of this study provide some evidence of moderate energy and IAQ-related benefits of UFAD. Before general conclusions are drawn, the benefits need to be confirmed in other studies.

  12. Low-cost orbiting grinder for cutting ducts

    NASA Technical Reports Server (NTRS)

    Lang, E. J.

    1970-01-01

    Low-cost, portable machine cuts ducts made from heat-treated alloys. An abrasive wheel, powered by a high-speed air motor mounted on an expandible plug against the inner wall of the duct, gives precise cutting.

  13. Duct leakage impacts on VAV system performance in California large commercial buildings

    SciTech Connect

    Wray, Craig P.; Matson, Nance E.

    2003-10-01

    The purpose of this study is to evaluate the variability of duct leakage impacts on air distribution system performance for typical large commercial buildings in California. Specifically, a hybrid DOE-2/TRNSYS sequential simulation approach was used to model the energy use of a low-pressure terminal-reheat variable-air-volume (VAV) HVAC system with six duct leakage configurations (tight to leaky) in nine prototypical large office buildings (representing three construction eras in three California climates where these types of buildings are common). Combined fan power for the variable-speed-controlled supply and return fans at design conditions was assumed to be 0.8 W/cfm. Based on our analyses of the 54 simulation cases, the increase in annual fan energy is estimated to be 40 to 50% for a system with a total leakage of 19% at design conditions compared to a tight system with 5% leakage. Annual cooling plant energy also increases by about 7 to 10%, but reheat energy decreases (about 3 to 10%). In combination, the increase in total annual HVAC site energy is 2 to 14%. The total HVAC site energy use includes supply and return fan electricity consumption, chiller and cooling tower electricity consumption, boiler electricity consumption, and boiler natural gas consumption. Using year 2000 average commercial sector energy prices for California ($0.0986/kWh and $7.71/Million Btu), the energy increases result in 9 to 18% ($7,400 to $9,500) increases in HVAC system annual operating costs. Normalized by duct surface area, the increases in annual operating costs are 0.14 to 0.18 $/ft{sup 2}. Using a suggested one-time duct sealing cost of $0.20 per square foot of duct surface area, these results indicate that sealing leaky ducts in VAV systems has a simple payback period of about 1.3 years. Even with total leakage rates as low as 10%, duct sealing is still cost effective. This suggests that duct sealing should be considered at least for VAV systems with 10% or more total duct

  14. Observations of Strong Surface Radar Ducts over the Persian Gulf.

    NASA Astrophysics Data System (ADS)

    Brooks, Ian M.; Goroch, Andreas K.; Rogers, David P.

    1999-09-01

    Ducting of microwave radiation is a common phenomenon over the oceans. The height and strength of the duct are controlling factors for radar propagation and must be determined accurately to assess propagation ranges. A surface evaporation duct commonly forms due to the large gradient in specific humidity just above the sea surface; a deeper surface-based or elevated duct frequently is associated with the sudden change in temperature and humidity across the boundary layer inversion.In April 1996 the U.K. Meteorological Office C-130 Hercules research aircraft took part in the U.S. Navy Ship Antisubmarine Warfare Readiness/Effectiveness Measuring exercise (SHAREM-115) in the Persian Gulf by providing meteorological support and making measurements for the study of electromagnetic and electro-optical propagation. The boundary layer structure over the Gulf is influenced strongly by the surrounding desert landmass. Warm dry air flows from the desert over the cooler waters of the Gulf. Heat loss to the surface results in the formation of a stable internal boundary layer. The layer evolves continuously along wind, eventually forming a new marine atmospheric boundary layer. The stable stratification suppresses vertical mixing, trapping moisture within the layer and leading to an increase in refractive index and the formation of a strong boundary layer duct. A surface evaporation duct coexists with the boundary layer duct.In this paper the authors present aircraft- and ship-based observations of both the surface evaporation and boundary layer ducts. A series of sawtooth aircraft profiles map the boundary layer structure and provide spatially distributed estimates of the duct depth. The boundary layer duct is found to have considerable spatial variability in both depth and strength, and to evolve along wind over distances significant to naval operations (100 km). The depth of the evaporation duct is derived from a bulk parameterization based on Monin-Obukhov similarity theory

  15. Performance of underfloor air distribution in a fieldsetting

    SciTech Connect

    Fisk, W.J.; Faulkner, D.; Sullivan, D.P.; Chao, C.; Wan, M.P.; Zagreus, L.; Webster, T.

    2005-10-01

    Underfloor air distribution (UFAD) is a new method of supplying heated or cooled air throughout a building. Reported advantages of UFAD include energy savings and improved indoor air quality (IAQ). We measured several aspects of the performance of an UFAD system installed in a medium-size office building. The measured air change effectiveness was very close to unity, which is comparable to that measured in buildings with typical overhead air distribution. The pollutant removal efficiency for carbon dioxide was 13% higher than expected in a space with well-mixed air, suggesting a 13% reduction in exposures to occupant generated pollutants. The increase in indoor air temperatures with height above the floor was only 1 to 2 C. This amount of thermal stratification could reduce the sensible energy requirements for cooling of outdoor air by approximately 10%. The occupant's level of satisfaction with thermal conditions was well above average and this high satisfaction rating could possibly be due, in all or part, to the use of a UFAD system. The results of this study provide some evidence of moderate energy and IAQ-related benefits of UFAD. Before general conclusions are drawn, the benefits need to be confirmed in other studies.

  16. Development of a distributed air pollutant dry deposition modeling framework.

    PubMed

    Hirabayashi, Satoshi; Kroll, Charles N; Nowak, David J

    2012-12-01

    A distributed air pollutant dry deposition modeling system was developed with a geographic information system (GIS) to enhance the functionality of i-Tree Eco (i-Tree, 2011). With the developed system, temperature, leaf area index (LAI) and air pollutant concentration in a spatially distributed form can be estimated, and based on these and other input variables, dry deposition of carbon monoxide (CO), nitrogen dioxide (NO(2)), sulfur dioxide (SO(2)), and particulate matter less than 10 microns (PM10) to trees can be spatially quantified. Employing nationally available road network, traffic volume, air pollutant emission/measurement and meteorological data, the developed system provides a framework for the U.S. city managers to identify spatial patterns of urban forest and locate potential areas for future urban forest planting and protection to improve air quality. To exhibit the usability of the framework, a case study was performed for July and August of 2005 in Baltimore, MD. PMID:22858662

  17. Heat Transfer Enhancement in a Solar Air Heater with Roughened Duct Having Arc-Shaped Elements as Roughness Element on the Absorber Plate

    NASA Astrophysics Data System (ADS)

    Singh, Anil Prakash; Goel, Varun; Vashishtha, Siddhartha; Kumar, Amit

    2016-07-01

    An experimental study has been carried out for the heat transfer and friction characteristics for arc shaped roughness element used in solar air heaters. Duct has an aspect ratio (W/H) of 11, relative roughness pitch (p/e) range of 4-16, relative roughness height (e/D) range of 0.027-0.045, Reynolds number ( Re) range of 2200-22,000 and arc angle (α) was kept constant at 60°. The effects of Re, relative roughness pitch (p/e) and relative roughness height (e/D) on heat transfer and friction factor have been discussed. The results obtained for Nusselt number and friction factor has been compared with smooth solar air heater to see the enhancement in heat transfer and friction factor and it is found out that considerable enhancement takes place in case of heat transfer as well as in friction factor. Correlations were also developed for Nusselt number and friction factor. Thermo-hydraulic performance parameter is also calculated for the same.

  18. Heat Transfer Enhancement in a Solar Air Heater with Roughened Duct Having Arc-Shaped Elements as Roughness Element on the Absorber Plate

    NASA Astrophysics Data System (ADS)

    Singh, Anil Prakash; Goel, Varun; Vashishtha, Siddhartha; Kumar, Amit

    2016-05-01

    An experimental study has been carried out for the heat transfer and friction characteristics for arc shaped roughness element used in solar air heaters. Duct has an aspect ratio (W/H) of 11, relative roughness pitch (p/e) range of 4-16, relative roughness height (e/D) range of 0.027-0.045, Reynolds number (Re) range of 2200-22,000 and arc angle (α) was kept constant at 60°. The effects of Re, relative roughness pitch (p/e) and relative roughness height (e/D) on heat transfer and friction factor have been discussed. The results obtained for Nusselt number and friction factor has been compared with smooth solar air heater to see the enhancement in heat transfer and friction factor and it is found out that considerable enhancement takes place in case of heat transfer as well as in friction factor. Correlations were also developed for Nusselt number and friction factor. Thermo-hydraulic performance parameter is also calculated for the same.

  19. TWO NEW DUCT LEAKAGE TESTS

    SciTech Connect

    ANDREWS,J.W.

    1998-12-01

    Two variations on the tests for duct leakage currently embodied in ASHRAE Standard 152P (Method of Test for Determining the Design and Seasonal Efficiencies of Residential Thermal Distribution Systems) are presented. Procedures are derived for calculating supply and return duct leakage to/from outside using these new variations. Results of these tests are compared with the original ones in Standard 152P on the basis of data collected in three New York State homes.

  20. Two New Duct Leakage Tests

    SciTech Connect

    Andrews, J.W.

    1998-12-01

    Two variations on the tests for duct leakage currently embodied in ASHRAE Standard 152P (Method of Test for Determining the Design and Seasonal Efficiencies of Residential Thermal Distribution Systems) are presented. Procedures are derived for calculating supply and return duct leakage to/from outside using these new variations. Results of these tests are compared with the original ones in Standard 152P on the basis of data collected in three New York State homes.

  1. Air distribution in the Borden aquifer during in situ air sparging.

    PubMed

    Tomlinson, D W; Thomson, N R; Johnson, R L; Redman, J D

    2003-12-01

    A field experiment was conducted at Canadian Forces Base Borden (CFB Borden) to assess the air distribution from a single in situ air sparging injection point. This aquifer consists of fine to medium sand deposited in horizontal layers. The permeability at the study location varied from 10(-10) to 10(-14) m2 and distinct low permeability horizons were present at approximately 1.2, 2.0, and 2.9 m below the water table. Prior to air injection, a 15x15-m portion of the vadose zone was excavated to the water table (approximately 1 m below ground surface) in order to visually observe air release distribution at the water table. The water table was actively maintained 5 cm above the excavated surface. The sparging system operated for a period of 7 days with an injection flow rate of 200 m3/days (5 scfm). The resulting subsurface air distribution was assessed using a variety of techniques including neutron logging, borehole and surface ground penetrating radar, piezometric head measurements, surface visualization, and hydraulic testing. Through this combination of tests, it was demonstrated that variations in permeability and, hence, capillary pressure at the site were sufficient to cause the injected air to spread laterally, forming stratigraphically trapped air pockets beneath the low permeability horizons. The formation of these air pockets eventually resulted in a buildup of capillary pressure that exceeded the air entry pressure and allowed some air to migrate up through the lower permeability layers. Each of the assessment techniques employed generated information at different spatial scales that prevented a direct comparison of the results from the various techniques; however, the results from all techniques proved to be critical in the interpretation of the experimental data. As a consequence, the different assessment techniques should not be viewed as alternatives, but rather as complimentary techniques. PMID:14607473

  2. Electron concentration distribution in a glow discharge in air flow

    NASA Astrophysics Data System (ADS)

    Mukhamedzianov, R. B.; Gaisin, F. M.; Sabitov, R. A.

    1989-04-01

    Electron concentration distributions in a glow discharge in longitudinal and vortex air flows are determined from the attenuation of the electromagnetic wave passing through the plasma using microwave probes. An analysis of the distribution curves obtained indicates that electron concentration decreases in the direction of the anode. This can be explained by charge diffusion toward the chamber walls and electron recombination and sticking within the discharge.

  3. Turbofan aft duct suppressor study

    NASA Technical Reports Server (NTRS)

    Syed, A. A.; Motsinger, R. E.; Fiske, G. H.; Joshi, M. C.; Kraft, R. E.

    1983-01-01

    Suppressions due to acoustic treatment in the annular exhaust duct of a model fan were theoretically predicted and compared with measured suppressions. The predictions are based on the modal analysis of sound propagation in a straight annular flow duct with segmented treatment. Modal distributions of the fan noise source (fan-stator interaction only) were measured using in-duct modal probes. The flow profiles were also measured in the vicinity of the modal probes. The acoustic impedance of the single degree of freedom treatment was measured in the presence of grazing flow. The measured values of mode distribution of the fan noise source, the flow velocity profile and the acoustic impedance of the treatment in the duct were used as input to the prediction program. The predicted suppressions, under the assumption of uniform flow in the duct, compared well with the suppressions measured in the duct for all test conditions. The interaction modes generated by the rotor-stator interaction spanned a cut-off ratio range from nearly 1 to 7.

  4. Modeling particle loss in ventilation ducts

    SciTech Connect

    Sippola, Mark R.; Nazaroff, William W.

    2003-04-01

    Empirical equations were developed and applied to predict losses of 0.01-100 {micro}m airborne particles making a single pass through 120 different ventilation duct runs typical of those found in mid-sized office buildings. For all duct runs, losses were negligible for submicron particles and nearly complete for particles larger than 50 {micro}m. The 50th percentile cut-point diameters were 15 {micro}m in supply runs and 25 {micro}m in return runs. Losses in supply duct runs were higher than in return duct runs, mostly because internal insulation was present in portions of supply duct runs, but absent from return duct runs. Single-pass equations for particle loss in duct runs were combined with models for predicting ventilation system filtration efficiency and particle deposition to indoor surfaces to evaluate the fates of particles of indoor and outdoor origin in an archetypal mechanically ventilated building. Results suggest that duct losses are a minor influence for determining indoor concentrations for most particle sizes. Losses in ducts were of a comparable magnitude to indoor surface losses for most particle sizes. For outdoor air drawn into an unfiltered ventilation system, most particles smaller than 1 {micro}m are exhausted from the building. Large particles deposit within the building, mostly in supply ducts or on indoor surfaces. When filters are present, most particles are either filtered or exhausted. The fates of particles generated indoors follow similar trends as outdoor particles drawn into the building.

  5. AIRS Data Distribution at NASA GES DISC DAAC

    NASA Astrophysics Data System (ADS)

    Qin, J. C.; Cho, S.; Li, J. Y.; Phelps, C.

    2003-04-01

    The Atmospheric Infrared Sounder (AIRS) data product suite is now available at the Distributed Active Archive Center (DAAC) located at the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) in Greenbelt, Maryland, USA. The Atmospheric Dynamics Data Support Team (atmdyn-dst@daac.gsfc.nasa.gov) is providing user services to help with understanding, accessing and utilizing AIRS data. These services include assistance with product ordering and distribution, access to online technical documentation and HDF-EOS format information, development of online data analysis tools, data mining, and educational resources. The AIRS data is available via the DAAC Search and Order interface (http://daac.gsfc.nasa.gov/data/), the EOS Data Gateway (http://eos.nasa.gov/imswelcome/) or the EOS Core System Datapool (ftp://g0dps01u.ecs.nasa.gov/). The AIRS data support website is located at http://daac.gsfc.nasa.gov/atmodyn/airs/. AIRS data products are a combination of AIRS, Advanced Microwave Sounding Unit (AMSU-A) and Humidity Sounder for Brazil (HSB) measurements. Global coverage by the instruments is obtained twice daily (day and night) and the data along the orbit is processed into 6-minute granules. AIRS alone has 2,378 channels measuring in the infrared range 3.74-15.4 mm and four channels measuring in the visible/near-infrared range 0.4-1.1mm. A web-based AIRS data subsetter is among the tools available to perform channel subsetting for geolocated calibrated radiances (Level 1B) as well as variable subsetting for atmospheric final retrievals (Level 2). Also useful is AIRS QuickLook, a data visualization application which allows users to view AIRS Level 1B data online for a specific channel prior to ordering or downloading data. Global map is also provided along with image to show geographic coverage of the granule and flight direction of the Aqua spacecraft. AIRS Level 1B data was released in March 2003 and Level 2 products are available May 2003.

  6. Investigation of the use of fly-ash based autoclaved cellular concrete blocks in coal mines for air duct work. Final report, January 25, 1993--December 31, 1994

    SciTech Connect

    Horvath, M.L.

    1995-06-19

    Coal mines are required to provide ventilation to occupied portions of underground mines. Concrete block is used in this process to construct air duct walls. However, normal concrete block is heavy and not easy to work with and eventually fails dramatically after being loaded due to mine ceiling convergence and/or floor heave. Autoclaved cellular concrete block made from (70{plus_minus}%) coal fly ash is lightweight and less rigid when loaded. It is lighter and easier to use than regular concrete block for underground mine applications. It has also been used in surface construction around the world for over 40 years. Ohio Edison along with eight other electric utility companies, the Electric Power Research Institute (EPRI), and North American Cellular Concrete constructed a mobile demonstration plant to produce autoclaved cellular concrete block from utility fly ash. To apply this research in Ohio, Ohio Edison also worked with the Ohio Coal Development Office and CONSOL Inc. to produce autoclaved cellular concrete block not only from coal ash but also from LIMB ash, SNRB ash, and PFBC ash from various clean coal technology projects sponsored by the Ohio Coal Development Office. The purpose of this project was to demonstrate the potential for beneficial use of fly ash and clean coal technology by-products in the production of lightweight block.

  7. Thermal environmental case study of an existing underfloor air distribution (UFAD) system in a high-rise building in the tropics

    NASA Astrophysics Data System (ADS)

    Ya, Y. H.; Poh, K. S.

    2015-09-01

    The performance of an existing underfloor air distribution (UFAD) system in a renowned high-rise office tower in Malaysia was studied to identify the root cause issues behind the poor indoor air quality. Occupants are the best thermal sensor. The building was detected with the sick building syndrome (SBS) that causes runny noses, flu-like symptoms, irritated skin, and etc. Long period of exposure to indoor air pollutants may increase the occupant's health risk. The parameters such as the space temperature, relative humidity, air movement, air change, fresh air flow rate, chilled water supply and return are evaluated at three stories that consist of five open offices. A full traverse study was carried out at one of the fresh air duct. A simplified duct flow measurement method using pitot-tubes was developed. The results showed that the diffusers were not effective in creating the swirl effect to the space. Internal heat gain from human and office electrical equipment were not drawn out effectively. Besides, relative humidity has exceeded the recommended level. These issues were caused by the poor maintenance of the building. The energy efficiency strategy of the UFAD system comes from the higher supply air temperature. It may leads to insufficient cooling load for the latent heat gained under improper system performance. Special care and considerations in design, construction and maintenance are needed to ensure the indoor air quality to be maintained. Several improvements were recommended to tackle the existing indoor air quality issues. Solar system was studied as one of the innovative method for retrofitting.

  8. Flue gas duct assembly

    SciTech Connect

    Montana, F.J.

    1984-08-28

    A length of longitudinally extending duct assembly for heated corrosive gases includes an outer support duct and a substantially gas-tight liner. The liner is spaced from the outer support duct by a relatively yielding spacer material that accommodates expansion of the liner in directions parallel to the inner surface of the outer support duct and in directions normal to the inner surface of the outer support duct without imposing any substantial resistance to such thermal expansion.

  9. Measured Air Distribution Effectiveness for Residential Mechanical Ventilation Systems

    SciTech Connect

    Sherman, Max; Sherman, Max H.; Walker, Iain S.

    2008-05-01

    The purpose of ventilation is dilute or remove indoor contaminants that an occupant is exposed to. In a multi-zone environment such as a house, there will be different dilution rates and different source strengths in every zone. Most US homes have central HVAC systems, which tend to mix the air thus the indoor conditions between zones. Different types of ventilation systems will provide different amounts of exposure depending on the effectiveness of their air distribution systems and the location of sources and occupants. This paper will report on field measurements using a unique multi-tracer measurement system that has the capacity to measure not only the flow of outdoor air to each zone, but zone-to-zone transport. The paper will derive seven different metrics for the evaluation of air distribution. Measured data from two homes with different levels of natural infiltration will be used to evaluate these metrics for three different ASHRAE Standard 62.2 compliant ventilation systems. Such information can be used to determine the effectiveness of different systems so that appropriate adjustments can be made in residential ventilation standards such as ASHRAE Standard 62.2.

  10. The AIRS Applications Pipeline, from Identification to Visualization to Distribution

    NASA Astrophysics Data System (ADS)

    Ray, S. E.; Pagano, T. S.; Fetzer, E. J.; Lambrigtsen, B.; Teixeira, J.

    2014-12-01

    The Atmospheric Infrared Sounder (AIRS) on NASA's Aqua spacecraft has been returning daily global observations of Earth's atmospheric constituents and properties since 2002. AIRS provides observations of temperature and water vapor along the atmospheric column and is sensitive to many atmospheric constituents in the mid-troposphere, including carbon monoxide, carbon dioxide and ozone. With a 12-year data record and daily, global observations in near real-time, we are finding that AIRS data can play a role in applications that fall under most of the NASA Applied Sciences focus areas. Currently in development are temperature inversion maps that can potentially correlate to respiratory health problems, dengue fever and West Nile virus outbreak prediction maps, maps that can be used to make assessments of air quality, and maps of volcanic ash burden. This poster will communicate the Project's approach and efforts to date of its applications pipeline, which includes identifying applications, utilizing science expertise, hiring outside experts to assist with development and dissemination, visualization along application themes, and leveraging existing NASA data frameworks and organizations to facilitate archiving and distribution. In addition, a new web-based browse tool being developed by the AIRS Project for easy access to application product imagery will also be described.

  11. Drop size distribution and air velocity measurements in air assist swirl atomizer sprays

    NASA Astrophysics Data System (ADS)

    Mao, C.-P.; Oechsle, V.; Chigier, N.

    1987-03-01

    Detailed measurements of mean drop size (SMD) and size distribution parameters have been made using a Fraunhofer diffraction particle sizing instrument in a series of sprays generated by an air assist swirl atomizer. Thirty-six different combinations of fuel and air mass flow rates were examined with liquid flow rates up to 14 lbm/hr and atomizing air flow rates up to 10 lbm/hr. Linear relationships were found between SMD and liquid to air mass flow rate ratios. SMD increased with distance downstream along the center line and also with radial distance from the axis. Increase in obscuration with distance downstream was due to an increase in number density of particles as the result of deceleration of drops and an increase in the exposed path length of the laser beam. Velocity components of the atomizing air flow field measured by a laser anemometer show swirling jet air flow fields with solid body rotation in the core and free vortex flow in the outer regions.

  12. Drop size distribution and air velocity measurements in air assist swirl atomizer sprays

    NASA Technical Reports Server (NTRS)

    Mao, C.-P.; Oechsle, V.; Chigier, N.

    1987-01-01

    Detailed measurements of mean drop size (SMD) and size distribution parameters have been made using a Fraunhofer diffraction particle sizing instrument in a series of sprays generated by an air assist swirl atomizer. Thirty-six different combinations of fuel and air mass flow rates were examined with liquid flow rates up to 14 lbm/hr and atomizing air flow rates up to 10 lbm/hr. Linear relationships were found between SMD and liquid to air mass flow rate ratios. SMD increased with distance downstream along the center line and also with radial distance from the axis. Increase in obscuration with distance downstream was due to an increase in number density of particles as the result of deceleration of drops and an increase in the exposed path length of the laser beam. Velocity components of the atomizing air flow field measured by a laser anemometer show swirling jet air flow fields with solid body rotation in the core and free vortex flow in the outer regions.

  13. Particle deposition in ventilation ducts: Connectors, bends anddeveloping flow

    SciTech Connect

    Sippola, Mark R.; Nazaroff, William W.

    2004-03-01

    In ventilation duct flow the turbulent flow profile is commonly disturbed or not fully developed and these conditions are likely to influence particle deposition to duct surfaces. Particle deposition rates at eight S-connectors, in two 90{sup o} duct bends and in two ducts where the turbulent flow profile was not fully developed were measured in a laboratory duct system with both galvanized steel and internally insulated ducts with hydraulic diameters of 15.2 cm. In the steel duct system, experiments with nominal particle diameters of 1, 3, 5, 9 and 16 {micro}m were conducted at each of three nominal air speeds: 2.2, 5.3 and 9.0 m/s. In the insulated duct system, deposition of particles with nominal diameters of 1, 3, 5, 8 and 13 {micro}m was measured at nominal air speeds of 2.2, 5.3 and 8.8 m/s. Fluorescent techniques were used to directly measure the deposition velocities of monodisperse fluorescent particles to duct surfaces. Deposition at S-connectors, in bends and in straight ducts with developing turbulence was often greater than deposition in straight ducts with fully developed turbulence for equal particle sizes, air speeds and duct surface orientations. Deposition rates at all locations were found to increase with an increase in particle size or air speed. High deposition rates at S-connectors resulted from impaction and these rates were nearly independent of the orientation of the S-connector. Deposition rates in the two 90{sup o} bends differed by more than an order of magnitude in some cases, probably because of the difference in turbulence conditions at the bend inlets. In straight steel ducts where the turbulent flow profile was developing, the deposition enhancement relative to fully developed turbulence generally increased with air speed and decreased with downstream distance from the duct inlet. This enhancement was greater at the duct ceiling and wall than at the duct floor. In insulated ducts, deposition enhancement was less pronounced overall

  14. Field comparison of design and diagnostic pathways for duct efficiency evaluation

    SciTech Connect

    Andrews, J.W.

    1996-08-01

    A new method of test for residential thermal distribution efficiency is currently being developed under the auspices of the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE). This test method will have three main approaches, or ``pathways``, designated Design, Diagnostic, and Research. The Design Pathway uses builder`s information to predict thermal distribution efficiency in new construction. The Diagnostic Pathway uses air-flow, temperature, and pressure-difference tests--intended to take one to four hours--to evaluate thermal distribution efficiency in a completed house. For forced-air systems, three distinct techniques are being considered, one based on thermal inputs and outputs in the duct system, the second based on pressure and leakage-area measurements, and the third based on pressure differentials induced in the house by partial blockage of the return duct. This paper presents and discusses the results of Design Pathway calculations based on measured duct-system and floor-plan layouts and surface areas (in lieu of building plans) for fifteen residential duct systems in Long Island, New York. These are compared with measured Diagnostic Pathway efficiencies in eight of these homes.

  15. Air traffic control by distributed management in a MLS environment

    NASA Technical Reports Server (NTRS)

    Kreifeldt, J. G.; Parkin, L.; Hart, S.

    1977-01-01

    The microwave landing system (MLS) is a technically feasible means for increasing runway capacity since it could support curved approaches to a short final. The shorter the final segment of the approach, the wider the variety of speed mixes possible so that theoretically, capacity would ultimately be limited by runway occupance time only. An experiment contrasted air traffic control in a MLS environment under a centralized form of management and under distributed management which was supported by a traffic situation display in each of the 3 piloted simulators. Objective flight data, verbal communication and subjective responses were recorded on 18 trial runs lasting about 20 minutes each. The results were in general agreement with previous distributed management research. In particular, distributed management permitted a smaller spread of intercrossing times and both pilots and controllers perceived distributed management as the more 'ideal' system in this task. It is concluded from this and previous research that distributed management offers a viable alternative to centralized management with definite potential for dealing with dense traffic in a safe, orderly and expeditious manner.

  16. 91. VIEW OF OBSOLETE AIRCONDITIONING DUCTS LOCATED IN NORTHWEST CORNER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    91. VIEW OF OBSOLETE AIR-CONDITIONING DUCTS LOCATED IN NORTHWEST CORNER OF ROOM, ABOVE SLC-3E AUTOPILOT EQUIPMENT. DIGITAL COUNTDOWN AND HOLD CLOCKS ON WALL LEFT OF DUCTS - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  17. Error analysis for duct leakage tests in ASHRAE standard 152P

    SciTech Connect

    Andrews, J.W.

    1997-06-01

    This report presents an analysis of random uncertainties in the two methods of testing for duct leakage in Standard 152P of the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE). The test method is titled Standard Method of Test for Determining Steady-State and Seasonal Efficiency of Residential Thermal Distribution Systems. Equations have been derived for the uncertainties in duct leakage for given levels of uncertainty in the measured quantities used as inputs to the calculations. Tables of allowed errors in each of these independent variables, consistent with fixed criteria of overall allowed error, have been developed.

  18. MINIMIZING DECOMPOSITION OF VAPORIZED HYDROGEN PEROXIDE IN CLEAN GALVANIZED STEEL DUCTING: IMPLICATIONS FOR BIOLOGICAL DECONTAMINATION

    SciTech Connect

    Verce, M F; Jayaraman, B; Ford, T D; Fisher, S E; Gadgil, A J; Carlsen, T M

    2007-09-07

    This work examined the behavior of vaporous hydrogen peroxide (VHP) in clean, room-scale galvanized steel (GS) and polyvinylchloride-coated steel air ducts, to understand how it might be used to decontaminate larger ventilation systems. VHP injected into the GS duct decreased in concentration along the length of the duct, whereas VHP concentrations in the polyvinylchloride coated duct remained essentially constant, suggesting that VHP decomposed at the GS surface. However, decomposition was reduced at lower temperatures ({approx} 22 C) and higher flow rates ({approx} 80 actual cubic meter per hour). A computational fluid dynamics model incorporating reactive transport was used to estimate surface VHP concentrations where contamination is likely to reside, and also showed how bends encourage VHP decomposition. Use of G. stearothermophilus indicators, in conjunction with model estimates, indicated that a concentration-contact time of {approx} 100 mg/L H{sub 2}O{sub 2}(g){center_dot}min was required to achieve a 6 log reduction of indicator spores in clean GS duct, at 30 C. When VHP is selected for building decontamination, this work suggests the most efficacious strategy may be to decontaminate GS ducting separately from the rest of the building, as opposed to a single decontamination event in which the ventilation system is used to distribute VHP throughout the entire building.

  19. Mixed convection heat and mass transfer in radially rotating rectangular ducts

    SciTech Connect

    Lee, K.T.; Yan, W.M.

    1998-11-27

    Heat transfer in rotating ducts is encountered in many engineering applications, such as cooling of turbomachinery, gas turbines, and other rotating systems. The present work investigates mixed convection heat and mass transfer in the entrance region of radially rotating rectangular ducts with water film evaporation along the porous duct walls. Mechanisms of secondary vortex development in the ducts under various conditions are examined by a vorticity-velocity numerical method. Emphasis is placed on the rotation effects, including both Coriolis and centrifugal buoyancy forces, and the mass diffusion effect on the flow structure and heat transfer characteristics. Results are presented in particular for an air-water vapor system under various conditions. Predicted results show that the effects of liquid film evaporation along the porous duct walls on the mixed convection heat transfer are rather substantial. The magnitude of the evaporative latent heat transfer may be 10 times greater than that of sensible heat transfer. The predictions also demonstrate that the distributions of Nu, Sh{sub z}, and fRe are closely related to the emergence, disappearance, growth, and decay of the rotating-induced secondary vortices. Additionally, a higher Nu{sub z} is found for a rectangular duct with a larger aspect ratio ({gamma} = 2) due to the relatively stronger secondary flows.

  20. Lateral and Time Distributions of Extensive Air Showers for CHICOS

    NASA Astrophysics Data System (ADS)

    Jillings, C. J.; Wells, D.; Chan, K. C.; Hill, J.; Falkowski, B.; Sepikas, J.

    2005-04-01

    We report results of a series of detailed Monte-Carlo calculations to determine the density and arrival-time distribution of charged particles in extensive air showers. We have parameterized both distributions as a function of distance from the shower axis, energy of the primary cosmic-ray proton, and incident zenith angle. Muons and electrons are parameterized separately. These parameterizations can be easily used in maximum-likelihood reconstruction of air showers. Calculations were performed for primary energies between 10^18 and 10^21eV and zenith angles out to approximately 50^o. The calculations are appropriate for the California High School Cosmic Ray Observatory: a 400 km^2 array of scintillation detectors in Los Angeles county. The average elevation of the array is approximately 250 meters above sea level. Currently 64 of 90 sites are operational. The array will be completed this year. We thank the NSF, the CURE program at the Jet Propulsion Laboratory, the SURF program at Caltech, and the Chinese University of Hong Kong.

  1. 54. DETAIL OF AIRCONDITIONING EXHAUST DUCTS ON NORTH FACE OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    54. DETAIL OF AIR-CONDITIONING EXHAUST DUCTS ON NORTH FACE OF ERECT UMBILICAL MAST - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  2. Propagation Of Sound In Curved Ducts

    NASA Technical Reports Server (NTRS)

    Rostafinski, Wojciech

    1992-01-01

    Monograph presents concise, comprehensive summary of knowledge of propagation of acoustic waves in ducts and pipes including bends. Pulls together information from Lord Rayleigh's book Theory Of Sound, published in 1878, and from 33 papers scattered throughout various scientific journals published between 1945 and 1989. Monograph useful to scientists and engineers interested in such diverse topics as musical instruments, air-conditioning ducts, and jet engines. Material not available in current texts.

  3. Principled negotiation and distributed optimization for advanced air traffic management

    NASA Astrophysics Data System (ADS)

    Wangermann, John Paul

    Today's aircraft/airspace system faces complex challenges. Congestion and delays are widespread as air traffic continues to grow. Airlines want to better optimize their operations, and general aviation wants easier access to the system. Additionally, the accident rate must decline just to keep the number of accidents each year constant. New technology provides an opportunity to rethink the air traffic management process. Faster computers, new sensors, and high-bandwidth communications can be used to create new operating models. The choice is no longer between "inflexible" strategic separation assurance and "flexible" tactical conflict resolution. With suitable operating procedures, it is possible to have strategic, four-dimensional separation assurance that is flexible and allows system users maximum freedom to optimize operations. This thesis describes an operating model based on principled negotiation between agents. Many multi-agent systems have agents that have different, competing interests but have a shared interest in coordinating their actions. Principled negotiation is a method of finding agreement between agents with different interests. By focusing on fundamental interests and searching for options for mutual gain, agents with different interests reach agreements that provide benefits for both sides. Using principled negotiation, distributed optimization by each agent can be coordinated leading to iterative optimization of the system. Principled negotiation is well-suited to aircraft/airspace systems. It allows aircraft and operators to propose changes to air traffic control. Air traffic managers check the proposal maintains required aircraft separation. If it does, the proposal is either accepted or passed to agents whose trajectories change as part of the proposal for approval. Aircraft and operators can use all the data at hand to develop proposals that optimize their operations, while traffic managers can focus on their primary duty of ensuring

  4. Air Quality Impact of Distributed Generation of Electricity

    NASA Astrophysics Data System (ADS)

    Jing, Qiguo

    This dissertation summarizes the results of a five-year investigation of the impact of distributed generation (DG) of electricity on air quality in urban areas. I focused on the impact of power plants with capacities of less than 50 MW, which is typical of DG units in urban areas. These power plants are modeled as buoyant emissions from stacks less than 10 m situated in the midst of urban buildings. Because existing dispersion models are not designed for such sources, the first step of the study involved the evaluation of AERMOD, USEPA's state-of-the art dispersion model, with data collected in a tracer study conducted in the vicinity of a DG unit. The second step of the study consisted of using AERMOD to compare the impact of DG penetration in the South Coast Air Basin of Los Angeles with the impact of replacing DG generation with expansion of current central power plant capacity. The third topic of my investigation is the development and application of a model to examine the impact of non-power plant sources in a large urban area such as Los Angeles. This model can be used to estimate the air quality impact of DG relative to other sources in an urban area. The first part of this dissertation describes a tracer study conducted in Palm Springs, CA. Concentrations observed during the nighttime experiments are generally higher than those measured during the daytime experiments. They fall off less rapidly with distance than during the daytime. AERMOD provides an adequate description of concentrations associated with the buoyant releases from the DG during the daytime when turbulence is controlled by convection induced by solar heating. However, AERMOD underestimates concentrations during the night when turbulence is generated by wind shear. Also, AERMOD predicts a decrease in concentrations with distance that is much more rapid than the relatively flat observed decrease. I have suggested modifications to AERMOD to improve the agreement between model estimates and

  5. Depth Distribution Of The Maxima Of Extensive Air Shower

    NASA Technical Reports Server (NTRS)

    Adams, J. H.; Howell, L. W.

    2003-01-01

    Observations of the extensive air showers from space can be free from interference by low altitude clouds and aerosols if the showers develop at a sufficiently high altitude. In this paper we explore the altitude distribution of shower maxima to determine the fraction of all showers that will reach their maxima at sufficient altitudes to avoid interference from these lower atmosphere phenomena. Typically the aerosols are confined within a planetary boundary layer that extends from only 2-3 km above the Earth's surface. Cloud top altitudes extend above 15 km but most are below 4 km. The results reported here show that more than 75% of the showers that will be observed by EUSO have maxima above the planetary boundary layer. The results also show that more than 50% of the showers that occur on cloudy days have their maxima above the cloud tops.

  6. Preliminary analysis of hub and spoke air freight distribution system

    NASA Technical Reports Server (NTRS)

    Whitehead, A. H., Jr.

    1978-01-01

    A brief analysis is made of the hub and spoke air freight distribution system which would employ less than 15 hub centers world wide with very large advanced distributed-load freighters providing the line-haul delivery between hubs. This system is compared to a more conventional network using conventionally-designed long-haul freighters which travel between numerous major airports. The analysis calculates all of the transportation costs, including handling charges and pickup and delivery costs. The results show that the economics of the hub/spoke system are severely compromised by the extensive use of feeder aircraft to deliver cargo into and from the large freighter terminals. Not only are the higher costs for the smaller feeder airplanes disadvantageous, but their use implies an additional exchange of cargo between modes compared to truck delivery. The conventional system uses far fewer feeder airplanes, and in many cases, none at all. When feeder aircraft are eliminated from the hub/spoke system, however, that system is universally more economical than any conventional system employing smaller line-haul aircraft.

  7. A Comparison of Simulation Capabilities for Ducts

    SciTech Connect

    Miller, William A.; Smith, Matt K.; Gu, Lixing; New, Joshua Ryan

    2014-11-01

    Typically, the cheapest way to install a central air conditioning system in residential buildings is to place the ductwork in the attic. Energy losses due to duct-attic interactions can be great, but current whole-house models are unable to capture the dynamic multi-mode physics of the interactions. The building industry is notoriously fragmented and unable to devote adequate research resources to solve this problem. Builders are going to continue to put ducts in the attic because floor space is too expensive to closet them within living space, and there are both construction and aesthetic issues with other approaches such as dropped ceilings. Thus, there is a substantial need to publicly document duct losses and the cost of energy used by ducts in attics so that practitioners, builders, homeowners and state and federal code officials can make informed decisions leading to changes in new construction and additional retrofit actions. Thus, the goal of this study is to conduct a comparison of AtticSim and EnergyPlus simulation algorithms to identify specific features for potential inclusion in EnergyPlus that would allow higher-fidelity modeling of HVAC operation and duct transport of conditioned air. It is anticipated that the resulting analysis from these simulation tools will inform energy decisions relating to the role of ducts in future building energy codes and standards.

  8. The distribution of PAX-2 immunoreactivity in the prostate gland, seminal vesicle, and ejaculatory duct: comparison with prostatic adenocarcinoma and discussion of prostatic zonal embryogenesis.

    PubMed

    Quick, Charles M; Gokden, Neriman; Sangoi, Ankur R; Brooks, James D; McKenney, Jesse K

    2010-08-01

    PAX-2 is a homeogene strongly expressed during development of the genitourinary tract, including the kidney and both wolffian- and müllerian-derived tissues. Expression of PAX-2 by immunohistochemistry has been studied mainly in renal epithelial neoplasms with little attention to the lower male genitourinary tract. We studied PAX-2 expression in epithelium of normal seminal vesicle, normal ejaculatory duct, normal prostatic secretory epithelium, and prostatic adenocarcinoma to define its immunoreactivity pattern throughout the prostate gland and to evaluate its potential diagnostic role in the discrimination of seminal vesicle/ejaculatory duct epithelium from prostatic adenocarcinoma. In addition, given that PAX-2 is highly expressed in tissues of wolffian duct embryologic origin, we also sought to confirm the divergent embryogenesis of the central zone, seminal vesicle, and ejaculatory duct from other regions of the prostate. Prostatectomy specimens from 12 patients were reviewed to identify blocks containing seminal vesicle, ejaculatory duct, periurethral glands, benign prostatic glands, and prostatic acinar adenocarcinoma. A total of 35 blocks from the 12 patients were evaluated. In addition, 2 tissue microarrays representing 15 additional seminal vesicles and 45 prostatic adenocarcinomas, 7 whole sections from prostatic adenocarcinomas of the central zone, and 5 core needle biopsies of seminal vesicle were also evaluated with anti-PAX-2 antibody. In the 12 radical prostatectomy whole sections, nuclear reactivity for PAX-2 was identified in 12 (100%) of 12 of the seminal vesicle epithelium, 9 (90%) of 10 of the ejaculatory duct epithelium, 0 of 12 of the prostatic adenocarcinoma, and 0 of 6 of the high-grade prostatic intraepithelial neoplasia. All 20 total additional seminal vesicles were positive for PAX-2 in the tissue microarray and biopsies; and all 52 additional prostatic adenocarcinomas were negative, including 7 of central zone origin. The staining

  9. Evaluation of DNA damage in exfoliated tear duct epithelial cells from individuals exposed to air pollution assessed by single cell gel electrophoresis assay.

    PubMed

    Rojas, E; Valverde, M; Lopez, M C; Naufal, I; Sanchez, I; Bizarro, P; Lopez, I; Fortoul, T I; Ostrosky-Wegman, P

    2000-06-22

    The search for relevant target cells for human monitoring purposes has increased during the last few years. Cells such as sperm, buccal or nasal and gastric epithelium are being used. In this study, we report the use of exfoliated tear duct epithelial cells as a potential material for human biomonitoring studies, since these cells are a target for environmental pollutants. We employed the alkaline single cell gel electrophoresis (SCGE) assay to evaluate for differences in the basal level of DNA damage between young adults from the south (exposed mainly to high levels of ozone) and from the north (exposed principally to hydrocarbons) regions of Mexico City. We found an increase in DNA migration in tear duct epithelial cells from individuals who live in the southern part of the city compared to those living in the northern part. Moreover, young people who live in the southwest part of the city with the highest values of ozone presented the highest values of DNA damage. These results show the feasibility of using exfoliated tear duct epithelial cells in human biomonitoring studies. PMID:10863153

  10. Magnetospheric whistler ducts observed by ISIS satellites

    NASA Technical Reports Server (NTRS)

    Ondoh, T.

    1976-01-01

    The latitudinal width of the magnetospheric whistler duct has been estimated by the first and final invariant latitudes of whistler echoes and the conservation of the magnetic flux for the centered dipole field, using 105 whistler echoes in ISIS VLF data received at Kashima, Japan for 1972-1973. The latitudinal distribution of whistler duct occurrence shows a maximum at invariant latitudes of 40-45 degrees near the maximum occurrence latitude of ground whistlers. The radial width of magnetospheric whistler duct in the geomagnetically equatorial plane increases with invariant latitude of the geomagnetic flux tube in which whistlers propagate.

  11. Turbofan aft duct suppressor study program listing and user's guide

    NASA Technical Reports Server (NTRS)

    Joshi, M. C.; Kraft, R. E.

    1983-01-01

    A description of the structure of the Annular Flow Duct Program (AFDP) for the calculation of acoustic suppression due to treatment in a finite length annular duct carrying sheared flow is presented. Although most appropriate for engine exhaust ducts, this program can be used to study sound propagation in any duct that maintains annular geometry over a considerable length of the duct. The program is based on the modal analysis of sound propagation in ducts with axial segments of different wall impedances. For specified duct geometry, wall impedance, flow and acoustic conditions in the duct (including mode amplitude distribution of the source) and duct termination reflection characteristics, the program calculates the suppression due to the treatment in the duct. The presence of forward and backward traveling modes in the duct due to the reflection and redistribution of modes at segment interfaces and duct end terminations are taken into account in the calculations. The effects of thin wall boundary layers (with a linear or mean flow velocity profile) on the acoustic propagation are also included in the program. A functional description of the major subroutines is included and a sample run is provided with an explanation of the output.

  12. Field Test of Room-to-Room Uniformity of Ventilation Air Distribution in Two New Houses

    SciTech Connect

    Hendron, Robert; Anderson, Ren; Barley, Dennis; Rudd, Armin; Townsend, Aaron; Hancock, Ed

    2006-12-01

    This report describes a field test to characterize the uniformity of room-to-room ventilation air distribution under various operating conditions by examining multi-zone tracer gas decay curves and calculating local age-of-air.

  13. Lightweight Valve Closes Duct Quickly

    NASA Technical Reports Server (NTRS)

    Fournier, Walter L.; Burgy, N. Frank

    1991-01-01

    Expanding balloon serves as lightweight emergency valve to close wide duct. Uninflated balloon stored in housing of duct. Pad resting on burst diaphragm protects balloon from hot gases in duct. Once control system triggers valve, balloon inflates rapidly to block duct. Weighs much less than does conventional butterfly, hot-gas, or poppet valve capable of closing duct of equal diameter.

  14. The Energy Implications of Air-Side Fouling in Constant Air Volume HVAC Systems

    NASA Astrophysics Data System (ADS)

    Wilson, Eric J. H.

    2011-12-01

    heating and cooling energy, and ranges from 7% in Los Angeles, CA to 13% in Fairbanks, AK. These results assume a leaky and uninsulated duct system. The potential for savings from cleaning decreases if duct insulation is in place or sealing has been performed. The potential for energy savings is directly related to the distribution system's thermal efficiency, with air conditioner performance also playing a minor role. Results for small commercial buildings with constant air volume HVAC systems and leaky and uninsulated duct systems span a wider range: from -12% in Miami, FL to 30% in Minneapolis, MN. However, for improved ducts or ducts in the conditioned space, small commercial HVAC source energy savings is always negative (down to -17%) for flowrates degradation in the 0--40% range. The sensitivity of these results to duct characteristics (location, leakage, and insulation) and the after-cleaning flowrate, as it varies from an ideal flowrate, was also evaluated. Energy savings can reach up to 80% for some scenarios where clean airflow is severely restricted down to 20% of ideal by poor duct layout or other obstructions not removable by cleaning. In addition, a simplified spreadsheet tool was developed for technicians to use in the field to estimate potential savings resulting from a system cleaning. Measuring the temperature rise across the furnace was found to give less uncertainty than measuring the pressure rise and assuming a fan curve. Despite the uncertainty, the tool can give a general idea of the range of savings possible under various conditions.

  15. Advanced Air Transportation Technologies (AATT) Project: Distributed Air-Ground Traffic Management

    NASA Technical Reports Server (NTRS)

    Mogford, Richard; Green, Steve; Ballin, Mark

    2002-01-01

    This viewgraph presentation provides an overview of active Distributed Air Ground Traffic Management (DAG-TM) work and reported on its overall progress to date. It does not include details on the concept elements (CEs).The DAG-TM research project is defined as a concept development and definition project and no tools will be delivered. Of the 14 CEs, three are being explored actively: CE-5, CE-6, and CE-11. Overviews of CE-5 (Free Maneuvering for User-Preferred Separation Assurance and Local TFM Conformance), CE-6 (En Route and Transition Trajectory Negotiation for User-Preferred Separation and Local TFM Conformance) and CE-11 (Self-Spacing for Merging and In-Trail Separation) are presented.

  16. AIR TEMPERATURE DISTRIBUTION IN SEED COTTON DRYING SYSTEMS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ten tests were conducted in the fall of 2007 to measure air temperature variation within various heated air seed cotton drying systems with the purpose of: checking validation of recommendations by a professional engineering society and measuring air temperature variation across the airflow ductwork...

  17. Air contaminant statistical distributions with application to PM10 in Santiago, Chile.

    PubMed

    Marchant, Carolina; Leiva, Víctor; Cavieres, M Fernanda; Sanhueza, Antonio

    2013-01-01

    The use of statistical distributions to predict air quality is valuable for determining the impact of air chemical contaminants on human health. Concentrations of air pollutants are treated as random variables that can be modeled by a statistical distribution that is positively skewed and starts from zero. The type of distribution selected for analyzing air pollution data and its associated parameters depend on factors such as emission source and local meteorology and topography. International environmental guideline use appropriate distributions to compute exceedance probabilities and percentiles for setting administrative targets and issuing environmental alerts. The distribution bears a relationship to the normal distribution, and there are theoretical - and physical-based mechanistic arguments that support its use when analyzing air-pollutant data. Others distribution have also been used to model air population data, such as the beta, exponential, gamma, Johnson, log-logistic, Pearson, and Weibull distribution. One model also developed from physical-mechanistic considerations that has received considerable interest in recent year is the Birnbaum-Saunders distribution. This distribution has theoretical arguments and properties similar to those of the log-normal distribution, which renders it useful for modeling air contamination data. In this review, we have addressed the range of common atmospheric contaminants and the health effects they cause. We have also reviewed the statistical distributions that have been use to model air quality, after which we have detailed the problem of air contamination in Santiago, Chile. We have illustrated a methodology that is based on the Birnbaum-Saunders distributions to analyze air contamination data from Santiago, Chile. Finally, in the conclusions, we have provided a list of synoptic statements designed to help readers understand the significance of air pollution in Chile, and in Santiago, in particular, but that can be

  18. Experiments measuring particle deposition from fully developed turbulent flow in ventilation ducts

    SciTech Connect

    Sippola, Mark R.; Nazaroff, William W.

    2003-08-01

    Particle deposition in ventilation ducts influences particle exposures of building occupants and may lead to a variety of indoor air quality concerns. Experiments have been performed in a laboratory to study the effects of particle size and air speed on deposition rates of particles from turbulent air flows in galvanized steel and internally insulated ducts with hydraulic diameters of 15.2 cm. The duct systems were constructed of materials typically found in commercial heating, ventilating and air conditioning (HVAC) systems. In the steel duct system, experiments with nominal particle sizes of 1, 3, 5, 9 and 16 {micro}m were conducted at each of three nominal air speeds: 2.2, 5.3 and 9.0 m/s. In the insulated duct system, deposition rates of particles with nominal sizes of 1, 3, 5, 8 and 13 {micro}m were measured at nominal air speeds of 2.2, 5.3 and 8.8 m/s. Fluorescent techniques were used to directly measure the deposition velocities of monodisperse fluorescent particles to duct surfaces (floor, wall and ceiling) at two straight duct sections where the turbulent flow profile was fully developed. In steel ducts, deposition rates were higher to the duct floor than to the wall, which were, in turn, greater than to the ceiling. In insulated ducts, deposition was nearly the same to the duct floor, wall and ceiling for a given particle size and air speed. Deposition to duct walls and ceilings was greatly enhanced in insulated ducts compared to steel ducts. Deposition velocities to each of the three duct surface orientations in both systems were found to increase with increasing particle size or air velocity over the ranges studied. Deposition rates measured in the current experiments were in general agreement with the limited observations of similar systems by previous researchers.

  19. Cold air systems: Sleeping giant

    SciTech Connect

    MacCracken, C.D. )

    1994-04-01

    This article describes how cold air systems help owners increase the profits from their buildings by reducing electric costs and improving indoor air quality through lower relative humidity levels. Cold air distribution involves energy savings, cost savings, space savings, greater comfort, cleaner air, thermal storage, tighter ducting, coil redesign, lower relative humidities, retrofitting, and improved indoor air quality (IAQ). It opens a door for architects, engineers, owners, builders, environmentalists, retrofitters, designers, occupants, and manufacturers. Three things have held up cold air's usage: multiple fan-powered boxes that ate up the energy savings of primary fans. Cold air room diffusers that provided inadequate comfort. Condensation from ducts, boxes, and diffusers. Such problems have been largely eliminated through research and development by utilities and manufacturers. New cold air diffusers no longer need fan powered boxes. It has also been found that condensation is not a concern so long as the ducts are located in air conditioned space, such as drop ceilings or central risers, where relative humidity falls quickly during morning startup.

  20. SNM holdup assessment of Los Alamos exhaust ducts. Final report

    SciTech Connect

    Marshall, R.S.

    1994-02-01

    Fissile material holdup in glovebox and fume hood exhaust ducting has been quantified for all Los Alamos duct systems. Gamma-based, nondestructive measurements were used to quantify holdup. The measurements were performed during three measurement campaigns. The first campaign, Phase I, provided foot-by-foot, semiquantitative measurement data on all ducting. These data were used to identify ducting that required more accurate (quantitative) measurement. Of the 280 duct systems receiving Phase I measurements, 262 indicated less than 50 g of fissile holdup and 19 indicated fissile holdup of 50 or more grams. Seven duct systems were measured in a second campaign, called Series 1, Phase II. Holdup estimates on these ducts ranged from 421 g of {sup 235}U in a duct servicing a shut-down uranium-machining facility to 39 g of {sup 239}Pu in a duct servicing an active plutonium-processing facility. Measurements performed in the second campaign proved excessively laborious, so a third campaign was initiated that used more efficient instrumentation at some sacrifice in measurement quality. Holdup estimates for the 12 duct systems measured during this third campaign ranged from 70 g of {sup 235}U in a duct servicing analytical laboratories to 1 g of {sup 235}U and 1 g of {sup 239}Pu in a duct carrying exhaust air to a remote filter building. These quantitative holdup estimates support the conclusion made at the completion of the Phase I measurements that only ducts servicing shut-down uranium operations contain about 400 g of fissile holdup. No ventilation ducts at Los Alamos contain sufficient fissile material holdup to present a criticality safety concern.

  1. Analysis of spanwise temperature distribution in three types of air-cooled turbine blade

    NASA Technical Reports Server (NTRS)

    Livingood, John N B; Brown, W Byron

    1950-01-01

    Methods for computing spanwise blade-temperature distributions are derived for air-cooled hollow blades, air-cooled hollow blades with inserts, and air-cooled blades containing internal cooling fins. Individual and combined effects on spanwise blade-temperature distributions of cooling-air and radial heat conduction are determined. In general, the effects of radiation and radial heat conduction were found to be small and the omission of these variations permitted the construction of nondimensional charts for use in determining spanwise temperature distribution through air-cooled turbine blades. An approximate method for determining the allowable stress-limited blade-temperature distribution is included, with brief accounts of a method for determining the maximum allowable effective gas temperatures and the cooling-air requirements. Numerical examples that illustrate the use of the various temperature-distribution equations and of the nondimensional charts are also included.

