Science.gov

Sample records for air distribution ufad

  1. Alternative Air Conditioning Technologies: Underfloor AirDistribution (UFAD)

    SciTech Connect

    Webster, Tom

    2004-06-01

    systems have been most commonly installed in open-plan office buildings in which they provide supply air and (in some cases) radiant heating directly into workstations. TAC systems can be classified into the following two major categories: (1) furniture-based, and (2) floor-based, underfloor air distribution (UFAD). A large majority of these systems include a raised floor system with which underfloor plenums are used to deliver conditioned air to the space through floor grills, or in conjunction with the workstation furniture and partitions.

  2. Thermal environmental case study of an existing underfloor air distribution (UFAD) system in a high-rise building in the tropics

    NASA Astrophysics Data System (ADS)

    Ya, Y. H.; Poh, K. S.

    2015-09-01

    The performance of an existing underfloor air distribution (UFAD) system in a renowned high-rise office tower in Malaysia was studied to identify the root cause issues behind the poor indoor air quality. Occupants are the best thermal sensor. The building was detected with the sick building syndrome (SBS) that causes runny noses, flu-like symptoms, irritated skin, and etc. Long period of exposure to indoor air pollutants may increase the occupant's health risk. The parameters such as the space temperature, relative humidity, air movement, air change, fresh air flow rate, chilled water supply and return are evaluated at three stories that consist of five open offices. A full traverse study was carried out at one of the fresh air duct. A simplified duct flow measurement method using pitot-tubes was developed. The results showed that the diffusers were not effective in creating the swirl effect to the space. Internal heat gain from human and office electrical equipment were not drawn out effectively. Besides, relative humidity has exceeded the recommended level. These issues were caused by the poor maintenance of the building. The energy efficiency strategy of the UFAD system comes from the higher supply air temperature. It may leads to insufficient cooling load for the latent heat gained under improper system performance. Special care and considerations in design, construction and maintenance are needed to ensure the indoor air quality to be maintained. Several improvements were recommended to tackle the existing indoor air quality issues. Solar system was studied as one of the innovative method for retrofitting.

  3. Performance of underfloor air distribution: Results of a field study

    SciTech Connect

    Fisk, William; Faulkner, David; Sullivan, Douglas

    2004-09-02

    Underfloor air distribution (UFAD) is a new method of supplying heated or cooled air throughout a building. Reported advantages of UFAD include easy relocation of air supply diffusers, energy savings, and improved indoor air quality (IAQ). We measured several aspects of the performance of an UFAD system installed in a medium-size office building. The measured air change effectiveness was very close to unity, which is comparable to that measured in buildings with typical overhead air distribution. The pollutant removal efficiency for carbon dioxide was 13 percent higher than expected in a space with well-mixed air, suggesting a 13 percent reduction in exposures to occupant generated pollutants. The increase in indoor air temperatures with height above the floor was only 1 to 2 C (2-4 F). This amount of thermal stratification could reduce the sensible energy requirements for cooling of outdoor air by approximately 10 percent. The occupants level of satisfaction with thermal conditions w as well above average and this high satisfaction rating could possibly be due, in all or part, to the use of a UFAD system. The results of this study provide some evidence of moderate energy and IAQ-related benefits of UFAD. Before general conclusions are drawn, the benefits need to be confirmed in other studies.

  4. Performance of underfloor air distribution in a fieldsetting

    SciTech Connect

    Fisk, W.J.; Faulkner, D.; Sullivan, D.P.; Chao, C.; Wan, M.P.; Zagreus, L.; Webster, T.

    2005-10-01

    Underfloor air distribution (UFAD) is a new method of supplying heated or cooled air throughout a building. Reported advantages of UFAD include energy savings and improved indoor air quality (IAQ). We measured several aspects of the performance of an UFAD system installed in a medium-size office building. The measured air change effectiveness was very close to unity, which is comparable to that measured in buildings with typical overhead air distribution. The pollutant removal efficiency for carbon dioxide was 13% higher than expected in a space with well-mixed air, suggesting a 13% reduction in exposures to occupant generated pollutants. The increase in indoor air temperatures with height above the floor was only 1 to 2 C. This amount of thermal stratification could reduce the sensible energy requirements for cooling of outdoor air by approximately 10%. The occupant's level of satisfaction with thermal conditions was well above average and this high satisfaction rating could possibly be due, in all or part, to the use of a UFAD system. The results of this study provide some evidence of moderate energy and IAQ-related benefits of UFAD. Before general conclusions are drawn, the benefits need to be confirmed in other studies.

  5. Strategy Guideline. Compact Air Distribution Systems

    SciTech Connect

    Burdick, Arlan

    2013-06-01

    This guideline discusses the benefits and challenges of using a compact air distribution system to handle the reduced loads and reduced air volume needed to condition the space within an energy efficient home. The decision criteria for a compact air distribution system must be determined early in the whole-house design process, considering both supply and return air design. However, careful installation of a compact air distribution system can result in lower material costs from smaller equipment, shorter duct runs, and fewer outlets; increased installation efficiencies, including ease of fitting the system into conditioned space; lower loads on a better balanced HVAC system, and overall improved energy efficiency of the home.

  6. Air Mobile Utility Distribution Systems.

    DTIC Science & Technology

    WATER PIPES, AIR TRANSPORTABLE EQUIPMENT, POLYVINYL CHLORIDE, GLASS REINFORCED PLASTICS , FUEL HOSES, HOSES....PIPES, *PIPING SYSTEMS, INSULATION, FABRICATION, CORROSION INHIBITION, FEASIBILITY STUDIES, AIR FORCE FACILITIES, POLYURETHANE RESINS, PLASTICS

  7. Strategy Guideline: Compact Air Distribution Systems

    SciTech Connect

    Burdick, A.

    2013-06-01

    This Strategy Guideline discusses the benefits and challenges of using a compact air distribution system to handle the reduced loads and reduced air volume needed to condition the space within an energy efficient home. Traditional systems sized by 'rule of thumb' (i.e., 1 ton of cooling per 400 ft2 of floor space) that 'wash' the exterior walls with conditioned air from floor registers cannot provide appropriate air mixing and moisture removal in low-load homes. A compact air distribution system locates the HVAC equipment centrally with shorter ducts run to interior walls, and ceiling supply outlets throw the air toward the exterior walls along the ceiling plane; alternatively, high sidewall supply outlets throw the air toward the exterior walls. Potential drawbacks include resistance from installing contractors or code officials who are unfamiliar with compact air distribution systems, as well as a lack of availability of low-cost high sidewall or ceiling supply outlets to meet the low air volumes with good throw characteristics. The decision criteria for a compact air distribution system must be determined early in the whole-house design process, considering both supply and return air design. However, careful installation of a compact air distribution system can result in lower material costs from smaller equipment, shorter duct runs, and fewer outlets; increased installation efficiencies, including ease of fitting the system into conditioned space; lower loads on a better balanced HVAC system, and overall improved energy efficiency of the home.

  8. Over-the-Air Distribution (OTD) Update (Briefing Charts)

    DTIC Science & Technology

    2015-04-29

    Missile Systems Center Maj Scott Tyley, SMC/GPEP 29 Apr 15 Over-the-Air Distribution (OTAD) Update Report Documentation Page Form ApprovedOMB... SYSTEMS CENTER • OTAD Overview • Background • Benefits • Events • OTAD Demo • Summary 2015 04 29 _Over-the-Air Distribution (OT AD) Update v2...enabled Over-The-Air cryptokey distribution provides a means to keep users keyed and protected - Receivers are significantly more resilient to

  9. Air channel distribution during air sparging: A field experiment

    SciTech Connect

    Leeson, A.; Hinchee, R.E.; Headington, G.L.; Vogel, C.M.

    1995-12-31

    Air sparging may have the potential to improve upon conventional groundwater treatment technologies. However, judging from studies published to date and theoretical analyses, it is possible that air sparging may have a limited effect on aquifer contamination. The basic mechanisms controlling air sparging are not well understood, and current monitoring practice does not appear adequate to quantitatively evaluate the process. During this study, the effective zone of influence, defined as the areas in which air channels form, was studied as a function of flowrate and depth of injection points. This was accomplished by conducting the air sparging test in an area with shallow standing water. Air sparging points were installed at various depths, and the zone of influence was determined visually.

  10. Air velocity distributions from a variable-rate air-assisted sprayer for tree applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A capability that implements tree structure to control liquid and air flow rates is the preferential design in the development of variable-rate orchard and nursery sprayers. Air jet velocity distributions from an air assisted, five-port sprayer which was under the development to achieve variable-rat...

  11. Advanced Strategy Guideline: Air Distribution Basics and Duct Design

    SciTech Connect

    Burdick, A.

    2011-12-01

    This report discusses considerations for designing an air distribution system for an energy efficient house that requires less air volume to condition the space. Considering the HVAC system early in the design process will allow adequate space for equipment and ductwork and can result in cost savings. Principles discussed that will maximize occupant comfort include delivery of the proper amount of conditioned air for appropriate temperature mixing and uniformity without drafts, minimization of system noise, the impacts of pressure loss, efficient return air duct design, and supply air outlet placement, as well as duct layout, materials, and sizing.

  12. AIR DISTRIBUTION NOISE CONTROL IN CRITICAL AUDITORIUMS.

    ERIC Educational Resources Information Center

    HOOVER, R.M.

    THE ACHIEVEMENT OF EXTREMELY LOW AIR-CONDITIONING NOISE LEVELS REQUIRED FOR MODERN AUDITORIUMS ARE THE RESULT OF CAREFUL PLANNING AND THOROUGH DETAILING. PROBLEMS FACED AND TECHNIQUES USED IN ARRIVING AT LEVELS AS LOW AS NC-15 FOR A SINGLE SYSTEM SERVING A HALL ARE DESCRIBED. SIX CASE HISTORIES ARE EXAMINED AND THE FOLLOWING OBSERVATIONS ARE…

  13. Advanced Strategy Guideline. Air Distribution Basics and Duct Design

    SciTech Connect

    Burdick, Arlan

    2011-12-01

    This report discusses considerations for designing an air distribution system for an energy efficient house that requires less air volume to condition the space. Considering the HVAC system early in the design process will allow adequate space for equipment and ductwork and can result in cost savings.

  14. Temperature distribution of air source heat pump barn with different air flow

    NASA Astrophysics Data System (ADS)

    He, X.; Li, J. C.; Zhao, G. Q.

    2016-08-01

    There are two type of airflow form in tobacco barn, one is air rising, the other is air falling. They are different in the structure layout and working principle, which affect the tobacco barn in the distribution of temperature field and velocity distribution. In order to compare the temperature and air distribution of the two, thereby obtain a tobacco barn whose temperature field and velocity distribution are more uniform. Taking the air source heat pump tobacco barn as the investigated subject and establishing relevant mathematical model, the thermodynamics of the two type of curing barn was analysed and compared based on Fluent. Provide a reasonable evidence for chamber arrangement and selection of outlet for air source heat pump tobacco barn.

  15. Mockup Small-Diameter Air Distribution System

    SciTech Connect

    A. Poerschke and A. Rudd

    2016-05-01

    This report investigates the feasibility of using a home-run manifold small-diameter duct system to provide space conditioning air to individual thermal zones in a low-load home. This compact layout allows duct systems to be brought easily within conditioned space via interior partition walls. Centrally locating the air hander unit in the house significantly reduces duct lengths. The plenum box is designed so that each connected duct receives an equal amount of airflow, regardless of the duct position on the box. Furthermore, within a reasonable set of length restrictions, each duct continues to receive similar airflow. The design method uses an additive approach to reach the total needed zonal airflow. Once the cubic feet per minute needed to satisfy the thermal load of a zone has been determined, the total number of duct runs to a zone can be calculated by dividing the required airflow by the standard airflow from each duct. The additive approach greatly simplifies the design effort and reduces the potential for duct design mistakes to be made. Measured results indicate that this plenum design can satisfy the heating load. However, the total airflow falls short of satisfying the cooling load in a hypothetical building. Static pressure inside the plenum box of 51.5 Pa limited the total airflow of the attached mini-split heat pump blower, thus limiting the total thermal capacity. Fan energy consumption is kept to 0.16 to 0.22 watt/CFM by using short duct runs and smooth duct material.

  16. Air Distribution Retrofit Strategies for Affordable Housing

    SciTech Connect

    Dentz, J.; Conlin, F.; Holloway, P.; Podorson, D.; Varshney, K.

    2014-03-01

    In multifamily and attached buildings, traditional duct sealing methods are often impractical or costly and disruptive because of the difficulty in accessing leakage sites. In this project, two retrofit duct sealing techniques -- manually-applied sealants and injecting a spray sealant, were implemented in several low-rise multi-unit buildings. An analysis on the cost and performance of the two methods are presented. Each method was used in twenty housing units: approximately half of each group of units are single story and the remainder two-story. Results show that duct leakage to the outside was reduced by an average of 59% through the use of manual methods, and by 90% in the units where the injected spray sealant was used. It was found that 73% of the leakage reduction in homes that were treated with injected spray sealant was attributable to the manual sealing done at boots, returns and the air handler. The cost of manually-applying sealant ranged from $275 to $511 per unit and for the injected spray sealant the cost was $700 per unit. Modeling suggests a simple payback of 2.2 years for manual sealing and 4.7 years for the injected spray sealant system. Utility bills were collected for one year before and after the retrofits. Utility bill analysis shows 14% and 16% energy savings using injected spray sealant system and hand sealing procedure respectively in heating season whereas in cooling season, energy savings using injected spray sealant system and hand sealing were both 16%.

  17. Air Distribution Retrofit Strategies for Affordable Housing

    SciTech Connect

    Dentz, J.; Conlin, F.; Holloway, Parker; Podorson, David; Varshney, Kapil

    2014-03-01

    In multifamily and attached buildings, traditional duct sealing methods are often impractical or costly and disruptive because of the difficulty in accessing leakage sites. In this project, two retrofit duct sealing techniques, manually-applied sealants and injecting a spray sealant, were implemented in several low-rise multiunit buildings. An analysis on the cost and performance of the two methods are presented. Each method was used in twenty housing units: approximately half of each group of units are single story and the remainder are two story. Results show that duct leakage to the outside was reduced by an average of 59% through the use of manual methods, and by 90% in the units where the injected spray sealant was used. It was found that 73% of the leakage reduction in homes that were treated with injected spray sealant was attributable to the manual sealing done at boots, returns and the air handler. The cost of manually-applying sealant ranged from $275 to $511 per unit and for the injected spray sealant the cost was $700 per unit. Modeling suggests a simple payback of 2.2 years for manual sealing and 4.7 years for the injected spray sealant system. Utility bills were collected for one year before and after the retrofits. Utility bill analysis shows 14% and 16% energy savings using injected spray sealant system and hand sealing procedure respectively in heating season whereas in cooling season, energy savings using injected spray sealant system and hand sealing were both 16%.

  18. Tactical Air Control Party Support in Distributed and Special Operations

    DTIC Science & Technology

    2008-05-01

    FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF MILITARY STUDIES AUTHOR: MAJOR JAMES A SCHNELLE AY 07-08 Mentor and ~~f:~e Co~ittee Member...ANSI Std Z39-18 Executive Summary Title: Tactical Air Control Party Support in Distributed and Special Operations Author: Major James A. Schnelle ...until 11 :00 a.m. 1 Later , five aircraft came over at about 2:35 p.m., firing machine guns and dropping bombs until 3:20 p.m. "The air attack was the

  19. Measured Air Distribution Effectiveness for Residential Mechanical Ventilation Systems

    SciTech Connect

    Sherman, Max; Sherman, Max H.; Walker, Iain S.

    2008-05-01

    The purpose of ventilation is dilute or remove indoor contaminants that an occupant is exposed to. In a multi-zone environment such as a house, there will be different dilution rates and different source strengths in every zone. Most US homes have central HVAC systems, which tend to mix the air thus the indoor conditions between zones. Different types of ventilation systems will provide different amounts of exposure depending on the effectiveness of their air distribution systems and the location of sources and occupants. This paper will report on field measurements using a unique multi-tracer measurement system that has the capacity to measure not only the flow of outdoor air to each zone, but zone-to-zone transport. The paper will derive seven different metrics for the evaluation of air distribution. Measured data from two homes with different levels of natural infiltration will be used to evaluate these metrics for three different ASHRAE Standard 62.2 compliant ventilation systems. Such information can be used to determine the effectiveness of different systems so that appropriate adjustments can be made in residential ventilation standards such as ASHRAE Standard 62.2.

  20. An Optimization of the Maintenance Assets Distribution Network in the Argentine Air Force

    DTIC Science & Technology

    2015-03-26

    AN OPTIMIZATION OF THE MAINTENANCE ASSETS DISTRIBUTION NETWORK IN THE ARGENTINE AIR FORCE...copyright protection in the United States. AFIT-ENS-MS-15-M-152 AN OPTIMIZATION OF THE MAINTENANCE ASSETS DISTRIBUTION NETWORK IN THE ARGENTINE AIR...PUBLIC RELEASE; DISTRIBUTION UNLIMITED. AFIT-ENS-MS-15-M-152 AN OPTIMIZATION OF THE MAINTENANCE ASSETS DISTRIBUTION NETWORK IN THE ARGENTINE AIR

  1. The AIRS Applications Pipeline, from Identification to Visualization to Distribution

    NASA Astrophysics Data System (ADS)

    Ray, S. E.; Pagano, T. S.; Fetzer, E. J.; Lambrigtsen, B.; Teixeira, J.

    2014-12-01

    The Atmospheric Infrared Sounder (AIRS) on NASA's Aqua spacecraft has been returning daily global observations of Earth's atmospheric constituents and properties since 2002. AIRS provides observations of temperature and water vapor along the atmospheric column and is sensitive to many atmospheric constituents in the mid-troposphere, including carbon monoxide, carbon dioxide and ozone. With a 12-year data record and daily, global observations in near real-time, we are finding that AIRS data can play a role in applications that fall under most of the NASA Applied Sciences focus areas. Currently in development are temperature inversion maps that can potentially correlate to respiratory health problems, dengue fever and West Nile virus outbreak prediction maps, maps that can be used to make assessments of air quality, and maps of volcanic ash burden. This poster will communicate the Project's approach and efforts to date of its applications pipeline, which includes identifying applications, utilizing science expertise, hiring outside experts to assist with development and dissemination, visualization along application themes, and leveraging existing NASA data frameworks and organizations to facilitate archiving and distribution. In addition, a new web-based browse tool being developed by the AIRS Project for easy access to application product imagery will also be described.

  2. Drop size distribution and air velocity measurements in air assist swirl atomizer sprays

    NASA Technical Reports Server (NTRS)

    Mao, C.-P.; Oechsle, V.; Chigier, N.

    1987-01-01

    Detailed measurements of mean drop size (SMD) and size distribution parameters have been made using a Fraunhofer diffraction particle sizing instrument in a series of sprays generated by an air assist swirl atomizer. Thirty-six different combinations of fuel and air mass flow rates were examined with liquid flow rates up to 14 lbm/hr and atomizing air flow rates up to 10 lbm/hr. Linear relationships were found between SMD and liquid to air mass flow rate ratios. SMD increased with distance downstream along the center line and also with radial distance from the axis. Increase in obscuration with distance downstream was due to an increase in number density of particles as the result of deceleration of drops and an increase in the exposed path length of the laser beam. Velocity components of the atomizing air flow field measured by a laser anemometer show swirling jet air flow fields with solid body rotation in the core and free vortex flow in the outer regions.

  3. Tunable hollow waveguide distributed Bragg reflectors with variable air core

    NASA Astrophysics Data System (ADS)

    Sakurai, Yasuki; Koyama, Fumio

    2004-06-01

    We demonstrate a tunable hollow waveguide distributed Bragg reflector consisting of a grating loaded slab hollow waveguide with a variable air-core. The modeling shows that a change in an air-core thickness enables a large shift of several tens of nanometers in Bragg wavelength due to a change of several percents in a propagation constant. We fabricated a slab hollow waveguide Bragg reflector with 620 μm long and, 190 nm deep 1st-order circular grating composed of SiO2, exhibiting strong Bragg reflection at 1558 nm with an air-core thickness of 10 μm for TM mode. The peak reflectivity is 65% including fiber coupling losses, the 3-dB bandwidth is 2.8 nm and the grating-induced loss is less than 0.5 dB. We demonstrate a 3 nm wavelength tuning of the fabricated hollow waveguide Bragg reflector by changing an air-core thickness from 10 μm to 7.9 μm.

  4. Graphene Visualizes the Ion Distribution on Air-Cleaved Mica.

    PubMed

    Bampoulis, Pantelis; Sotthewes, Kai; Siekman, Martin H; Zandvliet, Harold J W; Poelsema, Bene

    2017-03-06

    The distribution of potassium (K(+)) ions on air-cleaved mica is important in many interfacial phenomena such as crystal growth, self-assembly and charge transfer on mica. However, due to experimental limitations to nondestructively probe single ions and ionic domains, their exact lateral organization is yet unknown. We show, by the use of graphene as an ultra-thin protective coating and scanning probe microscopies, that single potassium ions form ordered structures that are covered by an ice layer. The K(+) ions prefer to minimize the number of nearest neighbour K(+) ions by forming row-like structures as well as small domains. This trend is a result of repulsive ionic forces between adjacent ions, weakened due to screening by the surrounding water molecules. Using high resolution conductive atomic force microscopy maps, the local conductance of the graphene is measured, revealing a direct correlation between the K(+) distribution and the structure of the ice layer. Our results shed light on the local distribution of ions on the air-cleaved mica, solving a long-standing enigma. They also provide a detailed understanding of charge transfer from the ionic domains towards graphene.

  5. Graphene Visualizes the Ion Distribution on Air-Cleaved Mica

    NASA Astrophysics Data System (ADS)

    Bampoulis, Pantelis; Sotthewes, Kai; Siekman, Martin H.; Zandvliet, Harold J. W.; Poelsema, Bene

    2017-03-01

    The distribution of potassium (K+) ions on air-cleaved mica is important in many interfacial phenomena such as crystal growth, self-assembly and charge transfer on mica. However, due to experimental limitations to nondestructively probe single ions and ionic domains, their exact lateral organization is yet unknown. We show, by the use of graphene as an ultra-thin protective coating and scanning probe microscopies, that single potassium ions form ordered structures that are covered by an ice layer. The K+ ions prefer to minimize the number of nearest neighbour K+ ions by forming row-like structures as well as small domains. This trend is a result of repulsive ionic forces between adjacent ions, weakened due to screening by the surrounding water molecules. Using high resolution conductive atomic force microscopy maps, the local conductance of the graphene is measured, revealing a direct correlation between the K+ distribution and the structure of the ice layer. Our results shed light on the local distribution of ions on the air-cleaved mica, solving a long-standing enigma. They also provide a detailed understanding of charge transfer from the ionic domains towards graphene.

  6. Graphene Visualizes the Ion Distribution on Air-Cleaved Mica

    PubMed Central

    Bampoulis, Pantelis; Sotthewes, Kai; Siekman, Martin H.; Zandvliet, Harold J. W.; Poelsema, Bene

    2017-01-01

    The distribution of potassium (K+) ions on air-cleaved mica is important in many interfacial phenomena such as crystal growth, self-assembly and charge transfer on mica. However, due to experimental limitations to nondestructively probe single ions and ionic domains, their exact lateral organization is yet unknown. We show, by the use of graphene as an ultra-thin protective coating and scanning probe microscopies, that single potassium ions form ordered structures that are covered by an ice layer. The K+ ions prefer to minimize the number of nearest neighbour K+ ions by forming row-like structures as well as small domains. This trend is a result of repulsive ionic forces between adjacent ions, weakened due to screening by the surrounding water molecules. Using high resolution conductive atomic force microscopy maps, the local conductance of the graphene is measured, revealing a direct correlation between the K+ distribution and the structure of the ice layer. Our results shed light on the local distribution of ions on the air-cleaved mica, solving a long-standing enigma. They also provide a detailed understanding of charge transfer from the ionic domains towards graphene. PMID:28262710

  7. Air traffic control by distributed management in a MLS environment

    NASA Technical Reports Server (NTRS)

    Kreifeldt, J. G.; Parkin, L.; Hart, S.

    1977-01-01

    The microwave landing system (MLS) is a technically feasible means for increasing runway capacity since it could support curved approaches to a short final. The shorter the final segment of the approach, the wider the variety of speed mixes possible so that theoretically, capacity would ultimately be limited by runway occupance time only. An experiment contrasted air traffic control in a MLS environment under a centralized form of management and under distributed management which was supported by a traffic situation display in each of the 3 piloted simulators. Objective flight data, verbal communication and subjective responses were recorded on 18 trial runs lasting about 20 minutes each. The results were in general agreement with previous distributed management research. In particular, distributed management permitted a smaller spread of intercrossing times and both pilots and controllers perceived distributed management as the more 'ideal' system in this task. It is concluded from this and previous research that distributed management offers a viable alternative to centralized management with definite potential for dealing with dense traffic in a safe, orderly and expeditious manner.

  8. Numerical characterization of the hydrodynamics and thermal behavior of air flow in flexible air distribution system

    NASA Astrophysics Data System (ADS)

    Gharehdaghi, Samad; Moujaes, Samir

    2013-10-01

    Flexible duct air distribution systems are used in a large percentage of residential and small commercial buildings in the United States . Very few empirical or predictive data are available though to help provide the HVAC design engineer with reliable information . Moreover, because of the ducts flexibility, the shapes of these ducts offer a different set of operating fluid flow and thermal conditions from traditional smooth metal ducts. Hence, both the flow field and heat transfer through this kind of ducts are much more complex and merit to be analyzed from a numerical predictive approach. The aim of this research paper is to compute some of the hydrodynamic and heat transfer characteristics of the air flow inside these ducts over a range of Re numbers commonly used in the flow conditions of these air distribution systems. The information resulting from this CFD simulation, where a κ-ɛ turbulent model is used to predict the flow conditions, provide pressure drop and average convective heat transfer coefficients that exist in these ducts and was compared to previously found data. Circulation zones in the depressions of these ducts are found to exist which are suspected of influencing the pressured drop and heat transfer coefficients as compared to smooth ducts. The results show that fully developed conditions exist much earlier with regard to the inlet for both hydrodynamic and thermal entrance regions than what would be expected in smooth ducts under the same turbulent conditions.

  9. Air Quality Impact of Distributed Generation of Electricity

    NASA Astrophysics Data System (ADS)

    Jing, Qiguo

    This dissertation summarizes the results of a five-year investigation of the impact of distributed generation (DG) of electricity on air quality in urban areas. I focused on the impact of power plants with capacities of less than 50 MW, which is typical of DG units in urban areas. These power plants are modeled as buoyant emissions from stacks less than 10 m situated in the midst of urban buildings. Because existing dispersion models are not designed for such sources, the first step of the study involved the evaluation of AERMOD, USEPA's state-of-the art dispersion model, with data collected in a tracer study conducted in the vicinity of a DG unit. The second step of the study consisted of using AERMOD to compare the impact of DG penetration in the South Coast Air Basin of Los Angeles with the impact of replacing DG generation with expansion of current central power plant capacity. The third topic of my investigation is the development and application of a model to examine the impact of non-power plant sources in a large urban area such as Los Angeles. This model can be used to estimate the air quality impact of DG relative to other sources in an urban area. The first part of this dissertation describes a tracer study conducted in Palm Springs, CA. Concentrations observed during the nighttime experiments are generally higher than those measured during the daytime experiments. They fall off less rapidly with distance than during the daytime. AERMOD provides an adequate description of concentrations associated with the buoyant releases from the DG during the daytime when turbulence is controlled by convection induced by solar heating. However, AERMOD underestimates concentrations during the night when turbulence is generated by wind shear. Also, AERMOD predicts a decrease in concentrations with distance that is much more rapid than the relatively flat observed decrease. I have suggested modifications to AERMOD to improve the agreement between model estimates and

  10. Depth Distribution Of The Maxima Of Extensive Air Shower

    NASA Technical Reports Server (NTRS)

    Adams, J. H.; Howell, L. W.

    2003-01-01

    Observations of the extensive air showers from space can be free from interference by low altitude clouds and aerosols if the showers develop at a sufficiently high altitude. In this paper we explore the altitude distribution of shower maxima to determine the fraction of all showers that will reach their maxima at sufficient altitudes to avoid interference from these lower atmosphere phenomena. Typically the aerosols are confined within a planetary boundary layer that extends from only 2-3 km above the Earth's surface. Cloud top altitudes extend above 15 km but most are below 4 km. The results reported here show that more than 75% of the showers that will be observed by EUSO have maxima above the planetary boundary layer. The results also show that more than 50% of the showers that occur on cloudy days have their maxima above the cloud tops.

  11. Field Test of Room-to-Room Uniformity of Ventilation Air Distribution in Two New Houses

    SciTech Connect

    Hendron, Robert; Anderson, Ren; Barley, Dennis; Rudd, Armin; Townsend, Aaron; Hancock, Ed

    2006-12-01

    This report describes a field test to characterize the uniformity of room-to-room ventilation air distribution under various operating conditions by examining multi-zone tracer gas decay curves and calculating local age-of-air.

  12. Clean Air Act Standards and Guidelines for Chemical Production and Distribution

    EPA Pesticide Factsheets

    This page contains the stationary sources of air pollution for the chemical production & distribution industries, and their corresponding air pollution regulations. To learn more about the regulations for each industry, just click on the links below.

  13. Preliminary analysis of hub and spoke air freight distribution system

    NASA Technical Reports Server (NTRS)

    Whitehead, A. H., Jr.

    1978-01-01

    A brief analysis is made of the hub and spoke air freight distribution system which would employ less than 15 hub centers world wide with very large advanced distributed-load freighters providing the line-haul delivery between hubs. This system is compared to a more conventional network using conventionally-designed long-haul freighters which travel between numerous major airports. The analysis calculates all of the transportation costs, including handling charges and pickup and delivery costs. The results show that the economics of the hub/spoke system are severely compromised by the extensive use of feeder aircraft to deliver cargo into and from the large freighter terminals. Not only are the higher costs for the smaller feeder airplanes disadvantageous, but their use implies an additional exchange of cargo between modes compared to truck delivery. The conventional system uses far fewer feeder airplanes, and in many cases, none at all. When feeder aircraft are eliminated from the hub/spoke system, however, that system is universally more economical than any conventional system employing smaller line-haul aircraft.

  14. Laboratory air bubble generation of various size distributions

    SciTech Connect

    Puleo, Jack A.; Johnson, Rex V.; Kooney, Tim N.

    2004-11-01

    Air bubble size in aqueous environments is an important factor governing natural processes ranging from fluid/atmosphere gas transfer to noise production. Bubbles are also known to affect various scientific instruments. In this study we investigate the production capability of eight inexpensive bubble generators using optical imaging techniques. Specific emphasis is directed towards determining bubble size and distribution for a given device, flow conditions, and type of water used (fresh vs salt). In almost all cases tested here, bubbles produced in salt water were more numerous, and smaller than for the same bubbler and conditions in fresh water. For porous media, the finer the pore size, the smaller the bubble produced with some variation depending on thickness of material containing the pore and water type. While no single generator tested was capable of spanning all the bubble sizes observed (100 to 6000 microns), the data contained herein will enable proper choice of bubbler or combinations thereof for future studies depending on the size and distribution of bubbles required.

  15. Distribution Characteristics of Air-Bone Gaps – Evidence of Bias in Manual Audiometry

    PubMed Central

    Margolis, Robert H.; Wilson, Richard H.; Popelka, Gerald R.; Eikelboom, Robert H.; Swanepoel, De Wet; Saly, George L.

    2015-01-01

    Objective Five databases were mined to examine distributions of air-bone gaps obtained by automated and manual audiometry. Differences in distribution characteristics were examined for evidence of influences unrelated to the audibility of test signals. Design The databases provided air- and bone-conduction thresholds that permitted examination of air-bone gap distributions that were free of ceiling and floor effects. Cases with conductive hearing loss were eliminated based on air-bone gaps, tympanometry, and otoscopy, when available. The analysis is based on 2,378,921 threshold determinations from 721,831 subjects from five databases. Results Automated audiometry produced air-bone gaps that were normally distributed suggesting that air- and bone-conduction thresholds are normally distributed. Manual audiometry produced air-bone gaps that were not normally distributed and show evidence of biasing effects of assumptions of expected results. In one database, the form of the distributions showed evidence of inclusion of conductive hearing losses. Conclusions Thresholds obtained by manual audiometry show tester bias effects from assumptions of the patient’s hearing loss characteristics. Tester bias artificially reduces the variance of bone-conduction thresholds and the resulting air-bone gaps. Because the automated method is free of bias from assumptions of expected results, these distributions are hypothesized to reflect the true variability of air- and bone-conduction thresholds and the resulting air-bone gaps. PMID:26627469

  16. Air velocity distribution in a commercial broiler house

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing air velocity during tunnel ventilation in commercial broiler production facilities improves production efficiency, and many housing design specifications require a minimum air velocity. Air velocities are typically assessed with a hand-held velocity meter at random locations, rather than ...

  17. AIR TEMPERATURE DISTRIBUTION IN SEED COTTON DRYING SYSTEMS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ten tests were conducted in the fall of 2007 to measure air temperature variation within various heated air seed cotton drying systems with the purpose of: checking validation of recommendations by a professional engineering society and measuring air temperature variation across the airflow ductwork...

  18. Advanced Air Transportation Technologies (AATT) Project: Distributed Air-Ground Traffic Management

    NASA Technical Reports Server (NTRS)

    Mogford, Richard; Green, Steve; Ballin, Mark

    2002-01-01

    This viewgraph presentation provides an overview of active Distributed Air Ground Traffic Management (DAG-TM) work and reported on its overall progress to date. It does not include details on the concept elements (CEs).The DAG-TM research project is defined as a concept development and definition project and no tools will be delivered. Of the 14 CEs, three are being explored actively: CE-5, CE-6, and CE-11. Overviews of CE-5 (Free Maneuvering for User-Preferred Separation Assurance and Local TFM Conformance), CE-6 (En Route and Transition Trajectory Negotiation for User-Preferred Separation and Local TFM Conformance) and CE-11 (Self-Spacing for Merging and In-Trail Separation) are presented.

  19. Air velocity distributions inside tree canopies from a variable-rate air-assisted sprayer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A variable-rate, air assisted, five-port sprayer had been in development to achieve variable discharge rates of both liquid and air. To verify the variable air rate capability by changing the fan inlet diameter of the sprayer, air jet velocities impeded by plant canopies were measured at various loc...

  20. The probability distribution model of air pollution index and its dominants in Kuala Lumpur

    NASA Astrophysics Data System (ADS)

    AL-Dhurafi, Nasr Ahmed; Razali, Ahmad Mahir; Masseran, Nurulkamal; Zamzuri, Zamira Hasanah

    2016-11-01

    This paper focuses on the statistical modeling for the distributions of air pollution index (API) and its sub-indexes data observed at Kuala Lumpur in Malaysia. Five pollutants or sub-indexes are measured including, carbon monoxide (CO); sulphur dioxide (SO2); nitrogen dioxide (NO2), and; particulate matter (PM10). Four probability distributions are considered, namely log-normal, exponential, Gamma and Weibull in search for the best fit distribution to the Malaysian air pollutants data. In order to determine the best distribution for describing the air pollutants data, five goodness-of-fit criteria's are applied. This will help in minimizing the uncertainty in pollution resource estimates and improving the assessment phase of planning. The conflict in criterion results for selecting the best distribution was overcome by using the weight of ranks method. We found that the Gamma distribution is the best distribution for the majority of air pollutants data in Kuala Lumpur.

  1. Advanced air distribution: improving health and comfort while reducing energy use.

    PubMed

    Melikov, A K

    2016-02-01

    Indoor environment affects the health, comfort, and performance of building occupants. The energy used for heating, cooling, ventilating, and air conditioning of buildings is substantial. Ventilation based on total volume air distribution in spaces is not always an efficient way to provide high-quality indoor environments at the same time as low-energy consumption. Advanced air distribution, designed to supply clean air where, when, and as much as needed, makes it possible to efficiently achieve thermal comfort, control exposure to contaminants, provide high-quality air for breathing and minimizing the risk of airborne cross-infection while reducing energy use. This study justifies the need for improving the present air distribution design in occupied spaces, and in general the need for a paradigm shift from the design of collective environments to the design of individually controlled environments. The focus is on advanced air distribution in spaces, its guiding principles and its advantages and disadvantages. Examples of advanced air distribution solutions in spaces for different use, such as offices, hospital rooms, vehicle compartments, are presented. The potential of advanced air distribution, and individually controlled macro-environment in general, for achieving shared values, that is, improved health, comfort, and performance, energy saving, reduction of healthcare costs and improved well-being is demonstrated. Performance criteria are defined and further research in the field is outlined.

  2. Velocity and pressure distribution behind bodies in an air current

    NASA Technical Reports Server (NTRS)

    Betz, A

    1924-01-01

    The following experiments on the air flow behind bodies were made for the purpose of assisting in the explanation of the phenomena connected with air resistance. The first two series of experiments dealt with the phenomena behind a cylinder. The third series of experiments was carried out behind a streamlined strut.

  3. Clean Air Act Section 112(r) Inspection Guidance Distribution Memorandum

    EPA Pesticide Factsheets

    This memorandum issues and makes immediately effective the document, Guidance for Conducting Risk Management Program Inspections under Clean Air Act Section 112(r), which supersedes the 1999 document on auditing risk management plans/programs.

  4. Some Effects of Air Flow on the Penetration and Distribution of Oil Sprays

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Beardsley, E G

    1929-01-01

    Tests were made to determine the effects of air flow on the characteristics of fuel sprays from fuel injection valves. Curves and photographs are presented showing the airflow throughout the chamber and the effects of the air flow on the fuel spray characteristics. It was found that the moving air had little effect on the spray penetration except with the 0.006 inch orifice. The moving air did, however, affect the oil particles on the outside of the spray cone. After spray cut-off, the air flow rapidly distributed the atomized fuel throughout the spray chamber.

  5. Distribution and Room Air Mixing Risks to Retrofitted Homes

    SciTech Connect

    Burdick, A.

    2014-12-01

    Energy efficiency upgrades reduce heating and cooling loads on a house. With enough load reduction and if the HVAC system warrants replacement, the HVAC system is often upgraded with a more efficient, lower capacity system that meets the loads of the upgraded house. For a single-story house with ceiling supply air diffusers, ducts are often removed and upgraded. For houses with ducts that are embedded in walls, the cost of demolition precludes the replacement of ducts. The challenge with the use of existing ducts is that the reduced airflow creates a decreased throw at the supply registers, and the supply air and room air do not mix well, leading to potential thermal comfort complaints. This project investigates this retrofit scenario. The issues and solutions discussed here are relevant to all climate zones, with emphasis on climates that require cooling.

  6. Device for improved air and fuel distribution to a combustor

    SciTech Connect

    Laster, Walter R.; Schilp, Reinhard

    2016-05-31

    A flow conditioning device (30, 50, 70, 100, 150) for a can annular gas turbine engine, including a plurality of flow elements (32, 34, 52, 54, 72, 74, 102) disposed in a compressed air flow path (42, 60, 80, 114, 122) leading to a combustor (12), configured such that relative adjustment of at least one flow directing element (32, 52, 72, 110) with respect to an adjacent flow directing element (34, 54, 74, 112, 120) during operation of the gas turbine engine is effective to adjust a level of choking of the compressed air flow path (42, 60, 80, 114, 122).

  7. Distribution and Room Air Mixing Risks to Retrofitted Homes

    SciTech Connect

    Burdick, A.

    2014-12-01

    An energy efficiency upgrade reduces a home’s heating and cooling load. If the load reduction is great enough and the heating, ventilation, and air conditioning system warrants replacement, that system is often upgraded with a more efficient, lower capacity system that meets the load of the upgraded house. For a single-story house with floor supply air diffusers, the ducts often are removed and upgraded. For houses with ducts that are embedded in walls, the cost of demolition precludes the replacement of ducts. The challenge with the use of existing ducts is that the reduced airflow creates a decreased throw at the supply registers, and the supply air and room air do not mix well, leading to potential thermal comfort complaints. This project investigates this retrofit scenario. The issues and solutions discussed here are relevant to all climate zones, with emphasis on climates that require cooling. In this project, IBACOS performed load calculations for a two-story 1960s house and characterized duct sizes and layouts based on industry “rules of thumb” (Herk et al. 2014). The team performed duct-sizing calculations for unaltered ducts and post-retrofit airflows and examined airflow velocities and pressure changes with respect to various factors. The team then used a mocked-up duct and register setup to measure the characteristics of isothermal air—to reduce the effects of buoyancy from the observations—passing through the duct and leaving the register.

  8. A Distributed Simulation Facility to Support Human Factors Research in Advanced Air Transportation Technology

    NASA Technical Reports Server (NTRS)

    Amonlirdviman, Keith; Farley, Todd C.; Hansman, R. John, Jr.; Ladik, John F.; Sherer, Dana Z.

    1998-01-01

    A distributed real-time simulation of the civil air traffic environment developed to support human factors research in advanced air transportation technology is presented. The distributed environment is based on a custom simulation architecture designed for simplicity and flexibility in human experiments. Standard Internet protocols are used to create the distributed environment, linking all advanced cockpit simulator, all Air Traffic Control simulator, and a pseudo-aircraft control and simulation management station. The pseudo-aircraft control station also functions as a scenario design tool for coordinating human factors experiments. This station incorporates a pseudo-pilot interface designed to reduce workload for human operators piloting multiple aircraft simultaneously in real time. The application of this distributed simulation facility to support a study of the effect of shared information (via air-ground datalink) on pilot/controller shared situation awareness and re-route negotiation is also presented.

  9. Global Distribution and Variability of Surface Skin and Surface Air Temperatures as Depicted in the AIRS Version-6 Data Set

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Lee, Jae N.; Iredell, Lena

    2014-01-01

    In this presentation, we will briefly describe the significant improvements made in the AIRS Version-6 retrieval algorithm, especially as to how they affect retrieved surface skin and surface air temperatures. The global distribution of seasonal 1:30 AM and 1:30 PM local time 12 year climatologies of Ts,a will be presented for the first time. We will also present the spatial distribution of short term 12 year anomaly trends of Ts,a at 1:30 AM and 1:30 PM, as well as the spatial distribution of temporal correlations of Ts,a with the El Nino Index. It will be shown that there are significant differences between the behavior of 1:30 AM and 1:30 PM Ts,a anomalies in some arid land areas.

  10. Driving Parameters for Distributed and Centralized Air Transportation Architectures

    NASA Technical Reports Server (NTRS)

    Feron, Eric

    2001-01-01

    This report considers the problem of intersecting aircraft flows under decentralized conflict avoidance rules. Using an Eulerian standpoint (aircraft flow through a fixed control volume), new air traffic control models and scenarios are defined that enable the study of long-term airspace stability problems. Considering a class of two intersecting aircraft flows, it is shown that airspace stability, defined both in terms of safety and performance, is preserved under decentralized conflict resolution algorithms. Performance bounds are derived for the aircraft flow problem under different maneuver models. Besides analytical approaches, numerical examples are presented to test the theoretical results, as well as to generate some insight about the structure of the traffic flow after resolution. Considering more than two intersecting aircraft flows, simulations indicate that flow stability may not be guaranteed under simple conflict avoidance rules. Finally, a comparison is made with centralized strategies to conflict resolution.

  11. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  12. A method to optimize sampling locations for measuring indoor air distributions

    NASA Astrophysics Data System (ADS)

    Huang, Yan; Shen, Xiong; Li, Jianmin; Li, Bingye; Duan, Ran; Lin, Chao-Hsin; Liu, Junjie; Chen, Qingyan

    2015-02-01

    Indoor air distributions, such as the distributions of air temperature, air velocity, and contaminant concentrations, are very important to occupants' health and comfort in enclosed spaces. When point data is collected for interpolation to form field distributions, the sampling locations (the locations of the point sensors) have a significant effect on time invested, labor costs and measuring accuracy on field interpolation. This investigation compared two different sampling methods: the grid method and the gradient-based method, for determining sampling locations. The two methods were applied to obtain point air parameter data in an office room and in a section of an economy-class aircraft cabin. The point data obtained was then interpolated to form field distributions by the ordinary Kriging method. Our error analysis shows that the gradient-based sampling method has 32.6% smaller error of interpolation than the grid sampling method. We acquired the function between the interpolation errors and the sampling size (the number of sampling points). According to the function, the sampling size has an optimal value and the maximum sampling size can be determined by the sensor and system errors. This study recommends the gradient-based sampling method for measuring indoor air distributions.

  13. Size distributions of air showers accompanied with high energy gamma ray bundles observed at Mt. Chacaltaya

    NASA Technical Reports Server (NTRS)

    Matano, T.; Machida, M.; Tsuchima, I.; Kawasumi, N.; Honda, K.; Hashimoto, K.; Martinic, N.; Zapata, J.; Navia, C. E.; Aquirre, C.

    1985-01-01

    Size distributions of air showers accompanied with bundle of high energy gamma rays and/or large size bursts under emulsion chambers, to study the composition of primary cosmic rays and also characteristics of high energy nuclear interaction. Air showers initiated by particles with a large cross section of interaction may develop from narrow region of the atmosphere near the top. Starting levels of air showers by particles with smaller cross section fluctuate in wider region of the atmosphere. Air showers of extremely small size accompanied with bundle of gamma rays may be ones initiated by protons at lower level after penetrating deep atmosphere without interaction. It is determined that the relative size distribution according to the total energy of bundle of gamma rays and the total burst size observed under 15 cm lead absorber.

  14. An Automated Tool to Enable the Distributed Operations of Air Force Satellites

    DTIC Science & Technology

    2002-01-01

    OF AIR FORCE SATELLITES Jeffrey A. Fox Jean E. Fox Neil M. Baitinger David S. Gillen MOBILE FOUNDATIONS, INC 103 W. BROAD STREET SUITE 600...Enable the Distributed Operations of the Air Force Satellites Reason for request: After thoroughly reviewing this document, a Subject Matter Expert from... satellite operations or vulnerabilities; the SERS and COBRA systems that is the center of this study are old news and outlined in more detail in public

  15. Measured pressure distributions of large-angle cones in hypersonic flows of tetrafluoromethane, air, and helium

    NASA Technical Reports Server (NTRS)

    Jones, R. A.; Hunt, J. L.

    1973-01-01

    An experimental study of surface pressure distributions on a family of blunt and sharp large angle cones was made in hypersonic flows of helium, air, and tetrafluoromethane. The effective isentropic exponents of these flows were 1.67, 1.40, and 1.12. Thus, the effect of large shock density ratios such as might be encountered during planetary entry because of real-gas effects could be studied by comparing results in tetrafluoromethane with those in air and helium. It was found that shock density ratio had a large effect on both shock shape and pressure distribution. The differences in pressure distribution indicate that for atmospheric flight at high speed where real-gas effects produce large shock density ratios, large-angle cone vehicles can be expected to experience different trim angles of attack, drag coefficient, and lift-drag ratios than those for ground tests in air wind tunnels.

  16. On the feasibility of measuring urban air pollution by wireless distributed sensor networks.

    PubMed

    Moltchanov, Sharon; Levy, Ilan; Etzion, Yael; Lerner, Uri; Broday, David M; Fishbain, Barak

    2015-01-01

    Accurate evaluation of air pollution on human-wellbeing requires high-resolution measurements. Standard air quality monitoring stations provide accurate pollution levels but due to their sparse distribution they cannot capture the highly resolved spatial variations within cities. Similarly, dedicated field campaigns can use tens of measurement devices and obtain highly dense spatial coverage but normally deployment has been limited to short periods of no more than few weeks. Nowadays, advances in communication and sensory technologies enable the deployment of dense grids of wireless distributed air monitoring nodes, yet their sensor ability to capture the spatiotemporal pollutant variability at the sub-neighborhood scale has never been thoroughly tested. This study reports ambient measurements of gaseous air pollutants by a network of six wireless multi-sensor miniature nodes that have been deployed in three urban sites, about 150 m apart. We demonstrate the network's capability to capture spatiotemporal concentration variations at an exceptional fine resolution but highlight the need for a frequent in-situ calibration to maintain the consistency of some sensors. Accordingly, a procedure for a field calibration is proposed and shown to improve the system's performance. Overall, our results support the compatibility of wireless distributed sensor networks for measuring urban air pollution at a sub-neighborhood spatial resolution, which suits the requirement for highly spatiotemporal resolved measurements at the breathing-height when assessing exposure to urban air pollution.

  17. Experimental Evaluation of a Downsized Residential Air Distribution System: Comfort and Ventilation Effectiveness

    SciTech Connect

    Jalalzadeh-Azar, A. A.

    2007-01-01

    Good air mixing not only improves thermal comfort Human thermal comfort is the state of mind that expresses satisfaction with the surrounding environment, according to ASHRAE Standard 55. Achieving thermal comfort for most occupants of buildings or other enclosures is a goal of HVAC design engineers. but also enhances ventilation effectiveness by inducing uniform supply-air diffusion. In general, the performance of an air distribution system in terms of comfort and ventilation effectiveness is influenced by the supply air temperature, velocity, and flow rate, all of which are in part dictated by the HVAC (Heating Ventilation Air Conditioning) In the home or small office with a handful of computers, HVAC is more for human comfort than the machines. In large datacenters, a humidity-free room with a steady, cool temperature is essential for the trouble-free system as well as the thermal load attributes. Any potential deficiencies associated with these design variables can be further exacerbated by an improper proximity of the supply and return outlets with respect to the thermal and geometrical characteristics of the indoor space. For high-performance houses, the factors influencing air distribution performance take on an even greater significance because of a reduced supply-air design flow rate resulting from downsized HVAC systems.

  18. Evolution of soot size distribution in premixed ethylene/air and ethylene/benzene/air flames: Experimental and modeling study

    SciTech Connect

    Echavarria, Carlos A.; Sarofim, Adel F.; Lighty, JoAnn S.; D'Anna, Andrea

    2011-01-15

    The effect of benzene concentration in the initial fuel on the evolution of soot size distribution in ethylene/air and ethylene/benzene/air flat flames was characterized by experimental measurements and model predictions of size and number concentration within the flames. Experimentally, a scanning mobility particle sizer was used to allow spatially resolved and online measurements of particle concentration and sizes in the nanometer-size range. The model couples a detailed kinetic scheme with a discrete-sectional approach to follow the transition from gas-phase to nascent particles and their coagulation to larger soot particles. The evolution of soot size distribution (experimental and modeled) in pure ethylene and ethylene flames doped with benzene showed a typical nucleation-sized (since particles do not actually nucleate in the classical sense particle inception is often used in place of nucleation) mode close to the burner surface, and a bimodal behavior at greater height above burner (HAB). However, major features were distinguished between the data sets. The growth of nucleation and agglomeration-sized particles was faster for ethylene/benzene/air flames, evidenced by the earlier presence of bimodality in these flames. The most significant changes in size distribution were attributed to an increase in benzene concentration in the initial fuel. However, these changes were more evident for high temperature flames. In agreement with the experimental data, the model also predicted the decrease of nucleation-sized particles in the postflame region for ethylene flames doped with benzene. This behavior was associated with the decrease of soot precursors after the main oxidation zone of the flames. (author)

  19. Air bubble migration rates as a proxy for bubble pressure distribution in ice cores

    NASA Astrophysics Data System (ADS)

    Dadic, Ruzica; Schneebeli, Martin; Bertler, Nancy

    2015-04-01

    Air bubble migration can be used as a proxy to measure the pressure of individual bubbles and can help constrain the gradual close-off of gas bubbles and the resulting age distribution of gases in ice cores. The close-off depth of single bubbles can vary by tens of meters, which leads to a distribution of pressures for bubbles at a given depth. The age distribution of gases (along with gas-age-ice-age differences) decreases the resolution of the gas level reconstructions from ice cores and limits our ability to determine the phase relationship between gas and ice, and thus, the impact of rapid changes of greenhouse gases on surface temperatures. For times of rapid climate change, including the last 150 years, and abrupt climate changes further back in the past, knowledge of the age distribution of the gases trapped in air bubbles will enable us to refine estimates of atmospheric changes. When a temperature gradient is applied to gas bubbles in an ice sample, the bubbles migrate toward warmer ice. This motion is caused by sublimation from the warm wall and subsequent frost deposition on the cold wall. The migration rate depends on ice temperature and bubble pressure and is proportional to the temperature gradient. The spread in migration rates for bubbles in the same samples at given temperatures should therefore reflect the variations in bubble pressures within a sample. Air bubbles with higher pressures would have been closed off higher in the firn column and thus have had time to equilibrate with the surrounding ice pressure, while air bubbles that have been closed off recently would have pressures that are similar to todays atmospheric pressure above the firn column. For ice under pressures up to ~13-16 bar, the pressure distribution of bubbles from a single depth provides a record of the trapping function of air bubbles in the firn column for a certain time in the past. We will present laboratory experiments on air bubble migration, using Antarctic ice core

  20. Lateral distribution of radio emission and its dependence on air shower longitudinal development

    SciTech Connect

    Kalmykov, Nikolai N.; Konstantinov, Andrey A. E-mail: elan1980@mail.ru

    2012-12-01

    The lateral distribution function (LDF) of radio emission from an extensive air shower is considered as the basic signature sensitive to the shower longitudinal development and, as a consequence, to the mass of a primary cosmic ray's particle that initiated a given shower. The peculiarities in the LDF's structure as well as their sensitivity to the height of shower maximum are investigated and explained.

  1. Air Distribution Effectiveness for Residential Mechanical Ventilation: Simulation and Comparison of Normalized Exposures

    SciTech Connect

    Petithuguenin, T.D.P.; Sherman, M.H.

    2009-05-01

    The purpose of ventilation is to dilute indoor contaminants that an occupant is exposed to. Even when providing the same nominal rate of outdoor air, different ventilation systems may distribute air in different ways, affecting occupants' exposure to household contaminants. Exposure ultimately depends on the home being considered, on source disposition and strength, on occupants' behavior, on the ventilation strategy, and on operation of forced air heating and cooling systems. In any multi-zone environment dilution rates and source strengths may be different in every zone and change in time, resulting in exposure being tied to occupancy patterns.This paper will report on simulations that compare ventilation systems by assessing their impact on exposure by examining common house geometries, contaminant generation profiles, and occupancy scenarios. These simulations take into account the unsteady, occupancy-tied aspect of ventilation such as bathroom and kitchen exhaust fans. As most US homes have central HVAC systems, the simulation results will be used to make appropriate recommendations and adjustments for distribution and mixing to residential ventilation standards such as ASHRAE Standard 62.2.This paper will report on work being done to model multizone airflow systems that are unsteady and elaborate the concept of distribution matrix. It will examine several metrics for evaluating the effect of air distribution on exposure to pollutants, based on previous work by Sherman et al. (2006).

  2. Decentralized Control of an Unidirectional Air Traffic Flow with Flight Speed Distribution

    NASA Astrophysics Data System (ADS)

    Nakamura, Yoichi; Takeichi, Noboru

    A decentralized control of an air traffic flow is discussed. This study aims to clarify a fundamental strategy for an unidirectional air traffic flow control considering the flight speed distribution. It is assumed that the decentralized control is made based on airborne surveillance systems. The separation control between aircraft is made by turning, and 4 types of route composition are compared; the optimum route only, the optimum route with permissible range, the optimum route with subroutes determined by relative speed of each aircraft, and the optimum route with subroutes defined according to the optimum speed of each aircraft. Through numerical simulations, it is clarified that the route composition with a permissible range makes the air traffic flow safer and more efficient. It is also shown that the route design with multiple subroutes corresponding to speed ranges and the aircraft control using route intent information can considerably improve the safety and workload of the air traffic flow.

  3. Hadoop-Based Distributed System for Online Prediction of Air Pollution Based on Support Vector Machine

    NASA Astrophysics Data System (ADS)

    Ghaemi, Z.; Farnaghi, M.; Alimohammadi, A.

    2015-12-01

    The critical impact of air pollution on human health and environment in one hand and the complexity of pollutant concentration behavior in the other hand lead the scientists to look for advance techniques for monitoring and predicting the urban air quality. Additionally, recent developments in data measurement techniques have led to collection of various types of data about air quality. Such data is extremely voluminous and to be useful it must be processed at high velocity. Due to the complexity of big data analysis especially for dynamic applications, online forecasting of pollutant concentration trends within a reasonable processing time is still an open problem. The purpose of this paper is to present an online forecasting approach based on Support Vector Machine (SVM) to predict the air quality one day in advance. In order to overcome the computational requirements for large-scale data analysis, distributed computing based on the Hadoop platform has been employed to leverage the processing power of multiple processing units. The MapReduce programming model is adopted for massive parallel processing in this study. Based on the online algorithm and Hadoop framework, an online forecasting system is designed to predict the air pollution of Tehran for the next 24 hours. The results have been assessed on the basis of Processing Time and Efficiency. Quite accurate predictions of air pollutant indicator levels within an acceptable processing time prove that the presented approach is very suitable to tackle large scale air pollution prediction problems.

  4. [Spatiotemporal distribution of negative air ion concentration in urban area and related affecting factors: a review].

    PubMed

    Huang, Xiang-Hua; Wang, Jian; Zeng, Hong-Da; Chen, Guang-Shui; Zhong, Xian-Fang

    2013-06-01

    Negative air ion (NAI) concentration is an important indicator comprehensively reflecting air quality, and has significance to human beings living environment. This paper summarized the spatiotemporal distribution features of urban NAI concentration, and discussed the causes of these features based on the characteristics of the environmental factors in urban area and their effects on the physical and chemical processes of NAI. The temporal distribution of NAI concentration is mainly controlled by the periodic variation of solar radiation, while the spatial distribution of NAI concentration along the urban-rural gradient is mainly affected by the urban aerosol distribution, underlying surface characters, and urban heat island effect. The high NAI concentration in urban green area is related to the vegetation life activities and soil radiation, while the higher NAI concentration near the water environment is attributed to the water molecules that participate in the generation of NAI through a variety of ways. The other environmental factors can also affect the generation, life span, component, translocation, and distribution of NAI to some extent. To increase the urban green space and atmospheric humidity and to maintain the soil natural attributes of underlying surface could be the effective ways to increase the urban NAI concentration and improve the urban air quality.

  5. Effect of Moderate Air Flow on the Distribution of Fuel Sprays After Injection Cut-0ff

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Spencer, R C

    1935-01-01

    High-speed motion pictures were taken of fuel sprays with the NACA spray-photographic apparatus to study the distribution of the liquid fuel from the instant of injection cut-off until about 0.05 second later. The fuel was injected into a glass-walled chamber in which the air density was varied from 1 to 13 times atmospheric air density (0.0765 to 0.99 pound per cubic foot) and in which the air was at room temperature. The air in the chamber was set in motion by means of a fan, and was directed counter to the spray at velocities up to 27 feet per second. The injection pressure was varied from 2,000 to 6,000 pounds per square inch. A 0.20-inch single-orifice nozzle, an 0.008-inch single-orifice nozzle, a multiorifice nozzle, and an impinging-jets nozzle were used. The best distribution was obtained by the use of air and a high-dispersion nozzle.

  6. Experimental Evaluation of Indoor Air Distribution in High-Performance Residential Buildings: Part I. General Descriptions and Qualification Tests

    SciTech Connect

    Jalalzadeh, A. A.; Hancock, E.; Powell, D.

    2007-12-01

    The main objective of this project is to experimentally characterize an air distribution system in heating mode during a period of recovery from setback. The specific air distribution system under evaluation incorporates a high sidewall supply-air register/diffuser and a near-floor wall return air grille directly below. With this arrangement, the highest temperature difference between the supply air and the room can occur during the recovery period and create a favorable condition for stratification. The experimental approach will provide realistic input data and results for verification of computational fluid dynamics modeling.

  7. NASA Langley and NLR Research of Distributed Air/Ground Traffic Management

    NASA Technical Reports Server (NTRS)

    Ballin, Mark G.; Hoekstra, Jacco M.; Wing, David J.; Lohr, Gary W.

    2002-01-01

    Distributed Air/Ground Traffic Management (DAG-TM) is a concept of future air traffic operations that proposes to distribute information, decision-making authority, and responsibility among flight crews, the air traffic service provider, and aeronautical operational control organizations. This paper provides an overview and status of DAG-TM research at NASA Langley Research Center and the National Aerospace Laboratory of The Netherlands. Specific objectives of the research are to evaluate the technical and operational feasibility of the autonomous airborne component of DAG-TM, which is founded on the operational paradigm of free flight. The paper includes an overview of research approaches, the airborne technologies under development, and a summary of experimental investigations and findings to date. Although research is not yet complete, these findings indicate that free flight is feasible and will significantly enhance system capacity and safety. While free flight cannot alone resolve the complex issues faced by those modernizing the global airspace, it should be considered an essential part of a comprehensive air traffic management modernization activity.

  8. The EOSDIS Version 0 Distributed Active Archive Center for physical oceanography and air-sea interaction

    NASA Technical Reports Server (NTRS)

    Hilland, Jeffrey E.; Collins, Donald J.; Nichols, David A.

    1991-01-01

    The Distributed Active Archive Center (DAAC) at the Jet Propulsion Laboratory will support scientists specializing in physical oceanography and air-sea interaction. As part of the NASA Earth Observing System Data and Information System Version 0 the DAAC will build on existing capabilities to provide services for data product generation, archiving, distribution and management of information about data. To meet scientist's immediate needs for data, existing data sets from missions such as Seasat, Geosat, the NOAA series of satellites and the Global Positioning Satellite system will be distributed to investigators upon request. In 1992, ocean topography, wave and surface roughness data from the Topex/Poseidon radar altimeter mission will be archived and distributed. New data products will be derived from Topex/Poseidon and other sensor systems based on recommendations of the science community. In 1995, ocean wind field measurements from the NASA Scatterometer will be supported by the DAAC.

  9. Test Protocol for Room-to-Room Distribution of Outside Air by Residential Ventilation Systems

    SciTech Connect

    Barley, C. D.; Anderson, R.; Hendron, B.; Hancock, E.

    2007-12-01

    This test and analysis protocol has been developed as a practical approach for measuring outside air distribution in homes. It has been used successfully in field tests and has led to significant insights on ventilation design issues. Performance advantages of more sophisticated ventilation systems over simpler, less-costly designs have been verified, and specific problems, such as airflow short-circuiting, have been identified.

