Science.gov

Sample records for air distribution ducting

  1. Advanced Strategy Guideline: Air Distribution Basics and Duct Design

    SciTech Connect

    Burdick, A.

    2011-12-01

    This report discusses considerations for designing an air distribution system for an energy efficient house that requires less air volume to condition the space. Considering the HVAC system early in the design process will allow adequate space for equipment and ductwork and can result in cost savings. Principles discussed that will maximize occupant comfort include delivery of the proper amount of conditioned air for appropriate temperature mixing and uniformity without drafts, minimization of system noise, the impacts of pressure loss, efficient return air duct design, and supply air outlet placement, as well as duct layout, materials, and sizing.

  2. Advanced Strategy Guideline. Air Distribution Basics and Duct Design

    SciTech Connect

    Burdick, Arlan

    2011-12-01

    This report discusses considerations for designing an air distribution system for an energy efficient house that requires less air volume to condition the space. Considering the HVAC system early in the design process will allow adequate space for equipment and ductwork and can result in cost savings.

  3. Field measurements of efficiency and duct retrofit effectiveness in residential forced air distributions systems

    SciTech Connect

    Jump, D.A.; Walker, I.S.; Modera, M.P.

    1996-08-01

    Forced air distribution systems can have a significant impact on the energy consumed in residences. It is common practice in U.S. residential buildings to place such duct systems outside the conditioned space. This results in the loss of energy by leakage and conduction to the surroundings. In order to estimate the magnitudes of these losses, 24 houses in the Sacramento, California, area were tested before and after duct retrofitting. The systems in these houses included conventional air conditioning, gas furnaces, electric furnaces and heat pumps. The retrofits consisted of sealing and insulating the duct systems. The field testing consisted of the following measurements: leakage of the house envelopes and their ductwork, flow through individual registers, duct air temperatures, ambient temperatures, surface areas of ducts, and HVAC equipment energy consumption. These data were used to calculate distribution system delivery efficiency as well as the overall efficiency of the distribution system including all interactions with building load and HVAC equipment. Analysis of the test results indicate an average increase in delivery efficiency from 64% to 76% and a corresponding average decrease in HVAC energy use of 18%. This paper summarizes the pre- and post-retrofit efficiency measurements to evaluate the retrofit effectiveness, and includes cost estimates for the duct retrofits. The impacts of leak sealing and insulating will be examined separately. 8 refs., 1 fig., 4 tabs.

  4. 14 CFR 29.1103 - Induction systems ducts and air duct systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Induction systems ducts and air duct... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Induction System § 29.1103 Induction systems ducts and air duct systems. (a) Each induction system duct upstream of the...

  5. 14 CFR 25.1103 - Induction system ducts and air duct systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Induction system ducts and air duct systems... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Induction System § 25.1103 Induction system ducts and air duct systems. (a) Each induction system duct upstream of the...

  6. Longevity of duct tape in residential air distribution systems: 1-D, 2-D, and 3-D joints

    SciTech Connect

    Abushakra, Bass

    2002-05-30

    The aging tests conducted so far showed that duct tape tends to degrade in its performance as the joint it is applied to requires a geometrical description of a higher number of space dimensions (1-D, 2-D, 3-D). One-dimensional joints are the easiest to seal with duct tape, and thus the least to experience failure. Two-dimensional joints, such as the flexible duct core-to-collar joints tested in this study, are less likely to fail than three-dimensional collar-to-plenum joints, as the shrinkage could have a positive effect in tightening the joint. Three-dimensional joints are the toughest to seal and the most likely to experience failure. The 2-D flexible duct core-to-collar joints passed the six-month period of the aging test in terms of leakage, but with the exception of the foil-butyl tape, showed degradation in terms hardening, brittleness, partial peeling, shrinkage, wrinkling, delamination of the tape layers, flaking, cracking, bubbling, oozing and discoloration. The baking test results showed that the failure in the duct tape joints could be attributed to the type of combination of the duct tape and the material it is applied to, as the duct tape behaves differently with different substrates. Overall, the foil-butyl tape (Tape 4) had the best results, while the film tape (Tape 3) showed the most deterioration. The conventional duct tapes tested (Tape 1 and Tape 2) were between these two extremes, with Tape 2 performing better than Tape 1. Lastly, we found that plastic straps became discolored and brittle during the tests, and a couple of straps broke completely. Therefore, we recommend that clamping the duct-taped flexible core-to-collar joints should be done with metallic adjustable straps.

  7. Should You Have the Air Ducts in Your Home Cleaned?

    EPA Pesticide Factsheets

    Duct cleaning generally refers to the cleaning of various heating and cooling system components of forced air systems, including the supply and return air ducts and registers, grilles and diffusers, heat exchangers heating and cooling coils.

  8. 14 CFR 25.1103 - Induction system ducts and air duct systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Induction System § 25... between the air duct source and the airplane unit served by the air. (e) Each auxiliary power unit... other compartment or area of the airplane in which a hazard would be created resulting from the entry...

  9. 14 CFR 25.1103 - Induction system ducts and air duct systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Induction System § 25... between the air duct source and the airplane unit served by the air. (e) Each auxiliary power unit... other compartment or area of the airplane in which a hazard would be created resulting from the entry...

  10. 14 CFR 25.1103 - Induction system ducts and air duct systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Induction System § 25... between the air duct source and the airplane unit served by the air. (e) Each auxiliary power unit... other compartment or area of the airplane in which a hazard would be created resulting from the entry...

  11. 14 CFR 25.1103 - Induction system ducts and air duct systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Induction System § 25... between the air duct source and the airplane unit served by the air. (e) Each auxiliary power unit... other compartment or area of the airplane in which a hazard would be created resulting from the entry...

  12. AIR DUCTS STAND NEXT TO (AND OUTSIDE OF) REACTOR CABINET ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    AIR DUCTS STAND NEXT TO (AND OUTSIDE OF) REACTOR CABINET AT THE SOUTHWEST AND NORTHEAST CORNERS OF THE REACTOR'S THERMAL SHIELD. THEY WILL BE ENVELOPED IN BIOLOGICAL CONCRETE SHIELD. IN THE SUB-BASEMENT, THE TWO DUCTS WILL JOIN TOGETHER AND EXIT THE BUILDING TO THE FAN HOUSE. CAMERA FACING NORTH. INL NEGATIVE NO. 1625. Unknown Photographer, 3/6/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  13. Sensor-based navigation of air duct inspection mobile robots

    NASA Astrophysics Data System (ADS)

    Koh, Kyoungchul; Choi, H. J.; Kim, Jae-Seon; Ko, Kuk Won; Cho, Hyungsuck

    2001-02-01

    12 This paper deals with an image sensor system and its position estimation algorithm for autonomous duct cleaning and inspection mobile robots. For the real application, a hierarchical control structure that consists of robot motion controller and image sensor system is designed considering the efficient and autonomous motion behaviors in narrow space such as air ducts. The sensor's system consists of a CCD camera and two laser sources to generate slit beams. The image of the structured lights is used for calculating the geometric parameters of the air ducts which are usually designed with a rectangular section. With the acquired 3D information about the environment, the mobile robot with two differential driving wheels is able to autonomously navigates along the duct path without any human intervention. For real time navigation, the relative position estimation of the robot are performed from 3D image reconstructed by the sensor system. The calibration and image processing methods used for the sensor system are presented with the experimental data. The experimental results show the possibility of the sensor based navigation which is important for effective duct cleaning by small mobile robots.

  14. Cooling air recycling for gas turbine transition duct end frame and related method

    DOEpatents

    Cromer, Robert Harold; Bechtel, William Theodore; Sutcu, Maz

    2002-01-01

    A method of cooling a transition duct end frame in a gas turbine includes the steps of a) directing cooling air into the end frame from a region external of the transition duct and the impingement cooling sleeve; and b) redirecting the cooling air from the end frame into the annulus between the transition duct and the impingement cooling sleeve.

  15. Strategy Guideline. Compact Air Distribution Systems

    SciTech Connect

    Burdick, Arlan

    2013-06-01

    This guideline discusses the benefits and challenges of using a compact air distribution system to handle the reduced loads and reduced air volume needed to condition the space within an energy efficient home. The decision criteria for a compact air distribution system must be determined early in the whole-house design process, considering both supply and return air design. However, careful installation of a compact air distribution system can result in lower material costs from smaller equipment, shorter duct runs, and fewer outlets; increased installation efficiencies, including ease of fitting the system into conditioned space; lower loads on a better balanced HVAC system, and overall improved energy efficiency of the home.

  16. Strategy Guideline: Compact Air Distribution Systems

    SciTech Connect

    Burdick, A.

    2013-06-01

    This Strategy Guideline discusses the benefits and challenges of using a compact air distribution system to handle the reduced loads and reduced air volume needed to condition the space within an energy efficient home. Traditional systems sized by 'rule of thumb' (i.e., 1 ton of cooling per 400 ft2 of floor space) that 'wash' the exterior walls with conditioned air from floor registers cannot provide appropriate air mixing and moisture removal in low-load homes. A compact air distribution system locates the HVAC equipment centrally with shorter ducts run to interior walls, and ceiling supply outlets throw the air toward the exterior walls along the ceiling plane; alternatively, high sidewall supply outlets throw the air toward the exterior walls. Potential drawbacks include resistance from installing contractors or code officials who are unfamiliar with compact air distribution systems, as well as a lack of availability of low-cost high sidewall or ceiling supply outlets to meet the low air volumes with good throw characteristics. The decision criteria for a compact air distribution system must be determined early in the whole-house design process, considering both supply and return air design. However, careful installation of a compact air distribution system can result in lower material costs from smaller equipment, shorter duct runs, and fewer outlets; increased installation efficiencies, including ease of fitting the system into conditioned space; lower loads on a better balanced HVAC system, and overall improved energy efficiency of the home.

  17. Numerical characterization of the hydrodynamics and thermal behavior of air flow in flexible air distribution system

    NASA Astrophysics Data System (ADS)

    Gharehdaghi, Samad; Moujaes, Samir

    2013-10-01

    Flexible duct air distribution systems are used in a large percentage of residential and small commercial buildings in the United States . Very few empirical or predictive data are available though to help provide the HVAC design engineer with reliable information . Moreover, because of the ducts flexibility, the shapes of these ducts offer a different set of operating fluid flow and thermal conditions from traditional smooth metal ducts. Hence, both the flow field and heat transfer through this kind of ducts are much more complex and merit to be analyzed from a numerical predictive approach. The aim of this research paper is to compute some of the hydrodynamic and heat transfer characteristics of the air flow inside these ducts over a range of Re numbers commonly used in the flow conditions of these air distribution systems. The information resulting from this CFD simulation, where a κ-ɛ turbulent model is used to predict the flow conditions, provide pressure drop and average convective heat transfer coefficients that exist in these ducts and was compared to previously found data. Circulation zones in the depressions of these ducts are found to exist which are suspected of influencing the pressured drop and heat transfer coefficients as compared to smooth ducts. The results show that fully developed conditions exist much earlier with regard to the inlet for both hydrodynamic and thermal entrance regions than what would be expected in smooth ducts under the same turbulent conditions.

  18. MTR BLOWER AND FAN HOUSE, TRA610. AIR DUCT DETAILS AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MTR BLOWER AND FAN HOUSE, TRA-610. AIR DUCT DETAILS AND EQUIPMENT FOUNDATIONS. SECTION THROUGH AIR DUCT CHANNELS FROM ENTRY TO BUILDING TO EXIT INTO STACK. BLAW-KNOX 3150-810-3, 1/1951. INL INDEX NO. 531-0610-00-098-100690, REV. 4. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  19. The influence of air duct geometry on air jet direction in aircraft cabin ventilated by mixing ventilation.

    NASA Astrophysics Data System (ADS)

    Fišer, J.; Jícha, M.

    2013-04-01

    The paper deals with instigation of influence of air duct geometry on air jet direction in aircraft cabin ventilated by mixing ventilation. CFD approach was used for investigation and model geometry was based on small aircraft cabin mock-up geometry. Model was also equipped by nine seats and five manikins that represent passengers. The air jet direction was observed for selected ambient environment parameters and several types of air duct geometry and influence of main air duct geometry on jets direction is discussed. The model was created in StarCCM+ ver. 6.04.014 software and polyhedral mesh was used.

  20. 14 CFR 29.1103 - Induction systems ducts and air duct systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... sufficient distance upstream of the auxiliary power unit compartment to prevent hot gas reverse flow from... stage of the engine supercharger and of the auxiliary power unit compressor must have a drain to prevent... resistant, for other ducts, except that ducts for auxiliary power units must be fireproof within...

  1. Prevalence, distribution, and differential diagnosis of nasopalatine duct cysts

    PubMed Central

    CECCHETTI, F.; OTTRIA, L.; BARTULI, F.; BRAMANTI, N. E.; ARCURI, C.

    2012-01-01

    SUMMARY Introduction. Nasopalatine duct cysts (NPDCs) are the most common developmental epithelial non-odontogenic cysts of the maxillae. Their origin, however, is still a source of considerable debate. Aims. The aim of this investigation is to describe and discuss the etiology, differential diagnosis, clinic-pathological characteristics as well as to report the relative frequency and distribution of nasopalatine duct cysts in population (NPDCs) with a literature’s review on the topic. Methods The retrospective study was carried out using 36 clinical cases, with histopatological confirmation for NPDC, radiographs and oral photographs. Data included age and gender of the patient, radiographic findings, etiological factors, treatment, and prognosis of NPDC. Few surgical consideration are discussed. Results The study results report a clear male predilection with a 3:1 ratio. No statistically significant correlation was observed between the size of the lesion and patient’s gender. Lesions were usually asymptomatic. All cysts were located in the anterior maxillary midline region. Panoramic X-rays and computed tomography was used to identify the lesion. Surgical treatment was performed under local anesthesia including the dissection and removal of the cyst, adopting a usually palatine approach, with an enveloping flap from 1.4 to 2.4. Conclusions The etiology of NPDC is unclear and a male predilection was observed. Simple surgical resection is recommended, followed by clinical and radiological control to ensure correct resolution of the case. PMID:23285406

  2. Acoustic radiation from lined, unflanged ducts: Acoustic source distribution program

    NASA Technical Reports Server (NTRS)

    Beckemeyer, R. J.; Sawdy, D. T.

    1971-01-01

    An acoustic radiation analysis was developed to predict the far-field characteristics of fan noise radiated from an acoustically lined unflanged duct. This analysis is comprised of three modular digital computer programs which together provide a capability of accounting for the impedance mismatch at the duct exit plane. Admissible duct configurations include circular or annular, with or without an extended centerbody. This variation in duct configurations provides a capability of modeling inlet and fan duct noise radiation. The computer programs are described in detail.

  3. Aircraft Ducting

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Templeman Industries developed the Ultra-Seal Ducting System, an environmental composite air duct with a 50 percent weight savings over current metallic ducting, but could not find a commercial facility with the ability to test it. Marshall Space Flight Center conducted a structural evaluation of the duct, equivalent to 86 years of take-offs and landings in an aircraft. Boeing Commercial Airplane Group and McDonnell Douglas Corporation are currently using the ducts.

  4. Experimental study on the flame behaviors of premixed methane/air mixture in horizontal rectangular ducts

    NASA Astrophysics Data System (ADS)

    Chen, Dongliang; Sun, Jinhua; Chen, Sining; Liu, Yi; Chu, Guanquan

    2007-01-01

    In order to explore the flame propagation characteristics and tulip flame formation mechanism of premixed methane/air mixture in horizontal rectangular ducts, the techniques of Schlieren and high-speed video camera are used to study the flame behaviors of the premixed gases in a closed duct and opened one respectively, and the propagation characteristics in both cases and the formation mechanism of the tulip flame are analyzed. The results show that, the propagation flame in a closed duct is prior to form a tulip flame structure than that in an opened duct, and the tulip flame structure formation in a closed duct is related to the flame propagation velocity decrease. The sharp decrease of the flame propagation velocity is one of the reasons to the tulip flame formation, and the decrease of the flame propagation velocity is due to the decrease of the burned product flow velocity mainly.

  5. A comparison of air leakage prediction techniques for auxiliary ventilation ducting systems

    SciTech Connect

    Gillies, A.D.S.; Wu, H.W.

    1999-07-01

    This paper briefly reviews prediction techniques for determination of leakage and friction along auxiliary ventilation ducting systems. In order to compare various prediction techniques that have been developed over the past, a macroscopic investigation of air leakage and friction resistance of auxiliary ventilation ducting systems has been undertaken. Measurements were conducted on 450 and 915 mm diameter fabric ducting over 100 m duct length to determine frictional resistances and the extent of leakage. Due to the high degree of accuracy required and the large volume of data that needed to be collected, electronic auxiliary ventilation ducting systems were developed based on this information. It was found that these models provided good correlation with most the existing prediction techniques. The experimental methodology relying on computer data acquisition has allowed the accuracy of measured values to be treated with a high degree of confidence. The reliability of the developed models allows prediction of leakage, frictional impedance and airflow with enhanced confidence.

  6. Inlet boundary conditions for shock wave propagation problems in air ducts

    NASA Astrophysics Data System (ADS)

    Fashbaugh, R. H.

    1992-03-01

    Shock waves propagating into air ducting systems are numerically studied using data from Kriebel (1972). Small-scale junctions mounted in shock tubes with an incident shock wave are considered. The stagnation pressure ratio through a duct inlet is evaluated for various junction types. The logarithm of this ratio varies linearly with the Mach number of the flow behind the incident shock wave. The static pressure inside the inlet is established using experimental data with given Mach numbers of the incident and inlet flows. A constant stagnation enthalpy through the inlet junction is assumed to establish inflow to the duct.

  7. Thermionic nuclear reactor with internal heat distribution and multiple duct cooling

    DOEpatents

    Fisher, C.R.; Perry, L.W. Jr.

    1975-11-01

    A Thermionic Nuclear Reactor is described having multiple ribbon-like coolant ducts passing through the core, intertwined among the thermionic fuel elements to provide independent cooling paths. Heat pipes are disposed in the core between and adjacent to the thermionic fuel elements and the ribbon ducting, for the purpose of more uniformly distributing the heat of fission among the thermionic fuel elements and the ducts.

  8. A prediction method for aerodynamic sound produced by multiple elements in air ducts

    NASA Astrophysics Data System (ADS)

    Mak, C. M.

    2005-10-01

    A prediction method for aerodynamic sound produced by the interaction of multiple elements in a low speed flow duct has been developed. Same as the previous works of Mak and Yang for two in-duct elements, the concept of partially coherent sound fields is adopted to formulate the sound powers produced by interaction of multiple in-duct elements at frequencies below and above the cut-on frequency of the lowest transverse duct mode. An interaction factor is finally defined as a result of a simple relationship between the sound power due to the interaction of multiple in-duct elements and that due to a single in-duct element. The present study suggests that it is possible to predict the level and spectral distribution of the additional acoustic energy produced by the interaction of multiple in-duct elements. The proposed method therefore can form a basis of a generalized prediction method for aerodynamic sound produced by multiple in-duct elements in a ventilation system.

  9. Development of an Ultrasonic Airflow Measurement Device for Ducted Air

    PubMed Central

    Raine, Andrew B.; Aslam, Nauman; Underwood, Christopher P.; Danaher, Sean

    2015-01-01

    In this study, an in-duct ultrasonic airflow measurement device has been designed, developed and tested. The airflow measurement results for a small range of airflow velocities and temperatures show that the accuracy was better than 3.5% root mean square (RMS) when it was tested within a round or square duct compared to the in-line Venturi tube airflow meter used for reference. This proof of concept device has provided evidence that with further development it could be a low-cost alternative to pressure differential devices such as the orifice plate airflow meter for monitoring energy efficiency performance and reliability of ventilation systems. The design uses a number of techniques and design choices to provide solutions to lower the implementation cost of the device compared to traditional airflow meters. The design choices that were found to work well are the single sided transducer arrangement for a “V” shaped reflective path and the use of square wave transmitter pulses ending with the necessary 180° phase changed pulse train to suppress transducer ringing. The device is also designed so that it does not have to rely on high-speed analogue to digital converters (ADC) and intensive digital signal processing, so could be implemented using voltage comparators and low-cost microcontrollers. PMID:25954952

  10. Duct System Flammability and Air Sealing Fire Separation Assemblies in the International Residential Code

    SciTech Connect

    Rudd, A.; Prahl, D.

    2014-12-01

    IBACOS identified two barriers that limit the ability of builders to cost-effectively achieve higher energy efficiency levels in housing. These are the use of duct system materials that inherently achieve airtightness and are appropriately sized for low-load houses and the ability to air seal fire separation assemblies. The issues identified fall into a gray area of the codes.

  11. Duct System Flammability and Air Sealing Fire Separation Assemblies in the International Residential Code

    SciTech Connect

    Rudd, A.; Prahl, D.

    2014-12-01

    IBACOS identified two barriers that limit the ability of builders to cost-effectively achieve higher energy efficiency levels in housing. These are (1) the use of duct system materials that inherently achieve airtightness and are appropriately sized for low-load houses and (2) the ability to air seal fire separation assemblies. The issues identified fall into a gray area of the codes.

  12. Combination valance and conditioned air admission and return ducts

    SciTech Connect

    Sprout, F.C. Sr.

    1987-06-16

    This patent describes an improved air treatment system for a dwelling comprising: an air diffusion chamber associated with the ceiling and having at least a portion in a position of close proximity to an outer wall of the dwelling; an opening formed in the chamber faces downwardly in close proximity to the wall and parallels the wall for venting the chamber to the room; a conditioning unit having integral fan means generates a flow of conditioned air to the chamber; means conducts the air from the generating means to the chamber; means returns the air vented into the room to the air generating means; a suspended valance member associated with and extends below the chamber for concealment of the opening from view within the room; an auxiliary fan located in the air returning means to cause the returned air to be drawn through the air returning means and be forced into the integral fan means of the conditioning unit; the air return means comprises a network of interconnected concrete channels constructed directly in the ground to extend beneath each of the rooms of the structure and are concealed by the floor of the structure; and apertures extend through the flooring to communicate with the network of channels, the apertures are positioned to provide at least one aperture in each of the major rooms of the structure; and the network of interconnected channels additionally forms to receive service utilities for the structure.

  13. Aerosol filtration efficiency of in-duct air cleaners

    SciTech Connect

    Hanley, J.T.; Ensor, D.S.; Sparks, L.E.

    1998-09-01

    The paper discusses the evaluation of the fractional efficiency of several common ventilation air cleaners. The air cleaners included fiberglass furnace filters, paper-media filters, and electrostatically charged fiber cleaners. Results showed that filtration efficiency is highly particle size dependent over a 0.01-10 micrometer size range. Filtration efficiency was also seen to be dependent upon flow rate and the dust load condition of the air cleaner.

  14. FIELD EVALUATION OF IMPROVED METHODS FOR MEASURING THE AIR LEAKAGE OF DUCT SYSTEMS UNDER NORMAL OPERATING CONDITIONS IN 51 HOMES

    SciTech Connect

    Paul W. Francisco; Larry Palmiter; Erin Kruse; Bob Davis

    2003-10-18

    Duct leakage in forced-air distribution systems has been recognized for years as a major source of energy losses in residential buildings. Unfortunately, the distribution of leakage across homes is far from uniform, and measuring duct leakage under normal operating conditions has proven to be difficult. Recently, two new methods for estimating duct leakage at normal operating conditions have been devised. These are called the nulling test and the Delta-Q test. Small exploratory studies have been done to evaluate these tests, but previously no large-scale study on a broad variety of homes has been performed to determine the accuracy of these new methods in the field against an independent benchmark of leakage. This sort of study is important because it is difficult in a laboratory setting to replicate the range of leakage types found in real homes. This report presents the results of a study on 51 homes to evaluate these new methods relative to an independent benchmark and a method that is currently used. An evaluation of the benchmark procedure found that it worked very well for supply-side leakage measurements, but not as well on the return side. The nulling test was found to perform well, as long as wind effects were minimal. Unfortunately, the time and difficulty of setup can be prohibitive, and it is likely that this method will not be practical for general use by contractors except in homes with no return ducts. The Delta-Q test was found to have a bias resulting in overprediction of the leakage, which qualitatively confirms the results of previous laboratory, simulation, and small-scale field studies. On average the bias was only a few percent of the air handler flow, but in about 20% of the homes the bias was large. A primary flaw with the Delta-Q test is the assumption that the pressure between the ducts and the house remain constant during the test, as this assumption does not hold true. Various modifications to the Delta-Q method were evaluated as

  15. Heat Transfer Enhancement in Solar Air Heater Duct Fitted With Punched Hole Delta Winglets

    NASA Astrophysics Data System (ADS)

    Warrier, Hithesh. U.; Kotebavi, Vinod. M.

    2016-09-01

    This paper investigates the thermal performance of solar air heater fitted with delta winglet type vortex generators with holes punched on it by experimental and numerical analysis. Delta winglet type vortex generators having holes punched onto it are fitted in a duct of size 400*300*30mm.it is placed in duct in 3 different configurations, as an array having 5 pair in one row. Delta winglet pair has an attack angle of 30degree, with height of winglet equal to half of duct height. The study is done for Reynolds's no in the range of 9000 to 25000. Thermal performance is evaluated by analyzing both friction factor and Nussult's number using Webb's correlation for surface roughness. Numerical simulation is done using Ansys fluent. Experimental and numerical results are then compared. Results shows that heat transfer enhancement of about 20-150% can be achieved by using punched hole delta winglet.

  16. Mockup Small-Diameter Air Distribution System

    SciTech Connect

    A. Poerschke and A. Rudd

    2016-05-01

    This report investigates the feasibility of using a home-run manifold small-diameter duct system to provide space conditioning air to individual thermal zones in a low-load home. This compact layout allows duct systems to be brought easily within conditioned space via interior partition walls. Centrally locating the air hander unit in the house significantly reduces duct lengths. The plenum box is designed so that each connected duct receives an equal amount of airflow, regardless of the duct position on the box. Furthermore, within a reasonable set of length restrictions, each duct continues to receive similar airflow. The design method uses an additive approach to reach the total needed zonal airflow. Once the cubic feet per minute needed to satisfy the thermal load of a zone has been determined, the total number of duct runs to a zone can be calculated by dividing the required airflow by the standard airflow from each duct. The additive approach greatly simplifies the design effort and reduces the potential for duct design mistakes to be made. Measured results indicate that this plenum design can satisfy the heating load. However, the total airflow falls short of satisfying the cooling load in a hypothetical building. Static pressure inside the plenum box of 51.5 Pa limited the total airflow of the attached mini-split heat pump blower, thus limiting the total thermal capacity. Fan energy consumption is kept to 0.16 to 0.22 watt/CFM by using short duct runs and smooth duct material.

  17. Noise Silencer in the Form of a Helmholtz Resonator at the Outlet of an Air Duct of Finite Length

    NASA Astrophysics Data System (ADS)

    Bazhenov, D. V.; Bazhenova, L. A.; Rimskiĭ-Korsakov, A. V.

    2000-05-01

    A new type of noise silencer with the original design of the air duct-resonator system is proposed. The design is free of the disadvantages that are inherent in the conventional design with a resonator placed inside the air duct. A physical model of the silencer is developed, and its efficiency is calculated for different geometrical and physical parameters of the resonator and the air duct. A comparison between the calculated characteristics and the experimental data is performed, and their agreement is demonstrated.

  18. Retrofitting Air Conditioning and Duct Systems in Hot, Dry Climates

    SciTech Connect

    Shapiro, C.; Aldrich, R.; Arena, L.

    2012-07-01

    This technical report describes CARB's work with Clark County Community Resources Division in Las Vegas, Nevada, to optimize procedures for upgrading cooling systems on existing homes in the area to implement health, safety, and energy improvements. Detailed monitoring of five AC systems showed that three of the five systems met or exceeded air flow rate goals.

  19. Investigation of Air Flow in Right-Angle Elbows in a Rectangular Duct

    DTIC Science & Technology

    1941-10-01

    1941 as Advance Restricted Report VESTIG.TI1I! OF AIR FLOW IN RIGHT-AJGLE ELBOWS IN A RECTANGUIAR DUCT By Charles H. McLellan and Walter A. Bartlett...lrotheo t-ibc boforc theo aizr was ccr-lotoly turned. Tho two ch-r:ra-.tcris;tics of the elbows which were con- sidc-red to bn i-n oi-tant vcoe the nu~r...euct (l’epth at rah:o section p rmau;s density of air andI the following ainensl.onal unito: Po 1 ottic-prescure r.rop in both entrance duct ana. elbow

  20. Dual fan, dual-duct system meets air quality, energy-efficiency needs

    SciTech Connect

    Schuler, M.

    1996-03-01

    Canada`s Space Centre in Saint-Hubert Quebec is a 300,000 ft{sup 2} (27,871 m{sup 2}) complex that houses the headquarters of the Canadian Space Agency, the Canadian Astronaut Training Centre, mission ground control installations, research facilities, offices and the required support facilities. A comfortable, pleasant research environment was a primary concern for the Space Centre, given its elite clientele. The objectives were high indoor-air quality, design flexibility, energy efficiency and low capital costs. Dual duct systems which are the heart of the mechanical concept allowed the designers to meet these objectives. The Space Centre`s offices, laboratories and conference center are all served by dual-duct systems. All operate using an air economizer cycle. Gas boilers provide them with hot water for heating and steam for humidification while centrifugal chillers provide chilled water for cooling. This article describes the design.

  1. Aerodynamic experimentation with ducted models as applied to hypersonic air-breathing vehicles

    NASA Astrophysics Data System (ADS)

    Goon'ko, Yu. P.

    A methodology of experimentation in high supersonic wind tunnels for studying aerodynamic characteristics of hypersonic flying vehicles powered by air-breathing engines is discussed. Investigations of such total aerodynamic forces as drag, lift and pitching moment at testing the models are implicit when the air flow through the model ducts is accomplished so that to provide the simulation of the external flow around the airplane and flow over the inlets, but the operating engines and, hence, the exhaust jets are not modeled. The methods used for testing such models are based on the measurement of duct stream parameters alongside with the balance measurement of aerodynamic forces acting on the models. In the tests, aerometric tools are used such as narrow metering nozzles (plugs), pitot and static pressure probes, stagnation temperature probes and pressure orifices in walls of the model duct. The aerometric data serve to determine the flow rate and momentum of the stream at the duct exit. The internal non-simulated forces of the model ducts are also determined using the conservation equations for energy, mass flow and momentum, and these forces are eliminated from the aerodynamic test results. The techniques of the said model testing have been well developed as applied to supersonic aircraft, however their application for hypersonic vehicles whose models are tested at high supersonic speeds, Mach number M∞>4, implies some specific features. In the present paper, the results of experimental and theoretical study of these features are discussed. Some experimental data on aerodynamics of hypersonic aircraft models received in methodological tests are also presented. The tunnel experiments have been carried out in the Mach number range M∞=2-6.

  2. Evaluation of an extended duct air delivery system for spaces conditioned by rooftop units

    NASA Astrophysics Data System (ADS)

    Kennett, Ryan

    Traditional air delivery to high-bay buildings involves ceiling level supply and return ducts that create an almost-uniform temperature in the space. Problems with this system include potential recirculation of supply air and higher-than-necessary return air temperatures. A new air delivery strategy was investigated that involves changing the height of conventional supply and return ducts to have control over thermal stratification in the space. A full-scale experiment using ten vertical temperature profiles was conducted in a manufacturing facility over one year. The experimental data was utilized to validated CFD and EnergyPlus models. CFD simulation results show that supplying air directly to the occupied zone increases stratification while holding thermal comfort constant during the cooling operation. The building energy simulation identified how return air temperature offset, set point offset, and stratification influence the building's energy consumption. A utility bill analysis for cooling shows 28.8% HVAC energy savings while the building energy simulation shows 19.3-37.4% HVAC energy savings.

  3. Whole house particle removal and clean air delivery rates for in-duct and portable ventilation systems.

    PubMed

    Macintosh, David L; Myatt, Theodore A; Ludwig, Jerry F; Baker, Brian J; Suh, Helen H; Spengler, John D

    2008-11-01

    A novel method for determining whole house particle removal and clean air delivery rates attributable to central and portable ventilation/air cleaning systems is described. The method is used to characterize total and air-cleaner-specific particle removal rates during operation of four in-duct air cleaners and two portable air-cleaning devices in a fully instrumented test home. Operation of in-duct and portable air cleaners typically increased particle removal rates over the baseline rates determined in the absence of operating a central fan or an indoor air cleaner. Removal rates of 0.3- to 0.5-microm particles ranged from 1.5 hr(-1) during operation of an in-duct, 5-in. pleated media filter to 7.2 hr(-1) for an in-duct electrostatic air cleaner in comparison to a baseline rate of 0 hr(-1) when the air handler was operating without a filter. Removal rates for total particulate matter less than 2.5 microm in aerodynamic diameter (PM2.5) mass concentrations were 0.5 hr(-1) under baseline conditions, 0.5 hr(-1) during operation of three portable ionic air cleaners, 1 hr(-1) for an in-duct 1-in. media filter, 2.4 hr(-1) for a single high-efficiency particle arrestance (HEPA) portable air cleaner, 4.6 hr(-1) for an in-duct 5-in. media filter, 4.7 hr(-1) during operation of five portable HEPA filters, 6.1 hr(-1) for a conventional in-duct electronic air cleaner, and 7.5 hr(-1) for a high efficiency in-duct electrostatic air cleaner. Corresponding whole house clean air delivery rates for PM2.5 attributable to the air cleaner independent of losses within the central ventilation system ranged from 2 m3/min for the conventional media filter to 32 m3/min for the high efficiency in-duct electrostatic device. Except for the portable ionic air cleaner, the devices considered here increased particle removal indoors over baseline deposition rates.

  4. Flame behaviors of propane/air premixed flame propagation in a closed rectangular duct with a 90-deg bend

    NASA Astrophysics Data System (ADS)

    He, Xuechao; Sun, Jinhua; Yuen, K. K.; Ding, Yibin; Chen, Sining

    2008-11-01

    Experiments of flame propagation in a small, closed rectangular duct with a 90° bend were performed for a propane-air mixture. The high speed camera and Schlieren techniques were used to record images of flame propagation process in the combustion pipe. Meanwhile, the fine thermocouples and ion current probes were applied to measure the temperature distribution and reaction intensity of combustion. The characteristics of propane-air flame and its microstructure were analyzed in detail by the experimental results. In the test, the special tulip flame formation was observed. Around the bend, the flame tip proceeded more quickly at the lower side with the flame front elongated toward the axial direction. And transition to turbulent flame occurred. It was suggested that fluctuations of velocity, ion current and temperature were mainly due to the comprehensive effects of multi-wave and the intense of turbulent combustion.

  5. Effectiveness of HVAC duct cleaning procedures in improving indoor air quality.

    PubMed

    Ahmad, I; Tansel, B; Mitrani, J D

    2001-12-01

    Indoor air quality has become one of the most serious environmental concerns as an average person spends about 22 hr indoors on a daily basis. The study reported in this article, was conducted to determine the effectiveness of three commercial HVAC (Heating Ventilation Air Conditioning) duct cleaning processes in reducing the level of airborne particulate matter and viable bioaerosols. The three HVAC sanitation processes were: (1) Contact method (use of conventional vacuum cleaning of interior duct surfaces); (2) Air sweep method (use of compressed air to dislodging dirt and debris); (3) Rotary brush method (insertion of a rotary brush into the ductwork to agitate and dislodge the debris). Effectiveness of these sanitation processes was evaluated in terms of airborne particulate and viable bioaerosol concentrations in residential homes. Eight identical homes were selected in the same neighborhood. Two homes were cleaned using each procedure and two were used as controls. It was found that both particle count readings and bioaerosol concentrations were higher when cleaning was being performed than before or after cleaning, which suggests that dirt, debris and other pollutants may become airborne as a result of disturbances caused by the cleaning processes. Particle count readings at 0.3 micron size were found to have increased due to cigarette smoking. Particle counts at 1.0 micron size were reduced due to HVAC duct cleaning. Post-level bioaerosol concentrations, taken two days after cleaning, were found to be lower than the pre-level concentrations suggesting that the cleaning procedures were effective to some extent. Homes cleaned with the Air Sweep procedure showed the highest degree of reduction in bioaerosol concentration among the three procedures investigated.

  6. Evaluation of mixing downstream of tees in duct systems with respect to single point representative air sampling.

    PubMed

    Kim, Taehong; O'Neal, Dennis L; Ortiz, Carlos

    2006-09-01

    Air duct systems in nuclear facilities must be monitored with continuous sampling in case of an accidental release of airborne radionuclides. The purpose of this work is to identify the air sampling locations where the velocity and contaminant concentrations fall below the 20% coefficient of variation required by the American National Standards Institute/Health Physics Society N13.1-1999. Experiments of velocity and tracer gas concentration were conducted on a generic "T" mixing system which included combinations of three sub ducts, one main duct, and air velocities from 0.5 to 2 m s (100 to 400 fpm). The experimental results suggest that turbulent mixing provides the accepted velocity coefficients of variation after 6 hydraulic diameters downstream of the T-junction. About 95% of the cases achieved coefficients of variation below 10% by 6 hydraulic diameters. However, above a velocity ratio (velocity in the sub duct/velocity in the main duct) of 2, velocity profiles were uniform in a shorter distance downstream of the T-junction as the velocity ratio went up. For the tracer gas concentration, the distance needed for the coefficients of variation to drop 20% decreased with increasing velocity ratio due to the sub duct airflow momentum. The results may apply to other duct systems with similar geometries and, ultimately, be a basis for selecting a proper sampling location under the requirements of single point representative sampling.

  7. Spectral light source distribution variations to enhance discrimination of the common bile duct from surroundings in reflectance hyperspectral images

    NASA Astrophysics Data System (ADS)

    Litorja, Maritoni; Fein, Mira; Wehner, Eleanor; Schwarz, Roderich; Zuzak, Karel; Livingston, Edward

    2013-03-01

    The classification of anatomical features using hyperspectral imaging has been a common goal in biomedical hyperspectral imaging. Identification and location of the common bile duct is critical in cholecystectomies, one of the most common surgical procedures. In this study, surgical images where the common bile duct is visible to the surgeon during open surgeries of patients with normal bile ducts were acquired. The effect of the spectral distribution of simulated light sources on the scene color are explored with the objective of providing the optimum spectral light distribution that can enhance contrast between the common bile duct and surrounding tissue through luminance and color differences.

  8. Experimental study of convective heat transfer of compressed air flow in radially rotating ducts

    SciTech Connect

    Hwang, G.J,; Tzeng, S.C.; Mao, C.P.

    1999-07-01

    The convective heat transfer of pressurized air flow in radially rotating serpentine channel is investigated experimentally in the present study. The main governing parameters are the Prandtl number, the Reynolds number for forced convection, the rotation number for the Coriolis force induced cross stream secondary flow and the Grashof number for natural convection. To simulate the operation conditions of a real gas turbine, the present study kept the parameters in the test rig approximately the same as those in a real engine. The air in the present serpentine channel was pressurized to increase the air density for making up the low rotational speed in the experiment. Before entering the rotating ducts, the air was also cooled to gain a high density ratio of approximately 1/3 in the ducts. This high density ratio will give a similar order of magnitude of Grashof number in a real operation condition. The local heat transfer rate on the four channel walls are present and compared with that in existing literature.

  9. Distribution of the interstitial Cajal-like cells in the gallbladder and extrahepatic biliary duct of the guinea-pig.

    PubMed

    Huang, Yue; Mei, Feng; Yu, Bin; Zhang, Hong-Jun; Han, Juan; Jiang, Zhong-Yong; Zhou, De-shan

    2009-01-01

    It has been suggested that interstitial Cajal-like cells (ICLC) may be involved in the spontaneous rhythmic electrical activities of the extrahepatic bile duct system. The present study investigated the distribution and characteristics of ICLC, which are immunopositive for CD117/ Kit receptor tyrosine kinase, using immunohistochemistry employing a monoclonal antibody raised against CD117/Kit on whole-mount preparations. The Kit-positive ICLC were examined using confocal laser scanning microscopy or fluorescence microscopy. ICLC, immunoreactive for Kit, were pleiomorphic and/or spindle-shaped cells with a few bipolar processes and distributed in the smooth muscle layers of the gallbladder and bile duct system. They were scattered in the hepatic duct, cystic duct and gallbladder as well as in the upper part of the common bile duct. The ICLC gradually increased in number and formed a completed cellular network in the lower part of the common bile duct and ampulla. The numbers of ICLC in the ampulla were similar to that of the duodenum and significantly much greater in number than in the gallbladder and bile ducts. The density of the ICLC in the common bile duct was significantly higher than that of other bile ducts. Our results suggested that the ICLC might contribute to the regulation of the spontaneous rhythmic contraction and development of motility disorders of the bile duct system.

  10. CORNICE DUCT SYSTEM

    SciTech Connect

    Wayne Place; Chuck Ladd; TC Howard

    2002-12-01

    SYNERGETICS, INC., is in the process of designing, developing, and testing an air handling duct system that integrates the air duct with the cornice trim of interior spaces. The device has the advantage that the normal thermal losses from ducts into unconditioned attics and crawl spaces can be totally eliminated by bringing the ducts internal to the conditioned space. The following report details work conducted in the second budget period to develop the Cornice Duct System into a viable product for use in a variety of residential or small commercial building settings. A full-scale prototype has been fabricated and tested in a laboratory test building. Based on the results of that testing, the prototype design as been refined, fabricated, installed, and extensively tested in a residential laboratory house. The testing indicates that the device gives substantially superior performance to a standard air distribution system in terms of energy performance and thermal comfort. A patent has been submitted, refined based on feedback from the patent office, and resubmitted. Additional refinements to the design will lead to additional claims being added to the patent in the near future. Designs are being finalized for a refined version that will be fabricated and tested in the same residential laboratory house. Work is expected to be complete on this project in April of 2003.

  11. Simulation Analysis of Air Flow and Turbulence Statistics in a Rib Grit Roughened Duct

    PubMed Central

    Vogiatzis, I. I.; Denizopoulou, A. C.; Ntinas, G. K.; Fragos, V. P.

    2014-01-01

    The implementation of variable artificial roughness patterns on a surface is an effective technique to enhance the rate of heat transfer to fluid flow in the ducts of solar air heaters. Different geometries of roughness elements investigated have demonstrated the pivotal role that vortices and associated turbulence have on the heat transfer characteristics of solar air heater ducts by increasing the convective heat transfer coefficient. In this paper we investigate the two-dimensional, turbulent, unsteady flow around rectangular ribs of variable aspect ratios by directly solving the transient Navier-Stokes and continuity equations using the finite elements method. Flow characteristics and several aspects of turbulent flow are presented and discussed including velocity components and statistics of turbulence. The results reveal the impact that different rib lengths have on the computed mean quantities and turbulence statistics of the flow. The computed turbulence parameters show a clear tendency to diminish downstream with increasing rib length. Furthermore, the applied numerical method is capable of capturing small-scale flow structures resulting from the direct solution of Navier-Stokes and continuity equations. PMID:25057511

  12. Duct Joining System

    DOEpatents

    Proctor, John P.

    2001-02-27

    A duct joining system for providing an air-tight seal and mechanical connection for ducts and fittings is disclosed. The duct joining system includes a flexible gasket affixed to a male end of a duct or fitting. The flexible gasket is affixed at an angle relative to normal of the male end of the duct. The female end of the other duct includes a raised bead in which the flexible gasket is seated when the ducts are properly joined. The angled flexible gasket seated in the raised bead forms an air-tight seal as well as fastens or locks the male end to the female end. Alternatively, when a flexible duct is used, a band clamp with a raised bead is clamped over the female end of the flexible duct and over the male end of a fitting to provide an air tight seal and fastened connection.

  13. Duct joining system

    DOEpatents

    Proctor, John P.; deKieffer, Robert C.

    2001-01-01

    A duct joining system for providing an air-tight seal and mechanical connection for ducts and fittings is disclosed. The duct joining system includes a flexible gasket affixed to a male end of a duct or fitting. The flexible gasket is affixed at an angle relative to normal of the male end of the duct. The female end of the other duct includes a raised bead in which the flexible gasket is seated when the ducts are properly joined. The angled flexible gasket seated in the raised bead forms an air-tight seal as well as fastens or locks the male end to the female end. Alternatively, when a flexible duct is used, a band clamp with a raised bead is clamped over the female end of the flexible duct and over the male end of a fitting to provide an air tight seal and fastened connection.

  14. STS-56 inflight maintenance (IFM) air duct routing on OV-103's middeck

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-56 inflight maintenance (IFM) repair on Discovery's, Orbiter Vehicle (OV) 103's, middeck was required to offset overheating problems with one of the onboard experiments -- Detailed Supplementary Objective (DSO) 322, Human lymphocyte locomotion in microgravity. This 'elephant's trunk' fix was rigged from the airlock's air recirculation duct to DSO 322's forward locker location by Commander Kenneth Cameron. The 'elephant's trunk' was fashioned from trash bags and other plastic items to extend an airline to the troubled area. DSO 322 is collecting data on the locomotion and migration of human lymphocytes through intercellular matrix and is testing the rotating wall vessel and the specimen temperature controller. In the background is the port side wall with the side hatch, middeck accomodations rack (MAR), and shuttle orbiter repackaged galley (SORG) visible.

  15. High Accuracy Acoustic Relative Humidity Measurement in Duct Flow with Air

    PubMed Central

    van Schaik, Wilhelm; Grooten, Mart; Wernaart, Twan; van der Geld, Cees

    2010-01-01

    An acoustic relative humidity sensor for air-steam mixtures in duct flow is designed and tested. Theory, construction, calibration, considerations on dynamic response and results are presented. The measurement device is capable of measuring line averaged values of gas velocity, temperature and relative humidity (RH) instantaneously, by applying two ultrasonic transducers and an array of four temperature sensors. Measurement ranges are: gas velocity of 0–12 m/s with an error of ±0.13 m/s, temperature 0–100 °C with an error of ±0.07 °C and relative humidity 0–100% with accuracy better than 2 % RH above 50 °C. Main advantage over conventional humidity sensors is the high sensitivity at high RH at temperatures exceeding 50 °C, with accuracy increasing with increasing temperature. The sensors are non-intrusive and resist highly humid environments. PMID:22163610

  16. High accuracy acoustic relative humidity measurement in duct flow with air.

    PubMed

    van Schaik, Wilhelm; Grooten, Mart; Wernaart, Twan; van der Geld, Cees

    2010-01-01

    An acoustic relative humidity sensor for air-steam mixtures in duct flow is designed and tested. Theory, construction, calibration, considerations on dynamic response and results are presented. The measurement device is capable of measuring line averaged values of gas velocity, temperature and relative humidity (RH) instantaneously, by applying two ultrasonic transducers and an array of four temperature sensors. Measurement ranges are: gas velocity of 0-12 m/s with an error of ± 0.13 m/s, temperature 0-100 °C with an error of ± 0.07 °C and relative humidity 0-100% with accuracy better than 2 % RH above 50 °C. Main advantage over conventional humidity sensors is the high sensitivity at high RH at temperatures exceeding 50 °C, with accuracy increasing with increasing temperature. The sensors are non-intrusive and resist highly humid environments.

  17. Distribution and Room Air Mixing Risks to Retrofitted Homes

    SciTech Connect

    Burdick, A.

    2014-12-01

    An energy efficiency upgrade reduces a home’s heating and cooling load. If the load reduction is great enough and the heating, ventilation, and air conditioning system warrants replacement, that system is often upgraded with a more efficient, lower capacity system that meets the load of the upgraded house. For a single-story house with floor supply air diffusers, the ducts often are removed and upgraded. For houses with ducts that are embedded in walls, the cost of demolition precludes the replacement of ducts. The challenge with the use of existing ducts is that the reduced airflow creates a decreased throw at the supply registers, and the supply air and room air do not mix well, leading to potential thermal comfort complaints. This project investigates this retrofit scenario. The issues and solutions discussed here are relevant to all climate zones, with emphasis on climates that require cooling. In this project, IBACOS performed load calculations for a two-story 1960s house and characterized duct sizes and layouts based on industry “rules of thumb” (Herk et al. 2014). The team performed duct-sizing calculations for unaltered ducts and post-retrofit airflows and examined airflow velocities and pressure changes with respect to various factors. The team then used a mocked-up duct and register setup to measure the characteristics of isothermal air—to reduce the effects of buoyancy from the observations—passing through the duct and leaving the register.

  18. Cornice Duct System

    SciTech Connect

    Wayne Place; Chuck Ladd

    2004-10-29

    SYNERGETICS, INC., has designed, developed, and tested an air handling duct system that integrates the air duct with the cornice trim of interior spaces. The device has the advantage that the normal thermal losses from ducts into unconditioned attics and crawl spaces can be totally eliminated by bringing the ducts internal to the conditioned space. The following report details work conducted in the second budget period to develop the Cornice Duct System into a viable product for use in a variety of residential or small commercial building settings. A full-scale prototype has been fabricated and tested in a laboratory test building at the Daylighting Facility at North Carolina State University., Based on the results of that testing, the prototype design as been refined, fabricated, installed, and extensively tested in a residential laboratory house. The testing indicates that the device gives substantially superior performance to a standard air distribution system in terms of energy performance and thermal comfort. Patent Number US 6,511,373 B2 has been granted on the version of the device installed and tested in the laboratory house. (A copy of that patent is attached.) Refinements to the device have been carried through two additional design iterations, with a particular focus on reducing installation time and cost and refining the air control system. These new designs have been fabricated and tested and show substantial promise. Based on these design and testing iterations, a final design is proposed as part of this document. That final design is the basis for a continuation in part currently being filed with the U.5, Patent office.

  19. Building America Top Innovations 2012: Integration of HVAC System Design with Simplified Duct Distribution

    SciTech Connect

    none,

    2013-01-01

    This Building America Top Innovations profile describes work by Building America research teams who field tested simplified duct designs in hundreds of homes, confirming the performance of short compact duct runs, with supply registers near interior walls.

  20. Air Distribution Retrofit Strategies for Affordable Housing

    SciTech Connect

    Dentz, J.; Conlin, F.; Holloway, P.; Podorson, D.; Varshney, K.

    2014-03-01

    In multifamily and attached buildings, traditional duct sealing methods are often impractical or costly and disruptive because of the difficulty in accessing leakage sites. In this project, two retrofit duct sealing techniques -- manually-applied sealants and injecting a spray sealant, were implemented in several low-rise multi-unit buildings. An analysis on the cost and performance of the two methods are presented. Each method was used in twenty housing units: approximately half of each group of units are single story and the remainder two-story. Results show that duct leakage to the outside was reduced by an average of 59% through the use of manual methods, and by 90% in the units where the injected spray sealant was used. It was found that 73% of the leakage reduction in homes that were treated with injected spray sealant was attributable to the manual sealing done at boots, returns and the air handler. The cost of manually-applying sealant ranged from $275 to $511 per unit and for the injected spray sealant the cost was $700 per unit. Modeling suggests a simple payback of 2.2 years for manual sealing and 4.7 years for the injected spray sealant system. Utility bills were collected for one year before and after the retrofits. Utility bill analysis shows 14% and 16% energy savings using injected spray sealant system and hand sealing procedure respectively in heating season whereas in cooling season, energy savings using injected spray sealant system and hand sealing were both 16%.

  1. Air Distribution Retrofit Strategies for Affordable Housing

    SciTech Connect

    Dentz, J.; Conlin, F.; Holloway, Parker; Podorson, David; Varshney, Kapil

    2014-03-01

    In multifamily and attached buildings, traditional duct sealing methods are often impractical or costly and disruptive because of the difficulty in accessing leakage sites. In this project, two retrofit duct sealing techniques, manually-applied sealants and injecting a spray sealant, were implemented in several low-rise multiunit buildings. An analysis on the cost and performance of the two methods are presented. Each method was used in twenty housing units: approximately half of each group of units are single story and the remainder are two story. Results show that duct leakage to the outside was reduced by an average of 59% through the use of manual methods, and by 90% in the units where the injected spray sealant was used. It was found that 73% of the leakage reduction in homes that were treated with injected spray sealant was attributable to the manual sealing done at boots, returns and the air handler. The cost of manually-applying sealant ranged from $275 to $511 per unit and for the injected spray sealant the cost was $700 per unit. Modeling suggests a simple payback of 2.2 years for manual sealing and 4.7 years for the injected spray sealant system. Utility bills were collected for one year before and after the retrofits. Utility bill analysis shows 14% and 16% energy savings using injected spray sealant system and hand sealing procedure respectively in heating season whereas in cooling season, energy savings using injected spray sealant system and hand sealing were both 16%.

  2. Distribution and Room Air Mixing Risks to Retrofitted Homes

    SciTech Connect

    Burdick, A.

    2014-12-01

    Energy efficiency upgrades reduce heating and cooling loads on a house. With enough load reduction and if the HVAC system warrants replacement, the HVAC system is often upgraded with a more efficient, lower capacity system that meets the loads of the upgraded house. For a single-story house with ceiling supply air diffusers, ducts are often removed and upgraded. For houses with ducts that are embedded in walls, the cost of demolition precludes the replacement of ducts. The challenge with the use of existing ducts is that the reduced airflow creates a decreased throw at the supply registers, and the supply air and room air do not mix well, leading to potential thermal comfort complaints. This project investigates this retrofit scenario. The issues and solutions discussed here are relevant to all climate zones, with emphasis on climates that require cooling.

  3. INTERIOR DUCT SYSTEM DESIGN, CONSTRUCTION, AND PERFORMANCE

    SciTech Connect

    Janet E.R. Mcllvaine; David Beal; Philip Fairey

    2001-10-10

    By removing air distribution and conditioning equipment from unconditioned spaces, homeowners stand to benefit substantially with respect to both energy savings and indoor air quality. Duct leakage introduces: Greater heating and cooling loads from air at extreme temperatures and humidity levels; Outside air and air from unconditioned spaces that may contain air borne contaminants, combustion gases, pollen, mold spores, and/or particles of building materials; and Higher whole-house infiltration/exfiltration rates. Exemplary studies conducted since 1990 have demonstrated the prevalence of duct leakage throughout the United States and measured energy savings of approximately 20% during both heating and cooling seasons from leakage reduction. These all dealt with duct leakage to and/or from unconditioned spaces. In the building science community, leakage within the conditioned space is generally presumed to eliminate the negative consequences of duct leakage with the exception of possibly creating pressure imbalances in the house which relates to higher infiltration and/or exfiltration. The practical challenges of isolating ducts and air handlers from unconditioned spaces require builders to construct an air-tight environment for the ducts. Florida Solar Energy Center researchers worked with four builders in Texas, North Carolina, and Florida who build a furred-down chase located either in a central hallway or at the edges of rooms as an architectural detail. Some comparison homes with duct systems in attics and crawl spaces were included in the test group of more than 20 homes. Test data reveals that all of the duct/AHU systems built inside the conditioned space had lower duct leakage to unconditioned spaces than their conventional counterparts; however, none of the homes was completely free of duct leakage to unconditioned spaces. Common problems included wiring and plumbing penetrations of the chase, failure to treat the chase as an air tight space, and misguided

  4. Air Mobile Utility Distribution Systems.

    DTIC Science & Technology

    WATER PIPES, AIR TRANSPORTABLE EQUIPMENT, POLYVINYL CHLORIDE, GLASS REINFORCED PLASTICS , FUEL HOSES, HOSES....PIPES, *PIPING SYSTEMS, INSULATION, FABRICATION, CORROSION INHIBITION, FEASIBILITY STUDIES, AIR FORCE FACILITIES, POLYURETHANE RESINS, PLASTICS

  5. Numerical simulation of duct flow with fog droplets

    NASA Astrophysics Data System (ADS)

    Suryan, Abhilash; Lee, J. K.; Kim, D. S.; Kim, H. D.

    2010-12-01

    Evaporative cooling is a widely used air cooling technique. In this method, evaporation of a liquid in the surrounding air cools the air in contact with it. In the current investigation, numerical simulations are carried out to visualize the evaporation and dynamics of tiny water droplets of different diameters in a long air duct. The effect of initial droplet size on the temperature and relative humidity distribution of the air stream in the duct is investigated. Three different initial conditions of air are considered to verify the influence of ambient conditions. Droplet spray patterns are also analyzed to identify the suitable locations for the spray nozzles within the duct. The results obtained are displayed in a series of plots to provide a clear understanding of the evaporative cooling process as well as the droplet dynamics within the ducts.

  6. Heat transfer and friction factor correlations for a solar air heater duct roughened artificially with multiple v-ribs

    SciTech Connect

    Hans, V.S.; Saini, R.P.; Saini, J.S.

    2010-06-15

    The use of artificial roughness on the underside of the absorber plate is an effective and economic way to improve the thermal performance of a solar air heater. Several experimental investigations, involving different types of roughness elements, have been carried out to improve the heat transfer from the absorber plate to air flowing in solar air heaters. This paper presents an experimental investigation carried out to study the effect of multiple v-rib roughness on heat transfer coefficient and friction factor in an artificially roughened solar air heater duct. The experiment encompassed Reynolds number (Re) from 2000 to 20000, relative roughness height (e/D) values of 0.019-0.043, relative roughness pitch (P/e) range of 6-12, angle of attack ({alpha}) range of 30-75 and relative roughness width (W/w) range of 1-10. Extensive experimentation has been conducted to collect data on heat transfer and fluid flow characteristics of a rectangular duct roughened with multiple v-ribs. Using these experimental data, correlations for Nusselt number and friction factor in terms of roughness geometry and flow parameters have been developed. (author)

  7. A study of reacting free and ducted hydrogen/air jets

    NASA Technical Reports Server (NTRS)

    Beach, H. L., Jr.

    1975-01-01

    The mixing and reaction of a supersonic jet of hydrogen in coaxial free and ducted high temperature test gases were investigated. The importance of chemical kinetics on computed results, and the utilization of free-jet theoretical approaches to compute enclosed flow fields were studied. Measured pitot pressure profiles were correlated by use of a parabolic mixing analysis employing an eddy viscosity model. All computations, including free, ducted, reacting, and nonreacting cases, use the same value of the empirical constant in the viscosity model. Equilibrium and finite rate chemistry models were utilized. The finite rate assumption allowed prediction of observed ignition delay, but the equilibrium model gave the best correlations downstream from the ignition location. Ducted calculations were made with finite rate chemistry; correlations were, in general, as good as the free-jet results until problems with the boundary conditions were encountered.

  8. Better Duct Systems for Home Heating and Cooling

    SciTech Connect

    Not Available

    2004-11-01

    Duct systems used in forced-air space-conditioning systems are a vital element in home energy efficiency. How well a system works makes a big difference in the cost and the effectiveness of heating and cooling a home. At the same time, a duct system that is poorly designed or maintained can have a detrimental effect on the health of the people who live in the house, through the unintended distribution of indoor air pollution.

  9. Laboratory evaluation of welder's exposure and efficiency of air duct ventilation for welding work in a confined space.

    PubMed

    Ojima, J; Shibata, N; Iwasaki, T

    2000-01-01

    CO2 arc welding in a confined space was simulated in a laboratory by manipulating a welding robot which worked in a small chamber to experimentally evaluate the welder's exposure to welding fumes, ozone and carbon monoxide (CO). The effects of the welding arc on the air temperature rise and oxygen (O2) concentration in the chamber were also investigated. The measuring points for these items were located in the presumed breathing zone of a welder in a confined space. The time averaged concentrations of welding fumes, ozone and CO during the arcing time were 83.55 mg/m3, 0.203 ppm and 0.006%, respectively, at a welding current of 120A-200A. These results suggest serious exposure of a welder who operates in a confined space. Air temperature in the chamber rose remarkably due to the arc heat and the increase in the welding current. No clear decrease in the O2 concentration in the chamber was recognized during this welding operation. A model of air duct ventilation was constructed in the small chamber to investigate the strategy of effective ventilation for hazardous welding contaminants in a confined space. With this model we examined ventilation efficiency with a flow rate of 1.08-1.80 m3/min (ventilation rate for 0.40-0.67 air exchanges per minute) in the chamber, and proved that the exposure level was not drastically reduced during arcing time by this air duct ventilation, but the residual contaminants were rapidly exhausted after the welding operation.

  10. Low loss duct burner

    SciTech Connect

    Mar, H. M.; Reider, S. B.

    1985-07-09

    A jet propulsion engine with a fan bypass duct includes a duct burner with a plurality of flame stabilizers therein each mounted to inner case and outer case members through spherical bearings. Each of the stabilizers consists of two blade members having integral arms thereon actuated by fore and aft motion of an external actuating ring to assume an expanded position to increase duct turbulence for mixing air flow therethrough with a fuel supply and into a retracted position against each other to reduce pressure drop under nonafterburning operation. Each of the flame stabilizer blades has a platform that controls communication between a hot air source and a duct for improving fuel vaporization during afterburner operation thereby to increase afterburning limits; the platforms close communication between the hot air source and the duct during nonafterburning operation when flame stabilization is not required.

  11. Loft duct project report

    SciTech Connect

    Reed, J.R.