  2. Ducted auroral kilometric radiation

    NASA Technical Reports Server (NTRS)

    Calvert, W.

    1982-01-01

    Certain discrete, intense wave signals attributed to auroral kilometric radiation (AKR) were observed with ISEE-l while it was within the plasmaspheric shadow zone for direct propagation. It is believed that wave ducting by thin depletions of the plasma density aligned with the magnetic field accounts for such signals, and that their discrete nature is caused by the satellite intercepting individual ducts. These ducts, which were also observed as coincident decreases of the upper hybrid resonance frequency, appeared to be twenty-percent depletions roughly one hundred kilometers across. The AKR, which is emitted approximately perpendicular to the magnetic field, apparently entered these ducts equatorward of the source after the waves had been refracted parallel to the duct axis. A diffuse background was also observed which is consistent with the leakage from similar ducts at lower L-values. These observations establish the existence of ducted AKR, its signature on the satellite wave spectrograms, and new evidence for depletion ducts within the plasmasphere.

  3. Duct Leakage Repeatability Testing

    SciTech Connect

    Walker, Iain; Sherman, Max

    2014-01-01

    Duct leakage often needs to be measured to demonstrate compliance with requirements or to determine energy or Indoor Air Quality (IAQ) impacts. Testing is often done using standards such as ASTM E1554 (ASTM 2013) or California Title 24 (California Energy Commission 2013 & 2013b), but there are several choices of methods available within the accepted standards. Determining which method to use or not use requires an evaluation of those methods in the context of the particular needs. Three factors that are important considerations are the cost of the measurement, the accuracy of the measurement and the repeatability of the measurement. The purpose of this report is to evaluate the repeatability of the three most significant measurement techniques using data from the literature and recently obtained field data. We will also briefly discuss the first two factors. The main question to be answered by this study is to determine if differences in the repeatability of these tests methods is sufficient to indicate that any of these methods is so poor that it should be excluded from consideration as an allowed procedure in codes and standards.

  4. FITTING STATISTICAL DISTRIBUTIONS TO AIR QUALITY DATA BY THE MAXIMUM LIKELIHOOD METHOD

    EPA Science Inventory

    A computer program has been developed for fitting statistical distributions to air pollution data using maximum likelihood estimation. Appropriate uses of this software are discussed and a grouped data example is presented. The program fits the following continuous distributions:...

  5. Velocity and pressure distribution behind bodies in an air current

    NASA Technical Reports Server (NTRS)

    Betz, A

    1924-01-01

    The following experiments on the air flow behind bodies were made for the purpose of assisting in the explanation of the phenomena connected with air resistance. The first two series of experiments dealt with the phenomena behind a cylinder. The third series of experiments was carried out behind a streamlined strut.

  6. Energy effectiveness of duct sealing and insulation in two multifamily buildings

    SciTech Connect

    Walker, I.S.; Modera, M.P.; Tuluca, A.; Graham, I. |

    1996-08-01

    Energy losses from forced air distribution systems have a significant impact on the energy efficiency of buildings. Little work has been done to quantify these losses in apartment buildings. In this paper the authors will discuss field measurements made on four forced air heating systems to evaluate the duct system energy losses to unconditioned basements. The apartments were heated by natural gas furnaces located in the basements. The systems had bare sheet metal ductwork exposed to the basement conditions. The pre-retrofit measurements were made on the systems after sealing large easily visible leaks. The post-retrofit measurements were made after wrapping the ducts in foil backed glass fiber insulation and additional leak sealing. Only the sections of duct exposed to the basement were retrofitted because only these sections were accessible. This study examines the potential energy savings for this type of limited retrofit. The energy losses were separated into leakage and conduction terms. Leakage measurements were made using register flowhood techniques. Conduction losses were estimated by measuring temperatures in the plenums and at the registers. Analysis of the measurements has shown typical reduction in leakage flow due to duct sealing of about 40%. The reduction in leakage translated into a reduction in energy consumption of about 10%.

  7. In-duct identification of fluid-borne source with high spatial resolution

    NASA Astrophysics Data System (ADS)

    Heo, Yong-Ho; Ih, Jeong-Guon; Bodén, Hans

    2014-11-01

    Source identification of acoustic characteristics of in-duct fluid machinery is required for coping with the fluid-borne noise. By knowing the acoustic pressure and particle velocity field at the source plane in detail, the sound generation mechanism of a fluid machine can be understood. The identified spatial distribution of the strength of major radiators would be useful for the low noise design. Conventional methods for measuring the source in a wide duct have not been very helpful in investigating the source properties in detail because their spatial resolution is improper for the design purpose. In this work, an inverse method to estimate the source parameters with a high spatial resolution is studied. The theoretical formulation including the evanescent modes and near-field measurement data is given for a wide duct. After validating the proposed method to a duct excited by an acoustic driver, an experiment on a duct system driven by an air blower is conducted in the presence of flow. A convergence test for the evanescent modes is performed to find the necessary number of modes to regenerate the measured pressure field precisely. By using the converged modal amplitudes, very-close near-field pressure to the source is regenerated and compared with the measured pressure, and the maximum error was -16.3 dB. The source parameters are restored from the converged modal amplitudes. Then, the distribution of source parameters on the driver and the blower is clearly revealed with a high spatial resolution for kR<1.84 in which range only plane waves can propagate to far field in a duct. Measurement using a flush mounted sensor array is discussed, and the removal of pure radial modes in the modeling is suggested.

  8. Investigation of the tone-burst tube for duct lining attenuation measurement

    NASA Technical Reports Server (NTRS)

    Soffel, A. R.; Morrow, P. F.

    1972-01-01

    The tone burst technique makes practical the laboratory evaluation of potential inlet and discharge duct treatments. Tone burst apparatus requires only simple machined parts and standard components. Small, simply made, lining samples are quickly and easily installed in the system. Two small electromagnetric loudspeaker drivers produce peak sound pressure level of over 166 db in the 3-square-inch sample duct. Air pump available in most laboratories can produce air flows of over plus and minus Mach 0.3 in the sample duct. The technique uses short shaped pulses of sound propagated down a progressive wave tube containing the sample duct. The peak pressure level output of the treated duct is compared with the peak pressure level output of a substituted reference duct. The difference between the levels is the attenuation or insertion loss of the treated duct. Evaluations of resonant absorber linings by the tone burst technique check attenuation values predicted by empirical formulas based on full scale ducts.

  9. HVAC pipe/duct sizing using artificial neural networks

    SciTech Connect

    Yeh, S.J.D.; Wong, K.F.V.

    1995-12-31

    The main objective of this study is to demonstrate that artificial neural networks (ANN`s) serve as useful aids to Heating, Ventilating and Air-Conditioning (HVAC) system design. In the present work, the design process for sizing fluid systems in HVAC is simulated by using ANN`S. Four ANN`s have been constructed in a personal computer, one for air duct sizing and three for pipe sizing. The air duct network was trained to output the friction rate and duct size. The three pipe sizing neural networks product pressure drops and pipe diameters. By using the trained artificial neural networks, data can be obtained instantly with errors less than 3%. Thus, ANN`s have been shown to simplify traditional methods and procedures in HVAC pipe and air duct sizing.

  10. Primary zone air proportioner

    DOEpatents

    Cleary, Edward N. G.

    1982-10-12

    An air proportioner is provided for a liquid hydrocarbon fueled gas turbine of the type which is convertible to oil gas fuel and to coal gas fuel. The turbine includes a shell for enclosing the turbine, an air duct for venting air in said shell to a gasifier, and a fuel injector for injecting gasified fuel into the turbine. The air proportioner comprises a second air duct for venting air from the air duct for mixing with fuel from the gasifier. The air can be directly injected into the gas combustion basket along with the fuel from the injector or premixed with fuel from the gasifier prior to injection by the fuel injector.

  11. Salivary duct stones

    MedlinePlus

    ... glands. Salivary duct stones are a type of salivary gland disorder. ... 83. Jackson NM, Mitchell JL, Walvekar RR. Inflammatory disorders of the salivary glands. In: Flint PW, Haughey BH, Lund LJ, et ...

  12. Determination of the evaporation duct height from standard meteorological data

    NASA Astrophysics Data System (ADS)

    Ivanov, V. K.; Shalyapin, V. N.; Levadnyi, Yu. V.

    2007-02-01

    Four models used for evaluating the height of the evaporation duct from measured atmospheric pressure, water and air temperatures, and air humidity are considered.The calculated results are compared with the duct heights measured during two oceanographic expeditions in the tropical zone of the Atlantic Ocean and the equatorial zone of the Indian Ocean. The sensitivity of models to the errors in the meteorological parameters is investigated. It is shown that, in the case of unstable stratification, the heights of ducts in the 5 20-m range can be evaluated with an error of about 2.5 m. Recommendations for selection of optimal models are given.

  13. Underfloor air distribution systems: Benefits and when to use the system in building design

    SciTech Connect

    McCarry, B.T.

    1995-12-31

    Underfloor air distribution systems are a viable option for mechanical system building design. They are comprised of raised floor panels with a supply air plenum in the void between the raised floor and the concrete structure. Supply air grilles are flush mounted to the floor to create a flat floor and walking surface. The engineering challenge is to determine when to use underfloor air distribution systems and how to effectively apply them. The best places to use this system are in owner-occupied buildings with a high churn rate and/or frequent technology changes. The benefits of this system include fresh air at the level where building occupants are located, forgiveness for variations in internal cooling loads, easy relocation of the supply air grilles to suit revised layouts, a reduction in energy costs for the mechanical system, and an improvement in indoor air quality.

  14. Distributional Benefit Analysis of a National Air Quality Rule

    PubMed Central

    Post, Ellen S.; Belova, Anna; Huang, Jin

    2011-01-01

    Under Executive Order 12898, the U.S. Environmental Protection Agency (EPA) must perform environmental justice (EJ) reviews of its rules and regulations. EJ analyses address the hypothesis that environmental disamenities are experienced disproportionately by poor and/or minority subgroups. Such analyses typically use communities as the unit of analysis. While community-based approaches make sense when considering where polluting sources locate, they are less appropriate for national air quality rules affecting many sources and pollutants that can travel thousands of miles. We compare exposures and health risks of EJ-identified individuals rather than communities to analyze EPA’s Heavy Duty Diesel (HDD) rule as an example national air quality rule. Air pollutant exposures are estimated within grid cells by air quality models; all individuals in the same grid cell are assigned the same exposure. Using an inequality index, we find that inequality within racial/ethnic subgroups far outweighs inequality between them. We find, moreover, that the HDD rule leaves between-subgroup inequality essentially unchanged. Changes in health risks depend also on subgroups’ baseline incidence rates, which differ across subgroups. Thus, health risk reductions may not follow the same pattern as reductions in exposure. These results are likely representative of other national air quality rules as well. PMID:21776207

  15. Experimental validation of a ducted propeller analysis method

    NASA Astrophysics Data System (ADS)

    Hughes, M. J.; Kinnas, S. A.; Kerwin, J. E.

    1992-06-01

    A ducted propeller model was tested in the MIT water tunnel. A hub apparatus was designed which allowed for the duct and propeller forces to be measured separately. The forces on the duct and propeller were measured over a range of advance coefficients. Velocities were measured upstream and downstream from the duct using a Laser Doppler Velocimetry system. Using these velocities the exprimental values for the spanwise distribution of circulation on the propeller blades were then calculated. The experimental results were compared to the results from a propeller lifting surface/duct and hub surface panel analysis code over the same range of advance coefficients showing very good agreement for the duct and propeller forces and the circulation in the region of attached flow.

  16. Film condensation in a horizontal rectangular duct

    NASA Technical Reports Server (NTRS)

    Lu, Qing; Suryanarayana, N. V.

    1993-01-01

    Condensation heat transfer in a horizontal rectangular duct was experimentally and analytically investigated. To prevent the dripping of condensate on the film, the experiment was conducted inside a horizontal rectangular duct with vapor condensing only on the bottom cooled plate of the duct. R-113 and FC-72 (Fluorinert Electronic Fluid developed by the 3M Company) were used as the condensing fluids. The experimental program included measurements of film thickness, local and average heat transfer coefficients, wave length, wave speed, and a study of wave initiation. The measured film thickness was used to obtain the local heat transfer coefficient. The wave initiation was studied both with condensation and with an adiabatic air-liquid flow. The test sections used in both experiments were identical.

  17. Device for improved air and fuel distribution to a combustor

    DOEpatents

    Laster, Walter R.; Schilp, Reinhard

    2016-05-31

    A flow conditioning device (30, 50, 70, 100, 150) for a can annular gas turbine engine, including a plurality of flow elements (32, 34, 52, 54, 72, 74, 102) disposed in a compressed air flow path (42, 60, 80, 114, 122) leading to a combustor (12), configured such that relative adjustment of at least one flow directing element (32, 52, 72, 110) with respect to an adjacent flow directing element (34, 54, 74, 112, 120) during operation of the gas turbine engine is effective to adjust a level of choking of the compressed air flow path (42, 60, 80, 114, 122).

  18. Environmental Technology Verification: Supplement to Test/QA Plan for Biological and Aerosol Testing of General Ventilation Air Cleaners; Bioaerosol Inactivation Efficiency by HVAC In-Duct Ultraviolet Light Air Cleaners

    EPA Science Inventory

    The Air Pollution Control Technology Verification Center has selected general ventilation air cleaners as a technology area. The Generic Verification Protocol for Biological and Aerosol Testing of General Ventilation Air Cleaners is on the Environmental Technology Verification we...

  19. Some Effects of Air Flow on the Penetration and Distribution of Oil Sprays

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Beardsley, E G

    1929-01-01

    Tests were made to determine the effects of air flow on the characteristics of fuel sprays from fuel injection valves. Curves and photographs are presented showing the airflow throughout the chamber and the effects of the air flow on the fuel spray characteristics. It was found that the moving air had little effect on the spray penetration except with the 0.006 inch orifice. The moving air did, however, affect the oil particles on the outside of the spray cone. After spray cut-off, the air flow rapidly distributed the atomized fuel throughout the spray chamber.

  20. Building America Case Study: Evaluating Through-Wall Air Transfer Fans, Pittsburgh, Pennsylvania (Fact Sheet)

    SciTech Connect

    Not Available

    2014-10-01

    In this project, Building America team IBACOS performed field testing in a new construction unoccupied test house in Pittsburgh, Pennsylvania to evaluate heating, ventilating, and air conditioning (HVAC) distribution systems during heating, cooling, and midseason conditions. Four air-based HVAC distribution systems were assessed:-a typical airflow ducted system to the bedrooms, a low airflow ducted system to the bedrooms, a system with transfer fans to the bedrooms, and a system with no ductwork to the bedrooms. The relative ability of each system was considered with respect to relevant Air Conditioning Contractors of America and ASHRAE standards for house temperature uniformity and stability, respectively.

  1. Leakage diagnostics, sealant longevity, sizing and technologytransfer in residential thermal distribution systems: Part II.Residential thermal Distribution Systesm, Phase VI FinalReport

    SciTech Connect

    Buchanan, C.; Modera, M.; Sherman, M.; Siegel, J.; Walker, I.; Wang, D.

    1998-12-01

    This report builds on and extends our previous efforts as described in "Leakage Diagnostics, Sealant Longevity, Sizing and Technology Transfer in Residential Thermal Distribution Systems- CIEE Residential Thermal Distribution Systems Phase V Final Report, October 1997". New developments include defining combined duct and equipment efficiencies in a concept called "Tons At the Register" and on performance issues related to field use of the aerosol sealant technology. Some of the key results discussed in this report include: o Register, boot and air handler cabinet leakage can often represent a significant fraction of the total duct leakage in new construction. Because of the large range of pressures in duct systems an accurate characterization may require separating these components through improved leakage testing. o Conventional duct tape failed our accelerated longevity testing and is not, therefore, considered generally acceptable for use in sealing duct systems. Many other tapes and sealing approaches are available and practical and have passed our longevity tests. o Simulations of summer temperature pull-down time have shown that duct system improvements can be combined with equipment downsizing to save first cost, energy consumption, and peak power and still provide equivalent or superior comfort. o Air conditioner name plate capacity ratings alone are a poor indicator of how much cooling will actually be delivered to the conditioned space. Duct system efficiency can have as large an impact on performance as variations in SEER. o Mechanical duct cleaning techniques do not have an adverse impact on the ducts sealed with the Aerosol sealant. The material typically used in Aerosol sealing techniques does not appear to present a health or safety hazard. Results from this study were used by the California Energy Commission in the formation of the current Energy Efficiency Standards for Low-Rise Residential Buildings (CEC, (1998)), often referred to as Title 24

  2. Patent arterial duct

    PubMed Central

    Forsey, Jonathan T; Elmasry, Ola A; Martin, Robin P

    2009-01-01

    Patent arterial duct (PAD) is a congenital heart abnormality defined as persistent patency in term infants older than three months. Isolated PAD is found in around 1 in 2000 full term infants. A higher prevalence is found in preterm infants, especially those with low birth weight. The female to male ratio is 2:1. Most patients are asymptomatic when the duct is small. With a moderate-to-large duct, a characteristic continuous heart murmur (loudest in the left upper chest or infraclavicular area) is typical. The precordium may be hyperactive and peripheral pulses are bounding with a wide pulse pressure. Tachycardia, exertional dyspnoea, laboured breathing, fatigue or poor growth are common. Large shunts may lead to failure to thrive, recurrent infection of the upper respiratory tract and congestive heart failure. In the majority of cases of PAD there is no identifiable cause. Persistence of the duct is associated with chromosomal aberrations, asphyxia at birth, birth at high altitude and congenital rubella. Occasional cases are associated with specific genetic defects (trisomy 21 and 18, and the Rubinstein-Taybi and CHARGE syndromes). Familial occurrence of PAD is uncommon and the usual mechanism of inheritance is considered to be polygenic with a recurrence risk of 3%. Rare families with isolated PAD have been described in which the mode of inheritance appears to be dominant or recessive. Familial incidence of PAD has also been linked to Char syndrome, familial thoracic aortic aneurysm/dissection associated with patent arterial duct, and familial patent arterial duct and bicuspid aortic valve associated with hand abnormalities. Diagnosis is based on clinical examination and confirmed with transthoracic echocardiography. Assessment of ductal blood flow can be made using colour flow mapping and pulsed wave Doppler. Antenatal diagnosis is not possible, as PAD is a normal structure during antenatal life. Conditions with signs and symptoms of pulmonary overcirculation

  3. Patent arterial duct.

    PubMed

    Forsey, Jonathan T; Elmasry, Ola A; Martin, Robin P

    2009-01-01

    Patent arterial duct (PAD) is a congenital heart abnormality defined as persistent patency in term infants older than three months. Isolated PAD is found in around 1 in 2000 full term infants. A higher prevalence is found in preterm infants, especially those with low birth weight. The female to male ratio is 2:1. Most patients are asymptomatic when the duct is small. With a moderate-to-large duct, a characteristic continuous heart murmur (loudest in the left upper chest or infraclavicular area) is typical. The precordium may be hyperactive and peripheral pulses are bounding with a wide pulse pressure. Tachycardia, exertional dyspnoea, laboured breathing, fatigue or poor growth are common. Large shunts may lead to failure to thrive, recurrent infection of the upper respiratory tract and congestive heart failure. In the majority of cases of PAD there is no identifiable cause. Persistence of the duct is associated with chromosomal aberrations, asphyxia at birth, birth at high altitude and congenital rubella. Occasional cases are associated with specific genetic defects (trisomy 21 and 18, and the Rubinstein-Taybi and CHARGE syndromes). Familial occurrence of PAD is uncommon and the usual mechanism of inheritance is considered to be polygenic with a recurrence risk of 3%. Rare families with isolated PAD have been described in which the mode of inheritance appears to be dominant or recessive. Familial incidence of PAD has also been linked to Char syndrome, familial thoracic aortic aneurysm/dissection associated with patent arterial duct, and familial patent arterial duct and bicuspid aortic valve associated with hand abnormalities. Diagnosis is based on clinical examination and confirmed with transthoracic echocardiography. Assessment of ductal blood flow can be made using colour flow mapping and pulsed wave Doppler. Antenatal diagnosis is not possible, as PAD is a normal structure during antenatal life. Conditions with signs and symptoms of pulmonary overcirculation

  4. Converting dual-duct constant-volume systems to variable-volume systems without retrofitting the terminal boxes

    SciTech Connect

    Liu, M.; Claridge, D.E.

    1999-07-01

    Dual-duct constant-air-volume systems can be converted to variable-air-volume systems by installing hot air dampers in the main hot air ducts. No terminal box retrofit is needed. The detailed retrofit procedures and control sequences are described in this paper. Results from a case study building are also presented.

  5. A Distributed Simulation Facility to Support Human Factors Research in Advanced Air Transportation Technology

    NASA Technical Reports Server (NTRS)

    Amonlirdviman, Keith; Farley, Todd C.; Hansman, R. John, Jr.; Ladik, John F.; Sherer, Dana Z.

    1998-01-01

    A distributed real-time simulation of the civil air traffic environment developed to support human factors research in advanced air transportation technology is presented. The distributed environment is based on a custom simulation architecture designed for simplicity and flexibility in human experiments. Standard Internet protocols are used to create the distributed environment, linking all advanced cockpit simulator, all Air Traffic Control simulator, and a pseudo-aircraft control and simulation management station. The pseudo-aircraft control station also functions as a scenario design tool for coordinating human factors experiments. This station incorporates a pseudo-pilot interface designed to reduce workload for human operators piloting multiple aircraft simultaneously in real time. The application of this distributed simulation facility to support a study of the effect of shared information (via air-ground datalink) on pilot/controller shared situation awareness and re-route negotiation is also presented.

  6. Global Distribution and Variability of Surface Skin and Surface Air Temperatures as Depicted in the AIRS Version-6 Data Set

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Lee, Jae N.; Iredell, Lena

    2014-01-01

    In this presentation, we will briefly describe the significant improvements made in the AIRS Version-6 retrieval algorithm, especially as to how they affect retrieved surface skin and surface air temperatures. The global distribution of seasonal 1:30 AM and 1:30 PM local time 12 year climatologies of Ts,a will be presented for the first time. We will also present the spatial distribution of short term 12 year anomaly trends of Ts,a at 1:30 AM and 1:30 PM, as well as the spatial distribution of temporal correlations of Ts,a with the El Nino Index. It will be shown that there are significant differences between the behavior of 1:30 AM and 1:30 PM Ts,a anomalies in some arid land areas.

  7. Anomalous Discharge Product Distribution in Lithium-Air Cathodes: A Three Dimensional View

    SciTech Connect

    Nanda, Jagjit; Allu, Srikanth; Bilheux, Hassina Z; Dudney, Nancy J; Pannala, Sreekanth; Veith, Gabriel M; Voisin, Sophie; Walker, Lakeisha MH; Archibald, Richard K

    2012-01-01

    Using neutron tomographic imaging we report for the first time three dimensional spatial distribution of lithium product distribution in electrochemically discharged Lithium-Air cathodes. Neutron imaging finds a non-uniform lithium product distribution across the electrode thickness; the lithium species concentration being higher near the edges of the Li-air electrode and relatively uniform in the center of the electrode. The experimental neutron images were analyzed in context of results obtained from 3D modeling of the spatial lithium product distribution using a kinetically coupled diffusion based transport model that accounts for the dynamical reaction rate dependence on the discharge product formation, porosity changes and mass transfer.

  8. Detonation duct gas generator demonstration program

    NASA Technical Reports Server (NTRS)

    Wortman, Andrew; Brinlee, Gayl A.; Othmer, Peter; Whelan, Michael A.

    1991-01-01

    The feasibility of the generation of detonation waves moving periodically across high speed channel flow is experimentally demonstrated. Such waves are essential to the concept of compressing requirements and increasing the engine pressure compressor with the objective of reducing conventional compressor requirements and increasing the engine thermodynamic efficiency through isochoric energy addition. By generating transient transverse waves, rather than standing waves, shock wave losses are reduced by an order of magnitude. The ultimate objective is to use such detonation ducts downstream of a low pressure gas turbine compressor to produce a high overall pressure ratio thermodynamic cycle. A 4 foot long, 1 inch x 12 inch cross-section, detonation duct was operated in a blow-down mode using compressed air reservoirs. Liquid or vapor propane was injected through injectors or solenoid valves located in the plenum or the duct itself. Detonation waves were generated when the mixture was ignited by a row of spark plugs in the duct wall. Problems with fuel injection and mixing limited the air speeds to about Mach 0.5, frequencies to below 10 Hz, and measured pressure ratios of about 5 to 6. The feasibility of the gas dynamic compression was demonstrated and the critical problem areas were identified.

  9. Measurements of polystyrene bead trajectories and spatial distributions in a turbulent water flow, square duct using high-speed digital holography

    NASA Astrophysics Data System (ADS)

    van Hout, Rene; Rabencov, Boris; Arca, Javier

    2014-11-01

    Near neutrally buoyant, polystyrene beads (583 micrometers) were tracked in a square (50 × 50 mm2), closed-loop, turbulent water duct at a bulk flow Reynolds number of 10,602 (friction velocity 0.0208 m/s) using single view, inline digital holographic cinematography (at 1 kHz). The volume of interest (50 × 17.4 × 17.4 mm3) was positioned at the bottom part of the channel. The mean bead diameter normalized by inner wall coordinates was d+ = 14.2, with Stokes numbers of 8.5. In-house developed algorithms, fine-tuned to tracking single and overlapping beads were developed. Bead in-focus positions were determined by maximum intensity gradient method. Results showed that in agreement with literature publications, ascending beads lagged the mean streamwise water velocity while descending ones had similar velocities. Average streamwise bead velocities and number densities collapsed onto wall-normal-streamwise and spanwise-streamwise planes, indicated preferential segregation of ascending and descending beads up to a height of 100 wall units. Spanwise ``lane'' separation distances ranged between 150-200 wall units, larger but of the same order as the spanwise extent of coherent near-wall turbulence structures. Duct corners were nearly devoid of beads likely caused by secondary flows. Israel Science Foundation Grant 915/10 and COST Actions MP0806 and FP1005.

  10. Turbofan Duct Propagation Model

    NASA Technical Reports Server (NTRS)

    Lan, Justin H.; Posey, Joe W. (Technical Monitor)

    2001-01-01

    The CDUCT code utilizes a parabolic approximation to the convected Helmholtz equation in order to efficiently model acoustic propagation in acoustically treated, complex shaped ducts. The parabolic approximation solves one-way wave propagation with a marching method which neglects backwards reflected waves. The derivation of the parabolic approximation is presented. Several code validation cases are given. An acoustic lining design process for an example aft fan duct is discussed. It is noted that the method can efficiently model realistic three-dimension effects, acoustic lining, and flow within the computational capabilities of a typical computer workstation.

  11. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  12. Gas turbine engine and its associated air intake system

    SciTech Connect

    Ballard, J.R.; Bennett, G.H.; Lee, L.A.

    1984-01-17

    A gas turbine engine and its associated air intake system are disclosed in which the air intake system comprises a generally horizontally extending duct through which an airflow is induced by an ejector pump powered by the engine. A portion of the air passing through the duct is directed through a second duct to the air inlet of the engine. The second duct is connected to the first duct in such a manner that the air directed to the engine air inlet is derived from a vertically upper region of the first duct. The arrangement is intended to reduce the amount of airborne particulate material ingested by the gas turbine engine.

  13. Seasonal variations of surface duct conditions in Ngaoundere, North Cameroon

    NASA Astrophysics Data System (ADS)

    Kaissassou, Samuel; Lenouo, André; Nzeukou, Armand; Tchawoua, Clément; Vondou, D. A.

    2015-12-01

    The seasonal variations of refractivity gradients from 104 to 3000 m above ground level in the troposphere layer are presented based on observations from the radiosonde station located in Ngaoundere (13.5°E, 7.3°N), a middle belt savannah region of Cameroon. Six years (2006-2011) of data from in situ measurements made by Agency for the Safety of Air Navigation in Africa and Madagascar (ASECNA) of the temperature, moisture, and pressure are used to determine the surface duct conditions over Ngaoundere region. Each time that a negative gradient from the Abel-retrieved refractivity profiles is seen, it implies the presence of a duct in this study. The occurrence of ducts strongly depends on the local climate and synoptic weather conditions which have an appreciable influence on the refractivity vertical profile, especially the seasonal north-south movement of the Inter Tropical Convergence Zone (ITCZ) which provides wet and dry seasons to the region. Monthly and seasonal variations of ducts were also determined from the measured data. The highest and the lowest occurrence rate of surface ducts were observed during the wet and the dry seasons, respectively. September appears as the month when most of the ducts occur at the rate of at least one duct per day. The median duct thickness and duct strength are high and strong during the wet season, whereas they are low and weak during the dry season. When the data are separated into stable and unstable atmospheric conditions, we noticed that surface duct characteristics show some seasonal differences. Surface ducts are found to be more frequent in a stable atmosphere than in an unstable atmosphere. Statistical results are discussed alongside with local meteorological conditions and weather systems affecting the town of Ngaoundere. Besides, comments are made on their prospective significance in the region.

  14. Fractal structure of the distributions of air dose rates in Koriyama city in Fukushima.

    PubMed

    Ishihara, Masamichi

    2014-10-01

    The authors investigated the fractal structure of the distributions of air dose rates in Koriyama city in Fukushima using data published by the Fukushima Prefectural and Koriyama City governments. Relative frequency data of air dose rates (strength distribution) could be well fitted with a q-distribution. In the present analysis, the relative frequency decreases approximately as s for high air dose rate values, where the quantity s represents air dose rate. The fractal dimension is a function of the threshold sth of air dose rate. The fractal dimension is approximately 1.59 when sth is the average of the air dose rates in Koriyama (0.9 μSv h) and decreases with increasing the threshold: it is approximately 1.97 for sth = 0.6 μSv h and 1.40 for sth = 1.2 μSv h. These results confirm that the strength distribution behaves like a power function for high air dose rate values and that the fallout pattern can be described as a fractal. PMID:25162424

  15. What Is Bile Duct Cancer?

    MedlinePlus

    ... of bile duct cancer. The rest of this document refers only to cholangiocarcinomas. Benign bile duct tumors ... tumors, which aren’t discussed further in this document. Other cancers in the liver The most common ...

  16. Dynamic instability of ducts conveying fluid

    NASA Technical Reports Server (NTRS)

    Yu, Y. Y.

    1975-01-01

    A finite element analysis was used to study dynamic instability in ducts conveying high speed fluids. Ducts examined include cantilevered curved, flexibly supported, arbitrarily shaped, and composite duct systems. Partial differential equations were used to study the duct systems.

  17. Driving Parameters for Distributed and Centralized Air Transportation Architectures

    NASA Technical Reports Server (NTRS)

    Feron, Eric

    2001-01-01

    This report considers the problem of intersecting aircraft flows under decentralized conflict avoidance rules. Using an Eulerian standpoint (aircraft flow through a fixed control volume), new air traffic control models and scenarios are defined that enable the study of long-term airspace stability problems. Considering a class of two intersecting aircraft flows, it is shown that airspace stability, defined both in terms of safety and performance, is preserved under decentralized conflict resolution algorithms. Performance bounds are derived for the aircraft flow problem under different maneuver models. Besides analytical approaches, numerical examples are presented to test the theoretical results, as well as to generate some insight about the structure of the traffic flow after resolution. Considering more than two intersecting aircraft flows, simulations indicate that flow stability may not be guaranteed under simple conflict avoidance rules. Finally, a comparison is made with centralized strategies to conflict resolution.

  18. Ducted fan type gas turbine engine power plants

    SciTech Connect

    Balzer, R.L.

    1992-02-25

    This patent describes a ducted fan type power plant which is cable of generating reverse thrust. It comprises: a gas turbine engine; a fan driven by the engine; an elongated bypass duct which is open at its front and rear ends and surrounds the fan, the bypass duct having a fixed forward section and a rear section which can be translated away from the fixed section as the pitch of the fan blades is reversed to reverse the flow of air through the bypass duct and generate a thrust directed from the front toward the rear of the power plant, thereby allowing air to be induced into the bypass duct through the downstream end thereof and also through the annular gap between the fixed and translated, rear sections of the bypass duct; means for generating a supply of high velocity fluid; means for injecting the high velocity fluid into the bypass duct from a locus to the rear means for delivering the high velocity fluid from the generating means to the injecting means.

  19. Duct Leakage Repeatability Testing

    SciTech Connect

    Walker, Iain; Sherman, Max

    2014-08-01

    The purpose of this report is to evaluate the repeatability of the three most significant measurement techniques for duct leakage using data from the literature and recently obtained field data. We will also briefly discuss the first two factors. The main question to be answered by this study is to determine if differences in the repeatability of these tests methods is sufficient to indicate that any of these methods is so poor that it should be excluded from consideration as an allowed procedure in codes and standards. The three duct leak measurement methods assessed in this report are the two duct pressurization methods that are commonly used by many practitioners and the DeltaQ technique. These are methods B, C and A, respectively of the ASTM E1554 standard. Although it would be useful to evaluate other duct leak test methods, this study focused on those test methods that are commonly used and are required in various test standards, such as BPI (2010), RESNET (2014), ASHRAE 62.2 (2013), California Title 24 (CEC 2012), DOE Weatherization and many other energy efficiency programs.

  20. Heat Transfer in a Superelliptic Transition Duct

    NASA Technical Reports Server (NTRS)

    Poinsatte, Philip; Thurman, Douglas; Hippensteele, Steven

    2008-01-01

    Local heat transfer measurements were experimentally mapped using a transient liquid-crystal heat transfer technique on the surface of a circular-to-rectangular transition duct. The transition duct had a length-to-diameter ratio of 1.5 and an exit-plane aspect ratio of 3. The crosssectional geometry was defined by the equation of a superellipse. The cross-sectional area was the same at the inlet and exit but varied up to 15 percent higher through the transition. The duct was preheated to a uniform temperature (nominally 64 C) before allowing room temperature air to be suddenly drawn through it. As the surface cooled, the resulting isothermal contours on the duct surface were revealed using a surface coating of thermochromic liquid crystals that display distinctive colors at particular temperatures. A video record was made of the surface temperature and time data for all points on the duct surfaces during each test. Using this surface temperature-time data together with the temperature of the air flowing through the model and the initial temperature of the model wall, the heat transfer coefficient was calculated by employing the classic one-dimensional, semi-infinite wall heat transfer conduction model. Test results are reported for inlet diameter-based Reynolds numbers ranging from 0.4x106 to 2.4x106 and two grid-generated freestream turbulence intensities of about 1 percent, which is typical of wind tunnels, and up to 16 percent, which may be more typical of real engine conditions.

  1. Mixture distributions for the statistical time delay in synthetic air at low pressure

    NASA Astrophysics Data System (ADS)

    Jovanović, Aleksandar P.; Popović, Biljana Č.; Marković, Vidosav Lj.; Stamenković, Suzana N.; Stankov, Marjan N.

    2014-08-01

    The mixture distributions for statistical time delay of electrical breakdown are proposed along with the generalized relation for the effective electron yield. The validity of the proposed model is tested by applying this distribution to experimental data measured in synthetic air at low pressure. Two samples without and with oxide surface are compared in order to determine physical processes leading to appearance of mixture distributions in the case of oxidized cathode. The obtained distributions are tested by Kolmogorov-Smirnov statistical hypothesis test in order to justify the use of mixture distributions. The physical interpretation of mixture distribution measured in the synthetic air is proposed, accompanied by the calculated values of the effective electron yield of initiating electrons in the gas gap.

  2. Study on numerical simulation of flowfield in afterburner for ducted rocket

    NASA Astrophysics Data System (ADS)

    Ding, Xiaoyu; Jin, Xing; Zhang, Peng

    2015-03-01

    Ducted rocket has been widely concerned on account of its high specific impulse, combustion stability and convenient maintenance which mixes the exhaust from a fuel gas generator with air from air inlet, and burns to produce thrust. It is necessary to establish two-dimensional or three-dimensional numerical models based on computational fluid dynamics to study on the flowfield in afterburner which is the key of ducted rocket because of expensive experiments, which is aimed at providing theoretical foundation for ducted rocket's development. In this paper, the gas-phase turbulent combustion process in afterburner with dual inlet three-dimensional mode was simulated numerically by solving Favre-averaged compressible turbulent N-S equations, the renormalization group (RNG) k-ɛ turbulence model was applied to simulate the turbulent flow, and Eddy-Dissipation Model (EDM) was applied to simulate gas combustion. Through simulation, situation analysis of flowfield in afterburner was done, and the influence of mixing combustion on afterburner was studied by taking air inlet angles and air-fuel ratio into account respectively. The results indicate that the distribution of temperature in afterburner is nonuniform, the backflow and axial swirl produced by gas mixing have an important influence on afterburner combustion. As air inlet angle is increased, the intensity of gas mixing is enhanced which is beneficial for afterburner combustion. That increasing air-fuel ratio is able to strength contact of oxygen with fuel gas, so that more fuel gas is consumed in the same location which is more beneficial for afterburner combustion.

  3. Modal density function and number of propagating modes in ducts

    NASA Technical Reports Server (NTRS)

    Rice, E. J.

    1976-01-01

    Often raised questions in duct sound propagation studies involve the total number of propagating modes, the number of propagating radial modes for a particular spinning lobe number, and the number of modes possible between two given values of cutoff ratio or eigenvalue. These questions can be answered approximately by using the modal distribution function which is the integral of the modal density function for ducts in a manner similar to that previously published for architectural acoustics. The modal density functions are derived for rectangular and circular ducts with a uniform steady flow. Results from this continuous theory are compared to the actual (discrete) modal distributions.

  4. Compact Buried Ducts in a Hot-Humid Climate House

    SciTech Connect

    Mallay, D.

    2016-01-01

    A system of compact, buried ducts provides a high-performance and cost-effective solution for delivering conditioned air throughout the building. This report outlines research activities that are expected to facilitate adoption of compact buried duct systems by builders. The results of this research would be scalable to many new house designs in most climates and markets, leading to wider industry acceptance and building code and energy program approval.

  5. Efficiency of shock wave attenuation in ducts by various methods

    NASA Astrophysics Data System (ADS)

    Frolov, S. M.

    1993-02-01

    Different methods of shock wave attenuation in ducts are compared in terms of efficiency. The methods investigated include expansion of the duct cross section, the use of perforated side walls, and the use of porous screens and screen cascades. The attentuation of air shock waves is estimated by using a unified approach which provides satisfactory agreement with experimental data. Based on the results of the study, a nomogram is plotted which can be used for practical calculations.

  6. Measure Guideline: Summary of Interior Ducts in New Construction, Including an Efficient, Affordable Method to Install Fur-Down Interior Ducts

    SciTech Connect

    Beal, D.; McIlvaine , J.; Fonorow, K.; Martin, E.

    2011-11-01

    This document illustrates guidelines for the efficient installation of interior duct systems in new housing, including the fur-up chase method, the fur-down chase method, and interior ducts positioned in sealed attics or sealed crawl spaces. This document illustrates guidelines for the efficient installation of interior duct systems in new housing. Interior ducts result from bringing the duct work inside a home's thermal and air barrier. Architects, designers, builders, and new home buyers should thoroughly investigate any opportunity for energy savings that is as easy to implement during construction, such as the opportunity to construct interior duct work. In addition to enhanced energy efficiency, interior ductwork results in other important advantages, such as improved indoor air quality, increased system durability and increased homeowner comfort. While the advantages of well-designed and constructed interior duct systems are recognized, the implementation of this approach has not gained a significant market acceptance. This guideline describes a variety of methods to create interior ducts including the fur-up chase method, the fur-down chase method, and interior ducts positioned in sealed attics or sealed crawl spaces. As communication of the intent of an interior duct system, and collaboration on its construction are paramount to success, this guideline details the critical design, planning, construction, inspection, and verification steps that must be taken. Involved in this process are individuals from the design team; sales/marketing team; and mechanical, insulation, plumbing, electrical, framing, drywall and solar contractors.

  7. Flow distribution in unglazed transpired plate solar air heaters of large area

    SciTech Connect

    Gunnewiek, L.H.; Brundrett, E.; Hollands, K.G.T.

    1996-10-01

    Unglazed transpired plate solar air heaters have proven to be effective in heating outside air on a once-through basis for ventilation and drying applications. Outside air is sucked through unglazed plates having uniformly distributed perforations. The air is drawn into a plenum behind the plate and then supplied to the application by fans. Large collectors have been built that cover the sides of sizable buildings, and the problem of designing the system so that the air is sucked uniformly everywhere (or nearly so) has proven to be a challenging one. This article describes an analytical tool that has been developed to predict the flow distribution over the collector. It is based on modelling the flow-field in the plenum by means of a commercial CFD (computational fluid mechanics) code, incorporating a special set of boundary conditions to model the plate and the ambient air. The article presents the 2D version of the code, and applies it to the problem of predicting the flow distribution in still air (no wind) conditions, a situation well treated by a 2D code. Results are presented for a wide range of conditions, and design implications are discussed. An interesting finding of the study is that the heat transfer at the back of the plate can play an important role, and because of this heat transfer, the efficiency of a collector in nonuniform flow can actually be greater than that of the same collector in uniform flow. 15 refs., 7 figs.

  8. A method to optimize sampling locations for measuring indoor air distributions

    NASA Astrophysics Data System (ADS)

    Huang, Yan; Shen, Xiong; Li, Jianmin; Li, Bingye; Duan, Ran; Lin, Chao-Hsin; Liu, Junjie; Chen, Qingyan

    2015-02-01

    Indoor air distributions, such as the distributions of air temperature, air velocity, and contaminant concentrations, are very important to occupants' health and comfort in enclosed spaces. When point data is collected for interpolation to form field distributions, the sampling locations (the locations of the point sensors) have a significant effect on time invested, labor costs and measuring accuracy on field interpolation. This investigation compared two different sampling methods: the grid method and the gradient-based method, for determining sampling locations. The two methods were applied to obtain point air parameter data in an office room and in a section of an economy-class aircraft cabin. The point data obtained was then interpolated to form field distributions by the ordinary Kriging method. Our error analysis shows that the gradient-based sampling method has 32.6% smaller error of interpolation than the grid sampling method. We acquired the function between the interpolation errors and the sampling size (the number of sampling points). According to the function, the sampling size has an optimal value and the maximum sampling size can be determined by the sensor and system errors. This study recommends the gradient-based sampling method for measuring indoor air distributions.

  9. 29. DETAIL OF OUTLET DUCTS FOR MST AIRCONDITIONING SYSTEM IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. DETAIL OF OUTLET DUCTS FOR MST AIR-CONDITIONING SYSTEM IN NORTHWEST CORNER OF SLC-3W MST STATION 70.5 (LOWEST PAYLOAD SERVICE STATION). NOTE RING ATTACHMENT FOR PERSONNEL SAFETY HARNESS IN LEFT FOREGROUND. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  10. The flow field of an underexpanded H2 jet coaxially injected into a hot free or ducted supersonic jet of air or nitrogen

    NASA Technical Reports Server (NTRS)

    Jenkins, R. V.

    1977-01-01

    Experimental data obtained in an investigation of the mixing of an underexpanded hydrogen jet in a supersonic flow both with and without combustion are presented. Tests were conducted in a Mach 2 test stream with both air and nitrogen as test media. Total temperature of the test stream was 2170 K, and static exit pressure was about one atmosphere. The static pressure at the exit of the hydrogen injector's Mach 2 nozzle was about two atmospheres. Primary measurements included shadowgraphs and pitot pressure surveys of the flow field. Pitot surveys and wall static pressures were measured for the case where the entire flow was shrouded. The results are compared to similar experimental data and theoretical predictions for the matched pressure case.

  11. Modeling of three-dimensional mixing and reacting ducted flows

    NASA Technical Reports Server (NTRS)

    Zelazny, S. W.; Baker, A. J.; Rushmore, W. L.

    1976-01-01

    A computer code, based upon a finite element solution algorithm, was developed to solve the governing equations for three-dimensional, reacting boundary region, and constant area ducted flow fields. Effective diffusion coefficients are employed to allow analyses of turbulent, transitional or laminar flows. The code was used to investigate mixing and reacting hydrogen jets injected from multiple orifices, transverse and parallel to a supersonic air stream. Computational results provide a three-dimensional description of velocity, temperature, and species-concentration fields downstream of injection. Experimental data for eight cases covering different injection conditions and geometries were modeled using mixing length theory (MLT). These results were used as a baseline for examining the relative merits of other mixing models. Calculations were made using a two-equation turbulence model (k+d) and comparisons were made between experiment and mixing length theory predictions. The k+d model shows only a slight improvement in predictive capability over MLT. Results of an examination of the effect of tensorial transport coefficients on mass and momentum field distribution are also presented. Solutions demonstrating the ability of the code to model ducted flows and parallel strut injection are presented and discussed.

  12. Size distributions of air showers accompanied with high energy gamma ray bundles observed at Mt. Chacaltaya

    NASA Technical Reports Server (NTRS)

    Matano, T.; Machida, M.; Tsuchima, I.; Kawasumi, N.; Honda, K.; Hashimoto, K.; Martinic, N.; Zapata, J.; Navia, C. E.; Aquirre, C.

    1985-01-01

    Size distributions of air showers accompanied with bundle of high energy gamma rays and/or large size bursts under emulsion chambers, to study the composition of primary cosmic rays and also characteristics of high energy nuclear interaction. Air showers initiated by particles with a large cross section of interaction may develop from narrow region of the atmosphere near the top. Starting levels of air showers by particles with smaller cross section fluctuate in wider region of the atmosphere. Air showers of extremely small size accompanied with bundle of gamma rays may be ones initiated by protons at lower level after penetrating deep atmosphere without interaction. It is determined that the relative size distribution according to the total energy of bundle of gamma rays and the total burst size observed under 15 cm lead absorber.

  13. Duct thermal performance models for large commercial buildings

    SciTech Connect

    Wray, Craig P.

    2003-10-01

    Despite the potential for significant energy savings by reducing duct leakage or other thermal losses from duct systems in large commercial buildings, California Title 24 has no provisions to credit energy-efficient duct systems in these buildings. A substantial reason is the lack of readily available simulation tools to demonstrate the energy-saving benefits associated with efficient duct systems in large commercial buildings. The overall goal of the Efficient Distribution Systems (EDS) project within the PIER High Performance Commercial Building Systems Program is to bridge the gaps in current duct thermal performance modeling capabilities, and to expand our understanding of duct thermal performance in California large commercial buildings. As steps toward this goal, our strategy in the EDS project involves two parts: (1) developing a whole-building energy simulation approach for analyzing duct thermal performance in large commercial buildings, and (2) using the tool to identify the energy impacts of duct leakage in California large commercial buildings, in support of future recommendations to address duct performance in the Title 24 Energy Efficiency Standards for Nonresidential Buildings. The specific technical objectives for the EDS project were to: (1) Identify a near-term whole-building energy simulation approach that can be used in the impacts analysis task of this project (see Objective 3), with little or no modification. A secondary objective is to recommend how to proceed with long-term development of an improved compliance tool for Title 24 that addresses duct thermal performance. (2) Develop an Alternative Calculation Method (ACM) change proposal to include a new metric for thermal distribution system efficiency in the reporting requirements for the 2005 Title 24 Standards. The metric will facilitate future comparisons of different system types using a common ''yardstick''. (3) Using the selected near-term simulation approach, assess the impacts of

  14. Complicated bile duct stones.

    PubMed

    Roy, Ashwin; Martin, Derrick

    2013-01-01

    Common bile duct stones (CBDSs) are solid deposits that can either form within the gallbladder or migrate to the common bile duct (CBD), or form de novo in the biliary tree. In the USA around 15% of the population have gallstones and of these, 3% present with symptoms annually. Because of this, there have been major advancements in the management of gallstones and related conditions. Management is based on the patient's risk profile; young and healthy patients are likely to be recommended for surgery and elderly patients with comorbidities are usually recommended for endoscopic procedures. Imaging of gallstones has advanced in the last 30 years with endoscopic retrograde cholangiopancreatography evolving from a diagnostic to a therapeutic procedure in removing CBDSs. We present a complicated case of a patient with a CBDS and periampullary diverticulum and discuss the techniques used to diagnose and remove the stone from the biliary system. PMID:23946532

  15. Complicated bile duct stones

    PubMed Central

    Roy, Ashwin; Martin, Derrick

    2013-01-01

    Common bile duct stones (CBDSs) are solid deposits that can either form within the gallbladder or migrate to the common bile duct (CBD), or form de novo in the biliary tree. In the USA around 15% of the population have gallstones and of these, 3% present with symptoms annually. Because of this, there have been major advancements in the management of gallstones and related conditions. Management is based on the patient's risk profile; young and healthy patients are likely to be recommended for surgery and elderly patients with comorbidities are usually recommended for endoscopic procedures. Imaging of gallstones has advanced in the last 30 years with endoscopic retrograde cholangiopancreatography evolving from a diagnostic to a therapeutic procedure in removing CBDSs. We present a complicated case of a patient with a CBDS and periampullary diverticulum and discuss the techniques used to diagnose and remove the stone from the biliary system. PMID:23946532

  16. High frequency sound attenuation in short flow ducts

    NASA Technical Reports Server (NTRS)

    Posey, J. W.

    1978-01-01

    A geometrical acoustics approach is proposed as a practical design tool for absorbent liners in such short flow ducts as may be found in turbofan engine nacelles. As an example, a detailed methodology is presented for three different types of sources in a parallel plate duct containing uniform ambient flow. A plane wave whose wavefronts are not normal to the duct walls, an arbitrarily located point source, and a spatially harmonic line source are each considered. Optimal wall admittance distributions are found, and it is shown how to estimate the insertion loss for any admittance distribution. The extension of the methodology to realistic source distributions in variable area cylindrical or annular ducts containing arbitrary flow is shown to be conceptually straightforward and computationally practical on a vector-hardware digital computer.

  17. Near real-time AIRS processing and distribution system: from design to operations

    NASA Astrophysics Data System (ADS)

    Wolf, Walter; King, Thomas; Goldberg, Mitchell D.; Zhou, Lihang; Barnet, Chris D.

    2004-10-01

    A near real-time AIRS processing and distribution system is fully operational at NOAA/NESDIS/ORA. The AIRS system went though three separate production phases: design and development, implementation, and operations. The design and development phase consisted of two years of preparation for the near real-time AIRS data. The approach was to fully emulate the AIRS measurement stream. This was accomplished by using a forecast model to represent the geophysical state and computation of simulated AIRS measurements using the characteristics of the AIRS channels. The preparation included file format development and the creation of a program to subset the radiance and product data. The implementation phase lasted over a year and involved utilizing AIRS/AMSU/HSB simulated data quasi-operationally. This simulated data was placed into deliverable files and distributed to the customers for their pre-launch preparations. The operational phase consisted of switching the simulation system to real data and is the current system status. Details of what went right and wrong at each production phase will be presented. This methodology eased the transition to operations and will be applied to other advanced sounders such as IASI and CrIS.

  18. Lacrimal duct cyst abscess.

    PubMed

    Dharmasena, Aruna; Sobajo, Cassandra; Irion, Luciane; Ataullah, Sajid

    2014-12-01

    Cystic dilatation within the lacrimal gland is thought to be related to chronic inflammation and scarring of the lacrimal gland ductules. We review the literature and discuss a case and of lacrimal duct cyst suppuration presenting with visual loss, external ophthalmoplegia, proptosis and ptosis. To our knowledge, only one other report of a lacrimal ductal cyst abscess has been reported in the literature so far. PMID:25208223

  19. High Efficiency Integrated Space Conditioning, Water Heating and Air Distribution System for HUD-Code Manufactured Housing

    SciTech Connect

    Henry DeLima; Joe Akin; Joseph Pietsch

    2008-09-14

    Recognizing the need for new space conditioning and water heating systems for manufactured housing, DeLima Associates assembled a team to develop a space conditioning system that would enhance comfort conditions while also reducing energy usage at the systems level. The product, Comboflair® was defined as a result of a needs analysis of project sponsors and industry stakeholders. An integrated system would be developed that would combine a packaged airconditioning system with a small-duct, high-velocity air distribution system. In its basic configuration, the source for space heating would be a gas water heater. The complete system would be installed at the manufactured home factory and would require no site installation work at the homesite as is now required with conventional split-system air conditioners. Several prototypes were fabricated and tested before a field test unit was completed in October 2005. The Comboflair® system, complete with ductwork, was installed in a 1,984 square feet, double-wide manufactured home built by Palm Harbor Homes in Austin, TX. After the home was transported and installed at a Palm Harbor dealer lot in Austin, TX, a data acquisition system was installed for remote data collection. Over 60 parameters were continuously monitored and measurements were transmitted to a remote site every 15 minutes for performance analysis. The Comboflair® system was field tested from February 2006 until April 2007. The cooling system performed in accordance with the design specifications. The heating system initially could not provide the needed capacity at peak heating conditions until the water heater was replaced with a higher capacity standard water heater. All system comfort goals were then met. As a result of field testing, we have identified improvements to be made to specific components for incorporation into production models. The Comboflair® system will be manufactured by Unico, Inc. at their new production facility in St. Louis

  20. Evolution of soot size distribution in premixed ethylene/air and ethylene/benzene/air flames: Experimental and modeling study

    SciTech Connect

    Echavarria, Carlos A.; Sarofim, Adel F.; Lighty, JoAnn S.; D'Anna, Andrea

    2011-01-15

    The effect of benzene concentration in the initial fuel on the evolution of soot size distribution in ethylene/air and ethylene/benzene/air flat flames was characterized by experimental measurements and model predictions of size and number concentration within the flames. Experimentally, a scanning mobility particle sizer was used to allow spatially resolved and online measurements of particle concentration and sizes in the nanometer-size range. The model couples a detailed kinetic scheme with a discrete-sectional approach to follow the transition from gas-phase to nascent particles and their coagulation to larger soot particles. The evolution of soot size distribution (experimental and modeled) in pure ethylene and ethylene flames doped with benzene showed a typical nucleation-sized (since particles do not actually nucleate in the classical sense particle inception is often used in place of nucleation) mode close to the burner surface, and a bimodal behavior at greater height above burner (HAB). However, major features were distinguished between the data sets. The growth of nucleation and agglomeration-sized particles was faster for ethylene/benzene/air flames, evidenced by the earlier presence of bimodality in these flames. The most significant changes in size distribution were attributed to an increase in benzene concentration in the initial fuel. However, these changes were more evident for high temperature flames. In agreement with the experimental data, the model also predicted the decrease of nucleation-sized particles in the postflame region for ethylene flames doped with benzene. This behavior was associated with the decrease of soot precursors after the main oxidation zone of the flames. (author)

  1. Feasibility Study: Ductless Hydronic Distribution Systems with Fan Coil Delivery

    SciTech Connect

    Springer, D.; Dakin, B.; Backman, C.