  10. Radial distributions of air plants: a comparison between epiphytes and mistletoes.

    PubMed

    Taylor, Amanda; Burns, Kevin

    2016-04-01

    Vertical gradients of light and humidity within forest canopies are major predictors of air plant distributions. Although this pattern was first recognized over 120 years ago, few studies have considered an additional axis of resource availability, which exists radially around the trunks of trees. Here, we explored the radial distributions of mistletoes and epiphytes in relation to gradients of light and humidity around the trunks of their south-temperate host trees. Additionally, we correlated microclimate occupancy with plant physiological responses to shifting resource availability. The radial distributions of mistletoes and epiphytes were highly directional, and related to the availability of light and humidity, respectively. Mistletoes oriented northwest, parallel to gradients of higher light intensity, temperature, and lower humidity. Comparatively, epiphytes oriented away from the sun to the southeast. The rate of CO2 assimilation in mistletoes and photochemical efficiency of epiphytes was highest in plants growing in higher light and humidity environments, respectively. However, the photosynthetic parameters of mistletoes suggest that they are also efficient at assimilating CO2 in lower light conditions. Our results bridge a key gap in our understanding of within-tree distributions of mistletoes and epiphytes, and raise further questions on the drivers of air plant distributions.

  11. The effect of body postures on the distribution of air gap thickness and contact area.

    PubMed

    Mert, Emel; Psikuta, Agnes; Bueno, Marie-Ange; Rossi, René M

    2017-02-01

    The heat and mass transfer in clothing is predominantly dependent on the thickness of air layer and the magnitude of contact area between the body and the garment. The air gap thickness and magnitude of the contact area can be affected by the posture of the human body. Therefore, in this study, the distribution of the air gap and the contact area were investigated for different body postures of a flexible manikin. In addition, the effect of the garment fit (regular and loose) and style (t-shirts, sweatpants, jacket and trousers) were analysed for the interaction between the body postures and the garment properties. A flexible manikin was scanned using a three-dimensional (3D) body scanning technique, and the scans were post-processed in dedicated software. The body posture had a strong effect on the air gap thickness and the contact area for regions where the garment had a certain distance from the body. Furthermore, a mathematical model was proposed to estimate the possible heat transfer coefficient for the observed air layers and their change with posture. The outcome of this study can be used to improve the design of the protective and functional garments and predict their effect on the human body.

  12. The effect of body postures on the distribution of air gap thickness and contact area

    NASA Astrophysics Data System (ADS)

    Mert, Emel; Psikuta, Agnes; Bueno, Marie-Ange; Rossi, René M.

    2017-02-01

    The heat and mass transfer in clothing is predominantly dependent on the thickness of air layer and the magnitude of contact area between the body and the garment. The air gap thickness and magnitude of the contact area can be affected by the posture of the human body. Therefore, in this study, the distribution of the air gap and the contact area were investigated for different body postures of a flexible manikin. In addition, the effect of the garment fit (regular and loose) and style (t-shirts, sweatpants, jacket and trousers) were analysed for the interaction between the body postures and the garment properties. A flexible manikin was scanned using a three-dimensional (3D) body scanning technique, and the scans were post-processed in dedicated software. The body posture had a strong effect on the air gap thickness and the contact area for regions where the garment had a certain distance from the body. Furthermore, a mathematical model was proposed to estimate the possible heat transfer coefficient for the observed air layers and their change with posture. The outcome of this study can be used to improve the design of the protective and functional garments and predict their effect on the human body.

  13. Field measurements of efficiency and duct retrofit effectiveness in residential forced air distributions systems

    SciTech Connect

    Jump, D.A.; Walker, I.S.; Modera, M.P.

    1996-08-01

    Forced air distribution systems can have a significant impact on the energy consumed in residences. It is common practice in U.S. residential buildings to place such duct systems outside the conditioned space. This results in the loss of energy by leakage and conduction to the surroundings. In order to estimate the magnitudes of these losses, 24 houses in the Sacramento, California, area were tested before and after duct retrofitting. The systems in these houses included conventional air conditioning, gas furnaces, electric furnaces and heat pumps. The retrofits consisted of sealing and insulating the duct systems. The field testing consisted of the following measurements: leakage of the house envelopes and their ductwork, flow through individual registers, duct air temperatures, ambient temperatures, surface areas of ducts, and HVAC equipment energy consumption. These data were used to calculate distribution system delivery efficiency as well as the overall efficiency of the distribution system including all interactions with building load and HVAC equipment. Analysis of the test results indicate an average increase in delivery efficiency from 64% to 76% and a corresponding average decrease in HVAC energy use of 18%. This paper summarizes the pre- and post-retrofit efficiency measurements to evaluate the retrofit effectiveness, and includes cost estimates for the duct retrofits. The impacts of leak sealing and insulating will be examined separately. 8 refs., 1 fig., 4 tabs.

  14. The Civil Air Patrol's role in medical countermeasure distribution in Michigan.

    PubMed

    Hankinson, Jennifer Lixey; Chamberlain, Kerry; Doctor, Suzanne M; Macqueen, Mary

    2011-12-01

    Michigan's unique geological features and highly variable climatic conditions make distribution of medical countermeasures during a public health emergency situation very challenging. To enhance distribution during these situations, the Civil Air Patrol (CAP) has agreed to support the state of Michigan by transporting life-saving medical countermeasures to remote areas of the state. The Michigan Strategic National Stockpile (MISNS) program has successfully developed, exercised, and enhanced its partnership with the CAP to include distribution of federally provided Strategic National Stockpile (SNS) assets. The CAP has proven to be a reliable and valuable partner, as well as a cost-effective and time-efficient means of transporting vital resources during a public health emergency.

  15. The Civil Air Patrol's Role in Medical Countermeasure Distribution in Michigan

    PubMed Central

    Hankinson, Jennifer Lixey; Doctor, Suzanne M.; Macqueen, Mary

    2011-01-01

    Michigan's unique geological features and highly variable climatic conditions make distribution of medical countermeasures during a public health emergency situation very challenging. To enhance distribution during these situations, the Civil Air Patrol (CAP) has agreed to support the state of Michigan by transporting life-saving medical countermeasures to remote areas of the state. The Michigan Strategic National Stockpile (MISNS) program has successfully developed, exercised, and enhanced its partnership with the CAP to include distribution of federally provided Strategic National Stockpile (SNS) assets. The CAP has proven to be a reliable and valuable partner, as well as a cost-effective and time-efficient means of transporting vital resources during a public health emergency. PMID:22060035

  16. Airborne lidar mapping of vertical ozone distributions in support of the 1990 Clean Air Act Amendments

    NASA Technical Reports Server (NTRS)

    Uthe, Edward E.; Nielsen, Norman B.; Livingston, John M.

    1992-01-01

    The 1990 Clean Air Act Amendments mandated attainment of the ozone standard established by the U.S. Environmental Protection Agency. Improved photochemical models validated by experimental data are needed to develop strategies for reducing near surface ozone concentrations downwind of urban and industrial centers. For more than 10 years, lidar has been used on large aircraft to provide unique information on ozone distributions in the atmosphere. However, compact airborne lidar systems are needed for operation on small aircraft of the type typically used on regional air quality investigations to collect data with which to develop and validate air quality models. Data presented in this paper will consist of a comparison between airborne differential absorption lidar (DIAL) and airborne in-situ ozone measurements. Also discussed are future plans to improve the airborne ultraviolet-DIAL for ozone and other gas observations and addition of a Fourier Transform Infrared (FTIR) emission spectrometer to investigate the effects of other gas species on vertical ozone distribution.

  17. Air temperature distribution over a debris covered glacier in the Nepalese Himalayas

    NASA Astrophysics Data System (ADS)

    Pellicciotti, Francesca; Petersen, Lene; Wicki, Simon; Carenzo, Marco; Immerzeel, Walter

    2013-04-01

    Air temperature is a key control in the exchange of energy fluxes at the glacier-atmosphere interface and also the main input variable in many of the melt models (both energy balance or temperature-index type of models) currently used to predict glacier melt across a variety of scales. The commonly used approach to derive distributed temperature inputs is extrapolation from point measurements, often located outside the glacier surface, with a lapse rate that is assumed to be constant in time and uniform in space. Previous work for debris free glaciers has shown that lapse rates depend on several factors such as katabatic wind, humidity and the presence of clouds and that they vary in space and time. A dominant control however seems to be the presence of katabatic wind. For debris covered glaciers, the driving forces of air temperature are likely to be different but little is known because of the scarcity of field observations. Few preliminary studies have suggested that there is a strong coupling between surface and 2 m air temperature, while strong katabatic wind does not develop on debris covered tongues. In this study, we examine the variability in air temperature and lapse rates, as well as its atmospheric controls under different meteorological settings for the debris covered Lirung Glacier in the Nepalese Himalayas. We use a recently collected data set of air and surface temperature at a network of locations on the glacier tongue during the pre-monsoon season and the entire monsoon season of 2012. Additionally an AWS was installed on the glacier allowing the collection of meteorological observations. We investigate differences in air temperature during different climatic conditions (monsoon vs. dry period, upvalley vs. downvalley wind, cloudy vs. clear-sky, etc.). We identify the main controls on temperature and discuss how appropriate the application of a temperature lapse rate is over a debris covered glacier by investigating the correlation between

  18. Effect of air-sea coupling on the frequency distribution of intense tropical cyclones over the northwestern Pacific

    NASA Astrophysics Data System (ADS)

    Ogata, Tomomichi; Mizuta, Ryo; Adachi, Yukimasa; Murakami, Hiroyuki; Ose, Tomoaki

    2015-12-01

    Effect of air-sea coupling on the frequency distribution of intense tropical cyclones (TCs) over the northwestern Pacific (NWP) region is investigated using an atmosphere and ocean coupled general circulation model (AOGCM). Monthly varying flux adjustment enables AOGCM to simulate both subseasonal air-sea interaction and realistic seasonal to interannual sea surface temperature (SST) variability. The maximum of intense TC distribution around 20-30°N in the AGCM shifts equatorward in the AOGCM due to the air-sea coupling. Hence, AOGCM reduces northward intense TC distribution bias seen in AGCM. Over the NWP, AOGCM-simulated SST variability is large around 20-30°N where the warm mixed layer becomes shallower rapidly. Active entrainment from subsurface water over this region causes stronger SST cooling, and hence, TC intensity decreases. These results suggest that air-sea coupling characterized by subsurface oceanic condition causes more realistic distribution of intense TCs over the NWP.

  19. Computational study of ion distributions at the air/liquid methanol interface

    SciTech Connect

    Sun, Xiuquan; Wick, Collin D.; Dang, Liem X.

    2011-06-16

    Molecular dynamic simulations with polarizable potentials were performed to systematically investigate the distribution of NaCl, NaBr, NaI, and SrCl2 at the air/liquid methanol interface. The density profiles indicated that there is no substantial enhancement of anions at the interface for the NaX systems in contrast to what was observed at the air/aqueous interface. The surfactant-like shape of the larger more polarizable halide anions is compensated by the surfactant nature of methanol itself. As a result, methanol hydroxy groups strongly interacted with one side of polarizable anions, in which their induced dipole points, and methanol methyl groups were more likely to be found near the positive pole of anion induced dipoles. Furthermore, salts were found to disrupt the surface structure of methanol, reducing the observed enhancement of methyl groups at the outer edge of the air/liquid methanol interface. With the additional of salts to methanol, the computed surface potentials increased, which is in contrast to what is observed in corresponding aqueous systems, where the surface potential decreases with the addition of salts. Both of these trends have been indirectly observed with experiments. This was found to be due to the propensity of anions for the air/water interface that is not present at the air/liquid methanol interface. This work was supported by the US Department of Energy Basic Energy Sciences' Chemical Sciences, Geosciences & Biosciences Division. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  20. Determination of variables for air distribution system with elastic valve for down-the-hole pneumatic hammer

    NASA Astrophysics Data System (ADS)

    Primychkin, AYu; Kondratenko, AS; Timonin, VV

    2017-02-01

    The air distribution system of down-the-hole pneumatic hammer 105 mm in diameter is updated to enhance drilling efficiency. The design model of the down-the-hole pneumatic hammer is constructed in ITI SimulationX environment. The basic variables of the air distribution system with an elastic valve are determined so that to ensure increased impact energy at the limited pre-impact velocity and the same machine size.

  1. Heat transfer and pressure distributions on hemisphere-cylinders in methane-air combustion products at Mach 7

    NASA Technical Reports Server (NTRS)

    Weinstein, I.

    1973-01-01

    Heat-transfer and pressure distributions were measured over the surfaces of three hemisphere-cylinder models tested at a nominal Mach number of 7 in the Langley 8-foot high-temperature structures tunnel which uses methane-air products of combustion as a test medium. The results showed that the heat-transfer and pressure distributions over the surface of the models were in good agreement with experimental data obtained in air and also with theoretical predictions.

  2. Experimental investigation of static ice refrigeration air conditioning system driven by distributed photovoltaic energy system

    NASA Astrophysics Data System (ADS)

    Xu, Y. F.; Li, M.; Luo, X.; Wang, Y. F.; Yu, Q. F.; Hassanien, R. H. E.

    2016-08-01

    The static ice refrigeration air conditioning system (SIRACS) driven by distributed photovoltaic energy system (DPES) was proposed and the test experiment have been investigated in this paper. Results revealed that system energy utilization efficiency is low because energy losses were high in ice making process of ice slide maker. So the immersed evaporator and co-integrated exchanger were suggested in system structure optimization analysis and the system COP was improved nearly 40%. At the same time, we have researched that ice thickness and ice super-cooled temperature changed along with time and the relationship between system COP and ice thickness was obtained.

  3. Lichen and bryophyte distribution on oak in London in relation to air pollution and bark acidity.

    PubMed

    Larsen, R S; Bell, J N B; James, P W; Chimonides, P J; Rumsey, F J; Tremper, A; Purvis, O W

    2007-03-01

    Epiphytic lichen and bryophyte distribution and frequency were investigated on the trunks of 145 young oak trees throughout London and surrounding counties, and compared with pollution levels and bark pH. Sixty-four lichen and four bryophyte species were recorded. Three major zones were identified: (i) two central regions with a few lichens, bryophytes absent; (ii) a surrounding region with a more diverse flora including a high cover of nitrophyte lichens; and (iii) an outer region, characterised by species absent from central London, including acidophytes. Nineteen species were correlated with nitrogen oxides and 16 with bark pH, suggesting that transport-related pollution and bark acidity influence lichen and bryophyte distribution in London today. Lichens and bryophytes are responding to factors that influence human and environmental health in London. Biomonitoring therefore has a practical role to assess the effects of measures to improve London's air quality.

  4. Proposal for the geometrical distribution of the air cherenkov detectors for CHARM

    NASA Astrophysics Data System (ADS)

    Morales Reyes, A. R.; Martínez Bravo, O. M.

    2011-04-01

    In this work we propose the geometrical distribution of the air Cherenkov detectors array (ACD), who will be part of the Cosmic High Altitude Radiation Monitor Observatory (CHARM) located at Pico de Orizaba Volcano at 4300 m.a.s.l.. The proposal is based on a library of events built with photons, protons and iron nuclei as primary particles by montecarlo simulations with energies from 1014 eV to 1017 eV. The goal of this detectors will be to determinate the nature of primary cosmic radiation, through measuring the height at which the secondary particles generated reach his maximum number or Xmax, this quantity is related with the effective cross section and finally with the atomic number A of the primary particles. In addition to this we proposed an energy estimator based on the study of the lateral distribution function of the generated events.

  5. CMAQ (Community Multi-Scale Air Quality) atmospheric distribution model adaptation to region of Hungary

    NASA Astrophysics Data System (ADS)

    Lázár, Dóra; Weidinger, Tamás

    2016-04-01

    For our days, it has become important to measure and predict the concentration of harmful atmospheric pollutants such as dust, aerosol particles of different size ranges, nitrogen compounds, and ozone. The Department of Meteorology at Eötvös Loránd University has been applying the WRF (Weather Research and Forecasting) model several years ago, which is suitable for weather forecasting tasks and provides input data for various environmental models (e.g. DNDC). By adapting the CMAQ (Community Multi-scale Air Quality) model we have designed a combined ambient air-meteorological model (WRF-CMAQ). In this research it is important to apply different emission databases and a background model describing the initial distribution of the pollutant. We used SMOKE (Sparse Matrix Operator Kernel Emissions) model for construction emission dataset from EMEP (European Monitoring and Evaluation Programme) inventories and GEOS-Chem model for initial and boundary conditions. Our model settings were CMAQ CB05 (Carbon Bond 2005) chemical mechanism with 108 x 108 km, 36 x 36 km and 12 x 12 km grids for regions of Europe, the Carpathian Basin and Hungary respectively. i) The structure of the model system, ii) a case study for Carpathian Basin (an anticyclonic weather situation at 21th September 2012) are presented. iii) Verification of ozone forecast has been provided based on the measurements of background air pollution stations. iv) Effects of model attributes (f.e. transition time, emission dataset, parameterizations) for the ozone forecast in Hungary are also investigated.

  6. Development of a model for activated sludge aeration systems: linking air supply, distribution, and demand.

    PubMed

    Schraa, Oliver; Rieger, Leiv; Alex, Jens

    2017-02-01

    During the design of a water resource recovery facility, it is becoming industry practice to use simulation software to assist with process design. Aeration is one of the key components of the activated sludge process, and is one of the most important aspects of modelling wastewater treatment systems. However, aeration systems are typically not modelled in detail in most wastewater treatment process modelling studies. A comprehensive dynamic aeration system model has been developed that captures both air supply and demand. The model includes sub-models for blowers, pipes, fittings, and valves. An extended diffuser model predicts both oxygen transfer efficiency within an aeration basin and pressure drop across the diffusers. The aeration system model allows engineers to analyse aeration systems as a whole to determine biological air requirements, blower performance, air distribution, control valve impacts, controller design and tuning, and energy costs. This enables engineers to trouble-shoot the entire aeration system including process, equipment and controls. It also allows much more realistic design of these highly complex systems.

  7. Distributed pheromone-based swarming control of unmanned air and ground vehicles for RSTA

    NASA Astrophysics Data System (ADS)

    Sauter, John A.; Mathews, Robert S.; Yinger, Andrew; Robinson, Joshua S.; Moody, John; Riddle, Stephanie

    2008-04-01

    The use of unmanned vehicles in Reconnaissance, Surveillance, and Target Acquisition (RSTA) applications has received considerable attention recently. Cooperating land and air vehicles can support multiple sensor modalities providing pervasive and ubiquitous broad area sensor coverage. However coordination of multiple air and land vehicles serving different mission objectives in a dynamic and complex environment is a challenging problem. Swarm intelligence algorithms, inspired by the mechanisms used in natural systems to coordinate the activities of many entities provide a promising alternative to traditional command and control approaches. This paper describes recent advances in a fully distributed digital pheromone algorithm that has demonstrated its effectiveness in managing the complexity of swarming unmanned systems. The results of a recent demonstration at NASA's Wallops Island of multiple Aerosonde Unmanned Air Vehicles (UAVs) and Pioneer Unmanned Ground Vehicles (UGVs) cooperating in a coordinated RSTA application are discussed. The vehicles were autonomously controlled by the onboard digital pheromone responding to the needs of the automatic target recognition algorithms. UAVs and UGVs controlled by the same pheromone algorithm self-organized to perform total area surveillance, automatic target detection, sensor cueing, and automatic target recognition with no central processing or control and minimal operator input. Complete autonomy adds several safety and fault tolerance requirements which were integrated into the basic pheromone framework. The adaptive algorithms demonstrated the ability to handle some unplanned hardware failures during the demonstration without any human intervention. The paper describes lessons learned and the next steps for this promising technology.

  8. Research on measurement-device-independent quantum key distribution based on an air-water channel

    NASA Astrophysics Data System (ADS)

    Zhou, Yuan-yuan; Zhou, Xue-jun; Xu, Hua-bin; Cheng, Kang

    2016-11-01

    A measurement-device-independent quantum key distribution (MDI-QKD) method with an air-water channel is researched. In this method, the underwater vehicle and satellite are the legitimate parties, and the third party is at the airwater interface in order to simplify the unilateral quantum channel to water or air. Considering the condition that both unilateral transmission distance and transmission loss coefficient are unequal, a perfect model of the asymmetric channel is built. The influence of asymmetric channel on system loss tolerance and secure transmission distance is analyzed. The simulation results show that with the increase of the channel's asymmetric degree, the system loss tolerance will descend, one transmission distance will be reduced while the other will be increased. When the asymmetric coefficient of channel is between 0.068 and 0.171, MDI-QKD can satisfy the demand of QKD with an air-water channel, namely the underwater transmission distance and atmospheric transmission distance are not less than 60 m and 12 km, respectively.

  9. Reconstruction of air-shower parameters for large-scale radio detectors using the lateral distribution

    NASA Astrophysics Data System (ADS)

    Kostunin, D.; Bezyazeekov, P. A.; Hiller, R.; Schröder, F. G.; Lenok, V.; Levinson, E.

    2016-02-01

    We investigate features of the lateral distribution function (LDF) of the radio signal emitted by cosmic ray air-showers with primary energies Epr > 0.1 EeV and its connection to air-shower parameters such as energy and shower maximum using CoREAS simulations made for the configuration of the Tunka-Rex antenna array. Taking into account all significant contributions to the total radio emission, such as by the geomagnetic effect, the charge excess, and the atmospheric refraction we parameterize the radio LDF. This parameterization is two-dimensional and has several free parameters. The large number of free parameters is not suitable for experiments of sparse arrays operating at low SNR (signal-to-noise ratios). Thus, exploiting symmetries, we decrease the number of free parameters based on the shower geometry and reduce the LDF to a simple one-dimensional function. The remaining parameters can be fit with a small number of points, i.e. as few as the signal from three antennas above detection threshold. Finally, we present a method for the reconstruction of air-shower parameters, in particular, energy and Xmax (shower maximum), which can be reached with a theoretical accuracy of better than 15% and 30 g/cm2, respectively.

  10. Intra-theater Air Mobility and Theater Distribution for the Joint Force Commander: Is the United States Central Command Model the Best

    DTIC Science & Technology

    2010-06-01

    that the CENTCOM model need not be universally applicable to other geographic commands in order to have an effective intra-theater air mobility ...and differences. The author demonstrated the universal applicability of CENTCOM‟s intra-theater air mobility and theater distribution model to other...AU/SAASS SCHOOL OF ADVANCED AIR AND SPACE STUDIES AIR UNIVERSITY INTRA-THEATER AIR MOBILITY AND THEATER DISTRIBUTION FOR THE JOINT FORCE

  11. Controlling the Distribution of Cold Water in Air Cooling Systems of Underground Mines

    NASA Astrophysics Data System (ADS)

    Szlązak, Nikodem; Obracaj, Dariusz; Swolkień, Justyna; Piergies, Kazimierz

    2016-12-01

    In Polish underground mines in which excavations are subjected to high heat load, central and group cooling systems based on indirect cooling units are implemented. Chilled water, referred to as cold water and produced in chillers, is distributed through a pipeline network to air coolers located in mining and development districts. The coolers are often moved to other locations and the pipeline network undergoes constant modification. In such a system, parameters of cold water in different branches of the pipeline network need to be controlled. The article presents the principles for controlling the cooling capacity of air coolers installed in an underground mine. Also, the authors propose automatic control of water flow rate in underground pipeline network and in particular coolers, depending on the temporary cooling load in the system. The principles of such a system, controlling cold water distribution, and the functions of its individual components are described. Finally, an example of an automatic control of water flow rate in a central cooling system currently implemented in a mine is presented.

  12. Distribution and Rate of Microbial Processes in an Ammonia-Loaded Air Filter Biofilm▿

    PubMed Central

    Juhler, Susanne; Revsbech, Niels Peter; Schramm, Andreas; Herrmann, Martina; Ottosen, Lars D. M.; Nielsen, Lars Peter

    2009-01-01

    The in situ activity and distribution of heterotrophic and nitrifying bacteria and their potential interactions were investigated in a full-scale, two-section, trickling filter designed for biological degradation of volatile organics and NH3 in ventilation air from pig farms. The filter biofilm was investigated by microsensor analysis, fluorescence in situ hybridization, quantitative PCR, and batch incubation activity measurements. In situ aerobic activity showed a significant decrease through the filter, while the distribution of ammonia-oxidizing bacteria (AOB) was highly skewed toward the filter outlet. Nitrite oxidation was not detected during most of the experimental period, and the AOB activity therefore resulted in NO2−, accumulation, with concentrations often exceeding 100 mM at the filter inlet. The restriction of AOB to the outlet section of the filter was explained by both competition with heterotrophic bacteria for O2 and inhibition by the protonated form of NO2−, HNO2. Product inhibition of AOB growth could explain why this type of filter tends to emit air with a rather constant NH3 concentration irrespective of variations in inlet concentration and airflow. PMID:19363071

  13. Spatial distribution of air temperature in Toruń (Central Poland) and its causes

    NASA Astrophysics Data System (ADS)

    Przybylak, Rajmund; Uscka-Kowalkowska, Joanna; Araźny, Andrzej; Kejna, Marek; Kunz, Mieczysław; Maszewski, Rafał

    2017-01-01

    In this article, the results of an investigation into the air temperature pattern and development (including the urban heat island (UHI)) in Toruń (central Poland) are presented. For the analysis, daily mean temperature (Ti) as well as daily maximum (Tmax) and minimum (Tmin) temperatures for 2012 gathered for 20 sites, evenly distributed in the area of city, have been taken as source data. Additionally, in order to provide more extensive characteristics of the diversity of the air temperature in the study area, the diurnal temperature range (DTR) and the number of the so-called characteristic days were calculated as well. The impact of weather conditions (cloudiness and wind speed), atmospheric circulation, urban morphological parameters and land cover on the UHI in the study area was investigated. In Toruń, according to the present study, the average UHI intensity in 2012 was equal to 1.0 °C. The rise of cloudiness and wind speed led to a decrease of the magnitude of the UHI. Generally, in most cases, anticyclonic situations favour increased thermal contrast between rural and city areas, particularly in summer. Warm western circulation types significantly reduced temperature differences in the western side of the city and enlarged them in the eastern side of the city. Eastern cold types also have a similar influence on air temperature differences. Positive and statistically significant correlations have been found between the percentage of built-up areas (sealing factor) and air temperature. Conversely, sky view factor (SVF) reveals negative correlations which are statistically significant only for Tmin.

  14. Carbon Monoxide Distribution over Peninsular Malaysia from the Atmospheric Infrared Sounder (AIRS)

    NASA Astrophysics Data System (ADS)

    Rajab, Jaso M.; MatJafri, M. Z.; Lim, H. S.; Abdullah, K.

    2009-07-01

    The Atmospheric Infrared Sounder (AIRS) onboard NASA's Aqua satellite. It daily coverage of ˜70% of the planet represents a significant evolutionary advance in satellite traces gas remote sensing. AIRS, the part of a large international investment to upgrade the operational meteorological satellite systems, is first of the new generation of meteorological advanced sounders for operational and research use, Providing New Insights into Weather and Climate for the 21st Century. Carbon monoxide (CO) is a ubiquitous, an indoor and outdoor air pollutant, is not a significant greenhouse gas as it absorbs little infrared radiation from the Earth. However, it does have an influence on oxidization in the atmosphere through interaction with hydroxyl radicals (OH), which also react with methane, halocarbons and tropospheric ozone. It produced by the incomplete combustion of fossil fuels and biomass burning, and that it has a role as a smog. The aim of this investigation is to study the (CO) carbon monoxide distribution over Peninsular Malaysia. The land use map of the Peninsular Malaysia was conducted by using CO total column amount, obtained from AIRS data, the map & data was processed and analyzed by using Photoshop & SigmaPlot 11.0 programs and compared for timing of various (day time) (28 August 2005 & 29 August 2007) for both direct comparison and the comparison using the same a priori profile, the CO concentrations in 28/8/2005 higher. The CO maps were generated using Kriging Interpolation technique. This interpolation technique produced high correlation coefficient, R2 and low root mean square error, RMS for CO. This study provided useful information for influence change of CO concentration on varies temperature.

  15. Aerodynamic size distribution of suspended particulate matter in the ambient air in the city of Cleveland, Ohio

    NASA Technical Reports Server (NTRS)

    Leibecki, H. F.; King, R. B.; Fordyce, J. S.

    1974-01-01

    The City of Cleveland Division of Air Pollution Control and NASA jointly investigated the chemical and physical characteristics of the suspended particulate matter in Cleveland, and as part of the program, measurements of the particle size distribution of ambient air samples at five urban locations during August and September 1972 were made using high-volume cascade impactions. The distributions were evaluated for lognormality, and the mass median diameters were compared between locations and as a function of resultant wind direction. Junge-type distributions were consistent with dirty continental aerosols. About two-thirds of the suspended particulate matter observed in Cleveland is less than 7 microns in diameter.

  16. Exterior Distribution of Utility Steam, High Temperature Water (HTW), Chilled Water (CHW), Fuel Gas, and Compressed Air.

    DTIC Science & Technology

    1981-07-01

    A~r-AIIO 408 NAVAL FACILITIES ENGINEERING COMMAND ALEXANDRIA VA FIG 13/11 EXTERIOR DISTRIBUTION OF UTILITY STEAM. HIGH TEMPERATURE WATER -ETC(U...PUBUC RELEASE JOF EXTERIOR DISTRIBUTION OF O UTILITY STEAM, HIGH 0 TEMPERATURE WATER (HTW), , CHILLED WATER (CHW), FUEL GAS, AND COMPRESSED AIR DESIGN...distribution piping system for supplying utility steam, high temperature water (HTW), chilled water (CRW), cooling or condensing water, fuel gas, and

  17. Particle size distributions of currently used pesticides in ambient air of an agricultural Mediterranean area

    NASA Astrophysics Data System (ADS)

    Coscollà, Clara; Muñoz, Amalia; Borrás, Esther; Vera, Teresa; Ródenas, Milagros; Yusà, Vicent

    2014-10-01

    This work presents first data on the particle size distribution of 16 pesticides currently used in Mediterranean agriculture in the atmosphere. Particulate matter air samples were collected using a cascade impactor distributed into four size fractions in a rural site of Valencia Region, during July to September in 2012 and from May to July in 2013. A total of 16 pesticides were detected, including six fungicides, seven insecticides and three herbicides. The total concentrations in the particulate phase (TSP: Total Suspended Particulate) ranged from 3.5 to 383.1 pg m-3. Most of the pesticides (such as carbendazim, tebuconazole, chlorpyrifos-ethyl and chlorpyrifos-methyl) were accumulated in the ultrafine-fine (<1 μm) and coarse (2.5-10 μm) particle size fractions. Others like omethoate, dimethoate and malathion were presented only in the ultrafine-fine size fraction (<1 μm). Finally, diuron, diphenylamine and terbuthylazine-desethyl-2-OH also show a bimodal distribution but mainly in the coarse size fractions.

  18. Qualitative gas temperature distribution in positive DC glow corona using spectral image processing in atmospheric air

    NASA Astrophysics Data System (ADS)

    Matsumoto, Takao; Inada, Yoichi; Shimizu, Daisuke; Izawa, Yasuji; Nishijima, Kiyoto

    2015-01-01

    An experimental method of determining a qualitative two-dimensional image of the gas temperature in stationary atmospheric nonthermal plasma by spectral image processing was presented. In the experiment, a steady-state glow corona discharge was generated by applying a positive DC voltage to a rod-plane electrode in synthetic air. The changes in the gas temperature distribution due to the amplitude of applied voltage and the ambient gas pressure were investigated. Spectral images of a positive DC glow corona were taken using a gated ICCD camera with ultranarrow band-pass filters, corresponding to the head and tail of a N2 second positive system band (0-2). The qualitative gas temperature was obtained from the emission intensity ratio between the head and tail of the N2 second positive system band (0-2). From the results, we confirmed that the gas temperature and its distribution of a positive DC glow corona increased with increasing applied voltage. In particular, just before the sparkover voltage, a distinctly high temperature region was formed in the positive DC glow at the tip of the rod electrode. In addition, the gas temperature decreased and its distribution spread diffusely with decreasing ambient gas pressure.

  19. LASE Measurements of Water Vapor, Aerosol, and Cloud Distributions in Saharan Air Layers and Tropical Disturbances

    NASA Technical Reports Server (NTRS)

    Ismail, Syed; Ferrare, Richard A.; Browell, Edward V.; Kooi, Susan A.; Dunion, Jason P.; Heymsfield, Gerry; Notari, Anthony; Butler, Carolyn F.; Burton, Sharon; Fenn, Marta; Krishnamurti, T. N.; Chen, Gao; Anderson, Bruce

    2010-01-01

    LASE (Lidar Atmospheric Sensing Experiment) on-board the NASA DC-8 measured high resolution profiles of water vapor and aerosols, and cloud distributions in 14 flights over the eastern North Atlantic during the NAMMA (NASA African Monsoon Multidisciplinary Analyses) field experiment. These measurements were used to study African easterly waves (AEWs), tropical cyclones (TCs), and the Saharan Air Layer(s) (SAL). Interactions between the SAL and tropical air were observed during the early stages of the TC development. These LASE measurements represent the first simultaneous water vapor and aerosol lidar measurements to study the SAL and its impact on AEWs and TCs. Examples of profile measurements of aerosol scattering ratios, aerosol extinction coefficients, aerosol optical thickness, water vapor mixing ratios, RH, and temperature are presented to illustrate their characteristics in SAL, convection, and clear air regions. LASE data suggest that the SAL suppresses low-altitude convection at the convection-SAL interface region. Mid-level convection associated with the AEW and transport are likely responsible for high water vapor content observed in the southern regions of the SAL on August 20, 2008. This interaction is responsible for the transfer of about 7 x 10(exp 15) J latent heat energy within a day to the SAL. Measurements of lidar extinction-to-backscatter ratios in the range 36+/-5 to 45+/-5 are within the range of measurements from other lidar measurements of dust. LASE aerosol extinction and water vapor profiles are validated by comparison with onboard in situ aerosol measurements and GPS dropsonde water vapor soundings, respectively.

  20. Particulate air pollution in six Asian cities: Spatial and temporal distributions, and associated sources

    NASA Astrophysics Data System (ADS)

    Kim Oanh, N. T.; Upadhyay, N.; Zhuang, Y.-H.; Hao, Z.-P.; Murthy, D. V. S.; Lestari, P.; Villarin, J. T.; Chengchua, K.; Co, H. X.; Dung, N. T.; Lindgren, E. S.

    A monitoring program for particulate matter pollution was designed and implemented in six Asian cities/metropolitan regions including Bandung, Bangkok, Beijing, Chennai, Manila, and Hanoi, within the framework of the Asian regional air pollution research network (AIRPET), coordinated by the Asian Institute of Technology. As uniform the methodologies as possible were intended with an established QA/QC procedure in order to produce reliable and comparable data by the network. The monsoon effects and seasonal changes in the sources/activities require long-term monitoring to understand the nature of air pollution in the cities. During phase 1 (2001-2004) of the AIRPET around 3000 fine and coarse particulate matter samples were collected from characteristic urban sites, which provide insight into temporal and spatial variations of PM in the cities. In all six cities, the levels of PM 10 and PM 2.5 were found high, especially during the dry season, which frequently exceeded the corresponding 24 h US EPA standards at a number of sites. The average concentrations of PM 2.5 and PM 10 in the cities ranged, respectively, 44-168 and 54-262 μg m -3 in the dry season, and 18-104 and 33-180 μg m -3 in the wet season. Spatial and temporal distribution of PM in each city, the ratios of PM 2.5 to PM 10, and the reconstructed mass were presented which provide useful information on possible PM sources in the cities. The findings help to understand the nature of particulate matter air pollution problems in the selected cities/metropolitan regions.

  1. Spatial and temporal distribution of pesticide air concentrations in Canadian agricultural regions

    NASA Astrophysics Data System (ADS)

    Yao, Yuan; Tuduri, Ludovic; Harner, Tom; Blanchard, Pierrette; Waite, Don; Poissant, Laurier; Murphy, Clair; Belzer, Wayne; Aulagnier, Fabien; Li, Yi-Fan; Sverko, Ed

    The Canadian Pesticide Air Sampling Campaign was initiated in 2003 to assess atmospheric levels of pesticides, especially currently used pesticides (CUPs) in agricultural regions across Canada. In the first campaign during the spring to summer of 2003, over 40 pesticides were detected. The spatial and temporal distribution of pesticides in the Canadian atmosphere was shown to reflect the pesticide usage in each region. Several herbicides including triallate, bromoxynil, MCPA, 2,4-D, dicamba, trifluralin and ethalfluralin were detected at highest levels at Bratt's Lake, SK in the prairie region. Strong relationships between air concentrations and dry depositions were observed at this site. Although no application occurred in the Canadian Prairies in 2003, high air concentrations of lindane ( γ-hexachlorocyclohexane) were still observed at Bratt's Lake and Hafford, SK. Two fungicides (chlorothalonil and metalaxyl) and two insecticides (endosulfan and carbofuran) were measured at highest levels at Kensington, PEI. Maximum concentrations of chlorpyrifos and metolachlor were found at St. Anicet, QC. The southern Ontario site, Egbert showed highest concentration of alachlor. Malathion was detected at the highest level at the west coast site, Abbotsford, BC. In case of legacy chlorinated insecticides, high concentrations of DDT, DDE and dieldrin were detected in British Columbia while α-HCH and HCB were found to be fairly uniform across the country. Chlordane was detected in Ontario, Québec and Prince Edward Island. This study demonstrates that the sources for the observed atmospheric occurrence of pesticides include local current pesticide application, volatilization of pesticide residues from soil and atmospheric transport. In many instances, these data represent the first measurements for certain pesticides in a given part of Canada.

  2. ADS-B within a Multi-Aircraft Simulation for Distributed Air-Ground Traffic Management

    NASA Technical Reports Server (NTRS)

    Barhydt, Richard; Palmer, Michael T.; Chung, William W.; Loveness, Ghyrn W.

    2004-01-01

    Automatic Dependent Surveillance Broadcast (ADS-B) is an enabling technology for NASA s Distributed Air-Ground Traffic Management (DAG-TM) concept. DAG-TM has the goal of significantly increasing capacity within the National Airspace System, while maintaining or improving safety. Under DAG-TM, aircraft exchange state and intent information over ADS-B with other aircraft and ground stations. This information supports various surveillance functions including conflict detection and resolution, scheduling, and conformance monitoring. To conduct more rigorous concept feasibility studies, NASA Langley Research Center s PC-based Air Traffic Operations Simulation models a 1090 MHz ADS-B communication structure, based on industry standards for message content, range, and reception probability. The current ADS-B model reflects a mature operating environment and message interference effects are limited to Mode S transponder replies and ADS-B squitters. This model was recently evaluated in a Joint DAG-TM Air/Ground Coordination Experiment with NASA Ames Research Center. Message probability of reception vs. range was lower at higher traffic levels. The highest message collision probability occurred near the meter fix serving as the confluence for two arrival streams. Even the highest traffic level encountered in the experiment was significantly less than the industry standard "LA Basin 2020" scenario. Future studies will account for Mode A and C message interference (a major effect in several industry studies) and will include Mode A and C aircraft in the simulation, thereby increasing the total traffic level. These changes will support ongoing enhancements to separation assurance functions that focus on accommodating longer ADS-B information update intervals.

  3. Distribution and air-sea fluxes of carbon dioxide on the Chukchi Sea shelf

    NASA Astrophysics Data System (ADS)

    Pipko, I. I.; Pugach, S. P.; Repina, I. A.; Dudarev, O. V.; Charkin, A. N.; Semiletov, I. P.

    2015-12-01

    This article presents the results of long-term studies of the dynamics of carbonate parameters and air-sea carbon dioxide fluxes on the Chukchi Sea shelf during the summer. As a result of the interaction of physical and biological factors, the surface waters on the west of Chukchi Sea were undersaturated with carbon dioxide when compared with atmospheric air; the partial pressure of CO2 varied in the range from 134 to 359 μatm. The average value of CO2 flux in the Chukchi Sea per unit area varied in the range from-2.4 to-22.0 mmol /(m2 day), which is significantly higher than the average value of CO2 flux in the World Ocean. It has been estimated that the minimal mass of C absorbed by the surface of Chukchi Sea from the atmosphere during ice-free season is 13 × 1012 g; a great part of this carbon is transported to the deeper layers of sea and isolated from the atmosphere for a long period of time. The studies of the carbonate system of the Chukchi Sea, especially of its western part, will provide some new data on the fluxes of carbon dioxide in the Arctic Ocean and their changes. Our analysis can be used for an interpretation of the satellite assessment of CO2 fluxes and dissolved CO2 distribution in the upper layers of the ocean.

  4. LASE Measurements of Water Vapor, Aerosol, and Cloud Distributions in Saharan Air Layers and Tropical Disturbances

    NASA Technical Reports Server (NTRS)

    Ismail, Syed; Ferrare, Richard; Browell, Edward; Kooi, Susan; Notari, Anthony; Butler, Carolyn; Burton, Sharon; Fenn, Marta; Krishnamurti, T. N.; Dunion, Jason; Heymsfield, Gerry; Anderson, Bruce

    2008-01-01

    LASE (Lidar Atmospheric Sensing Experiment) onboard the NASA DC-8 was used to measure high resolution profiles of water vapor and aerosols, and cloud distributions in 14 flights over the eastern Atlantic region during the NAMMA (NASA African Monsoon Multidisciplinary Analyses) field experiment, which was conducted from August 15 to September 12, 2006. These measurements were made in conjunction with flights designed to study African Easterly Waves (AEW), Tropical Disturbances (TD), and Saharan Aerosol Layers (SALs) as well as flights performed in clear air and convective regions. As a consequence of their unique radiative properties and dynamics, SAL layers have a significant influence in the development of organized convection associated with TD. Interactions of the SAL with tropical air during early stages of the development of TD were observed. These LASE measurements represent the first simultaneous water vapor and aerosol lidar measurements to study the SAL and its impact on TDs and hurricanes. Seven AEWs were studied and four of these evolved into tropical storms and three did not. Three out of the four tropical storms evolved into hurricanes.

  5. Optimization and investigation of the effect of velocity distribution of air curtains on the performance of food refrigerated display cabinets

    NASA Astrophysics Data System (ADS)

    Wu, XueHong; Chang, ZhiJuan; Ma, QiuYang; Lu, YanLi; Yin, XueMei

    2016-08-01

    This paper focuses on improving the performance of the vertical open refrigerated display cabinets (VORDC) by optimizing the structure of deflector, which is affected by inlet velocity and velocity distribution of air curtains. The results show that the temperature of products located at the front and at the rear reduces as the increases of inlet velocity of air curtains. The increase of the inlet velocity of air curtains can strengthen the disturbance inside the VORDC, and also decrease the temperature of products inside the VORDC; the increase of the outer velocity of air curtain will exacerbate the disturbance outside the VORDC and decrease air curtain's performance. The present study can provide a theoretical foundation for the design of VORDC.

  6. Air quality impacts of distributed power generation in the South Coast Air Basin of California 1: Scenario development and modeling analysis

    NASA Astrophysics Data System (ADS)

    Rodriguez, M. A.; Carreras-Sospedra, M.; Medrano, M.; Brouwer, J.; Samuelsen, G. S.; Dabdub, D.

    Distributed generation (DG) is generally defined as the operation of many small stationary power generators throughout an urban air basin. Although DG has the potential to supply a significant portion of the increased power demands in California and the rest of the United States, it may lead to increased levels of in-basin pollutants and adversely impact urban air quality. This study focuses on two main objectives: (1) the systematic characterization of DG installation in urban air basins, and (2) the simulation of potential air quality impacts using a state-of-the-art three-dimensional computational model. A general and systematic approach is devised to construct five realistic and 21 spanning scenarios of DG implementation in the South Coast Air Basin (SoCAB) of California. Realistic scenarios reflect an anticipated level of DG deployment in the SoCAB by the year 2010. Spanning scenarios are developed to determine the potential impacts of unexpected outcomes. Realistic implementations of DG in the SoCAB result in small differences in ozone and particulate matter concentrations in the basin compared to the baseline simulations. The baseline accounts for population increase, but does not consider any future emissions control measures. Model results for spanning implementations with extra high DG market penetration show that domain-wide ozone peak concentrations increase significantly. Also, air quality impacts of spanning implementations when DG operate during a 6-h period are larger than when the same amount of emissions are introduced during a 24-h period.

  7. Simulation of effects of direction and air flow speed on temperature distribution in the room covered by various roof materials

    NASA Astrophysics Data System (ADS)

    Sukanto, H.; Budiana, E. P.; Putra, B. H. H.

    2016-03-01

    The objective of this research is to get a comparison of the distribution of the room temperature by using three materials, namely plastic-rubber composite, clay, and asbestos. The simulation used Ansys Fluent to get the temperature distribution. There were two conditions in this simulations, first the air passing beside the room and second the air passing in front of the room. Each condition will be varied with the air speed of 1 m/s, 2 m/s, 3 m/s, 4 m/s, 5 m/s for each material used. There are three heat transfers in this simulation, namely radiation, convection, and conduction. Based on the ANSI/ ASHRAE Standard 55-2004, the results of the simulation showed that the best temperature distribution was the roof of plastic-rubber composites.

  8. Characteristics and source distribution of air pollution in winter in Qingdao, eastern China.

    PubMed

    Li, Lingyu; Yan, Dongyun; Xu, Shaohui; Huang, Mingli; Wang, Xiaoxia; Xie, Shaodong

    2017-05-01

    To characterize air pollution and determine its source distribution in Qingdao, Shandong Province, we analyzed hourly national air quality monitoring network data of normal pollutants at nine sites from 1 November 2015 to 31 January 2016. The average hourly concentrations of particulate matter <2.5 μm (PM2.5) and <10 μm (PM10), SO2, NO2, 8-h O3, and CO in Qingdao were 83, 129, 39, 41, and 41 μg m(-3), and 1.243 mg m(-3), respectively. During the polluted period, 19-26 December 2015, 29 December 2015 to 4 January 2016, and 14-17 January 2016, the mean 24-h PM2.5 concentration was 168 μg m(-3) with maximum of 311 μg m(-3). PM2.5 was the main pollutant to contribute to the pollution during the above time. Heavier pollution and higher contributions of secondary formation to PM2.5 concentration were observed in December and January. Pollution pathways and source distribution were investigated using the HYbrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model and potential source contribution function (PSCF) and concentration weighted trajectory (CWT) analyses. A cluster from the west, originating in Shanxi, southern Hebei, and west Shandong Provinces, accounted for 44.1% of the total air masses, had a mean PM2.5 concentration of 134.9 μg m(-3) and 73.9% trajectories polluted. This area contributed the most to PM2.5 and PM10 levels, >160 and 300 μg m(-3), respectively. In addition, primary crustal aerosols from desert of Inner Mongolia, and coarse and fine marine aerosols from the Yellow Sea contributed to ambient PM. The ambient pollutant concentrations in Qingdao in winter could be attributed to local primary emissions (e.g., coal combustion, vehicular, domestic and industrial emissions), secondary formation, and long distance transmission of emissions.

  9. Influence of air diffusion on the OH radicals and atomic O distribution in an atmospheric Ar (bio)plasma jet

    NASA Astrophysics Data System (ADS)

    Nikiforov, A.; Li, L.; Britun, N.; Snyders, R.; Vanraes, P.; Leys, C.

    2014-02-01

    Treatment of samples with plasmas in biomedical applications often occurs in ambient air. Admixing air into the discharge region may severely affect the formation and destruction of the generated oxidative species. Little is known about the effects of air diffusion on the spatial distribution of OH radicals and O atoms in the afterglow of atmospheric-pressure plasma jets. In our work, these effects are investigated by performing and comparing measurements in ambient air with measurements in a controlled argon atmosphere without the admixture of air, for an argon plasma jet. The spatial distribution of OH is detected by means of laser-induced fluorescence diagnostics (LIF), whereas two-photon laser-induced fluorescence (TALIF) is used for the detection of atomic O. The spatially resolved OH LIF and O TALIF show that, due to the air admixture effects, the reactive species are only concentrated in the vicinity of the central streamline of the afterglow of the jet, with a characteristic discharge diameter of ˜1.5 mm. It is shown that air diffusion has a key role in the recombination loss mechanisms of OH radicals and atomic O especially in the far afterglow region, starting up to ˜4 mm from the nozzle outlet at a low water/oxygen concentration. Furthermore, air diffusion enhances OH and O production in the core of the plasma. The higher density of active species in the discharge in ambient air is likely due to a higher electron density and a more effective electron impact dissociation of H2O and O2 caused by the increasing electrical field, when the discharge is operated in ambient air.

  10. Evaluating the Spatial Distribution of Toxic Air Contaminants in Multiple Ecosystem Indicators in the Sierra Nevada-Southern Cascades

    NASA Astrophysics Data System (ADS)

    Nanus, L.; Simonich, S. L.; Rocchio, J.; Flanagan, C.

    2013-12-01

    Toxic air contaminants originating from agricultural areas of the Central Valley in California threaten vulnerable sensitive receptors including surface water, vegetation, snow, sediments, fish, and amphibians in the Sierra Nevada-Southern Cascades region. The spatial distribution of toxic air contaminants in different ecosystem indicators depends on variation in atmospheric concentrations and deposition, and variation in air toxics accumulation in ecosystems. The spatial distribution of organic air toxics and mercury at over 330 unique sampling locations and sample types over two decades (1990-2009) in the Sierra Nevada-Southern Cascades region were compiled and maps were developed to further understand spatial patterns and linkages between air toxics deposition and ecological effects. Potential ecosystem impacts in the Sierra Nevada-Southern Cascades region include bioaccumulation of air toxics in both aquatic and terrestrial ecosystems, reproductive disruption, and immune suppression. The most sensitive ecological end points in the region that are affected by bioaccumulation of toxic air contaminants are fish. Mercury was detected in all fish and approximately 6% exceeded human consumption thresholds. Organic air toxics were also detected in fish yielding variable spatial patterns. For amphibians, which are sensitive to pesticide exposure and potential immune suppression, increasing trends in current and historic use pesticides are observed from north to south across the region. In other indicators, such as vegetation, pesticide concentrations in lichen increase with increasing elevation. Current and historic use pesticides and mercury were also observed in snowpack at high elevations in the study area. This study shows spatial patterns in toxic air contaminants, evaluates associated risks to sensitive receptors, and identifies data gaps. Future research on atmospheric modeling and information on sources is needed in order to predict which ecosystems are the

  11. Effect of the Trendelenburg position on the distribution of arterial air emboli in dogs

    NASA Technical Reports Server (NTRS)

    Butler, Bruce D.; Laine, Glen A.; Leiman, Basil C.; Warters, Dave; Kurusz, Mark

    1988-01-01

    The effect of Trendelenburg position (TP) on the distribution of arterial air emboli in dogs was examined in a two-part investigation. In the first part, the effects of the bubble size and the vessel angle on the bubble velocity and the direction of flow were investigated in vitro, using a simulated carotid artery preparation. It was found that larger bubbles increased in velocity in the same direction as the blood flow at 0-, 10-, and 30-deg vessel angles, and decreased when the vessel was positioned at 90 deg. Smaller bubbles did not change velocity from 0 to 30 deg, but acted to increase the velocity, in the same direction as the flood flow, at 90 deg. The second series of experiments examined the effect of 0 to 30 deg TP on carotid-artery distribution of gas bubbles injected into the left ventricle or ascending aorta of anesthetized dogs. It was found that, regardless of the degree of the TP, the bubbles passed into the carotid artery simultaneously with the passage into the abdominal aorta. It is concluded that the TP does not prevent arterial bubbles from reaching the brain.

  12. Directions in US Air Force space power energy generation and distribution technology

    NASA Astrophysics Data System (ADS)

    Reinhardt, Kitt; Keener, Dave; Schuller, Mike

    1997-01-01

    Recent trends in the development of high efficiency, light-weight, reliable and cost-effective space power technologies needed to support the development of near-term, next-generation government and commercial satellites will be discussed. Significant advancements in light-weight and reduced volume electrical power system (EPS) components are required to enable the design of future smallsats with power requirements of less than 1000 W to monster-sats having projected power demands ranging from 10-50 kW for civilian and military communications and space based radar needs. For these missions increased emphasis is placed on reducing total satellite mass to enable use of smaller, less costly, and easier to deploy launch vehicles. In support of these requirements a complement of power generation, power management and distribution, and energy storage technologies are under development at the Air Force Phillips Laboratory Space and Missiles Technology Directorate. Specific technologies presented in this paper include high efficiency multijunction solar cells, low-cost thin-film solar cells, ultra light-weight flexible solar arrays, solar electric thermal converters, and high-voltage (70-130 V) and high-efficiency power management and distribution (PMAD) electronics. The projected impact of EPS subsystem performance on existing, near-term, and next-generation 10-50 kW military satellites will be discussed, along with technical issues and status of EPS component development.

  13. Spatiotemporal variability of submicrometer particle number size distributions in an air quality management district.

    PubMed

    Young, Li-Hao; Wang, Yi-Ting; Hsu, Hung-Chieh; Lin, Ching-Hui; Liou, Yi-Jyun; Lai, Ying-Chung; Lin, Yun-Hua; Chang, Wei-Lun; Chiang, Hung-Lung; Cheng, Man-Ting

    2012-05-15

    First measurements of ambient 10-1000 nm particle number concentrations (N(TOT)) and size distributions were made at an urban, coastal, mountain and downwind site within the Central Taiwan Air Quality Management District during a cold and a warm period. The primary objectives were to characterize the spatial and temporal variability of the size-fractionated submicrometer particles and their relationships with copollutants and meteorological parameters. The results show that the ultrafine particles (<100 nm) are the major contributor to the N(TOT). The mean N(TOT) was highest at the urban site, whereas lower and comparable at the three other sites. Although the mean N(TOT) at each site showed insignificant differences between study periods, their diurnal patterns and size distribution modal characteristics were modestly to substantially different between study sites. Correlation analyses of time-resolved collocated aerosol, copollutants and meteorological data suggest that the observed variability is largely attributable to the local traffic and to a lesser extent photochemistry and SO(2) possibly from combustion sources or regional transport. Despite sharing a common traffic source, the ultrafine particles were poorly correlated with the accumulation particles (100-1000 nm), between which the latter showed strong positive correlation with the PM(2.5) and PM(10). Overall, the N(TOT) and size distributions show modest spatial heterogeneity and strong diurnal variability. In addition, the ultrafine particles have variable sources or meteorology-dependent formation processes within the study area. The results imply that single-site measurements of PM(2.5), PM(10) or N(TOT) alone and without discriminating particle sizes would be inadequate for exposure and impact assessment of submicrometer particle numbers in a region of diverse environments.

  14. Distributions of indoor and outdoor air pollutants in Rio de Janeiro, Brazil: Implications to indoor air quality in bayside offices

    SciTech Connect

    Brickus, L.S.R.; Cardoso, J.N.; De Aquino Neto, F.R.

    1998-11-15

    An indoor air quality survey was conducted on selected floors in an office building in Rio de Janeiro, Brazil. The sampling sites comprised four offices located along the same vertical column of the building. Measurements were made on alternate days at the same time of day during working hours. Indoor and outdoor samples were collected for volatile organic compounds (VOC), formaldehyde, total suspended particles (TSP), nicotine, and ultraviolet respirable suspended particles (UV-RSP). Compared with formaldehyde, acetaldehyde was found in higher concentrations outdoors because of the use of ethanol or ethanol/gasoline blends as alternative fuels for automobiles in Brazil. The TVOC concentration ranged from 304.3 to 1679.9 {micro}g/m{sup 3} indoors and 22 to 643.2 {micro}g/m{sup 3} outdoors. The indoor level of total volatile organic compounds (TVOC) was especially high in the 13th floor office. A minor contribution from environmental tobacco smoke was found. TSP values exceed the Brazilian Legislation in both outdoor and indoor air in the office located near the street traffic. For all pollutants evaluated 1/0 ratios appeared to be higher in offices located on the top of the building. The characterization of indoor air pollutants allowed the suggestion of several remediation measures to improve air quality in the offices.

  15. Modeling the global levels and distribution of polychlorinated biphenyls in air under a climate change scenario.

    PubMed

    Lamon, Lara; Von Waldow, Harald; Macleod, Matthew; Scheringer, Martin; Marcomini, Antonio; Hungerbühler, Konrad

    2009-08-01

    We used the multimedia chemical fate model BETR Global to evaluate changes in the global distribution of two polychlorinated biphenyls, PCB 28 and PCB 153, under the influence of climate change. This was achieved by defining two climate scenarios based on results from a general circulation model, one scenario representing the last twenty years of the 20th century (20CE scenario) and another representing the global climate under the assumption of strong future greenhouse gas emissions (A2 scenario). The two climate scenarios are defined by four groups of environmental parameters: (1) temperature in the planetary boundary layer and the free atmosphere, (2) wind speeds and directions in the atmosphere, (3) current velocities and directions in the surface mixed layer of the oceans, and (4) rate and geographical pattern of precipitation. As a fifth parameter in our scenarios, we considerthe effect of temperature on primary volatilization emissions of PCBs. Comparison of dynamic model results using environmental parameters from the 20CE scenario against historical long-term monitoring data of concentrations of PCB 28 and PCB 153 in air from 16 different sites shows satisfactory agreement between modeled and measured PCBs concentrations. The 20CE scenario and A2 scenario were compared using steady-state calculations and assuming the same source characteristics of PCBs. Temperature differences between the two scenarios is the dominant factor that determines the difference in PCB concentrations in air. The higher temperatures in the A2 scenario drive increased primary and secondary volatilization emissions of PCBs, and enhance transport from temperate regions to the Arctic. The largest relative increase in concentrations of both PCB congeners in air under the A2 scenario occurs in the high Arctic and the remote Pacific Ocean. Generally, higher wind speeds under the A2 scenario result in more efficient intercontinental transport of PCB 28 and PCB 153 compared to the 20CE

  16. NOx Emission Reduction by the Optimization of the Primary Air Distribution in the 235Mwe CFB Boiler

    NASA Astrophysics Data System (ADS)

    Mirek, P.; Czakiert, T.; Nowak, W.

    The article presents the results of experimental studies conducted on a large-scale 235 MWe CFB (Circulating Fluidized Bed) boiler, in which the primary air distribution system was modified. The modification was connected with the change of internal geometry of primary air channels as well as internal space of plenum chamber. The obtained results have shown, that the optimization of primary air flow has a great influence on the intensity of the combustion process and the temperature distribution along the height of combustion chamber. As a result, the NOx emission has been reduced by up to ten percent and the temperature profile in the combustion chamber has been revealed to be more uniform.

  17. Release and distribution of Lilioceris cheni (Coleoptera: Chrysomelidae), a biological control agent of air potato (Dioscorea bulbilfera: Dioscoreaceae), in Florida

    Technology Transfer Automated Retrieval System (TEKTRAN)

    From 2012 to 2015, 429,668 Lilioceris cheni Gressit and Kimoto (Coleoptera: Chrysomelidae) were released in Florida for biological control of air potato [Dioscorea bulbilfera L. (Dioscoreaceae)]. The spatial distribution of releases was highly aggregated, with several areas of high density releases ...

  18. Pollution level, phase distribution and health risk of polycyclic aromatic hydrocarbons in indoor air at public places of Hangzhou, China.

    PubMed

    Lu, Hao; Zhu, Lizhong; Chen, Shuguang

    2008-04-01

    PAHs pollution survey in air of public places was conducted in Hangzhou, China. The most serious PAHs pollution was observed in indoor air of shopping centers and the slightest was in train stations. The molecular weight of chrysene (MW 228) appeared to be the dividing line for the PAHs with a larger or smaller distribution in the vapor or particulate phase. Concentrations of 15 PAHs on PM2.5 accounted for 71.3% of total particulate PAHs, and followed by PM2.5-10 fraction (17.6%) and >PM10 fraction (11.1%). In shopping centers and supermarkets, emission of 2-4 rings PAHs occurred from indoor sources, whereas 5-6 rings PAHs predominantly originated from transport of outdoor air. In temples, PAHs in indoor air mainly originated from incense burning. Health risks associated with the inhalation of PAHs were assessed, and naphthalene made the greatest contribution (62.4%) to the total health risks.

  19. Air mass distribution and the heterogeneity of the climate change signal in the Hudson Bay/Foxe Basin region, Canada

    NASA Astrophysics Data System (ADS)

    Leung, Andrew; Gough, William

    2016-08-01

    The linkage between changes in air mass distribution and temperature trends from 1971 to 2010 is explored in the Hudson Bay/Foxe Basin region. Statistically significant temperature increases were found of varying spatial and temporal magnitude. Concurrent statistically significant changes in air mass frequency at the same locations were also detected, particularly in the declining frequency of dry polar (DP) air. These two sets of changes were found to be linked, and we thus conclude that the heterogeneity of the climatic warming signal in the region is at least partially the result of a fundamental shift in the concurrent air mass frequency in addition to global and regional changes in radiative forcing due to increases in long-lived greenhouse gases.

  20. Determining particle size distributions in the inhalable size range for wood dust collected by air samplers.

    PubMed

    Harper, Martin; Muller, Brian S; Bartolucci, Al

    2002-10-01

    In the absence of methods for determining particle size distributions in the inhalable size range with good discrimination, the samples collected by personal air sampling devices can only be characterized by their total mass. This parameter gives no information regarding the size distribution of the aerosol or the size-selection characteristics of different samplers in field use conditions. A method is described where the particles collected by a sampler are removed, suspended, and re-deposited on a mixed cellulose-ester filter, and examined by optical microscopy to determine particle aerodynamic diameters. This method is particularly appropriate to wood dust particles which are generally large and close to rectangular prisms in shape. Over 200 wood dust samples have been collected in three different wood-products industries, using the traditional closed-face polystyrene/acrylonitrile cassette, the Institute of Occupational Medicine inhalable sampler, and the Button sampler developed by the University of Cincinnati. A portion of these samples has been analyzed to determine the limitations of this method. Extensive quality control measures are being developed to improve the robustness of the procedure, and preliminary results suggest the method has an accuracy similar to that required of National Institute for Occupational Safety and Health (NIOSH) methods. The results should provide valuable insights into the collection characteristics of the samplers and the impact of these characteristics on comparison of sampler results to present and potential future limit values. The NIOSH Deep South Education and Research Center has a focus on research into hazards of the forestry and associated wood-products industry, and it is hoped to expand this activity in the future.

  1. Radon gas distribution in natural gas processing facilities and workplace air environment.

    PubMed

    Al-Masri, M S; Shwiekani, R

    2008-04-01

    Evaluation was made of the distribution of radon gas and radiation exposure rates in the four main natural gas treatment facilities in Syria. The results showed that radiation exposure rates at contact of all equipment were within the natural levels (0.09-0.1 microSvh(-1)) except for the reflex pumps where a dose rate value of 3 microSvh(-1) was recorded. Radon concentrations in Syrian natural gas varied between 15.4 Bq m(-3) and 1141 Bq m(-3); natural gas associated with oil production was found to contain higher concentrations than the non-associated natural gas. In addition, radon concentrations were higher in the central processing facilities than the wellheads; these high levels are due to pressurizing and concentrating processes that enhance radon gas and its decay products. Moreover, the lowest 222Rn concentration was in the natural gas fraction used for producing sulfur; a value of 80 Bq m(-3) was observed. On the other hand, maximum radon gas and its decay product concentrations in workplace air environments were found to be relatively high in the gas analysis laboratories; a value of 458 Bq m(-3) was observed. However, all reported levels in the workplaces in the four main stations were below the action level set by IAEA for chronic exposure situations involving radon, which is 1000 Bq m(-3).