    1993-06-01

    On October 16, 1992, during a routine examination of the loft of Building 332, the Building Coordinator observed cracks in the welds of the duct work that services the fume hoods for Rooms 1313, 1321, and 1329. Further examination revealed cracks in the weld of the duct work that services the gloveboxes in Rooms 1321 and 1329. Upon discovery of the cracked welds, facility management immediately took the following two actions: Because one crack in the fume hood exhaust extended 70% around the duct circumference, a 1-ton chain fall was used to secure the duct to the roof support structure to prevent the duct from falling if the duct completely fractured. The Facility Manager suspended plutonium handling operations in the gloveboxes and work in the fume hoods in the affected rooms until the situation could be thoroughly investigated. Building 332 is ventilated by drawing conditioned air from the building hallways into the laboratories, hoods, and gloveboxes. This air is filtered through two sets of high-efficiency particulate air (HEPA) filters before being exhausted from the facility. Figure 1 is a schematic of the typical air flow pattern for the facility. All affected duct work is located in the loft of the facility or pressure zone 4. This ducting is fabricated from 12-, 14- and 16-gauge, 304 stainless-steel sheet stock and joined by the Gas Tungsten Arc Welding (GTAW) process.

  12. Performance Analysis of a Modular Small-Diameter Air Distribution System

    SciTech Connect

    Poerschke, Andrew; Rudd, Armin

    2016-03-01

    This report investigates the feasibility of using a home-run manifold small-diameter duct system to provide space-conditioning air to individual thermal zones in a low-load home. This compact layout allows duct systems to easily be brought within conditioned space via interior partition walls. Centrally locating the air handling unit in the house significantly reduces duct lengths. The plenum box is designed so that each connected duct receives a similar amount of airflow—regardless of its position on the box. Furthermore, within a reasonable set of length restrictions each duct continues to receive similar airflow.

  13. Effectiveness of duct cleaning methods on newly installed duct surfaces.

    PubMed

    Holopainen, R; Asikainen, V; Tuomainen, M; Björkroth, M; Pasanen, P; Seppänen, O

    2003-09-01

    Two kinds of air duct cleaning methods, mechanical brushing with different brushes and compressed air cleaning, were compared in the laboratory and in newly built buildings. The ducts were contaminated either with test dust or with dust originated from a construction site. The amount of dust on the duct surface was measured with the vacuum test method and estimated visually before and after the cleaning. In addition, the cleaning times of the different techniques were compared and the amount of residual oil in the ducts was measured in the laboratory test. The brushing methods were more efficient in metal ducts, and compressed air cleaning was more efficient in plastic ducts. After the duct cleaning the mean amount of residual dust on the surface of the ducts was ducts contaminated at construction site and ducts cleaned in the laboratory or in the building site, respectively. The oil residues and the dust stuck onto the oil were difficult to scrape off and remove, and none of the cleaning methods were capable of cleaning the oily duct surfaces efficiently enough. Thus new installations should consist only of oil-free ducts.

  14. PI Control of a Single-Duct VAV (Variable Air Volume) HVAC (Heating, Ventilating, and Air Conditioning) System.

    DTIC Science & Technology

    1985-06-01

    and Subtitle) S. TYPE OF REPORT & PERIOD COVERED PI CONTROL OF A SINGLE-DUCT VAV HVAC SYSTEM FINAL 6. PERFORMING ORG. REPORT NUMBER 7. AUTHOR(s) S...only remaining facet of the - design is the selection of the two PI controller gain values: the propor- tional control gain K and the integral control...gain K1. These values will be p ’. . obtained once the PI controller is attached to the plant by using the pro- cedure devised by J. C. Ziegler and N. B

  15. Wind-Tunnel Tests of a 1/6-Scale Model of Republic XF-12 Vertical Tail Incorporating a De-Icing Air Duct

    NASA Technical Reports Server (NTRS)

    MacLachlan, Robert; Miller, Sadie M.

    1945-01-01

    A 1/6-scale model of the Republic XF-12 vertical tail with stub fuselage, stub horizontal tail, and a de-icing air duct was tested in the Langley stability tunnel. The investigation consisted of a study of the effects of the duct, with and without air flow, on the aerodynamic characteristics of the model. The model tested was a revision of a model previously tested in the Langley stability tunnel. The revised model differed from the original model in that it incorporated a de-icing air duct, included a dorsal fin, and had a larger stub fuselage. A comparison of data obtained form tests of the original and revised models was made. The results of the investigation indicated that the air duct had very little effect on the aerodynamic characteristics of the model. A small change occurred in the variation of rudder hinge-moment coefficient with angle of attack but it is believed that this change can be corrected by a properly applied spring tab.

  16. Duct Tape Durability Testing

    SciTech Connect

    Sherman, Max H.; Walker, Iain S.

    2004-04-01

    Duct leakage is a major source of energy loss in residential buildings. Most duct leakage occurs at the connections to registers, plenums, or branches in the duct system. At each of these connections, a method of sealing the duct system is required. Typical sealing methods include tapes or mastics applied around the joints in the system. Field examinations of duct systems have shown that taped seals tend to fail over extended periods of time. The Lawrence Berkeley National Laboratory (LBNL) has been testing sealant durability for several years using accelerated test methods and found that typical duct tape (i.e., cloth-backed tapes with natural rubber adhesives) fails more rapidly than other duct sealants. This report summarizes the results of duct sealant durability testing over two years for four UL 181B-FX listed duct tapes (two cloth tapes, a foil tape and an Oriented Polypropylene (OPP) tape). One of the cloth tapes was specifically developed in collaboration with a tape manufacturer to perform better in our durability testing. The tests involved the aging of common ''core-to-collar joints'' of flexible duct to sheet metal collars. Periodic air leakage tests and visual inspection were used to document changes in sealant performance. After two years of testing, the flex-to-collar connections showed little change in air leakage, but substantial visual degradation from some products. A surprising experimental result was failure of most of the clamps used to mechanically fasten the connections. This indicates that the durability of clamps also need to be addressed ensure longevity of the duct connection. An accelerated test method developed during this study has been used as the basis for an ASTM standard (E2342-03).

  17. Particle deposition in ventilation ducts

    SciTech Connect

    Sippola, Mark Raymond

    2002-09-01

    Exposure to airborne particles is detrimental to human health and indoor exposures dominate total exposures for most people. The accidental or intentional release of aerosolized chemical and biological agents within or near a building can lead to exposures of building occupants to hazardous agents and costly building remediation. Particle deposition in heating, ventilation and air-conditioning (HVAC) systems may significantly influence exposures to particles indoors, diminish HVAC performance and lead to secondary pollutant release within buildings. This dissertation advances the understanding of particle behavior in HVAC systems and the fates of indoor particles by means of experiments and modeling. Laboratory experiments were conducted to quantify particle deposition rates in horizontal ventilation ducts using real HVAC materials. Particle deposition experiments were conducted in steel and internally insulated ducts at air speeds typically found in ventilation ducts, 2-9 m/s. Behaviors of monodisperse particles with diameters in the size range 1-16 μm were investigated. Deposition rates were measured in straight ducts with a fully developed turbulent flow profile, straight ducts with a developing turbulent flow profile, in duct bends and at S-connector pieces located at duct junctions. In straight ducts with fully developed turbulence, experiments showed deposition rates to be highest at duct floors, intermediate at duct walls, and lowest at duct ceilings. Deposition rates to a given surface increased with an increase in particle size or air speed. Deposition was much higher in internally insulated ducts than in uninsulated steel ducts. In most cases, deposition in straight ducts with developing turbulence, in duct bends and at S-connectors at duct junctions was higher than in straight ducts with fully developed turbulence. Measured deposition rates were generally higher than predicted by published models. A model incorporating empirical equations based on the

  18. Thermal performance of residential duct systems in basements

    SciTech Connect

    Treidler, B.; Modera, M.

    1994-02-01

    There are many unanswered questions about the typical effects of duct system operation on the infiltration rates and energy usage of single- family residences with HVAC systems in their basements. In this paper, results from preliminary field studies and computer simulations are used to examine the potential for improvements in efficiency of air distribution systems in such houses. The field studies comprise thermal and flow measurements on four houses in Maryland. The houses were found to have significant envelope leakage, duct leakage, and duct conduction losses. Simulations of a basement house, the characteristics of which were chosen from the measured houses, were performed to assess the energy savings potential for basement house. The simulations estimate that a nine percent reduction in space conditioning energy use is obtained by sealing eighty percent of the duct leaks and insulating ducts to an R-value of 0.88 {degree}C{center_dot}m{sup 2}/W (5{degree}F{center_dot}ft{sup 2}{center_dot}h/BTU) where they are exposed in the basement. To determine the maximum possible reduction m energy use, simulations were run with all ducts insulated to 17.6 {degree}C{center_dot}m{sup 2}/W (100 {degree}F{center_dot}ft{sup 2}{center_dot}h/BTU) and with no duct leakage. A reduction of energy use by 14% is obtained by using perfect ducts instead of nominal ducts.

  19. Study of Air Ingress Across the Duct During the Accident Conditions

    SciTech Connect

    Hassan, Yassin

    2013-05-06

    The goal of this project is to study the fundamental physical phenomena associated with air ingress in very high temperature reactors (VHTRs). Air ingress may occur due to a rupture of primary piping and a subsequent breach in the primary pressure boundary in helium-cooled and graphite-moderated VHTRs. Significant air ingress is a concern because it introduces potential to expose the fuel, graphite support rods, and core to a risk of severe graphite oxidation. Two of the most probable air ingress scenarios involve rupture of a control rod or fuel access standpipe, and rupture in the main coolant pipe on the lower part of the reactor pressure vessel. Therefore, establishing a fundamental understanding of air ingress phenomena is critical in order to rationally evaluate safety of existing VHTRs and develop new designs that minimize these risks. But despite this importance, progress toward development these predictive capabilities has been slowed by the complex nature of the underlying phenomena. The combination of inter-diffusion among multiple species, molecular diffusion, natural convection, and complex geometries, as well as the multiple chemical reactions involved, impose significant roadblocks to both modeling and experiment design. The project team will employ a coordinated experimental and computational effort that will help gain a deeper understanding of multiphased air ingress phenomena. This project will enhance advanced modeling and simulation methods, enabling calculation of nuclear power plant transients and accident scenarios with a high degree of confidence. The following are the project tasks: Perform particle image velocimetry measurement of multiphase air ingresses; and, Perform computational fluid dynamics analysis of air ingress phenomena.

  20. Experimental study on a comparison of typical premixed combustible gas-air flame propagation in a horizontal rectangular closed duct.

    PubMed

    Jin, Kaiqiang; Duan, Qiangling; Liew, K M; Peng, Zhongjing; Gong, Liang; Sun, Jinhua

    2017-04-05

    Research surrounding premixed flame propagation in ducts has a history of more than one hundred years. Most previous studies focus on the tulip flame formation and flame acceleration in pure gas fuel-air flame. However, the premixed natural gas-air flame may show different behaviors and pressure dynamics due to its unique composition. Natural gas, methane and acetylene are chosen here to conduct a comparison study on different flame behaviors and pressure dynamics, and to explore the influence of different compositions on premixed flame dynamics. The characteristics of flame front and pressure dynamics are recorded using high-speed schlieren photography and a pressure transducer, respectively. The results indicate that the compositions of the gas mixture greatly influence flame behaviors and pressure. Acetylene has the fastest flame tip speed and the highest pressure, while natural gas has a faster flame tip speed and higher pressure than methane. The Bychkov theory for predicting the flame skirt motion is verified, and the results indicate that the experimental data coincide well with theory in the case of equivalence ratios close to 1.00. Moreover, the Bychkov theory is able to predict flame skirt motion for acetylene, even outside of the best suitable expansion ratio range of 6

  1. Alternative Air Conditioning Technologies: Underfloor AirDistribution (UFAD)

    SciTech Connect

    Webster, Tom

    2004-06-01

    Recent trends in today's office environment make it increasingly more difficult for conventional centralized HVAC systems to satisfy the environmental preferences of individual officer workers using the standardized approach of providing a single uniform thermal and ventilation environment. Since its original introduction in West Germany during the 1950s, the open plan office containing modular workstation furniture and partitions is now the norm. Thermostatically controlled zones in open plan offices typically encompass relatively large numbers of workstations in which a diverse work population having a wide range of preferred temperatures must be accommodated. Modern office buildings are also being impacted by a large influx of heat-generating equipment (computers, printers, etc.) whose loads may vary considerably from workstation to workstation. Offices are often reconfigured during the building's lifetime to respond to changing tenant needs, affecting the distribution of within-space loads and the ventilation pathways among and over office partitions. Compounding this problem, there has been a growing awareness of the importance of the comfort, health, and productivity of individual office workers, giving rise to an increased demand among employers and employees for a high-quality work environment. During recent years an increasing amount of attention has been paid to air distribution systems that individually condition the immediate environments of office workers within their workstations to address the issues outlined above. As with task/ambient lighting systems, the controls for the ''task'' components of these systems are partially or entirely decentralized and under the control of the occupants. Typically, the occupant has control over the speed and direction, and in some cases the temperature, of the incoming air supply. Variously called ''task/ambient conditioning,'' ''localized thermal distribution,'' and ''personalized air conditioning'' systems, these

  2. Advanced Duct Sealing Testing

    SciTech Connect

    Sherman, Max H.; Walker, Iain S.

    2003-08-01

    Duct leakage has been identified as a major source of energy loss in residential buildings. Most duct leakage occurs at the connections to registers, plenums or branches in the duct system. At each of these connections a method of sealing the duct system is required. Typical sealing methods include tapes or mastics applied around the joints in the system. Field examinations of duct systems have typically shown that these seals tend to fail over extended periods of time. The Lawrence Berkeley National Laboratory has been testing sealant durability for several years. Typical duct tape (i.e. fabric backed tapes with natural rubber adhesives) was found to fail more rapidly than all other duct sealants. This report summarizes the results of duct sealant durability testing of five UL 181B-FX listed duct tapes (three cloth tapes, a foil tape and an Oriented Polypropylene (OPP) tape). One of the cloth tapes was specifically developed in collaboration with a tape manufacturer to perform better in our durability testing. The first test involved the aging of common ''core-to-collar joints'' of flexible duct to sheet metal collars, and sheet metal ''collar-to-plenum joints'' pressurized with 200 F (93 C) air. The second test consisted of baking duct tape specimens in a constant 212 F (100 C) oven following the UL 181B-FX ''Temperature Test'' requirements. Additional tests were also performed on only two tapes using sheet metal collar-to-plenum joints. Since an unsealed flexible duct joint can have a variable leakage depending on the positioning of the flexible duct core, the durability of the flexible duct joints could not be based on the 10% of unsealed leakage criteria. Nevertheless, the leakage of the sealed specimens prior to testing could be considered as a basis for a failure criteria. Visual inspection was also documented throughout the tests. The flexible duct core-to-collar joints were inspected monthly, while the sheet metal collar-to-plenum joints were inspected

  3. FRACTIONAL AEROSOL FILTRATION EFFICIENCY OF IN-DUCT VENTILATION AIR CLEANERS

    EPA Science Inventory

    The filtration efficiency of ventilation air cleaners is highly particle-size dependent over the 0.01 to 3 μm diameter size range. Current standardized test methods, which determine only overall efficiencies for ambient aerosol or other test aerosols, provide data of limited util...

  4. Lensing duct

    DOEpatents

    Beach, Raymond J. , Benett

    1994-01-01

    A lensing duct to condense (intensify) light using a combination of front surface lensing and reflective waveguiding. The duct tapers down from a wide input side to a narrow output side, with the input side being lens-shaped and coated with an antireflective coating for more efficient transmission into the duct. The four side surfaces are uncoated, preventing light from escaping by total internal reflection as it travels along the duct (reflective waveguiding). The duct has various applications for intensifying light, such as in the coupling of diode array pump light to solid state lasing materials, and can be fabricated from inexpensive glass and plastic.

  5. Lensing duct

    DOEpatents

    Beach, R.J.; Benett, W.J.

    1994-04-26

    A lensing duct to condense (intensify) light using a combination of front surface lensing and reflective waveguiding is described. The duct tapers down from a wide input side to a narrow output side, with the input side being lens-shaped and coated with an antireflective coating for more efficient transmission into the duct. The four side surfaces are uncoated, preventing light from escaping by total internal reflection as it travels along the duct (reflective waveguiding). The duct has various applications for intensifying light, such as in the coupling of diode array pump light to solid state lasing materials, and can be fabricated from inexpensive glass and plastic. 3 figures.

  6. Building America Case Study: Duct in Conditioned Space in a Dropped Ceiling or Fur-down, Gainesville, Florida (Fact Sheet)

    SciTech Connect

    Not Available

    2014-09-01

    Forced air distribution systems (duct systems) typically are installed out of sight for aesthetic reasons, most often in unconditioned areas such as an attic or crawlspace. Any leakage of air to or from the duct system (duct leakage) in unconditioned space not only loses energy, but impacts home and equipment durability and indoor air quality. An obvious solution to this problem is to bring the duct system into the interior of the house, either by sealing the area where the ducts are installed (sealed attic or crawlspace) or by building an interior cavity or chase above the ceiling plane (raised ceiling or fur-up chase) or below the ceiling plane (dropped ceiling or fur-down) for the duct system. This case study examines one Building America builder partner's implementation of an inexpensive, quick and effective method of building a fur-down or dropped ceiling chase.

  7. Thermal performance of residential duct systems in basements

    NASA Astrophysics Data System (ADS)

    Treidler, Burke; Modera, Mark

    1994-01-01

    There are many unanswered questions about the typical effects of duct system operation on the infiltration rates and energy usage of single-family residences with HVAC systems in their basements. Results from preliminary field studies and computer simulations are used to examine the potential for improvements in efficiency of air distribution systems in such houses. The field studies comprise thermal and flow measurements on four houses in Maryland. The houses were found to have significant envelope leakage, duct leakage, and duct conduction losses. Simulations of a basement house, the characteristics of which were chosen from the measured houses, were performed to assess the energy savings potential for basement house. The simulations estimate that a nine percent reduction in space conditioning energy use is obtained by sealing eighty percent of the duct leaks and insulating ducks to an R-value of 0.88 (C x sq. m)/W(100 F x sq. ft x h/BTU) where they are exposed in the basement. To determine the maximum possible reduction in energy use, simulations were run with all ducts insulated to (17.6 C x sq m)/W(100 F x sq. ft x h/BTU) and with no duct leakage. A reduction of energy use by 14% is obtained by using perfect ducts instead of normal ducts.

  8. Interaction of ring current and radiation belt protons with ducted plasmaspheric hiss. 2. Time evolution of the distribution function

    NASA Astrophysics Data System (ADS)

    Kozyra, J. U.; Rasmussen, C. E.; Miller, R. H.; Villalon, E.

    1995-11-01

    The evolution of the bounce-averaged ring current/radiation belt proton distribution is simulated during resonant interactions with ducted plasmaspheric hiss. The plasmaspheric hiss is assumed to be generated by ring current electrons and to be damped by the energetic protons. Thus energy is transferred between energetic electrons and protons using the plasmaspheric hiss as a mediary. The problem is not solved self-consistently. During the simulation period, interactions with ring current electrons (not represented in the model) are assumed to maintain the wave amplitudes in the presence of damping by the energetic protons, allowing the wave spectrum to be held fixed. Diffusion coefficients in pitch angle, cross pitch angle/energy, and energy were previously calculated by Kozyra et al. (1994) and are adopted for the present study. The simulation treats the energy range, E>=80 keV, within which the wave diffusion operates on a shorter timescale than other proton loss processes (i.e., Coulomb drag and charge exchange). These other loss processes are not included in the simulation. An interesting result of the simulation is that energy diffusion maximizes at moderate pitch angles near the edge of the atmospheric loss cone. Over the simulation period, diffusion in energy creates an order of magnitude enhancement in the bounce-averaged proton distribution function at moderate pitch angles. The loss cone is nearly empty because scattering of particles at small pitch angles is weak. The bounce-averaged flux distribution, mapped to ionospheric heights, results in elevated locally mirroring proton fluxes. OGO 5 observed order of magnitude enhancements in locally mirroring energetic protons at altitudes between 350 and 1300 km and invariant latitudes between 50° and 60° (Lundblad and Soraas, 1978). The proton distributions were highly anisotropic in pitch angle with nearly empty loss cones. The similarity between the observed distributions and those resulting from this

  9. The mechanical behavior of a mammalian lung alveolar duct model.

    PubMed

    Denny, E; Schroter, R C

    1995-08-01

    A model for the mechanical properties of an alveolar duct is analyzed using the finite element method. Its geometry comprises an assemblage of truncated octahedral alveoli surrounding a longitudinal air duct. The amounts and distributions of elastin and collagen fiber bundles, modeled by separate stress-strain laws, are based upon published data for dogs. The surface tension of the air-liquid interface is modeled using an area-dependent relationship. Pressure-volume curves are computed that compare well with experimental data for both saline-filled and air-filled lungs. Pressure-volume curves of the separate elastin and collagen fiber contributions are similar in form to the behavior of saline-filled lungs treated with either elastase or collagenase. A comparison with our earlier model, based upon a single alveolus, shows the duct to have a behavior closer to reported experimental data.

  10. Method and apparatus for duct sealing using a clog-resistant insertable injector

    DOEpatents

    Wang, Duo; Modera, Mark P.

    2010-12-14

    A method for forming a duct access region through one side of a previously installed air duct, wherein the air duct has an air flow with an air flow direction by inserting an aerosol injector into a previously installed air duct through the access region. The aerosol injector includes a liquid tube having a liquid tube orifice for ejecting a liquid to be atomized; and a propellant cap. The method is accomplished by aligning the aerosol injector with the direction of air flow in the duct; activating an air flow within the duct; and spraying a sealant through the aerosol injector to seal the duct in the direction of the air flow.

  11. Scissors Duct

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Stennis Space Center engineers are preparing to conduct water tests on an updated version of the scissors duct component of the J-2X engine. Measuring about 2 feet long and about 8 inches in diameter, the duct on the J-2X predecessor, the J-2, connected its fuel turbo pumps to the flight vehicle's upper stage run tanks. According to NASA's J-2X project manager at SSC, Gary Benton, the water tests should establish the limits of the duct's ability to withstand vibration.

  12. Performance Analysis of a Modular Small-Diamter Air Distribution System

    SciTech Connect

    Poerschke, Andrew; Rudd, Armin

    2016-03-01

    This report investigates the feasibility of using a home-run manifold small-diameter duct system to provide space conditioning air to individual thermal zones in a low-load home. This compact layout allows duct systems to be brought easily within conditioned space via interior partition walls. Centrally locating the air handler unit in the house significantly reduces duct lengths. The plenum box is designed so that each connected duct receives an equal amount of airflow, regardless of the duct position on the box. Furthermore, within a reasonable set of length restrictions, each duct continues to receive similar airflow. The design method uses an additive approach to reach the total needed zonal airflow. Once the cubic feet per minute needed to satisfy the thermal load of a zone has been determined, the total number of duct runs to a zone can be calculated by dividing the required airflow by the standard airflow from each duct. The additive approach greatly simplifies the design effort and reduces the potential for duct design mistakes to be made. Measured results indicate that this plenum design can satisfy the heating load. However, the total airflow falls short of satisfying the cooling load in a hypothetical building. Static pressure inside the plenum box of 51.5 Pa limited the total airflow of the attached mini-split heat pump blower, thus limiting the total thermal capacity. Fan energy consumption is kept to 0.16 to 0.22 watt/CFM by using short duct runs and smooth duct material.

  13. Building America Case Study: Mockup Small-Diameter Air Distribution System

    SciTech Connect

    2016-05-01

    This report investigates the feasibility of using a home-run manifold small-diameter duct system to provide space conditioning air to individual thermal zones in a low-load home. This compact layout allows duct systems to be brought easily within conditioned space via interior partition walls. Centrally locating the air hander unit in the house significantly reduces duct lengths. The plenum box is designed so that each connected duct receives an equal amount of airflow, regardless of the duct position on the box. Furthermore, within a reasonable set of length restrictions, each duct continues to receive similar airflow. The design method uses an additive approach to reach the total needed zonal airflow. Once the cubic feet per minute needed to satisfy the thermal load of a zone has been determined, the total number of duct runs to a zone can be calculated by dividing the required airflow by the standard airflow from each duct. The additive approach greatly simplifies the design effort and reduces the potential for duct design mistakes to be made. Measured results indicate that this plenum design can satisfy the heating load. However, the total airflow falls short of satisfying the cooling load in a hypothetical building. Static pressure inside the plenum box of 51.5 Pa limited the total airflow of the attached mini-split heat pump blower, thus limiting the total thermal capacity. Fan energy consumption is kept to 0.16 to 0.22 watt/CFM by using short duct runs and smooth duct material.

  14. Heat transfer and fluid flow characteristics of spanwise-periodic corrugated ducts

    NASA Astrophysics Data System (ADS)

    Sparrow, E. M.; Charmchi, M.

    1980-04-01

    An analytical study is made of the laminar flow and heat transfer in ducts whose cross section is bounded by a wall with periodic corrugations distributed across the span; the other bounding wall is parallel to the corrugated wall and is plane. The study consists of two parts, the first of which is aimed at providing basic heat transfer and fluid flow results while the second utilizes and illuminates these results by means of performance evaluation and comparisons. The basic results, determined numerically, encompass Nusselt numbers, friction factors, isovels and isotherms, and cross sectional mass flow distributions. For the performance evaluations, comparisons were made between the corrugated-wall duct and the parallel plate channel. It was demonstrated that if the temperature of the duct wall is to be minimized, as in an air-operated solar collector, a corrugated duct can be highly effective, but at the price of additional surface area and greater duct height.

  15. Experimental setup for measurement of acoustic power dissipation in lined ducts for higher order modes propagation with air mean-flow conditions.

    PubMed

    Ville, Jean-Michel; Foucart, Felix

    2003-10-01

    A flow duct acoustic facility was developed to measure liner efficiency in attenuating higher order acoustic duct modes propagation conditions with mean air flow. The method is based on measurement, upstream and downstream of a liner, of the acoustic power produced by a periodic source. Directly measured total or modal acoustic powers are deduced from the local measurement, in both cross sections, of acoustic pressure, axial acoustic particle velocity, and axial mean flow velocity which are supplied by a probe made of a microphone and a single hot film. In this paper, the equipment, signal processing, and the data treatment process of this facility are first described. Then, information on the accuracy of the methodology is provided by a validation test performed with a rigid wall duct section. Finally, the results of an experiment carried out with a locally reacting liner and a mean flow velocity of 20 m/s will be presented. Measurements of the main attenuation frequency and of the main total acoustic power dissipated agree with the values for which the liner was designed. These results point out the limitations of the method presented to sources with high-level periodic sounds to provide a sufficient signal-to-noise ratio, the noise being produced by fluctuations of the turbulent flow.

  16. Technology Solutions Case Study: Duct in Conditioned Space in a Dropped Ceiling or Fur-down, Gainesville, Florida

    SciTech Connect

    2014-09-01

    Forced-air distribution systems (duct systems) typically are installed out of sight for aesthetic reasons, most often in unconditioned areas such as attics or crawlspaces. Any leakage of air to or from the duct system in unconditioned space not only loses energy, but impacts home and equipment durability and indoor air quality. An obvious solution is to bring the duct system into the interior of the house, either by sealing the area where the ducts are installed (attic or crawlspace) or by building an interior cavity or chase above the ceiling plane (raised ceiling or fur-up chase) or below the ceiling plane (dropped ceiling or fur-down) for the duct system. In this project, Building America Partnership for Improved Residential Construction team partnered with Tommy Williams Homes to implement an inexpensive, quick, and effective method of building a fur-down chase.

  17. Duct closure

    DOEpatents

    Vowell, Kennison L.

    1987-01-01

    A closure for an inclined duct having an open upper end and defining downwardly extending passageway. The closure includes a cap for sealing engagement with the open upper end of the duct. Associated with the cap are an array of vertically aligned plug members, each of which has a cross-sectional area substantially conforming to the cross-sectional area of the passageway at least adjacent the upper end of the passageway. The plug members are interconnected in a manner to provide for free movement only in the plane in which the duct is inclined. The uppermost plug member is attached to the cap means and the cap means is in turn connected to a hoist means which is located directly over the open end of the duct.

  18. The method used for justification of engineering solutions for multistage plate-type mufflers attached to gas-air ducts of thermal power plants

    NASA Astrophysics Data System (ADS)

    Tupov, V. B.

    2013-08-01

    This paper describes technical and economic problems associated with the selection of designs of mufflers attached to gas-air ducts of thermal power plants. A method is suggested that makes it possible to determine the dimensions of each stage of plate-type mufflers on the basis of achieving the lowest total discounted costs in order to provide the required acoustical performance at a permissible aerodynamic resistance of a muffler. The condition of the lowest total discounted costs for a multistage muffler, which is valid for different types of mufflers, has been obtained.

  19. Over-the-Air Distribution (OTD) Update (Briefing Charts)

    DTIC Science & Technology

    2015-04-29

    Missile Systems Center Maj Scott Tyley, SMC/GPEP 29 Apr 15 Over-the-Air Distribution (OTAD) Update Report Documentation Page Form ApprovedOMB... SYSTEMS CENTER • OTAD Overview • Background • Benefits • Events • OTAD Demo • Summary 2015 04 29 _Over-the-Air Distribution (OT AD) Update v2...enabled Over-The-Air cryptokey distribution provides a means to keep users keyed and protected - Receivers are significantly more resilient to

  20. Air channel distribution during air sparging: A field experiment

    SciTech Connect

    Leeson, A.; Hinchee, R.E.; Headington, G.L.; Vogel, C.M.

    1995-12-31

    Air sparging may have the potential to improve upon conventional groundwater treatment technologies. However, judging from studies published to date and theoretical analyses, it is possible that air sparging may have a limited effect on aquifer contamination. The basic mechanisms controlling air sparging are not well understood, and current monitoring practice does not appear adequate to quantitatively evaluate the process. During this study, the effective zone of influence, defined as the areas in which air channels form, was studied as a function of flowrate and depth of injection points. This was accomplished by conducting the air sparging test in an area with shallow standing water. Air sparging points were installed at various depths, and the zone of influence was determined visually.

  1. Ramjet bypass duct and preburner configuration

    NASA Technical Reports Server (NTRS)

    Orlando, Robert J. (Inventor)

    1994-01-01

    A combined turbofan and ramjet aircraft engine includes a forward bypass duct which allows the engine to operate more efficiently during the turbofan mode of operation. By mounting a ramjet preburner in the forward duct and isolating this duct from the turbofan bypass air, a transition from turbofan operation to ramjet operation can take place at lower flight Mach numbers without incurring pressure losses or blockage in the turbofan bypass air.

  2. DUCT RETROFIT STRATEGY TO COMPLEMENT A MODULATING FURNACE.

    SciTech Connect

    ANDREWS,J.W.

    2002-10-02

    Some recent work (Walker 2001, Andrews 2002) has indicated that installing a modulating furnace in a conventional duct system may, in many cases, result in a significant degradation in thermal distribution efficiency. The fundamental mechanism was pointed out nearly two decades ago (Andrews and Krajewski 1985). The problem occurs in duct systems that are less-than-perfectly insulated (e.g., R-4 duct wrap) and are located outside the conditioned space. It stems from the fact that when the airflow rate is reduced, as it will be when the modulating furnace reduces its heat output rate, the supply air will have a longer residence time in the ducts and will therefore lose a greater percentage of its heat by conduction than it did at the higher airflow rate. The impact of duct leakage, on the other hand, is not expected to change very much under furnace modulation. The pressures in the duct system will be reduced when the airflow rate is reduced, thus reducing the leakage per unit time. This is balanced by the fact that the operating time will increase in order to meet the same heating load as with the conventional furnace operating at higher output and airflow rates. The balance would be exact if the exponent in the pressure vs. airflow equation were the same as that in the pressure vs. duct leakage equation. Since the pressure-airflow exponent is usually {approx}0.5 and the pressure-leakage exponent is usually {approx}0.6, the leakage loss as a fraction of the load should be slightly lower for the modulating furnace. The difference, however, is expected to be small, determined as it is by a function with an exponent equal to the difference between the above two exponents, or {approx}0.1. The negative impact of increased thermal conduction losses from the duct system may be partially offset by improved efficiency of the modulating furnace itself. Also, the modulating furnace will cycle on and off less often than a single-capacity model, and this may add a small amount

  3. Air velocity distributions from a variable-rate air-assisted sprayer for tree applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A capability that implements tree structure to control liquid and air flow rates is the preferential design in the development of variable-rate orchard and nursery sprayers. Air jet velocity distributions from an air assisted, five-port sprayer which was under the development to achieve variable-rat...

  4. Low-cost orbiting grinder for cutting ducts

    NASA Technical Reports Server (NTRS)

    Lang, E. J.

    1970-01-01

    Low-cost, portable machine cuts ducts made from heat-treated alloys. An abrasive wheel, powered by a high-speed air motor mounted on an expandible plug against the inner wall of the duct, gives precise cutting.

  5. Measure Guideline: Implementing a Plenum Truss for a Compact Air Distribution System

    SciTech Connect

    Burdick, A.

    2013-10-01

    This Measure Guideline presents the steps to implement a compact duct system inside an attic bulkhead (plenum truss) of a one-story, slab-on-grade home. In a compact duct design, ductwork runs are reduced in length to yield a smaller and more compact duct system. Less energy will be lost through ductwork if the ducts are contained within the thermal enclosure of the house. These measures are intended for the production builder working to meet the 2012 International Energy Conservation Code (IECC) requirements and keep the ductwork within the thermal enclosure of the house. This measure of bringing the heating, ventilation and air conditioning (HVAC) equipment and ductwork within the thermal enclosure of the house is appropriate for the builder wishing to avoid cathedralizing the insulation in the attic space (i.e., locating it at the underside of the roof deck rather than along the attic floor) or adding dropped soffits.

  6. Measure Guideline: Implementing a Plenum Truss for a Compact Air Distribution System

    SciTech Connect

    Burdick, A.

    2013-10-01

    This Measure Guideline presents the steps to implement a compact duct system inside an attic bulkhead (plenum truss) of a one-story, slab-on-grade (SOG) home. In a compact duct design, ductwork runs are reduced in length to yield a smaller and more compact duct system. Less energy will be lost through ductwork if the ducts are contained within the thermal enclosure of the house. These measures are intended for the production builder working to meet the 2012 International Energy Conservation Code (IECC) requirements and keep the ductwork within the thermal enclosure of the house. This measure of bringing the heating, ventilation and air conditioning (HVAC) equipment and ductwork within the thermal enclosure of the house is appropriate for the builder wishing to avoid cathedralizing the insulation in the attic space (i.e., locating it at the underside of the roof deck rather than along the attic floor) or adding dropped soffits.

  7. AIR DISTRIBUTION NOISE CONTROL IN CRITICAL AUDITORIUMS.

    ERIC Educational Resources Information Center

    HOOVER, R.M.

    THE ACHIEVEMENT OF EXTREMELY LOW AIR-CONDITIONING NOISE LEVELS REQUIRED FOR MODERN AUDITORIUMS ARE THE RESULT OF CAREFUL PLANNING AND THOROUGH DETAILING. PROBLEMS FACED AND TECHNIQUES USED IN ARRIVING AT LEVELS AS LOW AS NC-15 FOR A SINGLE SYSTEM SERVING A HALL ARE DESCRIBED. SIX CASE HISTORIES ARE EXAMINED AND THE FOLLOWING OBSERVATIONS ARE…

  8. Observations of Strong Surface Radar Ducts over the Persian Gulf.

    NASA Astrophysics Data System (ADS)

    Brooks, Ian M.; Goroch, Andreas K.; Rogers, David P.

    1999-09-01

    Ducting of microwave radiation is a common phenomenon over the oceans. The height and strength of the duct are controlling factors for radar propagation and must be determined accurately to assess propagation ranges. A surface evaporation duct commonly forms due to the large gradient in specific humidity just above the sea surface; a deeper surface-based or elevated duct frequently is associated with the sudden change in temperature and humidity across the boundary layer inversion.In April 1996 the U.K. Meteorological Office C-130 Hercules research aircraft took part in the U.S. Navy Ship Antisubmarine Warfare Readiness/Effectiveness Measuring exercise (SHAREM-115) in the Persian Gulf by providing meteorological support and making measurements for the study of electromagnetic and electro-optical propagation. The boundary layer structure over the Gulf is influenced strongly by the surrounding desert landmass. Warm dry air flows from the desert over the cooler waters of the Gulf. Heat loss to the surface results in the formation of a stable internal boundary layer. The layer evolves continuously along wind, eventually forming a new marine atmospheric boundary layer. The stable stratification suppresses vertical mixing, trapping moisture within the layer and leading to an increase in refractive index and the formation of a strong boundary layer duct. A surface evaporation duct coexists with the boundary layer duct.In this paper the authors present aircraft- and ship-based observations of both the surface evaporation and boundary layer ducts. A series of sawtooth aircraft profiles map the boundary layer structure and provide spatially distributed estimates of the duct depth. The boundary layer duct is found to have considerable spatial variability in both depth and strength, and to evolve along wind over distances significant to naval operations (100 km). The depth of the evaporation duct is derived from a bulk parameterization based on Monin-Obukhov similarity theory

  9. Temperature distribution of air source heat pump barn with different air flow

    NASA Astrophysics Data System (ADS)

    He, X.; Li, J. C.; Zhao, G. Q.

    2016-08-01

    There are two type of airflow form in tobacco barn, one is air rising, the other is air falling. They are different in the structure layout and working principle, which affect the tobacco barn in the distribution of temperature field and velocity distribution. In order to compare the temperature and air distribution of the two, thereby obtain a tobacco barn whose temperature field and velocity distribution are more uniform. Taking the air source heat pump tobacco barn as the investigated subject and establishing relevant mathematical model, the thermodynamics of the two type of curing barn was analysed and compared based on Fluent. Provide a reasonable evidence for chamber arrangement and selection of outlet for air source heat pump tobacco barn.

  10. Performance of underfloor air distribution: Results of a field study

    SciTech Connect

    Fisk, William; Faulkner, David; Sullivan, Douglas

    2004-09-02

    Underfloor air distribution (UFAD) is a new method of supplying heated or cooled air throughout a building. Reported advantages of UFAD include easy relocation of air supply diffusers, energy savings, and improved indoor air quality (IAQ). We measured several aspects of the performance of an UFAD system installed in a medium-size office building. The measured air change effectiveness was very close to unity, which is comparable to that measured in buildings with typical overhead air distribution. The pollutant removal efficiency for carbon dioxide was 13 percent higher than expected in a space with well-mixed air, suggesting a 13 percent reduction in exposures to occupant generated pollutants. The increase in indoor air temperatures with height above the floor was only 1 to 2 C (2-4 F). This amount of thermal stratification could reduce the sensible energy requirements for cooling of outdoor air by approximately 10 percent. The occupants level of satisfaction with thermal conditions w as well above average and this high satisfaction rating could possibly be due, in all or part, to the use of a UFAD system. The results of this study provide some evidence of moderate energy and IAQ-related benefits of UFAD. Before general conclusions are drawn, the benefits need to be confirmed in other studies.

  11. TWO NEW DUCT LEAKAGE TESTS

    SciTech Connect

    ANDREWS,J.W.

    1998-12-01

    Two variations on the tests for duct leakage currently embodied in ASHRAE Standard 152P (Method of Test for Determining the Design and Seasonal Efficiencies of Residential Thermal Distribution Systems) are presented. Procedures are derived for calculating supply and return duct leakage to/from outside using these new variations. Results of these tests are compared with the original ones in Standard 152P on the basis of data collected in three New York State homes.

  12. Performance of underfloor air distribution in a fieldsetting

    SciTech Connect

    Fisk, W.J.; Faulkner, D.; Sullivan, D.P.; Chao, C.; Wan, M.P.; Zagreus, L.; Webster, T.

    2005-10-01

    Underfloor air distribution (UFAD) is a new method of supplying heated or cooled air throughout a building. Reported advantages of UFAD include energy savings and improved indoor air quality (IAQ). We measured several aspects of the performance of an UFAD system installed in a medium-size office building. The measured air change effectiveness was very close to unity, which is comparable to that measured in buildings with typical overhead air distribution. The pollutant removal efficiency for carbon dioxide was 13% higher than expected in a space with well-mixed air, suggesting a 13% reduction in exposures to occupant generated pollutants. The increase in indoor air temperatures with height above the floor was only 1 to 2 C. This amount of thermal stratification could reduce the sensible energy requirements for cooling of outdoor air by approximately 10%. The occupant's level of satisfaction with thermal conditions was well above average and this high satisfaction rating could possibly be due, in all or part, to the use of a UFAD system. The results of this study provide some evidence of moderate energy and IAQ-related benefits of UFAD. Before general conclusions are drawn, the benefits need to be confirmed in other studies.

  13. Bile Duct Cancer (Cholangiocarcinoma)

    MedlinePlus

    ... Types of Cancer > Bile Duct Cancer (Cholangiocarcinoma) Bile Duct Cancer (Cholangiocarcinoma) This is Cancer.Net’s Guide to Bile Duct Cancer (Cholangiocarcinoma). Use the menu below to choose ...

  14. Mammary Duct Ectasia

    MedlinePlus

    ... tenderness or inflammation of the clogged duct (periductal mastitis). Mammary duct ectasia most often occurs in women ... that's turned inward (inverted) A bacterial infection called mastitis also may develop in the affected milk duct, ...

  15. Modeling particle loss in ventilation ducts

    SciTech Connect

    Sippola, Mark R.; Nazaroff, William W.

    2003-04-01

    Empirical equations were developed and applied to predict losses of 0.01-100 {micro}m airborne particles making a single pass through 120 different ventilation duct runs typical of those found in mid-sized office buildings. For all duct runs, losses were negligible for submicron particles and nearly complete for particles larger than 50 {micro}m. The 50th percentile cut-point diameters were 15 {micro}m in supply runs and 25 {micro}m in return runs. Losses in supply duct runs were higher than in return duct runs, mostly because internal insulation was present in portions of supply duct runs, but absent from return duct runs. Single-pass equations for particle loss in duct runs were combined with models for predicting ventilation system filtration efficiency and particle deposition to indoor surfaces to evaluate the fates of particles of indoor and outdoor origin in an archetypal mechanically ventilated building. Results suggest that duct losses are a minor influence for determining indoor concentrations for most particle sizes. Losses in ducts were of a comparable magnitude to indoor surface losses for most particle sizes. For outdoor air drawn into an unfiltered ventilation system, most particles smaller than 1 {micro}m are exhausted from the building. Large particles deposit within the building, mostly in supply ducts or on indoor surfaces. When filters are present, most particles are either filtered or exhausted. The fates of particles generated indoors follow similar trends as outdoor particles drawn into the building.

  16. Turbofan aft duct suppressor study

    NASA Technical Reports Server (NTRS)

    Syed, A. A.; Motsinger, R. E.; Fiske, G. H.; Joshi, M. C.; Kraft, R. E.

    1983-01-01

    Suppressions due to acoustic treatment in the annular exhaust duct of a model fan were theoretically predicted and compared with measured suppressions. The predictions are based on the modal analysis of sound propagation in a straight annular flow duct with segmented treatment. Modal distributions of the fan noise source (fan-stator interaction only) were measured using in-duct modal probes. The flow profiles were also measured in the vicinity of the modal probes. The acoustic impedance of the single degree of freedom treatment was measured in the presence of grazing flow. The measured values of mode distribution of the fan noise source, the flow velocity profile and the acoustic impedance of the treatment in the duct were used as input to the prediction program. The predicted suppressions, under the assumption of uniform flow in the duct, compared well with the suppressions measured in the duct for all test conditions. The interaction modes generated by the rotor-stator interaction spanned a cut-off ratio range from nearly 1 to 7.

  17. 76. DETAIL OF AIRCONDITIONING DUCT BETWEEN PORTABLE PAYLOAD AIRCONDITIONING SYSTEM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    76. DETAIL OF AIR-CONDITIONING DUCT BETWEEN PORTABLE PAYLOAD AIR-CONDITIONING SYSTEM AND LSB (BLDG. 770) - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  18. Minimizing decomposition of vaporized hydrogen peroxide for biological decontamination of galvanized steel ducting.

    PubMed

    Verce, Matthew F; Jayaraman, Buvaneswari; Ford, Timothy D; Fisher, Scott E; Gadgil, Ashok J; Carlsen, Tina M

    2008-08-01

    The behavior of vaporous hydrogen peroxide (VHP) was examined in clean, room-scale galvanized steel (GS) and polyvinylchloride-coated steel air ducts, to understand how it might be used to decontaminate larger ventilation systems. VHP injected into the GS duct decreased in concentration along the length of the duct, whereas VHP concentrations in the polyvinylchloride coated duct remained essentially constant, suggesting that VHP decomposed at the GS surface. However, decomposition was reduced at lower temperatures (approximately 22 degrees C) and higher flow rates (approximately 80 actual cubic meter per hour). A computational fluid dynamics model incorporating reactive transport was used to estimate surface VHP concentrations where bioaerosol contamination is likelyto reside, and also showed that VHP decomposition was enhanced at bends within the duct, compared to straight sections. Use of G. stearothermophilus indicators, in conjunction with model estimates, indicated that a concentration-contact time of approximately 100 mg/L H2O2(g) x min was required to achieve a 6 log reduction of indicator spores in clean GS duct, at 30 degrees C. When VHP is selected for building decontamination, this work suggests the most efficacious strategy may be to decontaminate GS ducting separately from the rest of the building, as opposed to a single decontamination event in which the ventilation system is used to distribute VHP throughout the entire building.

  19. Investigation of the use of fly-ash based autoclaved cellular concrete blocks in coal mines for air duct work. Final report, January 25, 1993--December 31, 1994

    SciTech Connect

    Horvath, M.L.

    1995-06-19

    Coal mines are required to provide ventilation to occupied portions of underground mines. Concrete block is used in this process to construct air duct walls. However, normal concrete block is heavy and not easy to work with and eventually fails dramatically after being loaded due to mine ceiling convergence and/or floor heave. Autoclaved cellular concrete block made from (70{plus_minus}%) coal fly ash is lightweight and less rigid when loaded. It is lighter and easier to use than regular concrete block for underground mine applications. It has also been used in surface construction around the world for over 40 years. Ohio Edison along with eight other electric utility companies, the Electric Power Research Institute (EPRI), and North American Cellular Concrete constructed a mobile demonstration plant to produce autoclaved cellular concrete block from utility fly ash. To apply this research in Ohio, Ohio Edison also worked with the Ohio Coal Development Office and CONSOL Inc. to produce autoclaved cellular concrete block not only from coal ash but also from LIMB ash, SNRB ash, and PFBC ash from various clean coal technology projects sponsored by the Ohio Coal Development Office. The purpose of this project was to demonstrate the potential for beneficial use of fly ash and clean coal technology by-products in the production of lightweight block.

  20. On the neutrons streaming in straight duct

    PubMed

    Jehouani; Boulkheir; Ichaoui

    2000-10-01

    The main aim of this study is to evaluate the thermal neutron streaming through a straight cylindrical duct by using the Monte Carlo method and evaluating the neutron reflection by the duct wall to the total flux at the exit of the duct. The duct walls are made separately of iron and aluminum. We have considered 10 groups of energy between 10(-5) and 10 eV. For a point source at the mouth of the duct, we have determined the direct and the reflected part of the total thermal neutron flux at the exit of the duct for different lengths and different radii of the duct. For a punctual source, we have found that the major contribution to the total flux of neutrons at the exit is due to the neutron reflection by walls, and the reflection contribution decreases when the neutron energy decreases. For a constant length of the duct, the reflected part decreases when the duct radius increases, while for the disk shaped source, we have found the opposite phenomenon. The transmitted neutron flux distribution at the exit of the duct is determined for a disk shaped source for different neutron energies and different distances from the exit center.

  1. Thermal environmental case study of an existing underfloor air distribution (UFAD) system in a high-rise building in the tropics

    NASA Astrophysics Data System (ADS)

    Ya, Y. H.; Poh, K. S.

    2015-09-01

    The performance of an existing underfloor air distribution (UFAD) system in a renowned high-rise office tower in Malaysia was studied to identify the root cause issues behind the poor indoor air quality. Occupants are the best thermal sensor. The building was detected with the sick building syndrome (SBS) that causes runny noses, flu-like symptoms, irritated skin, and etc. Long period of exposure to indoor air pollutants may increase the occupant's health risk. The parameters such as the space temperature, relative humidity, air movement, air change, fresh air flow rate, chilled water supply and return are evaluated at three stories that consist of five open offices. A full traverse study was carried out at one of the fresh air duct. A simplified duct flow measurement method using pitot-tubes was developed. The results showed that the diffusers were not effective in creating the swirl effect to the space. Internal heat gain from human and office electrical equipment were not drawn out effectively. Besides, relative humidity has exceeded the recommended level. These issues were caused by the poor maintenance of the building. The energy efficiency strategy of the UFAD system comes from the higher supply air temperature. It may leads to insufficient cooling load for the latent heat gained under improper system performance. Special care and considerations in design, construction and maintenance are needed to ensure the indoor air quality to be maintained. Several improvements were recommended to tackle the existing indoor air quality issues. Solar system was studied as one of the innovative method for retrofitting.

  2. Tactical Air Control Party Support in Distributed and Special Operations

    DTIC Science & Technology

    2008-05-01

    FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF MILITARY STUDIES AUTHOR: MAJOR JAMES A SCHNELLE AY 07-08 Mentor and ~~f:~e Co~ittee Member...ANSI Std Z39-18 Executive Summary Title: Tactical Air Control Party Support in Distributed and Special Operations Author: Major James A. Schnelle ...until 11 :00 a.m. 1 Later , five aircraft came over at about 2:35 p.m., firing machine guns and dropping bombs until 3:20 p.m. "The air attack was the

  3. Deep proteomic profiling of vasopressin-sensitive collecting duct cells. I. Virtual Western blots and molecular weight distributions.

    PubMed

    Yang, Chin-Rang; Tongyoo, Pumipat; Emamian, Milad; Sandoval, Pablo C; Raghuram, Viswanathan; Knepper, Mark A

    2015-12-15

    The mouse mpkCCD cell line is a continuous cultured epithelial cell line with characteristics of renal collecting duct principal cells. This line is widely used to study epithelial transport and its regulation. To provide a data resource useful for experimental design and interpretation in studies using mpkCCD cells, we have carried out "deep" proteomic profiling of these cells using three levels of fractionation (differential centrifugation, SDS-PAGE, and HPLC) followed by tandem mass spectrometry to identify and quantify proteins. The analysis of all resulting samples generated 34.6 gigabytes of spectral data. As a result, we identified 6,766 proteins in mpkCCD cells at a high level of stringency. These proteins are expressed over eight orders of magnitude of protein abundance. The data are provided to users as a public data base (https://helixweb.nih.gov/ESBL/Database/mpkFractions/). The mass spectrometry data were mapped back to their gel slices to generate "virtual Western blots" for each protein. For most of the 6,766 proteins, the apparent molecular weight from SDS-PAGE agreed closely with the calculated molecular weight. However, a substantial fraction (>15%) of proteins was found to run aberrantly, with much higher or much lower mobilities than predicted. These proteins were analyzed to identify mechanisms responsible for altered mobility on SDS-PAGE, including high or low isoelectric point, high or low hydrophobicity, physiological cleavage, residence in the lysosome, posttranslational modifications, and expression of alternative isoforms due to alternative exon usage. Additionally, this analysis identified a previously unrecognized isoform of aquaporin-2 with apparent molecular mass <20 kDa.

  4. Fluidic-Driven Ducted Heat Ejector

    NASA Astrophysics Data System (ADS)

    Gerty, Donavon; Mahalingam, Raghav; Glezer, Ari

    2003-11-01

    A high-aspect ratio miniature air duct is developed for forced convection heat rejection from electronic hardware within sealed enclosures. Relatively high heat transfer coefficient is achieved at low volume flow rates by a thin oscillating reed that is mounted across the span of the duct, parallel to its (wide) walls. The flow is induced by the time-periodic shedding of tip vortices at the edge of the reed which continue to propagate downstream along the duct. The interaction of these vortices with vorticity concentrations along the duct surfaces and the structure of the ensuing flow are investigated using high-resolution phase-locked and time-averaged particle image velocimetry. The dependence of the global flow and heat transfer from the duct walls on the frequency and amplitude of the reed motion are also characterized.

  5. Hollow lensing duct

    DOEpatents

    Beach, Raymond J.; Honea, Eric C.; Bibeau, Camille; Mitchell, Scott; Lang, John; Maderas, Dennis; Speth, Joel; Payne, Stephen A.

    2000-01-01

    A hollow lensing duct to condense (intensify) light using a combination of focusing using a spherical or cylindrical lens followed by reflective waveguiding. The hollow duct tapers down from a wide input side to a narrow output side, with the input side consisting of a lens that may be coated with an antireflective coating for more efficient transmission into the duct. The inside surfaces of the hollow lens duct are appropriately coated to be reflective, preventing light from escaping by reflection as it travels along the duct (reflective waveguiding). The hollow duct has various applications for intensifying light, such as in the coupling of diode array pump light to solid state lasing materials.

  6. Measured Air Distribution Effectiveness for Residential Mechanical Ventilation Systems

    SciTech Connect

    Sherman, Max; Sherman, Max H.; Walker, Iain S.

    2008-05-01

    The purpose of ventilation is dilute or remove indoor contaminants that an occupant is exposed to. In a multi-zone environment such as a house, there will be different dilution rates and different source strengths in every zone. Most US homes have central HVAC systems, which tend to mix the air thus the indoor conditions between zones. Different types of ventilation systems will provide different amounts of exposure depending on the effectiveness of their air distribution systems and the location of sources and occupants. This paper will report on field measurements using a unique multi-tracer measurement system that has the capacity to measure not only the flow of outdoor air to each zone, but zone-to-zone transport. The paper will derive seven different metrics for the evaluation of air distribution. Measured data from two homes with different levels of natural infiltration will be used to evaluate these metrics for three different ASHRAE Standard 62.2 compliant ventilation systems. Such information can be used to determine the effectiveness of different systems so that appropriate adjustments can be made in residential ventilation standards such as ASHRAE Standard 62.2.

  7. An Optimization of the Maintenance Assets Distribution Network in the Argentine Air Force

    DTIC Science & Technology

    2015-03-26

    AN OPTIMIZATION OF THE MAINTENANCE ASSETS DISTRIBUTION NETWORK IN THE ARGENTINE AIR FORCE...copyright protection in the United States. AFIT-ENS-MS-15-M-152 AN OPTIMIZATION OF THE MAINTENANCE ASSETS DISTRIBUTION NETWORK IN THE ARGENTINE AIR...PUBLIC RELEASE; DISTRIBUTION UNLIMITED. AFIT-ENS-MS-15-M-152 AN OPTIMIZATION OF THE MAINTENANCE ASSETS DISTRIBUTION NETWORK IN THE ARGENTINE AIR

  8. The AIRS Applications Pipeline, from Identification to Visualization to Distribution

    NASA Astrophysics Data System (ADS)

    Ray, S. E.; Pagano, T. S.; Fetzer, E. J.; Lambrigtsen, B.; Teixeira, J.

    2014-12-01

    The Atmospheric Infrared Sounder (AIRS) on NASA's Aqua spacecraft has been returning daily global observations of Earth's atmospheric constituents and properties since 2002. AIRS provides observations of temperature and water vapor along the atmospheric column and is sensitive to many atmospheric constituents in the mid-troposphere, including carbon monoxide, carbon dioxide and ozone. With a 12-year data record and daily, global observations in near real-time, we are finding that AIRS data can play a role in applications that fall under most of the NASA Applied Sciences focus areas. Currently in development are temperature inversion maps that can potentially correlate to respiratory health problems, dengue fever and West Nile virus outbreak prediction maps, maps that can be used to make assessments of air quality, and maps of volcanic ash burden. This poster will communicate the Project's approach and efforts to date of its applications pipeline, which includes identifying applications, utilizing science expertise, hiring outside experts to assist with development and dissemination, visualization along application themes, and leveraging existing NASA data frameworks and organizations to facilitate archiving and distribution. In addition, a new web-based browse tool being developed by the AIRS Project for easy access to application product imagery will also be described.

  9. 91. VIEW OF OBSOLETE AIRCONDITIONING DUCTS LOCATED IN NORTHWEST CORNER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    91. VIEW OF OBSOLETE AIR-CONDITIONING DUCTS LOCATED IN NORTHWEST CORNER OF ROOM, ABOVE SLC-3E AUTOPILOT EQUIPMENT. DIGITAL COUNTDOWN AND HOLD CLOCKS ON WALL LEFT OF DUCTS - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  10. Bile Duct Diseases

    MedlinePlus

    ... gallbladder pushes the bile into tubes called bile ducts. They carry the bile to your small intestine. ... and wastes. Different diseases can block the bile ducts and cause a problem with the flow of ...

  11. Bile duct stricture

    MedlinePlus

    ... occur after surgery to remove the gallbladder. Other causes of this condition include: Cancer of the bile duct, liver or pancreas Damage and scarring due to a gallstone in the bile duct Damage or scarring after ...

  12. MINIMIZING DECOMPOSITION OF VAPORIZED HYDROGEN PEROXIDE IN CLEAN GALVANIZED STEEL DUCTING: IMPLICATIONS FOR BIOLOGICAL DECONTAMINATION

    SciTech Connect

    Verce, M F; Jayaraman, B; Ford, T D; Fisher, S E; Gadgil, A J; Carlsen, T M

    2007-09-07

    This work examined the behavior of vaporous hydrogen peroxide (VHP) in clean, room-scale galvanized steel (GS) and polyvinylchloride-coated steel air ducts, to understand how it might be used to decontaminate larger ventilation systems. VHP injected into the GS duct decreased in concentration along the length of the duct, whereas VHP concentrations in the polyvinylchloride coated duct remained essentially constant, suggesting that VHP decomposed at the GS surface. However, decomposition was reduced at lower temperatures ({approx} 22 C) and higher flow rates ({approx} 80 actual cubic meter per hour). A computational fluid dynamics model incorporating reactive transport was used to estimate surface VHP concentrations where contamination is likely to reside, and also showed how bends encourage VHP decomposition. Use of G. stearothermophilus indicators, in conjunction with model estimates, indicated that a concentration-contact time of {approx} 100 mg/L H{sub 2}O{sub 2}(g){center_dot}min was required to achieve a 6 log reduction of indicator spores in clean GS duct, at 30 C. When VHP is selected for building decontamination, this work suggests the most efficacious strategy may be to decontaminate GS ducting separately from the rest of the building, as opposed to a single decontamination event in which the ventilation system is used to distribute VHP throughout the entire building.

  13. Drop size distribution and air velocity measurements in air assist swirl atomizer sprays

    NASA Technical Reports Server (NTRS)

    Mao, C.-P.; Oechsle, V.; Chigier, N.

    1987-01-01

    Detailed measurements of mean drop size (SMD) and size distribution parameters have been made using a Fraunhofer diffraction particle sizing instrument in a series of sprays generated by an air assist swirl atomizer. Thirty-six different combinations of fuel and air mass flow rates were examined with liquid flow rates up to 14 lbm/hr and atomizing air flow rates up to 10 lbm/hr. Linear relationships were found between SMD and liquid to air mass flow rate ratios. SMD increased with distance downstream along the center line and also with radial distance from the axis. Increase in obscuration with distance downstream was due to an increase in number density of particles as the result of deceleration of drops and an increase in the exposed path length of the laser beam. Velocity components of the atomizing air flow field measured by a laser anemometer show swirling jet air flow fields with solid body rotation in the core and free vortex flow in the outer regions.

  14. 54. DETAIL OF AIRCONDITIONING EXHAUST DUCTS ON NORTH FACE OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    54. DETAIL OF AIR-CONDITIONING EXHAUST DUCTS ON NORTH FACE OF ERECT UMBILICAL MAST - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  15. Duct Flow Control System.

    DTIC Science & Technology

    is ejected under pressure tangentially of local duct surfaces through Coanda affected slots at the trailing edge of the duct from which only the...channel passages in order to modify the flow stream through the duct so as to perform certain functions such as thrust control and steerage control effects enhancing vehicle maneuverability.

  16. Blocked Tear Duct

    MedlinePlus

    Blocked tear duct Overview By Mayo Clinic Staff When you have a blocked tear duct, your tears can't drain normally, leaving you ... in the tear drainage system. A blocked tear duct is common in newborns. The condition usually gets ...

  17. Tunable hollow waveguide distributed Bragg reflectors with variable air core

    NASA Astrophysics Data System (ADS)

    Sakurai, Yasuki; Koyama, Fumio

    2004-06-01

    We demonstrate a tunable hollow waveguide distributed Bragg reflector consisting of a grating loaded slab hollow waveguide with a variable air-core. The modeling shows that a change in an air-core thickness enables a large shift of several tens of nanometers in Bragg wavelength due to a change of several percents in a propagation constant. We fabricated a slab hollow waveguide Bragg reflector with 620 μm long and, 190 nm deep 1st-order circular grating composed of SiO2, exhibiting strong Bragg reflection at 1558 nm with an air-core thickness of 10 μm for TM mode. The peak reflectivity is 65% including fiber coupling losses, the 3-dB bandwidth is 2.8 nm and the grating-induced loss is less than 0.5 dB. We demonstrate a 3 nm wavelength tuning of the fabricated hollow waveguide Bragg reflector by changing an air-core thickness from 10 μm to 7.9 μm.