    2012-07-01

    The primary objectives of this study are to estimate potential energy savings relative to conventional ducted air distribution, and to identify equipment requirements, costs, and barriers with a focus on ductless hydronic delivery systems that utilize water-to-air terminal units in each zone. Results indicate that annual heating and cooling energy use can be reduced by up to 27% assuming replacement of the conventional 13 SEER heat pump and coil with a similarly rated air-to-water heat pump.

  2. Local-scale variability in regional air quality modelling: Implications on temporal distribution of emissions

    NASA Astrophysics Data System (ADS)

    Bergemann, Christoph; Meyer-Arnek, Julian

    2010-05-01

    In the field of air quality modeling, the comparison of model results with ground-based measurements is essential for validation purposes. The usefulness of these measurements for regional air quality modeling is however limited by the extremely local nature of station measurements. This is especially true for short-lived species like NO2, which is of high importance for public health. Nevertheless station observations are the only continuously available source of data on ground level air quality besides model results. Uncertainties in air quality models mainly arise from the lack of precise knowledge of the spatial and temporal distribution of pollutants. Most emission inventories provide aggregated values for long periods of time and yield no information on the temporal (diurnal) distribution of emissions. By applying ground-based measurements, our study yields optimized diurnal variations of anthropogenic emissions for different urban regions of Germany. In the course of the study the variability of air pollution on the urban scale (the model's subgrid scale) is also addressed. The study applies the newly established POLYPHEMUS/DLR model at a moderate resolution. In the framework of the GMES project "PROMOTE", this model system operationally analyzes and forecasts air quality in Bavaria, Germany. The model employs the latest version of the EMEP emission register in combination with high-resolution emission data provided by Bavarian authorities.

  3. Statistical modeling of urban air temperature distributions under different synoptic conditions

    NASA Astrophysics Data System (ADS)

    Beck, Christoph; Breitner, Susanne; Cyrys, Josef; Hald, Cornelius; Hartz, Uwe; Jacobeit, Jucundus; Richter, Katja; Schneider, Alexandra; Wolf, Kathrin

    2015-04-01

    Within urban areas air temperature may vary distinctly between different locations. These intra-urban air temperature variations partly reach magnitudes that are relevant with respect to human thermal comfort. Therefore and furthermore taking into account potential interrelations with other health related environmental factors (e.g. air quality) it is important to estimate spatial patterns of intra-urban air temperature distributions that may be incorporated into urban planning processes. In this contribution we present an approach to estimate spatial temperature distributions in the urban area of Augsburg (Germany) by means of statistical modeling. At 36 locations in the urban area of Augsburg air temperatures are measured with high temporal resolution (4 min.) since December 2012. These 36 locations represent different typical urban land use characteristics in terms of varying percentage coverages of different land cover categories (e.g. impervious, built-up, vegetated). Percentage coverages of these land cover categories have been extracted from different sources (Open Street Map, European Urban Atlas, Urban Morphological Zones) for regular grids of varying size (50, 100, 200 meter horizonal resolution) for the urban area of Augsburg. It is well known from numerous studies that land use characteristics have a distinct influence on air temperature and as well other climatic variables at a certain location. Therefore air temperatures at the 36 locations are modeled utilizing land use characteristics (percentage coverages of land cover categories) as predictor variables in Stepwise Multiple Regression models and in Random Forest based model approaches. After model evaluation via cross-validation appropriate statistical models are applied to gridded land use data to derive spatial urban air temperature distributions. Varying models are tested and applied for different seasons and times of the day and also for different synoptic conditions (e.g. clear and calm

  4. DYNAMIC ENERGY SAVING IN BUILDINGS WITH UNDERFLOOR AIR DISTRIBUTION SYSTEM – EXPERIMENTAL AND SIMULATION STUDIES

    EPA Science Inventory

    The present study is aimed at seeking a better understanding of the thermodynamics involved with the air distribution strategies associated with UFAD systems and its impact on the energy saving dynamics.
    Thus objectives are:

    • Experiment...

    • Air Distribution Effectiveness for Residential Mechanical Ventilation: Simulation and Comparison of Normalized Exposures

      SciTech Connect

      Petithuguenin, T.D.P.; Sherman, M.H.

      2009-05-01

      The purpose of ventilation is to dilute indoor contaminants that an occupant is exposed to. Even when providing the same nominal rate of outdoor air, different ventilation systems may distribute air in different ways, affecting occupants' exposure to household contaminants. Exposure ultimately depends on the home being considered, on source disposition and strength, on occupants' behavior, on the ventilation strategy, and on operation of forced air heating and cooling systems. In any multi-zone environment dilution rates and source strengths may be different in every zone and change in time, resulting in exposure being tied to occupancy patterns.This paper will report on simulations that compare ventilation systems by assessing their impact on exposure by examining common house geometries, contaminant generation profiles, and occupancy scenarios. These simulations take into account the unsteady, occupancy-tied aspect of ventilation such as bathroom and kitchen exhaust fans. As most US homes have central HVAC systems, the simulation results will be used to make appropriate recommendations and adjustments for distribution and mixing to residential ventilation standards such as ASHRAE Standard 62.2.This paper will report on work being done to model multizone airflow systems that are unsteady and elaborate the concept of distribution matrix. It will examine several metrics for evaluating the effect of air distribution on exposure to pollutants, based on previous work by Sherman et al. (2006).

    • Airfoil section characteristics as applied to the prediction of air forces and their distribution on wings

      NASA Technical Reports Server (NTRS)

      Jacobs, Eastman N; Rhode, R V

      1938-01-01

      The results of previous reports dealing with airfoil section characteristics and span load distribution data are coordinated into a method for determining the air forces and their distribution on airplane wings. Formulas are given from which the resultant force distribution may be combined to find the wing aerodynamic center and pitching moment. The force distribution may also be resolved to determine the distribution of chord and beam components. The forces are resolved in such a manner that it is unnecessary to take the induced drag into account. An illustration of the method is given for a monoplane and a biplane for the conditions of steady flight and a sharp-edge gust. The force determination is completed by outlining a procedure for finding the distribution of load along the chord of airfoil sections.

    • Hadoop-Based Distributed System for Online Prediction of Air Pollution Based on Support Vector Machine

      NASA Astrophysics Data System (ADS)

      Ghaemi, Z.; Farnaghi, M.; Alimohammadi, A.

      2015-12-01

      The critical impact of air pollution on human health and environment in one hand and the complexity of pollutant concentration behavior in the other hand lead the scientists to look for advance techniques for monitoring and predicting the urban air quality. Additionally, recent developments in data measurement techniques have led to collection of various types of data about air quality. Such data is extremely voluminous and to be useful it must be processed at high velocity. Due to the complexity of big data analysis especially for dynamic applications, online forecasting of pollutant concentration trends within a reasonable processing time is still an open problem. The purpose of this paper is to present an online forecasting approach based on Support Vector Machine (SVM) to predict the air quality one day in advance. In order to overcome the computational requirements for large-scale data analysis, distributed computing based on the Hadoop platform has been employed to leverage the processing power of multiple processing units. The MapReduce programming model is adopted for massive parallel processing in this study. Based on the online algorithm and Hadoop framework, an online forecasting system is designed to predict the air pollution of Tehran for the next 24 hours. The results have been assessed on the basis of Processing Time and Efficiency. Quite accurate predictions of air pollutant indicator levels within an acceptable processing time prove that the presented approach is very suitable to tackle large scale air pollution prediction problems.

    • Dynamic models of heating and cooling coils with one-dimensional air distribution

      NASA Astrophysics Data System (ADS)

      Wang, Zijie; Krauss, G.

      1993-06-01

      This paper presents the simulation models of the plate-fin, air-to-water (or water vapour) heat exchangers used as air-heating or air-cooling and dehumidifying coils in the HVAC (Heating, Ventilation and Air-Conditioning) systems. The thermal models are used to calculate the heat exchange between distributing air and coil pipes and outlet temperatures of air and heat or chilled fluid. The aerodynamic models are used to account for the pressure drop of the air crossing the coil tubes. They can also be used to optimize the structures of such coils. The models are based on principal laws of heat and mass conservation and fluid mechanics. They are transparent and easy to use. In our work, a coil is considered as an assembly of numbers of basic elements in which all the state variables are unique. Therefore we can conveniently simulate the coils with different structures and different geometric parameters. Two modular programs TRNSYS (Transient System Simulation) and ESACAP are utilized as supporting softwares which make the programming and simulation greatly simplified. The coil elements and a real coil were simulated. The results were compared with the data offered by the manufacturer (company SOFICA) and also with those obtained using critical methods such as NTU method, etc. and good agreement is attained.

    • Bile duct malignancies.

      PubMed

      Tucek, S; Tomasek, J; Halámkova, J; Kiss, I; Andrasina, T; Hemmelová, B; Adámková-Krákorová, D; Vyzula, R

      2010-01-01

      Bile duct malignancies include intrahepatic cholangiocarcinoma (ICC), extrahepatic cholangiocarcinoma (ECC), gall bladder carcinoma (GC) and carcinoma of Vater's ampulla (ampulloma). Bile duct neoplasms are rare tumours with overall poor prognosis. The overall incidence affects up to 12.5 per 100,000 persons in the Czech Republic. The mortality rate has risen recently to 9.5 per 100,000 persons. The incidence and mortality have been remarkably stable over the past 3 decades. The survival rate of patients with these tumours is poor, usually not exceeding 12 months. The diagnostic process is complex, uneasy and usually late. Most cases are diagnosed when unresectable, and palliative treatment is the main approach of medical care for these tumours. The treatment remains very challenging. New approaches have not brought much improvement in this field. Standards of palliative care are lacking and quality of life assessments are surprisingly not common. From the scarce data it seems, however, that multimodal individually tailored treatment can prolong patients'survival and improve the health-related quality of life. The care in specialized centres offers methods of surgery, interventional radiology, clinical oncology and high quality supportive care. These methods are discussed in the article in greater detail. Improvements in this field can be sought in new diagnostic methods and new procedures in surgery and interventional radiology. Understanding the tumour biology on the molecular level could shift the strategy to a more successful one, resulting in more cured patients. Further improvements in palliative care can be sought by defining new targets and new drug development. The lack of patients with bile duct neoplasms has been the limiting factor for any improvements. A new design of larger randomized international multicentric clinical trials with prompt data sharing could help to overcome this major problem. Defining standards of palliative care is a necessity

    • Beam loss by collimation in a neutralizer duct

      SciTech Connect

      Hamilton, G.W.; Willmann, P.A.

      1980-04-03

      Beam fractions lost by collimation in a neutralizer duct are computed in x-x' phase space by using three examples of slab beam distributions under a broad range of duct dimensions, beam half-widths, and beam divergences. The results can be used to design compact neutralizers and to specify beam requirements. The computer code ILOST can be used under a broad range of beam conditions to compute the fraction lost by collimation.

    • [Spatiotemporal distribution of negative air ion concentration in urban area and related affecting factors: a review].

      PubMed

      Huang, Xiang-Hua; Wang, Jian; Zeng, Hong-Da; Chen, Guang-Shui; Zhong, Xian-Fang

      2013-06-01

      Negative air ion (NAI) concentration is an important indicator comprehensively reflecting air quality, and has significance to human beings living environment. This paper summarized the spatiotemporal distribution features of urban NAI concentration, and discussed the causes of these features based on the characteristics of the environmental factors in urban area and their effects on the physical and chemical processes of NAI. The temporal distribution of NAI concentration is mainly controlled by the periodic variation of solar radiation, while the spatial distribution of NAI concentration along the urban-rural gradient is mainly affected by the urban aerosol distribution, underlying surface characters, and urban heat island effect. The high NAI concentration in urban green area is related to the vegetation life activities and soil radiation, while the higher NAI concentration near the water environment is attributed to the water molecules that participate in the generation of NAI through a variety of ways. The other environmental factors can also affect the generation, life span, component, translocation, and distribution of NAI to some extent. To increase the urban green space and atmospheric humidity and to maintain the soil natural attributes of underlying surface could be the effective ways to increase the urban NAI concentration and improve the urban air quality. PMID:24066568

    • Distribution of natural halocarbons in marine boundary air over the Arctic Ocean

      NASA Astrophysics Data System (ADS)

      Yokouchi, Yoko; Inoue, Jun; Toom-Sauntry, Desiree

      2013-08-01

      Ongoing environmental changes in the Arctic will affect the exchange of natural volatile organic compounds between the atmosphere and the Arctic Ocean. Among these compounds, natural halocarbons play an important role in atmospheric ozone chemistry. We measured the distribution of five major natural halocarbons (methyl iodide, bromoform, dibromomethane, methyl chloride, and methyl bromide) together with dimethyl sulfide and tetrachloroethylene in the atmosphere over the Arctic Ocean (from the Bering Strait to 79°N) and along the cruise path to and from Japan. Methyl iodide, bromoform, and dibromomethane were most abundant near perennial sea ice in air masses derived from coastal regions and least abundant in the northernmost Arctic, where the air masses had passed over the ice pack, whereas methyl chloride and methyl bromide showed the opposite distribution pattern. Factors controlling those distributions and future prospects for natural halocarbons in the Arctic are discussed.

    • Air toxics in coal: Distribution and abundance of selected trace elements in the Powder River Basin

      SciTech Connect

      Crowley, S.S.; Stanton, R.W.

      1994-12-31

      The 1990 Clean Air Act Amendments identified 12 potentially toxic elements, called ``air toxics,`` that may be released during the combustion of coal. The elements identified in the amendments are As, Be, Cd, Cr, Co, Hg, Mn, Ni, Pb, Sb, Se, and U (radionuclides). In this study, the distribution and concentration of these elements were examined, on a whole-coal basis, in samples from two cores of the Wyodak-Anderson coal bed (Paleocene, Tongue River Member of the Fort Union Formation), in the Powder River Basin of Wyoming. The distribution of these elements in the Wyodak-Anderson coal bed is also compared to the distribution of the same elements in a correlative coal bed, the Anderson-Dietz 1 coal bed in the Powder River Basin of Montana.

    • Measure Guideline: Optimizing the Configuration of Flexible Duct Junction Boxes

      SciTech Connect

      Beach, R.; Burdick, A.

      2014-03-01

      This measure guideline offers additional recommendations to heating, ventilation, and air conditioning (HVAC) system designers for optimizing flexible duct, constant-volume HVAC systems using junction boxes within Air Conditioning Contractors of America (ACCA) Manual D guidance (Rutkowski, H. Manual D -- Residential Duct Systems, 3rd edition, Version 1.00. Arlington, VA: Air Conditioning Contractors of America, 2009.). IBACOS used computational fluid dynamics software to explore and develop guidance to better control the airflow effects of factors that may impact pressure losses within junction boxes among various design configurations (Beach, R., Prahl, D., and Lange, R. CFD Analysis of Flexible Duct Junction Box Design. Golden, CO: National Renewable Energy Laboratory, submitted for publication 2013). These recommendations can help to ensure that a system aligns more closely with the design and the occupants' comfort expectations. Specifically, the recommendations described herein show how to configure a rectangular box with four outlets, a triangular box with three outlets, metal wyes with two outlets, and multiple configurations for more than four outlets. Designers of HVAC systems, contractors who are fabricating junction boxes on site, and anyone using the ACCA Manual D process for sizing duct runs will find this measure guideline invaluable for more accurately minimizing pressure losses when using junction boxes with flexible ducts.

    • Effect of Moderate Air Flow on the Distribution of Fuel Sprays After Injection Cut-0ff

      NASA Technical Reports Server (NTRS)

      Rothrock, A M; Spencer, R C

      1935-01-01

      High-speed motion pictures were taken of fuel sprays with the NACA spray-photographic apparatus to study the distribution of the liquid fuel from the instant of injection cut-off until about 0.05 second later. The fuel was injected into a glass-walled chamber in which the air density was varied from 1 to 13 times atmospheric air density (0.0765 to 0.99 pound per cubic foot) and in which the air was at room temperature. The air in the chamber was set in motion by means of a fan, and was directed counter to the spray at velocities up to 27 feet per second. The injection pressure was varied from 2,000 to 6,000 pounds per square inch. A 0.20-inch single-orifice nozzle, an 0.008-inch single-orifice nozzle, a multiorifice nozzle, and an impinging-jets nozzle were used. The best distribution was obtained by the use of air and a high-dispersion nozzle.

    • Two-dimensional distribution of flame fluctuation during highly preheated air combustion

      SciTech Connect

      Kitagawa, Kuniyuki; Konishi, Noriyuki; Arai, Norio; Gupta, A.K.

      1998-07-01

      The effect of highly preheated combustion air on the spatial distributions of flame fluctuations and temperature is presented here. Several propane flames, produced with the cross-flow diffusion of gas into highly preheated combustion air having controlled oxygen content, have been examined here by an array of thermocouples and a spectrovideo camera consisting of a monochromator and a high speed UV video camera. Spontaneous emission signal of flames produced from the regenerative combustion system was passed through the monochromator to construct a spectroscopically resolved image. The time resolved images were observed by the high speed UV video camera. Fast Fourier transform (FFT) was then applied to each image, at each pixel location of the detector in the video camera. This provided frequency-domain spectra, which then also allowed one to reconstruct the two-dimensional distribution of flame fluctuation. The results show that lame fluctuations in the high temperature combustion region are significantly lower with highly preheated combustion air. The two-dimensional profiles of the flame vibrational temperature, based on modified two-line method of two C{sub 2} bands, indicate that dilution of the preheated air drastically reduces the temperature gradient. The two-dimensional profiles of temperature as well as their fluctuations were measured by a thermocouple array at 24 points in the combustion chamber. The results indicated tendencies similar to those obtained spectroscopically, i.e., a drastic decrease in the flame fluctuations with highly preheated combustion air. The thermal field uniformity with high temperature combustion air was found to be improved even at low oxygen concentrations in the air.

    • Subsonic Flows through S-Ducts with Flow Control

      NASA Astrophysics Data System (ADS)

      Chen, Yi

      An inlet duct of an aircraft connects the air intake mounted on the fuselage to the engine within the aircraft body. The ideal outflow quality of the duct is steady, uniform and of high total pressure. Recently compact S-shaped inlet ducts are drawing more attention in the design of UAVs with short propulsion system. Compact ducts usually involve strong streamwise adverse pressure gradient and transverse secondary flow, leading to large-scale harmful vortical structures in the outflow. To improve the outflow quality modern flow control techniques have to be applied. Before designing successful flow control methods a solid understanding of the baseline flow field with the duct is crucial. In this work the fundamental mechanism of how the three dimensional flow topology evolves when the relevant parameters such as the duct geometry and boundary layer thickness are varied, is studied carefully. Two distinct secondary-flow patterns are identified. For the first time the sensitivity of the flow topology to the inflow boundary layer thickness in long ducts is clearly addressed. The interaction between the transverse motion induced by the transverse pressure gradient and the streamwise separation is revealed as the crucial reason for the various flow patterns existing in short ducts. A non-symmetric flow pattern is identified for the first time in both experiments and simulations in short ducts in which the intensity of the streamwise separation and the transverse invasion are in the same order of magnitude. A theory of energy accumulation and solution bifurcation is used to give a reasonable explanation for this non-symmetry. After gaining the knowledge of where and how the harmful vortical structures are generated several flow control techniques are tested to achieve a better outflow quality. The analysis of the flow control cases also provides a deeper insight into the behavior of the three-dimensional flow within the ducts. The conventional separation control method

    • Global Ammonia Distributions and Recent Trends from AIRS 13-years Measurements

      NASA Astrophysics Data System (ADS)

      Warner, J. X.; Wei, Z.; Strow, L. L.; Nowak, J. B.; Dickerson, R. R.

      2015-12-01

      Ammonia is an integral part of the nitrogen cycle and is projected to be the largest single contributor to each of acidification, eutrophication and secondary particulate matter in Europe by 2020 (Sutton et al., 2008). The impacts of NH3 also include: aerosol production affecting global radiative forcing, increases in emissions of the greenhouse gases nitrous oxide (N2O) and methane (CH4), and modification of the transport and deposition patterns of SO2 and NOx. Therefore, monitoring NH3 global distribution of sources is vitally important to human health with respect to both air and water quality and climate change. We have developed new daily and global ammonia (NH3) products from AIRS hyperspectral measurements. These products add value to AIRS's existing products that have made significant contributions to weather forecasts, climate studies, and air quality monitoring. With longer than 13 years of data records, these measurements have been used not only for daily monitoring purposes but also for inter-annual variability and short-term trend studies. We will discuss the global NH3 emission sources from biogenic and anthropogenic activities over many emission regions captured by AIRS. We will focus their variability in the last 13 years. Validation examples using in situ measurements for AIRS NH3 will also be presented.

    • Experimental Evaluation of Indoor Air Distribution in High-Performance Residential Buildings: Part I. General Descriptions and Qualification Tests

      SciTech Connect

      Jalalzadeh, A. A.; Hancock, E.; Powell, D.

      2007-12-01

      The main objective of this project is to experimentally characterize an air distribution system in heating mode during a period of recovery from setback. The specific air distribution system under evaluation incorporates a high sidewall supply-air register/diffuser and a near-floor wall return air grille directly below. With this arrangement, the highest temperature difference between the supply air and the room can occur during the recovery period and create a favorable condition for stratification. The experimental approach will provide realistic input data and results for verification of computational fluid dynamics modeling.

    • Intrahepatic Transposition of Bile Ducts

      PubMed Central

      Delić, Jasmin; Savković, Admedina; Isaković, Eldar; Marković, Sergije; Bajtarevic, Alma; Denjalić, Amir

      2012-01-01

      Objective. To describe the intrahepatic bile duct transposition (anatomical variation occurring in intrahepatic ducts) and to determine the frequency of this variation. Material and Methods. The researches were performed randomly on 100 livers of adults, both sexes. Main research methods were anatomical macrodissection. As a criterion for determination of variations in some parts of bile tree, we used the classification of Segmentatio hepatis according to Couinaud (1957) according to Terminologia Anatomica, Thieme Stuugart: Federative Committee on Anatomical Terminology, 1988. Results. Intrahepatic transposition of bile ducts was found in two cases (2%), out of total examined cases (100): right-left transposition (right segmental bile duct, originating from the segment VIII, joins the left liver duct-ductus hepaticus sinister) and left-right intrahepatic transposition (left segmental bile duct originating from the segment IV ends in right liver duct-ductus hepaticus dexter). Conclusion. Safety and success in liver transplantation to great extent depends on knowledge of anatomy and some common embryological anomalies in bile tree. Variations in bile tree were found in 24–43% of cases, out of which 1–22% are the variations of intrahepatic bile ducts. Therefore, good knowledge on ductal anatomy enables good planning, safe performance of therapeutic and operative procedures, and decreases the risk of intraoperative and postoperative complications. PMID:22550601

  1. Effectiveness of duct sealing and duct insulation in multi-family buildings. Final report

    SciTech Connect

    Karins, N.H.; Tuluca, A.; Modera, M.

    1997-07-01

    This research investigated the cost-effectiveness of sealing and insulating the accessible portions of duct systems exposed to unconditioned areas in multifamily housing. Airflow and temperature measurements were performed in 25 apartments served by 10 systems a 9 multi-family properties. The measurements were performed before and after each retrofit, and included apartment airflow (supply and return), duct system temperatures, system fan flow and duct leakage area. The costs for each retrofit were recorded. The data were analyzed and used to develop a prototypical multifamily house. This prototype was used in energy simulations (DOE-2.1E) and air infiltration simulations (COMIS 2.1). The simulations were performed for two climates: New York City and Albany. In each climate, one simulation was performed assuming the basement was tight, and another assuming the basement was leaky. Simulation results and average retrofit costs were used to calculate cost-effectiveness. The results of the analysis indicate that sealing leaks of the accessible ductwork is cost-effective under all conditions simulated (simple payback was between 3 and 4 years). Insulating the accessible ductwork, however, is only cost-effective for buildings with leaky basement, in both climates (simple paybacks were less than 5 years). The simple payback period for insulating the ducts in buildings with tight basements was greater than 10 years, the threshold of cost-effectiveness for this research. 13 refs., 5 figs., 27 tabs.

  2. Vortex Shedding Inside a Baffled Air Duct

    NASA Technical Reports Server (NTRS)

    Davis, Philip; Kenny, R. Jeremy

    2010-01-01

    Common in the operation of both segmented and un-segmented large solid rocket motors is the occurrence of vortex shedding within the motor chamber. A portion of the energy within a shed vortex is converted to acoustic energy, potentially driving the longitudinal acoustic modes of the motor in a quasi-discrete fashion. This vortex shedding-acoustic mode excitation event occurs for every Reusable Solid Rocket Motor (RSRM) operation, giving rise to subsequent axial thrust oscillations. In order to better understand this vortex shedding/acoustic mode excitation phenomena, unsteady CFD simulations were run for both a test geometry and the full scale RSRM geometry. This paper covers the results from the subscale geometry runs, which were based on work focusing on the RSRM hydrodynamics. Unsteady CFD simulation parameters, including boundary conditions and post-processing returns, are reviewed. The results were further post-processed to identify active acoustic modes and vortex shedding characteristics. Probable locations for acoustic energy generation, and subsequent acoustic mode excitation, are discussed.

  3. Ascariasis of the pancreatic duct.

    PubMed

    Klimovskij, Michail; Dulskas, Audrius; Kraulyte, Zita; Mikalauskas, Saulius

    2015-01-01

    Ascariasis is a common helminthic disease worldwide, although Lithuania and other European countries are not considered endemic areas. The presence of the Ascaris worm in the biliary tree causes choledocholithiasis-like symptoms. We report a case of pancreatic duct ascariasis causing such symptoms. A 73-year-old Lithuanian woman underwent endoscopic retrograde cholangiopancreatography (ERCP) suspecting choledocholithiasis. Contrast injection into the common bile duct demonstrated a slightly dilated biliary tree without any filling defects, and the tail of an Ascaris worm protruding from the opening of the papilla Vater. The worm was captured by a snare but escaped deep into the duct. After a small wirsungotomy the worm was retrieved from the pancreatic duct. The patient received a 150 mg dose of levamisole orally repeated 7 days later and was discharged after complete resolution of symptoms. This first reported sporadic case of pancreatic duct ascariasis in Lithuania was successfully treated with ERCP and Levamisole. PMID:26374772

  4. Measure Guideline: Buried and/or Encapsulated Ducts

    SciTech Connect

    Shapiro, C.; Zoeller, W.; Mantha, P.

    2013-08-01

    Buried and/or encapsulated ducts (BEDs) are a class of advanced, energy-efficiency strategies intended to address the significant ductwork thermal losses associated with ducts installed in unconditioned attics. BEDs are ducts installed in unconditioned attics that are covered in loose-fill insulation and/or encapsulated in closed cell polyurethane spray foam insulation. This Measure Guideline covers the technical aspects of BEDs as well as the advantages, disadvantages, and risks of BEDs compared to other alternative strategies. This guideline also provides detailed guidance on installation of BEDs strategies in new and existing homes through step-by-step installation procedures. This Building America Measure Guideline synthesizes previously published research on BEDs and provides practical information to builders, contractors, homeowners, policy analysts, building professions, and building scientists. Some of the procedures presented here, however, require specialized equipment or expertise. In addition, some alterations to duct systems may require a specialized license. Persons implementing duct system improvements should not go beyond their expertise or qualifications. This guideline provides valuable information for a building industry that has struggled to address ductwork thermal losses in new and existing homes. As building codes strengthen requirements for duct air sealing and insulation, flexibility is needed to address energy efficiency goals. While ductwork in conditioned spaces has been promoted as the panacea for addressing ductwork thermal losses, BEDs installations approach - and sometimes exceed - the performance of ductwork in conditioned spaces.

  5. The impact of duct-to-duct interaction on the hex duct dilation

    SciTech Connect

    Lee, M.J.; Chang, L.K.; Lahm, C.E.; Porter, D.L.

    1992-07-01

    Dilation of the hex duct is an important factor in the operational lifetime of fuel subassemblies in liquid metal fast reactors. It is caused primarily by the irradiation-enhanced creep and void swelling of the hex duct material. Excessive dilation may jeopardize subassembly removal from the core or cause a subassembly storage problem where the grid size of the storage basket is limited. Dilation of the hex duct in Experimental Breeder Reactor II (EBR-II) limits useful lifetime because of these storage basket limitations. It is, therefore, important to understand the hex duct dilation behavior to guide the design and in-core management of fuel subassemblies in a way that excessive duct deformation can be avoided. To investigate the dilation phenomena, finite-element models of the hex duct have been developed. The inelastic analyses were performed using the structural analysis code, ANSYS. Both Type 316 and D9 austenitic stainless steel ducts are considered. The calculated dilations are in good agreement with profilometry measurements made after irradiation. The analysis indicates that subassembly interaction is an important parameter in addition to neutron fluence and temperature in determining hex duct dilation. 5 refs.

  6. Apparatus for supplying conditioned air at a substantially constant temperature and humidity

    NASA Technical Reports Server (NTRS)

    Obler, H. D. (Inventor)

    1980-01-01

    The apparatus includes a supply duct coupled to a source of supply air for carrying the supply air therethrough. A return duct is coupled to the supply duct for carrying return conditioned air therethrough. A temperature reducing device is coupled to the supply duct for decreasing the temperature of the supply and return conditioned air. A by-pass duct is coupled to the supply duct for selectively directing portions of the supply and return conditioned air around the temperature reducing device. Another by-pass duct is coupled to the return duct for selectively directing portions of the return conditioned air around the supply duct and the temperature reduction device. Controller devices selectively control the flow and amount of mixing of the supply and return conditioned air.

  7. NASA Langley and NLR Research of Distributed Air/Ground Traffic Management

    NASA Technical Reports Server (NTRS)

    Ballin, Mark G.; Hoekstra, Jacco M.; Wing, David J.; Lohr, Gary W.

    2002-01-01

    Distributed Air/Ground Traffic Management (DAG-TM) is a concept of future air traffic operations that proposes to distribute information, decision-making authority, and responsibility among flight crews, the air traffic service provider, and aeronautical operational control organizations. This paper provides an overview and status of DAG-TM research at NASA Langley Research Center and the National Aerospace Laboratory of The Netherlands. Specific objectives of the research are to evaluate the technical and operational feasibility of the autonomous airborne component of DAG-TM, which is founded on the operational paradigm of free flight. The paper includes an overview of research approaches, the airborne technologies under development, and a summary of experimental investigations and findings to date. Although research is not yet complete, these findings indicate that free flight is feasible and will significantly enhance system capacity and safety. While free flight cannot alone resolve the complex issues faced by those modernizing the global airspace, it should be considered an essential part of a comprehensive air traffic management modernization activity.

  8. The EOSDIS Version 0 Distributed Active Archive Center for physical oceanography and air-sea interaction

    NASA Technical Reports Server (NTRS)

    Hilland, Jeffrey E.; Collins, Donald J.; Nichols, David A.

    1991-01-01

    The Distributed Active Archive Center (DAAC) at the Jet Propulsion Laboratory will support scientists specializing in physical oceanography and air-sea interaction. As part of the NASA Earth Observing System Data and Information System Version 0 the DAAC will build on existing capabilities to provide services for data product generation, archiving, distribution and management of information about data. To meet scientist's immediate needs for data, existing data sets from missions such as Seasat, Geosat, the NOAA series of satellites and the Global Positioning Satellite system will be distributed to investigators upon request. In 1992, ocean topography, wave and surface roughness data from the Topex/Poseidon radar altimeter mission will be archived and distributed. New data products will be derived from Topex/Poseidon and other sensor systems based on recommendations of the science community. In 1995, ocean wind field measurements from the NASA Scatterometer will be supported by the DAAC.

  9. Technology Solutions Case Study: Overcoming Comfort Issues Due to Reduced Flow Room Air Mixing

    SciTech Connect

    2015-03-01

    Energy efficiency upgrades reduce heating and cooling loads on a house. With enough load reduction and if the HVAC system warrants replacement, the HVAC system is often upgraded with a more efficient, lower capacity system that meets the loads of the upgraded house. In this project, IBACOS studied when HVAC equipment is downsized and ducts are unaltered to determine conditions that could cause a supply air delivery problem and to evaluate the feasibility of modifying the duct systems using minimally invasive strategies to improve air distribution.

  10. Measurement of temperature distributions in a methane-air flame by moire deflectometry

    SciTech Connect

    Bar-Ziv, E.; Sgulim, S.; Kafri, O.; Keren, E.

    1982-01-01

    The temperature mapping of an axially symmetric premixed methane-air flame was determined by moire deflectometry. From the analysis of the moire data detailed information on the temperature distribution is obtained. The radial profile of the temperature shows a minimum at the center of the flame which gradually disappears when proceeding downstream, as expected. The main advantage of moire deflectometry over other techniques is that the temperature distribution of the entire flame is obtained with no need for a three dimensional scanning. We have shown that the technique provides valuable and detailed information which could lead to a better understanding of combustion mechanisms. The limitations of the method are discussed.

  11. Test Protocol for Room-to-Room Distribution of Outside Air by Residential Ventilation Systems

    SciTech Connect

    Barley, C. D.; Anderson, R.; Hendron, B.; Hancock, E.

    2007-12-01

    This test and analysis protocol has been developed as a practical approach for measuring outside air distribution in homes. It has been used successfully in field tests and has led to significant insights on ventilation design issues. Performance advantages of more sophisticated ventilation systems over simpler, less-costly designs have been verified, and specific problems, such as airflow short-circuiting, have been identified.

  12. Radial distributions of air plants: a comparison between epiphytes and mistletoes.

    PubMed

    Taylor, Amanda; Burns, Kevin

    2016-04-01

    Vertical gradients of light and humidity within forest canopies are major predictors of air plant distributions. Although this pattern was first recognized over 120 years ago, few studies have considered an additional axis of resource availability, which exists radially around the trunks of trees. Here, we explored the radial distributions of mistletoes and epiphytes in relation to gradients of light and humidity around the trunks of their south-temperate host trees. Additionally, we correlated microclimate occupancy with plant physiological responses to shifting resource availability. The radial distributions of mistletoes and epiphytes were highly directional, and related to the availability of light and humidity, respectively. Mistletoes oriented northwest, parallel to gradients of higher light intensity, temperature, and lower humidity. Comparatively, epiphytes oriented away from the sun to the southeast. The rate of CO2 assimilation in mistletoes and photochemical efficiency of epiphytes was highest in plants growing in higher light and humidity environments, respectively. However, the photosynthetic parameters of mistletoes suggest that they are also efficient at assimilating CO2 in lower light conditions. Our results bridge a key gap in our understanding of within-tree distributions of mistletoes and epiphytes, and raise further questions on the drivers of air plant distributions. PMID:27220198

  13. High-Performance Ducts in Hot-Dry Climates

    SciTech Connect

    Hoeschele, Marc; Chitwood, Rick; German, Alea; Weitzel, Elizabeth

    2015-07-30

    Duct thermal losses and air leakage have long been recognized as prime culprits in the degradation of heating, ventilating, and air-conditioning (HVAC) system efficiency. Both the U.S. Department of Energy’s Zero Energy Ready Home program and California’s proposed 2016 Title 24 Residential Energy Efficiency Standards require that ducts be installed within conditioned space or that other measures be taken to provide similar improvements in delivery effectiveness (DE). Pacific Gas & Electric Company commissioned a study to evaluate ducts in conditioned space and high-performance attics (HPAs) in support of the proposed codes and standards enhancements included in California’s 2016 Title 24 Residential Energy Efficiency Standards. The goal was to work with a select group of builders to design and install high-performance duct (HPD) systems, such as ducts in conditioned space (DCS), in one or more of their homes and to obtain test data to verify the improvement in DE compared to standard practice. Davis Energy Group (DEG) helped select the builders and led a team that provided information about HPD strategies to them. DEG also observed the construction process, completed testing, and collected cost data.

  14. Air Dispersion Characteristics and Thermal Comparison of Traditional and Fabric Ductwork using Computational Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    Andreopoulou, Areti

    This thesis research compares the air dispersion and thermal comfort characteristics of conventional diffuser and fabric-based ductwork systems. Heating, ventilation, and air-conditioning (HVAC) systems in buildings produce and regulate airflow traveling through ductwork. The performance characteristics of conventional ductwork are compared with recent advancements in fabric-based ductwork. Using computational fluid dynamics (CFD) analysis, thermal and air distribution flow patterns are compared between the two types of ductwork and preliminary thermal comfort and efficiency conclusions are drawn. Results of the Air Distribution Performance Index (ADPI) for both ducting systems reflect that, under the given test conditions, the fabric duct system is approximately 23% more comfortable than the traditional diffuser system in terms of air speed flow uniformity into the space, while staying within the Effective Draft Temperature comfort zone of -3 to +2°F.

  15. PMR Graphite Engine Duct Development

    NASA Technical Reports Server (NTRS)

    Stotler, C. L.; Yokel, S. A.

    1989-01-01

    The objective was to demonstrate the cost and weight advantages that could be obtained by utilizing the graphite/PMR15 material system to replace titanium in selected turbofan engine applications. The first component to be selected as a basis for evaluation was the outer bypass duct of the General Electric F404 engine. The operating environment of this duct was defined and then an extensive mechanical and physical property test program was conducted using material made by processing techniques which were also established by this program. Based on these properties, design concepts to fabricate a composite version of the duct were established and two complete ducts fabricated. One of these ducts was proof pressure tested and then run successfully on a factory test engine for over 1900 hours. The second duct was static tested to 210 percent design limit load without failure. An improved design was then developed which utilized integral composite end flanges. A complete duct was fabricated and successfully proof pressure tested. The net results of this effort showed that a composite version of the outer duct would be 14 percent lighter and 30 percent less expensive that the titanium duct. The other type of structure chosen for investigation was the F404 fan stator assembly, including the fan stator vanes. It was concluded that it was feasible to utilize composite materials for this type structure but that the requirements imposed by replacing an existing metal design resulted in an inefficient composite design. It was concluded that if composites were to be effectively used in this type structure, the design must be tailored for composite application from the outset.

  16. Thermal distribution in small buildings: A review and analysis of recent literature

    SciTech Connect

    Andrews, J.W.; Modera, M.P.

    1992-09-01

    This report reviews and analyzes recent technical literature on two subjects relating to thermal distribution in small buildings: energy losses in ductwork and the energy consequences of zone control. Energy losses in ductwork stem from three factors: fan-induced infiltration, duct leakage, and conductive heat losses through duct walls. The first two mechanisms are intertwined, and together account for about half of all duct losses. Ducted forced-air distribution systems are found, on average, to be 60%--70% efficient. Zone control, that is, the ability to operate different zones of a building at different temperatures, is potentially an energy-conserving strategy, but field results suggest that the energy savings are far from automatic.

  17. Better Duct Systems for Home Heating and Cooling; Building Technologies Program (Brochure)

    SciTech Connect

    2004-11-01

    Duct systems used in forced-air space-conditioning systems are a vital element in home energy efficiency. How well a system works makes a big difference in the cost and the effectiveness of heating and cooling a home.

  18. Laboratory study of the particle-size distribution of Decabromodiphenyl ether (BDE-209) in ambient air.

    PubMed

    Su, Peng-hao; Hou, Chun-yan; Sun, Dan; Feng, Dao-lun; Halldorson, Thor; Ding, Yong-sheng; Li, Yi-fan; Tomy, Gregg T

    2016-02-01

    Laboratory measurements for particle-size distribution of Decabromodiphenyl ether (BDE-209) were performed in a 0.5 m(3) sealed room at 25 °C. BDE-209 was manually bounded to ambient particles. An electrostatic field-sampler was employed to collect particles. The number of collected particles (n(i,j), i and j was the class of particle diameter and applied voltage on electrostatic field-sampler sampler, respectively) and the corresponding mass of BDE-209 in collected particles (m(∑i,j)) were determined in a series of 6 experiments. The particle-size distribution coefficient (ki) was calculated through equations related to n(i,j) and m(∑i,j), and the particle-size distribution of BDE-209 was determined by ki·n(i,j). Results revealed that BDE-209 distributed in particles of all size and were not affiliated with fine particles as in field measurements. The particle size-fraction should be taken into account when discussing the particle-size distribution of BDE-209 in ambient air due to the normalized coefficients (normalized to k1) and were approximately in the same order of magnitude for each diameter class. The method described in the present study was deemed feasible in determining the particle-size distribution of BDE-209 from vaporization sources and helpful to understanding the instinct rule of particle-size distribution of BDE-209, and potentially feasible for other SVOCs. PMID:26363326

  19. Introduction to Indoor Air Quality

    MedlinePlus

    ... as conditions caused by outdoor impacts (such as climate change). Many reports and studies indicate that the following ... Air Duct Cleaning Asthma Health, Energy Efficiency and Climate Change Flood Cleanup Home Remodel Indoor airPLUS Mold Radon ...

  20. The Civil Air Patrol's Role in Medical Countermeasure Distribution in Michigan

    PubMed Central

    Hankinson, Jennifer Lixey; Doctor, Suzanne M.; Macqueen, Mary

    2011-01-01

    Michigan's unique geological features and highly variable climatic conditions make distribution of medical countermeasures during a public health emergency situation very challenging. To enhance distribution during these situations, the Civil Air Patrol (CAP) has agreed to support the state of Michigan by transporting life-saving medical countermeasures to remote areas of the state. The Michigan Strategic National Stockpile (MISNS) program has successfully developed, exercised, and enhanced its partnership with the CAP to include distribution of federally provided Strategic National Stockpile (SNS) assets. The CAP has proven to be a reliable and valuable partner, as well as a cost-effective and time-efficient means of transporting vital resources during a public health emergency. PMID:22060035

  1. The Civil Air Patrol's role in medical countermeasure distribution in Michigan.

    PubMed

    Hankinson, Jennifer Lixey; Chamberlain, Kerry; Doctor, Suzanne M; Macqueen, Mary

    2011-12-01

    Michigan's unique geological features and highly variable climatic conditions make distribution of medical countermeasures during a public health emergency situation very challenging. To enhance distribution during these situations, the Civil Air Patrol (CAP) has agreed to support the state of Michigan by transporting life-saving medical countermeasures to remote areas of the state. The Michigan Strategic National Stockpile (MISNS) program has successfully developed, exercised, and enhanced its partnership with the CAP to include distribution of federally provided Strategic National Stockpile (SNS) assets. The CAP has proven to be a reliable and valuable partner, as well as a cost-effective and time-efficient means of transporting vital resources during a public health emergency. PMID:22060035

  2. Thermography and Sonic Anemometry to Analyze Air Heaters in Mediterranean Greenhouses

    PubMed Central

    López, Alejandro; Valera, Diego L.; Molina-Aiz, Francisco; Peña, Araceli

    2012-01-01

    The present work has developed a methodology based on thermography and sonic anemometry for studying the microclimate in Mediterranean greenhouses equipped with air heaters and polyethylene distribution ducts to distribute the warm air. Sonic anemometry allows us to identify the airflow pattern generated by the heaters and to analyze the temperature distribution inside the greenhouse, while thermography provides accurate crop temperature data. Air distribution by means of perforated polyethylene ducts at ground level, widely used in Mediterranean-type greenhouses, can generate heterogeneous temperature distributions inside the greenhouse when the system is not correctly designed. The system analyzed in this work used a polyethylene duct with a row of hot air outlet holes (all of equal diameter) that expel warm air toward the ground to avoid plant damage. We have observed that this design (the most widely used in Almería's greenhouses) produces stagnation of hot air in the highest part of the structure, reducing the heating of the crop zone. Using 88 kW heating power (146.7 W·m−2) the temperature inside the greenhouse is maintained 7.2 to 11.2 °C above the outside temperature. The crop temperature (17.6 to 19.9 °C) was maintained above the minimum recommended value of 10 °C. PMID:23202025

  3. Energy efficient engine: Turbine transition duct model technology report

    NASA Technical Reports Server (NTRS)

    Leach, K.; Thurlin, R.

    1982-01-01

    The Low-Pressure Turbine Transition Duct Model Technology Program was directed toward substantiating the aerodynamic definition of a turbine transition duct for the Energy Efficient Engine. This effort was successful in demonstrating an aerodynamically viable compact duct geometry and the performance benefits associated with a low camber low-pressure turbine inlet guide vane. The transition duct design for the flight propulsion system was tested and the pressure loss goal of 0.7 percent was verified. Also, strut fairing pressure distributions, as well as wall pressure coefficients, were in close agreement with analytical predictions. Duct modifications for the integrated core/low spool were also evaluated. The total pressure loss was 1.59 percent. Although the increase in exit area in this design produced higher wall loadings, reflecting a more aggressive aerodynamic design, pressure profiles showed no evidence of flow separation. Overall, the results acquired have provided pertinent design and diagnostic information for the design of a turbine transition duct for both the flight propulsion system and the integrated core/low spool.

  4. Articulated transition duct in turbomachine

    DOEpatents

    Flanagan, James Scott; McMahan, Kevin Weston; LeBegue, Jeffrey Scott; Pentecost, Ronnie Ray

    2014-04-29

    Turbine systems are provided. A turbine system includes a transition duct comprising an inlet, an outlet, and a duct passage extending between the inlet and the outlet and defining a longitudinal axis, a radial axis, and a tangential axis. The outlet of the transition duct is offset from the inlet along the longitudinal axis and the tangential axis. The duct passage includes an upstream portion and a downstream portion. The upstream portion extends from the inlet between an inlet end and an aft end. The downstream portion extends from the outlet between an outlet end and a head end. The turbine system further includes a joint coupling the aft end of the upstream portion and the head end of the downstream portion together. The joint is configured to allow movement of the upstream portion and the downstream portion relative to each other about or along at least one axis.

  5. Wave reflections from duct terminations.

    PubMed

    Selamet, A; Ji, Z L; Kach, R A

    2001-04-01

    The reflection coefficients and inertial end corrections of several duct terminations, including finite length duct extensions perpendicular to an infinite wall, as well as at a number of angles, curved interface surfaces, and annular cavities, are determined and analyzed in the absence of flow by employing the boundary element method. Predictions for the classical unflanged and flanged circular ducts show good agreement with analytical and computational results available in the literature. The predictions for curved interface surfaces (bellmouth or horn) are also consistent with the available experimental data. In view of its high reflection coefficient, the duct termination with an annular cavity may be suggested for the suppression of noise radiation in a specific frequency band or for an effective wave reflection from the termination. PMID:11325101

  6. Sound propagation in choked ducts

    NASA Technical Reports Server (NTRS)

    Hersh, A. S.; Liu, C. Y.

    1976-01-01

    The linearized equations describing the propagation of sound in variable area ducts containing flow are shown to be singular when the duct mean flow is sonic. The singularity is removed when previously ignored nonlinear terms are retained. The results of a numerical study, for the case of plane waves propagating in a one-dimensional converging-diverging duct, show that the sound field is adequately described by the linearized equations only when the axial mean flow Mach number at the duct throat M sub th 0.6. For M sub th 0.6, the numerical results showed that acoustic energy flux was not conserved. An attempt was made to extend the study to include the nonlinear behavior of the sound field. Meaningful results were not obtained due, primarily, to numerical difficulties.

  7. Airborne lidar mapping of vertical ozone distributions in support of the 1990 Clean Air Act Amendments

    NASA Technical Reports Server (NTRS)

    Uthe, Edward E.; Nielsen, Norman B.; Livingston, John M.

    1992-01-01

    The 1990 Clean Air Act Amendments mandated attainment of the ozone standard established by the U.S. Environmental Protection Agency. Improved photochemical models validated by experimental data are needed to develop strategies for reducing near surface ozone concentrations downwind of urban and industrial centers. For more than 10 years, lidar has been used on large aircraft to provide unique information on ozone distributions in the atmosphere. However, compact airborne lidar systems are needed for operation on small aircraft of the type typically used on regional air quality investigations to collect data with which to develop and validate air quality models. Data presented in this paper will consist of a comparison between airborne differential absorption lidar (DIAL) and airborne in-situ ozone measurements. Also discussed are future plans to improve the airborne ultraviolet-DIAL for ozone and other gas observations and addition of a Fourier Transform Infrared (FTIR) emission spectrometer to investigate the effects of other gas species on vertical ozone distribution.

  8. Fiber optic distributed temperature sensing for the determination of air temperature

    NASA Astrophysics Data System (ADS)

    de Jong, S. A. P.; Slingerland, J. D.; van de Giesen, N. C.

    2015-01-01

    This paper describes a method to correct for the effect of solar radiation in atmospheric distributed temperature sensing (DTS) applications. By using two cables with different diameters, one can determine what temperature a zero diameter cable would have. Such a virtual cable would not be affected by solar heating and would take on the temperature of the surrounding air. With two unshielded cable pairs, one black pair and one white pair, good results were obtained given the general consensus that shielding is needed to avoid radiation errors (WMO, 2010). The correlations between standard air temperature measurements and air temperatures derived from both cables of colors had a high correlation coefficient (r2=0.99) and a RMSE of 0.38 °C, compared to a RMSE of 2.40 °C for a 3.0 mm uncorrected black cable. A thin white cable measured temperatures that were close to air temperature measured with a nearby shielded thermometer (RMSE of 0.61 °C). The temperatures were measured along horizontal cables with an eye to temperature measurements in urban areas, but the same method can be applied to any atmospheric DTS measurements, and for profile measurements along towers or with balloons and quadcopters.

  9. Reverse Flow Engine Core Having a Ducted Fan with Integrated Secondary Flow Blades

    NASA Technical Reports Server (NTRS)

    Kisska, Michael K. (Inventor); Princen, Norman H. (Inventor); Kuehn, Mark S. (Inventor); Cosentino, Gary B. (Inventor)

    2014-01-01

    Secondary air flow is provided for a ducted fan having a reverse flow turbine engine core driving a fan blisk. The fan blisk incorporates a set of thrust fan blades extending from an outer hub and a set of integral secondary flow blades extending intermediate an inner hub and the outer hub. A nacelle provides an outer flow duct for the thrust fan blades and a secondary flow duct carries flow from the integral secondary flow blades as cooling air for components of the reverse flow turbine engine.

  10. Flow duct for nuclear reactors

    DOEpatents

    Straalsund, Jerry L.

    1978-01-01

    Improved liquid sodium flow ducts for nuclear reactors are described wherein the improvement comprises varying the wall thickness of each of the walls of a polygonal tubular duct structure so that each of the walls is of reduced cross-section along the longitudinal center line and of a greater cross-section along wall junctions with the other walls to form the polygonal tubular configuration.

  11. A Feasibility Study. Ductless Hydronic Distribution Systems with Fan Coil Delivery

    SciTech Connect

    Springer, D.; Dakin, B.; Backman, C.

    2012-07-01

    The primary objectives of this study are to estimate potential energy savings relative to conventional ducted air distribution, and to identify equipment requirements, costs, and barriers with a focus on ductless hydronic delivery systems that utilize water-to-air terminal units in each zone. Results indicate that annual heating and cooling energy use can be reduced by up to 27% assuming replacement of the conventional 13 SEER heat pump and coil with a similarly rated air-to-water heat pump.

  12. Guide to Air Cleaners in the Home

    MedlinePlus

    ... Air Duct Cleaning Asthma Health, Energy Efficiency and Climate Change Flood Cleanup Home Remodel Indoor airPLUS Mold Radon ... menu Learn the Issues Air Chemicals and Toxics Climate Change Emergencies Greener Living Health and Safety Land and ...

  13. Bundle duct interaction studies for fuel assemblies. [LMFBR

    SciTech Connect

    Hsia, H.T.S.; Kaplan, S.

    1981-06-01

    It is known that the wire-wrapped rods and duct in an LMFBR are undergoing a gradual structural distortion from the initially uniform geometry under the combined effects of thermal expansion and irradiation induced swelling and creep. These deformations have a significant effect on flow characteristics, thus causing changes in thermal behavior such as cladding temperature and temperature distribution within a bundle. The temperature distribution may further enhance or retard irradiation induced deformation of the bundle. This report summarizes the results of the continuing effort in investigating the bundle-duct interaction, focusing on the need for the large development plant.

  14. Aeroacoustic interaction in a corrugated duct

    NASA Astrophysics Data System (ADS)

    Kop'ev, V. F.; Mironov, M. A.; Solntseva, V. S.

    2008-03-01

    The sound generation by an air flow in a corrugated tube is studied experimentally for different values of the corrugation pitch and different tube lengths. The Strouhal numbers of sound generated in different tubes with different flow velocities lie within 0.4-0.6. As the flow velocity increases, the Strouhal number decreases. The effect of sound absorption by an air flow in a corrugated duct is described: in a corrugated tube with a flow, at frequencies below the generation frequency, the absorption of sound produced by an external source is observed. A semiempirical model of aeroacoustic interaction in a corrugated tube is proposed. The model provides a qualitative agreement with the experiment.

  15. Fungal colonization of fiberglass insulation in the air distribution system of a multi-story office building: VOC production and possible relationship to a sick building syndrome

    NASA Technical Reports Server (NTRS)

    Ahearn, D. G.; Crow, S. A.; Simmons, R. B.; Price, D. L.; Noble, J. A.; Mishra, S. K.; Pierson, D. L.

    1996-01-01

    Complaints characteristic of those for sick building syndrome prompted mycological investigations of a modern multi-story office building on the Gulf coast in the Southeastern United States (Houston-Galveston area). The air handling units and fiberglass duct liner of the heating, ventilating and air conditioning system of the building, without a history of catastrophic or chronic water damage, demonstrated extensive colonization with Penicillium spp and Cladosporium herbarum. Although dense fungal growth was observed on surfaces within the heating-cooling system, most air samples yielded fewer than 200 CFU m-3. Several volatile compounds found in the building air were released also from colonized fiberglass. Removal of colonized insulation from the floor receiving the majority of complaints of mouldy air and continuous operation of the units supplying this floor resulted in a reduction in the number of complaints.