  2. Acoustical properties of air-saturated porous material with periodically distributed dead-end pores.

    PubMed

    Leclaire, P; Umnova, O; Dupont, T; Panneton, R

    2015-04-01

    A theoretical and numerical study of the sound propagation in air-saturated porous media with straight main pores bearing lateral cavities (dead-ends) is presented. The lateral cavities are located at "nodes" periodically spaced along each main pore. The effect of periodicity in the distribution of the lateral cavities is studied, and the low frequency limit valid for the closely spaced dead-ends is considered separately. It is shown that the absorption coefficient and transmission loss are influenced by the viscous and thermal losses in the main pores as well as their perforation rate. The presence of long or short dead-ends significantly alters the acoustical properties of the material and can increase significantly the absorption at low frequencies (a few hundred hertz). These depend strongly on the geometry (diameter and length) of the dead-ends, on their number per node, and on the periodicity along the propagation axis. These effects are primarily due to low sound speed in the main pores and to thermal losses in the dead-end pores. The model predictions are compared with experimental results. Possible designs of materials of a few cm thicknesses displaying enhanced low frequency absorption at a few hundred hertz are proposed.

  3. The seasonal vertical distribution of the Saharan Air Layer and its modulation by the wind

    NASA Astrophysics Data System (ADS)

    Tsamalis, C.; Chédin, A.; Pelon, J.; Capelle, V.

    2013-11-01

    The Saharan Air Layer (SAL) influences large-scale environment from western Africa to eastern tropical Americas, by carrying large amounts of dust aerosols. However, the vertical distribution of the SAL is not well established due to a lack of systematic measurements away from the continents. This can be overcome by using the observations of the spaceborne lidar CALIOP onboard the satellite CALIPSO. By taking advantage of CALIOP's capability to distinguish dust aerosols from other types of aerosols through depolarization, the seasonal vertical distribution of the SAL is analyzed at 1° horizontal resolution over a period of 5 yr (June 2006-May 2011). This study shows that SAL can be identified all year round displaying a clear seasonal cycle. It occurs higher in altitude and more northern in latitude during summer than during winter, but with similar latitudinal extent near Africa for the four seasons. The south border of the SAL is determined by the Intertropical Convergence Zone (ITCZ), which either prohibits dust layers from penetrating it or reduces significantly the number of dust layers seen within or south of it, as over the eastern tropical Atlantic. Spatially, near Africa, it is found between 5° S and 15° N in winter and 5-30° N in summer. Towards the Americas (50° W), SAL is observed between 5° S and 10° N in winter and 10-25° N in summer. During spring and fall, SAL is found between the position of winter and summer not only spatially but also vertically. In winter, SAL occurs in the altitude range 0-3 km off western Africa, decreasing to 0-2 km close to South America. During summer, SAL is found to be thicker and higher near Africa at 1-5 km, reducing to 0-2 km in the Gulf of Mexico, farther west than during the other seasons. SAL is confined to one layer, of which the mean altitude decreases with westward transport by 13 m deg-1 during winter and 28 m deg-1, after 30° W, during summer. Its mean geometrical thickness decreases by 25 m deg-1 in

  4. Estimation of air void and aggregate spatial distributions in concrete under uniaxial compression using computer tomography scanning

    SciTech Connect

    Wong, R.C.K. . E-mail: rckwong@ucalgary.ca; Chau, K.T.

    2005-08-01

    Normal- and high-strength concrete cylinders (designed compressive strengths of 30 and 90 MPa at 28 days) were loaded uniaxially. Computer tomography (CT) scanning technique was used to examine the evolution of air voids inside the specimens at various loading states up to 85% of the ultimate compressive strength. The normal-strength concrete yielded a very different behaviour in changes of internal microstructure as compared to the high-strength concrete. There were significant instances of nucleation and growth in air voids in the normal-strength concrete specimen, while the increase in air voids in the high-strength concrete specimen was insignificant. In addition, CT images were used for mapping the aggregate spatial distributions within the specimens. No intrinsic anisotropy was detected from the fabric analysis.

  5. Retrievals of Stratocumulus Drop Size Distributions from Airborne Multiangle SpectroPolarimetric Imager (AirMSPI) Observations

    NASA Astrophysics Data System (ADS)

    Garay, Michael; Diner, David

    2013-04-01

    Data from the Polarization and Directionality of the Earth's Reflectances (POLDER) satellite instruments have been used for many years to retrieve information about the mean and dispersion of cloud droplet size distributions. The position of specific features in scattering angle space corresponding to supernumerary bows in the polarized phase function are extremely sensitive to the effective radius of the cloud droplets, while the amplitude of these features carries information on the dispersion of droplet sizes. Due to the relatively coarse angular sampling of POLDER multiangular views (~10°), variations in scattering angle from pixel to pixel are used instead to obtain fine sampling in angle, which requires the clouds to be homogeneous on scales of 150 km × 150 km in the POLDER retrievals. We will describe high-resolution polarimetric observations of marine stratocumulus clouds made off the coast of California by the AirMSPI instrument, which files on the NASA ER-2 high-altitude research aircraft. AirMSPI is an eight-band pushbroom camera mounted on a controllable gimbal, which allows the instrument to make observations over a ±67° range in the direction of aircraft motion. AirMSPI's eight spectral bands are 355, 380, 445, 470, 555, 660, 865, and 935 nm in the ultraviolet to the near-infrared range. Polarimetric observations are made in the 470, 660, and 865 nm bands using photoelastic modulators (PEMs) to rapidly vary the orientation of the linearly polarized component (Stokes Q and U) of the incoming light, enabling measurement of the relative ratios of these parameters to intensity from individual pixels. From the nominal 20 km altitude of the aircraft, AirMSPI can provide imagery mapped to a 25 m grid using a sweep scanning strategy in which the gimbal controlling the pointing of the instrument is slewed back and forth along the direction of aircraft motion. The AirMSPI observations of the polarimetric features of marine stratocumulus clouds have been

  6. Vertical cavity surface emitting laser based on gallium arsenide/air-gap distributed Bragg reflectors: From concept to working devices

    NASA Astrophysics Data System (ADS)

    Mo, Qingwei

    Vertical-cavity surface-emitting lasers (VCSELs) have created new opportunities in optoelectronics. However, VCSELs have so far been commercialized mainly for operation at 0.85 mum, despite their potential importance at other wavelengths, such as 1.3 mum and 1.55 mum. The limitations at these longer wavelengths come from material characteristics, such as a low contrast ratio in mirror materials, lower mirror reflectivity, and smaller optical gain for longer wavelength materials versus AlGaAs/GaAs quantum wells. A similar situation, insufficient gain relative to the cavity loss, existed in the past for shorter wavelength VCSELs before high quality epitaxial mirrors were developed. Semiconductor/air-gap Distributed Bragg Reflectors (DBRs) are attractive due to their high index contrast, which leads to a high reflectivity, wide stop band and low optical loss mirror with a small number of pairs. This concept is ready to be integrated into material systems other than AlGaAs/GaAs, which is studied in this work. Therefore, the impact of these DBRs can be extended into both visible and longer infrared wavelengths as a solution to the trade-off between DBR and active region materials. Air-gap DBRs can also be used as basic building blocks of micro-opto-electro-mechanical systems (MOEMS). The high Q microcavity formed by the air-gap DBRs also provide a good platform for microcavity physics study. Air-gap DBRs are modeled using the transmission matrix formulae of the Maxwell equations. A comparison to existing DBR technology shows the great advantage and potential that the air-gap DBR possesses. Two types of air-gap are proposed and developed. The first one includes multiple GaAs/air pairs while the second one combines a single air-gap with metal and dielectric mirrors. New device structures and processing designs, especially an all-epitaxial lateral current and optical confinement technique, are carried out to incorporate air-gap DBRs into VCSEL structures. The first VCSEL

  7. Impacts of Photovoltaic Power Plant Sitings and Distributed Solar Panels on Meteorology and Air Quality in Central California

    NASA Astrophysics Data System (ADS)

    Bastien, L. A.; Jin, L.; Brown, N. J.

    2012-12-01

    California's electric utility companies are required to use renewable energy to produce 20% of their power by 2010 and 33% by 2020. A main source of the power will be solar energy because photovoltaic technologies have advanced so much that large scale installations are being built and will be built in the future with even greater capacity. Rather than being a large emission source, these plants affect the ambient environment through albedo changes and by emission reductions associated with not burning fossil fuels to generate the same amount of electricity. Like conventional power plants, their impact on local meteorology and air quality depends on the specific technology, ambient atmospheric conditions, and the spatial location of the plant. Also, as solar panels on commercial and residential rooftops become even more common, the effect of distributed photovoltaic panels on meteorology and air quality is likely to become significant. In this study, we use the Weather Research and Forecasting (WRF) model and the Community Multiscale Air Quality (CMAQ) model at high resolution of 4 km x 4 km over several 5-day high-ozone episodes of the summer 2000 to assess the impact of photovoltaic panels on meteorology and air quality in Central California. We investigate the effect of locating a 1.0 Giga watt solar plant in different locations and the effect of distributed rooftop photovoltaic panels in major Californian cities, with a focus on peak and 8-hour average ozone and 24-hour average PM2.5.

  8. Organochlorine pesticides (OCPs) in the Indus River catchment area, Pakistan: Status, soil-air exchange and black carbon mediated distribution.

    PubMed

    Bajwa, Anam; Ali, Usman; Mahmood, Adeel; Chaudhry, Muhammad Jamshed Iqbal; Syed, Jabir Hussain; Li, Jun; Zhang, Gan; Jones, Kevin C; Malik, Riffat Naseem

    2016-06-01

    Organochlorine pesticides (OCPs) were investigated in passive air and soil samples from the catchment area of the Indus River, Pakistan. ∑15OCPs ranged between 0.68 and 13.47 ng g(-1) in soil and 375.1-1975 pg m-(3) in air. HCHs and DDTs were more prevalent in soil and air compartments. Composition profile indicated that β-HCH and p,p'-DDE were the dominant of all metabolites among HCHs and DDTs respectively. Moreover, fBC and fTOC were assessed and evaluated their potential role in the distribution status of OCPs. The fTOC and fBC ranged between 0.77 and 2.43 and 0.04-0.30% respectively in soil. Regression analysis showed the strong influence of fBC than fTOC on the distribution of OCPs in the Indus River catchment area soil. Equilibrium status was observed for β-HCH, δ-HCH, p,p'-DDD, o,p'-DDT, TC, HCB and Heptachlor with ff ranged between 0.3 and 0.59 while assessing the soil-air exchange of OCPs.

  9. [Microorganisms distribution in the aerosol of a manned sealed cabin and the effect of artificial air ionization on this process].

    PubMed

    Zaloguev, S N; Anisimov, B V; Viktorov, A N; Gorshkov, V P

    1981-01-01

    In a manned enclosure the distribution of bacterial aerosol with respect to the size of particles is bimodal. Artificial bipolar ionization of the air may decrease the content of relatively large particles of bacterial aerosol, leaving particles with 2.0-0.6/micrometer in diameter in predominance. These properties of the bacterial aerosol structure may be of importance in the prophylaxis of aerogenic infections of cosmonauts.

  10. Distribution and air-sea exchange of mercury (Hg) in polluted marine environments

    NASA Astrophysics Data System (ADS)

    Bagnato, E.; Sprovieri, M.; Bitetto, M.; Bonsignore, M.; Calabrese, S.; Di Stefano, V.; Oliveri, E.; Parello, F.; Mazzola, S.

    2012-04-01

    Mercury (Hg) is emitted in the atmosphere by anthropogenic and natural sources, these last accounting for one third of the total emissions. Since the pre-industrial age, the atmospheric deposition of mercury have increased notably, while ocean emissions have doubled owing to the re-emission of anthropogenic mercury. Exchange between the atmosphere and ocean plays an important role in cycling and transport of mercury. We present the preliminary results from a study on the distribution and evasion flux of mercury at the atmosphere/sea interface in the Augusta basin (SE Sicily, southern Italy), a semi-enclosed marine area affected by a high degree of contamination (heavy metals and PHA) due to the oil refineries placed inside its commercial harbor. It seems that the intense industrial activity of the past have lead to an high Hg pollution in the bottom sediments of the basin, whose concentrations are far from the background mercury value found in most of the Sicily Strait sediments. The release of mercury into the harbor seawater and its dispersion by diffusion from sediments to the surface, make the Augusta basin a potential supplier of mercury both to the Mediterranean Sea and the atmosphere. Based on these considerations, mercury concentration and flux at the air-sea interface of the Bay have been estimated using a real-time atomic adsorption spectrometer (LUMEX - RA915+) and an home-made accumulation chamber, respectively. Estimated Total Atmospheric Mercury (TGM) concentrations during the cruise on the bay were in the range of 1-3 ng · m-3, with a mean value of about 1.4 ng · m-3. These data well fit with the background Hgatm concentration values detected on the land (1-2 ng · m-3, this work), and, more in general, with the background atmospheric TGM levels found in the North Hemisphere (1.5-1.7 ng · m-3)a. Besides, our measurements are in the range of those reported for other important polluted marine areas. The mercury evasion flux at the air-sea interface

  11. Effect of the fuel/air mixture concentration distribution on the dynamics of a low-emission combustor

    NASA Astrophysics Data System (ADS)

    Vasil'ev, V. D.; Bulysova, L. A.; Berne, A. L.

    2016-12-01

    An investigation of the low-emission premixed combustion in a conventional combustor is presented. The main problem encountered is the pressure fluctuations induced under certain operating conditions of the combustor. Low-emission operation of the combustor was studied numerically and experimentally. The effect of the concentration distribution at the outlet from the mixing zone on the position and macrostructure of the flame and the combustion stability was investigated at various excess air factors corresponding various GTU loads. It is demonstrated that, for a given excess air factor, there exists the concentration profile such that the interaction of the flame front with dominating flow structures results in excitation of the low-frequency combustion instability. The factors responsible for high-amplitude pressure fluctuations are examined. It is shown that the combustion stability can be estimated using a calculated criterion. Its direct relationship with pressure fluctuation amplitudes is described. The effect of the air pressure in a combustor on the flame macrostructure and the combustion stability was studied. It is shown that an increase in the combustor pressure has no considerable effect on the processes in the combustor. However, a change in the chemical reaction rates affects the stable combustion boundary. In this case, the combustion stability is achieved with higher nonuniformity of the fuel-air mixture entering the combustion zone. The experimental boundaries of stable combustion envelope at an air pressure of 350 and 1500 kPa are presented.

  12. A Multi-Operator Simulation for Investigation of Distributed Air Traffic Management Concepts

    NASA Technical Reports Server (NTRS)

    Peters, Mark E.; Ballin, Mark G.; Sakosky, John S.

    2002-01-01

    This paper discusses the current development of an air traffic operations simulation that supports feasibility research for advanced air traffic management concepts. The Air Traffic Operations Simulation (ATOS) supports the research of future concepts that provide a much greater role for the flight crew in traffic management decision-making. ATOS provides representations of the future communications, navigation, and surveillance (CNS) infrastructure, a future flight deck systems architecture, and advanced crew interfaces. ATOS also provides a platform for the development of advanced flight guidance and decision support systems that may be required for autonomous operations.

  13. Hamilton study: distribution of factors confounding the relationship between air quality and respiratory health

    SciTech Connect

    Pengelly, L.D.; Kerigan, A.T.; Goldsmith, C.H.; Inman, E.M.

    1984-10-01

    Hamilton, Ontario is an industrial city with a population of 300,000 which is situated at the western end of Lake Ontario. Canada's two largest iron and steel mills are located here; the city historically has had relatively poor air quality, which has improved markedly in the last 25 years. Concern about the health effects of current air quality recently led us to carry out an epidemiological study of the effects of air pollution on the respiratory health of over 3500 school children. Respiratory health was measured by pulmonary function testing of each child, and by an assessment of each child's respiratory symptoms via a questionnaire administered to the parents. Previous studies had shown that other environmental factors (e.g. parental smoking, parental cough, socioeconomic level, housing, and gas cooking) might also affect respiratory health, and thus confound any potential relationships between health and air pollution. The questionnaire also collected information on many of these confounding factors. For the purposes of initial analysis, the city was divided into five areas in which differences in air quality were expected. In general, factors which have been associated with poor respiratory health were observed to be more prevalent in areas of poorer air quality.

  14. Trihalomethanes in chlorine and bromine disinfected swimming pools: air-water distributions and human exposure.

    PubMed

    Lourencetti, Carolina; Grimalt, Joan O; Marco, Esther; Fernandez, Pilar; Font-Ribera, Laia; Villanueva, Cristina M; Kogevinas, Manolis

    2012-09-15

    This first study of trihalomethanes (THMs) in swimming pools using bromine agents for water disinfection under real conditions shows that the mixtures of these compounds are largely dominated by bromoform in a similar process as chloroform becomes the dominant THM in pools disinfected with chlorine agents. Bromoform largely predominates in air and water of the pool installations whose concentration changes are linearly correlated. However, the air concentrations of bromoform account for about 6-11% of the expected concentrations according to theoretical partitioning defined by the Henry law. Bromoform in exhaled air of swimmers is correlated with the air concentrations of this disinfectant by-product in the pool building. Comparison of the THM exhaled air concentrations between swimmers and volunteers bathing in the water without swimming or standing in the building outside the water suggest that physical activity enhance exposure to these disinfectant by-products. They also indicate that in swimming pools, besides inhalation, dermal absorption is a relevant route for the incorporation of THMs, particularly those with lower degree of bromination.

  15. Particle size distribution and air pollution patterns in three urban environments in Xi'an, China.

    PubMed

    Niu, Xinyi; Guinot, Benjamin; Cao, Junji; Xu, Hongmei; Sun, Jian

    2015-10-01

    Three urban environments, office, apartment and restaurant, were selected to investigate the indoor and outdoor air quality as an inter-comparison in which CO2, particulate matter (PM) concentration and particle size ranging were concerned. In this investigation, CO2 level in the apartment (623 ppm) was the highest among the indoor environments and indoor levels were always higher than outdoor levels. The PM10 (333 µg/m(3)), PM2.5 (213 µg/m(3)), PM1 (148 µg/m(3)) concentrations in the office were 10-50% higher than in the restaurant and apartment, and the three indoor PM10 levels all exceeded the China standard of 150 µg/m(3). Particles ranging from 0.3 to 0.4 µm, 0.4 to 0.5 µm and 0.5 to 0.65 µm make largest contribution to particle mass in indoor air, and fine particles number concentrations were much higher than outdoor levels. Outdoor air pollution is mainly affected by heavy traffic, while indoor air pollution has various sources. Particularly, office environment was mainly affected by outdoor sources like soil dust and traffic emission; apartment particles were mainly caused by human activities; restaurant indoor air quality was affected by multiple sources among which cooking-generated fine particles and the human steam are main factors.

  16. Effects of bone- and air-tissue inhomogeneities on the dose distributions of the Leksell Gamma Knife calculated with PENELOPE.

    PubMed

    Al-Dweri, Feras M O; Rojas, E Leticia; Lallena, Antonio M

    2005-12-07

    Monte Carlo simulation with PENELOPE (version 2003) is applied to calculate Leksell Gamma Knife dose distributions for heterogeneous phantoms. The usual spherical water phantom is modified with a spherical bone shell simulating the skull and an air-filled cube simulating the frontal or maxillary sinuses. Different simulations of the 201 source configuration of the Gamma Knife have been carried out with a simplified model of the geometry of the source channel of the Gamma Knife recently tested for both single source and multisource configurations. The dose distributions determined for heterogeneous phantoms including the bone- and/or air-tissue interfaces show non-negligible differences with respect to those calculated for a homogeneous one, mainly when the Gamma Knife isocentre approaches the separation surfaces. Our findings confirm an important underdosage (approximately 10%) nearby the air-tissue interface, in accordance with previous results obtained with the PENELOPE code with a procedure different from ours. On the other hand, the presence of the spherical shell simulating the skull produces a few per cent underdosage at the isocentre wherever it is situated.

  17. Development of a temperature distribution simulator for lung RFA based on air dependence of thermal and electrical properties.

    PubMed

    Yamazaki, Nozomu; Watanabe, Hiroki; Lu, XiaoWei; Isobe, Yosuke; Kobayashi, Yo; Miyashita, Tomoyuki; Fujie, Masakatsu G

    2012-01-01

    Radio frequency ablation (RFA) for lung cancer has increasingly been used over the past few years, because it is a minimally invasive treatment. As a feature of RFA for lung cancer, lung contains air. Air is low thermal and electrical conductivity. Therefore, RFA for this cancer has the advantage that only the cancer is coagulated, because the heated area is confined to the immediate vicinity of the heating point. However, it is difficult for operators to control the precise formation of coagulation zones due to inadequate imaging modalities. We propose a method using finite element method to analyze the temperature distribution of the organ in order to overcome the current deficiencies. Creating an accurate thermal physical model was a challenging problem because of the complexities of the thermal properties of the organ. In this study, we developed a temperature distribution simulator for lung RFA using thermal and electrical properties that were based on the lung's internal air dependence. In addition, we validated the constructed simulator in an in vitro study, and the lung's internal heat transfer during RFA was validated quantitatively.

  18. Distribution and sources of air pollutants in the North China Plain based on on-road mobile measurements

    NASA Astrophysics Data System (ADS)

    Zhu, Yi; Zhang, Jiping; Wang, Junxia; Chen, Wenyuan; Han, Yiqun; Ye, Chunxiang; Li, Yingruo; Liu, Jun; Zeng, Limin; Wu, Yusheng; Wang, Xinfeng; Wang, Wenxing; Chen, Jianmin; Zhu, Tong

    2016-10-01

    The North China Plain (NCP) has been experiencing severe air pollution problems with rapid economic growth and urbanisation. Many field and model studies have examined the distribution of air pollutants in the NCP, but convincing results have not been achieved, mainly due to a lack of direct measurements of pollutants over large areas. Here, we employed a mobile laboratory to observe the main air pollutants in a large part of the NCP from 11 June to 15 July 2013. High median concentrations of sulfur dioxide (SO2) (12 ppb), nitrogen oxides (NOx) (NO + NO2; 452 ppb), carbon monoxide (CO) (956 ppb), black carbon (BC; 5.5 µg m-3) and ultrafine particles (28 350 cm-3) were measured. Most of the high values, i.e. 95 percentile concentrations, were distributed near large cities, suggesting the influence of local emissions. In addition, we analysed the regional transport of SO2 and CO, relatively long-lived pollutants, based on our mobile observations together with wind field and satellite data analyses. Our results suggested that, for border areas of the NCP, wind from outside this area would have a diluting effect on pollutants, while south winds would bring in pollutants that have accumulated during transport through other parts of the NCP. For the central NCP, the concentrations of pollutants were likely to remain at high levels, partly due to the influence of regional transport by prevalent south-north winds over the NCP and partly by local emissions.

  19. Assessment of air sampling methods and size distribution of virus-laden aerosols in outbreaks in swine and poultry farms.

    PubMed

    Alonso, Carmen; Raynor, Peter C; Goyal, Sagar; Olson, Bernard A; Alba, Anna; Davies, Peter R; Torremorell, Montserrat

    2017-03-01

    Swine and poultry viruses, such as porcine reproductive and respiratory syndrome virus (PRRSV), porcine epidemic diarrhea virus (PEDV), and highly pathogenic avian influenza virus (HPAIV), are economically important pathogens that can spread via aerosols. The reliability of methods for quantifying particle-associated viruses as well as the size distribution of aerosolized particles bearing these viruses under field conditions are not well documented. We compared the performance of 2 size-differentiating air samplers in disease outbreaks that occurred in swine and poultry facilities. Both air samplers allowed quantification of particles by size, and measured concentrations of PRRSV, PEDV, and HPAIV stratified by particle size both within and outside swine and poultry facilities. All 3 viruses were detectable in association with aerosolized particles. Proportions of positive sampling events were 69% for PEDV, 61% for HPAIV, and 8% for PRRSV. The highest virus concentrations were found with PEDV, followed by HPAIV and PRRSV. Both air collectors performed equally for the detection of total virus concentration. For all 3 viruses, higher numbers of RNA copies were associated with larger particles; however, a bimodal distribution of particles was observed in the case of PEDV and HPAIV.

  20. A new study of shower age distribution in near vertical showers by EAS air shower array

    NASA Technical Reports Server (NTRS)

    Chaudhuri, N.; Basak, D. K.; Goswami, G. C.; Ghosh, B.

    1984-01-01

    The air shower array has been developed since it started operation in 1931. The array covering an area of 900 sq m now incorporates 21 particle density sampling detectors around two muon magnetic spectrographs. The air showers are detected in the size range 10 to the 4th power to 10 to the 6th power particles. A total of 11000 showers has so far been detected. Average values of shower age have been obtained in various shower size ranges to study the dependence of shower age on shower size. The core distance dependence of shower age parameter has also been analyzed for presentation.

  1. Performance Analysis of a Modular Small-Diameter Air Distribution System

    SciTech Connect

    Poerschke, Andrew; Rudd, Armin

    2016-03-01

    This report investigates the feasibility of using a home-run manifold small-diameter duct system to provide space-conditioning air to individual thermal zones in a low-load home. This compact layout allows duct systems to easily be brought within conditioned space via interior partition walls. Centrally locating the air handling unit in the house significantly reduces duct lengths. The plenum box is designed so that each connected duct receives a similar amount of airflow—regardless of its position on the box. Furthermore, within a reasonable set of length restrictions each duct continues to receive similar airflow.

  2. Synthesis of Distributed Command and Control for the Outer Air Battle

    DTIC Science & Technology

    1988-07-01

    corresponding loci . 1984). This cost is computed for each input iask, x, and each decision strategy. The accuracy measure J is the expected value 3.3...Symposium on Large Scale Systems.: Theory and for the outer air battle, using a structured synthesis methodo - Application, Zurich, Switzerland

  3. Temporal distribution of air quality related to meteorology and road traffic in Madrid.

    PubMed

    Perez-Martinez, Pedro J; Miranda, Regina M

    2015-04-01

    The impact of climatology--air temperature, precipitation and wind speed--and road traffic--volume, vehicle speed and percentage of heavy-duty vehicles (HDVs)--on air quality in Madrid was studied by estimating the effect for each explanatory variable using generalized linear regression models controlling for monthly variations, days of week and parameter levels. Every 1 m/s increase in wind speed produced a decrease in PM10 concentrations by 10.3% (95% CI 12.6-8.6) for all weekdays and by 12.4% (95% CI 14.9-9.8) for working days (up to the cut-off of 2.4 m/s). Increases of PM10 concentrations due to air temperature (7.2% (95% CI 6.2-8.3)) and traffic volume (3.3% (95% CI 2.9-3.8)) were observed at every 10 °C and 1 million vehicle-km increases for all weekdays; oppositely, slight decreases of PM10 concentrations due to percentage of HDVs (3.2% (95% CI 2.7-3.7)) and vehicle speed (0.7% (95% CI 0.6-0.8)) were observed at every 1% and 1 km/h increases. Stronger effects of climatology on air quality than traffic parameters were found.

  4. Air/water subchannel measurements of the equilibrium quality and mass-flux distribution in a rod bundle. [BWR

    SciTech Connect

    Sterner, R.W.; Lahey, R.T. Jr.

    1983-07-01

    Subchannel measurements were performed in order to determine the equilibrium quality and mass flux distribution in a four rod bundle, using air/water flow. An isokinetic technique was used to sample the flow in the center, side and corner subchannels of this test section. Flow rates of the air and water in each sampled subchannel were measured. Experiments were performed for two test-section-average mass fluxes (0.333x10/sup 6/ and 0.666x10/sup 6/ lb/sub m//h-ft/sup 2/), and the test-section-average quality was varied from 0% to 0.54% for each mass flux. Single-phase liquid, bubbly, slug and churn-turbulent two-phase flow regimes were achieved. The observed data trends agreed with previous diabatic measurements in which the center subchannel had the highest quality and mass flux, while the corner subchannel had the lowest.

  5. Surfactant effects on cumulative drop size distributions produced by air bubbles bursting on a non-quiescent free surface

    NASA Astrophysics Data System (ADS)

    Parmar, K.; Liu, X.; Duncan, J. H.

    2013-11-01

    The generation of droplets when air bubbles travel upwards from within a liquid and burst at a free surface is studied experimentally. The bubbles are generated in a glass water tank that is 0.91 m long and 0.46 m wide with a water depth of 0.5 m. The tank is equipped with an acrylic box at its bottom that creates the bubble field using filtered air injected through an array of 180 hypodermic needles (0.33 mm ID). Two different surface conditions are created by using clean water and a 0.4% aqueous solution of Triton X-100 surfactant. Measurements of the bubble diameters as they approach the free surface are obtained with diffuse light shadowgraph images. The range of bubble diameters studied is 2.885 mm to 3.301 mm for clean water and 2.369 mm to 3.014 mm for the surfactant solution. A laser-light high-speed cinematic shadowgraph system is employed to record and measure the diameters and motions of the droplets at the free surface. This system can measure droplets with diameters <= 50 μm. The results show a clear distinction between the droplet distributions obtained in clean water and the surfactant solution. A bimodal droplet distribution is observed for clean water with at least two dominating peaks. For the surfactant solution, a single distribution peak is seen. This work is supported by the National Science Foundation, Division of Ocean Sciences.

  6. Development of AN Integrated Air Pollution Modeling System and Simulations of Ozone Distributions Over the LOS Angeles Basin

    NASA Astrophysics Data System (ADS)

    Lu, Rong

    It is well known that air pollution affects human health and the environment. The effectiveness of pollution control relies on the understanding of relationships between emissions and airborne pollutant concentrations, which are governed by atmospheric processes. Numerical models that mathematically describe the atmospheric dynamics and chemistry in details are powerful tools to investigate concentrations and distributions of pollutants in the atmosphere. An air pollution modeling system (APMS) is developed for urban and regional air quality studies. The system, which couples a mesoscale meteorological model (MMTD) with an air quality model (GATOR), has four major components: a meteorological dynamic model, a tracer transport code, detailed treatments of chemical and aerosol microphysical processes, and a radiative transfer code. The meteorological model solves fluid dynamic and thermodynamic equations over complex terrain, and incorporates physical processes such as turbulent diffusion, water vapor condensation and precipitation, solar and infrared radiative transfer, and ground surface processes. The tracer transport code computes the dispersion of gases and aerosols in the atmosphere, including emissions, and dry and wet depositions. The chemistry/aerosol module treats coupled gas-phase photochemistry and aerosol microphysics and chemistry. Aerosol processes include nucleation, coagulation, condensational growth, evaporation, sedimentation, chemical equilibrium and aqueous chemistry. The intensive measurement data collected during the Southern California Air Quality Study are used to assess the performances of the air pollution modeling system. The agreement between predictions and observations indicates that the model is able to reproduce the main features of mesoscale meteorology, tracer transport and dispersion, and pollutant transformations in urban and regional scales. Three-dimensional distributions and transport characteristics of pollutants over Southern

  7. Distribution and mycotoxin-producing ability of some fungal isolates from the air

    NASA Astrophysics Data System (ADS)

    Cvetnić, Zdenka; Pepeljnjak, S.

    Research was carried out on presence and prevalence of common fungal air spores at locations in Croatia. The sampling method employed in the study was by exposure 350 of Petri agar plates to the air for 10 min. Approximately 3400 colonies were found and mould spores belonging to 22 fungal genera were identified. Cladosporium (44.7%), Penicillium (34.4%), Alternaria (26.3%), Aspergillus (21.6%) and Absidia (12.2%) were the most prevalent fungi encountered. Investigation of toxigenic potential of airborne fungi isolates of genera Aspergillus, Fusarium and Trichoderma showed 16.9% mycotoxin-producing strains. The production of aflatoxin B 1 by A. flavus sterigmatocystin by A. versicolor zearalenon and T-2 toxin by F. graminearum and diacetoscirpenol by strains of T. viride were obtained.

  8. Development of Computer-Generated Forces for Air Force Security Forces Distributed Mission Training

    DTIC Science & Technology

    2002-10-01

    the Program Engineer on the Catapult Launch Systems Trainer program. His strengths are in modeling and simulation R&D, primarily in the areas of...reports “ Snakes in the Eagle’s Nest” (Vick, 1995) and “Check Six Begins on the Ground” (Shlapak & Vick,1995) are primary training references for... Snakes in the eagle’s nest: A history of ground attacks on air bases (MR-553-AF). Santa Monica, CA: Rand Corp. Weeks, J., Garza, J., Archuleta, M

  9. The global tropospheric ammonia distribution as seen in the 13-year AIRS measurement record

    NASA Astrophysics Data System (ADS)

    Warner, Juying X.; Wei, Zigang; Larrabee Strow, L.; Dickerson, Russell R.; Nowak, John B.

    2016-05-01

    Ammonia (NH3) plays an increasingly important role in the global biogeochemical cycle of reactive nitrogen as well as in aerosol formation and climate. We present extensive and nearly continuous global ammonia measurements made by the Atmospheric Infrared Sounder (AIRS) from the Aqua satellite to identify and quantify major persistent and episodic sources as well as to characterize seasonality. We examine the 13-year period from September 2002 through August 2015 with a retrieval algorithm using an optimal estimation technique with a set of three, spatially and temporally uniform a priori profiles. Vertical profiles show good agreement (˜ 5-15 %) between AIRS NH3 and the in situ profiles from the winter 2013 DISCOVER-AQ (DISCOVER-Air Quality) field campaign in central California, despite the likely biases due to spatial resolution differences between the two instruments. The AIRS instrument captures the strongest consistent NH3 concentrations due to emissions from the anthropogenic (agricultural) source regions, such as South Asia (India/Pakistan), China, the United States (US), parts of Europe, Southeast (SE) Asia (Thailand/Myanmar/Laos), the central portion of South America, as well as Western and Northern Africa. These correspond primarily to irrigated croplands, as well as regions with heavy precipitation, with extensive animal feeding operations and fertilizer applications where a summer maximum and a secondary spring maximum are reliably observable. In the Southern Hemisphere (SH) regular agricultural fires contribute to a spring maximum. Regions of strong episodic emissions include Russia and Alaska as well as parts of South America, Africa, and Indonesia. Biomass burning, especially wildfires, dominate these episodic NH3 high concentrations.

  10. Identification of European Air Masses Using an Interactive Computer Technique for Separating Mixed Normal Distributions.

    DTIC Science & Technology

    1982-01-01

    classifying a maritime surface, he refers to the Pacific, Atlantic, or Gulf of Mexico using the general term "maritime" only when the exact origin is...portions of North Atlantic NPA PA air modified over warm North Atlantic TC Southern U.S. and Northern Mexico TG Gulf of Mexico and Caribbean NTG TG...Bergeron, T., 1928: " Uber Die Dreidimensional Verknupfende Wetteranalyse, Teil I." Geofys. Pub!., Vol. 5, No. 6. Berggren, R., 1953: "On Temperature

  11. The global tropospheric ammonia distribution as seen in the 13 year AIRS measurement record

    NASA Astrophysics Data System (ADS)

    Warner, J. X.; Wei, Z.; Strow, L. L.; Dickerson, R. R.; Nowak, J. B.

    2015-12-01

    Ammonia (NH3) plays an increasingly important role in the global biogeochemical cycle of reactive nitrogen as well as in aerosol formation and climate. We present extensive and nearly continuous global ammonia measurements made by the Atmospheric Infrared Sounder (AIRS) from the Aqua satellite to identify and quantify major persistent and episodic sources as well as to characterize seasonality. We examine the 13 year period from September 2002 through August 2015 with a retrieval algorithm using an optimal estimation technique with a set of three, spatially and temporally uniform a priori profiles. Vertical profiles show good agreement (~5-15 %) between AIRS NH3 and the in situ profiles from the winter 2013 DISCOVER-AQ field campaign in central California, despite the likely biases due to spatial resolution differences between the two instruments. AIRS captures the strongest consistent NH3 emissions from the anthropogenic (agricultural) source regions, such as, South Asia (India/Pakistan), China, the US, parts of Europe, SE Asia (Thailand/Myanmar/Laos), the central portion of South America, as well as Western and Northern Africa. These correspond primarily to croplands with extensive animal feeding operations and fertilizer applications where a summer maximum and secondary spring maximum are reliably observable. In the Southern Hemisphere (SH) regular agricultural fires contribute to a spring maximum. Regions of strong episodic emissions include Russia and Alaska as well as parts of South America, Africa, and Indonesia. Biomass burning, especially wildfires, dominate these episodic NH3 emissions.

  12. Gasoline Distribution Facilities (Bulk Gasoline Terminals and Pipeline Breakout Stations) Air Toxics Rule Fact Sheets

    EPA Pesticide Factsheets

    This page contains a November 1994 fact sheet for the final NESHAP for Gasoline Distribution Facilities. This page also contains a December fact sheet with information regarding the final amendments to the 2003 final rule for the NESHAP.

  13. Effects of the Sea Ice Floe Size Distribution on Polar Ocean Properties and Air-Sea Exchange

    NASA Astrophysics Data System (ADS)

    Horvat, C.; Tziperman, E.

    2014-12-01

    Recent scientific studies have demonstrated that sub-mesoscale ocean eddies, motions characterized by Rossby and Richardson numbers around 1, are important in determining the vertical density structure of the ocean, particularly in the mixed layer. Instabilities excited at the sub-mesoscale have timescales of days and length scales of less than 10 kilometers, and enhance ocean restratification by slumping lateral density gradients. In the polar oceans, a unique mechanism exists that may generate motions on these scales. Individual floes of sea ice may create lateral gradients in the ocean surface heat flux and wind stress curl, acting as an insulator and physical barrier between the ocean and the atmospheric processes that destabilize it. The "floe size distribution" describes the fraction of the ocean surface area covered by sea ice floes, as a function of the sea ice floe size, and determines the length scales over which gradients in atmospheric forcing are transmitted to the ocean. It may therefore play a significant role in exciting or inhibiting sub-mesoscale eddies, and consequently in restratification and air-sea exchange. Current GCMs simulate ice cover using grid-scale ice fraction alone, and lack information about the floe size distribution and of ice length scales that may be important in setting the larger-scale statistics of these motions. An important factor in determining the properties of the upper polar oceans might therefore be missing from modern GCMs. We consider this possibility by examining sub-mesoscale resolving ocean GCM experiments coupled to an energy-balanced atmosphere and idealized model of floes of sea ice. Varying the floe size distribution with a fixed sea ice fraction, we find that the length scales of individual floes and the floe size distribution itself play an important role in setting the steady-state ocean stratification, temperature, and air-sea exchange.

  14. Influence of trans-boundary biomass burning impacted air masses on submicron particle number concentrations and size distributions

    NASA Astrophysics Data System (ADS)

    Betha, Raghu; Zhang, Zhe; Balasubramanian, Rajasekhar

    2014-08-01

    Submicron particle number concentration (PNC) and particle size distribution (PSD) in the size range of 5.6-560 nm were investigated in Singapore from 27 June 2009 through 6 September 2009. Slightly hazy conditions lasted in Singapore from 6 to 10 August. Backward air trajectories indicated that the haze was due to the transport of biomass burning impacted air masses originating from wild forest and peat fires in Sumatra, Indonesia. Three distinct peaks in the morning (08:00-10:00), afternoon (13:00-15:00) and evening (16:00-20:00) were observed on a typical normal day. However, during the haze period no distinct morning and afternoon peaks were observed and the PNC (39,775 ± 3741 cm-3) increased by 1.5 times when compared to that during non-haze periods (26,462 ± 6017). The morning and afternoon peaks on the normal day were associated with the local rush hour traffic while the afternoon peak was induced by new particle formation (NPF). Diurnal profiles of PNCs and PSDs showed that primary particle peak diameters were large during the haze (60 nm) period when compared to that during the non-haze period (45.3 nm). NPF events observed in the afternoon period on normal days were suppressed during the haze periods due to heavy particle loading in atmosphere caused by biomass burning impacted air masses.

  15. [Distribution of findings of scorpions in Buenos Aires city in the period 2001-2012 and their sanitary implications].

    PubMed

    Blanco, Guillermo; Laskowicz, Rodrigo D; Lanari, Laura C; Scarlato, Eduardo; Damin, Carlos; de Titto, Ernesto H; de Roodt, Adolfo R

    2016-02-01

    Scorpion stings and their associated mortality increased in the last years in Argentina, with a cumulative record of 73,617 cases and 30 deaths during the period 2001-2012, occurring almost all the deaths in pediatric patients. However, deaths due to severe envenoming by scorpion stings have not been recorded in Buenos Aires city and suburban regions, although the presence of scorpions in this city has been increasingly reported. We studied the temporal and geographical distribution of Tityus trivittatus findings in Buenos Aires city from the database of the Research and Development Area from the National Institute for Production of Biologics of the National Ministry of Health during the period 10/01/2001 to 31/12/2012 in order to correlate these findings with the distribution of health centers in the city. In this period 385 consults with identification of scorpions were recorded. Annual records showed a growing trend. Georeferenced data showed that findings appeared to increase in the surroundings of metro and train stations, mainly at the east of the city with expansion to the west. Although Toxicology services are geographically related to the zones with higher density of finding of scorpions, the accessibility to the centers with antivenom may hinder its application in the recommended time; some measures to avoid possible delays in the application of the treatment are suggested.

  16. Retrieval of Raindrop Size Distribution, Vertical Air Velocity and Water Vapor Attenuation Using Dual-Wavelength Doppler Radar Observations

    NASA Technical Reports Server (NTRS)

    Heymsfield, Gerald M.; Tian, Lin; Li, Lihua; Srivastava, C.

    2005-01-01

    Two techniques for retrieving the slope and intercept parameters of an assumed exponential raindrop size distribution (RSD), vertical air velocity, and attenuation by precipitation and water vapor in light stratiform rain using observations by airborne, nadir looking dual-wavelength (X-band, 3.2 cm and W-band, 3.2 mm) radars are presented. In both techniques, the slope parameter of the RSD and the vertical air velocity are retrieved using only the mean Doppler velocities at the two wavelengths. In the first method, the intercept of the RSD is estimated from the observed reflectivity at the longer wavelength assuming no attenuation at that wavelength. The attenuation of the shorter wavelength radiation by precipitation and water vapor are retrieved using the observed reflectivity at the shorter wavelength. In the second technique, it is assumed that the longer wavelength suffers attenuation only in the melting band. Then, assuming a distribution of water vapor, the melting band attenuation at both wavelengths and the rain attenuation at the shorter wavelength are retrieved. Results of the retrievals are discussed and several physically meaningful results are presented.

  17. Determination of Spatial Distribution of Air Pollution by Dye Laser Measurement of Differential Absorption of Elastic Backscatter

    NASA Technical Reports Server (NTRS)

    Ahmed, S. A.; Gergely, J. S.

    1973-01-01

    This paper presents the results of an analytical study of a lidar system which uses tunable organic dye lasers to accurately determine spatial distribution of molecular air pollutants. Also described will be experimental work to date on simultaneous multiwavelength output dye laser sources for this system. Basically the scheme determines the concentration of air pollutants by measuring the differential absorption of an (at least) two wavelength lidar signal elastically backscattered by the atmosphere. Only relative measurements of the backscattered intensity at each of the two wavelengths, one on and one off the resonance absorption of the pollutant in question, are required. The various parameters of the scheme are examined and the component elements required for a system of this type discussed, with emphasis on the dye laser source. Potential advantages of simultaneous multiwavelength outputs are described. The use of correlation spectroscopy in this context is examined. Comparisons are also made for the use of infrared probing wavelengths and sources instead of dye lasers. Estimates of the sensitivity and accuracy of a practical dye laser system of this type, made for specific pollutants, snow it to have inherent advantages over other schemes for determining pollutant spatial distribution.

  18. Energy distribution of runaway electrons generated by a nanosecond discharge in atmospheric-pressure air

    NASA Astrophysics Data System (ADS)

    Tarasenko, V. F.; Baksht, E. Kh.; Burachenko, A. G.; Kostyrya, I. D.; Lomaev, M. I.; Petin, V. K.; Rybka, D. V.; Shlyakhtun, S. V.

    2008-12-01

    The spectra of an ultrashort avalanche electron beam generated by a nanosecond discharge in atmospheric-pressure air were investigated. The temporal characteristics of the beam current pulses, gap voltage, and discharge current in a gas diode were measured with a time resolution of ˜0.1 ns. A simple technique was developed for recovering electron spectra from the curves of beam attenuation by aluminum foils. The effect of the cathode design, electrode gap length, and generator parameters on the electron spectra were studied using seven setups. It is shown that generation of electrons with anomalously high energies requires the use of cathodes with increased curvature radius.

  19. Energy distribution of runaway electrons generated by a nanosecond discharge in atmospheric-pressure air

    SciTech Connect

    Tarasenko, V. F.; Baksht, E. Kh.; Burachenko, A. G.; Kostyrya, I. D.; Lomaev, M. I.; Petin, V. K.; Rybka, D. V.; Shlyakhtun, S. V.

    2008-12-15

    The spectra of an ultrashort avalanche electron beam generated by a nanosecond discharge in atmospheric-pressure air were investigated. The temporal characteristics of the beam current pulses, gap voltage, and discharge current in a gas diode were measured with a time resolution of {approx}0.1 ns. A simple technique was developed for recovering electron spectra from the curves of beam attenuation by aluminum foils. The effect of the cathode design, electrode gap length, and generator parameters on the electron spectra were studied using seven setups. It is shown that generation of electrons with anomalously high energies requires the use of cathodes with increased curvature radius.

  20. Light propagation characteristics in photonic crystal fibers with α-power profiles of air hole diameter distributions and their application to fiber collimator

    NASA Astrophysics Data System (ADS)

    Yokota, Hirohisa; Higuchi, Keiichi; Imai, Yoh

    2016-08-01

    Light propagation characteristics in photonic crystal fibers (PCFs) with α-power profiles of air hole diameter distributions were theoretically investigated. It was clarified that the intensity peak of the beam propagating in the PCF with Gaussian beam excitation varied periodically with little power attenuation. It was found that the envelope of the periodic intensity variation depended on α. We theoretically demonstrated that the PCF with the α-power profile of the air hole diameter distribution could be applied to a collimator for a conventional PCF with uniform air holes in Gaussian beam excitation to reduce coupling loss, where a PCF of appropriate length with the α-power air hole diameter distribution was spliced to a conventional PCF. It was also found that the coupling efficiency was higher for a larger α.

  1. Distribution of air-water mixtures in parallel vertical channels as an effect of the header geometry

    SciTech Connect

    Marchitto, Annalisa; Fossa, Marco; Guglielmini, Giovanni

    2009-07-15

    Uneven phase distribution in heat exchangers is a cause of severe reductions in thermal performances of refrigeration equipment. To date, no general design rules are available to avoid phase separation in manifolds with several outlet channels, and even predicting the phase and mass distribution in parallel channels is a demanding task. In the present paper, measurements of two-phase air-water distributions are reported with reference to a horizontal header supplying 16 vertical upward channels. The effects of the operating conditions, the header geometry and the inlet port nozzle were investigated in the ranges of liquid and gas superficial velocities of 0.2-1.2 and 1.5-16.5 m/s, respectively. Among the fitting devices used, the insertion of a co-axial, multi-hole distributor inside the header confirmed the possibility of greatly improving the liquid and gas flow distribution by the proper selection of position, diameter and number of the flow openings between the supplying distributor and the system of parallel channels connected to the header. (author)

  2. Effects of the 1990 Clean Air Act amendments on distributions of visual impairment

    SciTech Connect

    Shannon, J.D.; Camp, J.; Trexler, E.C. Jr.

    1996-02-01

    The Acid Rain Provisions (Title IV) of the 1990 Clean Air Act Amendments (1990 CAAA) focus on emission policies designed to reduce the amount of deposition of acidifying pollutants, particularly in the Northeast. The primary strategy is a significant reduction in SO{sub 2} emissions, with lesser reductions scheduled for NO{sub {times}} emissions. However, lessening of acid deposition is not the only important benefit of the emission control strategy. Decreasing SO{sup {minus}} and NO {sup {minus}} emissions will decrease atmospheric concentrations of sulfate and nitrate particles, which account for much of the visibility reduction associated with regional haze. Although one can get a qualitative sense of how visibility might improve by examining historical large-scale trends in regional emission totals and regional visibility, quantification of the expected improvement requires model simulations. One must model the spatial and temporal patterns of emissions reductions; the relevant pollutant transport, transformation, and removal processes in the atmosphere; and the changes in particulate loading. For this initial examination of the visibility improvement at Shenandoah National Park associated the the Phase I and Phase II SO{sub 2} emission reductions, we have linked emission trend projections taken from ongoing analysis of the 1990 CAAA at Argonne National Laboratory, regional transport modeling with the Advanced Statistical Trajectory Regional Air Pollution (ASTRAP) model and visual impairment modeling with the Visibility Assessment Scoping Model (VASM).

  3. Evaluating spatial distribution and seasonal variation of phthalates using passive air sampling in southern India.

    PubMed

    Sampath, Srimurali; Selvaraj, Krishna Kumar; Shanmugam, Govindaraj; Krishnamoorthy, Vimalkumar; Chakraborty, Paromita; Ramaswamy, Babu Rajendran

    2017-02-01

    Usage of phthalates as plasticizers has resulted in worldwide occurrence and is becoming a serious concern to human health and environment. However, studies on phthalates in Indian atmosphere are lacking. Therefore, we studied the spatio-temporal trends of six major phthalates in Tamil Nadu, southern India, using passive air samplers. Phthalates were ubiquitously detected in all the samples and the average total phthalates found in decreasing order is pre-monsoon (61 ng m(-3)) > summer (52 ng m(-3)) > monsoon (17 ng m(-3)). Largely used phthalates, dibutylphthalate (DBP) and diethylhexlphthalate (DEHP) were predominantly found in all the seasons with contribution of 11-31% and 59-68%, respectively. The highest total phthalates was observed in summer at an urban location (836 ng m(-3)). Furthermore, through principal component analysis, potential sources were identified as emissions from additives of plasticizers in the polymer industry and the productions of adhesives, building materials and vinyl flooring. Although inhalation exposure of infants was higher than other population segments (toddlers, children and adults), exposure levels were found to be safe for people belonging to all ages based on reference dose (RfD) and tolerable daily intake (TDI) values. This study first attempted to report seasonal trend based on atmospheric monitoring using passive air sampling technique and exposure risk together.

  4. Data set: 31 years of spatially distributed air temperature, humidity, precipitation amount and precipitation phase from a mountain catchment in the rain-snow transition zone

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thirty one years of spatially distributed air temperature, relative humidity, dew point temperature, precipitation amount, and precipitation phase data are presented for the Reynolds Creek Experimental Watershed. The data are spatially distributed over a 10m Lidar-derived digital elevation model at ...

  5. The lateral distributions of charged particles of energy greater than 0.3 E sub crit in electron-photon cascades in lead and air

    NASA Technical Reports Server (NTRS)

    Wasilewski, A.; Krys, E.

    1985-01-01

    In recent investigations, both theoretical and experimental, the agreement between cascade theory and experimental data is pointed out. The radial distributions obtained from the Monte Carlo simulation are compared ith the results of the analytical theory for all particles in cascades. The data on the mean radius of electron lateral distribution in air are compared with those in lead.

  6. Experimental and predicted heating distributions for biconics at incidence in air at Mach 10

    NASA Technical Reports Server (NTRS)

    Miller, C. G., III

    1984-01-01

    Heating distributions were measured on a 1.9-percent-scale model of a generic aeroassisted vehicle proposed for missions to a number of planets and for use as a moderate lift-drag ratio Earth orbital transfer vehicle. This vehicle is spherically blunted, 12.84 deg/7 deg biconic with the fore-cone bent upward 7 deg to provide self-trim capability. A straight biconic with the same nose radius and the same half-angles was also tested. The free-stream Reynolds numbers based on model length were equal to about 2 x 10(5) or 9 x 10 (5). The angle of attack, referenced to the aft-cone, was varied from 0 deg to 20 deg. Heating distributions predicted with a parabolized Navier-Stokes (PNS) code are compared with the measurements for the present Reynolds numbers and range of angles of attack. Leeward heating was greatly affected by Reynolds number, with the heating increasing with decreasing Reynolds number for attached flow (low incidence). The opposite was true for separated flow, which occurred when the fore-cone angle of attack exceeded 0.8 times the fore-cone half-angle. Windward heating distributions were predicted to within 10 percent with the PNS code. Leeward heating distributions were predicted qualitatively for both Reynolds numbers, but quantitative agreement was poorer than on the windward side.

  7. Spatial patterns of air pollutants and social groups: a distributive environmental justice study in the phoenix metropolitan region of USA.

    PubMed

    Pope, Ronald; Wu, Jianguo; Boone, Christopher

    2016-11-01

    Quantifying spatial distribution patterns of air pollutants is imperative to understand environmental justice issues. Here we present a landscape-based hierarchical approach in which air pollution variables are regressed against population demographics on multiple spatiotemporal scales. Using this approach, we investigated the potential problem of distributive environmental justice in the Phoenix metropolitan region, focusing on ambient ozone and particulate matter. Pollution surfaces (maps) are evaluated against the demographics of class, age, race (African American, Native American), and ethnicity (Hispanic). A hierarchical multiple regression method is used to detect distributive environmental justice relationships. Our results show that significant relationships exist between the dependent and independent variables, signifying possible environmental inequity. Although changing spatiotemporal scales only altered the overall direction of these relationships in a few instances, it did cause the relationship to become nonsignificant in many cases. Several consistent patterns emerged: people aged 17 and under were significant predictors for ambient ozone and particulate matter, but people 65 and older were only predictors for ambient particulate matter. African Americans were strong predictors for ambient particulate matter, while Native Americans were strong predictors for ambient ozone. Hispanics had a strong negative correlation with ambient ozone, but a less consistent positive relationship with ambient particulate matter. Given the legacy conditions endured by minority racial and ethnic groups, and the relative lack of mobility of all the groups, our findings suggest the existence of environmental inequities in the Phoenix metropolitan region. The methodology developed in this study is generalizable with other pollutants to provide a multi-scaled perspective of environmental justice issues.

  8. Spatial patterns of air pollutants and social groups: a distributive environmental justice study in the phoenix metropolitan region of USA

    NASA Astrophysics Data System (ADS)

    Pope, Ronald; Wu, Jianguo; Boone, Christopher

    2016-11-01

    Quantifying spatial distribution patterns of air pollutants is imperative to understand environmental justice issues. Here we present a landscape-based hierarchical approach in which air pollution variables are regressed against population demographics on multiple spatiotemporal scales. Using this approach, we investigated the potential problem of distributive environmental justice in the Phoenix metropolitan region, focusing on ambient ozone and particulate matter. Pollution surfaces (maps) are evaluated against the demographics of class, age, race (African American, Native American), and ethnicity (Hispanic). A hierarchical multiple regression method is used to detect distributive environmental justice relationships. Our results show that significant relationships exist between the dependent and independent variables, signifying possible environmental inequity. Although changing spatiotemporal scales only altered the overall direction of these relationships in a few instances, it did cause the relationship to become nonsignificant in many cases. Several consistent patterns emerged: people aged 17 and under were significant predictors for ambient ozone and particulate matter, but people 65 and older were only predictors for ambient particulate matter. African Americans were strong predictors for ambient particulate matter, while Native Americans were strong predictors for ambient ozone. Hispanics had a strong negative correlation with ambient ozone, but a less consistent positive relationship with ambient particulate matter. Given the legacy conditions endured by minority racial and ethnic groups, and the relative lack of mobility of all the groups, our findings suggest the existence of environmental inequities in the Phoenix metropolitan region. The methodology developed in this study is generalizable with other pollutants to provide a multi-scaled perspective of environmental justice issues.

  9. Velocity and phase distribution measurements in vertical air-water annular flows

    SciTech Connect

    Vassallo, P.

    1997-07-01

    Annular flow topology for three air-water conditions in a vertical duct is investigated through the use of a traversing double-sensor hot-film anemometry probe and differential pressure measurements. Near wall measurements of mean and fluctuating velocities, as well as local void fraction, are taken in the liquid film, with the highest turbulent fluctuations occurring for the flow condition with the largest pressure drop. A modified law-of-the-wall formulation for wall shear is presented which, using near wall values of mean velocity and kinetic energy, agrees reasonably well with the average stress obtained from direct pressure drop measurements. The linear profile using wall coordinates in the logarithmic layer is preserved in annular flow; however, the slope and intercept of the profile differ from the single-phase values for the annular flow condition which has a thicker, more turbulent, liquid film.

  10. Measure Guideline: Implementing a Plenum Truss for a Compact Air Distribution System

    SciTech Connect

    Burdick, A.

    2013-10-01

    This Measure Guideline presents the steps to implement a compact duct system inside an attic bulkhead (plenum truss) of a one-story, slab-on-grade home. In a compact duct design, ductwork runs are reduced in length to yield a smaller and more compact duct system. Less energy will be lost through ductwork if the ducts are contained within the thermal enclosure of the house. These measures are intended for the production builder working to meet the 2012 International Energy Conservation Code (IECC) requirements and keep the ductwork within the thermal enclosure of the house. This measure of bringing the heating, ventilation and air conditioning (HVAC) equipment and ductwork within the thermal enclosure of the house is appropriate for the builder wishing to avoid cathedralizing the insulation in the attic space (i.e., locating it at the underside of the roof deck rather than along the attic floor) or adding dropped soffits.

  11. Measure Guideline: Implementing a Plenum Truss for a Compact Air Distribution System

    SciTech Connect

    Burdick, A.

    2013-10-01

    This Measure Guideline presents the steps to implement a compact duct system inside an attic bulkhead (plenum truss) of a one-story, slab-on-grade (SOG) home. In a compact duct design, ductwork runs are reduced in length to yield a smaller and more compact duct system. Less energy will be lost through ductwork if the ducts are contained within the thermal enclosure of the house. These measures are intended for the production builder working to meet the 2012 International Energy Conservation Code (IECC) requirements and keep the ductwork within the thermal enclosure of the house. This measure of bringing the heating, ventilation and air conditioning (HVAC) equipment and ductwork within the thermal enclosure of the house is appropriate for the builder wishing to avoid cathedralizing the insulation in the attic space (i.e., locating it at the underside of the roof deck rather than along the attic floor) or adding dropped soffits.

  12. Comparative Cooling Season Performance of Air Distribution Systems in Multistory Townhomes

    SciTech Connect

    A. Poerschke; Beach, R.; Beggs, T.

    2016-08-26

    IBACOS investigated the performance of a small-diameter high velocity heat pump system compared to a conventional system in a new construction triplex townhouse. A ductless heat pump system also was installed for comparison, but the homebuyer backed out because of aesthetic concerns about that system. In total, two buildings, having identical solar orientation and comprised of six townhomes, were monitored for comfort and energy performance. Results show that the small-diameter system provides more uniform temperatures from floor to floor in the three-story townhome. No clear energy consumption benefit was observed from either system. The builder is continuing to explore the small-diameter system as its new standard system to provide better comfort and indoor air quality. The homebuilder also explored the possibility of shifting its townhome product to meet the U.S. Department of Energy Challenge Home National Program Requirements.

  13. Performance Analysis of a Modular Small-Diamter Air Distribution System

    SciTech Connect

    Poerschke, Andrew; Rudd, Armin

    2016-03-01

    This report investigates the feasibility of using a home-run manifold small-diameter duct system to provide space conditioning air to individual thermal zones in a low-load home. This compact layout allows duct systems to be brought easily within conditioned space via interior partition walls. Centrally locating the air handler unit in the house significantly reduces duct lengths. The plenum box is designed so that each connected duct receives an equal amount of airflow, regardless of the duct position on the box. Furthermore, within a reasonable set of length restrictions, each duct continues to receive similar airflow. The design method uses an additive approach to reach the total needed zonal airflow. Once the cubic feet per minute needed to satisfy the thermal load of a zone has been determined, the total number of duct runs to a zone can be calculated by dividing the required airflow by the standard airflow from each duct. The additive approach greatly simplifies the design effort and reduces the potential for duct design mistakes to be made. Measured results indicate that this plenum design can satisfy the heating load. However, the total airflow falls short of satisfying the cooling load in a hypothetical building. Static pressure inside the plenum box of 51.5 Pa limited the total airflow of the attached mini-split heat pump blower, thus limiting the total thermal capacity. Fan energy consumption is kept to 0.16 to 0.22 watt/CFM by using short duct runs and smooth duct material.

  14. Geographical, spatial, and temporal distributions of multiple indoor air pollutants in four Chinese provinces

    SciTech Connect

    Yinlong Jin; Zheng Zhou; Gongli He

    2005-12-15

    Exposure to indoor air pollution from household energy use depends on fuel, stove, housing characteristics, and stove use behavior. Three important indoor air pollutants - respirable particles (RPM), carbon monoxide (CO), and sulfur dioxide (SO{sub 2}) were monitored for a total of 457 household-days in four poor provinces in China (Gansu, 129 household-days; Guizhou, 127 household-days; Inner Mongolia, 65 household-days; and Shaanxi, 136 household-days), in two time intervals during the heating season to investigate spatial and temporal patterns of pollution. The two provinces where biomass is the primary fuel (Inner Mongolia and Gansu) had the highest RPM concentrations (719 {mu}g/m{sup 3} in the single cooking/living/bedroom in Inner Mongolia in December and 351-661 {mu}g/m{sup 3} in different rooms and months in Gansu); lower RPM concentration were observed in the primarily coal-burning provinces of Guizhou and Shaanxi (202-352 {mu}g/m{sup 3} and 187-361 {mu}g/m{sup 3} in different rooms and months in Guizhou and Shaanxi, respectively). Inner Mongolia and Gansu also had higher CO concentrations. Among the two primarily coal-burning provinces, Guizhou had lower concentrations of CO than Shaanxi. In the two coal-burning provinces, SO{sub 2} concentrations were substantially higher in Shaanxi than in Guizhou. Relative concentrations in different rooms and provinces indicate that in the northern provinces heating is an important source of exposure to indoor pollutants from energy use. Day-to-day variability of concentrations within individual households, although substantial, was smaller than variation across households. The implications of the findings for designing environmental health interventions in each province are discussed. 21 refs., 3 figs., 6 tabs.