  18. Graphene Visualizes the Ion Distribution on Air-Cleaved Mica.

    PubMed

    Bampoulis, Pantelis; Sotthewes, Kai; Siekman, Martin H; Zandvliet, Harold J W; Poelsema, Bene

    2017-03-06

    The distribution of potassium (K(+)) ions on air-cleaved mica is important in many interfacial phenomena such as crystal growth, self-assembly and charge transfer on mica. However, due to experimental limitations to nondestructively probe single ions and ionic domains, their exact lateral organization is yet unknown. We show, by the use of graphene as an ultra-thin protective coating and scanning probe microscopies, that single potassium ions form ordered structures that are covered by an ice layer. The K(+) ions prefer to minimize the number of nearest neighbour K(+) ions by forming row-like structures as well as small domains. This trend is a result of repulsive ionic forces between adjacent ions, weakened due to screening by the surrounding water molecules. Using high resolution conductive atomic force microscopy maps, the local conductance of the graphene is measured, revealing a direct correlation between the K(+) distribution and the structure of the ice layer. Our results shed light on the local distribution of ions on the air-cleaved mica, solving a long-standing enigma. They also provide a detailed understanding of charge transfer from the ionic domains towards graphene.

  19. Graphene Visualizes the Ion Distribution on Air-Cleaved Mica

    NASA Astrophysics Data System (ADS)

    Bampoulis, Pantelis; Sotthewes, Kai; Siekman, Martin H.; Zandvliet, Harold J. W.; Poelsema, Bene

    2017-03-01

    The distribution of potassium (K+) ions on air-cleaved mica is important in many interfacial phenomena such as crystal growth, self-assembly and charge transfer on mica. However, due to experimental limitations to nondestructively probe single ions and ionic domains, their exact lateral organization is yet unknown. We show, by the use of graphene as an ultra-thin protective coating and scanning probe microscopies, that single potassium ions form ordered structures that are covered by an ice layer. The K+ ions prefer to minimize the number of nearest neighbour K+ ions by forming row-like structures as well as small domains. This trend is a result of repulsive ionic forces between adjacent ions, weakened due to screening by the surrounding water molecules. Using high resolution conductive atomic force microscopy maps, the local conductance of the graphene is measured, revealing a direct correlation between the K+ distribution and the structure of the ice layer. Our results shed light on the local distribution of ions on the air-cleaved mica, solving a long-standing enigma. They also provide a detailed understanding of charge transfer from the ionic domains towards graphene.

  20. Graphene Visualizes the Ion Distribution on Air-Cleaved Mica

    PubMed Central

    Bampoulis, Pantelis; Sotthewes, Kai; Siekman, Martin H.; Zandvliet, Harold J. W.; Poelsema, Bene

    2017-01-01

    The distribution of potassium (K+) ions on air-cleaved mica is important in many interfacial phenomena such as crystal growth, self-assembly and charge transfer on mica. However, due to experimental limitations to nondestructively probe single ions and ionic domains, their exact lateral organization is yet unknown. We show, by the use of graphene as an ultra-thin protective coating and scanning probe microscopies, that single potassium ions form ordered structures that are covered by an ice layer. The K+ ions prefer to minimize the number of nearest neighbour K+ ions by forming row-like structures as well as small domains. This trend is a result of repulsive ionic forces between adjacent ions, weakened due to screening by the surrounding water molecules. Using high resolution conductive atomic force microscopy maps, the local conductance of the graphene is measured, revealing a direct correlation between the K+ distribution and the structure of the ice layer. Our results shed light on the local distribution of ions on the air-cleaved mica, solving a long-standing enigma. They also provide a detailed understanding of charge transfer from the ionic domains towards graphene. PMID:28262710

  1. Air traffic control by distributed management in a MLS environment

    NASA Technical Reports Server (NTRS)

    Kreifeldt, J. G.; Parkin, L.; Hart, S.

    1977-01-01

    The microwave landing system (MLS) is a technically feasible means for increasing runway capacity since it could support curved approaches to a short final. The shorter the final segment of the approach, the wider the variety of speed mixes possible so that theoretically, capacity would ultimately be limited by runway occupance time only. An experiment contrasted air traffic control in a MLS environment under a centralized form of management and under distributed management which was supported by a traffic situation display in each of the 3 piloted simulators. Objective flight data, verbal communication and subjective responses were recorded on 18 trial runs lasting about 20 minutes each. The results were in general agreement with previous distributed management research. In particular, distributed management permitted a smaller spread of intercrossing times and both pilots and controllers perceived distributed management as the more 'ideal' system in this task. It is concluded from this and previous research that distributed management offers a viable alternative to centralized management with definite potential for dealing with dense traffic in a safe, orderly and expeditious manner.

  2. A Comparison of Simulation Capabilities for Ducts

    SciTech Connect

    Miller, William A.; Smith, Matt K.; Gu, Lixing; New, Joshua Ryan

    2014-11-01

    Typically, the cheapest way to install a central air conditioning system in residential buildings is to place the ductwork in the attic. Energy losses due to duct-attic interactions can be great, but current whole-house models are unable to capture the dynamic multi-mode physics of the interactions. The building industry is notoriously fragmented and unable to devote adequate research resources to solve this problem. Builders are going to continue to put ducts in the attic because floor space is too expensive to closet them within living space, and there are both construction and aesthetic issues with other approaches such as dropped ceilings. Thus, there is a substantial need to publicly document duct losses and the cost of energy used by ducts in attics so that practitioners, builders, homeowners and state and federal code officials can make informed decisions leading to changes in new construction and additional retrofit actions. Thus, the goal of this study is to conduct a comparison of AtticSim and EnergyPlus simulation algorithms to identify specific features for potential inclusion in EnergyPlus that would allow higher-fidelity modeling of HVAC operation and duct transport of conditioned air. It is anticipated that the resulting analysis from these simulation tools will inform energy decisions relating to the role of ducts in future building energy codes and standards.

  3. Air Quality Impact of Distributed Generation of Electricity

    NASA Astrophysics Data System (ADS)

    Jing, Qiguo

    This dissertation summarizes the results of a five-year investigation of the impact of distributed generation (DG) of electricity on air quality in urban areas. I focused on the impact of power plants with capacities of less than 50 MW, which is typical of DG units in urban areas. These power plants are modeled as buoyant emissions from stacks less than 10 m situated in the midst of urban buildings. Because existing dispersion models are not designed for such sources, the first step of the study involved the evaluation of AERMOD, USEPA's state-of-the art dispersion model, with data collected in a tracer study conducted in the vicinity of a DG unit. The second step of the study consisted of using AERMOD to compare the impact of DG penetration in the South Coast Air Basin of Los Angeles with the impact of replacing DG generation with expansion of current central power plant capacity. The third topic of my investigation is the development and application of a model to examine the impact of non-power plant sources in a large urban area such as Los Angeles. This model can be used to estimate the air quality impact of DG relative to other sources in an urban area. The first part of this dissertation describes a tracer study conducted in Palm Springs, CA. Concentrations observed during the nighttime experiments are generally higher than those measured during the daytime experiments. They fall off less rapidly with distance than during the daytime. AERMOD provides an adequate description of concentrations associated with the buoyant releases from the DG during the daytime when turbulence is controlled by convection induced by solar heating. However, AERMOD underestimates concentrations during the night when turbulence is generated by wind shear. Also, AERMOD predicts a decrease in concentrations with distance that is much more rapid than the relatively flat observed decrease. I have suggested modifications to AERMOD to improve the agreement between model estimates and

  4. Silencing using flexible plate in a duct

    NASA Astrophysics Data System (ADS)

    Ramamoorthy, Sripriya; Grosh, Karl; Nawar, Tony G.

    2002-11-01

    A flexible plate interacting with air in a duct can provide passive means for low frequency broadband transmission loss. The sensitivity of the system to various parameters including unintentionally applied tension, effect of external fluid loading, lateral plate cross modes, structural and acoustic boundary condition are analyzed through experimental measurements and theoretical predictions. In order to avoid breakout noise, a backing cavity can be introduced below the plate. This introduces differences in filtering characteristics. Compared to plate in a single duct, the two-duct system will have higher plate resonance frequencies due to cavity loading on the plate. Means to achieve low frequency broadband transmission loss using two-duct silencers will be discussed. Significance of three dimensionality of the problem will be brought out by comparing the results of three-dimensional finite-element analysis with experimental data. Successful designs and experiments for low frequency attenuation will be presented. [Work supported by NSF and ONR.

  5. Development testing of throttleable ducted rockets

    NASA Astrophysics Data System (ADS)

    Besser, Hans-Ludwig

    1992-09-01

    Throttleability, being a current requirement for modern air-breathing missile propulsion systems, adds considerable complexity to the development of ducted rockets. Problems are especially inherent in the development of the following: (1) pressure sensitive propellants; (2) hot gas valves (especially for particle laden flow); and (3) ramcombustors featuring high performance over widely varying operating conditions. The use of propellant ingredients with high heating value but unfavorable combustion characteristics, like boron, is an additional challenge in the development of high energy ducted rocket systems. Extensive testing and a well conceived test philosophy are needed to achieve satisfactory development results. MBB, together with its subsidiary Bayem-Chemie, has been engaged in the field of throttleable ducted rockets for more than a decade. This paper summarizes test procedures which were established to address the strongly interrelated development problems and presents examples of test results derived from the development of a ducted rocket engine for a supersonic antiship missile.

  6. Turbofan aft duct suppressor study program listing and user's guide

    NASA Technical Reports Server (NTRS)

    Joshi, M. C.; Kraft, R. E.

    1983-01-01

    A description of the structure of the Annular Flow Duct Program (AFDP) for the calculation of acoustic suppression due to treatment in a finite length annular duct carrying sheared flow is presented. Although most appropriate for engine exhaust ducts, this program can be used to study sound propagation in any duct that maintains annular geometry over a considerable length of the duct. The program is based on the modal analysis of sound propagation in ducts with axial segments of different wall impedances. For specified duct geometry, wall impedance, flow and acoustic conditions in the duct (including mode amplitude distribution of the source) and duct termination reflection characteristics, the program calculates the suppression due to the treatment in the duct. The presence of forward and backward traveling modes in the duct due to the reflection and redistribution of modes at segment interfaces and duct end terminations are taken into account in the calculations. The effects of thin wall boundary layers (with a linear or mean flow velocity profile) on the acoustic propagation are also included in the program. A functional description of the major subroutines is included and a sample run is provided with an explanation of the output.

  7. Magnetospheric whistler ducts observed by ISIS satellites

    NASA Technical Reports Server (NTRS)

    Ondoh, T.

    1976-01-01

    The latitudinal width of the magnetospheric whistler duct has been estimated by the first and final invariant latitudes of whistler echoes and the conservation of the magnetic flux for the centered dipole field, using 105 whistler echoes in ISIS VLF data received at Kashima, Japan for 1972-1973. The latitudinal distribution of whistler duct occurrence shows a maximum at invariant latitudes of 40-45 degrees near the maximum occurrence latitude of ground whistlers. The radial width of magnetospheric whistler duct in the geomagnetically equatorial plane increases with invariant latitude of the geomagnetic flux tube in which whistlers propagate.

  8. Lightweight Valve Closes Duct Quickly

    NASA Technical Reports Server (NTRS)

    Fournier, Walter L.; Burgy, N. Frank

    1991-01-01

    Expanding balloon serves as lightweight emergency valve to close wide duct. Uninflated balloon stored in housing of duct. Pad resting on burst diaphragm protects balloon from hot gases in duct. Once control system triggers valve, balloon inflates rapidly to block duct. Weighs much less than does conventional butterfly, hot-gas, or poppet valve capable of closing duct of equal diameter.

  9. Depth Distribution Of The Maxima Of Extensive Air Shower

    NASA Technical Reports Server (NTRS)

    Adams, J. H.; Howell, L. W.

    2003-01-01

    Observations of the extensive air showers from space can be free from interference by low altitude clouds and aerosols if the showers develop at a sufficiently high altitude. In this paper we explore the altitude distribution of shower maxima to determine the fraction of all showers that will reach their maxima at sufficient altitudes to avoid interference from these lower atmosphere phenomena. Typically the aerosols are confined within a planetary boundary layer that extends from only 2-3 km above the Earth's surface. Cloud top altitudes extend above 15 km but most are below 4 km. The results reported here show that more than 75% of the showers that will be observed by EUSO have maxima above the planetary boundary layer. The results also show that more than 50% of the showers that occur on cloudy days have their maxima above the cloud tops.

  10. Experiments measuring particle deposition from fully developed turbulent flow in ventilation ducts

    SciTech Connect

    Sippola, Mark R.; Nazaroff, William W.

    2003-08-01

    Particle deposition in ventilation ducts influences particle exposures of building occupants and may lead to a variety of indoor air quality concerns. Experiments have been performed in a laboratory to study the effects of particle size and air speed on deposition rates of particles from turbulent air flows in galvanized steel and internally insulated ducts with hydraulic diameters of 15.2 cm. The duct systems were constructed of materials typically found in commercial heating, ventilating and air conditioning (HVAC) systems. In the steel duct system, experiments with nominal particle sizes of 1, 3, 5, 9 and 16 {micro}m were conducted at each of three nominal air speeds: 2.2, 5.3 and 9.0 m/s. In the insulated duct system, deposition rates of particles with nominal sizes of 1, 3, 5, 8 and 13 {micro}m were measured at nominal air speeds of 2.2, 5.3 and 8.8 m/s. Fluorescent techniques were used to directly measure the deposition velocities of monodisperse fluorescent particles to duct surfaces (floor, wall and ceiling) at two straight duct sections where the turbulent flow profile was fully developed. In steel ducts, deposition rates were higher to the duct floor than to the wall, which were, in turn, greater than to the ceiling. In insulated ducts, deposition was nearly the same to the duct floor, wall and ceiling for a given particle size and air speed. Deposition to duct walls and ceilings was greatly enhanced in insulated ducts compared to steel ducts. Deposition velocities to each of the three duct surface orientations in both systems were found to increase with increasing particle size or air velocity over the ranges studied. Deposition rates measured in the current experiments were in general agreement with the limited observations of similar systems by previous researchers.

  11. Compact Buried Ducts in a Hot-Humid Climate House

    SciTech Connect

    Mallay, Dave

    2016-01-07

    "9A system of compact, buried ducts provides a high-performance and cost-effective solution for delivering conditioned air throughout the building. This report outlines research activities that are expected to facilitate adoption of compact buried duct systems by builders. The results of this research would be scalable to many new house designs in most climates and markets, leading to wider industry acceptance and building code and energy program approval. The primary research question with buried ducts is potential condensation at the outer jacket of the duct insulation in humid climates during the cooling season. Current best practices for buried ducts rely on encapsulating the insulated ducts with closed-cell spray polyurethane foam insulation to control condensation and improve air sealing. The encapsulated buried duct concept has been analyzed and shown to be effective in hot-humid climates. The purpose of this project is to develop an alternative buried duct system that performs effectively as ducts in conditioned space - durable, energy efficient, and cost-effective - in a hot-humid climate (IECC warm-humid climate zone 3A) with three goals that distinguish this project: 1) Evaluation of design criteria for buried ducts that use common materials and do not rely on encapsulation using spray foam or disrupt traditional work sequences; 2) Establishing design criteria for compact ducts and incorporate those with the buried duct criteria to further reduce energy losses and control installed costs; 3) Developing HVAC design guidance for performing accurate heating and cooling load calculations for compact buried ducts.

  12. Field Test of Room-to-Room Uniformity of Ventilation Air Distribution in Two New Houses

    SciTech Connect

    Hendron, Robert; Anderson, Ren; Barley, Dennis; Rudd, Armin; Townsend, Aaron; Hancock, Ed

    2006-12-01

    This report describes a field test to characterize the uniformity of room-to-room ventilation air distribution under various operating conditions by examining multi-zone tracer gas decay curves and calculating local age-of-air.

  13. Clean Air Act Standards and Guidelines for Chemical Production and Distribution

    EPA Pesticide Factsheets

    This page contains the stationary sources of air pollution for the chemical production & distribution industries, and their corresponding air pollution regulations. To learn more about the regulations for each industry, just click on the links below.

  14. The Energy Implications of Air-Side Fouling in Constant Air Volume HVAC Systems

    NASA Astrophysics Data System (ADS)

    Wilson, Eric J. H.

    2011-12-01

    heating and cooling energy, and ranges from 7% in Los Angeles, CA to 13% in Fairbanks, AK. These results assume a leaky and uninsulated duct system. The potential for savings from cleaning decreases if duct insulation is in place or sealing has been performed. The potential for energy savings is directly related to the distribution system's thermal efficiency, with air conditioner performance also playing a minor role. Results for small commercial buildings with constant air volume HVAC systems and leaky and uninsulated duct systems span a wider range: from -12% in Miami, FL to 30% in Minneapolis, MN. However, for improved ducts or ducts in the conditioned space, small commercial HVAC source energy savings is always negative (down to -17%) for flowrates degradation in the 0--40% range. The sensitivity of these results to duct characteristics (location, leakage, and insulation) and the after-cleaning flowrate, as it varies from an ideal flowrate, was also evaluated. Energy savings can reach up to 80% for some scenarios where clean airflow is severely restricted down to 20% of ideal by poor duct layout or other obstructions not removable by cleaning. In addition, a simplified spreadsheet tool was developed for technicians to use in the field to estimate potential savings resulting from a system cleaning. Measuring the temperature rise across the furnace was found to give less uncertainty than measuring the pressure rise and assuming a fan curve. Despite the uncertainty, the tool can give a general idea of the range of savings possible under various conditions.

  15. SNM holdup assessment of Los Alamos exhaust ducts. Final report

    SciTech Connect

    Marshall, R.S.

    1994-02-01

    Fissile material holdup in glovebox and fume hood exhaust ducting has been quantified for all Los Alamos duct systems. Gamma-based, nondestructive measurements were used to quantify holdup. The measurements were performed during three measurement campaigns. The first campaign, Phase I, provided foot-by-foot, semiquantitative measurement data on all ducting. These data were used to identify ducting that required more accurate (quantitative) measurement. Of the 280 duct systems receiving Phase I measurements, 262 indicated less than 50 g of fissile holdup and 19 indicated fissile holdup of 50 or more grams. Seven duct systems were measured in a second campaign, called Series 1, Phase II. Holdup estimates on these ducts ranged from 421 g of {sup 235}U in a duct servicing a shut-down uranium-machining facility to 39 g of {sup 239}Pu in a duct servicing an active plutonium-processing facility. Measurements performed in the second campaign proved excessively laborious, so a third campaign was initiated that used more efficient instrumentation at some sacrifice in measurement quality. Holdup estimates for the 12 duct systems measured during this third campaign ranged from 70 g of {sup 235}U in a duct servicing analytical laboratories to 1 g of {sup 235}U and 1 g of {sup 239}Pu in a duct carrying exhaust air to a remote filter building. These quantitative holdup estimates support the conclusion made at the completion of the Phase I measurements that only ducts servicing shut-down uranium operations contain about 400 g of fissile holdup. No ventilation ducts at Los Alamos contain sufficient fissile material holdup to present a criticality safety concern.

  16. Preliminary analysis of hub and spoke air freight distribution system

    NASA Technical Reports Server (NTRS)

    Whitehead, A. H., Jr.

    1978-01-01

    A brief analysis is made of the hub and spoke air freight distribution system which would employ less than 15 hub centers world wide with very large advanced distributed-load freighters providing the line-haul delivery between hubs. This system is compared to a more conventional network using conventionally-designed long-haul freighters which travel between numerous major airports. The analysis calculates all of the transportation costs, including handling charges and pickup and delivery costs. The results show that the economics of the hub/spoke system are severely compromised by the extensive use of feeder aircraft to deliver cargo into and from the large freighter terminals. Not only are the higher costs for the smaller feeder airplanes disadvantageous, but their use implies an additional exchange of cargo between modes compared to truck delivery. The conventional system uses far fewer feeder airplanes, and in many cases, none at all. When feeder aircraft are eliminated from the hub/spoke system, however, that system is universally more economical than any conventional system employing smaller line-haul aircraft.

  17. Laboratory air bubble generation of various size distributions

    SciTech Connect

    Puleo, Jack A.; Johnson, Rex V.; Kooney, Tim N.

    2004-11-01

    Air bubble size in aqueous environments is an important factor governing natural processes ranging from fluid/atmosphere gas transfer to noise production. Bubbles are also known to affect various scientific instruments. In this study we investigate the production capability of eight inexpensive bubble generators using optical imaging techniques. Specific emphasis is directed towards determining bubble size and distribution for a given device, flow conditions, and type of water used (fresh vs salt). In almost all cases tested here, bubbles produced in salt water were more numerous, and smaller than for the same bubbler and conditions in fresh water. For porous media, the finer the pore size, the smaller the bubble produced with some variation depending on thickness of material containing the pore and water type. While no single generator tested was capable of spanning all the bubble sizes observed (100 to 6000 microns), the data contained herein will enable proper choice of bubbler or combinations thereof for future studies depending on the size and distribution of bubbles required.

  18. Ducted auroral kilometric radiation

    NASA Technical Reports Server (NTRS)

    Calvert, W.

    1982-01-01

    Certain discrete, intense wave signals attributed to auroral kilometric radiation (AKR) were observed with ISEE-l while it was within the plasmaspheric shadow zone for direct propagation. It is believed that wave ducting by thin depletions of the plasma density aligned with the magnetic field accounts for such signals, and that their discrete nature is caused by the satellite intercepting individual ducts. These ducts, which were also observed as coincident decreases of the upper hybrid resonance frequency, appeared to be twenty-percent depletions roughly one hundred kilometers across. The AKR, which is emitted approximately perpendicular to the magnetic field, apparently entered these ducts equatorward of the source after the waves had been refracted parallel to the duct axis. A diffuse background was also observed which is consistent with the leakage from similar ducts at lower L-values. These observations establish the existence of ducted AKR, its signature on the satellite wave spectrograms, and new evidence for depletion ducts within the plasmasphere.

  19. Duct Leakage Repeatability Testing

    SciTech Connect

    Walker, Iain; Sherman, Max

    2014-01-01

    Duct leakage often needs to be measured to demonstrate compliance with requirements or to determine energy or Indoor Air Quality (IAQ) impacts. Testing is often done using standards such as ASTM E1554 (ASTM 2013) or California Title 24 (California Energy Commission 2013 & 2013b), but there are several choices of methods available within the accepted standards. Determining which method to use or not use requires an evaluation of those methods in the context of the particular needs. Three factors that are important considerations are the cost of the measurement, the accuracy of the measurement and the repeatability of the measurement. The purpose of this report is to evaluate the repeatability of the three most significant measurement techniques using data from the literature and recently obtained field data. We will also briefly discuss the first two factors. The main question to be answered by this study is to determine if differences in the repeatability of these tests methods is sufficient to indicate that any of these methods is so poor that it should be excluded from consideration as an allowed procedure in codes and standards.

  20. Distribution Characteristics of Air-Bone Gaps – Evidence of Bias in Manual Audiometry

    PubMed Central

    Margolis, Robert H.; Wilson, Richard H.; Popelka, Gerald R.; Eikelboom, Robert H.; Swanepoel, De Wet; Saly, George L.

    2015-01-01

    Objective Five databases were mined to examine distributions of air-bone gaps obtained by automated and manual audiometry. Differences in distribution characteristics were examined for evidence of influences unrelated to the audibility of test signals. Design The databases provided air- and bone-conduction thresholds that permitted examination of air-bone gap distributions that were free of ceiling and floor effects. Cases with conductive hearing loss were eliminated based on air-bone gaps, tympanometry, and otoscopy, when available. The analysis is based on 2,378,921 threshold determinations from 721,831 subjects from five databases. Results Automated audiometry produced air-bone gaps that were normally distributed suggesting that air- and bone-conduction thresholds are normally distributed. Manual audiometry produced air-bone gaps that were not normally distributed and show evidence of biasing effects of assumptions of expected results. In one database, the form of the distributions showed evidence of inclusion of conductive hearing losses. Conclusions Thresholds obtained by manual audiometry show tester bias effects from assumptions of the patient’s hearing loss characteristics. Tester bias artificially reduces the variance of bone-conduction thresholds and the resulting air-bone gaps. Because the automated method is free of bias from assumptions of expected results, these distributions are hypothesized to reflect the true variability of air- and bone-conduction thresholds and the resulting air-bone gaps. PMID:26627469

  1. Cold air systems: Sleeping giant

    SciTech Connect

    MacCracken, C.D. )

    1994-04-01

    This article describes how cold air systems help owners increase the profits from their buildings by reducing electric costs and improving indoor air quality through lower relative humidity levels. Cold air distribution involves energy savings, cost savings, space savings, greater comfort, cleaner air, thermal storage, tighter ducting, coil redesign, lower relative humidities, retrofitting, and improved indoor air quality (IAQ). It opens a door for architects, engineers, owners, builders, environmentalists, retrofitters, designers, occupants, and manufacturers. Three things have held up cold air's usage: multiple fan-powered boxes that ate up the energy savings of primary fans. Cold air room diffusers that provided inadequate comfort. Condensation from ducts, boxes, and diffusers. Such problems have been largely eliminated through research and development by utilities and manufacturers. New cold air diffusers no longer need fan powered boxes. It has also been found that condensation is not a concern so long as the ducts are located in air conditioned space, such as drop ceilings or central risers, where relative humidity falls quickly during morning startup.

  2. Air velocity distribution in a commercial broiler house

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing air velocity during tunnel ventilation in commercial broiler production facilities improves production efficiency, and many housing design specifications require a minimum air velocity. Air velocities are typically assessed with a hand-held velocity meter at random locations, rather than ...

  3. AIR TEMPERATURE DISTRIBUTION IN SEED COTTON DRYING SYSTEMS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ten tests were conducted in the fall of 2007 to measure air temperature variation within various heated air seed cotton drying systems with the purpose of: checking validation of recommendations by a professional engineering society and measuring air temperature variation across the airflow ductwork...

  4. Investigation of the tone-burst tube for duct lining attenuation measurement

    NASA Technical Reports Server (NTRS)

    Soffel, A. R.; Morrow, P. F.

    1972-01-01

    The tone burst technique makes practical the laboratory evaluation of potential inlet and discharge duct treatments. Tone burst apparatus requires only simple machined parts and standard components. Small, simply made, lining samples are quickly and easily installed in the system. Two small electromagnetric loudspeaker drivers produce peak sound pressure level of over 166 db in the 3-square-inch sample duct. Air pump available in most laboratories can produce air flows of over plus and minus Mach 0.3 in the sample duct. The technique uses short shaped pulses of sound propagated down a progressive wave tube containing the sample duct. The peak pressure level output of the treated duct is compared with the peak pressure level output of a substituted reference duct. The difference between the levels is the attenuation or insertion loss of the treated duct. Evaluations of resonant absorber linings by the tone burst technique check attenuation values predicted by empirical formulas based on full scale ducts.

  5. Advanced Air Transportation Technologies (AATT) Project: Distributed Air-Ground Traffic Management

    NASA Technical Reports Server (NTRS)

    Mogford, Richard; Green, Steve; Ballin, Mark

    2002-01-01

    This viewgraph presentation provides an overview of active Distributed Air Ground Traffic Management (DAG-TM) work and reported on its overall progress to date. It does not include details on the concept elements (CEs).The DAG-TM research project is defined as a concept development and definition project and no tools will be delivered. Of the 14 CEs, three are being explored actively: CE-5, CE-6, and CE-11. Overviews of CE-5 (Free Maneuvering for User-Preferred Separation Assurance and Local TFM Conformance), CE-6 (En Route and Transition Trajectory Negotiation for User-Preferred Separation and Local TFM Conformance) and CE-11 (Self-Spacing for Merging and In-Trail Separation) are presented.

  6. 40. VIEW INTO MST CUPOLA FROM STATION 124. DUCT HEATER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    40. VIEW INTO MST CUPOLA FROM STATION 124. DUCT HEATER FOR STATION 135 AT TOP LEFT OF PHOTOGRAPH. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  7. Heat Pump Water Heater Ducting Strategies with Encapsulated Attics in Climate Zones 2 and 4

    SciTech Connect

    Sweet, M. L.; Francisco, A.; Roberts, S. G.

    2016-05-01

    The focus of this study is on the performance of HPWHs with several different duct configurations and their effects on whole building heating, cooling, and moisture loads. A.O. Smith 60 gallon Voltex (PHPT-60) heat pump water heaters (HPWHs) were included at two project sites and ducted to or located within spray foamed encapsulated attics. The effect of ducting a HPWH's air stream does not diminish its efficiency if the ducting does not reduce intake air temperature, which expands HPWH application to confined areas. Exhaust ducts should be insulated to avoid condensation on the exterior, however this imposes a risk of condensation occurring in the duct's interior near the HPWH due to large variation of temperatures between the compressor and the duct and the presence of bulk moisture around the condenser. The HPWH's air conditioning impact on HVAC equipment loads is minimal when the intake and exhaust air streams are connected to a sealed attic and not the living space. A HPWH is not suitable as a replacement dehumidifier in sealed attics as peak moisture loads were observed to only be reduced if the heat pump operated during the morning. It appears that the intake air temperature and humidity was the most dominant variable affecting HPWH performance. Different ducting strategies such as exhaust duct only, intake duct only, and exhaust and intake ducting did not have any effect on HPWH performance.

  8. Evaluation of PEGIT duct connection system

    SciTech Connect

    Walker, Iain S.; Brenner, Douglas E.; Sherman, Max H.; Dickerhoff, Darryl J.

    2003-08-01

    Most air duct system components are assembled in the field and are mechanically fastened by sheet metal screws (for sheet metal-to-sheet metal) or by drawbands (for flex duct-to-sheet metal). Air sealing is separate from this mechanical fastening and is usually achieved using tape or mastic products after mechanical fastening. Field observations have shown that mechanical fastening rarely meets code or manufacturers requirements and that sealing procedures are similarly inconsistent. To address these problems, Proctor Engineering Group (PEG) is developing a system of joining ducts (called PEGIT) that combines the mechanical fastening and sealing into a single self-contained procedure. The PEGIT system uses a shaped flexible seal between specially designed sheet metal duct fittings to both seal and fasten duct sections together. Figure 1 shows the inner duct fitting complete with rubber seal. This seal provides the air seal for the completed fitting and is shaped to allow the inner and outer fittings to slide together, and then to lock the fittings in place. The illustration in Figure 2 shows the approximate cross section of the rubber seal that shows how the seal has a lip that is angled backwards. This angled lip allows the joint to be pushed together by folding flat but then its long axis makes it stiff in the pulling apart direction. This study was undertaken to assist PEG in some of the design aspects of this system and to test the performance of the PEGIT system. This study was carried out in three phases. The initial phase evaluated the performance of a preliminary seal design for the PEGIT system. After the first phase, the seal was redesigned and this new seal was evaluated in the second phase of testing. The third phase performed more detailed testing of the second seal design to optimize the production tolerances of the sheet metal fittings. This report summarizes our findings from the first two phases and provides details about the third phase of testing.

  9. Air velocity distributions inside tree canopies from a variable-rate air-assisted sprayer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A variable-rate, air assisted, five-port sprayer had been in development to achieve variable discharge rates of both liquid and air. To verify the variable air rate capability by changing the fan inlet diameter of the sprayer, air jet velocities impeded by plant canopies were measured at various loc...

  10. An outbreak of Serratia marcescens infection in a special-care baby unit of a community hospital in United Arab Emirates: the importance of the air conditioner duct as a nosocomial reservoir.

    PubMed

    Uduman, S A; Farrukh, A S; Nath, K N R; Zuhair, M Y H; Ifrah, A; Khawla, A D; Sunita, P

    2002-11-01

    We report an outbreak of Serratia marcescens infection in a special-care baby unit (SCBU) of a university-affiliated community hospital in the United Arab Emirates. The outbreak involved 36 infants and lasted for 20 weeks. Seven of the colonized infants developed invasive illnesses in the form of bacteraemia (four cases), bacteraemic meningitis (two) and clinical sepsis (one). Three other term infants had purulent conjunctivitis. There were five deaths with an overall mortality of 14%. S. marcescens was cultured from airflow samples from the air conditioning (AC) which was the reservoir of infection in this outbreak. Elimination of the nosocomial source and outbreak containment were eventually achieved by specialized robotic cleaning of the entire AC duct system of the SCBU. Strict adherence to the infection control policies was reinforced to prevent transmission of cross-infection.

  11. Cystic duct carcinoma mimicking a middle bile duct tumour

    PubMed Central

    Francisco, Elsa; Mendes, Miguel; Vale, Sílvio; Esteves, Joana

    2015-01-01

    Cystic duct carcinoma was defined by Farrar as a tumour restricted to the cystic duct, making it a rare disease. The authors describe a case of a cystic duct carcinoma that fulfils Farrar’s strict diagnostic criteria and that became clinically relevant by compressing the common hepatic duct, thus causing cholestasis. A cholecystectomy was performed with en bloc resection of the cystic and extrahepatic bile duct with a regional lymphadenectomy. PMID:25819819

  12. Mixing characteristics of a ducted, elliptical jet with dump

    SciTech Connect

    Schadow, K.C.; Wilson, K.J.; Parr, D.M.; Gutmark, E.

    1986-01-01

    Mixing between elliptical ducted air-jets with dump and nitrogen radially injected through the duct walls was experimentally studied using hot-wire anemometry and gas-sampling techniques. Mixing was considerably increased when the air-jet was issued from elliptical relative to circular jet-exit cross-sections. Elliptical jets issued from orifices provided better mixing than issued from pipes. Additional mixing enhancement was achieved when the elliptical jets were acoustically forced by excited resonant pressure waves of the duct. The mean and turbulence velocity measurements provided insight into the mechanism of the observed mixing enhancement.

  13. The probability distribution model of air pollution index and its dominants in Kuala Lumpur

    NASA Astrophysics Data System (ADS)

    AL-Dhurafi, Nasr Ahmed; Razali, Ahmad Mahir; Masseran, Nurulkamal; Zamzuri, Zamira Hasanah

    2016-11-01

    This paper focuses on the statistical modeling for the distributions of air pollution index (API) and its sub-indexes data observed at Kuala Lumpur in Malaysia. Five pollutants or sub-indexes are measured including, carbon monoxide (CO); sulphur dioxide (SO2); nitrogen dioxide (NO2), and; particulate matter (PM10). Four probability distributions are considered, namely log-normal, exponential, Gamma and Weibull in search for the best fit distribution to the Malaysian air pollutants data. In order to determine the best distribution for describing the air pollutants data, five goodness-of-fit criteria's are applied. This will help in minimizing the uncertainty in pollution resource estimates and improving the assessment phase of planning. The conflict in criterion results for selecting the best distribution was overcome by using the weight of ranks method. We found that the Gamma distribution is the best distribution for the majority of air pollutants data in Kuala Lumpur.

  14. Advanced air distribution: improving health and comfort while reducing energy use.

    PubMed

    Melikov, A K

    2016-02-01

    Indoor environment affects the health, comfort, and performance of building occupants. The energy used for heating, cooling, ventilating, and air conditioning of buildings is substantial. Ventilation based on total volume air distribution in spaces is not always an efficient way to provide high-quality indoor environments at the same time as low-energy consumption. Advanced air distribution, designed to supply clean air where, when, and as much as needed, makes it possible to efficiently achieve thermal comfort, control exposure to contaminants, provide high-quality air for breathing and minimizing the risk of airborne cross-infection while reducing energy use. This study justifies the need for improving the present air distribution design in occupied spaces, and in general the need for a paradigm shift from the design of collective environments to the design of individually controlled environments. The focus is on advanced air distribution in spaces, its guiding principles and its advantages and disadvantages. Examples of advanced air distribution solutions in spaces for different use, such as offices, hospital rooms, vehicle compartments, are presented. The potential of advanced air distribution, and individually controlled macro-environment in general, for achieving shared values, that is, improved health, comfort, and performance, energy saving, reduction of healthcare costs and improved well-being is demonstrated. Performance criteria are defined and further research in the field is outlined.

  15. Primary zone air proportioner

    DOEpatents

    Cleary, Edward N. G.

    1982-10-12

    An air proportioner is provided for a liquid hydrocarbon fueled gas turbine of the type which is convertible to oil gas fuel and to coal gas fuel. The turbine includes a shell for enclosing the turbine, an air duct for venting air in said shell to a gasifier, and a fuel injector for injecting gasified fuel into the turbine. The air proportioner comprises a second air duct for venting air from the air duct for mixing with fuel from the gasifier. The air can be directly injected into the gas combustion basket along with the fuel from the injector or premixed with fuel from the gasifier prior to injection by the fuel injector.

  16. Velocity and pressure distribution behind bodies in an air current

    NASA Technical Reports Server (NTRS)

    Betz, A

    1924-01-01

    The following experiments on the air flow behind bodies were made for the purpose of assisting in the explanation of the phenomena connected with air resistance. The first two series of experiments dealt with the phenomena behind a cylinder. The third series of experiments was carried out behind a streamlined strut.

  17. Film condensation in a horizontal rectangular duct

    NASA Technical Reports Server (NTRS)

    Lu, Qing; Suryanarayana, N. V.

    1993-01-01

    Condensation heat transfer in a horizontal rectangular duct was experimentally and analytically investigated. To prevent the dripping of condensate on the film, the experiment was conducted inside a horizontal rectangular duct with vapor condensing only on the bottom cooled plate of the duct. R-113 and FC-72 (Fluorinert Electronic Fluid developed by the 3M Company) were used as the condensing fluids. The experimental program included measurements of film thickness, local and average heat transfer coefficients, wave length, wave speed, and a study of wave initiation. The measured film thickness was used to obtain the local heat transfer coefficient. The wave initiation was studied both with condensation and with an adiabatic air-liquid flow. The test sections used in both experiments were identical.

  18. 14 CFR 25.1091 - Air induction.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... operating surfaces from being directed into the engine or auxiliary power unit air inlet ducts in hazardous quantities, and the air inlet ducts must be located or protected so as to minimize the ingestion of...

  19. Leakage diagnostics, sealant longevity, sizing and technologytransfer in residential thermal distribution systems: Part II.Residential thermal Distribution Systesm, Phase VI FinalReport

    SciTech Connect

    Buchanan, C.; Modera, M.; Sherman, M.; Siegel, J.; Walker, I.; Wang, D.

    1998-12-01

    This report builds on and extends our previous efforts as described in "Leakage Diagnostics, Sealant Longevity, Sizing and Technology Transfer in Residential Thermal Distribution Systems- CIEE Residential Thermal Distribution Systems Phase V Final Report, October 1997". New developments include defining combined duct and equipment efficiencies in a concept called "Tons At the Register" and on performance issues related to field use of the aerosol sealant technology. Some of the key results discussed in this report include: o Register, boot and air handler cabinet leakage can often represent a significant fraction of the total duct leakage in new construction. Because of the large range of pressures in duct systems an accurate characterization may require separating these components through improved leakage testing. o Conventional duct tape failed our accelerated longevity testing and is not, therefore, considered generally acceptable for use in sealing duct systems. Many other tapes and sealing approaches are available and practical and have passed our longevity tests. o Simulations of summer temperature pull-down time have shown that duct system improvements can be combined with equipment downsizing to save first cost, energy consumption, and peak power and still provide equivalent or superior comfort. o Air conditioner name plate capacity ratings alone are a poor indicator of how much cooling will actually be delivered to the conditioned space. Duct system efficiency can have as large an impact on performance as variations in SEER. o Mechanical duct cleaning techniques do not have an adverse impact on the ducts sealed with the Aerosol sealant. The material typically used in Aerosol sealing techniques does not appear to present a health or safety hazard. Results from this study were used by the California Energy Commission in the formation of the current Energy Efficiency Standards for Low-Rise Residential Buildings (CEC, (1998)), often referred to as Title 24

  20. Building America Case Study: Evaluating Through-Wall Air Transfer Fans, Pittsburgh, Pennsylvania (Fact Sheet)

    SciTech Connect

    Not Available

    2014-10-01

    In this project, Building America team IBACOS performed field testing in a new construction unoccupied test house in Pittsburgh, Pennsylvania to evaluate heating, ventilating, and air conditioning (HVAC) distribution systems during heating, cooling, and midseason conditions. Four air-based HVAC distribution systems were assessed:-a typical airflow ducted system to the bedrooms, a low airflow ducted system to the bedrooms, a system with transfer fans to the bedrooms, and a system with no ductwork to the bedrooms. The relative ability of each system was considered with respect to relevant Air Conditioning Contractors of America and ASHRAE standards for house temperature uniformity and stability, respectively.

  1. Clean Air Act Section 112(r) Inspection Guidance Distribution Memorandum

    EPA Pesticide Factsheets

    This memorandum issues and makes immediately effective the document, Guidance for Conducting Risk Management Program Inspections under Clean Air Act Section 112(r), which supersedes the 1999 document on auditing risk management plans/programs.

  2. THERMAL REGAIN FROM DISPLACEMENT OF DUCT LEAKAGE WITHIN INSULATION.

    SciTech Connect

    ANDREWS,J.W.

    2002-05-01

    In one type of duct efficiency retrofit, additional insulation is added to a duct system that is already insulated. For example, a layer of R-4 insulation might be: added to a duct system that already has R-4 installed. It is possible that--either by chance or by design--the add-on layer, while not stopping duct leaks, might cause the leakage air to flow longitudinally for a distance, parallel to the duct, before it finds a way out of the newly added outer layer. This could happen by chance if the outer and inner layers of insulation have seams at different locations. Perhaps more usefully, if such longitudinal displacement of the leakage air turned out to be useful, it might be designed into the makeup of the outer insulation layer intended to be used in the retrofit. It is plausible that this leakage air might serve a useful function in keeping the insulation layer warmer (or, in the air-conditioning mode, cooler) than it would be in the absence of the leakage. By being held close to the ducts for a while, it might establish an artificially warmer (or cooler, in air conditioning) zone around the ducts. To the extent that this effect would reduce the heat losses from the ducts, the leakage should be credited with a ''thermal regain'' in the same way that leakage into buffer zones is credited with thermal regain when the leakage air warms (or cools) the buffer zone relative to the temperature it would have in the absence of such duct leakage. The purpose of this report is to investigate whether and to what extent such thermal regain exists. The model developed below applies to a situation where there are two distinct layers of insulation around the duct, with leakage air moving between them in a longitudinal direction for a distance before it finds its way out from the outer insulation layer. It may also apply approximately where there is a single insulation layer with an air barrier on the outside. Leakage air may pass into the insulation itself and thence

  3. Environmental Technology Verification: Supplement to Test/QA Plan for Biological and Aerosol Testing of General Ventilation Air Cleaners; Bioaerosol Inactivation Efficiency by HVAC In-Duct Ultraviolet Light Air Cleaners

    EPA Science Inventory

    The Air Pollution Control Technology Verification Center has selected general ventilation air cleaners as a technology area. The Generic Verification Protocol for Biological and Aerosol Testing of General Ventilation Air Cleaners is on the Environmental Technology Verification we...

  4. Detonation duct gas generator demonstration program

    NASA Technical Reports Server (NTRS)

    Wortman, Andrew; Brinlee, Gayl A.; Othmer, Peter; Whelan, Michael A.

    1991-01-01

    The feasibility of the generation of detonation waves moving periodically across high speed channel flow is experimentally demonstrated. Such waves are essential to the concept of compressing requirements and increasing the engine pressure compressor with the objective of reducing conventional compressor requirements and increasing the engine thermodynamic efficiency through isochoric energy addition. By generating transient transverse waves, rather than standing waves, shock wave losses are reduced by an order of magnitude. The ultimate objective is to use such detonation ducts downstream of a low pressure gas turbine compressor to produce a high overall pressure ratio thermodynamic cycle. A 4 foot long, 1 inch x 12 inch cross-section, detonation duct was operated in a blow-down mode using compressed air reservoirs. Liquid or vapor propane was injected through injectors or solenoid valves located in the plenum or the duct itself. Detonation waves were generated when the mixture was ignited by a row of spark plugs in the duct wall. Problems with fuel injection and mixing limited the air speeds to about Mach 0.5, frequencies to below 10 Hz, and measured pressure ratios of about 5 to 6. The feasibility of the gas dynamic compression was demonstrated and the critical problem areas were identified.

  5. Some Effects of Air Flow on the Penetration and Distribution of Oil Sprays

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Beardsley, E G

    1929-01-01

    Tests were made to determine the effects of air flow on the characteristics of fuel sprays from fuel injection valves. Curves and photographs are presented showing the airflow throughout the chamber and the effects of the air flow on the fuel spray characteristics. It was found that the moving air had little effect on the spray penetration except with the 0.006 inch orifice. The moving air did, however, affect the oil particles on the outside of the spray cone. After spray cut-off, the air flow rapidly distributed the atomized fuel throughout the spray chamber.

  6. Velocity and phase distribution measurements in vertical air-water annular flows

    SciTech Connect

    Vassallo, P.

    1997-07-01

    Annular flow topology for three air-water conditions in a vertical duct is investigated through the use of a traversing double-sensor hot-film anemometry probe and differential pressure measurements. Near wall measurements of mean and fluctuating velocities, as well as local void fraction, are taken in the liquid film, with the highest turbulent fluctuations occurring for the flow condition with the largest pressure drop. A modified law-of-the-wall formulation for wall shear is presented which, using near wall values of mean velocity and kinetic energy, agrees reasonably well with the average stress obtained from direct pressure drop measurements. The linear profile using wall coordinates in the logarithmic layer is preserved in annular flow; however, the slope and intercept of the profile differ from the single-phase values for the annular flow condition which has a thicker, more turbulent, liquid film.

  7. Measurement of flowfield in a simulated solid-propellant ducted rocket combustor using laser Doppler velocimetry

    SciTech Connect

    Hsieh, W.H.; Yang, V.; Chuang, C.L.; Yang, A.S.; Cherng, D.L.

    1989-01-01

    A two-component LDV system was used to obtain detailed flow velocity and turbulence measurements in order to study the flow characteristics in a simulated solid-propellant ducted rocket combustor. The vortical structures near the dome region, the size of the recirculation zone, and the location of the reattachment point are all shown to be strongly affected by the jet momentum of both ram air and fuel streams. It is found that the turbulence intensity is anisotropic throughout the front portion of the simulated conbustor, and that the measured Reynolds stress conmponent distribution is well correlated with the local mean velocity vector distribution. 25 refs.

  8. Measurements of polystyrene bead trajectories and spatial distributions in a turbulent water flow, square duct using high-speed digital holography

    NASA Astrophysics Data System (ADS)

    van Hout, Rene; Rabencov, Boris; Arca, Javier

    2014-11-01

    Near neutrally buoyant, polystyrene beads (583 micrometers) were tracked in a square (50 × 50 mm2), closed-loop, turbulent water duct at a bulk flow Reynolds number of 10,602 (friction velocity 0.0208 m/s) using single view, inline digital holographic cinematography (at 1 kHz). The volume of interest (50 × 17.4 × 17.4 mm3) was positioned at the bottom part of the channel. The mean bead diameter normalized by inner wall coordinates was d+ = 14.2, with Stokes numbers of 8.5. In-house developed algorithms, fine-tuned to tracking single and overlapping beads were developed. Bead in-focus positions were determined by maximum intensity gradient method. Results showed that in agreement with literature publications, ascending beads lagged the mean streamwise water velocity while descending ones had similar velocities. Average streamwise bead velocities and number densities collapsed onto wall-normal-streamwise and spanwise-streamwise planes, indicated preferential segregation of ascending and descending beads up to a height of 100 wall units. Spanwise ``lane'' separation distances ranged between 150-200 wall units, larger but of the same order as the spanwise extent of coherent near-wall turbulence structures. Duct corners were nearly devoid of beads likely caused by secondary flows. Israel Science Foundation Grant 915/10 and COST Actions MP0806 and FP1005.

  9. Device for improved air and fuel distribution to a combustor

    SciTech Connect

    Laster, Walter R.; Schilp, Reinhard

    2016-05-31

    A flow conditioning device (30, 50, 70, 100, 150) for a can annular gas turbine engine, including a plurality of flow elements (32, 34, 52, 54, 72, 74, 102) disposed in a compressed air flow path (42, 60, 80, 114, 122) leading to a combustor (12), configured such that relative adjustment of at least one flow directing element (32, 52, 72, 110) with respect to an adjacent flow directing element (34, 54, 74, 112, 120) during operation of the gas turbine engine is effective to adjust a level of choking of the compressed air flow path (42, 60, 80, 114, 122).

  10. Pressure Loss in Ducts with Compound Elbows

    DTIC Science & Technology

    1943-02-01

    Report LOSS IN DUCTS WITH COMPOUND ELBOWS By John R. Weske Case School of Applied Science NACA N A c JI LE&.lJ/J \\ 9 **Y @woti AERONAUT WASHINGTON...AEROHATJTICS ADVANCE RESTRICTED REPORT ● -. PRESWRE U)SS IN DUCTS WITH C-ND ELBOWS By John R; Weske SUMMARY . Results are presented of’measurmneut of the...pressure drop and, h some oases, of the velooity distribution in ocxupound elbows WRS undertaken for the purposo of furnishing to the designer of duetIng

  11. Seasonal variations of surface duct conditions in Ngaoundere, North Cameroon

    NASA Astrophysics Data System (ADS)

    Kaissassou, Samuel; Lenouo, André; Nzeukou, Armand; Tchawoua, Clément; Vondou, D. A.

    2015-12-01

    The seasonal variations of refractivity gradients from 104 to 3000 m above ground level in the troposphere layer are presented based on observations from the radiosonde station located in Ngaoundere (13.5°E, 7.3°N), a middle belt savannah region of Cameroon. Six years (2006-2011) of data from in situ measurements made by Agency for the Safety of Air Navigation in Africa and Madagascar (ASECNA) of the temperature, moisture, and pressure are used to determine the surface duct conditions over Ngaoundere region. Each time that a negative gradient from the Abel-retrieved refractivity profiles is seen, it implies the presence of a duct in this study. The occurrence of ducts strongly depends on the local climate and synoptic weather conditions which have an appreciable influence on the refractivity vertical profile, especially the seasonal north-south movement of the Inter Tropical Convergence Zone (ITCZ) which provides wet and dry seasons to the region. Monthly and seasonal variations of ducts were also determined from the measured data. The highest and the lowest occurrence rate of surface ducts were observed during the wet and the dry seasons, respectively. September appears as the month when most of the ducts occur at the rate of at least one duct per day. The median duct thickness and duct strength are high and strong during the wet season, whereas they are low and weak during the dry season. When the data are separated into stable and unstable atmospheric conditions, we noticed that surface duct characteristics show some seasonal differences. Surface ducts are found to be more frequent in a stable atmosphere than in an unstable atmosphere. Statistical results are discussed alongside with local meteorological conditions and weather systems affecting the town of Ngaoundere. Besides, comments are made on their prospective significance in the region.

  12. Turbofan Duct Propagation Model

    NASA Technical Reports Server (NTRS)

    Lan, Justin H.; Posey, Joe W. (Technical Monitor)

    2001-01-01

    The CDUCT code utilizes a parabolic approximation to the convected Helmholtz equation in order to efficiently model acoustic propagation in acoustically treated, complex shaped ducts. The parabolic approximation solves one-way wave propagation with a marching method which neglects backwards reflected waves. The derivation of the parabolic approximation is presented. Several code validation cases are given. An acoustic lining design process for an example aft fan duct is discussed. It is noted that the method can efficiently model realistic three-dimension effects, acoustic lining, and flow within the computational capabilities of a typical computer workstation.

  13. Bile Duct (Cholangiocarcinoma) Cancer: Radiation Therapy

    MedlinePlus

    ... Situation Bile Duct Cancer Treating Bile Duct Cancer Radiation Therapy for Bile Duct Cancer Radiation therapy uses ... of radiation for bile duct cancer. External beam radiation therapy (EBRT) This type of radiation therapy uses ...

  14. Prediction of ducted fan performance

    NASA Technical Reports Server (NTRS)

    Mendenhall, M. R.; Spangler, S. B.

    1972-01-01

    Computer program to predict performance of ducted fan combination at specified advance ratio and angle of attack is described. Parameters affecting performance of ducted fan are presented. Information obtained from computer program is explained for various conditions considered.

  15. A Distributed Simulation Facility to Support Human Factors Research in Advanced Air Transportation Technology

    NASA Technical Reports Server (NTRS)

    Amonlirdviman, Keith; Farley, Todd C.; Hansman, R. John, Jr.; Ladik, John F.; Sherer, Dana Z.

    1998-01-01

    A distributed real-time simulation of the civil air traffic environment developed to support human factors research in advanced air transportation technology is presented. The distributed environment is based on a custom simulation architecture designed for simplicity and flexibility in human experiments. Standard Internet protocols are used to create the distributed environment, linking all advanced cockpit simulator, all Air Traffic Control simulator, and a pseudo-aircraft control and simulation management station. The pseudo-aircraft control station also functions as a scenario design tool for coordinating human factors experiments. This station incorporates a pseudo-pilot interface designed to reduce workload for human operators piloting multiple aircraft simultaneously in real time. The application of this distributed simulation facility to support a study of the effect of shared information (via air-ground datalink) on pilot/controller shared situation awareness and re-route negotiation is also presented.

  16. An Experimental Investigation of NACA Submerged-Duct Entrances

    NASA Technical Reports Server (NTRS)

    Frick, Charles W.; Davis, Wallace F.; Randall, Lauros; Mossman, Emmet A.

    1945-01-01

    The results of an investigation of submerged-duct entrances are presented. It is shown that this type of entrance possesses the following characteristics: 1) very high-critical-compressibility speeds throughout the range of high-speed inlet velocity ratios; 2) very low pressure losses for the air entering the duct at all inlet-velocity ratios; and, 3) low external drag. These characteristics are obtained by the proper shaping of the contour of the upstream approach to the submerged inlets and by proper alignment of the duct lip. Design data are presented and the application of these data to a specific high-speed fighter-airplane design is discussed.

  17. Isolated Pancreatic Uncinate Duct IPMN.

    PubMed

    Maker, Ajay V; Maker, Vijay K

    2017-04-01

    The ventral pancreas originally forms as an evagination of the common bile duct at 32 days gestation and its duct, the uncinate duct, eventually rotates with the ventral anlage to join the dorsal pancreas and fuse with the main pancreatic duct. Thus, though often considered a "branch" duct of the pancreas, embryologically, the uncinate duct is the "main" pancreatic duct of the ventral pancreas. This concept is not fully addressed in the current definitions of intraductal papillary mucinous neoplasms of the pancreas (IPMN) where international consensus guidelines consider the main-duct IPMN as high risk for malignancy and most small branch-duct IPMN as low risk for malignancy. Thus, it is important to recognize that isolated uncinate-duct IPMN can occur and, based on its embryologic origin and increased association with high-grade dysplasia and invasive cancer, may be managed conceptually as a main duct type of disease rather than a branch duct until better biomarkers of malignancy are discovered. The images provide an example of this unique disease process.

  18. Duct Leakage Repeatability Testing

    SciTech Connect

    Walker, Iain; Sherman, Max

    2014-08-01

    The purpose of this report is to evaluate the repeatability of the three most significant measurement techniques for duct leakage using data from the literature and recently obtained field data. We will also briefly discuss the first two factors. The main question to be answered by this study is to determine if differences in the repeatability of these tests methods is sufficient to indicate that any of these methods is so poor that it should be excluded from consideration as an allowed procedure in codes and standards. The three duct leak measurement methods assessed in this report are the two duct pressurization methods that are commonly used by many practitioners and the DeltaQ technique. These are methods B, C and A, respectively of the ASTM E1554 standard. Although it would be useful to evaluate other duct leak test methods, this study focused on those test methods that are commonly used and are required in various test standards, such as BPI (2010), RESNET (2014), ASHRAE 62.2 (2013), California Title 24 (CEC 2012), DOE Weatherization and many other energy efficiency programs.

  19. Heat Transfer in a Superelliptic Transition Duct

    NASA Technical Reports Server (NTRS)

    Poinsatte, Philip; Thurman, Douglas; Hippensteele, Steven

    2008-01-01

    Local heat transfer measurements were experimentally mapped using a transient liquid-crystal heat transfer technique on the surface of a circular-to-rectangular transition duct. The transition duct had a length-to-diameter ratio of 1.5 and an exit-plane aspect ratio of 3. The crosssectional geometry was defined by the equation of a superellipse. The cross-sectional area was the same at the inlet and exit but varied up to 15 percent higher through the transition. The duct was preheated to a uniform temperature (nominally 64 C) before allowing room temperature air to be suddenly drawn through it. As the surface cooled, the resulting isothermal contours on the duct surface were revealed using a surface coating of thermochromic liquid crystals that display distinctive colors at particular temperatures. A video record was made of the surface temperature and time data for all points on the duct surfaces during each test. Using this surface temperature-time data together with the temperature of the air flowing through the model and the initial temperature of the model wall, the heat transfer coefficient was calculated by employing the classic one-dimensional, semi-infinite wall heat transfer conduction model. Test results are reported for inlet diameter-based Reynolds numbers ranging from 0.4x106 to 2.4x106 and two grid-generated freestream turbulence intensities of about 1 percent, which is typical of wind tunnels, and up to 16 percent, which may be more typical of real engine conditions.

  20. Global Distribution and Variability of Surface Skin and Surface Air Temperatures as Depicted in the AIRS Version-6 Data Set

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Lee, Jae N.; Iredell, Lena

    2014-01-01

    In this presentation, we will briefly describe the significant improvements made in the AIRS Version-6 retrieval algorithm, especially as to how they affect retrieved surface skin and surface air temperatures. The global distribution of seasonal 1:30 AM and 1:30 PM local time 12 year climatologies of Ts,a will be presented for the first time. We will also present the spatial distribution of short term 12 year anomaly trends of Ts,a at 1:30 AM and 1:30 PM, as well as the spatial distribution of temporal correlations of Ts,a with the El Nino Index. It will be shown that there are significant differences between the behavior of 1:30 AM and 1:30 PM Ts,a anomalies in some arid land areas.

  1. Compact Buried Ducts in a Hot-Humid Climate House

    SciTech Connect

    Mallay, D.

    2016-01-01

    A system of compact, buried ducts provides a high-performance and cost-effective solution for delivering conditioned air throughout the building. This report outlines research activities that are expected to facilitate adoption of compact buried duct systems by builders. The results of this research would be scalable to many new house designs in most climates and markets, leading to wider industry acceptance and building code and energy program approval.

  2. Measure Guideline: Summary of Interior Ducts in New Construction, Including an Efficient, Affordable Method to Install Fur-Down Interior Ducts

    SciTech Connect

    Beal, D.; McIlvaine , J.; Fonorow, K.; Martin, E.

    2011-11-01

    This document illustrates guidelines for the efficient installation of interior duct systems in new housing, including the fur-up chase method, the fur-down chase method, and interior ducts positioned in sealed attics or sealed crawl spaces. This document illustrates guidelines for the efficient installation of interior duct systems in new housing. Interior ducts result from bringing the duct work inside a home's thermal and air barrier. Architects, designers, builders, and new home buyers should thoroughly investigate any opportunity for energy savings that is as easy to implement during construction, such as the opportunity to construct interior duct work. In addition to enhanced energy efficiency, interior ductwork results in other important advantages, such as improved indoor air quality, increased system durability and increased homeowner comfort. While the advantages of well-designed and constructed interior duct systems are recognized, the implementation of this approach has not gained a significant market acceptance. This guideline describes a variety of methods to create interior ducts including the fur-up chase method, the fur-down chase method, and interior ducts positioned in sealed attics or sealed crawl spaces. As communication of the intent of an interior duct system, and collaboration on its construction are paramount to success, this guideline details the critical design, planning, construction, inspection, and verification steps that must be taken. Involved in this process are individuals from the design team; sales/marketing team; and mechanical, insulation, plumbing, electrical, framing, drywall and solar contractors.

  3. 24 CFR 3280.715 - Circulating air systems.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 5 2012-04-01 2012-04-01 false Circulating air systems. 3280.715... Systems § 3280.715 Circulating air systems. (a) Supply system. (1) Supply ducts and any dampers contained..., Class 1, or Class 2 air ducts. Class 2 air ducts shall be located at least 3 feet from the...

  4. 29. DETAIL OF OUTLET DUCTS FOR MST AIRCONDITIONING SYSTEM IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. DETAIL OF OUTLET DUCTS FOR MST AIR-CONDITIONING SYSTEM IN NORTHWEST CORNER OF SLC-3W MST STATION 70.5 (LOWEST PAYLOAD SERVICE STATION). NOTE RING ATTACHMENT FOR PERSONNEL SAFETY HARNESS IN LEFT FOREGROUND. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  5. 24. AIRCONDITIONING DUCT, WINCH CONTROL BOX, AND SPEAKER AT STATION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. AIR-CONDITIONING DUCT, WINCH CONTROL BOX, AND SPEAKER AT STATION 85.5 OF MST. FOLDED-UP PLATFORM ON RIGHT OF PHOTO. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  6. Aspect ratio effect on particle transport in turbulent duct flows

    NASA Astrophysics Data System (ADS)

    Noorani, A.; Vinuesa, R.; Brandt, L.; Schlatter, P.