  16. Floc size distributions in dissolved air flotation of Winnipeg tap water.

    PubMed

    Gorczyca, B; Zhang, G

    2007-03-01

    A bench-scale continuous flow dissolved air flotation (DAF) system was operated using Winnipeg tap water. Three different dosages of alum were applied: 41.7 mg l(-1), 25.5 mg l(-1) and 15.5 mg l(-1). Floc size distributions formed at different coagulant dosages were analyzed to identify characteristics of floc size distribution optimal for flotation. Alum dose of 25.5 mg l(-1) was found to be optimal for the bench scale DAF unit in this study. At this dosage, the DAF effluent achieved a turbidity of 0.25 NTU and color of 3.8 TCU, significantly lower than that for the tap water. The optimum floc size distribution at the dose of 25 mg l(-1) had the logarithmic mean size of 27 microm which was close to the size of air bubbles produced by the saturator in this study (30 microm). The results of this study suggest that the DAF treatment process is optimized when the logarithmic mean floc size and bubble size are equal. PMID:17432377

  17. Estimating evaporation duct heights from radar sea echo

    NASA Astrophysics Data System (ADS)

    Rogers, L. Ted; Hattan, Claude P.; Stapleton, Janet K.

    2000-07-01

    The evaporation duct is a downward refracting layer that results from the rapid decrease in humidity with respect to altitude occurring in the atmospheric surface layer above bodies of water. The evaporation duct affects radar detection ranges at frequencies of approximately 1 GHz and above. Models based on Monin-Obukhov similarity theory are usually used to calculate evaporation duct refractivity profiles from bulk measurements of air temperature, humidity, wind speed, and the sea surface temperature. Modeling results by Pappert et al. [1992] indicated that the falloff of radar sea echo as a function of range was an increasing function of the evaporation duct height. On the basis of those results, the authors proposed inferring the evaporation duct height by a slope fit to modeled clutter power, a nonlinear least squares inversion procedure. Data for testing the inversion procedure were obtained using the S band Space Range Radar at Wallops Island, Virginia. Evaporation duct heights were inferred from the radar data on the basis of the assumption of a range-independent evaporation duct height and sea clutter radar cross section (σ°). Validation data consist of buoy and boat in situ bulk measurements. The result of comparing the radar-inferred evaporation duct heights and those calculated from bulk measurements indicates that the radar-inferred duct heights are strongly correlated with those from the in situ measurements, but there is some uncertainty as to whether they are biased or unbiased. That uncertainty arises from the assumed dependence of σ° on the grazing angle ψ. That dependence is currently a matter of debate in the open literature, with the lower and upper ends of modeling results being σ° ∝ ψ0; and σ° ∝ ψ4, respectively. We show results for both dependencies and note that the σ° ∝ ψ0; provides the best agreement with our measurements. It should be noted that inferring the evaporation duct height from radar sea echo is a problem

  18. An inverse problem design method for branched and unbranched axially symmetrical ducts

    NASA Technical Reports Server (NTRS)

    Nelson, C. D.; Yang, T.

    1976-01-01

    This paper concerns the potential flow design of axially symmetrical ducts of both circular and annular cross section with or without wall suction or blowing slots. The objective of the work was to develop a method by which such ducts could be designed with directly prescribed wall pressure variation. Previous axially symmetrical design methods applied only to circular cross sectional ducts and required that the pressure distribution be prescribed along the duct centerline and not along the duct wall. The present method uses an inverse problem approach which extends the method of Stanitz to the axially symmetrical case, and an approximation is used to account for the stagnation point in branched duct designs. Two examples of successful designs of diffusers with suction slots are presented.

  19. Horizontal and vertical distribution of air pollution over Maryland and the Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Loughner, C. P.; Goldberg, D.; Tzortziou, M.; Cede, A.; Abuhassan, N.; Retscher, C.; Weinheimer, A. J.; Ferrare, R. A.; Hostetler, C. A.; Lee, P.; Pickering, K. E.; Crawford, J. H.; Mannino, A.; Herman, J. R.; Knapp, D. J.; Montzka, D.; Marufu, T. L.; Dickerson, R. R.; Hair, J. W.; Rogers, R.; Obland, M. D.

    2011-12-01

    Understanding planetary boundary layer (PBL) development and collapse and the transport of pollutants between the PBL and free troposphere are critical in understanding air quality and climate. The PBL height controls the depth of the atmosphere where emissions near the surface are diluted. Transporting pollutants from the PBL to the free troposphere increases their lifetime and the distance they can travel. This causes pollutants to have a larger impact on climate and allow pollutants to impact air quality farther downwind. Regional models have difficulty calculating a large daytime surface temperature gradient present during the summer along coastlines between relatively cool surface waters and the warm ground. The cooler surface waters cause lower PBL heights over water than over land, and the temperature gradient along the coastline causes local circulations, like sea breezes, to develop and transport pollutants. The horizontal and vertical distribution of air pollution and the PBL height over Maryland and the Chesapeake Bay will be contrasted using ground-, ship-, and aircraft-based observations obtained during the DISCOVER-AQ and GeoCAPE-CBODAQ field campaigns during July 2011 and a regional air quality model. Airborne lidar observations of PBL height and in-situ aircraft profiles of O3, NO, NO2, and NOy mixing ratios; ship-based and ground-based observations of NO2 and O3 integrated column measurements; and ship-based and ground-based in-situ O3, NO, and NOy mixing ratios will be analyzed alongside model output. Model biases and future work on how to improve regional air quality model simulations will be identified.

  20. Effect of Air-Sea coupling on the Frequency Distribution of Intense Tropical Cyclones over the Northwestern Pacific

    NASA Astrophysics Data System (ADS)

    Ogata, Tomomichi; Mizuta, Ryo; Adachi, Yukimasa; Murakami, Hiroyuki; Ose, Tomomaki

    2016-04-01

    Effect of air-sea coupling on the frequency distribution of intense tropical cyclones (TCs) over the northwestern Pacific (NWP) region is investigated using an atmosphere and ocean coupled general circulation model (AOGCM). Monthly varying flux adjustment enables AOGCM to simulate both subseasonal air-sea interaction and realistic seasonal to interannual SST variability. The maximum of intense TC distribution around 20-30°N in the AGCM shifts equatorward in the AOGCM due to the air-sea coupling. Hence AOGCM reduces northward intense TC distribution bias seen in AGCM. Over the NWP, AOGCM-simulated SST variability is large around 20-30°N where the warm mixed layer becomes shallower rapidly. Active entrainment from subsurface water over this region causes stronger SST cooling and hence TC intensity decreases. These results suggest that air-sea coupling characterized by subsurface oceanic condition causes more realistic distribution of intense TCs over the NWP.

  1. Effect of air-sea coupling on the frequency distribution of intense tropical cyclones over the northwestern Pacific

    NASA Astrophysics Data System (ADS)

    Ogata, Tomomichi; Mizuta, Ryo; Adachi, Yukimasa; Murakami, Hiroyuki; Ose, Tomoaki

    2015-12-01

    Effect of air-sea coupling on the frequency distribution of intense tropical cyclones (TCs) over the northwestern Pacific (NWP) region is investigated using an atmosphere and ocean coupled general circulation model (AOGCM). Monthly varying flux adjustment enables AOGCM to simulate both subseasonal air-sea interaction and realistic seasonal to interannual sea surface temperature (SST) variability. The maximum of intense TC distribution around 20-30°N in the AGCM shifts equatorward in the AOGCM due to the air-sea coupling. Hence, AOGCM reduces northward intense TC distribution bias seen in AGCM. Over the NWP, AOGCM-simulated SST variability is large around 20-30°N where the warm mixed layer becomes shallower rapidly. Active entrainment from subsurface water over this region causes stronger SST cooling, and hence, TC intensity decreases. These results suggest that air-sea coupling characterized by subsurface oceanic condition causes more realistic distribution of intense TCs over the NWP.

  2. Heat transfer and pressure distributions on hemisphere-cylinders in methane-air combustion products at Mach 7

    NASA Technical Reports Server (NTRS)

    Weinstein, I.

    1973-01-01

    Heat-transfer and pressure distributions were measured over the surfaces of three hemisphere-cylinder models tested at a nominal Mach number of 7 in the Langley 8-foot high-temperature structures tunnel which uses methane-air products of combustion as a test medium. The results showed that the heat-transfer and pressure distributions over the surface of the models were in good agreement with experimental data obtained in air and also with theoretical predictions.

  3. Distributed pheromone-based swarming control of unmanned air and ground vehicles for RSTA

    NASA Astrophysics Data System (ADS)

    Sauter, John A.; Mathews, Robert S.; Yinger, Andrew; Robinson, Joshua S.; Moody, John; Riddle, Stephanie

    2008-04-01

    The use of unmanned vehicles in Reconnaissance, Surveillance, and Target Acquisition (RSTA) applications has received considerable attention recently. Cooperating land and air vehicles can support multiple sensor modalities providing pervasive and ubiquitous broad area sensor coverage. However coordination of multiple air and land vehicles serving different mission objectives in a dynamic and complex environment is a challenging problem. Swarm intelligence algorithms, inspired by the mechanisms used in natural systems to coordinate the activities of many entities provide a promising alternative to traditional command and control approaches. This paper describes recent advances in a fully distributed digital pheromone algorithm that has demonstrated its effectiveness in managing the complexity of swarming unmanned systems. The results of a recent demonstration at NASA's Wallops Island of multiple Aerosonde Unmanned Air Vehicles (UAVs) and Pioneer Unmanned Ground Vehicles (UGVs) cooperating in a coordinated RSTA application are discussed. The vehicles were autonomously controlled by the onboard digital pheromone responding to the needs of the automatic target recognition algorithms. UAVs and UGVs controlled by the same pheromone algorithm self-organized to perform total area surveillance, automatic target detection, sensor cueing, and automatic target recognition with no central processing or control and minimal operator input. Complete autonomy adds several safety and fault tolerance requirements which were integrated into the basic pheromone framework. The adaptive algorithms demonstrated the ability to handle some unplanned hardware failures during the demonstration without any human intervention. The paper describes lessons learned and the next steps for this promising technology.

  4. Reconstruction of air-shower parameters for large-scale radio detectors using the lateral distribution

    NASA Astrophysics Data System (ADS)

    Kostunin, D.; Bezyazeekov, P. A.; Hiller, R.; Schröder, F. G.; Lenok, V.; Levinson, E.

    2016-02-01

    We investigate features of the lateral distribution function (LDF) of the radio signal emitted by cosmic ray air-showers with primary energies Epr > 0.1 EeV and its connection to air-shower parameters such as energy and shower maximum using CoREAS simulations made for the configuration of the Tunka-Rex antenna array. Taking into account all significant contributions to the total radio emission, such as by the geomagnetic effect, the charge excess, and the atmospheric refraction we parameterize the radio LDF. This parameterization is two-dimensional and has several free parameters. The large number of free parameters is not suitable for experiments of sparse arrays operating at low SNR (signal-to-noise ratios). Thus, exploiting symmetries, we decrease the number of free parameters based on the shower geometry and reduce the LDF to a simple one-dimensional function. The remaining parameters can be fit with a small number of points, i.e. as few as the signal from three antennas above detection threshold. Finally, we present a method for the reconstruction of air-shower parameters, in particular, energy and Xmax (shower maximum), which can be reached with a theoretical accuracy of better than 15% and 30 g/cm2, respectively.

  5. CMAQ (Community Multi-Scale Air Quality) atmospheric distribution model adaptation to region of Hungary

    NASA Astrophysics Data System (ADS)

    Lázár, Dóra; Weidinger, Tamás

    2016-04-01

    For our days, it has become important to measure and predict the concentration of harmful atmospheric pollutants such as dust, aerosol particles of different size ranges, nitrogen compounds, and ozone. The Department of Meteorology at Eötvös Loránd University has been applying the WRF (Weather Research and Forecasting) model several years ago, which is suitable for weather forecasting tasks and provides input data for various environmental models (e.g. DNDC). By adapting the CMAQ (Community Multi-scale Air Quality) model we have designed a combined ambient air-meteorological model (WRF-CMAQ). In this research it is important to apply different emission databases and a background model describing the initial distribution of the pollutant. We used SMOKE (Sparse Matrix Operator Kernel Emissions) model for construction emission dataset from EMEP (European Monitoring and Evaluation Programme) inventories and GEOS-Chem model for initial and boundary conditions. Our model settings were CMAQ CB05 (Carbon Bond 2005) chemical mechanism with 108 x 108 km, 36 x 36 km and 12 x 12 km grids for regions of Europe, the Carpathian Basin and Hungary respectively. i) The structure of the model system, ii) a case study for Carpathian Basin (an anticyclonic weather situation at 21th September 2012) are presented. iii) Verification of ozone forecast has been provided based on the measurements of background air pollution stations. iv) Effects of model attributes (f.e. transition time, emission dataset, parameterizations) for the ozone forecast in Hungary are also investigated.

  6. CASE STUDY OF DUCT RETROFIT OF A 1985 HOME AND GUIDELINES FOR ATTIC AND CRAWL SPACE DUCT SEALING

    SciTech Connect

    Boudreaux, Philip R; Christian, Jeffrey E; Jackson, Roderick K

    2012-01-01

    The U.S. Department of Energy (DOE) is fully committed to research for developing the information and capabilities necessary to provide cost-effective residential retrofits yielding 50% energy savings within the next several years. Heating, ventilation, and air conditioning (HVAC) is the biggest energy end use in the residential sector, and a significant amount of energy can be wasted through leaky ductwork in unconditioned spaces such as attics and crawl spaces. A detailed duct sealing case study is presented for one house along with nine brief descriptions of other duct retrofits completed in the mixed-humid climate. Costs and estimated energy savings are reported for most of the ten houses. Costs for the retrofits ranged from $0.92/ft2 to $1.80/ft2 of living space and estimated yearly energy cost savings due to the duct retrofits range from 1.8% to 18.5%. Lessons learned and duct sealing guidelines based on these ten houses, as well as close work with the HVAC industry in the mixed-humid climate of East Tennessee, northern Georgia, and south-central Kentucky are presented. It is hoped that the lessons learned and guidelines will influence local HVAC contractors, energy auditors, and homeowners when diagnosing or repairing HVAC duct leakage and will be useful for steering DOE s future research in this area.

  7. Laparoscopic common bile duct exploration.

    PubMed

    Vecchio, Rosario; MacFadyen, Bruce V

    2002-04-01

    In recent years, laparoscopic common bile duct exploration has become the procedure of choice in the management of choledocholithiasis in several laparoscopic centers. The increasing interest for this laparoscopic approach is due to the development of instrumentation and technique, allowing the procedure to be performed safely, and it is also the result of the revised role of endoscopic retrograde cholangiopancreatography, which has been questioned because of its cost, risk of complications and effectiveness. Many surgeons, however, are still not familiar with this technique. In this article we discuss the technique and results of laparoscopic common bile duct exploration. Both the laparoscopic transcystic approach and choledochotomy are discussed, together with the results given in the literature. When one considers the costs, morbidity, mortality and the time required before the patient can return to work, it would appear that laparoscopic cholecystectomy with common bile duct exploration is more favorable than open surgery or laparoscopic cholecystectomy with preoperative or postoperative endoscopic sphincterotomy. However, the technique requires advanced laparoscopic skills, including suturing, knot tying, the use of a choledochoscope, guidewire, dilators and balloon stone extractor. Although laparoscopic common bile duct exploration appears to be the most cost-effective method to treat common bile duct stones, it should be emphasized that this procedure is very challenging, and it should be performed by well-trained laparoscopic surgeons with experience in biliary surgery. PMID:11981684

  8. Passive Room-to-Room Air Transfer, Fresno, California (Fact Sheet)

    SciTech Connect

    Not Available

    2014-02-01

    Field testing was performed in a retrofit unoccupied test house in Fresno, California. Three air-based heating, ventilation, and air conditioning (HVAC) distribution systems - a typical airflow ducted system to the bedrooms, a low airflow ducted system to the bedrooms, and a system with no ductwork to the bedrooms - were evaluated during heating, cooling, and midseason conditions. The relative ability of each of the three systems was assessed with respect to relevant Air Conditioning Contractors of America (ACCA) and ASHRAE standards for house temperature uniformity and stability, respectively. Computational fluid dynamics (CFD) modeling also was performed and refined based on comparison to field test results to determine the air flow rate into the bedrooms of over-door and bottom-of-door air transfer grilles.

  9. Differences between the activity size distributions of the different natural radionuclide aerosols in outdoor air

    NASA Astrophysics Data System (ADS)

    Gründel, M.; Porstendörfer, J.

    The results of the activity size distribution of the short-lived ( 218Po, 214Bi/ 214Po) and long-lived ( 210Pb, 210Po) radon decay product aerosols, the thoron decay product aerosols ( 212Pb, 212Po) and 7Be of the outdoor atmosphere are presented. The results were obtained from measurements averaged over an extended period (4 weeks) and were carried out with a low-pressure On-Line Alpha Cascade Impactor (OLACI). The size distributions of the radionuclides were obtained from the same measurement run with the OLACI, so that the size classification technique and the atmospheric and weather conditions for all radionuclides were identical. This measurement technique made it possible to measure the correct differences between the size distributions of the different natural radionuclides in the environmental air. The differences between the activity size distributions of the long- and short-lived radionuclides could be explained by coagulation with aerosol particles of the atmosphere as for instance 210Pb was shown.

  10. Spatial and Temporal Distribution of Ozone Over Houston in the 2006 Texas Air Quality Study

    NASA Astrophysics Data System (ADS)

    Tytell, J.; Johnson, R.; Porter, J.; Businger, S.; Talbot, R.; Troop, D.; Mao, H.

    2006-12-01

    The second Texas Air Quality Study (TexAQS II), which took place during the summer of 2006, combined the efforts of a large number of universities as well as local and federal air quality programs to gather technical information to help policy makers design plans that will improve the air quality over Texas. Contributing to this campaign was a collaborative effort by NOAA, the University of New Hampshire, and the University of Hawaii to gather Lagrangian data on the circulation of ozone and its precursors in the vicinity of Houston. Six smart balloons with buoyancy control were deployed from the La Porte airport in the industrialized sector of Houston. The smart balloon deployments occurred over a three-week period as part of a larger effort to monitor the regional distribution of ozone under specific circulation episodes around Houston. The Lagrangian balloon observations included measurements of ozone concentrations and basic meteorological variables as they moved with and tracked the flow. A team on the ground followed the balloons and collected supplemental data, using a MICROTOPS II ozone monitor and a portable ozone sensor designed by the University of New Hampshire. Our synthesis also includes data from surface monitoring stations, research aircraft, and NOAA's ship, the Ron Brown. The resulting comprehensive analysis aims to provide additional insight into the complex interaction of synoptic-scale flows with local sea-breeze and urban circulations on the pollution distribution over the greater Houston region. A preliminary examination of the ozone measurements suggests that the ozone level in the near-coastal region reached >200 ppbv aloft. However, values dropped to near zero in the outflow from the Greater Houston area, possibly as a result of being titrated by high concentrations of NO.

  11. Carbon Monoxide Distribution over Peninsular Malaysia from the Atmospheric Infrared Sounder (AIRS)

    NASA Astrophysics Data System (ADS)

    Rajab, Jaso M.; MatJafri, M. Z.; Lim, H. S.; Abdullah, K.

    2009-07-01

    The Atmospheric Infrared Sounder (AIRS) onboard NASA's Aqua satellite. It daily coverage of ˜70% of the planet represents a significant evolutionary advance in satellite traces gas remote sensing. AIRS, the part of a large international investment to upgrade the operational meteorological satellite systems, is first of the new generation of meteorological advanced sounders for operational and research use, Providing New Insights into Weather and Climate for the 21st Century. Carbon monoxide (CO) is a ubiquitous, an indoor and outdoor air pollutant, is not a significant greenhouse gas as it absorbs little infrared radiation from the Earth. However, it does have an influence on oxidization in the atmosphere through interaction with hydroxyl radicals (OH), which also react with methane, halocarbons and tropospheric ozone. It produced by the incomplete combustion of fossil fuels and biomass burning, and that it has a role as a smog. The aim of this investigation is to study the (CO) carbon monoxide distribution over Peninsular Malaysia. The land use map of the Peninsular Malaysia was conducted by using CO total column amount, obtained from AIRS data, the map & data was processed and analyzed by using Photoshop & SigmaPlot 11.0 programs and compared for timing of various (day time) (28 August 2005 & 29 August 2007) for both direct comparison and the comparison using the same a priori profile, the CO concentrations in 28/8/2005 higher. The CO maps were generated using Kriging Interpolation technique. This interpolation technique produced high correlation coefficient, R2 and low root mean square error, RMS for CO. This study provided useful information for influence change of CO concentration on varies temperature.

  12. Spatial distribution of air temperature in Toruń (Central Poland) and its causes

    NASA Astrophysics Data System (ADS)

    Przybylak, Rajmund; Uscka-Kowalkowska, Joanna; Araźny, Andrzej; Kejna, Marek; Kunz, Mieczysław; Maszewski, Rafał

    2015-09-01

    In this article, the results of an investigation into the air temperature pattern and development (including the urban heat island (UHI)) in Toruń (central Poland) are presented. For the analysis, daily mean temperature (Ti) as well as daily maximum (Tmax) and minimum (Tmin) temperatures for 2012 gathered for 20 sites, evenly distributed in the area of city, have been taken as source data. Additionally, in order to provide more extensive characteristics of the diversity of the air temperature in the study area, the diurnal temperature range (DTR) and the number of the so-called characteristic days were calculated as well. The impact of weather conditions (cloudiness and wind speed), atmospheric circulation, urban morphological parameters and land cover on the UHI in the study area was investigated. In Toruń, according to the present study, the average UHI intensity in 2012 was equal to 1.0 °C. The rise of cloudiness and wind speed led to a decrease of the magnitude of the UHI. Generally, in most cases, anticyclonic situations favour increased thermal contrast between rural and city areas, particularly in summer. Warm western circulation types significantly reduced temperature differences in the western side of the city and enlarged them in the eastern side of the city. Eastern cold types also have a similar influence on air temperature differences. Positive and statistically significant correlations have been found between the percentage of built-up areas (sealing factor) and air temperature. Conversely, sky view factor (SVF) reveals negative correlations which are statistically significant only for Tmin.

  13. Evaporation duct refractivity profile from satellite meteorological data

    NASA Astrophysics Data System (ADS)

    Levadnyi, Iu.; Ivanov, V.; Shalyapin, V.

    The refractivity profile is initial data for the microwave propagation prediction models Evaporation duct height is usually used to characterize refractivity profile in the surface layer over sea The evaporation duct height is calculated using bulk measurement of air temperature wind speed humidity pressure at some level and sea surface temperature Four prevailing models LKB Liu-Katsaros-Businger RSHMU Russian State Hydro-Meteorological University optimized by us ECMWF European Center for Medium range Weather Forecast and COARE Coupled Ocean-Atmosphere Response Experiment were examined The results of computation using above mentioned models were compared with the direct refractometric measurements All measurements meteorological and refractometric were made by us during two marine expeditions First expedition was in the Atlantic ocean from March to May in latitude 22 circ-32° North and longitude 52 circ-65° West 29 measurements Second one was in the Indian ocean from December to February in latitude 0 circ-15° North and longitude 55 circ-80° East 94 measurements The approximation by least square-root method was carried out to compare the direct measurements of evaporation duct height with the results of computations The minimum square-root error is obtained for LKB model 2 59m for negative air-sea temperature difference 2 42m maximum - for ECMWF model 2 72m All models overestimate low evaporation duct heights and underestimate - high values This effect is least of all define in RSHMU

  14. Evaporation duct communication: Test Plan

    NASA Astrophysics Data System (ADS)

    Anderson, K. D.

    1991-02-01

    The Evaporation Duct Communication (EDCOM) project is an effort to provide an alternative ship-to-ship communications channel using the natural environment. A microwave communication link can be used on an over-the-water, over-the-horizon path through the evaporation duct. This report shows how a microwave communication link, operating at a range separation of more than twice the line-of-sight range, can be constructed. This link can achieve about 80-percent availability at a transmission frequency of 14.5 GHz and can be constructed using off-the-shelf RF equipment. Operation of this link will provide the first set of measurements of channel capacity that can be critically dependent on the existence of an oceanic evaporation duct. Construction of this link presents a unique opportunity to study and evaluate an alternative communications channel that can be used to alleviate naval battlegroup communications load.

  15. Estimating neutral nanoparticle steady state size distribution and growth according to measurements of intermediate air ions

    NASA Astrophysics Data System (ADS)

    Tammet, H.; Komsaare, K.; Hõrrak, U.

    2013-05-01

    The concentration of nanometer aerosol particles in atmospheric air during quiet periods of new particle formation is low and direct measuring is difficult. We study what information about neutral particles can be drawn from measurements of intermediate ions, which are the electrically charged particles between 1.5-7.5 nm in diameter. If the coagulation sink of nanoparticles and the growth rate of charged particles are known, then the steady state equations allow us to calculate the size distribution of neutral nanoparticles. Variations in the trial value of the growth rate have a minor effect on the estimates of the concentrations and size distributions. There exists a value of the constant growth rate of charged nanoparticles that leads to a minimum deviation of the estimated growth rate of neutral nanoparticles from the growth rate of charged nanoparticles. Rough estimates of the growth rate and size distribution of neutral nanoparticles are derived despite the fact that the sample data of intermediate ion measurements is not accompanied by simultaneous measurements of the background aerosol and ionization rate. In the case of a near-median intermediate ion concentration of 21 ± 2 cm-3 in the urban air of a small town, the growth rate of nanoparticles is estimated to be about 2 nm h-1, while the growth flux or apparent nucleation rate is about 0.5 cm-3 s-1 at 3 nm and about 0.08 cm-3 s-1 at 7 nm. The results suggest that the process of new particle formation is not interrupted during the quiet periods between events of intensive nucleation of atmospheric aerosols.

  16. Three-Dimensional Study of the Terminal Portion in Sprague-Dawley Rat Ejaculatory Ducts.

    PubMed

    Motohashi, M; Inomata, T; Takahashi, H; Ichihara, N; Kansaku, N; Ikegami, M; Asari, M; Mutou, T; Wakui, S

    2016-08-01

    In mammals, a pair of ejaculatory ducts exists in the urethra at the seminal colliculus. The detailed anatomical structures of the distal end of the ejaculatory ducts of Sprague-Dawley rats were investigated by the computer-assisted three-dimensional reconstruction analysis using light-microscopic serial sections. A three-dimensional reconstruction revealed that in adult rats, the ejaculatory sinus pair consists of two parts: the cranial section - a compartment region composed of a fusion of the ampullary gland duct and the seminal vesicle duct, and the caudal section - a grooved region composed of a long slitlike ejaculatory ostium that extends into the urethra on both sides of the seminal colliculus. But the sphincter structure was not observed. The long axis of the compartment region was approximately 58 μm in length, and that of the groove region was approximately 495 μm. Although many epithelial glands ducts were distributed throughout the ejaculatory sinuses, the prostate and coagulation gland ducts did not open in these sinuses. The urethra was composed of transitional epithelium, while the ejaculatory sinuses were composed of single to stratified cuboidal epithelium. The ejaculatory ducts continued to the ejaculatory ostium in male adult Sprague-Dawley rat were composed of the seminal vesicle ducts received the ampullary gland ducts. PMID:26268523

  17. Congenital Atresia of Wharton's Duct.

    PubMed

    Hseu, Anne; Anne, Premchand; Anne, Samantha

    2016-02-01

    This is a case report of a three-month-old male who presented to clinic with a cystic lesion under the tongue. On clinical examination, a cystic lesion was observed in the, floor-of-mouth. The patient was referred to Paediatric Otorhinolaryngology service for further management. The differential diagnoses for floor-of-mouth lesions should be reviewed with primary focus on the Wharton's duct atresia and its management. It is crucial to recognize submandibular duct atresia in the primary Paediatric clinic in order to expedite management of lesion before complications arise including infection, enlargement of cyst, and feeding and breathing difficulties. PMID:27042492

  18. Whistler propagation in ionospheric density ducts: Simulations and DEMETER observations

    NASA Astrophysics Data System (ADS)

    Woodroffe, J. R.; Streltsov, A. V.; Vartanyan, A.; Milikh, G. M.

    2013-11-01

    On 16 October 2009, the Detection of Electromagnetic Emissions Transmitted from Earthquake Regions (DEMETER) satellite observed VLF whistler wave activity coincident with an ionospheric heating experiment conducted at HAARP. At the same time, density measurements by DEMETER indicate the presence of multiple field-aligned enhancements. Using an electron MHD model, we show that the distribution of VLF power observed by DEMETER is consistent with the propagation of whistlers from the heating region inside the observed density enhancements. We also discuss other interesting features of this event, including coupling of the lower hybrid and whistler modes, whistler trapping in artificial density ducts, and the interference of whistlers waves from two adjacent ducts.

  19. Aerodynamic size distribution of suspended particulate matter in the ambient air in the city of Cleveland, Ohio

    NASA Technical Reports Server (NTRS)

    Leibecki, H. F.; King, R. B.; Fordyce, J. S.

    1974-01-01

    The City of Cleveland Division of Air Pollution Control and NASA jointly investigated the chemical and physical characteristics of the suspended particulate matter in Cleveland, and as part of the program, measurements of the particle size distribution of ambient air samples at five urban locations during August and September 1972 were made using high-volume cascade impactions. The distributions were evaluated for lognormality, and the mass median diameters were compared between locations and as a function of resultant wind direction. Junge-type distributions were consistent with dirty continental aerosols. About two-thirds of the suspended particulate matter observed in Cleveland is less than 7 microns in diameter.

  20. Particle size distributions of currently used pesticides in ambient air of an agricultural Mediterranean area

    NASA Astrophysics Data System (ADS)

    Coscollà, Clara; Muñoz, Amalia; Borrás, Esther; Vera, Teresa; Ródenas, Milagros; Yusà, Vicent

    2014-10-01

    This work presents first data on the particle size distribution of 16 pesticides currently used in Mediterranean agriculture in the atmosphere. Particulate matter air samples were collected using a cascade impactor distributed into four size fractions in a rural site of Valencia Region, during July to September in 2012 and from May to July in 2013. A total of 16 pesticides were detected, including six fungicides, seven insecticides and three herbicides. The total concentrations in the particulate phase (TSP: Total Suspended Particulate) ranged from 3.5 to 383.1 pg m-3. Most of the pesticides (such as carbendazim, tebuconazole, chlorpyrifos-ethyl and chlorpyrifos-methyl) were accumulated in the ultrafine-fine (<1 μm) and coarse (2.5-10 μm) particle size fractions. Others like omethoate, dimethoate and malathion were presented only in the ultrafine-fine size fraction (<1 μm). Finally, diuron, diphenylamine and terbuthylazine-desethyl-2-OH also show a bimodal distribution but mainly in the coarse size fractions.

  1. Multiagent systems and neural networks of a distributed architecture for target identification of air images

    NASA Astrophysics Data System (ADS)

    Cozien, Roger F.; Rosenberger, Christophe; Eyherabide, Partrick; Rossettini, Joaquim; Ceyrolle, Arnaud

    2000-10-01

    Our purpose is, in medium term, to detect in air images, characteristic shapes and objects such as airports, industrial plants, planes, tanks, truck, ... with great accuracy and low rate of mistakes. However, we also want to value whether the link between neural networks and multi- agents systems is relevant and effective. If it appears to be really effective, we hope to use this kind of technology in other fields. That would be an easy and convenient way to depict and to use the agents' knowledge which is distributed and fragmented. After a first phase of preliminary tests to know if agents are able to give relevant information to a neural network, we verify that only a few agents running on an image are enough to inform the network and let it generalize the agents' distributed and fragmented knowledge. In a second phase, we developed a distributed architecture allowing several multi- agents systems running at the same time on different computers with different images. All those agents send information to a multi neural networks system whose job is to identify the shapes detected by the agents. The name we gave to our project is Jarod.

  2. General Information about Extrahepatic Bile Duct Cancer

    MedlinePlus

    ... Bile Duct Cancer Treatment (PDQ®)–Patient Version General Information About Bile Duct Cancer Go to Health Professional ... the PDQ Adult Treatment Editorial Board . Clinical Trial Information A clinical trial is a study to answer ...

  3. What Are the Key Statistics about Bile Duct Cancer?

    MedlinePlus

    ... for bile duct cancer? What are the key statistics about bile duct cancer? Bile duct cancer is ... it is when it is found. For survival statistics, see the section “ Survival statistics for bile duct ...

  4. Influence of the characteristics of atmospheric boundary layer on the vertical distribution of air pollutant in China's Yangtze River Delta

    NASA Astrophysics Data System (ADS)

    Wang, Chenggang; Cao, Le

    2016-04-01

    Air pollution occurring in the atmospheric boundary layer is a kind of weather phenomenon which decreases the visibility of the atmosphere and results in poor air quality. Recently, the occurrence of the heavy air pollution events has become more frequent all over Asia, especially in Mid-Eastern China. In December 2015, the most severe air pollution in recorded history of China occurred in the regions of Yangtze River Delta and Beijing-Tianjin-Hebei. More than 10 days of severe air pollution (Air Quality Index, AQI>200) appeared in many large cities of China such as Beijing, Tianjin, Shijiazhuang and Baoding. Thus, the research and the management of the air pollution has attracted most attentions in China. In order to investigate the formation, development and dissipation of the air pollutions in China, a field campaign has been conducted between January 1, 2015 and January 28, 2015 in Yangtze River Delta of China, aiming at a intensive observation of the vertical structure of the air pollutants in the atmospheric boundary layer during the time period with heavy pollution. In this study, the observation data obtained in the field campaign mentioned above is analyzed. The characteristics of the atmospheric boundary layer and the vertical distribution of air pollutants in the city Dongshan located in the center of Lake Taihu are shown and discussed in great detail. It is indicated that the stability of the boundary layer is the strongest during the nighttime and the early morning of Dongshan. Meanwhile, the major air pollutants, PM2.5 and PM10 in the boundary layer, reach their maximum values, 177.1μg m-3 and 285μg m-3 respectively. The convective boundary layer height in the observations ranges from approximately 700m to 1100m. It is found that the major air pollutants tend to be confined in a relatively shallow boundary layer, which represents that the boundary layer height is the dominant factor for controlling the vertical distribution of the air pollutants. In

  5. Viscous flow computations for elliptical two-duct version of the SSME hot gas manifold

    NASA Technical Reports Server (NTRS)

    Roger, R. P.

    1986-01-01

    The objective of the effort was to numerically simulate viscous subsonic flow in a proposed elliptical two-duct version of the fuel side Hot Gas Manifold (HGM) for the Space Shuttle Main Engine (SSME). The numerical results were to complement both water flow and air flow experiments in the two-duct geometry performed at NASA-MSFC and Rocketdyne. The three-dimensional character of the HGM consists of two essentially different geometries. The first part of the construction is a concentric shell duct structure which channels the gases from a turbine exit into the second part comprised of two cylindrically shaped transfer ducts. The initial concentric shell portion can be further subdivided into a turnaround section and a bowl section. The turnaround duct (TAD) changes the direction of the mean flow by 180 degress from a smaller radius to a larger radius duct which discharges into the bowl. The cylindrical transfer ducts are attached to the bowl on one side thus providing a plane of symmetry midway between the two. Centerline flow distance from the TAD inlet to the transfer duct exit is approximately two feet. Details of the approach used to numerically simulate laminar or turbulent flow in the HGM geometry are presented. Computational results are presented and discussed.

  6. Moulded calculus of common bile duct mimicking a stenosis

    PubMed Central

    Brocki, Marian; Śmigielski, Jacek

    2014-01-01

    Bile duct stenosis, in most cases, appears to be the consequence of pancreatic head, ampulla of Vater and bile duct tumours, cholangitis sclerosans, as well as iatrogenic damages, which may all be diagnosed during endoscopic retrograde cholangiopancreatography (ERCP). In very rare cases the restriction may result from an atypically shaped wedged stone. This situation creates many diagnostic problems, which in the majority of cases can be solved using imaging studies. However, in some patients even a significant extension of diagnostic procedures may not lead to a correct diagnosis. We present a diagnostically difficult case of a deposit imitating restriction. We present a 70-year-old woman with common bile duct restriction undiagnosed despite several ultrasound examinations (USG), computed tomography (CT), double magnetic resonance cholangiopancreatography (MRCP) and endoscopic retrograde cholangiopancreatography (ERCP). Only after the third ERCP examination a fragmented, by formerly introduced prosthesis, deposit, imitating narrowing, was revealed. Identification of bile duct deposits depends on their composition, localisation and the imaging techniques used. Pigment calculi with atypical shape, bile density, air density or surrounding tissue density are very difficult to diagnose. Thus, the sensitivity of common bile duct stone detection in USG, CT, MRCP and endoscopic ultrasound (EUS) is 5–88%; 6–88%; 73–97%; and 84–98%, respectively. Moreover, ERCP may not diagnose the character of the restriction even in 5.2% up to 30% of the patients. Consequently, assessment of diagnosis in a number of patients is difficult. A deposit imitating common bile duct (CBD) restriction is a rare, difficult to diagnose phenomenon, which should be taken into account during differential diagnosis of CBD restrictions. PMID:25061493

  7. Air quality impacts of distributed energy resources implemented in the northeastern United States.

    PubMed

    Carreras-Sospedra, Marc; Dabdub, Donald; Brouwer, Jacob; Knipping, Eladio; Kumar, Naresh; Darrow, Ken; Hampson, Anne; Hedman, Bruce

    2008-07-01

    Emissions from the potential installation of distributed energy resources (DER) in the place of current utility-scale power generators have been introduced into an emissions inventory of the northeastern United States. A methodology for predicting future market penetration of DER that considers economics and emission factors was used to estimate the most likely implementation of DER. The methodology results in spatially and temporally resolved emission profiles of criteria pollutants that are subsequently introduced into a detailed atmospheric chemistry and transport model of the region. The DER technology determined by the methodology includes 62% reciprocating engines, 34% gas turbines, and 4% fuel cells and other emerging technologies. The introduction of DER leads to retirement of 2625 MW of existing power plants for which emissions are removed from the inventory. The air quality model predicts maximum differences in air pollutant concentrations that are located downwind from the central power plants that were removed from the domain. Maximum decreases in hourly peak ozone concentrations due to DER use are 10 ppb and are located over the state of New Jersey. Maximum decreases in 24-hr average fine particulate matter (PM2.5) concentrations reach 3 microg/m3 and are located off the coast of New Jersey and New York. The main contribution to decreased PM2.5 is the reduction of sulfate levels due to significant reductions in direct emissions of sulfur oxides (SO(x)) from the DER compared with the central power plants removed. The scenario presented here represents an accelerated DER penetration case with aggressive emission reductions due to removal of highly emitting power plants. Such scenario provides an upper bound for air quality benefits of DER implementation scenarios. PMID:18672714

  8. LASE Measurements of Water Vapor, Aerosol, and Cloud Distributions in Saharan Air Layers and Tropical Disturbances

    NASA Technical Reports Server (NTRS)

    Ismail, Syed; Ferrare, Richard A.; Browell, Edward V.; Kooi, Susan A.; Dunion, Jason P.; Heymsfield, Gerry; Notari, Anthony; Butler, Carolyn F.; Burton, Sharon; Fenn, Marta; Krishnamurti, T. N.; Chen, Gao; Anderson, Bruce

    2010-01-01

    LASE (Lidar Atmospheric Sensing Experiment) on-board the NASA DC-8 measured high resolution profiles of water vapor and aerosols, and cloud distributions in 14 flights over the eastern North Atlantic during the NAMMA (NASA African Monsoon Multidisciplinary Analyses) field experiment. These measurements were used to study African easterly waves (AEWs), tropical cyclones (TCs), and the Saharan Air Layer(s) (SAL). Interactions between the SAL and tropical air were observed during the early stages of the TC development. These LASE measurements represent the first simultaneous water vapor and aerosol lidar measurements to study the SAL and its impact on AEWs and TCs. Examples of profile measurements of aerosol scattering ratios, aerosol extinction coefficients, aerosol optical thickness, water vapor mixing ratios, RH, and temperature are presented to illustrate their characteristics in SAL, convection, and clear air regions. LASE data suggest that the SAL suppresses low-altitude convection at the convection-SAL interface region. Mid-level convection associated with the AEW and transport are likely responsible for high water vapor content observed in the southern regions of the SAL on August 20, 2008. This interaction is responsible for the transfer of about 7 x 10(exp 15) J latent heat energy within a day to the SAL. Measurements of lidar extinction-to-backscatter ratios in the range 36+/-5 to 45+/-5 are within the range of measurements from other lidar measurements of dust. LASE aerosol extinction and water vapor profiles are validated by comparison with onboard in situ aerosol measurements and GPS dropsonde water vapor soundings, respectively.

  9. ADS-B within a Multi-Aircraft Simulation for Distributed Air-Ground Traffic Management

    NASA Technical Reports Server (NTRS)

    Barhydt, Richard; Palmer, Michael T.; Chung, William W.; Loveness, Ghyrn W.

    2004-01-01

    Automatic Dependent Surveillance Broadcast (ADS-B) is an enabling technology for NASA s Distributed Air-Ground Traffic Management (DAG-TM) concept. DAG-TM has the goal of significantly increasing capacity within the National Airspace System, while maintaining or improving safety. Under DAG-TM, aircraft exchange state and intent information over ADS-B with other aircraft and ground stations. This information supports various surveillance functions including conflict detection and resolution, scheduling, and conformance monitoring. To conduct more rigorous concept feasibility studies, NASA Langley Research Center s PC-based Air Traffic Operations Simulation models a 1090 MHz ADS-B communication structure, based on industry standards for message content, range, and reception probability. The current ADS-B model reflects a mature operating environment and message interference effects are limited to Mode S transponder replies and ADS-B squitters. This model was recently evaluated in a Joint DAG-TM Air/Ground Coordination Experiment with NASA Ames Research Center. Message probability of reception vs. range was lower at higher traffic levels. The highest message collision probability occurred near the meter fix serving as the confluence for two arrival streams. Even the highest traffic level encountered in the experiment was significantly less than the industry standard "LA Basin 2020" scenario. Future studies will account for Mode A and C message interference (a major effect in several industry studies) and will include Mode A and C aircraft in the simulation, thereby increasing the total traffic level. These changes will support ongoing enhancements to separation assurance functions that focus on accommodating longer ADS-B information update intervals.

  10. An universal description of the particle flux distributions in extended air showers

    SciTech Connect

    Chou, Aaron S.; Arisaka, Katsushi; Pernas, Maximo David Ave; Barnhill, David; Billoir, Pierre; Tripathi, Arun; Yamamoto, Tokonatsu; /Fermilab /UCLA /KICP, Chicago /Paris U., VI-VII

    2005-08-01

    It is shown that the electromagnetic and muonic fluxes in extended air showers (EAS) can be described using a simple model incorporating attenuation and geometrical dispersion. The model uses a reduced set of parameters including the primary energy E, the position of shower maximum X{sub max} relative to the ground, and a muon flux normalization N{sub {mu}}. To a good approximation, this set of three physical parameters is sufficient to predict the variability of the particle fluxes due to systematic differences between different models of composition and hadronic interactions, and due to statistical event-by-event differences in shower development. Measurements of these three physical observables are therefore unbiased and very nearly model-independent, in contrast with standard measurement techniques. The theoretical problem of determining primary composition is thus deconvolved from the measurement procedure, and may be approached in a subsequent analysis of the measured distributions of (E, X{sub max}, N{sub {mu}}).

  11. Local Voltage Support from Distributed Energy Resources to Prevent Air Conditioner Motor Stalling

    SciTech Connect

    Baone, Chaitanya A; Xu, Yan; Kueck, John D

    2010-01-01

    Microgrid voltage collapse often happens when there is a high percentage of low inertia air-conditioning (AC) motors in the power systems. The stalling of the AC motors results in Fault Induced Delayed Voltage Recovery (FIDVR). A hybrid load model including typical building loads, AC motor loads, and other induction motor loads is built to simulate the motoring stalling phenomena. Furthermore, distributed energy resources (DE) with local voltage support capability are utilized to boost the local bus voltage during a fault, and prevent the motor stalling. The simulation results are presented. The analysis of the simulation results show that local voltage support from multiple DEs can effectively and economically solve the microgrid voltage collapse problem.

  12. Mold colonization of fiberglass insulation of the air distribution system: effects on patients with hematological malignancies.

    PubMed

    Takuma, Takahiro; Okada, Kaoru; Yamagata, Akihiro; Shimono, Nobuyuki; Niki, Yoshihito

    2011-02-01

    We investigated mold colonization of air handling units (AHUs) of heating, ventilating, and air conditioning (HVAC) systems and its effects, including invasive pulmonary mycoses and febrile neutropenia, in patients with hematological malignancies. Sample collection with transparent adhesive tape and culture swabs revealed that AHUs were heavily colonized with molds, including thermotolerant, variously distributed Penicillium spp. Cases of nosocomial invasive pulmonary mycosis were not clustered in specific patient rooms but did occur frequently when the HVAC systems were not in use, prior to intervention (i.e., sealing and disuse of AHUs in private room), and during construction of a new hospital building. Multivariate logistic regression analysis of initial episodes of febrile neutropenia showed that the rate of febrile neutropenia was significantly associated with the duration of neutropenia (odds ratio [OR]: 1.16; 95% confidence interval [CI]: 1.07-1.27) and with sex (OR: 0.469; CI: 0.239-0.902). An evaluation of private rooms showed that female patients also had a lower rate of fever after intervention (OR: 0.0016; 95% CI: 0.000-0.209). The reduced rate of febrile neutropenia after intervention suggests that mold colonization of AHUs had adverse effects on patients with hematological malignancies. PMID:20807030

  13. LASE Measurements of Water Vapor, Aerosol, and Cloud Distributions in Saharan Air Layers and Tropical Disturbances

    NASA Technical Reports Server (NTRS)

    Ismail, Syed; Ferrare, Richard; Browell, Edward; Kooi, Susan; Notari, Anthony; Butler, Carolyn; Burton, Sharon; Fenn, Marta; Krishnamurti, T. N.; Dunion, Jason; Heymsfield, Gerry; Anderson, Bruce

    2008-01-01

    LASE (Lidar Atmospheric Sensing Experiment) onboard the NASA DC-8 was used to measure high resolution profiles of water vapor and aerosols, and cloud distributions in 14 flights over the eastern Atlantic region during the NAMMA (NASA African Monsoon Multidisciplinary Analyses) field experiment, which was conducted from August 15 to September 12, 2006. These measurements were made in conjunction with flights designed to study African Easterly Waves (AEW), Tropical Disturbances (TD), and Saharan Aerosol Layers (SALs) as well as flights performed in clear air and convective regions. As a consequence of their unique radiative properties and dynamics, SAL layers have a significant influence in the development of organized convection associated with TD. Interactions of the SAL with tropical air during early stages of the development of TD were observed. These LASE measurements represent the first simultaneous water vapor and aerosol lidar measurements to study the SAL and its impact on TDs and hurricanes. Seven AEWs were studied and four of these evolved into tropical storms and three did not. Three out of the four tropical storms evolved into hurricanes.

  14. Distribution and air-sea fluxes of carbon dioxide on the Chukchi Sea shelf

    NASA Astrophysics Data System (ADS)

    Pipko, I. I.; Pugach, S. P.; Repina, I. A.; Dudarev, O. V.; Charkin, A. N.; Semiletov, I. P.

    2015-12-01

    This article presents the results of long-term studies of the dynamics of carbonate parameters and air-sea carbon dioxide fluxes on the Chukchi Sea shelf during the summer. As a result of the interaction of physical and biological factors, the surface waters on the west of Chukchi Sea were undersaturated with carbon dioxide when compared with atmospheric air; the partial pressure of CO2 varied in the range from 134 to 359 μatm. The average value of CO2 flux in the Chukchi Sea per unit area varied in the range from-2.4 to-22.0 mmol /(m2 day), which is significantly higher than the average value of CO2 flux in the World Ocean. It has been estimated that the minimal mass of C absorbed by the surface of Chukchi Sea from the atmosphere during ice-free season is 13 × 1012 g; a great part of this carbon is transported to the deeper layers of sea and isolated from the atmosphere for a long period of time. The studies of the carbonate system of the Chukchi Sea, especially of its western part, will provide some new data on the fluxes of carbon dioxide in the Arctic Ocean and their changes. Our analysis can be used for an interpretation of the satellite assessment of CO2 fluxes and dissolved CO2 distribution in the upper layers of the ocean.

  15. Vertical distribution of the Saharan Air Layer from 5 years of CALIPSO observations

    NASA Astrophysics Data System (ADS)

    Tsamalis, C.; Chédin, A.

    2012-04-01

    The Saharan Air Layer (SAL) forms as dry and hot air moves across the Sahara desert. SAL, containing substantial amounts of mineral dust, is a dominant feature that influences the large scale environment from West Africa to eastern tropical America, inhibiting tropical cyclogenesis and Atlantic hurricane formation. Furthermore, SAL dust aerosols have a strong impact on the energy budget through the so-called direct and indirect effects. The SAL has been studied with dedicated campaigns at the two sides of the Atlantic or using space observations due to lack of systematic in situ measurements away from the continents. However the campaigns are restricted in time, while satellite observations of thermodynamic variables are affected by the presence of dust. Moreover, satellite measurements of aerosols, particularly in the visible, mostly provide column integrated properties like the optical depth, without information about the vertical distribution. On the other hand, new generation infrared sounders now bring reliable information on the dust layer mean altitude, but their new established results need further validation. However, the two-wavelength lidar CALIOP, launched on board CALIPSO in April 2006, permits an accurate determination of the aerosol vertical distribution, on a global scale. Thanks to depolarisation at 532 nm, CALIOP is able to discriminate between dust and other types of aerosols, which generally do not depolarize light. Here, the L2 5 km aerosol layer product (version 3.01) is used to calculate the vertical distribution of the dust aerosols above the Atlantic during the last 5 years (June 2006 - May 2011) with a horizontal resolution of 1 degree for the four seasons. More specifically, two classes of aerosols are used from the L2 product: dust and polluted dust, in order to take into account the change of dust aerosols optical properties with transport. Results show the latitudinal displacement of the SAL between winter [-5, 15]°N and summer [10

  16. Wind Turbine With Concentric Ducts

    NASA Technical Reports Server (NTRS)

    Muhonen, A. J.

    1983-01-01

    Wind Turbine device is relatively compact and efficient. Converging inner and outer ducts increase pressure difference across blades of wind turbine. Turbine shaft drives alternator housed inside exit cone. Suitable for installation on such existing structures as water towers, barns, houses, and commercial buildings.

  17. Vitellointestinal Duct Anomalies in Infancy

    PubMed Central

    Kadian, Yogender Singh; Verma, Anjali; Rattan, Kamal Nain; Kajal, Pardeep

    2016-01-01

    Background: Vitellointestinal duct (VID) or omphalomesenteric duct anomalies are secondary to the persistence of the embryonic vitelline duct, which normally obliterates by weeks 5–9 of intrauterine life. Methods: This is a retrospective analysis of a total of 16 patients of symptomatic remnants of vitellointestinal duct from period of Jan 2009 to May 2013. Results: Male to female ratio (M:F) was 4.3:1 and mean age of presentation was 2 months and their mode of presentation was: patent VID in 9 (56.25%) patients, umbilical cyst in 2(12.25%), umbilical granuloma in 2 (12.25%), and Meckel diverticulum as content of hernia sac in obstructed umbilical hernia in 1 (6.25%) patient. Two patients with umbilical fistula had severe electrolyte disturbance and died without surgical intervention. Conclusion: Persistent VID may have varied presentations in infancy. High output umbilical fistula and excessive bowel prolapse demand urgent surgical intervention to avoid morbidity and mortality. PMID:27433448

  18. Design and performance of duct acoustic treatment

    NASA Technical Reports Server (NTRS)

    Motsinger, R. E.; Kraft, R. E.

    1991-01-01

    The procedure for designing acoustic treatment panels used to line the walls of aircraft engine ducts and for estimating the resulting suppression of turbofan engine duct noise is discussed. This procedure is intended to be used for estimating noise suppression of existing designs or for designing new acoustic treatment panels and duct configurations to achieve desired suppression levels.

  19. 46 CFR 116.610 - Ventilation ducts.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... requirements relative to the passage of smoke and flame as the fire control boundary penetrated; (2) A steel duct penetrating an A-Class fire control boundary must be of at least 11 USSG, and a steel duct... duct penetrating an A-Class fire control boundary and opening into a space formed by that boundary...

  20. 46 CFR 116.610 - Ventilation ducts.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... requirements relative to the passage of smoke and flame as the fire control boundary penetrated; (2) A steel duct penetrating an A-Class fire control boundary must be of at least 11 USSG, and a steel duct... duct penetrating an A-Class fire control boundary and opening into a space formed by that boundary...

  1. Improved Duct Systems Task Report with StageGate 2 Analysis

    SciTech Connect

    Moyer, Neil; Stroer, Dennis

    2007-12-31

    This report is about Building America Industrialized Housing Partnership's work with two industry partners, Davalier Homes and Southern Energy Homes, in constructing and evaluating prototype interior duct systems. Issues of energy performance, comfort, DAPIA approval, manufacturability and cost is addressed. A stage gate 2 analysis addresses the current status of project showing that there are still refinements needed to the process of incorporating all of the ducts within the air and thermal boundaries of the envelope.

  2. Optimization and investigation of the effect of velocity distribution of air curtains on the performance of food refrigerated display cabinets

    NASA Astrophysics Data System (ADS)

    Wu, XueHong; Chang, ZhiJuan; Ma, QiuYang; Lu, YanLi; Yin, XueMei

    2016-08-01

    This paper focuses on improving the performance of the vertical open refrigerated display cabinets (VORDC) by optimizing the structure of deflector, which is affected by inlet velocity and velocity distribution of air curtains. The results show that the temperature of products located at the front and at the rear reduces as the increases of inlet velocity of air curtains. The increase of the inlet velocity of air curtains can strengthen the disturbance inside the VORDC, and also decrease the temperature of products inside the VORDC; the increase of the outer velocity of air curtain will exacerbate the disturbance outside the VORDC and decrease air curtain's performance. The present study can provide a theoretical foundation for the design of VORDC.