  15. Building America Case Study: Mockup Small-Diameter Air Distribution System

    SciTech Connect

    2016-05-01

    This report investigates the feasibility of using a home-run manifold small-diameter duct system to provide space conditioning air to individual thermal zones in a low-load home. This compact layout allows duct systems to be brought easily within conditioned space via interior partition walls. Centrally locating the air hander unit in the house significantly reduces duct lengths. The plenum box is designed so that each connected duct receives an equal amount of airflow, regardless of the duct position on the box. Furthermore, within a reasonable set of length restrictions, each duct continues to receive similar airflow. The design method uses an additive approach to reach the total needed zonal airflow. Once the cubic feet per minute needed to satisfy the thermal load of a zone has been determined, the total number of duct runs to a zone can be calculated by dividing the required airflow by the standard airflow from each duct. The additive approach greatly simplifies the design effort and reduces the potential for duct design mistakes to be made. Measured results indicate that this plenum design can satisfy the heating load. However, the total airflow falls short of satisfying the cooling load in a hypothetical building. Static pressure inside the plenum box of 51.5 Pa limited the total airflow of the attached mini-split heat pump blower, thus limiting the total thermal capacity. Fan energy consumption is kept to 0.16 to 0.22 watt/CFM by using short duct runs and smooth duct material.

  16. Mapping the time-averaged distribution of combustion-derived air pollutants in the San Francisco Bay Area

    NASA Astrophysics Data System (ADS)

    Yu, C.; Zinniker, D. A.; Moldowan, J.

    2010-12-01

    Urban air pollution is an ongoing and complicated problem for both residents and policy makers. This study aims to provide a better understanding of the geographic source and fate of organic pollutants in a dynamic urban environment. Natural and artificial hydrophobic substrates were employed for the passive monitoring and mapping of ground-level organic pollutants in the San Francisco Bay area. We focused specifically on volatile and semi-volatile polycyclic aromatic hydrocarbons (PAHs). These compounds are proxies for a broad range of combustion related air pollutants derived from local, regional, and global combustion sources. PAHs include several well-studied carcinogens and can be measured easily and accurately across a broad range of concentrations. Estimates of time-integrated vapor phase and particle deposition were made from measuring accumulated PAHs in the leaves of several widely distributed tree species (including the Quercus agrifolia and Sequoia sempervirens) and an artificial wax film. Samples were designed to represent pollutant exposure over a period of one to several months. The selective sampling and analysis of hydrophobic substrates providess insight into the average geographic distribution of ground-level air pollutants in a simple and inexpensive way. However, accumulated organics do not directly correlated with human exposure and the source signature of PAHs may be obscured by transport, deposition, and flux processes. We attempted to address some of these complications by studying 1) PAH accumulation rates within substrates in a controlled microcosm, 2) differences in PAH abundance in different substrate types at the same locality, and 3) samples near long-term high volume air sampling stations. We also set out to create a map of PAH concentrations based on our measurements. This map can be directly compared with interpolated data from high-volume sampling stations and used to address questions concerning atmospheric heterogeneity of these

  17. Verbal workload in distributed air traffic management. [considering pilot controller interaction

    NASA Technical Reports Server (NTRS)

    Kreifeldt, J. G.; Pardo, B.; Wempe, T. E.; Huff, E.

    1975-01-01

    The effects of alternative traffic management possibilities on task performance and pilot controller verbal workloads were studied. Two new rule structures - sequencing and advisory - in addition to vectoring were studied in conjunction with CRT pilot displays incorporating traffic situation displays with and without aircraft flight path predictors. The sequencing and advisory systems gave increasing control responsibility to the pilots. It was concluded that distributed management systems could in practice significantly reduce controller verbal workload without reducing system performance. Implications of this conclusion suggest that distributed management would allow controllers to handle a larger volume of traffic safely either as a normal operating procedure or as a failure mode alternative in a highly automated ground centered system.

  18. Measuring centimeter-resolution air temperature profiles above land and water using fiber-optic Distributed Temperature Sensing

    NASA Astrophysics Data System (ADS)

    Sigmund, Armin; Pfister, Lena; Olesch, Johannes; Thomas, Christoph K.

    2016-04-01

    The precise determination of near-surface air temperature profiles is of special importance for the characterization of airflows (e.g. cold air) and the quantification of sensible heat fluxes according to the flux-gradient similarity approach. In contrast to conventional multi-sensor techniques, measuring temperature profiles using fiber-optic Distributed Temperature Sensing (DTS) provides thousands of measurements referenced to a single calibration standard at much reduced costs. The aim of this work was to enhance the vertical resolution of Raman scatter DTS measurements up to the centimeter-scale using a novel approach for atmospheric applications: the optical fiber was helically coiled around a meshed fabric. In addition to testing the new fiber geometry, we quantified the measurement uncertainty and demonstrated the benefits of the enhanced-resolution profiles. The fiber-optic cable was coiled around a hollow column consisting of white reinforcing fabric supported by plexiglass rings every meter. Data from two columns of this type were collected for 47 days to measure air temperature vertically over 3.0 and 5.1 m over a gently inclined meadow and over and in a small lake, respectively. Both profiles had a vertical resolution of 1 cm in the lower section near the surface and 5 cm in the upper section with an along-fiber instrument-specific averaging of 1.0 m and a temporal resolution of 30 s. Measurement uncertainties, especially from conduction between reinforcing fabric and fiber-optic cable, were estimated by modeling the fiber temperature via a detailed energy balance approach. Air temperature, wind velocity and radiation components were needed as input data and measured separately. The temperature profiles revealed valuable details, especially in the lowest 1 m above surface. This was best demonstrated for nighttime observations when artefacts due to solar heating did not occur. For example, the dynamics of a cold air layer was detected in a clear night

  19. Local distribution of wall static pressure and heat transfer on a smooth flat plate impinged by a slot air jet

    NASA Astrophysics Data System (ADS)

    M, Adimurthy; Katti, Vadiraj V.

    2017-02-01

    Local distribution of wall static pressure and heat transfer on a smooth flat plate impinged by a normal slot air jet is experimental investigated. Present study focuses on the influence of jet-to-plate spacing ( Z/D h ) (0.5-10) and Reynolds number (2500-20,000) on the fluid flow and heat transfer distribution. A single slot jet with an aspect ratio ( l/b) of about 22 is chosen for the current study. Infrared Thermal Imaging technique is used to capture the temperature data on the target surface. Local heat transfer coefficients are estimated from the thermal images using `SMART VIEW' software. Wall static pressure measurement is carried out for the specified range of Re and Z/D h . Wall static pressure coefficients are seen to be independent of Re in the range between 5000 and 15,000 for a given Z/D h . Nu values are higher at the stagnation point for all Z/D h and Re investigated. For lower Z/D h and higher Re, secondary peaks are observed in the heat transfer distributions. This may be attributed to fluid translating from laminar to turbulent flow on the target plate. Heat transfer characteristics are explained based on the simplified flow assumptions and the pressure data obtained using Differential pressure transducer and static pressure probe. Semi-empirical correlation for the Nusselt number in the stagnation region is proposed.

  20. Local distribution of wall static pressure and heat transfer on a smooth flat plate impinged by a slot air jet

    NASA Astrophysics Data System (ADS)

    Adimurthy, M.; Katti, Vadiraj V.

    2016-06-01

    Local distribution of wall static pressure and heat transfer on a smooth flat plate impinged by a normal slot air jet is experimental investigated. Present study focuses on the influence of jet-to-plate spacing (Z/D h ) (0.5-10) and Reynolds number (2500-20,000) on the fluid flow and heat transfer distribution. A single slot jet with an aspect ratio (l/b) of about 22 is chosen for the current study. Infrared Thermal Imaging technique is used to capture the temperature data on the target surface. Local heat transfer coefficients are estimated from the thermal images using `SMART VIEW' software. Wall static pressure measurement is carried out for the specified range of Re and Z/D h . Wall static pressure coefficients are seen to be independent of Re in the range between 5000 and 15,000 for a given Z/D h . Nu values are higher at the stagnation point for all Z/D h and Re investigated. For lower Z/D h and higher Re, secondary peaks are observed in the heat transfer distributions. This may be attributed to fluid translating from laminar to turbulent flow on the target plate. Heat transfer characteristics are explained based on the simplified flow assumptions and the pressure data obtained using Differential pressure transducer and static pressure probe. Semi-empirical correlation for the Nusselt number in the stagnation region is proposed.

  1. Static voltage distribution between turns of secondary winding of air-core spiral strip transformer and its application

    NASA Astrophysics Data System (ADS)

    Zhang, Hong-bo; Liu, Jin-liang; Cheng, Xin-bing; Zhang, Yu

    2011-09-01

    The static voltage distribution between winding turns has great impact on output characteristics and lifetime of the air-core spiral strip pulse transformer (ACSSPT). In this paper, winding inductance was calculated by electromagnetic theory, so that the static voltage distribution between turns of secondary winding of ACSSPT was analyzed conveniently. According to theoretical analysis, a voltage gradient because of the turn-to-turn capacitance was clearly noticeable across the ground turns. Simulation results of Pspice and CST EM Studio codes showed that the voltage distribution between turns of secondary winding had linear increments from the output turn to the ground turn. In experiment, the difference in increased voltage between the ground turns and the output turns of a 20-turns secondary winding is almost 50%, which is believed to be responsible for premature breakdown of the insulation, particularly between the ground turns. The experimental results demonstrated the theoretical analysis and simulation results, which had important value for stable and long lifetime ACSSPT design. A new ACSSPT with improved structure has been used successfully in intense electron beam accelerators steadily.

  2. Lateral Distribution of Air Shower Signals and Initial Energy Spectrum above 1 PeV from IceTop

    NASA Astrophysics Data System (ADS)

    Klepser, S.; Kislat, F.; Kolanoski, H.; Niessen, P.; Van Overloop, A.

    With the present size of the IceTop air shower array it is possible to measure an energy spectrum in the range of 1 PeV to 100 PeV. To do so, a lateral pulse height fit was performed on all analysed showers. Therefore it is crucial to have a realistic parametrisation of the expected lateral distribution and the corresponding fluctuations of the measured tank signals. Since IceTop tanks do not measure particle numbers, but rather portions of deposited energy, the typically used lateral distribution functions like NKG do not apply. Hence, a suitable function was developed in a CORSIKA simulation study. Having two tanks separated by 10m at each detector station, it is furthermore possible to study local pulse height fluctuations directly in data. These are used to develop a parametrisation of the weights needed in the lateral fit procedure. We will present the results of these investigations and preliminary distributions of the resulting shower parameters.

  3. The Role of Distribution Infrastructure and Equipment in the Life-cycle Air Emissions of Liquid Transportation Fuels

    NASA Astrophysics Data System (ADS)

    Strogen, Bret Michael

    component. In order to apply the new emission factors to policy-relevant scenarios, a projection is made for the fleet inventory of infrastructure components necessary to distribute 21 billion gallons of ethanol (the 2022 federal mandate for advanced biofuels under the Energy Independence and Security Act of 2007) derived entirely from Miscanthus grass, for comparison to the baseline petroleum system. Due to geographic, physical and chemical properties of biomass and alcohols, the distribution system for Miscanthus-based ethanol is more capital- and energy-intensive than petroleum per unit of fuel energy delivered. The transportation of biofuels away from producer regions poses environmental, health, and economic trade-offs that are herein evaluated using a simplified national distribution network model. In just the last ten years, ethanol transportation within the contiguous United States is estimated to have increased more than ten-fold in total t-km as ethanol has increasingly been transported away from Midwest producers due to air quality regulations pertaining to gasoline, renewable fuel mandates, and the 10% blending limit (i.e., the E10 blend wall). From 2004 to 2009, approximately 10 billion t-km of ethanol transportation are estimated to have taken place annually for reasons other than the E10 blend wall, leading to annual freight costs greater than $240 million and more than 300,000 tonnes of CO2-e emissions and significant emissions of criteria air pollutants from the combustion of more than 90 million liters of diesel. Although emissions from distribution activities are small when normalized to each unit of fuel, they are large in scale. Archetypal fuel distribution routes by rail and by truck are created to evaluate the significance of mode choice and route location on the severity of public health impacts from locomotive and truck emissions, by calculating the average PM2.5 pollution intake fraction along each route. Exposure to pollution resulting from

  4. Impact of air distribution on efficiency of dust capture from metal grinding--bench test method.

    PubMed

    Jankowski, Tomasz

    2011-01-01

    According to the Machinery Directive 2006/42/EC, one of the essential requirements relating to occupational safety and health hazards is to prevent dust pollution emitted by machinery during the implementation processes. Research on evaluation of emissions from machinery, according to the method of test bench using tracer gases, are currently being conducted in CIOP-PIB. This article presents some aspects of dust emission and efficiency of local exhaust ventilation (LEV) during metal grinding. Studies were performed with 10 sources of dust emissions during grinding. To evaluate the pollutants emission in the process of grinding metal products sulfur hexafluoride (SF(6)) was selected as a tracer gas. The results show that wherever dust is emitted, the LEV should be supported by the general ventilation. Ensure good interaction between all elements of modifying the air flow and the spread of pollutants in the surroundings of the LEV is essential to effective protection of human working zone against pollutants. We used five variants of ventilation: ventilation turned off, the LEV, one-way general ventilation, mixed general ventilation and displacement general ventilation. An increase in the efficiency of dust capture depending on the source of emission by 2.5-14% was observed. This confirms that characteristics of flow resulting from the operation of ventilation is important in the spread of pollutants in the room.

  5. Impact of Conflict Avoidance Responsibility Allocation on Pilot Workload in a Distributed Air Traffic Management System

    NASA Technical Reports Server (NTRS)

    Ligda, Sarah V.; Dao, Arik-Quang V.; Vu, Kim-Phuong; Strybel, Thomas Z.; Battiste, Vernol; Johnson, Walter W.

    2010-01-01

    Pilot workload was examined during simulated flights requiring flight deck-based merging and spacing while avoiding weather. Pilots used flight deck tools to avoid convective weather and space behind a lead aircraft during an arrival into Louisville International airport. Three conflict avoidance management concepts were studied: pilot, controller or automation primarily responsible. A modified Air Traffic Workload Input Technique (ATWIT) metric showed highest workload during the approach phase of flight and lowest during the en-route phase of flight (before deviating for weather). In general, the modified ATWIT was shown to be a valid and reliable workload measure, providing more detailed information than post-run subjective workload metrics. The trend across multiple workload metrics revealed lowest workload when pilots had both conflict alerting and responsibility of the three concepts, while all objective and subjective measures showed highest workload when pilots had no conflict alerting or responsibility. This suggests that pilot workload was not tied primarily to responsibility for resolving conflicts, but to gaining and/or maintaining situation awareness when conflict alerting is unavailable.

  6. Summer-time distribution of air pollutants in Sequoia National Park, California.

    PubMed

    Bytnerowicz, Andrzej; Tausz, Michael; Alonso, Rocio; Jones, David; Johnson, Ronald; Grulke, Nancy

    2002-01-01

    Concentrations of air pollutants were monitored during the May November 1999 period on a network of forested sites in Sequoia National Park, California. Measurements were conducted with: (1) active monitors for nitric oxide (NO), nitrogen dioxide (NO2) and ozone (O3); (2) honeycomb denuder/filter pack systems for nitric acid vapor (HNO3), nitrous acid vapor (HNO2), ammonia (NH3), sulfur dioxide (SO2), particulate nitrate (NO3-), ammonium (NH4+), and sulfate (SO4(2-)); and (3) passive samplers for O3, HNO3 and NO2. Elevated concentrations of O3 (seasonal means 41-71 ppb), HNO3 (seasonal means 0.4-2.9 microg/m3), NH3 (seasonal means 1.6-4.5 microg/m3), NO3 (1.1-2.0 microg/m3) and NH4+ (1.0-1.9 microg/m3) were determined. Concentrations of other pollutants were low. With increasing elevation and distance from the pollution source area of O3, NH3 and HNO3 concentrations decreased. Ammonia and NH4+ were dominant N pollutants indicating strong influence of agricultural emissions on forests and other ecosystems of the Sequoia National Park.

  7. WRF-Chem simulation of East Asian air quality: Sensitivity to temporal and vertical emissions distributions

    NASA Astrophysics Data System (ADS)

    Wang, Xueyuan; Liang, Xin-Zhong; Jiang, Weimei; Tao, Zhining; Wang, Julian X. L.; Liu, Hongnian; Han, Zhiwei; Liu, Shuyan; Zhang, Yuyan; Grell, Georg A.; Peckham, Steven E.

    2010-02-01

    This study develops fine temporal (seasonal, day-of-week, diurnal) and vertical allocations of anthropogenic emissions for the TRACE-P inventory and evaluates their impacts on the East Asian air quality prediction using WRF-Chem simulations in July 2001 at 30-km grid spacing against available surface measurements from EANET and NEMCC. For NO 2 and SO 2, the diurnal and vertical redistributions of emissions play essential roles, while the day-of-week variation is less important. When all incorporated, WRF-Chem best simulates observations of surface NO 2 and SO 2 concentrations, while using the default emissions produces the worst result. The sensitivity is especially large over major cities and industrial areas, where surface NO 2 and SO 2 concentrations are reduced by respectively 3-7 and 6-12 ppbv when using the scaled emissions. The incorporation of all the three redistributions of emissions simulates surface O 3 concentrations higher by 4-8 ppbv at night and 2-4 ppbv in daytime over broad areas of northern, eastern and central China. To this sensitivity, the diurnal redistribution contributes more than the other two.

  8. Comparative Cooling Season Performance of Air Distribution Systems in Multistory Townhomes

    SciTech Connect

    Poerschke, Andrew; Beach, Rob; Beggs, Timothy

    2016-08-01

    IBACOS investigated the performance of a small-diameter high velocity heat pump system compared to a conventional system in a new construction triplex townhouse. A ductless heat pump system also was installed for comparison, but the homebuyer backed out because of aesthetic concerns about that system. In total, two buildings, having identical solar orientation and comprised of six townhomes, were monitored for comfort and energy performance. Results show that the small-diameter system provides more uniform temperatures from floor to floor in the three-story townhome. No clear energy consumption benefit was observed from either system. The builder is continuing to explore the small-diameter system as its new standard system to provide better comfort and indoor air quality. The homebuilder also explored the possibility of shifting its townhome product to meet the U.S. Department of Energy Challenge Home National Program Requirements. Ultimately, the builder decided that adoption of these practices would be too disruptive midstream in the construction cycle. However, the townhomes met the ENERGY STAR Version 3.0 program requirements.

  9. An architecture for integrating distributed and cooperating knowledge-based Air Force decision aids

    NASA Technical Reports Server (NTRS)

    Nugent, Richard O.; Tucker, Richard W.

    1988-01-01

    MITRE has been developing a Knowledge-Based Battle Management Testbed for evaluating the viability of integrating independently-developed knowledge-based decision aids in the Air Force tactical domain. The primary goal for the testbed architecture is to permit a new system to be added to a testbed with little change to the system's software. Each system that connects to the testbed network declares that it can provide a number of services to other systems. When a system wants to use another system's service, it does not address the server system by name, but instead transmits a request to the testbed network asking for a particular service to be performed. A key component of the testbed architecture is a common database which uses a relational database management system (RDBMS). The RDBMS provides a database update notification service to requesting systems. Normally, each system is expected to monitor data relations of interest to it. Alternatively, a system may broadcast an announcement message to inform other systems that an event of potential interest has occurred. Current research is aimed at dealing with issues resulting from integration efforts, such as dealing with potential mismatches of each system's assumptions about the common database, decentralizing network control, and coordinating multiple agents.

  10. pCO2 distributions and air-water CO2 fluxes in the Columbia River estuary

    NASA Astrophysics Data System (ADS)

    Evans, Wiley; Hales, Burke; Strutton, Peter G.

    2013-01-01

    Sources of time and space variability in the distributions of surface water carbon dioxide partial pressure (pCO2) and air-water CO2 flux were quantified in the Columbia River estuary (CRE) during five cruises in spring, summer and autumn 2007/08. The CRE is an upwelling margin river-dominated mesotidal system that is an estuary class not represented in global flux compilations. Data from the CRE show instances of pCO2 under and oversaturation with respect to the atmosphere during every season in association with tidal, wind, biological and storm-driven sources of variability. On average the CRE is a sink for atmospheric CO2 during spring and a source during summer and autumn, with large positive air-water CO2 fluxes during the snowmelt freshet coinciding with the functional transition in the estuary. It is hypothesized here that interannual variability in size of the snowmelt freshet largely influences the extent of springtime CO2 uptake in the CRE, and subsequently the magnitude of net annual CO2 emission from the estuary. Data collected during an autumn storm show that large fluxes can drop quickly, even in the presence of high gas transfer velocities, because of rapid CO2 exchange with the atmosphere in this weakly buffered system. Combining seasonal observations of CO2 exchange with an assumption of winter conditions, we estimate that the net annual emission from the CRE is approximately 1 mol C m-2 yr-1. The air-water CO2 fluxes reported here are the first from an upwelling margin river-dominated mesotidal estuary, and the estimate of net annual exchange is substantially lower than those from other tidal and/or large river systems represented in global flux compilations.

  11. Heat-transfer distributions on biconics at incidence in hypersonic-hypervelocity He, N2, air, and CO2 flows

    NASA Technical Reports Server (NTRS)

    Miller, C. G.; Micol, J. R.; Gnoffo, P. A.; Wilder, S. E.

    1983-01-01

    Laminar heat transfer rates were measured on spherically blunted, 13 deg/7 deg on axis and bent biconics (fore cone bent 7 deg upward relative to aft cone) at hypersonic hypervelocity flow conditions in the Langley Expansion Tube. Freestream velocities from 4.5 to 6.9 km/sec and Mach numbers from 6 to 9 were generated using helium, nitrogen, air, and carbon dioxide test gases, resulting in normal shock density ratios from 4 to 19. Angle of attack, referenced to the axis of the aft cone, was varied from 0 to 20 deg in 4 deg increments. The effect of nose bend, angle of attack, and real gas phenomena on heating distributions are presented along with comparisons of measurement to prediction from a code which solves the three dimensional parabolized Navier-Stokes equations.

  12. Spatial Distribution, Air-Water Fugacity Ratios and Source Apportionment of Polychlorinated Biphenyls in the Lower Great Lakes Basin.

    PubMed

    Khairy, Mohammed; Muir, Derek; Teixeira, Camilla; Lohmann, Rainer

    2015-12-01

    Polychlorinated biphenyls (PCBs) continue to be contaminants of concern across the Great Lakes. It is unclear whether current concentrations are driven by ongoing primary emissions from their original uses, or whether ambient PCBs are dominated by their environmental cycling. Freely dissolved PCBs in air and water were measured using polyethylene passive samplers across Lakes Erie and Ontario during summer and fall, 2011, to investigate their spatial distribution, determine and apportion their sources and to asses their air-water exchange gradients. Average gaseous and freely dissolved ∑29 PCB concentrations ranged from 5.0 to 160 pg/m(3) and 2.0 to 55 pg/L respectively. Gaseous concentrations were significantly correlated (R(2) = 0.80) with the urban area within a 3-20 km radius. Fugacity ratios indicated that the majority of PCBs are volatilizing from the water thus acting as a secondary source for the atmosphere. Dissolved PCBs were probably linked to PCB emissions from contaminated sites and areas of concern. Positive matrix factorization indicated that although volatilized Aroclors (gaseous PCBs) and unaltered Aroclors (dissolved PCBs) dominate in some samples, ongoing non-Aroclor sources such as paints/pigments (PCB 11) and coal/wood combustion showed significant contributions across the lower Great Lakes. Accordingly, control strategies should give further attention to PCBs emitted from current use sources.

  13. Measured pressure distributions, aerodynamic coefficients and shock shapes on blunt bodies at incidence in hypersonic air and CF4

    NASA Technical Reports Server (NTRS)

    Miller, C. G., III

    1982-01-01

    Pressure distributions, aerodynamic coefficients, and shock shapes were measured on blunt bodies of revolution in Mach 6 CF4 and in Mach 6 and Mach 10 air. The angle of attack was varied from 0 deg to 20 deg in 4 deg increments. Configurations tested were a hyperboloid with an asymptotic angle of 45 deg, a sonic-corner paraboloid, a paraboloid with an angle of 27.6 deg at the base, a Viking aeroshell generated in a generalized orthogonal coordinate system, and a family of cones having a 45 deg half-angle with spherical, flattened, concave, and cusp nose shapes. Real-gas effects were simulated for the hperboloid and paraboloid models at Mach 6 by testing at a normal-shock density ratio of 5.3 in air and 12 CF4. Predictions from simple theories and numerical flow field programs are compared with measurement. It is anticipated that the data presented in this report will be useful for verification of analytical methods for predicting hypersonic flow fields about blunt bodies at incidence.

  14. Prediction of in-phantom dose distribution using in-air neutron beam characteristics for BNCS

    SciTech Connect

    Verbeke, Jerome M.

    1999-12-14

    A monoenergetic neutron beam simulation study is carried out to determine the optimal neutron energy range for treatment of rheumatoid arthritis using radiation synovectomy. The goal of the treatment is the ablation of diseased synovial membranes in joints, such as knees and fingers. This study focuses on human knee joints. Two figures-of-merit are used to measure the neutron beam quality, the ratio of the synovium absorbed dose to the skin absorbed dose, and the ratio of the synovium absorbed dose to the bone absorbed dose. It was found that (a) thermal neutron beams are optimal for treatment, (b) similar absorbed dose rates and therapeutic ratios are obtained with monodirectional and isotropic neutron beams. Computation of the dose distribution in a human knee requires the simulation of particle transport from the neutron source to the knee phantom through the moderator. A method was developed to predict the dose distribution in a knee phantom from any neutron and photon beam spectra incident on the knee. This method was revealed to be reasonably accurate and enabled one to reduce by a factor of 10 the particle transport simulation time by modeling the moderator only.

  15. Effects of air breathing engine plumes on SSV orbiter subsonic wing pressure distribution, volume 2

    NASA Technical Reports Server (NTRS)

    Soard, T.

    1974-01-01

    Data presented were obtained during wind tunnel tests of a 0.0405-scale model of the -89B ferry configuration of the space shuttle vehicle orbiter. These tests were conducted in the Rockwell International low speed wind tunnel (NAAL). The primary test objective was to investigate orbiter wing pressure distributions resulting from nacelle plumes above and below the wing. Three six-engine nacelle configurations were tested. One configuration has a twin-podded nacelle mounted above each wing and the others had one mounted below each wing. Both had a centerline twin-podded nacelle mounted below the wing. Wing pressure distribution was determined by locating static pressure bugs on the upper and lower surfaces of the left wing. Pressure bugs were also located on the upper and lower surfaces of the body flap and on the B12 afterbody fairing when it was installed. Base and balance cavity pressures were recorded and a strain gage instrumented beam in the right wing measured elevon hinge moments and normal forces.

  16. Influence of forced internal air circulation on airflow distribution and heat transfer in a gas double-dynamic solid-state fermentation bioreactor.

    PubMed

    Chen, Hongzhang; Qin, Lanzhi; Li, Hongqiang

    2014-02-01

    Internal air circulation affects the temperature field distribution in a gas double-dynamic solid-state fermentation bioreactor (GDSFB). To enhance heat transfer through strengthening internal air circulation in a GDSFB, we put an air distribution plate (ADP) into the bioreactor and studied the effects of forced internal air circulation on airflow, heat transfer, and cellulase activity of Trichoderma viride L3. Results showed that ADP could help form a steady and uniform airflow distribution, and with gas-guide tubes, air reversal was formed inside the bioreactor, thus resulting in a smaller temperature difference between medium and air by enhancing convective heat transfer inside the bioreactor. Using an ADP of 5.35 % aperture ratio caused a 1 °C decrease in the average temperature difference during the solid-state fermentation process of T. viride L3. Meanwhile, the cellulase activity of T. viride L3 increased by 13.5 %. The best heat-transfer effect was attained when using an ADP of 5.35 % aperture ratio and setting the fan power to 125 V (4.81 W) in the gas double-dynamic solid-state fermentation (GDSF) process. An option of suitable aperture ratio and fan power may be conducive to ADPs' industrial amplification.

  17. Carbon isotope evidence for the latitudinal distribution and wind speed dependence of the air-sea gas transfer velocity

    NASA Astrophysics Data System (ADS)

    Krakauer, Nir Y.; Randerson, James T.; Primeau, François W.; Gruber, Nicolas; Menemenlis, Dimitris

    2006-11-01

    The air-sea gas transfer velocity is an important determinant of the exchange of gases, including CO2, between the atmosphere and ocean, but the magnitude of the transfer velocity and what factors control it remains poorly known. Here, we use oceanic and atmospheric observations of 14C and 13C to constrain the global mean gas transfer velocity as well as the exponent of its wind speed dependence, utilizing the distinct signatures left by the air-sea exchange of 14CO2 and 13CO2. While the atmosphere and ocean inventories of 14CO2 and 13CO2 constrain the mean gas transfer velocity, the latitudinal pattern in the atmospheric and oceanic 14C and 13C distributions contain information about the wind speed dependence. We computed the uptake of bomb 14C by the ocean for different transfer velocity patterns using pulse response functions from an ocean general circulation model, and evaluated the match between the predicted bomb 14C concentrations and observationally based estimates for the 1970s-1990s. Using a wind speed climatology based on satellite measurements, we solved either for the best-fit global relationship between gas exchange and mean wind speed or for the mean gas transfer velocity over each of 11 ocean regions. We also compared the predicted consequences of different gas exchange relationships on the rate of change and interhemisphere gradient of 14C in atmospheric CO2 with tree-ring and atmospheric measurements. Our results suggest that globally, the dependence of the air-sea gas transfer velocity on wind speed is close to linear, with an exponent of 0.5 +/- 0.4, and that the global mean gas transfer velocity at a Schmidt number of 660 is 20 +/- 3 cm/hr, similar to the results of previous analyses. We find that the air-sea flux of 13C estimated from atmosphere and ocean observations also suggests a lower than quadratic dependence of gas exchange on wind speed.

  18. Distribution of ozone and other air pollutants in forests of the Carpathian Mountains in central Europe.

    PubMed

    Bytnerowicz, A; Godzik, B; Fraczek, W; Grodzińska, K; Krywult, M; Badea, O; Barancok, P; Blum, O; Cerny, M; Godzik, S; Mankovska, B; Manning, W; Moravcik, P; Musselman, R; Oszlanyi, J; Postelnicu, D; Szdźuj, J; Varsavova, M; Zota, M

    2002-01-01

    Ozone (O3) concentrations were monitored during the 1997-1999 growing seasons in 32 forest sites of the Carpathian Mountains. At all sites (elevation between 450 and 1320 m) concentrations of O3, nitrogen dioxide (NO2), and sulfur dioxide (SO2) were measured with passive samplers. In addition, in two western Carpathian locations, Vychodna and Gubalówka, ozone was continuously monitored with ultraviolet (UV) absorption monitors. Highest average hourly O3 concentrations in the Vychodna and Gubałówka sites reached 160 and 200 microg/m3 (82 and 102 ppb), respectively (except for the AOT40 values, ozone concentrations are presented as microg/m3; and at 25 degrees C and 760 mm Hg, 1 microg O3/m3 = 0.51 ppb O3). These sites showed drastically different patterns of diurnal 03 distribution, one with clearly defined peaks in the afternoon and lowest values in the morning, the other with flat patterns during the entire 24-h period. On two elevational transects, no effect of elevation on O3 levels was seen on the first one, while on the other a significant increase of O3 levels with elevation occurred. Concentrations of O3 determined with passive samplers were significantly different between individual monitoring years, monitoring periods, and geographic location of the monitoring sites. Results of passive sampler monitoring showed that high O3 concentrations could be expected in many parts of the Carpathian range, especially in its western part, but also in the eastern and southern ranges. More than four-fold denser network of monitoring sites is required for reliable estimates of O3 distribution in forests over the entire Carpathian range (140 points). Potential phytotoxic effects of O3 on forest trees and understory vegetation are expected on almost the entire territory of the Carpathian Mountains. This assumption is based on estimates of the AOT40 indices for forest trees and natural vegetation. Concentrations of NO2 and SO2 in the entire Carpathian range were typical

  19. Application of the octanol-air partition coefficient for describing particle/gas distribution of chlorinated aromatics

    SciTech Connect

    Harner, T.; Bidleman, T.; Falconer, R.; Mackay, D.

    1995-12-31

    Partitioning of chlorinated aromatics between the gas and aerosol particulate phases can be explained by adsorption onto active sites on the surface of the aerosol and/or by absorption into a liquid film. In both cases the particle/gas distribution coefficient, K{sub P}, is well correlated with the vapor pressure of the compound. The correlation improves for the adsorption model by including a shape parameter which takes into account the planarity of the molecule. This investigation will consider using the octanol-air partition coefficient, K{sub OA}, as a surrogate for K{sub p}. A method for measuring K{sub OA} is described and results are presented for several PCBs over the temperature range {minus}10 C to + 30 C. The temperature dependence of K{sub P} for PCBs, measured in controlled laboratory experiments, is more closely described by the temperature slope of K{sub OA} than vapor pressure. This supports the hypothesis that absorption into an organic, liquid film is a plausible mechanism for sorption of chlorinated aromatics to urban aerosols. K{sub OA} is also believed to be a valuable descriptor of partitioning of persistent organochlorine chemicals between the atmosphere and lipid-containing phases such as soil and vegetation. Results of particle/gas distributions for PCBs and PCNs (polychlorinated naphthalenes) from field samples collected in Toronto and Chicago are presented and discussed with relation to OA, vapor pressure and planarity.

  20. Application of the octanol-air partition coefficient for describing particle/gas distribution of persistent aromatics

    SciTech Connect

    Harner, T.; Bidleman, T.; Falconer, R.; Mackay, D.

    1995-12-31

    Partitioning of chemicals between the gas and aerosol particulate phases can be explained by adsorption onto active sites on the surface of the aerosol, and/or by absorption into a liquid film. In both cases the particle/gas distribution coefficient, K{sub P}, is well correlated with vapor pressure for compounds in the same class. This investigation will consider using the octanol-air partition coefficient, K{sub OA}, as an alternate fitting parameter for K{sub P}. A method for measuring K{sub OA} is described and results are presented for several polychlorinated biphenyls (PCBs), polynuclear aromatic hydrocarbons (PAHs), and polychlorinated naphthalenes (PCNs) over the temperature range {minus}10 C to + 40 C. Results of particle/gas distributions for PCBs, PAHs, and PCN, from field samples collected in Chicago are presented and discussed with relation to K{sub OA}, vapor pressure and the planarity of the compound. Correlation of K{sub P} with K{sub OA} reduces differences between compound classes and is able to explain the enhanced partitioning onto particles for coplanar PCBs which vapor pressure alone is unable to resolve.

  1. Air pollution distribution patterns in the San Bernardino Mountains of southern California: a 40-year perspective.

    PubMed

    Bytnerowicz, Andrzej; Arbaugh, Michael; Schilling, Susan; Fraczek, Witold; Alexander, Diane; Dawson, Philip

    2007-03-21

    Since the mid-1950s, native pines in the San Bernardino Mountains (SBM) in southern California have shown symptoms of decline. Initial studies in 1963 showed that ozone (O3) generated in the upwind Los Angeles Basin was responsible for the injury and decline of sensitive trees. Ambient O3 decreased significantly by the mid-1990s, resulting in decreased O3 injury and improved tree growth. Increased growth of trees may also be attributed to elevated atmospheric nitrogen (N) deposition. Since most of the N deposition to mixed conifer forest stands in the SBM results from dry deposition of nitric acid vapor (HNO3) and ammonia (NH3), characterization of spatial and temporal distribution of these two pollutants has become essential. Although maximum daytime O3 concentrations over last 40 years have significantly decreased (approximately 3-fold), seasonal means have been reduced much less (approximately 1.5-fold), with 2-week long means occasionally exceeding 100 ppb in the western part of the range. In the same area, significantly elevated concentrations of HNO3 and NH3, up to 17.5 and 18.5 microg/m3 as 2-week averages, respectively, have been determined. Elevated levels of O3 and increased N deposition together with long-term drought predispose the SBM forests to massive bark beetle attacks making them susceptible to catastrophic fires.

  2. Global intraurban intake fractions for primary air pollutants from vehicles and other distributed sources.

    PubMed

    Apte, Joshua S; Bombrun, Emilie; Marshall, Julian D; Nazaroff, William W

    2012-03-20

    We model intraurban intake fraction (iF) values for distributed ground-level emissions in all 3646 global cities with more than 100,000 inhabitants, encompassing a total population of 2.0 billion. For conserved primary pollutants, population-weighted median, mean, and interquartile range iF values are 26, 39, and 14-52 ppm, respectively, where 1 ppm signifies 1 g inhaled/t emitted. The global mean urban iF reported here is roughly twice as large as previous estimates for cities in the United States and Europe. Intake fractions vary among cities owing to differences in population size, population density, and meteorology. Sorting by size, population-weighted mean iF values are 65, 35, and 15 ppm, respectively, for cities with populations larger than 3, 0.6-3, and 0.1-0.6 million. The 20 worldwide megacities (each >10 million people) have a population-weighted mean iF of 83 ppm. Mean intraurban iF values are greatest in Asia and lowest in land-rich high-income regions. Country-average iF values vary by a factor of 3 among the 10 nations with the largest urban populations.

  3. The distribution of chlorpyrifos following a crack and crevice type application in the US EPA Indoor Air Quality Research House

    NASA Astrophysics Data System (ADS)

    Stout, D. M.; Mason, M. A.

    A study was conducted in the US EPA Indoor Air Quality (IAQ) Research House to determine the spatial and temporal distribution of chlorpyrifos following a professional crack and crevice application in the kitchen. Following the application, measurements were made in the kitchen, den and master bedroom over 21 days. Airborne concentrations were collected using both polyurethane foam (PUF) and the OSHA versatile sampler composed of XAD and PUF media located in tandem. Measured airborne concentrations were similar for the two samplers and were higher in the three rooms following the application. The highest measured concentrations were reached during the initial 24-h following application; concentrations subsequently declined over the 21-day study period to levels slightly above background. Spatial and temporal distributions onto surfaces were measured using 10-cm 2 rayon deposition coupons located on the floor. Sections were cut from existing carpet to determine the total extractable residues. Chlorpyrifos was measured from all matrixes in the kitchen, den and bedroom and the data shows the transport of airborne residues from the point of application to remote locations in the house. The findings are compared and discussed relative to another study conducted in which total release aerosols containing chlorpyrifos were activated in the IAQ research house and the resulting distributions evaluated. For both studies dose estimates were constructed for the exposure pathways using the Stochastic Human Exposure and Dose Estimation Model for pesticides. The United States Environmental Protection Agency has been mandated to examine children's exposure to environmental pollutants such as pesticides. This research specifically reduces uncertainties associated with estimating children's potential exposures to residentially applied pesticides and provides inputs to further evaluate and validate residential exposure models which might be used to reduce exposures and perform risk

  4. An accurate derivation of the air dose-rate and the deposition concentration distribution by aerial monitoring in a low level contaminated area

    NASA Astrophysics Data System (ADS)

    Nishizawa, Yukiyasu; Sugita, Takeshi; Sanada, Yukihisa; Torii, Tatsuo

    2015-04-01

    Since 2011, MEXT (Ministry of Education, Culture, Sports, Science and Technology, Japan) have been conducting aerial monitoring to investigate the distribution of radioactive cesium dispersed into the atmosphere after the accident at the Fukushima Dai-ichi Nuclear Power Plant (FDNPP), Tokyo Electric Power Company. Distribution maps of the air dose-rate at 1 m above the ground and the radioactive cesium deposition concentration on the ground are prepared using spectrum obtained by aerial monitoring. The radioactive cesium deposition is derived from its dose rate, which is calculated by excluding the dose rate of the background radiation due to natural radionuclides from the air dose-rate at 1 m above the ground. The first step of the current method of calculating the dose rate due to natural radionuclides is calculate the ratio of the total count rate of areas where no radioactive cesium is detected and the count rate of regions with energy levels of 1,400 keV or higher (BG-Index). Next, calculate the air dose rate of radioactive cesium by multiplying the BG-Index and the integrated count rate of 1,400 keV or higher for the area where the radioactive cesium is distributed. In high dose-rate areas, however, the count rate of the 1,365-keV peak of Cs-134, though small, is included in the integrated count rate of 1,400 keV or higher, which could cause an overestimation of the air dose rate of natural radionuclides. We developed a method for accurately evaluating the distribution maps of natural air dose-rate by excluding the effect of radioactive cesium, even in contaminated areas, and obtained the accurate air dose-rate map attributed the radioactive cesium deposition on the ground. Furthermore, the natural dose-rate distribution throughout Japan has been obtained by this method.

  5. Mercury distribution in the soil-plant-air system at the Wanshan mercury mining district in Guizhou, Southwest China.

    PubMed

    Wang, Jianxu; Feng, Xinbin; Anderson, Christopher W N; Zhu, Wei; Yin, Runsheng; Wang, Heng

    2011-12-01

    The level of mercury bioaccumulation in wild plants; the distribution of bioavailable Hg, elemental Hg, and total Hg in soil; and the concentration of total gaseous Hg (TGM) in ambient air was studied at three different mining sites (SiKeng [SK], WuKeng [WK], and GouXi [GX]) in the Wanshan mercury mining district of China. Results of the present study showed that the distribution of soil total Hg, elemental Hg, bioavailable Hg, and TGM varies across the three mining sites. Higher soil total Hg (29.4-1,972.3 mg/kg) and elemental Hg (19.03-443.8 mg/kg) concentrations were recorded for plots SK and WK than for plot GX. Bioavailable Hg was lower at plot SK and GX (SK, 3-12 ng/g; GX, 9-14 ng/g) than at plot WK (11-1,063 ng/g), although the TGM concentration in the ambient air was significantly higher for plot GX (52,723 ng/m(3) ) relative to WK (106 ng/m(3) ) and SK (43 ng/m(3)). Mercury in sampled herbage was elevated and ranged from 0.8 to 4.75 mg/kg (SK), from 2.17 to 34.38 mg/kg (WK), and from 47.45 to 136.5 mg/kg (GX). Many of the sampled plants are used as fodder or for medicinal purposes. High shoot Hg concentrations may therefore pose an unacceptable human health risk. Statistical analysis of the recorded data showed that the Hg concentration in plant shoots was positively correlated with TGM and that the Hg concentration in roots was positively correlated with the bioavailable Hg concentration in the soil. The bioaccumulation factor (BAF) in the present study was defined with reference to the concentration of bioavailable Hg in the soil (Hg([root]) /Hg([bioavail])). Three plant species, Macleaya cordata L., Achillea millefolium L., and Pteris vittata L., showed enhanced accumulation of Hg and therefore may have potential for use in the phytoremediation of soils of the Wanshan mining area.

  6. THE DISTRIBUTION OF CHLORPYRIFOS FOLLOWING A CRACK AND CREVICE TYPE APPLICATION IN THE U.S. EPA INDOOR AIR QUALITY RESEARCH HOUSE

    EPA Science Inventory

    The paper gives results of a study to determine the spatial and temporal distribution of chlorpyrifos following a professional crack-and-crevice application in the kitchen of the U.S. EPA's indoor air quality research house in North Carolina. Following the application, measuremen...

  7. THE DISTRIBUTION OF CHLORPYRIFOS FOLLOWING A CRACK AND CREVICE TYPE APPLICATION IN THE U.S. EPA INDOOR AIR QUALITY TEST HOUSE

    EPA Science Inventory

    A study was conducted in the U.S. EPA Indoor Air Quality Test House to determine the spatial and temporal distribution of chlorpyrifos following a professional crack and crevice application in the kitchen. Following the application, measurements were made in the kitchen, den a...

  8. THE DISTRIBUTION OF CHLORPYRIFOS FOLLOWING A CRACK AND CREVICE TYPE APPLICATION IN THE U.S. EPA INDOOR AIR QUALITY RESEARCH HOUSE

    EPA Science Inventory

    A study was conducted in the U.S. EPA Indoor Air Quality Research House to determine the spatial and temporal distribution of chlorpyrifos following a professional crack and crevice application in the kitchen. Following the application, measurements were made in the kitchen, de...

  9. Local distribution of wall static pressure and heat transfer on a rough flat plate impinged by a slot air jet

    NASA Astrophysics Data System (ADS)

    Meda, Adimurthy; Katti, Vadiraj V.

    2017-02-01

    The present work experimentally investigates the local distribution of wall static pressure and the heat transfer coefficient on a rough flat plate impinged by a slot air jet. The experimental parameters include, nozzle-to-plate spacing (Z/D h = 0.5-10.0), axial distance from stagnation point (x/D h ), size of detached rib (b = 4-12 mm) and Reynolds number (Re = 2500-20,000). The wall static pressure on the surface is recorded using a Pitot tube and a differential pressure transmitter. Infrared thermal imaging technique is used to capture the temperature distribution on the target surface. It is observed that, the maximum wall static pressure occurs at the stagnation point (x/D h = 0) for all nozzle-to-plate spacing (Z/D h ) and rib dimensions studied. Coefficient of wall static pressure (C p ) decreases monotonically with x/D h . Sub atmospheric pressure is evident in the detached rib configurations for jet to plate spacing up to 6.0 for all ribs studied. Sub atmospheric region is stronger at Z/D h = 0.5 due to the fluid accelerating under the rib. As nozzle to plate spacing (Z/D h ) increases, the sub-atmospheric region becomes weak and vanishes gradually. Reasonable enhancement in both C p as well as Nu is observed for the detached rib configuration. Enhancement is found to decrease with the increase in the rib width. The results of the study can be used in optimizing the cooling system design.

  10. Updated greenhouse gas and criteria air pollutant emission factors and their probability distribution functions for electricity generating units

    SciTech Connect

    Cai, H.; Wang, M.; Elgowainy, A.; Han, J.

    2012-07-06

    Greenhouse gas (CO{sub 2}, CH{sub 4} and N{sub 2}O, hereinafter GHG) and criteria air pollutant (CO, NO{sub x}, VOC, PM{sub 10}, PM{sub 2.5} and SO{sub x}, hereinafter CAP) emission factors for various types of power plants burning various fuels with different technologies are important upstream parameters for estimating life-cycle emissions associated with alternative vehicle/fuel systems in the transportation sector, especially electric vehicles. The emission factors are typically expressed in grams of GHG or CAP per kWh of electricity generated by a specific power generation technology. This document describes our approach for updating and expanding GHG and CAP emission factors in the GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model developed at Argonne National Laboratory (see Wang 1999 and the GREET website at http://greet.es.anl.gov/main) for various power generation technologies. These GHG and CAP emissions are used to estimate the impact of electricity use by stationary and transportation applications on their fuel-cycle emissions. The electricity generation mixes and the fuel shares attributable to various combustion technologies at the national, regional and state levels are also updated in this document. The energy conversion efficiencies of electric generating units (EGUs) by fuel type and combustion technology are calculated on the basis of the lower heating values of each fuel, to be consistent with the basis used in GREET for transportation fuels. On the basis of the updated GHG and CAP emission factors and energy efficiencies of EGUs, the probability distribution functions (PDFs), which are functions that describe the relative likelihood for the emission factors and energy efficiencies as random variables to take on a given value by the integral of their own probability distributions, are updated using best-fit statistical curves to characterize the uncertainties associated with GHG and CAP emissions in life

  11. Distribution and sea-to-air fluxes of volatile halocarbons in the Bohai Sea and North Yellow Sea during spring.

    PubMed

    He, Zhen; Liu, Qiu-Lin; Zhang, Ying-Jie; Yang, Gui-Peng

    2017-01-26

    Concentrations of volatile halocarbons (VHCs), such as CHBr2Cl, CHBr3, C2HCl3, and C2Cl4, in the Bohai Sea (BS) and North Yellow Sea (NYS) were measured during the spring of 2014. The VHC concentrations varied widely and decreased with distance from the coast in the investigated area, with low values observed in the open sea. Depth profiles of the VHCs were characterized by the highest concentration generally found in the upper water column. The distributions of the VHCs in the BS and NYS were clearly influenced by the combined effects of biological production, anthropogenic activities, and riverine input. The sea-to-air fluxes of CHBr2Cl, CHBr3, C2HCl3, and C2Cl4 in the study area were estimated to be 47.17, 56.63, 162.56, and 104.37nmolm(-2)d(-1), respectively, indicating that the investigated area may be a source of atmospheric CHBr2Cl, CHBr3, C2HCl3, and C2Cl4 in spring.

  12. Reassessment of psychological distress and post-traumatic stress disorder in United States Air Force Distributed Common Ground System operators.

    PubMed

    Prince, Lillian; Chappelle, Wayne L; McDonald, Kent D; Goodman, Tanya; Cowper, Sara; Thompson, William

    2015-03-01

    The goal of this study was to assess for the main sources of occupational stress, as well as self-reported symptoms of distress and post-traumatic stress disorder among U.S. Air Force (USAF) Distributed Common Ground System (DCGS) intelligence exploitation and support personnel. DCGS intelligence operators (n=1091) and nonintelligence personnel (n = 447) assigned to a USAF Intelligence, Surveillance, and Reconnaissance Wing responded to the web-based survey. The overall survey response rate was 31%. Study results revealed the most problematic stressors among DCGS intelligence personnel included high workload, low manning, as well as organizational leadership and shift work issues. Results also revealed 14.35% of DCGS intelligence operators' self-reported high levels of psychological distress (twice the rate of DCGS nonintelligence support personnel). Furthermore, 2.0% to 2.5% self-reported high levels of post-traumatic stress disorder symptoms, with no significant difference between groups. The implications of these findings are discussed along with recommendations for USAF medical and mental health providers, as well as operational leadership.

  13. Polycyclic aromatic hydrocarbons in air on small spatial and temporal scales - II. Mass size distributions and gas-particle partitioning

    NASA Astrophysics Data System (ADS)

    Lammel, Gerhard; Klánová, Jana; Ilić, Predrag; Kohoutek, Jiří; Gasić, Bojan; Kovacić, Igor; Škrdlíková, Lenka

    2010-12-01

    Polycyclic aromatic hydrocarbons (PAHs) were measured together with inorganic air pollutants at two urban sites and one rural background site in the Banja Luka area, Bosnia and Hercegovina, during 72 h in July 2008 using a high time resolution (5 samples per day) with the aim to study gas-particle partitioning, aerosol mass size distributions and to explore the potential of a higher time resolution (4 h-sampling). In the particulate phase the mass median diameters of the PAHs were found almost exclusively in the accumulation mode (0.1-1.0 μm of size). These were larger for semivolatile PAHs than for non-volatile PAHs. Gas-particle partitioning of semivolatile PAHs was strongly influenced by temperature. The results suggest that the Junge-Pankow model is inadequate to explain the inter-species variation and another process must be significant for phase partitioning which is less temperature sensitive than adsorption. Care should be taken when interpreting slopes m of plots of the type log K p = m log p L0 + b based on 24 h means, as these are found sensitive to the time averaging, i.e. tend to be higher than when based on 12 h-mean samples.

  14. Computational simulation of temperature and velocity distribution in human upper respiratory airway during inhalation of hot air.

    PubMed

    Goodarzi-Ardakani, V; Taeibi-Rahni, M; Salimi, M R; Ahmadi, G

    2016-03-01

    The present study provides an accurate simulation of velocity and temperature distributions of inhalation thermal injury in a human upper airway, including vestibule, nasal cavity, paranasal sinuses, nasopharynx, oropharynx, larynx, and upper part of main bronchus. To this end, a series of CT scan images, taken from an adult woman, was used to construct a three dimensional model. The airway walls temperature was adjusted according to existing in vivo temperature measurements. Also, in order to cover all breathing activities, five different breathing flow rates (10, 15, 20, 30, and 40 l/min) and different ambient air temperatures (100, 200, 300, 400, and 500 °C) were studied. Different flow regimes, including laminar, transitional, and turbulence were considered and the simulations were validated using reliable experimental data. The results show that nostrils, vestibule, and nasal cavity are damaged more than other part of airway. Finally, In order to obtain the heat flux through the walls, correlations for Nusselt number for each individual parts of airway (vestibule, main upper airway, nasopharynx etc.,) are proposed.

  15. Measurement of air distribution and void fraction of an upwards air-water flow using electrical resistance tomography and a wire-mesh sensor

    NASA Astrophysics Data System (ADS)

    Olerni, Claudio; Jia, Jiabin; Wang, Mi

    2013-03-01

    Measurements on an upwards air-water flow are reported that were obtained simultaneously with a dual-plane electrical resistance tomograph (ERT) and a wire-mesh sensor (WMS). The ultimate measurement target of both ERT and WMS is the same, the electrical conductivity of the medium. The ERT is a non-intrusive device whereas the WMS requires a net of wires that physically crosses the flow. This paper presents comparisons between the results obtained simultaneously from the ERT and the WMS for evaluation and calibration of the ERT. The length of the vertical testing pipeline section is 3 m with an internal diameter of 50 mm. Two distinct sets of air-water flow rate scenarios, bubble and slug regimes, were produced in the experiments. The fast impedance camera ERT recorded the data at an approximate time resolution of 896 frames per second (fps) per plane in contrast with the 1024 fps of the wire-mesh sensor WMS200. The set-up of the experiment was based on well established knowledge of air-water upwards flow, particularly the specific flow regimes and wall peak effects. The local air void fraction profiles and the overall air void fraction were produced from two systems to establish consistency for comparison of the data accuracy. Conventional bulk flow measurements in air mass and electromagnetic flow metering, as well as pressure and temperature, were employed, which brought the necessary calibration to the flow measurements. The results show that the profiles generated from the two systems have a certain level of inconsistency, particularly in a wall peak and a core peak from the ERT and WMS respectively, whereas the two tomography instruments achieve good agreement on the overall air void fraction for bubble flow. For slug flow, when the void fraction is over 30%, the ERT underestimates the void fraction, but a linear relation between ERT and WMS is still observed.

  16. The Distributed Air Wing

    DTIC Science & Technology

    2014-06-01

    also provides the fleet with over-the-horizon detection and targeting capabilities that enable extended range anti-ship cruise missiles and land attack...are the preferred method of targeting since they work equally well at any range. For the purpose of this analysis the probability of detection was...44  Figure 20.  Detect Target (Function 2.2) FFBD. ................................................................45  Figure 21

  17. Air Parity: Re-Discovering Contested Air Operations

    DTIC Science & Technology

    2016-06-01

    AIR PARITY: RE-DISCOVERING CONTESTED AIR OPERATIONS BY CHRISTOPHER LAZIDIS A THESIS PRESENTED TO THE FACULTY OF...THE SCHOOL OF ADVANCED AIR AND SPACE STUDIES FOR COMPLETION OF GRADUATION REQUIREMENTS SCHOOL OF ADVANCED AIR AND SPACE STUDIES AIR ...UNIVERSITY MAXWELL AIR FORCE BASE, ALABAMA JUNE 2016 DISTRIBUTION A. Approved for public release: distribution unlimited ii APPROVAL The

  18. Distribution and sources of bioaccumulative air pollutants at Mezquital Valley, Mexico, as reflected by the atmospheric plant Tillandsia recurvata L.

    NASA Astrophysics Data System (ADS)

    Zambrano García, A.; Medina Coyotzin, C.; Rojas Amaro, A.; López Veneroni, D.; Martínez, L. Chang; Sosa Iglesias, G.

    2009-09-01

    Mezquital Valley (MV), a Mexican wastewater-based agricultural and industrial region, is a "hot spot" of regulated air pollutants emissions, but the concurrent unregulated ones, like hazardous metals and polycyclic aromatic hydrocarbons (PAH), remain undocumented. A biomonitoring survey with the epiphytic Tillandsia recurvata was conducted there to detect spatial patterns and potential sources of 20 airborne elements and 15 PAH. The natural δ13C and δ15N ratios of this plant helped in source identification. The regional mean concentration of most elements was two (Cr) to over 40 times (Ni, Pb, V) higher than reported for Tillandsia in other countries. Eleven elements, pyrene and chrysene had 18-214% higher mean concentration at the industrial south than at the agricultural north of MV. The total quantified PAH (mean, 572 ng g-1; range, 143-2568) were composed by medium (65%, phenanthrene to chrysene), low (28%, naphthalene to fluorene) and high molecular weight compounds (7%, Benzo(b)fluoranthene to indeno(1,2,3-cd)pyrene). The δ13C (mean, -14.6‰; range, -15.7‰ to -13.7‰) was consistently lower than -15‰ near the major petroleum combustion sources. The δ15N (mean, -3.0‰; range, -9.9‰ to 3.3‰) varied from positive at agriculture/industrial areas to negative at rural sites. Factor analysis provided a five-factor solution for 74% of the data variance: 1) crustal rocks, 39.5% (Al, Ba, Cu, Fe, Sr, Ti); 2) soils, 11.3%, contrasting contributions from natural (Mg, Mn, Zn) and saline agriculture soils (Na); 3) cement production and fossil fuel combustion, 9.8% (Ca, Ni, V, chrysene, pyrene); 4) probable agricultural biomass burning, 8.1% (K and benzo(g,h,i)perylene), and 5) agriculture with wastewater, 5.2% (δ15N and P). These results indicated high deposition of bioaccumulative air pollutants at MV, especially at the industrial area. Since T. recurvata reflected the regional differences in exposition, it is recommended as a biomonitor for comparisons

  19. Distribution and sources of bioaccumulative air pollutants at Mezquital Valley, Mexico, as reflected by the atmospheric plant Tillandsia recurvata L.

    NASA Astrophysics Data System (ADS)

    Zambrano García, A.; Medina Coyotzin, C.; Rojas Amaro, A.; López Veneroni, D.; Martínez, L. Chang; Sosa Iglesias, G.

    2009-03-01

    Mezquital Valley (MV), a Mexican wastewater-based agricultural and industrial region, is a ''hot spot'' of regulated air pollutants emissions, but the concurrent unregulated ones, like hazardous metals and polycyclic aromatic hydrocarbons (PAH), remain undocumented. A biomonitoring survey with the epiphytic Tillandsia recurvata was conducted there to detect spatial patterns and potential sources of 20 airborne elements and 15 PAH. The natural δ13C and δ15N ratios of this plant helped in source identification. The regional mean concentrations of most elements was two (Cr) to over 40 times (Ni, Pb, V) higher than reported for Tillandsia in other countries. Eleven elements, pyrene and chrysene had 18-214% higher mean concentration at the industrial south than at the agricultural north of MV. The total quantified PAH (mean, 572 ng g-1; range, 142.6-2568) were composed by medium (65%, phenanthrene to chrysene), low (28%, naphthalene to fluorene) and high molecular weight compounds (7%, Benzo(b)fluoranthene to indeno(1,2,3-cd)pyrene). The δ13C (mean, -14.6‰; range, -5.7 to -13.7‰) was lower (<-15‰) near the major petroleum combustion sources. The δ15N (mean, -3.0‰; range, -9.9 to 3.3‰) varied from positive at agriculture/industrial areas to negative at rural sites. Factor analysis provided a five-factor solution for 74% of the data variance: (1) crustal rocks, 39.5% (Al, Ba, Cu, Fe, Sr, Ti); (2) soils, 11.3%, contrasting contributions from natural (Mg, Mn, Zn) and saline agriculture soils (Na); (3) cement production and fossil fuel combustion, 9.8% (Ca, Ni, V, chrysene, pyrene); (4) probable agricultural biomass burning, 8.1% (K and benzo(g,h,i)perylene), and (5) agriculture with wastewater, 5.2% (δ15N and P). These results indicated high deposition of bioaccumulative air pollutants at MV, especially at the industrial area. Since T. recurvata reflected the regional differences in exposition, it is recommended as a biomonitor for comparisons within and

  20. High Efficiency Integrated Space Conditioning, Water Heating and Air Distribution System for HUD-Code Manufactured Housing

    SciTech Connect

    Henry DeLima; Joe Akin; Joseph Pietsch

    2008-09-14

    Recognizing the need for new space conditioning and water heating systems for manufactured housing, DeLima Associates assembled a team to develop a space conditioning system that would enhance comfort conditions while also reducing energy usage at the systems level. The product, Comboflair® was defined as a result of a needs analysis of project sponsors and industry stakeholders. An integrated system would be developed that would combine a packaged airconditioning system with a small-duct, high-velocity air distribution system. In its basic configuration, the source for space heating would be a gas water heater. The complete system would be installed at the manufactured home factory and would require no site installation work at the homesite as is now required with conventional split-system air conditioners. Several prototypes were fabricated and tested before a field test unit was completed in October 2005. The Comboflair® system, complete with ductwork, was installed in a 1,984 square feet, double-wide manufactured home built by Palm Harbor Homes in Austin, TX. After the home was transported and installed at a Palm Harbor dealer lot in Austin, TX, a data acquisition system was installed for remote data collection. Over 60 parameters were continuously monitored and measurements were transmitted to a remote site every 15 minutes for performance analysis. The Comboflair® system was field tested from February 2006 until April 2007. The cooling system performed in accordance with the design specifications. The heating system initially could not provide the needed capacity at peak heating conditions until the water heater was replaced with a higher capacity standard water heater. All system comfort goals were then met. As a result of field testing, we have identified improvements to be made to specific components for incorporation into production models. The Comboflair® system will be manufactured by Unico, Inc. at their new production facility in St. Louis

  1. Occurrence and seasonal distribution of polycyclic aromatic hydrocarbons and legacy and current-use pesticides in air from a Mediterranean coastal lagoon (Mar Menor, SE Spain).

    PubMed

    Carratalá, A; Moreno-González, R; León, V M

    2017-01-01

    The occurrence and seasonal distribution of polycyclic aromatic hydrocarbons (PAHs) and legacy and current-use pesticides (CUPs) in air were characterized around the Mar Menor lagoon using both active and passive sampling devices. The seasonal distribution of these pollutants was determined at 6 points using passive samplers. Passive sampler sampling rates were estimated for all detected analytes using an active sampler, considering preferentially winter data, due to probable losses in active sampling during summer (high temperatures and solar irradiation). The presence of 28 compounds (14 CUPs, 11 PAHs and 3 organochlorinated pesticides) were detected in air by polyurethane passive sampling. The most commonly detected contaminants (>95% of samples) in air were chlorpyrifos, chlorpyrifos-methyl and phenanthrene. The maximum concentrations corresponded to phenanthrene (6000 pg m(-3)) and chlorpyrifos (4900 pg m(-3)). The distribution of contaminants was spatially and seasonally heterogeneous. The highest concentrations of PAHs were found close to the airport, while the highest concentrations of pesticides were found in the influence area of agricultural fields (western stations). PAH and herbicide concentrations were higher in winter than in the other seasons, although some insecticides such as chlorpyrifos were more abundant in autumn. The presence of PAHs and legacy and current-use pesticides in air confirmed their transference potential to marine coastal areas such as the Mar Menor lagoon.

  2. Impact of Phlebotomine Sand Flies on U.S. Military Operations at Tallil Air Base, Iraq: 2. Temporal and Geographic Distribution of Sand Flies

    DTIC Science & Technology

    2007-01-01

    collections, with StudentÐNewmanÐ Keuls test (P 0.05) used to separate mean values. Results TemporalDistribution of Phlebotomine SandFlies at Tallil...each. DielActivity of SandFlies atTallilAirBase. In total, 2,574 phlebotomine sand ßies was collected during 25 trap nights between 6 May 2003 and 30... SandFlies InsideTents at TAB.This studywas conducted between 25May and 30October 2003. Ninety-Þve replicates were conducted in tents that had no air

  3. Distributions.

    ERIC Educational Resources Information Center

    Bowers, Wayne A.