    2016-11-01

    The dynamics of dilute micron-sized spherical inertial particles in turbulent duct flows is studied by means of direct numerical simulations of the carrier phase turbulence with one-way coupled Lagrangian particles. The geometries are a square and a rectangular duct with width-to-height aspect ratio AR of 3 operating at Reτ,c = 360 (based on the centerplane friction velocity and duct half-height). The present study is designed to determine the effect of turbulence-driven secondary motion on the particle dynamics. Our results show that a weak cross-flow secondary motion significantly changes the cross-sectional map of the particle concentration, mean velocity, and fluctuations. As the geometry of the duct is widened from AR = 1 to 3, the secondary vortex on the horizontal wall significantly expands in the spanwise direction, and although the kinetic energy of the secondary flow increases close to the corner, it decays towards the duct centreplane in the AR = 3 case so as the turbulent carrier phase approaches the behavior in spanwise-periodic channel flows, a fact that significantly affects the particle statistics. In the square duct the particle concentration in the viscous sublayer is maximum at the duct centreplane, whereas the maximum is found closer to the corner, at a distance of |z/h| ≈ 1.25 from the centreplane, in the AR = 3 case. Interestingly the centreplane concentration in the rectangular duct is around 3 times lower than that in the square duct. Moreover, a second peak in the accumulation distribution is found right at the corners for both ducts. At this location the concentration increases with particle inertia. The secondary motion changes also the cross-stream map of the particle velocities significantly in comparison to the fluid flow statistics. These directly affect the particle velocity fluctuations such that multiple peaks appear near the duct walls for the particle streamwise and wall-normal velocity fluctuations.

  7. Heat Pump Water Heater Ducting Strategies with Encapsulated Attics in Climate Zones 2 and 4

    SciTech Connect

    M. L. Sweet; Francisco, A.; Roberts, S. G.

    2016-05-01

    The focus of this study is on the performance of HPWHs with several different duct configurations and their effects on whole building heating, cooling, and moisture loads. A.O. Smith 60 gallon Voltex (PHPT-60) heat pump water heaters (HPWHs) were included at two project sites and ducted to or located within spray foamed encapsulated attics. The effect of ducting a HPWH's air stream does not diminish its efficiency if the ducting does not reduce intake air temperature, which expands HPWH application to confined areas.

  8. Duct thermal performance models for large commercial buildings

    SciTech Connect

    Wray, Craig P.

    2003-10-01

    Despite the potential for significant energy savings by reducing duct leakage or other thermal losses from duct systems in large commercial buildings, California Title 24 has no provisions to credit energy-efficient duct systems in these buildings. A substantial reason is the lack of readily available simulation tools to demonstrate the energy-saving benefits associated with efficient duct systems in large commercial buildings. The overall goal of the Efficient Distribution Systems (EDS) project within the PIER High Performance Commercial Building Systems Program is to bridge the gaps in current duct thermal performance modeling capabilities, and to expand our understanding of duct thermal performance in California large commercial buildings. As steps toward this goal, our strategy in the EDS project involves two parts: (1) developing a whole-building energy simulation approach for analyzing duct thermal performance in large commercial buildings, and (2) using the tool to identify the energy impacts of duct leakage in California large commercial buildings, in support of future recommendations to address duct performance in the Title 24 Energy Efficiency Standards for Nonresidential Buildings. The specific technical objectives for the EDS project were to: (1) Identify a near-term whole-building energy simulation approach that can be used in the impacts analysis task of this project (see Objective 3), with little or no modification. A secondary objective is to recommend how to proceed with long-term development of an improved compliance tool for Title 24 that addresses duct thermal performance. (2) Develop an Alternative Calculation Method (ACM) change proposal to include a new metric for thermal distribution system efficiency in the reporting requirements for the 2005 Title 24 Standards. The metric will facilitate future comparisons of different system types using a common ''yardstick''. (3) Using the selected near-term simulation approach, assess the impacts of

  9. Driving Parameters for Distributed and Centralized Air Transportation Architectures

    NASA Technical Reports Server (NTRS)

    Feron, Eric

    2001-01-01

    This report considers the problem of intersecting aircraft flows under decentralized conflict avoidance rules. Using an Eulerian standpoint (aircraft flow through a fixed control volume), new air traffic control models and scenarios are defined that enable the study of long-term airspace stability problems. Considering a class of two intersecting aircraft flows, it is shown that airspace stability, defined both in terms of safety and performance, is preserved under decentralized conflict resolution algorithms. Performance bounds are derived for the aircraft flow problem under different maneuver models. Besides analytical approaches, numerical examples are presented to test the theoretical results, as well as to generate some insight about the structure of the traffic flow after resolution. Considering more than two intersecting aircraft flows, simulations indicate that flow stability may not be guaranteed under simple conflict avoidance rules. Finally, a comparison is made with centralized strategies to conflict resolution.

  10. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  11. Complicated bile duct stones

    PubMed Central

    Roy, Ashwin; Martin, Derrick

    2013-01-01

    Common bile duct stones (CBDSs) are solid deposits that can either form within the gallbladder or migrate to the common bile duct (CBD), or form de novo in the biliary tree. In the USA around 15% of the population have gallstones and of these, 3% present with symptoms annually. Because of this, there have been major advancements in the management of gallstones and related conditions. Management is based on the patient's risk profile; young and healthy patients are likely to be recommended for surgery and elderly patients with comorbidities are usually recommended for endoscopic procedures. Imaging of gallstones has advanced in the last 30 years with endoscopic retrograde cholangiopancreatography evolving from a diagnostic to a therapeutic procedure in removing CBDSs. We present a complicated case of a patient with a CBDS and periampullary diverticulum and discuss the techniques used to diagnose and remove the stone from the biliary system. PMID:23946532

  12. Feasibility Study: Ductless Hydronic Distribution Systems with Fan Coil Delivery

    SciTech Connect

    Springer, D.; Dakin, B.; Backman, C.

    2012-07-01

    The primary objectives of this study are to estimate potential energy savings relative to conventional ducted air distribution, and to identify equipment requirements, costs, and barriers with a focus on ductless hydronic delivery systems that utilize water-to-air terminal units in each zone. Results indicate that annual heating and cooling energy use can be reduced by up to 27% assuming replacement of the conventional 13 SEER heat pump and coil with a similarly rated air-to-water heat pump.

  13. A method to optimize sampling locations for measuring indoor air distributions

    NASA Astrophysics Data System (ADS)

    Huang, Yan; Shen, Xiong; Li, Jianmin; Li, Bingye; Duan, Ran; Lin, Chao-Hsin; Liu, Junjie; Chen, Qingyan

    2015-02-01

    Indoor air distributions, such as the distributions of air temperature, air velocity, and contaminant concentrations, are very important to occupants' health and comfort in enclosed spaces. When point data is collected for interpolation to form field distributions, the sampling locations (the locations of the point sensors) have a significant effect on time invested, labor costs and measuring accuracy on field interpolation. This investigation compared two different sampling methods: the grid method and the gradient-based method, for determining sampling locations. The two methods were applied to obtain point air parameter data in an office room and in a section of an economy-class aircraft cabin. The point data obtained was then interpolated to form field distributions by the ordinary Kriging method. Our error analysis shows that the gradient-based sampling method has 32.6% smaller error of interpolation than the grid sampling method. We acquired the function between the interpolation errors and the sampling size (the number of sampling points). According to the function, the sampling size has an optimal value and the maximum sampling size can be determined by the sensor and system errors. This study recommends the gradient-based sampling method for measuring indoor air distributions.

  14. 14 CFR 23.1091 - Air induction system.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... directed into the engine or auxiliary power unit air intake ducts in hazardous quantities. The air intake ducts must be located or protected so as to minimize the hazard of ingestion of foreign matter...

  15. Heating, Ventilating, Air Conditioning and Dehumidifying Systems.

    DTIC Science & Technology

    1980-08-01

    not be connected to other ventilating systems. Duct runs shall be as short as possible to avoid leakage of moisture. I b. Special Considerations. (1...For rectangular duct design, see the SMACNA -Low Pressure Duct Construction Standards. Under jnormal applications, a minimum duct size of 6 by 6 inches...prevent leakage of the moisture-laden discharge air into the intake duct , and the intake and discharge outlets shall be located to prevent any

  16. Size distributions of air showers accompanied with high energy gamma ray bundles observed at Mt. Chacaltaya

    NASA Technical Reports Server (NTRS)

    Matano, T.; Machida, M.; Tsuchima, I.; Kawasumi, N.; Honda, K.; Hashimoto, K.; Martinic, N.; Zapata, J.; Navia, C. E.; Aquirre, C.

    1985-01-01

    Size distributions of air showers accompanied with bundle of high energy gamma rays and/or large size bursts under emulsion chambers, to study the composition of primary cosmic rays and also characteristics of high energy nuclear interaction. Air showers initiated by particles with a large cross section of interaction may develop from narrow region of the atmosphere near the top. Starting levels of air showers by particles with smaller cross section fluctuate in wider region of the atmosphere. Air showers of extremely small size accompanied with bundle of gamma rays may be ones initiated by protons at lower level after penetrating deep atmosphere without interaction. It is determined that the relative size distribution according to the total energy of bundle of gamma rays and the total burst size observed under 15 cm lead absorber.

  17. An Automated Tool to Enable the Distributed Operations of Air Force Satellites

    DTIC Science & Technology

    2002-01-01

    OF AIR FORCE SATELLITES Jeffrey A. Fox Jean E. Fox Neil M. Baitinger David S. Gillen MOBILE FOUNDATIONS, INC 103 W. BROAD STREET SUITE 600...Enable the Distributed Operations of the Air Force Satellites Reason for request: After thoroughly reviewing this document, a Subject Matter Expert from... satellite operations or vulnerabilities; the SERS and COBRA systems that is the center of this study are old news and outlined in more detail in public

  18. Measured pressure distributions of large-angle cones in hypersonic flows of tetrafluoromethane, air, and helium

    NASA Technical Reports Server (NTRS)

    Jones, R. A.; Hunt, J. L.

    1973-01-01

    An experimental study of surface pressure distributions on a family of blunt and sharp large angle cones was made in hypersonic flows of helium, air, and tetrafluoromethane. The effective isentropic exponents of these flows were 1.67, 1.40, and 1.12. Thus, the effect of large shock density ratios such as might be encountered during planetary entry because of real-gas effects could be studied by comparing results in tetrafluoromethane with those in air and helium. It was found that shock density ratio had a large effect on both shock shape and pressure distribution. The differences in pressure distribution indicate that for atmospheric flight at high speed where real-gas effects produce large shock density ratios, large-angle cone vehicles can be expected to experience different trim angles of attack, drag coefficient, and lift-drag ratios than those for ground tests in air wind tunnels.

  19. On the feasibility of measuring urban air pollution by wireless distributed sensor networks.

    PubMed

    Moltchanov, Sharon; Levy, Ilan; Etzion, Yael; Lerner, Uri; Broday, David M; Fishbain, Barak

    2015-01-01

    Accurate evaluation of air pollution on human-wellbeing requires high-resolution measurements. Standard air quality monitoring stations provide accurate pollution levels but due to their sparse distribution they cannot capture the highly resolved spatial variations within cities. Similarly, dedicated field campaigns can use tens of measurement devices and obtain highly dense spatial coverage but normally deployment has been limited to short periods of no more than few weeks. Nowadays, advances in communication and sensory technologies enable the deployment of dense grids of wireless distributed air monitoring nodes, yet their sensor ability to capture the spatiotemporal pollutant variability at the sub-neighborhood scale has never been thoroughly tested. This study reports ambient measurements of gaseous air pollutants by a network of six wireless multi-sensor miniature nodes that have been deployed in three urban sites, about 150 m apart. We demonstrate the network's capability to capture spatiotemporal concentration variations at an exceptional fine resolution but highlight the need for a frequent in-situ calibration to maintain the consistency of some sensors. Accordingly, a procedure for a field calibration is proposed and shown to improve the system's performance. Overall, our results support the compatibility of wireless distributed sensor networks for measuring urban air pollution at a sub-neighborhood spatial resolution, which suits the requirement for highly spatiotemporal resolved measurements at the breathing-height when assessing exposure to urban air pollution.

  20. Experimental Evaluation of a Downsized Residential Air Distribution System: Comfort and Ventilation Effectiveness

    SciTech Connect

    Jalalzadeh-Azar, A. A.

    2007-01-01

    Good air mixing not only improves thermal comfort Human thermal comfort is the state of mind that expresses satisfaction with the surrounding environment, according to ASHRAE Standard 55. Achieving thermal comfort for most occupants of buildings or other enclosures is a goal of HVAC design engineers. but also enhances ventilation effectiveness by inducing uniform supply-air diffusion. In general, the performance of an air distribution system in terms of comfort and ventilation effectiveness is influenced by the supply air temperature, velocity, and flow rate, all of which are in part dictated by the HVAC (Heating Ventilation Air Conditioning) In the home or small office with a handful of computers, HVAC is more for human comfort than the machines. In large datacenters, a humidity-free room with a steady, cool temperature is essential for the trouble-free system as well as the thermal load attributes. Any potential deficiencies associated with these design variables can be further exacerbated by an improper proximity of the supply and return outlets with respect to the thermal and geometrical characteristics of the indoor space. For high-performance houses, the factors influencing air distribution performance take on an even greater significance because of a reduced supply-air design flow rate resulting from downsized HVAC systems.

  1. Velocity, temperature, and electrical conductivity profiles in hydrogen-oxygen MHD duct flows

    NASA Technical Reports Server (NTRS)

    Greywall, M. S.; Pian, C. C. P.

    1978-01-01

    Two-dimensional duct flow computations for radial distributions of velocity, temperature, and electrical conductivity are reported. Calculations were carried out for the flow conditions representative of a hydrogen-oxygen combustion driven MHD duct. Results are presented for: profiles of developing flow in a smooth duct, and for profiles of fully developed pipe flow with a specified streamwise shear stress distribution. The predicted temperature and electrical conductivity profiles for the developing flows compare well with available experimental data.

  2. High Efficiency Integrated Space Conditioning, Water Heating and Air Distribution System for HUD-Code Manufactured Housing

    SciTech Connect

    Henry DeLima; Joe Akin; Joseph Pietsch

    2008-09-14

    Recognizing the need for new space conditioning and water heating systems for manufactured housing, DeLima Associates assembled a team to develop a space conditioning system that would enhance comfort conditions while also reducing energy usage at the systems level. The product, Comboflair® was defined as a result of a needs analysis of project sponsors and industry stakeholders. An integrated system would be developed that would combine a packaged airconditioning system with a small-duct, high-velocity air distribution system. In its basic configuration, the source for space heating would be a gas water heater. The complete system would be installed at the manufactured home factory and would require no site installation work at the homesite as is now required with conventional split-system air conditioners. Several prototypes were fabricated and tested before a field test unit was completed in October 2005. The Comboflair® system, complete with ductwork, was installed in a 1,984 square feet, double-wide manufactured home built by Palm Harbor Homes in Austin, TX. After the home was transported and installed at a Palm Harbor dealer lot in Austin, TX, a data acquisition system was installed for remote data collection. Over 60 parameters were continuously monitored and measurements were transmitted to a remote site every 15 minutes for performance analysis. The Comboflair® system was field tested from February 2006 until April 2007. The cooling system performed in accordance with the design specifications. The heating system initially could not provide the needed capacity at peak heating conditions until the water heater was replaced with a higher capacity standard water heater. All system comfort goals were then met. As a result of field testing, we have identified improvements to be made to specific components for incorporation into production models. The Comboflair® system will be manufactured by Unico, Inc. at their new production facility in St. Louis

  3. Beam loss by collimation in a neutralizer duct

    SciTech Connect

    Hamilton, G.W.; Willmann, P.A.

    1980-04-03

    Beam fractions lost by collimation in a neutralizer duct are computed in x-x' phase space by using three examples of slab beam distributions under a broad range of duct dimensions, beam half-widths, and beam divergences. The results can be used to design compact neutralizers and to specify beam requirements. The computer code ILOST can be used under a broad range of beam conditions to compute the fraction lost by collimation.

  4. Measure Guideline: Optimizing the Configuration of Flexible Duct Junction Boxes

    SciTech Connect

    Beach, R.; Burdick, A.

    2014-03-01

    This measure guideline offers additional recommendations to heating, ventilation, and air conditioning (HVAC) system designers for optimizing flexible duct, constant-volume HVAC systems using junction boxes within Air Conditioning Contractors of America (ACCA) Manual D guidance (Rutkowski, H. Manual D -- Residential Duct Systems, 3rd edition, Version 1.00. Arlington, VA: Air Conditioning Contractors of America, 2009.). IBACOS used computational fluid dynamics software to explore and develop guidance to better control the airflow effects of factors that may impact pressure losses within junction boxes among various design configurations (Beach, R., Prahl, D., and Lange, R. CFD Analysis of Flexible Duct Junction Box Design. Golden, CO: National Renewable Energy Laboratory, submitted for publication 2013). These recommendations can help to ensure that a system aligns more closely with the design and the occupants' comfort expectations. Specifically, the recommendations described herein show how to configure a rectangular box with four outlets, a triangular box with three outlets, metal wyes with two outlets, and multiple configurations for more than four outlets. Designers of HVAC systems, contractors who are fabricating junction boxes on site, and anyone using the ACCA Manual D process for sizing duct runs will find this measure guideline invaluable for more accurately minimizing pressure losses when using junction boxes with flexible ducts.

  5. Evolution of soot size distribution in premixed ethylene/air and ethylene/benzene/air flames: Experimental and modeling study

    SciTech Connect

    Echavarria, Carlos A.; Sarofim, Adel F.; Lighty, JoAnn S.; D'Anna, Andrea

    2011-01-15

    The effect of benzene concentration in the initial fuel on the evolution of soot size distribution in ethylene/air and ethylene/benzene/air flat flames was characterized by experimental measurements and model predictions of size and number concentration within the flames. Experimentally, a scanning mobility particle sizer was used to allow spatially resolved and online measurements of particle concentration and sizes in the nanometer-size range. The model couples a detailed kinetic scheme with a discrete-sectional approach to follow the transition from gas-phase to nascent particles and their coagulation to larger soot particles. The evolution of soot size distribution (experimental and modeled) in pure ethylene and ethylene flames doped with benzene showed a typical nucleation-sized (since particles do not actually nucleate in the classical sense particle inception is often used in place of nucleation) mode close to the burner surface, and a bimodal behavior at greater height above burner (HAB). However, major features were distinguished between the data sets. The growth of nucleation and agglomeration-sized particles was faster for ethylene/benzene/air flames, evidenced by the earlier presence of bimodality in these flames. The most significant changes in size distribution were attributed to an increase in benzene concentration in the initial fuel. However, these changes were more evident for high temperature flames. In agreement with the experimental data, the model also predicted the decrease of nucleation-sized particles in the postflame region for ethylene flames doped with benzene. This behavior was associated with the decrease of soot precursors after the main oxidation zone of the flames. (author)

  6. Subsonic Flows through S-Ducts with Flow Control

    NASA Astrophysics Data System (ADS)

    Chen, Yi

    An inlet duct of an aircraft connects the air intake mounted on the fuselage to the engine within the aircraft body. The ideal outflow quality of the duct is steady, uniform and of high total pressure. Recently compact S-shaped inlet ducts are drawing more attention in the design of UAVs with short propulsion system. Compact ducts usually involve strong streamwise adverse pressure gradient and transverse secondary flow, leading to large-scale harmful vortical structures in the outflow. To improve the outflow quality modern flow control techniques have to be applied. Before designing successful flow control methods a solid understanding of the baseline flow field with the duct is crucial. In this work the fundamental mechanism of how the three dimensional flow topology evolves when the relevant parameters such as the duct geometry and boundary layer thickness are varied, is studied carefully. Two distinct secondary-flow patterns are identified. For the first time the sensitivity of the flow topology to the inflow boundary layer thickness in long ducts is clearly addressed. The interaction between the transverse motion induced by the transverse pressure gradient and the streamwise separation is revealed as the crucial reason for the various flow patterns existing in short ducts. A non-symmetric flow pattern is identified for the first time in both experiments and simulations in short ducts in which the intensity of the streamwise separation and the transverse invasion are in the same order of magnitude. A theory of energy accumulation and solution bifurcation is used to give a reasonable explanation for this non-symmetry. After gaining the knowledge of where and how the harmful vortical structures are generated several flow control techniques are tested to achieve a better outflow quality. The analysis of the flow control cases also provides a deeper insight into the behavior of the three-dimensional flow within the ducts. The conventional separation control method

  7. Surgery for Bile Duct (Cholangiocarcinoma) Cancer

    MedlinePlus

    ... Situation Bile Duct Cancer Treating Bile Duct Cancer Surgery for Bile Duct Cancer There are 2 general ... also help plan the operation to remove it. Surgery for resectable cancers For resectable cancers, the type ...

  8. Air bubble migration rates as a proxy for bubble pressure distribution in ice cores

    NASA Astrophysics Data System (ADS)

    Dadic, Ruzica; Schneebeli, Martin; Bertler, Nancy

    2015-04-01

    Air bubble migration can be used as a proxy to measure the pressure of individual bubbles and can help constrain the gradual close-off of gas bubbles and the resulting age distribution of gases in ice cores. The close-off depth of single bubbles can vary by tens of meters, which leads to a distribution of pressures for bubbles at a given depth. The age distribution of gases (along with gas-age-ice-age differences) decreases the resolution of the gas level reconstructions from ice cores and limits our ability to determine the phase relationship between gas and ice, and thus, the impact of rapid changes of greenhouse gases on surface temperatures. For times of rapid climate change, including the last 150 years, and abrupt climate changes further back in the past, knowledge of the age distribution of the gases trapped in air bubbles will enable us to refine estimates of atmospheric changes. When a temperature gradient is applied to gas bubbles in an ice sample, the bubbles migrate toward warmer ice. This motion is caused by sublimation from the warm wall and subsequent frost deposition on the cold wall. The migration rate depends on ice temperature and bubble pressure and is proportional to the temperature gradient. The spread in migration rates for bubbles in the same samples at given temperatures should therefore reflect the variations in bubble pressures within a sample. Air bubbles with higher pressures would have been closed off higher in the firn column and thus have had time to equilibrate with the surrounding ice pressure, while air bubbles that have been closed off recently would have pressures that are similar to todays atmospheric pressure above the firn column. For ice under pressures up to ~13-16 bar, the pressure distribution of bubbles from a single depth provides a record of the trapping function of air bubbles in the firn column for a certain time in the past. We will present laboratory experiments on air bubble migration, using Antarctic ice core

  9. Lateral distribution of radio emission and its dependence on air shower longitudinal development

    SciTech Connect

    Kalmykov, Nikolai N.; Konstantinov, Andrey A. E-mail: elan1980@mail.ru

    2012-12-01

    The lateral distribution function (LDF) of radio emission from an extensive air shower is considered as the basic signature sensitive to the shower longitudinal development and, as a consequence, to the mass of a primary cosmic ray's particle that initiated a given shower. The peculiarities in the LDF's structure as well as their sensitivity to the height of shower maximum are investigated and explained.

  10. Air Distribution Effectiveness for Residential Mechanical Ventilation: Simulation and Comparison of Normalized Exposures

    SciTech Connect

    Petithuguenin, T.D.P.; Sherman, M.H.

    2009-05-01

    The purpose of ventilation is to dilute indoor contaminants that an occupant is exposed to. Even when providing the same nominal rate of outdoor air, different ventilation systems may distribute air in different ways, affecting occupants' exposure to household contaminants. Exposure ultimately depends on the home being considered, on source disposition and strength, on occupants' behavior, on the ventilation strategy, and on operation of forced air heating and cooling systems. In any multi-zone environment dilution rates and source strengths may be different in every zone and change in time, resulting in exposure being tied to occupancy patterns.This paper will report on simulations that compare ventilation systems by assessing their impact on exposure by examining common house geometries, contaminant generation profiles, and occupancy scenarios. These simulations take into account the unsteady, occupancy-tied aspect of ventilation such as bathroom and kitchen exhaust fans. As most US homes have central HVAC systems, the simulation results will be used to make appropriate recommendations and adjustments for distribution and mixing to residential ventilation standards such as ASHRAE Standard 62.2.This paper will report on work being done to model multizone airflow systems that are unsteady and elaborate the concept of distribution matrix. It will examine several metrics for evaluating the effect of air distribution on exposure to pollutants, based on previous work by Sherman et al. (2006).

  11. Decentralized Control of an Unidirectional Air Traffic Flow with Flight Speed Distribution

    NASA Astrophysics Data System (ADS)

    Nakamura, Yoichi; Takeichi, Noboru

    A decentralized control of an air traffic flow is discussed. This study aims to clarify a fundamental strategy for an unidirectional air traffic flow control considering the flight speed distribution. It is assumed that the decentralized control is made based on airborne surveillance systems. The separation control between aircraft is made by turning, and 4 types of route composition are compared; the optimum route only, the optimum route with permissible range, the optimum route with subroutes determined by relative speed of each aircraft, and the optimum route with subroutes defined according to the optimum speed of each aircraft. Through numerical simulations, it is clarified that the route composition with a permissible range makes the air traffic flow safer and more efficient. It is also shown that the route design with multiple subroutes corresponding to speed ranges and the aircraft control using route intent information can considerably improve the safety and workload of the air traffic flow.

  12. Effectiveness of duct sealing and duct insulation in multi-family buildings. Final report

    SciTech Connect

    Karins, N.H.; Tuluca, A.; Modera, M.

    1997-07-01

    This research investigated the cost-effectiveness of sealing and insulating the accessible portions of duct systems exposed to unconditioned areas in multifamily housing. Airflow and temperature measurements were performed in 25 apartments served by 10 systems a 9 multi-family properties. The measurements were performed before and after each retrofit, and included apartment airflow (supply and return), duct system temperatures, system fan flow and duct leakage area. The costs for each retrofit were recorded. The data were analyzed and used to develop a prototypical multifamily house. This prototype was used in energy simulations (DOE-2.1E) and air infiltration simulations (COMIS 2.1). The simulations were performed for two climates: New York City and Albany. In each climate, one simulation was performed assuming the basement was tight, and another assuming the basement was leaky. Simulation results and average retrofit costs were used to calculate cost-effectiveness. The results of the analysis indicate that sealing leaks of the accessible ductwork is cost-effective under all conditions simulated (simple payback was between 3 and 4 years). Insulating the accessible ductwork, however, is only cost-effective for buildings with leaky basement, in both climates (simple paybacks were less than 5 years). The simple payback period for insulating the ducts in buildings with tight basements was greater than 10 years, the threshold of cost-effectiveness for this research. 13 refs., 5 figs., 27 tabs.

  13. Sensitivity of inertial particle response on turbulent duct flows to mass loading ratio and Reynolds number

    NASA Astrophysics Data System (ADS)

    Villafane, Laura; Banko, Andrew; Elkins, Chris; Eaton, John

    2016-11-01

    The momentum coupled dynamics of particles and turbulence are experimentally investigated in a vertical fully developed turbulent square duct flow of air laden with Nickel particles. Significant preferential concentration is present for the Stokes numbers investigated, which vary from 3 to 30 based on the Kolmogorov time scale. Higher order measures of preferential concentration, such as the sizes and shapes of clusters and voids, are analyzed for increasing mass loading ratios. The mass loadings chosen span the one-way and two-way coupled regimes, while the volume loading is kept low. The effect of Stokes number and mass loading is also evaluated for particle velocity statistics and compared to the unladen gas statistics. Planar laser scattering is used to record instantaneous particle images in the center of the duct. Preferential concentration statistics are computed from box counting and Voronoi tessellation algorithms. PIV and PTV techniques are used to calculate particle velocity statistics. The analysis is extended to the near wall region in the logarithmic layer for the case of low mass loading. These results are compared to those from the duct center to assess the effects of strong carrier phase inhomogeneity on the particle distributions. This Material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0002373-1.

  14. Hadoop-Based Distributed System for Online Prediction of Air Pollution Based on Support Vector Machine

    NASA Astrophysics Data System (ADS)

    Ghaemi, Z.; Farnaghi, M.; Alimohammadi, A.

    2015-12-01

    The critical impact of air pollution on human health and environment in one hand and the complexity of pollutant concentration behavior in the other hand lead the scientists to look for advance techniques for monitoring and predicting the urban air quality. Additionally, recent developments in data measurement techniques have led to collection of various types of data about air quality. Such data is extremely voluminous and to be useful it must be processed at high velocity. Due to the complexity of big data analysis especially for dynamic applications, online forecasting of pollutant concentration trends within a reasonable processing time is still an open problem. The purpose of this paper is to present an online forecasting approach based on Support Vector Machine (SVM) to predict the air quality one day in advance. In order to overcome the computational requirements for large-scale data analysis, distributed computing based on the Hadoop platform has been employed to leverage the processing power of multiple processing units. The MapReduce programming model is adopted for massive parallel processing in this study. Based on the online algorithm and Hadoop framework, an online forecasting system is designed to predict the air pollution of Tehran for the next 24 hours. The results have been assessed on the basis of Processing Time and Efficiency. Quite accurate predictions of air pollutant indicator levels within an acceptable processing time prove that the presented approach is very suitable to tackle large scale air pollution prediction problems.

  15. Ascariasis of the pancreatic duct.

    PubMed

    Klimovskij, Michail; Dulskas, Audrius; Kraulyte, Zita; Mikalauskas, Saulius

    2015-09-15

    Ascariasis is a common helminthic disease worldwide, although Lithuania and other European countries are not considered endemic areas. The presence of the Ascaris worm in the biliary tree causes choledocholithiasis-like symptoms. We report a case of pancreatic duct ascariasis causing such symptoms. A 73-year-old Lithuanian woman underwent endoscopic retrograde cholangiopancreatography (ERCP) suspecting choledocholithiasis. Contrast injection into the common bile duct demonstrated a slightly dilated biliary tree without any filling defects, and the tail of an Ascaris worm protruding from the opening of the papilla Vater. The worm was captured by a snare but escaped deep into the duct. After a small wirsungotomy the worm was retrieved from the pancreatic duct. The patient received a 150 mg dose of levamisole orally repeated 7 days later and was discharged after complete resolution of symptoms. This first reported sporadic case of pancreatic duct ascariasis in Lithuania was successfully treated with ERCP and Levamisole.

  16. Measure Guideline: Buried and/or Encapsulated Ducts

    SciTech Connect

    Shapiro, C.; Zoeller, W.; Mantha, P.

    2013-08-01

    Buried and/or encapsulated ducts (BEDs) are a class of advanced, energy-efficiency strategies intended to address the significant ductwork thermal losses associated with ducts installed in unconditioned attics. BEDs are ducts installed in unconditioned attics that are covered in loose-fill insulation and/or encapsulated in closed cell polyurethane spray foam insulation. This Measure Guideline covers the technical aspects of BEDs as well as the advantages, disadvantages, and risks of BEDs compared to other alternative strategies. This guideline also provides detailed guidance on installation of BEDs strategies in new and existing homes through step-by-step installation procedures. This Building America Measure Guideline synthesizes previously published research on BEDs and provides practical information to builders, contractors, homeowners, policy analysts, building professions, and building scientists. Some of the procedures presented here, however, require specialized equipment or expertise. In addition, some alterations to duct systems may require a specialized license. Persons implementing duct system improvements should not go beyond their expertise or qualifications. This guideline provides valuable information for a building industry that has struggled to address ductwork thermal losses in new and existing homes. As building codes strengthen requirements for duct air sealing and insulation, flexibility is needed to address energy efficiency goals. While ductwork in conditioned spaces has been promoted as the panacea for addressing ductwork thermal losses, BEDs installations approach - and sometimes exceed - the performance of ductwork in conditioned spaces.

  17. Natural convection heat transfer along vertical rectangular ducts

    NASA Astrophysics Data System (ADS)

    Ali, M.

    2009-12-01

    Experimental investigations have been reported on steady state natural convection from the outer surface of vertical rectangular and square ducts in air. Seven ducts have been used; three of them have a rectangular cross section and the rest have square cross section. The ducts are heated using internal constant heat flux heating elements. The temperatures along the vertical surface and the peripheral directions of the duct wall are measured. Axial (perimeter averaged) heat transfer coefficients along the side of each duct are obtained for laminar and transition to turbulent regimes of natural convection heat transfer. Axial (perimeter averaged) Nusselt numbers are evaluated and correlated using the modified Rayleigh numbers for laminar and transition regime using the vertical axial distance as a characteristic length. Critical values of the modified Rayleigh numbers are obtained for transition to turbulent. Furthermore, total overall averaged Nusselt numbers are correlated with the modified Rayleigh numbers and the area ratio for the laminar regimes. The local axial (perimeter averaged) heat transfer coefficients are observed to decrease in the laminar region and increase in the transition region. Laminar regimes are obtained at the lower half of the ducts and its chance to appear decreases as the heat flux increases.

  18. [Spatiotemporal distribution of negative air ion concentration in urban area and related affecting factors: a review].

    PubMed

    Huang, Xiang-Hua; Wang, Jian; Zeng, Hong-Da; Chen, Guang-Shui; Zhong, Xian-Fang

    2013-06-01

    Negative air ion (NAI) concentration is an important indicator comprehensively reflecting air quality, and has significance to human beings living environment. This paper summarized the spatiotemporal distribution features of urban NAI concentration, and discussed the causes of these features based on the characteristics of the environmental factors in urban area and their effects on the physical and chemical processes of NAI. The temporal distribution of NAI concentration is mainly controlled by the periodic variation of solar radiation, while the spatial distribution of NAI concentration along the urban-rural gradient is mainly affected by the urban aerosol distribution, underlying surface characters, and urban heat island effect. The high NAI concentration in urban green area is related to the vegetation life activities and soil radiation, while the higher NAI concentration near the water environment is attributed to the water molecules that participate in the generation of NAI through a variety of ways. The other environmental factors can also affect the generation, life span, component, translocation, and distribution of NAI to some extent. To increase the urban green space and atmospheric humidity and to maintain the soil natural attributes of underlying surface could be the effective ways to increase the urban NAI concentration and improve the urban air quality.

  19. Particulate mixing in a turbulent serpentine duct

    NASA Astrophysics Data System (ADS)

    Huang, X.; Durbin, P. A.

    2012-01-01

    Direct numerical simulations of particles in a serpentine duct were conducted at bulk flow Stokes numbers between 0.125 and 6. The geometrical curvature causes particles to depart direction from the mean flow. Above a Stokes number of about unity, a reflection layer forms along the outer curve of the bend. Reflectional mixing creates regions of nearly uniform particle mean velocity and kinetic energy. Particles leave the inner bend in a plume that separates from the inner wall at low Stokes number. At higher Stokes number, the plume splits in two, adding an upper part consisting of ballistic particles, that do not follow the geometrical curvature. When the Stokes number is low, the instantaneous 3-D distribution of particles visualizes wall streaks. But at higher Stokes number, particles disperse out of the reflection layer and form large scale puffs in the central portion of the duct.

  20. Effect of Moderate Air Flow on the Distribution of Fuel Sprays After Injection Cut-0ff

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Spencer, R C

    1935-01-01

    High-speed motion pictures were taken of fuel sprays with the NACA spray-photographic apparatus to study the distribution of the liquid fuel from the instant of injection cut-off until about 0.05 second later. The fuel was injected into a glass-walled chamber in which the air density was varied from 1 to 13 times atmospheric air density (0.0765 to 0.99 pound per cubic foot) and in which the air was at room temperature. The air in the chamber was set in motion by means of a fan, and was directed counter to the spray at velocities up to 27 feet per second. The injection pressure was varied from 2,000 to 6,000 pounds per square inch. A 0.20-inch single-orifice nozzle, an 0.008-inch single-orifice nozzle, a multiorifice nozzle, and an impinging-jets nozzle were used. The best distribution was obtained by the use of air and a high-dispersion nozzle.

  1. Experimental Evaluation of Indoor Air Distribution in High-Performance Residential Buildings: Part I. General Descriptions and Qualification Tests

    SciTech Connect

    Jalalzadeh, A. A.; Hancock, E.; Powell, D.

    2007-12-01

    The main objective of this project is to experimentally characterize an air distribution system in heating mode during a period of recovery from setback. The specific air distribution system under evaluation incorporates a high sidewall supply-air register/diffuser and a near-floor wall return air grille directly below. With this arrangement, the highest temperature difference between the supply air and the room can occur during the recovery period and create a favorable condition for stratification. The experimental approach will provide realistic input data and results for verification of computational fluid dynamics modeling.

  2. High-Performance Ducts in Hot-Dry Climates

    SciTech Connect

    Hoeschele, Marc; Chitwood, Rick; German, Alea; Weitzel, Elizabeth

    2015-07-30

    Duct thermal losses and air leakage have long been recognized as prime culprits in the degradation of heating, ventilating, and air-conditioning (HVAC) system efficiency. Both the U.S. Department of Energy’s Zero Energy Ready Home program and California’s proposed 2016 Title 24 Residential Energy Efficiency Standards require that ducts be installed within conditioned space or that other measures be taken to provide similar improvements in delivery effectiveness (DE). Pacific Gas & Electric Company commissioned a study to evaluate ducts in conditioned space and high-performance attics (HPAs) in support of the proposed codes and standards enhancements included in California’s 2016 Title 24 Residential Energy Efficiency Standards. The goal was to work with a select group of builders to design and install high-performance duct (HPD) systems, such as ducts in conditioned space (DCS), in one or more of their homes and to obtain test data to verify the improvement in DE compared to standard practice. Davis Energy Group (DEG) helped select the builders and led a team that provided information about HPD strategies to them. DEG also observed the construction process, completed testing, and collected cost data.

  3. Technology Solutions Case Study: Overcoming Comfort Issues Due to Reduced Flow Room Air Mixing

    SciTech Connect

    2015-03-01

    Energy efficiency upgrades reduce heating and cooling loads on a house. With enough load reduction and if the HVAC system warrants replacement, the HVAC system is often upgraded with a more efficient, lower capacity system that meets the loads of the upgraded house. In this project, IBACOS studied when HVAC equipment is downsized and ducts are unaltered to determine conditions that could cause a supply air delivery problem and to evaluate the feasibility of modifying the duct systems using minimally invasive strategies to improve air distribution.

  4. What Happens After Treatment for Bile Duct Cancer?

    MedlinePlus

    ... After Treatment What Happens After Treatment for Bile Duct Cancer? For some people with bile duct cancer, ... Bile Duct Cancer Stops Working More In Bile Duct Cancer About Bile Duct Cancer Causes, Risk Factors, ...

  5. FRICTION LOSS IN FLEXIBLE PLASTIC AIR DUCT

    DTIC Science & Technology

    shelter fabricated 90-degree elbows . The tests were performed at flow rates ranging from 1300 to 4100 cubic feet per minute. These plastic components are...fabricated elbows were established. A 40-inch, smooth radius, 90-degree factory fabricated elbow is recommended for use with the Civil Defense Package...Ventilation Kit. This elbow develops a pressure drop equivalent to 50 feet of straight tubing. The best shelter fabricated elbow is a three-piece

  6. Vortex Shedding Inside a Baffled Air Duct

    NASA Technical Reports Server (NTRS)

    Davis, Philip; Kenny, R. Jeremy

    2010-01-01

    Common in the operation of both segmented and un-segmented large solid rocket motors is the occurrence of vortex shedding within the motor chamber. A portion of the energy within a shed vortex is converted to acoustic energy, potentially driving the longitudinal acoustic modes of the motor in a quasi-discrete fashion. This vortex shedding-acoustic mode excitation event occurs for every Reusable Solid Rocket Motor (RSRM) operation, giving rise to subsequent axial thrust oscillations. In order to better understand this vortex shedding/acoustic mode excitation phenomena, unsteady CFD simulations were run for both a test geometry and the full scale RSRM geometry. This paper covers the results from the subscale geometry runs, which were based on work focusing on the RSRM hydrodynamics. Unsteady CFD simulation parameters, including boundary conditions and post-processing returns, are reviewed. The results were further post-processed to identify active acoustic modes and vortex shedding characteristics. Probable locations for acoustic energy generation, and subsequent acoustic mode excitation, are discussed.

  7. Air Dispersion Characteristics and Thermal Comparison of Traditional and Fabric Ductwork using Computational Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    Andreopoulou, Areti

    This thesis research compares the air dispersion and thermal comfort characteristics of conventional diffuser and fabric-based ductwork systems. Heating, ventilation, and air-conditioning (HVAC) systems in buildings produce and regulate airflow traveling through ductwork. The performance characteristics of conventional ductwork are compared with recent advancements in fabric-based ductwork. Using computational fluid dynamics (CFD) analysis, thermal and air distribution flow patterns are compared between the two types of ductwork and preliminary thermal comfort and efficiency conclusions are drawn. Results of the Air Distribution Performance Index (ADPI) for both ducting systems reflect that, under the given test conditions, the fabric duct system is approximately 23% more comfortable than the traditional diffuser system in terms of air speed flow uniformity into the space, while staying within the Effective Draft Temperature comfort zone of -3 to +2°F.

  8. Better Duct Systems for Home Heating and Cooling; Building Technologies Program (Brochure)

    SciTech Connect

    2004-11-01

    Duct systems used in forced-air space-conditioning systems are a vital element in home energy efficiency. How well a system works makes a big difference in the cost and the effectiveness of heating and cooling a home.

  9. PMR Graphite Engine Duct Development

    NASA Technical Reports Server (NTRS)

    Stotler, C. L.; Yokel, S. A.

    1989-01-01

    The objective was to demonstrate the cost and weight advantages that could be obtained by utilizing the graphite/PMR15 material system to replace titanium in selected turbofan engine applications. The first component to be selected as a basis for evaluation was the outer bypass duct of the General Electric F404 engine. The operating environment of this duct was defined and then an extensive mechanical and physical property test program was conducted using material made by processing techniques which were also established by this program. Based on these properties, design concepts to fabricate a composite version of the duct were established and two complete ducts fabricated. One of these ducts was proof pressure tested and then run successfully on a factory test engine for over 1900 hours. The second duct was static tested to 210 percent design limit load without failure. An improved design was then developed which utilized integral composite end flanges. A complete duct was fabricated and successfully proof pressure tested. The net results of this effort showed that a composite version of the outer duct would be 14 percent lighter and 30 percent less expensive that the titanium duct. The other type of structure chosen for investigation was the F404 fan stator assembly, including the fan stator vanes. It was concluded that it was feasible to utilize composite materials for this type structure but that the requirements imposed by replacing an existing metal design resulted in an inefficient composite design. It was concluded that if composites were to be effectively used in this type structure, the design must be tailored for composite application from the outset.

  10. Effects of bending-torsional duct-induced swirl distortion on aerodynamic performance of a centrifugal compressor

    NASA Astrophysics Data System (ADS)

    Hou, Hongjuan; Wang, Leilei; Wang, Rui; Yang, Yanzhao

    2017-04-01

    A turbocharger compressor working in commercial vehicles, especially in some passenger cars, often works together with some pipes with complicated geometry as an air intake system, due to limit of available space in internal combustion engine compartments. These pipes may generate various distortions of physical parameters of the air at the inlet of the compressor and therefore the compressor aerodynamic performance deteriorates. Sometimes, the turbocharging engine fails to work at some operation points. This paper investigates the effects of various swirl distortions induced by different bending-torsional intake ducts on the aerodynamic performance of a turbocharger compressor by both 3D numerical simulations and experimental measurements. It was found that at the outlet of the pipes the different inlet ducts can generate different swirl distortions, twin vortices and bulk-like vortices with different rotating directions. Among them, the bulk-like vortices not only affect seriously the pressure distribution in the impeller domain, but also significantly deteriorate the compressor performance, especially at high flow rate region. And the rotating direction of the bulk-like vortices is also closely associated with the efficiency penalty. Besides the efficiency, the transient flow rate through a single impeller channel, or the asymmetric mass flow crossing the whole impeller, can be influenced by two disturbances. One is from the upstream bending-torsional ducts; other one is from the downstream volute.

  11. A Feasibility Study. Ductless Hydronic Distribution Systems with Fan Coil Delivery

    SciTech Connect

    Springer, D.; Dakin, B.; Backman, C.

    2012-07-01

    The primary objectives of this study are to estimate potential energy savings relative to conventional ducted air distribution, and to identify equipment requirements, costs, and barriers with a focus on ductless hydronic delivery systems that utilize water-to-air terminal units in each zone. Results indicate that annual heating and cooling energy use can be reduced by up to 27% assuming replacement of the conventional 13 SEER heat pump and coil with a similarly rated air-to-water heat pump.

  12. NASA Langley and NLR Research of Distributed Air/Ground Traffic Management

    NASA Technical Reports Server (NTRS)

    Ballin, Mark G.; Hoekstra, Jacco M.; Wing, David J.; Lohr, Gary W.

    2002-01-01

    Distributed Air/Ground Traffic Management (DAG-TM) is a concept of future air traffic operations that proposes to distribute information, decision-making authority, and responsibility among flight crews, the air traffic service provider, and aeronautical operational control organizations. This paper provides an overview and status of DAG-TM research at NASA Langley Research Center and the National Aerospace Laboratory of The Netherlands. Specific objectives of the research are to evaluate the technical and operational feasibility of the autonomous airborne component of DAG-TM, which is founded on the operational paradigm of free flight. The paper includes an overview of research approaches, the airborne technologies under development, and a summary of experimental investigations and findings to date. Although research is not yet complete, these findings indicate that free flight is feasible and will significantly enhance system capacity and safety. While free flight cannot alone resolve the complex issues faced by those modernizing the global airspace, it should be considered an essential part of a comprehensive air traffic management modernization activity.

  13. Reverse Flow Engine Core Having a Ducted Fan with Integrated Secondary Flow Blades

    NASA Technical Reports Server (NTRS)

    Kisska, Michael K. (Inventor); Princen, Norman H. (Inventor); Kuehn, Mark S. (Inventor); Cosentino, Gary B. (Inventor)

    2014-01-01

    Secondary air flow is provided for a ducted fan having a reverse flow turbine engine core driving a fan blisk. The fan blisk incorporates a set of thrust fan blades extending from an outer hub and a set of integral secondary flow blades extending intermediate an inner hub and the outer hub. A nacelle provides an outer flow duct for the thrust fan blades and a secondary flow duct carries flow from the integral secondary flow blades as cooling air for components of the reverse flow turbine engine.

  14. Energy efficient engine: Turbine transition duct model technology report

    NASA Technical Reports Server (NTRS)

    Leach, K.; Thurlin, R.

    1982-01-01

    The Low-Pressure Turbine Transition Duct Model Technology Program was directed toward substantiating the aerodynamic definition of a turbine transition duct for the Energy Efficient Engine. This effort was successful in demonstrating an aerodynamically viable compact duct geometry and the performance benefits associated with a low camber low-pressure turbine inlet guide vane. The transition duct design for the flight propulsion system was tested and the pressure loss goal of 0.7 percent was verified. Also, strut fairing pressure distributions, as well as wall pressure coefficients, were in close agreement with analytical predictions. Duct modifications for the integrated core/low spool were also evaluated. The total pressure loss was 1.59 percent. Although the increase in exit area in this design produced higher wall loadings, reflecting a more aggressive aerodynamic design, pressure profiles showed no evidence of flow separation. Overall, the results acquired have provided pertinent design and diagnostic information for the design of a turbine transition duct for both the flight propulsion system and the integrated core/low spool.

  15. The EOSDIS Version 0 Distributed Active Archive Center for physical oceanography and air-sea interaction

    NASA Technical Reports Server (NTRS)

    Hilland, Jeffrey E.; Collins, Donald J.; Nichols, David A.

    1991-01-01

    The Distributed Active Archive Center (DAAC) at the Jet Propulsion Laboratory will support scientists specializing in physical oceanography and air-sea interaction. As part of the NASA Earth Observing System Data and Information System Version 0 the DAAC will build on existing capabilities to provide services for data product generation, archiving, distribution and management of information about data. To meet scientist's immediate needs for data, existing data sets from missions such as Seasat, Geosat, the NOAA series of satellites and the Global Positioning Satellite system will be distributed to investigators upon request. In 1992, ocean topography, wave and surface roughness data from the Topex/Poseidon radar altimeter mission will be archived and distributed. New data products will be derived from Topex/Poseidon and other sensor systems based on recommendations of the science community. In 1995, ocean wind field measurements from the NASA Scatterometer will be supported by the DAAC.

  16. Test Protocol for Room-to-Room Distribution of Outside Air by Residential Ventilation Systems

    SciTech Connect

    Barley, C. D.; Anderson, R.; Hendron, B.; Hancock, E.

    2007-12-01

    This test and analysis protocol has been developed as a practical approach for measuring outside air distribution in homes. It has been used successfully in field tests and has led to significant insights on ventilation design issues. Performance advantages of more sophisticated ventilation systems over simpler, less-costly designs have been verified, and specific problems, such as airflow short-circuiting, have been identified.

  17. Radial distributions of air plants: a comparison between epiphytes and mistletoes.

    PubMed

    Taylor, Amanda; Burns, Kevin

    2016-04-01

    Vertical gradients of light and humidity within forest canopies are major predictors of air plant distributions. Although this pattern was first recognized over 120 years ago, few studies have considered an additional axis of resource availability, which exists radially around the trunks of trees. Here, we explored the radial distributions of mistletoes and epiphytes in relation to gradients of light and humidity around the trunks of their south-temperate host trees. Additionally, we correlated microclimate occupancy with plant physiological responses to shifting resource availability. The radial distributions of mistletoes and epiphytes were highly directional, and related to the availability of light and humidity, respectively. Mistletoes oriented northwest, parallel to gradients of higher light intensity, temperature, and lower humidity. Comparatively, epiphytes oriented away from the sun to the southeast. The rate of CO2 assimilation in mistletoes and photochemical efficiency of epiphytes was highest in plants growing in higher light and humidity environments, respectively. However, the photosynthetic parameters of mistletoes suggest that they are also efficient at assimilating CO2 in lower light conditions. Our results bridge a key gap in our understanding of within-tree distributions of mistletoes and epiphytes, and raise further questions on the drivers of air plant distributions.

  18. Thermography and Sonic Anemometry to Analyze Air Heaters in Mediterranean Greenhouses

    PubMed Central

    López, Alejandro; Valera, Diego L.; Molina-Aiz, Francisco; Peña, Araceli

    2012-01-01

    The present work has developed a methodology based on thermography and sonic anemometry for studying the microclimate in Mediterranean greenhouses equipped with air heaters and polyethylene distribution ducts to distribute the warm air. Sonic anemometry allows us to identify the airflow pattern generated by the heaters and to analyze the temperature distribution inside the greenhouse, while thermography provides accurate crop temperature data. Air distribution by means of perforated polyethylene ducts at ground level, widely used in Mediterranean-type greenhouses, can generate heterogeneous temperature distributions inside the greenhouse when the system is not correctly designed. The system analyzed in this work used a polyethylene duct with a row of hot air outlet holes (all of equal diameter) that expel warm air toward the ground to avoid plant damage. We have observed that this design (the most widely used in Almería's greenhouses) produces stagnation of hot air in the highest part of the structure, reducing the heating of the crop zone. Using 88 kW heating power (146.7 W·m−2) the temperature inside the greenhouse is maintained 7.2 to 11.2 °C above the outside temperature. The crop temperature (17.6 to 19.9 °C) was maintained above the minimum recommended value of 10 °C. PMID:23202025

  19. Thermography and sonic anemometry to analyze air heaters in Mediterranean greenhouses.

    PubMed

    López, Alejandro; Valera, Diego L; Molina-Aiz, Francisco; Peña, Araceli

    2012-10-16

    The present work has developed a methodology based on thermography and sonic anemometry for studying the microclimate in Mediterranean greenhouses equipped with air heaters and polyethylene distribution ducts to distribute the warm air. Sonic anemometry allows us to identify the airflow pattern generated by the heaters and to analyze the temperature distribution inside the greenhouse, while thermography provides accurate crop temperature data. Air distribution by means of perforated polyethylene ducts at ground level, widely used in Mediterranean-type greenhouses, can generate heterogeneous temperature distributions inside the greenhouse when the system is not correctly designed. The system analyzed in this work used a polyethylene duct with a row of hot air outlet holes (all of equal diameter) that expel warm air toward the ground to avoid plant damage. We have observed that this design (the most widely used in Almería's greenhouses) produces stagnation of hot air in the highest part of the structure, reducing the heating of the crop zone. Using 88 kW heating power (146.7 W ∙ m(-2)) the temperature inside the greenhouse is maintained 7.2 to 11.2 °C above the outside temperature. The crop temperature (17.6 to 19.9 °C) was maintained above the minimum recommended value of 10 °C.

  20. The effect of body postures on the distribution of air gap thickness and contact area.

    PubMed

    Mert, Emel; Psikuta, Agnes; Bueno, Marie-Ange; Rossi, René M

    2017-02-01

    The heat and mass transfer in clothing is predominantly dependent on the thickness of air layer and the magnitude of contact area between the body and the garment. The air gap thickness and magnitude of the contact area can be affected by the posture of the human body. Therefore, in this study, the distribution of the air gap and the contact area were investigated for different body postures of a flexible manikin. In addition, the effect of the garment fit (regular and loose) and style (t-shirts, sweatpants, jacket and trousers) were analysed for the interaction between the body postures and the garment properties. A flexible manikin was scanned using a three-dimensional (3D) body scanning technique, and the scans were post-processed in dedicated software. The body posture had a strong effect on the air gap thickness and the contact area for regions where the garment had a certain distance from the body. Furthermore, a mathematical model was proposed to estimate the possible heat transfer coefficient for the observed air layers and their change with posture. The outcome of this study can be used to improve the design of the protective and functional garments and predict their effect on the human body.

  1. The effect of body postures on the distribution of air gap thickness and contact area

    NASA Astrophysics Data System (ADS)

    Mert, Emel; Psikuta, Agnes; Bueno, Marie-Ange; Rossi, René M.

    2017-02-01

    The heat and mass transfer in clothing is predominantly dependent on the thickness of air layer and the magnitude of contact area between the body and the garment. The air gap thickness and magnitude of the contact area can be affected by the posture of the human body. Therefore, in this study, the distribution of the air gap and the contact area were investigated for different body postures of a flexible manikin. In addition, the effect of the garment fit (regular and loose) and style (t-shirts, sweatpants, jacket and trousers) were analysed for the interaction between the body postures and the garment properties. A flexible manikin was scanned using a three-dimensional (3D) body scanning technique, and the scans were post-processed in dedicated software. The body posture had a strong effect on the air gap thickness and the contact area for regions where the garment had a certain distance from the body. Furthermore, a mathematical model was proposed to estimate the possible heat transfer coefficient for the observed air layers and their change with posture. The outcome of this study can be used to improve the design of the protective and functional garments and predict their effect on the human body.

  2. Articulated transition duct in turbomachine

    DOEpatents

    Flanagan, James Scott; McMahan, Kevin Weston; LeBegue, Jeffrey Scott; Pentecost, Ronnie Ray

    2014-04-29

    Turbine systems are provided. A turbine system includes a transition duct comprising an inlet, an outlet, and a duct passage extending between the inlet and the outlet and defining a longitudinal axis, a radial axis, and a tangential axis. The outlet of the transition duct is offset from the inlet along the longitudinal axis and the tangential axis. The duct passage includes an upstream portion and a downstream portion. The upstream portion extends from the inlet between an inlet end and an aft end. The downstream portion extends from the outlet between an outlet end and a head end. The turbine system further includes a joint coupling the aft end of the upstream portion and the head end of the downstream portion together. The joint is configured to allow movement of the upstream portion and the downstream portion relative to each other about or along at least one axis.

  3. Sound propagation in choked ducts

    NASA Technical Reports Server (NTRS)

    Hersh, A. S.; Liu, C. Y.

    1976-01-01

    The linearized equations describing the propagation of sound in variable area ducts containing flow are shown to be singular when the duct mean flow is sonic. The singularity is removed when previously ignored nonlinear terms are retained. The results of a numerical study, for the case of plane waves propagating in a one-dimensional converging-diverging duct, show that the sound field is adequately described by the linearized equations only when the axial mean flow Mach number at the duct throat M sub th 0.6. For M sub th 0.6, the numerical results showed that acoustic energy flux was not conserved. An attempt was made to extend the study to include the nonlinear behavior of the sound field. Meaningful results were not obtained due, primarily, to numerical difficulties.

  4. Fan/Ram Duct Program

    DTIC Science & Technology

    1973-10-01

    turbofan engine shutoff scheme, the ram duct flow conditions, and the Ian duct shutoff vane area transi- tion schedule. This loss will be...airflow. The performance of the turbofan is neglected until the main engine burner is ignited. At that time it is assumed that the turbo - fan...B. Transient Operation . . .. TRANSIENT TRANSITION TEST CASES A. Turbofan to Ramjet B. Ramjet to Turbo fan CONCLUSIONS AND RECOMMENDATIONS

  5. Flow duct for nuclear reactors

    DOEpatents

    Straalsund, Jerry L.

    1978-01-01

    Improved liquid sodium flow ducts for nuclear reactors are described wherein the improvement comprises varying the wall thickness of each of the walls of a polygonal tubular duct structure so that each of the walls is of reduced cross-section along the longitudinal center line and of a greater cross-section along wall junctions with the other walls to form the polygonal tubular configuration.

  6. Membrane domain specificity in the spatial distribution of aquaporins 5, 7, 9, and 11 in efferent ducts and epididymis of rats.

    PubMed

    Hermo, Louis; Schellenberg, Morgan; Liu, Lauren Ye; Dayanandan, Bama; Zhang, Tong; Mandato, Craig A; Smith, Charles E

    2008-12-01

    Water content within the epididymis of the male reproductive system is stringently regulated to promote sperm maturation. Several members of the aquaporin (AQP) family of water channel-forming integral membrane proteins have been identified in epididymal cells, but expression profiling for this epithelium is presently incomplete, and no AQP isoform has yet been identified on basolateral plasma membranes of these cells. In this study, we explored AQP expression by RT-PCR and light microscopy immunolocalizations using peroxidase and wide-field fluorescence techniques. The results indicate that several AQPs are coexpressed in the epididymis including AQP 5, 7, 9, and 11. Immunolocalizations suggested complex patterns in the spatial distribution of these AQPs. In principal cells, AQP 9 and 11 were present mainly on microvilli, whereas AQP 7 was localized primarily to lateral and then to basal plasma membranes in a region-specific manner. AQP 5 was also expressed regionally but was associated with membranes of endosomes. Additionally, AQPs were expressed by some but not all basal (AQP 7 and 11), clear (AQP 7 and 9), and halo (AQP 7 and 11) cells. These findings indicate unique associations of AQPs with specific membrane domains in a cell type- and region-specific manner within the epididymis of adult animals.

  7. Membrane Domain Specificity in the Spatial Distribution of Aquaporins 5, 7, 9, and 11 in Efferent Ducts and Epididymis of Rats

    PubMed Central

    Hermo, Louis; Schellenberg, Morgan; Liu, Lauren Ye; Dayanandan, Bama; Zhang, Tong; Mandato, Craig A.; Smith, Charles E.

    2008-01-01

    Water content within the epididymis of the male reproductive system is stringently regulated to promote sperm maturation. Several members of the aquaporin (AQP) family of water channel–forming integral membrane proteins have been identified in epididymal cells, but expression profiling for this epithelium is presently incomplete, and no AQP isoform has yet been identified on basolateral plasma membranes of these cells. In this study, we explored AQP expression by RT-PCR and light microscopy immunolocalizations using peroxidase and wide-field fluorescence techniques. The results indicate that several AQPs are coexpressed in the epididymis including AQP 5, 7, 9, and 11. Immunolocalizations suggested complex patterns in the spatial distribution of these AQPs. In principal cells, AQP 9 and 11 were present mainly on microvilli, whereas AQP 7 was localized primarily to lateral and then to basal plasma membranes in a region-specific manner. AQP 5 was also expressed regionally but was associated with membranes of endosomes. Additionally, AQPs were expressed by some but not all basal (AQP 7 and 11), clear (AQP 7 and 9), and halo (AQP 7 and 11) cells. These findings indicate unique associations of AQPs with specific membrane domains in a cell type– and region-specific manner within the epididymis of adult animals. (J Histochem Cytochem 56:1121–1135, 2008) PMID:18796408

  8. Bundle duct interaction studies for fuel assemblies. [LMFBR

    SciTech Connect

    Hsia, H.T.S.; Kaplan, S.

    1981-06-01

    It is known that the wire-wrapped rods and duct in an LMFBR are undergoing a gradual structural distortion from the initially uniform geometry under the combined effects of thermal expansion and irradiation induced swelling and creep. These deformations have a significant effect on flow characteristics, thus causing changes in thermal behavior such as cladding temperature and temperature distribution within a bundle. The temperature distribution may further enhance or retard irradiation induced deformation of the bundle. This report summarizes the results of the continuing effort in investigating the bundle-duct interaction, focusing on the need for the large development plant.

  9. Propagation and radiation of sound from flanged circular ducts with circumferentially varying wall admittances. I Semi-infinite ducts. II - Finite ducts with sources

    NASA Technical Reports Server (NTRS)

    Fuller, C. R.