  3. Simulation of effects of direction and air flow speed on temperature distribution in the room covered by various roof materials

    NASA Astrophysics Data System (ADS)

    Sukanto, H.; Budiana, E. P.; Putra, B. H. H.

    2016-03-01

    The objective of this research is to get a comparison of the distribution of the room temperature by using three materials, namely plastic-rubber composite, clay, and asbestos. The simulation used Ansys Fluent to get the temperature distribution. There were two conditions in this simulations, first the air passing beside the room and second the air passing in front of the room. Each condition will be varied with the air speed of 1 m/s, 2 m/s, 3 m/s, 4 m/s, 5 m/s for each material used. There are three heat transfers in this simulation, namely radiation, convection, and conduction. Based on the ANSI/ ASHRAE Standard 55-2004, the results of the simulation showed that the best temperature distribution was the roof of plastic-rubber composites.

  4. Effect of the Trendelenburg position on the distribution of arterial air emboli in dogs

    NASA Technical Reports Server (NTRS)

    Butler, Bruce D.; Laine, Glen A.; Leiman, Basil C.; Warters, Dave; Kurusz, Mark

    1988-01-01

    The effect of Trendelenburg position (TP) on the distribution of arterial air emboli in dogs was examined in a two-part investigation. In the first part, the effects of the bubble size and the vessel angle on the bubble velocity and the direction of flow were investigated in vitro, using a simulated carotid artery preparation. It was found that larger bubbles increased in velocity in the same direction as the blood flow at 0-, 10-, and 30-deg vessel angles, and decreased when the vessel was positioned at 90 deg. Smaller bubbles did not change velocity from 0 to 30 deg, but acted to increase the velocity, in the same direction as the flood flow, at 90 deg. The second series of experiments examined the effect of 0 to 30 deg TP on carotid-artery distribution of gas bubbles injected into the left ventricle or ascending aorta of anesthetized dogs. It was found that, regardless of the degree of the TP, the bubbles passed into the carotid artery simultaneously with the passage into the abdominal aorta. It is concluded that the TP does not prevent arterial bubbles from reaching the brain.

  5. Source contributions to the size and composition distribution of urban particulate air pollution

    NASA Astrophysics Data System (ADS)

    Kleeman, Michael J.; Cass, Glen R.

    A mechanistic air quality model has been constructed which is capable of predicting the contribution of individual emissions source types to the size- and chemical-composition distribution of airborne particles. This model incorporates all of the major aerosol processes relevant to regional air pollution studies including emissions, transport, deposition, gas-to-particle conversion and fog chemistry. In addition, the aerosol is represented as a source-oriented external mixture which is allowed to age in a more realistic fashion than can be accomplished when fresh particle-phase emissions are averaged into the pre-existing atmospheric aerosol size and composition distribution. A source-oriented external mixture is created by differentiating the primary particles emitted from the following source types: catalyst-equipped gasoline engines, non-catalyst-equipped gasoline engines, diesel engines, meat cooking, paved road dust, crustal material from sources other than paved road dust, and sulfur-bearing particles from fuel burning and industrial processes. Discrete primary seed particles from each of these source types are emitted into a simulation of atmospheric transport and chemical reaction. The individual particles evolve over time in the presence of gas-to-particle conversion processes while retaining information on the initial source from which they were emitted. The source- and age-resolved particle mechanics model is applied to the 1987 August SCAQS episode and comparisons are made between model predictions and observations at Claremont, CA. The model explains the origin of the bimodal character of the sub-micron aerosol size distribution. The mode located between 0.2 and 0.3 μm particle diameter is shaped by transformed emissions from diesel engines and meat cooking operations with lesser contributions from gasolinepowered vehicles and other fuel burning. The larger mode located at 0.7-0.8 μm particle diameter is due to fine particle background aerosol that

  6. Progenitor cell niches in the human pancreatic duct system and associated pancreatic duct glands: an anatomical and immunophenotyping study.

    PubMed

    Carpino, Guido; Renzi, Anastasia; Cardinale, Vincenzo; Franchitto, Antonio; Onori, Paolo; Overi, Diletta; Rossi, Massimo; Berloco, Pasquale Bartolomeo; Alvaro, Domenico; Reid, Lola M; Gaudio, Eugenio

    2016-03-01

    Pancreatic duct glands (PDGs) are tubule-alveolar glands associated with the pancreatic duct system and can be considered the anatomical counterpart of peribiliary glands (PBGs) found within the biliary tree. Recently, we demonstrated that endodermal precursor niches exist fetally and postnatally and are composed functionally of stem cells and progenitors within PBGs and of committed progenitors within PDGs. Here we have characterized more extensively the anatomy of human PDGs as novel niches containing cells with multiple phenotypes of committed progenitors. Human pancreata (n = 15) were obtained from cadaveric adult donors. Specimens were processed for histology, immunohistochemistry and immunofluorescence. PDGs were found in the walls of larger pancreatic ducts (diameters > 300 μm) and constituted nearly 4% of the duct wall area. All of the cells identified were negative for nuclear expression of Oct4, a pluripotency gene, and so are presumably committed progenitors and not stem cells. In the main pancreatic duct and in large interlobular ducts, Sox9(+) cells represented 5-30% of the cells within PDGs and were located primarily at the bottom of PDGs, whereas rare and scattered Sox9(+) cells were present within the surface epithelium. The expression of PCNA, a marker of cell proliferation, paralleled the distribution of Sox9 expression. Sox9(+) PDG cells proved to be Pdx1(+) /Ngn3(+/-) /Oct4A(-) . Nearly 10% of PDG cells were positive for insulin or glucagon. Intercalated ducts contained Sox9(+) /Pdx1(+) /Ngn3(+) cells, a phenotype that is presumptive of committed endocrine progenitors. Some intercalated ducts appeared in continuity with clusters of insulin-positive cells organized in small pancreatic islet-like structures. In summary, PDGs represent niches of a population of Sox9(+) cells exhibiting a pattern of phenotypic traits implicating a radial axis of maturation from the bottoms of the PDGs to the surface of pancreatic ducts. Our results complete the

  7. Evaluating the Spatial Distribution of Toxic Air Contaminants in Multiple Ecosystem Indicators in the Sierra Nevada-Southern Cascades

    NASA Astrophysics Data System (ADS)

    Nanus, L.; Simonich, S. L.; Rocchio, J.; Flanagan, C.

    2013-12-01

    Toxic air contaminants originating from agricultural areas of the Central Valley in California threaten vulnerable sensitive receptors including surface water, vegetation, snow, sediments, fish, and amphibians in the Sierra Nevada-Southern Cascades region. The spatial distribution of toxic air contaminants in different ecosystem indicators depends on variation in atmospheric concentrations and deposition, and variation in air toxics accumulation in ecosystems. The spatial distribution of organic air toxics and mercury at over 330 unique sampling locations and sample types over two decades (1990-2009) in the Sierra Nevada-Southern Cascades region were compiled and maps were developed to further understand spatial patterns and linkages between air toxics deposition and ecological effects. Potential ecosystem impacts in the Sierra Nevada-Southern Cascades region include bioaccumulation of air toxics in both aquatic and terrestrial ecosystems, reproductive disruption, and immune suppression. The most sensitive ecological end points in the region that are affected by bioaccumulation of toxic air contaminants are fish. Mercury was detected in all fish and approximately 6% exceeded human consumption thresholds. Organic air toxics were also detected in fish yielding variable spatial patterns. For amphibians, which are sensitive to pesticide exposure and potential immune suppression, increasing trends in current and historic use pesticides are observed from north to south across the region. In other indicators, such as vegetation, pesticide concentrations in lichen increase with increasing elevation. Current and historic use pesticides and mercury were also observed in snowpack at high elevations in the study area. This study shows spatial patterns in toxic air contaminants, evaluates associated risks to sensitive receptors, and identifies data gaps. Future research on atmospheric modeling and information on sources is needed in order to predict which ecosystems are the

  8. Axial-slot Air Admission for Controlling Performance of a One-quarter-annulus Turbojet Combustor and Comparison with Complete Engine

    NASA Technical Reports Server (NTRS)

    Mark, H; Mark, Herman; Zettle, Eugene V

    1952-01-01

    An investigation of a single-annulus turbojet combustor with slot-type air admission was conducted to demonstrate the application of certain design principles to the control of outlet-gas temperature distributions. Comparisons of performance of a one-quarter-annulus combustor (duct-type installation) and a full-annulus combustor (obtained in a full-scale turbojet engine) are presented to indicate the applicability of results obtained from combustion studies conducted in duct-type installations. A reasonable correlation existed between the performance of the one-quarter-annulus and full-annulus combustors except for temperature distribution. Sufficient trends did exist which made it possible to predict temperature distributions for the engine, although absolute correlation did not exist. A radial temperature distribution similar to that required for a given engine was obtained using a one-quarter-annulus duct-type setup to predict results.

  9. Atrophy of submandibular gland by the duct ligation and a blockade of SP receptor in rats

    PubMed Central

    Hishida, Sumiyo; Ozaki, Noriyuki; Honda, Takashi; Shigetomi, Toshio; Ueda, Minoru; Hibi, Hideharu; Sugiura, Yasuo

    2016-01-01

    ABSTRACT To clarify the mechanisms underlying the submandibular gland atrophies associated with ptyalolithiasis, morphological changes were examined in the rat submandibular gland following either surgical intervention of the duct or functional blockade at substance P receptors (SPRs). Progressive acinar atrophy was observed after duct ligation or avulsion of periductal tissues. This suggested that damage to periductal tissue involving nerve fibers might contribute to ligation-associated acinar atrophy. Immunohistochemically labeled-substance P positive nerve fibers (SPFs) coursed in parallel with the main duct and were distributed around the interlobular, striated, granular and intercalated duct, and glandular acini. Strong SPR immunoreactivity was observed in the duct. Injection into the submandibular gland of a SPR antagonist induced marked acinar atrophy. The results revealed that disturbance of SPFs and SPRs might be involved in the atrophy of the submandibular gland associated with ptyalolithiasis. PMID:27303108

  10. Pressure losses across multiple fittings in ventilation ducts.

    PubMed

    Ai, Z T; Mak, C M

    2013-01-01

    The accurate prediction of pressure losses across in-duct fittings is of significance in relation to the accurate sizing and good energy efficiency of air-delivery systems. Current design guides provide design methods and data for the prediction of pressure losses only for a single and isolated fitting. This study presents an investigation of pressure losses across multiple interactive in-duct fittings in a ventilation duct. A laboratory measurement of pressure losses across one fitting and multiple fittings in a ventilation duct is carried out. The pressure loss across multiple interactive fittings is lower than that across multiple similar individual fittings, while the percentage decrease is dependent on the configuration and combination of the fittings. This implies that the pressure loss across multiple closely mounted fittings calculated by summing the pressure losses across individual fittings, as provided in the ASHRAE handbook and the CIBSE guide, is overpredicted. The numerical prediction of the pressure losses across multiple fittings using the large-eddy simulation (LES) model shows good agreement with the measured data, suggesting that this model is a useful tool in ductwork design and can help to save experimental resources and improve experimental accuracy and reliability. PMID:24385871

  11. Pressure Losses across Multiple Fittings in Ventilation Ducts

    PubMed Central

    Ai, Z. T.; Mak, C. M.

    2013-01-01

    The accurate prediction of pressure losses across in-duct fittings is of significance in relation to the accurate sizing and good energy efficiency of air-delivery systems. Current design guides provide design methods and data for the prediction of pressure losses only for a single and isolated fitting. This study presents an investigation of pressure losses across multiple interactive in-duct fittings in a ventilation duct. A laboratory measurement of pressure losses across one fitting and multiple fittings in a ventilation duct is carried out. The pressure loss across multiple interactive fittings is lower than that across multiple similar individual fittings, while the percentage decrease is dependent on the configuration and combination of the fittings. This implies that the pressure loss across multiple closely mounted fittings calculated by summing the pressure losses across individual fittings, as provided in the ASHRAE handbook and the CIBSE guide, is overpredicted. The numerical prediction of the pressure losses across multiple fittings using the large-eddy simulation (LES) model shows good agreement with the measured data, suggesting that this model is a useful tool in ductwork design and can help to save experimental resources and improve experimental accuracy and reliability. PMID:24385871

  12. Semi-empirical analysis of liquid fuel distribution downstream of a plain orifice injector under cross-stream air flow

    NASA Astrophysics Data System (ADS)

    Chin, J. S.; Jiang, H. K.; Cao, M. H.

    1981-07-01

    A simple, flat-fan spray model is proposed, which can with two empirical parameters predict both the value and the position of liquid fuel distribution curve maximums downstream of a plain orifice injector under high-velocity cross flow. It was found that the model is useful in the preliminary design of the fan air flow portion of a turbofan afterburner, due to its ability to predict the influence on liquid fuel distribution of (1) such flow parameters as air velocity and viscosity, pressure and temperature; (2) injector parameters such as diameter and injection velocity; and (3) liquid properties including viscosity, density, and surface tension.

  13. 21. STATION 70.5 OF MST, WEST SIDE. AIRCONDITIONING DUCT AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. STATION 70.5 OF MST, WEST SIDE. AIR-CONDITIONING DUCT AT TOP; POWER BOX ON RIGHT; WINCH ON LEFT. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  14. Intake fraction assessment of the air pollutant exposure implications of a shift toward distributed electricity generation

    NASA Astrophysics Data System (ADS)

    Heath, Garvin A.; Granvold, Patrick W.; Hoats, Abigail S.; W Nazaroff, William

    Small-scale, distributed electricity generation (DG) technologies have been promoted for their many benefits as compared to the traditional paradigm of large, centralized power plants. To evaluate the implications for human inhalation exposure resulting from a shift toward DG, we combined Gaussian plume modeling and a GIS-based inhalation exposure assessment of existing and hypothetical power-generation facilities in California. Twenty-five existing central stations (CSs) were analyzed and compared with hypothetical DG technologies deployed in the downtown areas of the 11 most populous cities in California. The intake fraction (iF) for primary pollutants was computed for populations living within 100 km of each source, using meteorological conditions typical of the long-term observational record and population, lifetime-average breathing rates. The iF (a dimensionless term representing the proportion of pollutant mass emitted by a source that is eventually inhaled) concisely expresses the source-to-intake relationship, is independent of the emissions characteristics of the plants assessed, and normalizes for the large scale differences between the two paradigms of electricity generation. The median iF for nonreactive primary pollutants emitted from the 25 CSs is 0.8 per million compared to 16 per million for the 11 DG units. The difference is partly attributable to the closer proximity of DG sources to densely populated areas as compared to typical CS facilities. In addition, the short stacks of DG sources emphasize near-source population exposure more than traditional CSs, and increase exposures during periods of low wind speed, low mixing height and stable atmospheric conditions. Strategies that could reduce the potential increase in air pollutant intake from DG include maximally utilizing waste heat in combined heat and power operations, increasing the release height of DG effluents and deploying DG technologies that do not emit air pollutants.

  15. Optical characterization of MEMS-based multiple air-dielectric blue-spectrum distributed Bragg reflectors

    NASA Astrophysics Data System (ADS)

    Ghaderi, M.; Ayerden, N. P.; de Graaf, G.; Wolffenbuttel, R. F.

    2015-05-01

    The optical performance of a distributed Bragg reflector (DBR) is typically the determining factor in many optical MEMS devices and is mainly limited by the number of the periods (number of layers) and the refractive index contrast (RIC) of the materials used. The number of suitable available materials is limited and implementing a large number of periods increases the process complexity. Using air as a low-index material improves the RIC by almost 50% as compared with most conventional layer combinations and hence provides a higher optical performance at a given number of layers. This paper presents the design, fabrication, and optical characterization of multiple air-SiO2 Bragg reflectors with two airgap layers designed for the visible spectrum. Alternate polysilicon deposition and silicon-dioxide growth on the wafers followed by the selective etching of polysilicon layers in a TMAH-based solution results in a layer stack according to the optical design. However, unlike the conventional MEMS processes, fabrication of a blue-band airdielectric DBR demands several sacrificial layers in the range of 100 nm. Therefore, a successful release of the membrane after wet-etching is critical to the successful performance of the device. In this study, several DBRs with two periods have been fabricated using a CO2 supercritical drying process. The wide-area reflection measurements showed a peak reflectance of 65% and an FWHM of about 100 nm for a DBR centered at 500 nm. DBRs centered on 400 nm gave a much wider spectral response. This paper presents preliminary optical characterization results and discusses the challenges for a reflector design in the blue-visible range.

  16. Designing insulation for cryogenic ducts

    NASA Astrophysics Data System (ADS)

    Love, C. C.

    1984-03-01

    It is pointed out that the great temperature difference between the outside of a cryogenic duct and the liquified gas it carries can cause a high heat input unless blocked by a high thermal resistance. High thermal resistance for lines needing maximum insulation is provided by metal vacuum jackets. Low-density foam is satisfactory in cases in which higher heat input can be tolerated. Attention is given to the heat transfer through a duct vacuum jacket, the calculation of heat input and the exterior surface's steady-state temperature for various thicknesses of insulation, the calculation of the heat transfer through gimbal jackets, and design specifications regarding the allowable pressure rise in the jacket's annular space.

  17. Tear-ducts in wine

    NASA Astrophysics Data System (ADS)

    Bush, John W. M.

    1999-11-01

    We examine the radial spoke pattern evident in the meniscus region in glasses of strong alcoholic beverages exhibiting the `tears-in-wine' phenomenon. We demonstrate that the pattern results from ridge-like elevations of the free surface which are supported by evaporatively-driven Marangoni convection in the meniscus region. Vortices associated with the convective motions are aligned in the radial direction by the surface tension gradient responsible for the generation of tears. The radial flow is focussed into the ridges, which thus serve as the principal conduits of fluid for the tears; consequently, we refer to the ridges as `tear-ducts'. The phenomenon is examined experimentally, and a numerical model of evaporatively-driven Marangoni convection is developed which reproduces the salient features of the tear-duct phenomenon.

  18. HAARP-Induced Ionospheric Ducts

    SciTech Connect

    Milikh, Gennady; Vartanyan, Aram

    2011-01-04

    It is well known that strong electron heating by a powerful HF-facility can lead to the formation of electron and ion density perturbations that stretch along the magnetic field line. Those density perturbations can serve as ducts for ELF waves, both of natural and artificial origin. This paper presents observations of the plasma density perturbations caused by the HF-heating of the ionosphere by the HAARP facility. The low orbit satellite DEMETER was used as a diagnostic tool to measure the electron and ion temperature and density along the satellite orbit overflying close to the magnetic zenith of the HF-heater. Those observations will be then checked against the theoretical model of duct formation due to HF-heating of the ionosphere. The model is based on the modified SAMI2 code, and is validated by comparison with well documented experiments.

  19. Small duct primary sclerosing cholangitis without inflammatory bowel disease is genetically different from large duct disease

    PubMed Central

    Næss, Sigrid; Björnsson, Einar; Anmarkrud, Jarl A.; Al Mamari, Said; Juran, Brian D.; Lazaridis, Konstantinos N.; Chapman, Roger; Bergquist, Annika; Melum, Espen; Marsh, Steven G. E.; Schrumpf, Erik; Lie, Benedicte A.; Boberg, Kirsten Muri; Karlsen, Tom H.; Hov, Johannes R.

    2014-01-01

    Background & aims Small duct primary sclerosing cholangitis (PSC) is phenotypically a mild version of large duct PSC, but it is unknown whether these phenotypes share aetiology. We aimed to characterize their relationship by investigating genetic associations in the HLA complex, which represent the strongest genetic risk factors in large duct PSC. Methods Four classical HLA loci (HLA-A, HLA-B, HLA-C, HLA-DRB1) were genotyped in 87 small duct PSC patients, 485 large duct PSC patients and 1117 controls across three geographical regions. Results HLA-DRB1*13:01 (OR=2.0, 95% CI 1.2–3.4, P=0.01) and HLA-B*08 (OR=1.6, 95% CI 1.1–2.4, P=0.02) were significantly associated with small duct PSC compared with healthy controls. Based on the observed frequency of HLA-B*08 in small duct PSC, the strongest risk factor in large duct PSC, an estimated 32% (95% CI 4%–65%) of this population can be hypothesized to represent early stages or mild variants of large duct PSC. This subgroup may be constituted by small duct PSC patients with inflammatory bowel disease (IBD), which greatly resembled large duct PSC in its HLA association. In contrast, small duct PSC without IBD was only associated with HLA-DRB1*13:01(P=0.03) and was otherwise distinctly dissimilar from large duct PSC. Conclusions Small duct PSC with IBD resembles large duct PSC in its HLA association and may represent early stages or mild variants of large duct disease. Different HLA associations in small duct PSC without IBD could indicate that this subgroup is a different entity. HLA-DRB1*13:01 may represent a specific risk factor for inflammatory bile duct disease. PMID:24517468

  20. Experimental investigation of the liquid fuel evaporation in a premix duct for lean premixed and prevaporized combustion

    SciTech Connect

    Brandt, M.; Gugel, K.O.; Hassa, C.

    1997-10-01

    Liquid fuel evaporation was investigated in a premix duct, operating at conditions expected for lean premixed and prevaporized combustion. Results from a flat prefilming airblast atomizer are presented. Kerosine Jet A was used in all experiments. Air pressure, air temperature, and liquid fuel flow rate were varied separately; their relative influences on atomization, evaporation, and fuel dispersion are discussed. The results show that at pressures up to 15 bars and temperatures up to 850 K, nearly complete evaporation of the fuel was achieved, without autoignition of the fuel. For the configuration tested, the fuel distributions of the liquid and evaporated fuel show very little difference in their dispersion characteristics and were not much affected by a variation of the operating conditions.

  1. Release and distribution of Lilioceris cheni (Coleoptera: Chrysomelidae), a biological control agent of air potato (Dioscorea bulbilfera: Dioscoreaceae), in Florida

    Technology Transfer Automated Retrieval System (TEKTRAN)

    From 2012 to 2015, 429,668 Lilioceris cheni Gressit and Kimoto (Coleoptera: Chrysomelidae) were released in Florida for biological control of air potato [Dioscorea bulbilfera L. (Dioscoreaceae)]. The spatial distribution of releases was highly aggregated, with several areas of high density releases ...

  2. NUMERICAL OPTIMIZATION TECHNIQUES IN AIR QUALITY MODELING. OBJECTIVE INTERPOLATION FORMULAE FOR THE SPATIAL DISTRIBUTION OF POLLUTANT CONCENTRATION

    EPA Science Inventory

    A technique is proposed for objective interpolation of the air quality distribution over a region in terms of sparse measurement data. Empirical information provided by the latter is effectively combined with knowledge of atmospheric dispersion functions of the type commonly used...

  3. Droplet size distributions of adjuvant-amended sprays from an air-assisted five-port PWM nozzle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Verification of droplet size distributions is essential for the development of real-time variable-rate sprayers that synchronize spray outputs with canopy structures. Droplet sizes from a custom-designed, air-assisted, five-port nozzle coupled with a pulse-width-modulated (PWM) solenoid valve were m...

  4. Air mass distribution and the heterogeneity of the climate change signal in the Hudson Bay/Foxe Basin region, Canada

    NASA Astrophysics Data System (ADS)

    Leung, Andrew; Gough, William

    2016-08-01

    The linkage between changes in air mass distribution and temperature trends from 1971 to 2010 is explored in the Hudson Bay/Foxe Basin region. Statistically significant temperature increases were found of varying spatial and temporal magnitude. Concurrent statistically significant changes in air mass frequency at the same locations were also detected, particularly in the declining frequency of dry polar (DP) air. These two sets of changes were found to be linked, and we thus conclude that the heterogeneity of the climatic warming signal in the region is at least partially the result of a fundamental shift in the concurrent air mass frequency in addition to global and regional changes in radiative forcing due to increases in long-lived greenhouse gases.

  5. Radon gas distribution in natural gas processing facilities and workplace air environment.

    PubMed

    Al-Masri, M S; Shwiekani, R

    2008-04-01

    Evaluation was made of the distribution of radon gas and radiation exposure rates in the four main natural gas treatment facilities in Syria. The results showed that radiation exposure rates at contact of all equipment were within the natural levels (0.09-0.1 microSvh(-1)) except for the reflex pumps where a dose rate value of 3 microSvh(-1) was recorded. Radon concentrations in Syrian natural gas varied between 15.4 Bq m(-3) and 1141 Bq m(-3); natural gas associated with oil production was found to contain higher concentrations than the non-associated natural gas. In addition, radon concentrations were higher in the central processing facilities than the wellheads; these high levels are due to pressurizing and concentrating processes that enhance radon gas and its decay products. Moreover, the lowest 222Rn concentration was in the natural gas fraction used for producing sulfur; a value of 80 Bq m(-3) was observed. On the other hand, maximum radon gas and its decay product concentrations in workplace air environments were found to be relatively high in the gas analysis laboratories; a value of 458 Bq m(-3) was observed. However, all reported levels in the workplaces in the four main stations were below the action level set by IAEA for chronic exposure situations involving radon, which is 1000 Bq m(-3). PMID:17905489

  6. Acoustical properties of air-saturated porous material with periodically distributed dead-end pores.

    PubMed

    Leclaire, P; Umnova, O; Dupont, T; Panneton, R

    2015-04-01

    A theoretical and numerical study of the sound propagation in air-saturated porous media with straight main pores bearing lateral cavities (dead-ends) is presented. The lateral cavities are located at "nodes" periodically spaced along each main pore. The effect of periodicity in the distribution of the lateral cavities is studied, and the low frequency limit valid for the closely spaced dead-ends is considered separately. It is shown that the absorption coefficient and transmission loss are influenced by the viscous and thermal losses in the main pores as well as their perforation rate. The presence of long or short dead-ends significantly alters the acoustical properties of the material and can increase significantly the absorption at low frequencies (a few hundred hertz). These depend strongly on the geometry (diameter and length) of the dead-ends, on their number per node, and on the periodicity along the propagation axis. These effects are primarily due to low sound speed in the main pores and to thermal losses in the dead-end pores. The model predictions are compared with experimental results. Possible designs of materials of a few cm thicknesses displaying enhanced low frequency absorption at a few hundred hertz are proposed. PMID:25920830

  7. Laser Microdissection of the Alveolar Duct Enables Single-Cell Genomic Analysis

    PubMed Central

    Bennett, Robert D.; Ysasi, Alexandra B.; Belle, Janeil M.; Wagner, Willi L.; Konerding, Moritz A.; Blainey, Paul C.; Pyne, Saumyadipta; Mentzer, Steven J.

    2014-01-01

    Complex tissues such as the lung are composed of structural hierarchies such as alveoli, alveolar ducts, and lobules. Some structural units, such as the alveolar duct, appear to participate in tissue repair as well as the development of bronchioalveolar carcinoma. Here, we demonstrate an approach to conduct laser microdissection of the lung alveolar duct for single-cell PCR analysis. Our approach involved three steps. (1) The initial preparation used mechanical sectioning of the lung tissue with sufficient thickness to encompass the structure of interest. In the case of the alveolar duct, the precision-cut lung slices were 200 μm thick; the slices were processed using near-physiologic conditions to preserve the state of viable cells. (2) The lung slices were examined by transmission light microscopy to target the alveolar duct. The air-filled lung was sufficiently accessible by light microscopy that counterstains or fluorescent labels were unnecessary to identify the alveolar duct. (3) The enzymatic and microfluidic isolation of single cells allowed for the harvest of as few as several thousand cells for PCR analysis. Microfluidics based arrays were used to measure the expression of selected marker genes in individual cells to characterize different cell populations. Preliminary work suggests the unique value of this approach to understand the intra- and intercellular interactions within the regenerating alveolar duct. PMID:25309876

  8. Measure Guideline: Optimizing the Configuration of Flexible Duct Junction Boxes

    SciTech Connect

    Beach, R.; Burdick, A.

    2014-03-01

    This measure guideline offers additional recommendations to heating, ventilation, and air conditioning (HVAC) system designers for optimizing flexible duct, constant-volume HVAC systems using junction boxes within Air Conditioning Contractors of America (ACCA) Manual D guidance. IBACOS used computational fluid dynamics software to explore and develop guidance to better control the airflow effects of factors that may impact pressure losses within junction boxes among various design configurations. These recommendations can help to ensure that a system aligns more closely with the design and the occupants' comfort expectations. Specifically, the recommendations described herein show how to configure a rectangular box with four outlets, a triangular box with three outlets, metal wyes with two outlets, and multiple configurations for more than four outlets. Designers of HVAC systems, contractors who are fabricating junction boxes on site, and anyone using the ACCA Manual D process for sizing duct runs will find this measure guideline invaluable for more accurately minimizing pressure losses when using junction boxes with flexible ducts.

  9. Coupling of Low Speed Fan Stator Vane Unsteady Pressures to Duct Modes: Measured versus Predicted

    NASA Technical Reports Server (NTRS)

    Sutliff, Daniel L.; Heidelberg, Laurence J.; Envia, Edmane

    1999-01-01

    Uniform-flow annular-duct Green's functions are the essential elements of the classical acoustic analogy approach to the problem of computing the noise generated by rotor-stator interaction inside the fan duct. This paper investigates the accuracy of this class of Green's functions for predicting the duct noise levels when measured stator vane unsteady surface pressures are used as input to the theoretical formulation. The accuracy of the method is evaluated by comparing the predicted and measured acoustic power levels for the NASA 48 inch low speed Active Noise Control Fan. The unsteady surface pressures are measured,by an array of microphones imbedded in the suction and pressure sides of a single vane, while the duct mode levels are measured using a rotating rake system installed in the inlet and exhaust sections of the fan duct. The predicted levels are computed using properly weighted integrals of measured surface pressure distribution. The data-theory comparisons are generally quite good particularly when the mode cut-off criterion is carefully interpreted. This suggests that, at least for low speed fans, the uniform-flow annular-duct Green's function theory can be reliably used for prediction of duct mode levels if the cascade surface pressure distribution is accurately known.

  10. Size distributions, sources and source areas of water-soluble organic carbon in urban background air

    NASA Astrophysics Data System (ADS)

    Timonen, H.; Saarikoski, S.; Tolonen-Kivimäki, O.; Aurela, M.; Saarnio, K.; Petäjä, T.; Aalto, P. P.; Kulmala, M.; Pakkanen, T.; Hillamo, R.

    2008-09-01

    This paper represents the results of one year long measurement period of the size distributions of water-soluble organic carbon (WSOC), inorganic ions and gravimetric mass of particulate matter. Measurements were done at an urban background station (SMEAR III) by using a micro-orifice uniform deposit impactor (MOUDI). The site is located in northern European boreal region in Helsinki, Finland. The WSOC size distribution measurements were completed with the chemical analysis of inorganic ions, organic carbon (OC) and monosaccharide anhydrides from the filter samples (particle aerodynamic diameter smaller than 1 μm, PM1). Gravimetric mass concentration varied during the MOUDI samplings between 3.4 and 55.0 μg m-3 and the WSOC concentrations were between 0.3 and 7.4 μg m-3. On average, water-soluble particulate organic matter (WSPOM, WSOC multiplied by 1.6 to convert the analyzed carbon mass to organic matter mass) comprised 25±7.7% and 7.5±3.4% of aerosol PM1 mass and the PM1-10 mass, respectively. Inorganic ions contributed 33±12% and 28±19% of the analyzed PM1 and PM1-10 aerosol mass. Five different aerosol categories corresponding to different sources or source areas were identified (long-range transport aerosols, biomass burning aerosols from wild land fires and from small-scale wood combustion, aerosols originating from marine areas and from the clean arctic areas). Categories were identified mainly using levoglucosan concentration level for wood combustion and air mass backward trajectories for other groups. Clear differences in WSOC concentrations and size distributions originating from different sources or source areas were observed, although there are also many other factors which might affect the results. E.g. the local conditions and sources of volatile organic compounds (VOCs) and aerosols as well as various transformation processes are likely to have an impact on the measured aerosol composition. Using the source categories, it was identified that

  11. Experimental study on the particles deposition in the sampling duct

    SciTech Connect

    Vendel, J.; Charuau, J.

    1995-02-01

    A high standard of protection against the harmful effects of radioactive aerosol dissemination requires a measurement, as representative as possible, of their concentration. This measurement depends on the techniques used for aerosol sampling and transfer to the detector, as well as on the location of the latter with respect to the potential sources. The aeraulic design of the apparatus is also an important factor. Once collected the aerosol particles often have to travel through a variably shaped duct to the measurement apparatus. This transport is responsible for losses due to the particles deposition on the walls, leading to a distortion on the concentration measurements and a change in the particle size distribution. To estimate and minimize measurement errors it is important to determine the optimal transport conditions when designing a duct; its diameter and material, the radius of curvature of the bends and the flow conditions must be defined in particular. This paper presents an experimental study in order to determine, for each deposition mechanism, the retained fraction, or the deposition velocity for different flow regimes. This study has pointed out that it exists a favourable flow regime for the particle transport through the sampling ducts (2 500 < Re < 5 000). It has been established, for any particle diameters, equations to predict the aerosol penetration in smooth-walled cylindrical metal ducts.

  12. Node retraction during patterning of the urinary collecting duct system.

    PubMed

    Lindström, Nils O; Chang, C-Hong; Valerius, M Todd; Hohenstein, Peter; Davies, Jamie A

    2015-01-01

    This report presents a novel mechanism for remodelling a branched epithelial tree. The mouse renal collecting duct develops by growth and repeated branching of an initially unbranched ureteric bud: this mechanism initially produces an almost fractal form with young branches connected to the centre of the kidney via a sequence of nodes (branch points) distributed widely throughout the developing organ. The collecting ducts of a mature kidney have a different form: from the nephrons in the renal cortex, long, straight lengths of collecting duct run almost parallel to one another through the renal medulla, and open together to the renal pelvis. Here we present time-lapse studies of E11.5 kidneys growing in culture: after about 5 days, the collecting duct trees show evidence of 'node retraction', in which the node of a 'Y'-shaped branch moves downwards, shortening the stalk of the 'Y', lengthening its arms and narrowing their divergence angle so that the 'Y' becomes a 'V'. Computer simulation suggests that node retraction can transform a spread tree, like that of an early kidney, into one with long, almost-parallel medullary rays similar to those seen in a mature real kidney. PMID:25292187

  13. Node retraction during patterning of the urinary collecting duct system

    PubMed Central

    Lindström, Nils O; Chang, C-Hong; Valerius, M Todd; Hohenstein, Peter; Davies, Jamie A

    2015-01-01

    This report presents a novel mechanism for remodelling a branched epithelial tree. The mouse renal collecting duct develops by growth and repeated branching of an initially unbranched ureteric bud: this mechanism initially produces an almost fractal form with young branches connected to the centre of the kidney via a sequence of nodes (branch points) distributed widely throughout the developing organ. The collecting ducts of a mature kidney have a different form: from the nephrons in the renal cortex, long, straight lengths of collecting duct run almost parallel to one another through the renal medulla, and open together to the renal pelvis. Here we present time-lapse studies of E11.5 kidneys growing in culture: after about 5 days, the collecting duct trees show evidence of ‘node retraction’, in which the node of a ‘Y’-shaped branch moves downwards, shortening the stalk of the ‘Y’, lengthening its arms and narrowing their divergence angle so that the ‘Y’ becomes a ‘V’. Computer simulation suggests that node retraction can transform a spread tree, like that of an early kidney, into one with long, almost-parallel medullary rays similar to those seen in a mature real kidney. PMID:25292187

  14. Refraction of acoustic duct waveguide modes by exhaust jets.

    NASA Technical Reports Server (NTRS)

    Mani, R.

    1973-01-01

    The refraction of acoustic duct waveguide modes emitted from the open end of a semiinfinite rectangular duct by a jet-like exhaust flow is studied theoretically. The problem is formulated as a Wiener-Hopf problem and is ultimately solved by an approximate method due to Carrier and Koiter. Continuity of transverse acoustic particle displacement and of acoustic pressure is assumed at the jet/still-air interface. The solution exhibits several features of the acoustics of moving media such as a source convection effect, zones of relative silence, and simple refraction. Plots of far-field directivity patterns are presented for several cases and show refraction effects to be important even at modest exhaust Mach numbers of order 0.3. Only subsonic exhaust Mach numbers are considered.

  15. LABORATORY EVALUATION OF THE DELTA Q TEST FOR DUCT LEAKAGE

    SciTech Connect

    ANDREWS,J.W.

    2003-05-01

    Using a residential-size duct system in a controlled laboratory setting, the repeatability and accuracy of the Delta Q test for air leakage in residential duct systems have been measured. More than 100 Delta Q tests were performed. These were compared with results using fan pressurization and also with results of a procedure (Delta Q Plus) that uses leakage hole-size information to select the leakage pressures to be used in the Delta Q algorithm. The average error in supply or return leakage for the fan-pressurization test was 6.4% of system fan flow. For the Delta Q test it was 3.4% of fan flow, while for Delta Q Plus it was 1.9% of fan flow.

  16. Duct wall impedance control as an advanced concept for acoustic impression

    NASA Technical Reports Server (NTRS)

    Dean, P. D.; Tester, B. J.

    1975-01-01

    Models and tests on an acoustic duct liner system which has the property of controlled-variable acoustic impedance are described. This is achieved by a novel concept which uses the effect of steady air flow through a multi-layer, locally reacting, resonant-cavity absorber. The scope of this work was limited to a 'proof of concept.' The test of the concept was implemented by means of a small-scale, square-section flow duct facility designed specifically for acoustic measurements, with one side of the duct acoustically lined. The test liners were designed with the aid of previously established duct acoustic theory and a semi-empirical impedance model of the liner system. Over the limited range tested, the liner behaved primarily as predicted, exhibiting significant changes in resistance and reactance, thus providing the necessary concept validation.

  17. Parotid salivary duct stenosis following caudal maxillectomy.

    PubMed

    Mestrinho, Lisa A; Faísca, Pedro B; Niza, Maria M R E

    2014-01-01

    Parotid salivary duct dilation was diagnosed in a 9-year-old male dog. The dog had undergone caudal maxillectomy on the ipsilateral side 2-years prior to presentation. Treatment consisted of parotid salivary duct excision and superficial parotidectomy that lead to the resolution of clinical signs. Transient facial neuropraxia was observed immediately after surgery and resolved spontaneously after 2-weeks. Parotid salivary duct dilation should be considered as a chronic postoperative complication following caudal maxillectomy. PMID:24902412

  18. The seasonal vertical distribution of the Saharan Air Layer and its modulation by the wind

    NASA Astrophysics Data System (ADS)

    Tsamalis, C.; Chédin, A.; Pelon, J.; Capelle, V.

    2013-11-01

    The Saharan Air Layer (SAL) influences large-scale environment from western Africa to eastern tropical Americas, by carrying large amounts of dust aerosols. However, the vertical distribution of the SAL is not well established due to a lack of systematic measurements away from the continents. This can be overcome by using the observations of the spaceborne lidar CALIOP onboard the satellite CALIPSO. By taking advantage of CALIOP's capability to distinguish dust aerosols from other types of aerosols through depolarization, the seasonal vertical distribution of the SAL is analyzed at 1° horizontal resolution over a period of 5 yr (June 2006-May 2011). This study shows that SAL can be identified all year round displaying a clear seasonal cycle. It occurs higher in altitude and more northern in latitude during summer than during winter, but with similar latitudinal extent near Africa for the four seasons. The south border of the SAL is determined by the Intertropical Convergence Zone (ITCZ), which either prohibits dust layers from penetrating it or reduces significantly the number of dust layers seen within or south of it, as over the eastern tropical Atlantic. Spatially, near Africa, it is found between 5° S and 15° N in winter and 5-30° N in summer. Towards the Americas (50° W), SAL is observed between 5° S and 10° N in winter and 10-25° N in summer. During spring and fall, SAL is found between the position of winter and summer not only spatially but also vertically. In winter, SAL occurs in the altitude range 0-3 km off western Africa, decreasing to 0-2 km close to South America. During summer, SAL is found to be thicker and higher near Africa at 1-5 km, reducing to 0-2 km in the Gulf of Mexico, farther west than during the other seasons. SAL is confined to one layer, of which the mean altitude decreases with westward transport by 13 m deg-1 during winter and 28 m deg-1, after 30° W, during summer. Its mean geometrical thickness decreases by 25 m deg-1 in

  19. Lightweight Forms for Epoxy/Aramid Ducts

    NASA Technical Reports Server (NTRS)

    Mix, E. W.; Anderson, A. N.; Bedford, Donald L., Sr.

    1986-01-01

    Aluminum mandrels easy to remove. Lightweight aluminum mandrel for shaping epoxy/aramid ducts simplifies and speeds production. In new process, glass-reinforced epoxy/aramid cloth wrapped on aluminum mandrel. Stainless-steel flanges and other hardware fitted on duct and held by simple tooling. Entire assembly placed in oven to cure epoxy. After curing, assembly placed in alkaline bath dissolves aluminum mandrel in about 4 hours. Epoxy/aramid shell ready for use as duct. Aluminum mandrel used to make ducts of various inside diameters up to 6 in. Standard aluminum forms used. Conventional tube-bending equipment produces requisite curves in mandrels.

  20. Traumatic injury of the thoracic duct.

    PubMed

    Guzman, A E; Rossi, L; Witte, C L; Smyth, S

    2002-03-01

    Injuries to the thoracic duct are infrequent but may become life-threatening when chylous leakage persists. This report describes 6 patients with such injuries in whom the leakage resolved spontaneously in one, was corrected using microsurgical lymphatic repair or lymphatic-venous anastomosis in two, successfully treated either by ligation of the thoracic duct or insertion of a peritoneovenous shunt in two, and was eventually controlled after bilateral pleurodesis and thoracic duct ligation by insertion of a peritoneo-venous shunt in one. Conventional lymphography is superior to lymphoscintigraphy and is usually required to document disruption of the thoracic duct. PMID:11939572

  1. Generator stator core vent duct spacer posts

    DOEpatents

    Griffith, John Wesley; Tong, Wei

    2003-06-24

    Generator stator cores are constructed by stacking many layers of magnetic laminations. Ventilation ducts may be inserted between these layers by inserting spacers into the core stack. The ventilation ducts allow for the passage of cooling gas through the core during operation. The spacers or spacer posts are positioned between groups of the magnetic laminations to define the ventilation ducts. The spacer posts are secured with longitudinal axes thereof substantially parallel to the core axis. With this structure, core tightness can be assured while maximizing ventilation duct cross section for gas flow and minimizing magnetic loss in the spacers.

  2. Extent of fungal growth on fiberglass duct liners with and without biocides under challenging environmental conditions.

    PubMed

    Samimi, Behzad S; Ross, Kristen

    2003-03-01

    Eight brands of fiberglass duct liners, including three that contained biocides, were exposed to challenging environmental conditions that would promote fungal growth. Twenty-four rectangular sheet metal ducts in three groups of eight ducts per group were lined with the eight selected liners. Each group of ducts was exposed to one of the three test conditions within an environmental chamber for a period of 15 days. These conditions were a) 75 percent RH, b) 75 percent RH plus water spray, c) 75 percent RH plus dry nutrient, and d) 75 percent RH plus water plus nutrient. Viable spores of Aspergillus niger were aerosolized into each duct as seed. On the 16th day, air and surface samples for fungal spores were collected from inside ducts. The results of air sampling using N6 sampler and visual inspection indicated that two out of three biocide-containing liners, Permacote and Toughgard, inhibited fungal growth but only under condition A. The third biocide-containing liner, Aeroflex Plus, was effective even when it was wet (conditions A and B). All three biocide-containing liners failed to inhibit fungal growth under conditions C and D. Among the five other types of liners that did not contain biocides, ATCO Flex with a smooth Mylar coating was more preferable, exhibiting lower fungal activity during conditions A, B, and C. All liners failed under condition D when nutrient and water were added together. Surface sampling using adhesive tape failed to produce representative results, apparently due to rough/porous surface of duct liners. It was concluded that duct liners with biocide treatment could be less promoting to microbial growth under high humidity as long as their surfaces remain clean and water-free. A liner with an impermeable and smooth surface seems to be less subject to microbial growth under most conditions than biocide-containing liners having porous and/or rough surfaces. PMID:12573965

  3. Fabrication and optical properties of non-polar III-nitride air-gap distributed Bragg reflector microcavities

    SciTech Connect

    Tao, Renchun Kako, Satoshi; Arita, Munetaka; Arakawa, Yasuhiko

    2013-11-11

    Using the thermal decomposition technique, non-polar III-nitride air-gap distributed Bragg reflector (DBR) microcavities (MCs) with a single quantum well have been fabricated. Atomic force microscopy reveals a locally smooth DBR surface, and room-temperature micro-photoluminescence measurements show cavity modes. There are two modes per cavity due to optical birefringence in the non-polar MCs, and a systematic cavity mode shift with cavity thickness was also observed. Although the structures consist of only 3 periods (top) and 4 periods (bottom), a quality factor of 1600 (very close to the theoretical value of 2100) reveals the high quality of the air-gap DBR MCs.

  4. Detailed studies of the electron lateral distribution in extensive air showers with energies around 10(16) eV

    NASA Technical Reports Server (NTRS)

    Dzikowski, T.; Wdowczyk, J.; Gawin, J.

    1984-01-01

    Detailed studies have been performed of the electron lateral distribution in extensive air showers using the Lodz extensive air shower array. The showers were grouped according to their particle densities around 20 m from the core. The grouping was made in very narrow intervals of the densities. For every group of showers and for every distance interval /changing by 5 m/ histograms of the numbers of electron counters discharged have been obtained. The trays of G.M counters were located at following distances from the center of the triggering detectors array: 16 m, 76 m, 117 m, 137 m, 141 m and 147 m.

  5. Wastefree in-duct FGD

    SciTech Connect

    Nelson, S. Jr.

    1995-12-31

    The first generation of easily-retrofitable duct-injection technologies experienced problems with modest performance, particulate non-compliance, and difficult waste disposal. A new sorbent concept, called Fluesorbent, has been developed specifically to address these problems. Based on a new lime sorbent material, the technology results in 80+% SO{sub 2} removal, net particulate reductions, and a valuable agricultural by-product instead of wastes. A 6,500 acfm, 2-MWe Fluesorbent pilot plant was recently constructed at Ohio Edison`s R.E. Burger station. This paper describes the technology and the Burger demonstration project.

  6. Geographical distribution of benzene in air in northwestern Italy and personal exposure.

    PubMed Central

    Gilli, G; Scursatone, E; Bono, R

    1996-01-01

    Benzene is a solvent strictly related to some industrial activities and to automotive emissions. After the reduction in lead content of fuel gasoline, and the consequent decrease in octane number, an increase in benzene and other aromatic hydrocarbons in gasoline occurred. Therefore, an increase in the concentration of these chemicals in the air as primary pollutants and as precursors of photochemical smog could occur in the future. The objectives of this study were to describe the benzene air pollution at three sites in northwestern Italy throughout 1991 and 1994; to examine the relationship between benzene air pollution in indoor, outdoor, and personal air as measured by a group of nonsmoking university students; and to determine the influence of environmental tobacco smoke on the level of benzene exposure in indoor air environments. The results indicate a direct relationship between population density and levels of contamination; an indoor/outdoor ratio of benzene air pollution higher than 1 during day and night; a similar level of personal and indoor air contamination; and a direct relationship between levels of personal exposure to benzene and intensity of exposure to tobacco smoke. Human exposure to airborne benzene has been found to depend principally on indoor air contamination not only in the home but also in many other confined environments. PMID:9118883

  7. Optimization of the mechanical performance of a two-duct semicircular duct system--part 1: dynamics and duct dimensions.

    PubMed

    Muller, M; Verhagen, J H G

    2002-06-21

    The classical representation of the semicircular duct system consists of three separate duct circuits. The ducts are, however, in reality, hydrodynamically interconnected. Muller & Verhagen (1988a,b) derived equations for the mechanical behaviour of an interconnected system with three ducts (anterior, posterior and horizontal). An analytical solution of these equations would, however, be too complex to provide surveyable formulae. A system of two interconnected ducts avoids this complexity whilst keeping the essentials of the coupling of ducts intact. The solution of the equation of motion leads to expressions for time constants and maximal endolymph excursions which are functions of morphological parameters, viz. the ratios of radii (gamma) and lengths (lambda) of the common vestibular part (crus commune or utriculus) and the ducts. The system possesses two short time constants which are shown to have similar values. The maximum endolymph displacements in the two ducts after a steplike stimulus are the products of the respective initial velocities and combinations of time constants. The initial velocities depend strongly on the position of the labyrinth with respect to the excitating rotation vector. Measured data of gamma and lambda are compared with the theoretical results. For gamma, excellent agreement was found. lambda is treated elsewhere. PMID:12151258

  8. Spatial Distribution of Traffic Air Pollution and Evaluation of Transport Vehicle Emission Dispersion in Ambient Air in Urban Areas

    NASA Astrophysics Data System (ADS)

    Costabile, Francesca; Wang, Fenjuan; Hong, Weimin; Liu, Fenglei; Allegrini, Ivo

    Vertical distribution of traffic-related pollutants inside an open street-canyon were observed in Suzhou, P.R. China, in 2005. The aim was to explore transfer and diffusion characteristics of vehicular exhaust emissions, as well as monitoring constraints associated with street canyons, courtyards and enclosed spaces. Vertical wind speed was found to strongly affect the fluctuation of all the pollutants. Daily average concentrations of NOx, NO2 and NO, as well as NO2/NOx ratio, were found to vary significantly alongside the vertical, proportionate to different average daily trends. Oxidation processes and photochemical activity are discussed to explain these phenomena. Daily CO trends were found to track closely with both NOx and Benzene, while the corresponding ratios were different relative to other published works. Different emission factors and driving conditions, as well as other emission sources types (especially for Benzene) are used to explain this point.

  9. Morphological study of human sweat ducts for the investigation of THz-wave interaction (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kawase, Kodo; Tripathi, Saroj R.

    2016-03-01

    Recently, some studies reported that the sweat ducts act as a low-Q-factor helical antenna due to their helical structure, and resonate in the terahertz frequency range according to their structural parameters. According to the antenna theory, when the duct works as a helical antenna, the dimension of the helix plays a key role to determine the frequency of resonance. Therefore, the accurate determination of structural parameters of sweat duct is crucially important to obtain the reliable frequency of resonance and modes of operations. Therefore, here we performed the optical coherence tomography (OCT) of human subjects on their palm and foot to investigate the density, distribution and morphological features of sweat ducts. Moreover, we measured the dielectric properties of stratum corneum using terahertz time domain spectroscopy and based upon this information, we determined the frequency of resonance. We recruited 32 subjects for the measurement and the average duct diameter was 95±11μm. Based upon this information on diameter of duct and THz dielectric properties of stratum corneum (ɛ=5.1±1.3), we have calculated the frequency of resonance of sweat duct. Finally, we determined that the center frequency of resonance was 442±76 GHz. We believe that these findings will facilitate further investigation of the THz-skin interaction and provide guidelines for safety levels with respect to human exposure. We will also report on the EEG measurement while being shined by micro watt order THz waves.

  10. Lateral distribution of high energy hadrons and gamma ray in air shower cores observed with emulsion chambers

    NASA Technical Reports Server (NTRS)

    Matano, T.; Machida, M.; Honda, K.; Hashimoto, K.; Navia, C. E.; Kawasumi, N.; Tsushima, I.; Matinic, N.; Aquirre, C.

    1985-01-01

    A high energy event of a bundle of electrons, gamma rays and hadronic gamma rays in an air shower core were observed. The bundles were detected with an emulsion chamber with thickness of 15 cm lead. This air shower is estimated to be initiated with a proton with energy around 10 to the 17th power to 10 to the 18th power eV at an altitude of around 100 gmc/2. Lateral distributions of the electromagnetic component with energy above 2 TeV and also the hadronic component of energy above 6 TeV of this air shower core were determined. Particles in the bundle are produced with process of the development of the nuclear cascade, the primary energy of each interaction in the cascade which produces these particles is unknown. To know the primary energy dependence of transverse momentum, the average products of energy and distance for various average energies of secondary particles are studied.

  11. Estimation of air void and aggregate spatial distributions in concrete under uniaxial compression using computer tomography scanning

    SciTech Connect

    Wong, R.C.K. . E-mail: rckwong@ucalgary.ca; Chau, K.T.

    2005-08-01

    Normal- and high-strength concrete cylinders (designed compressive strengths of 30 and 90 MPa at 28 days) were loaded uniaxially. Computer tomography (CT) scanning technique was used to examine the evolution of air voids inside the specimens at various loading states up to 85% of the ultimate compressive strength. The normal-strength concrete yielded a very different behaviour in changes of internal microstructure as compared to the high-strength concrete. There were significant instances of nucleation and growth in air voids in the normal-strength concrete specimen, while the increase in air voids in the high-strength concrete specimen was insignificant. In addition, CT images were used for mapping the aggregate spatial distributions within the specimens. No intrinsic anisotropy was detected from the fabric analysis.