    This monograph was written for the Conference of the New Instructional Materials in Physics, held at the University of Washington in summer, 1965. It is intended for students who have had an introductory college physics course. It seeks to provide an introduction to the idea of distributions in general, and to some aspects of the subject in…

  4. A synergistic glance at the prospects of distributed propulsion technology and the electric aircraft concept for future unmanned air vehicles and commercial/military aviation

    NASA Astrophysics Data System (ADS)

    Gohardani, Amir S.

    2013-02-01

    Distributed propulsion is one of the revolutionary candidates for future aircraft propulsion. In this journal article, the potential role of distributed propulsion technology in future aviation is investigated. Following a historical journey that revisits distributed propulsion technology in unmanned air vehicles and military aircraft, features of this specific technology are highlighted in synergy with an electric aircraft concept and a first-of-a-kind comparison to commercial aircraft employing distributed propulsion arrangements. In light of propulsion-airframe integration and complementary technologies such as boundary layer ingestion, thrust vectoring and circulation control, transpired opportunities and challenges are addressed in addition to a number of identified research directions proposed for future aircraft. The motivation behind enhanced means of communication between engineers, researchers and scientists has stimulated a novel proposed definition for the distributed propulsion technology in aviation and is presented herein.

  5. Evaluation of VOC measurments in the EXPOLIS study. Air Pollution Exposure Distributions within Adult Urban Urban Populations in Europe.

    PubMed

    Jurvelin, J; Edwards, R; Saarela, K; Laine-Ylijoki, J; De Bortoli, M; Oglesby, L; Schläpfer, K; Georgoulis, L; Tischerova, E; Hänninen, O; Jantunen, M

    2001-02-01

    Personal exposures and microenvironment concentrations of 30 target VOCs were measured for 401 participants living in five European cities as a part of the EXPOLIS (Air Pollution Exposure Distributions within Adult Urban Populations in Europe) study. Measurements in Basel used an active charcoal (Carbotech) adsorbent as opposed to the Tenax TA used in the other study centres. In addition, within each centre, personal and microenvironment VOC sampling required different sampling pumps and, because of different sampling durations, different sampling flow rates. Thus, careful testing of the sampling and analysis procedures was required to ensure accuracy and comparability of collected data. Monitor comparison tests using Tenax TA showed a mean VOC concentration ratio of 0.95 between the personal and microenvironment monitors. The LODs for the target VOCs using Tenax TA ranged from 0.7 to 5.2 microg m(-3). The LODs for the 14 target compounds quantifiable using Carbotech ranged from 0.9 to 3.2 microg m(-3). Tenax TA field blanks showed no remarkable contamination with the target VOCs, except benzaldehyde, a known artefact with this adsorbent. Thus, the diffusion barrier system used prevented contamination of Tenax TA samples by passive diffusion during non-sampling periods. Duplicate and parallel evaluations of the Tenax TA and Carbotech showed an average difference of < 17% in VOC concentrations within the sampling methods, but a systematic difference between the methods (Tenax TA: Carbotech concentration ratio = 1.18-2.36). These field evaluations and quality assurance tests showed that interpretation and comparison of the results in any VOC monitoring exercise should be done on a compound by compound basis. It is also apparent that carefully planned and realised QA and QC (QA/QC) procedures are needed in multi-centre studies, where a common sampling method and laboratory analysis technique are not used, to strengthen and simplify the interpretation of observed VOC

  6. NEIGHBORHOOD SCALE MODELING OF PM 2.5 AND AIR TOXICS CONCENTRATION DISTRIBUTIONS TO DRIVE HUMAN EXPOSURE MODELS

    EPA Science Inventory

    Air quality (AQ) simulation models provide a basis for implementing the National Ambient Air Quality Standards (NAAQS) and are a tool for performing risk-based assessments and for developing environmental management strategies. Fine particulate matter (PM 2.5), its constituent...

  7. Evaluating the capability of regional-scale air quality models to capture the vertical distribution of pollutants

    EPA Science Inventory

    This study is conducted in the framework of the Air Quality Modelling Evaluation International Initiative (AQMEII) and aims at the operational evaluation of an ensemble of 12 regional-scale chemical transport models used to predict air quality over the North American (NA) and Eur...

  8. Effect of Volatility on Air-Fuel Ratio Distribution and Torque Output of a Carbureted Light Aircraft Piston Engine.

    DTIC Science & Technology

    1982-03-01

    Positive displacement fuel flow sensor Burette type volumetric fuel flowmeter(2) Meriam laminar airflow meter Lamdascan air-fuel ratio meter Lebow inline...therefore the resulting data was not utilized. The volumetric flowrate of engine intake air was calculated from the pressure drop across a Meriam Model 50MC2

  9. Strong coupling in non-polar GaN/AlGaN microcavities with air-gap/III-nitride distributed Bragg reflectors

    NASA Astrophysics Data System (ADS)

    Tao, Renchun; Arita, Munetaka; Kako, Satoshi; Kamide, Kenji; Arakawa, Yasuhiko

    2015-09-01

    Strong coupling between excitons and photons is experimentally demonstrated in m-plane GaN/AlGaN microcavities (MCs) with air/AlGaN distributed Bragg reflectors (DBRs) at room temperature. Strong coupling is confirmed by momentum space spectroscopy, and a Rabi splitting (Ω) of 84 meV is estimated. A Rabi splitting of 84 meV is the largest value reported in a III-nitride DBR MC to date and is mainly attributed to the shortened effective cavity length resulting from the high index contrast in the air-gap DBRs used here. These results show that III-nitride air-gap DBR MCs have a high potential for realizing high Ω / κ systems (where κ is the cavity loss).

  10. Spatial and seasonal distributions of polychlorinated dibenzo-p-dioxins and dibenzofurans and polychlorinated biphenyls around a municipal solid waste incinerator, determined using polyurethane foam passive air samplers.

    PubMed

    Gao, Lirong; Zhang, Qin; Liu, Lidan; Li, Changliang; Wang, Yiwen

    2014-11-01

    Twenty-six ambient air samples were collected around a municipal solid waste incinerator (MSWI) in the summer and winter using polyurethane foam passive air samplers, and analyzed to assess the spatial and seasonal distributions of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and polychlorinated biphenyls (PCBs). Three stack gas samples were also collected and analyzed to determine PCDD/F (971 pg m(-3) in average) and PCB (2,671 pg m(-3) in average) emissions from the MSWI and to help identify the sources of the pollutants in the ambient air. The total PCDD/F concentrations in the ambient air samples were lower in the summer (472-1,223 fg m(-3)) than the winter (561-3913 fg m(-3)). In contrast, the atmospheric total PCB concentrations were higher in the summer (716-4,902 fg m(-3)) than the winter (489-2,298 fg m(-3)). Principal component analysis showed that, besides emissions from the MSWI, the domestic burning of coal and wood also contributed to the presence of PCDD/Fs and PCBs in the ambient air. The PCDD/F and PCB spatial distributions were analyzed using ordinary Kriging Interpolation and limited effect was found to be caused by emissions from the MSWI. Higher PCDD/F and PCB concentrations were observed downwind of the MSWI than in the other directions, but the highest concentrations were not to be found in the direction with the greatest wind frequency which might be caused by emissions from domestic coal and wood burning. We used a systemic method including sampling and data analysis method which can provide pioneering information for characterizing risks and assessing uncertainty of PCDD/Fs and PCBs in the ambient air around MSWIs in China.

  11. Observational study on the concentration distributions of SO{sub 2} and NO{sub 2} in Dhaka, Bangladesh under severe air pollution condition in winter

    SciTech Connect

    Azad, A.K.; Kitada, T.

    1996-12-31

    Dhaka is the capital and the biggest city of Bangladesh, and is expanding very rapidly. Emissions from heavy traffic and many small industries and commercial complexes, newly developed in and around the city, are polluting the air of Dhaka city. The air pollution is severe especially in winter due to adverse meteorological conditions such as low wind speed and dry, stably-stratified air, which restricts the mixing height to low levels and prevent dispersion of pollutants. But so far no study of air pollution of Dhaka city has been done. We have first measured SO{sub 2} and NO{sub 2} concentrations in Dhaka city in a large scale and derived their spatial distributions over Dhaka. Molecular diffusion tubes, which do not require power sources and are produced at low cost, have been used to measure the concentration distributions of SO{sub 2} and NO{sub 2} at 64 sites in Dhaka city and its suburbs during the period of December-January of 1995-96. The diffusion tube samplers were calibrated using 6 automated air pollution monitoring stations in Aichi-prefecture, Japan. The calibration curve and the distribution of the concentration data acquired by automatic measurement instrument at each location showed that the error range of measurements with the molecular diffusion tube samplers was 2-27%. The samples were analyzed using ion-chromatography and spectrophotometer to determine the concentrations of SO{sub 2} and NO{sub 2} respectively. The contamination of unexposed tubes under field conditions was determined and the value of the blank test was subtracted from the measurements of the diffusion tube samplers. The effects of wind turbulence and temperature were reduced using polyflon filters.

  12. A Modeling Investigation of Human Exposure to Select Traffic-Related Air Pollutants in the Tampa Area: Spatiotemporal Distributions of Concentrations, Social Distributions of Exposures, and Impacts of Urban Design on Both

    NASA Astrophysics Data System (ADS)

    Yu, Haofei

    Increasing vehicle dependence in the United States has resulted in substantial emissions of traffic-related air pollutants that contribute to the deterioration of urban air quality. Exposure to urban air pollutants trigger a number of public health concerns, including the potential of inequality of exposures and health effects among population subgroups. To better understand the impact of traffic-related pollutants on air quality, exposure, and exposure inequality, modeling methods that can appropriately characterize the spatiotemporally resolved concentration distributions of traffic-related pollutants need to be improved. These modeling methods can then be used to investigate the impacts of urban design and transportation management choices on air quality, pollution exposures, and related inequality. This work will address these needs with three objectives: 1) to improve modeling methods for investigating interactions between city and transportation design choices and air pollution exposures, 2) to characterize current exposures and the social distribution of exposures to traffic-related air pollutants for the case study area of Hillsborough County, Florida, and 3) to determine expected impacts of urban design and transportation management choices on air quality, air pollution exposures, and exposure inequality. To achieve these objectives, the impacts of a small-scale transportation management project, specifically the '95 Express' high occupancy toll lane project, on pollutant emissions and nearby air quality was investigated. Next, a modeling method capable of characterizing spatiotemporally resolved pollutant emissions, concentrations, and exposures was developed and applied to estimate the impact of traffic-related pollutants on exposure and exposure inequalities among several population subgroups in Hillsborough County, Florida. Finally, using these results as baseline, the impacts of sprawl and compact urban forms, as well as vehicle fleet electrification

  13. The Brazilian Air Force Uniform Distribution Process: Using Lean Thinking, Statistical Process Control and Theory of Constraints to Address Improvement Opportunities

    DTIC Science & Technology

    2015-03-26

    serviceability – how easy is it to repair the product? (5) aesthetics – what does the product look like? ( 6 ) features – what does the product do? (7...is the definition of value, which is deemed by Kang and Apte (2007) as the heart of the lean thinking . They also define value as “form, feature or...THE BRAZILIAN AIR FORCE UNIFORM DISTRIBUTION PROCESS: USING LEAN THINKING , STATISTICAL PROCESS

  14. A Newly Distributed Satellite-based Global Air-sea Surface Turbulent Fluxes Data Set -- GSSTF2b

    NASA Astrophysics Data System (ADS)

    Shie, C.; Nelkin, E.; Ardizzone, J.; Savtchenko, A.; Chiu, L. S.; Adler, R. F.; Lin, I.; Gao, S.

    2010-12-01

    Accurate sea surface turbulent flux measurements are crucial to understanding the global water and energy cycle changes. Remote sensing is a valuable tool for global monitoring of these flux measurements. The GSSTF (Goddard Satellite-based Surface Turbulent Fluxes) algorithm was thus developed and applied to remote sensing research and applications. The recently revived and produced daily global (1ox1o) GSSTF2b (Version-2b) dataset (July 1987-December 2008) is currently under processing for an official distribution by NASA GES DISC (Goddard Earth Sciences Data and Information Services Center) due by the end of this month (September, 2010). Like its predecessor product GSSTF2, GSSTF2b is expected to provide the scientific community a longer-period and useful turbulent surface flux dataset for global energy and water cycle research, as well as regional and short period data analyses. We have recently been funded by the NASA/MEaSUREs Program to resume processing of the GSSTF with an objective of continually producing an up-to-date uniform and reliable dataset of sea surface turbulent fluxes, derived from improved input remote sensing data and model reanalysis, which would continue to be useful for global energy and water flux research and applications. The daily global (1ox1o) GSSTF2b dataset has lately been produced using upgraded and improved input datasets such as the Special Sensor Microwave Imager (SSM/I) Version-6 (V6) product (including brightness temperature [Tb], total precipitable water [W], and wind speed [U]) and the NCEP/DOE Reanalysis-2 (R2) product (including sea skin temperature [SKT], 2-meter air temperature [T2m], and sea level pressure [SLP]). The input datasets previously used for producing the GSSTF2 product were the SSM/I Version-4 (V4) product and the NCEP Reanalysis-1 (R1) product. The newly produced GSSTF2b was found to generally agree better with available ship measurements obtained from several field experiments in 1999 than its counterpart

  15. Catchment-scale distribution of radiocesium air dose rate in a mountainous deciduous forest and its relation to topography.

    PubMed

    Atarashi-Andoh, Mariko; Koarashi, Jun; Takeuchi, Erina; Tsuduki, Katsunori; Nishimura, Syusaku; Matsunaga, Takeshi

    2015-09-01

    A large number of air dose rate measurements were collected by walking through a mountainous area with a small gamma-ray survey system, KURAMA-II. The data were used to map the air dose rate of a mountainous deciduous forest that received radiocesium from the Fukushima Dai-ichi Nuclear Power Plant accident. Measurements were conducted in a small stream catchment (0.6 km(2) in area) in August and September 2013, and the relationship between air dose rates and the mountainous topography was examined. Air dose rates increased with elevation, indicating that more radiocesium was deposited on ridges, and suggesting that it had remained there for 2.5 y with no significant downslope migration by soil erosion or water drainage. Orientation in relation to the dominant winds when the radioactive plume flowed to the catchment also strongly affected the air dose rates. Based on our continuous measurements using the KURAMA-II, we describe the variation in air dose rates in a mountainous forest area and suggest that it is important to consider topography when determining sampling points and resolution to assess the spatial variability of dose rates and contaminant deposition.

  16. Distribution of PCDD/Fs in the fly ash and atmospheric air of two typical hazardous waste incinerators in eastern China.

    PubMed

    Chen, Tong; Zhan, Ming-Xiu; Lin, Xiao-Qing; Fu, Jian-Ying; Lu, Sheng-Yong; Li, Xiao-Dong

    2015-01-01

    Distribution of polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs) in the fly ash and atmospheric air of one medical waste incinerator (MWI) and one industrial hazardous waste incinerator (IHWI) plants were characterized. The PCDD/F concentrations of the stack gas (fly ash) produced from MWI and IHWI were 17.7 and 0.7 ng international toxic equivalent (I-TEQ)/Nm(3) (4.1 and 2.5 ng I-TEQ/g), respectively. For workplace air, the total concentrations of PCDD/Fs were 11.32 and 0.28 pg I-TEQ/Nm(3) (819.5 and 15.3 pg/Nm(3)). We assumed that the large differences of PCDD/F concentrations in workplace air were due to the differences in chlorine content of the waste, combustion conditions, and other contamination sources. With respect to the homologue profiles, the concentrations of PCDFs decreased with the increase of the substituted chlorine number for each site. Among all of the PCDD/F congeners, 2,3,4,7,8-PeCDF was the most important contributor to the I-TEQ value accounting for ca. 43 % of two sites. The gas/particle partition of PCDD/Fs in the atmosphere of the workplace in the MWI was also investigated, indicating that PCDD/Fs were more associated in the particle phase, especially for the higher chlorinated ones. Moreover, the ratio of the I-TEQ values in particle and gas phase of workplace air was 11.0. At last, the relationship between the distribution of PCDD/Fs in the workplace air and that from stack gas and fly ash was also analyzed and discussed. The high correlation coefficient might be a sign for diffuse gas emissions at transient periods of fumes escaping from the incinerator.

  17. Air quality model evaluation data for organics. 1. Bulk chemical composition and gas/particle distribution factors

    SciTech Connect

    Fraser, M.P.; Cass, G.R.; Grosjean, D.; Grosjean, E.; Rasmussen, R.A.

    1996-05-01

    During the period of September 8-9, 1993, the South Coast Air Basin that surrounds Los Angeles experienced the worst photochemical smog episode in recent years; ozone concentrations exceeded 0.29 ppm 1-h average, and NO{sub 2} concentrations peaked at 0.21 ppm 1-h average. Field measurements were conducted at a five-station air monitoring network to obtain comprehensive data on the identity and concentration of the individual organic compounds present in both the gas and particle phases during that episode. The data will also serve to support future tests of air quality models designed to study organic air pollutant transport and reaction. Air samples taken in stainless steel canisters were analyzed for 141 volatile organic compounds by GC/ECD, GC/FID, and GC/MS; PAN and PPN were measured by GC/ECD; particulate organics collected by filtration were analyzed for total organics and elemental carbon by thermal evolution and combustion and for individual organic compounds by GC/ MS; semivolatile organics were analyzed by GC/MS after collection on polyurethane foam cartridges. The present paper describes this experiment and present the concentrations of major organic compound classes and their relationship to the inorganic pollutants present. 104 refs., 9 figs.

  18. Effects of bone- and air-tissue inhomogeneities on the dose distributions of the Leksell Gamma Knife® calculated with PENELOPE

    NASA Astrophysics Data System (ADS)

    Al-Dweri, Feras M. O.; Rojas, E. Leticia; Lallena, Antonio M.

    2005-12-01

    Monte Carlo simulation with PENELOPE (version 2003) is applied to calculate Leksell Gamma Knife® dose distributions for heterogeneous phantoms. The usual spherical water phantom is modified with a spherical bone shell simulating the skull and an air-filled cube simulating the frontal or maxillary sinuses. Different simulations of the 201 source configuration of the Gamma Knife have been carried out with a simplified model of the geometry of the source channel of the Gamma Knife recently tested for both single source and multisource configurations. The dose distributions determined for heterogeneous phantoms including the bone- and/or air-tissue interfaces show non-negligible differences with respect to those calculated for a homogeneous one, mainly when the Gamma Knife isocentre approaches the separation surfaces. Our findings confirm an important underdosage (~10%) nearby the air-tissue interface, in accordance with previous results obtained with the PENELOPE code with a procedure different from ours. On the other hand, the presence of the spherical shell simulating the skull produces a few per cent underdosage at the isocentre wherever it is situated.

  19. Distribution of 2,4-D in air and on surfaces inside residences after lawn applications: comparing exposure estimates from various media for young children.

    PubMed Central

    Nishioka, M G; Lewis, R G; Brinkman, M C; Burkholder, H M; Hines, C E; Menkedick, J R

    2001-01-01

    We collected indoor air, surface wipes (floors, table tops, and window sills), and floor dust samples at multiple locations within 11 occupied and two unoccupied homes both before and after lawn application of the herbicide 2,4-D. We measured residues 1 week before and after application. We used collected samples to determine transport routes of 2,4-D from the lawn into the homes, its subsequent distribution between the indoor surfaces, and air concentration as a function of airborne particle size. We used residue measurements to estimate potential exposures within these homes. After lawn application, 2,4-D was detected in indoor air and on all surfaces throughout all homes. Track-in by an active dog and by the homeowner applicator were the most significant factors for intrusion. Resuspension of floor dust was the major source of 2,4-D in indoor air, with highest levels of 2,4-D found in the particle size range of 2.5-10 microm. Resuspended floor dust was also a major source of 2,4-D on tables and window sills. Estimated postapplication indoor exposure levels for young children from nondietary ingestion may be 1-10 microg/day from contact with floors, and 0.2-30 microg/day from contact with table tops. These are estimated to be about 10 times higher than the preapplication exposures. By comparison, dietary ingestion of 2,4-D is approximately 1.3 microg/day. PMID:11713005

  20. Distribution pathways of hexachlorocyclohexane isomers in a soil-plant-air system. A case study with Cynara scolymus L. and Erica sp. plants grown in a contaminated site.

    PubMed

    Pereira, R Calvelo; Monterroso, C; Macías, F; Camps-Arbestain, M

    2008-09-01

    This study focuses on the main routes of distribution and accumulation of different hexachlorocyclohexane (HCH) isomers (mainly alpha-, beta-, gamma- and delta-HCH) in a soil-plant-air system. A field assay was carried out with two plant species, Cynara scolymus L. and Erica sp., which were planted either: (i) directly in the HCH-contaminated soil; or (ii) in pots filled with uncontaminated soil, which were placed in the HCH-contaminated soil. Both plant species accumulated HCH in their tissues, with relatively higher accumulation in above-ground biomass than in roots. The beta-HCH isomer was the main isomer in all plant tissues. Adsorption of HCH by the roots from contaminated soil (soil-->root pathway) and adsorption through the aerial biomass from either the surrounding air, following volatilization of the contaminant (soil-->air-->shoot pathway), and/or contact with air-suspended particles contaminated with HCH (soil particles-->shoot pathway) were the main mechanisms of accumulation. These results may have important implications for the use of plants for reducing the transfer of contaminants via the atmosphere.

  1. Effect of the fuel bias distribution in the primary air nozzle on the slagging near a swirl coal burner throat

    SciTech Connect

    Lingyan Zeng; Zhengqi Li; Hong Cui; Fucheng Zhang; Zhichao Chen; Guangbo Zhao

    2009-09-15

    Three-dimensional numerical simulations of slagging characteristics near the burner throat region were carried out for swirl coal combustion burners used in a 1025 tons/h boiler. The gas/particle two-phase numerical simulation results and the data measured by a particle-dynamics anemometer (PDA) show that the numeration model was reasonable. For the centrally fuel-rich swirl coal combustion burner, the coal particles move in the following way. The particles first flow into furnace with the primary air from the burner throat. After traversing a certain distance, they move back to the burner throat and then toward the furnace again. Thus, particle trajectories are extended. For the case with equal air mass fluxes in the inner and outer primary air/coal mixtures, as the ratio of the coal mass flux in the inner primary air/coal mixture to the total coal mass flux increased from 40 (the reference condition) to 50%, 50 to 70%, and 70 to 100%, the maximum number density declined by 22, 11, and 4%, respectively, relative to the reference condition. In addition, the sticking particle ratio declined by 13, 14, and 8%, respectively, compared to the reference condition. 22 refs., 12 figs., 3 tabs.

  2. Review & Analysis: Technological Impact on Future Air Force Personnel & Training: Distributed Collaborative Decision-Making, Volume 1

    DTIC Science & Technology

    2015-04-14

    information overload , auditory overload , command pressure, threat, adverse physical conditions, and rapid interaction requirements. Consequently, training...complex and stressful. Situations are characterized as rapidly evolving, ambiguous scenarios, complex, multi-component decisions, information overload ...CSERIAC CREW SYSTEM ERGONOMICS INFORMATION ANALYSIS CENTER CSERIAC-RA-97-007A Review & Analysis Technological Impact on Future Air Force

  3. Distribution of air and serum PCDD/F levels of electric arc furnaces and secondary aluminum and copper smelters.

    PubMed

    Lee, Ching-Chang; Shih, Tung-Seng; Chen, Hsiu-Ling

    2009-12-30

    Metallurgical processes, such as smelting, can generate organic impurities such as organic chloride chemicals, polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs). The objective of this study was to elucidate the serum PCDD/F levels of 134 workers and ambient air levels around electric arc furnaces (EAF), secondary copper smelters and secondary aluminum smelters (ALSs) in Taiwan. The highest serum PCDD/F levels were found in the ALSs workers (21.9 pg WHO-TEQ/g lipid), with lower levels in copper smelter workers (21.5 pg WHO-TEQ/g lipid), and the lowest in the EAF plant workers (18.8 pg WHO-TEQ/g lipid). This was still higher than the levels for residents living within 5 km of municipal waste incinerators (14.0 pg WHO-TEQ/g lipid). For ambient samples, the highest ambient air PCDD/F level was in the copper smelters (12.4 pg WHO-TEQ/Nm(3)), with lower levels in ALSs (7.2 pg WHO-TEQ/Nm(3)), and the lowest in the EAF industry (1.8 pg WHO-TEQ/Nm(3)). The congener profiles were consistent in serum and in air samples collected in the copper smelters, but not for ALSs and EAF. In secondary copper smelters, the air PCDD/Fs levels might be directly linked to the PCDD/Fs accumulated in the workers due to the exceedingly stable congener pattern of the PCDD/F emission.

  4. Longitudinal development of muons in large air showers studies from the arrival time distributions measured at 900m above sea level

    NASA Technical Reports Server (NTRS)

    Kakimoto, F.; Tsuchimoto, I.; Enoki, T.; Suga, K.; Nishi, K.

    1985-01-01

    The arrival time distributions of muons with energies above 1.0GeV and 0.5GeV have been measured in the Akeno air-shower array to study the longitudinal development of muons in air showers with primary energies in the range 10 to the 17th power to 10 to the 18th power ev. The average rise times of muons with energies above 1.0GeV at large core distances are consistent with those expected from very high multiplicity models and, on the contrary, with those expected from the low multiplicity models at small core distances. This implies that the longitudinal development at atmospheric depth smaller than 500 cm square is very fast and that at larger atmospheric depths is rather slow.

  5. Polycyclic Musks in the Air and Water of the Lower Great Lakes: Spatial Distribution and Volatilization from Surface Waters.

    PubMed

    McDonough, Carrie A; Helm, Paul A; Muir, Derek; Puggioni, Gavino; Lohmann, Rainer

    2016-11-01

    Polycyclic musks (PCMs) are synthetic fragrance compounds used in personal care products and household cleaners. Previous studies have indicated that PCMs are introduced to aquatic environments via wastewater and river discharge. Polyethylene passive samplers (PEs) were deployed in air and water during winter 2011 and summer 2012 to investigate the role of population centers as sources of these contaminants to the Great Lakes and determine whether the lakes were acting as sources of PCMs via volatilization. Average gaseous Σ5PCM ranged from below detection limits (air and water, with strongest correlations within a 25 and 40 km radius, respectively. At sites where HHCB was detected it was generally volatilizing, while the direction of AHTN air-water exchange was variable. Volatilization fluxes of HHCB ranged from 11 ± 6 to 341 ± 127 ng/m(2)/day, while air-water exchange fluxes of AHTN ranged from -3 ± 2 to 28 ± 10 ng/m(2)/day. Extrapolation of average air-water exchange flux values over the surface area of the lakes' coastal boundary zone suggested volatilization may be responsible for the loss of 64-213 kg/year of dissolved Σ5PCM from the lakes.

  6. The Relationship of Loss, Mean Age of Air and the Distribution of CFC's to Stratospheric Circulation and Implications for Atmospheric Lifetimes

    NASA Technical Reports Server (NTRS)

    Douglas, A. R.; Stolarski, R. S.; Schoeberl, M. R.; Jackman, C. H.; Gupta, M. L.; Newman, P. A.; Nielsen, J. E.; Fleming, E. L.

    2008-01-01

    Model-derived estimates of the annually integrated destruction and lifetime for various ozone depleting substances (ODSs) depend on the simulated stratospheric transport and mixing in the global model used to produce the estimate. Observations in the middle and high latitude lower stratosphere show that the mean age of an air parcel (i.e., the time since its stratospheric entry) is related to the fractional release for the ODs (i.e., the amount of the ODS that has been destroyed relative to the amount at the time of stratospheric entry). We use back trajectory calculations to produce an age spectrum, and explain the relationship between the mean age and the fractional release by showing that older elements in the age spectrum have experienced higher altitudes and greater ODs destruction than younger elements. In our study, models with faster circulations produce distributions for the age-of-air that are 'young' compared to a distribution derived from observations. These models also fail to reproduce the observed relationship between the mean age of air and the fractional release. Models with slower circulations produce both realistic distributions for mean age and a realistic relationship between mean age and fractional release. These models also produce a CFCl3 lifetime of approximately 56 years, longer than the 45 year lifetime used to project future mixing ratios. We find that the use of flux boundary conditions in assessment models would have several advantages, including consistency between ODS evolution and simulated loss even if the simulated residual circulation changes due to climate change.

  7. Surface flow and heating distributions on a cylinder in near wake of Aeroassist Flight Experiment (AFE) configuration at incidence in Mach 10 Air

    NASA Technical Reports Server (NTRS)

    Wells, William L.

    1990-01-01

    Experimental heat transfer distributions and surface streamline directions are presented for a cylinder in the near wake of the Aeroassist Flight Experiment forebody configuration. Tests were conducted in air at a nominal free stream Mach number of 10, with post shock Reynolds numbers based on model base height of 6,450 to 50,770, and angles of attack of 5, 0, -5, and -10 degrees. Heat transfer data were obtained with thin film resistance gage and surface streamline directions by the oil flow technique. Comparisons between measured values and predicted values were made by using a Navier-Stokes computer code.

  8. Peculiarities of the angular distribution of laser radiation intensity scattered by laser-spark plasma in air

    SciTech Connect

    Malyutin, A A; Podvyaznikov, V A; Chevokin, V K

    2010-02-28

    The spatiotemporal study of the diagram of laser radiation scattering by the laser-spark plasma produced by 3-ns and 50-ns pulses is performed. It is shown that radiation appearing outside the laser beam cone is scattered during the first one - two nanoseconds after the air breakdown, when the spark plasma is located in the vicinity of the laser beam waist and has a shape close to spherical.

  9. The geographical distribution of the potential for seed germination and seedling establishment of Pinus densiflora in Japan as influenced by soil and air temperatures

    NASA Astrophysics Data System (ADS)

    Kashiwagi, Y.

    1991-12-01

    The geographical distribution of Pinus densiflora forests in Japan was examined in relation to the seed germination and seedling establishment information obtained from laboratory experiments, field observations and field experiments. The laboratory experiments indicated that seed germination can occur in all areas of Japan because effective cumulative soil temperatures reaches to 75 °C · day everywhere. However, the field observations and field experiments suggested that seedling establishment is impossible in the northern, eastern and central parts of Hokkaido because the effective cumulative air temperature at a height of 6 cm over bare ground is less than 2 000 °C · day. These results agree approximately with the actual geographical distribution of P. densiflora forest, which can not be found under natural circumstances in these areas.

  10. Wind-Tunnel Investigation of the Air Load Distribution on Two Combinations of LIfting Surface and Fuselage

    DTIC Science & Technology

    1947-05-01

    angles of yaw of ±10°, ± 5 °, and 0°. The unsymmetric distribution of fuselage orifices necessitated tests at equal positive and negative angles of yaw...measured drag. The fuselage pressure distribution for different angles of attack and yaw for configurations F and FWST are shown in figures 3 to 5 . The...configurations F. and FW drawn for the vertical plane of symmetry and for a parallel plane displaced 5 inches. The total difference_ in the areas of

  11. Novel insights into the dynamics of cold-air drainage and pooling on a gentle slope from fiber-optic distributed temperature sensing

    NASA Astrophysics Data System (ADS)

    Pfister, Lena; Sigmund, Armin; Olesch, Johannes; Thomas, Christoph

    2016-04-01

    Urban climate can benefit from cold-air drainage as it may help alleviate the urban heat island. In contrast, stable cold-air pools can damage plants especially in rural areas. In this study, we examined the dynamics of cold-air drainage and pooling in a peri-urban setting over a period of 47 days along a 170 m long slope with an inclination of 1.3° located in the Ecological Botany Gardens of the University of Bayreuth. Air and soil temperatures were measured using distributed temperature sensing of an 2-dimensional fiber-optic array at six heights (-2 cm to 100 cm) along the slope sampling every 1 min and every 1 m. Ancillary measurements of winds, turbulence intensity and momentum exchange were collected using two ultrasonic anemometers installed at 0.1 m and 17 m height at the center of the transect. We hypothesized that cold-air drainage, here defined as a gravity-driven density flow near the bottom originating from local radiative cooling of the surface, is decoupled from non-local flows and can thus be predicted from the local topography. The nocturnal data were stratified by classes of longwave radiation balance, wind speed, and wind direction at 0.1 m agl. The four most abundant classes were tested further for decoupling of wind velocities and directions between 17 and 0.1 m. We further computed the vertical and horizontal temperature perturbations of the fiber-optic array as evaluated for these cases, as well as subject the temperature data to a multiresolution decomposition to investigate the spatial two-point correlation coefficient along the transect. Finally, the cold pool intensity was calculated. The results revealed none of the four most abundant classes followed classical textbook knowledge of locally produced cold-air drainage. Instead, we found that the near-surface flow was strongly forced by two possibly competing non-local flow modes. The first mode caused weak (< 0.4 ms-1) near-surface winds directed perpendicular to the local slope and

  12. Detailed Distribution Map of Absorbed Dose Rate in Air in Tokatsu Area of Chiba Prefecture, Japan, Constructed by Car-Borne Survey 4 Years after the Fukushima Daiichi Nuclear Power Plant Accident.

    PubMed

    Inoue, Kazumasa; Arai, Moeko; Fujisawa, Makoto; Saito, Kyouko; Fukushi, Masahiro

    2017-01-01

    A car-borne survey was carried out in the northwestern, or Tokatsu, area of Chiba Prefecture, Japan, to make a detailed distribution map of absorbed dose rate in air four years after the Fukushima Daiichi Nuclear Power Plant accident. This area was chosen because it was the most heavily radionuclide contaminated part of Chiba Prefecture and it neighbors metropolitan Tokyo. Measurements were performed using a 3-in × 3-in NaI(Tl) scintillation spectrometer in June 2015. The survey route covered the whole Tokatsu area which includes six cities. A heterogeneous distribution of absorbed dose rate in air was observed on the dose distribution map. Especially, higher absorbed dose rates in air exceeding 80 nGy h-1 were observed along national roads constructed using high porosity asphalt, whereas lower absorbed dose rates in air were observed along local roads constructed using low porosity asphalt. The difference between these asphalt types resulted in a heterogeneous dose distribution in the Tokatsu area. The mean of the contribution ratio of artificial radionuclides to absorbed dose rate in air measured 4 years after the accident was 29% (9-50%) in the Tokatsu area. The maximum absorbed dose rate in air, 201 nGy h-1 was observed at Kashiwa City. Radiocesium was deposited in the upper 1 cm surface layer of the high porosity asphalt which was collected in Kashiwa City and the environmental half-life of the absorbed dose rate in air was estimated to be 1.7 years.

  13. Distribution and sea-to-air flux of isoprene in the East China Sea and the South Yellow Sea during summer.

    PubMed

    Li, Jian-Long; Zhang, Hong-Hai; Yang, Gui-Peng

    2017-07-01

    Spatial distribution and sea-to-air flux of isoprene in the East China Sea and the South Yellow Sea in July 2013 were investigated. This study is the first to report the concentrations of isoprene in the China marginal seas. Isoprene concentrations in the surface seawater during summer ranged from 32.46 to 173.5 pM, with an average of 83.62 ± 29.22 pM. Distribution of isoprene in the study area was influenced by the diluted water from the Yangtze River, which stimulated higher in-situ phytoplankton production of isoprene rather than direct freshwater input. Variations in isoprene concentrations were found to be diurnal, with high values observed during daytime. A significant correlation was observed between isoprene and chlorophyll a in the study area. Relatively higher isoprene concentrations were recorded at stations where the phytoplankton biomass was dominated by Chaetoceros, Skeletonema, Pennate-nitzschia, and Thalassiosira. Positive correlation was observed between isoprene and methyl iodide. In addition, sea-to-air fluxes of isoprene approximately ranged from 22.17 nmol m(-2) d(-1)-537.2 nmol m(-2) d(-1), with an average of 161.5 ± 133.3 nmol m(-2) d(-1). These results indicate that the coastal and shelf areas may be important sources of atmospheric isoprene.

  14. The carbon dioxide system on the Mississippi River-dominated continental shelf in the northern Gulf of Mexico: 1. Distribution and air-sea CO2 flux.

    PubMed

    Huang, Wei-Jen; Cai, Wei-Jun; Wang, Yongchen; Lohrenz, Steven E; Murrell, Michael C

    2015-03-01

    River-dominated continental shelf environments are active sites of air-sea CO2 exchange. We conducted 13 cruises in the northern Gulf of Mexico, a region strongly influenced by fresh water and nutrients delivered from the Mississippi and Atchafalaya River system. The sea surface partial pressure of carbon dioxide (pCO2) was measured, and the air-sea CO2 flux was calculated. Results show that CO2 exchange exhibited a distinct seasonality: the study area was a net sink of atmospheric CO2 during spring and early summer, and it was neutral or a weak source of CO2 to the atmosphere during midsummer, fall, and winter. Along the salinity gradient, across the shelf, the sea surface shifted from a source of CO2 in low-salinity zones (0≤S<17) to a strong CO2 sink in the middle-to-high-salinity zones (17≤S<33), and finally was a near-neutral state in the high-salinity areas (33≤S<35) and in the open gulf (S≥35). High pCO2 values were only observed in narrow regions near freshwater sources, and the distribution of undersaturated pCO2 generally reflected the influence of freshwater inputs along the shelf. Systematic analyses of pCO2 variation demonstrated the importance of riverine nitrogen export; that is, riverine nitrogen-enhanced biological removal, along with mixing processes, dominated pCO2 variation along the salinity gradient. In addition, extreme or unusual weather events were observed to alter the alongshore pCO2 distribution and to affect regional air-sea CO2 flux estimates. Overall, the study region acted as a net CO2 sink of 0.96 ± 3.7 mol m(-2) yr(-1) (1.15 ± 4.4 Tg C yr(-1)).

  15. Distribution and production of reactive mercury and dissolved gaseous mercury in surface waters and water/air mercury flux in reservoirs on Wujiang River, Southwest China

    NASA Astrophysics Data System (ADS)

    Fu, Xuewu; Feng, Xinbin; Guo, Yanna; Meng, Bo; Yin, Runsheng; Yao, Heng

    2013-05-01

    Transformation and distribution of mercury (Hg) species play an important role in the biogeochemical cycling of mercury in aquatic systems. Measurements of water/air exchange fluxes of Hg, reactive mercury (RHg), and dissolved gaseous mercury (DGM) concentrations were conducted at 14 sites in five reservoirs on the Wujiang River, Guizhou, Southwest China. Clear spatial and temporal variations in Hg fluxes, RHg, and DGM concentrations were observed in the study area. Hg fluxes and RHg concentrations exhibited a consistent diurnal variation in the study area, with maximum fluxes and concentrations during daytime. A typical diurnal trend of DGM with elevated concentration at night was observed in a eutrophic reservoir with elevated bacteria abundance, suggesting a bacteria-induced production of DGM in this reservoir. For other reservoirs, a combination of sunlight-stimulated production and loss via photo-induced oxidation and evaporation regulated the diurnal trends of DGM. Seasonal variations with elevated Hg fluxes and RHg concentrations in warm season were noticeable in the study area, which highlighted the combined effect of interrelationships between Hg species in water and environmental parameters. Hg fluxes exhibited much more significant correlations with RHg and THg concentrations and air temperature compared to DGM concentrations and solar radiation. The measured fluxes were significantly higher than those simulated using the water/air thin film Hg0 gradient model. Aside from the potential limitations of dynamic flux chamber method, this may also suggest the thin film gas exchange model is not capable of predicting water/air Hg flux under low wind speed conditions. Additionally, it is speculated that DGM concentrations might vary significantly in surface waters with depth, and measurements of DGM at a depth of 2-4 cm below the water surface probably underestimated the DGM concentration that should be taken into account in simulations of water/air flux using

  16. Levels and spatial distribution of gaseous polychlorinated biphenyls and polychlorinated naphthalenes in the air over the northern South China Sea

    NASA Astrophysics Data System (ADS)

    Li, Qilu; Xu, Yue; Li, Jun; Pan, Xiaohui; Liu, Xiang; Zhang, Gan

    2012-09-01

    Monitoring marine persistent organic pollutants (POPs) is important because oceans play a significant role in the cycling of POPs. The South China Sea (SCS) is surrounded by developing countries in Southeast Asia which are centers of e-waste recycling and the ship dismantling industry. In this study, shipboard air samples collected over the SCS between September 6 and 22, 2005 were analyzed for polychlorinated biphenyls (PCBs) and polychlorinated naphthalenes (PCNs). The levels of ∑12PCBs ranged from 32.3 to 167 pg m-3, with a mean value of 98.4 ± 36.0 pg m-3. Tetra-CBs were the predominant congeners. The concentrations of ∑18PCNs ranged from N.D. to 26.0 pg m-3, with a mean value of 10.5 ± 7.16 pg m-3, and tri-CNs were predominant. The gaseous concentrations of PCBs and PCNs over the SCS were consistent with those over other seas and oceans. Compared with previous studies, it was found that the concentrations of PCBs exhibited an obviously declining trend. The measured PCB and PCN concentrations in the atmosphere over the SCS were influenced by their proximity to source regions and air mass origins. The highest gaseous PCB and PCN concentrations were found at sampling sites adjacent to the continental South China. E-waste recycling, ship dismantling and combustion in South China and some Southeast Asian countries might contribute PCBs and PCNs to the atmosphere of the SCS.

  17. Airborne Use of Traffic Intent Information in a Distributed Air-Ground Traffic Management Concept: Experiment Design and Preliminary Results

    NASA Technical Reports Server (NTRS)

    Wing, David J.; Adams, Richard J.; Barmore, Bryan E.; Moses, Donald

    2002-01-01

    This paper presents initial findings of a research study designed to provide insight into the issue of intent information exchange in constrained en-route air-traffic operations and its effect on pilot decision making and flight performance. The piloted simulation was conducted in the Air Traffic Operations Laboratory at the NASA Langley Research Center. Two operational modes for autonomous operations were compared under conditions of low and high operational complexity. The tactical mode was characterized primarily by the use of state information for conflict detection and resolution and an open-loop means for the pilot to meet operational constraints. The strategic mode involved the combined use of state and intent information, provided the pilot an additional level of alerting, and allowed a closed-loop approach to meeting operational constraints. Operational constraints included separation assurance, schedule adherence, airspace hazard avoidance, flight efficiency, and passenger comfort. Potential operational benefits of both modes are illustrated through several scenario case studies. Subjective pilot ratings and comments comparing the tactical and strategic modes are presented.

  18. Airborne Use of Traffic Intent Information in a Distributed Air-Ground Traffic Management Concept: Experiment Design and Preliminary Results

    NASA Technical Reports Server (NTRS)

    Wing, David J.; Adams, Richard J.; Barmore, Bryan E.; Moses, Donald

    2001-01-01

    This paper presents initial findings of a research study designed to provide insight into the issue of intent information exchange in constrained en-route air-traffic operations and its effect on pilot decision making and flight performance. The piloted simulation was conducted in the Air Traffic Operations Laboratory at the NASA Langley Research Center. Two operational modes for autonomous operations were compared under conditions of low and high operational complexity. The tactical mode was characterized primarily by the use of state information for conflict detection and resolution and an open-loop means for the pilot to meet operational constraints. The strategic mode involved the combined use of state and intent information, provided the pilot an additional level of alerting, and allowed a closed-loop approach to meeting operational constraints. Operational constraints included separation assurance, schedule adherence, airspace hazard avoidance, flight efficiency, and passenger comfort. Potential operational benefits of both modes are illustrated through several scenario case studies. Subjective pilot ratings and comments comparing the tactical and strategic modes are presented.

  19. A review of the current geographic distribution of and debate surrounding electronic cigarette clean air regulations in the United States.

    PubMed

    Kadowaki, Joy; Vuolo, Mike; Kelly, Brian C

    2015-01-01

    In this article, we present the results of a systematic review of state, county, and municipal restrictions on the use of electronic cigarettes (e-cigarettes) in public spaces within the United States, alongside an overview of the current legal landscape. The lack of federal guidance leaves lower-level jurisdictions to debate the merits of restrictions on use in public spaces without sufficient scientific research. As we show through a geographic assessment of restrictions, this has resulted in an inconsistent patchwork of e-cigarette use bans across the United States of varying degrees of coverage. Bans have emerged over time in a manner that suggests a "bottom up" diffusion of e-cigarette clean air policies. Ultimately, the lack of clinical and scientific knowledge on the risks and potential harm reduction benefits has led to precautionary policymaking, which often lacks grounding in empirical evidence and results in spatially uneven diffusion of policy.

  20. A Review of the Current Geographic Distribution of and Debate Surrounding Electronic Cigarette Clean Air Regulations in the United States

    PubMed Central

    Kadowaki, Joy; Vuolo, Mike; Kelly, Brian C.

    2014-01-01

    In this article, we present the results of a systematic review of state, county, and municipal restrictions on the use of electronic cigarettes (e-cigarettes) in public spaces within the United States, alongside an overview of the current legal landscape. The lack of federal guidance leaves lower-level jurisdictions to debate the merits of restrictions on use in public spaces without sufficient scientific research. As we show through a geographic assessment of restrictions, this has resulted in an inconsistent patchwork of e-cigarette use bans across the United States of varying degrees of coverage. Bans have emerged over time in a manner that suggests a “bottom up” diffusion of e-cigarette clean air policies. Ultimately, the lack of clinical and scientific knowledge on the risks and potential harm reduction benefits has led to precautionary policymaking, which often lacks grounding in empirical evidence and results in spatially uneven diffusion of policy. PMID:25463920

  1. Proof-of-Concept of a Networked Validation Environment for Distributed Air/Ground NextGen Concepts

    NASA Technical Reports Server (NTRS)

    Grisham, James; Larson, Natalie; Nelson, Justin; Reed, Joshua; Suggs, Marvin; Underwood, Matthew; Papelis, Yiannis; Ballin, Mark G.

    2013-01-01

    The National Airspace System (NAS) must be improved to increase capacity, reduce flight delays, and minimize environmental impacts of air travel. NASA has been tasked with aiding the Federal Aviation Administration (FAA) in NAS modernization. Automatic Dependent Surveillance-Broadcast (ADS-B) is an enabling technology that is fundamental to realization of the Next Generation Air Transportation System (NextGen). Despite the 2020 FAA mandate requiring ADS-B Out equipage, airspace users are lacking incentives to equip with the requisite ADS-B avionics. A need exists to validate in flight tests advanced concepts of operation (ConOps) that rely on ADS-B and other data links without requiring costly equipage. A potential solution is presented in this paper. It is possible to emulate future data link capabilities using the existing in-flight Internet and reduced-cost test equipment. To establish proof-of-concept, a high-fidelity traffic operations simulation was modified to include a module that simulated Internet transmission of ADS-B messages. An advanced NASA ConOp, Flight Deck Interval Management (FIM), was used to evaluate technical feasibility. A preliminary assessment of the effects of latency and dropout rate on FIM was performed. Flight hardware that would be used by proposed test environment was connected to the simulation so that data transfer from aircraft systems to test equipment could be verified. The results indicate that the FIM ConOp, and therefore, many other advanced ConOps with equal or lesser response characteristics and data requirements, can be evaluated in flight using the proposed concept.

  2. Pressure distribution and aerodynamic coefficients associated with heat addition to supersonic air stream adjacent to two-dimensional supersonic wing

    NASA Technical Reports Server (NTRS)

    Pinkel, I Irving; Serafini, John S; Gregg, John L

    1952-01-01

    The modifications in the pressure distributions and the aerodynamic coefficients associated with additions of heat to the two-dimensional supersonic in viscid flow field adjacetnt to the lower surface of of a 5-percent-thickness symmetrical circular-arc wing are presented in this report. The pressure distributions are obtained by the use of graphical method which gives the two-dimensional supersonic inviscid flow field obtained with moderate heat addition. The variation is given of the lift-drag ratio and of the aerodynamic coefficients of lift, drag, and moment with free stream Mach number, angle of attack, and parameters defining extent and amount of heat addition. The six graphical solutions used in this study included Mach numbers of 3.0 and 5.0 and angles of attack of 0 degrees and 2 degrees.

  3. Effects of the air breathing engine plumes on SSV orbiter subsonic wing pressure distributions (OA57A)

    NASA Technical Reports Server (NTRS)

    Cameron, B. W., Jr.

    1974-01-01

    Experimental aerodynamic pressure investigations were conducted on a 0.0405 scale representation of the -89 space shuttle orbiter ferry configuration in the Rockwell International 7.75 x 11.00 foot Low Speed Wind Tunnel. The primary test objective was to investigate the orbiter wing pressure distribution resulting from five under-wing engine nacelle plumes. Two five engine nacelle configurations were tested at 3 ground plane heights with pressure bug measurements being made on the left upper and lower wing panel. In addition, base and balance cavity pressure measurements were made, with elevon normal and hinge moment measurements on the right panel.

  4. Impact of phlebotomine sand flies on U.S. Military operations at Tallil Air Base, Iraq: 2. Temporal and geographic distribution of sand flies.

    PubMed

    Coleman, Russell E; Burkett, Douglas A; Sherwood, Van; Caci, Jennifer; Spradling, Sharon; Jennings, Barton T; Rowton, Edgar; Gilmore, Wayne; Blount, Keith; White, Charles E; Putnam, John L

    2007-01-01

    CDC miniature light traps were used to evaluate the general biology of phlebotomine sand flies from April 2003 to November 2004 at Tallil Air Base, Iraq. Factors evaluated include species diversity and temporal (daily and seasonal) and geographic distribution of the sand flies. In addition, the abundance of sand flies inside and outside tents and buildings was observed. In total, 61,630 sand flies were collected during 1,174 trap nights (mean 52 per trap, range 0-1,161), with 90% of traps containing sand flies. Sand fly numbers were low in April, rose through May, were highest from mid-June to early September, and dropped rapidly in late September and October. More than 70% of the sand flies were female, and of these sand flies, 8% contained visible blood. Phlebotomus alexandri Sinton, Phlebotomus papatasi Scopoli, Phlebotomus sergenti Parrot, and Sergentomyia spp. accounted for 30, 24, 1, and 45% of the sand flies that were identified, respectively. P. alexandri was more abundant earlier in the season (April and May) than P. papatasi, whereas P. papatasi predominated later in the season (August and September). Studies on the nocturnal activity of sand flies indicated that they were most active early in the evening during the cooler months, whereas they were more active in the middle of the night during the hotter months. Light traps placed inside tents with and without air conditioners collected 83 and 70% fewer sand flies, respectively, than did light traps placed outside the tents. The implications of these findings to Leishmania transmission in the vicinity of Tallil Air Base are discussed.

  5. Space and time analysis of the nanosecond scale discharges in atmospheric pressure air: I. Gas temperature and vibrational distribution function of N2 and O2

    NASA Astrophysics Data System (ADS)

    Lo, A.; Cessou, A.; Boubert, P.; Vervisch, P.

    2014-03-01

    Reliable experimental data on nanosecond discharge plasmas in air become more and more crucial considering their interest in a wide field of applications. However, the investigations on such nonequilibrium plasmas are made difficult by the spatial non-homogeneities, in particular under atmospheric pressure, the wide range of time scales, and the complexity of multi-physics processes involved therein. In this study, we report spatiotemporal experimental analysis on the gas temperature and the vibrational excitation of N2 and O2 in their ground electronic state during the post-discharge of an overvoltage nanosecond-pulsed discharge generated in a pin-to-plane gap of air at atmospheric pressure. The gas temperature during the pulsed discharge is measured by optical emission spectroscopy related to the rotational bands of the 0-0 vibrational transition N2(C 3 Πu, v = 0) → N2(B3 Πg, v = 0) of nitrogen. The results show a rapid gas heating up to 700 K in tens of nanoseconds after the current rise. This fast gas heating leads to a high gas temperature up to 1000 K measured at 150 ns in the first stages of the post-discharge using spontaneous Raman scattering (SRS). The spatiotemporal measurements of the gas temperature and the vibrational distribution function of N2 and O2, also obtained by SRS, over the post-discharge show the spatial expansion of the high vibrational excitation of N2, and the gas heating during the post-discharge. The present measurements, focused on thermal and energetic aspect of the discharge, provide a base for spatiotemporal analysis of gas number densities of N2, O2 and O atoms and hydrodynamic effects achieved during the post-discharge in part II of this investigation. All these results provide space and time database for the validation of plasma chemical models for nanosecond-pulsed discharges at atmospheric pressure air.

  6. Investigation of nonlinear inviscid and viscous flow effects in the analysis of dynamic stall. [air flow and chordwise pressure distribution on airfoil below stall condition

    NASA Technical Reports Server (NTRS)

    Crimi, P.

    1974-01-01

    A method for analyzing unsteady airfoil stall was refined by including nonlinear effects in the representation of the inviscid flow. Certain other aspects of the potential-flow model were reexamined and the effects of varying Reynolds number on stall characteristics were investigated. Refinement of the formulation improved the representation of the flow and chordwise pressure distribution below stall, but substantial quantitative differences between computed and measured results are still evident for sinusoidal pitching through stall. Agreement is substantially improved by assuming the growth rate of the dead-air region at the onset of leading-edge stall is of the order of the component of the free stream normal to the airfoil chordline. The method predicts the expected increase in the resistance to stalling with increasing Reynolds number. Results indicate that a given airfoil can undergo both trailing-edge and leading-edge stall under unsteady conditions.

  7. Distribution of Large Visible and Buried Impact Basins on Mars: Comparison with Free-Air Gravity, Crustal Thickness and Magnetization Models

    NASA Technical Reports Server (NTRS)

    Frey, H. V.

    2004-01-01

    A comparison of the distribution of visible and buried impact basins (Quasi-Circular Depressions or QCDs) on Mars > 200 km in diameter with free air gravity, crustal thickness and magnetization models shows some QCDs have coincident gravity anomalies but most do not. Very few QCDs have closely coincident magnetization anomalies, and only the oldest of the very large impact basins have strong magnetic anomalies within their main rings. Crustal thickness data show a large number of Circular Thinned Areas (CTAs). Some of these correspond to known impact basins, while others may represent buried impact basins not always recognized as QCDs in topography data alone. If true, the buried lowlands may be even older than we have previously estimated.

  8. Two-dimensional model of the air flow and temperature distribution in a cavity-type heat receiver of a solar stirling engine

    SciTech Connect

    Makhkamov, K.K.; Ingham, D.B.

    1999-11-01

    A theoretical study on the air flow and temperature in the heat receiver, affected by free convection, of a Stirling Engine for a Dish/Stirling Engine Power System is presented. The standard {kappa}-{epsilon} turbulence model for the fluid flow has been used and the boundary conditions employed were obtained using a second level mathematical model of the Stirling Engine working cycle. Physical models for the distribution of the solar insolation from the Concentrator on the bottom and side walls of the cavity-type heat receiver have been taken into account. The numerical results show that most of the heat losses in the receiver are due to re-radiation from the cavity and conduction through the walls of the cavity. It is in the region of the boundary of the input window of the heat receiver where there is a sensible reduction in the temperature in the shell of the heat exchangers and this is due to the free convection of the air. Further, the numerical results show that convective heat losses increase with decreasing tilt angle.

  9. Assessment of the spatial distribution of coplanar PCBs, PCNs, and PBDEs in a multi-industry region of South Korea using passive air samplers.

    PubMed

    Baek, Song-Yee; Choi, Sung-Deuk; Lee, Se-Jin; Chang, Yoon-Seok

    2008-10-01

    Coplanar polychlorinated biphenyls (PCBs), polychlorinated naphthalenes (PCNs), and polybrominated diphenyl ethers (PBDEs) were sampled using polyurethane foam (PUF) disk passive air samplers (PAS) at 19 sites in a heavily industrialized region of South Korea for 6 months (January-July 2006). The levels and spatial distribution of these three chemical groups were investigated to identify potential sources and transport in the study area, which can be divided into five regions: a steel-manufacturing complex, a residential area near the steel complex, a rural area, a semi-industrial area, and a petrochemical-manufacturing complex. Air concentrations (pg x m(-3)) were estimated using an average sampling rate of 3.0 m3 x day(-1) and ranged as follows: coplanar PCBs (0.8-16), PCNs (1.7-35), and PBDEs (3.8-24). The levels of coplanar PCBs and PBDEs were found to be the highest in the steel complex, followed by the petrochemical complex and the semi-industrial area. In addition, a high level of PCNs was measured near a petrochemical-processing plant. However, the residential area near the steel complex and the rural area showed relatively low concentrations of these chemicals, suggesting that the steel and petrochemical industries are probably important sources in the study area, but these potential sources do not strongly influence the surrounding areas.

  10. Combined field/modelling approaches to represent the air-vegetation distribution of benzo[a]pyrene using different vegetation species

    NASA Astrophysics Data System (ADS)

    Ratola, Nuno; Jiménez-Guerrero, Pedro

    2015-04-01

    A strategy designed to combine the features of field-based experiments and modelling approaches is presented in this work to assess air-vegetation distribution of benzo(a)pyrene (BaP) in the Iberian Peninsula (IP). Given the lack of simultaneous data in both environmental matrices, a methodology with two main steps was employed. First, evaluating the simulations with the chemistry transport model (CTM) WRF (Weather Research and Forecasting) + CHIMERE data against the European Monitoring and Evaluation Programme (EMEP) network, to test the aptitude of the CTM to replicate the respective atmospheric levels. Then, using modelled concentrations and a method to estimate air levels of BaP from biomonitoring data to compare the performance of different pine species (Pinus pinea, Pinus pinaster, Pinus nigra and Pinus halepensis) to describe the atmospheric evidences. The comparison of modelling vs. biomonitoring has a higher dependence on the location of the sampling points, rather than on the pine species, as some tend to overestimate and others to underestimate BaP concentrations, in most cases regardless of the season. The climatology of the canopy levels of BaP was successfully validated with the concentrations in pine needles (most biases below 26%), however, the model was unable to distinguish between species. This should be taken into consideration in future studies, as biases can rise up to 48%, especially in summer and autumn, the. The comparison with biomonitoring data showed a similar pattern, but with the best results in the warmer months.

  11. Mapping of the air-sea CO2 flux in the Arctic Ocean and its adjacent seas: Basin-wide distribution and seasonal to interannual variability

    NASA Astrophysics Data System (ADS)

    Yasunaka, Sayaka; Murata, Akihiko; Watanabe, Eiji; Chierici, Melissa; Fransson, Agneta; van Heuven, Steven; Hoppema, Mario; Ishii, Masao; Johannessen, Truls; Kosugi, Naohiro; Lauvset, Siv K.; Mathis, Jeremy T.; Nishino, Shigeto; Omar, Abdirahman M.; Olsen, Are; Sasano, Daisuke; Takahashi, Taro; Wanninkhof, Rik

    2016-09-01

    We produced 204 monthly maps of the air-sea CO2 flux in the Arctic north of 60°N, including the Arctic Ocean and its adjacent seas, from January 1997 to December 2013 by using a self-organizing map technique. The partial pressure of CO2 (pCO2) in surface water data were obtained by shipboard underway measurements or calculated from alkalinity and total inorganic carbon of surface water samples. Subsequently, we investigated the basin-wide distribution and seasonal to interannual variability of the CO2 fluxes. The 17-year annual mean CO2 flux shows that all areas of the Arctic Ocean and its adjacent seas were net CO2 sinks. The estimated annual CO2 uptake by the Arctic Ocean was 180 TgC yr-1. The CO2 influx was strongest in winter in the Greenland/Norwegian Seas (>15 mmol m-2 day-1) and the Barents Sea (>12 mmol m-2 day-1) because of strong winds, and strongest in summer in the Chukchi Sea (∼10 mmol m-2 day-1) because of the sea-ice retreat. In recent years, the CO2 uptake has increased in the Greenland/Norwegian Sea and decreased in the southern Barents Sea, owing to increased and decreased air-sea pCO2 differences, respectively.

  12. Prediction of In-Phantom Dose Distribution Using In-Air Neutron Beam Characteristics for Boron Neutron Capture Synovectomy

    SciTech Connect

    Verbeke, Jerome M.; Chen, Allen S.; Vujic, Jasmina L.; Leung, Ka-Ngo

    2000-08-15

    A monoenergetic neutron beam simulation study was carried out to determine the optimal neutron energy range for treatment of rheumatoid arthritis using radiation synovectomy. The goal of the treatment is the ablation of diseased synovial membranes in joints such as knees and fingers. This study focuses on human knee joints. Two figures of merit are used to measure the neutron beam quality, the ratio of the synovium-absorbed dose to the skin-absorbed dose, and the ratio of the synovium-absorbed dose to the bone-absorbed dose. It was found that (a) thermal neutron beams are optimal for treatment and that (b) similar absorbed dose rates and therapeutic ratios are obtained with monodirectional and isotropic neutron beams. Computation of the dose distribution in a human knee requires the simulation of particle transport from the neutron source to the knee phantom through the moderator. A method was developed to predict the dose distribution in a knee phantom from any neutron and photon beam spectra incident on the knee. This method was revealed to be reasonably accurate and enabled one to reduce the particle transport simulation time by a factor of 10 by modeling the moderator only.

  13. Effects of air breathing engine plumes on SSV orbiter subsonic wing pressure distribution (OA57B), volume 1

    NASA Technical Reports Server (NTRS)

    Soard, T.

    1974-01-01

    Data were obtained during wind tunnel tests of a 0.0405-scale model of the ferry configuration of the space shuttle vehicle orbiter conducted in a low speed wind tunnel during the time period of September 18 to September 23, 1973. The primary test objective was to investigate orbiter wing pressure distributions resulting from nacelle plumes above and below the wing. Three six-engine nacelle configurations were tested. One configuration had a twin-podded nacelle mounted above each wing and the others had one mounted below each wing. Both had a centerline twin-podded nacelle mounted below the wing. Wing pressure distribution was determined by locating static pressure bugs on the upper and lower surfaces of the left wing. Pressure bugs were also located on the upper and lower surfaces of the body flap and on the B12 afterbody fairing when it was installed. Base and balance cavity pressures were recorded and a strain gage instrumented beam in the right wing measured elevon hinge moments and normal forces.