    1984-01-01

    Sound propagation in infinite, semiinfinite, and finite circular ducts with circumferentially varying wall admittances is investigated analytically. The infinite case is considered, and an example demonstrates the effects of wall-admittance distribution on dispersion characteristics and mode shapes. An exact solution is obtained for the semiinfinite case, a circular duct with a flanged opening: sidelobe suppression and circumferential-mode energy scattering leading to radiated-field asymmetry are found. A finite duct system with specified hard-walled pressure sources is examined in detail, evaluating reflection coefficients, transmission losses, and radiated-field directivity. Graphs and diagrams are provided, and the implications of the results obtained for the design of aircraft-turbofan inlet liners are discussed.

  10. The Civil Air Patrol's role in medical countermeasure distribution in Michigan.

    PubMed

    Hankinson, Jennifer Lixey; Chamberlain, Kerry; Doctor, Suzanne M; Macqueen, Mary

    2011-12-01

    Michigan's unique geological features and highly variable climatic conditions make distribution of medical countermeasures during a public health emergency situation very challenging. To enhance distribution during these situations, the Civil Air Patrol (CAP) has agreed to support the state of Michigan by transporting life-saving medical countermeasures to remote areas of the state. The Michigan Strategic National Stockpile (MISNS) program has successfully developed, exercised, and enhanced its partnership with the CAP to include distribution of federally provided Strategic National Stockpile (SNS) assets. The CAP has proven to be a reliable and valuable partner, as well as a cost-effective and time-efficient means of transporting vital resources during a public health emergency.

  11. The Civil Air Patrol's Role in Medical Countermeasure Distribution in Michigan

    PubMed Central

    Hankinson, Jennifer Lixey; Doctor, Suzanne M.; Macqueen, Mary

    2011-01-01

    Michigan's unique geological features and highly variable climatic conditions make distribution of medical countermeasures during a public health emergency situation very challenging. To enhance distribution during these situations, the Civil Air Patrol (CAP) has agreed to support the state of Michigan by transporting life-saving medical countermeasures to remote areas of the state. The Michigan Strategic National Stockpile (MISNS) program has successfully developed, exercised, and enhanced its partnership with the CAP to include distribution of federally provided Strategic National Stockpile (SNS) assets. The CAP has proven to be a reliable and valuable partner, as well as a cost-effective and time-efficient means of transporting vital resources during a public health emergency. PMID:22060035

  12. Fungal colonization of fiberglass insulation in the air distribution system of a multi-story office building: VOC production and possible relationship to a sick building syndrome

    NASA Technical Reports Server (NTRS)

    Ahearn, D. G.; Crow, S. A.; Simmons, R. B.; Price, D. L.; Noble, J. A.; Mishra, S. K.; Pierson, D. L.

    1996-01-01

    Complaints characteristic of those for sick building syndrome prompted mycological investigations of a modern multi-story office building on the Gulf coast in the Southeastern United States (Houston-Galveston area). The air handling units and fiberglass duct liner of the heating, ventilating and air conditioning system of the building, without a history of catastrophic or chronic water damage, demonstrated extensive colonization with Penicillium spp and Cladosporium herbarum. Although dense fungal growth was observed on surfaces within the heating-cooling system, most air samples yielded fewer than 200 CFU m-3. Several volatile compounds found in the building air were released also from colonized fiberglass. Removal of colonized insulation from the floor receiving the majority of complaints of mouldy air and continuous operation of the units supplying this floor resulted in a reduction in the number of complaints.

  13. Airborne lidar mapping of vertical ozone distributions in support of the 1990 Clean Air Act Amendments

    NASA Technical Reports Server (NTRS)

    Uthe, Edward E.; Nielsen, Norman B.; Livingston, John M.

    1992-01-01

    The 1990 Clean Air Act Amendments mandated attainment of the ozone standard established by the U.S. Environmental Protection Agency. Improved photochemical models validated by experimental data are needed to develop strategies for reducing near surface ozone concentrations downwind of urban and industrial centers. For more than 10 years, lidar has been used on large aircraft to provide unique information on ozone distributions in the atmosphere. However, compact airborne lidar systems are needed for operation on small aircraft of the type typically used on regional air quality investigations to collect data with which to develop and validate air quality models. Data presented in this paper will consist of a comparison between airborne differential absorption lidar (DIAL) and airborne in-situ ozone measurements. Also discussed are future plans to improve the airborne ultraviolet-DIAL for ozone and other gas observations and addition of a Fourier Transform Infrared (FTIR) emission spectrometer to investigate the effects of other gas species on vertical ozone distribution.

  14. Nusselt numbers in rectangular ducts with laminar viscous dissipation

    SciTech Connect

    Morini, G.L.; Spiga, M.

    1999-11-01

    The need for high thermal performance has stimulated the use of rectangular ducts in a wide variety of compact heat exchangers, mainly in tube-fin and plate-fin exchangers, in order to obtain an enhancement in heat transfer, with the same cross-sectional area of the duct. In this paper, the steady temperature distribution and the Nusselt numbers are analytically determined for a Newtonian incompressible fluid in a rectangular duct, in fully developed laminar flow with viscous dissipation, for any combination of heated and adiabatic sides of the duct, in H1 boundary condition, and neglecting the axial heat conduction in the fluid. The Navier-Stokes and the energy balance equations are solved using the technique of the finite integral transforms. For a duct with four uniformly heated sides (4 version), the temperature distribution and the Nusselt numbers are obtained as a function of the aspect ratio and of the Brinkman number and presented in graphs and tables Finally it is proved that the temperature field in a fully developed T boundary condition can be obtained as a particular case of the H1 problem and that the corresponding Nusselt numbers do not depend on the Brinkman number.

  15. CASE STUDY OF DUCT RETROFIT OF A 1985 HOME AND GUIDELINES FOR ATTIC AND CRAWL SPACE DUCT SEALING

    SciTech Connect

    Boudreaux, Philip R; Christian, Jeffrey E; Jackson, Roderick K

    2012-01-01

    The U.S. Department of Energy (DOE) is fully committed to research for developing the information and capabilities necessary to provide cost-effective residential retrofits yielding 50% energy savings within the next several years. Heating, ventilation, and air conditioning (HVAC) is the biggest energy end use in the residential sector, and a significant amount of energy can be wasted through leaky ductwork in unconditioned spaces such as attics and crawl spaces. A detailed duct sealing case study is presented for one house along with nine brief descriptions of other duct retrofits completed in the mixed-humid climate. Costs and estimated energy savings are reported for most of the ten houses. Costs for the retrofits ranged from $0.92/ft2 to $1.80/ft2 of living space and estimated yearly energy cost savings due to the duct retrofits range from 1.8% to 18.5%. Lessons learned and duct sealing guidelines based on these ten houses, as well as close work with the HVAC industry in the mixed-humid climate of East Tennessee, northern Georgia, and south-central Kentucky are presented. It is hoped that the lessons learned and guidelines will influence local HVAC contractors, energy auditors, and homeowners when diagnosing or repairing HVAC duct leakage and will be useful for steering DOE s future research in this area.

  16. A SYSTEMIZATION AND PENETRATION STUDY FOR STRAIGHT CYLINDRICAL DUCTS,

    DTIC Science & Technology

    DUCTS, *NEUTRON BEAMS, DUCTED BODIES, ALUMINUM, NEUTRON DETECTORS, POLONIUM , BERYLLIUM, SOURCES, NEUTRON SCATTERING, SHIELDING, WATER, NEUTRON TRANSPORT THEORY, ISOTROPISM, DUCT BENDS, NEUTRON FLUX, PENETRATION.

  17. Air temperature distribution over a debris covered glacier in the Nepalese Himalayas

    NASA Astrophysics Data System (ADS)

    Pellicciotti, Francesca; Petersen, Lene; Wicki, Simon; Carenzo, Marco; Immerzeel, Walter

    2013-04-01

    Air temperature is a key control in the exchange of energy fluxes at the glacier-atmosphere interface and also the main input variable in many of the melt models (both energy balance or temperature-index type of models) currently used to predict glacier melt across a variety of scales. The commonly used approach to derive distributed temperature inputs is extrapolation from point measurements, often located outside the glacier surface, with a lapse rate that is assumed to be constant in time and uniform in space. Previous work for debris free glaciers has shown that lapse rates depend on several factors such as katabatic wind, humidity and the presence of clouds and that they vary in space and time. A dominant control however seems to be the presence of katabatic wind. For debris covered glaciers, the driving forces of air temperature are likely to be different but little is known because of the scarcity of field observations. Few preliminary studies have suggested that there is a strong coupling between surface and 2 m air temperature, while strong katabatic wind does not develop on debris covered tongues. In this study, we examine the variability in air temperature and lapse rates, as well as its atmospheric controls under different meteorological settings for the debris covered Lirung Glacier in the Nepalese Himalayas. We use a recently collected data set of air and surface temperature at a network of locations on the glacier tongue during the pre-monsoon season and the entire monsoon season of 2012. Additionally an AWS was installed on the glacier allowing the collection of meteorological observations. We investigate differences in air temperature during different climatic conditions (monsoon vs. dry period, upvalley vs. downvalley wind, cloudy vs. clear-sky, etc.). We identify the main controls on temperature and discuss how appropriate the application of a temperature lapse rate is over a debris covered glacier by investigating the correlation between

  18. Passive Room-to-Room Air Transfer, Fresno, California (Fact Sheet)

    SciTech Connect

    Not Available

    2014-02-01

    Field testing was performed in a retrofit unoccupied test house in Fresno, California. Three air-based heating, ventilation, and air conditioning (HVAC) distribution systems - a typical airflow ducted system to the bedrooms, a low airflow ducted system to the bedrooms, and a system with no ductwork to the bedrooms - were evaluated during heating, cooling, and midseason conditions. The relative ability of each of the three systems was assessed with respect to relevant Air Conditioning Contractors of America (ACCA) and ASHRAE standards for house temperature uniformity and stability, respectively. Computational fluid dynamics (CFD) modeling also was performed and refined based on comparison to field test results to determine the air flow rate into the bedrooms of over-door and bottom-of-door air transfer grilles.

  19. Effect of air-sea coupling on the frequency distribution of intense tropical cyclones over the northwestern Pacific

    NASA Astrophysics Data System (ADS)

    Ogata, Tomomichi; Mizuta, Ryo; Adachi, Yukimasa; Murakami, Hiroyuki; Ose, Tomoaki

    2015-12-01

    Effect of air-sea coupling on the frequency distribution of intense tropical cyclones (TCs) over the northwestern Pacific (NWP) region is investigated using an atmosphere and ocean coupled general circulation model (AOGCM). Monthly varying flux adjustment enables AOGCM to simulate both subseasonal air-sea interaction and realistic seasonal to interannual sea surface temperature (SST) variability. The maximum of intense TC distribution around 20-30°N in the AGCM shifts equatorward in the AOGCM due to the air-sea coupling. Hence, AOGCM reduces northward intense TC distribution bias seen in AGCM. Over the NWP, AOGCM-simulated SST variability is large around 20-30°N where the warm mixed layer becomes shallower rapidly. Active entrainment from subsurface water over this region causes stronger SST cooling, and hence, TC intensity decreases. These results suggest that air-sea coupling characterized by subsurface oceanic condition causes more realistic distribution of intense TCs over the NWP.

  20. Computational study of ion distributions at the air/liquid methanol interface

    SciTech Connect

    Sun, Xiuquan; Wick, Collin D.; Dang, Liem X.

    2011-06-16

    Molecular dynamic simulations with polarizable potentials were performed to systematically investigate the distribution of NaCl, NaBr, NaI, and SrCl2 at the air/liquid methanol interface. The density profiles indicated that there is no substantial enhancement of anions at the interface for the NaX systems in contrast to what was observed at the air/aqueous interface. The surfactant-like shape of the larger more polarizable halide anions is compensated by the surfactant nature of methanol itself. As a result, methanol hydroxy groups strongly interacted with one side of polarizable anions, in which their induced dipole points, and methanol methyl groups were more likely to be found near the positive pole of anion induced dipoles. Furthermore, salts were found to disrupt the surface structure of methanol, reducing the observed enhancement of methyl groups at the outer edge of the air/liquid methanol interface. With the additional of salts to methanol, the computed surface potentials increased, which is in contrast to what is observed in corresponding aqueous systems, where the surface potential decreases with the addition of salts. Both of these trends have been indirectly observed with experiments. This was found to be due to the propensity of anions for the air/water interface that is not present at the air/liquid methanol interface. This work was supported by the US Department of Energy Basic Energy Sciences' Chemical Sciences, Geosciences & Biosciences Division. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  1. Building America Case Study: Compact Buried Ducts in a Hot-Humid Climate House, Lady's Island, South Carolina

    SciTech Connect

    2016-02-01

    A system of compact, buried ducts provides a high-performance and cost-effective solution for delivering conditioned air throughout the building. This report outlines research activities that are expected to facilitate adoption of compact buried duct systems by builders. The results of this research would be scalable to many new house designs in most climates and markets, leading to wider industry acceptance and building code and energy program approval. The primary research question with buried ducts is potential condensation at the outer jacket of the duct insulation in humid climates during the cooling season. Current best practices for buried ducts rely on encapsulating the insulated ducts with closed-cell spray polyurethane foam insulation to control condensation and improve air sealing. The encapsulated buried duct concept has been analyzed and shown to be effective in hot-humid climates. The purpose of this project is to develop an alternative buried duct system that performs effectively as ducts in conditioned space - durable, energy efficient, and cost-effective - in a hot-humid climate (IECC warm-humid climate zone 3A) with three goals that distinguish this project: 1) Evaluation of design criteria for buried ducts that use common materials and do not rely on encapsulation using spray foam or disrupt traditional work sequences, 2) Establishing design criteria for compact ducts and incorporate those with the buried duct criteria to further reduce energy losses and control installed costs, and 3) Developing HVAC design guidance for performing accurate heating and cooling load calculations for compact buried ducts.

  2. Determination of variables for air distribution system with elastic valve for down-the-hole pneumatic hammer

    NASA Astrophysics Data System (ADS)

    Primychkin, AYu; Kondratenko, AS; Timonin, VV

    2017-02-01

    The air distribution system of down-the-hole pneumatic hammer 105 mm in diameter is updated to enhance drilling efficiency. The design model of the down-the-hole pneumatic hammer is constructed in ITI SimulationX environment. The basic variables of the air distribution system with an elastic valve are determined so that to ensure increased impact energy at the limited pre-impact velocity and the same machine size.

  3. Heat transfer and pressure distributions on hemisphere-cylinders in methane-air combustion products at Mach 7

    NASA Technical Reports Server (NTRS)

    Weinstein, I.

    1973-01-01

    Heat-transfer and pressure distributions were measured over the surfaces of three hemisphere-cylinder models tested at a nominal Mach number of 7 in the Langley 8-foot high-temperature structures tunnel which uses methane-air products of combustion as a test medium. The results showed that the heat-transfer and pressure distributions over the surface of the models were in good agreement with experimental data obtained in air and also with theoretical predictions.

  4. Experimental investigation of static ice refrigeration air conditioning system driven by distributed photovoltaic energy system

    NASA Astrophysics Data System (ADS)

    Xu, Y. F.; Li, M.; Luo, X.; Wang, Y. F.; Yu, Q. F.; Hassanien, R. H. E.

    2016-08-01

    The static ice refrigeration air conditioning system (SIRACS) driven by distributed photovoltaic energy system (DPES) was proposed and the test experiment have been investigated in this paper. Results revealed that system energy utilization efficiency is low because energy losses were high in ice making process of ice slide maker. So the immersed evaporator and co-integrated exchanger were suggested in system structure optimization analysis and the system COP was improved nearly 40%. At the same time, we have researched that ice thickness and ice super-cooled temperature changed along with time and the relationship between system COP and ice thickness was obtained.

  5. Three-Dimensional Study of the Terminal Portion in Sprague-Dawley Rat Ejaculatory Ducts.

    PubMed

    Motohashi, M; Inomata, T; Takahashi, H; Ichihara, N; Kansaku, N; Ikegami, M; Asari, M; Mutou, T; Wakui, S

    2016-08-01

    In mammals, a pair of ejaculatory ducts exists in the urethra at the seminal colliculus. The detailed anatomical structures of the distal end of the ejaculatory ducts of Sprague-Dawley rats were investigated by the computer-assisted three-dimensional reconstruction analysis using light-microscopic serial sections. A three-dimensional reconstruction revealed that in adult rats, the ejaculatory sinus pair consists of two parts: the cranial section - a compartment region composed of a fusion of the ampullary gland duct and the seminal vesicle duct, and the caudal section - a grooved region composed of a long slitlike ejaculatory ostium that extends into the urethra on both sides of the seminal colliculus. But the sphincter structure was not observed. The long axis of the compartment region was approximately 58 μm in length, and that of the groove region was approximately 495 μm. Although many epithelial glands ducts were distributed throughout the ejaculatory sinuses, the prostate and coagulation gland ducts did not open in these sinuses. The urethra was composed of transitional epithelium, while the ejaculatory sinuses were composed of single to stratified cuboidal epithelium. The ejaculatory ducts continued to the ejaculatory ostium in male adult Sprague-Dawley rat were composed of the seminal vesicle ducts received the ampullary gland ducts.

  6. Duct leakage measurement and analysis

    SciTech Connect

    Swim, W.B.; Griggs, E.I.

    1995-08-01

    Leakage measurements were made on 6-in. (150-mm) and 10-in. (250-mm) round and 14-in. by 6-in. (350-mm by 150-mm) and 22-in. by 8-in. (560-mm by 200-mm) rectangular ducts for both positive and negative internal pressures. The data were found to fit a power law model, with the leakage rate (Q) increasing with a power, n, of static pressure difference ({Delta}p), i.e., Q {proportional_to} ({Delta}p){sup n}. A convenient leakage prediction equation, Q = C ({Delta}p*){sup n}, uses a normalized pressure difference, {Delta}p* = {Delta}p/{Delta}p{sub ref}, with {Delta}p in in. wg (Pa) and a reference pressure difference, {Delta}p{sub ref}, of 1 in. wg (250 Pa). C{sub D}, the recommended design values of C for a repetitive element of a duct system--one duct section and one joint, ranged from 0.01 cfm (0.005 L/s) for a Vanstone flanged joint to 18.5 cfm (8.7 L/s) for an unsealed 22-in. by 8-in (560-mm by 200-mm) duct with a slip-and-drive joint. Most test ducts had C{sub D} values of 6 to 8 cfm (3 to 4 L/s) and had values of n close to 0.58. Joints were found to account for most of the leakage, and thus most of the value of C{sub D}, in unsealed ducts, with seams contributing only 10% to 38% of the total.

  7. Whistler propagation in ionospheric density ducts: Simulations and DEMETER observations

    NASA Astrophysics Data System (ADS)

    Woodroffe, J. R.; Streltsov, A. V.; Vartanyan, A.; Milikh, G. M.

    2013-11-01

    On 16 October 2009, the Detection of Electromagnetic Emissions Transmitted from Earthquake Regions (DEMETER) satellite observed VLF whistler wave activity coincident with an ionospheric heating experiment conducted at HAARP. At the same time, density measurements by DEMETER indicate the presence of multiple field-aligned enhancements. Using an electron MHD model, we show that the distribution of VLF power observed by DEMETER is consistent with the propagation of whistlers from the heating region inside the observed density enhancements. We also discuss other interesting features of this event, including coupling of the lower hybrid and whistler modes, whistler trapping in artificial density ducts, and the interference of whistlers waves from two adjacent ducts.

  8. Lichen and bryophyte distribution on oak in London in relation to air pollution and bark acidity.

    PubMed

    Larsen, R S; Bell, J N B; James, P W; Chimonides, P J; Rumsey, F J; Tremper, A; Purvis, O W

    2007-03-01

    Epiphytic lichen and bryophyte distribution and frequency were investigated on the trunks of 145 young oak trees throughout London and surrounding counties, and compared with pollution levels and bark pH. Sixty-four lichen and four bryophyte species were recorded. Three major zones were identified: (i) two central regions with a few lichens, bryophytes absent; (ii) a surrounding region with a more diverse flora including a high cover of nitrophyte lichens; and (iii) an outer region, characterised by species absent from central London, including acidophytes. Nineteen species were correlated with nitrogen oxides and 16 with bark pH, suggesting that transport-related pollution and bark acidity influence lichen and bryophyte distribution in London today. Lichens and bryophytes are responding to factors that influence human and environmental health in London. Biomonitoring therefore has a practical role to assess the effects of measures to improve London's air quality.

  9. Proposal for the geometrical distribution of the air cherenkov detectors for CHARM

    NASA Astrophysics Data System (ADS)

    Morales Reyes, A. R.; Martínez Bravo, O. M.

    2011-04-01

    In this work we propose the geometrical distribution of the air Cherenkov detectors array (ACD), who will be part of the Cosmic High Altitude Radiation Monitor Observatory (CHARM) located at Pico de Orizaba Volcano at 4300 m.a.s.l.. The proposal is based on a library of events built with photons, protons and iron nuclei as primary particles by montecarlo simulations with energies from 1014 eV to 1017 eV. The goal of this detectors will be to determinate the nature of primary cosmic radiation, through measuring the height at which the secondary particles generated reach his maximum number or Xmax, this quantity is related with the effective cross section and finally with the atomic number A of the primary particles. In addition to this we proposed an energy estimator based on the study of the lateral distribution function of the generated events.

  10. CMAQ (Community Multi-Scale Air Quality) atmospheric distribution model adaptation to region of Hungary

    NASA Astrophysics Data System (ADS)

    Lázár, Dóra; Weidinger, Tamás

    2016-04-01

    For our days, it has become important to measure and predict the concentration of harmful atmospheric pollutants such as dust, aerosol particles of different size ranges, nitrogen compounds, and ozone. The Department of Meteorology at Eötvös Loránd University has been applying the WRF (Weather Research and Forecasting) model several years ago, which is suitable for weather forecasting tasks and provides input data for various environmental models (e.g. DNDC). By adapting the CMAQ (Community Multi-scale Air Quality) model we have designed a combined ambient air-meteorological model (WRF-CMAQ). In this research it is important to apply different emission databases and a background model describing the initial distribution of the pollutant. We used SMOKE (Sparse Matrix Operator Kernel Emissions) model for construction emission dataset from EMEP (European Monitoring and Evaluation Programme) inventories and GEOS-Chem model for initial and boundary conditions. Our model settings were CMAQ CB05 (Carbon Bond 2005) chemical mechanism with 108 x 108 km, 36 x 36 km and 12 x 12 km grids for regions of Europe, the Carpathian Basin and Hungary respectively. i) The structure of the model system, ii) a case study for Carpathian Basin (an anticyclonic weather situation at 21th September 2012) are presented. iii) Verification of ozone forecast has been provided based on the measurements of background air pollution stations. iv) Effects of model attributes (f.e. transition time, emission dataset, parameterizations) for the ozone forecast in Hungary are also investigated.

  11. Development of a model for activated sludge aeration systems: linking air supply, distribution, and demand.

    PubMed

    Schraa, Oliver; Rieger, Leiv; Alex, Jens

    2017-02-01

    During the design of a water resource recovery facility, it is becoming industry practice to use simulation software to assist with process design. Aeration is one of the key components of the activated sludge process, and is one of the most important aspects of modelling wastewater treatment systems. However, aeration systems are typically not modelled in detail in most wastewater treatment process modelling studies. A comprehensive dynamic aeration system model has been developed that captures both air supply and demand. The model includes sub-models for blowers, pipes, fittings, and valves. An extended diffuser model predicts both oxygen transfer efficiency within an aeration basin and pressure drop across the diffusers. The aeration system model allows engineers to analyse aeration systems as a whole to determine biological air requirements, blower performance, air distribution, control valve impacts, controller design and tuning, and energy costs. This enables engineers to trouble-shoot the entire aeration system including process, equipment and controls. It also allows much more realistic design of these highly complex systems.

  12. Distributed pheromone-based swarming control of unmanned air and ground vehicles for RSTA

    NASA Astrophysics Data System (ADS)

    Sauter, John A.; Mathews, Robert S.; Yinger, Andrew; Robinson, Joshua S.; Moody, John; Riddle, Stephanie

    2008-04-01

    The use of unmanned vehicles in Reconnaissance, Surveillance, and Target Acquisition (RSTA) applications has received considerable attention recently. Cooperating land and air vehicles can support multiple sensor modalities providing pervasive and ubiquitous broad area sensor coverage. However coordination of multiple air and land vehicles serving different mission objectives in a dynamic and complex environment is a challenging problem. Swarm intelligence algorithms, inspired by the mechanisms used in natural systems to coordinate the activities of many entities provide a promising alternative to traditional command and control approaches. This paper describes recent advances in a fully distributed digital pheromone algorithm that has demonstrated its effectiveness in managing the complexity of swarming unmanned systems. The results of a recent demonstration at NASA's Wallops Island of multiple Aerosonde Unmanned Air Vehicles (UAVs) and Pioneer Unmanned Ground Vehicles (UGVs) cooperating in a coordinated RSTA application are discussed. The vehicles were autonomously controlled by the onboard digital pheromone responding to the needs of the automatic target recognition algorithms. UAVs and UGVs controlled by the same pheromone algorithm self-organized to perform total area surveillance, automatic target detection, sensor cueing, and automatic target recognition with no central processing or control and minimal operator input. Complete autonomy adds several safety and fault tolerance requirements which were integrated into the basic pheromone framework. The adaptive algorithms demonstrated the ability to handle some unplanned hardware failures during the demonstration without any human intervention. The paper describes lessons learned and the next steps for this promising technology.

  13. Research on measurement-device-independent quantum key distribution based on an air-water channel

    NASA Astrophysics Data System (ADS)

    Zhou, Yuan-yuan; Zhou, Xue-jun; Xu, Hua-bin; Cheng, Kang

    2016-11-01

    A measurement-device-independent quantum key distribution (MDI-QKD) method with an air-water channel is researched. In this method, the underwater vehicle and satellite are the legitimate parties, and the third party is at the airwater interface in order to simplify the unilateral quantum channel to water or air. Considering the condition that both unilateral transmission distance and transmission loss coefficient are unequal, a perfect model of the asymmetric channel is built. The influence of asymmetric channel on system loss tolerance and secure transmission distance is analyzed. The simulation results show that with the increase of the channel's asymmetric degree, the system loss tolerance will descend, one transmission distance will be reduced while the other will be increased. When the asymmetric coefficient of channel is between 0.068 and 0.171, MDI-QKD can satisfy the demand of QKD with an air-water channel, namely the underwater transmission distance and atmospheric transmission distance are not less than 60 m and 12 km, respectively.

  14. Reconstruction of air-shower parameters for large-scale radio detectors using the lateral distribution

    NASA Astrophysics Data System (ADS)

    Kostunin, D.; Bezyazeekov, P. A.; Hiller, R.; Schröder, F. G.; Lenok, V.; Levinson, E.

    2016-02-01

    We investigate features of the lateral distribution function (LDF) of the radio signal emitted by cosmic ray air-showers with primary energies Epr > 0.1 EeV and its connection to air-shower parameters such as energy and shower maximum using CoREAS simulations made for the configuration of the Tunka-Rex antenna array. Taking into account all significant contributions to the total radio emission, such as by the geomagnetic effect, the charge excess, and the atmospheric refraction we parameterize the radio LDF. This parameterization is two-dimensional and has several free parameters. The large number of free parameters is not suitable for experiments of sparse arrays operating at low SNR (signal-to-noise ratios). Thus, exploiting symmetries, we decrease the number of free parameters based on the shower geometry and reduce the LDF to a simple one-dimensional function. The remaining parameters can be fit with a small number of points, i.e. as few as the signal from three antennas above detection threshold. Finally, we present a method for the reconstruction of air-shower parameters, in particular, energy and Xmax (shower maximum), which can be reached with a theoretical accuracy of better than 15% and 30 g/cm2, respectively.

  15. Brunt-Doppler ducting of small-period gravity waves

    SciTech Connect

    Wang, D.Y.; Tuan, T.F. )

    1988-09-01

    The variation of the Brunt period with height lends itself to a natural ducting and filtering mechanism for low-altitude short-period gravity waves. The authors investigate this mechanism in combination with Doppler ducting produced by the variation in horizontal winds. Both the frequency dispersion at fixed propagation direction and the direction dispersion at fixed frequency have been examined in a COSPAR background atmosphere with zonal and meridional winds. The results show that not only are the low-altitude short-period gravity waves ducted, but unlike the usual ducting mechanisms due to uneven structure and dissipation which produce only partially guided modes, this mechanism produces primarily guided modes in the absence of winds and a mixture of fully and partially guided modes with winds. The wind effects are very large on the higher modes and less significant on the few lowest modes, including the Lamb mode. Investigation of viscous dissipation, nonlinearity, and instability have shown that viscosity is unimportant for most altitudes of interest and that nonlinearity and instability can play a role for all but the lowest guided modes. They propose that simultaneous continuous observation of airglow at mesospheric and ionospheric altitudes be made to verify not only the low-altitude Brunt-Doppler ducting for short-period gravity waves, but also the vertical energy distribution of the medium- and large-scale TIDs.

  16. Viscous flow computations for elliptical two-duct version of the SSME hot gas manifold

    NASA Technical Reports Server (NTRS)

    Roger, R. P.

    1986-01-01

    The objective of the effort was to numerically simulate viscous subsonic flow in a proposed elliptical two-duct version of the fuel side Hot Gas Manifold (HGM) for the Space Shuttle Main Engine (SSME). The numerical results were to complement both water flow and air flow experiments in the two-duct geometry performed at NASA-MSFC and Rocketdyne. The three-dimensional character of the HGM consists of two essentially different geometries. The first part of the construction is a concentric shell duct structure which channels the gases from a turbine exit into the second part comprised of two cylindrically shaped transfer ducts. The initial concentric shell portion can be further subdivided into a turnaround section and a bowl section. The turnaround duct (TAD) changes the direction of the mean flow by 180 degress from a smaller radius to a larger radius duct which discharges into the bowl. The cylindrical transfer ducts are attached to the bowl on one side thus providing a plane of symmetry midway between the two. Centerline flow distance from the TAD inlet to the transfer duct exit is approximately two feet. Details of the approach used to numerically simulate laminar or turbulent flow in the HGM geometry are presented. Computational results are presented and discussed.

  17. What's New in Bile Duct Cancer Research and Treatment?

    MedlinePlus

    ... Bile Duct Cancer About Bile Duct Cancer What’s New in Bile Duct Cancer Research and Treatment? Bile ... is tumor blood vessels. Bile duct tumors need new blood vessels to grow beyond a certain size. ...

  18. What Are the Key Statistics about Bile Duct Cancer?

    MedlinePlus

    ... About Bile Duct Cancer What Are the Key Statistics About Bile Duct Cancer? Bile duct cancer (cholangiocarcinoma) ... it is when it is found. For survival statistics, see “ Survival statistics for bile duct cancers .” Visit ...

  19. What Should You Ask Your Doctor about Bile Duct Cancer?

    MedlinePlus

    ... What Should You Ask Your Doctor About Bile Duct Cancer? It is important to have frank, open ... Doctor About Bile Duct Cancer? More In Bile Duct Cancer About Bile Duct Cancer Causes, Risk Factors, ...

  20. Affections of the salivary ducts in buffaloes

    PubMed Central

    Misk, N.A.; Misk, T.N.; Semieka, M.A.; Ahmed, A.F.

    2014-01-01

    The aim of the present study was to determine different affections of the salivary ducts in buffaloes with special reference to diagnosis and treatment. The study was carried out on 39 buffaloes suffering from different affections of the salivary ducts. The recorded affections of the salivary ducts in buffaloes include; ectasia of the parotid duct (21 cases), parotid duct fistula (15 cases) and sialocele (3 cases). Each case was subjected to full study including case history, clinical examination, diagnosis, and treatment whenever possible. Exploratory puncture and radiography were used for confirmation of diagnosis. Intraoral marsupialization was performed for treatment of parotid duct ectasia. Salivary fistula was corrected by one of two successful techniques; the first by reconstruction of the parotid duct and the second by ligation of the parotid duct just caudal to the fistula opening. Sialoceles were corrected by removal of the mandibular salivary gland of the affected side. PMID:26623341

  1. Laparoscopic management of enlarged cystic duct.

    PubMed

    Nowzaradan, Y; Meador, J; Westmoreland, J

    1992-12-01

    After laparoscopic exploration of the common bile duct, or when a patient has acute cholecystitis, the cystic duct is sometimes edematous and too large to be ligated safely with an Endoclip. In such cases, ligation of the cystic duct with an Endoloop offers a solution to the problem. The standard technique for application of an Endoloop consists of dividing the cystic duct and then applying the Endoloop. This becomes more difficult if, after the cystic duct is divided, loss of traction on the common bile duct results in retraction of the divided cystic stump outside of the laparoscopic field of view. To avoid this difficulty, the authors apply an Endoloop with the grasping forceps on the cystic duct before the duct is divided so that it cannot retract from operative view and for this task developed an instrument that allows simultaneous introduction of both grasping forceps and the Endoloop through a single port.

  2. Affections of the salivary ducts in buffaloes.

    PubMed

    Misk, N A; Misk, T N; Semieka, M A; Ahmed, A F

    2014-01-01

    The aim of the present study was to determine different affections of the salivary ducts in buffaloes with special reference to diagnosis and treatment. The study was carried out on 39 buffaloes suffering from different affections of the salivary ducts. The recorded affections of the salivary ducts in buffaloes include; ectasia of the parotid duct (21 cases), parotid duct fistula (15 cases) and sialocele (3 cases). Each case was subjected to full study including case history, clinical examination, diagnosis, and treatment whenever possible. Exploratory puncture and radiography were used for confirmation of diagnosis. Intraoral marsupialization was performed for treatment of parotid duct ectasia. Salivary fistula was corrected by one of two successful techniques; the first by reconstruction of the parotid duct and the second by ligation of the parotid duct just caudal to the fistula opening. Sialoceles were corrected by removal of the mandibular salivary gland of the affected side.

  3. Performance Study of a Ducted Fan System

    NASA Technical Reports Server (NTRS)

    Abrego, Anita I.; Bulaga, Robert W.; Rutkowski, Michael (Technical Monitor)

    2002-01-01

    An experimental investigation was completed in the NASA Ames 7- by 10-Foot Wind Tunnel with the objective of determining the performance characteristics of a ducted fan. The model was an annular duct with a 38-in diameter, 10-in chord, and a 5-bladed fixed-pitch fan. Model variations included duct angle of attack, exit vane flap length, flap deflection angle, and duct chord length. Duct performance data were obtained for axial and forward flight test conditions. Axial flow test data showed figure of merit decreases with increasing advance ratio. Forward flight data showed an increasing propulsive force with decreasing duct angle of attack. Exit vane flap deflection angle and flap chord length were shown to be an effective way of providing side force. Extending the duct chord did not effect the duct performance.

  4. Intra-theater Air Mobility and Theater Distribution for the Joint Force Commander: Is the United States Central Command Model the Best

    DTIC Science & Technology

    2010-06-01

    that the CENTCOM model need not be universally applicable to other geographic commands in order to have an effective intra-theater air mobility ...and differences. The author demonstrated the universal applicability of CENTCOM‟s intra-theater air mobility and theater distribution model to other...AU/SAASS SCHOOL OF ADVANCED AIR AND SPACE STUDIES AIR UNIVERSITY INTRA-THEATER AIR MOBILITY AND THEATER DISTRIBUTION FOR THE JOINT FORCE

  5. Controlling the Distribution of Cold Water in Air Cooling Systems of Underground Mines

    NASA Astrophysics Data System (ADS)

    Szlązak, Nikodem; Obracaj, Dariusz; Swolkień, Justyna; Piergies, Kazimierz

    2016-12-01

    In Polish underground mines in which excavations are subjected to high heat load, central and group cooling systems based on indirect cooling units are implemented. Chilled water, referred to as cold water and produced in chillers, is distributed through a pipeline network to air coolers located in mining and development districts. The coolers are often moved to other locations and the pipeline network undergoes constant modification. In such a system, parameters of cold water in different branches of the pipeline network need to be controlled. The article presents the principles for controlling the cooling capacity of air coolers installed in an underground mine. Also, the authors propose automatic control of water flow rate in underground pipeline network and in particular coolers, depending on the temporary cooling load in the system. The principles of such a system, controlling cold water distribution, and the functions of its individual components are described. Finally, an example of an automatic control of water flow rate in a central cooling system currently implemented in a mine is presented.

  6. Distribution and Rate of Microbial Processes in an Ammonia-Loaded Air Filter Biofilm▿

    PubMed Central

    Juhler, Susanne; Revsbech, Niels Peter; Schramm, Andreas; Herrmann, Martina; Ottosen, Lars D. M.; Nielsen, Lars Peter

    2009-01-01

    The in situ activity and distribution of heterotrophic and nitrifying bacteria and their potential interactions were investigated in a full-scale, two-section, trickling filter designed for biological degradation of volatile organics and NH3 in ventilation air from pig farms. The filter biofilm was investigated by microsensor analysis, fluorescence in situ hybridization, quantitative PCR, and batch incubation activity measurements. In situ aerobic activity showed a significant decrease through the filter, while the distribution of ammonia-oxidizing bacteria (AOB) was highly skewed toward the filter outlet. Nitrite oxidation was not detected during most of the experimental period, and the AOB activity therefore resulted in NO2−, accumulation, with concentrations often exceeding 100 mM at the filter inlet. The restriction of AOB to the outlet section of the filter was explained by both competition with heterotrophic bacteria for O2 and inhibition by the protonated form of NO2−, HNO2. Product inhibition of AOB growth could explain why this type of filter tends to emit air with a rather constant NH3 concentration irrespective of variations in inlet concentration and airflow. PMID:19363071

  7. Flow noise from spoilers in ducts.

    PubMed

    Mak, Cheuk Ming; Wu, Jia; Ye, Chao; Yang, Jun

    2009-06-01

    Measurements of flow noise produced by strip spoilers in the air duct of a ventilation system and radiated from an open exhaust termination unit into a reverberation chamber have been made. The results agree with the previous work of Nelson and Morfey [J. Sound Vib. 79, 263-289 (1981)]. Prediction of flow noise produced by multiple spoilers requires the values of the ratio of the mean drag forces that act on the spoilers, the phase relationship between the fluctuating drag forces that act on the spoilers, and the coherence function of the noise sources. The latter is empirically derived from the measured results, where the predicted results agree well with the experimental results within 3 dB at most frequencies except for very high frequencies.

  8. Spatial distribution of air temperature in Toruń (Central Poland) and its causes

    NASA Astrophysics Data System (ADS)

    Przybylak, Rajmund; Uscka-Kowalkowska, Joanna; Araźny, Andrzej; Kejna, Marek; Kunz, Mieczysław; Maszewski, Rafał

    2017-01-01

    In this article, the results of an investigation into the air temperature pattern and development (including the urban heat island (UHI)) in Toruń (central Poland) are presented. For the analysis, daily mean temperature (Ti) as well as daily maximum (Tmax) and minimum (Tmin) temperatures for 2012 gathered for 20 sites, evenly distributed in the area of city, have been taken as source data. Additionally, in order to provide more extensive characteristics of the diversity of the air temperature in the study area, the diurnal temperature range (DTR) and the number of the so-called characteristic days were calculated as well. The impact of weather conditions (cloudiness and wind speed), atmospheric circulation, urban morphological parameters and land cover on the UHI in the study area was investigated. In Toruń, according to the present study, the average UHI intensity in 2012 was equal to 1.0 °C. The rise of cloudiness and wind speed led to a decrease of the magnitude of the UHI. Generally, in most cases, anticyclonic situations favour increased thermal contrast between rural and city areas, particularly in summer. Warm western circulation types significantly reduced temperature differences in the western side of the city and enlarged them in the eastern side of the city. Eastern cold types also have a similar influence on air temperature differences. Positive and statistically significant correlations have been found between the percentage of built-up areas (sealing factor) and air temperature. Conversely, sky view factor (SVF) reveals negative correlations which are statistically significant only for Tmin.

  9. Carbon Monoxide Distribution over Peninsular Malaysia from the Atmospheric Infrared Sounder (AIRS)

    NASA Astrophysics Data System (ADS)

    Rajab, Jaso M.; MatJafri, M. Z.; Lim, H. S.; Abdullah, K.

    2009-07-01

    The Atmospheric Infrared Sounder (AIRS) onboard NASA's Aqua satellite. It daily coverage of ˜70% of the planet represents a significant evolutionary advance in satellite traces gas remote sensing. AIRS, the part of a large international investment to upgrade the operational meteorological satellite systems, is first of the new generation of meteorological advanced sounders for operational and research use, Providing New Insights into Weather and Climate for the 21st Century. Carbon monoxide (CO) is a ubiquitous, an indoor and outdoor air pollutant, is not a significant greenhouse gas as it absorbs little infrared radiation from the Earth. However, it does have an influence on oxidization in the atmosphere through interaction with hydroxyl radicals (OH), which also react with methane, halocarbons and tropospheric ozone. It produced by the incomplete combustion of fossil fuels and biomass burning, and that it has a role as a smog. The aim of this investigation is to study the (CO) carbon monoxide distribution over Peninsular Malaysia. The land use map of the Peninsular Malaysia was conducted by using CO total column amount, obtained from AIRS data, the map & data was processed and analyzed by using Photoshop & SigmaPlot 11.0 programs and compared for timing of various (day time) (28 August 2005 & 29 August 2007) for both direct comparison and the comparison using the same a priori profile, the CO concentrations in 28/8/2005 higher. The CO maps were generated using Kriging Interpolation technique. This interpolation technique produced high correlation coefficient, R2 and low root mean square error, RMS for CO. This study provided useful information for influence change of CO concentration on varies temperature.

  10. Design and performance of duct acoustic treatment

    NASA Technical Reports Server (NTRS)

    Motsinger, R. E.; Kraft, R. E.

    1991-01-01

    The procedure for designing acoustic treatment panels used to line the walls of aircraft engine ducts and for estimating the resulting suppression of turbofan engine duct noise is discussed. This procedure is intended to be used for estimating noise suppression of existing designs or for designing new acoustic treatment panels and duct configurations to achieve desired suppression levels.

  11. Duct injection technology prototype development

    SciTech Connect

    Harper, S.L. . Research and Development Div.)

    1991-08-01

    This report describes a test program conducted to determine the corrosion rate of materials in the dry scrubber or duct injection systems. Four materials were evaluated: 1010 carbon steel, Corten, 317SS and Hastelloy C-276. The results show that acidic conditions result in higher corrosion rates than alkaline conditions for all the materials. The carbon steel, Corten and stainless steel show moderate to heavy pitting attack in the acidic environment. For the alkaline conditions, the corrosion rates of carbon steel and Corten were higher than the stainless steel or Hastelloy C-276. Also, the corrosion rate of abraded specimens were four time those of unabraded specimens in the flue gas. It is probable that areas of wall-wetting and plugging in the duct injection process will exhibit high rates of corrosion for the carbon steel, Corten, and stainless steel materials. General corrosion and pitting corrosion will predominate. Additionally, abraded duct areas will corrode at a significantly higher rate than unabraded duct materials. 6 refs., 11 figs., 7 tabs.

  12. Improved Duct Systems Task Report with StageGate 2 Analysis

    SciTech Connect

    Moyer, Neil; Stroer, Dennis

    2007-12-31

    This report is about Building America Industrialized Housing Partnership's work with two industry partners, Davalier Homes and Southern Energy Homes, in constructing and evaluating prototype interior duct systems. Issues of energy performance, comfort, DAPIA approval, manufacturability and cost is addressed. A stage gate 2 analysis addresses the current status of project showing that there are still refinements needed to the process of incorporating all of the ducts within the air and thermal boundaries of the envelope.

  13. Aerodynamic size distribution of suspended particulate matter in the ambient air in the city of Cleveland, Ohio

    NASA Technical Reports Server (NTRS)

    Leibecki, H. F.; King, R. B.; Fordyce, J. S.

    1974-01-01

    The City of Cleveland Division of Air Pollution Control and NASA jointly investigated the chemical and physical characteristics of the suspended particulate matter in Cleveland, and as part of the program, measurements of the particle size distribution of ambient air samples at five urban locations during August and September 1972 were made using high-volume cascade impactions. The distributions were evaluated for lognormality, and the mass median diameters were compared between locations and as a function of resultant wind direction. Junge-type distributions were consistent with dirty continental aerosols. About two-thirds of the suspended particulate matter observed in Cleveland is less than 7 microns in diameter.

  14. Exterior Distribution of Utility Steam, High Temperature Water (HTW), Chilled Water (CHW), Fuel Gas, and Compressed Air.

    DTIC Science & Technology

    1981-07-01

    A~r-AIIO 408 NAVAL FACILITIES ENGINEERING COMMAND ALEXANDRIA VA FIG 13/11 EXTERIOR DISTRIBUTION OF UTILITY STEAM. HIGH TEMPERATURE WATER -ETC(U...PUBUC RELEASE JOF EXTERIOR DISTRIBUTION OF O UTILITY STEAM, HIGH 0 TEMPERATURE WATER (HTW), , CHILLED WATER (CHW), FUEL GAS, AND COMPRESSED AIR DESIGN...distribution piping system for supplying utility steam, high temperature water (HTW), chilled water (CRW), cooling or condensing water, fuel gas, and

  15. 21. STATION 70.5 OF MST, WEST SIDE. AIRCONDITIONING DUCT AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. STATION 70.5 OF MST, WEST SIDE. AIR-CONDITIONING DUCT AT TOP; POWER BOX ON RIGHT; WINCH ON LEFT. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  16. Particle size distributions of currently used pesticides in ambient air of an agricultural Mediterranean area

    NASA Astrophysics Data System (ADS)

    Coscollà, Clara; Muñoz, Amalia; Borrás, Esther; Vera, Teresa; Ródenas, Milagros; Yusà, Vicent

    2014-10-01

    This work presents first data on the particle size distribution of 16 pesticides currently used in Mediterranean agriculture in the atmosphere. Particulate matter air samples were collected using a cascade impactor distributed into four size fractions in a rural site of Valencia Region, during July to September in 2012 and from May to July in 2013. A total of 16 pesticides were detected, including six fungicides, seven insecticides and three herbicides. The total concentrations in the particulate phase (TSP: Total Suspended Particulate) ranged from 3.5 to 383.1 pg m-3. Most of the pesticides (such as carbendazim, tebuconazole, chlorpyrifos-ethyl and chlorpyrifos-methyl) were accumulated in the ultrafine-fine (<1 μm) and coarse (2.5-10 μm) particle size fractions. Others like omethoate, dimethoate and malathion were presented only in the ultrafine-fine size fraction (<1 μm). Finally, diuron, diphenylamine and terbuthylazine-desethyl-2-OH also show a bimodal distribution but mainly in the coarse size fractions.

  17. Qualitative gas temperature distribution in positive DC glow corona using spectral image processing in atmospheric air

    NASA Astrophysics Data System (ADS)

    Matsumoto, Takao; Inada, Yoichi; Shimizu, Daisuke; Izawa, Yasuji; Nishijima, Kiyoto

    2015-01-01

    An experimental method of determining a qualitative two-dimensional image of the gas temperature in stationary atmospheric nonthermal plasma by spectral image processing was presented. In the experiment, a steady-state glow corona discharge was generated by applying a positive DC voltage to a rod-plane electrode in synthetic air. The changes in the gas temperature distribution due to the amplitude of applied voltage and the ambient gas pressure were investigated. Spectral images of a positive DC glow corona were taken using a gated ICCD camera with ultranarrow band-pass filters, corresponding to the head and tail of a N2 second positive system band (0-2). The qualitative gas temperature was obtained from the emission intensity ratio between the head and tail of the N2 second positive system band (0-2). From the results, we confirmed that the gas temperature and its distribution of a positive DC glow corona increased with increasing applied voltage. In particular, just before the sparkover voltage, a distinctly high temperature region was formed in the positive DC glow at the tip of the rod electrode. In addition, the gas temperature decreased and its distribution spread diffusely with decreasing ambient gas pressure.

  18. Pressure Losses across Multiple Fittings in Ventilation Ducts

    PubMed Central

    Ai, Z. T.; Mak, C. M.

    2013-01-01

    The accurate prediction of pressure losses across in-duct fittings is of significance in relation to the accurate sizing and good energy efficiency of air-delivery systems. Current design guides provide design methods and data for the prediction of pressure losses only for a single and isolated fitting. This study presents an investigation of pressure losses across multiple interactive in-duct fittings in a ventilation duct. A laboratory measurement of pressure losses across one fitting and multiple fittings in a ventilation duct is carried out. The pressure loss across multiple interactive fittings is lower than that across multiple similar individual fittings, while the percentage decrease is dependent on the configuration and combination of the fittings. This implies that the pressure loss across multiple closely mounted fittings calculated by summing the pressure losses across individual fittings, as provided in the ASHRAE handbook and the CIBSE guide, is overpredicted. The numerical prediction of the pressure losses across multiple fittings using the large-eddy simulation (LES) model shows good agreement with the measured data, suggesting that this model is a useful tool in ductwork design and can help to save experimental resources and improve experimental accuracy and reliability. PMID:24385871

  19. Pressure losses across multiple fittings in ventilation ducts.

    PubMed

    Ai, Z T; Mak, C M

    2013-01-01

    The accurate prediction of pressure losses across in-duct fittings is of significance in relation to the accurate sizing and good energy efficiency of air-delivery systems. Current design guides provide design methods and data for the prediction of pressure losses only for a single and isolated fitting. This study presents an investigation of pressure losses across multiple interactive in-duct fittings in a ventilation duct. A laboratory measurement of pressure losses across one fitting and multiple fittings in a ventilation duct is carried out. The pressure loss across multiple interactive fittings is lower than that across multiple similar individual fittings, while the percentage decrease is dependent on the configuration and combination of the fittings. This implies that the pressure loss across multiple closely mounted fittings calculated by summing the pressure losses across individual fittings, as provided in the ASHRAE handbook and the CIBSE guide, is overpredicted. The numerical prediction of the pressure losses across multiple fittings using the large-eddy simulation (LES) model shows good agreement with the measured data, suggesting that this model is a useful tool in ductwork design and can help to save experimental resources and improve experimental accuracy and reliability.

  20. The prediction of noise generated by the interaction of airflow and duct discontinuities

    NASA Astrophysics Data System (ADS)

    Oldham, David J.

    2002-11-01

    There is a paucity of data available relating to the noise generated by ventilation system elements. This paucity arises from the difficulty in obtaining such data as it requires the use of rare and expensive combined acoustic and aerodynamic measurement facilities. In this paper a prediction technique is proposed which overcomes the need for these expensive test facilities. Discontinuities in ducts result both in the generation of flow noise and a loss of static pressure. The greater the discontinuity the greater is the loss in static pressure and the greater is the sound power generated. Over a number of years there has been considerable research aimed at establishing the correlation between the drop in static pressure across a flow spoiler and the noise generated. In this paper it is shown that for a typical duct discontinuity it is possible to predict the sound power generated from knowledge of its pressure loss characteristics. A prediction method is proposed based upon a normalized sound-power level which is a function of the Strouhal number. Such a prediction technique has enormous potential value in the design of high-velocity air distribution systems.

  1. Radiative heating of inertial particles in a turbulent square duct flow

    NASA Astrophysics Data System (ADS)

    Banko, Andrew; Villafane, Laura; Elkins, Christopher; Eaton, John

    2016-11-01

    The coupled dynamics of small inertial particles, turbulence, and radiative heating is examined experimentally. A vertically downward airflow with Reynolds number of order 10,000 is laden with disperse Nickel particles which are smaller than all flow length scales. The particles have Stokes numbers of order 10 and the thermal time constant is similar to the aerodynamic time constant. This particle-air mixture is exposed to monochromatic near infrared radiation through one wall of the duct. While the gas and walls are nearly transparent to the incident radiation, the particles absorb energy and heat the gas with a spatial distribution dependent on the particle concentrations. The mass loading ratio of particles is varied in order to study the effect of increasing optical depth on the gas temperature rise. A fine wire thermocouple is used to measure the mean gas temperature variation along the full width of the duct, including the near wall region where particle concentrations mildly increase. Total energy absorption is inferred from measurements of transmitted light intensity. Comparisons are made to a 1-D model which assumes homogeneity of all flow quantities, low optical depth, and ignores preferential concentration.

  2. Atrophy of submandibular gland by the duct ligation and a blockade of SP receptor in rats.

    PubMed

    Hishida, Sumiyo; Ozaki, Noriyuki; Honda, Takashi; Shigetomi, Toshio; Ueda, Minoru; Hibi, Hideharu; Sugiura, Yasuo

    2016-05-01

    To clarify the mechanisms underlying the submandibular gland atrophies associated with ptyalolithiasis, morphological changes were examined in the rat submandibular gland following either surgical intervention of the duct or functional blockade at substance P receptors (SPRs). Progressive acinar atrophy was observed after duct ligation or avulsion of periductal tissues. This suggested that damage to periductal tissue involving nerve fibers might contribute to ligation-associated acinar atrophy. Immunohistochemically labeled-substance P positive nerve fibers (SPFs) coursed in parallel with the main duct and were distributed around the interlobular, striated, granular and intercalated duct, and glandular acini. Strong SPR immunoreactivity was observed in the duct. Injection into the submandibular gland of a SPR antagonist induced marked acinar atrophy. The results revealed that disturbance of SPFs and SPRs might be involved in the atrophy of the submandibular gland associated with ptyalolithiasis.

  3. Atrophy of submandibular gland by the duct ligation and a blockade of SP receptor in rats

    PubMed Central

    Hishida, Sumiyo; Ozaki, Noriyuki; Honda, Takashi; Shigetomi, Toshio; Ueda, Minoru; Hibi, Hideharu; Sugiura, Yasuo

    2016-01-01

    ABSTRACT To clarify the mechanisms underlying the submandibular gland atrophies associated with ptyalolithiasis, morphological changes were examined in the rat submandibular gland following either surgical intervention of the duct or functional blockade at substance P receptors (SPRs). Progressive acinar atrophy was observed after duct ligation or avulsion of periductal tissues. This suggested that damage to periductal tissue involving nerve fibers might contribute to ligation-associated acinar atrophy. Immunohistochemically labeled-substance P positive nerve fibers (SPFs) coursed in parallel with the main duct and were distributed around the interlobular, striated, granular and intercalated duct, and glandular acini. Strong SPR immunoreactivity was observed in the duct. Injection into the submandibular gland of a SPR antagonist induced marked acinar atrophy. The results revealed that disturbance of SPFs and SPRs might be involved in the atrophy of the submandibular gland associated with ptyalolithiasis. PMID:27303108

  4. LASE Measurements of Water Vapor, Aerosol, and Cloud Distributions in Saharan Air Layers and Tropical Disturbances

    NASA Technical Reports Server (NTRS)

    Ismail, Syed; Ferrare, Richard A.; Browell, Edward V.; Kooi, Susan A.; Dunion, Jason P.; Heymsfield, Gerry; Notari, Anthony; Butler, Carolyn F.; Burton, Sharon; Fenn, Marta; Krishnamurti, T. N.; Chen, Gao; Anderson, Bruce

    2010-01-01

    LASE (Lidar Atmospheric Sensing Experiment) on-board the NASA DC-8 measured high resolution profiles of water vapor and aerosols, and cloud distributions in 14 flights over the eastern North Atlantic during the NAMMA (NASA African Monsoon Multidisciplinary Analyses) field experiment. These measurements were used to study African easterly waves (AEWs), tropical cyclones (TCs), and the Saharan Air Layer(s) (SAL). Interactions between the SAL and tropical air were observed during the early stages of the TC development. These LASE measurements represent the first simultaneous water vapor and aerosol lidar measurements to study the SAL and its impact on AEWs and TCs. Examples of profile measurements of aerosol scattering ratios, aerosol extinction coefficients, aerosol optical thickness, water vapor mixing ratios, RH, and temperature are presented to illustrate their characteristics in SAL, convection, and clear air regions. LASE data suggest that the SAL suppresses low-altitude convection at the convection-SAL interface region. Mid-level convection associated with the AEW and transport are likely responsible for high water vapor content observed in the southern regions of the SAL on August 20, 2008. This interaction is responsible for the transfer of about 7 x 10(exp 15) J latent heat energy within a day to the SAL. Measurements of lidar extinction-to-backscatter ratios in the range 36+/-5 to 45+/-5 are within the range of measurements from other lidar measurements of dust. LASE aerosol extinction and water vapor profiles are validated by comparison with onboard in situ aerosol measurements and GPS dropsonde water vapor soundings, respectively.

  5. Particulate air pollution in six Asian cities: Spatial and temporal distributions, and associated sources

    NASA Astrophysics Data System (ADS)

    Kim Oanh, N. T.; Upadhyay, N.; Zhuang, Y.-H.; Hao, Z.-P.; Murthy, D. V. S.; Lestari, P.; Villarin, J. T.; Chengchua, K.; Co, H. X.; Dung, N. T.; Lindgren, E. S.

    A monitoring program for particulate matter pollution was designed and implemented in six Asian cities/metropolitan regions including Bandung, Bangkok, Beijing, Chennai, Manila, and Hanoi, within the framework of the Asian regional air pollution research network (AIRPET), coordinated by the Asian Institute of Technology. As uniform the methodologies as possible were intended with an established QA/QC procedure in order to produce reliable and comparable data by the network. The monsoon effects and seasonal changes in the sources/activities require long-term monitoring to understand the nature of air pollution in the cities. During phase 1 (2001-2004) of the AIRPET around 3000 fine and coarse particulate matter samples were collected from characteristic urban sites, which provide insight into temporal and spatial variations of PM in the cities. In all six cities, the levels of PM 10 and PM 2.5 were found high, especially during the dry season, which frequently exceeded the corresponding 24 h US EPA standards at a number of sites. The average concentrations of PM 2.5 and PM 10 in the cities ranged, respectively, 44-168 and 54-262 μg m -3 in the dry season, and 18-104 and 33-180 μg m -3 in the wet season. Spatial and temporal distribution of PM in each city, the ratios of PM 2.5 to PM 10, and the reconstructed mass were presented which provide useful information on possible PM sources in the cities. The findings help to understand the nature of particulate matter air pollution problems in the selected cities/metropolitan regions.

  6. Spatial and temporal distribution of pesticide air concentrations in Canadian agricultural regions

    NASA Astrophysics Data System (ADS)

    Yao, Yuan; Tuduri, Ludovic; Harner, Tom; Blanchard, Pierrette; Waite, Don; Poissant, Laurier; Murphy, Clair; Belzer, Wayne; Aulagnier, Fabien; Li, Yi-Fan; Sverko, Ed

    The Canadian Pesticide Air Sampling Campaign was initiated in 2003 to assess atmospheric levels of pesticides, especially currently used pesticides (CUPs) in agricultural regions across Canada. In the first campaign during the spring to summer of 2003, over 40 pesticides were detected. The spatial and temporal distribution of pesticides in the Canadian atmosphere was shown to reflect the pesticide usage in each region. Several herbicides including triallate, bromoxynil, MCPA, 2,4-D, dicamba, trifluralin and ethalfluralin were detected at highest levels at Bratt's Lake, SK in the prairie region. Strong relationships between air concentrations and dry depositions were observed at this site. Although no application occurred in the Canadian Prairies in 2003, high air concentrations of lindane ( γ-hexachlorocyclohexane) were still observed at Bratt's Lake and Hafford, SK. Two fungicides (chlorothalonil and metalaxyl) and two insecticides (endosulfan and carbofuran) were measured at highest levels at Kensington, PEI. Maximum concentrations of chlorpyrifos and metolachlor were found at St. Anicet, QC. The southern Ontario site, Egbert showed highest concentration of alachlor. Malathion was detected at the highest level at the west coast site, Abbotsford, BC. In case of legacy chlorinated insecticides, high concentrations of DDT, DDE and dieldrin were detected in British Columbia while α-HCH and HCB were found to be fairly uniform across the country. Chlordane was detected in Ontario, Québec and Prince Edward Island. This study demonstrates that the sources for the observed atmospheric occurrence of pesticides include local current pesticide application, volatilization of pesticide residues from soil and atmospheric transport. In many instances, these data represent the first measurements for certain pesticides in a given part of Canada.

  7. ADS-B within a Multi-Aircraft Simulation for Distributed Air-Ground Traffic Management

    NASA Technical Reports Server (NTRS)

    Barhydt, Richard; Palmer, Michael T.; Chung, William W.; Loveness, Ghyrn W.

    2004-01-01

    Automatic Dependent Surveillance Broadcast (ADS-B) is an enabling technology for NASA s Distributed Air-Ground Traffic Management (DAG-TM) concept. DAG-TM has the goal of significantly increasing capacity within the National Airspace System, while maintaining or improving safety. Under DAG-TM, aircraft exchange state and intent information over ADS-B with other aircraft and ground stations. This information supports various surveillance functions including conflict detection and resolution, scheduling, and conformance monitoring. To conduct more rigorous concept feasibility studies, NASA Langley Research Center s PC-based Air Traffic Operations Simulation models a 1090 MHz ADS-B communication structure, based on industry standards for message content, range, and reception probability. The current ADS-B model reflects a mature operating environment and message interference effects are limited to Mode S transponder replies and ADS-B squitters. This model was recently evaluated in a Joint DAG-TM Air/Ground Coordination Experiment with NASA Ames Research Center. Message probability of reception vs. range was lower at higher traffic levels. The highest message collision probability occurred near the meter fix serving as the confluence for two arrival streams. Even the highest traffic level encountered in the experiment was significantly less than the industry standard "LA Basin 2020" scenario. Future studies will account for Mode A and C message interference (a major effect in several industry studies) and will include Mode A and C aircraft in the simulation, thereby increasing the total traffic level. These changes will support ongoing enhancements to separation assurance functions that focus on accommodating longer ADS-B information update intervals.