  12. Air-Hybrid Distributed Bragg Reflector Structure for Improving the Light Output Power in AlGalnP-Based LEDs.

    PubMed

    Oh, Hwa Sub; Ryu, Ho-Soung; Park, Sueng Ho; Jeong, Tak; Kim, Young Jin; Lee, Hyung Joo; Cho, Young Dae; Kwak, Joon-Seop; Baek, Jong Hyeob

    2015-07-01

    We investigated air gap-induced hybrid distributed Bragg reflectors (AH-DBRs) for use in high brightness and reliable AlGalnP-based light emitting diodes (LEDs). An air gap was inserted into the side of DBRs by selectively etching the Al(x),Ga1-xAs DBR structures. With the AH-DBR structures, the optical output power of LEDs was enhanced by 15% compared to LEDs having conventional DBRs, due to the effective reflection of obliquely incident light by the air gap structures. In addition, the electrical characteristics showed that the AH-DBR LED is a desirable structure for reducing the leakage current, as it suppresses unwanted surface recombinations. PMID:26373075

  13. Retrievals of Stratocumulus Drop Size Distributions from Airborne Multiangle SpectroPolarimetric Imager (AirMSPI) Observations

    NASA Astrophysics Data System (ADS)

    Garay, Michael; Diner, David

    2013-04-01

    Data from the Polarization and Directionality of the Earth's Reflectances (POLDER) satellite instruments have been used for many years to retrieve information about the mean and dispersion of cloud droplet size distributions. The position of specific features in scattering angle space corresponding to supernumerary bows in the polarized phase function are extremely sensitive to the effective radius of the cloud droplets, while the amplitude of these features carries information on the dispersion of droplet sizes. Due to the relatively coarse angular sampling of POLDER multiangular views (~10°), variations in scattering angle from pixel to pixel are used instead to obtain fine sampling in angle, which requires the clouds to be homogeneous on scales of 150 km × 150 km in the POLDER retrievals. We will describe high-resolution polarimetric observations of marine stratocumulus clouds made off the coast of California by the AirMSPI instrument, which files on the NASA ER-2 high-altitude research aircraft. AirMSPI is an eight-band pushbroom camera mounted on a controllable gimbal, which allows the instrument to make observations over a ±67° range in the direction of aircraft motion. AirMSPI's eight spectral bands are 355, 380, 445, 470, 555, 660, 865, and 935 nm in the ultraviolet to the near-infrared range. Polarimetric observations are made in the 470, 660, and 865 nm bands using photoelastic modulators (PEMs) to rapidly vary the orientation of the linearly polarized component (Stokes Q and U) of the incoming light, enabling measurement of the relative ratios of these parameters to intensity from individual pixels. From the nominal 20 km altitude of the aircraft, AirMSPI can provide imagery mapped to a 25 m grid using a sweep scanning strategy in which the gimbal controlling the pointing of the instrument is slewed back and forth along the direction of aircraft motion. The AirMSPI observations of the polarimetric features of marine stratocumulus clouds have been

  14. Measure Guideline: Sealing and Insulating of Ducts in Existing Homes

    SciTech Connect

    Aldrich, R.; Puttagunta, S.

    2011-12-01

    This document begins with a discussion on potential cost and performance benefits of duct sealing and insulating. It continues with a review of typical duct materials and components and the overall procedures for assessing and improving the duct system.

  15. What's New in Bile Duct Cancer Research and Treatment?

    MedlinePlus

    ... Topic Additional resources for bile duct cancer What’s new in bile duct cancer research and treatment? Bile ... is tumor blood vessels. Bile duct tumors need new blood vessels to grow beyond a certain size. ...

  16. Measure Guideline. Sealing and Insulating Ducts in Existing Homes

    SciTech Connect

    Aldrich, R.; Puttagunta, S.

    2011-12-01

    This document begins with a discussion on potential cost and performance benefits of duct sealing and insulating. It continues with a review of typical duct materials and components and the overall procedures for assessing and improving the duct system.

  17. Do We Know What Causes Bile Duct Cancer?

    MedlinePlus

    ... duct cancer be prevented? Do we know what causes bile duct cancer? We don’t know the exact cause of ... to top » Guide Topics What Is Bile Duct Cancer? Causes, Risk Factors, and Prevention Early Detection, Diagnosis, and ...

  18. Distribution and air-sea exchange of mercury (Hg) in polluted marine environments

    NASA Astrophysics Data System (ADS)

    Bagnato, E.; Sprovieri, M.; Bitetto, M.; Bonsignore, M.; Calabrese, S.; Di Stefano, V.; Oliveri, E.; Parello, F.; Mazzola, S.

    2012-04-01

    Mercury (Hg) is emitted in the atmosphere by anthropogenic and natural sources, these last accounting for one third of the total emissions. Since the pre-industrial age, the atmospheric deposition of mercury have increased notably, while ocean emissions have doubled owing to the re-emission of anthropogenic mercury. Exchange between the atmosphere and ocean plays an important role in cycling and transport of mercury. We present the preliminary results from a study on the distribution and evasion flux of mercury at the atmosphere/sea interface in the Augusta basin (SE Sicily, southern Italy), a semi-enclosed marine area affected by a high degree of contamination (heavy metals and PHA) due to the oil refineries placed inside its commercial harbor. It seems that the intense industrial activity of the past have lead to an high Hg pollution in the bottom sediments of the basin, whose concentrations are far from the background mercury value found in most of the Sicily Strait sediments. The release of mercury into the harbor seawater and its dispersion by diffusion from sediments to the surface, make the Augusta basin a potential supplier of mercury both to the Mediterranean Sea and the atmosphere. Based on these considerations, mercury concentration and flux at the air-sea interface of the Bay have been estimated using a real-time atomic adsorption spectrometer (LUMEX - RA915+) and an home-made accumulation chamber, respectively. Estimated Total Atmospheric Mercury (TGM) concentrations during the cruise on the bay were in the range of 1-3 ng · m-3, with a mean value of about 1.4 ng · m-3. These data well fit with the background Hgatm concentration values detected on the land (1-2 ng · m-3, this work), and, more in general, with the background atmospheric TGM levels found in the North Hemisphere (1.5-1.7 ng · m-3)a. Besides, our measurements are in the range of those reported for other important polluted marine areas. The mercury evasion flux at the air-sea interface

  19. Navier-Stokes analysis and experimental data comparison of compressible flow within ducts

    NASA Technical Reports Server (NTRS)

    Harloff, G. J.; Reichert, B. A.; Sirbaugh, J. R.; Wellborn, S. R.

    1992-01-01

    Many aircraft employ ducts with centerline curvature or changing cross-sectional shape to join the engine with inlet and exhaust components. S-ducts convey air to the engine compressor from the intake and often decelerate the flow to achieve an acceptable Mach number at the engine compressor by increasing the cross-sectional area downstream. Circular-to-rectangular transition ducts are used on aircraft with rectangular exhaust nozzles to connect the engine and nozzle. To achieve maximum engine performance, the ducts should minimize flow total pressure loss and total pressure distortion at the duct exit. Changes in the curvature of the duct centerline or the duct cross-sectional shape give rise to streamline curvature which causes cross stream pressure gradients. Secondary flows can be caused by deflection of the transverse vorticity component of the boundary layer. This vortex tilting results in counter-rotating vortices. Additionally, the adverse streamwise pressure gradient caused by increasing cross-sectional area can lead to flow separation. Vortex pairs have been observed in the exit planes of both duct types. These vortices are due to secondary flows induced by pressure gradients resulting from streamline curvature. Regions of low total pressure are produced when the vortices convect boundary layer fluid into the main flow. The purpose of the present study is to predict the measured flow field in a diffusing S-duct and a circular-to-rectangular transition duct with a full Navier-Stokes computer program, PARC3D, and to compare the numerical predictions with new detailed experimental measurements. The work was undertaken to extend previous studies and to provide additional CFD validation data needed to help model flows with strong secondary flow and boundary layer separation. The S-duct computation extends the study of Smith et al, and Harloff et al, which concluded that the computation might be improved by using a finer grid and more advanced turbulence models

  20. A Multi-Operator Simulation for Investigation of Distributed Air Traffic Management Concepts

    NASA Technical Reports Server (NTRS)

    Peters, Mark E.; Ballin, Mark G.; Sakosky, John S.

    2002-01-01

    This paper discusses the current development of an air traffic operations simulation that supports feasibility research for advanced air traffic management concepts. The Air Traffic Operations Simulation (ATOS) supports the research of future concepts that provide a much greater role for the flight crew in traffic management decision-making. ATOS provides representations of the future communications, navigation, and surveillance (CNS) infrastructure, a future flight deck systems architecture, and advanced crew interfaces. ATOS also provides a platform for the development of advanced flight guidance and decision support systems that may be required for autonomous operations.

  1. Organochlorine pesticides (OCPs) in the Indus River catchment area, Pakistan: Status, soil-air exchange and black carbon mediated distribution.

    PubMed

    Bajwa, Anam; Ali, Usman; Mahmood, Adeel; Chaudhry, Muhammad Jamshed Iqbal; Syed, Jabir Hussain; Li, Jun; Zhang, Gan; Jones, Kevin C; Malik, Riffat Naseem

    2016-06-01

    Organochlorine pesticides (OCPs) were investigated in passive air and soil samples from the catchment area of the Indus River, Pakistan. ∑15OCPs ranged between 0.68 and 13.47 ng g(-1) in soil and 375.1-1975 pg m-(3) in air. HCHs and DDTs were more prevalent in soil and air compartments. Composition profile indicated that β-HCH and p,p'-DDE were the dominant of all metabolites among HCHs and DDTs respectively. Moreover, fBC and fTOC were assessed and evaluated their potential role in the distribution status of OCPs. The fTOC and fBC ranged between 0.77 and 2.43 and 0.04-0.30% respectively in soil. Regression analysis showed the strong influence of fBC than fTOC on the distribution of OCPs in the Indus River catchment area soil. Equilibrium status was observed for β-HCH, δ-HCH, p,p'-DDD, o,p'-DDT, TC, HCB and Heptachlor with ff ranged between 0.3 and 0.59 while assessing the soil-air exchange of OCPs. PMID:26978705

  2. Impacts of Photovoltaic Power Plant Sitings and Distributed Solar Panels on Meteorology and Air Quality in Central California

    NASA Astrophysics Data System (ADS)

    Bastien, L. A.; Jin, L.; Brown, N. J.

    2012-12-01

    California's electric utility companies are required to use renewable energy to produce 20% of their power by 2010 and 33% by 2020. A main source of the power will be solar energy because photovoltaic technologies have advanced so much that large scale installations are being built and will be built in the future with even greater capacity. Rather than being a large emission source, these plants affect the ambient environment through albedo changes and by emission reductions associated with not burning fossil fuels to generate the same amount of electricity. Like conventional power plants, their impact on local meteorology and air quality depends on the specific technology, ambient atmospheric conditions, and the spatial location of the plant. Also, as solar panels on commercial and residential rooftops become even more common, the effect of distributed photovoltaic panels on meteorology and air quality is likely to become significant. In this study, we use the Weather Research and Forecasting (WRF) model and the Community Multiscale Air Quality (CMAQ) model at high resolution of 4 km x 4 km over several 5-day high-ozone episodes of the summer 2000 to assess the impact of photovoltaic panels on meteorology and air quality in Central California. We investigate the effect of locating a 1.0 Giga watt solar plant in different locations and the effect of distributed rooftop photovoltaic panels in major Californian cities, with a focus on peak and 8-hour average ozone and 24-hour average PM2.5.

  3. Investigation in the 7-By-10 Foot Wind Tunnel of Ducts for Cooling Radiators Within an Airplane Wing, Special Report

    NASA Technical Reports Server (NTRS)

    Harris, Thomas A.; Recant, Isidore G.

    1938-01-01

    An investigation was made in the NACA 7- by 10-foot wind tunnel of a large-chord wing model with a duct to house a simulated radiator suitable for a liquid-cooled engine. The duct was expanded to reduce the radiator losses, and the installation of the duct and radiator was made entirely within the wing to reduce form and interference drag. The tests were made using a two-dimensional flow set-up with a full-span duct and radiator. Section aerodynamic characteristics of the basic airfoil are given and also curves showing the characteristics of the various duct-radiator combinations. An expression for efficiency, the primary criterion of merit of any duct, and the effect of the several design parameters of the duct-radiator arrangement are discussed. The problem of throttling is considered and a discussion of the power required for cooling is included. It was found that radiators could be mounted in the wing and efficiently pass enough air for cooling with duct outlets located at any point from 0.25c to 0.70c from the wing leading edge on the upper surface. The duct-inlet position was found to be critical and, for maximum efficiency, had to be at the stagnation point of the airfoil and to change with flight attitude. The flow could be efficiently throttled only by a simultaneous variation of duct inlet and outlet sizes and of inlet position. It was desirable to round both inlet and outlet lips. With certain arrangements of duct, the power required for cooling at high speed was a very low percentage of the engine power.

  4. Salivary duct carcinoma of parotid gland.

    PubMed

    Kinnera, Vijay Sreedhar Babu; Mandyam, Kumaraswamy Reddy; Chowhan, Amit Kumar; Nandyala, Rukmangadha; Bobbidi, Venkata Phaneendra; Vutukuru, Venkatarami Reddy

    2009-07-01

    A 40-year old male presented with rapidly growing swelling in the right parotid region. Based on the fine needle aspiration cytology report of adenocarcinoma not otherwise specified, superficial parotidectomy was performed, which showed the features of salivary duct carcinoma by histopathological examination. The smears were reviewed to identify the potential pitfalls in the cytological diagnosis of salivary duct carcinoma. PMID:21887008

  5. Salivary duct carcinoma of parotid gland

    PubMed Central

    Kinnera, Vijay Sreedhar Babu; Mandyam, Kumaraswamy Reddy; Chowhan, Amit Kumar; Nandyala, Rukmangadha; Bobbidi, Venkata Phaneendra; Vutukuru, Venkatarami Reddy

    2009-01-01

    A 40-year old male presented with rapidly growing swelling in the right parotid region. Based on the fine needle aspiration cytology report of adenocarcinoma not otherwise specified, superficial parotidectomy was performed, which showed the features of salivary duct carcinoma by histopathological examination. The smears were reviewed to identify the potential pitfalls in the cytological diagnosis of salivary duct carcinoma. PMID:21887008

  6. Double-duct liquid metal magnetohydrodynamic engine

    DOEpatents

    Haaland, Carsten M.

    1995-01-01

    An internal combustion, liquid metal (LM) magnetohydrodynamic (MHD) engine and an alternating current (AC) magnetohydrodynamic generator, are used in combination to provide useful AC electric energy output. The engine design has-four pistons and a double duct configuration, with each duct containing sodium potassium liquid metal confined between free pistons located at either end of the duct. The liquid metal is forced to flow back and forth in the duct by the movement of the pistons, which are alternatively driven by an internal combustion process. In the MHD generator, the two LM-MHD ducts pass in close proximity through a Hartmann duct with output transformer. AC power is produced by operating the engine with the liquid metal in the two generator ducts always flowing in counter directions. The amount of liquid metal maintained in the ducts may be varied. This provides a variable stroke length for the pistons. The engine/generator provides variable AC power at variable frequencies that correspond to the power demands of the vehicular propulsion. Also the engine should maintain nearly constant efficiency throughout the range of power usage. Automobiles and trucks could be powered by the invention, with no transmission or power converter devices being required.

  7. Double-duct liquid metal magnetohydrodynamic engine

    DOEpatents

    Haaland, Carsten M.

    1997-01-01

    An internal combustion, liquid metal (LM) magnetohydrodynamic (MHD) engine and an alternating current (AC) magnetohydrodynamic generator, are used in combination to provide useful AC electric energy output. The engine design has four pistons and a double duct configuration, with each duct containing sodium potassium liquid metal confined between free pistons located at either end of the duct. The liquid metal is forced to flow back and forth in the duct by the movement of the pistons, which are alternatively driven by an internal combustion process. In the MHD generator, the two LM-MHD ducts pass in close proximity through a Hartmann duct with output transformer. AC power is produced by operating the engine with the liquid metal in the two generator ducts always flowing in counter directions. The amount of liquid metal maintained in the ducts may be varied. This provides a variable stroke length for the pistons. The engine/generator provides variable AC power at variable frequencies that correspond to the power demands of the vehicular propulsion. Also the engine should maintain nearly constant efficiency throughout the range of power usage. Automobiles and trucks could be powered by the invention, with no transmission or power converter devices being required.

  8. Tear-Duct Obstruction and Surgery

    MedlinePlus

    ... could block a duct, but reconstructive surgery right after the accident or injury may prevent this. Signs of Blocked Tear Ducts ... kids. It may take up to a week after surgery before symptoms improve. Your doctor will give you antibiotic ointment or drops along with ... Injuries Pinkeye (Conjunctivitis) Retinopathy of Prematurity Preparing Your Child ...

  9. Predicting vibrational failure of flexible ducting

    NASA Technical Reports Server (NTRS)

    Henry, R. H.

    1971-01-01

    Technique applies to liquid or gas transfer through flexible ducting and proves valuable in high velocity fluid flow cases. Fluid mechanism responsible for free bellows vibrational excitation also causes flexible hose oscillation. Static pressure stress influences flexible ducting fatigue life and is considered separately.

  10. Rocket-in-a-Duct Performance Analysis

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.; Reed, Brian D.

    1999-01-01

    An axisymmetric, 110 N class, rocket configured with a free expansion between the rocket nozzle and a surrounding duct was tested in an altitude simulation facility. The propellants were gaseous hydrogen and gaseous oxygen and the hardware consisted of a heat sink type copper rocket firing through copper ducts of various diameters and lengths. A secondary flow of nitrogen was introduced at the blind end of the duct to mix with the primary rocket mass flow in the duct. This flow was in the range of 0 to 10% of the primary massflow and its effect on nozzle performance was measured. The random measurement errors on thrust and massflow were within +/-1%. One dimensional equilibrium calculations were used to establish the possible theoretical performance of these rocket-in-a-duct nozzles. Although the scale of these tests was small, they simulated the relevant flow expansion physics at a modest experimental cost. Test results indicated that lower performance was obtained at higher free expansion area ratios and longer ducts, while, higher performance was obtained with the addition of secondary flow. There was a discernable peak in specific impulse efficiency at 4% secondary flow. The small scale of these tests resulted in low performance efficiencies, but prior numerical modeling of larger rocket-in-a-duct engines predicted performance that was comparable to that of optimized rocket nozzles. This remains to be proven in large-scale, rocket-in-a-duct tests.

  11. Distributions and air-sea fluxes of carbon dioxide in the Western Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Gao, Zhongyong; Chen, Liqi; Sun, Heng; Chen, Baoshan; Cai, Wei-Jun

    2012-12-01

    The uptake of carbon dioxide (CO2) by the Arctic Ocean is most likely increasing because of the rapid sea-ice retreat that lifted the barriers preventing gas exchange and light penetration for biological growth. Measurements of atmospheric and surface sea water partial pressure of CO2 (pCO2) were conducted during the Chinese National Arctic Research Expedition (CHINARE) cruises from July to September in 2003 and 2008. The latitudinal distribution of pCO2 along the 169°W transect showed a below-atmopsheric pCO2 level in most of the Western Arctic Ocean, with distinct regional differences from Bering Strait northward to the Central Acrctic Ocean. The average air-sea CO2 fluxes on the shelf and slope of the Chukchi Sea were -17.0 and -8.1 mmol m-2 d-1 respectively. In the ice-free zone, the partially ice-covered zone, and the heavily ice-covered zone of the Canada Basin, the fluxes were -4.2, -8.6, -2.5 mmol m-2 d-1 respectively. These rates are lower than other recent estimates. Our new results not only confirmed previous observations that most areas of the Western Arctic Ocean were a CO2 sink in general, but they also revealed that the previously unsampled central basins were a moderate CO2 sink. Analysis of controlling factors in different areas shows that pCO2 in Bering Strait was influenced not only by the Bering inflow waters but also by the high biological production. However, pCO2 fluctuated sharply because of strong water mixing both laterally and vertically. In the marginal ice zone (Chukchi Sea), pCO2 was controlled by ice melt and biological production, both of which would decrease pCO2 onshore of the ice edge. In the nearly ice-free southern Canada Basin, pCO2 increasd latitudinally as a result of atmospheric CO2 uptake due to intensive gas exchange, increased temperature, and decresed biological CO2 uptake due to limited nutrient supply. Finally, pCO2 was moderately lower than the atmospheric value and was relatively stable under the ice sheet of the

  12. Fabrication process of a high temperature polymer matrix engine duct

    NASA Technical Reports Server (NTRS)

    Pratt, R. D.; Wilson, A. J.

    1985-01-01

    The process that was used in the molding of an advanced composite outer by-pass duct planned for the F404 engine is discussed. This duct was developed as a potential replacement for the existing titanium duct in order to reduce both the weight and cost of the duct. The composite duct is now going into the manufacturing technology portion of the program. The duct is fabricated using graphite cloth impregnated with the PMR-15 matrix system.

  13. Film condensation in a horizontal rectangular duct

    NASA Technical Reports Server (NTRS)

    Lu, Qing; Suryanarayana, N. V.

    1992-01-01

    Condensation heat transfer in an annular flow regime with and without interfacial waves was experimentally investigated. The study included measurements of heat transfer rate with condensation of vapor flowing inside a horizontal rectangular duct and experiments on the initiation of interfacial waves in condensation, and adiabatic air-liquid flow. An analytical model for the condensation was developed to predict condensate film thickness and heat transfer coefficients. Some conclusions drawn from the study are that the condensate film thickness was very thin (less than 0.6 mm). The average heat transfer coefficient increased with increasing the inlet vapor velocity. The local heat transfer coefficient decreased with the axial distance of the condensing surface, with the largest change at the leading edge of the test section. The interfacial shear stress, which consisted of the momentum shear stress and the adiabatic shear stress, appeared to have a significant effect on the heat transfer coefficients. In the experiment, the condensate flow along the condensing surface experienced a smooth flow, a two-dimensional wavy flow, and a three-dimensional wavy flow. In the condensation experiment, the local wave length decreased with the axial distance of the condensing surface and the average wave length decreased with increasing inlet vapor velocity, while the wave speed increased with increasing vapor velocity. The heat transfer measurements are reliable. And, the ultrasonic technique was effective for measuring the condensate film thickness when the surface was smooth or had waves of small amplitude.

  14. Salivary Duct Cyst: Histo-pathologic Correlation

    PubMed Central

    Vinayachandran, Divya; Sankarapandian, Sathasivasubramanian

    2013-01-01

    Non-neoplastic cysts of the salivary glands are uncommon and represent 2-5% of all salivary gland lesions. They are mainly mucoceles or salivary duct cysts. Unlike a mucocele, which is surrounded by granulation tissue, the salivary duct cyst is lined by epithelium. Salivary duct cysts are more common in the oral minor salivary glands and rarely occur in the major salivary glands, show a marked predilection for the superficial lobe of the parotid, and represent 10% of all salivary gland cysts. Neoplastic differentiation of the lining of the salivary duct cyst has been reported. We report a case of a salivary duct cyst of the left parotid gland, with a review of radiographic and histopathologic features. PMID:23878772

  15. Salivary Duct Cyst: Histo-pathologic Correlation.

    PubMed

    Vinayachandran, Divya; Sankarapandian, Sathasivasubramanian

    2013-01-01

    Non-neoplastic cysts of the salivary glands are uncommon and represent 2-5% of all salivary gland lesions. They are mainly mucoceles or salivary duct cysts. Unlike a mucocele, which is surrounded by granulation tissue, the salivary duct cyst is lined by epithelium. Salivary duct cysts are more common in the oral minor salivary glands and rarely occur in the major salivary glands, show a marked predilection for the superficial lobe of the parotid, and represent 10% of all salivary gland cysts. Neoplastic differentiation of the lining of the salivary duct cyst has been reported. We report a case of a salivary duct cyst of the left parotid gland, with a review of radiographic and histopathologic features. PMID:23878772

  16. Hamilton study: distribution of factors confounding the relationship between air quality and respiratory health

    SciTech Connect

    Pengelly, L.D.; Kerigan, A.T.; Goldsmith, C.H.; Inman, E.M.

    1984-10-01

    Hamilton, Ontario is an industrial city with a population of 300,000 which is situated at the western end of Lake Ontario. Canada's two largest iron and steel mills are located here; the city historically has had relatively poor air quality, which has improved markedly in the last 25 years. Concern about the health effects of current air quality recently led us to carry out an epidemiological study of the effects of air pollution on the respiratory health of over 3500 school children. Respiratory health was measured by pulmonary function testing of each child, and by an assessment of each child's respiratory symptoms via a questionnaire administered to the parents. Previous studies had shown that other environmental factors (e.g. parental smoking, parental cough, socioeconomic level, housing, and gas cooking) might also affect respiratory health, and thus confound any potential relationships between health and air pollution. The questionnaire also collected information on many of these confounding factors. For the purposes of initial analysis, the city was divided into five areas in which differences in air quality were expected. In general, factors which have been associated with poor respiratory health were observed to be more prevalent in areas of poorer air quality.

  17. Laparoscopic Anatomical Left Hepatectomy for Intrahepatic Bile Duct Papillary Mucinous Cystadenoma With Intraoperative Vascular Repair: A Case Report.

    PubMed

    Li, Hongyu; Peng, Bing

    2016-02-01

    Laparoscopic hepatectomy has been widely performed for patients with benign liver tumors such as hepatic hemangioma, focal nodular hyperplasia, and hepatic adenoma.We here present a case of a 78-year-old female patient who was initially admitted to our department due to fever and jaundice for 2 days. Abdominal enhanced computed tomography scan showed intrahepatic and extrahepatic bile duct dilatation with liver atrophy of left lobe. Unenhanced nodules were seen within the left intrahepatic bile duct. Ultrasonography revealed intrahepatic and extrahepatic bile duct dilatation with viscous fluid, tubular adenoma? Tumor markers including alpha fetoprotein, carcinoembryonic antigen, and CA19-9 were normal. Preoperative total bilirubin was 64.4 mmol/L.Laparoscopic anatomical left hepatectomy and common bile duct exploration were performed. In this procedure, a lot of mucus was seen within the common bile duct and left intrahepatic bile duct. No bile duct stones were found after the exploration. During parenchymal transection, intraoperative hemorrhage from middle hepatic vein was met, and we repaired middle hepatic vein by laparoscopic suture (5-0 Prolene). No air embolism and hypotension were met. This operation took 232 minutes and estimated blood loss was 300 mL. Postoperative ultrasonography indicated a normal outflow of middle hepatic vein and there was no stricture. The patient's postoperative course was uneventful and was discharged on the 6th day after surgery. Postoperative pathological diagnosis was intrahepatic bile duct papillary mucinous cystadenoma. PMID:26871845

  18. Electromagnetic propagation in PEC and absorbing curved S-ducts

    NASA Technical Reports Server (NTRS)

    Baumeister, Kenneth J.

    1988-01-01

    A finite-element Galerkin formulation has been developed to study transverse magnetic (TM) wave propagation in 2-D S-curved ducts with both perfectly conducting and absorbing walls. The reflection and transmission at the entrances and the exits of the curved ducts are determined by coupling the finite-element solutions in the curved ducts to the eigenfunctions of an infinite, uniform, perfectly conducting duct. Example solutions are presented for a double mitred and S-ducts of various lengths. The length of the S-duct is found to significantly effect the reflective characteristics of the duct. Also, the effect of curvature on an absorbing duct is illustrated.

  19. Field investigation of duct system performance in California light commercial buildings

    SciTech Connect

    Delp, W.W.; Matson, N.E.; Tschudy, E.

    1997-12-09

    This paper discusses field measurements of duct system performance in fifteen systems located in eight northern California buildings. Light commercial buildings, one- and two-story with package roof-top HVAC units, make up approximately 50% of the non-residential building stock in the U.S. Despite this fact little is known about the performance of these package roof-top units and their associated ductwork. These simple systems use similar duct materials and construction techniques as residential systems (which are known to be quite leaky). This paper discusses a study to characterize the buildings, quantify the duct leakage, and analyze the performance of the ductwork in these types of buildings. The study tested fifteen systems in eight different buildings located in northern California. All of these buildings had the ducts located in the cavity between the drop ceiling and the roof deck. In 50% of these buildings, this cavity was functionally outside the building`s air and thermal barriers. The effective leakage area of the ducts in this study was approximately 2.6 times that in residential buildings. This paper looks at the thermal analysis of the ducts, from the viewpoint of efficiency and thermal comfort. This includes the length of a cycle, and whether the fan is always on or if it cycles with the cooling equipment. 66% of the systems had frequent on cycles of less than 10 minutes, resulting in non-steady-state operation.

  20. An inlet/sampling duct for airborne OH and sulfuric acid measurements

    NASA Astrophysics Data System (ADS)

    Eisele, F. L.; Mauldin, R. L.; Tanner, D. J.; Fox, J. R.; Mouch, T.; Scully, T.

    1997-12-01

    An inlet assembly has been designed, tested, and used for the airborne measurements of OH and sulfuric acid. The inlet sampling duct, which incorporates a shroud connected to two nested, restricted flow ducts, slows air velocity by approximately a factor of 16 while maintaining a uniform and well-defined flow. Qualitative wind tunnel tests showed that an inlet shroud that incorporates a 3:1 inner surface and 4.5:1 outer elliptical front surface can straighten the airflow at angles of attack of up to 18°-20° with no visible signs of turbulence. Tests using a Pitot tube to scan the flow velocity profile of the restricted flow ducts showed that the shroud, coupled to inlet ducts, could slow the flow and provide a relatively flat average velocity profile across the central portion of the ducts at angles of attack up to 17°. Tests performed using a chemical tracer showed that at angles of attack where the Pitot tube measurements began to indicate slight flow instabilities (17°-24°), there was no mixing from the walls into the center of the inlet. The inlet assembly also possesses the ability to produce a fairly uniform concentration of OH in the relatively constant velocity portion of the inner duct for instrument calibration. Actual measurements of rapidly changing OH and H2SO4 provide both additional evidence of proper inlet operation and new insight into H2SO4 production and loss in and around clouds.

  1. Within-Crop Air Temperature and Humidity Outcomes on Spatio-Temporal Distribution of the Key Rose Pest Frankliniella occidentalis.

    PubMed

    Fatnassi, Hicham; Pizzol, Jeannine; Senoussi, Rachid; Biondi, Antonio; Desneux, Nicolas; Poncet, Christine; Boulard, Thierry

    2015-01-01

    Frankliniella occidentalis (Pergande) is a key pest of various crops worldwide. In this study, we analyse the dependence of the infestation of this pest on spatially distributed micro climatic factors in a rose greenhouse. Despite the importance of this subject, the few existing studies have been realized in laboratory rather than in greenhouse conditions. However, recent progress on greenhouse microclimate characterisation has highlighted the strong indoor climate heterogeneity that may influence the within-crop pest distribution. In this study, both microclimate (air temperature and humidity) and thrips distribution were simultaneously mapped in a rose greenhouse. The measurements were sensed in a horizontal plane situated at mid-height of the rose crop inside the greenhouse. Simultaneously, thrips population dynamics were assessed after an artificial and homogeneous infestation of the rose crop. The spatio-temporal distribution of climate and thrips within the greenhouse were compared, and links between thrips infestation and climatic conditions were investigated. A statistical model was used to define the favourable climate conditions for thrips adults and larvae. Our results showed that (i) the air temperature and air humidity were very heterogeneously distributed within the crop, (ii) pest populations aggregated in the most favourable climatic areas and (iii) the highest population density of thrips adults and larvae were recorded at 27°C and 22°C for temperature and 63% and 86% for humidity, respectively. These findings confirm, in real rose cropping conditions, previous laboratory studies on the F. occidentalis climatic optimum and provide a solid scientific support for climatic-based control methods against this pest. PMID:26011275

  2. Within-Crop Air Temperature and Humidity Outcomes on Spatio-Temporal Distribution of the Key Rose Pest Frankliniella occidentalis

    PubMed Central

    Fatnassi, Hicham; Pizzol, Jeannine; Senoussi, Rachid; Biondi, Antonio; Desneux, Nicolas; Poncet, Christine; Boulard, Thierry

    2015-01-01

    Frankliniella occidentalis (Pergande) is a key pest of various crops worldwide. In this study, we analyse the dependence of the infestation of this pest on spatially distributed micro climatic factors in a rose greenhouse. Despite the importance of this subject, the few existing studies have been realized in laboratory rather than in greenhouse conditions. However, recent progress on greenhouse microclimate characterisation has highlighted the strong indoor climate heterogeneity that may influence the within-crop pest distribution. In this study, both microclimate (air temperature and humidity) and thrips distribution were simultaneously mapped in a rose greenhouse. The measurements were sensed in a horizontal plane situated at mid-height of the rose crop inside the greenhouse. Simultaneously, thrips population dynamics were assessed after an artificial and homogeneous infestation of the rose crop. The spatio-temporal distribution of climate and thrips within the greenhouse were compared, and links between thrips infestation and climatic conditions were investigated. A statistical model was used to define the favourable climate conditions for thrips adults and larvae. Our results showed that (i) the air temperature and air humidity were very heterogeneously distributed within the crop, (ii) pest populations aggregated in the most favourable climatic areas and (iii) the highest population density of thrips adults and larvae were recorded at 27°C and 22°C for temperature and 63% and 86% for humidity, respectively. These findings confirm, in real rose cropping conditions, previous laboratory studies on the F. occidentalis climatic optimum and provide a solid scientific support for climatic-based control methods against this pest. PMID:26011275

  3. Numerical spatial marching techniques for estimating duct attenuation and source pressure profiles

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.

    1978-01-01

    A numerical method is developed that could predict the pressure distribution of a ducted source from far-field pressure inputs. Using an initial value formulation, the two-dimensional homogeneous Helmholtz wave equation (no steady flow) is solved using explicit marching techniques. The Von Neumann method is used to develop relationships which describe how sound frequency and grid spacing effect numerical stability. At the present time, stability considerations limit the approach to high frequency sound. Sample calculations for both hard and soft wall ducts compare favorably to known boundary value solutions. In addition, assuming that reflections in the duct are small, this initial value approach is successfully used to determine the attenuation of a straight soft wall duct. Compared to conventional finite difference or finite element boundary value approaches, the numerical marching technique is orders of magnitude shorter in computation time and required computer storage and can be easily employed in problems involving high frequency sound.

  4. Computational Fluid Dynamics Analysis of Flexible Duct Junction Box Design

    SciTech Connect

    Beach, Robert; Prahl, Duncan; Lange, Rich

    2013-12-01

    IBACOS explored the relationships between pressure and physical configurations of flexible duct junction boxes by using computational fluid dynamics (CFD) simulations to predict individual box parameters and total system pressure, thereby ensuring improved HVAC performance. Current Air Conditioning Contractors of America (ACCA) guidance (Group 11, Appendix 3, ACCA Manual D, Rutkowski 2009) allows for unconstrained variation in the number of takeoffs, box sizes, and takeoff locations. The only variables currently used in selecting an equivalent length (EL) are velocity of air in the duct and friction rate, given the first takeoff is located at least twice its diameter away from the inlet. This condition does not account for other factors impacting pressure loss across these types of fittings. For each simulation, the IBACOS team converted pressure loss within a box to an EL to compare variation in ACCA Manual D guidance to the simulated variation. IBACOS chose cases to represent flows reasonably correlating to flows typically encountered in the field and analyzed differences in total pressure due to increases in number and location of takeoffs, box dimensions, and velocity of air, and whether an entrance fitting is included. The team also calculated additional balancing losses for all cases due to discrepancies between intended outlet flows and natural flow splits created by the fitting. In certain asymmetrical cases, the balancing losses were significantly higher than symmetrical cases where the natural splits were close to the targets. Thus, IBACOS has shown additional design constraints that can ensure better system performance.

  5. CHARACTERIZATION OF LEAK PATHWAYS IN THE BELOW GRADE DUCTS OF THE BROOKHAVEN GRAPHITE RESEARCH REACTOR USING PERFLUOROCARBON TRACERS.

    SciTech Connect

    HEISER,J.; SULLIVAN,T.; KALB,P.; MILIAN,L.; WILKE,R.; NEWSON,C.; LILIMPAKIS,M.

    2001-04-01

    The focus of this program was the characterization of the soils beneath the main air ducts connecting the exhaust plenums with the Fan House. The air plenums experienced water intrusion during BGRR operations and after shutdown. The water intrusions were attributed to rainwater leaks into degraded parts of the system and to internal cooling water system leaks. As part of the overall characterization efforts, a state-of-the-art gaseous perfluorocarbon tracer technology was utilized to characterize leak pathways from the ducts. This in turn suggests what soil regions under or adjacent to the ductwork should be emphasized in the characterization process. Knowledge of where gaseous tracers leak from the ducts yields a conservative picture of where water transport, out of or into, the ducts might have occurred.

  6. Turbofan engine with a low pressure turbine driven supercharger in a bypass duct operated by a fuel rich combustor and an afterburner

    NASA Technical Reports Server (NTRS)

    Bartos, James W. (Inventor)

    1999-01-01

    A multiple bypass turbofan engine includes a core Brayton Cycle gas generator with a fuel rich burning combustor and is provided with a variable supercharged bypass duct around the gas generator with a supercharging means in the supercharged bypass duct powered by a turbine not mechanically connected to the gas generator. The engine further includes a low pressure turbine driven forward fan upstream and forward of an aft fan and drivingly connected to a low pressure turbine by a low pressure shaft, the low pressure turbine being aft of and in serial flow communication with the core gas generator. A fan bypass duct is disposed radially outward of the core engine assembly and has first and second inlets disposed between the forward and aft fans. An inlet duct having an annular duct wall is disposed radially inward of the bypass duct and connects the second inlet to the bypass duct. A supercharger means for compressing air is drivingly connected to the low pressure turbine and is disposed in the inlet duct. A secondary combustor or augmentor is disposed in an exhaust duct downstream of and in fluid flow communication with the bypass duct and the gas generator.

  7. A preliminary study on the application of remotely sensed SST in locating evaporation duct height

    NASA Astrophysics Data System (ADS)

    Baig, Muhammad Hasan Ali; Wang, Zhenhui; Zhang, Lifu; Yang, Lu

    2012-10-01

    Refractivity happens due to stratification in the lower boundary layer over oceans due to variability of moisture, temperature, wind and sea surface temperature which collectively may lead to generate evaporation duct. The evaporation duct has a significant impact on the spread of electromagnetic waves in the atmosphere over oceans both from the meteorological and military point of view. This ducting sometimes supports normal propagation of radar signals and sometimes may cause distortion and attenuation of signals depending on the height of evaporation duct. This leads to over-estimation and under-estimation of rainfall by weather radar meteorologically and for other targets militarily. The aim of this study was not only to locate evaporation duct height but also to check the efficiency of Weather Research and Forecasting Model (WRF) and Babin's model so that results may be used in applying correction measures for precise identification of targets by radar. In this study by utilizing the high vertical resolution of WRF for the simulation of different meteorological parameters, the Babin's method was used for calculating the evaporation duct height over South China Sea for the two months, April and July. Very clear duct heights were calculated at different areas over sea in different time domains. Study reveals that maximum height existed in the month of April although July was rich with different EDHs in different regions in contrast to April. It was found that in most of the cases EDH was higher or maximum when relative humidity was comparatively lower and air temperature and wind speed were comparatively higher. This study paves a way for futuristic study of evaporation duct monitoring and forecasting by assimilation of remote sensing data especially through that of Geostationary satellites by incorporating verification measures from radar.

  8. Particle size distribution and air pollution patterns in three urban environments in Xi'an, China.

    PubMed

    Niu, Xinyi; Guinot, Benjamin; Cao, Junji; Xu, Hongmei; Sun, Jian

    2015-10-01

    Three urban environments, office, apartment and restaurant, were selected to investigate the indoor and outdoor air quality as an inter-comparison in which CO2, particulate matter (PM) concentration and particle size ranging were concerned. In this investigation, CO2 level in the apartment (623 ppm) was the highest among the indoor environments and indoor levels were always higher than outdoor levels. The PM10 (333 µg/m(3)), PM2.5 (213 µg/m(3)), PM1 (148 µg/m(3)) concentrations in the office were 10-50% higher than in the restaurant and apartment, and the three indoor PM10 levels all exceeded the China standard of 150 µg/m(3). Particles ranging from 0.3 to 0.4 µm, 0.4 to 0.5 µm and 0.5 to 0.65 µm make largest contribution to particle mass in indoor air, and fine particles number concentrations were much higher than outdoor levels. Outdoor air pollution is mainly affected by heavy traffic, while indoor air pollution has various sources. Particularly, office environment was mainly affected by outdoor sources like soil dust and traffic emission; apartment particles were mainly caused by human activities; restaurant indoor air quality was affected by multiple sources among which cooking-generated fine particles and the human steam are main factors. PMID:25503684

  9. Advanced Turbofan Duct Liner Concepts

    NASA Technical Reports Server (NTRS)

    Bielak, Gerald W.; Premo, John W.; Hersh, Alan S.

    1999-01-01

    The Advanced Subsonic Technology Noise Reduction Program goal is to reduce aircraft noise by 10 EPNdB by the year 2000 relative, to 1992 technology. The improvement goal for nacelle attenuation is 25% relative to 1992 technology by 1997 and 50% by 2000. The Advanced Turbofan Duct Liner Concepts Task work by Boeing presented in this document was in support of these goals. The basis for the technical approach was a Boeing study conducted in 1993-94 under NASA/FAA contract NAS1-19349, Task 6, investigating broadband acoustic liner concepts. As a result of this work, it was recommended that linear double layer, linear and perforate triple layer, parallel element, and bulk absorber liners be further investigated to improve nacelle attenuations. NASA LaRC also suggested that "adaptive" liner concepts that would allow "in-situ" acoustic impedance control also be considered. As a result, bias flow and high-temperature liner concepts were also added to the investigation. The major conclusion from the above studies is that improvements in nacelle liner average acoustic impedance characteristics alone will not result in 25% increased nacelle noise reduction relative to 1992 technology. Nacelle design advancements currently being developed by Boeing are expected to add 20-40% more acoustic lining to hardwall regions in current inlets, which is predicted to result in and additional 40-80% attenuation improvement. Similar advancements are expected to allow 10-30% more acoustic lining in current fan ducts with 10-30% more attenuation expected. In addition, Boeing is currently developing a scarf inlet concept which is expected to give an additional 40-80% attenuation improvement for equivalent lining areas.

  10. Enhanced Mixing in a Rectangular Duct

    NASA Technical Reports Server (NTRS)

    Liscinsky, D. S.; True, B.

    2003-01-01

    An experimental investigation of the mixing of non-reacting opposed rows of jets injected normal to a confined rectangular crossflow has been conducted. Planar Mie-scattering was used to measure the time-average concentration distribution of the jet fluid in planes perpendicular to the duct axis. Particular emphasis was placed on the study of closely spaced orifice configurations applicable to the mixing zone of an RQL combustor. Baseline studies were performed of mixing under "ideal" conditions, i.e., plenum fed jets injecting into a crossflow uniform in velocity and turbulence intensity. In addition, more practical ("non-ideal") issues encountered during hardware design were also studied. As in other studies, mixing effectiveness, determined using a spatial unmixedness parameter based on the variance of mean jet concentration distributions, was found to be optimum when the spacing-to-duct-height ratio was inversely proportional to the square root of the jet-to-mainstream momentum-flux ratio. This relationship is suitable for design under ideal flow conditions. Inlet flow boundary conditions of the jet and approach flow (mainstream) were found to strongly influence mixing performance, but no attempt was made to determine optimum performance under non-ideal conditions. The tests performed do offer some guidance as to expected mixing behavior for several common variables likely to be imposed by hardware constraints. Additionally, in this study it was found that for rows of orifices with opposite centerlines inline, mixing was similar for blockages up to 89 percent (previous crossflow mixing studies concerned with dilution zone configurations, blockages were typically less than 50 percent). Lower levels of unmixedness were obtained as a function of downstream location when axial injection length was minimized. Mixing may be enhanced if orifice centerlines of opposed rows are staggered, but blockage must be =50 percent in this configuration. Round hole and "square

  11. A new study of shower age distribution in near vertical showers by EAS air shower array

    NASA Technical Reports Server (NTRS)

    Chaudhuri, N.; Goswami, G. C.; Basak, D. K.; Ghosh, B.

    1984-01-01

    The air shower array has been developed since it started operation in 1931. The array covering an area of 900 sq m now incorporates 21 particle density sampling detectors around two muon magnetic spectrographs. The air showers are detected in the size range 10 to the 4th power to 10 to the 6th power particles. A total of 11000 showers has so far been detected. Average values of shower age have been obtained in various shower size ranges to study the dependence of shower age on shower size. The core distance dependence of shower age parameter has also been analyzed for presentation.

  12. Correlation of angular and lateral distributions of electrons in extensive air showers

    NASA Astrophysics Data System (ADS)

    Giller, Maria; Śmiałkowski, Andrzej; Legumina, Remigiusz

    2016-08-01

    The aim of this paper is to explain the weak correlation of the angular and lateral deflections of electrons in extensive air showers in the primary energy range 1016-1019 eV, when compared with that in some models of electron propagation. We derive analytical formulae for the correlation coefficient in the multiple scattering model with energy losses and show a strong role of the ionisation in diminishing the correlation. By considering a Heitler-like model of an electromagnetic cascade we show also that the presence of photons, parent to electrons, causes a decrease of the correlation, roughly explaining quantitatively the small correlation in air showers.

  13. An experimental and modeling study of fires in ventilated ducts. Part 2: PMMA and stratification

    SciTech Connect

    Comitis, S.C.; Glasser, D.; Young, B.D.

    1996-01-01

    A theoretical and experimental treatment of fire processes in horizontal, ventilated passages, containing an axial distribution of fuel, is presented. Experiments for radially well-mixed flows are performed where gas temperature histories and fire-shaped solid fuel mass axial distributions are acquired from polymethyl methacrylate (PMMA)-fueled fires. The theory developed in part 1 is able to quantitatively model all the experimental results for PMMA fires. In particular, the solid fuel profiles (axial distributions) are modeled from gas-phase information alone. To assess the concept of an ignition temperature as a controlling mechanism for growth a brief fire growth analysis is also performed. A simple approach to study fires in stratified flow conditions is also presented. In conjunction with small-scale experiments on liquid-fueled fires it is shown that a modified one-dimensional model, requiring minimal computational effort, may be used to describe fire-front histories and the temperature profile of the fire plume. Both nonstratified and severely stratified fires display a direct dependence of the steady fire propagation speed with ventilation rate and inverse dependence with initial fuel mass loading. A general model requires a knowledge of the degree of stratification and mixing, in advance of experimentation. A new correlation for stratification using fuel/duct properties and air velocity is proposed as a means of predicting flow regimes.

  14. ASU nitrogen sweep gas in hydrogen separation membrane for production of HRSG duct burner fuel

    DOEpatents

    Panuccio, Gregory J.; Raybold, Troy M.; Jamal, Agil; Drnevich, Raymond Francis

    2013-04-02

    The present invention relates to the use of low pressure N2 from an air separation unit (ASU) for use as a sweep gas in a hydrogen transport membrane (HTM) to increase syngas H2 recovery and make a near-atmospheric pressure (less than or equal to about 25 psia) fuel for supplemental firing in the heat recovery steam generator (HRSG) duct burner.

  15. EVALUATING THE POTENTIAL EFFICACY OF AN ANTIMICROBIAL-CONTAINING SEALANT ON DUCT LINER AND GALVANIZED STEEL

    EPA Science Inventory

    The article gives results of an evaluation of the potential efficacy of an antimicrobial-containing sealant on fibrous-glass duct liner (FGDL) and galvanized steel (GS) as used in heating, ventilating, and air-conditioning (HVAC) systems. HVAC systems become dirty to various degr...

  16. Development of an Experimental Rig for Investigation of Higher Order Modes in Ducts

    NASA Technical Reports Server (NTRS)

    Gerhold, Carl H.; Cabell, Randolph H.; Brown, Martha C.

    2006-01-01

    Continued progress to reduce fan noise emission from high bypass ratio engine ducts in aircraft increasingly relies on accurate description of the sound propagation in the duct. A project has been undertaken at NASA Langley Research Center to investigate the propagation of higher order modes in ducts with flow. This is a two-pronged approach, including development of analytic models (the subject of a separate paper) and installation of a laboratory-quality test rig. The purposes of the rig are to validate the analytical models and to evaluate novel duct acoustic liner concepts, both passive and active. The dimensions of the experimental rig test section scale to between 25% and 50% of the aft bypass ducts of most modern engines. The duct is of rectangular cross section so as to provide flexibility to design and fabricate test duct liner samples. The test section can accommodate flow paths that are straight through or offset from inlet to discharge, the latter design allowing investigation of the effect of curvature on sound propagation and duct liner performance. The maximum air flow rate through the duct is Mach 0.3. Sound in the duct is generated by an array of 16 high-intensity acoustic drivers. The signals to the loudspeaker array are generated by a multi-input/multi-output feedforward control system that has been developed for this project. The sound is sampled by arrays of flush-mounted microphones and a modal decomposition is performed at the frequency of sound generation. The data acquisition system consists of two arrays of flush-mounted microphones, one upstream of the test section and one downstream. The data are used to determine parameters such as the overall insertion loss of the test section treatment as well as the effect of the treatment on a modal basis such as mode scattering. The methodology used for modal decomposition is described, as is a description of the mode generation control system. Data are presented which demonstrate the performance

  17. PARTICLE SIZE DISTRIBUTION OF NITRATE AEROSOLS IN THE LOS ANGELES AIR BASIN

    EPA Science Inventory

    The atmospheric aerosol was sampled with a low pressure impactor at a coastal, an urban, and an agricultural site in the Los Angeles air basin. The material collected on each stage was analyzed for nitrate by direct vaporization into a chemiluminescent analyzer, sensitive at nano...

  18. Spatial Distribution and Air-Water Exchange of Organic Flame Retardants in the Lower Great Lakes.

    PubMed

    McDonough, Carrie A; Puggioni, Gavino; Helm, Paul A; Muir, Derek; Lohmann, Rainer

    2016-09-01

    Organic flame retardants (OFRs) such as polybrominated diphenyl ethers (PBDEs) and novel halogenated flame retardants (NHFRs) are ubiquitous, persistent, and bioaccumulative contaminants that have been used in consumer goods to slow combustion. In this study, polyethylene passive samplers (PEs) were deployed throughout the lower Great Lakes (Lake Erie and Lake Ontario) to measure OFRs in air and water, calculate air-water exchange fluxes, and investigate spatial trends. Dissolved Σ12BDE was greatest in Lake Ontario near Toronto (18 pg/L), whereas gaseous Σ12BDE was greatest on the southern shoreline of Lake Erie (11 pg/m(3)). NHFRs were generally below detection limits. Air-water exchange was dominated by absorption of BDEs 47 and 99, ranging from -964 pg/m(2)/day to -30 pg/m(2)/day. Σ12BDE in air and water was significantly correlated with surrounding population density, suggesting that phased-out PBDEs continued to be emitted from population centers along the Great Lakes shoreline in 2012. Correlation with dissolved Σ12BDE was strongest when considering population within 25 km while correlation with gaseous Σ12BDE was strongest when using population within 3 km to the south of each site. Bayesian kriging was used to predict dissolved Σ12BDE over the lakes, illustrating the utility of relatively highly spatially resolved measurements in identifying potential hot spots for future study. PMID:27458653

  19. Duct Remediation Program: Remediation operations and implementation

    SciTech Connect

    Beckman, T.d.; Davis, M.M.; Karas, T.M.

    1992-11-01

    Plutonium holdup material has accumulated in the process ventilation duct systems at Rocky Flats. Non-Destructive Assay (NDA) measurements identified ducts containing this material. The Defense Nuclear Facility Safety Board and the Department of Energy established the criteria for remediation of these ducts. A remediation team was assembled and a program plan created. This program plan included activities such as fissile material accumulation identification, criticality safety assessments, radiation dose determinations, facility safety evaluations, prevention of future accumulation, and removal of holdup material. Several operational considerations had to be evaluated in determining completion of remediation.

  20. Velocity gradient method for calulating velocities in an axisymmetric annular duct

    NASA Technical Reports Server (NTRS)

    Katsanis, T.

    1982-01-01

    The velocity distribution along an arbitrary line between the inner and outer walls of an annular duct with axisymmetric swirling flow is calculated. The velocity gradient equation is used with an assumed variation of meridional streamline curvature. Upstream flow conditions can vary between the inner and outer walls, and an assumed total pressure distribution can be specified.

  1. DISCOVER-AQ: an innovative approach to study the vertical distribution of air quality constituents in the Earth's atmosphere

    NASA Astrophysics Data System (ADS)

    Wisthaler, Armin; Crawford, James H.; Müller, Markus; Mikoviny, Tomas; Cady-Pereira, Karen E.

    2014-05-01

    DISCOVER-AQ (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality) is a multi-year NASA research project to improve remote sensing of air quality from space. Satellite-based measurements of air pollutants typically provide information integrated over the total atmospheric column while it is the lowermost part of the atmosphere that is of interest from a public health perspective. DISCOVER-AQ has implemented a new field observation strategy to collect a comprehensive dataset on the vertical distribution of air pollutants in the atmosphere. In situ measurements from the NASA P-3B Airborne Science Laboratory generate profile information of air quality constituents over a set of selected ground monitoring sites. Ground and profile information is tied to column information collected by active and passive remote sensors looking downward from a second King Air aircraft flying higher in the atmosphere above the P-3B. Vertical profiles of air pollutants are measured repetitively during different times of the day and under different meteorological conditions occurring in the timeframe of 1-month field campaigns. Targeted regions in the U.S. affected by poor air quality include the Washington/Baltimore metropolitan area (June/July 2011), the San Joaquin Valley in California (January/February 2013), the Houston metropolitan area (September 2013) and the Northern Front Range area in Colorado (June/July 2014). Herein, we will present the DISCOVER-AQ project to the European community and show preliminary analyses of the obtained data. The latter will focus on non-methane hydrocarbons and ammonia, being the species measured by our newly developed airborne PTR-ToF-MS instrument (see session AS4.17). In situ ammonia data collected over the San Joaquin Valley are in promising agreement with satellite data obtained from the Tropospheric Emission Spectrometer (TES). Web site: http://discover-aq.larc.nasa.gov/ Funding

  2. 40 CFR 63.6092 - Are duct burners and waste heat recovery units covered by subpart YYYY?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Are duct burners and waste heat recovery units covered by subpart YYYY? 63.6092 Section 63.6092 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES...

  3. 40 CFR 63.6092 - Are duct burners and waste heat recovery units covered by subpart YYYY?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Are duct burners and waste heat recovery units covered by subpart YYYY? 63.6092 Section 63.6092 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES...