  14. Role of highway traffic on spatial and temporal distributions of air pollutants in a Swiss Alpine valley.

    PubMed

    Ducret-Stich, Regina E; Tsai, Ming-Yi; Ragettli, Martina S; Ineichen, Alex; Kuenzli, Nino; Phuleria, Harish C

    2013-07-01

    Traffic-related air pollutants show high spatial variability near roads, posing a challenge to adequately assess exposures. Recent modeling approaches (e.g. dispersion models, land-use regression (LUR) models) have addressed this but mostly in urban areas where traffic is abundant. In contrast, our study area was located in a rural Swiss Alpine valley crossed by the main North-south transit highway of Switzerland. We conducted an extensive measurement campaign collecting continuous nitrogen dioxide (NO₂), particulate number concentrations (PN), daily respirable particulate matter (PM10), elemental carbon (EC) and organic carbon (OC) at one background, one highway and seven mobile stations from November 2007 to June 2009. Using these measurements, we built a hybrid model to predict daily outdoor NO₂ concentrations at residences of children participating in an asthma panel study. With the exception of OC, daily variations of the pollutants followed the temporal trends of heavy-duty traffic counts on the highway. In contrast, variations of weekly/seasonal means were strongly determined by meteorological conditions, e.g., winter inversion episodes. For pollutants related to primary exhaust emissions (i.e. NO₂, EC and PN) local spatial variation strongly depended on proximity to the highway. Pollutant concentrations decayed to background levels within 150 to 200 m from the highway. Two separate daily NO₂ prediction models were built using LUR approaches with (a) short-term traffic and weather data (model 1) and (b) subsequent addition of daily background NO₂ to previous model (model 2). Models 1 and 2 explained 70% and 91% of the variability in outdoor NO₂ concentrations, respectively. The biweekly averaged predictions from the final model 2 agreed very well with the independent biweekly integrated passive measurements taken at thirteen homes and nine community sites (validation R(2)=0.74). The excellent spatio-temporal performance of our model provides a

  15. Determining Spatial Distribution And Air-Water Exchange Of Polycyclic Aromatic Hydrocarbons In Stormwater Runoff Catchment Basins

    NASA Astrophysics Data System (ADS)

    Kasaraneni, V. K.; Schifman, L. A.; Craver, V.; Boving, T. B.

    2014-12-01

    Stormwater runoff is a conduit for several pollutants such as polycyclic aromatic hydrocarbons (PAHs) in to surface and ground water bodies. The control of runoff and pollutants is typically addressed by best management practices (BMPs), such as retention/detention ponds or catchment basins in general. The effectiveness of catchment basins in reducing the volume of runoff and removal of some contaminants has been established. However, very little is known about the fate of the contaminants settled within these structures. In coastal regions and places with shallow groundwater tables accumulation of high concentrations of PAHs in the bottom sediments poses a potential threat for groundwater contamination. The concentrations of PAHs accumulated in the sediments of these catchment basins will primarily depend on the sources of runoff origin and the surrounding land use. Due to the physico-chemical characteristics of PAHs, their transport not only can occur in the liquid and solid phase, but it is also possible that gaseous emissions can be produced from BMP systems. For the purpose of this study, five stormwater catchment basins along the I-95 corridor in Rhode Island were selected based on the stormwater runoff origin and covering (industrial, urban, highway, and commercial) land uses. To study the stratification of PAHs sediment cores one foot were collected and analyzed for 31PAHs (16 EPA parent PAH and 15 methylated PAHs). In order to determine whether the catchment basins are a source of atmospheric pollution polyethylene passive samplers were deployed to determine the freely dissolved PAHs in the water column and gas phase PAHs at the air-water interface. This presentation will describe how PAH fluxes move between three environmental compartments (sediments, water column, atmosphere) within the five stormwater catchment basins. Further, it will be investigated whether these BMP structures can act as contaminant sources rather than sinks and whether BMP

  16. Particle size distributions of Trade-Wind African dust measured in the air and after dispersal in water

    NASA Astrophysics Data System (ADS)

    Prospero, J. M.; Custals, L.

    2012-12-01

    The paleoclimate community uses dust particle size measurements in ice cores and sediments in an effort to retrieve information about dust sources and transport and the changes that occur with time. These measurements are typically made on particles suspended in water using a Coulter-type (electric zone sensing) instrument or with electro-optical measurements calibrated against a Coulter. In contrast the atmospheric community measures particles suspended in the atmosphere using instruments based on completely different principles. Because dust particles are typically complex agglomerates that can disperse in liquids, the measurements made with Coulter-type instruments cannot be easily related to atmospheric measurements. Consequently many of the assumptions made in the paleoclimate community about dust sources and transport based on particle sizes in cores cannot be readily tested against present-day measurements. We addressed this issue by making measurements of airborne dust in Barbados and Miami using a Coulter Multisizer™ 3. We collected airborne particles in two ways: 1) bulk (total) aerosol samples collected on a membrane filters, and 2) size-separated samples collected with a MOUDI cascade impactor which yields information about the degree of agglomeration of particles in different aerosol size classes. During the summer dust season, the bulk filters yield well-defined dust volume distribution peaks that are relatively stable from event-to-event at both Miami and Barbados. Volume geometric mean diameters (GMD) are centered around 2 μm; the GMD is marginally higher during heavy dust days than low-dust days. The most dramatic changes in size distributions occur during winter-spring dust events when the GMD ranges from around 1 μm to around 3 to 4 μm. It is notable that the size distributions truncate above 4 - 5 μm diameter; there are very few particles above 5 - 6 μm diameter except for single particles which could be due to contamination. We attribute

  17. Distribution of α-, β-, γ-, and δ-hexachlorocyclohexane in soil-plant-air system in a tea garden.

    PubMed

    Yi, Zhigang; Zheng, Lili; Guo, Pingping; Bi, Junqi

    2013-05-01

    The residue of hexachlorocyclohexane (HCH) isomers (mainly α-, β-, γ-, and δ-HCH) in the soils, plant tissues and atmosphere were measured in a typical tea garden in Fujian, a major tea-producing province in China, and this study focused on the distribution and accumulation of HCHs. HCHs could accumulate in most of the plant tissues, with the highest HCH concentration of 3.0±2.9ng/g dw in old leaves. Uptake of HCHs by the roots from soil was the possible pathway for HCHs accumulation in plants, and the accumulation was an isomer-selective process, with the highest concentration factor of 10.3 for α-HCH. The higher percentages of α- and γ-HCH in roots (28.1 percent and 43.7 percent) than those in soil (14.0% and 34.1 percent) also implied the isomer-selective accumulation of HCHs. ΣHCHs in the gaseous phase (157±97pg/m(3)) were significantly higher than those in particle phase (19±20pg/m(3)). Volatilization of HCHs from soils and uptake by the plant's aerial tissues might be the pathway for HCHs accumulation in leaves and stems, and β-HCH showed the highest accumulation capacity in young leaves. The percentage distribution pattern of the dust on plant leaves were similar to that in soils, suggesting that the dust on the leaves were mainly from the soils. High γ-HCH concentrations and low α-/γ-HCH ratios in plant's aerial tissues suggested the input of lindane in tea garden.

  18. Potential of multispectral imaging for real-time determination of colour change and moisture distribution in carrot slices during hot air dehydration.

    PubMed

    Liu, Changhong; Liu, Wei; Lu, Xuzhong; Chen, Wei; Yang, Jianbo; Zheng, Lei

    2016-03-15

    Colour and moisture content are important indices in quality monitoring of dehydrating carrot slices during dehydration process. This study investigated the potential of using multispectral imaging for real-time and non-destructive determination of colour change and moisture distribution during the hot air dehydration of carrot slices. Multispectral reflectance images, ranging from 405 to 970 nm, were acquired and then calibrated based on three chemometrics models of partial least squares (PLS), least squares-support vector machines (LS-SVM), and back propagation neural network (BPNN), respectively. Compared with PLS and LS-SVM, BPNN considerably improved the prediction performance with coefficient of determination in prediction (RP(2))=0.991, root-mean-square error of prediction (RMSEP)=1.482% and residual predictive deviation (RPD)=11.378 for moisture content. It was concluded that multispectral imaging has an excellent potential for rapid, non-destructive and simultaneous determination of colour change and moisture distribution of carrot slices during dehydration.

  19. Simultaneous measurement of 2-dimensional H2O concentration and temperature distribution in premixed methane/air flame using TDLAS-based tomography technology

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Wu, Qi; Huang, Qunxing; Zhang, Haidan; Yan, Jianhua; Cen, Kefa

    2015-07-01

    An innovative tomographic method using tunable diode laser absorption spectroscopy (TDLAS) and algebraic reconstruction technique (ART) is presented in this paper for detecting two-dimensional distribution of H2O concentration and temperature in a premixed flame. The collimated laser beam emitted from a low cost diode laser module was delicately split into 24 sub-beams passing through the flame from different angles and the acquired laser absorption signals were used to retrieve flame temperature and H2O concentration simultaneously. The efficiency of the proposed reconstruction system and the effect of measurement noise were numerically evaluated. The temperature and H2O concentration in flat methane/air premixed flames under three different equivalence ratios were experimentally measured and reconstruction results were compared with model calculations. Numerical assessments indicate that the TDLAS tomographic system is capable for temperature and H2O concentration profiles detecting even the noise strength reaches 3% of absorption signal. Experimental results under different combustion conditions are well demonstrated along the vertical direction and the distribution profiles are in good agreement with model calculation. The proposed method exhibits great potential for 2-D or 3-D combustion diagnostics including non-uniform flames.

  20. The distribution of odd nitrogen in the lower stratosphere and possible perturbations caused by stratospheric air transport

    NASA Technical Reports Server (NTRS)

    Isaksen, I. S. A.; Hesstvedt, E.

    1973-01-01

    In the lower stratosphere a significant production of odd nitrogen results from the reaction N2O + O(D-1) yields 2NO. Since the transport is relatively slow, odd nitrogen builds up with a maximum mixing ratio of 2 x 10 to the minus 8th power at 30 Km. Profiles of odd nitrogen, for different latitudes, winter and summer, are computed from one-dimensional transport models. Variations with latitude are small. Horizontal transport is therefore not believed to alter our results significantly. In order to evaluate the effect of odd nitrogen upon the ozone layer, NO(x) profiles are calculated. OH is here a key component, since it converts NO2 to HNO3. In the region where ozone is determined by chemistry rather than by transport (above 25 km), NO2 is found to be relatively abundant. The effect of stratospheric transport on the NO(x) distribution is shown to depend critically upon the height of emission. The effect increases by a factor of 5 or more for a change of flight level from 18 km to 23 km. This strong dependence should be duely considered when future stratospheric transport is discussed.

  1. Application of CORSIKA Simulation Code to Study Lateral and Longitudinal Distribution of Fluorescence Light in Cosmic Ray Extensive Air Showers

    NASA Astrophysics Data System (ADS)

    Bagheri, Zahra; Davoudifar, Pantea; Rastegarzadeh, Gohar; Shayan, Milad

    2017-03-01

    In this paper, we used CORSIKA code to understand the characteristics of cosmic ray induced showers at extremely high energy as a function of energy, detector distance to shower axis, number, and density of secondary charged particles and the nature particle producing the shower. Based on the standard properties of the atmosphere, lateral and longitudinal development of the shower for photons and electrons has been investigated. Fluorescent light has been collected by the detector for protons, helium, oxygen, silicon, calcium and iron primary cosmic rays in different energies. So we have obtained a number of electrons per unit area, distance to the shower axis, shape function of particles density, percentage of fluorescent light, lateral distribution of energy dissipated in the atmosphere and visual field angle of detector as well as size of the shower image. We have also shown that location of highest percentage of fluorescence light is directly proportional to atomic number of elements. Also we have shown when the distance from shower axis increases and the shape function of particles density decreases severely. At the first stages of development, shower axis distance from detector is high and visual field angle is small; then with shower moving toward the Earth, angle increases. Overall, in higher energies, the fluorescent light method has more efficiency. The paper provides standard calibration lines for high energy showers which can be used to determine the nature of the particles.

  2. Impact of northern and southern air mass transport on the temporal distribution of atmospheric (210)Po and (210)Pb in the east coast of Johor, Malaysia.

    PubMed

    Sabuti, Asnor Azrin; Mohamed, Che Abd Rahim

    2016-09-01

    Concentration activities of (210)Pb and (210)Po in the PM10 were determined to discuss their distribution and chemical behavior in relation to meteorological parameters especially in air mass transport during monsoon events. Marine aerosol samples were collected between January 2009 and December 2010 at the coastal region of Mersing, which is located in the southern South China Sea and is about 160 km northeast of Johor Bahru, as part of the atmosphere-ocean interaction program in Malaysia. About 47 PM10 samples were collected using the Sierra-Andersen model 1200 PM10 sampler over a 2-year sampling campaign between January 2009 and December 2010. Samples were processed using acid digestion sequential extraction techniques to analyze various fractions such as Fe and Mn oxides, organic matter, and residual fractions. While, (210)Pb and (210)Po activities were measured with the Gross Alpha/Beta Counting System model XLB-5 Tennelec® Series 5 and the Alpha Spectrometry (model Alpha Analyst Spectroscopy system with a silicon-surface barrier detector), respectively. The distribution activities of (210)Pb and (210)Po in the PM10 samples were varied from 162 to 881 μBq/m(3) with mean value of 347 ± 170 μBq/m(3) and from 85 to 1009 μBq/m(3) with mean value of 318 ± 202 μBq/m(3), respectively. The analysis showed that (210)Po activity in our samples lies in a border and higher range than global distribution values due to contributions from external sources injected to the atmosphere. The speciation of (210)Pb and (210)Po in marine aerosol corresponds to transboundary haze; e.g., biomass burning especially forest fires and long-range air mass transport of terrestrial dust has enriched concentrations of particle mass in the local atmosphere. The monsoon seems to play an important role in transporting terrestrial dust from Indo-China and northern Asia especially during the northeast monsoon, as well as biogenic pollutants originating from Sumatra and the southern

  3. Air Cargo Marketing Development

    NASA Technical Reports Server (NTRS)

    Kersey, J. W.

    1972-01-01

    The factors involved in developing a market for air cargo services are discussed. A comparison is made between the passenger traffic problems and those of cargo traffic. Emphasis is placed on distribution analyses which isolates total distribution cost, including logistical costs such as transportation, inventory, materials handling, packaging, and processing. Specific examples of methods for reducing air cargo costs are presented.

  4. Ambient salinity modifies the action of triiodothyronine in the air-breathing fish Anabas testudineus Bloch: effects on mitochondria-rich cell distribution, osmotic and metabolic regulations.

    PubMed

    Peter, M C Subhash; Leji, J; Peter, Valsa S

    2011-04-01

    The hydromineral and metabolic actions of thyroid hormone on osmotic acclimation in fish is less understood. We, therefore, studied the short-term action of triiodothyronine (T(3)), the potent thyroid hormone, on the distribution and the function of gill mitochondria-rich (MR) cells and on the whole body hydromineral and metabolic regulations of air-breathing fish (Anabas testudineus) adapted to either freshwater (FW) or acclimated to seawater (SA; 30 g L(-1)). As expected, 24 h T(3) injection (100 ng g(-1)) elevated (P<0.05) plasma T(3) but classically reduced (P<0.05) plasma T(4). The higher Na(+), K(+)-ATPase immunoreactivity and the varied distribution pattern of MR cells in the gills of T(3)-treated FW and SA fish, suggest an action of T(3) on gill MR cell migration, though the density of these cells remained unchanged after T(3) treatment. The ouabain-sensitive Na(+), K(+)-ATPase activity, a measure of hydromineral competence, showed increases (P<0.05) in the gills of both FW and SA fish after T(3) administration, but inhibited (P<0.05) in the kidney of the FW fish and not in the SA fish. Exogenous T(3) reduced glucose (P<0.05) and urea (P<0.05) in the plasma of FW fish, whereas these metabolites were elevated (P<0.05) in the SA fish, suggesting a modulatory effect of ambient salinity on the T(3)-driven metabolic actions. Our data identify gill MR cell as a target for T(3) action as it promotes the spatial distribution and the osmotic function of these cells in both fresh water and in seawater. The results besides confirming the metabolic and osmotic actions of T(3) in fish support the hypothesis that the differential actions of T(3) may be due to the direct influence of ambient salinity, a major environmental determinant that alters the osmotic and metabolic strategies of fish.

  5. Detailed Distribution Map of Absorbed Dose Rate in Air in Tokatsu Area of Chiba Prefecture, Japan, Constructed by Car-Borne Survey 4 Years after the Fukushima Daiichi Nuclear Power Plant Accident

    PubMed Central

    Inoue, Kazumasa; Arai, Moeko; Fujisawa, Makoto; Saito, Kyouko; Fukushi, Masahiro

    2017-01-01

    A car-borne survey was carried out in the northwestern, or Tokatsu, area of Chiba Prefecture, Japan, to make a detailed distribution map of absorbed dose rate in air four years after the Fukushima Daiichi Nuclear Power Plant accident. This area was chosen because it was the most heavily radionuclide contaminated part of Chiba Prefecture and it neighbors metropolitan Tokyo. Measurements were performed using a 3-in × 3-in NaI(Tl) scintillation spectrometer in June 2015. The survey route covered the whole Tokatsu area which includes six cities. A heterogeneous distribution of absorbed dose rate in air was observed on the dose distribution map. Especially, higher absorbed dose rates in air exceeding 80 nGy h-1 were observed along national roads constructed using high porosity asphalt, whereas lower absorbed dose rates in air were observed along local roads constructed using low porosity asphalt. The difference between these asphalt types resulted in a heterogeneous dose distribution in the Tokatsu area. The mean of the contribution ratio of artificial radionuclides to absorbed dose rate in air measured 4 years after the accident was 29% (9–50%) in the Tokatsu area. The maximum absorbed dose rate in air, 201 nGy h-1 was observed at Kashiwa City. Radiocesium was deposited in the upper 1 cm surface layer of the high porosity asphalt which was collected in Kashiwa City and the environmental half-life of the absorbed dose rate in air was estimated to be 1.7 years. PMID:28129382

  6. Model of phase distribution of hydrophobic organic chemicals in cyclodextrin-water-air-solid sorbent systems as a function of salinity, temperature, and the presence of multiple CDs

    NASA Astrophysics Data System (ADS)

    Blanford, W. J.

    2013-12-01

    Environmental and other applications of cyclodextrins (CD) often require usage of high concentra- tion aqueous solutions of derivatized CDs. In an effort to reduce the costs, these studies also typically use technical grades where the purity of the CD solution and the degree of substitution has not been reported. Further, this grade of CD often included high levels of salt and it is commonly applied in high salinity systems. The mathematical models for water and air partitioning coefficients of hydrophobic organic chemicals (HOC) with CDs that have been used in these studies under-estimate the level of HOC within CDs. This is because those models (1) do not take into account that high concentrations of CDs result in significantly lower levels of water in solution and (2) they do not account for the reduction in HOC aqueous solubility due to the presence of salt. Further, because they have poor knowledge of the CD molar concentration in their solu- tions, it is difficult to draw comparisons between studies. Herein is developed a mathematical model where cyclo- dextrin is treated as a separate phase whose relative volume is calculated from its apparent molar volume in solution and the CD concentration of the solution. The model also accounts for the affects of temperature and the presence of salt in solution through inclusion of modified versions of the Van't Hoff and Setschenow equations. With these capabilities, additional equations have been developed for calculating HOC phase distribution in air-water-CD-solid sorbent systems for a single HOC and between water and CD for a system containing multiple HOCs as well as multiple types of cyclodextrin.

  7. Regional variability in diving physiology and behavior in a widely distributed air-breathing marine predator, the South American sea lion (Otaria byronia).

    PubMed

    Hückstädt, Luis A; Tift, Michael S; Riet-Sapriza, Federico; Franco-Trecu, Valentina; Baylis, Alastair M M; Orben, Rachael A; Arnould, John P Y; Sepulveda, Maritza; Santos-Carvallo, Macarena; Burns, Jennifer M; Costa, Daniel P

    2016-08-01

    Our understanding of how air-breathing marine predators cope with environmental variability is limited by our inadequate knowledge of their ecological and physiological parameters. Because of their wide distribution along both coasts of the sub-continent, South American sea lions (Otaria byronia) provide a valuable opportunity to study the behavioral and physiological plasticity of a marine predator in different environments. We measured the oxygen stores and diving behavior of South American sea lions throughout most of its range, allowing us to demonstrate that diving ability and behavior vary across its range. We found no significant differences in mass-specific blood volumes of sea lions among field sites and a negative relationship between mass-specific oxygen storage and size, which suggests that exposure to different habitats and geographical locations better explains oxygen storage capacities and diving capability in South American sea lions than body size alone. The largest animals in our study (individuals from Uruguay) were the shallowest and shortest duration divers, and had the lowest mass-specific total body oxygen stores, while the deepest and longest duration divers (individuals from southern Chile) had significantly larger mass-specific oxygen stores, despite being much smaller animals. Our study suggests that the physiology of air-breathing diving predators is not fixed, but that it can be adjusted, to a certain extent, depending on the ecological setting and or habitat. These adjustments can be thought of as a 'training effect': as the animal continues to push its physiological capacity through greater hypoxic exposure, its breath-holding capacity increases.

  8. Distribution and congener profiles of short-chain chlorinated paraffins in indoor/outdoor glass window surface films and their film-air partitioning in Beijing, China.

    PubMed

    Gao, Wei; Wu, Jing; Wang, Yawei; Jiang, Guibin

    2016-02-01

    Short-chain chlorinated paraffins (SCCPs) are a group of n-alkanes with carbon chain length of 10-13. In this work, paired indoor/outdoor samples of organic films on window glass surfaces from urban buildings in Beijing, China, were collected to measure the concentrations and congener distributions of SCCPs. The total SCCP levels ranged from 337 ng/m(2) to 114 μg/m(2), with total organic carbon (TOC) normalized concentrations of 365 μg/m(2)-365 mg/m(2). Overall, the concentrations of SCCPs on the interior films were higher than the concentrations on the exterior films, suggesting an important indoor environmental exposure of SCCPs to the general public. A significant linear relationship was found between the SCCP concentrations and TOC, with a correlation coefficient of R = 0.34 (p < 0.01). A film-air partitioning model suggests that the indoor gas-phase SCCPs are related to their corresponding window film levels.

  9. A distributed air index based on maximum boundary rectangle over grid-cells for wireless non-flat spatial data broadcast.

    PubMed

    Im, Seokjin; Choi, JinTak

    2014-06-17

    In the pervasive computing environment using smart devices equipped with various sensors, a wireless data broadcasting system for spatial data items is a natural way to efficiently provide a location dependent information service, regardless of the number of clients. A non-flat wireless broadcast system can support the clients in accessing quickly their preferred data items by disseminating the preferred data items more frequently than regular data on the wireless channel. To efficiently support the processing of spatial window queries in a non-flat wireless data broadcasting system, we propose a distributed air index based on a maximum boundary rectangle (MaxBR) over grid-cells (abbreviated DAIM), which uses MaxBRs for filtering out hot data items on the wireless channel. Unlike the existing index that repeats regular data items in close proximity to hot items at same frequency as hot data items in a broadcast cycle, DAIM makes it possible to repeat only hot data items in a cycle and reduces the length of the broadcast cycle. Consequently, DAIM helps the clients access the desired items quickly, improves the access time, and reduces energy consumption. In addition, a MaxBR helps the clients decide whether they have to access regular data items or not. Simulation studies show the proposed DAIM outperforms existing schemes with respect to the access time and energy consumption.

  10. Air Research

    EPA Pesticide Factsheets

    EPA's air research provides the critical science to develop and implement outdoor air regulations under the Clean Air Act and puts new tools and information in the hands of air quality managers and regulators to protect the air we breathe.

  11. Air Distribution in Protective Shelters

    DTIC Science & Technology

    1993-11-01

    dispersion within an enclosure. The FLUENT CFD model marketed by Fluent, Inc. of Lebanon, New Hampshire accepts complex geometries using a body-fitted...Laboratory (and-its commercial derivative Turbo Kiva marketed by Cray Research, Inc.) and the TEMPEST code developed by Battelle Pacific Northwest... TIPO sensor which is used for hand-held gas monitoring. (TIP* is a Trademark of Photovac, Inc., of Thornhill, Ontario, Canada.) The TIP-SJ2 was

  12. Quantile Regression Analysis of the Distributional Effects of Air Pollution on Blood Pressure, Heart Rate Variability, Blood Lipids, and Biomarkers of Inflammation in Elderly American Men: The Normative Aging Study

    PubMed Central

    Bind, Marie-Abele; Peters, Annette; Koutrakis, Petros; Coull, Brent; Vokonas, Pantel; Schwartz, Joel

    2016-01-01

    Background: Previous studies have observed associations between air pollution and heart disease. Susceptibility to air pollution effects has been examined mostly with a test of effect modification, but little evidence is available whether air pollution distorts cardiovascular risk factor distribution. Objectives: This paper aims to examine distributional and heterogeneous effects of air pollution on known cardiovascular biomarkers. Methods: A total of 1,112 men from the Normative Aging Study and residents of the greater Boston, Massachusetts, area with mean age of 69 years at baseline were included in this study during the period 1995–2013. We used quantile regression and random slope models to investigate distributional effects and heterogeneity in the traffic-related responses on blood pressure, heart rate variability, repolarization, lipids, and inflammation. We considered 28-day averaged exposure to particle number, PM2.5 black carbon, and PM2.5 mass concentrations (measured at a single monitor near the site of the study visits). Results: We observed some evidence suggesting distributional effects of traffic-related pollutants on systolic blood pressure, heart rate variability, corrected QT interval, low density lipoprotein (LDL) cholesterol, triglyceride, and intercellular adhesion molecule-1 (ICAM-1). For example, among participants with LDL cholesterol below 80 mg/dL, an interquartile range increase in PM2.5 black carbon exposure was associated with a 7-mg/dL (95% CI: 5, 10) increase in LDL cholesterol, while among subjects with LDL cholesterol levels close to 160 mg/dL, the same exposure was related to a 16-mg/dL (95% CI: 13, 20) increase in LDL cholesterol. We observed similar heterogeneous associations across low versus high percentiles of the LDL distribution for PM2.5 mass and particle number. Conclusions: These results suggest that air pollution distorts the distribution of cardiovascular risk factors, and that, for several outcomes, effects may be

  13. Distribution patterns, infiltration and health risk assessment of PM2.5-bound PAHs in indoor and outdoor air in cold zone.

    PubMed

    Mohammed, Mohammed O A; Song, Wei-Wei; Ma, Yong-Liang; Liu, Li-Yan; Ma, Wan-Li; Li, Wen-Long; Li, Yi-Fan; Wang, Feng-Yan; Qi, Mei-Yun; Lv, Na; Wang, Ding-Zhen; Khan, Afed Ulla

    2016-07-01

    In this study we investigated the distribution patterns, infiltration and health risk assessment of PM2.5-bound PAHs in indoor and outdoor air done in Harbin city, northeastern China. Simultaneous indoor and outdoor sampling was done to collect 264 PM2.5 samples from four sites during winter, summer, and spring. Infiltration of PAHs into indoors was estimated using Retene, Benzo [ghi]perylene and Chrysene as reference compounds, where the latter compound was suggested to be a good estimator and subsequently used for further calculation of infiltration factors (IFs). Modeling with positive matrix factorization (PMF5) and estimation of diagnostic isomeric ratios were applied for identifying sources, where coal combustion, crop residues burning and traffic being the major contributors, particularly during winter. Linear discriminant analysis (LDA) has been utilized to show the distribution patterns of individual PAH congeners. LDA showed that, the greatest seasonal variability was attributed to high molecular weight compounds (HMW PAHs). Potential health risk of PAHs exposure was assessed through relative potency factor approach (RPF). The levels of the sum of 16 US EPA priority PAHs during colder months were very high, with average values of 377 ± 228 ng m(-)(3) and 102 ± 75.8 ng m(-)(3), for the outdoors and indoors, respectively. The outdoor levels reported to be 19 times higher than the outdoor concentrations during warmer months (summer + spring), while the indoor concentrations were suggested to be 9 times and 10 times higher than that for indoor summer (average 11.73 ± 4 ng m(-3)) and indoor spring (9.5 ± 3.3 ng m(-3)). During nighttime, outdoor PAHs revealed wider range of values compared to datytime which was likely due to outdoor temperature, a weather parameter with the strongest negative influence on ∑16PAHs compared to low impact of relative humidity and wind speed.

  14. Identifying Housing and Meteorological Conditions Influencing Residential Air Exchange Rates in the DEARS and RIOPA Studies: Development of Distributions for Human Exposure Modeling

    EPA Science Inventory

    Appropriate prediction of residential air exchange rate (AER) is important for estimating human exposures in the residential microenvironment, as AER drives the infiltration of outdoor-generated air pollutants indoors. AER differences among homes may result from a number of fact...

  15. Guide to Selected Algorithms, Distributions, and Databases Used in Exposure Models Developed By the Office of Air Quality Planning and Standards

    EPA Pesticide Factsheets

    In the evaluation of emissions standards, OAQPS frequently uses one or more computer-based models to estimate the number of people who will be exposed to the air pollution levels that are expected to occur under various air quality scenarios.

  16. Fungal colonization of fiberglass insulation in the air distribution system of a multi-story office building: VOC production and possible relationship to a sick building syndrome

    NASA Technical Reports Server (NTRS)

    Ahearn, D. G.; Crow, S. A.; Simmons, R. B.; Price, D. L.; Noble, J. A.; Mishra, S. K.; Pierson, D. L.

    1996-01-01

    Complaints characteristic of those for sick building syndrome prompted mycological investigations of a modern multi-story office building on the Gulf coast in the Southeastern United States (Houston-Galveston area). The air handling units and fiberglass duct liner of the heating, ventilating and air conditioning system of the building, without a history of catastrophic or chronic water damage, demonstrated extensive colonization with Penicillium spp and Cladosporium herbarum. Although dense fungal growth was observed on surfaces within the heating-cooling system, most air samples yielded fewer than 200 CFU m-3. Several volatile compounds found in the building air were released also from colonized fiberglass. Removal of colonized insulation from the floor receiving the majority of complaints of mouldy air and continuous operation of the units supplying this floor resulted in a reduction in the number of complaints.

  17. Air Pollution

    MedlinePlus

    Air pollution is a mixture of solid particles and gases in the air. Car emissions, chemicals from factories, ... Ozone, a gas, is a major part of air pollution in cities. When ozone forms air pollution, it's ...

  18. Military Air Cargo Containerization.

    DTIC Science & Technology

    1996-05-01

    MILITARY AIR CARGO CONTAINERIZATION GRADUATE RESEARCH PAPER Joseph W. Mancy, Major, USAF AFIT/ GMO /LAL/96J-4 : ."•" ’* ■- ’ DEPARTMENT OF...Approved to public release; Distribution UnHmlted ? DTIC QUALITY INSPECTED 1 AFIT/ GMO /LAL/96J-4 MILITARY AIR CARGO CONTAINERIZATION GRADUATE RESEARCH...PAPER Joseph W. Mancy, Major, USAF AFIT/ GMO /LAL/96J-4 19960617 134 Approved for public release; distribution unlimited The views expressed in this

  19. Receptor Modeling of Epiphytic Lichens to Elucidate the Sources and SpatialDistribution of Inorganic Air Pollution in the Athabasca Oil Sands Region

    EPA Science Inventory

    The contribution of inorganic air pollutant emissions to atmospheric deposition in the Athabasca Oil Sands Region (AOSR) of Alberta, Canada was investigated in the surrounding boreal forests, using a common epiphytic lichen bio-indicator species (Hypogymnia physodes) and applyi...

  20. THE SPATIAL AND TEMPORAL DISTRIBUTION OF CHLORPYRIFOS IN THE U.S. EPA INDOOR AIR QUALITY (IAQ) TEST HOUSE FOLLOWING CRACK AND CREVICE TYPE APPLICATIONS

    EPA Science Inventory

    Pesticides found in homes may result from indoor applications to control household pests or by translocation from outdoor sources. Pesticides disperse according to their physical properties and other factors such as human activity, air exchange, temperature and humidity. Insect...

  1. THE DISTRIBUTION OF CHLORPYRIFOS FOLLOWING A CRACK AND CREVICE TYPE APPLICAITON IN THE U.S. EPA INDOOR AIR QUALITY (IAQ) TEST HOUSE

    EPA Science Inventory

    Pesticides found in homes may result from indoor applications to control household pests or by translocation from outdoor sources. Pesticides disperse according to their physical properties and other factors such as human activity, residential air exchange, temperature and humi...

  2. Flight Investigation of the Cooling Characteristics of a Two-Row Radial Engine Installation. 2 - Cooling-Air Pressure Recovery and Pressure Distribution

    DTIC Science & Technology

    1946-07-01

    I 1 n ^ £ Ä ̂ N i - 1 \\ ̂ =J r i > 0 • W Air flo 8 7 1 »H pN ;> ^ fefe * r^ IS & ̂ s I 6 y ^r 5 y. < 1 ** >—< £r... fefe |^S? 2 4 6 8 10 12 14 10 18 Cylinder, front row (a) Cyl inder-head pressure». Air flow j^bb£=L£W —ik

  3. Cargo Logistics Airlift Systems Study (CLASS). Volume 3: Cross impact between the 1990 market and the air physical distribution systems, book 2

    NASA Technical Reports Server (NTRS)

    Burby, R. J.; Kuhlman, W. H.

    1978-01-01

    Book 2 of this volume is divided into the following sections: (1) commodities and system networks; (2) future mode choice decisions and commodity air eligibility; (3) comparative cargo transportation costs - air, truck, rail and water; (4) elasticities of demand; (5) operating cost; (6) operating profit, rate making, and returns; (7) importance of rate and service on future aircraft; (8) potential market demand for new aircraft; (9) scenario of events affecting system/market growth; and (10) future study and technology requirements.

  4. Air-cooled, hydrogen-air fuel cell

    NASA Technical Reports Server (NTRS)

    Shelekhin, Alexander B. (Inventor); Bushnell, Calvin L. (Inventor); Pien, Michael S. (Inventor)

    1999-01-01

    An air-cooled, hydrogen-air solid polymer electrolyte (SPE) fuel cell with a membrane electrode assembly operatively associated with a fluid flow plate having at least one plate cooling channel extending through the plate and at least one air distribution hole extending from a surface of the cathode flow field into the plate cooling channel.

  5. A multi-methodological approach to study the temporal and spatial distribution of air quality related to road transport emissions in Madrid, Spain

    NASA Astrophysics Data System (ADS)

    Perez, Pedro; Miranda, Regina

    2013-04-01

    The traffic-related atmospheric emissions, composition and transport of greenhouse gases (GHGs) and air toxic pollutants (ATPs), are an important environmental problem that affect climate change and air pollution in Madrid, Spain. Carbon dioxide (CO2) affects the regional weather and particularly fine particle matter (PM) translocate to the people resulting in local health problems. As the main source of emissions comes from road transport, and subsequent combustion of fossil fuels, air quality deterioration may be elevated during weekdays and peak hours. We postulate that traffic-related air quality (CO2, methane CH4, PM, volatile organic compounds VOCs, nitrogen oxides NOx and carbon monoxide CO contents) impairs epidemiology in part via effects on health and disease development, likely increasing the external costs of transport in terms of climate change and air pollution. First, the paper intends to estimate the local air quality related to the road transport emissions of weeks over a domain covering Madrid (used as a case study). The local air quality model (LAQM) is based on gridded and shaped emission fields. The European Environmental Agency (EEA) COPERT modeling system will provide GHGs and ATPs gridded and shaped emission data and mobile source parameters, available for Madrid from preliminary emission inventory records of the Municipality of Madrid and from disaggregated traffic counts of the Traffic Engineering Company and the Metropolitan Company of Metro (METRO-Madrid). The paper intends to obtain estimates of GHGs and ATPs concentrations commensurate with available ground measurements, 24-hour average values, from the Municipality of Madrid. The comparison between estimated concentrations and measurements must show small errors (e.g. fractional error, fractional bias and coefficient of determination). The paper's expected results must determine spatial and temporal patterns in Madrid. The estimates will be used to cross check the primary local

  6. Applications Using AIRS Data

    NASA Astrophysics Data System (ADS)

    Ray, S. E.; Pagano, T. S.; Fetzer, E. J.; Lambrigtsen, B.; Olsen, E. T.; Teixeira, J.; Licata, S. J.; Hall, J. R.; Thompson, C. K.

    2015-12-01

    The Atmospheric Infrared Sounder (AIRS) on NASA's Aqua spacecraft has been returning daily global observations of Earth's atmospheric constituents and properties since 2002. With a 12-year data record and daily, global observations in near real-time, AIRS data can play a role in applications that fall under many of the NASA Applied Sciences focus areas. For vector-borne disease, research is underway using AIRS near surface retrievals to assess outbreak risk, mosquito incubation periods and epidemic potential for dengue fever, malaria, and West Nile virus. For drought applications, AIRS temperature and humidity data are being used in the development of new drought indicators and improvement in the understanding of drought development. For volcanic hazards, new algorithms using AIRS data are in development to improve the reporting of sulfur dioxide concentration, the burden and height of volcanic ash and dust, all of which pose a safety threat to aircraft. In addition, anomaly maps of many of AIRS standard products are being produced to help highlight "hot spots" and illustrate trends. To distribute it's applications imagery, AIRS is leveraging existing NASA data frameworks and organizations to facilitate archiving, distribution and participation in the BEDI. This poster will communicate the status of the applications effort for the AIRS Project and provide examples of new maps designed to best communicate the AIRS data.

  7. The Concentration and Distribution of Depleted Uranium (DU) and Beryllium (Be) in Soil and Air on Illeginni Island at Kwajalein Atoll

    SciTech Connect

    Robison, W L; Hamilton, T F; Martinelli, R E; Gouveia, F J; Lindman, T R; Yakuma, S C

    2006-04-27

    Re-entry vehicles on missiles launched at Vandenberg Air Force base in California re-enter at the Western Test Range, the Regan Test Site (RTS) at Kwajalein Atoll. An environmental Assessment (EA) was written at the beginning of the program to assess potential impact of Depleted Uranium (DU) and Beryllium (Be), the major RV materials of interest from a health and environmental perspective. The chemical and structural form of DU and Be in RVs is such that they are insoluble in soil water and sea water. Consequently, residual concentrations of DU and Be observed in soil on the island are not expected to be toxic to plant life because there is essentially no soil to plant uptake. Similarly, due to their insolubility in sea water there is no uptake of either element by marine biota including fish, mollusks, shellfish and sea mammals. No increase in either element has been observed in sea life around Illeginni Island where deposition of DU and Be has occurred. The critical terrestrial exposure pathway for U and Be is inhalation. Concentration of both elements in air over the test period (1989 to 2006) is lower by a factor of 10,000 than the most restrictive U.S. guideline for the general public. Uranium concentrations in air are also lower by factors of 10 to 100 than concentrations of U in air in the U.S. measured by the EPA (Keith et al., 1999). U and Be concentrations in air downwind of deposition areas on Illeginni Island are essentially indistinguishable from natural background concentrations of U in air at the atolls. Thus, there are no health related issues associated with people using the island.

  8. Concetration and Distribution of Depleted Uranium (DU) and Beryllium (Be) in Soil and Air on Illeginni Island at Kwajalein Atoll after the Final Land-Impact Test

    SciTech Connect

    Robison, W L; Hamilton, T F; Martinelli, R E; Gouveia, F J; Kehl, S R; Lindman, T R; Yakuma, S C

    2010-04-22

    Re-entry vehicles on missiles launched from Vandenberg Air Force base in California re-enter at the Western Test Range, the Regan Test Site (RTS) at Kwajalein Atoll. An Environmental Assessment (EA) was written at the beginning of the program to assess potential impact of DU and Be, the major RV materials of interest from a health and environmental perspective, for both ocean and land impacts. The chemical and structural form of Be and DU in RVs is such that they are insoluble in soil water and seawater. Thus, they are not toxic to plant life on the isalnd (no soil to plant uptake.) Similarly, due to their insolubility in sea water there is no uptake of either element by fish, mollusks, shellfish, sea mammals, etc. No increase in either element has been observed in sea life around Illeginnin Island where deposition of DU and Be has occured. The critical terrestrial exposure pathway for U and Be is inhalation. Concentration of both elements in air over the test period (1989 to 2006) is lower by a factor of nearly 10,000 than the most restrictive U.S. guideline for the general public. Uranium concentrations in air are also lower by factors of 10 to 100 than concentrations of U in air in the U.S. measured by the EPA (Keith et al., 1999). U and Be concentrations in air downwind of deposition areas on Illeginni Island are essentially indistinguishable from natural background concentrations of U in air at the atolls. Thus, there are no health related issues associated with people using the island.

  9. Cyberspace Integration within the Air Operations Center

    DTIC Science & Technology

    2013-05-01

    Rueter, Major, USAF AFIT-ENG- GRP -13-J-02 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air...AFIT-ENG- GRP -13-J-02 CYBERSPACE INTEGRATION WITHIN THE AIR OPERATIONS CENTER GRADUATE RESEARCH PROJECT Presented to the Faculty...Rueter Major, USAF May 2013 DISTRIBUTION STATEMENT A: APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. AFIT-ENG- GRP -13-J-02 CYBERSPACE

  10. Elemental mercury (Hg(0)) in air and surface waters of the Yellow Sea during late spring and late fall 2012: concentration, spatial-temporal distribution and air/sea flux.

    PubMed

    Ci, Zhijia; Wang, Chunjie; Wang, Zhangwei; Zhang, Xiaoshan

    2015-01-01

    The Yellow Sea in East Asia receives great Hg input from regional emissions. However, Hg cycling in this marine system is poorly investigated. In late spring and late fall 2012, we determined gaseous elemental Hg (GEM or Hg(0)) in air and dissolved gaseous Hg (DGM, mainly Hg(0)) in surface waters to explore the spatial-temporal variations of Hg(0) and further to estimate the air/sea Hg(0) flux in the Yellow Sea. The results showed that the GEM concentrations in the two cruises were similar (spring: 1.86±0.40 ng m(-3); fall: 1.84±0.50 ng m(-3)) and presented similar spatial variation pattern with elevated concentrations along the coast of China and lower concentrations in the open ocean. The DGM concentrations of the two cruises were also similar with 27.0±6.8 pg L(-1) in the spring cruise and 28.2±9.0 pg L(-1) in the fall cruise and showed substantial spatial variation. The air/sea Hg(0) fluxes in the spring cruise and fall cruise were estimated to be 1.06±0.86 ng m(-2) h(-1) and 2.53±2.12 ng m(-2) h(-1), respectively. The combination of this study and our previous summer cruise showed that the summer cruise presented enhanced values of GEM, DGM and air/sea Hg(0) flux. The possible reason for this trend was that high solar radiation in summer promoted Hg(0) formation in seawater, and the high wind speed during the summer cruise significantly increased Hg(0) emission from sea surface to atmosphere and subsequently enhanced the GEM levels.

  11. DISTRIBUTION OF 2,4-D IN AIR AND ON SURFACES INSIDE RESIDENCES FOLLOWING LAWN APPLICATIONS: COMPARING EXPOSURE ESTIMATES FOR YOUNG CHILDREN FROM VARIOUS MEDIA

    EPA Science Inventory

    Indoor air, surface wipes (floors, table tops and window sills) and floor dust samples were collected at multiple locations within 11 occupied and 2 unoccupied homes both prior to and following lawn application of the herbicide 2,4-D. Residue measurements were made over period...

  12. Spatial distribution of the persistent organic pollutants across the Tibetan Plateau and its linkage with the climate systems: a 5-year air monitoring study

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoping; Ren, Jiao; Gong, Ping; Wang, Chuanfei; Xue, Yonggang; Yao, Tandong; Lohmann, Rainer

    2016-06-01

    The Tibetan Plateau (TP) has been contaminated by persistent organic pollutants (POPs), including legacy organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) through atmospheric transport. The exact source regions, transport pathways and time trends of POPs to the TP are not well understood. Here polystyrene-divinylbenzene copolymer resin (XAD)-based passive air samplers (PASs) were deployed at 16 Tibetan background sites from 2007 to 2012 to gain further insight into spatial patterns and temporal trends of OCPs and PCBs. The southeastern TP was characterized by dichlorodiphenyltrichloroethane (DDT)-related chemicals delivered by Indian monsoon air masses. The northern and northwestern TP displayed the greatest absolute concentration and relative abundance of hexachlorobenzene (HCB) in the atmosphere, caused by the westerly-driven European air masses. The interactions between the DDT polluted Indian monsoon air and the clean westerly winds formed a transition zone in central Tibet, where both DDT and HCB were the dominant chemicals. Based on 5 years of continuous sampling, our data indicated declining concentrations of HCB and hexachlorocyclohexanes (HCHs) across the Tibetan region. Inter-annual trends of DDT class chemicals, however, showed less variation during this 5-year sampling period, which may be due to the ongoing usage of DDT in India. This paper demonstrates the possibility of using POP fingerprints to investigate the climate interactions and the validity of using PAS to derive inter-annual atmospheric POP time trends.

  13. Methyl chloride in the UT/LS observed by CARIBIC: global distribution, Asian summer monsoon outflow, and use as a tracer for tropical air

    NASA Astrophysics Data System (ADS)

    Baker, A. K.; Umezawa, T.; Oram, D.; Sauvage, C.; Rauthe-Schoech, A.; Montzka, S. A.; Zahn, A.; Brenninkmeijer, C. A. M.

    2014-12-01

    We present spatiotemporal variations of methyl chloride (CH3Cl) in the UT/LS observed mainly by the CARIBIC passenger aircraft for the years 2005-2011. The CH3Cl mixing ratio in the UT over Europe was higher than that observed at a European surface baseline station year-round, indicative of a persistent positive vertical gradient at NH mid latitudes. A series of flights over Africa and South Asia show that CH3Cl mixing ratios increase toward tropical latitudes, and the observed UT CH3Cl level over these two regions and the Atlantic was higher than that measured at remote surface sites. Strong emissions of CH3Cl in the tropics combined with meridional transport through the UT may explain such vertical and latitudinal gradients. Comparisons with CO data indicate that non-combustion sources in the tropics dominantly contribute to forming the latitudinal gradient of CH3Cl in the UT. We also observed elevated CH3Cl and CO in air influenced by biomass burning in South America and Africa, and the enhancement ratios derived for CH3Cl to CO in those regions agree with previous observations. In contrast, correlations indicate a high CH3Cl to CO ratio of 2.9±0.5 ppt ppb-1 in the Asian summer monsoon anticyclone and domestic biofuel emissions in South Asia are inferred to be responsible. We estimated CH3Cl emissions from South Asia to be 134±23 Gg Cl yr-1, which is higher than a previous estimate due to the higher CH3Cl to CO ratio observed in this study. We also examine the use of CH3Cl as a tracer of tropical tropospheric air in the LMS, where we identified air masses with elevated CH3Cl that were however stratospheric in terms of N2O. Back trajectories suggest recent low-latitude origins of such air masses in early summer. In this season, high CH3Cl LMS air shows a clear branch connecting stratospheric and tropical tropospheric air on N2O-CH3Cl scatterplots. This distinct feature vanishes in late summer when the LMS is ventilated by tropospheric air.

  14. Groundwater quality and occurrence and distribution of selected constituents in the Aquia and Upper Patapsco aquifers, Naval Air Station Patuxent River, St. Mary's County, Maryland, July 2008

    USGS Publications Warehouse

    Dieter, Cheryl A.; Campo, Kimberly W.; Baker, Anna C.

    2012-01-01

    The Naval Air Station Patuxent River in southern Maryland has continued to expand in the first decade of the 21st century, contributing to rapid population growth in the surrounding area. The increase in population has caused State and County water managers and others to be concerned about the impact of population growth on the quantity and quality of groundwater supplies. The U.S. Geological Survey has been investigating the groundwater resources of the air station since 1998. As part of that ongoing investigation, groundwater was sampled in 2008 in six wells in the Aquia aquifer and two wells in the Upper Patapsco aquifer in the vicinity of Naval Air Station Patuxent River and Webster Outlying Field. Groundwater samples were analyzed for basic chemistry (field parameters, major ions, and nutrients) as well as several water-quality issues of concern including the occurrence of arsenic and tungsten, and saltwater intrusion. The results of the 2008 groundwater-quality sampling indicate that the overall quality of groundwater in the Aquia aquifer has not changed since 1943; data are too limited to determine if groundwater quality has changed in the Upper Patapsco aquifer. At one well in the Aquia aquifer, the arsenic concentration exceeded the U.S. Environmental Protection Agency standard for drinking water. Arsenic was not detected in samples from the Upper Patapsco aquifer. Tungsten concentrations were detected at low concentrations near the laboratory reporting level in all eight samples. There was no evidence of saltwater intrusion in any of the wells.

  15. Distribution of PM(2.5) and PM(10-2.5) in PM(10) fraction in ambient air due to vehicular pollution in Kolkata megacity.

    PubMed

    Das, Manab; Maiti, Subodh Kumar; Mukhopadhyay, Ujjal

    2006-11-01

    This research paper aims at establishing baseline PM(10) and PM(2.5) concentration levels, which could be effectively used to develop and upgrade the standards in air pollution in developing countries. The relative contribution of fine fractions (PM(2.5)) and coarser fractions (PM(10-2.5)) to PM(10) fractions were investigates in a megacity which is overcrowded and congested due to lack of road network and deteriorated air quality because of vehicular pollution. The present study was carried out during the winter of 2002. The average 24h PM(10) concentration was 304 microg/m(3), which is 3 times more than the Indian National Ambient Air Quality Standards (NAAQS) and higher PM(10) concentration was due to fine fraction (PM(2.5)) released by vehicular exhaust. The 24h average PM(2.5) concentration was found 179 microg/m(3), which is exceeded USEPA and EU standards of 65 and 50 microg/m(3) respectively for the winter. India does not have any PM(2.5) standards. The 24 h average PM(10-2.5) concentrations were found 126 microg/m(3). The PM(2.5) constituted more than 59% of PM(10) and whereas PM(10)-PM(2.5) fractions constituted 41% of PM(10). The correlation between PM(10) and PM(2.5) was found higher as PM(2.5) comprised major proportion of PM(10) fractions contributed by vehicular emissions.

  16. Responses of free radical metabolism to air exposure or salinity stress, in crabs (Callinectes danae and C. ornatus) with different estuarine distributions.

    PubMed

    Freire, Carolina A; Togni, Valéria G; Hermes-Lima, Marcelo

    2011-10-01

    The swimming crabs Callinectes danae and C. ornatus are found in bays and estuaries, but C. danae is more abundant in lower salinities, while C. ornatus remains restricted to areas of higher salinity. Experimental crabs of both species were submitted to: air exposure (Ae, 3h), reimmersion in 33‰ (control) sea water (SW) (Ri, 1h) following air exposure; hyposaline (Ho, 10‰ for 2h) or hypersaline (He, 40‰ for 2h) SW, then return to control 33‰ SW (RHo and RHe, for 1h). Hemolymph was sampled for osmolality and chloride determinations. Activity of antioxidant enzymes [glutathione peroxidase (GPX), catalase, glutathione-S-transferase] and levels of carbonyl proteins and lipid peroxidation (TBARS) were evaluated in hepatopancreas, muscle, anterior and posterior gills. In Ho groups, hemolymph concentrations were lower in both species, compared to He groups. C. danae displayed higher control activities of GPX (hepatopancreas and muscle) and catalase (all four tissues) than C. ornatus. C. ornatus presented increased activities of catalase and GPX in Ae, Ri, and He groups. Increased TBARS was seen in C. ornatus tissues (He group). The more euryhaline species displayed higher constitutive activities of antioxidant enzymes, and the less euryhaline species exhibited activation of these enzymes when exposed to air or hyper-salinity.

  17. [PUF passive air sampling of polycyclic aromatic hydrocarbons in atmosphere of the Yangtze River Delta, China: spatio-temporal distribution and potential sources].

    PubMed

    Zhang, Li-fei; Yang, Wen-long; Dong, Liang; Shi, Shuang-xin; Zhou, Li; Zhang, Xiu-lan; Li, Ling-ling; Niu, Shan; Huang, Ye-ru

    2013-09-01

    Atmosphere is regarded to be an important media in the environmental pollution research area. Passive air sampling was one of the effective complementary sampling techniques for the active high volume air sampler in recent decades. A regional scale investigation on the atmospheric polycyclic aromatic hydrocarbons (PAHs) was conducted in the Yangtze River Delta (YRD). Polyurethane foam based passive air samplers were used to collect the atmospheric PAHs from 31 sampling sites in this area. PAHs concentrations ranged from 10.1 ng x m(-1) to 367 ng x m(-3) in this study. The annual average concentration of benzo [a] pyrene (BaP) reached 2.25 ng x m(-3), which was two times higher exceeding the national standard, GB 3095-2012. The atmospheric PAHs during four seasons decreased in the following order: autumn > winter > spring > summer. Larger BaP excessive areas were found in autumn and winter than other seasons. Moreover, an obvious emission of BaP was confirmed during the winter time. Traffic related petroleum combustion, coal and biomass burning, and coke oven were identified as potential sources of atmospheric PAHs, contributing 38.1%, 42.4%, and 19.5%, respectively.

  18. Large-scale generic test stand for testing of multiple configurations of air filters utilizing a range of particle size distributions.

    PubMed

    Giffin, Paxton K; Parsons, Michael S; Unz, Ronald J; Waggoner, Charles A

    2012-05-01

    The Institute for Clean Energy Technology (ICET) at Mississippi State University has developed a test stand capable of lifecycle testing of high efficiency particulate air filters and other filters specified in American Society of Mechanical Engineers Code on Nuclear Air and Gas Treatment (AG-1) filters. The test stand is currently equipped to test AG-1 Section FK radial flow filters, and expansion is currently underway to increase testing capabilities for other types of AG-1 filters. The test stand is capable of producing differential pressures of 12.45 kPa (50 in. w.c.) at volumetric air flow rates up to 113.3 m(3)/min (4000 CFM). Testing is performed at elevated and ambient conditions for temperature and relative humidity. Current testing utilizes three challenge aerosols: carbon black, alumina, and Arizona road dust (A1-Ultrafine). Each aerosol has a different mass median diameter to test loading over a wide range of particles sizes. The test stand is designed to monitor and maintain relative humidity and temperature to required specifications. Instrumentation is implemented on the upstream and downstream sections of the test stand as well as on the filter housing itself. Representative data are presented herein illustrating the test stand's capabilities. Digital images of the filter pack collected during and after testing is displayed after the representative data are discussed. In conclusion, the ICET test stand with AG-1 filter testing capabilities has been developed and hurdles such as test parameter stability and design flexibility overcome.

  19. Are the acute effects of particulate matter on mortality in the National Morbidity, Mortality, and Air Pollution Study the result of inadequate control for weather and season? A sensitivity analysis using flexible distributed lag models.

    PubMed

    Welty, Leah J; Zeger, Scott L

    2005-07-01

    Time-series studies have linked daily variations in nonaccidental deaths with daily variations in ambient particulate matter air pollution, while controlling for qualitatively larger influences of weather and season. Although time-series analyses typically include nonlinear terms for weather and season, questions remain as to whether models to date have completely controlled for these important predictors. In this paper, the authors use two flexible versions of distributed lag models to control extensively for the confounding effects of weather and season. One version builds on the current approach to controlling for weather, while the other version offers a new approach. The authors conduct a comprehensive sensitivity analysis of the particulate matter-mortality relation by applying these methods to the recently updated National Morbidity, Mortality, and Air Pollution Study database that comprises air pollution, weather, and mortality time series from 1987 to 2000 for 100 US cities. They combine city-specific estimates of the short-term effects of particulate matter on mortality using a Bayesian hierarchical model. They conclude that, within the broad classes of models considered, national average estimates of particulate matter relative risk are consistent with previous estimates from this study and are robust to model specification for weather and seasonal confounding.

  20. Improvement effect on the depth-dose distribution by CSF drainage and air infusion of a tumour-removed cavity in boron neutron capture therapy for malignant brain tumours.

    PubMed

    Sakurai, Yoshinori; Ono, Koji; Miyatake, Shin-Ichi; Maruhashi, Akira

    2006-03-07

    Boron neutron capture therapy (BNCT) without craniotomy for malignant brain tumours was started using an epi-thermal neutron beam at the Kyoto University Reactor in June 2002. We have tried some techniques to overcome the treatable-depth limit in BNCT. One of the effective techniques is void formation utilizing a tumour-removed cavity. The tumorous part is removed by craniotomy about 1 week before a BNCT treatment in our protocol. Just before the BNCT irradiation, the cerebro-spinal fluid (CSF) in the tumour-removed cavity is drained out, air is infused to the cavity and then the void is made. This void improves the neutron penetration, and the thermal neutron flux at depth increases. The phantom experiments and survey simulations modelling the CSF drainage and air infusion of the tumour-removed cavity were performed for the size and shape of the void. The advantage of the CSF drainage and air infusion is confirmed for the improvement in the depth-dose distribution. From the parametric surveys, it was confirmed that the cavity volume had good correlation with the improvement effect, and the larger effect was expected as the cavity volume was larger.

  1. Improvement effect on the depth-dose distribution by CSF drainage and air infusion of a tumour-removed cavity in boron neutron capture therapy for malignant brain tumours

    NASA Astrophysics Data System (ADS)

    Sakurai, Yoshinori; Ono, Koji; Miyatake, Shin-ichi; Maruhashi, Akira

    2006-03-01

    Boron neutron capture therapy (BNCT) without craniotomy for malignant brain tumours was started using an epi-thermal neutron beam at the Kyoto University Reactor in June 2002. We have tried some techniques to overcome the treatable-depth limit in BNCT. One of the effective techniques is void formation utilizing a tumour-removed cavity. The tumorous part is removed by craniotomy about 1 week before a BNCT treatment in our protocol. Just before the BNCT irradiation, the cerebro-spinal fluid (CSF) in the tumour-removed cavity is drained out, air is infused to the cavity and then the void is made. This void improves the neutron penetration, and the thermal neutron flux at depth increases. The phantom experiments and survey simulations modelling the CSF drainage and air infusion of the tumour-removed cavity were performed for the size and shape of the void. The advantage of the CSF drainage and air infusion is confirmed for the improvement in the depth-dose distribution. From the parametric surveys, it was confirmed that the cavity volume had good correlation with the improvement effect, and the larger effect was expected as the cavity volume was larger.

  2. Air conditioned suit

    NASA Technical Reports Server (NTRS)

    Carl, G. R. (Inventor)

    1973-01-01

    An environmentally controlled suit is described consisting of an airtight outergarment attached by an airtight bellows to the wall of a sterile chamber, an undergarment providing for circulation of air near the skin of the wearer, and a circulation system comprised of air supply and distribution to the extremities of the undegarment and central collection and exhaust of air from the midsection of the undergarment. A workman wearing the undergarment and attached circulation system enters the outer garment through a tunnel in the chamber wall and the attached bellows to work in the chamber without any danger of spreading bacteria.

  3. Air Force Research Laboratory

    DTIC Science & Technology

    2009-06-08

    Air Force Research Laboratory 8 June 2009 Mr. Leo Marple Ai F R h L b t r orce esearc a ora ory Leo.Marple@wpafb.af.mil DISTRIBUTION STATEMENT A...TITLE AND SUBTITLE Air Force Research Laboratory 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER...5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Air Force Research Laboratory ,Wright

  4. Ozone distributions over southern Lake Michigan: comparisons between ferry-based observations, shoreline-based DOAS observations and air quality forecast models

    NASA Astrophysics Data System (ADS)

    Cleary, P. A.; Fuhrman, N.; Schulz, L.; Schafer, J.; Fillingham, J.; Bootsma, H.; Langel, T.; Williams, E. J.; Brown, S. S.

    2014-09-01

    Air quality forecast models typically predict large ozone abundances over water relative to land in the Great Lakes region. While each state bordering Lake Michigan has dedicated monitoring systems, offshore measurements have been sparse, mainly executed through specific short-term campaigns. This study examines ozone abundances over Lake Michigan as measured on the Lake Express ferry, by shoreline Differential Optical Absorption Spectroscopy (DOAS) observations in southeastern Wisconsin, and as predicted by the National Air Quality Forecast System. From 2008-2009 measurements of O3, SO2, NO2 and formaldehyde were made in the summertime by DOAS at a shoreline site in Kenosha, WI. From 2008-2010 measurements of ambient ozone conducted on the Lake Express, a high-speed ferry that travels between Milwaukee, WI and Muskegon, MI up to 6 times daily from spring to fall. Ferry ozone observations over Lake Michigan were an average of 3.8 ppb higher than those measured at shoreline in Kenosha with little dependence on position of the ferry or temperature but with highest differences during evening and night. Concurrent ozone forecast images from National Weather System's National Air Quality Forecast System in the upper Midwestern region surrounding Lake Michigan were saved over the ferry ozone sampling period in 2009. The bias of the model O3 forecast was computed and evaluated with respect to ferry-based measurements. The model 1 and 8 h ozone mean biases were both 12 ppb higher than observed ozone, and maximum daily 1 h ozone mean bias was 10 ppb, indicating substantial ozone over-prediction over water. Trends in the bias with respect to location and time of day or month were also explored showing non-uniformity in model bias. Extreme ozone events were predicted by the model but not observed by ferry measurements.

  5. Mercury concentrations and distribution in soil, water, mine waste leachates, and air in and around mercury mines in the Big Bend region, Texas, USA.

    PubMed

    Gray, John E; Theodorakos, Peter M; Fey, David L; Krabbenhoft, David P

    2015-02-01

    Samples of soil, water, mine waste leachates, soil gas, and air were collected from areas mined for mercury (Hg) and baseline sites in the Big Bend area, Texas, to evaluate potential Hg contamination in the region. Soil samples collected within 300 m of an inactive Hg mine contained elevated Hg concentrations (3.8-11 µg/g), which were considerably higher than Hg in soil collected from baseline sites (0.03-0.05 µg/g) distal (as much as 24 km) from mines. Only three soil samples collected within 300 m of the mine exceeded the probable effect concentration for Hg of 1.06 µg/g, above which harmful effects are likely to be observed in sediment-dwelling organisms. Concentrations of Hg in mine water runoff (7.9-14 ng/L) were generally higher than those found in springs and wells (0.05-3.1 ng/L), baseline streams (1.1-9.7 ng/L), and sources of drinking water (0.63-9.1 ng/L) collected in the Big Bend region. Concentrations of Hg in all water samples collected in this study were considerably below the 2,000 ng/L drinking water Hg guideline and the 770 ng/L guideline recommended by the U.S. Environmental Protection Agency (USEPA) to protect aquatic wildlife from chronic effects of Hg. Concentrations of Hg in water leachates obtained from leaching of mine wastes varied widely from <0.001 to 760 µg of Hg in leachate/g of sample leached, but only one leachate exceeded the USEPA Hg industrial soil screening level of 31 µg/g. Concentrations of Hg in soil gas collected at mined sites (690-82,000 ng/m(3)) were highly elevated compared to soil gas collected from baseline sites (1.2-77 ng/m(3)). However, air collected from mined areas at a height of 2 m above the ground surface contained concentrations of Hg (4.9-64 ng/m(3)) that were considerably lower than Hg in soil gas from the mined areas. Although concentrations of Hg emitted from mine-contaminated soils and mine wastes were elevated, persistent wind in southwest Texas disperses Hg in the air within a few meters of the

  6. Mercury concentrations and distribution in soil, water, mine waste leachates, and air in and around mercury mines in the Big Bend region, Texas, USA

    USGS Publications Warehouse

    Gray, John E.; Theodorakos, Peter M.; Fey, David L.; Krabbenhoft, David P.