  8. Potassium transport in the mammalian collecting duct.

    PubMed

    Muto, S

    2001-01-01

    The mammalian collecting duct plays a dominant role in regulating K(+) excretion by the nephron. The collecting duct exhibits axial and intrasegmental cell heterogeneity and is composed of at least two cell types: collecting duct cells (principal cells) and intercalated cells. Under normal circumstances, the collecting duct cell in the cortical collecting duct secretes K(+), whereas under K(+) depletion, the intercalated cell reabsorbs K(+). Assessment of the electrochemical driving forces and of membrane conductances for transcellular and paracellular electrolyte movement, the characterization of several ATPases, patch-clamp investigation, and cloning of the K(+) channel have provided important insights into the role of pumps and channels in those tubule cells that regulate K(+) secretion and reabsorption. This review summarizes K(+) transport properties in the mammalian collecting duct. Special emphasis is given to the mechanisms of how K(+) transport is regulated in the collecting duct.

  9. Distribution and air-sea fluxes of carbon dioxide on the Chukchi Sea shelf

    NASA Astrophysics Data System (ADS)

    Pipko, I. I.; Pugach, S. P.; Repina, I. A.; Dudarev, O. V.; Charkin, A. N.; Semiletov, I. P.

    2015-12-01

    This article presents the results of long-term studies of the dynamics of carbonate parameters and air-sea carbon dioxide fluxes on the Chukchi Sea shelf during the summer. As a result of the interaction of physical and biological factors, the surface waters on the west of Chukchi Sea were undersaturated with carbon dioxide when compared with atmospheric air; the partial pressure of CO2 varied in the range from 134 to 359 μatm. The average value of CO2 flux in the Chukchi Sea per unit area varied in the range from-2.4 to-22.0 mmol /(m2 day), which is significantly higher than the average value of CO2 flux in the World Ocean. It has been estimated that the minimal mass of C absorbed by the surface of Chukchi Sea from the atmosphere during ice-free season is 13 × 1012 g; a great part of this carbon is transported to the deeper layers of sea and isolated from the atmosphere for a long period of time. The studies of the carbonate system of the Chukchi Sea, especially of its western part, will provide some new data on the fluxes of carbon dioxide in the Arctic Ocean and their changes. Our analysis can be used for an interpretation of the satellite assessment of CO2 fluxes and dissolved CO2 distribution in the upper layers of the ocean.

  10. LASE Measurements of Water Vapor, Aerosol, and Cloud Distributions in Saharan Air Layers and Tropical Disturbances

    NASA Technical Reports Server (NTRS)

    Ismail, Syed; Ferrare, Richard; Browell, Edward; Kooi, Susan; Notari, Anthony; Butler, Carolyn; Burton, Sharon; Fenn, Marta; Krishnamurti, T. N.; Dunion, Jason; Heymsfield, Gerry; Anderson, Bruce

    2008-01-01

    LASE (Lidar Atmospheric Sensing Experiment) onboard the NASA DC-8 was used to measure high resolution profiles of water vapor and aerosols, and cloud distributions in 14 flights over the eastern Atlantic region during the NAMMA (NASA African Monsoon Multidisciplinary Analyses) field experiment, which was conducted from August 15 to September 12, 2006. These measurements were made in conjunction with flights designed to study African Easterly Waves (AEW), Tropical Disturbances (TD), and Saharan Aerosol Layers (SALs) as well as flights performed in clear air and convective regions. As a consequence of their unique radiative properties and dynamics, SAL layers have a significant influence in the development of organized convection associated with TD. Interactions of the SAL with tropical air during early stages of the development of TD were observed. These LASE measurements represent the first simultaneous water vapor and aerosol lidar measurements to study the SAL and its impact on TDs and hurricanes. Seven AEWs were studied and four of these evolved into tropical storms and three did not. Three out of the four tropical storms evolved into hurricanes.

  11. Sweat duct milia--immunohistological analysis of structure and three-dimensional reconstruction.

    PubMed

    Honda, Y; Egawa, K; Baba, Y; Ono, T

    1996-03-01

    The fine structure of sweat duct milia and the pathomechanism in their aetiology are still unknown. To examine the relationship and connection of milia to the sweat ducts as well as to the overlying epidermis, nine sweat duct milia, six incomplete and three complete, were studied by three-dimensional reconstruction (3DR) analysis based on photomicrographs obtained after histological and immunohistochemical staining with antibodies against carcinoembryonic antigen (CEA), cancer antigen (CA 50) and human cytokeratin 19 (CK 19). In both incomplete and complete milia, an eccrine duct expressing the antigens penetrated into the cyst wall at the centre of its base, formed a circular path within the wall, and opened into the inner cavity. The eccrine duct was mature in eight milia and immature in one. In the cyst wall, CA 50 and CK 19 were detected throughout the entire cyst except for the most apical portion of incomplete milia, where the cyst wall fused with the overlying epidermis which did not express any of the antigens. CEA was distributed mainly in the basal half of the milia. The finding that the path of the eccrine duct within the cyst wall is circular conflicts with the currently accepted concept of simple penetration of the eccrine duct into the wall, suggesting an acrosyringeal origin of the milia. An incomplete milium is the result of fusion between cells derived from an eccrine duct and those derived from the surrounding epidermis, while the formation of a complete milium does not involve this fusion.

  12. Strip-coat decontamination of ducting interiors with SEAMIST{trademark} -safe and fast

    SciTech Connect

    Keller, C.

    1994-12-31

    The SEAMIST{trademark} system was invented for sampling and instrumentation of boreholes. However, the SEAMIST{trademark} pneumatically driven everting membrane has the ability to install absorbent liner materials for wicking and recovery of hazardous fluids (e.g., PCB`S) from ducting. The most useful vent cleaning technique is the installation of a stripcoat saturated duct liner which is then peeled from the liner retrieving contaminated particles (e. g., uranium, plutonium,...), much like the stripcoat which is used to clean glove boxes. Because of the everting SEAMIST{trademark} hole liner`s ability to traverse ducting of many combinations of diameters, slope, turns, and obstructions, the stripcoat application method is exceptionally fast, (>10 ft/min.). This paper describes the method of installation, the prototype tests, the science, and the first results of a full scale test. This unusual method of cleaning ducting results in major advantages in safety, cost, and speed of the cleaning process. Comparisons are made with the traditional methods of sand blasting and washing. Additional benefits of the method are the ability to assess the distribution of the contamination of the ducting and to also use the everting membrane for a video camera examination of the cleaned duct coupled with contamination sensors, such as radiation logging tools. The technique can be extended to clean all manner of contamination in ducting such as microbial residues in hospitals. Very large ducts (12--120 inch dia.), are especially easily cleaned while still in place in the building.

  13. Optimization and investigation of the effect of velocity distribution of air curtains on the performance of food refrigerated display cabinets

    NASA Astrophysics Data System (ADS)

    Wu, XueHong; Chang, ZhiJuan; Ma, QiuYang; Lu, YanLi; Yin, XueMei

    2016-08-01

    This paper focuses on improving the performance of the vertical open refrigerated display cabinets (VORDC) by optimizing the structure of deflector, which is affected by inlet velocity and velocity distribution of air curtains. The results show that the temperature of products located at the front and at the rear reduces as the increases of inlet velocity of air curtains. The increase of the inlet velocity of air curtains can strengthen the disturbance inside the VORDC, and also decrease the temperature of products inside the VORDC; the increase of the outer velocity of air curtain will exacerbate the disturbance outside the VORDC and decrease air curtain's performance. The present study can provide a theoretical foundation for the design of VORDC.

  14. Parotid salivary duct sialocele associated with glandular duct stenosis in a cat.

    PubMed

    Vallefuoco, Rosario; Jardel, Nicolas; El Mrini, Meryem; Stambouli, Fouzia; Cordonnier, Nathalie

    2011-10-01

    Feline parotid salivary duct sialocele is an uncommon disorder that has been previously reported in association with traumatic rupture of the duct in only two cats. Both cases were successfully treated by proximal duct ligation. We describe the successful surgical treatment of a parotid duct sialocele, secondary to spontaneous salivary duct stenosis, in an adult domestic shorthair cat. The cat was referred for assessment of a recurrent fluid-filled swelling on the left side of the face. Cytology of the aspirated fluid was consistent with serous saliva. The anatomical localisation of the lesion and the nature of the fluid were indicative of parotid gland/duct involvement. Retrograde sialography by parotid duct cannulation was unsuccessful because the left parotid duct opening was stenosed and obstructed by scar tissue. Surgical exploration revealed a parotid salivary duct sialocele, which was completely removed along with the parotid gland without complications.

  15. Air quality impacts of distributed power generation in the South Coast Air Basin of California 1: Scenario development and modeling analysis

    NASA Astrophysics Data System (ADS)

    Rodriguez, M. A.; Carreras-Sospedra, M.; Medrano, M.; Brouwer, J.; Samuelsen, G. S.; Dabdub, D.

    Distributed generation (DG) is generally defined as the operation of many small stationary power generators throughout an urban air basin. Although DG has the potential to supply a significant portion of the increased power demands in California and the rest of the United States, it may lead to increased levels of in-basin pollutants and adversely impact urban air quality. This study focuses on two main objectives: (1) the systematic characterization of DG installation in urban air basins, and (2) the simulation of potential air quality impacts using a state-of-the-art three-dimensional computational model. A general and systematic approach is devised to construct five realistic and 21 spanning scenarios of DG implementation in the South Coast Air Basin (SoCAB) of California. Realistic scenarios reflect an anticipated level of DG deployment in the SoCAB by the year 2010. Spanning scenarios are developed to determine the potential impacts of unexpected outcomes. Realistic implementations of DG in the SoCAB result in small differences in ozone and particulate matter concentrations in the basin compared to the baseline simulations. The baseline accounts for population increase, but does not consider any future emissions control measures. Model results for spanning implementations with extra high DG market penetration show that domain-wide ozone peak concentrations increase significantly. Also, air quality impacts of spanning implementations when DG operate during a 6-h period are larger than when the same amount of emissions are introduced during a 24-h period.

  16. Simulation of effects of direction and air flow speed on temperature distribution in the room covered by various roof materials

    NASA Astrophysics Data System (ADS)

    Sukanto, H.; Budiana, E. P.; Putra, B. H. H.

    2016-03-01

    The objective of this research is to get a comparison of the distribution of the room temperature by using three materials, namely plastic-rubber composite, clay, and asbestos. The simulation used Ansys Fluent to get the temperature distribution. There were two conditions in this simulations, first the air passing beside the room and second the air passing in front of the room. Each condition will be varied with the air speed of 1 m/s, 2 m/s, 3 m/s, 4 m/s, 5 m/s for each material used. There are three heat transfers in this simulation, namely radiation, convection, and conduction. Based on the ANSI/ ASHRAE Standard 55-2004, the results of the simulation showed that the best temperature distribution was the roof of plastic-rubber composites.

  17. Characteristics and source distribution of air pollution in winter in Qingdao, eastern China.

    PubMed

    Li, Lingyu; Yan, Dongyun; Xu, Shaohui; Huang, Mingli; Wang, Xiaoxia; Xie, Shaodong

    2017-05-01

    To characterize air pollution and determine its source distribution in Qingdao, Shandong Province, we analyzed hourly national air quality monitoring network data of normal pollutants at nine sites from 1 November 2015 to 31 January 2016. The average hourly concentrations of particulate matter <2.5 μm (PM2.5) and <10 μm (PM10), SO2, NO2, 8-h O3, and CO in Qingdao were 83, 129, 39, 41, and 41 μg m(-3), and 1.243 mg m(-3), respectively. During the polluted period, 19-26 December 2015, 29 December 2015 to 4 January 2016, and 14-17 January 2016, the mean 24-h PM2.5 concentration was 168 μg m(-3) with maximum of 311 μg m(-3). PM2.5 was the main pollutant to contribute to the pollution during the above time. Heavier pollution and higher contributions of secondary formation to PM2.5 concentration were observed in December and January. Pollution pathways and source distribution were investigated using the HYbrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model and potential source contribution function (PSCF) and concentration weighted trajectory (CWT) analyses. A cluster from the west, originating in Shanxi, southern Hebei, and west Shandong Provinces, accounted for 44.1% of the total air masses, had a mean PM2.5 concentration of 134.9 μg m(-3) and 73.9% trajectories polluted. This area contributed the most to PM2.5 and PM10 levels, >160 and 300 μg m(-3), respectively. In addition, primary crustal aerosols from desert of Inner Mongolia, and coarse and fine marine aerosols from the Yellow Sea contributed to ambient PM. The ambient pollutant concentrations in Qingdao in winter could be attributed to local primary emissions (e.g., coal combustion, vehicular, domestic and industrial emissions), secondary formation, and long distance transmission of emissions.

  18. HAARP-Induced Ionospheric Ducts

    SciTech Connect

    Milikh, Gennady; Vartanyan, Aram

    2011-01-04

    It is well known that strong electron heating by a powerful HF-facility can lead to the formation of electron and ion density perturbations that stretch along the magnetic field line. Those density perturbations can serve as ducts for ELF waves, both of natural and artificial origin. This paper presents observations of the plasma density perturbations caused by the HF-heating of the ionosphere by the HAARP facility. The low orbit satellite DEMETER was used as a diagnostic tool to measure the electron and ion temperature and density along the satellite orbit overflying close to the magnetic zenith of the HF-heater. Those observations will be then checked against the theoretical model of duct formation due to HF-heating of the ionosphere. The model is based on the modified SAMI2 code, and is validated by comparison with well documented experiments.

  19. Tear-ducts in wine

    NASA Astrophysics Data System (ADS)

    Bush, John W. M.

    1999-11-01

    We examine the radial spoke pattern evident in the meniscus region in glasses of strong alcoholic beverages exhibiting the `tears-in-wine' phenomenon. We demonstrate that the pattern results from ridge-like elevations of the free surface which are supported by evaporatively-driven Marangoni convection in the meniscus region. Vortices associated with the convective motions are aligned in the radial direction by the surface tension gradient responsible for the generation of tears. The radial flow is focussed into the ridges, which thus serve as the principal conduits of fluid for the tears; consequently, we refer to the ridges as `tear-ducts'. The phenomenon is examined experimentally, and a numerical model of evaporatively-driven Marangoni convection is developed which reproduces the salient features of the tear-duct phenomenon.

  20. Influence of air diffusion on the OH radicals and atomic O distribution in an atmospheric Ar (bio)plasma jet

    NASA Astrophysics Data System (ADS)

    Nikiforov, A.; Li, L.; Britun, N.; Snyders, R.; Vanraes, P.; Leys, C.

    2014-02-01

    Treatment of samples with plasmas in biomedical applications often occurs in ambient air. Admixing air into the discharge region may severely affect the formation and destruction of the generated oxidative species. Little is known about the effects of air diffusion on the spatial distribution of OH radicals and O atoms in the afterglow of atmospheric-pressure plasma jets. In our work, these effects are investigated by performing and comparing measurements in ambient air with measurements in a controlled argon atmosphere without the admixture of air, for an argon plasma jet. The spatial distribution of OH is detected by means of laser-induced fluorescence diagnostics (LIF), whereas two-photon laser-induced fluorescence (TALIF) is used for the detection of atomic O. The spatially resolved OH LIF and O TALIF show that, due to the air admixture effects, the reactive species are only concentrated in the vicinity of the central streamline of the afterglow of the jet, with a characteristic discharge diameter of ˜1.5 mm. It is shown that air diffusion has a key role in the recombination loss mechanisms of OH radicals and atomic O especially in the far afterglow region, starting up to ˜4 mm from the nozzle outlet at a low water/oxygen concentration. Furthermore, air diffusion enhances OH and O production in the core of the plasma. The higher density of active species in the discharge in ambient air is likely due to a higher electron density and a more effective electron impact dissociation of H2O and O2 caused by the increasing electrical field, when the discharge is operated in ambient air.

  1. Evaluating the Spatial Distribution of Toxic Air Contaminants in Multiple Ecosystem Indicators in the Sierra Nevada-Southern Cascades

    NASA Astrophysics Data System (ADS)

    Nanus, L.; Simonich, S. L.; Rocchio, J.; Flanagan, C.

    2013-12-01

    Toxic air contaminants originating from agricultural areas of the Central Valley in California threaten vulnerable sensitive receptors including surface water, vegetation, snow, sediments, fish, and amphibians in the Sierra Nevada-Southern Cascades region. The spatial distribution of toxic air contaminants in different ecosystem indicators depends on variation in atmospheric concentrations and deposition, and variation in air toxics accumulation in ecosystems. The spatial distribution of organic air toxics and mercury at over 330 unique sampling locations and sample types over two decades (1990-2009) in the Sierra Nevada-Southern Cascades region were compiled and maps were developed to further understand spatial patterns and linkages between air toxics deposition and ecological effects. Potential ecosystem impacts in the Sierra Nevada-Southern Cascades region include bioaccumulation of air toxics in both aquatic and terrestrial ecosystems, reproductive disruption, and immune suppression. The most sensitive ecological end points in the region that are affected by bioaccumulation of toxic air contaminants are fish. Mercury was detected in all fish and approximately 6% exceeded human consumption thresholds. Organic air toxics were also detected in fish yielding variable spatial patterns. For amphibians, which are sensitive to pesticide exposure and potential immune suppression, increasing trends in current and historic use pesticides are observed from north to south across the region. In other indicators, such as vegetation, pesticide concentrations in lichen increase with increasing elevation. Current and historic use pesticides and mercury were also observed in snowpack at high elevations in the study area. This study shows spatial patterns in toxic air contaminants, evaluates associated risks to sensitive receptors, and identifies data gaps. Future research on atmospheric modeling and information on sources is needed in order to predict which ecosystems are the

  2. Effect of the Trendelenburg position on the distribution of arterial air emboli in dogs

    NASA Technical Reports Server (NTRS)

    Butler, Bruce D.; Laine, Glen A.; Leiman, Basil C.; Warters, Dave; Kurusz, Mark

    1988-01-01

    The effect of Trendelenburg position (TP) on the distribution of arterial air emboli in dogs was examined in a two-part investigation. In the first part, the effects of the bubble size and the vessel angle on the bubble velocity and the direction of flow were investigated in vitro, using a simulated carotid artery preparation. It was found that larger bubbles increased in velocity in the same direction as the blood flow at 0-, 10-, and 30-deg vessel angles, and decreased when the vessel was positioned at 90 deg. Smaller bubbles did not change velocity from 0 to 30 deg, but acted to increase the velocity, in the same direction as the flood flow, at 90 deg. The second series of experiments examined the effect of 0 to 30 deg TP on carotid-artery distribution of gas bubbles injected into the left ventricle or ascending aorta of anesthetized dogs. It was found that, regardless of the degree of the TP, the bubbles passed into the carotid artery simultaneously with the passage into the abdominal aorta. It is concluded that the TP does not prevent arterial bubbles from reaching the brain.

  3. Directions in US Air Force space power energy generation and distribution technology

    NASA Astrophysics Data System (ADS)

    Reinhardt, Kitt; Keener, Dave; Schuller, Mike

    1997-01-01

    Recent trends in the development of high efficiency, light-weight, reliable and cost-effective space power technologies needed to support the development of near-term, next-generation government and commercial satellites will be discussed. Significant advancements in light-weight and reduced volume electrical power system (EPS) components are required to enable the design of future smallsats with power requirements of less than 1000 W to monster-sats having projected power demands ranging from 10-50 kW for civilian and military communications and space based radar needs. For these missions increased emphasis is placed on reducing total satellite mass to enable use of smaller, less costly, and easier to deploy launch vehicles. In support of these requirements a complement of power generation, power management and distribution, and energy storage technologies are under development at the Air Force Phillips Laboratory Space and Missiles Technology Directorate. Specific technologies presented in this paper include high efficiency multijunction solar cells, low-cost thin-film solar cells, ultra light-weight flexible solar arrays, solar electric thermal converters, and high-voltage (70-130 V) and high-efficiency power management and distribution (PMAD) electronics. The projected impact of EPS subsystem performance on existing, near-term, and next-generation 10-50 kW military satellites will be discussed, along with technical issues and status of EPS component development.

  4. Measure Guideline: Optimizing the Configuration of Flexible Duct Junction Boxes

    SciTech Connect

    Beach, R.; Burdick, A.

    2014-03-01

    This measure guideline offers additional recommendations to heating, ventilation, and air conditioning (HVAC) system designers for optimizing flexible duct, constant-volume HVAC systems using junction boxes within Air Conditioning Contractors of America (ACCA) Manual D guidance. IBACOS used computational fluid dynamics software to explore and develop guidance to better control the airflow effects of factors that may impact pressure losses within junction boxes among various design configurations. These recommendations can help to ensure that a system aligns more closely with the design and the occupants' comfort expectations. Specifically, the recommendations described herein show how to configure a rectangular box with four outlets, a triangular box with three outlets, metal wyes with two outlets, and multiple configurations for more than four outlets. Designers of HVAC systems, contractors who are fabricating junction boxes on site, and anyone using the ACCA Manual D process for sizing duct runs will find this measure guideline invaluable for more accurately minimizing pressure losses when using junction boxes with flexible ducts.

  5. Spatiotemporal variability of submicrometer particle number size distributions in an air quality management district.

    PubMed

    Young, Li-Hao; Wang, Yi-Ting; Hsu, Hung-Chieh; Lin, Ching-Hui; Liou, Yi-Jyun; Lai, Ying-Chung; Lin, Yun-Hua; Chang, Wei-Lun; Chiang, Hung-Lung; Cheng, Man-Ting

    2012-05-15

    First measurements of ambient 10-1000 nm particle number concentrations (N(TOT)) and size distributions were made at an urban, coastal, mountain and downwind site within the Central Taiwan Air Quality Management District during a cold and a warm period. The primary objectives were to characterize the spatial and temporal variability of the size-fractionated submicrometer particles and their relationships with copollutants and meteorological parameters. The results show that the ultrafine particles (<100 nm) are the major contributor to the N(TOT). The mean N(TOT) was highest at the urban site, whereas lower and comparable at the three other sites. Although the mean N(TOT) at each site showed insignificant differences between study periods, their diurnal patterns and size distribution modal characteristics were modestly to substantially different between study sites. Correlation analyses of time-resolved collocated aerosol, copollutants and meteorological data suggest that the observed variability is largely attributable to the local traffic and to a lesser extent photochemistry and SO(2) possibly from combustion sources or regional transport. Despite sharing a common traffic source, the ultrafine particles were poorly correlated with the accumulation particles (100-1000 nm), between which the latter showed strong positive correlation with the PM(2.5) and PM(10). Overall, the N(TOT) and size distributions show modest spatial heterogeneity and strong diurnal variability. In addition, the ultrafine particles have variable sources or meteorology-dependent formation processes within the study area. The results imply that single-site measurements of PM(2.5), PM(10) or N(TOT) alone and without discriminating particle sizes would be inadequate for exposure and impact assessment of submicrometer particle numbers in a region of diverse environments.

  6. Coupling of Low Speed Fan Stator Vane Unsteady Pressures to Duct Modes: Measured versus Predicted

    NASA Technical Reports Server (NTRS)

    Sutliff, Daniel L.; Heidelberg, Laurence J.; Envia, Edmane

    1999-01-01

    Uniform-flow annular-duct Green's functions are the essential elements of the classical acoustic analogy approach to the problem of computing the noise generated by rotor-stator interaction inside the fan duct. This paper investigates the accuracy of this class of Green's functions for predicting the duct noise levels when measured stator vane unsteady surface pressures are used as input to the theoretical formulation. The accuracy of the method is evaluated by comparing the predicted and measured acoustic power levels for the NASA 48 inch low speed Active Noise Control Fan. The unsteady surface pressures are measured,by an array of microphones imbedded in the suction and pressure sides of a single vane, while the duct mode levels are measured using a rotating rake system installed in the inlet and exhaust sections of the fan duct. The predicted levels are computed using properly weighted integrals of measured surface pressure distribution. The data-theory comparisons are generally quite good particularly when the mode cut-off criterion is carefully interpreted. This suggests that, at least for low speed fans, the uniform-flow annular-duct Green's function theory can be reliably used for prediction of duct mode levels if the cascade surface pressure distribution is accurately known.

  7. Distributions of indoor and outdoor air pollutants in Rio de Janeiro, Brazil: Implications to indoor air quality in bayside offices

    SciTech Connect

    Brickus, L.S.R.; Cardoso, J.N.; De Aquino Neto, F.R.

    1998-11-15

    An indoor air quality survey was conducted on selected floors in an office building in Rio de Janeiro, Brazil. The sampling sites comprised four offices located along the same vertical column of the building. Measurements were made on alternate days at the same time of day during working hours. Indoor and outdoor samples were collected for volatile organic compounds (VOC), formaldehyde, total suspended particles (TSP), nicotine, and ultraviolet respirable suspended particles (UV-RSP). Compared with formaldehyde, acetaldehyde was found in higher concentrations outdoors because of the use of ethanol or ethanol/gasoline blends as alternative fuels for automobiles in Brazil. The TVOC concentration ranged from 304.3 to 1679.9 {micro}g/m{sup 3} indoors and 22 to 643.2 {micro}g/m{sup 3} outdoors. The indoor level of total volatile organic compounds (TVOC) was especially high in the 13th floor office. A minor contribution from environmental tobacco smoke was found. TSP values exceed the Brazilian Legislation in both outdoor and indoor air in the office located near the street traffic. For all pollutants evaluated 1/0 ratios appeared to be higher in offices located on the top of the building. The characterization of indoor air pollutants allowed the suggestion of several remediation measures to improve air quality in the offices.

  8. Risk Factors associated with Paraurethral Duct Dilatation following Gonococcal Paraurethral Duct Infection in Men

    PubMed Central

    Fan, Wenge; Zhang, Qingsong; Wang, Lin; Ye, Xun; Jiang, Tingwang

    2016-01-01

    No studies have explored the risk factors for paraurethral duct dilatation following paraurethral duct infection by Neisseria gonorrhoeae in men undergoing ceftriaxone therapy. The present study was performed to explore the risk factors for paraurethral duct dilatation following paraurethral duct infection by N. gonorrhoeae in men undergoing ceftriaxone therapy and thus guide clinical interventions. We compared the demographic, behavioral, and clinical data of men with paraurethral duct infection by N. gonorrhoeae with and without dilatation of the paraurethral duct. Univariate analysis showed significant differences in age, disease course of the infected paraurethral duct, Chlamydia trachomatis infection in the paraurethral duct, and a history of paraurethral duct infection by N. gonorrhoeae between the patient and control groups (P<0.05). Multivariate logistic regression analysis showed consistent results (P<0.05). This study that shows delayed treatment may be a major risk factor for paraurethral duct dilatation secondary to paraurethral duct infection by N. gonorrhoeae in men. Age, C. trachomatis infection in the paraurethral duct, and a history of paraurethral duct infection by N. gonorrhoeae are also risk factors. Thus, educating patients to undergo timely therapy and treating the C. trachomatis infection may be effective interventions. PMID:27861521

  9. Duct wall impedance control as an advanced concept for acoustic impression

    NASA Technical Reports Server (NTRS)

    Dean, P. D.; Tester, B. J.

    1975-01-01

    Models and tests on an acoustic duct liner system which has the property of controlled-variable acoustic impedance are described. This is achieved by a novel concept which uses the effect of steady air flow through a multi-layer, locally reacting, resonant-cavity absorber. The scope of this work was limited to a 'proof of concept.' The test of the concept was implemented by means of a small-scale, square-section flow duct facility designed specifically for acoustic measurements, with one side of the duct acoustically lined. The test liners were designed with the aid of previously established duct acoustic theory and a semi-empirical impedance model of the liner system. Over the limited range tested, the liner behaved primarily as predicted, exhibiting significant changes in resistance and reactance, thus providing the necessary concept validation.

  10. Experimental study on the particles deposition in the sampling duct

    SciTech Connect

    Vendel, J.; Charuau, J.

    1995-02-01

    A high standard of protection against the harmful effects of radioactive aerosol dissemination requires a measurement, as representative as possible, of their concentration. This measurement depends on the techniques used for aerosol sampling and transfer to the detector, as well as on the location of the latter with respect to the potential sources. The aeraulic design of the apparatus is also an important factor. Once collected the aerosol particles often have to travel through a variably shaped duct to the measurement apparatus. This transport is responsible for losses due to the particles deposition on the walls, leading to a distortion on the concentration measurements and a change in the particle size distribution. To estimate and minimize measurement errors it is important to determine the optimal transport conditions when designing a duct; its diameter and material, the radius of curvature of the bends and the flow conditions must be defined in particular. This paper presents an experimental study in order to determine, for each deposition mechanism, the retained fraction, or the deposition velocity for different flow regimes. This study has pointed out that it exists a favourable flow regime for the particle transport through the sampling ducts (2 500 < Re < 5 000). It has been established, for any particle diameters, equations to predict the aerosol penetration in smooth-walled cylindrical metal ducts.

  11. Modeling the global levels and distribution of polychlorinated biphenyls in air under a climate change scenario.

    PubMed

    Lamon, Lara; Von Waldow, Harald; Macleod, Matthew; Scheringer, Martin; Marcomini, Antonio; Hungerbühler, Konrad

    2009-08-01

    We used the multimedia chemical fate model BETR Global to evaluate changes in the global distribution of two polychlorinated biphenyls, PCB 28 and PCB 153, under the influence of climate change. This was achieved by defining two climate scenarios based on results from a general circulation model, one scenario representing the last twenty years of the 20th century (20CE scenario) and another representing the global climate under the assumption of strong future greenhouse gas emissions (A2 scenario). The two climate scenarios are defined by four groups of environmental parameters: (1) temperature in the planetary boundary layer and the free atmosphere, (2) wind speeds and directions in the atmosphere, (3) current velocities and directions in the surface mixed layer of the oceans, and (4) rate and geographical pattern of precipitation. As a fifth parameter in our scenarios, we considerthe effect of temperature on primary volatilization emissions of PCBs. Comparison of dynamic model results using environmental parameters from the 20CE scenario against historical long-term monitoring data of concentrations of PCB 28 and PCB 153 in air from 16 different sites shows satisfactory agreement between modeled and measured PCBs concentrations. The 20CE scenario and A2 scenario were compared using steady-state calculations and assuming the same source characteristics of PCBs. Temperature differences between the two scenarios is the dominant factor that determines the difference in PCB concentrations in air. The higher temperatures in the A2 scenario drive increased primary and secondary volatilization emissions of PCBs, and enhance transport from temperate regions to the Arctic. The largest relative increase in concentrations of both PCB congeners in air under the A2 scenario occurs in the high Arctic and the remote Pacific Ocean. Generally, higher wind speeds under the A2 scenario result in more efficient intercontinental transport of PCB 28 and PCB 153 compared to the 20CE

  12. Fibreoptic choledochoscopy in common bile duct surgery.

    PubMed Central

    Ashby, B. S.

    1978-01-01

    Fibreoptic choledochoscopy permits visual examination of the interior of the bile ducts during operations for gallstones. But it does not replace operative cholangiography, and the common bile duct should not be opened simply to perform choledochoscopy. Operative choledochoscopy following conventional exploration and removal of stones ensures that the ducts are clear before insertion of a T tube and closure, avoiding the problem of the retained stone. Exploratory choledochoscopy with stone retrieval under direct vision is less traumatic to the ducts than conventional blind methods, and visual confirmation that the lower end of the duct is clear and the papilla patent may allow the common bile duct to be closed without a T tube, shortening the patient's convalescent period. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:697297

  13. The effect of cleanliness control during installation work on the amount of accumulated dust in ducts of new HVAC installations.

    PubMed

    Holopainen, R; Tuomainen, M; Asikainen, V; Pasanen, P; Säteri, J; Seppänen, O

    2002-09-01

    The aim of this study was to evaluate the amount of dust in supply air ducts in recently installed ventilation systems. The samples for the determination of dust accumulation were collected from supply air ducts in 18 new buildings that have been constructed according to two different cleanliness control levels classified as category P1 (low oil residues and protected against contaminations) and category P2, as defined in the Classification of Indoor Climate, Construction and Building Materials. In the ducts installed according to the requirements of cleanliness category P1 the mean amount of accumulated dust was 0.9 g/m2 (0.4-2.9 g/m2), and in the ducts installed according to the cleanliness category P2 it was 2.3 g/m2 (1.2-4.9 g/m2). A significant difference was found in the mean amounts of dust between ducts of categories P1 and P2 (P < 0.008). The cleanliness control procedure in category P1 proved to be a useful and effective tool for preventing dust accumulation in new air ducts during the construction process. Additionally, the ducts without residual oil had lower amounts of accumulated dust indicating that the demand for oil free components in the cleanliness classification is reasonable.

  14. Specific transduction and labeling of pancreatic ducts by targeted recombinant viral infusion into mouse pancreatic ducts.

    PubMed

    Guo, Ping; Xiao, Xiangwei; El-Gohary, Yousef; Criscimanna, Angela; Prasadan, Krishna; Rymer, Christopher; Shiota, Chiyo; Wiersch, John; Gaffar, Iliana; Esni, Farzad; Gittes, George K

    2013-11-01

    Specific labeling of pancreatic ducts has proven to be quite difficult. Such labeling has been highly sought after because of the power it would confer to studies of pancreatic ductal carcinogenesis, as well as studies of the source of new insulin-producing β-cells. Cre-loxp recombination could, in theory, lineage-tag pancreatic ducts, but results have been conflicting, mainly due to low labeling efficiencies. Here, we achieved a high pancreatic duct labeling efficiency using a recombinant adeno-associated virus (rAAV) with a duct-specific sox9 promoter infused into the mouse common biliary/pancreatic duct. We saw rapid, diffuse duct-specific labeling, with 50 and 89% labeling in the pancreatic tail and head region, respectively. This highly specific labeling of ducts should greatly enhance our ability to study the role of pancreatic ducts in numerous aspects of pancreatic growth, development and function.

  15. Extent of fungal growth on fiberglass duct liners with and without biocides under challenging environmental conditions.

    PubMed

    Samimi, Behzad S; Ross, Kristen

    2003-03-01

    Eight brands of fiberglass duct liners, including three that contained biocides, were exposed to challenging environmental conditions that would promote fungal growth. Twenty-four rectangular sheet metal ducts in three groups of eight ducts per group were lined with the eight selected liners. Each group of ducts was exposed to one of the three test conditions within an environmental chamber for a period of 15 days. These conditions were a) 75 percent RH, b) 75 percent RH plus water spray, c) 75 percent RH plus dry nutrient, and d) 75 percent RH plus water plus nutrient. Viable spores of Aspergillus niger were aerosolized into each duct as seed. On the 16th day, air and surface samples for fungal spores were collected from inside ducts. The results of air sampling using N6 sampler and visual inspection indicated that two out of three biocide-containing liners, Permacote and Toughgard, inhibited fungal growth but only under condition A. The third biocide-containing liner, Aeroflex Plus, was effective even when it was wet (conditions A and B). All three biocide-containing liners failed to inhibit fungal growth under conditions C and D. Among the five other types of liners that did not contain biocides, ATCO Flex with a smooth Mylar coating was more preferable, exhibiting lower fungal activity during conditions A, B, and C. All liners failed under condition D when nutrient and water were added together. Surface sampling using adhesive tape failed to produce representative results, apparently due to rough/porous surface of duct liners. It was concluded that duct liners with biocide treatment could be less promoting to microbial growth under high humidity as long as their surfaces remain clean and water-free. A liner with an impermeable and smooth surface seems to be less subject to microbial growth under most conditions than biocide-containing liners having porous and/or rough surfaces.

  16. NOx Emission Reduction by the Optimization of the Primary Air Distribution in the 235Mwe CFB Boiler

    NASA Astrophysics Data System (ADS)

    Mirek, P.; Czakiert, T.; Nowak, W.

    The article presents the results of experimental studies conducted on a large-scale 235 MWe CFB (Circulating Fluidized Bed) boiler, in which the primary air distribution system was modified. The modification was connected with the change of internal geometry of primary air channels as well as internal space of plenum chamber. The obtained results have shown, that the optimization of primary air flow has a great influence on the intensity of the combustion process and the temperature distribution along the height of combustion chamber. As a result, the NOx emission has been reduced by up to ten percent and the temperature profile in the combustion chamber has been revealed to be more uniform.

  17. Release and distribution of Lilioceris cheni (Coleoptera: Chrysomelidae), a biological control agent of air potato (Dioscorea bulbilfera: Dioscoreaceae), in Florida

    Technology Transfer Automated Retrieval System (TEKTRAN)

    From 2012 to 2015, 429,668 Lilioceris cheni Gressit and Kimoto (Coleoptera: Chrysomelidae) were released in Florida for biological control of air potato [Dioscorea bulbilfera L. (Dioscoreaceae)]. The spatial distribution of releases was highly aggregated, with several areas of high density releases ...

  18. Pollution level, phase distribution and health risk of polycyclic aromatic hydrocarbons in indoor air at public places of Hangzhou, China.

    PubMed

    Lu, Hao; Zhu, Lizhong; Chen, Shuguang

    2008-04-01

    PAHs pollution survey in air of public places was conducted in Hangzhou, China. The most serious PAHs pollution was observed in indoor air of shopping centers and the slightest was in train stations. The molecular weight of chrysene (MW 228) appeared to be the dividing line for the PAHs with a larger or smaller distribution in the vapor or particulate phase. Concentrations of 15 PAHs on PM2.5 accounted for 71.3% of total particulate PAHs, and followed by PM2.5-10 fraction (17.6%) and >PM10 fraction (11.1%). In shopping centers and supermarkets, emission of 2-4 rings PAHs occurred from indoor sources, whereas 5-6 rings PAHs predominantly originated from transport of outdoor air. In temples, PAHs in indoor air mainly originated from incense burning. Health risks associated with the inhalation of PAHs were assessed, and naphthalene made the greatest contribution (62.4%) to the total health risks.

  19. Air mass distribution and the heterogeneity of the climate change signal in the Hudson Bay/Foxe Basin region, Canada

    NASA Astrophysics Data System (ADS)

    Leung, Andrew; Gough, William

    2016-08-01

    The linkage between changes in air mass distribution and temperature trends from 1971 to 2010 is explored in the Hudson Bay/Foxe Basin region. Statistically significant temperature increases were found of varying spatial and temporal magnitude. Concurrent statistically significant changes in air mass frequency at the same locations were also detected, particularly in the declining frequency of dry polar (DP) air. These two sets of changes were found to be linked, and we thus conclude that the heterogeneity of the climatic warming signal in the region is at least partially the result of a fundamental shift in the concurrent air mass frequency in addition to global and regional changes in radiative forcing due to increases in long-lived greenhouse gases.

  20. Anatomical assessment of bile ducts of Luschka in human fetuses.

    PubMed

    Kocabiyik, Necdet; Yalcin, Bülent; Kilbas, Zafer; Karadeniz, Sinan R; Kurt, Bülent; Comert, Ayhan; Ozan, Hasan

    2009-08-01

    Bile ducts of Luschka (also called subvesical or supravesicular ducts) can cause bile leakage during laparoscopic cholecystectomy, especially if surgery is carried out in ignorance of such variations. The aim of this study was to clarify the clinical anatomy of these ducts in human fetuses and frequency of the ducts locating near gallbladder fossa. Thirty-two fetal cadaver livers were dissected and the gallbladders were separated from the livers and ducts were investigated under a surgical microscope. All observed ducts were examined microscopically and connective tissue cords were excluded. Bile ducts of Luschka locating near cystic fossa were found in 7 of 32 fetuses (21.9%). Three of the seven ducts ran towards to liver segment 5 (S5); three ducts were found in the gallbladder fossa; and one duct ran towards to liver segment 4 (S4). Also it was found that three of the seven ducts drained into the subsegmental duct of S5, two ducts drained into the right hepatic duct, one duct drained into the right anterior branch bile duct, and one duct drained into the subsegmental duct of S4. Subvesical ducts running along the gallbladder fossa between the gallbladder and the liver parenchyma were found in a relatively high incidence in fetuses than adults. Awareness and knowledge about incidence of such ducts alerts the surgeon during laparoscopic cholecystectomy. Therefore morbidity due to bile leaks can be reduced.

  1. Generator stator core vent duct spacer posts

    DOEpatents

    Griffith, John Wesley; Tong, Wei

    2003-06-24

    Generator stator cores are constructed by stacking many layers of magnetic laminations. Ventilation ducts may be inserted between these layers by inserting spacers into the core stack. The ventilation ducts allow for the passage of cooling gas through the core during operation. The spacers or spacer posts are positioned between groups of the magnetic laminations to define the ventilation ducts. The spacer posts are secured with longitudinal axes thereof substantially parallel to the core axis. With this structure, core tightness can be assured while maximizing ventilation duct cross section for gas flow and minimizing magnetic loss in the spacers.

  2. Circumportal pancreas with retroportal main pancreatic duct.

    PubMed

    Hashimoto, Yasushi; Ross, Andrew S; Traverso, L William

    2009-08-01

    There have been 6 cases of circumportal pancreas reported, and 2 of them had the main pancreatic duct in a retroportal dorsal portion. This extremely uncommon anomaly is asymptomatic and therefore incidentally discovered. For the surgeon, it is important to discover this during pancreatic resection so the pancreatic duct can be closed and fistula is avoided. We describe the third case where a circumportal pancreas had its main pancreatic duct passing under the portal vein. The duct was identified and ligated. A fistula did not occur.

  3. Determining particle size distributions in the inhalable size range for wood dust collected by air samplers.

    PubMed

    Harper, Martin; Muller, Brian S; Bartolucci, Al

    2002-10-01

    In the absence of methods for determining particle size distributions in the inhalable size range with good discrimination, the samples collected by personal air sampling devices can only be characterized by their total mass. This parameter gives no information regarding the size distribution of the aerosol or the size-selection characteristics of different samplers in field use conditions. A method is described where the particles collected by a sampler are removed, suspended, and re-deposited on a mixed cellulose-ester filter, and examined by optical microscopy to determine particle aerodynamic diameters. This method is particularly appropriate to wood dust particles which are generally large and close to rectangular prisms in shape. Over 200 wood dust samples have been collected in three different wood-products industries, using the traditional closed-face polystyrene/acrylonitrile cassette, the Institute of Occupational Medicine inhalable sampler, and the Button sampler developed by the University of Cincinnati. A portion of these samples has been analyzed to determine the limitations of this method. Extensive quality control measures are being developed to improve the robustness of the procedure, and preliminary results suggest the method has an accuracy similar to that required of National Institute for Occupational Safety and Health (NIOSH) methods. The results should provide valuable insights into the collection characteristics of the samplers and the impact of these characteristics on comparison of sampler results to present and potential future limit values. The NIOSH Deep South Education and Research Center has a focus on research into hazards of the forestry and associated wood-products industry, and it is hoped to expand this activity in the future.

  4. Radon gas distribution in natural gas processing facilities and workplace air environment.

    PubMed

    Al-Masri, M S; Shwiekani, R

    2008-04-01

    Evaluation was made of the distribution of radon gas and radiation exposure rates in the four main natural gas treatment facilities in Syria. The results showed that radiation exposure rates at contact of all equipment were within the natural levels (0.09-0.1 microSvh(-1)) except for the reflex pumps where a dose rate value of 3 microSvh(-1) was recorded. Radon concentrations in Syrian natural gas varied between 15.4 Bq m(-3) and 1141 Bq m(-3); natural gas associated with oil production was found to contain higher concentrations than the non-associated natural gas. In addition, radon concentrations were higher in the central processing facilities than the wellheads; these high levels are due to pressurizing and concentrating processes that enhance radon gas and its decay products. Moreover, the lowest 222Rn concentration was in the natural gas fraction used for producing sulfur; a value of 80 Bq m(-3) was observed. On the other hand, maximum radon gas and its decay product concentrations in workplace air environments were found to be relatively high in the gas analysis laboratories; a value of 458 Bq m(-3) was observed. However, all reported levels in the workplaces in the four main stations were below the action level set by IAEA for chronic exposure situations involving radon, which is 1000 Bq m(-3).

  5. Acoustical properties of air-saturated porous material with periodically distributed dead-end pores.

    PubMed

    Leclaire, P; Umnova, O; Dupont, T; Panneton, R

    2015-04-01

    A theoretical and numerical study of the sound propagation in air-saturated porous media with straight main pores bearing lateral cavities (dead-ends) is presented. The lateral cavities are located at "nodes" periodically spaced along each main pore. The effect of periodicity in the distribution of the lateral cavities is studied, and the low frequency limit valid for the closely spaced dead-ends is considered separately. It is shown that the absorption coefficient and transmission loss are influenced by the viscous and thermal losses in the main pores as well as their perforation rate. The presence of long or short dead-ends significantly alters the acoustical properties of the material and can increase significantly the absorption at low frequencies (a few hundred hertz). These depend strongly on the geometry (diameter and length) of the dead-ends, on their number per node, and on the periodicity along the propagation axis. These effects are primarily due to low sound speed in the main pores and to thermal losses in the dead-end pores. The model predictions are compared with experimental results. Possible designs of materials of a few cm thicknesses displaying enhanced low frequency absorption at a few hundred hertz are proposed.

  6. Dirty ducting poses significant risks.

    PubMed

    Norman, Richard

    2010-06-01

    Richard Norman, managing director of ventilation system cleaning specialist Indepth Hygiene, discusses the importance of ensuring that such systems are properly cleaned in healthcare facilities, especially, he argues, as dust and debris on internal surfaces of ducting are potentially "ideal nutrients" for the growth of microorganisms such as MRSA and Clostridium difficile. In addition he warns that, if not properly and regularly cleaned, grease extract ventilation systems linked to catering facilities are a potential source of danger to hospital patients, staff, and visitors alike.

  7. Morphological study of human sweat ducts for the investigation of THz-wave interaction (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kawase, Kodo; Tripathi, Saroj R.

    2016-03-01

    Recently, some studies reported that the sweat ducts act as a low-Q-factor helical antenna due to their helical structure, and resonate in the terahertz frequency range according to their structural parameters. According to the antenna theory, when the duct works as a helical antenna, the dimension of the helix plays a key role to determine the frequency of resonance. Therefore, the accurate determination of structural parameters of sweat duct is crucially important to obtain the reliable frequency of resonance and modes of operations. Therefore, here we performed the optical coherence tomography (OCT) of human subjects on their palm and foot to investigate the density, distribution and morphological features of sweat ducts. Moreover, we measured the dielectric properties of stratum corneum using terahertz time domain spectroscopy and based upon this information, we determined the frequency of resonance. We recruited 32 subjects for the measurement and the average duct diameter was 95±11μm. Based upon this information on diameter of duct and THz dielectric properties of stratum corneum (ɛ=5.1±1.3), we have calculated the frequency of resonance of sweat duct. Finally, we determined that the center frequency of resonance was 442±76 GHz. We believe that these findings will facilitate further investigation of the THz-skin interaction and provide guidelines for safety levels with respect to human exposure. We will also report on the EEG measurement while being shined by micro watt order THz waves.

  8. Radiated noise of ducted fans

    NASA Astrophysics Data System (ADS)

    Eversman, Walter

    The differences in the radiated acoustic fields of ducted and unducted propellers of the same thrust operating under similar conditions are investigated. An FEM model is created for the generation, propagation, and radiation of steady, rotor alone noise and exit guide vane interaction noise of a ducted fan. For a specified number of blades, angular mode harmonic, and rotor angular velocity, the acoustic field is described in a cylindrical coordinate system reduced to only the axial and radial directions. It is found that, contrary to the usual understanding of the Tyler and Sofrin (1962) result, supersonic tip speed rotor noise can be cut off if the tip Mach number is only slightly in excess of unity and if the number of blades is relatively small. If there are many blades, the fundamental angular mode number is large, and the Tyler and Sofrin result for thin annuli becomes more relevant. Shrouding of subsonic tip speed propellers is a very effective means of controlling rotor alone noise.

  9. Radiated noise of ducted fans

    NASA Technical Reports Server (NTRS)

    Eversman, Walter

    1992-01-01

    The differences in the radiated acoustic fields of ducted and unducted propellers of the same thrust operating under similar conditions are investigated. An FEM model is created for the generation, propagation, and radiation of steady, rotor alone noise and exit guide vane interaction noise of a ducted fan. For a specified number of blades, angular mode harmonic, and rotor angular velocity, the acoustic field is described in a cylindrical coordinate system reduced to only the axial and radial directions. It is found that, contrary to the usual understanding of the Tyler and Sofrin (1962) result, supersonic tip speed rotor noise can be cut off if the tip Mach number is only slightly in excess of unity and if the number of blades is relatively small. If there are many blades, the fundamental angular mode number is large, and the Tyler and Sofrin result for thin annuli becomes more relevant. Shrouding of subsonic tip speed propellers is a very effective means of controlling rotor alone noise.

  10. Measure Guideline. Sealing and Insulating Ducts in Existing Homes

    SciTech Connect

    Aldrich, R.; Puttagunta, S.

    2011-12-01

    This document begins with a discussion on potential cost and performance benefits of duct sealing and insulating. It continues with a review of typical duct materials and components and the overall procedures for assessing and improving the duct system.

  11. Measure Guideline: Sealing and Insulating of Ducts in Existing Homes

    SciTech Connect

    Aldrich, R.; Puttagunta, S.

    2011-12-01

    This document begins with a discussion on potential cost and performance benefits of duct sealing and insulating. It continues with a review of typical duct materials and components and the overall procedures for assessing and improving the duct system.

  12. What Are the Risk Factors for Bile Duct Cancer?

    MedlinePlus

    ... but it can affect people who travel to Asia. Abnormalities where the bile duct and pancreatic duct ... duct cancer is much more common in Southeast Asia and China, largely because of the high rate ...

  13. Investigation in the 7-By-10 Foot Wind Tunnel of Ducts for Cooling Radiators Within an Airplane Wing, Special Report

    NASA Technical Reports Server (NTRS)

    Harris, Thomas A.; Recant, Isidore G.

    1938-01-01

    An investigation was made in the NACA 7- by 10-foot wind tunnel of a large-chord wing model with a duct to house a simulated radiator suitable for a liquid-cooled engine. The duct was expanded to reduce the radiator losses, and the installation of the duct and radiator was made entirely within the wing to reduce form and interference drag. The tests were made using a two-dimensional flow set-up with a full-span duct and radiator. Section aerodynamic characteristics of the basic airfoil are given and also curves showing the characteristics of the various duct-radiator combinations. An expression for efficiency, the primary criterion of merit of any duct, and the effect of the several design parameters of the duct-radiator arrangement are discussed. The problem of throttling is considered and a discussion of the power required for cooling is included. It was found that radiators could be mounted in the wing and efficiently pass enough air for cooling with duct outlets located at any point from 0.25c to 0.70c from the wing leading edge on the upper surface. The duct-inlet position was found to be critical and, for maximum efficiency, had to be at the stagnation point of the airfoil and to change with flight attitude. The flow could be efficiently throttled only by a simultaneous variation of duct inlet and outlet sizes and of inlet position. It was desirable to round both inlet and outlet lips. With certain arrangements of duct, the power required for cooling at high speed was a very low percentage of the engine power.

  14. Double-duct liquid metal magnetohydrodynamic engine

    DOEpatents

    Haaland, Carsten M.

    1997-01-01

    An internal combustion, liquid metal (LM) magnetohydrodynamic (MHD) engine and an alternating current (AC) magnetohydrodynamic generator, are used in combination to provide useful AC electric energy output. The engine design has four pistons and a double duct configuration, with each duct containing sodium potassium liquid metal confined between free pistons located at either end of the duct. The liquid metal is forced to flow back and forth in the duct by the movement of the pistons, which are alternatively driven by an internal combustion process. In the MHD generator, the two LM-MHD ducts pass in close proximity through a Hartmann duct with output transformer. AC power is produced by operating the engine with the liquid metal in the two generator ducts always flowing in counter directions. The amount of liquid metal maintained in the ducts may be varied. This provides a variable stroke length for the pistons. The engine/generator provides variable AC power at variable frequencies that correspond to the power demands of the vehicular propulsion. Also the engine should maintain nearly constant efficiency throughout the range of power usage. Automobiles and trucks could be powered by the invention, with no transmission or power converter devices being required.

  15. Double-duct liquid metal magnetohydrodynamic engine

    DOEpatents

    Haaland, Carsten M.

    1995-01-01

    An internal combustion, liquid metal (LM) magnetohydrodynamic (MHD) engine and an alternating current (AC) magnetohydrodynamic generator, are used in combination to provide useful AC electric energy output. The engine design has-four pistons and a double duct configuration, with each duct containing sodium potassium liquid metal confined between free pistons located at either end of the duct. The liquid metal is forced to flow back and forth in the duct by the movement of the pistons, which are alternatively driven by an internal combustion process. In the MHD generator, the two LM-MHD ducts pass in close proximity through a Hartmann duct with output transformer. AC power is produced by operating the engine with the liquid metal in the two generator ducts always flowing in counter directions. The amount of liquid metal maintained in the ducts may be varied. This provides a variable stroke length for the pistons. The engine/generator provides variable AC power at variable frequencies that correspond to the power demands of the vehicular propulsion. Also the engine should maintain nearly constant efficiency throughout the range of power usage. Automobiles and trucks could be powered by the invention, with no transmission or power converter devices being required.

  16. Predicting vibrational failure of flexible ducting

    NASA Technical Reports Server (NTRS)

    Henry, R. H.

    1971-01-01

    Technique applies to liquid or gas transfer through flexible ducting and proves valuable in high velocity fluid flow cases. Fluid mechanism responsible for free bellows vibrational excitation also causes flexible hose oscillation. Static pressure stress influences flexible ducting fatigue life and is considered separately.

  17. Rocket-in-a-Duct Performance Analysis

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.; Reed, Brian D.

    1999-01-01

    An axisymmetric, 110 N class, rocket configured with a free expansion between the rocket nozzle and a surrounding duct was tested in an altitude simulation facility. The propellants were gaseous hydrogen and gaseous oxygen and the hardware consisted of a heat sink type copper rocket firing through copper ducts of various diameters and lengths. A secondary flow of nitrogen was introduced at the blind end of the duct to mix with the primary rocket mass flow in the duct. This flow was in the range of 0 to 10% of the primary massflow and its effect on nozzle performance was measured. The random measurement errors on thrust and massflow were within +/-1%. One dimensional equilibrium calculations were used to establish the possible theoretical performance of these rocket-in-a-duct nozzles. Although the scale of these tests was small, they simulated the relevant flow expansion physics at a modest experimental cost. Test results indicated that lower performance was obtained at higher free expansion area ratios and longer ducts, while, higher performance was obtained with the addition of secondary flow. There was a discernable peak in specific impulse efficiency at 4% secondary flow. The small scale of these tests resulted in low performance efficiencies, but prior numerical modeling of larger rocket-in-a-duct engines predicted performance that was comparable to that of optimized rocket nozzles. This remains to be proven in large-scale, rocket-in-a-duct tests.

  18. Film condensation in a horizontal rectangular duct

    NASA Technical Reports Server (NTRS)

    Lu, Qing; Suryanarayana, N. V.

    1992-01-01

    Condensation heat transfer in an annular flow regime with and without interfacial waves was experimentally investigated. The study included measurements of heat transfer rate with condensation of vapor flowing inside a horizontal rectangular duct and experiments on the initiation of interfacial waves in condensation, and adiabatic air-liquid flow. An analytical model for the condensation was developed to predict condensate film thickness and heat transfer coefficients. Some conclusions drawn from the study are that the condensate film thickness was very thin (less than 0.6 mm). The average heat transfer coefficient increased with increasing the inlet vapor velocity. The local heat transfer coefficient decreased with the axial distance of the condensing surface, with the largest change at the leading edge of the test section. The interfacial shear stress, which consisted of the momentum shear stress and the adiabatic shear stress, appeared to have a significant effect on the heat transfer coefficients. In the experiment, the condensate flow along the condensing surface experienced a smooth flow, a two-dimensional wavy flow, and a three-dimensional wavy flow. In the condensation experiment, the local wave length decreased with the axial distance of the condensing surface and the average wave length decreased with increasing inlet vapor velocity, while the wave speed increased with increasing vapor velocity. The heat transfer measurements are reliable. And, the ultrasonic technique was effective for measuring the condensate film thickness when the surface was smooth or had waves of small amplitude.

  19. The seasonal vertical distribution of the Saharan Air Layer and its modulation by the wind

    NASA Astrophysics Data System (ADS)

    Tsamalis, C.; Chédin, A.; Pelon, J.; Capelle, V.

    2013-11-01

    The Saharan Air Layer (SAL) influences large-scale environment from western Africa to eastern tropical Americas, by carrying large amounts of dust aerosols. However, the vertical distribution of the SAL is not well established due to a lack of systematic measurements away from the continents. This can be overcome by using the observations of the spaceborne lidar CALIOP onboard the satellite CALIPSO. By taking advantage of CALIOP's capability to distinguish dust aerosols from other types of aerosols through depolarization, the seasonal vertical distribution of the SAL is analyzed at 1° horizontal resolution over a period of 5 yr (June 2006-May 2011). This study shows that SAL can be identified all year round displaying a clear seasonal cycle. It occurs higher in altitude and more northern in latitude during summer than during winter, but with similar latitudinal extent near Africa for the four seasons. The south border of the SAL is determined by the Intertropical Convergence Zone (ITCZ), which either prohibits dust layers from penetrating it or reduces significantly the number of dust layers seen within or south of it, as over the eastern tropical Atlantic. Spatially, near Africa, it is found between 5° S and 15° N in winter and 5-30° N in summer. Towards the Americas (50° W), SAL is observed between 5° S and 10° N in winter and 10-25° N in summer. During spring and fall, SAL is found between the position of winter and summer not only spatially but also vertically. In winter, SAL occurs in the altitude range 0-3 km off western Africa, decreasing to 0-2 km close to South America. During summer, SAL is found to be thicker and higher near Africa at 1-5 km, reducing to 0-2 km in the Gulf of Mexico, farther west than during the other seasons. SAL is confined to one layer, of which the mean altitude decreases with westward transport by 13 m deg-1 during winter and 28 m deg-1, after 30° W, during summer. Its mean geometrical thickness decreases by 25 m deg-1 in

  20. Uniformly spaced field-aligned ionization ducts

    NASA Technical Reports Server (NTRS)

    Gross, S. H.; Muldrew, D. B.

    1984-01-01

    A number of interesting cases of combination mode ducted echoes for mid- and low-latitude regions are presented that show nearly uniformly spaced multiple combination mode traces on the ionograms in the frequency range above 1 MHz. These traces suggest that a parallel system of field-aligned ducts is present. Ray tracing studies are made to determine the structure that would explain the observations using the electron density profile derivable from the vertical trace and assuming field-aligned ducts. Spacing perpendicular to the ducts is found to be as much as 70 km. Some of these parallel duct structures are found to extend to the conjugate hemisphere, possibly to the F peak.

  1. Field investigation of duct system performance in California light commercial buildings

    SciTech Connect

    Delp, W.W.; Matson, N.E.; Tschudy, E.

    1997-12-09

    This paper discusses field measurements of duct system performance in fifteen systems located in eight northern California buildings. Light commercial buildings, one- and two-story with package roof-top HVAC units, make up approximately 50% of the non-residential building stock in the U.S. Despite this fact little is known about the performance of these package roof-top units and their associated ductwork. These simple systems use similar duct materials and construction techniques as residential systems (which are known to be quite leaky). This paper discusses a study to characterize the buildings, quantify the duct leakage, and analyze the performance of the ductwork in these types of buildings. The study tested fifteen systems in eight different buildings located in northern California. All of these buildings had the ducts located in the cavity between the drop ceiling and the roof deck. In 50% of these buildings, this cavity was functionally outside the building`s air and thermal barriers. The effective leakage area of the ducts in this study was approximately 2.6 times that in residential buildings. This paper looks at the thermal analysis of the ducts, from the viewpoint of efficiency and thermal comfort. This includes the length of a cycle, and whether the fan is always on or if it cycles with the cooling equipment. 66% of the systems had frequent on cycles of less than 10 minutes, resulting in non-steady-state operation.

  2. Electromagnetic propagation in PEC and absorbing curved S-ducts

    NASA Technical Reports Server (NTRS)

    Baumeister, Kenneth J.

    1988-01-01

    A finite-element Galerkin formulation has been developed to study transverse magnetic (TM) wave propagation in 2-D S-curved ducts with both perfectly conducting and absorbing walls. The reflection and transmission at the entrances and the exits of the curved ducts are determined by coupling the finite-element solutions in the curved ducts to the eigenfunctions of an infinite, uniform, perfectly conducting duct. Example solutions are presented for a double mitred and S-ducts of various lengths. The length of the S-duct is found to significantly effect the reflective characteristics of the duct. Also, the effect of curvature on an absorbing duct is illustrated.

  3. CHARACTERIZATION OF LEAK PATHWAYS IN THE BELOW GRADE DUCTS OF THE BROOKHAVEN GRAPHITE RESEARCH REACTOR USING PERFLUOROCARBON TRACERS.