  4. Number size distribution of aerosols at Mt. Huang and Nanjing in the Yangtze River Delta, China: Effects of air masses and characteristics of new particle formation

    NASA Astrophysics Data System (ADS)

    Wang, Honglei; Zhu, Bin; Shen, Lijuan; An, Junlin; Yin, Yan; Kang, Hanqing

    2014-12-01

    Aerosol number spectra in the range of 10 nm-10 μm were observed at Mt. Huang (Aug. 15-Sep. 15) and Nanjing (Oct. 13-Nov. 15) by a wide-range particle spectrometer (WPS) in 2011. Based on the backward trajectories obtained using the HYSPLIT model, the transport pathways of observed air masses during the study periods were classified into the following four groups: maritime air mass, continental air mass, marine-continental mixed air mass and local air mass. The variations in the aerosol number spectrum and the new particle formation (NPF) events for various types of air masses were discussed, along with meteorological data. The results showed that the average number concentration was 12,540 cm- 3 at Nanjing and only 2791 cm- 3 at Mt. Huang. The aerosol number concentration in Nanjing was 3-7 times higher than that in Mt. Huang; the large discrepancy was in the range of 10-100 nm. Different types of air masses had different effects on number concentration distribution. The number concentration of aerosols was higher in marine air masses, continental air masses and continental-marine mixed air masses at 10-50 nm, 100-500 nm and 50-200 nm, respectively. Under the four types of air masses, the aerosol size spectra had bimodal distributions in Nanjing and unimodal distributions in Mt. Huang (except under continental air masses: HT1). The effects of the diverse air masses on aerosol size segments of the concentration peak in Mt. Huang were stronger than those in Nanjing. The local air masses were dominant at these two sites and accounted for 44% of the total air masses. However, the aerosol number concentration was the lowest in Mt. Huang and the highest in Nanjing when local air masses were present. The number concentrations for foreign air masses increased at Mt. Huang and decreased at Nanjing. Different types of air masses had greater effects on the aerosol spectrum distribution at Mt. Huang than at Nanjing. During the NPF events, the particle growth rates at Mt

  5. Surfactant effects on cumulative drop size distributions produced by air bubbles bursting on a non-quiescent free surface

    NASA Astrophysics Data System (ADS)

    Parmar, K.; Liu, X.; Duncan, J. H.

    2013-11-01

    The generation of droplets when air bubbles travel upwards from within a liquid and burst at a free surface is studied experimentally. The bubbles are generated in a glass water tank that is 0.91 m long and 0.46 m wide with a water depth of 0.5 m. The tank is equipped with an acrylic box at its bottom that creates the bubble field using filtered air injected through an array of 180 hypodermic needles (0.33 mm ID). Two different surface conditions are created by using clean water and a 0.4% aqueous solution of Triton X-100 surfactant. Measurements of the bubble diameters as they approach the free surface are obtained with diffuse light shadowgraph images. The range of bubble diameters studied is 2.885 mm to 3.301 mm for clean water and 2.369 mm to 3.014 mm for the surfactant solution. A laser-light high-speed cinematic shadowgraph system is employed to record and measure the diameters and motions of the droplets at the free surface. This system can measure droplets with diameters <= 50 μm. The results show a clear distinction between the droplet distributions obtained in clean water and the surfactant solution. A bimodal droplet distribution is observed for clean water with at least two dominating peaks. For the surfactant solution, a single distribution peak is seen. This work is supported by the National Science Foundation, Division of Ocean Sciences.

  6. Vertical distribution of ozone and nitrogenous pollutants in an air quality class I area, the San Gorgonio wilderness, southern California.

    PubMed

    Alonso, Rocío; Bytnerowicz, Andrzej; Arbaugh, Michael

    2002-01-01

    Information about spatial and temporal distribution of air pollutants is essential for better understanding of environmental stresses affecting forests and estimation of potential risks associated with air pollutants. Ozone and nitrogenous air pollutants were monitored along an elevation gradient in the Class I San Gorgonio Wilderness area (San Bernardino Mountains, California, U.S.) during the summer of 2000 (mid-June to mid-October). Passive samplers were exposed for 2-week periods at six sampling sites located at 300 m intervals ranging from 1200 to 2700 m elevation. Elevated concentrations of ozone were found in this area with summer 24-h hourly means ranging from 53 to 59 ppb. The highest ozone concentrations were detected in the period July 25-August 8, reaching values of 64 to 72 ppb expressed as 2-week mean. Passive-sampler ozone data did not show a clear relationship with elevation, although during the periods with higher ozone levels, ozone concentrations were higher at those sites below 2000 m than at sites located above that elevation. All nitrogenous pollutants studied showed a consistent decrease of concentrations with elevation. Nitrogen dioxide (NO2) levels were low, decreasing with increasing elevation from 6.4 to 1.5 ppb summer means. Nitric oxide (NO) concentrations were around 1 to 2 ppb, which is within the range of the detection levels of the devices used. Nitric acid (HNO3) vapor concentrations were lower at higher elevations (summer means 1.9-2.5 microg m(-3) than at lower elevations (summer means 4.3-5.1 microg m(-3). Summer concentrations of ammonia (NH3) were slightly higher than nitric acid ranging from 6 microg m(-3) at the lowest site to 2.5 microg m(-3) registered at the highest elevation. Since complex interactions between ozone and nitrogenous air pollutants have already been described for forests, simultaneous information about the distribution of these pollutants is needed. This is particularly important in mountain terrain where

  7. Distribution and mycotoxin-producing ability of some fungal isolates from the air

    NASA Astrophysics Data System (ADS)

    Cvetnić, Zdenka; Pepeljnjak, S.

    Research was carried out on presence and prevalence of common fungal air spores at locations in Croatia. The sampling method employed in the study was by exposure 350 of Petri agar plates to the air for 10 min. Approximately 3400 colonies were found and mould spores belonging to 22 fungal genera were identified. Cladosporium (44.7%), Penicillium (34.4%), Alternaria (26.3%), Aspergillus (21.6%) and Absidia (12.2%) were the most prevalent fungi encountered. Investigation of toxigenic potential of airborne fungi isolates of genera Aspergillus, Fusarium and Trichoderma showed 16.9% mycotoxin-producing strains. The production of aflatoxin B 1 by A. flavus sterigmatocystin by A. versicolor zearalenon and T-2 toxin by F. graminearum and diacetoscirpenol by strains of T. viride were obtained.

  8. Size distribution of oceanic air bubbles entrained in sea-water by wave-breaking

    NASA Technical Reports Server (NTRS)

    Resch, F.; Avellan, F.

    1982-01-01

    The size of oceanic air bubbles produced by whitecaps and wave-breaking is determined. The production of liquid aerosols at the sea surface is predicted. These liquid aerosols are at the origin of most of the particulate materials exchanged between the ocean and the atmosphere. A prototype was designed and built using an optical technique based on the principle of light scattering at an angle of ninety degrees from the incident light beam. The output voltage is a direct function of the bubble diameter. Calibration of the probe was carried out within a range of 300 microns to 1.2 mm. Bubbles produced by wave-breaking in a large air-sea interaction simulating facility. Experimental results are given in the form of size spectrum.

  9. Natural Flow Air Cooled Photovoltaics

    NASA Astrophysics Data System (ADS)

    Tanagnostopoulos, Y.; Themelis, P.

    2010-01-01

    Our experimental study aims to investigate the improvement in the electrical performance of a photovoltaic installation on buildings through cooling of the photovoltaic panels with natural air flow. Our experimental study aims to investigate the improvement in the electrical performance of a photovoltaic installation on buildings through cooling of the photovoltaic panels with natural air flow. We performed experiments using a prototype based on three silicon photovoltaic modules placed in series to simulate a typical sloping building roof with photovoltaic installation. In this system the air flows through a channel on the rear side of PV panels. The potential for increasing the heat exchange from the photovoltaic panel to the circulating air by the addition of a thin metal sheet (TMS) in the middle of air channel or metal fins (FIN) along the air duct was examined. The operation of the device was studied with the air duct closed tightly to avoid air circulation (CLOSED) and the air duct open (REF), with the thin metal sheet (TMS) and with metal fins (FIN). In each case the experiments were performed under sunlight and the operating parameters of the experimental device determining the electrical and thermal performance of the system were observed and recorded during a whole day and for several days. We collected the data and form PV panels from the comparative diagrams of the experimental results regarding the temperature of solar cells, the electrical efficiency of the installation, the temperature of the back wall of the air duct and the temperature difference in the entrance and exit of the air duct. The comparative results from the measurements determine the improvement in electrical performance of the photovoltaic cells because of the reduction of their temperature, which is achieved by the naturally circulating air.

  10. The global tropospheric ammonia distribution as seen in the 13-year AIRS measurement record

    NASA Astrophysics Data System (ADS)

    Warner, Juying X.; Wei, Zigang; Larrabee Strow, L.; Dickerson, Russell R.; Nowak, John B.

    2016-05-01

    Ammonia (NH3) plays an increasingly important role in the global biogeochemical cycle of reactive nitrogen as well as in aerosol formation and climate. We present extensive and nearly continuous global ammonia measurements made by the Atmospheric Infrared Sounder (AIRS) from the Aqua satellite to identify and quantify major persistent and episodic sources as well as to characterize seasonality. We examine the 13-year period from September 2002 through August 2015 with a retrieval algorithm using an optimal estimation technique with a set of three, spatially and temporally uniform a priori profiles. Vertical profiles show good agreement (˜ 5-15 %) between AIRS NH3 and the in situ profiles from the winter 2013 DISCOVER-AQ (DISCOVER-Air Quality) field campaign in central California, despite the likely biases due to spatial resolution differences between the two instruments. The AIRS instrument captures the strongest consistent NH3 concentrations due to emissions from the anthropogenic (agricultural) source regions, such as South Asia (India/Pakistan), China, the United States (US), parts of Europe, Southeast (SE) Asia (Thailand/Myanmar/Laos), the central portion of South America, as well as Western and Northern Africa. These correspond primarily to irrigated croplands, as well as regions with heavy precipitation, with extensive animal feeding operations and fertilizer applications where a summer maximum and a secondary spring maximum are reliably observable. In the Southern Hemisphere (SH) regular agricultural fires contribute to a spring maximum. Regions of strong episodic emissions include Russia and Alaska as well as parts of South America, Africa, and Indonesia. Biomass burning, especially wildfires, dominate these episodic NH3 high concentrations.

  11. The global tropospheric ammonia distribution as seen in the 13 year AIRS measurement record

    NASA Astrophysics Data System (ADS)

    Warner, J. X.; Wei, Z.; Strow, L. L.; Dickerson, R. R.; Nowak, J. B.

    2015-12-01

    Ammonia (NH3) plays an increasingly important role in the global biogeochemical cycle of reactive nitrogen as well as in aerosol formation and climate. We present extensive and nearly continuous global ammonia measurements made by the Atmospheric Infrared Sounder (AIRS) from the Aqua satellite to identify and quantify major persistent and episodic sources as well as to characterize seasonality. We examine the 13 year period from September 2002 through August 2015 with a retrieval algorithm using an optimal estimation technique with a set of three, spatially and temporally uniform a priori profiles. Vertical profiles show good agreement (~5-15 %) between AIRS NH3 and the in situ profiles from the winter 2013 DISCOVER-AQ field campaign in central California, despite the likely biases due to spatial resolution differences between the two instruments. AIRS captures the strongest consistent NH3 emissions from the anthropogenic (agricultural) source regions, such as, South Asia (India/Pakistan), China, the US, parts of Europe, SE Asia (Thailand/Myanmar/Laos), the central portion of South America, as well as Western and Northern Africa. These correspond primarily to croplands with extensive animal feeding operations and fertilizer applications where a summer maximum and secondary spring maximum are reliably observable. In the Southern Hemisphere (SH) regular agricultural fires contribute to a spring maximum. Regions of strong episodic emissions include Russia and Alaska as well as parts of South America, Africa, and Indonesia. Biomass burning, especially wildfires, dominate these episodic NH3 emissions.

  12. Partial Müllerian Duct Retention in Smad4 Conditional Mutant Male Mice

    PubMed Central

    Petit, Fabrice G.; Deng, Chuxia; Jamin, Soazik P.

    2016-01-01

    Müllerian duct regression is a complex process which involves the AMH signalling pathway. We have previously demonstrated that besides AMH and its specific type II receptor (AMHRII), BMPR-IA and Smad5 are two essential factors implicated in this mechanism. Mothers against decapentaplegic homolog 4 (Smad4) is a transcription factor and the common Smad (co-Smad) involved in transforming growth factor beta (TGF-β) signalling pathway superfamily. Since Smad4 null mutants die early during gastrulation, we have inactivated Smad4 in the Müllerian duct mesenchyme. Specific inactivation of Smad4 in the urogenital ridge leads to the partial persistence of the Müllerian duct in adult male mice. Careful examination of the urogenital tract reveals that the Müllerian duct retention is randomly distributed either on one side or both sides. Histological analysis shows a uterus-like structure, which is confirmed by the expression of estrogen receptor α. As previously described in a β-catenin conditional mutant mouse model, β-catenin contributes to Müllerian duct regression. In our mutant male embryos, it appears that β-catenin expression is locally reduced along the urogenital ridge as compared to control mice. Moreover, the expression pattern is similar to those observed in control female mice. This study shows that reduced Smad4 expression disrupts the Wnt/β-catenin signalling leading to the partial persistence of Müllerian duct. PMID:27194944

  13. Transmission of wave energy in curved ducts

    NASA Technical Reports Server (NTRS)

    Rostafinski, W.

    1973-01-01

    A formation of wave energy flow was developed for motion in curved ducts. A parametric study over a range of frequencies determined the ability of circular bends to transmit energy for the case of perfectly rigid walls.

  14. How Is Bile Duct Cancer Diagnosed?

    MedlinePlus

    ... line through which a different kind of contrast dye (IV contrast) is injected. This helps better outline ... common bile duct. A small amount of contrast dye is injected through the tube to help outline ...

  15. Treatment Options for Extrahepatic Bile Duct Cancer

    MedlinePlus

    ... checked to measure the amounts of bilirubin and alkaline phosphatase released into the blood by the liver. ... which a stent (a thin, flexible tube or metal tube) is placed in the bile duct to ...

  16. Treatment Option Overview (Extrahepatic Bile Duct Cancer)

    MedlinePlus

    ... checked to measure the amounts of bilirubin and alkaline phosphatase released into the blood by the liver. ... which a stent (a thin, flexible tube or metal tube) is placed in the bile duct to ...

  17. Stages of Extrahepatic Bile Duct Cancer

    MedlinePlus

    ... checked to measure the amounts of bilirubin and alkaline phosphatase released into the blood by the liver. ... which a stent (a thin, flexible tube or metal tube) is placed in the bile duct to ...

  18. Bile Duct (Cholangiocarcinoma) Cancer: Radiation Therapy

    MedlinePlus

    ... form of radiation for bile duct cancer. External beam radiation therapy (EBRT) This type of radiation therapy ... determine the correct angles for aiming the radiation beams and the proper dose of radiation. The treatment ...

  19. Intraoperative cholangiography and bile duct injury.

    PubMed

    Sarli, L; Costi, R; Roncoroni, L

    2006-01-01

    We are not in agreement with the opinion that the credit for excellent results after laparoscopic cholecystectomy is to be attributed to the routine performing of intraoperative cholangiography. We performed 2538 laparoscopic cholecystectomies without routine intraoperative cholangiography and we obtained very low rate and severity of common bile duct injuries: there was a total of four common bile duct injuries (0.16%), in no case was the injury a major transaction, and injuries were detected intraoperatively and easily repaired with a T-tube. Cholangiography could prevent bile duct transaction, but that it is not necessary for intraoperative cholangiography to be routinely performed for this purpose. It is sufficient for intraoperative cholangiography to be performed whenever the surgeon is in doubt as to the biliary anatomy or common bile duct clearance, and that when dissection of the cholecystic peduncle proves difficult he does not hesitate to convert to open access. PMID:16333543

  20. Investigation of heat transfer in porous duct

    NASA Astrophysics Data System (ADS)

    Athani, Abdulgaphur; Khan, T. M. Yunus

    2016-05-01

    Investigation of heat transfer in a square porous duct is carried out. The porous medium is sandwiched between inner and outer surface of a square duct. The flow is assumed to follow the Darcy law. The governing momentum and energy equations are non-dimensionalised and then converted to algebraic form of equations using finite element method. Galerkin method is used to transform the partial differential equations into simpler algebraic equations then solved in a iterative manner to arrive at the solution. The results are presented with respect to various geometric and physical parameters such as depth of porous medium, Rayleigh number etc. It is found that the isotherms and the streamlines take symmetrical position along the vertical central line of square duct. The isotherms are penetrated into deeper area at upper half of duct as compared to lower half.

  1. Model for coal dust duct explosions

    SciTech Connect

    Pickles, J.H.

    1982-01-01

    A theoretical discussion is given of the propagation of a dust explosion in a linear duct or pipeline. The particular aim is to investigate the experimental observation that propagating explosions are much harder to initiate in small laboratory scale ducts than in, say, coal mine galleries. A model is proposed in which a turbulent mixing phenomenon first identified by G.I. Taylor gives, for large ducts, very high flame velocities, which in turn lead to large fluid velocities and further increases in flame velocity. In small ducts, the time scale of the turbulent mixing is less than the time needed for the burning of individual coal particles. The particle burning time becomes an additional constraint on the rate of flame propagation and the development of explosions is inhibited.

  2. Rotating Rake Turbofan Duct Mode Measurement System

    NASA Technical Reports Server (NTRS)

    Sutliff, Daniel L.

    2005-01-01

    An experimental measurement system was developed and implemented by the NASA Glenn Research Center in the 1990s to measure turbofan duct acoustic modes. The system is a continuously rotating radial microphone rake that is inserted into the duct. This Rotating Rake provides a complete map of the acoustic duct modes present in a ducted fan and has been used on a variety of test articles: from a low-speed, concept test rig, to a full-scale production turbofan engine. The Rotating Rake has been critical in developing and evaluating a number of noise reduction concepts as well as providing experimental databases for verification of several aero-acoustic codes. More detailed derivation of the unique Rotating Rake equations are presented in the appendix.

  3. [Isolated neurofibroma of the common bile duct].

    PubMed

    Carbia, S; Pagola, J; Flaster, N; Guida, A; Jufe, L; González, B; Caniparoli, A

    1995-01-01

    The neurogenic tumors in the biliary tract are rare and usually are amputation neuroma that occur after cholecystectomy. We describe a case of isolated neurofibroma of the common bile duct in a young man not cholecystectomized. The patient suffered recurrent episodes of abdominal pain, vomiting and weight loss without clinical signs of Von Recklinghausen's disease or jaundice. The hepatogram was normal. The echography indicated a solid formation with obstruction of the proximal common bile duct. In the ERCP the stenosis was found. Surgical excision of the tumor and anastomosis of bilateral hepatic ducts and jejunum were carried out. At microscopic examination intraparietal neurofibroma of the common bile duct was found. As isolated entity, we know of only one reported case. PMID:8731581

  4. Size distribution of trace metals in Ponce, Puerto Rico air particulate matter

    NASA Astrophysics Data System (ADS)

    Infante, Rafael; Acosta, Iris L.

    The atmospheric particulate size distribution of nine heavy metals was measured in Ponce, a moderately industrial city in the south of Puerto Rico. Samples were collected in the city center and outlying suburban and rural locations during 1986. The size measurements were done with a cascade impactor. The elemental content of the size fractionated aerosol samples was determined by inductively coupled plasma atomic emission spectroscopy. The particle size distributions observed for Cu, Cd, Pb, Mn and Fe were bimodal with a gradual progression from mainly coarse mode to mainly fine mode. Al, Ni and Zn were mostly associated with coarse particles and V size distribution was unimodal with maxima associated with fine particles. The particle size distribution did not vary significantly with the sites sampled in the urban area although some regional characteristics are observed. The data obtained strongly suggest motor vehicle traffic and fuel combustion as the principal pollution pources in Ponce aerosol.

  5. Device for Measuring Low Flow Speed in a Duct

    NASA Technical Reports Server (NTRS)

    Quinn, Frank; Magee, Kevin

    2009-01-01

    A multiple-throat venturi system has been invented for measuring laminar flow of air or other gas at low speed (1 to 30 cm/s) in a duct while preserving the laminar nature of the flow and keeping the velocity profile across the duct as nearly flat as possible. While means for measuring flows at higher speeds are well established, heretofore, there have been no reliable means for making consistent, accurate measurements in this speed range. In the original application for which this system was invented, the duct leads into the test section of a low-speed wind tunnel wherein uniform, low-speed, laminar flow is required for scientific experiments. The system could also be used to monitor a slow flow of gas in an industrial process like chemical vapor deposition. In the original application, the multiple- throat venturi system is mounted at the inlet end of the duct having a rectangular cross section of 19 by 14 cm, just upstream of an assembly of inlet screens and flow straighteners that help to suppress undesired flow fluctuations (see Figure 1). The basic venturi measurement principle is well established: One measures the difference in pressure between (1) a point just outside the inlet, where the pressure is highest and the kinetic energy lowest; and (2) the narrowest part (the throat) of the venturi passage, where the kinetic energy is highest and the pressure is lowest. Then by use of Bernoulli s equation for the relationship between pressure and kinetic energy, the volumetric flow speed in the duct can be calculated from the pressure difference and the inlet and throat widths. The design of this system represents a compromise among length, pressure recovery, uniformity of flow, and complexity of assembly. Traditionally, venturis are used to measure faster flows in narrower cross sections, with longer upstream and downstream passages to maintain accuracy. The dimensions of the passages of the present venturi system are sized to provide a readily measurable

  6. Evaluating the Adequacy of Simulating Maximum and Minimum Daily Air Temperature with the Normal Distribution.

    NASA Astrophysics Data System (ADS)

    Harmel, R. D.; Richardson, C. W.; Hanson, C. L.; Johnson, G. L.

    2002-07-01

    Weather simulation models are commonly used to generate synthetic daily weather for use in studies of crop growth, water quality, water availability, soil erosion, climate change, and so on. Synthetic weather sequences are needed if long-term measured data are not available, measured data contain missing records, collection of actual data is cost or time prohibitive, or when necessary to simulate impacts of future climate scenarios. Most weather generators are capable of producing one or more components of weather such as precipitation, temperature, solar radiation, humidity, and wind speed. This study focused on one generation component, the procedure commonly used by weather simulation models to generate daily maximum and minimum temperature. The normal distribution is used by most weather generators (including USCLIMATE, WXGEN, LARS-WG, CLIMGEN, and CLIGEN) to generate daily maximum and minimum temperature values. The objective of this study was to analyze the adequacy of generating temperature data from the normal distribution. To accomplish this objective, the assumption of normality in measured daily temperatures was evaluated by testing the hypothesis that daily minimum and maximum temperature are normally distributed for each month. In addition, synthetic temperature records generated with the normal distribution were compared with measured temperature records. Based on these analyses, it was determined that measured daily maximum and minimum temperature are generally not normally distributed in each month but often are slightly skewed, which contradicts the assumption of normality used by most weather generators. In addition, generating temperature from the normal distribution resulted in several physically improbable values.

  7. Evaporation duct communication: Test plan, part 2

    NASA Astrophysics Data System (ADS)

    Anderson, K. D.; Rogers, L. T.

    1991-11-01

    This document is a continuation and expansion of an earlier study that examines the feasibility of using the evaporation duct to support an alternative high-speed communication system for Navy applications. This Evaporation Duct Communication (EDCOM) experiment is a unique opportunity to evaluate another communication channel that can alleviate Navy ship-to-ship communication problems. Therefore, it is strongly recommended to proceed with this measurement program.

  8. Experimental study of cross flow mixing in cylindrical and rectangular ducts

    NASA Technical Reports Server (NTRS)

    Liscinsky, D. S.; Vranos, A.; Lohmann, R. P.

    1993-01-01

    An experimental investigation of non-reacting cross flow jet injection and mixing in cylindrical and rectangular ducts has been conducted with application to a low emissions combustor. Quantitative measurement of injectant concentration distributions perpendicular to the duct axis were obtained by planar digital imaging of the Mie-scattered light from an aerosol seed mixed with the injectant. The flowfield unmixedness was evaluated using (1) a mixing parameter derived from the ratio of the jet concentration fluctuations to the fully mixed concentration, and (2) probability density functions of the concentration distributions. Mixing rate was measured for 45 degree slant slot and round orifice injectors.

  9. Mucoepidermoid carcinoma in a thyroglossal duct remnant

    PubMed Central

    Warner, E.; Ofo, E.; Connor, S.; Odell, E.; Jeannon, J.P.

    2015-01-01

    Introduction Thyroglossal duct cysts (TDC) are common midline neck swellings resulting from embryological remnants of the thyroglossal duct. They often contain ectopic thyroid tissue and malignant transformation has been reported, most commonly to papillary thyroid carcinoma. Mucoepidermoid carcinoma (MEC) usually occurs in the salivary glands and only rarely in the thyroid. This is the first case of a MEC occurring within a thyroglossal duct remnant. Presentation of a case A 73 year old lady presented with a thyroglossal duct cyst. She declined surgical excision, as she was adamant she wanted to avoid surgery. The neck mass rapidly enlarged at two years following initial diagnosis. Fine needle aspiration cytology was suspicious for carcinoma. She underwent total thyroidectomy and selective central compartment neck dissection with adjuvant radiotherapy. She remains alive and well two years post treatment. Discussion Mucoepidermoid carcinoma is the most common malignant neoplasm of salivary glands, although it has rarely been reported in diverse locations including the thyroid, lung and pancreas. To the best of our knowledge, this is the first reported case of mucoepidermoid carcinoma arising from a thyroglossal duct remnant. Conclusion This case adds weight to the literature favouring surgical excision of thyroglossal duct remnants due to the risk of malignant transformation. PMID:26101054

  10. Fundamental investigation of duct/ESP phenomena: Flow visualization

    NASA Astrophysics Data System (ADS)

    Brown, C. T.; Sowa, W. A.; Samuelsen, G. S.

    1990-11-01

    The objective is to characterize the performance and behavior of twin-fluid atomizers used for in-duct sulfur capture. Such atomizers characteristically produce dense sprays featuring very narrow dispersion angles and high droplet velocities. To meet the objective, several tasks were identified (1) demonstrate the usefulness of phase Doppler interferometry to characterize humidification atomizers, (2) screen several commercially available atomizers to guide in the selection of nozzles used of field testing, and (3) develop a data base useful for computational code development and validation. The approach taken is to characterize the liquid phase produced by practical, full scale, twin-fluid humidification atomizers. Eight such twin-fluid atomizers are considered. Several of these atomizers were used in field tests. Only water sprays are considered. Atomizer responses to changes in air pressure (air flow rate) and water pressure (water flow rate) are examined. Measurements of droplet size and corresponding mean axial velocity are obtained.

  11. Probability distribution functions for the initial liftoff velocities of saltating sand grains in air

    NASA Astrophysics Data System (ADS)

    Cheng, Hong; Zou, Xue-Yong; Zhang, Chun-Lai

    2006-11-01

    Saltating sand grains are the primary component of airborne sand and account for 75% of all transport flux of sand grains. Although they have been widely studied, the microscopic and macroscopic aspects of blown sand physics have not been united, and this has slowed development of this field. The main reason for this is that the bridge (probability distribution functions for initial liftoff velocities of saltating sand grains) between the macroscopic and microscopic research has not been satisfactorily solved because it is difficult to measure the initial liftoff parameters of saltating sand grains and because the underlying theory is lacking. In this paper, we combined theoretical analyses with wind tunnel experiment data to describe the liftoff parameters of saltating sand grains (the horizontal, vertical, and resultant liftoff velocities and angles). On the basis of these data, the liftoff angles follow a LogNorm4 distribution function, whereas the horizontal, vertical, and resultant liftoff velocities follow a Gamma distribution function. We also demonstrated that it is feasible to colligate initial liftoff velocities of saltating sand grains obtained under different frictional wind velocities by different scholars in wind tunnel experiments and comprehensively analyze their distributions. Therefore the distribution functions of initial liftoff velocities of saltating sand grains presented in this paper do a good job of reflecting the underlying physics.

  12. Cockpit displayed traffic information and distributed management in air traffic control

    NASA Technical Reports Server (NTRS)

    Kreifeldt, J. G.

    1980-01-01

    A graphical display of information (such as surrounding aircraft and navigation routes) in the cockpit on a cathode ray tube has been proposed for improving the safety, orderliness, and expeditiousness of the air traffic control system. An investigation of this method at NASA-Ames indicated a large reduction in controller verbal work load without increasing pilot verbal load; the visual work may be increased. The cockpit displayed traffic and navigation information system reduced response delays permitting pilots to maintain their spacing more closely and precisely than when depending entirely on controller-issued radar vectors and speed command.

  13. Energy distribution of runaway electrons generated by a nanosecond discharge in atmospheric-pressure air

    NASA Astrophysics Data System (ADS)

    Tarasenko, V. F.; Baksht, E. Kh.; Burachenko, A. G.; Kostyrya, I. D.; Lomaev, M. I.; Petin, V. K.; Rybka, D. V.; Shlyakhtun, S. V.

    2008-12-01

    The spectra of an ultrashort avalanche electron beam generated by a nanosecond discharge in atmospheric-pressure air were investigated. The temporal characteristics of the beam current pulses, gap voltage, and discharge current in a gas diode were measured with a time resolution of ˜0.1 ns. A simple technique was developed for recovering electron spectra from the curves of beam attenuation by aluminum foils. The effect of the cathode design, electrode gap length, and generator parameters on the electron spectra were studied using seven setups. It is shown that generation of electrons with anomalously high energies requires the use of cathodes with increased curvature radius.

  14. Distributions of eight meteorological variables at Cape Kennedy, Florida and Vandenberg Air Force Base, California

    NASA Technical Reports Server (NTRS)

    Graves, M. E.; King, R. L.; Brown, S. C.

    1973-01-01

    Extreme values, median values, and nine percentile values are tabulated for eight meteorological variables at Cape Kennedy, Florida and at Vandenberg Air Force Base, California. The variables are temperature, relative humidity, station pressure, water vapor pressure, water vapor mixing ratio, density, and enthalpy. For each month eight hours are tabulated, namely, 0100, 0400, 0700, 1000, 1300, 1600, 1900, and 2200 local time. These statistics are intended for general use for the space shuttle design trade-off analysis and are not to be used for specific design values.

  15. Effects of diesel exhaust aftertreatment devices on concentrations and size distribution of aerosols in underground mine air.

    PubMed

    Bugarski, Aleksandar D; Schnakenberg, George H; Hummer, Ion A; Cauda, Emanuele; Janisko, Samuel I; Patts, Larry D

    2009-09-01

    Three types of uncatalyzed diesel particulate filter (DPF) systems, three types of high-temperature disposable filter elements (DFEs), and one diesel oxidation catalytic converter (DOC) were evaluated in underground mine conditions for their effects on the concentrations and size distributions of diesel aerosols. Those effects were compared with the effects of a standard muffler. The experimental work was conducted directly in an underground environment using a unique diesel laboratory developed in an underground experimental mine. The DPF systems reduced total mass of aerosols in the mine air approximately 10-fold for light-load and 20-fold or more for high-load test conditions. The DFEs offered similar reductions in aerosol mass concentrations. The efficiency of the new DFEs significantly increased with accumulation of operating time and buildup of diesel particulate matter in the porous structure of the filter elements. A single laundering process did not exhibit substantial effects on performance of the filter element The effectiveness of DPFs and DFEs in removing aerosols by number was strongly influenced by engine operating mode. The concentrations of nucleation mode aerosols in the mine air were found to be substantially higher for both DPFs and DFEs when the engine was operated at high-load modes than at low-load modes. The effects of the DOC on mass and number concentrations of aerosols in mine air were relatively minor when compared to those of the DPF and DFE systems. PMID:19764243

  16. Influence of trans-boundary biomass burning impacted air masses on submicron particle number concentrations and size distributions

    NASA Astrophysics Data System (ADS)

    Betha, Raghu; Zhang, Zhe; Balasubramanian, Rajasekhar

    2014-08-01

    Submicron particle number concentration (PNC) and particle size distribution (PSD) in the size range of 5.6-560 nm were investigated in Singapore from 27 June 2009 through 6 September 2009. Slightly hazy conditions lasted in Singapore from 6 to 10 August. Backward air trajectories indicated that the haze was due to the transport of biomass burning impacted air masses originating from wild forest and peat fires in Sumatra, Indonesia. Three distinct peaks in the morning (08:00-10:00), afternoon (13:00-15:00) and evening (16:00-20:00) were observed on a typical normal day. However, during the haze period no distinct morning and afternoon peaks were observed and the PNC (39,775 ± 3741 cm-3) increased by 1.5 times when compared to that during non-haze periods (26,462 ± 6017). The morning and afternoon peaks on the normal day were associated with the local rush hour traffic while the afternoon peak was induced by new particle formation (NPF). Diurnal profiles of PNCs and PSDs showed that primary particle peak diameters were large during the haze (60 nm) period when compared to that during the non-haze period (45.3 nm). NPF events observed in the afternoon period on normal days were suppressed during the haze periods due to heavy particle loading in atmosphere caused by biomass burning impacted air masses.

  17. Positive direct current corona discharges in single wire-duct electrostatic precipitators

    NASA Astrophysics Data System (ADS)

    Yehia, Ashraf; Abdel-Fattah, E.; Mizuno, Akira

    2016-05-01

    This paper is aimed to study the characteristics of the positive dc corona discharges in single wire-duct electrostatic precipitators. Therefore, the corona discharges were formed inside dry air fed single wire-duct reactor under positive dc voltage at the normal atmospheric conditions. The corona current-voltage characteristics curves have been measured in parallel with the ozone concentration generated inside the reactor under different discharge conditions. The corona current-voltage characteristics curves have agreed with a semi empirical equation derived from the previous studies. The experimental results of the ozone concentration generated inside the reactor were formulated in the form of an empirical equation included the different parameters that were studied experimentally. The obtained equations are valid to expect both the current-voltage characteristics curves and the corresponding ozone concentration that generates with the positive dc corona discharges inside single wire-duct electrostatic precipitators under any operating conditions in the same range of the present study.

  18. Analysis and consequences of fire inside the ventilation ducts of a nuclear facility

    SciTech Connect

    Briand, A.R.; Laborde, J.C. ); Savornin, J.H.; Tessier, J.L. )

    1989-01-01

    Accident events involving fire are rather frequent and could have a severe effect on the safety of nuclear facilities. Among the fires that have broken out in nuclear plants, several have resulted from ignition of dust deposited inside the ventilation ducts and on the high-efficiency particulate air (HEPA) filters. The BEATRICE test facility has been designed and built at a French nuclear studies center to enable the analysis and consequences of these types of fires to be evaluated. The associated experimental program is aimed at characterizing the fire (fire spread, aerosols formed), determining and simulating the temperature profiles along the duct (thermal losses evaluation by the pipette code), and evaluating the challenge and behavior of the associated HEPA filters (efficiency, contamination release, etc.). The tests performed in this study contributed to improvements in the basic knowledge about fires inside ventilation ducts and define the associated strategies (ventilation control, filters protection, etc.).

  19. Effects of the 1990 Clean Air Act amendments on distributions of visual impairment

    SciTech Connect

    Shannon, J.D.; Camp, J.; Trexler, E.C. Jr.

    1996-02-01

    The Acid Rain Provisions (Title IV) of the 1990 Clean Air Act Amendments (1990 CAAA) focus on emission policies designed to reduce the amount of deposition of acidifying pollutants, particularly in the Northeast. The primary strategy is a significant reduction in SO{sub 2} emissions, with lesser reductions scheduled for NO{sub {times}} emissions. However, lessening of acid deposition is not the only important benefit of the emission control strategy. Decreasing SO{sup {minus}} and NO {sup {minus}} emissions will decrease atmospheric concentrations of sulfate and nitrate particles, which account for much of the visibility reduction associated with regional haze. Although one can get a qualitative sense of how visibility might improve by examining historical large-scale trends in regional emission totals and regional visibility, quantification of the expected improvement requires model simulations. One must model the spatial and temporal patterns of emissions reductions; the relevant pollutant transport, transformation, and removal processes in the atmosphere; and the changes in particulate loading. For this initial examination of the visibility improvement at Shenandoah National Park associated the the Phase I and Phase II SO{sub 2} emission reductions, we have linked emission trend projections taken from ongoing analysis of the 1990 CAAA at Argonne National Laboratory, regional transport modeling with the Advanced Statistical Trajectory Regional Air Pollution (ASTRAP) model and visual impairment modeling with the Visibility Assessment Scoping Model (VASM).

  20. Distribution and air-sea exchange of organochlorine pesticides in the North Pacific and the Arctic

    NASA Astrophysics Data System (ADS)

    Cai, Minghong; Ma, Yuxin; Xie, Zhiyong; Zhong, Guangcai; MöLler, Axel; Yang, Haizhen; Sturm, Renate; He, Jianfeng; Ebinghaus, Ralf; Meng, Xiang-Zhou

    2012-03-01

    Surface seawater and boundary layer air samples were collected on the icebreaker Xuelong (Snow Dragon) during the Fourth Chinese Arctic Research Expedition (CHINARE2010) cruise in the North Pacific and Arctic Oceans during 2010. Samples were analyzed for organochlorine pesticides (OCPs), including three isomers of hexachlorocyclohexane (HCH), hexachlorobenzene (HCB), and two isomers of heptachlor epoxide. The gaseous total HCH (ΣHCHs) concentrations were approximately four times lower (average 12.0 pg m-3) than those measured during CHINARE2008 (average 51.4 pg m-3), but were comparable to those measured during CHINARE2003 (average 13.4 pg m-3) in the same study area. These changes are consistent with the evident retreat of sea ice coverage from 2003 to 2008 and increase of sea ice coverage from 2008 to 2009 and 2010. Gaseous β-HCH concentrations in the atmosphere were typically below the method detection limit, consistent with the expectation that ocean currents provide the main transport pathway for β-HCH into the Arctic. The concentrations of all dissolved HCH isomers in seawater increase with increasing latitude, and levels of dissolved HCB also increase (from 5.7 to 7.1 pg L-1) at high latitudes (above 73°N). These results illustrate the role of cold condensation processes in the transport of OCPs. The observed air-sea gas exchange gradients in the Arctic Ocean mainly favored net deposition of OCPs, with the exception of those for β-HCH, which favored volatilization.

  1. Determination of Spatial Distribution of Air Pollution by Dye Laser Measurement of Differential Absorption of Elastic Backscatter

    NASA Technical Reports Server (NTRS)

    Ahmed, S. A.; Gergely, J. S.

    1973-01-01

    This paper presents the results of an analytical study of a lidar system which uses tunable organic dye lasers to accurately determine spatial distribution of molecular air pollutants. Also described will be experimental work to date on simultaneous multiwavelength output dye laser sources for this system. Basically the scheme determines the concentration of air pollutants by measuring the differential absorption of an (at least) two wavelength lidar signal elastically backscattered by the atmosphere. Only relative measurements of the backscattered intensity at each of the two wavelengths, one on and one off the resonance absorption of the pollutant in question, are required. The various parameters of the scheme are examined and the component elements required for a system of this type discussed, with emphasis on the dye laser source. Potential advantages of simultaneous multiwavelength outputs are described. The use of correlation spectroscopy in this context is examined. Comparisons are also made for the use of infrared probing wavelengths and sources instead of dye lasers. Estimates of the sensitivity and accuracy of a practical dye laser system of this type, made for specific pollutants, snow it to have inherent advantages over other schemes for determining pollutant spatial distribution.

  2. [Distribution of findings of scorpions in Buenos Aires city in the period 2001-2012 and their sanitary implications].

    PubMed

    Blanco, Guillermo; Laskowicz, Rodrigo D; Lanari, Laura C; Scarlato, Eduardo; Damin, Carlos; de Titto, Ernesto H; de Roodt, Adolfo R

    2016-02-01

    Scorpion stings and their associated mortality increased in the last years in Argentina, with a cumulative record of 73,617 cases and 30 deaths during the period 2001-2012, occurring almost all the deaths in pediatric patients. However, deaths due to severe envenoming by scorpion stings have not been recorded in Buenos Aires city and suburban regions, although the presence of scorpions in this city has been increasingly reported. We studied the temporal and geographical distribution of Tityus trivittatus findings in Buenos Aires city from the database of the Research and Development Area from the National Institute for Production of Biologics of the National Ministry of Health during the period 10/01/2001 to 31/12/2012 in order to correlate these findings with the distribution of health centers in the city. In this period 385 consults with identification of scorpions were recorded. Annual records showed a growing trend. Georeferenced data showed that findings appeared to increase in the surroundings of metro and train stations, mainly at the east of the city with expansion to the west. Although Toxicology services are geographically related to the zones with higher density of finding of scorpions, the accessibility to the centers with antivenom may hinder its application in the recommended time; some measures to avoid possible delays in the application of the treatment are suggested. PMID:26914081

  3. Retrieval of Raindrop Size Distribution, Vertical Air Velocity and Water Vapor Attenuation Using Dual-Wavelength Doppler Radar Observations

    NASA Technical Reports Server (NTRS)

    Heymsfield, Gerald M.; Tian, Lin; Li, Lihua; Srivastava, C.

    2005-01-01

    Two techniques for retrieving the slope and intercept parameters of an assumed exponential raindrop size distribution (RSD), vertical air velocity, and attenuation by precipitation and water vapor in light stratiform rain using observations by airborne, nadir looking dual-wavelength (X-band, 3.2 cm and W-band, 3.2 mm) radars are presented. In both techniques, the slope parameter of the RSD and the vertical air velocity are retrieved using only the mean Doppler velocities at the two wavelengths. In the first method, the intercept of the RSD is estimated from the observed reflectivity at the longer wavelength assuming no attenuation at that wavelength. The attenuation of the shorter wavelength radiation by precipitation and water vapor are retrieved using the observed reflectivity at the shorter wavelength. In the second technique, it is assumed that the longer wavelength suffers attenuation only in the melting band. Then, assuming a distribution of water vapor, the melting band attenuation at both wavelengths and the rain attenuation at the shorter wavelength are retrieved. Results of the retrievals are discussed and several physically meaningful results are presented.

  4. Estimating neutral nanoparticle steady-state size distribution and growth according to measurements of intermediate air ions

    NASA Astrophysics Data System (ADS)

    Tammet, H.; Komsaare, K.; Hõrrak, U.

    2013-09-01

    Continuous measurements of intermediate air ion size distributions were carried out in the small town Tartu, Estonia, from 1 April 2010 through 7 November 2011. The intermediate ions are charged aerosol particles of diameter 1.5-7.5 nm. In this paper we study what information about neutral nanoparticles of atmospheric aerosols can be drawn from the air ion measurements. Rough estimates of the growth rate and the size distribution of neutral nanoparticles were derived for the subset of measurements while the concentration of the intermediate ions was close to the median and remains in the range of 21 ± 2 cm-3. This criterion excludes the specific new particle formation events characterized with high concentration of intermediate ions and includes only most typical quiet periods between the events when the simultaneous growth, depletion and recharging of particles are described with steady-state equations. We estimated the growth rate of nanoparticles to be about 2 nm h-1 while the growth flux or apparent nucleation rate proved to be about 0.5 cm-3 s-1 at 3 nm and about 0.08 cm-3 s-1 at 7 nm. The results suggest that the process of new particle formation is not interrupted during the quiet periods between events of intensive nucleation of atmospheric aerosols.

  5. Distribution of air-water mixtures in parallel vertical channels as an effect of the header geometry

    SciTech Connect

    Marchitto, Annalisa; Fossa, Marco; Guglielmini, Giovanni

    2009-07-15

    Uneven phase distribution in heat exchangers is a cause of severe reductions in thermal performances of refrigeration equipment. To date, no general design rules are available to avoid phase separation in manifolds with several outlet channels, and even predicting the phase and mass distribution in parallel channels is a demanding task. In the present paper, measurements of two-phase air-water distributions are reported with reference to a horizontal header supplying 16 vertical upward channels. The effects of the operating conditions, the header geometry and the inlet port nozzle were investigated in the ranges of liquid and gas superficial velocities of 0.2-1.2 and 1.5-16.5 m/s, respectively. Among the fitting devices used, the insertion of a co-axial, multi-hole distributor inside the header confirmed the possibility of greatly improving the liquid and gas flow distribution by the proper selection of position, diameter and number of the flow openings between the supplying distributor and the system of parallel channels connected to the header. (author)

  6. Air data measurement using distributed processing and fiber optics data transmission

    NASA Technical Reports Server (NTRS)

    Farry, K. A.

    1982-01-01

    Distributed processing, fiber optics technology, and redundancy management in the aircraft environment are discussed. The project features the development of an angle-of-attack and sideslip data collection system hich features: (1) two independent microprocessor controlled data collection and calibration units; (2) transmission of data to the control system on a fiber optic data bus; and (3) software implemented error detection and recovery.

  7. Experimental and predicted heating distributions for biconics at incidence in air at Mach 10

    NASA Technical Reports Server (NTRS)

    Miller, C. G., III

    1984-01-01

    Heating distributions were measured on a 1.9-percent-scale model of a generic aeroassisted vehicle proposed for missions to a number of planets and for use as a moderate lift-drag ratio Earth orbital transfer vehicle. This vehicle is spherically blunted, 12.84 deg/7 deg biconic with the fore-cone bent upward 7 deg to provide self-trim capability. A straight biconic with the same nose radius and the same half-angles was also tested. The free-stream Reynolds numbers based on model length were equal to about 2 x 10(5) or 9 x 10 (5). The angle of attack, referenced to the aft-cone, was varied from 0 deg to 20 deg. Heating distributions predicted with a parabolized Navier-Stokes (PNS) code are compared with the measurements for the present Reynolds numbers and range of angles of attack. Leeward heating was greatly affected by Reynolds number, with the heating increasing with decreasing Reynolds number for attached flow (low incidence). The opposite was true for separated flow, which occurred when the fore-cone angle of attack exceeded 0.8 times the fore-cone half-angle. Windward heating distributions were predicted to within 10 percent with the PNS code. Leeward heating distributions were predicted qualitatively for both Reynolds numbers, but quantitative agreement was poorer than on the windward side.

  8. Legionella species colonization of water distribution systems, pools and air conditioning systems in cruise ships and ferries

    PubMed Central

    Goutziana, Georgia; Mouchtouri, Varvara A; Karanika, Maria; Kavagias, Antonios; Stathakis, Nikolaos E; Gourgoulianis, Kostantinos; Kremastinou, Jenny; Hadjichristodoulou, Christos

    2008-01-01

    Background Legionnaires' disease continues to be a public health concern in passenger ships. This study was scheduled in order to investigate Legionella spp. colonization of water distribution systems (WDS), recreational pools, and air-conditioning systems on board ferries and cruise ships in an attempt to identify risk factors for Legionella spp. colonization associated with ship water systems and water characteristics. Methods Water systems of 21 ferries and 10 cruise ships including WDS, air conditioning systems and pools were investigated for the presence of Legionella spp. Results The 133 samples collected from the 10 cruise ships WDS, air conditioning systems and pools were negative for Legionella spp. Of the 21 ferries WDS examined, 14 (66.7%) were legionellae-positive. A total of 276 samples were collected from WDS and air conditioning systems. Legionella spp. was isolated from 37.8% of the hot water samples and 17.5% of the cold water samples. Of the total 96 positive isolates, 87 (90.6%) were L. pneumophila. Legionella spp. colonization was positively associated with ship age. The temperature of the hot water samples was negatively associated with colonization of L. pneumophila serogroup (sg) 1 and that of L. pneumophila sg 2 to 14. Increases in pH ≥7.8 and total plate count ≥400 CFU/L, correlated positively with the counts of L. pneumophila sg 2 to 14 and Legionella spp. respectively. Free chlorine of ≥0.2 mg/L inhibited colonization of Legionella spp. Conclusion WDS of ferries can be heavily colonized by Legionella spp. and may present a risk of Legionnaires' disease for passengers and crew members. Guidelines and advising of Legionnaires' disease prevention regarding ferries are needed, in particular for operators and crew members. PMID:19025638

  9. On the Aerosol Particle Size Distribution Spectrum in Alaskan Air Mass Systems: Arctic Haze and Non-Haze Episodes.

    NASA Astrophysics Data System (ADS)

    Shaw, Glenn E.

    1983-05-01

    Aerosols in central Alaskan winter air mass system were classified according to size by diffusive separation and light-scattering spectrometry. Particles entering central Alaska from the Pacific Marine environment had number concentrations ranging from 300 to 2000 cm3 (geometric mean 685 cm3) and unimodal size spectra, with maximum in number concentration near 1 × 106 cm radius.Air masses entering Alaska from the Eurasian Arctic possessed a factor of two smaller aerosol number concentrations than Pacific Marine systems (e.g., 150-700 cm3; geometric mean 386 cm3) but contained a factor of two greater particle volume loading within the fine particle radius range 5 × 107 < r < 1 × 105 cm. The particles in Eurasian Arctic air masses were bimodally distributed, with maxima in the particle size spectra near r = 3 × 107 and 5 × 106 cm. Sulfur was the predominant element in all cases studied.A particle depleted region was present in the size spectra obtained for Eurasian Arctic air masses. The deficiency of particles in the 106 cm radius range is interpreted as being the result of thermal coagulation taking place between sulfur-rich nuclei (produced at a rate of 1020 to 1018 g cm3 s1 and in sizes r < 106 cm) and `large' (r 105 cm) imported primary particles. The primary particles are in the removal-resistant Greenfield Gap (r 105 cm) and seem to originate in the central Eurasian region.

  10. Air temperature field distribution estimations over a Chinese mega-city using MODIS land surface temperature data: the case of Shanghai

    NASA Astrophysics Data System (ADS)

    Ma, Weichun; Zhou, Liguo; Zhang, Hao; Zhang, Yan; Dai, Xiaoyan

    2016-03-01

    The capability of obtaining spatially distributed air temperature data from remote sensing measurements is an improvement for many environmental applications focused on urban heat island, carbon emissions, climate change, etc. This paper is based on the MODIS/Terra and Aqua data utilized to study the effect of the urban atmospheric heat island in Shanghai, China. The correlation between retrieved MODIS land surface temperature (LST) and air temperature measured at local weather stations was initially studied at different temporal and spatial scales. Secondly, the air temperature data with spatial resolutions of 250 m and 1 km were estimated from MODIS LST data and in-situ measured air temperature. The results showed that there is a slightly higher correlation between air temperature and MODIS LST at a 250m resolution in spring and autumn on an annual scale than observed at a 1 km resolution. Although the distribution pattern of the air temperature thermal field varies in different seasons, the urban heat island (UHI) in Shanghai is characterized by a distribution pattern of multiple centers, with the central urban area as the primary center and the built-up regions in each district as the subcenters. This study demonstrates the potential not only for estimating the distribution of the air temperature thermal field from MODIS LST with 250 m resolution in spring and autumn in Shanghai, but also for providing scientific and effective methods for monitoring and studying UHI effect in a Chinese mega-city such as Shanghai.

  11. Modal density function and number of propagating modes in ducts

    NASA Technical Reports Server (NTRS)

    Rice, E. J.

    1976-01-01

    The question of the number of propagating modes within a small range of mode cut off ratio was raised. The population density of modes were shown to be greatest near cut off and least for the well propagating modes. It was shown that modes of nearly the same cut off ratio behave nearly the same in a sound absorbing duct as well as in the way they propagate to the far. Handling all of the propagating modes individually, they can be grouped into several cut off ratio ranges. It is important to know the modal density function to estimate acoustic power distribution.

  12. Technology Solutions Case Study: Sealed Air-Return Plenum Retrofit

    SciTech Connect

    none,

    2012-08-01

    In this project, Pacific Northwest National Laboratory researchers greatly improved indoor air quality and HVAC performance by replacing an old, leaky air handler with a new air handler with an air-sealed return plenum with filter; they also sealed the ducts, and added a fresh air intake.

  13. Light propagation characteristics in photonic crystal fibers with α-power profiles of air hole diameter distributions and their application to fiber collimator

    NASA Astrophysics Data System (ADS)

    Yokota, Hirohisa; Higuchi, Keiichi; Imai, Yoh

    2016-08-01

    Light propagation characteristics in photonic crystal fibers (PCFs) with α-power profiles of air hole diameter distributions were theoretically investigated. It was clarified that the intensity peak of the beam propagating in the PCF with Gaussian beam excitation varied periodically with little power attenuation. It was found that the envelope of the periodic intensity variation depended on α. We theoretically demonstrated that the PCF with the α-power profile of the air hole diameter distribution could be applied to a collimator for a conventional PCF with uniform air holes in Gaussian beam excitation to reduce coupling loss, where a PCF of appropriate length with the α-power air hole diameter distribution was spliced to a conventional PCF. It was also found that the coupling efficiency was higher for a larger α.

  14. Fuel-air mixing and distribution in a direct-injection stratified-charge rotary engine

    NASA Technical Reports Server (NTRS)

    Abraham, J.; Bracco, F. V.

    1989-01-01

    A three-dimensional model for flows and combustion in reciprocating and rotary engines is applied to a direct-injection stratified-charge rotary engine to identify the main parameters that control its burning rate. It is concluded that the orientation of the six sprays of the main injector with respect to the air stream is important to enhance vaporization and the production of flammable mixture. In particular, no spray should be in the wake of any other spray. It was predicted that if such a condition is respected, the indicated efficiency would increase by some 6 percent at higher loads and 2 percent at lower loads. The computations led to the design of a new injector tip that has since yielded slightly better efficiency gains than predicted.

  15. Geographical, spatial, and temporal distributions of multiple indoor air pollutants in four Chinese provinces

    SciTech Connect

    Yinlong Jin; Zheng Zhou; Gongli He

    2005-12-15

    Exposure to indoor air pollution from household energy use depends on fuel, stove, housing characteristics, and stove use behavior. Three important indoor air pollutants - respirable particles (RPM), carbon monoxide (CO), and sulfur dioxide (SO{sub 2}) were monitored for a total of 457 household-days in four poor provinces in China (Gansu, 129 household-days; Guizhou, 127 household-days; Inner Mongolia, 65 household-days; and Shaanxi, 136 household-days), in two time intervals during the heating season to investigate spatial and temporal patterns of pollution. The two provinces where biomass is the primary fuel (Inner Mongolia and Gansu) had the highest RPM concentrations (719 {mu}g/m{sup 3} in the single cooking/living/bedroom in Inner Mongolia in December and 351-661 {mu}g/m{sup 3} in different rooms and months in Gansu); lower RPM concentration were observed in the primarily coal-burning provinces of Guizhou and Shaanxi (202-352 {mu}g/m{sup 3} and 187-361 {mu}g/m{sup 3} in different rooms and months in Guizhou and Shaanxi, respectively). Inner Mongolia and Gansu also had higher CO concentrations. Among the two primarily coal-burning provinces, Guizhou had lower concentrations of CO than Shaanxi. In the two coal-burning provinces, SO{sub 2} concentrations were substantially higher in Shaanxi than in Guizhou. Relative concentrations in different rooms and provinces indicate that in the northern provinces heating is an important source of exposure to indoor pollutants from energy use. Day-to-day variability of concentrations within individual households, although substantial, was smaller than variation across households. The implications of the findings for designing environmental health interventions in each province are discussed. 21 refs., 3 figs., 6 tabs.