    2015-01-01

    Samples of soil, water, mine waste leachates, soil gas, and air were collected from areas mined for mercury (Hg) and baseline sites in the Big Bend area, Texas, to evaluate potential Hg contamination in the region. Soil samples collected within 300 m of an inactive Hg mine contained elevated Hg concentrations (3.8–11 µg/g), which were considerably higher than Hg in soil collected from baseline sites (0.03–0.05 µg/g) distal (as much as 24 km) from mines. Only three soil samples collected within 300 m of the mine exceeded the probable effect concentration for Hg of 1.06 µg/g, above which harmful effects are likely to be observed in sediment-dwelling organisms. Concentrations of Hg in mine water runoff (7.9–14 ng/L) were generally higher than those found in springs and wells (0.05–3.1 ng/L), baseline streams (1.1–9.7 ng/L), and sources of drinking water (0.63–9.1 ng/L) collected in the Big Bend region. Concentrations of Hg in all water samples collected in this study were considerably below the 2,000 ng/L drinking water Hg guideline and the 770 ng/L guideline recommended by the U.S. Environmental Protection Agency (USEPA) to protect aquatic wildlife from chronic effects of Hg. Concentrations of Hg in water leachates obtained from leaching of mine wastes varied widely from <0.001 to 760 µg of Hg in leachate/g of sample leached, but only one leachate exceeded the USEPA Hg industrial soil screening level of 31 µg/g. Concentrations of Hg in soil gas collected at mined sites (690–82,000 ng/m3) were highly elevated compared to soil gas collected from baseline sites (1.2–77 ng/m3). However, air collected from mined areas at a height of 2 m above the ground surface contained concentrations of Hg (4.9–64 ng/m3) that were considerably lower than Hg in soil gas from the mined areas. Although concentrations of Hg emitted from mine-contaminated soils and mine wastes were elevated, persistent wind in southwest Texas disperses Hg in the air

  7. The Relationship of Loss, Mean Age of Air and the Distribution of CFCs to Stratospheric Circulation and Implications for Atmospheric Lifetimes

    NASA Technical Reports Server (NTRS)

    Douglass, A. R.; Stolarski, R. S.; Schoeberl, M. R.; Jackman, C. H.; Guptal, M. L.; Newman, P. A.; Nielsen, J. E.; Fleming, E. L.

    2007-01-01

    Man-made molecules called chlorofluorcarbons (CFCs) are broken apart in the stratosphere by high energy light, and the reactive chlorine gases that come from them cause the ozone hole. Since the ozone layer stops high energy light from reaching low altitudes, CFCs must be transported to high altitudes to be broken apart. The number of molecules per volume (the density) is much smaller at high altitudes than near the surface, and CFC molecules have a very small chance of reaching that altitude in any particular year. Many tons of CFCs were put into the atmosphere during the end of the last century, and it will take many years for all of them to be destroyed. Each CFC has an atmospheric lifetime that depends on the amount of energy required to break them apart. Two of the gases that were made the most are CFC13 and CF2C12. It takes more energy to break apart CF2C12 than CFC13, and its lifetime is about 100 years, nearly twice as long as the lifetime for CFC13. It is hard to figure out the lifetimes from surface measurements because we don't know exactly how much was released into the air each year. Atmospheric models are used to predict what will happen to ozone and other gases as the CFCs decrease and other gases like C02 continue to increase during the next century. CFC lifetimes are used to predict future concentrations and all assessment models use the predicted future concentrations. The models have different circulations and the amount of CFC lost according to the model may not match the loss that is expected according to the lifetime. In models the amount destroyed per year depends on how fast the model pushes air into the stratosphere and how much goes to high altitudes each year. This paper looks at the way the model circulation changes the lifetimes, and looks at measurements that tell us which model is more realistic. Some models do a good job reproducing the age-of-air, which tells us that these models are circulating the stratospheric air at the right

  8. Remote open-path cavity-ringdown spectroscopic sensing of trace gases in air, based on distributed passive sensors linked by km-long optical fibers.

    PubMed

    He, Yabai; Jin, Chunjiang; Kan, Ruifeng; Liu, Jianguo; Liu, Wenqing; Hill, Julian; Jamie, Ian M; Orr, Brian J

    2014-06-02

    A continuous-wave, rapidly swept cavity-ringdown spectroscopic technique has been developed for localized atmospheric sensing of trace gases at remote sites. It uses one or more passive open-path optical sensor units, coupled by optical fiber over distances of >1 km to a single transmitter/receiver console incorporating a photodetector and a swept-frequency diode laser tuned to molecule-specific near-infrared wavelengths. Ways to avoid interference from stimulated Brillouin scattering in long optical fibers have been devised. This rugged open-path system, deployable in agricultural, industrial, and natural atmospheric environments, is used to monitor ammonia in air. A noise-limited minimum detectable mixing ratio of ~11 ppbv is attained for ammonia in nitrogen at atmospheric pressure.

  9. In operando monitoring of the state of charge and species distribution in zinc air batteries using X-ray tomography and model-based simulations.

    PubMed

    Arlt, Tobias; Schröder, Daniel; Krewer, Ulrike; Manke, Ingo

    2014-10-28

    A novel combination of in operando X-ray tomography and model-based analysis of zinc air batteries is introduced. Using this approach the correlation between the three-dimensional morphological properties of the electrode - on the one hand - and the electrochemical properties of the battery - on the other hand is revealed. In detail, chemical dissolution of zinc particles and the electrode volume were investigated non-destructively during battery operation by X-ray tomography (applying a spatial resolution of 9 μm), while simulation yielded cell potentials of each electrode and allows for the prediction of long-term operation behavior. Furthermore, the analysis of individual zinc particles revealed an electrochemical dissolution process that can be explained using an adapted shrinking-core model.

  10. Comparison of regression models with land-use and emissions data to predict the spatial distribution of traffic-related air pollution in Rome.

    PubMed

    Rosenlund, Mats; Forastiere, Francesco; Stafoggia, Massimo; Porta, Daniela; Perucci, Mara; Ranzi, Andrea; Nussio, Fabio; Perucci, Carlo A

    2008-03-01

    Spatial modeling of traffic-related air pollution typically involves either regression modeling of land-use and traffic data or dispersion modeling of emissions data, but little is known to what extent land-use regression models might be improved by incorporating emissions data. The aim of this study was to develop a land-use regression model to predict nitrogen dioxide (NO2) concentrations and compare its performance with a model including emissions data. The association between each land-use variable and NO2 concentrations at 68 locations in Rome in 1995 and 1996 was assessed by univariate linear regression and a multiple linear regression model that was constructed based on the importance of each variable. Traffic emissions (particulate matter, carbon monoxide, nitrogen oxides, and benzene) were estimated for 164 areas of the city based on vehicle type, traffic counts and driving patterns. Mean NO2 concentration across the 68 sites was 46.8 microg/m3 (SD 9.8 microg/m3; inter-quartile range 11.5 microg/m3; min 24 microg/m3; max 73 microg/m3). The most important predicting variables were the circular traffic zones (main ring road, green strip, inner ring road, traffic-limited zone), distance from busy streets, size of the census block, the inverse population density, and altitude. A multiple regression model including these variables resulted in an R2 of 0.686. The best-fitting model adding an emission term of benzene resulted in an R2 of 0.690, but was not significantly different from the model without emissions (P=0.147). In conclusion, these results suggest that a land-use regression model explains the traffic-related air pollution levels with reasonable accuracy and that emissions data do not significantly improve the model.

  11. Methodologies for determining the sources, characteristics, distribution, and abundance of asbestiform and nonasbestiform amphibole and serpentine in ambient air and water.

    PubMed

    Wylie, Ann G; Candela, Philip A

    2015-01-01

    Anthropogenic and nonanthropogenic (erosion) processes contribute to the continuing presence of asbestos and nonasbestos elongated mineral particles (EMP) of amphibole and serpentine in air and water of urban, rural, and remote environments. The anthropogenic processes include disturbance and deterioration of asbestos-containing materials, mining of amphibole- and serpentine-bearing rock, and disturbance of soils containing amphibole and serpentine. Atmospheric dispersal processes can transport EMP on a global scale. There are many methods of establishing the abundance of EMP in air and water. EMP include cleavage fragments, fibers, asbestos, and other asbestiform minerals, and the methods employed do not critically distinguish among them. The results of most of the protocols are expressed in the common unit of fibers per square centimeter; however, seven different definitions for the term "fiber" are employed and the results are not comparable. The phase-contrast optical method used for occupational monitoring cannot identify particles being measured, and none of the methods distinguish amphibole asbestos from other EMP of amphibole. Measured ambient concentrations of airborne EMP are low, and variance may be high, even for similar environments, yielding data of questionable value for risk assessment. Calculations based on the abundance of amphibole-bearing rock and estimates of asbestos in the conterminous United States suggest that amphibole may be found in 6-10% of the land area; nonanthropogenic erosional processes might produce on the order of 400,000 tons or more of amphibole per year, and approximately 50 g asbestos/km(2)/yr; and the order of magnitude of the likelihood of encountering rock bearing any type of asbestos is approximately 0.0001.

  12. Air Pollution.

    ERIC Educational Resources Information Center

    Gilpin, Alan

    A summary of one of our most pressing environmental problems, air pollution, is offered in this book by the Director of Air Pollution Control for the Queensland (Australia) State Government. Discussion of the subject is not restricted to Queensland or Australian problems and policies, however, but includes analysis of air pollution the world over.…

  13. Air Pollution

    MedlinePlus

    ... of Climate Change on Children's Health: Session Two: Air Quality Impacts MODERATOR: Susan Anenberg, EPA Meredith McCormack, Johns ... University • Effects of Climate Change on Children’s Health: Air Quality Impacts Frederica Perera, Columbia University • Air quality Impacts ...

  14. Analysis of long-term aerosol size distribution data from Jungfraujoch with emphasis on free tropospheric conditions, cloud influence, and air mass transport

    NASA Astrophysics Data System (ADS)

    Herrmann, Erik; Weingartner, Ernest; Henne, Stephan; Vuilleumier, Laurent; Bukowiecki, Nicolas; Steinbacher, Martin; Conen, Franz; Collaud Coen, Martine; Hammer, Emanuel; Jurányi, Zsofia; Baltensperger, Urs; Gysel, Martin

    2015-09-01

    Six years of aerosol size distribution measurements between 20 and 600 nm diameters and total aerosol concentration above 10 nm from March 2008 to February 2014 at the high-alpine site Jungfraujoch are presented. The size distribution was found to be typically bimodal with mode diameters and widths relatively stable throughout the year and the observation period. New particle formation was observed on 14.5% of all days without a seasonal preference. Particles typically grew only into the Aitken mode and did not reach cloud condensation nucleus (CCN) sizes on the time scale of several days. Growth of preexisting particles in the Aitken mode, on average, contributed very few CCN. We concluded that the dominant fraction of CCN at Jungfraujoch originated in the boundary layer. A number of approaches were used to distinguish free tropospheric (FT) conditions and episodes with planetary boundary layer (PBL) influence. In the absence of PBL injections, the concentration of particles larger than 90 nm (N90, roughly corresponding to the CCN concentration) reached a value ~40 cm-3 while PBL influence caused N90 concentrations of several hundred or even 1000 cm-3. Comparing three criteria for free tropospheric conditions, we found FT prevalence for 39% of the time with over 60% during winter and below 20% during summer. It is noteworthy that a simple criterion based on standard trace gas measurements appeared to outperform alternative approaches.

  15. Surface potential distribution and airflow performance of different air-exposed electrode plasma actuators at different alternating current/direct current voltages

    SciTech Connect

    Yang, Liang; Yan, Hui-Jie; Qi, Xiao-Hua; Hua, Yue; Ren, Chun-Sheng

    2015-04-15

    Asymmetric surface dielectric barrier discharge (SDBD) plasma actuators have been intensely studied for a number of years due to their potential applications for aerodynamic control. In this paper, four types of actuators with different configurations of exposed electrode are proposed. The SDBD actuators investigated are driven by dual-power supply, referred to as a fixed AC high voltage and an adjustable DC bias. The effects of the electrode structures on the dielectric surface potential distribution, the electric wind velocity, and the mean thrust production are studied, and the dominative factors of airflow acceleration behavior are revealed. The results have shown that the actions of the SDBD actuator are mainly dependent on the geometry of the exposed electrode. Besides, the surface potential distribution can effectively affect the airflow acceleration behavior. With the application of an appropriate additional DC bias, the surface potential will be modified. As a result, the performance of the electric wind produced by a single SDBD can be significantly improved. In addition, the work also illustrates that the actuators with more negative surface potential present better mechanical performance.

  16. Air Policing

    DTIC Science & Technology

    2009-05-01

    Iraq. To provide a background for understanding why Britain commenced the policy of air policing, this paper begins with a review of contemporary...7 Omissi, Air Power, XV. 8 policing actions or the pushing home of advantages gained by the air.” Within the context of this paper , the...control operations, and therefore within the context of this paper , the term coercive airpower refers to the threat of harming a population or the threat

  17. N2O seasonal distributions and air-sea exchange in UK estuaries: Implications for the tropospheric N2O source from European coastal waters

    NASA Astrophysics Data System (ADS)

    Barnes, J.; Upstill-Goddard, R. C.

    2011-03-01

    We report measurements of dissolved nitrous oxide (N2O), dissolved inorganic nitrogen, and turbidity in surveys of six UK inner estuaries between February 2000 and October 2002: the Humber, Forth, Tamar, Tyne, Tees, and Tay. We also present dissolved N2O data for the Wash outer estuary from May 1995 and dissolved O2 data for the Forth estuary from June 2001. N2O was always supersaturated relative to air and was highest in the Humber (range 140-6500%) and generally higher at all sites during summer. In estuaries with well defined turbidity maximum zones (TMZs) at low salinity, N2O was maximal in the TMZ, coincident with high NH4+ and/or NO3-. Inspection of the broad relationships between N2O, NH4+, NO3-, NO2-, and O2 revealed a predominantly nitrification source for the N2O in the estuaries studied; denitrification-derived N2O was apparently unimportant and denitrification did not constitute a significant NO3- sink. In the anthropogenically impacted Tees estuary N2O (saturation 140-2000%) was attributed to high NH4+ in sewage and industrial effluent. N2O emissions were thus primarily a function of NH4+ derived from internal resuspension and/or ammonification, or external inputs and were independent of river-borne NO3-. We reevaluated total UK and European estuarine N2O emissions using these and published data, based on an aerially weighted approach that separately identified inner and outer estuaries, and a downward revision of the total European estuarine area used in a recent synthesis. Our revised estimates, ˜1.9 ± 1.2 × 109 g N2O yr-1 for the UK and 6.8 ± 13.2 × 109 g N2O yr-1 for Europe (including UK) are dominated by large (area ˜200-500 km2) anthropogenically impacted macrotidal inner estuaries. By contrast large pristine macrotidal systems, small inner estuaries, and large outer estuaries appear to be comparatively minor N2O sources. The UK estuarine N2O source is <2% of the UK N2O budget. Our revised European estuarine N2O emission is around 2 orders

  18. Modeling and prediction of density distribution and microstructure in particleboards from acoustic properties by correlation of non-contact high-resolution pulsed air-coupled ultrasound and X-ray images.

    PubMed

    Sanabria, Sergio J; Hilbers, Ulrich; Neuenschwander, Jürg; Niemz, Peter; Sennhauser, Urs; Thömen, Heiko; Wenker, Jan L

    2013-01-01

    Non-destructive density and microstructure quality control testing in particleboards (PBs) is necessary in production lines. A pulsed air-coupled ultrasound (ACU) high-resolution normal transmission system, together with a first wave tracking algorithm, were developed to image amplitude transmission G(p) and velocity c(p) distributions at 120kHz for PBs of specific nominal densities and five particle geometries, which were then correlated to X-ray in-plane density images ρ(s). Test PBs with a homogeneous vertical density profile were manufactured in a laboratory environment and conditioned in a standard climate (T=20°C, RH=65%) before the measurements. Continuous trends (R(2)>0.97) were obtained by matching the lateral resolution of X-ray images with the ACU sound field radius (σ(w)(o)=21mm) and by clustering the scatter plots. ρ(s)↦c(p) was described with a three-parameter non-linear model for each particle geometry, allowing for ACU density prediction with 3% uncertainty and PB testing according to EN312. ρ(s)↦G(p) was modeled by calculating ACU coupling gain and by fitting inverse power laws with offset of ρ(s) and c(p) to material attenuation, which scaled with particle volume. G(p) and c(p) variations with the frequency were examined, showing thickness resonances and scattering attenuation. The combination of ACU and X-ray data enabled successful particle geometry classification. The observed trends were interpreted in terms of multi-scale porosity and grain scattering with finite-difference time-domain simulations, which modeled arbitrarily complex stiffness and density distributions. The proposed method allows for non-contact determination of relations between acoustic properties and in-plane density distribution in plate materials. In future work, commercial PBs with non-uniform vertical density profiles should be investigated.

  19. Air transport

    NASA Technical Reports Server (NTRS)

    Page, F Handley

    1924-01-01

    I purpose (sic) in this paper to deal with the development in air transport which has taken place since civil aviation between England and the Continent first started at the end of August 1919. A great deal of attention has been paid in the press to air services of the future, to the detriment of the consideration of results obtained up to the present.

  20. Air Pollution.

    ERIC Educational Resources Information Center

    Fox, Donald L.

    1989-01-01

    Materials related to air pollution are reviewed for the period January 1987, to October 1988. The topics are pollution monitoring, air pollution, and environmental chemistry. The organization consists of two major analytical divisions: (1) gaseous methods; and (2) aerosol and particulate methods. (MVL)

  1. Air Pollution.

    EPA Science Inventory

    Air quality is affected by many types of pollutants that are emitted from various sources, including stationary and mobile. These sources release both criteria and hazardous air pollutants, which cause health effects, ecological harm, and material damage. They are generally categ...

  2. Chapter 22: Compressed Air Evaluation Protocol

    SciTech Connect

    Benton, N.

    2014-11-01

    Compressed-air systems are used widely throughout industry for many operations, including pneumatic tools, packaging and automation equipment, conveyors, and other industrial process operations. Compressed-air systems are defined as a group of subsystems composed of air compressors, air treatment equipment, controls, piping, pneumatic tools, pneumatically powered machinery, and process applications using compressed air. A compressed-air system has three primary functional subsystems: supply, distribution, and demand. Air compressors are the primary energy consumers in a compressed-air system and are the primary focus of this protocol. The two compressed-air energy efficiency measures specifically addressed in this protocol are: high-efficiency/variable speed drive (VSD) compressor replacing modulating compressor; compressed-air leak survey and repairs. This protocol provides direction on how to reliably verify savings from these two measures using a consistent approach for each.

  3. Air Sparging Design Paradigm

    DTIC Science & Technology

    2002-08-12

    that the air distribution in the aquifer is non-uniform about the air injection, exhibiting tendencies to flow along the axis defined by MP6 , MP12...MW2 MW9 MW7 MW1 MW3 MP9, N9 MP11, N11 MP5, N5 MP7, N7 MP12, N12 MP6 , N6 MP3, N3MP1, N1 - Multi-level sampler and neutron access tube - Air...MP9 and MP12. This hypothesis is supported by the high saturations at MP3, MP6 , MP9 and MP12 in the upper part of the aquifer (3 to 4 m BGS) and low

  4. Air Apparent.

    ERIC Educational Resources Information Center

    Harbster, David A.

    1988-01-01

    Explains the principle upon which a barometer operates. Describes how to construct two barometric devices for use in the classroom that show air's changing pressure. Cites some conditions for predicting weather. (RT)

  5. Air Abrasion

    MedlinePlus

    ... information you need from the Academy of General Dentistry Sunday, April 9, 2017 About | Contact InfoBites Quick ... general dentist, who has been trained in restorative dentistry techniques, will perform any procedures that use air- ...

  6. Cold Climate and Retrofit Applications for Air-to-Air Heat Pumps

    SciTech Connect

    Baxter, Van D

    2015-01-01

    Air source heat pumps (ASHP) including air-to-air ASHPs are easily applied to buildings almost anywhere for new construction as well as retrofits or renovations. They are widespread in milder climate regions but their use in cold regions is hampered due to low heating efficiency and capacity at cold outdoor temperatures. Retrofitting air-to-air ASHPs to existing buildings is relatively easy if the building already has an air distribution system. For buildings without such systems alternative approaches are necessary. Examples are ductless, minisplit heat pumps or central heat pumps coupled to small diameter, high velocity (SDHV) air distribution systems. This article presents two subjects: 1) a summary of R&D investigations aimed at improving the cold weather performance of ASHPs, and 2) a brief discussion of building retrofit options using air-to-air ASHP systems.

  7. Distribution and mass loss of volatile organic compounds in the surficial aquifer at sites FT03, LF13, and WP14/LF15, Dover Air Force Base, Delaware, November 2000-February 2001

    USGS Publications Warehouse

    Barbaro, Jeffrey R.; Neupane, Pradumna P.

    2002-01-01

    Ground-water and surface-water sampling was conducted in the natural attenuation study area in the East Management Unit of Dover Air Force Base, Delaware to determine the distributions of volatile organic compounds in the vicinity of four sites?Fire Training Area Three, the Rubble Area Landfill, the Receiver Station Landfill, and the Liquid Waste Disposal Landfill. This work was done by the U.S. Geological Survey, in cooperation with the U.S. Air Force, as part of an ongoing assessment of the effectiveness of natural attenuation at these sites. The specific objectives of the study were to (1) determine the areal and vertical extent of the contaminant plumes and source areas, (2) measure volatile organic compound concentrations in ground-water discharge areas and in surface water under base-flow conditions, (3) evaluate the potential for off-site migration of the mapped plumes, and (4) estimate the amount of mass loss downgradient of the Liquid Waste Disposal and Receiver Station Landfills. A direct-push drill rig and previously installed multi-level piezometers were used to determine the three-dimensional distributions of volatile organic compounds in the 30?60-foot-thick surficial aquifer underlying the natural attenuation study area. A hand -driven mini-piezometer was used to collect ground-water samples in ground-water discharge areas. A total of 319 ground-water and 4 surface-water samples were collected from November 2000 to February 2001 and analyzed for chlorinated solvents and fuel hydrocarbons. The contaminant plumes migrating from Fire Training Area Three and the Rubble Area Landfill are approximately 500 feet and 800 feet, respectively, in length. These plumes consist predominantly of cis-1,2-dichloroethene, a daughter product, indicating that extensive dechlorination of tetrachloroethene and trichloroethene has occurred at these sites. With an approximate length of 2,200 feet, the plume migrating from the Receiver Station and Liquid Waste Disposal

  8. Logistics Supply of the Distributed Air Wing

    DTIC Science & Technology

    2014-09-01

    0704-0188) Washington DC 20503. 1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 09-26-2014 3. REPORT TYPE AND DATES COVERED Master’s Thesis 09-26...Optimization Model . . . . . . 80 6.4 Experiment 2: Comparison of the Vehicle Types . . . . . . . . . . . . 82 6.5 Experiment 3: Sensitivity Analysis of...Hours per Year by Vehicle Type . . . . . . . . . . . . . . 85 Figure 6.4 Travel Time per Day by Vehicle Type . . . . . . . . . . . . . . . 86 Figure 6.5

  9. Distributed Intelligence for Air Fleet Control

    DTIC Science & Technology

    1981-06-01

    Callero and Philip Klahr, and the development of the ROSIE prog ramming lan- guage by Daniel Gorlin, Frederick Hayes-Roth, and Henry...Environmental data Model of current situation Changes in environment o ’~>"-1> 9\\1>(\\ (\\ ..... ~ ~e~. o <’’((’e ·~\\)’<.e ~(\\"’’( \\(\\0., \\~ ,_ <:f\\1...t: t.>cvr,· e">"-"’ ’<.eO.~ ’ o , ~,(/ fl1o,. ’tor· ’"u Fig. 1-The structure of the kernel planner COMMUNI- CATOR

  10. Cold air systems: Sleeping giant

    SciTech Connect

    MacCracken, C.D. )

    1994-04-01

    This article describes how cold air systems help owners increase the profits from their buildings by reducing electric costs and improving indoor air quality through lower relative humidity levels. Cold air distribution involves energy savings, cost savings, space savings, greater comfort, cleaner air, thermal storage, tighter ducting, coil redesign, lower relative humidities, retrofitting, and improved indoor air quality (IAQ). It opens a door for architects, engineers, owners, builders, environmentalists, retrofitters, designers, occupants, and manufacturers. Three things have held up cold air's usage: multiple fan-powered boxes that ate up the energy savings of primary fans. Cold air room diffusers that provided inadequate comfort. Condensation from ducts, boxes, and diffusers. Such problems have been largely eliminated through research and development by utilities and manufacturers. New cold air diffusers no longer need fan powered boxes. It has also been found that condensation is not a concern so long as the ducts are located in air conditioned space, such as drop ceilings or central risers, where relative humidity falls quickly during morning startup.

  11. Neutron probe measurements of air saturation near an air sparging well

    SciTech Connect

    Acomb, L.J.; McKay, D.; Currier, P.; Berglund, S.T.; Sherhart, T.V.; Benediktsson, C.V.

    1995-12-31

    In situ air sparging is being used to remediate diesel-fuel-contaminated soils in the zone of water table fluctuation at a remote Alaskan Federal Aviation Administration (FAA) air navigation aid site. A neutron probe was used to measure changes in percent air saturation during air sparging in a uniform, aeolian sand. Air was injected about 15 ft below the water table at air flowrates of 4 to 16 ft{sup 3}/min (cfm). The neutron probe data show that during air sparging the distribution of injected air changed through time, initially expanding outward from the sparge well screen, then consolidating around the air sparging well, until a steady-state condition was reached. The maximum radius of influence, measured at an air flowrate of 16 cfm, was about 15 ft during steady-state flow. At all air flowrates the percent air saturation was highest near the air sparging well and decreased radially away from the sparging well. Near the sparging well, the percent air saturation ranged from about 30% to >50% at air injection rates of 4 to 16 cfm. Where the percent air saturation is similar to that in the vadose zone, volatilization and biodegradation may occur at rates similar to those in the vadose zone. Selected air saturation results are presented, and dissolved oxygen and saturated zone pressure data are summarized.

  12. Hazardous Air Pollutants

    MedlinePlus

    ... Air Toxics Website Rules and Implementation Related Information Air Quality Data and Tools Clean Air Act Criteria Air ... Resources Visibility and Haze Voluntary Programs for Improving Air Quality Contact Us to ask a question, provide feedback, ...

  13. Air surveillance

    SciTech Connect

    Patton, G.W.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the air surveillance and monitoring programs currently in operation at that Hanford Site. Atmospheric releases of pollutants from Hanford to the surrounding region are a potential source of human exposure. For that reason, both radioactive and nonradioactive materials in air are monitored at a number of locations. The influence of Hanford emissions on local radionuclide concentrations was evaluated by comparing concentrations measured at distant locations within the region to concentrations measured at the Site perimeter. This section discusses sample collection, analytical methods, and the results of the Hanford air surveillance program. A complete listing of all analytical results summarized in this section is reported separately by Bisping (1995).

  14. /Air Atmospheres

    NASA Astrophysics Data System (ADS)

    Emami, Samar; Sohn, Hong Yong; Kim, Hang Goo

    2014-08-01

    Molten magnesium oxidizes rapidly when exposed to air causing melt loss and handling difficulties. The use of certain additive gases such as SF6, SO2, and CO2 to form a protective MgO layer over a magnesium melt has been proposed. The oxidation behavior of molten magnesium in air containing various concentrations of SF6 was investigated. Measurements of the kinetics of the oxide layer growth at various SF6 concentrations in air and temperatures were made. Experiments were performed using a thermogravimetric analysis unit in the temperature range of 943 K to 1043 K (670 °C to 770 °C). Results showed that a thin, coherent, and protective MgF2 layer was formed under SF6/Air mixtures, with a thickness ranging from 300 nm to 3 μm depending on SF6 concentration, temperature, and exposure time. Rate parameters were calculated and a model for the process was developed. The morphology and composition of the surface films were studied using scanning electron microscope and energy-dispersive spectroscope.

  15. Air Pollution.

    ERIC Educational Resources Information Center

    Scorer, Richard S.

    The purpose of this book is to describe the basic mechanisms whereby pollution is transported and diffused in the atmosphere. It is designed to give practitioners an understanding of basic mechanics and physics so they may have a correct basis on which to formulate their decisions related to practical air pollution control problems. Since many…

  16. Distribution of methyl tert-butyl ether (MTBE) and selected water-quality constituents in the surficial aquifer at the Dover National Test Site, Dover Air Force Base, Delaware, 2001

    USGS Publications Warehouse

    Stewart, Marie; Guertal, William R.; Barbaro, Jeffrey R.; McHale, Timothy J.

    2004-01-01

    A joint study by the Dover National Test Site, Dover Air Force Base, Delaware, and the U.S. Geological Survey was conducted from June 27 through July 18, 2001, to determine the spatial distribution of the gasoline oxygenate additive methyl tert-butyl ether and selected water-quality constituents in the surficial aquifer underlying the Dover National Test Site. This report provides a summary assessment of the distribution of methyl tert-butyl ether and a preliminary screening of selected constituents that may affect natural attenuation and remediation demonstrations at the Dover National Test Site. The information gathered during this study is designed to assist potential remedial investigators who are considering conducting a methyl tert-butyl ether remedial demonstration at the test site. In addition, the study supported a planned enhanced bioremediation demonstration and assisted the Dover National Test Site in identifying possible locations for future methyl tert-butyl ether remediation demonstrations. A direct-push drill rig was used to collect a total of 147 ground-water samples (115 VOC samples and 32 quality-assurance samples) at varying depths. Volatile organic compounds were above the method reporting limits in 59 of the 115 ground-water samples. The concentrations ranged from below detection limits to maximum values of 12.4 micrograms per liter of cis-1,2-dichloro-ethene, 1.14 micrograms per liter of trichloro-ethene, 2.65 micrograms per liter of tetrachloro-ethene, 1,070 micrograms per liter of methyl tert-butyl ether, 4.36 micrograms per liter of benzene, and 1.8 micrograms per liter of toluene. Vinyl chloride, ethylbenzene, p,m-xylene, and o-xylene were not detected in any of the samples collected during this investigation. Methyl tert-butyl ether was detected in 47 of the 115 ground-water samples. The highest concentrations of methyl tert-butyl ether were detected in the surficial aquifer from ?4.6 to 6.4 feet mean sea level; however, methyl tert

  17. Clean Air Act Vehicle and Engine Enforcement Case Resolutions

    EPA Pesticide Factsheets

    The Clean Air Act requires new engines and equipment sold or distributed in the United States to be certified to meet EPA-established emissions requirements to protect public health and the environment from air pollution.

  18. VENTILATION RESEARCH: A REVIEW OF RECENT INDOOR AIR QUALITY LITERATURE

    EPA Science Inventory

    The report gives results of a literature review, conducted to survey and summarize recent and ongoing engineering research into building ventilation, air exchange rate, pollutant distribution and dispersion, and other effects of heating, ventilation, and air-conditioning (HVAC) s...

  19. Aerosol distribution apparatus

    DOEpatents

    Hanson, W.D.

    An apparatus for uniformly distributing an aerosol to a plurality of filters mounted in a plenum, wherein the aerosol and air are forced through a manifold system by means of a jet pump and released into the plenum through orifices in the manifold. The apparatus allows for the simultaneous aerosol-testing of all the filters in the plenum.

  20. Air pollution.

    PubMed

    Le, Nhu D; Sun, Li; Zidek, James V

    2010-01-01

    Toxic air pollutants are continuously released into the air supply. Various pollutants come from chemical facilities and small businesses, such as automobile service stations and dry cleaning establishments. Others, such as nitrogen oxides, carbon monoxide and other volatile organic chemicals, arise primarily from the incomplete combustion of fossil fuels (coal and petroleum) and are emitted from sources that include car exhausts, home heating and industrial power plants. Pollutants in the atmosphere also result from photochemical transformations; for example, ozone is formed when molecular oxygen or nitrogen interacts with ultraviolet radiation. An association between air pollution exposure and lung cancer has been observed in several studies. The evidence for other cancers is far less conclusive. Estimates of the population attributable risk of cancer has varied substantially over the last 40 years, reflecting the limitations of studies; these include insufficient information on confounders, difficulties in characterizing associations due to a likely lengthy latency interval, and exposure misclassification. Although earlier estimates were less than one percent, recent cohort studies that have taken into account some confounding factors, such as smoking and education amongst others, suggest that approximately 3.6% of lung cancer in the European Union could be due to air pollution exposure, particularly to sulphate and fine particulates. A separate cohort study estimated 5-7% of lung cancers in European never smokers and ex-smokers could be due to air pollution exposure. Therefore, while cigarette smoking remains the predominant risk factor, the proportion of lung cancers attributable to air pollution may be higher than previously thought. Overall, major weaknesses in all air-pollution-and-cancer studies to date have been inadequate characterization of long-term air pollution exposure and imprecise or no measurements of covariates. It has only been in the last

  1. On Air Shutter for Cold Storage Room

    NASA Astrophysics Data System (ADS)

    Fukuhara, Isamu; Tsuji, Katsuhiko

    Air curtains are frequently placed at doorway of cold storage room or freezing chamber. As an opening of jet flow in these air curtains is relatively narrow and speed of jet flow is fast, air entrained from surroundings increases in quantity. Therefore, we consider that jet flow with narrow opening can not effectively isolate inside air from the external atmosphere, but the one with relatively wide opening can decrease air entrained from surroundings. Then, when air curtain which has a wide opening (we call it air shutter) is installed at cold storage room, and isolating performances of air shutter are compared with the air curtain. First, as various conditions can be easily changed in numerical calculation, we compare a velocity and temperature field in cold storage room under these conditions when velocity of jet flow is changed by using numerical method. Second, we measure a temperature and velocity distribution in an actual cold storage room under three conditions (air shutter operates, air curtain operates and no operation). From these results, it was found that air shutter is more efficient than air curtain.

  2. Foreword to the Air Anti-Submarine Warfare Theme

    DTIC Science & Technology

    2014-06-01

    for public release; distribution is unlimited. FOREWORD TO THE AIR ANTI-SUBMARINE WARFARE THEME Air ASW Board: RADM Mike Manazir, Director Air...Mission Programs (Received April 1, 2014) We are honored to introduce the Air Anti-Submarine Warfare (ASW) themed compendium for the Journal of Underwater...reflect upon. Three main themes emerge from the last decade relating to the air community’s positioning relative to anti-submarine warfare: a shift in

  3. Air Quality System (AQS)

    EPA Pesticide Factsheets

    The Air Quality System (AQS) database contains measurements of air pollutant concentrations from throughout the United States and its territories. The measurements include both criteria air pollutants and hazardous air pollutants.

  4. Air Force Sustainment Center Logistics and Sustainment Enterprise 2040. Version 2.0

    DTIC Science & Technology

    2016-04-15

    maintenance operations. f) Minimizing water contaminants, air pollutants /emissions, noise pollution , and hazardous waste streams to improve the...US AIR FORCE Distribution A. Approved for Public Release; Distribution Unlimited (72ABW-2015-0046), Air Force Sustainment Center 15...April 2016 i Foreword The Air Force Sustainment Center (AFSC) continues to make great gains toward achieving the Art of the Possible

  5. Real-time measurements of Hg0 and H2S at La Solfatara Crater (Campi Flegrei, Southern Italy) and Mt. Amiata volcano (Siena, Central Italy): a new geochemical approach to estimate the distribution of air contaminants

    NASA Astrophysics Data System (ADS)

    Cabassi, J.; Calabrese, S.; Tassi, F.; Venturi, S.; Capecchiacci, F.; Di Lonardo, C.; D'Alessandro, W.; Vaselli, O.

    2014-12-01

    The emission of Hg and H2S from natural and anthropogenic sources may have a great environmental impact in urban areas as well as in the surroundings of active and passive degassing volcanoes. Mercury is present in the atmosphere mainly in its elemental form (Hg0~98 %), which has a relatively high volatility, low solubility and chemical inertness. Hydrogen sulfide, one of the most abundant gas species in volcanic fluids, is highly poisoning and corrosive. In this study, an innovative real-time method for the measurements of Hg0 and H2S concentrations in air was carried out at La Solfatara Crater, a hydrothermally altered tuff-cone nested in the town of Pozzuoli (Southern Italy), and at Mt. Amiata volcano (Central Italy), where a world-class Hg mining district abandoned in the seventies and a presently-exploited geothermal field for the production of electrical energy occur. The main aims were (i) to test this new methodological approach and (ii) to investigate Hg0 and H2S concentrations and the chemical-physical parameters regulating their spatial distribution in polluted areas. A portable Zeeman atomic absorption spectrometer with high frequency modulation of light polarization (Lumex RA-915M) was used in combination with a pulsed fluorescence gas analyzer (Thermo Scientific Model 450i) to measure Hg0 and H2S, respectively. The instruments were synchronized and set at high-frequency acquisition (10 sec and 1 min, respectively). Measurements were carried out along pathways (up to 12 km long) at an average speed of <10 km/h and coupled with GPS data and meteorological parameters. In selected sites, passive samplers were positioned to determine the time-integrated Hg0 and H2S concentrations to be compared with the real-time measurements. The results indicate that this approach is highly efficient and effective in providing reliable and reproducible Hg0 and H2S concentrations and can be used to identify and characterize gas emitters in different environments.

  6. AirMSPI Data and Information

    Atmospheric Science Data Center

    2017-03-14

    ... AirMSPI will (a) provide 3-D scene context where clouds and aerosol plumes are present, plus constraints on radiometric closure, ... radiative transfer may dominate, and (b) enable retrieval of aerosol and cloud macrophysical properties (distribution, height), ...

  7. The causes and consequences of deeper rooting distributions under elevated [CO2]: Improved understanding of root-soil interactions from a Free-Air CO2 Enrichment experiment in a sweetgum plantation (Invited)

    NASA Astrophysics Data System (ADS)

    Iversen, C. M.; Childs, J.; Norby, R. J.

    2013-12-01

    Belowground processes are increasingly recognized as an important foundation for ecosystem responses to rising atmospheric [CO2]. Elevated [CO2] has been shown to increase the proportion of biomass in fine roots, and experimental evidence from a diverse set of forested ecosystems indicates that CO2-enrichment may lead to deeper rooting distributions. Deeper rooting distributions in CO2-enriched forests are likely a result of three interacting factors: (1) increased resource demand, (2) greater carbon (C) available for belowground allocation, and (3) increased competition for scarce resources in shallower soil. Increased production of fine roots at depth in the soil could drive changes in C cycling because fine roots turn over quickly in forests. However, the consequences of increased fine-root proliferation and turnover at depth are still poorly understood; this is in part because belowground research is often truncated at relatively shallow soil depths. We examined soil C dynamics after 12 years of CO2-enrichment and at soil depths to 90 cm in soil pits harvested at the conclusion of the Oak Ridge National Laboratory (ORNL) Free-Air CO2 Enrichment (FACE) located in a sweetgum plantation in eastern Tennessee, USA. We hypothesized that: (1) soil C content would increase in response to elevated [CO2], especially at deeper soil depths where large increases in root production and mortality were observed, and (2) greater C inputs under elevated [CO2] would lead to increased potential C mineralization in long-term laboratory incubations. As we hypothesized, total soil C content under elevated [CO2] was 20% greater throughout the soil profile to 90 cm depth. The CO2 effect was driven by an increase in the C content of the relatively labile particulate organic matter (POM) pool, which is likely derived primarily from fine roots. Contrary to what we hypothesized, we did not observe a significant increase in potential soil C mineralization under elevated [CO2]. While C

  8. Air cell

    NASA Astrophysics Data System (ADS)

    Okamura, Okiyoshi; Wakasa, Masayuki; Tamanoi, Yoshihito

    1991-04-01

    The present invention relates to an air cell. This air cell provides a compact light-weight power source for model aircraft permitting them to fly for an extended period so that they may be used for such practical purposes as crop dusting, surveying, and photographing. The cell is comprised of a current collector so disposed between a magnesium, zinc, or aluminum alloy cathode and a petroleum graphite anode that it is in contact with the anode. The anode is formed by adding polytetrafluoroethylene dispersion liquid in a mixture of active carbon and graphite powder, pouring the mixture into a mold and heating it to form the anode. It is fabricated by a plurality of anode sections and is formed with at least one hole so that it can provide a cell which is compact in size and light in weight yet is capable of generating a high output. The anode, the cathode, and a separator are wetted by an electrolytic liquid. The electrolyte is continuously supplied through the life of the cell.

  9. Air System Information Management

    NASA Technical Reports Server (NTRS)

    Filman, Robert E.

    2004-01-01

    I flew to Washington last week, a trip rich in distributed information management. Buying tickets, at the gate, in flight, landing and at the baggage claim, myriad messages about my reservation, the weather, our flight plans, gates, bags and so forth flew among a variety of travel agency, airline and Federal Aviation Administration (FAA) computers and personnel. By and large, each kind of information ran on a particular application, often specialized to own data formats and communications network. I went to Washington to attend an FAA meeting on System-Wide Information Management (SWIM) for the National Airspace System (NAS) (http://www.nasarchitecture.faa.gov/Tutorials/NAS101.cfm). NAS (and its information infrastructure, SWIM) is an attempt to bring greater regularity, efficiency and uniformity to the collection of stovepipe applications now used to manage air traffic. Current systems hold information about flight plans, flight trajectories, weather, air turbulence, current and forecast weather, radar summaries, hazardous condition warnings, airport and airspace capacity constraints, temporary flight restrictions, and so forth. Information moving among these stovepipe systems is usually mediated by people (for example, air traffic controllers) or single-purpose applications. People, whose intelligence is critical for difficult tasks and unusual circumstances, are not as efficient as computers for tasks that can be automated. Better information sharing can lead to higher system capacity, more efficient utilization and safer operations. Better information sharing through greater automation is possible though not necessarily easy.

  10. Short- and medium-chain chlorinated paraffins in air and soil of subtropical terrestrial environment in the pearl river delta, South China: distribution, composition, atmospheric deposition fluxes, and environmental fate.

    PubMed

    Wang, Yan; Li, Jun; Cheng, Zhineng; Li, Qilu; Pan, Xiaohui; Zhang, Ruijie; Liu, Di; Luo, Chunling; Liu, Xiang; Katsoyiannis, Athanasios; Zhang, Gan

    2013-03-19

    Research on the environmental fate of short- and medium-chain chlorinated paraffins (SCCPs and MCCPs) in highly industrialized subtropical areas is still scarce. Air, soil, and atmospheric deposition process in the Pearl River Delta of South China were investigated, and the average SCCP and MCCP concentrations were 5.2 μg/sampler (17.69 ng/m(3)) and 4.1 μg/sampler for passive air samples, 18.3 and 59.3 ng/g for soil samples, and 5.0 and 5.3 μg/(m(2)d) for deposition samples, respectively. Influenced by primary sources and the properties of chlorinated paraffins (CPs), a gradient trend of concentrations and a fractionation of composition from more to less industrialized areas were discovered. Intense seasonal variations with high levels in summer air and winter deposition samples indicated that the air and deposition CP levels were controlled mainly by the vapor and particle phase, respectively. Complex environmental processes like volatilization and fractionation resulted in different CP profiles in different environment matrixes and sampling locations, with C(10-11) C(l6-7) and C(14) C(l6-7), C(10-12) C(l6-7) and C(14) C(l6-8), and C(11-12) C(l6-8) and C(14) C(l7-8) dominating in air, soil, and atmospheric deposition, respectively. Shorter-chain and less chlorinated congeners were enriched in air in the less industrialized areas, while longer-chain and higher chlorinated congeners were concentrated in soil in the more industrialized areas. This is suggesting that the gaseous transport of CPs is the dominant mechanism responsible for the higher concentrations of lighter and likely more mobile CPs in the rural areas.

  11. Metal-Air Batteries

    SciTech Connect

    Zhang, Jiguang; Bruce, Peter G.; Zhang, Gregory

    2011-08-01

    Metal-air batteries have much higher specific energies than most currently available primary and rechargeable batteries. Recent advances in electrode materials and electrolytes, as well as new designs on metal-air batteries, have attracted intensive effort in recent years, especially in the development of lithium-air batteries. The general principle in metal-air batteries will be reviewed in this chapter. The materials, preparation methods, and performances of metal-air batteries will be discussed. Two main metal-air batteries, Zn-air and Li-air batteries will be discussed in detail. Other type of metal-air batteries will also be described.

  12. Evolution of Southern Hemisphere spring air masses observed by HALOE

    NASA Technical Reports Server (NTRS)

    Pierce, R. Bradley; Grose, William L.; Russell, James M., III; Tuck, Adrian F.

    1994-01-01

    The evolution of Southern Hemisphere air masses observed by the Halogen Occultation Experiment (HALOE) during September 21 through October 15, 1992, is investigated using isentropic trajectories computed from United Kingdom Meteorological Office (UKMO) assimilated winds and temperatures. Maps of constituent concentrations are obtained by accumulation of air masses from previous HALOE occultations. Lagged correlations between initial and subsequent HALOE observations of the same air mass are used to validate the air mass trajectories. High correlations are found for lag times as large as 10 days. Frequency distributions of the air mass constituent concentrations are used to examine constituent distributions in and around the Southern Hemisphere polar vortex.

  13. Distributed Logics

    DTIC Science & Technology

    2014-10-03

    introduce distributed logics. Distributed logics lift the distribution structure of a distributed system directly into the logic, thereby parameterizing...the logic by the distribution structure itself. Each domain supports a “local modal logic.” The connections between domains are realized as...There are also multi- agent logic systems [12]. What distinguishes distributed logics from these are that the morphisms, i.e., the nbd maps, have

  14. Distributed Surface Force

    DTIC Science & Technology

    2014-06-01

    potential improvement in air defense for the armada, the SSC would be capable of plunging deeper into A2AD environments. In addition to the new ...Environment. http://www.brighton-webs.co.uk/distributions/triangular. British Broadcasting Company. 2014, May 08. BBC News Asia . http://www.bbc.com... news /world- asia -pacific-13748349. Cavas, Christopher P. 2014, January 19. Navy, Pentagon battle over LCS future. www.navytimes.com/article/20140109

  15. Indoor Air Quality

    MedlinePlus

    ... can protect yourself and your family. Learn more Air Quality at Work Workers should breathe easy while on the job, but worksites with poor air quality put employees at risk. Healthy air is essential ...

  16. Air Sensor Toolbox

    EPA Pesticide Factsheets

    Air Sensor Toolbox provides information to citizen scientists, researchers and developers interested in learning more about new lower-cost compact air sensor technologies and tools for measuring air quality.

  17. HEPA air filter (image)

    MedlinePlus

    ... pet dander and other irritating allergens from the air. Along with other methods to reduce allergens, such ... controlling the amount of allergens circulating in the air. HEPA filters can be found in most air ...

  18. Needed: Clean Air.

    ERIC Educational Resources Information Center

    Schneider, Gerald

    1979-01-01

    Provides information on air pollution for young readers. Discusses damage to substances and sickness from air pollution, air quality, and what to do in a pollution alert. Includes questions with answers, illustrations, and activities for the learner. (MA)

  19. High efficiency air cycle air conditioning system

    SciTech Connect

    Rannenberg, G. C.

    1985-11-19

    An air cycle air conditioning system is provided with regenerative heat exchangers upstream and downstream of an expansion turbine. A closedloop liquid circulatory system serially connects the two regenerative heat exchangers for regeneration without the bulk associated with air-to-air heat exchange. The liquid circulatory system may also provide heat transport to a remote sink heat exchanger and from a remote load as well as heat exchange within the sink heat exchanger and load for enhanced compactness and efficiency.

  20. Preliminary air pollution monitoring in San Miguel, Buenos Aires.

    PubMed

    Fagundez, L A; Fernández, V L; Marino, T H; Martín, I; Persano, D A; Rivarola Y Benítez, M; Sadañiowski, I V; Codnia, J; Zalts, A

    2001-09-01

    Passive diffusion samplers were employed in San Miguel (Buenos Aires Metropolitan Area) for a preliminary air pollution monitoring. The highest loads were observed in downtown, compared with an urban background site. Total suspended particulate matter (TSPM) varied from 0.257 to 0.033 mg cm(-2) month(-1); dust was examined for particle nature and size distribution. A similar trend was observed for nitrogen dioxide (NO2) and TSPM spatial distribution, suggesting that traffic is the major pollution source. Sulphur dioxide (SO2) values were low and rather homogeneous. Levels for the investigated pollutants are below EPA's guide line values. Geographic (flat area, near to Rio de La Plata) and climatologic factors (rainfalls and variable wind directions) contribute to disperse pollutants.

  1. AIRS Mission Support from GES DISC

    NASA Technical Reports Server (NTRS)

    Wei, Jennifer; Hearty, Thomas; Savtchenko, Audrey; Ding, Feng; Esfandiari, Ed; Theobald, Mike; Vollmer, Bruce; Kempler, Steve

    2015-01-01

    This talk will describe the support and distribution of AIRS (Atmospheric Infra Red Sounding) data products that are archived and distributed from the Goddard Earth Sciences Data and Information Services Center. Along with data stewardship, an important mission of GES DISC is to enhance the usability of data and broaden the user base. We will provide a brief summary of the current online archive and distribution metrics for the AIRS v5 and v6 products. We will also describe collaborative data sets and services (e.g., visualization and potential science applications) and solicit feedback for potential future services.

  2. Air Pollution Monitoring | Air Quality Planning & Standards ...

    EPA Pesticide Factsheets

    2016-06-08

    The basic mission of the Office of Air Quality Planning and Standards is to preserve and improve the quality of our nation's air. To accomplish this, OAQPS must be able to evaluate the status of the atmosphere as compared to clean air standards and historical information.

  3. The promise of air cargo: System aspects and vehicle design

    NASA Technical Reports Server (NTRS)

    Whitehead, A. H., Jr.

    1976-01-01

    The current operation of the air cargo system is reviewed. An assessment of the future of air cargo is provided by: (1) analyzing statistics and trends, (2) by noting system problems and inefficiencies, (3) by analyzing characteristics of 'air eligible' commodities, and (4) by showing the promise of new technology for future cargo aircraft with significant improvements in costs and efficiency. The following topics are discussed: (1) air cargo demand forecasts; (2) economics of air cargo transport; (3) the integrated air cargo system; (4) evolution of airfreighter design; and (5) the span distributed load concept.

  4. An Optimization Approach to Analyzing the Effect of Supply Water and Air Temperatures in Planning an Air Conditioning System

    NASA Astrophysics Data System (ADS)

    Karino, Naoki; Shiba, Takashi; Yokoyama, Ryohei; Ito, Koichi

    In planning an air conditioning system, supply water and air temperatures are important factors from the viewpoint of cost reduction. For example, lower temperature supply water and air reduce the coefficient of performance of a refrigeration machine, and increase the thickness of heat insulation material. However, they enable larger temperature differences, and reduce equipment sizes and power demand. The purposes of this paper are to propose an optimal planning method for a cold air distribution system, and to analyze the effect of supply water and air temperatures on the long-term economics through a numerical study for an office building. As a result, it is shown that the proposed method effectively determines supply water and air temperatures for a cold air distribution system, and that the influence of supply air temperature is larger than that of supply water temperature on the long-term economics.

  5. Primary zone air proportioner

    DOEpatents

    Cleary, Edward N. G.

    1982-10-12

    An air proportioner is provided for a liquid hydrocarbon fueled gas turbine of the type which is convertible to oil gas fuel and to coal gas fuel. The turbine includes a shell for enclosing the turbine, an air duct for venting air in said shell to a gasifier, and a fuel injector for injecting gasified fuel into the turbine. The air proportioner comprises a second air duct for venting air from the air duct for mixing with fuel from the gasifier. The air can be directly injected into the gas combustion basket along with the fuel from the injector or premixed with fuel from the gasifier prior to injection by the fuel injector.

  6. The Clean Air Game.

    ERIC Educational Resources Information Center

    Avalone-King, Deborah

    2000-01-01

    Introduces the Clean Air game which teaches about air quality and its vital importance for life. Introduces students to air pollutants, health of people and environment, and possible actions individuals can take to prevent air pollution. Includes directions for the game. (YDS)

  7. REACH. Air Conditioning Units.

    ERIC Educational Resources Information Center

    Garrison, Joe; And Others

    As a part of the REACH (Refrigeration, Electro-Mechanical, Air-Conditioning, Heating) electromechanical cluster, this student manual contains individualized instructional units in the area of air conditioning. The instructional units focus on air conditioning fundamentals, window air conditioning, system and installation, troubleshooting and…

  8. Healthy Air Outdoors

    MedlinePlus

    ... families and can even shorten their lives. Outdoor Air Pollution and Health Outdoor air pollution continues to threaten the lives and health of ... sources such as fires and dust contribute to air pollution. Learn more Fighting for Healthy Air The American ...

  9. 76 FR 4155 - National Emission Standards for Hazardous Air Pollutants for Source Categories: Gasoline...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-24

    ... for Hazardous Air Pollutants for Source Categories: Gasoline Distribution Bulk Terminals, Bulk Plants... Source Categories: Gasoline Distribution Bulk Terminals, Bulk Plants, and Pipeline Facilities; and... Pollutants for Source Categories: Gasoline Distribution Bulk Terminals, Bulk Plants, and Pipeline...

  10. Air cleaning and radon decay product mitigation

    SciTech Connect

    Hopke, P.K.; Li, C.S.; Ramamurthi, M.

    1990-12-31

    We evaluated air cleaning as a means to mitigate risks arising from exposure to indoor radon progeny in several single-family houses in the northeastern United States, using a new, automated, semi-continuous activity-weighted size distribution measurement system. Measurements included radon concentration, condensation nuclei count, and activity-weighted size distribution of radon decay products. Measurements were made with and without the air cleaning system operating. The influence of particles generated by various sources common to normal indoor activities on radon progeny behavior was evaluated. Aerosols were generated by running water in a shower, burning candles, smoking cigarettes, vacuuming, opening doors, and cooking. Both a filtration unit and an electrostatic precipitator were evaluated. Using a room model, the changes in attachment rates, average attachment diameters, and deposition rates of the ``unattached`` fraction with and without the air cleaning systems were calculated. The air cleaner typically reduced the radon progeny concentrations by 50 to 60%.

  11. Air Tightness of US Homes: Model Development

    SciTech Connect

    Sherman, Max H.

    2006-05-01

    Air tightness is an important property of building envelopes. It is a key factor in determining infiltration and related wall-performance properties such as indoor air quality, maintainability and moisture balance. Air leakage in U.S. houses consumes roughly 1/3 of the HVAC energy but provides most of the ventilation used to control IAQ. The Lawrence Berkeley National Laboratory has been gathering residential air leakage data from many sources and now has a database of more than 100,000 raw measurements. This paper uses that database to develop a model for estimating air leakage as a function of climate, building age, floor area, building height, floor type, energy-efficiency and low-income designations. The model developed can be used to estimate the leakage distribution of populations of houses.

  12. PARTICLE SIZE DISTRIBUTIONS FOR AN OFFICE AEROSOL

    EPA Science Inventory

    The article discusses an evaluation of the effect of percent outdoor air supplied and occupation level on the particle size distributions and mass concentrations for a typical office building. (NOTE: As attention has become focused on indoor air pollution control, it has become i...

  13. Isokinetic air sampler

    DOEpatents

    Sehmel, George A.

    1979-01-01

    An isokinetic air sampler includes a filter, a holder for the filter, an air pump for drawing air through the filter at a fixed, predetermined rate, an inlet assembly for the sampler having an inlet opening therein of a size such that isokinetic air sampling is obtained at a particular wind speed, a closure for the inlet opening and means for simultaneously opening the closure and turning on the air pump when the wind speed is such that isokinetic air sampling is obtained. A system incorporating a plurality of such samplers provided with air pumps set to draw air through the filter at the same fixed, predetermined rate and having different inlet opening sizes for use at different wind speeds is included within the ambit of the present invention as is a method of sampling air to measure airborne concentrations of particulate pollutants as a function of wind speed.

  14. [Establishment of Assessment Method for Air Bacteria and Fungi Contamination].

    PubMed

    Zhang, Hua-ling; Yao, Da-jun; Zhang, Yu; Fang, Zi-liang

    2016-03-15

    In this paper, in order to settle existing problems in the assessment of air bacteria and fungi contamination, the indoor and outdoor air bacteria and fungi filed concentrations by impact method and settlement method in existing documents were collected and analyzed, then the goodness of chi square was used to test whether these concentration data obeyed normal distribution at the significant level of α = 0.05, and combined with the 3σ principle of normal distribution and the current assessment standards, the suggested concentrations ranges of air microbial concentrations were determined. The research results could provide a reference for developing air bacteria and fungi contamination assessment standards in the future.

  15. Distributed Beamforming in a Swarm UAV Network

    DTIC Science & Technology

    2008-03-01

    opportunistic random arrays with the concept of swarm UAVs. A considerable amount of research has already been done about the feasibility and advantages of...a widely dispersed wirelessly networked opportunistic array may anticipate many advantages over single platform-borne opportunistic arrays. Major...distribution is unlimited DISTRIBUTED BEAMFORMING IN A SWARM UAV NETWORK İbrahim KOCAMAN 1st Lieutenant, Turkish Air Force B.S., Turkish Air Force

  16. Overview of Aerosol Distribution

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram

    2005-01-01

    Our knowledge of atmospheric aerosols (smoke, pollution, dust or sea salt particles, small enough to be suspended in the air), their evolution, composition, variability in space and time and interaction with clouds and precipitation is still lacking despite decades of research. Understanding the global aerosol system is fundamental for progress in climate change and hydrological cycle research. While a single instrument was used to demonstrate 50 years ago that the global CO2 levels are rising, posing threat of global warming, we need an array of satellites and field measurements coupled with chemical transport models to understand the global aerosol system. This complexity of the aerosol problem results from their short lifetime (1 week) and variable chemical composition. A new generation of satellites provides exciting opportunities to measure the global distribution of aerosols, distinguishing natural from anthropogenic aerosol and measuring their interaction with clouds and climate. I shall discuss these topics and application of the data to air quality monitoring.

  17. Laser-initiated ordnance for air-to-air missiles

    NASA Technical Reports Server (NTRS)

    Sumpter, David R.

    1993-01-01

    McDonnell Douglas Missile Systems Company (MDMSC) has developed a laser ignition subsystem (LIS) for air-to-air missile applications. The MDMSC subsystem is designed to activate batteries, unlock fins, and sequence propulsion system events. The subsystem includes Pyro Zirconium Pump (PZP) lasers, mechanical Safe & Arm, fiber-optic distribution system, and optically activated pyrotechnic devices (initiators, detonators, and thermal batteries). The LIS design has incorporated testability features for the laser modules, drive electronics, fiber-optics, and pyrotechnics. Several of the LIS have been fabricated and have supported thermal battery testing, integral rocket ramjet testing, and have been integrated into integral rocket ramjet flight test vehicles as part of the flight control subsystem.

  18. An ultrasonic air pump using an acoustic traveling wave along a small air gap.

    PubMed

    Koyama, Daisuke; Wada, Yuji; Nakamura, Kentaro; Nishikawa, Masato; Nakagawa, Tatsuyuki; Kihara, Hitoshi

    2010-01-01

    An ultrasonic air pump that uses a traveling wave along a small air gap between a bending vibrator and a reflector is discussed. The authors investigate ultrasonic air pumps that make use of bending vibrators and reflectors and confirm that air can be induced to flow by generating an asymmetric acoustic standing wave along an air gap. In this paper, we proposed a novel ultrasonic air pump in which a traveling wave along an air gap induces acoustic streaming and achieves one-way airflow. Two new reflector configurations, stepped and tapered, were designed and used to generate traveling waves. To predict airflow generation, sound pressure distribution in the air gap was calculated by means of finite element analysis (FEA). As a preliminary step, 2 FEA models were compared: one piezoelectric-structure-acoustic model and one piezoelectric- structure-fluid model, which included the viscosity effect of the fluid. The sound pressure distribution in the air gap, including fluid viscosity, was calculated by the FEA because it is expected to be dominant and thus have a strong effect on the sound pressure field in such a thin fluid layer. Based on the FEA results of the stepped and the tapered reflectors, it was determined that acoustic traveling waves could propagate along the gaps. Experiments were carried out with the designed bending vibrator and the reflectors. The acoustic fields in the air gap were measured via a fiber optic probe, and it was determined that the sound pressure and the phase distribution tendencies corresponded well with the results computed by FEA. Through our experiments, one-way airflow generation, in the same direction of the traveling wave and with the maximum flow velocity of 5.6 cm/s, was achieved.

  19. Indoor Air Pollution

    MedlinePlus

    ... is known as sick building syndrome. Usually indoor air quality problems only cause discomfort. Most people feel better ... and getting rid of pollutants can improve the quality of your indoor air. Environmental Protection Agency

  20. Lead (Pb) Air Pollution

    MedlinePlus

    ... and 2014. In 2008, EPA significantly strengthened the air quality standards for lead to provide health protection for ... time? Setting and Reviewing Standards What are lead air quality standards? How are they developed and reviewed? What ...

  1. Transforming air quality management

    SciTech Connect

    Janet McCabe

    2005-04-01

    Earlier this year, the Clean Air Act Advisory Committee submitted to EPA 38 recommendations intended to improve air quality management in the United States. This article summarizes the evaluation process leading up to the Committee's recommendations. 3 refs., 2 figs.

  2. National Air Toxics Assessment

    EPA Pesticide Factsheets

    NATA is an ongoing comprehensive evaluation of air toxics in the U.S. As a screening tool, it helps air agencies prioritize pollutants, emission sources and locations of interest for further study to gain a better understanding of risks.

  3. Airing It Out.

    ERIC Educational Resources Information Center

    Fitzemeyer, Ted

    2000-01-01

    Discusses how proper maintenance can help schools eliminate sources contributing to poor air quality. Maintaining heating and air conditioning units, investigating bacterial breeding grounds, fixing leaking boilers, and adhering to ventilation codes and standards are discussed. (GR)

  4. Air Quality Analysis

    EPA Pesticide Factsheets

    This site provides information for air quality data analysts inside and outside EPA. Much of the information is in the form of documented analyses that support the review of the national air qualiyt standards.

  5. Controlling Indoor Air Pollution.

    ERIC Educational Resources Information Center

    Nero, Anthony V, Jr.

    1988-01-01

    Discusses the health risks posed by indoor air pollutants, such as airborne combustion products, toxic chemicals, and radioactivity. Questions as to how indoor air might be regulated. Calls for new approaches to environmental protection. (TW)

  6. Air Data - Concentration Map

    EPA Pesticide Factsheets

    Make a map of daily concentrations over several days. The daily air quality can be displayed in terms of the Air Quality Index or in concentration ranges for certain PM species like organic carbon, nitrates, and sulfates.