    SciTech Connect

    HEISER,J.; SULLIVAN,T.; KALB,P.; MILIAN,L.; WILKE,R.; NEWSON,C.; LILIMPAKIS,M.

    2001-04-01

    The focus of this program was the characterization of the soils beneath the main air ducts connecting the exhaust plenums with the Fan House. The air plenums experienced water intrusion during BGRR operations and after shutdown. The water intrusions were attributed to rainwater leaks into degraded parts of the system and to internal cooling water system leaks. As part of the overall characterization efforts, a state-of-the-art gaseous perfluorocarbon tracer technology was utilized to characterize leak pathways from the ducts. This in turn suggests what soil regions under or adjacent to the ductwork should be emphasized in the characterization process. Knowledge of where gaseous tracers leak from the ducts yields a conservative picture of where water transport, out of or into, the ducts might have occurred.

  4. Computational Fluid Dynamics Analysis of Flexible Duct Junction Box Design

    SciTech Connect

    Beach, R.; Prahl, D.; Lange, R.

    2013-12-01

    IBACOS explored the relationships between pressure and physical configurations of flexible duct junction boxes by using computational fluid dynamics (CFD) simulations to predict individual box parameters and total system pressure, thereby ensuring improved HVAC performance. Current Air Conditioning Contractors of America (ACCA) guidance (Group 11, Appendix 3, ACCA Manual D, Rutkowski 2009) allows for unconstrained variation in the number of takeoffs, box sizes, and takeoff locations. The only variables currently used in selecting an equivalent length (EL) are velocity of air in the duct and friction rate, given the first takeoff is located at least twice its diameter away from the inlet. This condition does not account for other factors impacting pressure loss across these types of fittings. For each simulation, the IBACOS team converted pressure loss within a box to an EL to compare variation in ACCA Manual D guidance to the simulated variation. IBACOS chose cases to represent flows reasonably correlating to flows typically encountered in the field and analyzed differences in total pressure due to increases in number and location of takeoffs, box dimensions, and velocity of air, and whether an entrance fitting is included. The team also calculated additional balancing losses for all cases due to discrepancies between intended outlet flows and natural flow splits created by the fitting. In certain asymmetrical cases, the balancing losses were significantly higher than symmetrical cases where the natural splits were close to the targets. Thus, IBACOS has shown additional design constraints that can ensure better system performance.

  5. - - and Cross-Joints of Lined Ducts

    NASA Astrophysics Data System (ADS)

    Mechel, F. P.

    1998-10-01

    Much effort has been spent to increase the attenuation of lined ducts at low frequencies with only a minor increase of the blocking of the duct by thick silencers, in order to keep the stationary flow of the resistance of the silencer at low values. There exists a similar problem at high frequencies, where the attenuation goes down at about the square of the inverse frequency as soon as the frequency limit of ray formation is exceeded at which the free duct is about half a wavelength wide. The principal remedy of the problem, to choose narrow ducts, would increase the aerodynamic resistance. The ray-acoustical background of the low attenuation at high frequency suggests using the existing corners of the ductwork into which the silencer is inserted for the generation of high-frequency attenuation. A naı̈ve idea is to assume that the exciting sound ray of the inlet duct should be absorbed by an absorber on the corner wall opposite this duct, thereby avoiding the excitation of the outlet branch of the duct. Such a corner absorber could be applied in wide ducts also. This paper presents theories of joints of acoustically lined ducts with separate sound absorbers at the corner walls. The numerical results will show that high transmission losses can indeed be achieved at high frequencies, but the mechanism of the corner attenuation is not so much the absorption by the corner absorber, but more the (cut-off) attenuation of higher modes in the lined outlet branch of the duct.

  6. Turbofan engine with a low pressure turbine driven supercharger in a bypass duct operated by a fuel rich combustor and an afterburner

    NASA Technical Reports Server (NTRS)

    Bartos, James W. (Inventor)

    1999-01-01

    A multiple bypass turbofan engine includes a core Brayton Cycle gas generator with a fuel rich burning combustor and is provided with a variable supercharged bypass duct around the gas generator with a supercharging means in the supercharged bypass duct powered by a turbine not mechanically connected to the gas generator. The engine further includes a low pressure turbine driven forward fan upstream and forward of an aft fan and drivingly connected to a low pressure turbine by a low pressure shaft, the low pressure turbine being aft of and in serial flow communication with the core gas generator. A fan bypass duct is disposed radially outward of the core engine assembly and has first and second inlets disposed between the forward and aft fans. An inlet duct having an annular duct wall is disposed radially inward of the bypass duct and connects the second inlet to the bypass duct. A supercharger means for compressing air is drivingly connected to the low pressure turbine and is disposed in the inlet duct. A secondary combustor or augmentor is disposed in an exhaust duct downstream of and in fluid flow communication with the bypass duct and the gas generator.

  7. Estimation of air void and aggregate spatial distributions in concrete under uniaxial compression using computer tomography scanning

    SciTech Connect

    Wong, R.C.K. . E-mail: rckwong@ucalgary.ca; Chau, K.T.

    2005-08-01

    Normal- and high-strength concrete cylinders (designed compressive strengths of 30 and 90 MPa at 28 days) were loaded uniaxially. Computer tomography (CT) scanning technique was used to examine the evolution of air voids inside the specimens at various loading states up to 85% of the ultimate compressive strength. The normal-strength concrete yielded a very different behaviour in changes of internal microstructure as compared to the high-strength concrete. There were significant instances of nucleation and growth in air voids in the normal-strength concrete specimen, while the increase in air voids in the high-strength concrete specimen was insignificant. In addition, CT images were used for mapping the aggregate spatial distributions within the specimens. No intrinsic anisotropy was detected from the fabric analysis.

  8. The ducted tip -- A hydrofoil tip geometry with superior cavitation performance

    SciTech Connect

    Green, S.I.; Duan, S.Z.

    1995-12-01

    A novel hydrofoil design, consisting of a small diameter flow-through duct affixed to the tip, has been studied. The tip vortex cavitation inception index, {sigma}{sub i}, of this hydrofoil geometry is about a factor of 2 lower than that of a conventional rounded hydrofoil tip. This inception improvement comes with little associated performance penalty. For angles of attack greater than 8 deg the noncavitating lift-drag ratio is actually superior to that of an unducted hydrofoil of equal span, although with lower wing loadings the hydrofoil performance is diminished by application of the ducted tip. The ducted tip is effective at reducing the tip vortex inception index because, in contrast with the rounded tip, for which vorticity in the Trefftz plane is confined to a line, the ducted tip shed vorticity at the trailing edge is distributed over a line and circle. Distributing the vorticity in this fashion causes the trailing vortex to roll up less tightly, and hence have a higher core pressure and lower {sigma}{sub i}, than a conventional hydrofoil tip. It is also suspected that the interaction at the microscale level between the flow through the duct, and the flow around it, makes the vortex core size larger, and therefore {sigma}{sub i} smaller. The ducted tip design has many potential marine applications, including to ship and submarine propellers, submarine control fins, and ship rudders.

  9. Retrievals of Stratocumulus Drop Size Distributions from Airborne Multiangle SpectroPolarimetric Imager (AirMSPI) Observations

    NASA Astrophysics Data System (ADS)

    Garay, Michael; Diner, David

    2013-04-01

    Data from the Polarization and Directionality of the Earth's Reflectances (POLDER) satellite instruments have been used for many years to retrieve information about the mean and dispersion of cloud droplet size distributions. The position of specific features in scattering angle space corresponding to supernumerary bows in the polarized phase function are extremely sensitive to the effective radius of the cloud droplets, while the amplitude of these features carries information on the dispersion of droplet sizes. Due to the relatively coarse angular sampling of POLDER multiangular views (~10°), variations in scattering angle from pixel to pixel are used instead to obtain fine sampling in angle, which requires the clouds to be homogeneous on scales of 150 km × 150 km in the POLDER retrievals. We will describe high-resolution polarimetric observations of marine stratocumulus clouds made off the coast of California by the AirMSPI instrument, which files on the NASA ER-2 high-altitude research aircraft. AirMSPI is an eight-band pushbroom camera mounted on a controllable gimbal, which allows the instrument to make observations over a ±67° range in the direction of aircraft motion. AirMSPI's eight spectral bands are 355, 380, 445, 470, 555, 660, 865, and 935 nm in the ultraviolet to the near-infrared range. Polarimetric observations are made in the 470, 660, and 865 nm bands using photoelastic modulators (PEMs) to rapidly vary the orientation of the linearly polarized component (Stokes Q and U) of the incoming light, enabling measurement of the relative ratios of these parameters to intensity from individual pixels. From the nominal 20 km altitude of the aircraft, AirMSPI can provide imagery mapped to a 25 m grid using a sweep scanning strategy in which the gimbal controlling the pointing of the instrument is slewed back and forth along the direction of aircraft motion. The AirMSPI observations of the polarimetric features of marine stratocumulus clouds have been

  10. Vertical cavity surface emitting laser based on gallium arsenide/air-gap distributed Bragg reflectors: From concept to working devices

    NASA Astrophysics Data System (ADS)

    Mo, Qingwei

    Vertical-cavity surface-emitting lasers (VCSELs) have created new opportunities in optoelectronics. However, VCSELs have so far been commercialized mainly for operation at 0.85 mum, despite their potential importance at other wavelengths, such as 1.3 mum and 1.55 mum. The limitations at these longer wavelengths come from material characteristics, such as a low contrast ratio in mirror materials, lower mirror reflectivity, and smaller optical gain for longer wavelength materials versus AlGaAs/GaAs quantum wells. A similar situation, insufficient gain relative to the cavity loss, existed in the past for shorter wavelength VCSELs before high quality epitaxial mirrors were developed. Semiconductor/air-gap Distributed Bragg Reflectors (DBRs) are attractive due to their high index contrast, which leads to a high reflectivity, wide stop band and low optical loss mirror with a small number of pairs. This concept is ready to be integrated into material systems other than AlGaAs/GaAs, which is studied in this work. Therefore, the impact of these DBRs can be extended into both visible and longer infrared wavelengths as a solution to the trade-off between DBR and active region materials. Air-gap DBRs can also be used as basic building blocks of micro-opto-electro-mechanical systems (MOEMS). The high Q microcavity formed by the air-gap DBRs also provide a good platform for microcavity physics study. Air-gap DBRs are modeled using the transmission matrix formulae of the Maxwell equations. A comparison to existing DBR technology shows the great advantage and potential that the air-gap DBR possesses. Two types of air-gap are proposed and developed. The first one includes multiple GaAs/air pairs while the second one combines a single air-gap with metal and dielectric mirrors. New device structures and processing designs, especially an all-epitaxial lateral current and optical confinement technique, are carried out to incorporate air-gap DBRs into VCSEL structures. The first VCSEL

  11. Complex bile duct injuries: management

    PubMed Central

    Ardiles, V.; Pekolj, J.

    2008-01-01

    Background. Laparoscopic cholecystectomy is the present treatment of choice for patients with gallbladder stones, despite its being associated with a higher incidence of biliary injuries compared with the open procedure. Injuries occurring during the laparoscopic approach seem to be more complex. A complex biliary injury is a disease that is difficult to diagnose and treat. We considered complex injuries: 1) injuries that involve the confluence; 2) injuries in which repair attempts have failed; 3) any bile duct injury associated with a vascular injury; 4) or any biliary injury in association with portal hypertension or secondary biliary cirrhosis. The present review is an evaluation of our experience in the treatment of these complex biliary injuries and an analysis of the international literature on the management of patients. PMID:18695753

  12. Advanced Turbofan Duct Liner Concepts

    NASA Technical Reports Server (NTRS)

    Bielak, Gerald W.; Premo, John W.; Hersh, Alan S.

    1999-01-01

    The Advanced Subsonic Technology Noise Reduction Program goal is to reduce aircraft noise by 10 EPNdB by the year 2000 relative, to 1992 technology. The improvement goal for nacelle attenuation is 25% relative to 1992 technology by 1997 and 50% by 2000. The Advanced Turbofan Duct Liner Concepts Task work by Boeing presented in this document was in support of these goals. The basis for the technical approach was a Boeing study conducted in 1993-94 under NASA/FAA contract NAS1-19349, Task 6, investigating broadband acoustic liner concepts. As a result of this work, it was recommended that linear double layer, linear and perforate triple layer, parallel element, and bulk absorber liners be further investigated to improve nacelle attenuations. NASA LaRC also suggested that "adaptive" liner concepts that would allow "in-situ" acoustic impedance control also be considered. As a result, bias flow and high-temperature liner concepts were also added to the investigation. The major conclusion from the above studies is that improvements in nacelle liner average acoustic impedance characteristics alone will not result in 25% increased nacelle noise reduction relative to 1992 technology. Nacelle design advancements currently being developed by Boeing are expected to add 20-40% more acoustic lining to hardwall regions in current inlets, which is predicted to result in and additional 40-80% attenuation improvement. Similar advancements are expected to allow 10-30% more acoustic lining in current fan ducts with 10-30% more attenuation expected. In addition, Boeing is currently developing a scarf inlet concept which is expected to give an additional 40-80% attenuation improvement for equivalent lining areas.

  13. Impacts of Photovoltaic Power Plant Sitings and Distributed Solar Panels on Meteorology and Air Quality in Central California

    NASA Astrophysics Data System (ADS)

    Bastien, L. A.; Jin, L.; Brown, N. J.

    2012-12-01

    California's electric utility companies are required to use renewable energy to produce 20% of their power by 2010 and 33% by 2020. A main source of the power will be solar energy because photovoltaic technologies have advanced so much that large scale installations are being built and will be built in the future with even greater capacity. Rather than being a large emission source, these plants affect the ambient environment through albedo changes and by emission reductions associated with not burning fossil fuels to generate the same amount of electricity. Like conventional power plants, their impact on local meteorology and air quality depends on the specific technology, ambient atmospheric conditions, and the spatial location of the plant. Also, as solar panels on commercial and residential rooftops become even more common, the effect of distributed photovoltaic panels on meteorology and air quality is likely to become significant. In this study, we use the Weather Research and Forecasting (WRF) model and the Community Multiscale Air Quality (CMAQ) model at high resolution of 4 km x 4 km over several 5-day high-ozone episodes of the summer 2000 to assess the impact of photovoltaic panels on meteorology and air quality in Central California. We investigate the effect of locating a 1.0 Giga watt solar plant in different locations and the effect of distributed rooftop photovoltaic panels in major Californian cities, with a focus on peak and 8-hour average ozone and 24-hour average PM2.5.

  14. Organochlorine pesticides (OCPs) in the Indus River catchment area, Pakistan: Status, soil-air exchange and black carbon mediated distribution.

    PubMed

    Bajwa, Anam; Ali, Usman; Mahmood, Adeel; Chaudhry, Muhammad Jamshed Iqbal; Syed, Jabir Hussain; Li, Jun; Zhang, Gan; Jones, Kevin C; Malik, Riffat Naseem

    2016-06-01

    Organochlorine pesticides (OCPs) were investigated in passive air and soil samples from the catchment area of the Indus River, Pakistan. ∑15OCPs ranged between 0.68 and 13.47 ng g(-1) in soil and 375.1-1975 pg m-(3) in air. HCHs and DDTs were more prevalent in soil and air compartments. Composition profile indicated that β-HCH and p,p'-DDE were the dominant of all metabolites among HCHs and DDTs respectively. Moreover, fBC and fTOC were assessed and evaluated their potential role in the distribution status of OCPs. The fTOC and fBC ranged between 0.77 and 2.43 and 0.04-0.30% respectively in soil. Regression analysis showed the strong influence of fBC than fTOC on the distribution of OCPs in the Indus River catchment area soil. Equilibrium status was observed for β-HCH, δ-HCH, p,p'-DDD, o,p'-DDT, TC, HCB and Heptachlor with ff ranged between 0.3 and 0.59 while assessing the soil-air exchange of OCPs.

  15. Pressure spectra and cross spectra at an area contraction in a ducted combustion system

    NASA Technical Reports Server (NTRS)

    Miles, J. H.; Raftopoulos, D. D.

    1980-01-01

    Pressure spectra and cross-spectra at an area contraction in a liquid fuel, ducted, combustion noise test facility are analyzed. Measurements made over a range of air and fuel flows are discussed. Measured spectra are compared with spectra calculated using a simple analytical model.

  16. ASU nitrogen sweep gas in hydrogen separation membrane for production of HRSG duct burner fuel

    SciTech Connect

    Panuccio, Gregory J.; Raybold, Troy M.; Jamal, Agil; Drnevich, Raymond Francis

    2013-04-02

    The present invention relates to the use of low pressure N2 from an air separation unit (ASU) for use as a sweep gas in a hydrogen transport membrane (HTM) to increase syngas H2 recovery and make a near-atmospheric pressure (less than or equal to about 25 psia) fuel for supplemental firing in the heat recovery steam generator (HRSG) duct burner.

  17. EVALUATING THE POTENTIAL EFFICACY OF AN ANTIMICROBIAL-CONTAINING SEALANT ON DUCT LINER AND GALVANIZED STEEL

    EPA Science Inventory

    The article gives results of an evaluation of the potential efficacy of an antimicrobial-containing sealant on fibrous-glass duct liner (FGDL) and galvanized steel (GS) as used in heating, ventilating, and air-conditioning (HVAC) systems. HVAC systems become dirty to various degr...

  18. Enhanced Mixing in a Rectangular Duct

    NASA Technical Reports Server (NTRS)

    Liscinsky, D. S.; True, B.

    2003-01-01

    An experimental investigation of the mixing of non-reacting opposed rows of jets injected normal to a confined rectangular crossflow has been conducted. Planar Mie-scattering was used to measure the time-average concentration distribution of the jet fluid in planes perpendicular to the duct axis. Particular emphasis was placed on the study of closely spaced orifice configurations applicable to the mixing zone of an RQL combustor. Baseline studies were performed of mixing under "ideal" conditions, i.e., plenum fed jets injecting into a crossflow uniform in velocity and turbulence intensity. In addition, more practical ("non-ideal") issues encountered during hardware design were also studied. As in other studies, mixing effectiveness, determined using a spatial unmixedness parameter based on the variance of mean jet concentration distributions, was found to be optimum when the spacing-to-duct-height ratio was inversely proportional to the square root of the jet-to-mainstream momentum-flux ratio. This relationship is suitable for design under ideal flow conditions. Inlet flow boundary conditions of the jet and approach flow (mainstream) were found to strongly influence mixing performance, but no attempt was made to determine optimum performance under non-ideal conditions. The tests performed do offer some guidance as to expected mixing behavior for several common variables likely to be imposed by hardware constraints. Additionally, in this study it was found that for rows of orifices with opposite centerlines inline, mixing was similar for blockages up to 89 percent (previous crossflow mixing studies concerned with dilution zone configurations, blockages were typically less than 50 percent). Lower levels of unmixedness were obtained as a function of downstream location when axial injection length was minimized. Mixing may be enhanced if orifice centerlines of opposed rows are staggered, but blockage must be =50 percent in this configuration. Round hole and "square

  19. The effects of air leaks on solar air heating systems

    NASA Technical Reports Server (NTRS)

    Elkin, R.; Cash, M.

    1979-01-01

    This paper presents the results of an investigation to determine the effects of leakages in collector and duct work on the system performance of a typical single-family residence solar air heating system. Positive (leakage out) and negative (leakage in) pressure systems were examined. Collector and duct leakage rates were varied from 10 to 30 percent of the system flow rate. Within the range of leakage rates investigated, solar contribution to heated space and domestic hot water loads was found to be reduced up to 30 percent from the no-leak system contribution with duct leakage equally divided between supply and return duct; with supply duct leakage greater than return leakage a reduction of up to 35 percent was noted. The negative pressure system exhibited a reduction in solar contribution somewhat larger than the positive pressure system for the same leakage rates.

  20. [Microorganisms distribution in the aerosol of a manned sealed cabin and the effect of artificial air ionization on this process].

    PubMed

    Zaloguev, S N; Anisimov, B V; Viktorov, A N; Gorshkov, V P

    1981-01-01

    In a manned enclosure the distribution of bacterial aerosol with respect to the size of particles is bimodal. Artificial bipolar ionization of the air may decrease the content of relatively large particles of bacterial aerosol, leaving particles with 2.0-0.6/micrometer in diameter in predominance. These properties of the bacterial aerosol structure may be of importance in the prophylaxis of aerogenic infections of cosmonauts.

  1. Distribution and air-sea exchange of mercury (Hg) in polluted marine environments

    NASA Astrophysics Data System (ADS)

    Bagnato, E.; Sprovieri, M.; Bitetto, M.; Bonsignore, M.; Calabrese, S.; Di Stefano, V.; Oliveri, E.; Parello, F.; Mazzola, S.

    2012-04-01

    Mercury (Hg) is emitted in the atmosphere by anthropogenic and natural sources, these last accounting for one third of the total emissions. Since the pre-industrial age, the atmospheric deposition of mercury have increased notably, while ocean emissions have doubled owing to the re-emission of anthropogenic mercury. Exchange between the atmosphere and ocean plays an important role in cycling and transport of mercury. We present the preliminary results from a study on the distribution and evasion flux of mercury at the atmosphere/sea interface in the Augusta basin (SE Sicily, southern Italy), a semi-enclosed marine area affected by a high degree of contamination (heavy metals and PHA) due to the oil refineries placed inside its commercial harbor. It seems that the intense industrial activity of the past have lead to an high Hg pollution in the bottom sediments of the basin, whose concentrations are far from the background mercury value found in most of the Sicily Strait sediments. The release of mercury into the harbor seawater and its dispersion by diffusion from sediments to the surface, make the Augusta basin a potential supplier of mercury both to the Mediterranean Sea and the atmosphere. Based on these considerations, mercury concentration and flux at the air-sea interface of the Bay have been estimated using a real-time atomic adsorption spectrometer (LUMEX - RA915+) and an home-made accumulation chamber, respectively. Estimated Total Atmospheric Mercury (TGM) concentrations during the cruise on the bay were in the range of 1-3 ng · m-3, with a mean value of about 1.4 ng · m-3. These data well fit with the background Hgatm concentration values detected on the land (1-2 ng · m-3, this work), and, more in general, with the background atmospheric TGM levels found in the North Hemisphere (1.5-1.7 ng · m-3)a. Besides, our measurements are in the range of those reported for other important polluted marine areas. The mercury evasion flux at the air-sea interface

  2. Effect of the fuel/air mixture concentration distribution on the dynamics of a low-emission combustor

    NASA Astrophysics Data System (ADS)

    Vasil'ev, V. D.; Bulysova, L. A.; Berne, A. L.

    2016-12-01

    An investigation of the low-emission premixed combustion in a conventional combustor is presented. The main problem encountered is the pressure fluctuations induced under certain operating conditions of the combustor. Low-emission operation of the combustor was studied numerically and experimentally. The effect of the concentration distribution at the outlet from the mixing zone on the position and macrostructure of the flame and the combustion stability was investigated at various excess air factors corresponding various GTU loads. It is demonstrated that, for a given excess air factor, there exists the concentration profile such that the interaction of the flame front with dominating flow structures results in excitation of the low-frequency combustion instability. The factors responsible for high-amplitude pressure fluctuations are examined. It is shown that the combustion stability can be estimated using a calculated criterion. Its direct relationship with pressure fluctuation amplitudes is described. The effect of the air pressure in a combustor on the flame macrostructure and the combustion stability was studied. It is shown that an increase in the combustor pressure has no considerable effect on the processes in the combustor. However, a change in the chemical reaction rates affects the stable combustion boundary. In this case, the combustion stability is achieved with higher nonuniformity of the fuel-air mixture entering the combustion zone. The experimental boundaries of stable combustion envelope at an air pressure of 350 and 1500 kPa are presented.

  3. A Multi-Operator Simulation for Investigation of Distributed Air Traffic Management Concepts

    NASA Technical Reports Server (NTRS)

    Peters, Mark E.; Ballin, Mark G.; Sakosky, John S.

    2002-01-01

    This paper discusses the current development of an air traffic operations simulation that supports feasibility research for advanced air traffic management concepts. The Air Traffic Operations Simulation (ATOS) supports the research of future concepts that provide a much greater role for the flight crew in traffic management decision-making. ATOS provides representations of the future communications, navigation, and surveillance (CNS) infrastructure, a future flight deck systems architecture, and advanced crew interfaces. ATOS also provides a platform for the development of advanced flight guidance and decision support systems that may be required for autonomous operations.

  4. Magnetic Resonance (MR) Cholangiopancreatography Demonstration of the Cystic Duct Entering the Right Hepatic Duct

    PubMed Central

    D’Angelo, Tommaso; Racchiusa, Sergio; Mazziotti, Silvio; Cicero, Giuseppe

    2017-01-01

    Patient: Female, 51 Final Diagnosis: Cystic duct draining into the right hepatic biliary duct Symptoms: Recurrent abdominal pain Medication: — Clinical Procedure: MR-cholangiopancreatography Specialty: Radiology Objective: Congenital defects/diseases Background: MR cholangiopancreatography is widely performed before laparoscopic cholecystectomy to rule out choledocholithiasis and to avoid iatrogenic injuries that may be related to the high frequency of anatomical variations of the biliary tree. Although most of these variants have already been demonstrated surgically and by endoscopic retrograde cholangiopancreatography and CT cholangiography, there are no references in which MR cholangiopancreatography has shown a cystic duct draining into the right hepatic biliary duct. Case Report: A 51-year-old woman with a history of recurrent abdominal pain underwent an abdominal ultrasound in an outside center, which revealed gallbladder cholelithiasis. In this patient, an MR cholangiopancreatography was performed and the laboratory data were obtained. Laboratory findings showed only a mild increase of cholestasis. MRCP did not reveal significant dilatation of intra- or extrahepatic biliary ducts, while the cystic duct showed an atypical insertion, draining directly into the right hepatic duct. Conclusions: To avoid unintentional bile duct injuries, MRCP evaluation of the biliary anatomy is particularly important for pre-operative evaluation of patients undergoing laparoscopic cholecystectomy. In particular, in the case we describe, the right hepatic duct might have been mistaken for the cystic duct, with potentially severe surgical complications and clinical consequences. PMID:28275221

  5. Development of an Experimental Rig for Investigation of Higher Order Modes in Ducts

    NASA Technical Reports Server (NTRS)

    Gerhold, Carl H.; Cabell, Randolph H.; Brown, Martha C.

    2006-01-01

    Continued progress to reduce fan noise emission from high bypass ratio engine ducts in aircraft increasingly relies on accurate description of the sound propagation in the duct. A project has been undertaken at NASA Langley Research Center to investigate the propagation of higher order modes in ducts with flow. This is a two-pronged approach, including development of analytic models (the subject of a separate paper) and installation of a laboratory-quality test rig. The purposes of the rig are to validate the analytical models and to evaluate novel duct acoustic liner concepts, both passive and active. The dimensions of the experimental rig test section scale to between 25% and 50% of the aft bypass ducts of most modern engines. The duct is of rectangular cross section so as to provide flexibility to design and fabricate test duct liner samples. The test section can accommodate flow paths that are straight through or offset from inlet to discharge, the latter design allowing investigation of the effect of curvature on sound propagation and duct liner performance. The maximum air flow rate through the duct is Mach 0.3. Sound in the duct is generated by an array of 16 high-intensity acoustic drivers. The signals to the loudspeaker array are generated by a multi-input/multi-output feedforward control system that has been developed for this project. The sound is sampled by arrays of flush-mounted microphones and a modal decomposition is performed at the frequency of sound generation. The data acquisition system consists of two arrays of flush-mounted microphones, one upstream of the test section and one downstream. The data are used to determine parameters such as the overall insertion loss of the test section treatment as well as the effect of the treatment on a modal basis such as mode scattering. The methodology used for modal decomposition is described, as is a description of the mode generation control system. Data are presented which demonstrate the performance

  6. Characterization of the secondary flow in hexagonal ducts

    NASA Astrophysics Data System (ADS)

    Marin, O.; Vinuesa, R.; Obabko, A. V.; Schlatter, P.

    2016-12-01

    In this work we report the results of DNSs and LESs of the turbulent flow through hexagonal ducts at friction Reynolds numbers based on centerplane wall shear and duct half-height Reτ,c ≃ 180, 360, and 550. The evolution of the Fanning friction factor f with Re is in very good agreement with experimental measurements. A significant disagreement between the DNS and previous RANS simulations was found in the prediction of the in-plane velocity, and is explained through the inability of the RANS model to properly reproduce the secondary flow present in the hexagon. The kinetic energy of the secondary flow integrated over the cross-sectional area yz decreases with Re in the hexagon, whereas it remains constant with Re in square ducts at comparable Reynolds numbers. Close connection between the values of Reynolds stress u w ¯ on the horizontal wall close to the corner and the interaction of bursting events between the horizontal and inclined walls is found. This interaction leads to the formation of the secondary flow, and is less frequent in the hexagon as Re increases due to the 120∘ aperture of its vertex, whereas in the square duct the 90∘ corner leads to the same level of interaction with increasing Re. Analysis of turbulence statistics at the centerplane and the azimuthal variance of the mean flow and the fluctuations shows a close connection between hexagonal ducts and pipe flows, since the hexagon exhibits near-axisymmetric conditions up to a distance of around 0.15DH measured from its center. Spanwise distributions of wall-shear stress show that in square ducts the 90∘ corner sets the location of a high-speed streak at a distance zv+≃50 from it, whereas in hexagons the 120∘ aperture leads to a shorter distance of zv+≃38 . At these locations the root mean square of the wall-shear stresses exhibits an inflection point, which further shows the connections between the near-wall structures and the large-scale motions in the outer flow.

  7. Measurements of acoustic particle velocity in a coaxial duct and its application to a traveling-wave thermoacoustic heat engine

    NASA Astrophysics Data System (ADS)

    Morii, Jun; Biwa, Tetsushi; Yazaki, Taichi

    2014-09-01

    We present theoretical solutions, based on linear acoustic theory, for axial acoustic particle velocity in an annular region of a coaxial duct. The solutions are expressed in terms of two non-dimensional parameters h/δν and R; h and δν, respectively, represent the half of the spacing between two concentric ducts and the characteristic length given by kinematic viscosity of the gas and angular frequency of acoustic oscillations, and R is the radius ratio of the ducts. The validity of the solutions was verified by direct measurements using a laser Doppler velocimeter. The present results are applied to measurements of the acoustic power distribution in a traveling wave thermoacoustic engine with a coaxial duct, which provides experimental evidence for acoustic power feedback in the coaxial duct.

  8. Measurements of acoustic particle velocity in a coaxial duct and its application to a traveling-wave thermoacoustic heat engine.

    PubMed

    Morii, Jun; Biwa, Tetsushi; Yazaki, Taichi

    2014-09-01

    We present theoretical solutions, based on linear acoustic theory, for axial acoustic particle velocity in an annular region of a coaxial duct. The solutions are expressed in terms of two non-dimensional parameters h/δ(ν) and R; h and δ(ν), respectively, represent the half of the spacing between two concentric ducts and the characteristic length given by kinematic viscosity of the gas and angular frequency of acoustic oscillations, and R is the radius ratio of the ducts. The validity of the solutions was verified by direct measurements using a laser Doppler velocimeter. The present results are applied to measurements of the acoustic power distribution in a traveling wave thermoacoustic engine with a coaxial duct, which provides experimental evidence for acoustic power feedback in the coaxial duct.

  9. Hamilton study: distribution of factors confounding the relationship between air quality and respiratory health

    SciTech Connect

    Pengelly, L.D.; Kerigan, A.T.; Goldsmith, C.H.; Inman, E.M.

    1984-10-01

    Hamilton, Ontario is an industrial city with a population of 300,000 which is situated at the western end of Lake Ontario. Canada's two largest iron and steel mills are located here; the city historically has had relatively poor air quality, which has improved markedly in the last 25 years. Concern about the health effects of current air quality recently led us to carry out an epidemiological study of the effects of air pollution on the respiratory health of over 3500 school children. Respiratory health was measured by pulmonary function testing of each child, and by an assessment of each child's respiratory symptoms via a questionnaire administered to the parents. Previous studies had shown that other environmental factors (e.g. parental smoking, parental cough, socioeconomic level, housing, and gas cooking) might also affect respiratory health, and thus confound any potential relationships between health and air pollution. The questionnaire also collected information on many of these confounding factors. For the purposes of initial analysis, the city was divided into five areas in which differences in air quality were expected. In general, factors which have been associated with poor respiratory health were observed to be more prevalent in areas of poorer air quality.

  10. Thrust control system design of ducted rockets

    NASA Astrophysics Data System (ADS)

    Chang, Juntao; Li, Bin; Bao, Wen; Niu, Wenyu; Yu, Daren

    2011-07-01

    The investigation of the thrust control system is aroused by the need for propulsion system of ducted rockets. Firstly the dynamic mathematical models of gas flow regulating system, pneumatic servo system and ducted rocket engine were established and analyzed. Then, to conquer the discussed problems of thrust control, the idea of information fusion was proposed to construct a new feedback variable. With this fused feedback variable, the thrust control system was designed. According to the simulation results, the introduction of the new fused feedback variable is valid in eliminating the contradiction between rapid response and stability for the thrust control system of ducted rockets.

  11. Paraurethral Skene's duct cyst in a newborn

    PubMed Central

    Moralioğlu, Serdar; Bosnalı, Oktav; Celayir, Ayşenur Cerrah; Şahin, Ceyhan

    2013-01-01

    Paraurethral or Skene's duct cysts are rare causes of interlabial masses in neonates. The diagnosis of Skene's duct cysts in the neonatal period is based on its location, in relation to the urethra, and the demonstration of transitional epithelium in the cyst wall. The distinguishing features of paraurethral cysts are the displacement of urethral meatus by the mass and a cyst containing milky fluid. Thus, we report a case of a Skene's duct cyst in a newborn which was treated by incision and drainage. PMID:24049387

  12. Duct Remediation Program: Remediation operations and implementation

    SciTech Connect

    Beckman, T.d.; Davis, M.M.; Karas, T.M.

    1992-11-01

    Plutonium holdup material has accumulated in the process ventilation duct systems at Rocky Flats. Non-Destructive Assay (NDA) measurements identified ducts containing this material. The Defense Nuclear Facility Safety Board and the Department of Energy established the criteria for remediation of these ducts. A remediation team was assembled and a program plan created. This program plan included activities such as fissile material accumulation identification, criticality safety assessments, radiation dose determinations, facility safety evaluations, prevention of future accumulation, and removal of holdup material. Several operational considerations had to be evaluated in determining completion of remediation.

  13. Scattering of acoustic duct modes by axial liner splices

    NASA Astrophysics Data System (ADS)

    Tam, Christopher K. W.; Ju, Hongbin; Chien, Eugene W.

    2008-03-01

    Recent engine test data and results of computational analysis show that the engine inlet acoustic liner splices have a significant impact on aircraft flight noise certification and cabin noise levels. The phenomenon of scattering of acoustic duct modes by axial liner splices is investigated. Previous studies, invariably, follow the frequency-domain approach. The present study, however, uses the time-domain approach. It is demonstrated that time-domain computation yields results that are in close agreement with frequency-domain results. The scattering phenomenon under consideration is very complex. This study concentrates on the effects of four parameters. They are the width of the splices, the frequency of the incident duct mode, the number of splices and the length of splices. Based on the computed results, the conditions under which scattered wave modes would significantly increase the intensity of transmitted waves are identified. It is also found that surface scattering by liner splices has the tendency to distribute energy equally to all the cut-on scattered azimuthal modes. On the other hand, for each scattered azimuthal mode, the high-order cut-on radial mode, generally, has the highest intensity. Moreover, scattering by liner splices is a local phenomenon. It is confined primarily to an area of the duct adjacent to the junction between the hard wall near the fan face and the spliced liner.

  14. Partial Müllerian Duct Retention in Smad4 Conditional Mutant Male Mice

    PubMed Central

    Petit, Fabrice G.; Deng, Chuxia; Jamin, Soazik P.

    2016-01-01

    Müllerian duct regression is a complex process which involves the AMH signalling pathway. We have previously demonstrated that besides AMH and its specific type II receptor (AMHRII), BMPR-IA and Smad5 are two essential factors implicated in this mechanism. Mothers against decapentaplegic homolog 4 (Smad4) is a transcription factor and the common Smad (co-Smad) involved in transforming growth factor beta (TGF-β) signalling pathway superfamily. Since Smad4 null mutants die early during gastrulation, we have inactivated Smad4 in the Müllerian duct mesenchyme. Specific inactivation of Smad4 in the urogenital ridge leads to the partial persistence of the Müllerian duct in adult male mice. Careful examination of the urogenital tract reveals that the Müllerian duct retention is randomly distributed either on one side or both sides. Histological analysis shows a uterus-like structure, which is confirmed by the expression of estrogen receptor α. As previously described in a β-catenin conditional mutant mouse model, β-catenin contributes to Müllerian duct regression. In our mutant male embryos, it appears that β-catenin expression is locally reduced along the urogenital ridge as compared to control mice. Moreover, the expression pattern is similar to those observed in control female mice. This study shows that reduced Smad4 expression disrupts the Wnt/β-catenin signalling leading to the partial persistence of Müllerian duct. PMID:27194944

  15. Trihalomethanes in chlorine and bromine disinfected swimming pools: air-water distributions and human exposure.

    PubMed

    Lourencetti, Carolina; Grimalt, Joan O; Marco, Esther; Fernandez, Pilar; Font-Ribera, Laia; Villanueva, Cristina M; Kogevinas, Manolis

    2012-09-15

    This first study of trihalomethanes (THMs) in swimming pools using bromine agents for water disinfection under real conditions shows that the mixtures of these compounds are largely dominated by bromoform in a similar process as chloroform becomes the dominant THM in pools disinfected with chlorine agents. Bromoform largely predominates in air and water of the pool installations whose concentration changes are linearly correlated. However, the air concentrations of bromoform account for about 6-11% of the expected concentrations according to theoretical partitioning defined by the Henry law. Bromoform in exhaled air of swimmers is correlated with the air concentrations of this disinfectant by-product in the pool building. Comparison of the THM exhaled air concentrations between swimmers and volunteers bathing in the water without swimming or standing in the building outside the water suggest that physical activity enhance exposure to these disinfectant by-products. They also indicate that in swimming pools, besides inhalation, dermal absorption is a relevant route for the incorporation of THMs, particularly those with lower degree of bromination.

  16. Particle size distribution and air pollution patterns in three urban environments in Xi'an, China.

    PubMed

    Niu, Xinyi; Guinot, Benjamin; Cao, Junji; Xu, Hongmei; Sun, Jian

    2015-10-01

    Three urban environments, office, apartment and restaurant, were selected to investigate the indoor and outdoor air quality as an inter-comparison in which CO2, particulate matter (PM) concentration and particle size ranging were concerned. In this investigation, CO2 level in the apartment (623 ppm) was the highest among the indoor environments and indoor levels were always higher than outdoor levels. The PM10 (333 µg/m(3)), PM2.5 (213 µg/m(3)), PM1 (148 µg/m(3)) concentrations in the office were 10-50% higher than in the restaurant and apartment, and the three indoor PM10 levels all exceeded the China standard of 150 µg/m(3). Particles ranging from 0.3 to 0.4 µm, 0.4 to 0.5 µm and 0.5 to 0.65 µm make largest contribution to particle mass in indoor air, and fine particles number concentrations were much higher than outdoor levels. Outdoor air pollution is mainly affected by heavy traffic, while indoor air pollution has various sources. Particularly, office environment was mainly affected by outdoor sources like soil dust and traffic emission; apartment particles were mainly caused by human activities; restaurant indoor air quality was affected by multiple sources among which cooking-generated fine particles and the human steam are main factors.

  17. Analysis of U.S. residential air leakage database

    SciTech Connect

    Chan, Wanyu R.; Price, Phillip N.; Sohn, Michael D.; Gadgil, Ashok J.

    2003-07-01

    The air leakage of a building envelope can be determined from fan pressurization measurements with a blower door. More than 70,000 air leakage measurements have been compiled into a database. In addition to air leakage, the database includes other important characteristics of the dwellings tested, such as floor area, year built, and location. There are also data for some houses on the presence of heating ducts, and floor/basement construction type. The purpose of this work is to identify house characteristics that can be used to predict air leakage. We found that the distribution of leakage normalized with floor area of the house is roughly lognormal. Year built and floor area are the two most significant factors to consider when predicting air leakage: older and smaller houses tend to have higher normalized leakage areas compared to newer and larger ones. Results from multiple linear regression of normalized leakage with respect to these two factors are presented for three types of houses: low-income, energy-efficient, and conventional. We demonstrate a method of using the regression model in conjunction with housing characteristics published by the US Census Bureau to derive a distribution that describes the air leakage of the single-family detached housing stock. Comparison of our estimates with published datasets of air exchange rates suggests that the regression model generates accurate estimates of air leakage distribution.

  18. Transmission of wave energy in curved ducts

    NASA Technical Reports Server (NTRS)

    Rostafinski, W.

    1973-01-01

    A formation of wave energy flow was developed for motion in curved ducts. A parametric study over a range of frequencies determined the ability of circular bends to transmit energy for the case of perfectly rigid walls.

  19. Treatment Option Overview (Extrahepatic Bile Duct Cancer)

    MedlinePlus

    ... bile ducts or has spread to the liver, lymph nodes , or other places in the body). Whether ... the body. Cancer can spread through tissue , the lymph system , and the blood : Tissue. The cancer spreads ...

  20. Stages of Extrahepatic Bile Duct Cancer

    MedlinePlus

    ... bile ducts or has spread to the liver, lymph nodes , or other places in the body). Whether ... the body. Cancer can spread through tissue , the lymph system , and the blood : Tissue. The cancer spreads ...

  1. General Information about Extrahepatic Bile Duct Cancer

    MedlinePlus

    ... bile ducts or has spread to the liver, lymph nodes , or other places in the body). Whether ... the body. Cancer can spread through tissue , the lymph system , and the blood : Tissue. The cancer spreads ...

  2. Treatment Options for Extrahepatic Bile Duct Cancer

    MedlinePlus

    ... bile ducts or has spread to the liver, lymph nodes , or other places in the body). Whether ... the body. Cancer can spread through tissue , the lymph system , and the blood : Tissue. The cancer spreads ...

  3. Rotating Rake Turbofan Duct Mode Measurement System

    NASA Technical Reports Server (NTRS)

    Sutliff, Daniel L.

    2005-01-01

    An experimental measurement system was developed and implemented by the NASA Glenn Research Center in the 1990s to measure turbofan duct acoustic modes. The system is a continuously rotating radial microphone rake that is inserted into the duct. This Rotating Rake provides a complete map of the acoustic duct modes present in a ducted fan and has been used on a variety of test articles: from a low-speed, concept test rig, to a full-scale production turbofan engine. The Rotating Rake has been critical in developing and evaluating a number of noise reduction concepts as well as providing experimental databases for verification of several aero-acoustic codes. More detailed derivation of the unique Rotating Rake equations are presented in the appendix.

  4. Unusually large sialolith of Wharton's duct

    PubMed Central

    Iqbal, Ali; Gupta, Anup K.; Natu, Subodh S.; Gupta, Atul K.

    2012-01-01

    The formation of calcific concretions in the salivary duct or glands is a common disorder, especially in the submandibular glands. Most of the salivary calculi are small in size, in contrast to those that reach several centimeters, which are reported as megaliths or giant calculi in the literature. They may occur in any of the salivary gland ducts but are most common in Wharton's duct and the submandibular gland. This report presents clinical and radiographical sign of an unusually large sialolith. There was painless swelling on the floor of the edentulous mouth and patient was unaware of it. Radiographical examination revealed large irregular radio-opaque mass superimposed on right canine and premolar areas. This case report describes a patient presenting with an unusually large submandibular gland duct sialolith, the subsequent patient management, the aetiology, diagnosis and its treatment. PMID:23483770

  5. Device for Measuring Low Flow Speed in a Duct

    NASA Technical Reports Server (NTRS)

    Quinn, Frank; Magee, Kevin

    2009-01-01

    A multiple-throat venturi system has been invented for measuring laminar flow of air or other gas at low speed (1 to 30 cm/s) in a duct while preserving the laminar nature of the flow and keeping the velocity profile across the duct as nearly flat as possible. While means for measuring flows at higher speeds are well established, heretofore, there have been no reliable means for making consistent, accurate measurements in this speed range. In the original application for which this system was invented, the duct leads into the test section of a low-speed wind tunnel wherein uniform, low-speed, laminar flow is required for scientific experiments. The system could also be used to monitor a slow flow of gas in an industrial process like chemical vapor deposition. In the original application, the multiple- throat venturi system is mounted at the inlet end of the duct having a rectangular cross section of 19 by 14 cm, just upstream of an assembly of inlet screens and flow straighteners that help to suppress undesired flow fluctuations (see Figure 1). The basic venturi measurement principle is well established: One measures the difference in pressure between (1) a point just outside the inlet, where the pressure is highest and the kinetic energy lowest; and (2) the narrowest part (the throat) of the venturi passage, where the kinetic energy is highest and the pressure is lowest. Then by use of Bernoulli s equation for the relationship between pressure and kinetic energy, the volumetric flow speed in the duct can be calculated from the pressure difference and the inlet and throat widths. The design of this system represents a compromise among length, pressure recovery, uniformity of flow, and complexity of assembly. Traditionally, venturis are used to measure faster flows in narrower cross sections, with longer upstream and downstream passages to maintain accuracy. The dimensions of the passages of the present venturi system are sized to provide a readily measurable

  6. Transition duct assembly with modified trailing edge in turbine system

    DOEpatents

    McMahan, Kevin Weston; Schott, Carl Gerard; Ingram, Clint Luigie; Siden, Gunnar Leif; Pierre, Sylvain

    2016-10-04

    Transition duct assemblies for turbine systems and turbomachines are provided. In one embodiment, a transition duct assembly includes a plurality of transition ducts disposed in a generally annular array and comprising a first transition duct and a second transition duct. Each of the plurality of transition ducts includes an inlet, an outlet, and a passage extending between the inlet and the outlet and defining a longitudinal axis, a radial axis, and a tangential axis. The outlet of each transition duct is offset from the inlet along the longitudinal axis and the tangential axis. The transition duct assembly further includes an aerodynamic structure defined by the passages of the first transition duct and the second transition duct. The aerodynamic structure includes a pressure side, a suction side, and a trailing edge, the trailing edge having a modified aerodynamic contour.

  7. Effects of bone- and air-tissue inhomogeneities on the dose distributions of the Leksell Gamma Knife calculated with PENELOPE.

    PubMed

    Al-Dweri, Feras M O; Rojas, E Leticia; Lallena, Antonio M

    2005-12-07

    Monte Carlo simulation with PENELOPE (version 2003) is applied to calculate Leksell Gamma Knife dose distributions for heterogeneous phantoms. The usual spherical water phantom is modified with a spherical bone shell simulating the skull and an air-filled cube simulating the frontal or maxillary sinuses. Different simulations of the 201 source configuration of the Gamma Knife have been carried out with a simplified model of the geometry of the source channel of the Gamma Knife recently tested for both single source and multisource configurations. The dose distributions determined for heterogeneous phantoms including the bone- and/or air-tissue interfaces show non-negligible differences with respect to those calculated for a homogeneous one, mainly when the Gamma Knife isocentre approaches the separation surfaces. Our findings confirm an important underdosage (approximately 10%) nearby the air-tissue interface, in accordance with previous results obtained with the PENELOPE code with a procedure different from ours. On the other hand, the presence of the spherical shell simulating the skull produces a few per cent underdosage at the isocentre wherever it is situated.

  8. Development of a temperature distribution simulator for lung RFA based on air dependence of thermal and electrical properties.

    PubMed

    Yamazaki, Nozomu; Watanabe, Hiroki; Lu, XiaoWei; Isobe, Yosuke; Kobayashi, Yo; Miyashita, Tomoyuki; Fujie, Masakatsu G

    2012-01-01

    Radio frequency ablation (RFA) for lung cancer has increasingly been used over the past few years, because it is a minimally invasive treatment. As a feature of RFA for lung cancer, lung contains air. Air is low thermal and electrical conductivity. Therefore, RFA for this cancer has the advantage that only the cancer is coagulated, because the heated area is confined to the immediate vicinity of the heating point. However, it is difficult for operators to control the precise formation of coagulation zones due to inadequate imaging modalities. We propose a method using finite element method to analyze the temperature distribution of the organ in order to overcome the current deficiencies. Creating an accurate thermal physical model was a challenging problem because of the complexities of the thermal properties of the organ. In this study, we developed a temperature distribution simulator for lung RFA using thermal and electrical properties that were based on the lung's internal air dependence. In addition, we validated the constructed simulator in an in vitro study, and the lung's internal heat transfer during RFA was validated quantitatively.

  9. Distribution and sources of air pollutants in the North China Plain based on on-road mobile measurements

    NASA Astrophysics Data System (ADS)

    Zhu, Yi; Zhang, Jiping; Wang, Junxia; Chen, Wenyuan; Han, Yiqun; Ye, Chunxiang; Li, Yingruo; Liu, Jun; Zeng, Limin; Wu, Yusheng; Wang, Xinfeng; Wang, Wenxing; Chen, Jianmin; Zhu, Tong

    2016-10-01

    The North China Plain (NCP) has been experiencing severe air pollution problems with rapid economic growth and urbanisation. Many field and model studies have examined the distribution of air pollutants in the NCP, but convincing results have not been achieved, mainly due to a lack of direct measurements of pollutants over large areas. Here, we employed a mobile laboratory to observe the main air pollutants in a large part of the NCP from 11 June to 15 July 2013. High median concentrations of sulfur dioxide (SO2) (12 ppb), nitrogen oxides (NOx) (NO + NO2; 452 ppb), carbon monoxide (CO) (956 ppb), black carbon (BC; 5.5 µg m-3) and ultrafine particles (28 350 cm-3) were measured. Most of the high values, i.e. 95 percentile concentrations, were distributed near large cities, suggesting the influence of local emissions. In addition, we analysed the regional transport of SO2 and CO, relatively long-lived pollutants, based on our mobile observations together with wind field and satellite data analyses. Our results suggested that, for border areas of the NCP, wind from outside this area would have a diluting effect on pollutants, while south winds would bring in pollutants that have accumulated during transport through other parts of the NCP. For the central NCP, the concentrations of pollutants were likely to remain at high levels, partly due to the influence of regional transport by prevalent south-north winds over the NCP and partly by local emissions.

  10. Assessment of air sampling methods and size distribution of virus-laden aerosols in outbreaks in swine and poultry farms.

    PubMed

    Alonso, Carmen; Raynor, Peter C; Goyal, Sagar; Olson, Bernard A; Alba, Anna; Davies, Peter R; Torremorell, Montserrat

    2017-03-01

    Swine and poultry viruses, such as porcine reproductive and respiratory syndrome virus (PRRSV), porcine epidemic diarrhea virus (PEDV), and highly pathogenic avian influenza virus (HPAIV), are economically important pathogens that can spread via aerosols. The reliability of methods for quantifying particle-associated viruses as well as the size distribution of aerosolized particles bearing these viruses under field conditions are not well documented. We compared the performance of 2 size-differentiating air samplers in disease outbreaks that occurred in swine and poultry facilities. Both air samplers allowed quantification of particles by size, and measured concentrations of PRRSV, PEDV, and HPAIV stratified by particle size both within and outside swine and poultry facilities. All 3 viruses were detectable in association with aerosolized particles. Proportions of positive sampling events were 69% for PEDV, 61% for HPAIV, and 8% for PRRSV. The highest virus concentrations were found with PEDV, followed by HPAIV and PRRSV. Both air collectors performed equally for the detection of total virus concentration. For all 3 viruses, higher numbers of RNA copies were associated with larger particles; however, a bimodal distribution of particles was observed in the case of PEDV and HPAIV.

  11. Duct Liner Optimization for Turbomachinery Noise Sources

    DTIC Science & Technology

    1975-11-01

    AD-A279 441lIIIflhIh* NASA TECHNICAL NASA TMA X-72789 MEMORANDUM oo £ 00 r-:. DUCT LINER OPTIMIZATION FOR TURBOMACHINERY w NOISE SOURCES By Harold C...Recipient’s r.atalog No. NASA TM X-72789! 4 Title diid Subtitle 5. Rewrt Date Duct Liner Optimization for Turbomachinery Noise Sources November 1975...profiles is combined wit., a numerical minimization algorithm to predict optimal liner configurations having one, two, and three sections. Source models

  12. Energy Conservation Through Duct Leakage Reduction

    DTIC Science & Technology

    2004-02-26

    Energy Conservation Through Duct Leakage Reduction February 26, 2004 Rich Glatt – Lindab Inc. Report Documentation Page Form ApprovedOMB No. 0704...4. TITLE AND SUBTITLE Energy Conservation Through Duct Leakage Reduction 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...Wall – DW that installs like SW - easiest installing DW system on the market – Eliminates the need for costly flanged connections – SMACNA Leakage

  13. Effect of shear on duct wall impedance.

    NASA Technical Reports Server (NTRS)

    Goldstein, M.; Rice, E.

    1973-01-01

    The solution to the equation governing the propagation of sound in a uniform shear layer is expressed in terms of parabolic cylinder functions. This result is used to develop a closed-form solution for acoustic wall impedance which accounts for both the duct liner and the presence of a boundary layer in the duct. The effective wall impedance can then be used as the boundary condition for the much simpler problem of sound propagation in uniform flow.

  14. A new study of shower age distribution in near vertical showers by EAS air shower array

    NASA Technical Reports Server (NTRS)

    Chaudhuri, N.; Basak, D. K.; Goswami, G. C.; Ghosh, B.

    1984-01-01

    The air shower array has been developed since it started operation in 1931. The array covering an area of 900 sq m now incorporates 21 particle density sampling detectors around two muon magnetic spectrographs. The air showers are detected in the size range 10 to the 4th power to 10 to the 6th power particles. A total of 11000 showers has so far been detected. Average values of shower age have been obtained in various shower size ranges to study the dependence of shower age on shower size. The core distance dependence of shower age parameter has also been analyzed for presentation.

  15. Experimental study of cross flow mixing in cylindrical and rectangular ducts

    NASA Technical Reports Server (NTRS)

    Liscinsky, D. S.; Vranos, A.; Lohmann, R. P.

    1993-01-01

    An experimental investigation of non-reacting cross flow jet injection and mixing in cylindrical and rectangular ducts has been conducted with application to a low emissions combustor. Quantitative measurement of injectant concentration distributions perpendicular to the duct axis were obtained by planar digital imaging of the Mie-scattered light from an aerosol seed mixed with the injectant. The flowfield unmixedness was evaluated using (1) a mixing parameter derived from the ratio of the jet concentration fluctuations to the fully mixed concentration, and (2) probability density functions of the concentration distributions. Mixing rate was measured for 45 degree slant slot and round orifice injectors.

  16. Studies on kallikrein in the duct systems of the salivary glands of the cat

    PubMed Central

    Shnitka, †T. K.; Maranda, B.; Rodrigues, J. A. A.; Schachter, M.; Weinberg, J.

    1978-01-01

    unevenly distributed and were concentrated in only a few lobules of the gland. Specific immunofluorescence was seen only in sections containing striated ducts. 4. The possible physiological role of kallikrein in the salivary glands is discussed. ImagesPlate 1A, BCDPlate 3 PMID:349133

  17. Sound radiation from a flanged inclined duct.

    PubMed

    McAlpine, Alan; Daymond-King, Alex P; Kempton, Andrew J

    2012-12-01

    A simple method to calculate sound radiation from a flanged inclined duct is presented. An inclined annular duct is terminated by a rigid vertical plane. The duct termination is representative of a scarfed exit. The concept of a scarfed duct has been examined in turbofan aero-engines as a means to, potentially, shield a portion of the radiated sound from being transmitted directly to the ground. The sound field inside the annular duct is expressed in terms of spinning modes. Exterior to the duct, the radiated sound field owing to each mode can be expressed in terms of its directivity pattern, which is found by evaluating an appropriate form of Rayleigh's integral. The asymmetry is shown to affect the amplitude of the principal lobe of the directivity pattern, and to alter the proportion of the sound power radiated up or down. The methodology detailed in this article provides a simple engineering approach to investigate the sound radiation for a three-dimensional problem.

  18. Modified Kolmogorov-Smirnov, Anderson-Darling, and Cramer-Von Mises Tests for the Pareto Distribution with Unknown Location and Scale Parameters.

    DTIC Science & Technology

    1985-12-01

    tion in statistical analysis. It is named after Vilfredo Pareto (1848-1923), a Swiss professor of economics who con- ducted the first extensive...THE PARETO DISTRIBUTION WITH UNKNOWN LOCATION AND SCALE PARAMETERS THESIS James E. Porter III Captain, USAF AFIT/GSO/MA/85D-6 Approved for public... PARETO DISTRIBUTION WITH UNKNOWN LOCATION AND SCALE PARAMETERS -.- THES IS Presented to the Faculty of the School of Engineering *- of the Air Force

  19. Synthesis of Distributed Command and Control for the Outer Air Battle

    DTIC Science & Technology

    1988-07-01

    corresponding loci . 1984). This cost is computed for each input iask, x, and each decision strategy. The accuracy measure J is the expected value 3.3...Symposium on Large Scale Systems.: Theory and for the outer air battle, using a structured synthesis methodo - Application, Zurich, Switzerland

  20. Temporal distribution of air quality related to meteorology and road traffic in Madrid.

    PubMed

    Perez-Martinez, Pedro J; Miranda, Regina M

    2015-04-01

    The impact of climatology--air temperature, precipitation and wind speed--and road traffic--volume, vehicle speed and percentage of heavy-duty vehicles (HDVs)--on air quality in Madrid was studied by estimating the effect for each explanatory variable using generalized linear regression models controlling for monthly variations, days of week and parameter levels. Every 1 m/s increase in wind speed produced a decrease in PM10 concentrations by 10.3% (95% CI 12.6-8.6) for all weekdays and by 12.4% (95% CI 14.9-9.8) for working days (up to the cut-off of 2.4 m/s). Increases of PM10 concentrations due to air temperature (7.2% (95% CI 6.2-8.3)) and traffic volume (3.3% (95% CI 2.9-3.8)) were observed at every 10 °C and 1 million vehicle-km increases for all weekdays; oppositely, slight decreases of PM10 concentrations due to percentage of HDVs (3.2% (95% CI 2.7-3.7)) and vehicle speed (0.7% (95% CI 0.6-0.8)) were observed at every 1% and 1 km/h increases. Stronger effects of climatology on air quality than traffic parameters were found.

  1. Air/water subchannel measurements of the equilibrium quality and mass-flux distribution in a rod bundle. [BWR

    SciTech Connect

    Sterner, R.W.; Lahey, R.T. Jr.

    1983-07-01

    Subchannel measurements were performed in order to determine the equilibrium quality and mass flux distribution in a four rod bundle, using air/water flow. An isokinetic technique was used to sample the flow in the center, side and corner subchannels of this test section. Flow rates of the air and water in each sampled subchannel were measured. Experiments were performed for two test-section-average mass fluxes (0.333x10/sup 6/ and 0.666x10/sup 6/ lb/sub m//h-ft/sup 2/), and the test-section-average quality was varied from 0% to 0.54% for each mass flux. Single-phase liquid, bubbly, slug and churn-turbulent two-phase flow regimes were achieved. The observed data trends agreed with previous diabatic measurements in which the center subchannel had the highest quality and mass flux, while the corner subchannel had the lowest.

  2. Revisiting the Nelson-Morfey scaling law for flow noise from duct constrictions

    NASA Astrophysics Data System (ADS)

    Kårekull, Oscar; Efraimsson, Gunilla; Åbom, Mats

    2015-11-01

    The semi-empirical scaling law by Nelson and Morfey [1] predicts the noise generation from constrictions in ducts with low Mach number flows. The results presented here demonstrate that the original model loses accuracy for constrictions of high pressure loss. A generalization based on a momentum flux assumption of the dipole forces is suggested and is evaluated against measurement results for orifice geometries of higher pressure loss than earlier evaluated. A prediction model including constrictions at flow duct terminations is also suggested. Improved accuracy for the predictions of the new model is found for orifice geometries of high pressure loss inside and at the end of ducts. The extended model is finally evaluated by measurements on a regular ventilation air terminal device.

  3. Interaction between acoustics and subsonic ducted flow in a ramjet configuration

    NASA Astrophysics Data System (ADS)

    Gutmark, E.; Schadow, K. C.

    A subsonic ducted air flow was studied experimentally using a hot-wire anemometer and a high frequency response pressure transducer. The experiments were performed in three stages. A free jet, a jet discharged into an open and closed duct and a forced jet in a closed duct. The shear layer instability frequencies associated with the initial vortex shedding, first vortex merging, and jet-column instability were identified in the unforced cases. Subsequently, the interaction of the jet flow with the first longitudinal pressure mode excited in the acoustic cavity was studied. The highest response of the jet flow to the acoustic wave was obtained when the forcing frequency matched the local most amplified frequency, for example, the first vortex merging frequency in the initial shear layer or the preferred jet frequency at the end of the potential core.

  4. Natural Flow Air Cooled Photovoltaics

    NASA Astrophysics Data System (ADS)

    Tanagnostopoulos, Y.; Themelis, P.