  16. Simulations of sizing and comfort improvements for residential forced-air heating and cooling systems

    SciTech Connect

    Walker, I.S.; Degenetais, G.; Siegel, J.A.

    2002-05-01

    In many parts of North America residential HVAC systems are installed outside conditioned space. This leads to significant energy losses and poor occupant comfort due to conduction and air leakage losses from the air distribution ducts. In addition, cooling equipment performance is sensitive to air flow and refrigerant charge that have been found to be far from manufacturers specifications in most systems. The simulation techniques discussed in this report were developed in an effort to provide guidance on the savings potentials and comfort gains that can be achieved by improving ducts (sealing air leaks) and equipment (correct air-flow and refrigerant charge). The simulations include the complex air flow and thermal interactions between duct systems, their surroundings and the conditioned space. They also include cooling equipment response to air flow and refrigerant charge effects. Another key aspect of the simulations is that they are dynamic to account for cyclic losses from the HVAC system and the effect of cycle length on energy and comfort performance. To field test the effect of changes to residential HVAC systems requires extensive measurements to be made for several months for each condition tested. This level of testing is often impractical due to cost and time limitations. Therefore the Energy Performance of Buildings Group at LBNL developed a computer simulation tool that models residential HVAC system performance. This simulation tool has been used to answer questions about equipment downsizing, duct improvements, control strategies and climate variation so that recommendations can be made for changes in residential construction and HVAC installation techniques that would save energy, reduce peak demand and result in more comfortable homes. Although this study focuses on California climates, the simulation tool could easily be applied to other climates. This report summarizes the simulation tool and discusses the significant developments that allow

  17. Verbal workload in distributed air traffic management. [considering pilot controller interaction

    NASA Technical Reports Server (NTRS)

    Kreifeldt, J. G.; Pardo, B.; Wempe, T. E.; Huff, E.

    1975-01-01

    The effects of alternative traffic management possibilities on task performance and pilot controller verbal workloads were studied. Two new rule structures - sequencing and advisory - in addition to vectoring were studied in conjunction with CRT pilot displays incorporating traffic situation displays with and without aircraft flight path predictors. The sequencing and advisory systems gave increasing control responsibility to the pilots. It was concluded that distributed management systems could in practice significantly reduce controller verbal workload without reducing system performance. Implications of this conclusion suggest that distributed management would allow controllers to handle a larger volume of traffic safely either as a normal operating procedure or as a failure mode alternative in a highly automated ground centered system.

  18. The lateral distributions of charged particles of energy greater than 0.3 E sub crit in electron-photon cascades in lead and air

    NASA Technical Reports Server (NTRS)

    Krys, E.; Wasilewski, A.

    1985-01-01

    In recent investigations, both theoretical and experimental, the agreement between cascade theory and experimental data is pointed out. The radial distributions obtained from the Monte Carlo simulation are compared ith the results of the analytical theory for all particles in cascades. The data on the mean radius of electron lateral distribution in air are compared with those in lead.

  19. Effect of radiant barriers and attic ventilation on residential attics and attic duct systems: New tools for measuring and modeling

    SciTech Connect

    Petrie, T.W.; Childs, P.W.; Christian, J.E.; Wilkes, K.E.

    1998-07-01

    A simple duct system was installed in an attic test module for a large scale climate simulator at a US national laboratory. The goal of the tests and subsequent modeling was to develop an accurate method of assessing duct system performance in the laboratory, enabling limiting conditions to be imposed at will and results to be applied to residential attics with attic duct systems. Steady-state tests were done at a severe summer and a mild winter condition. In all tests the roof surface was heated above ambient air temperatures by infrared lights. The attic test module first included then did not include the duct system. Attic ventilation from eave vents to a ridge vent was varied from none to values achievable by a high level of power ventilation. A radiant barrier was attached to the underside of the roof deck, both with and without the duct system in place. Tests were also done without the radiant barrier, both with and without the duct system. When installed, the insulated ducts ran along the floor of the attic, just above the attic insulation and along the edge of the attic near the eaves and one gable. These tests in a climate simulator achieved careful control and reproducibility of conditions. This elucidated dependencies that would otherwise be hidden by variations in uncontrolled variables. Based on the comparisons with the results of the tests at the mild winter condition and the severe summer condition, model predictions for attic air and insulation temperatures should be accurate within {+-} 10 F ({+-} 6 C). This is judged adequate for design purposes and could be better when exploring the effect of changes in attic and duct parameters at fixed climatic conditions.

  20. Size limitations in semicircular duct systems

    PubMed

    Muller

    1999-06-01

    The present article discusses mechanical requirements and limitations which are applicable to the construction of the system of semicircular ducts, especially to its size. The simplified case of a single, uniform duct system has been considered which can be described by a second order equation of motion. The principal functional quantities for this rotation-sensor are: (1) response speed; (2) sensitivity; and (3) regular flow. The response speed of a single, uniform semicircular duct is characterized by the short time constant (T2) which is dependent on the duct radius (r). Its estimated range is from 0.04 ms in the smallest to 140 ms in the largest known labyrinth. The sensitivity is characterized by the maximal endolymph displacement after a step stimulus (xmax). Its estimated range is from 0.0016 &mgr;m to 5.97 mm (6.56 decades!), assuming an input angular velocity of omega=1 rad s-1. The Reynolds number is a measure for an undisturbed laminar flow. Its estimated range varies from 7.38.10(-4)to 45.1 for omega=1 rad s-1. The above data follow from graphs in which, for a single uniform duct, circuit radius (R) is plotted against duct radius (r) for labyrinths of 233 species belonging to different vertebrate-groups. A relation R =38.9. r1.60was determined. The smallest labyrinth was found in a carp larva (Cyprinus), the largest in a whale shark (Rhincodon). Large whales possess labyrinths of average mammalian size. It is revealed that semicircular duct size is bound by requirements concerning regular flow and by a too low response speed for large labyrinths, and by a too low sensitivity for small labyrinths. Other important quantities are mechanical amplification factors which are a consequence of more complex vestibular constructions than a single uniform duct circuit. Allometric relationships are interpreted as compromises between the quantities mentioned. A hypothesis for the relatively large semicircular duct sizes of fishes, especially Elasmobranchii, compared

  1. Air pollutants in rural homes in Guizhou, China - Concentrations, speciation, and size distribution

    NASA Astrophysics Data System (ADS)

    Wang, Shuxiao; Wei, Wei; Li, Du; Aunan, Kristin; Hao, Jiming

    2010-11-01

    Several types of fuels, including coal, fuel wood, and biogas, are commonly used for cooking and heating in Chinese rural households, resulting in indoor air pollution and causing severe health impacts. In this paper, we report a study monitoring multiple pollutants including PM 10, PM 2.5, CO, CO 2, and volatile organic compounds (VOCs) from fuel combustion at households in Guizhou province of China. The results showed that most pollutants exhibited large variability for different type of fuels except for CO 2. Among these fuels, wood combustion caused the most serious indoor air pollution, with the highest concentrations of particulate matters (218˜417 μg m -3 for PM 10 and 201˜304 μg m -3 for PM 2.5), and higher concentrations of CO (10.8 ± 0.8 mg m -3) and TVOC (about 466.7 ± 337.9 μg m -3). Coal combustion also resulted in higher concentrations of particulate matters (220˜250 μg m -3 for PM 10 and 170˜200 μg m -3 for PM 2.5), but different levels for CO (respectively 14.5 ± 3.7 mg m -3 for combustion in brick stove and 5.5 ± 0.7 mg m -3 for combustion in metal stove) and TVOC (170 mg m -3 for combustion in brick stove and 700 mg m -3 for combustion in metal stove). Biogas was the cleanest fuel, which brought about the similar levels of various pollutants with the indoor case of non-combustion, and worth being promoted in more areas. Analysis of the chemical profiles of PM 2.5 indicated that OC and EC were dominant components for all fuels, with the proportions of 30˜48%. A high fraction of SO 42- (31˜34%) was detected for coal combustion. The cumulative percentages of these chemical species were within the range of 0.7˜1.3, which was acceptable for the assessment of mass balance.

  2. Remodeling of the Fetal Collecting Duct Epithelium

    PubMed Central

    Hiatt, Michael J.; Ivanova, Larissa; Toran, Nuria; Tarantal, Alice F.; Matsell, Douglas G.

    2010-01-01

    Congenital urinary tract obstruction induces changes to the renal collecting duct epithelium, including alteration and depletion of intercalated cells. To study the effects of obstruction on the ontogeny of intercalated cell development, we examined normal and obstructed human fetal and postnatal kidneys. In the normal human fetal kidney, intercalated cells originated in the medullary collecting duct at 8 weeks gestation and remained most abundant in the inner medulla throughout gestation. In the cortex, intercalated cells were rare at 18 and 26 weeks gestation and observed at low abundance at 36 weeks gestation. Although early intercalated cells exhibit an immature phenotype, Type A intercalated cells predominated in the inner and outer medullae at 26 and 36 weeks gestation with other intercalated cell subtypes observed rarely. Postnatally, the collecting duct epithelium underwent a remodeling whereby intercalated cells become abundant in the cortex yet absent from the inner medulla. In 18-week obstructed kidneys with mild to moderate injury, the intercalated cells became more abundant and differentiated than the equivalent age-matched normal kidney. In contrast, more severely injured ducts of the late obstructed kidney exhibited a significant reduction in intercalated cells. These studies characterize the normal ontogeny of human intercalated cell development and suggest that obstruction induces premature remodeling and differentiation of the fetal collecting duct epithelium. PMID:20035053

  3. Measuring centimeter-resolution air temperature profiles above land and water using fiber-optic Distributed Temperature Sensing

    NASA Astrophysics Data System (ADS)

    Sigmund, Armin; Pfister, Lena; Olesch, Johannes; Thomas, Christoph K.

    2016-04-01

    The precise determination of near-surface air temperature profiles is of special importance for the characterization of airflows (e.g. cold air) and the quantification of sensible heat fluxes according to the flux-gradient similarity approach. In contrast to conventional multi-sensor techniques, measuring temperature profiles using fiber-optic Distributed Temperature Sensing (DTS) provides thousands of measurements referenced to a single calibration standard at much reduced costs. The aim of this work was to enhance the vertical resolution of Raman scatter DTS measurements up to the centimeter-scale using a novel approach for atmospheric applications: the optical fiber was helically coiled around a meshed fabric. In addition to testing the new fiber geometry, we quantified the measurement uncertainty and demonstrated the benefits of the enhanced-resolution profiles. The fiber-optic cable was coiled around a hollow column consisting of white reinforcing fabric supported by plexiglass rings every meter. Data from two columns of this type were collected for 47 days to measure air temperature vertically over 3.0 and 5.1 m over a gently inclined meadow and over and in a small lake, respectively. Both profiles had a vertical resolution of 1 cm in the lower section near the surface and 5 cm in the upper section with an along-fiber instrument-specific averaging of 1.0 m and a temporal resolution of 30 s. Measurement uncertainties, especially from conduction between reinforcing fabric and fiber-optic cable, were estimated by modeling the fiber temperature via a detailed energy balance approach. Air temperature, wind velocity and radiation components were needed as input data and measured separately. The temperature profiles revealed valuable details, especially in the lowest 1 m above surface. This was best demonstrated for nighttime observations when artefacts due to solar heating did not occur. For example, the dynamics of a cold air layer was detected in a clear night

  4. Size distributions, sources and source areas of water-soluble organic carbon in urban background air

    NASA Astrophysics Data System (ADS)

    Timonen, H.; Saarikoski, S.; Tolonen-Kivimäki, O.; Aurela, M.; Saarnio, K.; Petäjä, T.; Aalto, P. P.; Kulmala, M.; Pakkanen, T.; Hillamo, R.

    2008-04-01

    This paper represents the results of one year long measurement period of the size distributions of water-soluble organic carbon (WSOC), inorganic ions and gravimetric mass of particulate matter. Measurements were done at an urban background station (SMEAR III) by using a micro-orifice uniform deposit impactor (MOUDI). The site is located in northern European boreal region in Helsinki, Finland. The WSOC size distribution measurements were completed with the chemical analysis of inorganic ions, organic carbon (OC) and monosaccharide anhydrides from the filter samples. During the measurements gravimetric mass in the MOUDI collections varied between 3.4 and 55.0 μg m-3 and the WSOC concentration was between 0.3 and 7.4 μg m-3. On average, water-soluble particulate organic matter (WSPOM, WSOC multiplied by 1.6) comprised 25±7.7% and 7.5±3.4% of aerosol PM1 mass and the PM1-10 mass, respectively. Inorganic ions contributed 33±12% and 28±19% of the analyzed PM1 and PM1-10 aerosol mass. Five different aerosol categories corresponding to different sources or source areas were identified (long-range transport aerosols, biomass burning aerosols from wild land fires and from small-scale wood combustion, aerosols originating from marine areas and from the clean arctic areas). Clear differences in WSOC concentrations and size distributions originating from different sources or source areas were observed, although there are also many other factors which might affect the results. E.g. the local conditions and sources of volatile organic compounds (VOCs) and aerosols as well as various transformation processes are likely to have an impact on the measured aerosol composition. Using the source categories, it was identified that especially the oxidation products of biogenic VOCs in summer had a clear effect on WSOC concentrations.

  5. Static voltage distribution between turns of secondary winding of air-core spiral strip transformer and its application

    NASA Astrophysics Data System (ADS)

    Zhang, Hong-bo; Liu, Jin-liang; Cheng, Xin-bing; Zhang, Yu

    2011-09-01

    The static voltage distribution between winding turns has great impact on output characteristics and lifetime of the air-core spiral strip pulse transformer (ACSSPT). In this paper, winding inductance was calculated by electromagnetic theory, so that the static voltage distribution between turns of secondary winding of ACSSPT was analyzed conveniently. According to theoretical analysis, a voltage gradient because of the turn-to-turn capacitance was clearly noticeable across the ground turns. Simulation results of Pspice and CST EM Studio codes showed that the voltage distribution between turns of secondary winding had linear increments from the output turn to the ground turn. In experiment, the difference in increased voltage between the ground turns and the output turns of a 20-turns secondary winding is almost 50%, which is believed to be responsible for premature breakdown of the insulation, particularly between the ground turns. The experimental results demonstrated the theoretical analysis and simulation results, which had important value for stable and long lifetime ACSSPT design. A new ACSSPT with improved structure has been used successfully in intense electron beam accelerators steadily.

  6. Local distribution of wall static pressure and heat transfer on a smooth flat plate impinged by a slot air jet

    NASA Astrophysics Data System (ADS)

    Adimurthy, M.; Katti, Vadiraj V.

    2016-06-01

    Local distribution of wall static pressure and heat transfer on a smooth flat plate impinged by a normal slot air jet is experimental investigated. Present study focuses on the influence of jet-to-plate spacing (Z/D h ) (0.5-10) and Reynolds number (2500-20,000) on the fluid flow and heat transfer distribution. A single slot jet with an aspect ratio (l/b) of about 22 is chosen for the current study. Infrared Thermal Imaging technique is used to capture the temperature data on the target surface. Local heat transfer coefficients are estimated from the thermal images using `SMART VIEW' software. Wall static pressure measurement is carried out for the specified range of Re and Z/D h . Wall static pressure coefficients are seen to be independent of Re in the range between 5000 and 15,000 for a given Z/D h . Nu values are higher at the stagnation point for all Z/D h and Re investigated. For lower Z/D h and higher Re, secondary peaks are observed in the heat transfer distributions. This may be attributed to fluid translating from laminar to turbulent flow on the target plate. Heat transfer characteristics are explained based on the simplified flow assumptions and the pressure data obtained using Differential pressure transducer and static pressure probe. Semi-empirical correlation for the Nusselt number in the stagnation region is proposed.

  7. Oceanic distributions and air-sea fluxes of biogenic halocarbons in the open ocean

    NASA Astrophysics Data System (ADS)

    Chuck, Adele L.; Turner, Suzanne M.; Liss, Peter S.

    2005-10-01

    Surface seawater and atmospheric concentrations of methyl iodide, chloroiodomethane, bromoform, dichlorobromomethane, and chlorodibromethane were measured during three open ocean cruises in the Atlantic and Southern oceans. The measurements spanned a longitudinal range of 115°, between 50°N and 65°S. The saturation anomalies and the instantaneous air-sea fluxes of the gases during one of these cruises (ANT XVIII/1) are presented and discussed. Methyl iodide and chloroiodomethane were highly supersaturated (>1000%) throughout the temperate and tropical regions, with calculated mean fluxes of 15 and 5.5 nmol m-2 d-1, respectively. The oceanic emissions of the brominated compounds were less substantial, and a significant area of the temperate Atlantic Ocean was found to be a sink for bromoform. Correlation analyses have been used to investigate possible controls on the concentrations of these gases. In particular, the relationship of CH3I with sea surface temperature and light is discussed, with the tentative conclusion that this compound may be formed abiotically.

  8. Summer-time distribution of air pollutants in Sequoia National Park, California.

    PubMed

    Bytnerowicz, Andrzej; Tausz, Michael; Alonso, Rocio; Jones, David; Johnson, Ronald; Grulke, Nancy

    2002-01-01

    Concentrations of air pollutants were monitored during the May November 1999 period on a network of forested sites in Sequoia National Park, California. Measurements were conducted with: (1) active monitors for nitric oxide (NO), nitrogen dioxide (NO2) and ozone (O3); (2) honeycomb denuder/filter pack systems for nitric acid vapor (HNO3), nitrous acid vapor (HNO2), ammonia (NH3), sulfur dioxide (SO2), particulate nitrate (NO3-), ammonium (NH4+), and sulfate (SO4(2-)); and (3) passive samplers for O3, HNO3 and NO2. Elevated concentrations of O3 (seasonal means 41-71 ppb), HNO3 (seasonal means 0.4-2.9 microg/m3), NH3 (seasonal means 1.6-4.5 microg/m3), NO3 (1.1-2.0 microg/m3) and NH4+ (1.0-1.9 microg/m3) were determined. Concentrations of other pollutants were low. With increasing elevation and distance from the pollution source area of O3, NH3 and HNO3 concentrations decreased. Ammonia and NH4+ were dominant N pollutants indicating strong influence of agricultural emissions on forests and other ecosystems of the Sequoia National Park. PMID:11939282

  9. An architecture for integrating distributed and cooperating knowledge-based Air Force decision aids

    NASA Technical Reports Server (NTRS)

    Nugent, Richard O.; Tucker, Richard W.

    1988-01-01

    MITRE has been developing a Knowledge-Based Battle Management Testbed for evaluating the viability of integrating independently-developed knowledge-based decision aids in the Air Force tactical domain. The primary goal for the testbed architecture is to permit a new system to be added to a testbed with little change to the system's software. Each system that connects to the testbed network declares that it can provide a number of services to other systems. When a system wants to use another system's service, it does not address the server system by name, but instead transmits a request to the testbed network asking for a particular service to be performed. A key component of the testbed architecture is a common database which uses a relational database management system (RDBMS). The RDBMS provides a database update notification service to requesting systems. Normally, each system is expected to monitor data relations of interest to it. Alternatively, a system may broadcast an announcement message to inform other systems that an event of potential interest has occurred. Current research is aimed at dealing with issues resulting from integration efforts, such as dealing with potential mismatches of each system's assumptions about the common database, decentralizing network control, and coordinating multiple agents.

  10. Impact of Conflict Avoidance Responsibility Allocation on Pilot Workload in a Distributed Air Traffic Management System

    NASA Technical Reports Server (NTRS)

    Ligda, Sarah V.; Dao, Arik-Quang V.; Vu, Kim-Phuong; Strybel, Thomas Z.; Battiste, Vernol; Johnson, Walter W.

    2010-01-01

    Pilot workload was examined during simulated flights requiring flight deck-based merging and spacing while avoiding weather. Pilots used flight deck tools to avoid convective weather and space behind a lead aircraft during an arrival into Louisville International airport. Three conflict avoidance management concepts were studied: pilot, controller or automation primarily responsible. A modified Air Traffic Workload Input Technique (ATWIT) metric showed highest workload during the approach phase of flight and lowest during the en-route phase of flight (before deviating for weather). In general, the modified ATWIT was shown to be a valid and reliable workload measure, providing more detailed information than post-run subjective workload metrics. The trend across multiple workload metrics revealed lowest workload when pilots had both conflict alerting and responsibility of the three concepts, while all objective and subjective measures showed highest workload when pilots had no conflict alerting or responsibility. This suggests that pilot workload was not tied primarily to responsibility for resolving conflicts, but to gaining and/or maintaining situation awareness when conflict alerting is unavailable.

  11. Convolution seal for transition duct in turbine system

    SciTech Connect

    Flanagan, James Scott; LeBegue, Jeffrey Scott; McMahan, Kevin Weston; Dillard, Daniel Jackson; Pentecost, Ronnie Ray

    2015-05-26

    A turbine system is disclosed. In one embodiment, the turbine system includes a transition duct. The transition duct includes an inlet, an outlet, and a passage extending between the inlet and the outlet and defining a longitudinal axis, a radial axis, and a tangential axis. The outlet of the transition duct is offset from the inlet along the longitudinal axis and the tangential axis. The transition duct further includes an interface feature for interfacing with an adjacent transition duct. The turbine system further includes a convolution seal contacting the interface feature to provide a seal between the interface feature and the adjacent transition duct.

  12. Prediction of in-phantom dose distribution using in-air neutron beam characteristics for BNCS

    SciTech Connect

    Verbeke, Jerome M.

    1999-12-14

    A monoenergetic neutron beam simulation study is carried out to determine the optimal neutron energy range for treatment of rheumatoid arthritis using radiation synovectomy. The goal of the treatment is the ablation of diseased synovial membranes in joints, such as knees and fingers. This study focuses on human knee joints. Two figures-of-merit are used to measure the neutron beam quality, the ratio of the synovium absorbed dose to the skin absorbed dose, and the ratio of the synovium absorbed dose to the bone absorbed dose. It was found that (a) thermal neutron beams are optimal for treatment, (b) similar absorbed dose rates and therapeutic ratios are obtained with monodirectional and isotropic neutron beams. Computation of the dose distribution in a human knee requires the simulation of particle transport from the neutron source to the knee phantom through the moderator. A method was developed to predict the dose distribution in a knee phantom from any neutron and photon beam spectra incident on the knee. This method was revealed to be reasonably accurate and enabled one to reduce by a factor of 10 the particle transport simulation time by modeling the moderator only.

  13. Effects of air breathing engine plumes on SSV orbiter subsonic wing pressure distribution, volume 2

    NASA Technical Reports Server (NTRS)

    Soard, T.

    1974-01-01

    Data presented were obtained during wind tunnel tests of a 0.0405-scale model of the -89B ferry configuration of the space shuttle vehicle orbiter. These tests were conducted in the Rockwell International low speed wind tunnel (NAAL). The primary test objective was to investigate orbiter wing pressure distributions resulting from nacelle plumes above and below the wing. Three six-engine nacelle configurations were tested. One configuration has a twin-podded nacelle mounted above each wing and the others had one mounted below each wing. Both had a centerline twin-podded nacelle mounted below the wing. Wing pressure distribution was determined by locating static pressure bugs on the upper and lower surfaces of the left wing. Pressure bugs were also located on the upper and lower surfaces of the body flap and on the B12 afterbody fairing when it was installed. Base and balance cavity pressures were recorded and a strain gage instrumented beam in the right wing measured elevon hinge moments and normal forces.

  14. The Role of Distribution Infrastructure and Equipment in the Life-cycle Air Emissions of Liquid Transportation Fuels

    NASA Astrophysics Data System (ADS)

    Strogen, Bret Michael

    component. In order to apply the new emission factors to policy-relevant scenarios, a projection is made for the fleet inventory of infrastructure components necessary to distribute 21 billion gallons of ethanol (the 2022 federal mandate for advanced biofuels under the Energy Independence and Security Act of 2007) derived entirely from Miscanthus grass, for comparison to the baseline petroleum system. Due to geographic, physical and chemical properties of biomass and alcohols, the distribution system for Miscanthus-based ethanol is more capital- and energy-intensive than petroleum per unit of fuel energy delivered. The transportation of biofuels away from producer regions poses environmental, health, and economic trade-offs that are herein evaluated using a simplified national distribution network model. In just the last ten years, ethanol transportation within the contiguous United States is estimated to have increased more than ten-fold in total t-km as ethanol has increasingly been transported away from Midwest producers due to air quality regulations pertaining to gasoline, renewable fuel mandates, and the 10% blending limit (i.e., the E10 blend wall). From 2004 to 2009, approximately 10 billion t-km of ethanol transportation are estimated to have taken place annually for reasons other than the E10 blend wall, leading to annual freight costs greater than $240 million and more than 300,000 tonnes of CO2-e emissions and significant emissions of criteria air pollutants from the combustion of more than 90 million liters of diesel. Although emissions from distribution activities are small when normalized to each unit of fuel, they are large in scale. Archetypal fuel distribution routes by rail and by truck are created to evaluate the significance of mode choice and route location on the severity of public health impacts from locomotive and truck emissions, by calculating the average PM2.5 pollution intake fraction along each route. Exposure to pollution resulting from

  15. User's Manual for DuctE3D: A Program for 3D Euler Unsteady Aerodynamic and Aeroelastic Analysis of Ducted Fans

    NASA Technical Reports Server (NTRS)

    Srivastava, R.; Reddy, T. S. R.

    1997-01-01

    The program DuctE3D is used for steady or unsteady aerodynamic and aeroelastic analysis of ducted fans. This guide describes the input data required and the output files generated, in using DuctE3D. The analysis solves three dimensional unsteady, compressible Euler equations to obtain the aerodynamic forces. A normal mode structural analysis is used to obtain the aeroelastic equations, which are solved using either the time domain or the frequency domain solution method. Sample input and output files are included in this guide for steady aerodynamic analysis and aeroelastic analysis of an isolated fan row.

  16. Distribution, input pathway and soil-air exchange of polycyclic aromatic hydrocarbons in Banshan Industry Park, China.

    PubMed

    Zhong, Yuchi; Zhu, Lizhong

    2013-02-01

    Given the steel industry park-city paired structure commonly found across China and it associated environmental pollution, the objective of this study was to examine the spatial-temporal distributions of polycyclic aromatic hydrocarbons (PAHs) as well as the relative contributions of the main influx pathways in Banshan steel industry park, China. We analyzed the concentrations of 16 PAHs in soil, air, water and dry/wet deposition samples using gas chromatography-mass spectrometry (GC-MS). The concentrations of ∑(16)-PAHs ranged from 572 to 4,654 μg/kg in April 2010; and the average concentration is 12.7% and 26.1% higher than that of April 2009 and April 2008, respectively, mainly due to the rapid increase of highly toxic high molecular weight (MW) PAHs. The principal input pathway for high and low MW PAHs was determined to be dry deposition (e.g., 69.73% for Benzo[a]pyrene) and wet deposition (e.g., 78.87% for Naphthalene), respectively. Together, 54.79% of total PAHs found in this region are via dry deposition, whereas wet deposition and river water irrigation contribute to 25.46% and 19.76% (corrected with toxic equivalency factors). The approach to the soil-air equilibrium was assessed by calculating fugacity quotients between soil and air samples, and the results indicate that the soil acted as a secondary source for light MW atmospheric PAHs and a sink for higher MW PAHs. It was also determined that the soil acted as a source for median MW PAHs, particularly PY. PMID:23268144

  17. PCDD/F emissions and distributions in Waelz plant and ambient air during different operating stages.

    PubMed

    Chi, Kai Hsien; Chang, Shu Hao; Chang, Moo Been

    2007-04-01

    Significant formation of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) has been observed in a typical Waelz process plant. In 2005, the Waelz plant investigated was equipped with a dust settling chamber (DSC), a venturi cooling tower, a cyclone (CY), and baghouse filter (BF). In early 2006 activated carbon injection (ACI) was adopted to reduce PCDD/F emissions from the plant investigated. Samplings of flue gases and ash were simultaneously conducted at different sampling points in the Waelz plantto evaluate removal efficiency and partitioning of PCDD/Fs between the gas phase and particulates. As the operating temperature of the dust settling chamber (DSC) is increased from 480 to 580 degrees C, the PCDD/F concentration measured at the DSC outlet decreases from 1220 to 394 ng-l-TEQ/Nm3. By applying ACI, the PCDD/F concentrations of stack gas decrease from 139-194 to 3.38 ng-l-TEQ/ Nm(3) (a reduction of 97.6-98.3%) while the PCDD/F concentration of reacted ash increases dramatically from 0.97 to 29.4 ng-l-TEQ/g, as the activated carbon injection rate is controlled at 40 kg/h. Additionally, ambient air PCDD/F concentrations were measured in the vicinity of this facility during different operating stages (shutdown, and operation with and without ACI). The ambient PCDD/F concentration measured downwind and 2.5 km from the Waelz plant decreases from 568 to 206 fg-I-TEQ/m(3) after ACI has been applied to collect the dioxins. Due to the high PCDD/F removal efficiency achieved with ACI + BF, about 24.3 and 3980 ng-l-TEQ/kg EAF-dust treated are discharged via stack gas and reacted ash, respectively, in this facility. PMID:17438809

  18. "Mustache sign" due to Stensen duct dilation.

    PubMed

    Yoruk, O; Kılıc, K; Kantarcı, M

    2013-12-01

    An 80-year-old woman presented with a 5-year history of painless swellings of the left and right cheeks. The degree of swelling did not change with mastication. On palpation, the cheeks were soft, well defined, and movable. Compression and massage of the swollen areas caused increased salivary discharge from the orifices of the Stensen ducts. Three-dimensional computed tomography showed well-bordered, 15- to 20-mm wide, bilateral, tube-like dilatations of the ducts. The ductal origin of the swellings was explained to the patient, but she refused invasive procedures, thus no sialogram or surgical procedure was performed. We describe the clinical and radiographic features of a case of bilateral, congenital Stensen duct dilatation with bilateral swelling of the cheeks. PMID:24209996

  19. Acoustic energy in ducts - Further observations

    NASA Technical Reports Server (NTRS)

    Eversman, W.

    1979-01-01

    The transmission of acoustic energy in uniform ducts carrying uniform flow is investigated with the purpose of clarifying two points of interest. The two commonly used definitions of acoustic 'energy' flux are shown to be related by a Legendre transformation of the Lagrangian density exactly as in deriving the Hamiltonian density in mechanics. In the acoustic case the total energy density and the Hamiltonian density are not the same which accounts for two different 'energy' fluxes. When the duct has acoustically absorptive walls neither of the two flux expressions gives correct results. A reevaluation of the basis of derivation of the energy density and energy flux provides forms which yield consistent results for soft walled ducts.

  20. Investigating the Cherenkov light lateral distribution function for primary proton and iron nuclei in extensive air showers

    NASA Astrophysics Data System (ADS)

    Al-Rubaiee, A. A.; Hashim, U.; Al-Douri, Y.

    2015-11-01

    The lateral distribution function (LDF) of Cherenkov radiation in extensive air showers (EAS) was simulated by CORSIKA program for the conditions of Yakutsk Cherenkov array at the high energy range (1013-1016) eV for two primary particles (p and Fe) for different zenith angles. By depending on Breit-Wigner function for analyzing of Cherenkov light LDF, a parameterization of Cherenkov light LDF was reconstructed by depending on CORSIKA simulation as a function of primary energy. The comparison between the estimated Cherenkov light LDF with the LDF that measured on the Yakutsk EAS array gives the ability of particle identification that initiated the shower and determination of particle's energy around the knee region. The extrapolation of approximated Cherenkov light LDF for energies 20 and 30 PeV was obtained for primary particles (p and Fe).

  1. Heat-transfer distributions on biconics at incidence in hypersonic-hypervelocity He, N2, air, and CO2 flows

    NASA Technical Reports Server (NTRS)

    Miller, C. G.; Micol, J. R.; Gnoffo, P. A.; Wilder, S. E.

    1983-01-01

    Laminar heat transfer rates were measured on spherically blunted, 13 deg/7 deg on axis and bent biconics (fore cone bent 7 deg upward relative to aft cone) at hypersonic hypervelocity flow conditions in the Langley Expansion Tube. Freestream velocities from 4.5 to 6.9 km/sec and Mach numbers from 6 to 9 were generated using helium, nitrogen, air, and carbon dioxide test gases, resulting in normal shock density ratios from 4 to 19. Angle of attack, referenced to the axis of the aft cone, was varied from 0 to 20 deg in 4 deg increments. The effect of nose bend, angle of attack, and real gas phenomena on heating distributions are presented along with comparisons of measurement to prediction from a code which solves the three dimensional parabolized Navier-Stokes equations.

  2. Ion energy and angular distributions onto polymer surfaces delivered by dielectric barrier discharge filaments in air: II. Particles

    NASA Astrophysics Data System (ADS)

    Babaeva, Natalia Yu; Kushner, Mark J.

    2011-06-01

    Atmospheric pressure streamers intersecting particles are of interest in the context of plasma aided combustion, where the particle may be a fuel aerosol droplet, or in sterilization of air, where the particle may be a bacterium. The ion energy and angular distributions (IEADs) incident on the particles, small curved dielectric surfaces, then in part determine the propensity for activating chemical reactions or, in the case of bacteria, the plasma's sterilization capability. In this paper, we discuss results from a computational investigation of IEADs on small particles (45 µm radius) produced by atmospheric pressure discharge. Streamers intersecting a particle momentarily generate a large sheath potential as the streamer passes by as the particle charges towards the plasma floating potential. During that time, ions of energies up to 3-10 eV can strike the particle. The permittivity of the particle and the streamer polarity in part determine the character of the IEAD.

  3. Study of Cherenkov Light Lateral Distribution Function Around the Knee Region in Extensive Air Showers

    NASA Astrophysics Data System (ADS)

    Al-Rubaiee, A.; Hashim, U.; Marwah, M.; Al-Douri, Y.

    2015-06-01

    The Cherenkov light lateral distribution function (LDF) was simulated with the CORSIKA code in the energy range (10^{13} - 10^{16}) eV. This simulation was performed for conditions and configurations of the Tunka EAS Cherenkov array for the two primary particles (p and Fe). Basing on the simulated results, many approximated functions are structured for two primary particles and different zenith angles. This allowed us to reconstruct the EAS events, which is, to determine the type and energy of the primary particles that produced showers from signal amplitudes of Cherenkov radiation measured by the Tunka Cherenkov array experiment. Comparison of the calculated LDF of Cherenkov radiation with that measured at the Tunka EAS array shows the ability to identify the primary particle that initiated the EAS cascades by determining its primary energy around the knee region of the cosmic ray spectrum.

  4. Measured pressure distributions, aerodynamic coefficients and shock shapes on blunt bodies at incidence in hypersonic air and CF4

    NASA Technical Reports Server (NTRS)

    Miller, C. G., III

    1982-01-01

    Pressure distributions, aerodynamic coefficients, and shock shapes were measured on blunt bodies of revolution in Mach 6 CF4 and in Mach 6 and Mach 10 air. The angle of attack was varied from 0 deg to 20 deg in 4 deg increments. Configurations tested were a hyperboloid with an asymptotic angle of 45 deg, a sonic-corner paraboloid, a paraboloid with an angle of 27.6 deg at the base, a Viking aeroshell generated in a generalized orthogonal coordinate system, and a family of cones having a 45 deg half-angle with spherical, flattened, concave, and cusp nose shapes. Real-gas effects were simulated for the hperboloid and paraboloid models at Mach 6 by testing at a normal-shock density ratio of 5.3 in air and 12 CF4. Predictions from simple theories and numerical flow field programs are compared with measurement. It is anticipated that the data presented in this report will be useful for verification of analytical methods for predicting hypersonic flow fields about blunt bodies at incidence.

  5. Spatial Distribution, Air-Water Fugacity Ratios and Source Apportionment of Polychlorinated Biphenyls in the Lower Great Lakes Basin.

    PubMed

    Khairy, Mohammed; Muir, Derek; Teixeira, Camilla; Lohmann, Rainer

    2015-12-01

    Polychlorinated biphenyls (PCBs) continue to be contaminants of concern across the Great Lakes. It is unclear whether current concentrations are driven by ongoing primary emissions from their original uses, or whether ambient PCBs are dominated by their environmental cycling. Freely dissolved PCBs in air and water were measured using polyethylene passive samplers across Lakes Erie and Ontario during summer and fall, 2011, to investigate their spatial distribution, determine and apportion their sources and to asses their air-water exchange gradients. Average gaseous and freely dissolved ∑29 PCB concentrations ranged from 5.0 to 160 pg/m(3) and 2.0 to 55 pg/L respectively. Gaseous concentrations were significantly correlated (R(2) = 0.80) with the urban area within a 3-20 km radius. Fugacity ratios indicated that the majority of PCBs are volatilizing from the water thus acting as a secondary source for the atmosphere. Dissolved PCBs were probably linked to PCB emissions from contaminated sites and areas of concern. Positive matrix factorization indicated that although volatilized Aroclors (gaseous PCBs) and unaltered Aroclors (dissolved PCBs) dominate in some samples, ongoing non-Aroclor sources such as paints/pigments (PCB 11) and coal/wood combustion showed significant contributions across the lower Great Lakes. Accordingly, control strategies should give further attention to PCBs emitted from current use sources. PMID:25915412

  6. Electrical impedance tomography to evaluate air distribution prior to extubation in very-low-birth-weight infants: a feasibility study

    PubMed Central

    de Souza Rossi, Felipe; Yagui, Ana Cristina Zanon; Haddad, Luciana Branco; Deutsch, Alice D'Agostini; Rebello, Celso Moura

    2013-01-01

    OBJECTIVES: Nasal continuous positive airway pressure is used as a standard of care after extubation in very-low-birth-weight infants. A pressure of 5 cmH2O is usually applied regardless of individual differences in lung compliance. Current methods for evaluation of lung compliance and air distribution in the lungs are thus imprecise for preterm infants. This study used electrical impedance tomography to determine the feasibility of evaluating the positive end-expiratory pressure level associated with a more homogeneous air distribution within the lungs before extubation. METHODS: Ventilation homogeneity was defined by electrical impedance tomography as the ratio of ventilation between dependent and non-dependent lung areas. The best ventilation homogeneity was achieved when this ratio was equal to 1. Just before extubation, decremental expiratory pressure levels were applied (8, 7, 6 and 5 cmH20; 3 minutes each step), and the pressure that determined the best ventilation homogeneity was defined as the best positive end-expiratory pressure. RESULTS: The best positive end-expiratory pressure value was 6.3±1.1 cmH20, and the mean continuous positive airway pressure applied after extubation was 5.2±0.4 cmH20 (p = 0.002). The extubation failure rate was 21.4%. X-Ray and blood gases after extubation were also checked. CONCLUSION: This study demonstrates that electrical impedance tomography can be safely and successfully used in patients ready for extubation to suggest the best ventilation homogeneity, which is influenced by the level of expiratory pressure applied. In this feasibility study, the best lung compliance was found with pressure levels higher than the continuous positive airway pressure levels that are usually applied for routine extubation. PMID:23644854

  7. Determining of spatial distribution patterns and temporal trends of an air pollutant using proper orthogonal decomposition basis functions

    NASA Astrophysics Data System (ADS)

    Ashrafi, Khosro

    2012-02-01

    This study aims to determine spatial patterns of an air pollutant dispersion and its temporal trends using proper orthogonal decomposition (POD) basis functions. The POD method is a model reduction technique for complex nonlinear problems and POD basis functions contain essential dynamics and physics of original problem. In the present work, the POD basis functions are applied to identify the dominant modes of carbon monoxide (CO) concentration in ambient air. For this purpose, CO concentration data for 15 monitoring stations over mega city of Tehran for 1339 days (1 Jan. 2006 to 31 Aug. 2009) are used. Data of monitoring stations are interpolated to generate 100 × 100 grid point network. Generated grid based data for all days create a time series of data that is the basic for constructing the POD basis functions. POD basis functions are obtained using eigenvectors of correlation matrix that is obtained using correlation of time series of data. The few number of the POD basis functions corresponding to the few first largest eigenvalues of correlation matrix are dominant modes. The results indicate that the first 7 largest eigenvalues of correlation matrix are 99 percent of the first 100 largest eigenvalues. This indicates that the first 7 POD basis functions out of 1339 capture the essential physics of CO distribution over region. Distribution of the first POD basis function over the city shows that the central and west-central parts of the city are more affected by CO pollutant. In addition, using the recorded data and the POD basis functions the temporal variation of each POD basis function is obtained. Results for the temporal variations of the POD basis functions show that the largest temporal trend belongs to the first POD basis function.

  8. Energy distribution and quantum yield for photoemission from air-contaminated gold surfaces under ultraviolet illumination close to the threshold

    NASA Astrophysics Data System (ADS)

    Hechenblaikner, Gerald; Ziegler, Tobias; Biswas, Indro; Seibel, Christoph; Schulze, Mathias; Brandt, Nico; Schöll, Achim; Bergner, Patrick; Reinert, Friedrich T.

    2012-06-01

    The kinetic energy distributions of photo-electrons emitted from gold surfaces under illumination by UV-light close to the threshold (photon energy in the order of the material work function) are measured and analyzed. Samples are prepared as chemically clean through Ar-ion sputtering and then exposed to atmosphere for variable durations before quantum yield measurements are performed after evacuation. During measurements, the bias voltage applied to the sample is varied and the resulting emission current measured. Taking the derivative of the current-voltage curve yields the energy distribution which is found to closely resemble the distribution of total energies derived by DuBridge for emission from a free electron gas. We investigate the dependence of distribution shape and width on electrode geometry and contaminant substances adsorbed from the atmosphere, in particular, to water and hydro-carbons. Emission efficiency increases initially during air exposure before diminishing to zero on a timescale of several hours, whilst subsequent annealing of the sample restores emissivity. A model fit function, in good quantitative agreement with the measured data, is introduced which accounts for the experiment-specific electrode geometry and an energy dependent transmission coefficient. The impact of large patch potential fields from contact potential drops between sample and sample holder is investigated. The total quantum yield is split into bulk and surface contributions which are tested for their sensitivity to light incidence angle and polarization. Our results are directly applicable to model parameters for the contact-free discharge system onboard the Laser Interferometer Space Antenna (LISA) Pathfinder spacecraft.

  9. Computing Propagation Of Sound In Engine Ducts

    NASA Technical Reports Server (NTRS)

    Saylor, Silvia

    1995-01-01

    Frequency Domain Propagation Model (FREDOM) computer program accounts for acoustic loads applied to components of engines. Models propagation of noise through fluids in ducts between components and through passages within components. Used not only to analyze hardware problems, but also for design purposes. Updated version of FREQPL program easier to use. Devised specifically for use in analyzing acoustic loads in rocket engines. Underlying physical and mathematical concepts implemented also applicable to acoustic propagation in other enclosed spaces; analyzing process plumbing and ducts in industrial buildings with view toward reducing noise in work areas.

  10. Modern management of common bile duct stones.

    PubMed

    Buxbaum, James

    2013-04-01

    It is imperative for gastroenterologists to understand the different formations of bile duct stones and the various medical treatments available. To minimize the complications of endoscopic retrograde cholangiopancreatography (ERCP), it is critical to appropriately assess the risk of bile duct stones before intervention. Biliary endoscopists should be comfortable with the basic techniques of stone removal, including sphincterotomy, mechanical lithotripsy, and stent placement. It is important to be aware of advanced options, including laser and electrohydraulic stone fragmentation, and papillary dilatation for problematic cases. The timing and need for ERCP in those who require a cholecystectomy is also a consideration. PMID:23540960

  11. Fundamental investigation of duct/ESP phenomena

    SciTech Connect

    Brown, C.A. ); Durham, M.D. ); Sowa, W.A. . Combustion Lab.); Himes, R.M. ); Mahaffey, W.A. )

    1991-10-21

    Radian Corporation was contracted to investigate duct injection and ESP phenomena in a 1.7 MW pilot plant constructed for this test program. This study was an attempt to resolve problems found in previous studies and answer remaining questions for the technology using an approach which concentrates on the fundamental mechanisms of the process. The goal of the study was to obtain a better understanding of the basic physical and chemical phenomena that control: (1) the desulfurization of flue gas by calcium-based reagent, and (2) the coupling of an existing ESP particulate collection device to the duct injection process. Process economics are being studied by others. (VC)

  12. Preconditioning the Helmholtz Equation for Rigid Ducts

    NASA Technical Reports Server (NTRS)

    Baumeister, Kenneth J.; Kreider, Kevin L.

    1998-01-01

    An innovative hyperbolic preconditioning technique is developed for the numerical solution of the Helmholtz equation which governs acoustic propagation in ducts. Two pseudo-time parameters are used to produce an explicit iterative finite difference scheme. This scheme eliminates the large matrix storage requirements normally associated with numerical solutions to the Helmholtz equation. The solution procedure is very fast when compared to other transient and steady methods. Optimization and an error analysis of the preconditioning factors are present. For validation, the method is applied to sound propagation in a 2D semi-infinite hard wall duct.

  13. Congenital Atresia of Wharton’s Duct

    PubMed Central

    Hseu, Anne; Anne, Premchand

    2016-01-01

    This is a case report of a three-month-old male who presented to clinic with a cystic lesion under the tongue. On clinical examination, a cystic lesion was observed in the, floor-of-mouth. The patient was referred to Paediatric Otorhinolaryngology service for further management. The differential diagnoses for floor-of-mouth lesions should be reviewed with primary focus on the Wharton’s duct atresia and its management. It is crucial to recognize submandibular duct atresia in the primary Paediatric clinic in order to expedite management of lesion before complications arise including infection, enlargement of cyst, and feeding and breathing difficulties. PMID:27042492

  14. Nucleonic analysis of a preliminary design for the ETF neutral-beam-injector duct shielding

    SciTech Connect

    Urban, W.T.; Seed, T.J.; Dudziak, D.J.

    1980-01-01

    A nucleonic analysis of the Engineering Test Facility Neutral-Beam-Injector duct shielding has been made using a hybrid Monte Carlo/discrete-ordinates method. This method used Monte Carlo to determine internal and external boundary surface sources for a subsequent discrete-ordinates calculation of the neutron and gamma-ray transport through the shield. The analysis also included determination of the energy and angular distribution of neutrons and gamma rays entering the duct from the torus plasma chamber. Confidence in the hybrid method and the results obtained were provided through a comparison with three-dimensional Monte Carlo results.

  15. Distribution of ozone and other air pollutants in forests of the Carpathian Mountains in central Europe.

    PubMed

    Bytnerowicz, A; Godzik, B; Fraczek, W; Grodzińska, K; Krywult, M; Badea, O; Barancok, P; Blum, O; Cerny, M; Godzik, S; Mankovska, B; Manning, W; Moravcik, P; Musselman, R; Oszlanyi, J; Postelnicu, D; Szdźuj, J; Varsavova, M; Zota, M

    2002-01-01

    Ozone (O3) concentrations were monitored during the 1997-1999 growing seasons in 32 forest sites of the Carpathian Mountains. At all sites (elevation between 450 and 1320 m) concentrations of O3, nitrogen dioxide (NO2), and sulfur dioxide (SO2) were measured with passive samplers. In addition, in two western Carpathian locations, Vychodna and Gubalówka, ozone was continuously monitored with ultraviolet (UV) absorption monitors. Highest average hourly O3 concentrations in the Vychodna and Gubałówka sites reached 160 and 200 microg/m3 (82 and 102 ppb), respectively (except for the AOT40 values, ozone concentrations are presented as microg/m3; and at 25 degrees C and 760 mm Hg, 1 microg O3/m3 = 0.51 ppb O3). These sites showed drastically different patterns of diurnal 03 distribution, one with clearly defined peaks in the afternoon and lowest values in the morning, the other with flat patterns during the entire 24-h period. On two elevational transects, no effect of elevation on O3 levels was seen on the first one, while on the other a significant increase of O3 levels with elevation occurred. Concentrations of O3 determined with passive samplers were significantly different between individual monitoring years, monitoring periods, and geographic location of the monitoring sites. Results of passive sampler monitoring showed that high O3 concentrations could be expected in many parts of the Carpathian range, especially in its western part, but also in the eastern and southern ranges. More than four-fold denser network of monitoring sites is required for reliable estimates of O3 distribution in forests over the entire Carpathian range (140 points). Potential phytotoxic effects of O3 on forest trees and understory vegetation are expected on almost the entire territory of the Carpathian Mountains. This assumption is based on estimates of the AOT40 indices for forest trees and natural vegetation. Concentrations of NO2 and SO2 in the entire Carpathian range were typical

  16. Air pollution distribution patterns in the San Bernardino Mountains of southern California: a 40-year perspective.

    PubMed

    Bytnerowicz, Andrzej; Arbaugh, Michael; Schilling, Susan; Fraczek, Witold; Alexander, Diane; Dawson, Philip

    2007-01-01

    Since the mid-1950s, native pines in the San Bernardino Mountains (SBM) in southern California have shown symptoms of decline. Initial studies in 1963 showed that ozone (O3) generated in the upwind Los Angeles Basin was responsible for the injury and decline of sensitive trees. Ambient O3 decreased significantly by the mid-1990s, resulting in decreased O3 injury and improved tree growth. Increased growth of trees may also be attributed to elevated atmospheric nitrogen (N) deposition. Since most of the N deposition to mixed conifer forest stands in the SBM results from dry deposition of nitric acid vapor (HNO3) and ammonia (NH3), characterization of spatial and temporal distribution of these two pollutants has become essential. Although maximum daytime O3 concentrations over last 40 years have significantly decreased (approximately 3-fold), seasonal means have been reduced much less (approximately 1.5-fold), with 2-week long means occasionally exceeding 100 ppb in the western part of the range. In the same area, significantly elevated concentrations of HNO3 and NH3, up to 17.5 and 18.5 microg/m3 as 2-week averages, respectively, have been determined. Elevated levels of O3 and increased N deposition together with long-term drought predispose the SBM forests to massive bark beetle attacks making them susceptible to catastrophic fires. PMID:17450286

  17. What Should You Ask Your Doctor about Bile Duct Cancer?

    MedlinePlus

    ... treatment for bile duct cancer? What should you ask your doctor about bile duct cancer? It is ... your own. For instance, you might want to ask about clinical trials for which you may qualify. ...

  18. Experimental evaluation of a pilot multinozzle-duct apparatus

    NASA Technical Reports Server (NTRS)

    Puster, R. L.

    1979-01-01

    A pilot multinozzle and duct were tested at ambient enthalpy to evaluate the suitability of such apparatus for testing thermal protection system panels mounted in the sidewalls of the duct downstream of the nozzle array. The flow field in the duct was complex: effects of wakes and shock waves from the nozzle dominated the flow field; the wakes continually mixed with the surrounding fluid; the boundary layer on the sidewalls of the duct was nonuniform; and near the exit of the duct the sidewall pressure variation was as much as 8.5 percent about the mean wall pressure. Starting loads on the duct walls were higher than those of a similar conventional nozzle and duct. It was concluded that the multinozzle-duct apparatus was not suitable for testing TPS panels, although the design and flow-field information should be of interest to designers of high-energy gasdynamic lasers.

  19. Predictions of thermal comfort and pollutant distributions for a thermostatically-controlled, air-conditioned, partitioned room: Numerical results and enhanced graphical presentation

    SciTech Connect

    White, M.D.; Eyler, L.L.

    1989-05-01

    An index of local thermal comfort and pollutant distributions have been computed with the TEMPEST computer code, in a transient simulation of an air-conditioned enclosure with an incomplete partition. This complex three-dimensional air conditioning problem included forced ventilation through inlet veins, flow through a partition, remote return air vents, and infiltration source, a pollutant source, and a thermostatically controlled air conditioning system. Five forced ventilation schemes that varied in vent areas and face velocities were simulated. Thermal comfort was modeled as a three-dimensional scalar field dependent on the fluid velocity and temperature fields; where humidity activity levels, and clothing were considered constants. Pollutants transport was incorporated through an additional constituent diffusion equation. Six distinct graphic techniques for the visualization of the three-dimensional data fields of air velocity, temperature, and comfort index were tested. 4 refs., 7 figs., 1 tab.

  20. Duct Ectasia and Periductal Mastitis in Indian Women.

    PubMed

    Ramalingam, Kirithiga; Srivastava, Anurag; Vuthaluru, Seenu; Dhar, Anita; Chaudhry, Rama

    2015-12-01

    There is very little awareness of the general physicians and surgeons about the benign breast conditions such as duct ectasia (DE) and periductal mastitis (PDM) causing nipple discharge. Not only that these benign breast diseases ring a false alarm of cancer, they are also the second most common cause of benign breast diseases. The objective was to study the clinical and microbiological profiles of duct ectasia and periductal mastitis in Indian women for better understanding of the disease process, in order to be able to treat them well. Forty-one consecutive patients presenting to the Surgical Out-Patient Department with non-bloody nipple discharge with clinical and radiological features suggestive of DE or PDM were included. Microbial culture and cytopathological study of the nipple discharge were done. Histopathological studies and culture of the ductal tissue taken intraoperatively were carried out. There is no significant difference in the age distribution among women with DE and PDM. Smoking is not associated with DE and PDM of Indian patients in contrast to the Western literature evidence. Infective etiology was present in nearly 46 % of the patients in the study population more so in the periductal mastitis cases. The most common isolated pathogens were Staphylococcus aureus and Staphylococcus epidermidis, unlike in Western population where nearly 50 % were anaerobes. Since the isolated organisms were resistant to the routinely used antibiotics in high proportion of cases, culture and sensitivity should be done in all possible cases for appropriately treating the subareolar sepsis before proceeding with the definitive treatment in the form of duct excision. PMID:27011490