  7. Experimental research on air propellers

    NASA Technical Reports Server (NTRS)

    Durand, William F

    1918-01-01

    The purposes of the experimental investigation on the performance of air propellers described in this report are as follows: (1) the development of a series of design factors and coefficients drawn from model forms distributed with some regularity over the field of air-propeller design and intended to furnish a basis of check with similar work done in other aerodynamic laboratories, and as a point of departure for the further study of special or individual types and forms; (2) the establishment of a series of experimental values derived from models and intended for later use as a basis for comparison with similar results drawn from certain selected full-sized forms and tested in free flight.

  8. Into Thin Air.

    ERIC Educational Resources Information Center

    Kennedy, Mike

    2001-01-01

    Shows how schools are working to avoid the types of equipment, supplies, and maintenance practices that harm indoor air quality. Simple steps to maintaining a cleaner indoor air environment are highlighted as are steps to reducing the problem air quality and the occurrence of asthma. (GR)

  9. Indoor Air Quality Manual.

    ERIC Educational Resources Information Center

    Baldwin Union Free School District, NY.

    This manual identifies ways to improve a school's indoor air quality (IAQ) and discusses practical actions that can be carried out by school staff in managing air quality. The manual includes discussions of the many sources contributing to school indoor air pollution and the preventive planning for each including renovation and repair work,…

  10. Air Sensor Guidebook

    EPA Science Inventory

    This Air Sensor Guidebook has been developed by the U.S. EPA to assist those interested in potentially using lower cost air quality sensor technologies for air quality measurements. Its development was in direct response to a request for such a document following a recent scienti...

  11. Modelling Hot Air Balloons.

    ERIC Educational Resources Information Center

    Brimicombe, M. W.

    1991-01-01

    A macroscopic way of modeling hot air balloons using a Newtonian approach is presented. Misleading examples using a car tire and the concept of hot air rising are discussed. Pressure gradient changes in the atmosphere are used to explain how hot air balloons work. (KR)

  12. Air Pollution Training Programs.

    ERIC Educational Resources Information Center

    Public Health Service (DHEW), Rockville, MD.

    This catalog lists the universities, both supported and not supported by the Division of Air Pollution, which offer graduate programs in the field of air pollution. The catalog briefly describes the programs and their entrance requirements, the requirements, qualifications and terms of special fellowships offered by the Division of Air Pollution.…

  13. Clean Air Act Text

    EPA Pesticide Factsheets

    The Clean Air Act is the law that defines EPA's responsibilities for protecting and improving the nation's air quality and the stratospheric ozone layer. The last major change in the law, the Clean Air Act Amendments of 1990, enacted in 1990 by Congress.

  14. Centrifuge modeling of air sparging - a study of air flow through saturated porous media.

    PubMed

    Marulanda, C; Culligan, P J; Germaine, J T

    2000-02-25

    The success of air sparging as a remedial technology for treatment of contaminated aquifers is well documented. However, there is no consensus, to date, on the mechanisms that control the flow of injected air through the saturated ground. Currently, only qualitative results from laboratory experiments are available to predict the zone of influence of a sparging well. Given that the patterns of air flow through the soil will ultimately determine the efficiency of an air sparging treatment, it is important to quantify how sparged air travels through a saturated porous medium. The main objective of this research is to develop a model that describes air transport through saturated porous media. This paper presents results from an ongoing study that employs centrifuge modeling to reproduce in situ air sparging conditions. Centrifuge testing is an experimental technique that allows reduced-scale duplication, in the laboratory, of the stresses and pressure distributions encountered in the field. In situ conditions are critical in the development of actual air flow patterns. Experiments are being conducted in a transparent porous medium consisting of crushed borosilicate glass submerged in fluids of matching indices of refraction. Air is observed as it flows through the porous medium at varying gravitational accelerations. Recorded images of experiments allow the determination of flow patterns, breakthrough velocities, and plume shapes as a function of g-level and injection pressure. Results show that air flow patterns vary from fingering, at low g-levels, to pulsing at higher accelerations. Grain and pore size distribution of the porous medium do not exclusively control air flow characteristics. Injector geometry has a definite effect on breakthrough velocities and air plume shapes. Experiments have been conducted to compare the velocity of air flow through the saturated porous medium to that of air in pure liquids. Results show that the velocity of air through the medium

  15. Prototypes of Cognitive Measures for Air Force Officers: Test Development and Item Banking

    DTIC Science & Technology

    1990-05-01

    AFHRL-TP-89-737 3, COPY AIR FORCE PROTOTYPES OF COGNITIVE MEASURES FOR AIR FORCE OFFICERS: TEST DEVELOPMENT AND ITEM BANKING DTIC f1 ELECTF H Frances...Jacobina Skinner MANPOWER AND PERSONNEL DIVISION R Brooks Air Force Base, Texas 78235-5601 E S O May 1990U Final Technical Paper for Period September 1987...November 1989 R C Approved for public release; distribution is unlimited. E S LABORATORY AIR FORCE SYSTEMS COMMAND BROOKS AIR FORCE BASE, TEXAS

  16. GOSAT Air Pollution Watch - Rapid Response System for Local Air Pollution

    NASA Astrophysics Data System (ADS)

    Matsunaga, T.; Sawada, Y.; Kamei, A.; Uchiyama, A.

    2015-12-01

    GOSAT (Greenhouse Gases Observing Satellite) launched in 2009 and its successor, GOSAT-2, to be launched in FY 2017, have push-broom imaging systems with more than one UV band with higher spatial resolution than OMI, MODIS, and VIIRS. Such imaging systems are useful for mapping the spatial extent of the optically thick air mass with particulate matters. GOSAT Air Pollution Watch, a rapid response system mainly using GOSAT CAI (Cloud and Aerosol Imager) data for local air pollution issues is being developed in NIES (National Institute for Environmental Studies) GOSAT-2 Project. The current design of GOSAT Air Pollution Watch has three data processing steps as follows: Step 1) Making a cloud mask Step 2) Estimating AOT (Aerosol Optical Thickness) in the UV region (380 nm for CAI) Step 3) Converting AOT to atmospheric pollution parameters such as PM2.5 concentration Data processing algorithms in GOSAT Air Pollution Watch are based on GOSAT/GOSAT-2 algorithms for aerosol product generation with some modification for faster and timely data processing. Data from GOSAT Air Pollution Watch will be used to inform the general public the current distribution of the polluted air. In addition, they will contribute to short term prediction of the spatial extent of the polluted air using atmospheric transport models. In this presentation, the background, the current status, and the future prospect of GOSAT Air Pollution Watch will be reported together with the development status of GOSAT-2.

  17. Radioxenon spiked air

    DOE PAGES

    Watrous, Matthew G.; Delmore, James E.; Hague, Robert K.; ...

    2015-08-27

    Four of the radioactive xenon isotopes (131mXe, 133mXe, 133Xe and 135Xe) with half-lives ranging from 9 h to 12 days are produced from nuclear fission and can be detected from days to weeks following their production and release. Being inert gases, they are readily transported through the atmosphere. Sources for release of radioactive xenon isotopes include operating nuclear reactors via leaks in fuel rods, medical isotope production facilities, and nuclear weapons' detonations. They are not normally released from fuel reprocessing due to the short half-lives. The Comprehensive Nuclear-Test-Ban Treaty has led to creation of the International Monitoring System. The Internationalmore » Monitoring System, when fully implemented, will consist of one component with 40 stations monitoring radioactive xenon around the globe. Monitoring these radioactive xenon isotopes is important to the Comprehensive Nuclear-Test-Ban Treaty in determining whether a seismically detected event is or is not a nuclear detonation. A variety of radioactive xenon quality control check standards, quantitatively spiked into various gas matrices, could be used to demonstrate that these stations are operating on the same basis in order to bolster defensibility of data across the International Monitoring System. This study focuses on Idaho National Laboratory's capability to produce three of the xenon isotopes in pure form and the use of the four xenon isotopes in various combinations to produce radioactive xenon spiked air samples that could be subsequently distributed to participating facilities.« less

  18. Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    SciTech Connect

    Rudd, A.; Bergey, D.

    2014-02-01

    Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy. It was inferior because the source of outside air was not direct from outside, the ventilation air was not distributed, and no provision existed for air filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four System Factor Categories: Balance, Distribution, Outside Air Source, and Recirculation Filtration. Recommended System Factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year.

  19. Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    SciTech Connect

    Rudd, Armin; Bergey, Daniel

    2014-02-01

    In this project, Building America research team Building Science Corporation tested the effectiveness of ventilation systems at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy. This was because the source of outside air was not direct from outside, the ventilation air was not distributed, and no provision existed for air filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four system factor categories: balance, distribution, outside air source, and recirculation filtration. Recommended system factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year.

  20. Air Conditioning Does Reduce Air Pollution Indoors

    ERIC Educational Resources Information Center

    Healy, Bud

    1970-01-01

    Report of the winter meeting of the American Society of Heating, Refrigerating and Air-Conditioning Engineers. Subjects covered are--(1) title subject, (2) predictions for the human habitat in 1994, (3) fans, and (4) fire safety in buildings. (JW)

  1. Air cycle machine for an aircraft environmental control system

    NASA Technical Reports Server (NTRS)

    Decrisantis, Angelo A. (Inventor); O'Coin, James R. (Inventor); Taddey, Edmund P. (Inventor)

    2010-01-01

    An ECS system includes an ACM mounted adjacent an air-liquid heat exchanger through a diffuser that contains a diffuser plate. The diffuser plate receives airflow from the ACM which strikes the diffuser plate and flows radially outward and around the diffuser plate and into the air-liquid heat exchanger to provide minimal pressure loss and proper flow distribution into the air-liquid heat exchanger with significantly less packaging space.

  2. Air Conditioner/Dehumidifier

    NASA Technical Reports Server (NTRS)

    1986-01-01

    An ordinary air conditioner in a very humid environment must overcool the room air, then reheat it. Mr. Dinh, a former STAC associate, devised a heat pipe based humidifier under a NASA Contract. The system used heat pipes to precool the air; the air conditioner's cooling coil removes heat and humidity, then the heat pipes restore the overcooled air to a comfortable temperature. The heat pipes use no energy, and typical savings are from 15-20%. The Dinh Company also manufactures a "Z" coil, a retrofit cooling coil which may be installed on an existing heater/air conditioner. It will also provide free hot water. The company has also developed a photovoltaic air conditioner and solar powered water pump.

  3. Health Effects of Air Pollution

    MedlinePlus

    ... Health effects of air pollution Health effects of air pollution Breathing air that is not clean can hurt ... important to know about the health effects that air pollution can have on you and others. Once you ...

  4. Organochlorine pesticides in air and soil and estimated air-soil exchange in Punjab, Pakistan.

    PubMed

    Syed, Jabir Hussain; Malik, Riffat Naseem; Liu, Di; Xu, Yue; Wang, Yan; Li, Jun; Zhang, Gan; Jones, Kevin C

    2013-02-01

    This study provides the first systematic data on the distribution of organochlorine pesticides (OCPs) in the soils and atmosphere of the Punjab province, Pakistan. Atmospheric concentrations of OCPs were estimated by using the polyurethane foam passive air sampling (PUF-PAS) technique. DDTs (dichlorodiphenyltrichloroethane), HCHs (hexachlorocyclohexane) and chlordane were the dominant OCPs found in both soil and air samples. The average concentrations of DDTs, HCHs and chlordane were 350, 55 and 99 pg m(-3) in air and 40, 7.8 and 3.8 ng g(-1) in soils, respectively. Air-soil exchange of OCPs was estimated by calculating the fugacities in soil and air. Fugacity fraction (ff) values indicate that soils are acting as a secondary source to contaminate the atmosphere at certain sampling stations.

  5. MOBILE AIR-CONDITIONING RECYCLING MANUAL

    EPA Science Inventory

    The report gives guidelines on the recovery and recycle of the chlorofluorocarbon (CFC), dichlorodifluoromethane (CFC-12), from mobile air conditions. It is intended for wide distribution internationally and is especially for use by developing countries and the World Bank to ass...

  6. Characterizing climate change impacts on human exposures to air pollutants

    EPA Science Inventory

    Human exposures to air pollutants such as ozone (O3) have the potential to be altered by changes in climate through multiple factors that drive population exposures, including: ambient pollutant concentrations, human activity patterns, population sizes and distributions, and hous...

  7. The Influence of Meteorological Conditions on Air Pollution

    ERIC Educational Resources Information Center

    Campbell, N. A.; Gipps, J.

    1975-01-01

    Explains the distribution of air pollutants as related to such meteorological conditions as temperature inversions, ground inversion, and wind velocity. Uses a power station to illustrate the effect of some of the meteorological conditions mentioned. (GS)

  8. Periodic Stresses in Gyroscopic Bodies, with Applications to Air Screws

    NASA Technical Reports Server (NTRS)

    Zahm, A F

    1918-01-01

    Report discusses periodic stresses in gyroscopic bodies with applications to air screws caused by particle mass. Report concludes that all modern air screws obey the laws found for plane groups of particles. In particular the two-bladers exert on the shaft a rhythmic gyroscopic torque; the multibladers a steady one; both easily calculable for any given conditions of motion and mass distribution.

  9. Atlanta Air Route Traffic Control Center's involvement in aviation weather

    NASA Technical Reports Server (NTRS)

    Wood, W. D.

    1979-01-01

    The distribution of weather information throughout the Air Traffic Control System is discussed along with the development of meteorological radar, and the modifications to the Air Route Traffic Control Center radars for locating and determining the severity of storms' cells. The planned improvements in the availability of weather data to the control centers are listed.

  10. Energy determination of gamma-ray induced air showers observed by an extensive air shower array

    NASA Astrophysics Data System (ADS)

    Kawata, K.; Sako, T. K.; Ohnishi, M.; Takita, M.; Nakamura, Y.; Munakata, K.

    2017-03-01

    We propose a new energy estimator to determine the energies of gamma-ray induced air showers based on the lateral distribution of extensive air showers in the energy range between 10 TeV and 1000 TeV. We carry out a detailed Monte Carlo simulation assuming the Tibet air shower array located at an altitude of 4,300 m above sea level. We define S50, which denotes the particle density at 50 m from the air shower axis, as a new energy estimator. Using S50, the energy resolution is estimated to be approximately 16 % at 100 TeV in the range of the zenith angle 𝜃 < 20∘. We find S50 giving a better energy resolution than 27 % for the air shower size (N e) and 30 % for the sum of detected particles ( \\sum ρ ), which have been used so far, at 100 TeV. We also compare the reconstructed age distributions of gamma-ray induced air showers and hadronic cosmic-ray induced air showers. The age parameter may help to discriminate between primary gamma rays and hadronic cosmic rays.

  11. Air annealing effects on lattice structure, charge state distribution of cations, and room temperature ferrimagnetism in the ferrite composition Co2.25Fe0.75O4

    NASA Astrophysics Data System (ADS)

    Ranjan Panda, Manas; Bhowmik, R. N.; Singh, Harishchandra; Singh, M. N.; Sinha, A. K.

    2015-03-01

    The ferrite composition Co2.25Fe0.75O4 has been prepared by chemical coprecipitation route. The as-prepared material has been annealed at different temperatures to investigate thermal activated changes in structural phase, charge states of cations, and room temperature magnetic properties. Synchrotron x-ray diffraction (SXRD) patterns have shown splitting of cubic spinel structure into Fe-rich and Co-rich phases for annealing temperature up to 800 °C. Single phase cubic spinel structure has been stabilized at annealing temperature 900 °C. The existence of Fe4+ ions, as confirmed from x-ray absorption near edge structure spectroscopy (XANES), is the new information for spinel ferrite. Raman spectra indicated normal spinel structure. The results of SXRD, XANES and Raman spectra have been used to estimate distribution of Co and Fe ions in spinel structure. The variation in population of Co and Fe ions and phase instability has affected the magnetic properties. The sample annealed at 800 °C shows maximum coercivity (∼567 Oe) and squareness (∼0.38), whereas the single-phased sample showed lowest values of ferrimagnetic parameters. The tuning of magnetic parameters by thermal activated structural phase variation of a hetero-structured magnetic system appears to be a new technique for the development of magnetic materials.

  12. Draft air deflecting device

    SciTech Connect

    Riley, J.E.

    1982-05-18

    A draft air deflecting device is mountable proximate to a window contained in a firebox and serves as a conduit which directs draft air across the inner surface of the window prior to its supporting combustion of the fuel in the firebox. In this respect , the draft air deflecting device is formed as a box which communicates with draft air holes located in the firebox and which includes a forwardly extending lip serving to define a nozzle for both increasing the velocity and directing the incoming draft air across the firebox window. The incoming draft air is thus utilized to cool and to prevent soot, creosote and other particulates from accumulating on the window.

  13. Air Power and Warfare

    DTIC Science & Technology

    1978-09-01

    American air ace.- New York: Putnam , 1958. (UG!3 290 G98) Guild, Richard E. The double attack system: a formalization. Yokota Air Base, Japan, 1968...1962) Sa..dby;•Robert H.M.S. Air bombardment: the story of it- development New York: Harper, 1961. (UGK 207 S25) Saunders, Hilary A.S. .Per ardua; the...1961. Letchworth, Herts: Harleyford Publications, 1961. (UGH 3215 .F5 887) Bruce, John N. British ,aeroplance 1914-1918. London: Putnam ; 1957. (Ref

  14. Contact air abrasion.

    PubMed

    Porth, R

    1999-05-01

    The advantages of contact air abrasion techniques are readily apparent. The first, of course, is the greatly increased ease of use. Working with contact also tends to speed the learning curve by giving the process a more natural dental feel. In addition, as one becomes familiar with working with a dust stream, the potential for misdirecting the air flow is decreased. The future use of air abrasion for deep decay removal will make this the treatment of choice for the next millennium.

  15. Development of low-cost air-to-air heat exchangers. Final report

    SciTech Connect

    Not Available

    1982-11-08

    In summary, comparing the TMG heat exchanger with the well-constructed and high-performance air-to-air heat exchangers assumed for analysis purposes in the LBL studies, the TMG heat exchanger is cost effective for use in low-infiltration houses heated with natural gas, oil and electricity in climates with 4000 or more heating degree (/sup 0/F) days. Experimental and field testing of the final Prototype B air-to-air heat exchanger gave a strong indication that this unit was ready for the market. A Vermont architect ordered 14 units from a pilot production run for a housing project in St. Johnsbury. These units were installed in the late winter of 1981-1982. The units have given excellent service to the point that the architect has considered the use of air-to-air heat exchangers in every subsequent job. Fabrication of the heat exchangers is being done by a small Vermont firm, Echo Fabrications, established primarily to produce air-to-air heat exchangers for the residential and agricultural market. The unit is being marketed under the tradename ECHOCHANGER and is being marketed, distributed and installed by Memphremagog Heat Exchangers, Inc. of Newport, Vermont.

  16. Air modulation apparatus

    NASA Technical Reports Server (NTRS)

    Lenahan, D. T.; Corsmeier, R. J.; Sterman, A. P. (Inventor)

    1983-01-01

    An air modulation apparatus, such as for use in modulating cooling air to the turbine section of a gas turbine engine is described. The apparatus includes valve means disposed around an annular conduit, such as a nozzle, in the engine cooling air circuit. The valve means, when in a closed position, blocks a portion of the conduit, and thus reduces the amount and increases the velocity of cooling air flowing through the nozzle. The apparatus also includes actuation means, which can operate in response to predetermined engine conditions, for enabling opening and closing of the valve means.

  17. Clean Air Excellence Awards

    EPA Pesticide Factsheets

    These non-monetary awards honor sustainable efforts toward pollutant emissions reduction from innovators in clean air technology, community action and outreach, policy development, and transportation efficiency.

  18. Personal continuous air monitor

    DOEpatents

    Morgan, Ronald G.; Salazar, Samuel A.

    2000-01-01

    A personal continuous air monitor capable of giving immediate warning of the presence of radioactivity has a filter/detector head to be worn in the breathing zone of a user, containing a filter mounted adjacent to radiation detectors, and a preamplifier. The filter/detector head is connected to a belt pack to be worn at the waist or on the back of a user. The belt pack contains a signal processor, batteries, a multichannel analyzer, a logic circuit, and an alarm. An air pump also is provided in the belt pack for pulling air through the filter/detector head by way of an air tube.

  19. Air data system optimization using a genetic algorithm

    NASA Technical Reports Server (NTRS)

    Deshpande, Samir M.; Kumar, Renjith R.; Seywald, Hans; Siemers, Paul M., III

    1992-01-01

    An optimization method for flush-orifice air data system design has been developed using the Genetic Algorithm approach. The optimization of the orifice array minimizes the effect of normally distributed random noise in the pressure readings on the calculation of air data parameters, namely, angle of attack, sideslip angle and freestream dynamic pressure. The optimization method is applied to the design of Pressure Distribution/Air Data System experiment (PD/ADS) proposed for inclusion in the Aeroassist Flight Experiment (AFE). Results obtained by the Genetic Algorithm method are compared to the results obtained by conventional gradient search method.

  20. Reevaluation of air surveillance station siting

    SciTech Connect

    Abbott, K.; Jannik, T.

    2016-07-06

    DOE Technical Standard HDBK-1216-2015 (DOE 2015) recommends evaluating air-monitoring station placement using the analytical method developed by Waite. The technique utilizes wind rose and population distribution data in order to determine a weighting factor for each directional sector surrounding a nuclear facility. Based on the available resources (number of stations) and a scaling factor, this weighting factor is used to determine the number of stations recommended to be placed in each sector considered. An assessment utilizing this method was performed in 2003 to evaluate the effectiveness of the existing SRS air-monitoring program. The resulting recommended distribution of air-monitoring stations was then compared to that of the existing site perimeter surveillance program. The assessment demonstrated that the distribution of air-monitoring stations at the time generally agreed with the results obtained using the Waite method; however, at the time new stations were established in Barnwell and in Williston in order to meet requirements of DOE guidance document EH-0173T.

  1. Radioxenon spiked air

    SciTech Connect

    Watrous, Matthew G.; Delmore, James E.; Hague, Robert K.; Houghton, Tracy P.; Jenson, Douglas D.; Mann, Nick R.

    2015-08-27

    Four of the radioactive xenon isotopes (131mXe, 133mXe, 133Xe and 135Xe) with half-lives ranging from 9 h to 12 days are produced from nuclear fission and can be detected from days to weeks following their production and release. Being inert gases, they are readily transported through the atmosphere. Sources for release of radioactive xenon isotopes include operating nuclear reactors via leaks in fuel rods, medical isotope production facilities, and nuclear weapons' detonations. They are not normally released from fuel reprocessing due to the short half-lives. The Comprehensive Nuclear-Test-Ban Treaty has led to creation of the International Monitoring System. The International Monitoring System, when fully implemented, will consist of one component with 40 stations monitoring radioactive xenon around the globe. Monitoring these radioactive xenon isotopes is important to the Comprehensive Nuclear-Test-Ban Treaty in determining whether a seismically detected event is or is not a nuclear detonation. A variety of radioactive xenon quality control check standards, quantitatively spiked into various gas matrices, could be used to demonstrate that these stations are operating on the same basis in order to bolster defensibility of data across the International Monitoring System. This study focuses on Idaho National Laboratory's capability to produce three of the xenon isotopes in pure form and the use of the four xenon isotopes in various combinations to produce radioactive xenon spiked air samples that could be subsequently distributed to participating facilities.

  2. Bioinspired air-retaining nanofur for drag reduction.

    PubMed

    Kavalenka, Maryna N; Vüllers, Felix; Lischker, Simone; Zeiger, Claudia; Hopf, Andreas; Röhrig, Michael; Rapp, Bastian E; Worgull, Matthias; Hölscher, Hendrik

    2015-05-27

    Bioinspired nanofur, covered by a dense layer of randomly distributed high aspect ratio nano- and microhairs, possesses superhydrophobic and air-retaining properties. Nanofur is fabricated using a highly scalable hot pulling method in which softened polymer is elongated with a heated sandblasted plate. Here we investigate the stability of the underwater air layer retained by the irregular nanofur topography by applying hydraulic pressure to the nanofur kept underwater, and evaluate the gradual changes in the air-covered area. Furthermore, the drag reduction resulting from the nanofur air retention is characterized by measuring the pressure drop across channels with and without nanofur.

  3. Outdoor Air Pollution and Pterygium in Korea.

    PubMed

    Lee, Ki Woong; Choi, Yoon Hyeong; Hwang, Sung Ha; Paik, Hae Jung; Kim, Mee Kum; Wee, Won Ryang; Kim, Dong Hyun

    2017-01-01

    We investigated relationships between outdoor air pollution and pterygium in Korean adults. This study includes 23,276 adults in population-based cross-sectional data using the Korea National Health and Nutrition Examination Survey 2008-2011. Pterygium was assessed using slit lamp biomicroscopy. Air pollution data (humidity, particulate matter with aerodynamic diameter less than 10 μm [PM₁₀], ozone [O₃], nitrogen dioxide [NO₂], and sulfur dioxide levels [SO₂]) for 2 years preceding the ocular examinations were acquired. Associations of multiple air pollutants with pterygium or pterygium recurrence after surgery were examined using multivariate logistic models, after adjusting for several covariates. Distributed lag models were additionally used for estimating cumulative effects of air pollution on pterygium. None of air pollution factors was significantly associated with pterygium or pterygium recurrence (each P > 0.05). Distributed lag models also showed that air pollution factors were not associated with pterygium or pterygium recurrence in 0-to-2 year lags (each P > 0.05). However, primary pterygium showed a weak association with PM10 after adjusting for covariates (odds ratio [OR] 1.23; [per 5 μg/m³ PM₁₀ increase]; P = 0.023). Aging, male sex, and greater sun exposure were associated with pterygium, while higher education level and myopia were negatively associated with pterygium (each P ≤ 0.001). Male sex and myopia were negatively associated with pterygium recurrence (each P < 0.05). In conclusion, exposure to higher PM10 levels was associated with primary pterygium, although this study observed no significant association between air pollution and overall pterygium or pterygium recurrence in Korean adults.

  4. Analysis of U.S. residential air leakage database

    SciTech Connect

    Chan, Wanyu R.; Price, Phillip N.; Sohn, Michael D.; Gadgil, Ashok J.

    2003-07-01

    The air leakage of a building envelope can be determined from fan pressurization measurements with a blower door. More than 70,000 air leakage measurements have been compiled into a database. In addition to air leakage, the database includes other important characteristics of the dwellings tested, such as floor area, year built, and location. There are also data for some houses on the presence of heating ducts, and floor/basement construction type. The purpose of this work is to identify house characteristics that can be used to predict air leakage. We found that the distribution of leakage normalized with floor area of the house is roughly lognormal. Year built and floor area are the two most significant factors to consider when predicting air leakage: older and smaller houses tend to have higher normalized leakage areas compared to newer and larger ones. Results from multiple linear regression of normalized leakage with respect to these two factors are presented for three types of houses: low-income, energy-efficient, and conventional. We demonstrate a method of using the regression model in conjunction with housing characteristics published by the US Census Bureau to derive a distribution that describes the air leakage of the single-family detached housing stock. Comparison of our estimates with published datasets of air exchange rates suggests that the regression model generates accurate estimates of air leakage distribution.

  5. 40 CFR 61.205 - Distribution and use of phosphogypsum for indoor research and development.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standards for Radon Emissions From Phosphogypsum Stacks § 61.205 Distribution... facility. Uses of phosphogypsum for outdoor agricultural research and development and agricultural...

  6. 40 CFR 61.205 - Distribution and use of phosphogypsum for indoor research and development.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standards for Radon Emissions From Phosphogypsum Stacks § 61.205 Distribution... facility. Uses of phosphogypsum for outdoor agricultural research and development and agricultural...

  7. 40 CFR 61.205 - Distribution and use of phosphogypsum for indoor research and development.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standards for Radon Emissions From Phosphogypsum Stacks § 61.205 Distribution... facility. Uses of phosphogypsum for outdoor agricultural research and development and agricultural...

  8. 40 CFR 61.205 - Distribution and use of phosphogypsum for indoor research and development.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standards for Radon Emissions From Phosphogypsum Stacks § 61.205 Distribution... facility. Uses of phosphogypsum for outdoor agricultural research and development and agricultural...

  9. Distributed Computing.

    ERIC Educational Resources Information Center

    Ryland, Jane N.

    1988-01-01

    The microcomputer revolution, in which small and large computers have gained tremendously in capability, has created a distributed computing environment. This circumstance presents administrators with the opportunities and the dilemmas of choosing appropriate computing resources for each situation. (Author/MSE)

  10. Bad Air For Children

    ERIC Educational Resources Information Center

    Kane, Dorothy Noyes

    1976-01-01

    Children are especially sensitive to air pollution and consequences to them maybe of longer duration than to adults. The effects of low-level pollution on children are the concern of this article. The need for research on the threat of air pollution to childrens' health is emphasized. (BT)

  11. Next Generation Air Monitoring

    EPA Science Inventory

    Abstract. Air pollution measurement technology is advancing rapidly towards smaller-scale and wireless devices, with a potential to significantly change the landscape of air pollution monitoring. The U.S. EPA Office of Research and Development is evaluating and developing a rang...

  12. Nuclear air cushion vehicles

    NASA Technical Reports Server (NTRS)

    Anderson, J. L.

    1973-01-01

    The state-of-the-art of the still-conceptual nuclear air cushion vehicle, particularly the nuclear powerplant is identified. Using mission studies and cost estimates, some of the advantages of nuclear power for large air cushion vehicles are described. The technology studies on mobile nuclear powerplants and conceptual ACV systems/missions studies are summarized.

  13. Air Pollution and Industry.

    ERIC Educational Resources Information Center

    Ross, R. D., Ed.

    This book is an authoritative reference and practical guide designed to help the plant engineer identify and solve industrial air pollution problems in order to be able to meet current air pollution regulations. Prepared under the editorial supervision of an experienced chemical engineer, with each chapter contributed by an expert in his field,…

  14. Discriminatory Air Pollution

    ERIC Educational Resources Information Center

    McCaull, Julian

    1976-01-01

    Described are the patterns of air pollution in certain large urban areas. Persons in poverty, in occupations below the management or professional level, in low-rent districts, and in black population are most heavily exposed to air pollution. Pollution paradoxically is largely produced by high energy consuming middle-and upper-class households.…

  15. Air Pollution, Teachers' Edition.

    ERIC Educational Resources Information Center

    Lavaroni, Charles W.; O'Donnell, Patrick A.

    One of three in a series about pollution, this teacher's guide for a unit on air pollution is designed for use in junior high school grades. It offers suggestions for extending the information and activities contained in the textual material for students. Chapter 1 discusses the problem of air pollution and involves students in processes of…

  16. Recirculating electric air filter

    DOEpatents

    Bergman, Werner

    1986-01-01

    An electric air filter cartridge has a cylindrical inner high voltage eleode, a layer of filter material, and an outer ground electrode formed of a plurality of segments moveably connected together. The outer electrode can be easily opened to remove or insert filter material. Air flows through the two electrodes and the filter material and is exhausted from the center of the inner electrode.

  17. Air Pollution Primer.

    ERIC Educational Resources Information Center

    National Tuberculosis and Respiratory Disease Association, New York, NY.

    As the dangers of polluted air to the health and welfare of all individuals became increasingly evident and as the complexity of the causes made responsibility for solutions even more difficult to fix, the National Tuberculosis and Respiratory Disease Association felt obligated to give greater emphasis to its clean air program. To this end they…

  18. AIR HEATER EXPERIMENT,

    DTIC Science & Technology

    The test program described in this report was designed to determine the feasibility of using a vitiated air heater for the PLUTO facility from the...profiles across the outlet proved relatively flat. The feasibility of using this burner for PLUTO facility air heating was established. (Author)

  19. AIR RADIOACTIVITY MONITOR

    DOEpatents

    Bradshaw, R.L.; Thomas, J.W.

    1961-04-11

    The monitor is designed to minimize undesirable background buildup. It consists of an elongated column containing peripheral electrodes in a central portion of the column, and conduits directing an axial flow of radioactively contaminated air through the center of the column and pure air through the annular portion of the column about the electrodes. (AEC)

  20. The Air We Breathe

    NASA Technical Reports Server (NTRS)

    Davila, Dina

    2010-01-01

    Topics discussed include NASA mission to pioneer the future in space exploration, scientific discovery and aeronautics research; the role of Earth's atmosphere, atmospheric gases, layers of the Earth's atmosphere, ozone layer, air pollution, effects of air pollution on people, the Greenhouse Effect, and breathing on the International Space Station.

  1. Air pollution and society

    NASA Astrophysics Data System (ADS)

    Brimblecombe, P.

    2010-12-01

    Air pollution is as much a product of our society as it is one of chemistry and meteorology. Social variables such as gender, age, health status and poverty are often linked with our exposure to air pollutants. Pollution can also affect our behaviour, while regulations to improve the environment can often challenge of freedom.

  2. Recirculating electric air filter

    DOEpatents

    Bergman, W.

    1985-01-09

    An electric air filter cartridge has a cylindrical inner high voltage electrode, a layer of filter material, and an outer ground electrode formed of a plurality of segments moveably connected together. The outer electrode can be easily opened to remove or insert filter material. Air flows through the two electrodes and the filter material and is exhausted from the center of the inner electrode.

  3. Portable oven air circulator

    DOEpatents

    Jorgensen, Jorgen A.; Nygren, Donald W.

    1983-01-01

    A portable air circulating apparatus for use in cooking ovens which is used to create air currents in the oven which transfer heat to cooking foodstuffs to promote more rapid and more uniform cooking or baking, the apparatus including a motor, fan blade and housing of metallic materials selected from a class of heat resistant materials.

  4. Bearings Only Air-to-Air Ranging

    DTIC Science & Technology

    1988-07-25

    sensor, observer and target parameters still remain. In order to reduce the number of cases to a manageable one, while preserving the geometric...perforance of variotu. ulro-air passive ranging tecnique has been examined as a fimn- tiam of uarget location andi motiom, observer motion. and length

  5. Probabilistic estimation of residential air exchange rates for population-based human exposure modeling

    EPA Science Inventory

    Residential air exchange rates (AERs) are a key determinant in the infiltration of ambient air pollution indoors. Population-based human exposure models using probabilistic approaches to estimate personal exposure to air pollutants have relied on input distributions from AER meas...

  6. 40 CFR Table 1 to Subpart Eeee of... - Organic Hazardous Air Pollutants

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Organic Hazardous Air Pollutants 1... CATEGORIES National Emission Standards for Hazardous Air Pollutants: Organic Liquids Distribution (Non-Gasoline) Pt. 63, Subpt. EEEE, Table 1 Table 1 to Subpart EEEE of Part 63—Organic Hazardous Air...

  7. 40 CFR Table 1 to Subpart Eeee of... - Organic Hazardous Air Pollutants

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Organic Hazardous Air Pollutants 1... CATEGORIES National Emission Standards for Hazardous Air Pollutants: Organic Liquids Distribution (Non-Gasoline) Pt. 63, Subpt. EEEE, Table 1 Table 1 to Subpart EEEE of Part 63—Organic Hazardous Air...

  8. Culture systems: air quality.

    PubMed

    Thomas, Theodore

    2012-01-01

    Poor laboratory air quality is a known hazard to the culture of human gametes and embryos. Embryologists and chemists have employed analytical methods for identifying and measuring bulk and select air pollutants to assess the risk they pose to the embryo culture system. However, contaminant concentrations that result in gamete or embryotoxicity are poorly defined. Combating the ill effects of poor air quality requires an understanding of how toxicants can infiltrate the laboratory, the incubator, and ultimately the culture media. A further understanding of site-specific air quality can then lead to the consideration of laboratory design and management strategies that can minimize the deleterious effects that air contamination may have on early embryonic development in vitro.

  9. Air flow paths and porosity/permeability change in a saturated zone during in situ air sparging.

    PubMed

    Tsai, Yih-Jin

    2007-04-02

    This study develops methods to estimate the change in soil characteristics and associated air flow paths in a saturated zone during in situ air sparging. These objectives were achieved by performing combined in situ air sparging and tracer testing, and comparing the breakthrough curves obtained from the tracer gas with those obtained by a numerical simulation model that incorporates a predicted change in porosity that is proportional to the air saturation. The results reveal that revising the porosity and permeability according to the distribution of gas saturation is helpful in breakthrough curve fitting, however, these changes are unable to account for the effects of preferential air flow paths, especially in the zone closest to the points of air injection. It is not known the extent to which these preferential air flow paths were already present versus created, increased, or reduced as a result of the air sparging experiment. The transport of particles from around the sparging well could account for the overall increase in porosity and permeability observed in the study. Collection of soil particles in a monitoring well within 2m of the sparging well provided further evidence of the transport of particles. Transport of particles from near the sparging well also appeared to decrease the radius of influence (ROI). Methods for predicting the effects of pressurized air injection and water flow on the creation or modification of preferential air flow paths are still needed to provide a full description of the change in soil conditions that accompany air sparging.

  10. Airing 'clean air' in Clean India Mission.

    PubMed

    Banerjee, T; Kumar, M; Mall, R K; Singh, R S

    2016-12-30

    The submission explores the possibility of a policy revision for considering clean air quality in recently launched nationwide campaign, Clean India Mission (CIM). Despite of several efforts for improving availability of clean household energy and sanitation facilities, situation remain still depressing as almost half of global population lacks access to clean energy and proper sanitation. Globally, at least 2.5 billion people do not have access to basic sanitation facilities. There are also evidences of 7 million premature deaths by air pollution in year 2012. The situation is even more disastrous for India especially in rural areas. Although, India has reasonably progressed in developing sanitary facilities and disseminating clean fuel to its urban households, the situation in rural areas is still miserable and needs to be reviewed. Several policy interventions and campaigns were made to improve the scenario but outcomes were remarkably poor. Indian census revealed a mere 31% sanitation coverage (in 2011) compared to 22% in 2001 while 60% of population (700 million) still use solid biofuels and traditional cook stoves for household cooking. Further, last decade (2001-2011) witnessed the progress decelerating down with rural households without sanitation facilities increased by 8.3 million while minimum progress has been made in conversion of conventional to modern fuels. To revamp the sanitation coverage, an overambitious nationwide campaign CIM was initiated in 2014 and present submission explores the possibility of including 'clean air' considerations within it. The article draws evidence from literatures on scenarios of rural sanitation, energy practises, pollution induced mortality and climatic impacts of air pollution. This subsequently hypothesised with possible modification in available technologies, dissemination modes, financing and implementation for integration of CIM with 'clean air' so that access to both sanitation and clean household energy may be

  11. Future Impacts of Distributed Power Generation on Ambient Ozone and Particulate Matter Concentrations in the San Joaquin Valley of California.

    PubMed

    Vutukuru, Satish; Carreras-Sospedra, Marc; Brouwer, Jacob; Dabdub, Donald

    2011-12-01

    Distributed power generation-electricity generation that is produced by many small stationary power generators distributed throughout an urban air basin-has the potential to supply a significant portion of electricity in future years. As a result, distributed generation may lead to increased pollutant emissions within an urban air basin, which could adversely affect air quality. However, the use of combined heating and power with distributed generation may reduce the energy consumption for space heating and air conditioning, resulting in a net decrease of pollutant and greenhouse gas emissions. This work used a systematic approach based on land-use geographical information system data to determine the spatial and temporal distribution of distributed generation emissions in the San Joaquin Valley Air Basin of California and simulated the potential air quality impacts using state-of-the-art three-dimensional computer models. The evaluation of the potential market penetration of distributed generation focuses on the year 2023. In general, the air quality impacts of distributed generation were found to be small due to the restrictive 2007 California Air Resources Board air emission standards applied to all distributed generation units and due to the use of combined heating and power. Results suggest that if distributed generation units were allowed to emit at the current Best Available Control Technology standards (which are less restrictive than the 2007 California Air Resources Board standards), air quality impacts of distributed generation could compromise compliance with the federal 8-hr average ozone standard in the region. [Box: see text].

  12. Future impacts of distributed power generation on ambient ozone and particulate matter concentrations in the San Joaquin Valley of California.

    PubMed

    Vutukuru, Satish; Carreras-Sospedra, Marc; Brouwer, Jacob; Dabdub, Donald

    2011-12-01

    Distributed power generation-electricity generation that is produced by many small stationary power generators distributed throughout an urban air basin-has the potential to supply a significant portion of electricity in future years. As a result, distributed generation may lead to increased pollutant emissions within an urban air basin, which could adversely affect air quality. However, the use of combined heating and power with distributed generation may reduce the energy consumption for space heating and air conditioning, resulting in a net decrease of pollutant and greenhouse gas emissions. This work used a systematic approach based on land-use geographical information system data to determine the spatial and temporal distribution of distributed generation emissions in the San Joaquin Valley Air Basin of California and simulated the potential air quality impacts using state-of-the-art three-dimensional computer models. The evaluation of the potential market penetration of distributed generation focuses on the year 2023. In general, the air quality impacts of distributed generation were found to be small due to the restrictive 2007 California Air Resources Board air emission standards applied to all distributed generation units and due to the use of combined heating and power. Results suggest that if distributed generation units were allowed to emit at the current Best Available Control Technology standards (which are less restrictive than the 2007 California Air Resources Board standards), air quality impacts of distributed generation could compromise compliance with the federal 8-hr average ozone standard in the region.

  13. Technology Candidates for Air-to-Air and Air-to-Ground Data Exchange

    NASA Technical Reports Server (NTRS)

    Haynes, Brian D.

    2015-01-01

    Technology Candidates for Air-to-Air and Air-to-Ground Data Exchange is a two-year research effort to visualize the U. S. aviation industry at a point 50 years in the future, and to define potential communication solutions to meet those future data exchange needs. The research team, led by XCELAR, was tasked with identifying future National Airspace System (NAS) scenarios, determining requirements and functions (including gaps), investigating technical and business issues for air, ground, & air-to-ground interactions, and reporting on the results. The project was conducted under technical direction from NASA and in collaboration with XCELAR's partner, National Institute of Aerospace, and NASA technical representatives. Parallel efforts were initiated to define the information exchange functional needs of the future NAS, and specific communication link technologies to potentially serve those needs. Those efforts converged with the mapping of each identified future NAS function to potential enabling communication solutions; those solutions were then compared with, and ranked relative to, each other on a technical basis in a structured analysis process. The technical solutions emerging from that process were then assessed from a business case perspective to determine their viability from a real-world adoption and deployment standpoint. The results of that analysis produced a proposed set of future solutions and most promising candidate technologies. Gap analyses were conducted at two points in the process, the first examining technical factors, and the second as part of the business case analysis. In each case, no gaps or unmet needs were identified in applying the solutions evaluated to the requirements identified. The future communication solutions identified in the research comprise both specific link technologies and two enabling technologies that apply to most or all specific links. As a result, the research resulted in a new analysis approach, viewing the

  14. Simulation of air velocity in a vertical perforated air distributor

    NASA Astrophysics Data System (ADS)

    Ngu, T. N. W.; Chu, C. M.; Janaun, J. A.

    2016-06-01

    Perforated pipes are utilized to divide a fluid flow into several smaller streams. Uniform flow distribution requirement is of great concern in engineering applications because it has significant influence on the performance of fluidic devices. For industrial applications, it is crucial to provide a uniform velocity distribution through orifices. In this research, flow distribution patterns of a closed-end multiple outlet pipe standing vertically for air delivery in the horizontal direction was simulated. Computational Fluid Dynamics (CFD), a tool of research for enhancing and understanding design was used as the simulator and the drawing software SolidWorks was used for geometry setup. The main purpose of this work is to establish the influence of size of orifices, intervals between outlets, and the length of tube in order to attain uniformity of exit flows through a multi outlet perforated tube. However, due to the gravitational effect, the compactness of paddy increases gradually from top to bottom of dryer, uniform flow pattern was aimed for top orifices and larger flow for bottom orifices.

  15. Swozzle based burner tube premixer including inlet air conditioner for low emissions combustion

    DOEpatents

    Tuthill, Richard Sterling; Bechtel, II, William Theodore; Benoit, Jeffrey Arthur; Black, Stephen Hugh; Bland, Robert James; DeLeonardo, Guy Wayne; Meyer, Stefan Martin; Taura, Joseph Charles; Battaglioli, John Luigi

    2002-01-01

    A burner for use in a combustion system of a heavy-duty industrial gas turbine includes a fuel/air premixer having an air inlet, a fuel inlet, and an annular mixing passage. The fuel/air premixer mixes fuel and air into a uniform mixture for injection into a combustor reaction zone. The burner also includes an inlet flow conditioner disposed at the air inlet of the fuel/air premixer for controlling a radial and circumferential distribution of incoming air. The pattern of perforations in the inlet flow conditioner is designed such that a uniform air flow distribution is produced at the swirler inlet annulus in both the radial and circumference directions. The premixer includes a swozzle assembly having a series of preferably air foil shaped turning vanes that impart swirl to the airflow entering via the inlet flow conditioner. Each air foil contains internal fuel flow passages that introduce natural gas fuel into the air stream via fuel metering holes that pass through the walls of the air foil shaped turning vanes. By injecting fuel in this manner, an aerodynamically clean flow field is maintained throughout the premixer. By injecting fuel via two separate passages, the fuel/air mixture strength distribution can be controlled in the radial direction to obtain optimum radial concentration profiles for control of emissions, lean blow outs, and combustion driven dynamic pressure activity as machine and combustor load are varied.

  16. Technology Solutions Case Study: Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    SciTech Connect

    A. Rudd and D. Bergey

    2015-08-01

    Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs.

  17. Working Characteristics of Variable Intake Valve in Compressed Air Engine

    PubMed Central

    Yu, Qihui; Shi, Yan; Cai, Maolin

    2014-01-01

    A new camless compressed air engine is proposed, which can make the compressed air energy reasonably distributed. Through analysis of the camless compressed air engine, a mathematical model of the working processes was set up. Using the software MATLAB/Simulink for simulation, the pressure, temperature, and air mass of the cylinder were obtained. In order to verify the accuracy of the mathematical model, the experiments were conducted. Moreover, performance analysis was introduced to design compressed air engine. Results show that, firstly, the simulation results have good consistency with the experimental results. Secondly, under different intake pressures, the highest output power is obtained when the crank speed reaches 500 rpm, which also provides the maximum output torque. Finally, higher energy utilization efficiency can be obtained at the lower speed, intake pressure, and valve duration angle. This research can refer to the design of the camless valve of compressed air engine. PMID:25379536

  18. Working characteristics of variable intake valve in compressed air engine.

    PubMed

    Yu, Qihui; Shi, Yan; Cai, Maolin

    2014-01-01

    A new camless compressed air engine is proposed, which can make the compressed air energy reasonably distributed. Through analysis of the camless compressed air engine, a mathematical model of the working processes was set up. Using the software MATLAB/Simulink for simulation, the pressure, temperature, and air mass of the cylinder were obtained. In order to verify the accuracy of the mathematical model, the experiments were conducted. Moreover, performance analysis was introduced to design compressed air engine. Results show that, firstly, the simulation results have good consistency with the experimental results. Secondly, under different intake pressures, the highest output power is obtained when the crank speed reaches 500 rpm, which also provides the maximum output torque. Finally, higher energy utilization efficiency can be obtained at the lower speed, intake pressure, and valve duration angle. This research can refer to the design of the camless valve of compressed air engine.

  19. Close Air Support and Interdiction Missions as Seen by the Air Force and Army

    DTIC Science & Technology

    2007-11-02

    MONITORING AGENCY NAME AND ADDRESS , 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION/AVAILABILITY STATEMENT A PUBLIC RELEASE , 13 . SUPPLEMENTARY NOTES... 13 Armor...but never delivered, emerging technology will at least make the “delay” much longer and the “disruption” much worse. 13 Close Air Support is defined in

  20. Distributed Optimization

    NASA Technical Reports Server (NTRS)

    Macready, William; Wolpert, David

    2005-01-01

    We demonstrate a new framework for analyzing and controlling distributed systems, by solving constrained optimization problems with an algorithm based on that framework. The framework is ar. information-theoretic extension of conventional full-rationality game theory to allow bounded rational agents. The associated optimization algorithm is a game in which agents control the variables of the optimization problem. They do this by jointly minimizing a Lagrangian of (the probability distribution of) their joint state. The updating of the Lagrange parameters in that Lagrangian is a form of automated annealing, one that focuses the multi-agent system on the optimal pure strategy. We present computer experiments for the k-sat constraint satisfaction problem and for unconstrained minimization of NK functions.

  1. A review on air cathodes for zinc-air fuel cells

    NASA Astrophysics Data System (ADS)

    Neburchilov, Vladimir; Wang, Haijiang; Martin, Jonathan J.; Qu, Wei

    This paper reviews the compositions, design and methods of fabrication of air cathodes for alkali zinc-air fuel cells (ZAFCs), one of the few successfully commercialized fuel cells. The more promising compositions for air cathodes are based on individual oxides, or mixtures of such, with a spinel, perovskite, or pyrochlore structure: MnO 2, Ag, Co 3O 4, La 2O 3, LaNiO 3, NiCo 2O 4, LaMnO 3, LaNiO 3, etc. These compositions provide the optimal balance of ORR activity and chemical stability in an alkali electrolyte. The sol-gel and reverse micelle methods supply the most uniform distribution of the catalyst on carbon and the highest catalyst BET surface area. It is shown that the design of the air cathode, including types of carbon black, binding agents, current collectors, Teflon membranes, thermal treatment of the GDL, and catalyst layers, has a strong effect on performance.

  2. BioAir: Bio-Inspired Airborne Infrastructure Reconfiguration

    DTIC Science & Technology

    2016-01-01

    in hostile or sensor deprived environments, maintaining radio contact with a base station would increase the efficiency of coordinating the...task for many commercial and military applications. For example when troops are deployed in hostile or sensor deprived environments, maintaining radio...possibly heterogeneous sensors distributed amongst all nodes in the network to form a distributed sensor network. BioAIR performs collaborative

  3. Air ejector augmented compressed air energy storage system

    DOEpatents

    Ahrens, F.W.; Kartsounes, G.T.

    Energy is stored in slack demand periods by charging a plurality of underground reservoirs with air to the same peak storage pressure, during peak demand periods throttling the air from one storage reservoir into a gas turbine system at a constant inlet pressure until the air presure in the reservoir falls to said constant inlet pressure, thereupon permitting air in a second reservoir to flow into said gas turbine system while drawing air from the first reservoir through a variable geometry air ejector and adjusting said variable geometry air ejector, said air flow being essentially at the constant inlet pressure of the gas turbine system.

  4. Air ejector augmented compressed air energy storage system

    DOEpatents

    Ahrens, Frederick W.; Kartsounes, George T.

    1980-01-01

    Energy is stored in slack demand periods by charging a plurality of underground reservoirs with air to the same peak storage pressure, during peak demand periods throttling the air from one storage reservoir into a gas turbine system at a constant inlet pressure until the air pressure in the reservoir falls to said constant inlet pressure, thereupon permitting air in a second reservoir to flow into said gas turbine system while drawing air from the first reservoir through a variable geometry air ejector and adjusting said variable geometry air ejector, said air flow being essentially at the constant inlet pressure of the gas turbine system.

  5. Monte Carlo simulation of air sampling methods for the measurement of radon decay products.

    PubMed

    Sima, Octavian; Luca, Aurelian; Sahagia, Maria

    2017-02-21

    A stochastic model of the processes involved in the measurement of the activity of the (222)Rn decay products was developed. The distributions of the relevant factors, including air sampling and radionuclide collection, are propagated using Monte Carlo simulation to the final distribution of the measurement results. The uncertainties of the (222)Rn decay products concentrations in the air are realistically evaluated.

  6. Air washer/scrubber

    SciTech Connect

    Brown, L.H.; Gerdes, D.F.; Telchuk, S.E.

    1982-05-04

    An air washer or scrubber, particularly for paint spray booths and especially adapted for removing paint particles from air passing downwardly through the grille floor of a paint spray booth and against a water-washed subfloor, comprises an elongated v-shaped slot in the subfloor extending along the longitudinal centerline of the booth. The inner edges of the walls forming the v-shaped slot are upturned to form ledges so that water flowed over the subfloor and the walls of the slot impinges against the ledges and is thrown upwardly and inwardly to form a curtain of water completely covering the slot. Exhaust means pulls paintladen air from the spray chamber through the water curtain and the slot and into an expansion chamber, the bottom walls of which form a second v-shaped slot contiguous with the first mentioned slot. The water, in which virtually all of the paint particles are entrained, and the air are discharged from the second slot and impinged against a baffle sheet angling downwardly away from the expansion chamber. The end of the sheet is upturned at a small angle to deflect the water and form an umbrella of water through which the air must pass for a final cleaning action. An optional curved deflector plate positioned beneath the umbrella of water aids in separating the water and air so that only clean, dry air is exhausted to atmosphere.

  7. Air Cleaning Technologies

    PubMed Central

    2005-01-01

    Executive Summary Objective This health technology policy assessment will answer the following questions: When should in-room air cleaners be used? How effective are in-room air cleaners? Are in-room air cleaners that use combined HEPA and UVGI air cleaning technology more effective than those that use HEPA filtration alone? What is the Plasmacluster ion air purifier in the pandemic influenza preparation plan? The experience of severe acute respiratory syndrome (SARS) locally, nationally, and internationally underscored the importance of administrative, environmental, and personal protective infection control measures in health care facilities. In the aftermath of the SARS crisis, there was a need for a clearer understanding of Ontario’s capacity to manage suspected or confirmed cases of airborne infectious diseases. In so doing, the Walker Commission thought that more attention should be paid to the potential use of new technologies such as in-room air cleaning units. It recommended that the Medical Advisory Secretariat of the Ontario Ministry of Health and Long-Term Care evaluate the appropriate use and effectiveness of such new technologies. Accordingly, the Ontario Health Technology Advisory Committee asked the Medical Advisory Secretariat to review the literature on the effectiveness and utility of in-room air cleaners that use high-efficiency particle air (HEPA) filters and ultraviolet germicidal irradiation (UVGI) air cleaning technology. Additionally, the Ontario Health Technology Advisory Committee prioritized a request from the ministry’s Emergency Management Unit to investigate the possible role of the Plasmacluster ion air purifier manufactured by Sharp Electronics Corporation, in the pandemic influenza preparation plan. Clinical Need Airborne transmission of infectious diseases depends in part on the concentration of breathable infectious pathogens (germs) in room air. Infection control is achieved by a combination of administrative, engineering

  8. Air Quality Management Process Cycle

    EPA Pesticide Factsheets

    Air quality management are activities a regulatory authority undertakes to protect human health and the environment from the harmful effects of air pollution. The process of managing air quality can be illustrated as a cycle of inter-related elements.

  9. Ozone - Current Air Quality Index

    MedlinePlus

    Local Air Quality Conditions Zip Code: State : My Current Location Forecast Current AQI AQI Loop More Maps AQI: Good (0 - ... September 2016, Busan, South Korea. More more announcements Air Quality Basics Air Quality Index | Ozone | Particle Pollution | Smoke ...

  10. Air Quality Guide for Ozone

    MedlinePlus

    Local Air Quality Conditions Zip Code: State : My Current Location Air Quality Guide for Ozone Ground-level ozone is one ... exposure and protect your health. For your local air quality, visit www.airnow.gov View or print guide ...

  11. Lean in Air Permitting Guide

    EPA Pesticide Factsheets

    The Lean in Air Permitting Guide is designed to help air program managers at public agencies better understand the potential value and results that can be achieved by applying Lean improvement methods to air permitting processes.

  12. Liquid-Air Breathing Apparatus

    NASA Technical Reports Server (NTRS)

    Mills, Robert D.

    1990-01-01

    Compact unit supplies air longer than compressed-air unit. Emergency breathing apparatus stores air as cryogenic liquid instead of usual compressed gas. Intended for firefighting or rescue operations becoming necessary during planned potentially hazardous procedures.

  13. Particulate Air Pollution: The Particulars

    ERIC Educational Resources Information Center

    Murphy, James E.

    1973-01-01

    Describes some of the causes and consequences of particulate air pollution. Outlines the experimental procedures for measuring the amount of particulate materials that settles from the air and for observing the nature of particulate air pollution. (JR)

  14. Relationships between submicrometer particulate air pollution and air mass history in Beijing, China, 2004 2006

    NASA Astrophysics Data System (ADS)

    Wehner, B.; Birmili, W.; Ditas, F.; Wu, Z.; Hu, M.; Liu, X.; Mao, J.; Sugimoto, N.; Wiedensohler, A.

    2008-10-01

    The Chinese capital Beijing is one of the global megacities where the effects of rapid economic growth have led to complex air pollution problems that are not well understood. In this study, ambient particle number size distributions in Beijing between 2004 and 2006 are analysed as a function of regional meteorological transport. An essential result is that the particle size distribution in Beijing depends to large extent on the history of the synoptic scale air masses. A first approach based on manual back trajectory classification yielded differences in particulate matter mass concentration by a factor of two between four different air mass categories, including three main wind directions plus the case of stagnant air masses. A back trajectory cluster analysis refined these results, yielding a total of six trajectory clusters. Besides the large scale wind direction, the transportation speed of an air mass was found to play an essential role on the PM concentrations in Beijing. Slow-moving air masses were shown to be associated with an effective accumulation of surface-based anthropogenic emissions due to both, an increased residence time over densely populated land, and their higher degree of vertical stability. For the six back trajectory clusters, differences in PM1 mass concentrations by a factor of 3.5, in the mean air mass speed by a factor of 6, and in atmospheric visibility by a factor of 4 were found. The main conclusion is that the air quality in Beijing is not only degraded by anthropogenic aerosol sources from within the megacity, but also by sources across the entire Northwest China plain depending on the meteorological situation.

  15. Relationships between submicrometer particulate air pollution and air mass history in Beijing, China, 2004-2006

    NASA Astrophysics Data System (ADS)

    Wehner, B.; Birmili, W.; Ditas, F.; Wu, Z.; Hu, M.; Liu, X.; Mao, J.; Sugimoto, N.; Wiedensohler, A.

    2008-06-01

    The Chinese capital Beijing is one of the global megacities where the effects of rapid economic growth have led to complex air pollution problems that are not well understood. In this study, ambient particle number size distributions in Beijing between 2004 and 2006 are analysed as a function of regional meteorological transport. An essential result is that the particle size distribution in Beijing depends to large extent on the history of the synoptic scale air masses. A first approach based on manual back trajectory classification yielded differences in particulate matter mass concentration (PM1 and PM10) by a factor of two between four different air mass categories, including three main wind directions plus the case of stagnant air masses. A back trajectory cluster analysis refined these results, yielding a total of six trajectory clusters. Besides the large scale wind direction, the transportation speed of an air mass was found to play an essential role on the PM concentrations in Beijing. Slow-moving air masses were shown to be associated with an effective accumulation of surface-based anthropogenic emissions due to both, an increased residence time over densely populated land, and their higher degree of vertical stability. For the six back trajectory clusters, differences in PM1 mass concentrations by a factor of 3.5, in the mean air mass speed by a factor of 6, and in atmospheric visibility by a factor of 4 were found. The main conclusion is that the air quality in Beijing is not only degraded by anthropogenic aerosol sources from within the megacity, but also by sources across the entire Northwest China plain depending on the meteorological situation.

  16. Classification Studies in an Advanced Air Classifier

    NASA Astrophysics Data System (ADS)

    Routray, Sunita; Bhima Rao, R.

    2016-10-01

    In the present paper, experiments are carried out using VSK separator which is an advanced air classifier to recover heavy minerals from beach sand. In classification experiments the cage wheel speed and the feed rate are set and the material is fed to the air cyclone and split into fine and coarse particles which are collected in separate bags. The size distribution of each fraction was measured by sieve analysis. A model is developed to predict the performance of the air classifier. The objective of the present model is to predict the grade efficiency curve for a given set of operating parameters such as cage wheel speed and feed rate. The overall experimental data with all variables studied in this investigation is fitted to several models. It is found that the present model is fitting good to the logistic model.

  17. Air pollution dispersion within urban street canyons

    NASA Astrophysics Data System (ADS)

    Taseiko, Olga V.; Mikhailuta, Sergey V.; Pitt, Anne; Lezhenin, Anatoly A.; Zakharov, Yuri V.

    A semi-empirical mathematical model, Urban Street Model (USM), is proposed to efficiently estimate the dispersion of vehicular air pollution in cities. This model describes urban building arrangements by combining building density, building heights and the permeability of building arrangements relative to wind flow. To estimate the level of air pollution in the city of Krasnoyarsk (in Eastern Siberia), the spatial distribution of pollutant concentrations off roadways is calculated using Markov's processes in USM. The USM-predicted numerical results were compared with field measurements and with results obtained from other frequently used models, CALINE-4 and OSPM. USM consistently yielded the best results. OSPM usually overestimated pollutant concentration values. CALINE-4 consistently underestimated these values. For OSPM, the maximum differences were 160% and for CALINE-4 about 400%. Permeability and building density are necessary parameters for accurately modeling urban air pollution and influencing regulatory requirements for building planning.

  18. Air Shower Simulations

    SciTech Connect

    Alania, Marco; Gomez, Adolfo V. Chamorro; Araya, Ignacio J.; Huerta, Humberto Martinez; Flores, Alejandra Parra; Knapp, Johannes

    2009-04-30

    Air shower simulations are a vital part of the design of air shower experiments and the analysis of their data. We describe the basic features of air showers and explain why numerical simulations are the appropriate approach to model the shower simulation. The CORSIKA program, the standard simulation program in this field, is introduced and its features, performance and limitations are discussed. The basic principles of hadronic interaction models and some gerneral simulation techniques are explained. Also a brief introduction to the installation and use of CORSIKA is given.

  19. Air/Water Purification

    NASA Technical Reports Server (NTRS)

    1992-01-01

    After 18 years of research into air/water pollution at Stennis Space Center, Dr. B. C. Wolverton formed his own company, Wolverton Environmental Services, Inc., to provide technology and consultation in air and water treatment. Common houseplants are used to absorb potentially harmful materials from bathrooms and kitchens. The plants are fertilized, air is purified, and wastewater is converted to clean water. More than 100 U.S. communities have adopted Wolverton's earlier water hyacinth and artificial marsh applications. Catfish farmers are currently evaluating the artificial marsh technology as a purification system.

  20. Ventilating Air-Conditioner

    NASA Technical Reports Server (NTRS)

    Dinh, Khanh

    1994-01-01

    Air-conditioner provides ventilation designed to be used alone or incorporated into cooling or heating system operates efficiently only by recirculating stale air within building. Energy needed to operate overall ventilating cooling or heating system slightly greater than operating nonventilating cooling or heating system. Helps to preserve energy efficiency while satisfying need for increased forced ventilation to prevent accumulation of undesired gases like radon and formaldehyde. Provides fresh treated air to variety of confined spaces: hospital surgeries, laboratories, clean rooms, and printing shops and other places where solvents used. In mobile homes and portable classrooms, eliminates irritant chemicals exuded by carpets, panels, and other materials, ensuring healthy indoor environment for occupants.