    2010-01-01

    Our experimental study aims to investigate the improvement in the electrical performance of a photovoltaic installation on buildings through cooling of the photovoltaic panels with natural air flow. Our experimental study aims to investigate the improvement in the electrical performance of a photovoltaic installation on buildings through cooling of the photovoltaic panels with natural air flow. We performed experiments using a prototype based on three silicon photovoltaic modules placed in series to simulate a typical sloping building roof with photovoltaic installation. In this system the air flows through a channel on the rear side of PV panels. The potential for increasing the heat exchange from the photovoltaic panel to the circulating air by the addition of a thin metal sheet (TMS) in the middle of air channel or metal fins (FIN) along the air duct was examined. The operation of the device was studied with the air duct closed tightly to avoid air circulation (CLOSED) and the air duct open (REF), with the thin metal sheet (TMS) and with metal fins (FIN). In each case the experiments were performed under sunlight and the operating parameters of the experimental device determining the electrical and thermal performance of the system were observed and recorded during a whole day and for several days. We collected the data and form PV panels from the comparative diagrams of the experimental results regarding the temperature of solar cells, the electrical efficiency of the installation, the temperature of the back wall of the air duct and the temperature difference in the entrance and exit of the air duct. The comparative results from the measurements determine the improvement in electrical performance of the photovoltaic cells because of the reduction of their temperature, which is achieved by the naturally circulating air.

  5. Surfactant effects on cumulative drop size distributions produced by air bubbles bursting on a non-quiescent free surface

    NASA Astrophysics Data System (ADS)

    Parmar, K.; Liu, X.; Duncan, J. H.

    2013-11-01

    The generation of droplets when air bubbles travel upwards from within a liquid and burst at a free surface is studied experimentally. The bubbles are generated in a glass water tank that is 0.91 m long and 0.46 m wide with a water depth of 0.5 m. The tank is equipped with an acrylic box at its bottom that creates the bubble field using filtered air injected through an array of 180 hypodermic needles (0.33 mm ID). Two different surface conditions are created by using clean water and a 0.4% aqueous solution of Triton X-100 surfactant. Measurements of the bubble diameters as they approach the free surface are obtained with diffuse light shadowgraph images. The range of bubble diameters studied is 2.885 mm to 3.301 mm for clean water and 2.369 mm to 3.014 mm for the surfactant solution. A laser-light high-speed cinematic shadowgraph system is employed to record and measure the diameters and motions of the droplets at the free surface. This system can measure droplets with diameters <= 50 μm. The results show a clear distinction between the droplet distributions obtained in clean water and the surfactant solution. A bimodal droplet distribution is observed for clean water with at least two dominating peaks. For the surfactant solution, a single distribution peak is seen. This work is supported by the National Science Foundation, Division of Ocean Sciences.

  6. Development of AN Integrated Air Pollution Modeling System and Simulations of Ozone Distributions Over the LOS Angeles Basin

    NASA Astrophysics Data System (ADS)

    Lu, Rong

    It is well known that air pollution affects human health and the environment. The effectiveness of pollution control relies on the understanding of relationships between emissions and airborne pollutant concentrations, which are governed by atmospheric processes. Numerical models that mathematically describe the atmospheric dynamics and chemistry in details are powerful tools to investigate concentrations and distributions of pollutants in the atmosphere. An air pollution modeling system (APMS) is developed for urban and regional air quality studies. The system, which couples a mesoscale meteorological model (MMTD) with an air quality model (GATOR), has four major components: a meteorological dynamic model, a tracer transport code, detailed treatments of chemical and aerosol microphysical processes, and a radiative transfer code. The meteorological model solves fluid dynamic and thermodynamic equations over complex terrain, and incorporates physical processes such as turbulent diffusion, water vapor condensation and precipitation, solar and infrared radiative transfer, and ground surface processes. The tracer transport code computes the dispersion of gases and aerosols in the atmosphere, including emissions, and dry and wet depositions. The chemistry/aerosol module treats coupled gas-phase photochemistry and aerosol microphysics and chemistry. Aerosol processes include nucleation, coagulation, condensational growth, evaporation, sedimentation, chemical equilibrium and aqueous chemistry. The intensive measurement data collected during the Southern California Air Quality Study are used to assess the performances of the air pollution modeling system. The agreement between predictions and observations indicates that the model is able to reproduce the main features of mesoscale meteorology, tracer transport and dispersion, and pollutant transformations in urban and regional scales. Three-dimensional distributions and transport characteristics of pollutants over Southern

  7. Local mean age measurements for heating, cooling, and isothermal supply air conditions

    SciTech Connect

    Han, H.; Kuehn, T.H.; Kim, Y.

    1999-07-01

    The objective of this paper is to investigate the effect on room ventilation of thermal buoyancy caused by temperature differences between surfaces and the supply air. Spatial distributions of local mean age were obtained in a half-scale environmental chamber under well-controlled temperature conditions simulating isothermal ventilation, cooling, and heating. Air was supplied and returned through slots in the ceiling. Sulfur hexafluoride (SF{sub 6}) tracer gas concentration was measured by an electron capture gas chromatograph. Tracer gas concentration was measured at various points in the chamber versus time after a pulse injection was applied in the supply air duct. The maximum local mean age (LMA) was obtained near the center of a large recirculation zone for isothermal conditions. The results for cooling conditions showed a relatively uniform LMA distribution in the space compared to the isothermal conditions, as the room air was well mixed by the cold downdraft from the supply. However, there was a large variation in local air change indices in the space for the heating condition because of stable thermal stratification. Warm supply air could not penetrate into the lower half of the space but short-circuited to the exhaust duct. The model results in the present study can be converted to full-scale situations using similitude and can be used for validating computational fluid dynamics codes.

  8. Duct injection technology prototype development: Nozzle development Subtask 4. 1, Atomizer specifications for duct injection technology

    SciTech Connect

    Not Available

    1992-02-01

    Babcock Wilcox has conducted a program to identify atomizers appropriate for successful in-duct injection of humidification water and lime slurries. The purpose of this program was to identify and quantify atomizer spray and performance criteria that affect the operations and reliability of the in-duct SO{sub 2} removal process, and compare commercially available atomizers to these criteria.

  9. Distribution and mycotoxin-producing ability of some fungal isolates from the air

    NASA Astrophysics Data System (ADS)

    Cvetnić, Zdenka; Pepeljnjak, S.

    Research was carried out on presence and prevalence of common fungal air spores at locations in Croatia. The sampling method employed in the study was by exposure 350 of Petri agar plates to the air for 10 min. Approximately 3400 colonies were found and mould spores belonging to 22 fungal genera were identified. Cladosporium (44.7%), Penicillium (34.4%), Alternaria (26.3%), Aspergillus (21.6%) and Absidia (12.2%) were the most prevalent fungi encountered. Investigation of toxigenic potential of airborne fungi isolates of genera Aspergillus, Fusarium and Trichoderma showed 16.9% mycotoxin-producing strains. The production of aflatoxin B 1 by A. flavus sterigmatocystin by A. versicolor zearalenon and T-2 toxin by F. graminearum and diacetoscirpenol by strains of T. viride were obtained.

  10. Development of Computer-Generated Forces for Air Force Security Forces Distributed Mission Training

    DTIC Science & Technology

    2002-10-01

    the Program Engineer on the Catapult Launch Systems Trainer program. His strengths are in modeling and simulation R&D, primarily in the areas of...reports “ Snakes in the Eagle’s Nest” (Vick, 1995) and “Check Six Begins on the Ground” (Shlapak & Vick,1995) are primary training references for... Snakes in the eagle’s nest: A history of ground attacks on air bases (MR-553-AF). Santa Monica, CA: Rand Corp. Weeks, J., Garza, J., Archuleta, M

  11. The global tropospheric ammonia distribution as seen in the 13-year AIRS measurement record

    NASA Astrophysics Data System (ADS)

    Warner, Juying X.; Wei, Zigang; Larrabee Strow, L.; Dickerson, Russell R.; Nowak, John B.

    2016-05-01

    Ammonia (NH3) plays an increasingly important role in the global biogeochemical cycle of reactive nitrogen as well as in aerosol formation and climate. We present extensive and nearly continuous global ammonia measurements made by the Atmospheric Infrared Sounder (AIRS) from the Aqua satellite to identify and quantify major persistent and episodic sources as well as to characterize seasonality. We examine the 13-year period from September 2002 through August 2015 with a retrieval algorithm using an optimal estimation technique with a set of three, spatially and temporally uniform a priori profiles. Vertical profiles show good agreement (˜ 5-15 %) between AIRS NH3 and the in situ profiles from the winter 2013 DISCOVER-AQ (DISCOVER-Air Quality) field campaign in central California, despite the likely biases due to spatial resolution differences between the two instruments. The AIRS instrument captures the strongest consistent NH3 concentrations due to emissions from the anthropogenic (agricultural) source regions, such as South Asia (India/Pakistan), China, the United States (US), parts of Europe, Southeast (SE) Asia (Thailand/Myanmar/Laos), the central portion of South America, as well as Western and Northern Africa. These correspond primarily to irrigated croplands, as well as regions with heavy precipitation, with extensive animal feeding operations and fertilizer applications where a summer maximum and a secondary spring maximum are reliably observable. In the Southern Hemisphere (SH) regular agricultural fires contribute to a spring maximum. Regions of strong episodic emissions include Russia and Alaska as well as parts of South America, Africa, and Indonesia. Biomass burning, especially wildfires, dominate these episodic NH3 high concentrations.

  12. Identification of European Air Masses Using an Interactive Computer Technique for Separating Mixed Normal Distributions.

    DTIC Science & Technology

    1982-01-01

    classifying a maritime surface, he refers to the Pacific, Atlantic, or Gulf of Mexico using the general term "maritime" only when the exact origin is...portions of North Atlantic NPA PA air modified over warm North Atlantic TC Southern U.S. and Northern Mexico TG Gulf of Mexico and Caribbean NTG TG...Bergeron, T., 1928: " Uber Die Dreidimensional Verknupfende Wetteranalyse, Teil I." Geofys. Pub!., Vol. 5, No. 6. Berggren, R., 1953: "On Temperature

  13. Computation of the Heat Flux in a Cylindrical Duct Within the Framework of the Kinetic Approach

    NASA Astrophysics Data System (ADS)

    Germider, O. V.; Popov, V. N.; Yushkanov, A. A.

    2016-09-01

    Within the framework of the kinetic approach, the authors have solved the problem on rarefied-gas flow in a cylindrical duct in the presence of the longitudinal temperature gradient. The Williams kinetic equation was used as the basic equation, and the diffuse-reflection model, as the boundary condition on the duct wall. This enabled the authors to consider the solution of the problem in linearized form. To find a linear correction to the locally equilibrium distribution function, the problem was reduced to solution of a linear homogeneous partial differential equation of first order. A solution to the latter was constructed with the method of characteristics. With account taken of the obtained solution and on the basis of the statistical meaning of the distribution function of gas molecules by coordinates and velocities, the authors constructed the profile of the heat-flux vector in the duct and computed the heat flux through the duct cross section. A numerical analysis of final expressions was made. A comparison with analogous results obtained with the discrete-ordinates method has shown that the solution procedure proposed in the work leads to correct results in a wide range of values of the duct radius.

  14. The global tropospheric ammonia distribution as seen in the 13 year AIRS measurement record

    NASA Astrophysics Data System (ADS)

    Warner, J. X.; Wei, Z.; Strow, L. L.; Dickerson, R. R.; Nowak, J. B.

    2015-12-01

    Ammonia (NH3) plays an increasingly important role in the global biogeochemical cycle of reactive nitrogen as well as in aerosol formation and climate. We present extensive and nearly continuous global ammonia measurements made by the Atmospheric Infrared Sounder (AIRS) from the Aqua satellite to identify and quantify major persistent and episodic sources as well as to characterize seasonality. We examine the 13 year period from September 2002 through August 2015 with a retrieval algorithm using an optimal estimation technique with a set of three, spatially and temporally uniform a priori profiles. Vertical profiles show good agreement (~5-15 %) between AIRS NH3 and the in situ profiles from the winter 2013 DISCOVER-AQ field campaign in central California, despite the likely biases due to spatial resolution differences between the two instruments. AIRS captures the strongest consistent NH3 emissions from the anthropogenic (agricultural) source regions, such as, South Asia (India/Pakistan), China, the US, parts of Europe, SE Asia (Thailand/Myanmar/Laos), the central portion of South America, as well as Western and Northern Africa. These correspond primarily to croplands with extensive animal feeding operations and fertilizer applications where a summer maximum and secondary spring maximum are reliably observable. In the Southern Hemisphere (SH) regular agricultural fires contribute to a spring maximum. Regions of strong episodic emissions include Russia and Alaska as well as parts of South America, Africa, and Indonesia. Biomass burning, especially wildfires, dominate these episodic NH3 emissions.

  15. Gasoline Distribution Facilities (Bulk Gasoline Terminals and Pipeline Breakout Stations) Air Toxics Rule Fact Sheets

    EPA Pesticide Factsheets

    This page contains a November 1994 fact sheet for the final NESHAP for Gasoline Distribution Facilities. This page also contains a December fact sheet with information regarding the final amendments to the 2003 final rule for the NESHAP.

  16. Technology Solutions Case Study: Sealed Air-Return Plenum Retrofit

    SciTech Connect

    none,

    2012-08-01

    In this project, Pacific Northwest National Laboratory researchers greatly improved indoor air quality and HVAC performance by replacing an old, leaky air handler with a new air handler with an air-sealed return plenum with filter; they also sealed the ducts, and added a fresh air intake.

  17. Simulations of sizing and comfort improvements for residential forced-air heating and cooling systems

    SciTech Connect

    Walker, I.S.; Degenetais, G.; Siegel, J.A.

    2002-05-01

    In many parts of North America residential HVAC systems are installed outside conditioned space. This leads to significant energy losses and poor occupant comfort due to conduction and air leakage losses from the air distribution ducts. In addition, cooling equipment performance is sensitive to air flow and refrigerant charge that have been found to be far from manufacturers specifications in most systems. The simulation techniques discussed in this report were developed in an effort to provide guidance on the savings potentials and comfort gains that can be achieved by improving ducts (sealing air leaks) and equipment (correct air-flow and refrigerant charge). The simulations include the complex air flow and thermal interactions between duct systems, their surroundings and the conditioned space. They also include cooling equipment response to air flow and refrigerant charge effects. Another key aspect of the simulations is that they are dynamic to account for cyclic losses from the HVAC system and the effect of cycle length on energy and comfort performance. To field test the effect of changes to residential HVAC systems requires extensive measurements to be made for several months for each condition tested. This level of testing is often impractical due to cost and time limitations. Therefore the Energy Performance of Buildings Group at LBNL developed a computer simulation tool that models residential HVAC system performance. This simulation tool has been used to answer questions about equipment downsizing, duct improvements, control strategies and climate variation so that recommendations can be made for changes in residential construction and HVAC installation techniques that would save energy, reduce peak demand and result in more comfortable homes. Although this study focuses on California climates, the simulation tool could easily be applied to other climates. This report summarizes the simulation tool and discusses the significant developments that allow

  18. Effects of the Sea Ice Floe Size Distribution on Polar Ocean Properties and Air-Sea Exchange

    NASA Astrophysics Data System (ADS)

    Horvat, C.; Tziperman, E.

    2014-12-01

    Recent scientific studies have demonstrated that sub-mesoscale ocean eddies, motions characterized by Rossby and Richardson numbers around 1, are important in determining the vertical density structure of the ocean, particularly in the mixed layer. Instabilities excited at the sub-mesoscale have timescales of days and length scales of less than 10 kilometers, and enhance ocean restratification by slumping lateral density gradients. In the polar oceans, a unique mechanism exists that may generate motions on these scales. Individual floes of sea ice may create lateral gradients in the ocean surface heat flux and wind stress curl, acting as an insulator and physical barrier between the ocean and the atmospheric processes that destabilize it. The "floe size distribution" describes the fraction of the ocean surface area covered by sea ice floes, as a function of the sea ice floe size, and determines the length scales over which gradients in atmospheric forcing are transmitted to the ocean. It may therefore play a significant role in exciting or inhibiting sub-mesoscale eddies, and consequently in restratification and air-sea exchange. Current GCMs simulate ice cover using grid-scale ice fraction alone, and lack information about the floe size distribution and of ice length scales that may be important in setting the larger-scale statistics of these motions. An important factor in determining the properties of the upper polar oceans might therefore be missing from modern GCMs. We consider this possibility by examining sub-mesoscale resolving ocean GCM experiments coupled to an energy-balanced atmosphere and idealized model of floes of sea ice. Varying the floe size distribution with a fixed sea ice fraction, we find that the length scales of individual floes and the floe size distribution itself play an important role in setting the steady-state ocean stratification, temperature, and air-sea exchange.

  19. Influence of trans-boundary biomass burning impacted air masses on submicron particle number concentrations and size distributions

    NASA Astrophysics Data System (ADS)

    Betha, Raghu; Zhang, Zhe; Balasubramanian, Rajasekhar

    2014-08-01

    Submicron particle number concentration (PNC) and particle size distribution (PSD) in the size range of 5.6-560 nm were investigated in Singapore from 27 June 2009 through 6 September 2009. Slightly hazy conditions lasted in Singapore from 6 to 10 August. Backward air trajectories indicated that the haze was due to the transport of biomass burning impacted air masses originating from wild forest and peat fires in Sumatra, Indonesia. Three distinct peaks in the morning (08:00-10:00), afternoon (13:00-15:00) and evening (16:00-20:00) were observed on a typical normal day. However, during the haze period no distinct morning and afternoon peaks were observed and the PNC (39,775 ± 3741 cm-3) increased by 1.5 times when compared to that during non-haze periods (26,462 ± 6017). The morning and afternoon peaks on the normal day were associated with the local rush hour traffic while the afternoon peak was induced by new particle formation (NPF). Diurnal profiles of PNCs and PSDs showed that primary particle peak diameters were large during the haze (60 nm) period when compared to that during the non-haze period (45.3 nm). NPF events observed in the afternoon period on normal days were suppressed during the haze periods due to heavy particle loading in atmosphere caused by biomass burning impacted air masses.

  20. Size limitations in semicircular duct systems

    PubMed

    Muller

    1999-06-07

    The present article discusses mechanical requirements and limitations which are applicable to the construction of the system of semicircular ducts, especially to its size. The simplified case of a single, uniform duct system has been considered which can be described by a second order equation of motion. The principal functional quantities for this rotation-sensor are: (1) response speed; (2) sensitivity; and (3) regular flow. The response speed of a single, uniform semicircular duct is characterized by the short time constant (T2) which is dependent on the duct radius (r). Its estimated range is from 0.04 ms in the smallest to 140 ms in the largest known labyrinth. The sensitivity is characterized by the maximal endolymph displacement after a step stimulus (xmax). Its estimated range is from 0.0016 &mgr;m to 5.97 mm (6.56 decades!), assuming an input angular velocity of omega=1 rad s-1. The Reynolds number is a measure for an undisturbed laminar flow. Its estimated range varies from 7.38.10(-4)to 45.1 for omega=1 rad s-1. The above data follow from graphs in which, for a single uniform duct, circuit radius (R) is plotted against duct radius (r) for labyrinths of 233 species belonging to different vertebrate-groups. A relation R =38.9. r1.60was determined. The smallest labyrinth was found in a carp larva (Cyprinus), the largest in a whale shark (Rhincodon). Large whales possess labyrinths of average mammalian size. It is revealed that semicircular duct size is bound by requirements concerning regular flow and by a too low response speed for large labyrinths, and by a too low sensitivity for small labyrinths. Other important quantities are mechanical amplification factors which are a consequence of more complex vestibular constructions than a single uniform duct circuit. Allometric relationships are interpreted as compromises between the quantities mentioned. A hypothesis for the relatively large semicircular duct sizes of fishes, especially Elasmobranchii, compared

  1. Transurethral resection of the ejaculatory duct.

    PubMed

    Paick, J S

    2000-05-01

    Complete bilateral ejaculatory duct obstruction has long been recognized as an uncommon, treatable form of male infertility. Partial ejaculatory duct obstruction reflects a disturbance of ejaculation where sperm quality is impaired during transit through the distal vas deferens and ejaculatory ducts. With the advent and increased use of high-resolution transrectal ultrasonography, abnormalities of the distal ejaculatory ducts related to infertility have been well documented. Although there are no pathognomonic findings associated with ejaculatory duct obstruction, several clinical findings are highly suggestive. In an infertile man with oligospermia or azoospermia with low ejaculate volume, normal secondary sexual characteristics, testes and hormonal profile and dilated seminal vesicles, midline cyst, or calcification on transrectal ultrasonography, ejaculatory duct obstruction is suggested. Of course, other causes of infertility may be concomitantly present and need to be searched for and treated as well. In selected cases, transurethral resection has resulted in marked improvement in semen parameters and pregnancies have been achieved. As is the case with all surgical procedures, proper patient selection and surgical experience are necessary to obtain optimal results. However, it appears that the treatments currently available for relief of ejaculatory obstruction are not optimally effective. Only approximately one half of treated patients will have an improvement in semen parameters and only about one quarter of treated patients will contribute to a pregnancy. What remains to be determined is how to manage the additional nearly 50% of patients who do not benefit from transurethral resection of ejaculatory obstruction. Based on my experience, I suggest that transrectal ultrasonography should be the first diagnostic procedure used when infertile men are suspected of having ejaculatory duct obstruction; however, vasography should still be considered for a more

  2. Endoscopic management of ejaculatory duct obstruction.

    PubMed

    Aggour, A; Mostafa, H; Maged, W

    1998-01-01

    A total of 191 patients were evaluated at our department for azoospermia, and 11 were found to have azoospermia due to ejaculatory duct obstruction as proved by normal serum hormones, normal testicular biopsy, low ejaculate volume and absence of fructose in semen. Also transrectal ultrasound was performed, revealing distended seminal vesicles and dilated ejaculatory ducts. All these criteria together suggested ejaculatory duct obstruction as a cause of azoospermia. All patients underwent endoscopic management for treatment of their ejaculatory duct obstruction in the form of resection and/or incision of the ejaculatory duct ostium inside the urethra and patency was checked intraoperatively by injection of sterile methylene blue in the vas and visualizing the efflux of the blue dye endoscopically. Intraoperative patency was documented in 10 patients and postoperative patency by follow-up semen analysis in 7 patients (70% patency rate) of which 2 (20% pregnancy rate) were able to conceive within 2 years of endoscopic treatment. Postoperative complications included acute urinary retention in 1 patient, haematuria in 5 and recurrent epididymitis in 2 patients.

  3. Salivary duct carcinoma of the parotid gland

    PubMed Central

    Mlika, Mona; Kourda, Nadia; Zidi, YSH; Aloui, Raoudha; Zneidi, Nadia; Rammeh, Soumaya; Zermani, Rachida; Jilani, Sarah Ben

    2012-01-01

    Salivary duct carcinoma of the parotid gland is an uncommon tumor, highly aggressive. About 200 cases have been reported in the English literature. Pathomorphologically, these tumors showed great similarities to ductal carcinoma of the female breast, which is why they described this tumor as “salivary duct carcinoma.” The authors describe a new case of salivary duct carcinoma of the parotid gland. We present the case of a 50-year-old patient with progressive facial paralysis. The MRI examination of the head showed two ill-defined formations. A malignant tumor was strongly suspected, so that a total left parotidectomy with excision of the adjacent facial nerve and left lymph node dissection was performed. Microscopic examination concluded to a salivary duct carcinoma of the left parotid gland negative with Her2/neu antibody with lymph node metastasis. There were no recurrences or metastases within 3 years of follow-up. Salivary duct carcinoma of the parotid gland is a rare tumor with an aggressive behavior. This is due to its propensity to infiltrate distant organs. The diagnosis is based on microscopic examination. Treatment modalities are non-consensual, but some authors advocate the necessity of aggressive approach, especially in tumors negative with Heur2/neu antibody. This is due to the fact that the overexpression of this antigen was reported to be associated with a poor prognosis. PMID:22434951

  4. Characterization of flow in a scroll duct

    NASA Technical Reports Server (NTRS)

    Begg, E. K.; Bennett, J. C.

    1985-01-01

    A quantitative, flow visualization study was made of a partially elliptic cross section, inward curving duct (scroll duct), with an axial outflow through a vaneless annular cutlet. The working fluid was water, with a Re(d) of 40,000 at the inlet to the scroll duct, this Reynolds number being representative of the conditions in an actual gas turbine scroll. Both still and high speed moving pictures of fluorescein dye injected into the flow and illuminated by an argon ion laser were used to document the flow. Strong secondary flow, similar to the secondary flow in a pipe bend, was found in the bottom half of the scroll within the first 180 degs of turning. The pressure field set up by the turning duct was strong enough to affect the inlet flow condition. At 90 degs downstream, the large scale secondary flow was found to be oscillatory in nature. The exit flow was nonuniform in the annular exit. By 270 degs downstream, the flow appeared unorganized with no distinctive secondary flow pattern. Large scale structures from the upstream core region appeared by 90 degs and continued through the duct to reenter at the inlet section.

  5. [Distribution of findings of scorpions in Buenos Aires city in the period 2001-2012 and their sanitary implications].

    PubMed

    Blanco, Guillermo; Laskowicz, Rodrigo D; Lanari, Laura C; Scarlato, Eduardo; Damin, Carlos; de Titto, Ernesto H; de Roodt, Adolfo R

    2016-02-01

    Scorpion stings and their associated mortality increased in the last years in Argentina, with a cumulative record of 73,617 cases and 30 deaths during the period 2001-2012, occurring almost all the deaths in pediatric patients. However, deaths due to severe envenoming by scorpion stings have not been recorded in Buenos Aires city and suburban regions, although the presence of scorpions in this city has been increasingly reported. We studied the temporal and geographical distribution of Tityus trivittatus findings in Buenos Aires city from the database of the Research and Development Area from the National Institute for Production of Biologics of the National Ministry of Health during the period 10/01/2001 to 31/12/2012 in order to correlate these findings with the distribution of health centers in the city. In this period 385 consults with identification of scorpions were recorded. Annual records showed a growing trend. Georeferenced data showed that findings appeared to increase in the surroundings of metro and train stations, mainly at the east of the city with expansion to the west. Although Toxicology services are geographically related to the zones with higher density of finding of scorpions, the accessibility to the centers with antivenom may hinder its application in the recommended time; some measures to avoid possible delays in the application of the treatment are suggested.

  6. Retrieval of Raindrop Size Distribution, Vertical Air Velocity and Water Vapor Attenuation Using Dual-Wavelength Doppler Radar Observations

    NASA Technical Reports Server (NTRS)

    Heymsfield, Gerald M.; Tian, Lin; Li, Lihua; Srivastava, C.

    2005-01-01

    Two techniques for retrieving the slope and intercept parameters of an assumed exponential raindrop size distribution (RSD), vertical air velocity, and attenuation by precipitation and water vapor in light stratiform rain using observations by airborne, nadir looking dual-wavelength (X-band, 3.2 cm and W-band, 3.2 mm) radars are presented. In both techniques, the slope parameter of the RSD and the vertical air velocity are retrieved using only the mean Doppler velocities at the two wavelengths. In the first method, the intercept of the RSD is estimated from the observed reflectivity at the longer wavelength assuming no attenuation at that wavelength. The attenuation of the shorter wavelength radiation by precipitation and water vapor are retrieved using the observed reflectivity at the shorter wavelength. In the second technique, it is assumed that the longer wavelength suffers attenuation only in the melting band. Then, assuming a distribution of water vapor, the melting band attenuation at both wavelengths and the rain attenuation at the shorter wavelength are retrieved. Results of the retrievals are discussed and several physically meaningful results are presented.

  7. Determination of Spatial Distribution of Air Pollution by Dye Laser Measurement of Differential Absorption of Elastic Backscatter

    NASA Technical Reports Server (NTRS)

    Ahmed, S. A.; Gergely, J. S.

    1973-01-01

    This paper presents the results of an analytical study of a lidar system which uses tunable organic dye lasers to accurately determine spatial distribution of molecular air pollutants. Also described will be experimental work to date on simultaneous multiwavelength output dye laser sources for this system. Basically the scheme determines the concentration of air pollutants by measuring the differential absorption of an (at least) two wavelength lidar signal elastically backscattered by the atmosphere. Only relative measurements of the backscattered intensity at each of the two wavelengths, one on and one off the resonance absorption of the pollutant in question, are required. The various parameters of the scheme are examined and the component elements required for a system of this type discussed, with emphasis on the dye laser source. Potential advantages of simultaneous multiwavelength outputs are described. The use of correlation spectroscopy in this context is examined. Comparisons are also made for the use of infrared probing wavelengths and sources instead of dye lasers. Estimates of the sensitivity and accuracy of a practical dye laser system of this type, made for specific pollutants, snow it to have inherent advantages over other schemes for determining pollutant spatial distribution.

  8. Energy distribution of runaway electrons generated by a nanosecond discharge in atmospheric-pressure air

    NASA Astrophysics Data System (ADS)

    Tarasenko, V. F.; Baksht, E. Kh.; Burachenko, A. G.; Kostyrya, I. D.; Lomaev, M. I.; Petin, V. K.; Rybka, D. V.; Shlyakhtun, S. V.

    2008-12-01

    The spectra of an ultrashort avalanche electron beam generated by a nanosecond discharge in atmospheric-pressure air were investigated. The temporal characteristics of the beam current pulses, gap voltage, and discharge current in a gas diode were measured with a time resolution of ˜0.1 ns. A simple technique was developed for recovering electron spectra from the curves of beam attenuation by aluminum foils. The effect of the cathode design, electrode gap length, and generator parameters on the electron spectra were studied using seven setups. It is shown that generation of electrons with anomalously high energies requires the use of cathodes with increased curvature radius.

  9. Energy distribution of runaway electrons generated by a nanosecond discharge in atmospheric-pressure air

    SciTech Connect

    Tarasenko, V. F.; Baksht, E. Kh.; Burachenko, A. G.; Kostyrya, I. D.; Lomaev, M. I.; Petin, V. K.; Rybka, D. V.; Shlyakhtun, S. V.

    2008-12-15

    The spectra of an ultrashort avalanche electron beam generated by a nanosecond discharge in atmospheric-pressure air were investigated. The temporal characteristics of the beam current pulses, gap voltage, and discharge current in a gas diode were measured with a time resolution of {approx}0.1 ns. A simple technique was developed for recovering electron spectra from the curves of beam attenuation by aluminum foils. The effect of the cathode design, electrode gap length, and generator parameters on the electron spectra were studied using seven setups. It is shown that generation of electrons with anomalously high energies requires the use of cathodes with increased curvature radius.

  10. Convolution seal for transition duct in turbine system

    DOEpatents

    Flanagan, James Scott; LeBegue, Jeffrey Scott; McMahan, Kevin Weston; Dillard, Daniel Jackson; Pentecost, Ronnie Ray

    2015-05-26

    A turbine system is disclosed. In one embodiment, the turbine system includes a transition duct. The transition duct includes an inlet, an outlet, and a passage extending between the inlet and the outlet and defining a longitudinal axis, a radial axis, and a tangential axis. The outlet of the transition duct is offset from the inlet along the longitudinal axis and the tangential axis. The transition duct further includes an interface feature for interfacing with an adjacent transition duct. The turbine system further includes a convolution seal contacting the interface feature to provide a seal between the interface feature and the adjacent transition duct.

  11. Light propagation characteristics in photonic crystal fibers with α-power profiles of air hole diameter distributions and their application to fiber collimator

    NASA Astrophysics Data System (ADS)

    Yokota, Hirohisa; Higuchi, Keiichi; Imai, Yoh

    2016-08-01

    Light propagation characteristics in photonic crystal fibers (PCFs) with α-power profiles of air hole diameter distributions were theoretically investigated. It was clarified that the intensity peak of the beam propagating in the PCF with Gaussian beam excitation varied periodically with little power attenuation. It was found that the envelope of the periodic intensity variation depended on α. We theoretically demonstrated that the PCF with the α-power profile of the air hole diameter distribution could be applied to a collimator for a conventional PCF with uniform air holes in Gaussian beam excitation to reduce coupling loss, where a PCF of appropriate length with the α-power air hole diameter distribution was spliced to a conventional PCF. It was also found that the coupling efficiency was higher for a larger α.

  12. Distribution of air-water mixtures in parallel vertical channels as an effect of the header geometry

    SciTech Connect

    Marchitto, Annalisa; Fossa, Marco; Guglielmini, Giovanni

    2009-07-15

    Uneven phase distribution in heat exchangers is a cause of severe reductions in thermal performances of refrigeration equipment. To date, no general design rules are available to avoid phase separation in manifolds with several outlet channels, and even predicting the phase and mass distribution in parallel channels is a demanding task. In the present paper, measurements of two-phase air-water distributions are reported with reference to a horizontal header supplying 16 vertical upward channels. The effects of the operating conditions, the header geometry and the inlet port nozzle were investigated in the ranges of liquid and gas superficial velocities of 0.2-1.2 and 1.5-16.5 m/s, respectively. Among the fitting devices used, the insertion of a co-axial, multi-hole distributor inside the header confirmed the possibility of greatly improving the liquid and gas flow distribution by the proper selection of position, diameter and number of the flow openings between the supplying distributor and the system of parallel channels connected to the header. (author)

  13. Effects of the 1990 Clean Air Act amendments on distributions of visual impairment

    SciTech Connect

    Shannon, J.D.; Camp, J.; Trexler, E.C. Jr.

    1996-02-01

    The Acid Rain Provisions (Title IV) of the 1990 Clean Air Act Amendments (1990 CAAA) focus on emission policies designed to reduce the amount of deposition of acidifying pollutants, particularly in the Northeast. The primary strategy is a significant reduction in SO{sub 2} emissions, with lesser reductions scheduled for NO{sub {times}} emissions. However, lessening of acid deposition is not the only important benefit of the emission control strategy. Decreasing SO{sup {minus}} and NO {sup {minus}} emissions will decrease atmospheric concentrations of sulfate and nitrate particles, which account for much of the visibility reduction associated with regional haze. Although one can get a qualitative sense of how visibility might improve by examining historical large-scale trends in regional emission totals and regional visibility, quantification of the expected improvement requires model simulations. One must model the spatial and temporal patterns of emissions reductions; the relevant pollutant transport, transformation, and removal processes in the atmosphere; and the changes in particulate loading. For this initial examination of the visibility improvement at Shenandoah National Park associated the the Phase I and Phase II SO{sub 2} emission reductions, we have linked emission trend projections taken from ongoing analysis of the 1990 CAAA at Argonne National Laboratory, regional transport modeling with the Advanced Statistical Trajectory Regional Air Pollution (ASTRAP) model and visual impairment modeling with the Visibility Assessment Scoping Model (VASM).

  14. Evaluating spatial distribution and seasonal variation of phthalates using passive air sampling in southern India.

    PubMed

    Sampath, Srimurali; Selvaraj, Krishna Kumar; Shanmugam, Govindaraj; Krishnamoorthy, Vimalkumar; Chakraborty, Paromita; Ramaswamy, Babu Rajendran

    2017-02-01

    Usage of phthalates as plasticizers has resulted in worldwide occurrence and is becoming a serious concern to human health and environment. However, studies on phthalates in Indian atmosphere are lacking. Therefore, we studied the spatio-temporal trends of six major phthalates in Tamil Nadu, southern India, using passive air samplers. Phthalates were ubiquitously detected in all the samples and the average total phthalates found in decreasing order is pre-monsoon (61 ng m(-3)) > summer (52 ng m(-3)) > monsoon (17 ng m(-3)). Largely used phthalates, dibutylphthalate (DBP) and diethylhexlphthalate (DEHP) were predominantly found in all the seasons with contribution of 11-31% and 59-68%, respectively. The highest total phthalates was observed in summer at an urban location (836 ng m(-3)). Furthermore, through principal component analysis, potential sources were identified as emissions from additives of plasticizers in the polymer industry and the productions of adhesives, building materials and vinyl flooring. Although inhalation exposure of infants was higher than other population segments (toddlers, children and adults), exposure levels were found to be safe for people belonging to all ages based on reference dose (RfD) and tolerable daily intake (TDI) values. This study first attempted to report seasonal trend based on atmospheric monitoring using passive air sampling technique and exposure risk together.

  15. Acoustic mode radiation from the termination of a truncated nonlinear internal gravity wave duct in a shallow ocean area.

    PubMed

    Lin, Ying-Tsong; Duda, Timothy F; Lynch, James F

    2009-10-01

    Horizontal ducting of sound between short-wavelength nonlinear internal gravity waves in coastal environments has been reported in many theoretical and experimental studies. Important consequences arising at the open end of an internal wave duct (the termination) are examined in this paper with three-dimensional normal mode theory and parabolic approximation modeling. For an acoustic source located in such a duct and sufficiently far from the termination, some of the propagating sound may exit the duct by penetrating the waves at high grazing angles, but a fair amount of the sound energy is still trapped in the duct and propagates toward the termination. Analysis here shows that the across-duct sound energy distribution at the termination is unique for each acoustic vertical mode, and as a result the sound radiating from the termination of the duct forms horizontal beams that are different for each mode. In addition to narrowband analysis, a broadband simulation is made for water depths of order 80 m and propagation distances of 24 km. Situations occur with one or more modes absent in the radiated field and with mode multipath in the impulse response. These are both consistent with field observations.

  16. User's Manual for DuctE3D: A Program for 3D Euler Unsteady Aerodynamic and Aeroelastic Analysis of Ducted Fans

    NASA Technical Reports Server (NTRS)

    Srivastava, R.; Reddy, T. S. R.

    1997-01-01

    The program DuctE3D is used for steady or unsteady aerodynamic and aeroelastic analysis of ducted fans. This guide describes the input data required and the output files generated, in using DuctE3D. The analysis solves three dimensional unsteady, compressible Euler equations to obtain the aerodynamic forces. A normal mode structural analysis is used to obtain the aeroelastic equations, which are solved using either the time domain or the frequency domain solution method. Sample input and output files are included in this guide for steady aerodynamic analysis and aeroelastic analysis of an isolated fan row.

  17. Data set: 31 years of spatially distributed air temperature, humidity, precipitation amount and precipitation phase from a mountain catchment in the rain-snow transition zone

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thirty one years of spatially distributed air temperature, relative humidity, dew point temperature, precipitation amount, and precipitation phase data are presented for the Reynolds Creek Experimental Watershed. The data are spatially distributed over a 10m Lidar-derived digital elevation model at ...

  18. The lateral distributions of charged particles of energy greater than 0.3 E sub crit in electron-photon cascades in lead and air

    NASA Technical Reports Server (NTRS)

    Wasilewski, A.; Krys, E.

    1985-01-01

    In recent investigations, both theoretical and experimental, the agreement between cascade theory and experimental data is pointed out. The radial distributions obtained from the Monte Carlo simulation are compared ith the results of the analytical theory for all particles in cascades. The data on the mean radius of electron lateral distribution in air are compared with those in lead.

  19. Unusual giant sialolith of Wharton's duct

    PubMed Central

    Gadve, Vandana; Mohite, Apurva; Bang, Kshitij; Shenoi, S. R.

    2016-01-01

    Salivary gland calculi account for the most common disease of the salivary glands. Most of the salivary calculi are small in size. Some calculi that reach several centimeters are reported as megaliths or giant calculi in the literature. They may occur in any of the salivary gland ducts but are most common in Wharton's duct and in the submandibular gland. This report presents clinical and radiographical sign of an unusually large sialolith. A patient came with pain in the floor of mouth. There was a swelling on floor of mouth on the left side. Radiographical examination revealed large irregular radio-opaque mass superimposed on left lateral incisor to molar areas. This case report describes a patient presenting with an unusually large submandibular gland duct sialolith, the subsequent patient management, the etiology, diagnosis, and its treatment. PMID:27795655

  20. Iatrogenic bile duct injuries in kashmir valley.

    PubMed

    Chowdri, Nisar A; Dar, Farooq A; Naikoo, Zahoor A; Wani, Nazir A; Parray, Fazl Q; Wani, Khurshid A

    2010-08-01

    Cholecystectomy is one of the commonest operations performed throughout the world and bile duct injury is the worst complication of this procedure. In a prospective and retrospective study 25 patients were seen in a tertiary care hospital over a period of 10 years. 72% of patients were referred from other hospitals. 48% of patients presented within one month of injury. Pain was the commonest presentation (92%) followed by jaundice (80%). Liver functions were deranged in 70% of patients, USG revealed biliary dilatation in 69.6% of patients. ERCP was done in 16 patients and revealed cut off of the common hepatic duct in 43.8% of patients. Intraoperative findings revealed adhesions in 96% of patients. 48% of patients had bile duct stricture. Roux-en-Y hepaticojejunostomy was the commonest procedure performed. All patients showed improvement in liver function after surgery. Wound infection was the commonest complication seen in 32% patients. 3 patients died in our series.

  1. Unusual giant sialolith of Wharton's duct.

    PubMed

    Gadve, Vandana; Mohite, Apurva; Bang, Kshitij; Shenoi, S R

    2016-09-01

    Salivary gland calculi account for the most common disease of the salivary glands. Most of the salivary calculi are small in size. Some calculi that reach several centimeters are reported as megaliths or giant calculi in the literature. They may occur in any of the salivary gland ducts but are most common in Wharton's duct and in the submandibular gland. This report presents clinical and radiographical sign of an unusually large sialolith. A patient came with pain in the floor of mouth. There was a swelling on floor of mouth on the left side. Radiographical examination revealed large irregular radio-opaque mass superimposed on left lateral incisor to molar areas. This case report describes a patient presenting with an unusually large submandibular gland duct sialolith, the subsequent patient management, the etiology, diagnosis, and its treatment.

  2. Acoustic energy in ducts - Further observations

    NASA Technical Reports Server (NTRS)

    Eversman, W.

    1979-01-01

    The transmission of acoustic energy in uniform ducts carrying uniform flow is investigated with the purpose of clarifying two points of interest. The two commonly used definitions of acoustic 'energy' flux are shown to be related by a Legendre transformation of the Lagrangian density exactly as in deriving the Hamiltonian density in mechanics. In the acoustic case the total energy density and the Hamiltonian density are not the same which accounts for two different 'energy' fluxes. When the duct has acoustically absorptive walls neither of the two flux expressions gives correct results. A reevaluation of the basis of derivation of the energy density and energy flux provides forms which yield consistent results for soft walled ducts.

  3. Experimental and predicted heating distributions for biconics at incidence in air at Mach 10

    NASA Technical Reports Server (NTRS)

    Miller, C. G., III

    1984-01-01

    Heating distributions were measured on a 1.9-percent-scale model of a generic aeroassisted vehicle proposed for missions to a number of planets and for use as a moderate lift-drag ratio Earth orbital transfer vehicle. This vehicle is spherically blunted, 12.84 deg/7 deg biconic with the fore-cone bent upward 7 deg to provide self-trim capability. A straight biconic with the same nose radius and the same half-angles was also tested. The free-stream Reynolds numbers based on model length were equal to about 2 x 10(5) or 9 x 10 (5). The angle of attack, referenced to the aft-cone, was varied from 0 deg to 20 deg. Heating distributions predicted with a parabolized Navier-Stokes (PNS) code are compared with the measurements for the present Reynolds numbers and range of angles of attack. Leeward heating was greatly affected by Reynolds number, with the heating increasing with decreasing Reynolds number for attached flow (low incidence). The opposite was true for separated flow, which occurred when the fore-cone angle of attack exceeded 0.8 times the fore-cone half-angle. Windward heating distributions were predicted to within 10 percent with the PNS code. Leeward heating distributions were predicted qualitatively for both Reynolds numbers, but quantitative agreement was poorer than on the windward side.

  4. Spatial patterns of air pollutants and social groups: a distributive environmental justice study in the phoenix metropolitan region of USA.

    PubMed

    Pope, Ronald; Wu, Jianguo; Boone, Christopher

    2016-11-01

    Quantifying spatial distribution patterns of air pollutants is imperative to understand environmental justice issues. Here we present a landscape-based hierarchical approach in which air pollution variables are regressed against population demographics on multiple spatiotemporal scales. Using this approach, we investigated the potential problem of distributive environmental justice in the Phoenix metropolitan region, focusing on ambient ozone and particulate matter. Pollution surfaces (maps) are evaluated against the demographics of class, age, race (African American, Native American), and ethnicity (Hispanic). A hierarchical multiple regression method is used to detect distributive environmental justice relationships. Our results show that significant relationships exist between the dependent and independent variables, signifying possible environmental inequity. Although changing spatiotemporal scales only altered the overall direction of these relationships in a few instances, it did cause the relationship to become nonsignificant in many cases. Several consistent patterns emerged: people aged 17 and under were significant predictors for ambient ozone and particulate matter, but people 65 and older were only predictors for ambient particulate matter. African Americans were strong predictors for ambient particulate matter, while Native Americans were strong predictors for ambient ozone. Hispanics had a strong negative correlation with ambient ozone, but a less consistent positive relationship with ambient particulate matter. Given the legacy conditions endured by minority racial and ethnic groups, and the relative lack of mobility of all the groups, our findings suggest the existence of environmental inequities in the Phoenix metropolitan region. The methodology developed in this study is generalizable with other pollutants to provide a multi-scaled perspective of environmental justice issues.

  5. Spatial patterns of air pollutants and social groups: a distributive environmental justice study in the phoenix metropolitan region of USA

    NASA Astrophysics Data System (ADS)

    Pope, Ronald; Wu, Jianguo; Boone, Christopher

    2016-11-01

    Quantifying spatial distribution patterns of air pollutants is imperative to understand environmental justice issues. Here we present a landscape-based hierarchical approach in which air pollution variables are regressed against population demographics on multiple spatiotemporal scales. Using this approach, we investigated the potential problem of distributive environmental justice in the Phoenix metropolitan region, focusing on ambient ozone and particulate matter. Pollution surfaces (maps) are evaluated against the demographics of class, age, race (African American, Native American), and ethnicity (Hispanic). A hierarchical multiple regression method is used to detect distributive environmental justice relationships. Our results show that significant relationships exist between the dependent and independent variables, signifying possible environmental inequity. Although changing spatiotemporal scales only altered the overall direction of these relationships in a few instances, it did cause the relationship to become nonsignificant in many cases. Several consistent patterns emerged: people aged 17 and under were significant predictors for ambient ozone and particulate matter, but people 65 and older were only predictors for ambient particulate matter. African Americans were strong predictors for ambient particulate matter, while Native Americans were strong predictors for ambient ozone. Hispanics had a strong negative correlation with ambient ozone, but a less consistent positive relationship with ambient particulate matter. Given the legacy conditions endured by minority racial and ethnic groups, and the relative lack of mobility of all the groups, our findings suggest the existence of environmental inequities in the Phoenix metropolitan region. The methodology developed in this study is generalizable with other pollutants to provide a multi-scaled perspective of environmental justice issues.

  6. Congenital Atresia of Wharton’s Duct

    PubMed Central

    Hseu, Anne; Anne, Premchand

    2016-01-01

    This is a case report of a three-month-old male who presented to clinic with a cystic lesion under the tongue. On clinical examination, a cystic lesion was observed in the, floor-of-mouth. The patient was referred to Paediatric Otorhinolaryngology service for further management. The differential diagnoses for floor-of-mouth lesions should be reviewed with primary focus on the Wharton’s duct atresia and its management. It is crucial to recognize submandibular duct atresia in the primary Paediatric clinic in order to expedite management of lesion before complications arise including infection, enlargement of cyst, and feeding and breathing difficulties. PMID:27042492

  7. Duct disruption, a new explanation of miliaria.

    PubMed

    Shuster, S

    1997-01-01

    From argument and a few personal observations, the hypothesis has crystallised that the miliaria commonly occurring in unacclimatised Caucasians visiting hot climates is caused by exposure to ultraviolet irradiation, by an effect on the cells of the upper epidermis, which eventually allows a split to develop between them and the new stratum corneum that grows up beneath, into which sweat from the disrupted ducts can collect as microcysts. This dehiscence is the probable explanation of sunburn peeling and photo-onycholysis. It is concluded that duct disruption, not blockage or dysfunction, is the immediate cause of the miliarias.

  8. Congenital abnormalities of the ovine paramesonephric ducts.

    PubMed

    Smith, K C; Long, S E; Parkinson, T J

    1995-01-01

    A 15 month survey of ovine reproductive tracts was undertaken in slaughterhouses in southwest England. A total of 33506 tracts were examined; 23536 from lambs and 9970 from adults. In total, 3.4% of tracts were pregnant and 3.3% exhibited abnormalities. Twenty cases of uterus unicornis, six of uterus didelphys and 11 of segmental aplasia were encountered, such that partial aplasia of the paramesonephric ducts accounted for 3.3% of all abnormalities. Although developmental abnormalities of the ovine female genital system are relatively uncommon, a substantial proportion of these can be accounted for by development defects of the paramesonephric ducts.

  9. Preconditioning the Helmholtz Equation for Rigid Ducts

    NASA Technical Reports Server (NTRS)

    Baumeister, Kenneth J.; Kreider, Kevin L.

    1998-01-01

    An innovative hyperbolic preconditioning technique is developed for the numerical solution of the Helmholtz equation which governs acoustic propagation in ducts. Two pseudo-time parameters are used to produce an explicit iterative finite difference scheme. This scheme eliminates the large matrix storage requirements normally associated with numerical solutions to the Helmholtz equation. The solution procedure is very fast when compared to other transient and steady methods. Optimization and an error analysis of the preconditioning factors are present. For validation, the method is applied to sound propagation in a 2D semi-infinite hard wall duct.

  10. Computing Propagation Of Sound In Engine Ducts

    NASA Technical Reports Server (NTRS)

    Saylor, Silvia

    1995-01-01

    Frequency Domain Propagation Model (FREDOM) computer program accounts for acoustic loads applied to components of engines. Models propagation of noise through fluids in ducts between components and through passages within components. Used not only to analyze hardware problems, but also for design purposes. Updated version of FREQPL program easier to use. Devised specifically for use in analyzing acoustic loads in rocket engines. Underlying physical and mathematical concepts implemented also applicable to acoustic propagation in other enclosed spaces; analyzing process plumbing and ducts in industrial buildings with view toward reducing noise in work areas.

  11. Fundamental investigation of duct/ESP phenomena

    SciTech Connect

    Brown, C.A. ); Durham, M.D. ); Sowa, W.A. . Combustion Lab.); Himes, R.M. ); Mahaffey, W.A. )

    1991-10-21

    Radian Corporation was contracted to investigate duct injection and ESP phenomena in a 1.7 MW pilot plant constructed for this test program. This study was an attempt to resolve problems found in previous studies and answer remaining questions for the technology using an approach which concentrates on the fundamental mechanisms of the process. The goal of the study was to obtain a better understanding of the basic physical and chemical phenomena that control: (1) the desulfurization of flue gas by calcium-based reagent, and (2) the coupling of an existing ESP particulate collection device to the duct injection process. Process economics are being studied by others. (VC)

  12. Comparative Cooling Season Performance of Air Distribution Systems in Multistory Townhomes

    SciTech Connect

    A. Poerschke; Beach, R.; Beggs, T.

    2016-08-26

    IBACOS investigated the performance of a small-diameter high velocity heat pump system compared to a conventional system in a new construction triplex townhouse. A ductless heat pump system also was installed for comparison, but the homebuyer backed out because of aesthetic concerns about that system. In total, two buildings, having identical solar orientation and comprised of six townhomes, were monitored for comfort and energy performance. Results show that the small-diameter system provides more uniform temperatures from floor to floor in the three-story townhome. No clear energy consumption benefit was observed from either system. The builder is continuing to explore the small-diameter system as its new standard system to provide better comfort and indoor air quality. The homebuilder also explored the possibility of shifting its townhome product to meet the U.S. Department of Energy Challenge Home National Program Requirements.

  13. Geographical, spatial, and temporal distributions of multiple indoor air pollutants in four Chinese provinces

    SciTech Connect

    Yinlong Jin; Zheng Zhou; Gongli He

    2005-12-15

    Exposure to indoor air pollution from household energy use depends on fuel, stove, housing characteristics, and stove use behavior. Three important indoor air pollutants - respirable particles (RPM), carbon monoxide (CO), and sulfur dioxide (SO{sub 2}) were monitored for a total of 457 household-days in four poor provinces in China (Gansu, 129 household-days; Guizhou, 127 household-days; Inner Mongolia, 65 household-days; and Shaanxi, 136 household-days), in two time intervals during the heating season to investigate spatial and temporal patterns of pollution. The two provinces where biomass is the primary fuel (Inner Mongolia and Gansu) had the highest RPM concentrations (719 {mu}g/m{sup 3} in the single cooking/living/bedroom in Inner Mongolia in December and 351-661 {mu}g/m{sup 3} in different rooms and months in Gansu); lower RPM concentration were observed in the primarily coal-burning provinces of Guizhou and Shaanxi (202-352 {mu}g/m{sup 3} and 187-361 {mu}g/m{sup 3} in different rooms and months in Guizhou and Shaanxi, respectively). Inner Mongolia and Gansu also had higher CO concentrations. Among the two primarily coal-burning provinces, Guizhou had lower concentrations of CO than Shaanxi. In the two coal-burning provinces, SO{sub 2} concentrations were substantially higher in Shaanxi than in Guizhou. Relative concentrations in different rooms and provinces indicate that in the northern provinces heating is an important source of exposure to indoor pollutants from energy use. Day-to-day variability of concentrations within individual households, although substantial, was smaller than variation across households. The implications of the findings for designing environmental health interventions in each province are discussed. 21 refs., 3 figs., 6 tabs.

  14. Mapping the time-averaged distribution of combustion-derived air pollutants in the San Francisco Bay Area

    NASA Astrophysics Data System (ADS)

    Yu, C.; Zinniker, D. A.; Moldowan, J.

    2010-12-01

    Urban air pollution is an ongoing and complicated problem for both residents and policy makers. This study aims to provide a better understanding of the geographic source and fate of organic pollutants in a dynamic urban environment. Natural and artificial hydrophobic substrates were employed for the passive monitoring and mapping of ground-level organic pollutants in the San Francisco Bay area. We focused specifically on volatile and semi-volatile polycyclic aromatic hydrocarbons (PAHs). These compounds are proxies for a broad range of combustion related air pollutants derived from local, regional, and global combustion sources. PAHs include several well-studied carcinogens and can be measured easily and accurately across a broad range of concentrations. Estimates of time-integrated vapor phase and particle deposition were made from measuring accumulated PAHs in the leaves of several widely distributed tree species (including the Quercus agrifolia and Sequoia sempervirens) and an artificial wax film. Samples were designed to represent pollutant exposure over a period of one to several months. The selective sampling and analysis of hydrophobic substrates providess insight into the average geographic distribution of ground-level air pollutants in a simple and inexpensive way. However, accumulated organics do not directly correlated with human exposure and the source signature of PAHs may be obscured by transport, deposition, and flux processes. We attempted to address some of these complications by studying 1) PAH accumulation rates within substrates in a controlled microcosm, 2) differences in PAH abundance in different substrate types at the same locality, and 3) samples near long-term high volume air sampling stations. We also set out to create a map of PAH concentrations based on our measurements. This map can be directly compared with interpolated data from high-volume sampling stations and used to address questions concerning atmospheric heterogeneity of these

  15. Combustion intensity and distribution relation to noise generation

    NASA Technical Reports Server (NTRS)

    Plett, E. G.; Leshner, M. D.; Summerfield, M.

    1975-01-01

    Experiments with several different flame holder geometries were conducted to investigate the degree to which combustion roughness can be altered by altering the flame intensity and flame distribution in a ducted combustion system. The effect of admitting primary air through a plane-slotted or a slotted-swirl vane flame holder was compared and the combustion roughness and noise was contrasted with that obtained with a closed front-end perforated can. The slotted front-end burners produced much smoother burning and less noise than the closed front-end can. No advantage was apparent with swirl vs nonswirl when approximately the same inlet flow distribution was maintained. Preheated inlet air provided somewhat smoother combustion as compared with ambient temperature air. The combustion roughness with methyl alcohol was briefly compared with that of isooctane; indications are that it burns more smoothly, but more detailed studies are needed to substantiate these indications.

  16. Cholesterol polyps in the distal common bile duct: a case report

    PubMed Central

    Tang, Rui; Zhao, Wen-ping; Zhang, Yan-ning; Tong, Xuan; Zeng, Jian-ping

    2016-01-01

    Abstract Rationale: Cholesterol polyps are rare in the common bile duct and difficult to diagnose. Patient concerns: The small polypoid lesions often go undetected when using routine imaging methods, such as ultrasonography. Diagnoses: We treated a patient with cholesterol polyps in the common bile duct. After failing to detect choleliths using ultrasonography, magnetic resonance cholangiopancreatography revealed mild dilation of the common bile duct. Choledochoscopy was performed during laparoscopic cholecystectomy, which revealed yellowish-white polyps circumferentially distributed across the luminal surface of the distal common bile duct. Histological examination of biopsy specimens indicated cholesterol polyps with characteristic foamy cells. Interventions: The patient was treated with ursodeoxycholic acid, and the number of polyps was found to have been reduced at the 6-week follow-up based on T-tube choledochoscopic examination. Outcomes: Recovery was unremarkable, and the ursodeoxycholic acid treatment was discontinued at the 6-month follow-up. Lessons subsections: Our findings suggest that this rare condition can be treated pharmacologically to avoid potential postsurgical complications following resection of the distal common bile duct. PMID:27828866

  17. Verbal workload in distributed air traffic management. [considering pilot controller interaction

    NASA Technical Reports Server (NTRS)

    Kreifeldt, J. G.; Pardo, B.; Wempe, T. E.; Huff, E.

    1975-01-01

    The effects of alternative traffic management possibilities on task performance and pilot controller verbal workloads were studied. Two new rule structures - sequencing and advisory - in addition to vectoring were studied in conjunction with CRT pilot displays incorporating traffic situation displays with and without aircraft flight path predictors. The sequencing and advisory systems gave increasing control responsibility to the pilots. It was concluded that distributed management systems could in practice significantly reduce controller verbal workload without reducing system performance. Implications of this conclusion suggest that distributed management would allow controllers to handle a larger volume of traffic safely either as a normal operating procedure or as a failure mode alternative in a highly automated ground centered system.

  18. Acoustical modes in lined ducts with flexible walls - A variational approach

    NASA Astrophysics Data System (ADS)

    Astley, R. J.

    A unified variational scheme is set forth for calculating axial wavenumbers, attenuations, and pressure distributions for acoustical modes propagating in flexible lined ducts. The technique accounts for the effects of bulk liners, flexible walls, and mean flow in the airway by describing a variational statement of the dispersion relationship for the propagation of fundamental modes. The variational statement can be applied as a Rayleigh-Ritz finite-element scheme to compute the eigenmodes for these ducts. The approach therefore unifies the computation of the fundamental dispersion relationships and the more complex modes described with high-resolution meshes. The approach is used to describe an experimental test duct without flow, and the Rayleigh-Ritz solution provides results that are similar to those of the full numerical solution. The present treatment is of practical interest to the design and fabrication of silencers and acoustically lined moving ductwork.

  19. Measuring centimeter-resolution air temperature profiles above land and water using fiber-optic Distributed Temperature Sensing

    NASA Astrophysics Data System (ADS)

    Sigmund, Armin; Pfister, Lena; Olesch, Johannes; Thomas, Christoph K.

    2016-04-01

    The precise determination of near-surface air temperature profiles is of special importance for the characterization of airflows (e.g. cold air) and the quantification of sensible heat fluxes according to the flux-gradient similarity approach. In contrast to conventional multi-sensor techniques, measuring temperature profiles using fiber-optic Distributed Temperature Sensing (DTS) provides thousands of measurements referenced to a single calibration standard at much reduced costs. The aim of this work was to enhance the vertical resolution of Raman scatter DTS measurements up to the centimeter-scale using a novel approach for atmospheric applications: the optical fiber was helically coiled around a meshed fabric. In addition to testing the new fiber geometry, we quantified the measurement uncertainty and demonstrated the benefits of the enhanced-resolution profiles. The fiber-optic cable was coiled around a hollow column consisting of white reinforcing fabric supported by plexiglass rings every meter. Data from two columns of this type were collected for 47 days to measure air temperature vertically over 3.0 and 5.1 m over a gently inclined meadow and over and in a small lake, respectively. Both profiles had a vertical resolution of 1 cm in the lower section near the surface and 5 cm in the upper section with an along-fiber instrument-specific averaging of 1.0 m and a temporal resolution of 30 s. Measurement uncertainties, especially from conduction between reinforcing fabric and fiber-optic cable, were estimated by modeling the fiber temperature via a detailed energy balance approach. Air temperature, wind velocity and radiation components were needed as input data and measured separately. The temperature profiles revealed valuable details, especially in the lowest 1 m above surface. This was best demonstrated for nighttime observations when artefacts due to solar heating did not occur. For example, the dynamics of a cold air layer was detected in a clear night

  20. Do We Know What Causes Bile Duct Cancer?

    MedlinePlus

    ... inflame the bile ducts, whether it’s bile duct stones, infestation with a parasite, or something else. Scientists ... Treatments & Side Effects Cancer Facts & Statistics News and Stories Glossary For Health Care Professionals Programs & Services Breast ...